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Abstract. Chaotic neural networks have been proved to be powerful tools to 
solve the optimization problems. And the chaotic neural networks whose activa-
tion function is non-monotonous will be more effective than Chen’s chaotic 
neural network in solving optimization problems, especially in searching global 
minima of continuous function and traveling salesman problems. In this paper, 
a novel chaotic neural network for function optimization is introduced. In con-
trast to the Chen’s chaotic neural network, the activation function of the novel 
chaotic neural network is wavelet function and the different-parameters anneal-
ing function are adopted in different period, so it performs extremely better 
when compared to the convergence speed and the accuracy of the results. And 
two elaborate examples of function optimization are given to show its superior-
ity. This chaotic neural network can be a new powerful approach to solving a 
class of function optimization problems. 
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1   Introduction 

Neural networks have been shown to be powerful tools for solving optimization prob-
lems. The Hopfield neural network is proposed by Hopfield and Tank [1] and [2], has 
been extensively applied to many fields in the past years. Unfortunately, it was shown 
that the simple HNN often yields infeasible solutions for complicated optimization 
problems, such as TSP [3]. The main reason of this inefficiency is the structure of 
energy function in HNN, which has many local minima in which the network get 
stuck in one of them due to its strictly energy reducing behavior [4]. 

To overcome this difficulty, chaotic neural networks exploiting the rich behaviors 
of nonlinear dynamics have been developed as a new approach to extend the problem 
solving ability of standard HNN [5]-[7]. There have been much research interests and 
efforts in theory and applications of chaotic neural networks [8]-[10]. 

However, since CNN base on the periodic oscillations property of chaotic dynam-
ics to search the optimal solution, the search time must be spent more than the HNN. 
There is a new trend in using improved simulated annealing mechanics to accelerate 
the convergence speed of CNN [11]-[13]. 
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Actually, some researchers have pointed out that the single neural unit can easily 
behave chaotic behavior if its activation function is non-monotonous [14]. And the 
reference [15] has presented that the effective activation function may adopt kinds of 
different forms, and should embody non-monotonous behavior. In many CNN model 
the activation functions almost adopt sigmoid function, theoretically speaking, they 
are not the basic function, so the ability of solving optimization problems is less effec-
tive than whose activation functions are composed of kinds of basic functions in cha-
otic neural networks [16]-[18]. 

We benefit from these ideas in our architecture. In this paper, we introduced a 
novel chaotic neural network to solve function optimization problems.  

The organization of this paper is as follows: The WSAN model is formulated in 
Section 2. Afterward, the simulations of function optimization problems that show the 
superiority of our method are described in Section 3. Finally the conclusion will be 
presented in Section 4. 

2   The Novel Chaotic Neural Network  

In order to take advantage of the chaotic dynamics, convergent speed, and the activa-
tion function being wavelet function, the novel chaotic neural networks are defined 
as: 

2
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where i is the index of neurons and n is the number of neurons, xi(t) the output of 

neuron i , iy ( t )  the internal state for neuron i , i jW  the connection weight from 

neuron j to neuron i , Ii the input bias of neuron i , α the positive scaling parameter for 
inputs, k(0≤k≤1)the damping factor of the nerve membrane, ( )iz t  the self-feedback 

connection weight, , ( )1 2 1 2β β 0 β β 1≤ < ≤  are the simulated annealing parameter 

of ( )iz t , δ  is a given positive constant which magnitude order is 10-3.,  λ the damp-

ing factors of iη ( t ) , I0 the positive parameter.  
In this model, the equation (1) is different from the activation function of conven-

tional CNN, which is a wavelet function other than sigmoid function, so it has a better 
ability in local approaching [18]. The variable ( )iz t  corresponds to the temperature 

in the usual stochastic annealing process and the equation (3) [13] is an exponential 
cooling schedule for the annealing. Obviously, if the value of ( )iz t  tends towards 

zero with time evolution in the form of βt
i iz ( t ) z (0 )e−= , the novel CNN converts 

into HNN. In this paper, we adopt a smaller value of 1( )β β  before the chaotic dy-

namics reach the steady period-doubling bifurcated points. Then, a larger value of 

2 ( )β β is used after the chaotic dynamics tend toward steady bifurcated points. In 

order to banish disturbance of the self-feedback connection, we subjectively put 
=( ) 0iz t  when the difference of + −| ( 1 ) ( )|i ix t x t  is less than a given positive 

constant ( δ ).  

3   Application to Continuous Function Optimization 

In this section, we use this novel chaotic neural network to solve continuous function 
optimization problems. And two examples are presented to demonstrate the superior-
ity of our method to other methods. When HNN model is applied to solve compli-
cated optimization problems, its energy function is defined as: 
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Without going further, we know that the stable points of the very high-gain, con-

tinuous deterministic Hopfield model corresponds to the stable points of the discrete 
stochastic Hopfield model with the following Lyapunov energy function [19]: 
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Comparing (6) with the cost function of our method: 
 

i j j i
j 1, j ii i
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∂ ∂ ∑  . (7) 

Where f  is a function that needs to be calculated the global optimal solution. 

 
Example 1: A classic nonlinear function optimization problem 

      2 2
1 1 2 1 2

2 2
2 1

min f ( x ,x ) ( x 0.7 ) (( x 0.6 ) 0.1)

( x 0.5 ) (( x 0.4 ) 0.15 )

= − + +

+ − + +
  (8) 

The minimum value of this object function [equation (8)] is 0 and its responding 
point is (0.7, 0.5), and the total number of local optimal value is 3: (0.6, 0.4), (0.6, 
0.5) and (0.7, 0.4). 

