
A New Association Rule Mining Algorithm

B. Chandra and Gaurav

Indian Institute of Technology, Delhi
Hauz Khas, New Delhi, India 110 016

bchandra104@yahoo.co.in

Abstract. A new algorithm called STAG (Stacked Graph) for associa-
tion rule mining has been proposed in this paper using graph theoretic
approach. A structure is built by scanning the database only once or at
most twice that can be queried for varying levels of minimum support to
find frequent item sets. Incremental growth is possible as and when new
transactions are added to the database making it suitable for mining data
streams. Transaction scanning is independent of the order of items in a
transaction. Performance of this algorithm has been compared with other
existing algorithms using popular datasets like the mushroom dataset,
chess and connect dataset of the UCI data repository. The algorithm
excels in performance when the dataset is dense.

Keywords: Association rule mining, minimum support, frequent item
set, undirected graph.

1 Introduction

The problem of association rule mining introduced by Agrawal et al. [2] aims at
finding frequent item sets according to a user specified minimum support and
the association rules according to a user specified minimum confidence. Finding
frequent item sets is computationally more expensive than finding association
rules. An efficient association rule mining algorithm is highly desired for finding
frequent item sets. Apriori, AprioriTID and AprioriHybrid algorithms for associ-
ation rule mining were developed by Agrawal et al. [3]. All these algorithms find
frequent sets in a bottom-up fashion. A combinatorial explosion of item sets oc-
curs when the minimum support is set low amounting to a high execution time.
Pincer search algorithm developed by Lin et al. [4] is a 2-way algorithm that
conducts a search in both bottom-up and top-down manner. An additional over-
head of maintaining the maximal frequent candidate set and maximal frequent
set is involved.

FP-Tree growth algorithm developed by J.Han et al. [5] compresses the data-
base into a conditional pattern tree and mines frequent item sets separately.
This algorithm incurs an additional cost by processing items in each transac-
tion in the order of increasing support count and heavily uses memory when the
dataset is large. Charu Agrawal et al. [1] gave a method for online mining by
storing item sets satisfying a minimum support threshold in the form of a di-
rected graph. The approach does not work if the user specified minimum support

M. Ishikawa et al. (Eds.): ICONIP 2007, Part II, LNCS 4985, pp. 366–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Association Rule Mining Algorithm 367

is less than the minimum support threshold. Zaki et al. [6] proposed an approach
for finding frequent item sets using equivalence classes and hyper graph clique
clustering. Hyper graph clique clustering produces more refined candidate sets
as compared to equivalence class approach but identifying cliques in a graph is
an NP-Complete problem.

The work presented in this paper is a new graph based approach (using one
scan and two scans of the database) for finding frequent item sets in Market
Basket Data (MBD). The best feature of one scan algorithm is that it requires
only one scan of the database. The one scan algorithm aims at reducing the
I/O drastically whereas the two scan algorithm reduces the computational time,
run time storage and I/O at the same time. The efficiency of these algorithms
have been compared with other existing association rule mining algorithms us-
ing popular datasets viz. mushroom, chess and connect datasets from the UCI
data repository. It has been observed that this algorithm outperforms existing
algorithms in dense datasets for lower minimum support.

2 ALGORITHM STAG

A new association rule mining algorithm, STAG (Stacked Graph) has been pro-
posed, based on graph theoretic approach. Two issues have been addressed: the
first one aiming at reducing the I/O drastically and the second one to bring a
reduction in computational time, run time storage and I/O at the same time.
This is achieved by one-scan STAG and two-scan STAG algorithm.

STAG overcomes the difficulty of answering a very low support online query
by the user, if used for OLAP purposes. In comparison to disk based algorithms
like Apriori, Pincer Search algorithm; it minimizes input-output operations by
scanning a database only once or at most twice and the addition of new trans-
actions does not require re-scanning of existing transactions. Some association
rule mining algorithms require the items in a transaction to be lexicographi-
cally sorted or incorporate an additional step of sorting the items according to
support value but there is no such imposition on items in STAG. The order of
scanning of transactions is immaterial and the items need not be sorted (using
support or lexicographically). The algorithm utilizes a depth first strategy to
expand the search space of potential frequent item sets. The experiments with
real life data show that it performs especially well in dense datasets i.e. datasets,
which have a high average number of items per transaction. The transactions in a
market basket data are scanned in their natural order but in the unlikely event
of this order being disrupted, a sorting procedure on the numeric transaction
identifiers can be incorporated. The algorithm consists of two steps: Building a
graph structure (undirected weighted acyclic or cyclic graph with or without self
loops) by scanning the transactions in the database and utilizing this structure
in the second step to find frequent item sets, without scanning the database
again.

