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Abstract. The mixture modeling framework is widely used in many
applications. In this paper, we propose a component reduction technique,
that collapses a mixture model into a mixture with fewer components.
For fitting a mixture model to data, the EM (Expectation-Maximization)
algorithm is usually used. Our algorithm is derived by extending mixture
model learning using the EM-algorithm.

In this extension, a difficulty arises from the fact that some crucial
quantities cannot be evaluated analytically. We overcome this difficulty
by introducing an effective approximation. The effectiveness of our algo-
rithm is demonstrated by applying it to a simple synthetic component
reduction task and a phoneme clustering problem.

1 Introduction

Component reduction is the task whereby a mixture model is collapsed into a
mixture with fewer components. Since mixture models are used in a wide variety
of applications, component reduction techniques are becoming more important.
As an example, consider the case where data is compressed and represented in a
mixture model and the original data is lost. We might use a component reduc-
tion technique to analyze this data further. Moreover, by iterating the component
reduction, hierarchical mixture models can be constructed in a bottom-up man-
ner. The hierarchical mixture model is a useful tool for analyzing data at various
granularity levels[1].

Component reduction can be regarded as a task of fitting a mixture model
to another mixture with more components. The EM-algorithm[2,3] is broadly
applied to fit a mixture model to a set of data points[4]. We devise a component
reduction algorithm by extending this application of the EM-algorithm to the
case where a mixture model is fitted to another mixture with more components.

In deriving the algorithm, we first formulate the application of the EM-
algorithm to component reduction. Although this formulation provides an EM-
procedure, it cannot be performed in reality, because some quantities needed in
the EM-procedure cannot be calculated analytically. Therefore, we propose an
approximated version of the EM-procedure.

The organization of this paper is as follows. Section 2 provides the background
and our motivation for this study. The EM-algorithm is described in Sect. 3.
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In Sect. 4, we formulate the application of the EM-algorithm to component
reduction and obtain an EM-procedure. Thereafter, in Sect. 5, we derive an
approximation of the EM-procedure. In Sect. 6, we apply our method and two
related methods to synthetic data and a phoneme clustering problem.

2 Background and Motivation

The EM-algorithm alternates between performing an expectation step (E-step)
and a maximization step (M-step). The assignment probabilities of the data points
to the components of the mixture are calculated in the E-step. These probabilities
determine the responsibilities of the components in representing the data points.
In the M-step, each of the component parameters is updated so that its likelihood
for the data points, weighted by the responsibilities, is maximized.

A straight-forward approach to component reduction is to generate samples
from the given mixture model, and then to apply the EM-algorithm to these
samples. This is, however, computationally inefficient.

By simply replacing “the data points” with “the components of the original
mixture” in the above description, we can obtain the outline of a class of al-
gorithms for fitting a mixture model to another mixture model. The existing
component reduction algorithms[1,5] can be seen as members of this class.

The algorithm proposed in [1] uses the notion of virtual samples generated
from the given mixture. In this algorithm, the assignment probabilities are cal-
culated when the set of virtual samples drawn from a component of the given
mixture model is assigned as a whole to the each component of the mixture model
being fit. Therefore, the algorithm is regarded as soft clustering of components
in the given mixture model.

In [5], another component reduction algorithm is proposed, although the au-
thors considered the case where the component structure of the original model
must be preserved. The algorithm assigns each component in the given mixture
to one of the components in the fitted mixture, such that the KL-divergence be-
tween the mixture models is minimized. In other words, the algorithm involves
hard clustering of components in the given mixture into groups corresponding
to the components in the fitted mixture.

Since each of the components of the original mixture is spatially extended,
unlike in the case of data points, the proper assignment probabilities of the
original components to the components being fit should be position dependent.
Any member of the aforementioned class of algorithms, such as the above two
algorithms, does not take into account this fact adequately. To illustrate this
problem, we consider a simple component reduction task shown in Fig. 1, in
which we try to fit a two component mixture model to the three component
mixture. When we consider the assignment of the original component in the
middle, we should split it into two parts (illustrated by dashed lines) dependent
on the spatial relationships of two components of the fitted mixture. Each of
the two parts should then be incorporated into its corresponding component.
However, such a splitting process cannot be realized by the algorithms belonging
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(a) Two component mixture model

(b) Three component mixture model

Fig. 1. An example of the fitting problem

to the above class. In this paper, we devise a component reduction algorithm
which overcomes this limitation.