The parameters are set as follows: 

0 1 2u 2,k 1,α 0.05,I 0.05,β 0.02,β 0.1,λ 0.05,δ 0.001.= = = = = = = =  

We adopt the same initial values of network in Reference [13]: 
  y( 0 ) [ 0.283, 0.283], z(0 ) [0.065,0.065 ], η(0 ) [0.05,0.08 ].= − − = =  

 

Fig. 1. The time evolution of x2(t) in simulation of Chen’s chaotic neural network 

The CNN in figure 1, the activation function of neural unit is sigmoid function 
and the value of the simulated annealing parameter is only put a single value in the 
whole optimization procedure, so we can see that x2(t) converges the global optimal 
value 0.5 more than 200 iterations. While in figure 2 x2(t) reaches the global optimal 
value 0.5 only iterations 45. 

In order to make it be understood much clearer, we divide the whole optimization 
procedure into two processes: the first process is based on the chaotic dynamics and  
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Fig. 2. The time evolution of x2(t) in simulation of the novel chaotic neural network 

the second process is based on the gradient decent dynamics. By transferring sigmoid 
function to wavelet function in the novel chaotic neural network model, it can accom-
plish the ergodic chaotic dynamics more quickly in the first process and arrive at the 
global optimal value round. The main reason is the activation function of neural unit 
is non-monotonous wavelet function, so it has a better ability in local approaching. 

In the second process in figure 1 when x2(t) tends toward to the global optimal 
value point 0.5, the value of the self-feedback connection weight remains very small. 
Moreover this small value continuously takes disturbance to the gradient convergent 
procedure. Therefore it leads to waste much more time to converge at the global op-
timal value. However, in this paper the different-parameters annealing function are 
adopted in different period which has been described in details in section 2, so it can 
overcome the above problems. 

Compared figure 1 with figure 2, we can see that the CNN in this paper spends less 
time finding the global optimal value than Chen’s CNN does. Furthermore it guaran-
tees the accuracy of global optimal value to function optimization. 

Example 2: Six-Hump Camel -Back Function [16]: 
  

2 4 6 2 4
2 1 2 1 1 1 1 2 2 2 imin  f (x ,x )=4x -2.1x +x /3+x x -4x +4x   |x 1|≤  (9) 

             
The minimal value of Equation (9) is –1.0316285, and its responding point is 

(0.08983, -0.7126) or (-0.08983, 0.7126). 
We adopt our method to solve this function optimization problem, and we’ll make 

a comparison with Reference [16] and [20] in Table 1. The parameters are set as  
follows: 

0 1 2u 0.05,k 1,α 0.2,I 0.05,λ 0.3,β 0.015,β 0.1,δ 0.001= = = = = = = =
The initial values of network are set as follows: 

y( 0 ) [0.6 ,0.6 ],z(0 ) [17.5,17.5 ],η(0 ) [0.01,0.01]= = =  
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Fig. 3. The time evolution of x1(t) in simulation of function (9) 

 

Fig. 4. The time evolution of x2(t) in simulation of function (9) 

 

Fig. 5. The time evolution of energy function of (9) 

The above figures suggest that a search of the global minima is through chaotic 
dynamics, the practical global minimal value of Equation (9) in Fig.5 is –1.0316 and 
its responding point of the simulation in Fig.5 is (-0.0898, 0.7127).  

Analysis of the Simulation Results:  
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Table 1. Simulation results of equation (9) obtained from this paper, Reference [16] and Refer-
ence [20] 

  f 2 (this paper) f2(Reference [16]) f 2 (Reference [20]) 
TGM   -1.0316285 -1.0316285 -1.0316285 
PGM   -1.0316 -1 -1 
ERR   -0.0000285 -0.0316285 -0.0316285 

 
In Table 1, we compare the result of figure 5 obtained from this paper with the re-

sults obtained from others, such as the Reference [16] and Reference [20]. And the 
columns “TGM”, ”PGM” and “ERR” represent, respectively, theoretical global value, 
practical global value and error. 

In figure 5, the energy function of Equation (9) in our paper reaches the global op-
timal value only with 60 iterations. It’s still faster than Reference [16] and [20] which 
reached the practical global value with about 100 iterations under the same simulated 
parameters. Besides, In Table 1 the theoretical global value is –1.0316285, and the 
practice global value obtained from ours is –1.0316 while Reference [16] and Refer-
ence [20] are -1. It’s obviously that the global value obtained from this paper is much 
closer to the theoretical global value.  

And we also use this model to other function optimizations, such as the famous 
function called Rosenbrock function problem [21]. The overall data obtained proved 
this novel CNN to be effective in solving optimization problems. 

4   Conclusion 

In this paper, we introduced a novel chaotic neural network which activation function 
of neural unit is wavelet function and the different-parameters annealing function are 
adopted in the different period. In contrast to Chen’s chaotic neural network, applica-
tion of this model to continuous function optimization showed its superiority when 
compared to the convergence speed and the accuracy of the results. This model can be 
a new approach to solving a class of function optimization problems. 

This paper has shown the potential of chaotic neural network model which activa-
tion function is composed of non-monotonic basic function for solving the optimiza-
tion problems. From which has been shown that this neural techniques can find the 
global optimal value much faster and more accurate. And the model may also be well 
suited to solving the combinatorial optimization problems such as TSP and CAP, due 
to its inherently adaptive nature. Applications of the model for this purpose will be the 
subject of our future research. 
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