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Abstract. Information geometry is a general framework of Riemannian
manifolds with dual affine connections. Some manifolds (e.g. the man-
ifold of an exponential family) have natural connections (e.g. e- and
m-connections) with which the manifold is dually-flat. Conversely, a
dually-flat structure can be introduced into a manifold from a poten-
tial function. This paper shows the case of quasi-additive algorithms as
an example.

Information theory is another important tool in machine learning.
Many of its applications consider information-theoretic quantities such
as the entropy and the mutual information, but few fully recognize the
underlying essence of them. The asymptotic equipartition property is
one of the essence in information theory.

This paper gives an example of the property in a Markov decision pro-
cess and shows how it is related to return maximization in reinforcement
learning.

1 Introduction

Information geometry is a general framework of Riemannian manifolds with dual
affine connections and was proposed by Amari [1] to give a clear view for the
manifolds of statistical models. Since then, information geometry has widely been
applied to other areas, such as statistical inference, information theory, neural
networks, systems theory, mathematical programming, statistical physics, and
stochastic reasoning [2], many of which are strongly related to machine learning
community.

One example is that the Fisher information matrix appears as the Riemannian
metric tensor of the statistical model in information geometry and another is
that the Kullback-Leibler divergence and Hellinger distance are derived as the
divergence defined for specific dual connections. Hence, if a study on machine
learning considers the metric of a model or utilizes the mutual information, then
it is based on information geometry in a sense, while there are a lot of more
direct applications such as independent component analysis and semiparametric
estimation. In this paper, we give another kind of applications of information
geometry in Sec. 3.
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Another important tool in machine learning is information theory, which has
much longer history than information geometry [3]. The asymptotic equipartition
property (AEP) first stated by Shannon and developed through the method of
types [3, Ch. 11] by Csiszár is based on a kind of the law of large numbers from
the statistical viewpoint.

Although the AEP is an effective tool in analyzing learning algorithms, the
importance of the AEP was not widely recognized in the machine learning com-
munity for a long time. However, some recent work utilizes the AEP for the
analysis of learning algorithms such as genetic algorithms, since it holds in com-
prehensive stochastic processes related to machine learning. In this paper, we
show that the AEP still holds in a Markov decision process (MDP) and discuss
how it is related to return maximization in reinforcement learning (RL) in Sec. 5.

2 Preliminaries of Information Geometry

Information geometry discusses the properties of a manifold S, which is intu-
itively an n-dimensional differentiable subset of a Euclidean space with a coor-
dinate system {ξi} where ξi denotes the ith coordinate. Due to its smoothness,
we can define the tangent space Tp at a point p in the manifold S as the space
spanned by the tangent vectors {∂i ≡ ∂/∂ξi} of the coordinate curves, in other
words, we locally linearize the manifold.

Since the tangent space Tp is a Euclidean space, an inner product can be de-
fined as gij ≡ 〈∂i, ∂j〉, where gij depends on the point p ∈ S and it is called the
Riemannian metric on S or simply the metric. Note that the metric is not nat-
urally determined in general, the Fisher information matrix is a natural metric
for the statistical manifold.

Since the tangent space Tp varies from point to point, we need to establish
a linear mapping Πp,p′ : Tp → Tp′ where p and p′ are neighboring points and
dξi ≡ ξi(p′) − ξi(p). Then, the difference between the vectors Πp,p′((∂j)p) and
(∂j)p′ is a linear combination of {dξi}, that is,

Πp,p′(∂j) = ∂′
j − dξi(Γ k

ij)p∂
′
k, (1)

where Γ k
ij is the n3 functions of p called the affine connection on S or simply the

connection (Fig. 1). Using the connection of a manifold, any vector in Tp can be
parallel-translated into another tangent space Tq along a curve connecting the
two points p and q.

As well as the metric, the connection of a manifold can also be determined
arbitrarily. However, if we require that the parallel translation of two vectors
along a curve γ leaves their inner product unchanged, that is,

〈Πγ(D1), Πγ(D2)〉q = 〈D1, D2〉p , (2)

then the connection is uniquely determined that satisfies

∂kgij = Γki,j + Γkj,i (3)

Γij,k ≡ Γ h
ijghk, (4)
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Fig. 1. Affine connection

which is called the Riemannian connection or the Levi-Civita connection with
respect to g.

