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Abstract. Nonnegative Matrix Factorization (NMF) has already found
many applications in image processing and data analysis, including clas-
sification, clustering, feature extraction, pattern recognition, and blind
image separation. In the paper, we extend the selected NMF algorithms
by taking into account local smoothness properties of source images. Our
modifications are related with incorporation of the Gibbs prior, which is
well-known in many tomographic image reconstruction applications, to a
underlying blind image separation model. The numerical results demon-
strate the improved performance of the proposed methods in comparison
to the standard NMF algorithms.

1 Introduction

Nonnegative Matrix Factorization (NMF) [1] attempts to recover hidden non-
negative structures or patterns from usually redundant data. This technique has
been successfully applied in many applications, e.g. in data analysis (pattern
recognition, segmentation, clustering, dimensionality reduction) [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12], signal and image processing (blind source separation, spectra
recovering) [13, 14], language modeling, text analysis [15, 16], music transcrip-
tion [4, 17], or neuro-biology (gene separation, EEG signal analysis) [18, 19, 20].

NMF decomposes the data matrix Y = [yik] ∈ R
I×K as a product of two

nonnegative matrices A = [aij ] ∈ R
I×J and X = [xjk] ∈ R

J×K , i.e.

Y = AX, (1)

where ∀i, j, k : aij ≥ 0, xjk ≥ 0.
Depending on an application, the hidden components may have different in-

terpretation. For example, Lee and Seung in [1] introduced NMF as a method to
decompose an image (face) into parts-based representations (parts reminiscent of
features such as lips, eyes, nose, etc.). In NMF with application to Blind Source
Separation (BSS) [21], the matrix Y represents the observed mixed (superposed)

� Dr. R. Zdunek is also with Institute of Telecommunications, Teleinformatics and
Acoustics, Wroclaw University of Technology, Poland.

�� Dr. A. Cichocki is also with Systems Research Institute (SRI), Polish Academy of
Science (PAN), Warsaw University of Technology, Dept. of EE, Warsaw, Poland.

M. Ishikawa et al. (Eds.): ICONIP 2007, Part II, LNCS 4985, pp. 519–528, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



520 R. Zdunek and A. Cichocki

images, A is a mixing operator, and X is a matrix of true source images. Each
row of Y or X is a 1D image representation, where I is a number of observed
mixed images and J is a number of hidden (source) components. The 1D rep-
resentation of a 2D image X̃ = [x̃mn] ∈ R

M×N is obtained as lexicographical
ordering of the pixels, i.e. x̃ = [x̃11, x̃12, . . . , x̃1N , x̃21, . . . , x̃MN ]T ∈ R

MN . The
index k denotes the pixel’s position in a 1D image representation, and K is a
total number of pixels. In BSS, we usually have K >> I ≥ J , and J is known
or can be relatively easily estimated using SVD.

Our objective is to estimate the mixing matrix A and sources X subject
to nonnegativity constraints of all the entries, given Y and possibly the prior
knowledge on the nature of the true images to be estimated or on a statistical
distribution of noisy disturbances.

The basic approach to NMF is the alternating minimization of the specific
cost function D(Y ||AX) that measures the distance between Y and AX. Lee
and Seung [1] were the first who proposed two types of NMF algorithms. One
minimizes the Euclidean distance, which is optimal for a Gaussian distributed
additive noise, and the other for minimization of the Kullback-Leibler divergence,
which is suitable for a Poisson distributed noise. The NMF algorithms that
are optimal for many other distribution of additive noise can be found, e.g.
in [22, 21, 23].

Unfortunately, the alternating minimization does not provide a unique solu-
tion, and often some additional constraints must be imposed to select a solution
that is close to the true one. For example, finding such P > 0 for which P−1 > 0,
we have: AX = (AP−1)(P X) = ÃX̃ = Y , where A �= Ã and X �= X̃. Obvi-
ously, P could be any permutation matrix. Also, the alternating minimization
is not convex with respect to both sets of the arguments {A, X}, even though
the cost function is expressed by a quadratic function. To relax the ambiguity
and non-convexity effects, the common approach is to incorporate some penalty
terms to the cost function, which adequately regularizes the solution or restricts
a set of all admissible solutions. Such regularization has been widely discussed
in the literature with respect to various criteria for selection of the desired so-
lution. The penalty terms can enforce sparsity, smoothness, continuity, closure,
unimodality, orthogonality, or local rank-selectivity. A widely-used approach in
many NMF applications is to apply sparsity constraints [24, 22, 25, 26, 27].

In the paper, we apply the penalty term that enforces local smoothness in
the estimated 2D images. This case may take place in many BSS applications
with locally smooth features. This paper is motivated by the preliminary results
obtained in [28], where we have proposed the NMF algorithm for blind separation
of locally smooth nonnegative signals.