3 Fitting Mixture Models to Data

We devise a component reduction algorithm based on the application of the
EM-algorithm for fitting mixture models to data. We review the application
formulated by Dempster[2] here.

Let us consider approximating a data distribution with the mixture model,

fΘ(x) =
C∑

j=1

πjp(x|θj), (1)

where C is the number of mixture components, p(x|θj) is the probability density
with parameter vector θj , πj is a nonnegative quantity such that for j = 1, . . . , C,
0 ≤ πj ≤ 1 and

∑C
j=1 πj = 1, and Θ = {π1, . . . , πC , θ1, . . . , θC} is the set of all

the parameters in the mixture model.
Given a set of data points, X = {x1, . . . , xN}, when we apply the EM-

algorithm, it is assumed that each data point xi has been drawn from one of
the components of the mixture model. Then, we introduce unobservable vectors
yi = (yi1, . . . , yiC) indicating the component from which xi was drawn: where
for every j, yij is 1 if xi was drawn from the j-th component and 0 otherwise. Let
Y = {yij|i = 1, . . . , N, j = 1, . . . , C}. The log-likelihood of Θ for the complete
data (X , Y) is given by

L(Θ|X , Y) =
N∑

i=1

C∑

j=1

yij log{πjp(xi|θj)}. (2)

Since Y is unobservable, we take the expectation of the log-likelihood with re-
spect to Y under the given observed data X and the current estimate Θ′. The
expected value of the log-likelihood is
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Q(Θ|Θ′) = E[L(Θ|X , Y) | X , Θ′] =
N∑

i=1

C∑

j=1

hij log{πjpj(xi|θj)}, (3)

where hij = E[yij | xi, Θ
′].

Starting with an initial guess Θ(0), the EM-algorithm generates successive
estimates, Θ(1), Θ(2), . . ., by iterating the following E- and M-steps:

E-step: Compute {h
(t)
ij }, under current estimate Θ(t).

M-step: Set Θ(t+1) = Θ which maximizes Q(Θ|Θ(t)) given {h
(t)
ij }.

The iteration is terminated when the sequence of estimates converges.

4 Fitting Mixture Models to Another Mixture Model

In this section, we formulate a straight-forward application of the EM-algorithm
for fitting mixture models to another mixture. We elucidate that it is difficult to
perform the iterative procedure provided by the formulation because it requires
the evaluation of integrals which cannot be solved analytically.

The task is described as fitting the U -component mixture model fΘU (x) to
the given L-component mixture model fΘL(x), where L > U ,

fΘU (x) =
U∑

j=1

πU
j p(x|θU

j ), and fΘL(x) =
L∑

i=1

πL
i p(x|θL

i ).

We now introduce a random vector y = (y1, . . . , yU ) corresponding to the
unobservable vectors yi in Sect. 3, where yj are binary variables drawn according
to the conditional probability distributions,

Pr(yj = 1|x, ΘU ) =
πU

j p(x|θU
j )

∑U
j′=1 πU

j′ p(x|θU
j′ )

. (4)

Then, the log-likelihood of ΘU for (x, y) is

L(ΘU |x, y) =
U∑

j=1

yj log{πU
j p(x|θU

j )}, (5)

and the counterpart of Q(Θ|Θ′) in (3) is defined by taking the expectation of
the log-likelihood with respect to x with distribution fΘL(x) as

Qhier(ΘU |Θ′
U ) = Ex{Ey{L(ΘU |x, y) | x, Θ′

U} | ΘL},

=
U∑

j=1

L∑

i=1

πL
i

∫
p(x|θL

i )hj(x) log{πjp(x|θU
j )}dx, (6)

where hj(x) = Pr(yj = 1|x, Θ′
U ).
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To derive an E-step and an M-step, we introduce another random vector z =
(z1, . . . , zL) which indicates the component of the original mixture model from
which x is drawn, where zi are binary variables whose (marginal) probability
distributions are given by Pr(zi = 1) = πL

i . Then, using Bayes’ rule, we obtain
the following relation:

Pr(x|zi = 1, yj = 1) =
Pr(yj = 1|x, zi = 1)Pr(x|zi = 1)