Information geometry introduces a pair of connections, called the dual con-
nections, so that the inner product of two vectors is unchanged when one vector
is parallel-translated with one connection and the other vector with the other
connection, that is,

〈D1, D2〉p =
〈
Πγ(D1), Π∗

γ (D2)
〉

q
. (5)

It is known that the dual connections Γ and Γ ∗ satisfy

∂kgij = Γki,j + Γ ∗
kj,i. (6)

This means that the Riemann connection is a special case where the connection
is self-dual.

If a manifold has a coordinate system satisfying Γ k
ij = 0, the manifold is

called to be flat and the coordinate system is called affine. We denote an affine
coordinate system by {θi} in this paper. It is known that if a manifold is flat
for a connection Γ , it is also flat for its dual connection Γ ∗. However, {θi} is
never affine in general and we need to introduce another affine coordinate system
{ηi}. These two coordinate systems called the dual coordinate systems have the
relationship

ηi = ∂iψ(θ) ≡ ∂ψ(θ)
∂θi

, (7)

θi = ∂iφ(η) ≡ ∂φ(η)
∂ηi

, (8)

ψ(θ) + φ(η) − θiηi = 0 (9)

whereψ(θ)andφ(η)are respectively convexpotential functions ofθ ≡ (θ1, . . . , θn)
and η ≡ (η1, . . . , ηn). In short, η is the Legendre transform of θ and vice versa. The
divergence which expresses a kind of the distance from p to q has a similar form
to (9),
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D(p‖q) ≡ ψ(θ(p)) + φ(η(q)) − θi(p)ηi(q) ≥ 0. (10)

The divergence holds the generalized Pythagorean relation

D(p‖r) = D(p‖q) + D(q‖r) (11)

when the Γ -geodesic between p and q and the Γ 8-geodesic between q and r are
orthogonal at q. This relation is useful in optimization problems.

The most popular example of dual connections will be the ones for the man-
ifold of an exponential family in statistics. The e-connection and m-connection
are defined as

Γ
(e)
ij,k ≡ E[(∂i∂j lθ)(∂klθ)] (12)

Γ
(m)
ij,k = E[(∂i∂j lθ + ∂ilθ∂j lθ)(∂klθ)] (13)

where lθ ≡ log p(x; θ) and θi’s and ηi’s are the canonical and expectation pa-
rameters, respectively. The Kullback-Leibler divergence is derived from these
connections.

3 Dually-Flat Structure of Learning Machines

In the above, the dual connections of a manifold lead to the dually-flat structure
with two potential functions. Conversely, a dually-flat structure can be derived
from a coordinate system with a convex potential function as below.

Let S be an n-dimensional manifold with a coordinate system θ and ψ(θ) a
smooth convex function on S. Then, the dual coordinate system η is defined as

ηi(θ) ≡ ∂iψ(θ), (14)

and η(θ) = ∂ψ(θ)/∂θ, in short. From the convexity of ψ(θ), η is a one-to-one
function of θ and vice versa.

Let us define a function of η as

φ(η) ≡ θ(η) · η − ψ(θ(η)), (15)

where · is the canonical dot product and

θ(η) ≡ arg max
θi

[θ · η − ψ(θ)] . (16)

It is easily shown ∂iφ(η) = θi and

ψ(θ) + φ(η) − θ · η = 0. (17)

The divergence from P to Q is defined as

D(P‖Q) := ψ(θQ) + φ(ηP ) − θQ · ηP , (18)
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which always takes a non-negative value and null if and only if P = Q, where θP

and θQ respectively denote the θ-coordinates of two points P ∈ S and Q ∈ S,
and ηP and ηQ their η-coordinates. Note that the divergence may be written
as D(θP , θQ) when we regard it as a function of θ-coordinates and D(ηP , ηQ)
when as a function of η-coordinates.

