
Learning a Kernel Matrix for Time Series Data
from DTW Distances

Hiroyuki Narita, Yasumasa Sawamura, and Akira Hayashi

Graduate School of Information Sciences, Hiroshima City University
3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima, 731-3194, Japan

narita@robotics.im.hiroshima-cu.ac.jp

Abstract. One of the advantages of the kernel methods is that they can
deal with various kinds of objects, not necessarily vectorial data with a
fixed number of attributes. In this paper, we develop kernels for time
series data using dynamic time warping (DTW) distances. Since DTW
distances are pseudo distances that do not satisfy the triangle inequality,
a kernel matrix based on them is not positive semidefinite, in general. We
use semidefinite programming (SDP) to guarantee the positive definite-
ness of a kernel matrix. We present neighborhood preserving embedding
(NPE), an SDP formulation to obtain a kernel matrix that best preserves
the local geometry of time series data. We also present an out-of-sample
extension (OSE) for NPE. We use two applications, time series classi-
fication and time series embedding for similarity search to validate our
approach.

1 Introduction

We have seen significant development of kernel methods for machine learning in
the last decade [1]. Typical kernel method algorithms include support vector ma-
chines (SVMs) [2] for large margin classification, and kernel principal component
analysis (KPCA) [3] for nonlinear dimensionality reduction. Symmetric positive
semidefinite kernel functions that give similarity between objects, play a central
role in kernel methods. One of the advantages of these kernel methods is that
they can deal with various kinds of objects, not necessarily vectorial data with
a fixed number of attributes. Such objects include strings, graphs, and weighted
automata.

In this paper, we develop kernels for time series data using dynamic time
warping (DTW) distances. Machine learning and data mining on time series data
(also known as sequence data), such as speech, gesture, handwriting, and so on,
has recently attracted more and more attention from the research community.
The DTW distance is a frequently used dissimilarity measure for time series
data [4]. Shimodaira et al. [5] proposed a dynamic time alignment kernel for
voice recognition, and have reported better classification accuracy than HMMs
when the number of training data is small. Bahlmann et al. [6] proposed the
GDTW kernel, which substitutes the distance term in a Gaussian kernel with
a DTW distance, and which achieves classification accuracy comparable with
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that of HMMs for online handwritten characters. However, since DTW distances
are pseudo distances that do not satisfy the triangle inequality, the previous
approaches have failed to prove the positive semidefiniteness of the kernel matrix.

In order to guarantee the positive semidefiniteness of a kernel matrix, we use
semidefinite programming (SDP) [7]. SDP has been used in machine learning
to optimize a kernel matrix [8] for classification, and also to find low dimen-
sional manifolds [9,10]. We present neighborhood preserving embedding (NPE),
an SDP formulation, to obtain a kernel matrix that best preserves the local
geometry of time series data in terms of the DTW distances. We also present an
out-of-sample extension (OSE) for NPE.

We use two applications, time series classification [11] and time series embed-
ding for similarity search [12], to validate our approach. In time series classifi-
cation, the well known kernel trick is used to map time series data into a high
dimensional feature space for linear separability and larger margin. On the other
hand, in time series embedding for similarity search, a low dimensional feature
space is sought for efficient multidimensional search. We present a suitable SDP
formulation for the purpose.

The rest of this paper is organized as follows. In Section 2, we review DTW
distances. In Section 3, we explain how to construct a kernel matrix from DTW
distances using SDP. The resulting kernel matrix is used for large margin clas-
sification in Section 4. It is also used for low dimensional embedding via kernel
PCA in Section 5. We conclude in Section 6.

2 Dynamic Time Warping(DTW)

A set of n time series data, X = {X1, . . . , Xn}, is given, where Xi (1 ≤ i ≤ n) is
a sequence of feature vectors whose length is li Xi = (xi

1, . . . , x
i
li
). DTW finds

the smallest distance, i.e., the maximal similarity, between the time series data
through all nonlinear time warping that corresponds to a change in time scale
[4]. In this paper, we use the DTW distances that are computed as follows, where
‖ · ‖ is the Euclidean norm.

