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Abstract. We present a robust fuzzy colour processing system with au-
tomatic rule extraction and colour descriptors calibration for accurate
colour object recognition and tracking in real-time. The system is an-
chored on the fusion of fuzzy colour contrast rules that operate on the
red, green and blue channels independently and adaptively to compen-
sate for the effects of glare, shadow, and illumination variations in an
indoor environment. The system also utilises a pie-slice colour classifica-
tion technique in a modified rg-chromaticity space. Now, colour opera-
tions can be defined linguistically to allow a vision system to discrimi-
nate between similarly coloured objects more effectively. The validity and
generality of the proposed fuzzy colour processing system is analysed by
examining the complete mapping of the fuzzy colour contrast rules for
each target colour object under different illumination intensities with the
presence of similarly coloured objects. The colour calibration algorithm
is able to extract colour descriptors in a matter of seconds as compared
to manual calibration usually taking hours to complete. Using the ro-
bot soccer environment as a test bed, the algorithm is able to calibrate
colours with excellent accuracy.

Keywords. Computing with colours, fuzzy colour processing, computer
vision, colour-object recognition.

1 Introduction

The process of characterizing a compendium of colours depicting an object in
a dynamic environment for object recognition and tracking tasks needs to ac-
count for all confounding effects in the imaging system due to spatially varying
illumination, presence of similarly coloured objects, lens focus, object rotation,
shadows and sensitivities of the camera [IJ2I3]. Tt is known that the colour de-
scriptors transform non-linearly in the colour space due to these effects [1I2] and
there are studies providing means of coping up with the problem [TI2J4U56]7];
however, the complexity of the calibration of the colour descriptors is propor-
tional to the algorithms adaptability and robustness. In the human visual sys-
tem, the qualities we assign to our perception of colour arise from our intuitive
experience of colour. Colour perception underlies many complex processes that
involve the photoreceptors in the retina as well as higher level processing mech-
anisms in the brain. Even to date, some of the intricacies in the mechanisms
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involved still remain to be unveiled. Nonetheless, findings in neurophysiologi-
cal researches suggest that contrast computation precedes segmentation [8], and
that the human colour perception system possess the ability to recognize colours
adaptively and consistently despite changes in the spectral illuminant [9JI]. In
this research, we mimic to a minimal extent the contrast computation mecha-
nisms by employing the fusion of fuzzy colour contrast operations on the colour
channels adaptively. Fuzzy logic is the computational paradigm of choice in this
work as it lends itself amenable to solving problems involving many ambiguities
and noise in the sensory inputs [10]. In addition, the system allows for the ease
of use of linguistic terms in defining the colour contrast operations for the target
colours at hand. As compared to other knowledge-based fuzzy colour process-
ing systems [ITIT2], the proposed approach focuses on employing fuzzy colour
correction steps first prior to colour classification rather than merely fuzzifying
the colour sensed values to account for ambiguities in the definition of colour de-
scriptors. Previously, in [6], the fuzzy colour contrast fusion algorithm was tested
for its applicability to work in different colour spaces. It was reported that the
algorithm successfully improved the colour classification task in the YUV, HSI
and rg-chromaticity colour spaces. However, there is one major drawback in the
system described; that is, the fuzzy colour contrast rules as well as the colour
descriptors used were all derived through rigorous manual calibration, usually
taking several hours to complete, especially for a wide range of target colour
objects. In this research we improved and extended fuzzy colour contrast fusion
by incorporating colour learning algorithms that automatically resolve the issue
of finding the best combination of fuzzy colour contrast rules and fine-tuning the
colour descriptors. Results show that the rules and colour descriptors extracted
automatically by the system is superior to manually derived ones, and calcu-
lated only at a fraction of time of manual calibration. Lastly, the robot soccer
environment can provide the ultimate test bed for the proposed algorithms as
the game requires object tracking in a span of less than 33 msec., in a dynamic
and adversarial environment.