Since the metric expresses the length of the infinitesimal segment, it is given
by differentiating the divergence, that is,

G(θ) = [gij(θ)] = ∂i∂jψ(θ) (19)

H(η) = [hij(η)] = ∂i∂jφ(η) = G−1(θ). (20)

Since the dual connections and the geodesics for them are essentially equiv-
alent, we determine the geodesics instead of explicitly defining the connections.
Here, we assume that θ is an affine coordinate system, that is, a geodesic for Γ
is expressed as

θ(t) = ct + b (21)

where c and b are constant vectors, and a geodesic for Γ ∗ is similarly expressed
as

η(t) = ct + b. (22)

We apply the discussion above to the quasi-additive (QA) algorithms [4] ac-
cording to [5]. The family of QA algorithms is a generalization of the perceptron
learning for a linear dichotomy. It has two vectors, the parameter vector θ to
which a scaled input vector x is added and the weight vector η which is a
nonlinear transform of θ elementwise. More precisely,

ηi = f(θi) i = 1, . . . , n, (23)

where f is an monotonically increasing differentiable function. When f is an
exponential function exp(·), for instance, an addition to the parameter vector
appears as a multiplication in the weight vector since

η
(t)
i = f(θ(t)i

) = f(θ(t−1)i
+ x(t)i

) = η
(t−1)
i exp(x(t)i

). (24)

The output of the linear dichotomy is the sign y ∈ {±1} of the dot product with
the weight vector η for an input vector x, that is, y = sgn[η · x] ∈ {±1}. In
total, QA algorithms have a general form of

θ̇ = C(η, x, y)yx, η = f(θ). (25)

Suppose that f satisfies f(0) = 0 and define a potential function

ψ(θ) =
n∑

i=1

g(θi), g(s) =
∫ s

0
f(σ)dσ. (26)



300 K. Ikeda and K. Iwata

Then, we can introduce a dually-flat structure to QA algorithms from this po-
tential function. In fact, the parameter vector θ and the weight vector η of
a QA algorithm are dual affine coordinate systems through the monotonically
increasing function f as below:

ηi = ∂iψ(θ) = f(θi), gij = ∂jηi = f ′(θi)δij (27)

φ(η) = θT η − ψ(θ) =
n∑

i=1

[
θif(θi) − g(θi)

]
=

n∑
i=1

h(f(θi)) =
n∑

i=1

h(ηi), (28)

θi = ∂iφ(η) = f−1(ηi), gij = ∂jθi = (f−1)′(ηi)δij , (29)

where ′ denotes the derivative and

h(s) =
∫ s

0
f−1(τ)dτ. (30)

We can show that the QA algorithm is an approximate of the natural gradient
descent method for the dually-flat structure derived from the potential (26).
See [5] for details.

4 Preliminaries of Information Theory

Information theory gave answers to the two fundamental questions of the ul-
timate data compression and the ultimate data transmission in communication
theory and has been applied to many other fields beyond the communication the-
ory [3]. In this section, we introduce the so-called the asymptotic equipartition
property (AEP) which is the analog of the low of large numbers.

The simplest version of the AEP is formalized in the following theorem.

Theorem 1 (AEP). Let p(x) be any probability density function defined over
X . If X1, X2, . . . are i.i.d. random variables drawn according to p(x), then

− 1
n

log p(X1, X2, . . . , Xn) → H(p) in probability, (31)

as n → ∞, where H(p) denotes the entropy of p(x).

The AEP yields the typical set of sequences in this i.i.d. case.

Definition 1 (Typical Set). The typical set A
(n)
ε with respect to p(x) is defined

as the set of sequences (x1, x2, . . . , xn) such that for any ε > 0,

exp[−n(H(p) + ε)] ≤ p(x1, x2, . . . , xn) ≤ exp[−n(H(p) − ε)]. (32)

Theorem 2 (Asymptotic Properties).

1. If (x1, x2, . . . , xn) ∈ A
(n)
ε , then H(p) − ε ≤ (− log p(x1, x2, . . . , xn))/n ≤

H(p) + ε.
2. Pr(A(n)

ε ) > 1 − ε for n sufficiently large.
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3. |A(n)
ε | ≤ exp[n(H(p) + ε)], where |A| is the number of elements in the set A.

4. |A(n)
ε | ≥ (1 − ε) exp[n(H(p) − ε)] for n sufficiently large.

These properties state that there exists the typical set of sequences with proba-
bility nearly one, that all the elements of the typical set are nearly equi-probable,
and that the number of elements in the typical set is given by an exponential
function of the entropy of the probability density function. This means that the
number of elements in the typical set is quite small compared to the number of
possible sequences. Hence, we can focus most of our attention on the elements
in the typical set since the others appear with probability nearly zero.

The AEP still holds in a number of stationary ergodic processes related to
machine learning. In fact, it holds in a Markov chain model formulated by ge-
netic algorithms and this has been applied in [6, 7] for the analysis of genetic
algorithms. In the next section, we show that the AEP holds in a Markov de-
cision process (MDP). According to [8], we also discuss how this is related to
return maximization in reinforcement learning (RL).