1. Initial and boundary conditions.
– start : g(1, 1) = 0
– endg(li, lj)
– boundary g(ti, 0) = g(0, tj) = ∞

2. Repeat
for 1 ≤ ti ≤ li1 ≤ tj ≤ lj

g(ti, tj) = min

⎧
⎪⎨

⎪⎩

g(ti − 1, tj) + ‖xi
ti

− xj
tj

‖2

g(ti − 1, tj − 1) + 2‖xi
ti

− xj
tj

‖2

g(ti, tj − 1) + ‖xi
ti

− xj
tj

‖2

(1)

3. Finish d2(Xi, Xj) = g(li, lj)
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3 Learning a Kernel Matrix from DTW Distances

Let Φ be a mapping from time series data into a feature space F .

mapping Φ :X → F
Xi �→ Φ(Xi)

In what follows, we write K � 0 as an abbreviation for K being a symmetric
matrix that satisfies positive semidefiniteness. Our approach is to learn a kernel
matrix K � 0, K(i, j) = 〈Φ(Xi), Φ(Xj)〉(1 ≤ i, j ≤ n) from DTW distances us-
ing the following well known relationship between distances and inner products.

d2(Xi, Xj) = ||Φ(Xi) − Φ(Xj)||2 = 〈Φ(Xi) − Φ(Xj), Φ(Xi) − Φ(Xj)〉
= K(i, i) − K(i, j) − K(j, i) + K(j, j)

3.1 Neighborhood Preserving Embedding (NPE)

DTW distances are pattern matching scores, so it is known that smaller distances
are reliable, but larger distances are unreliable [11]. Therefore, it is expected
that a mapping that pays attention only to neighborhood distances will have
better results. Here we introduce Neighborhood Preserving Embedding (NPE),
that learns a kernel matrix K � 0 that best preserves squared neighborhood
distances. NPE entails the following procedure :

1. For a given n time series data {X1, . . . , Xn}, compute the DTW distance
{d(Xi, Xj)|1 ≤ i, j ≤ n} between all data pairs.

2. Solve the following optimization problem by SDP [7].

min
K�0

n∑

i=1

∑

j:Xj∼Xi

wij |d2(Xi, Xj) − 〈Bij , K〉| (2)

s.t.
n∑

i=1

n∑

j=1

K(i, j) = 0,

where “Xj ∼ Xi” denotes that Xj is a neighbor of Xi and wij is a weight
parameter. Bij is a sparse n × n matrix used to compute square distances
from K, that is Bij(i, i) = Bij(j, j) = 1, Bij(i, j) = Bij(j, i) = −1 and all
other elements are 0. Note that “〈·, ·〉” in Eq.(2) is an inner product operator
between matrices.
∑

i

∑
j K(i, j) = 0 is the well known constraint for centering K. Since

∑
i

∑
j K(i, j) = 0 ⇔ ‖

∑
i Φ(Xi)‖2 = 0 ⇔

∑
i Φ(Xi) = 0 holds, the con-

straint causes the center of gravity of the feature vectors {Φ(Xi)|1 ≤ i ≤ n}
to move to the origin. This is required in order to apply kernel PCA later
for dimensionality reduction.
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3. We eigen-decompose the kernel matrix K, that is optimized in step 2 above.
The decomposed matrix is expressed as follows.

K = UΛUT , (3)

where Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn ≥ 0 is a diagonal matrix of the
eigenvalues, and U = [e1, . . . , en] is a matrix of the eigenvectors.
Let us denote Φ(Xi) as Φi. Since K = [Φ1Φ2, . . .Φn]T [Φ1Φ2, . . . Φn] holds,
Eq.(3) gives

[Φ1Φ2, . . . Φn] = Λ1/2UT (4)

Φi(k) =
√

λkek(i) (1 ≤ k ≤ p) ∀i (5)

where Φi(k) is the kth entry of Φi, ek(i) is the ith entry of the kth eigenvector
ek, and p is the rank of K.