368 B. Chandra and Gaurav

2.1 Structure Building

Market basket data (MBD) is represented in the form of a graph denoted by
G(V, E) where V = vertex set and E = edge set. The vertex set V is defined
as the set of all items occurring in the database i.e. If I = {i1, i2, . . . in} is the
universe of items in a database where ij is the jth item then V = I and number
of vertices, |V | = n. The structure building starts by creating a node labeled i,
for all i ∈ V . An edge X → Y , marked with the TID t is added to E if two
items X and Y co-occur in transaction t. Such edges are called marked edges.
Each transaction is scanned starting with the first item present in it and its
occurrence with other items in the same transaction is considered to generate
marked edges between the corresponding nodes. The structure building has been
illustrated using market basket data [4] in horizontal format as shown in Table 1.
The Boolean format is given in Table 2. The MBD consists of four transactions
i.e. the set of transaction identifiers T = {1, 2, 3, 4} and the universe of items,
I = {1, 2, 3, 4, 5}. Considering V = I and |V | = 5. For each item i ∈ V , the
first step is to create a node labeled i. Figure 1 gives the algorithm for building

Table 1. Market basket data (MBD)

TID Items
1 1 2 3 4 5
2 1 3
3 1 2
4 1 2 3 4

Table 2. Equivalent Boolean format of MBD

TID Item1 Item2 Item3 Item4 Item5
1 1 1 1 1 1
2 1 0 1 0 0
3 1 1 0 0 0
4 1 1 1 1 0

the STAG structure. It assumes a Boolean horizontal format of the MBD. Func-
tion BuildNode() creates the nodes of the structure by taking the vertex
set as its argument. Function MainFillStructure() creates the edges by con-
sidering the combinations of items present in the transaction and by passing
them and the transaction identifier as parameters to function AddToTrans-
actionList(). t(i) is a Boolean value indicating whether item i is present in
transaction t or not. Counter [i][j] gives the support of item i with item j and
TransactionList[i][j] gives the transaction identifiers common to items i and
j. The structure is obtained as shown in Fig. 2.

A New Association Rule Mining Algorithm 369

Fig. 1. STAG structure building algorithm

Fig. 2. Complete STAG structure

A transaction containing a single item does not contribute to the edge set.
Such transactions produce self-loops in the graph structure and contribute only
towards increasing the support count of an item.

The support count of an item can be found by taking the union of the list of
transactions on the edges touching it and adding the transaction numbers con-
tained in the self loop. For example the support count of item 1 is the union of
{1, 3, 4}, {1, 2, 4} {1, 4} and {1}. The resulting set obtained has four transaction
identifiers {1, 2, 3, 4}. Since item 1 has no self-loops, the final set has four TIDs,

370 B. Chandra and Gaurav

which is the support count of item 1. After building the complete structure we
proceed to find the frequent item sets.

2.2 Finding Frequent Item Sets

The algorithm for finding frequent item sets is shown in Fig. 3. It uses a depth
first traversal as opposed to a breadth first traversal (used by Apriori, Pincer
search algorithm) to find frequent item sets. Stacks facilitate the depth first tra-
versal by storing intermediate particulars like generating item, intersection lists
and the large item sets. The following notation is being used in the algorithm.
item-set[item num][gen item][] gives the frequent item set being generated
by the item item num using the generating item gen item. IntersectList holds
the transaction identifiers resulting from the intersection of transaction lists. The
notation n(x) where x is a set gives the number of elements in the set x e.g.
n(IntersectList) gives the elements in the current intersection list. minsupp
is the user defined minimum support. The three stacks S1, S2 and S3 are used
for storing the generating item, intersection list and frequent item set respec-
tively. The function ItemsetGeneration() starts by searching for an item i
such that counter[i][i] is greater than or equal to minsupp . The large item set
being generated by item num with item j is denoted by item-set [item num]
[j] []. While locating i and j the intersection list remains null (does not contain
any transaction identifiers). Next search for an item k > j such that k is not
visited from j and n (TransactionList [j] [k] ∩ IntersectList) ≥ minsupp. If item
k is added to the list of large item set it is termed as a ”successful traversal”.
On a successful traversal (except to the nth item) it is required to store item
j in a stack since there might be some item l > k such that {i, j, l . . .} is also
a large item set but {i, j, k, l . . .} is not. After scanning the last item , pop the
particulars from the three stacks into the appropriate data structures, if the
stacks are non-empty. The process is repeated with the popped items and stops
when there is no item left to pop. After emptying the stacks, the item next to
’i’ is considered. i.e. The algorithm finds an item p such that counter [p] [p] is
greater than or equal to minsupp and sets i equal to p.

