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Abstract. The objective of this study is to build a model of neural
network classifier that is not only reliable but also, as opposed to most
presently available neural networks, logically interpretable in a human-
plausible manner. Presently, most of the studies of rule extraction from
trained neural networks focus on extracting rule from existing neural
network models that were designed without the consideration of rule ex-
traction, hence after the training process they are meant to be used as a
kind black box. Consequently, this makes rule extraction a hard task. In
this study we construct a model of neural network ensemble with the con-
sideration of rule extraction. The function of the ensemble can be easily
interpreted to generate logical rules that are understandable to human.
We believe that the interpretability of neural networks contributes to the
improvement of the reliability and the usability of neural networks when
applied critical real world problems.

1 Introduction

In the past decades, neural networks have been rigorously studied and applied in
many fields. One of the most utilized models is Multilayered Perceptron (MLP)
[1].The ability and flexibility of MLP to deal with vast kind of problems is the
main reason for its unmatched success. Through the learning process, MLP is
able to obtain knowledge to associate inputs and outputs, which is implicitly
represented in the data set. However, in MLP this knowledge is represented as
a set of connection weights values, which is not intuitively nor logically plau-
sible (at least easily) for human. Hence, once trained, MLP is used as a kind
of black box. Although, MLP is widely used for control, prediction, pattern
recognition and so on, the lack of understanding in human side on the logical
clarity on the decision making process inside MLP (and most of neural net-
works) is one of the drawback that hinders the usage of neural networks in more
critical real world problems, for example problems that are crucial to human
safety.

So far, several methods for extracting rules from a trained neural network
were proposed [2,3,5]. The objective of most of these methods is to extract plau-
sible rule from conventionally available neural networks, e.g. MLP. However, rule
extractability is not considered in the design MLP, which naturally complicates
the process of rule extraction. The nonlinearity of MLP complicates not only
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the rule extraction process but sometimes also reduces the plausibility of the
extracted rules.

The objective of our study is to propose a neural network model which struc-
ture and behavior significantly simplifies the rule extraction process without
compromising the performance. The model is based on the previously proposed
ensemble model [9]. As opposed to previously proposed ensemble models [6,7,8]
whose objectives are to achieve better generalization performances compared
to singular neural network models, our main objective is to build an ensemble
model which behavior can be easily interpreted to generate rules that are logi-
cally comprehensible for human. Although we do not focus on the improvement
of the generalization performance, the performance of the proposed ensemble is
assured to be at least competitive to that of MLP.

The proposed ensemble is composed of several linear perceptrons (member
hereafter). It is also equipped with a competitive training mechanism, which au-
tomatically and efficiently decomposes a given learning space into several learn-
ing sub-spaces and assigns a sub-space to a member that can deal with it best.
Consequently, because each member is a perceptron that can only learn to form
a linear function, the ensemble decomposes an arbitrary learning problem into
several manageable linear problems, thus realizing a piecewise-linear classifier.
The linearity of each member significantly lessens the complexity of rule extrac-
tion process, and the structure of the ensemble also contributes to the simplicity,
thus plausibility of the extracted rules.

In the experiment the behavior of the proposed model is illustrated using
an artificial logic problem, while the efficiency is tested on several benchmark
problems.

2 Ensemble of Linear Experts

The proposed Ensemble of Linear Experts (ELE) is composed of several linear
perceptrons. Each perceptron (member) has an additional neuron in its output
layer (shown as a black circle in Fig.1) called confidence neuron(CN). CN is
connected to the input neurons in the same way as the ordinary output neurons.
The difference between CN and the ordinary output neuron is that, for a given
input, CN generates a value that indicates the ”confidence” of the member with
regards to its ordinary output. A high confidence value is an indication that
the output of the member is highly reliable while a low confidence value is an
indication of the opposite.

In the running process, an input to the ensemble is processed independently
by all members, so each of them produces a confidence value and an output. The
ensemble then selects a winner, which is a member with the highest confidence
value and adopts the output of the winner as the final output while disregarding
other members’ outputs. Based on the members’ confidence the ensemble also
executes a competitive training mechanism that will be elaborated in the latter
part of this section.
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2.1 Structure and Behavior of ELE

The structure of ELE is illustrated in Fig.1. It is composed of several indepen-
dent linear perceptrons [10]. The activation of the ordinary output neurons is as
follows.

Oi
k(t) = f(Ii

k(t))

Ii
k(t) =

Nin∑

j=1

wi
jk(t)xj(t) + θi

k(t) (1)

f(x) =
1

1 + e−x

In Eq. 1, Oi
k(t), Ii

k(t) and θi
k(t) are the output, potential and the threshold

of the k-th output neuron in the i-th member at time t, respectively. wi
jk is the

connection weight from the j-th input neuron leading to the k-th output neuron
in the i-th member, while Nin and xj(t) are the number of the input neurons
and the value of j-th input, respectively.

Similarly, the activation of the confidence neuron in the i-th member, Oi
c(t)

is as follows.