As for the neighborhood relationship, we have two choices. We define the
ε-neighborhood relationship as Xi ∼ Xj ⇔ d(Xi, Xj) < ε. The symmetric k-
nn neighborhood relationship is defined as Xi ∼ Xj ⇔ Xi ∈ knn(Xj) ∨ Xj ∈
knn(Xi), where knn(Xi) is the set of k nearest neighbors of Xi.

3.2 Out-of-Sample Extension (OSE)

Given additional time series data, Xn+1, it is natural to use NPE again to obtain
an (n+1)×(n+1) kernel matrix Kn+1. However, this adds a heavy computational
load. We therefore introduce Out-of-Sample Extension (OSE) to obtain a subop-
timal kernel matrix K̃n+1 by expanding the kernel matrix Kn that has already
been computed by NPE. We define an extended kernel matrix K̃n+1 as follows:

K̃n+1 =
[

Kn b
bT c

]

� 0, (6)

b = (〈Φ1, Φn+1〉, 〈Φ2, Φn+1〉, . . . , 〈Φn, Φn+1〉)T (7)
c = 〈Φn+1, Φn+1〉 (8)

Then, K̃n+1, b ∈ Rn, and c ∈ R are obtained by solving the following SDP.

min
K̃n+1�0,b,c

∑

i:Xi∼Xn+1

wi,n+1|d2(Xi, Xn+1) − 〈Bi,n+1, K̃n+1〉| (9)

s.t. K̃n+1 =
[
Kn b
bT c

]

Finally, we consider embedding the additional time series data, Xn+1, into the
space in which {Xi|1 ≤ i ≤ n} are already embedded using Eq.(5). Let Φ̃n+1 be
the projection of Φn+1 into the space spanned by {Φi|1 ≤ i ≤ n}. Substituting
Eq.(4) into Eq.(7) yields (UΛ1/2)Φ̃n+1 = b. Hence, we obtain the following.

Φ̃n+1 = (UΛ1/2)†b (10)

Φ̃n+1(k) =
1√
λk

eT
k b, (1 ≤ k ≤ p) (11)

where (UΛ1/2)† is the pseudo inverse of (UΛ1/2) and p is the rank of Kn.
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4 Large Margin Classification

In this section, we classify time series data by SVM. We employ linear, polyno-
mial, and RBF kernels.

Linear kernel : K lin(i, j) = 〈Φi, Φj〉
Polynomial kernel : Kpol(i, j) = (1 + 〈Φi, Φj〉)p

RBF kernel : Krbf(i, j) = exp(−||Φi − Φj ||2/2γ2),

where Φi (1 ≤ i ≤ n + 1) is the feature vector for Xi obtained by NPE and
OSE using Eqs.(5) and (11) 1, and γ is the parameter for the RBF kernel. Note
that since the linear kernels are positive semidefinite, the polynomial and RBF
kernels are also positive semidefinite.

4.1 UNIPEN

The UNIPEN-DTW data[13] consists of DTW distance matrices that are based
on the UNIPEN Train-R01/V07 online handwriting sequence dataset. The data
contains 2 sets with 250 samples per set from 5 classes (’a’ to ’e’).

We conducted the multi class classification experiment in two settings.

– Transductive setting. (1) Both the training data and the test data are em-
bedded by NPE. (2) The classifier is trained with the training data, and the
test data is classified.

– Sequential setting. (1) The training data is embedded by NPE, and the
classifier is trained. (2) Then, the test data, embedded by OSE, is classified.

To solve the SDP optimization problems in NPE and OSE, we use publicly
available software SDPT3 [14]. We set the parameter wij = 1 for all i, j pairs
and use a k-nn neighborhood, k = 6, for both NPE and OSE. Since the data has
turned out to be linearly separable2, we tested only hard margin SVMs, adjusting
p for Kpol and γ for Krbf . We use one-versus-the-rest SVM as multiclass SVM.

We compare our results with those for the following distance substitution(DS)
kernels [13].