Working of the proposed algorithm has been illustrated on item1 using Fig.
2 and minsupp equal to two in Tables 3 to 6. The following notation is used:
X → Y denotes an edge from item X to item Y , TL (Transaction List), IL
(Intersection List), R (Result = TL ∩ IL), LI (Large item set), S1 (Stack for the
generating item), S2 (Stack for the Intersection List) and S3 (Stack for the large
item set). Start with item 1 which has a support of four.

Table 3.

X → Y TL IL R L1 S1 S2 S3
1 → 2 {1, 3, 4} NULL {1, 3, 4} {1, 2} NULL NULL NULL
2 → 3 {1, 4} {1, 3, 4} {1, 4} {1,2,3} 2 {1, 3, 4} {1, 2}
3 → 4 {1, 4} {1, 4} {1, 4} {1, 2, 3, 4} 3 {1, 4} {1,2,3}
4 → 5 {1} {1, 4} {1} {1, 2, 3, 4} -same- -same- -same-

A New Association Rule Mining Algorithm 371

Fig. 3. Algorithm for finding frequent item sets

Since 5 is the last item, the process of popping the stacks begins.

Table 4.

X → Y TL IL R L1 S1 S2 S3
3 → 5 {1} {1, 4} {1} {1,2,3} 2 {1, 3, 4} {1, 2}

No other distinct frequent item set is found with item 3. Since item 5 is the last
item the stacks are popped.

372 B. Chandra and Gaurav

Table 5.

X → Y TL IL R L1 S1 S2 S3
2 → 4 {1, 4} {1, 3, 4} {1, 4} {1, 2, 4} 2 {1, 3, 4} {1, 2}
4 → 5 {1} {1, 4} {1} {1, 2, 4} -same- -same- -same-

Since traversal from item 4 to 5 is successful, we again push item 2 in the stack
S1.

Table 6.

X → Y TL IL R L1 S1 S2 S3
2 → 5 {1} {1, 3, 4} {1} {1, 2} NULL NULL NULL

The search tree induced by the above example is shown in the Fig. 4: The large
item sets found till this point are {1, 2}, {1, 2, 4} and {1, 2, 3, 4}. The algorithm
further continues by considering the edge from item 1 → 3, 1 → 4 and 1 → 5.
After fully inspecting item 1 the algorithm starts with edges starting with item
2.The largest frequent item set found with item 1 is a 4-item set viz. {1, 2, 3, 4}.

2.3 One-Scan and Two-Scan Strategies

The algorithm described is called one-scan algorithm since it makes only one
pass over the database. One-scan does not take into account the minsupp for
building the structure. It builds the structure first and then utilizes the minsupp
for finding the frequent item sets. The elements of vertex set in one-scan is the
same as the universe of items i.e. V = I and |V | = n. In order to reduce the space
and execution time further, we introduce a two-scan algorithm which makes two-
passes over the database. The two-scan algorithm first identifies the items that
satisfy the minsupp by counting the support of 1-item sets from the database
(the first pass) and then uses only those items in the vertex set to build the
structure. For the two-scan algorithm the vertex set V ⊆ I and |V | ≤ n. The

Fig. 4. Search Tree

A New Association Rule Mining Algorithm 373

second pass over the database is used to create the structure using the nodes
obtained in the first pass. Hence the two-scan algorithm utilizes the minsupp
to create the structure and builds a new structure for each different minimum
support. Due to reduction in the number of nodes and associated overhead, it
performs better than the one-scan algorithm in terms of computational time and
run-time storage requirement. Figure 5 shows the structure of STAG using the
two-scan strategy with minimum support equal to two.

Fig. 5. STAG structure using two-scan strategy

2.4 Early Stopping Criterion for Intersection of Transaction Lists

This section deals with the early stopping criterion for intersection of trans-
action lists. Let {a1, a2, . . . , aM} denote the current intersection list IL and
{b1, b2, . . . , bN} denote the transaction list of item j with item k TL[j][k],β be
the minimum support for ai < aj and bi < bj∀ i < j.