The penalty term, which we use in the paper, is motivated by the Markov Ran-
dom Field (MRF) models that are widely applied in image reconstruction. Such
models, which are often expressed by the Gibbs prior, determine local roughness
(smoothness) in the analyzed image with consideration of pair-wise interactions
among adjacent pixels in a given neighborhood of a singe pixel. Thus, a total
smoothness in an image can be expressed by a joint Gibbs distribution with
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a nonlinear energy function. In our approach, we use the Green’s function for
measuring strength of the pair-wise pixel interactions. Using a Bayesian frame-
work, we get the Gibbs regularized Euclidean cost function that is minimized
with a gradient descent alternating minimization technique subject to nonneg-
ativity constrains that can be imposed in many ways. One of them is achieved
with standard multiplicative updates that were used, e.g. by Lee and Seung [1].
Another approach is to apply the projected Alternating Least Squares (ALS) al-
gorithms [27], which are generally more efficient to NMF problems than standard
multiplicative algorithms.

2 Gibbs Regularized Algorithms

Since in practice a Gaussian noise occurs the most often in BSS applications,
we restrict our considerations only to the following joint multivariate normal
likelihood model:

p(Y |X) ∝ exp
{

−1
2

tr{(Y − AX)T Σ−1(Y − AX)}
}

, (2)

where each sample nk from the residual (noise) matrix N = Y − AX =
[n1, . . . , nK ] is assumed to follow the same statistics with the covariance matrix
Σ.

Let us assume the prior information on total smoothness of the estimated
images is given by the following Gibbs distribution

p(X) =
1
Z

exp {−αU(X)} , (3)

where Z is a partition function, α is a regularization parameter, and U(X) is a
total energy function that measures the total roughness in the object of interest.
The function U(X) is often formulated with respect to the Markov Random
Field (MRF) model that is commonly used in image reconstruction to enforce
local smoothing.

The prior can be incorporated into the likelihood function with the Bayesian
framework:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
, (4)

where p(Y ) is a marginal likelihood function. Thus the Gibbs regularized Euclid-
ean cost function can be expressed in the form:

Ψ = −2 ln p(X|Y ) = ||Y − AX||2F + 2αU(X) + c, (5)

where c is a constant.
The stationary points of Ψ can be derived from the gradients of Ψ with respect

to X and A. Thus:

∇XΨ = 2AT (AX − Y ) + 2α∇XU(X) ≡ 0, (6)
∇AΨ = (AX − Y )XT ≡ 0. (7)
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2.1 NMF Algorithms

From (6)–(7), we have:

[AT Y − α∇XU(X)]jk

[AT AX]jk

= 1,
[Y XT ]ij

[AXXT ]ij
= 1. (8)

Using multiplicative updates, we get the Gibbs regularized multiplicative NMF
algorithm:

xjk ← xjk

[
[AT Y ]jk − α[∇XU(X)]jk

]
ε

[AT AX]jk

, (9)

aij ← aij
[Y XT ]ij

[AX XT ]ij
, aij ← aij∑J

j=1 aij

, (10)

where [x]ε = max{ε, x} is a nonlinear operator for projection onto a positive
orthant (subspace R+) with small ε (eps). Typically, ε = 10−16. The normaliza-
tion in (10) additionally constrains the basis vectors to a unit l1-norm, which
relaxes the intrinsic scaling ambiguity in NMF.

It is easy to notice that for α = 0 in (9), the updating rules (9)–(10) simplify
to the standard Lee-Seung algorithm that minimizes the Euclidean distance
(Frobenius norm).

The algorithm (9)–(10) can also be improved by replacing the step (10) with
a more exact updating rule. It is well-known that multiplicative algorithms are
slowly-convergent, and the system of linear equations to be solved in the step (10)
is highly over-determined. Hence, the update (10) can be successfully replaced
with the projected Moore-Penrose pseudo-inverse [27] or the quasi-Newton ap-
proach [26]. For simplicity, we consider only the former approach, thus from (7)
we have

A ←
[
Y XT (XXT )

]
ε
. (11)

2.2 Markov Random Field Model

MRF models have been widely applied in many image reconstruction appli-
cations, especially in tomographic imaging. In our application, MRF models
motives the definition of the total energy function in the Gibbs prior (3). Thus

U(X) =
J∑

j=1

K∑
k=1

∑
l∈Sk

wklψ (xjk − xjl, δ) , (12)

where Sk is a set of pixels in the neighborhood of the k-th pixel, wkl is a weighting
factor, δ is a scaling factor, and ψ (ξ, δ) is some potential function of ξ, which
can take various forms. Exemplary potential functions are listed in Table 1.