Oi
c(t) = f(Ii

c(t))

Ii
c(t) =

Nin∑

j=1

vi
j(t)xj(t) + θi

c(t) (2)

Fig. 1. Ensemble of Linear Experts
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In Eq. 2, vi
j and θi

c are the connection weights to from the j-th input neuron
to the confidence neuron and the threshold of the confidence neuron in the i-th
member, respectively.

The final output of ELE, Oens, given an input is formulated as follows, where
the ensemble adopts the output of the winner and disregards others’ outputs.

w = arg max
i

{Oi
c(t)} (3)

Oens(t) = Ow(t) (4)

The running process of ELE is illustrated in Fig. 1 (a).

2.2 Competitive Learning of ELE

The competitive training of ELE is designed to enable the ensemble to decompose
the learning space of a given problem into several sub-spaces and assign a sub-
space to a member that is potentially the best to perform in that sub-space.
Consequently, because each member is a linear perceptron, the ensemble behaves
as a piecewise-linear classifier where a complex problem is efficiently decomposed
into several more manageable linear sub-problems. The linearity of each of the
member significantly simplifies the process for rule extraction.

In the training process, the ensemble chooses a winner in a similar manner as
in the running process, and then calculates the performance of the winner, Pw

as follows.

Pw(t) = 1 − Ew(t)

Ew =
1

Nout

Nout∑

k=1

(Ow
k (t) − Tk(t))2 (5)

Where Tk(t) is the teacher signal for the k-th output neuron at time t, and
Nout is the number of the output neurons.

If the relative performance of the winner, R as shown in Eq.6 exceeds a thresh-
old value, it is deemed to be potentially able to perform in the problem sub-space
containing the given input, hence it is permitted to enhance its performance by
applying Delta Rule to modify the connection weights leading to its ordinary
output neurons as shown in Eq.7.

R(t) =
Pw(t)

∑N
i=1 P i(t)

(6)

In Eq.6, N is the number of members.

Ww(t + 1) = Ww(t) − η
∂Ewin(t)
∂Ww(t)

(7)



438 P. Hartono

In this equation, Ww is the weight vector of the winner and η is the learning
rate.

In this case, consequently the confidence of the winner is enhanced by mod-
ifying the connection weight from input neurons to the confidence neuron, by
setting the teacher for the confidence neuron, Tc, in Eq.8 as 1.

Vw(t + 1) = Vw(t) − η
∂Ew(t)
∂Vw(t)

Ew
c (t) = (Ow − Tc)2 (8)

Furthermore, because the winner should dominate the rest of the members
with regards to the given input, other members should suppress their confidence
values by applying Eq. 8, by setting the teacher signal Tc to 0.

Oppositely, when the performance of the winner is below the threshold value,
it is indication of the inability of the winner to perform, hence the winner should
surrender the domination to other members. This is done by decreasing the
confidence of the winner by setting the teacher signal for the confidence neuron
of the winner to 0 and increasing the confidence values of the rest of the members
by setting 1 as the teacher signals for their confidence neurons. Because, the
confidence value and the actual performance have to be synchronized, in this
case the losers are permitted to modify their weights leading to the ordinary
output neurons according to Eq. 7.

The outline of the learning process is shown Fig.1(b) and Algorithm 1.

Algorithm 1. Competitive Learning Process of ELE
1: select a training example
2: run all members
3: select a winner
4: if performance(winner) ≥ threshold then
5: train(winner)
6: increase-confidence(winner)
7: decrease-confidence(losers)
8: else
9: decrease-confidence(winner)

10: increase-confidence(losers)
11: train(losers)
12: end if

The competitive learning process ensures the diversity of the members and
at the same time guaranty the harmony between the confidence value and the
actual performance of each member.

2.3 Rule Extraction from ELE

Because the activation of an output and a confidence neuron is sigmoidal and
the neurons are trained to produce parity value of 0 or 1, we can assume that the
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following intermediate rule is true ( by setting a very large slope for the sigmoid
function).

Ii
c(t) =

Nin∑

j=1

vi
j(t)xj(t) + θi

c(t) > 0 ⇒ i : winner (9)

Simillarly, when the proposed ensemble is applied to 1-of-M classification
problems, the ordinary output neurons are also trained to produce 0 or 1, hence
the following intermediate rules are also true.

Ii
k(t) =

Nin∑

j=1

wi
jk(t)xj(t) + θi

k(t) > 0 ⇒ Oi
k(t) = 1 (10)

Ii
k(t) =

Nin∑

j=1

wi
jk(t)xj(t) + θi

k(t) < 0 ⇒ Oi
k(t) = 0 (11)

From these intermediate rules we can easily generate plausible if − then rules
by applying any of rule extraction algorithm proposed in [2,3,4]. However, for
simplicity we apply a simple rule extraction method explained in [2], where the
range of inputs is divided into three parts based on their values, namely small(s),
medium(m) and large(l), which are then quantized to 0, 0.5 and 1, respectively,
and adopts logical propositions that satisfy Equations 9, 10, 11 as the rules.

It is obvious that the each of the member represents rules that are valid in a
particular sub-problem space (in which the member has the highest confidence),
and the winner-takes-all selection based on the members’ confidences acts as a
kind of ”meta rule”, which is a rule to select a rule, because the selection winner
selection mechanism can be translated into the following rule.