2 General System Architecture

The proposed fuzzy colour processing system is comprised of a myriad of novel
algorithms that are combined together. The system architecture depicted in
Fig. [ is used for the automatic fine-tuning of the colour descriptors and for
the generation, evaluation and discovery of the best combination of fuzzy colour
contrast rules. Once all the rules and colour descriptors are extracted and refined,
the system generates a look-up table of all possible colours that can be seen by the
system (16.7 million pre-classified colours) for real-time colour object recognition
and tracking. An overview of the functionalities of the main components and
their interdependencies is discussed in this section while the next succeeding
section zeroes-in on each of the components of the system, providing more details
on them.
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Fig. 1. General system architecture

At the top of the diagram (Fig. [ is the camera component which returns
the colour tri-stimulus in R, G and B values. The colour sensed values are then
fed to the Fuzzy Colour Contrast Fusion (FCCF) algorithm which applies colour
corrections on the colour tri-stimulus to allow for more accurate colour discrimi-
nation. FCCF however relies on the fuzzy colour rule-base and fine-tuned colour
descriptors produced by the Colour Learning Algorithms, namely the Motion-
based Predictive Colour Learning algorithm (MPCL) and the Colour Contrast
Rule Extraction algorithm (CCRE). Lastly, the system employs the pie-slice
colour classification technique which receives the corrected R, G, B values from
the FCCF component and the refined colour descriptors from the Colour Learn-
ing Algorithms. The pie-slice colour classifier determines if the pixel being ex-
amined belongs to any of the target colour objects.

3 The Algorithms

3.1 Fuzzy Colour Contrast Fusion

It is adamant that the colours depicting an object must be adaptively corrected
based on the relative illumination conditions of the environment they are ex-
posed to. FCCF adaptively performs colour correction by either colour contrast
enhancing or degrading the colour channels at different levels of intensity, prior
to classifying the sensed colour tri-stimulus. For each target colour at hand (e.g.
pink, orange), the RGB components will receive a unique set of fuzzy colour
contrast operations.

Enhance or degrade operations are implemented via non-linear functions [3].
Figure [2] depicts the curve exhibiting the contrast enhance operator applied in
different levels (1x, 2x, 3x, etc). The input signal can be any of the normalized
RGB components within the range [0, 1]. In turn, the function amplifies input
values greater than 0.5; and otherwise, attenuates it [10].
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Fig. 2. On the left is the Contrast Enhance Operator, while on the right is the Contrast
Degrade Operator

On the other hand, the contrast degrade operator performs the opposite fash-
ion [T6], as depicted in the curve in Fig. 2 It amplifies all signals less than
0.5; and otherwise, attenuates it. FCCF works on any desired colour space, pro-
vided that the colour pixels are expressed in terms of polar coordinates so that
colour contrast rules can be applied selectively on colour pixels that fall within
a pie-slice region classified as the general target colour region or colour contrast
constraints [6].

3.2 rg Pie Slice Classifier

Colour recognition algorithms work by taking a single pixel and determining if
it is of any of the colours specified by the current colour descriptors [5]. This
classifier works in the rg-chromaticity colour space because it helps to reduce
the effects of illumination intensity [IJ6]. The algorithm takes as input a pixel in
RGB format and converts it into the rg colour space.

Once the pixel has been converted into rg-Hue and rg-Saturation [1l6], it can
simply be checked to see if it is within the bounds of the colours as defined by
the pie-sliced colour descriptors.

The algorithm does not have time to calculate the rg-hue and rg-saturation
values for each pixel as the inverse tangent and square root calculations take
too long, so look-up tables (LUT) were created to improve the performance.
The program creates this LUT on initialization by calculating the rg-Hue and
rg-Saturation values for every possible combination of RGB values. These look-
up tables take several minutes to build at the beginning of the program but
significantly speed up the classification process (< 33msec.) [7]. When a pixel is
classified, the algorithm simply has to access the look-up table and the positions
of the RGB values to discover the rg-Hue and rg-Saturation values.

3.3 Motion-Based Predictive Colour-Learning Algorithm (MPCL)

The colour discrimination ability of FCCF comes with a price. It requires a rich
set of colour descriptors for each target colour, namely the boundaries for rg-
Hue, rg-Saturation and contrast constraint angles, and a set of colour contrast
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Fig. 3. The MPCL algorithm

rules. These parameters were previously extracted manually; involving an oper-
ator adjusting the values by hand until the results of the colour classification
pinpoints the target colour unambiguously. However, hand calibration does not
guarantee finding the optimal settings for the colour recognition system [4], and
so this is the problem the MPCL algorithm is addressing. It automates the cali-
bration process with superior calibration performance. In general, MPCL looks
at two successive frames, extracting the best candidate pixels representing the
object and fine-tuning the colour descriptors based on those pixels. For the pur-
pose of easily finding the candidate pixels, a circularly shaped object was used
during the calibration process. Nonetheless, after the system learns all the colour
descriptors, the objects for tracking can come in any shape.