Pr(yj = 1|zi = 1)
. (7)

From Pr(yj = 1|x, zi = 1) = Pr(yj = 1|x) = hj(x) and Pr(x|zi = 1) = p(x|θL
i ),

by denoting Pr(x|zi = 1, yj = 1) as p(x|i, j), (7) can be rewritten as

p(x|i, j) =
hj(x)p(x|θL

i )
hij

, (8)

where hij = Pr(yj = 1|zi = 1). By substituting (8) into (6), we obtain

Qhier(ΘU |Θ′
U ) =

U∑

j=1

L∑

i=1

πL
i hij

∫
p(x|i, j) log{πjp(x|θU

j )}dx. (9)

Although we cannot perform them in reality, we can define the E-step and
the M-step simply based on (9) as follows:

E-step: Compute {p(t)(x|i, j)} and {h
(t)
ij } under current estimate Θ

(t)
U .

M-step: Set Θ
(t+1)
U = arg maxΘU Qhier(ΘU |Θ(t)

U ) given p(t)(x|i, j) and h
(t)
ij .

Since both of these steps involve integrals which cannot be evaluated analytically,
we cannot carry them out (without numerical integrations).

5 Component Reduction Algorithm

From now on, we focus our discussion on Gaussian mixture models. Let, p(x|θL
i )

and p(x|θU
j ) be Gaussians where θL

i = (μL
i , ΣL

i ) and θU
j = (μU

j , ΣU
j ). Then,

we introduce an approximation which enables us to perform the EM-procedure
derived in Sect. 4.

5.1 Update Equations in the M-step

Without any approximation, the parameter set ΘU which maximizes
Qhier(ΘU |Θ(t)

U ) given p(t)(x|i, j) and h
(t)
ij is obtained by

πU
j =

L∑

i=1

πL
i h

(t)
ij , μU

j =

∑L
i=1 πL

i h
(t)
ij μ

(t)
ij

∑L
i=1 πL

i h
(t)
ij

,

ΣU
j =

∑L
i=1 πL

i h
(t)
ij {Σ

(t)
ij + (μ(t)

ij − μU
j )(μ(t)

ij − μU
j )T}

∑L
i=1 πL

i h
(t)
ij

,

(10)
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where for every i,j, μ
(t)
ij and Σ

(t)
ij are the mean vector and the covariance matrix,

respectively, of p(t)(x|i, j).
From (8), p(x|i, j) ∝ hj(x)p(x|θL

i ) holds and we have the analytical forms
of hj(x) and p(x|θL

i ). Let qij(x) = hj(x)p(x|θL
i ) for convenience. The dif-

ficulty stems from the fact that the integrals,
∫

qij(x)dx,
∫

xqij(x)dx, and∫
xxTqij(x)dx, cannot be solved analytically. Therefore, we cannot calculate

the means and covariances of p(x|i, j). So, we introduce an approximation of
p(t)(x|i, j) using a Gaussian distribution.

5.2 Approximation

Now, we are in a position to construct the Gaussian approximation of p(x|i, j),
that is, to obtain μ̂ij and Σ̂ij such that p(x|i, j) � N(x|μ̂ij , Σ̂ij), where
N(x|μ̂ij , Σ̂ij) is the Gaussian pdf. The mean and covariance are approximated
as follows.

We set μ̂ij = argmaxx qij(x). While arg maxx qij(x) cannot be represented
in analytical form, it can be obtained effectively from the solution of

∂qij(x)
∂x

= 0, (11)

using the Newton-Raphson method starting from a carefully chosen point.
On the other hand, each Σ̂ij is estimated using the relation

− 1
N(μ|μ, Σ)

∂2N(x|μ, Σ)
∂x2

∣∣∣∣
x=µ

= Σ−1. (12)

We are constructing an approximation of p(x|i, j) using the Gaussian distribu-
tion N(x|μ̂ij , Σ̂ij), and hence a natural choice is

Σ̂−1
ij = − 1

p(μ̂ij |i, j)
∂2p(x|i, j)

∂x2

∣∣∣∣
x=µ̂ij

= − 1
qij(μ̂ij)