In the process of finding the intersection of IL and TL[j][k], let the number
of common transactions found till the current point be C and the number of
transaction identifiers in TL be N . Assume that C common transactions have
been found after examining bt (the tth element in TL). The intersection process
is stopped if C + (N − t) < β. This essentially means that if the sum of number
of common transactions (C) found till the tth transaction and the transaction
identifiers remaining in TL i.e. (N−t)) is less than minsupp there is no possibility
of item k being added to the large item set generated by item i with j.

3 Results

The performance of STAG (one-scan and two-scan) was compared with Apriori,
Pincer search and FP-Tree growth algorithm. Comparison of performance was
made by finding frequent item sets on three popular datasets taken from the UCI
data repository. All experiments were performed on a system having the following
specifications: Speed: 2.66GHz, Pentium 4 Memory: 512MB RAM Operating
system: Mandrake Linux 9.2

374 B. Chandra and Gaurav

Table 7, 8 and 9 give the execution time for finding frequent item sets using
various algorithms for Chess, Musroom and Connect dataset. In Table 7 and 9
* signifies that the execution time is more than one hour.
Chess Dataset: Total Transactions = 3196 Total Items = 75 All the other

Table 7.

Minsupp 1- Scan 2- Scan FP-Growth Apriori Pincer Search
3000 1 0 0.24 * *
2000 11 8 1.58 * *
1000 26 26 136.17 * *

algorithms except STAG and FP-Tree growth perform considerably slower on
this dense dataset. The observations show the effectiveness of STAG in dense
databases as the minimum support decreases.
Mushroom Dataset: Total Transactions = 8124 Total Items = 119 Mushroom

Table 8.

Minsupp 1- Scan 2- Scan Apriori Pincer Search FP-Growth
7000 1 1 4 5 0.34
6000 0 0 5 5 0.35
5000 0 0 6 6 0.36
4000 1 1 13 14 0.43
3000 4 2 56 61 0.49
2000 9 6 361 376 0.59

data set is a sparse dataset with few items per transaction. The execution time
of one-scan and two-scan show that they are faster than Apriori and Pincer
search algorithm but not with respect to FP-tree growth. However in the case
of dense datasets like Connect which is shown below, the one-scan and two scan
algorithms outperform.
Connect Dataset: Total Transactions = 5000 Total Items = 127

Table 9.

Minsupp 1- Scan 2- Scan FP-Growth Apriori Pincer Search
4000 43 38 10.88 * *
3000 68 61 143.35 * *

Connect dataset is more dense than the chess dataset and it is seen from Table
one scan and two scan algorithms outperform Apriori and Pincer search algo-
rithms and performs better than FP-Tree growth algorithm for lower minimum
support.

A New Association Rule Mining Algorithm 375

4 Conclusion

A new algorithm STAG, for finding frequent item sets in market basket data
has been proposed in this paper. The most redeeming feature of this algorithm
is that it outperforms all other existing algorithms when the dataset is highly
dense. The one-scan strategy scans the database only once but requires a greater
amount of memory compared to two-scan strategy. The two-scan strategy per-
forms better than one-scan with respect to computational time and memory.
Both the strategies have no imposition on the order of scanning items within
transactions or transactions in a database and require very low I/O. The exe-
cution time is low in dense datasets that makes them suitable for data mining
applications in a memory constrained environment.

References

1. Aggarwal, C.C., Yu, P.S.: Online Generation of Association Rules. In: ICDE Con-
ference (1998)

2. Agrawal, R., Imielinski, T., Srikant, R.: Mining associaton rules between sets of
items in large databases. In: SIGMOD (May 1993)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of
the 20th Int’l Conf. on Very Large Databases (VLDB 1994), Santiago, Chile (June
1994)

4. Lin, D., Kedem, Z.M.: Pincer-Search: A New Algorithm for Discovering the Maxi-
mum Frequent Set. In: Proc. of the Sixth European Conf. on Extending Database
Technology (September 1997)

5. Han, J., Pei, J., Yin, Y.: Mining frequent Patterns without Candidate Generation.
In: ACM-SIGMOD, Dallas (2000)

6. Zaki, M.J., Parthasarthy, S., Ogihara, M., Li, W.: New Algorithms for Fast Discovery
of Association Rules. In: Proc. of the 3rd Int’l Conf. on KDD and Data Mining (KDD
1997), Newport Beach California (August 1997), http://kdd.ics.uci.edu/

http://kdd.ics.uci.edu/

	A New Association Rule Mining Algorithm
	Introduction
	ALGORITHM STAG
	Structure Building
	Finding Frequent Item Sets
	One-Scan and Two-Scan Strategies
	Early Stopping Criterion for Intersection of Transaction Lists

	Results
	Conclusion