The series of steps for learning the colour descriptors are shown in Fig.
Initially, a broad set of colour descriptors is used by the pie-slice classifier to find
the set of candidate pixels representing the target object. In turn, these pixels are
fed into a circle approximation module that searches for the largest, most circular
patch of colour present on the board. It calculates a formula approximating the
circle by calculating the centre of the colour patch and averaging the extreme x
and y values to approximate the radius of the circle. Two circle formulas will be
generated for two consecutive images and the overlap of the two circles will be
calculated. Once this overlap has been found the algorithm will find every pixel
inside the area and filter them with the broad colour classifier to ensure that the
approximated area does not include any non-colour pixels. Next, it takes all of
the filtered pixels and record the extreme values for the rg-Hue and rg-Saturation
values of the pixels to find the smallest possible pie-slice area that would classify
every pixel inside the overlapping area. Once these extreme values have been
calculated, the algorithm uses a moving average technique to adjust the actual
colour descriptor parameters. The amount each set of extreme values affects the
actual parameters depends on the learning rate.
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Circle Generation The circle generated for each colour patch is generated by
averaging the height and width of the circular patch from the centre of the circle.
Once all of the pixels in the patch have been found, a centre of gravity equation
is used to find the centre of the patch:
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Fig. 4. On the left is the extracted object colour pixels from two consecutive frames.
On the right is the calibration of colour descriptors.
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Once the centre of the patch has been located, the height and width of the
patch are found:

height = maz(ZTeentre, Y) width = max (T, Yeentre) (2)

Then the radius is calculated with the following equation:

radivs — height 4+ width (3)
4
The centre and radius of the circle has now been found so the next part of the
algorithm can run. The learning algorithm works on a moving average system
combined with a decaying learning rate algorithm. The algorithm will run for a
set number of iterations and keep moving average of the maximum and minimum
rg-Hue and rg-Saturation:

rgHuemar = TgHuemaz(i B 1? * ma.%‘(’l“gHu@) (4)
i

rgHuemin = rgHuen (i — 1? + min(rgHue) )
i

rgSatmas = rgSatmag (i — 1? + maz(rgSat) ©)
i

rgSatm — rgSatmin (i — 13 + min(rgSat) X
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The idea of the algorithm is to move a robot with a colour patch or roll a ball
around the board to calibrate the colour. Because the object will move through
all of the different illumination conditions, the algorithm will calibrate the colour
classifier to work for the entire board, accounting for all possible illumination
conditions.

3.4 Colour Contrast Rule Extraction (CCRE)

Algorithm 1. CCRE (image, targetbounds)

1. For each target object calculate an individual score: score; = "%

— if hits; < 711 area; then score; = 0; where n = 4 (empirically found)

2. Calculate average score:
Entaryets

o score; .
— avescore = "*letargets ‘5 where: ntargets is the number of targets.
3. Calculate a general score:
o Totalhits
genscore = Totalhits+Totalmisses

4. Final score:
— finalscore = (0.6 avescore) + (0.4 genscore)
5. Adjust score to account for misclassifications:
— if(Totalhits > 0)

_ finalscore — finalscore _ (Totalmisses)

Totalhits

A colour contrast rule uniquely defines what combination of contrast operations
and what levels of contrast operations will be applied to the red, green and blue
channels. As indicated in Table 1, a light blue colour will receive a combination
of contrast degrade, of level 1 on the red channel, contrast enhance, of level 1 on
the green channel and no contrast operation on the blue channel. There are only 2
possible contrast operations: either to enhance or degrade. It is also possible that
the colour channel does not require any contrast operation at all (i.e. no operation).
Moreover, only 3 possible levels of contrast applications were considered (i.e. 1x,
2x, 3x). For example, a contrast level of three means that the contrast operator
will be applied 3 times to the colour channel, using the output of each application
as an input to the next. For each colour channel, there are 7 possible combinations
of contrast operations: (enhance/degrade) - 3 possible levels each, no operation).
Altogether, considering all 3 colour channels (RGB), there are 343 possible fuzzy
colour contrast rules that can be applied for any target colour.