Linear distance kernel : K lin
d (i, j) = 〈Xi, Xj〉d

Polynomial distance kernel : Kpol
d (i, j) = (1 + γ〈Xi, Xj〉d)p

RBF distance kernel : Krbf
d (i, j) = exp(−d2(Xi, Xj)/2γ2),

where 〈Xi, Xj〉d = −1/2(d2(Xi, Xj) − d2(Xi, O) − d2(Xj , O)). O is the origin
and was chosen as the point with the minimum squared distance sum relative to
the other training data. Since DTW distances are pseudo distances, the distance

1 In this section, we omit the tilde on top of Φ̃n+1 to simplify the notation.
2 Assuming K lin is of full rank, its feature space dimension is n, the number of the

training data. Hence, the VC dimension for K lin is n+1.
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Table 1. LOO-errors for UNIPEN. The error rates for NPD, CSE, RNE, 1-nn, and k-nn
are from [13]. As for the k-nn classifier, the best k-nn are shown. Tra and Seq refer to the
transductive and sequential settings, respectively.The order ofKpol is 3 for both datasets.
The value of γ for Krbf

d is 1.0 except for Tra in dataset #2, where it is 0.75.

dataset Kpol
d Krbf

d 1-nn k-nn K lin Kpol Krbf

NPD CNE RNE NPD CNE RNE Tra Seq Tra Seq Tra Seq
#1 6.0 5.2 5.6 5.2 4.4 4.8 5.6 5.6 5.2 6.0 4.0 4.8 4.0 5.2
#2 7.6 6.8 6.4 6.0 6.0 5.6 7.2 6.4 6.8 6.0 6.0 4.8 6.4 5.2

substitution kernels are Not Positive semiDefinite (NPD) kernels. To transform
NPD kernels to be positive semidefinite, two methods are provided. Cutting off
Negative Eingenvalues (CNE) cuts off contributions corresponding to negative
eigenvalues. Reflecting Negative Eingenvalues (RNE) reflects the negative eigen-
values by taking their absolute values. Note that CNE and RNE can be used
only under the transductive setting.

The result is evaluated by leave-one-out (LOO) errors. See Table 1. In the
transductive setting (Tra), our polynomial and RBF kernels, Kpol and Krbf ,
respectively, generally perform better for both datasets than CNE and RNE of
the corresponding DS-kernels, Kpol

d and Krbf
d , respectively. The exception is

that our rbf kernel has a larger error rate for the second dataset. In the se-
quential setting (Seq), our kernels always perform better than the corresponding
NPD kernels. In addition, our kernels also perform better than 1-nn and k-nn
classifiers. We are currently working hard to investigate the reason why all of
our kernels perform better in the sequential setting (i.e., using NPE + OSE)
than in the transductive setting (i.e., using only NPE) for the second dataset.

Table 2 shows how the size of k-nn neighborhoods influences the SVM clas-
sifications. Due to the relaiablility of smaller DTW distance, relatively small k
values bring better results.

5 Low Dimensional Embedding for Similarity Search

In this section, we consider how to speed up a similarity search of time series
data, when dissimilarity is defined in terms of DTW distances. Stated more

Table 2. LOO-errors for UNIPEM with k-nn neighborhoods (6 ≤ k ≤ 250). All errors
are computed by linear SVM with NPE.

K lin

dataset k = 6 k = 8 k=12 k=15 k = 20 k = 50 k = 80 k = 150 k = 250
#1 5.2 5.6 4.8 6.8 14.8 14.8 11.6 19.6 16.0
#2 6.8 6.4 10.0 6.4 13.6 16.8 10.4 12.8 -
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concretely, we consider the following problem. A set of n time series data (time
series DB): X = {X1, . . . , Xn}, is given. Given a query Q, another time series
data, quickly find the k nearest neighbors of Q, i.e., find the k X ′

is with the
smallest DTW distances.

5.1 Proposed Method

We adopt the approach of embedding time series data in a low dimensional
Euclidean space with KPCA[3], and performing a multidimensional search. The
time complexity of nearest neighbor search in the embedded space using the
kd-tree is O(log n) [15], whereas that of the linear search is O(n), where n is the
number of data. In order to speed up the similarity search, the key issue is how
to embed the data accurately (1) into a low dimensional space (2) from a small
number of DTW distances.