Algorithm 2. Meta Rule
if winner = i then

apply rule i
end if

The rule expression of ELE increases the plausibility of the general rule that
governs the learning space. Because instead of a single complicated rule set
it offers more understandable several partial rules that we consider helpful for
human in understanding the knowledge of a neural network. The high plausibility
of the rule expression is possible because of the structure and the competitive
training algorithm of ELE.

3 Experiments

To illustrate the characteristics, we apply ELE to XOR problem, which is a
non-linear classification problem that naturally cannot be dealt with any linear
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classifier. Figure 2(a) shows the hyperspace of ELE with two members trained
on this problem, in which areas that are classified as 1 are shown in black,
areas that are classified as 0 are shown in white, and gray is for areas that
are ambiguously classified in the vicinity of 0.5. For comparison Fig.2(b) shows
the typical hyperspace of MLP. Figures 2 (c) and (d) show the hyperspace of
member-1 and member-2 of ELE, respectively, where ”low conf” indicates areas
where the confidence of a member is lower than that of its counterpart. It is
obvious that ELE decomposes this non-linear classification problem into two
linear sub-problems and assigns each sub-problem to one of the member. After
the learning process, the potentials of the confidence neurons of the members
are as follows.

I1
c = −5.2x1 + 0.3x2 + 2.5

I2
c = 5.3x1 − 0.2x2 − 2.2 (12)

From Eq. 12 it is clear that whenever x1 < medium then rule generated by
member 1 is applied and rule generated by member 2 is otherwise applied.

Similarly, the potential of the output neurons of the members are as follows.

I1
1 = −1.2x1 + 4.9x2 − 2.3

I2
1 = 0.3x1 + −5.0x2 + 2.2 (13)

From Eqs.12 and 13 the following rule can be extracted.

Algorithm 3. Extracted Rule: XOR
if x1 < medium then

Apply Rule 1:
if x2 > medium then

classify as 1
else

classify as 0
end if

else
Apply Rule 2:
if x2 < medium then

classify as 1
else

classify as 0
end if

end if

To test the efficiency of ELE, we apply ELE to several benchmark problems
from UCI Repository [11]. The average generalization accuracies over 50 runs
for each problem are listed in Table. 1. For comparison we also list the perfor-
mances of MLP and Linear Perceptron. In every run, the number of learning
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Fig. 2. Hyperspace (XOR)

Table 1. Generalization Accuracy (%)

Perceptron MLP ELE
iris 72 100 100

cancer 97 97 97
liver 61 69 70
pima 75 76 79

balance 86 88 88
wine 90 97 94
ionos 91 94 92

iterations for the every classifier is the same. From Table 1, we can confirm that
the performance of ELE over wide range of problems are competitive to the per-
formance of MLP. In these experiments, the number of members in ELE is varied
between 2 and 5, but we find that the difference in performance between ELEs
with different number of members are not significant, because usually ELE is
able to utilize a minimum number of members to deal with a given problem. The
performance accuracies of ELE in Table 1 is the performance of the best ELE.
For all the experiments, the learning rate η is set to 0.5, while the performance
threshold, R is set to 1

N , where N is the number of members.
To illustrate the characteristics of ELE, the learning process with regards to

Iris Classification [12] problem is used as an example. This problem is a well
known non-linear classification problem, where a four dimensional input (length
and width of petal and sepal of an iris flower) has to be classified into one of the
three classes of iris flower (setosa, versicolor and virginica). Figure 3(a) shows the
learning curve of ELEs with two, three and four members, which clearly indicates
that ELE can deal nicely with this non-linear problem. Figure 3(b) show the
confidence of the winner during the training epoch. From Figures 3(a) and (b)
we can draw a conclusion that the actual performance and the confidence of the
winner are gradually synchronized by observing the fact that the decrease in the
training error is always associated with the increase in the winner’s confidence.
Figure 3(c) shows the average of the losers’ confidence. Figures 3(b) and (c) show
that the increase of the winner’s confidence is always associated with the decrease
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Fig. 3. Learning Characteristics (Iris)

in the losers’ confidences, which indicates that ELE diversifies the expertise of
its members over the progress of the learning process. For this problem, ELE is
able to choose two of its members to perform the classification. If ELE has more
than two members, then the rest of the members have very low confidences in the
whole problem space, thus they do not contribute to the classification process.
From the two members the following rules can be extracted.

Algorithm 4. Extracted Rule: Iris Classification
if x3 : large ∨ x4 : large then

Apply Rule 2:
Classify as Virginica

else
Apply Rule 1:
if x3 : small ∧ x4 : small then

Classify as Setosa
else

Classify as Versicolor
end if

end if
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4 Conclusions

In this paper we propose a new of neural network ensemble model whose struc-
ture and learning algorithm support the extraction of plausible rules. The exper-
iments confirm that the proposed ensemble acts as a piecewise linear classifier
with a competitive accuracy compared with MLP and the generated rules are
easily plausible for human. A thorough mathematical analysis of the behavior of
ELE is one of the future plans of this research.
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