The algorithm hunts for the best rule by supplying the FCCF module with
a generated colour contrast rule and using the pie-slice classifier for extracting
the pixels representing the target colour object. It then counts the number of
hits and misclassifications by examining the x and y-coordinates of those pixels
if they fall within the actual boundaries of the target objects. Lastly, a formula
for calculating the score for each rule is used:

The colour discrimination ability of FCCF comes with a price. It requires a
rich set of colour descriptors for each target colour, namely the boundaries for
rg-Hue, rg-Saturation and contrast constraint angles, and a set of colour con-
trast rules. These parameters were previously extracted manually; involving an
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operator adjusting the values by hand until the results of the colour classifica-
tion pinpoints the target colour unambiguously. However, hand calibration does
not guarantee finding the optimal settings for the colour recognition system [4],
and so this is the problem the MPCL algorithm is addressing. It automates the
calibration process with superior calibration performance

4 Experiments and Analysis

The MPCL has been tested on images of a circular colour patch in the centre
of the board with promising results. MPCL was given a very broad set of para-
meters describing the colour and a series of images of this colour patch on the
board. Several experiments using different coloured patches were run to make
sure the algorithm works correctly with all kinds of colour classifier parameters.
The algorithm was also tested by being set to calibrate one colour in the presence
of other circular patches having relatively similar colours on the board.

The two images in Fig.[Blshow a sample performance comparison results of the
colour recognition algorithm using hand-calibrated settings and settings found
by the MPCL algorithm. These images exhibit two circular colour patches, one
orange and one green. The hand calibrated settings cause approximately 500 mis-
classifications whereas the MPCL algorithm settings cause 16 misclassifications.
Fig. [0l shows an example of colour classification results for light blue targets.
Details of classification results can be found in tables [[l and

Misclassitications \l Gr.een Green
object \Z object

Orange /
object
Orange |

object

Fig. 5. MPCL results: on the left is the manual result. On the right is the system
result.

Table 1. Manually derived colour contrast rules and their scores

Contrast Operation

Colour Name  Rank Score Hits Misses

R G B
Yellow Oth 0 2 -2 0.48 2410 458
Green 8th -1 2 -2 0.45 3252 608
Pink 4th 1 -1 0 0.59 1714 99
Purple 3rd 1 1 0 0.54 2629 320
Violet Oth 0 1 1 0.4 1873 415
LightBlue 15th -1 1 0 0.63 2702 135
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Table 2. System generated colour contrast rules and their scores

Colour Name R G B Score Hits Misses

Yellow 3 1 -2 0.65 2104 68
Green 0 -1 -3 0.55 3313 383
Pink 1 -1 0 0.59 1714 99
Purple 0 1 -3 0.57 2777 314
Violet 1 1 2 0.53 2535 497
LightBlue 0 3 1 0.67 2758 68
& a
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& = = 5 | 3 = -
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Fig. 6. Light blue targets: on the left is the result for the manual calibration, on the
right is the result for the system calibration

Next, the CCRE was tested on 6 colours (i.e. pink, violet, etc.). Six colour
patches per colour were placed at varying illumination intensities on the robot
soccer field. The objective of the tests was to let the CCRE algorithm to extract
the colour contrast rules that will accurately recognise all the patches simultane-
ously. The encoding of the contrast operations for Tables[I] and 2] are as follows:
(+) for enhance operation, (-) for degrade operations, 0 for no operation and
nonzero for any level of contrast application on the colour channel. It can be
seen from Tables [l and [ that the system generated rules from CCRE always
gives superior performance. The score and hits of the system rules were always
greater than or equal to the manually generated ones. On the other hand, the
misses could be greater sometimes, but we verified that such numbers never
induce ambiguities during the object recognition task. Lastly, we used all the
acquired colour descriptors and colour contrast rules to generate a look-up ta-
ble (LUT) for real-time colour object recognition for the robot soccer game.
The generated LUT guarantees that the robots can be recognised and tracked
perfectly during the game without ambiguities in real-time.

5 Conclusions

We have successfully devised and tested a novel motion-based predictive colour
learning algorithm (MPCL) and a colour contrast rule (CCRE) extraction al-
gorithm that integrates with the Fuzzy Colour Contrast Fusion algorithm and
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pie-slice colour classifier. Results prove that the hybrid system is extremely faster
and more accurate than hand-calibrated colour descriptors and colour contrast
rules, while at the same time robust to changes in the illumination conditions.
Lastly, by storing colour classification results in a look-up table, the hybrid vision
system presented becomes very effective for the FIRA and Robocup real-time
robot soccer vision systems.
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