5 The AEP in Reinforcement Learning

In general, RL is formulated as a discrete-time piecewise stationary ergodic MDP
with discrete state-actions. The elements of the MDP are described as follows:
the sets of states, actions and rewards are denoted as S ≡ {s1, . . . , sI}, A ≡
{a1, . . . , aJ} and R ≡ {r1, . . . , rK}, respectively. Let s(t), a(t) and r(t) denote
the random variables of state, action and reward at time-step t ∈ {1, 2, . . .},
defined over S, A and R, respectively. The policy matrix Γ π of an agent and
the state-transition matrix ΓT of an environment are described as

Γ π ≡

⎛
⎜⎜⎜⎝

p11 p12 · · · p1J

p21 p22 · · · p2J

...
...

. . .
...

pI1 pI2 · · · pIJ

⎞
⎟⎟⎟⎠ , ΓT ≡

⎛
⎜⎜⎜⎝

p1111 p1112 · · · p11IK

p1211 p1212 · · · p12IK

...
...

. . .
...

pIJ11 pIJ12 · · · pIJIK

⎞
⎟⎟⎟⎠ , (33)

respectively, where pij ≡ Pr(a(t) = aj | s(t) = si) denotes the probability that
the agent selects action aj ∈ A in state si ∈ S, and piji′k ≡ Pr(s(t + 1) =
si′ , r(t + 1) = rk | s(t) = si, a(t) = aj) denotes the probability that the agent
receives scalar reward rk ∈ R and observes subsequent state si′ ∈ S of the
environment when action aj ∈ A is taken in state si ∈ S. Let Γ ≡ (Γ π, ΓT) for
simplicity. Each of the initial state distribution in the environment is defined as
qi ≡ Pr(s(1) = si) > 0 for any si ∈ S. Note that the agent can determine the
policy matrix Γ π for action selection while it does not know the state-transition
matrix ΓT.

Suppose that the policy of the agent is improved sufficiently slowly such that
the sequence of n time-steps, x ≡ {s(1), a(1), r(2), s(2), a(2), . . . , r(n), s(n), a(n),
r(n + 1)}, is drawn according to a stationary ergodic MDP described above.
We let r(n + 1) = r(1) for notational convenience, and hence the sequence is
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simply written as x = {s(t), a(t), r(t)}n
t=1. As a result of actual trials by the

agent, the empirical distributions FS , FSA, Φπ and ΦT are uniquely obtained
according to the observed sequence of x in the trials, where FS ≡ {fi} and
FSA ≡ {fij} are the empirical state distribution and the empirical state-action
distribution, respectively, where fi ≡ |{t ∈ {1, . . . , n} | s(t) = si ∈ S}|/n and
fij ≡ |{t ∈ {1, . . . , n} | s(t) = si ∈ S, a(t) = aj ∈ A}|/n, and the empirical
policy matrix Φπ and the empirical state-transition matrix ΦT are denoted as

Φπ ≡

⎛
⎜⎜⎜⎝

g11 g12 · · · g1J

g21 g22 · · · g2J

...
...

. . .
...

gI1 gI2 · · · gIJ

⎞
⎟⎟⎟⎠ , ΦT ≡

⎛
⎜⎜⎜⎝

g1111 g1112 · · · g11IK

g1211 g1212 · · · g12IK

...
...

. . .
...

gIJ11 gIJ12 · · · gIJIK

⎞
⎟⎟⎟⎠ , (34)

respectively. We need to consider Φπ-shell and ΦT-shell for more strict discussion.
The following theorems are obtained from the AEP in the MDP.

Definition 2 (Typical Set). The typical set Cn
λn

(Γ ) in the MDP is defined as
the set of sequences such that for any λn > 0, empirical distributions satisfy

D(Φπ‖Γ π | FS) + D(ΦT‖ΓT | FSA) ≤ λn, (35)

where D(Φπ‖Γ π | FS) denotes the conditional divergence between the elements in
Φπ and Γ π given FS .

Theorem 3 (Probability of Typical Set). If λn → 0 as n → ∞ such that

λn >
(IJ + I2JK) log(n + 1) + log I − min piji′k

n
, (36)

there exists a sequence {ε(λn)} such that ε(λn) → 0, and Pr(Cn
λn

(Γ )) = 1−ε(λn).