∂2qij(x)
∂x2

∣∣∣∣
x=µ̂ij

= (ΣL
i )−1 + (ΣU

j )−1 −
U∑

j′=1

hj′(μ̂ij)(Σ
U
j′ )−1

+
U∑

j′=1

hj′(μ̂ij)(Σ
U
j′ )−1(μ̂ij − μU

j′)(μ̂ij − μU
j′ )T(ΣU

j′ )−1

−
U∑

j′=1

U∑

j′′=1

hj′(μ̂ij)hj′′(μ̂ij)(Σ
U
j′ )−1(μ̂ij − μU

j′)(μ̂ij − μU
j′′ )T(ΣU

j′′ )−1. (13)

To complete the E-step, we also need to evaluate hij . From (8), we have

hij =
hj(x)p(x|θL

i )
p(x|i, j) , (14)
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for any x. With the approximation, p(x|i, j) � N(x|μ̂ij , Σ̂ij), substituting x =
μ̂ij yields the approximation of hij ,

ĥij ∝
hj(μ̂ij)p(μ̂ij |θL

i )

N(μ̂ij |μ̂ij , Σ̂ij)
. (15)

5.3 Approximated EM-Procedure

Here we summarize the EM-procedure with the approximation described in the
previous subsection. Setting the number of components U , and starting from
some initial estimate Θ

(0)
U , the procedure iterates through the following E- and

M-steps alternately:

E-step: Under the current estimate Θ
(t)
U ,

1. Set {μ̂
(t)
ij } by solving (11) using the Newton-Raphson method.

2. Calculate {Σ̂
(t)
ij } using (13).

3. Calculate {ĥ
(t)
ij } using (15) and normalize them such that

∑U
j=1 ĥ

(t)
ij =

1.
M-step: Set Θ

(t+1)
U = ΘU where ΘU is calculated by (10) with {μ̂

(t)
ij }, {Σ̂

(t)
ij },

and {ĥ
(t)
ij }.

After a number of iterations, some mixing rates of the components may con-
verge to very small values. When this happens, the components with these small
mixing rates are removed from the mixture model. As a result, the number of
components can sometimes be less than U .

6 Experimental Results

Todemonstrate the effectiveness of our algorithm,we conduct two experiments.For
convenience, we refer to our algorithm as CREM (Component Reduction based on
EM-algorithm) and the algorithms proposed by Vasconcelos and Lippman[1] and
Goldberger and Roweis[5] are referred to as VL and GR, respectively.

6.1 Synthetic Data

This experiment is intended to verify the effectiveness of our algorithm in com-
ponent reduction problems similar to the example described in Sect. 2. The
experimental procedure is as follows.

1. Draw 500 data points from the 1-dimensional 2-component Gaussian mixture
model

fΘtrue (x) =
1
2

· N(x| − 2, 1) +
1
2

· N(x|2, 1). (16)
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Table 1. KL-divergence and log-likelihood for data

KL(fΘL ||fΘU ) KL(fΘEM ||fΘU ) KL(fΘtrue ||fΘU ) LL
CREM 0.0120 0.0120 0.0179 −1030.7

GR 0.0347 0.0372 0.0444 −1039.8
VL 0.0780 0.0799 0.0823 −1057.5

 

 

original
GR
VL
CREM

(a) Pdf of fΘU

(b) Pdf of fΘL

Fig. 2. Three and two component mixture
model

Fig. 3. Structure of constructed hierar-
chical mixture models in the experiment

2. Learn a three component model using the standard EM-algorithm, starting
from f(x) = 1/3 · N(x| − 2, 1) + 1/3 · N(x|0, 1) + 1/3 · N(x|2, 1).

3. Reduce the three-component model obtained in the previous step to a two
component mixture using CREM, VL, GR and the standard EM, where the
initial estimate is determined as

fΘU (x) = πU
1 · collapsed[

1
πU

1
{πL

1 N(x|μ1, σ1) + 0.5 · πL
2 N(x|μ2, σ2)}]

+ πU
2 · collapsed[

1
πU

2
{0.5 · πL

2 N(x|μ2, σ2) + πL
3 N(x|μ3, σ3)}], (17)

where πU
1 = πL

1 + πL
2 /2, πU

2 = πL
2 /2 + πL

3 and collapsed[g] denotes the
Gaussian which has the minimum KL-divergence from g.