Lower dimensional embedding is preferred because the complexity of the kd-
tree search increases exponentially as the number of embedding dimensions p
grows. For our purposes, we introduce NPE with regularization by adding a
regularization term to the objective function in Eq. (2):

min
K�0

∑

i

∑

j∈Ni

wij |d2(Xi, Xj) − 〈Bij , K〉| + η · tr(K), (12)

where tr(K) is the trace of K and η is a parameter to trade off the two terms in
the objective function. It can be shown that tr(K) = 1/(2n)

∑
i

∑
j ||Φi −Φj||2,

i.e. tr(K) is proportional to the variance of data in the feature space. We promote
low dimensional embedding by adjusting η.

To embed the data from a small number of DTW distances, we use OSE.
We randomly select m (m � n) samples from n time series data in the DB,
and apply NPE to m samples. The remaining non samples and the query are
embedded by OSE using DTW distances to the m samples.

5.2 Experiment

The objective of this experiment is to evaluate the accuracy of low dimensional
embedding using NPE and OSE. For two kinds of time series data (ASL 3 and
ISOLET 4 ), we compare our method with multidimensional scaling (MDS) [18].
We use the Nyström method [19] as an out-of-sample extension for MDS.

We adjust η in Eq. (2) so as to embed the data in a low dimensional space.
Fig. 1 shows the eigenvalue distribution for ASL when η is changed.

For the task, we choose to search for 10 nearest neighbors (NNs) in the time
series DB. We compute recall-precision (RP) curves for each embedding method.
3 ASL is based on Australian sign Language data in the UCI KDD Archive [16]. The

data consist of 95 signed words.
4 ISOLET is a database of letters of the English alphabet spoken in isolation [17].

The database consists of 7800 spoken letters, two productions of each letter by 150
speakers.
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Fig. 1. The eigenvalue distribution of the kernel matrix for the ASL sample data. The
contribution rate c under the embedding dimension p, c =

�p
i=1 λi/

�m
j=1 tr(K) is

also shown. As η decreases, big eigenvalues become dominant. Although, the rightmost
image shows the highest contribution rate, the number of nonzero eigenvalues is only
one, therefore the accuracy that preserves distances has been lost.
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Fig. 2. RP curves for NPE and MDS. We set wij = 1 for all i,j pairs in Eqs. (12) and
(9), used an ε neighborhood. The value of ε was selected so that each datum has at
least 20 neighbors from the samples. DB size, n = 3000, and sample size, m = 200, the
embedding dimension, p = 10,20. The average of 100 queries was taken. (left) ASL: We
use as DB time series examples for 43 words, such as ”change”,”deaf”,”glad”,”her”, and
”innocent”, which have similar words. We use examples for ”lose” and ”love” as query
time series. (right) ISOLET: We randomly selected data from the dataset and used
thse as DB and as queries. The 28-dimensional feature vector consists of 14 MFCCs
and their first-order time derivatives.

We view up to k (k > 10) NNs in the embedded space as retrieved (positive)
results, and count how many of them are true, i.e., are within 10 NNs in terms
of DTW distance.
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Fig. 3. RP Curves for NPE for k-nn neighborhoods where k = 4, 8, 20, 50, 199.
n = 3000, m = 200, p = 10. The average of 100 queries. (left) ASL. (right) ISOLET.

Fig. 2 shows the RP curves for the ASL and ISOLET data. We see from the
figure that NPE performs better than MDS. We attribute the reason to the fact
that NPE constructs the kernel using only neighborhood distances, and it has
no negative eigenvalues.

To examine the effect of the neighborhood size, we also experimented using
k-nn neighborhoods for various k values. Fig. 3 shows the RP curves for the ASL
and ISOLET. 5

6 Conclusion

We have developed kernels for time series data from DTW distances. By using
SDP, we can guarantee the positive definiteness of the kernel matrix. We have
presented NPE, an SDP formulation to obtain a kernel matrix that best pre-
serves the local geometry of time series data, together with its out-of-sample
extension. We have shown two applications, time series classification and time
series embedding for similarity search in order to validate our approach.
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