Theorem 4 (Equi-Probability of Elements). If x ∈ Cn
λn

(Γ ), then there
exists a sequence {ρn} such that ρn → 0 as n → ∞, and

min piji′k

n
− ρn ≤ − 1

n
log Pr(x) − φ(Γ ) ≤ −min qi

n
+ λn + ρn, (37)

where φ(Γ ) is the stochastic complexity of the MDP, defined as

φ(Γ ) ≡ H(Γ π|V ) + H(ΓT|W ), (38)

where V and W are the limits of FS and FSA with respect to n.

Theorem 5 (Typical Set Size). There exist two sequences {ζn} and {ηn}
such that ζn → 0 and ηn → 0 as n → ∞, and

exp[n{φ(Γ ) − ζn}] ≤ |Cn
λn

(Γ )| ≤ exp[n{φ(Γ ) + ηn}]. (39)
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Now let us consider how we can maximize the return in RL. In this paper,
return maximization means maximizing the probability that the best sequences
appear in trials. Since only the sequences in the typical set appear with proba-
bility nearly one, the typical set must be large enough such that it includes the
best sequences. On the other hand, from the equi-probability of elements in the
typical set, the size of the typical set should be minimized to increase the ratio
of the best sequences to the elements in the typical set. This tradeoff is essen-
tially identical to the exploration-exploitation dilemma widely recognized in RL.
Because the size of the typical set is characterized by the stochastic complexity,
and it is an important guide to solve the dilemma. For example, we can derive
the dependency of the stochastic complexity on the learning parameter such as
β in the softmax method and ε in the ε-greedy method, which gives some insight
into an appropriate control of the parameter when the learning proceeds.

Information theory can also be applied to the multi-agent problem [9] which
is the analog of the multi-terminal information theory. Let the sequence xm of
the m-th of M agents be {sm(1), am(1), rm(2), sm(2), am(2), . . . , rm(n), sm(n)
, am(n), rm(n + 1)}. The AEP still holds in an MDP in the multi-agent case,
where pij and piji′k in the elements of the matrices in (33) are extended to

pi1···iM ,j1···jM ≡ Pr(a(t) = aj1···jM | s(t) = si1···iM ), (40)
pi1···iM ,j1···jM ,i′

1···i′
M ,k1···kM

≡ Pr(s(t + 1) = si′
1···i′

M
, r(t + 1) = rk1···kM

| s(t) = si1···iM , a(t) = aj1···jM ), (41)

respectively, where s(t) ≡ (s1(t), . . . , sM (t)) and si1···iM ≡ (si1 , . . . , siM ) ∈ SM .
When the agents that exist in the same environment can communicate with each
other, i.e., know their states and decide their actions together, the probability
of their policy is expressed as (40). When each agent can know all of the other
agents’ states but cannot know how the others’ actions are taken, pi1···iM ,j1···jM

in this case cannot take a general form but it is expanded as

pi1···iM ,j1···jM =
M∏

m=1

Pr(am(t) = ajm | s(t) = si1···iM ). (42)

This visible case is more limited in the communication among the agents. When
no agent can recognize any of the other agents’ states nor actions, it is also

pi1···iM ,j1···jM =
M∏

m=1

Pr(am(t) = ajm | sm(t) = sim). (43)

This blind case is much more limited than the visible case. The limitations in the
communication increase the entropy H(Γ π|V ) and make the performance of the
agents worse. The multi-agent studies should take the limitations into account.

6 Conclusions

In this paper, we briefly introduced an essence of the information geometry, that
is, the duality was shown to be one of the most important properties. When
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a manifold is dually-flat, the divergence is naturally derived. From a convex
potential function, on the other hand, we can introduce a dually-flat structure
to the space. One example on quasi-additive algorithms was given in Sec. 3.

Another important tool in machine learning is information theory. Although
it has a wide diversity, we concentrate our attention on the asymptotic equipar-
tition property (AEP), which is known as the law of large numbers in statistics.
We showed that the AEP on the sequences generated from a Markov decision
process using an example on the sequences in reinforcement learning (RL) in
Sec. 5. This property should be taken into account in the analysis of algorithms
since only the typical sequences appear with probability nearly one.

Information geometry and information theory are so powerful tools that there
are a lot of fields to be applied in the future.
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