The trial was repeated 100 times. We evaluate the results using the KL-divergence,
calculated using numerical integration, and the log-likelihood for the generated
data. Table 1 shows the averages taken over the 100 trials. The results for CREM
show the best value of all the results. We show one of the results in Fig. 2. Fig. 2(a)
is a plot of the pdfs obtained by GR, VL, and CREM for the original 3-component
mixture shown in Fig. 2(b). We can see that the pdf obtained by CREM is closest
to the original pdf.
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6.2 TIMIT Phoneme Recognition

We apply the three algorithms to clustering the phoneme dataset described in
[6]. The dataset contains 5 phoneme classes of 4, 509 instances described by
log-periodograms of length 256. The dimension of the instances is reduced to
10 dimensions using PCA and 5-layered hierarchical mixture models are con-
structed according to the structure shown in Fig. 3. The bottom (zero’th) level
corresponds to 4, 509 data points.

In each trial of the three algorithms, a 50-component mixture model in the
first level is learned using the standard EM-algorithm. The second and higher
levels are obtained by applying each component reduction algorithm to the lower
levels. To compare these algorithms with the standard EM-algorithm, 20, 10, and
5-components mixtures are learned from the data points using the standard EM-
algorithm. Since all three algorithms depend on initial guesses Θ

(0)
U , we ran the

trial 10 times. In the experiment, initial guesses Θ
(0)
U are obtained by picking

up the components of the U largest mixing rates from the L components of the
lower mixture. The terminal condition of our algorithm was empirically tuned
to ensure the convergence of the algorithm. As a result, in this experiment, the
EM-procedure was terminated when maxi,j(h

(t)
ij − h

(t−1)
ij ) < 10−5.

We evaluate the clustering results in terms of NMI(normalized mutual infor-
mation)[7]. Let λ(c) be the correct class labeling with 5 labels provided in the
dataset and λ(e) be the cluster labeling with U labels representing a clustering
result. For every n = 1, . . . , 4059, the estimated cluster label is defined by

λ(e)
n = argmax

j
({πjp(xn|θj)|j = 1, . . . , U}). (18)

The NMI ranges from 0 to 1, and a higher NMI indicates that the clustering is
more informative. For λ(c) and λ(e), the NMI is estimated by

φNMI(λ(e), λ(c)) =

∑5
h=1

∑U
l=1 nh,l log nh,l·N

nh·nl√
(
∑5

h=1 nh log nh

N ) · (
∑U

l=1 nl log nl

N )
, (19)

where N is the number of samples, nh,l denotes the number of samples that have
a class label h according to λ(c) as well as a cluster label l according to λ(e),
nh =

∑
l nh,l, and nl =

∑
h nh,l.

Fig. 4 shows a boxplot of the NMI. Each box has horizontal lines at the lower
quartile, median, and upper quartile. Whiskers extend to the adjacent values
within 1.5 times the interquartile range from the ends of the box and + signs
indicate outliers.

From Fig. 4, at the fourth level (U = 5), where mixture models have as many
components as the classes of the phoneme data, we confirm that CREM has an
advantage over GR and VL in terms of NMI. Moreover, CREM is comparable
to the standard EM directly applied to the data.
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Fig. 4. Boxplot of the NMI for 10 trials

In viewing the results at
the second and third levels,
we cannot directly compare
the results of VL with those
of others. This is because
the mixtures learned by VL
always contained some al-
most identical components
and hence the effective num-
bers of components were
much fewer than the num-
bers intended. CREM ap-
pears to outperform VL and
GR at all the levels. In ad-
dition, interestingly, we can see that CREM outperforms the standard EM in
terms of NMI at the second and third levels. We conjecture that our algorithm
is less likely to be trapped by low quality local minima thanks to the coarser
descriptions of data. This is a highly preferable behavior for learning algorithms.

7 Conclusion

We have proposed a component reduction algorithm that does not suffer from
the limitation of the existing algorithms proposed in [1,5]. Our algorithm was
derived by applying the EM-algorithm to the component reduction problem
and introducing an effective approximation to overcome the difficulty faced in
carrying out the EM-algorithm.

Our algorithm and the two existing algorithms have been applied to a simple
synthetic component reduction task and a phoneme clustering problem. The
experimental results strongly support the effectiveness of our algorithm.
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