Since the Green’s function [34] satisfies all the properties mentioned in [35],
i.e. it is nonnegative, even, 0 at ξ = 0, strictly increasing for ξ > 0, unbounded,
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Table 1. Potential functions

Author(s) (Name) Reference Functions: V (ξ, δ)

(Gaussian)
�

ξ

δ

�2

Besag (Laplacian) [29]
����ξδ
����

Hebert and Leahy [30] δ log
�
1 + (

ξ

δ
)2
�

Geman and McClure [31]
16

3
√

3
(ξ/δ)2

(1 + (ξ/δ)2)

Geman and Reynolds [32]
|ξ/δ|

1 + |ξ/δ|

Stevenson and Delp (Hubert) [33] min{|ξ
δ
|2, 2|ξ

δ
| − 1}

Green [34] δ log[cosh(ξ/δ)]
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Fig. 1. (a) Original 4 smooth source images; (b) Observed 9 very noisy mixed images
with SNR = 10[dB])

convex, and has bounded first-derivative, we decided to select this function to
our tests. Thus

ψ (ξ, δ) = δ log[cosh(ξ/δ)], (13)
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Fig. 2. Estimated sources with: (a) standard multiplicative (Lee-Seung) NMF
algorithm (9)–(10) at α = 0 (SIRX = 7.1, 11.7, 12.6, 13.1[dB], SIRA =
12.3, 7.6, 14.8, 13.3[dB] respectively); (b) Gibbs regularized algorithm given by (9)–
(10) with parameters α = 0.2 and δ = 10−3 (SIRX = 18.5, 18.3, 17.9, 18[dB],
SIRA = 29.6, 39.7, 27.4, 31.2[dB], respectively)

which leads to

[∇XU(X)]jk =
∑
l∈Sk

wkl tanh
(

xjk − xjl

δ

)
. (14)

The set Sk and the associated weighting factors wkl are usually defined by the
MRF model. Taking into account the nearest neighborhood, wkl = 1 for pixels
adjacent along a horizontal or vertical line, and wkl = 1√

2
for pixels adjacent

along a diagonal line.
Usually, the potential functions in (12) are parameter-dependent. At least,

one parameter (in our case, the parameter δ) must be set up in advance, or
simultaneously with the estimation. Generally, this can be regarded as a hy-
perparameter, and consequently estimated with maximization of the marginal
likelihood function p(Y ) in (4). However, a direct estimation of the parameter
from the data usually involves a high computational complexity, and it is not
absolutely needed if we operate on one class of data for which preliminary sim-
ulations can be performed. We notice that for our class of data, the parameter
has a very slight impact on the estimation in quite a wide range of its values.
Thus, we set δ = 10−3 in all the tests in the paper.

3 Numerical Tests

The proposed algorithms have been extensively tested for various sets of the
parameters (α and δ), and the algorithms are compared with the standard NMF
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Fig. 3. Histograms from 100 mean-SIR samples generated with the following algo-
rithms: (left) standard multiplicative (Lee-Seung) NMF algorithm; (right) Gibbs regu-
larized algorithm; (top) estimation of X (sources); (bottom) estimation of columns in
mixing matrix A

algorithm. For the numerical tests we have used the benchmark of 4 smooth orig-
inal images (Fig. 1(a)) which are mixed with the dense random mixing matrix
A ∈ R

9×4 uniformly distributed (cond(A) = 4.11). The mixtures are then cor-
rupted with the Gaussian noise of SNR = 10[dB]. Fig. 1(b) presents the noisy
mixed images. The estimated images with the standard Lee-Seung algorithm
(the updates (9)–(10) at α = 0) are shown in Fig. 2(a). The results obtained
with the improved Gibbs regularized NMF algorithm given by (9)–(10) are illus-
trated in Fig. 2(b) for α = 0.2. The updating process for each algorithm has been
terminated after 1000 alternating steps. The estimations are also quantitatively
assessed with the standard Signal-to-Interference Ratio (SNR).
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The same algorithms are also tested with the Monte Carlo (MC) analysis
where for each run the initial conditions are randomly set. Fig. 3 presents the
histograms obtained from 100 mean-SIR samples generated with the MC analysis
for the above-mentioned NMF algorithms: unregularized version (left) and Gibbs
regularized version (right).

4 Conclusions

In the paper, we derived the new algorithm for NMF, which may be useful for
estimation of locally smooth images in BSS applications. The algorithm exploits
the information on pair-wise interactions between adjacent pixels, which is moti-
vated by MRF models in tomographic image reconstruction. Incorporating such
a prior information to the NMF updating rules (especially for X) is also very
profitable for relaxing NMF ambiguity and non-convexity effects. The numer-
ical results demonstrate the robustness of the proposed algorithm, especially
for highly noisy data. The algorithm is much less sensitive to initialization in
comparison to the standard NMF algorithms. This is confirmed with the MC
simulations shown in Fig. 3. The proposed approach can be further extended with
additional constraints or different updating rules. Also, another extension may
concern the application of data-driven hyperparameter estimation techniques,
especially for the regularization parameter.

The proposed algorithm has been implemented in Matlab Toolbox for Non-
negative Matrix Factorization: NMFLAB for Signal and Image Processing [36].
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