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Abstract. A filter algorithm using F-measure has been used with feature redun-
dancy removal based on the Kolmogorov-Smirnov (KS) test for rough equality
of statistical distributions. As a result computationally efficient K-S Correlation-
Based Selection algorithm has been developed and tested on three high-
dimensional microarray datasets using four types of classifiers. Results are quite
encouraging and several improvements are suggested.

1 Introduction

Feature ranking and feature selection algorithms applicable to large data mining prob-
lems with very high number of features that are potentially irrelevant for a given task
are usually of the filter type [1]. Filter algorithms remove features that have no chance
to be useful in further data analysis, independently of particular predictive system (pre-
dictor) that may be used on this data. In the simplest case feature filter is a function
returning a relevance index J(S|D, C) that estimates, given the data D, how relevant a
given feature subset S is for the task C (usually classification, association or approx-
imation of data). Since the data and the task are usually fixed and only the subsets S
vary, the relevance index will be written as J(S). This index may result from a simple
calculation of a correlation coefficient or entropy-based index, or it may be computed
using more involved algorithmic procedures (for example, requiring creation of partial
decision tree, or finding nearest neighbors of some vectors). For large problems simpler
indices have an obvious advantage of being easier to calculate, requiring an effort on
the order of O(n), while more sophisticated procedures based on distances may require
O(n2) operations.

Relevance indices may be computed for individual features Xi, i = 1 . . .N , pro-
viding indices that establish a ranking order J(Xi1) ≤ J(Xi2) · · · ≤ J(XiN ). Those
features which have the lowest ranks are subsequently filtered out. For independent
features this may be sufficient, but if features are correlated many of them may be re-
dundant. Ranking does not guarantee that a small subset of important features will be
found. In pathological situations a single best feature may not even be a member of the
best pair of features [2]. Adding many redundant features may create instable behavior
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of some predictive algorithms, with chaotic changes of results for a growing number of
features. This is a major problem especially for small sample data with very large di-
mensionality, but has been also observed with large datasets [3]. However, methods that
search for the best subset of features may first use filters to remove irrelevant features
and then use the same ranking indices on different subsets of features to evaluate their
usefulness.

Despite these potential problems in practical applications filter methods for ranking
are widely used and frequently give quite good results. There is little empirical experi-
ence in matching filters with predictive systems. Perhaps different types of filters could
be matched with different types of predictors, but so far no theoretical arguments or
strong empirical evidence has been given to support such claim. The value of the rele-
vance index should be positively correlated with accuracy of any reasonable predictor
trained for a given task C on the data D using the feature subset S.

Although filter methods do not depend directly on the predictors obviously the cut-
off threshold for relevance index to reject features may either be set arbitrarily at some
level, or by evaluation of feature contributions by the predictor. Features are ranked by
the filter, but how many best features are finally taken is determined using the predictor.
This approach may be called “filtrapper” or “frapper” [1], and it is not so costly as the
original wrapper approach, because evaluation of predictor’s performance (for example
by crossvalidation tests) is done only after ranking for a few pre-selected feature sets.
The threshold for feature rejection is a part of the model selection procedure and may be
determined using crossvalidation calculations. To avoid oscillations only those features
that really improve the training results should be accepted. This area between filters and
wrappers seems to be rather unexplored.

In the next section a new relevance index based on the Kolmogorov-Smirnov (KS)
test to estimate correlation between the distribution of feature values and the class la-
bels is introduced (used so far only for datasets with small number of features [4]).
Correlation-based filters are very fast and easily compete with information-based fil-
ters. In section three empirical comparisons between KS filter, Pearson’s correlation
based filter and other filters based on information gain are made on three widely used
microarray datasets [5], [6], [7].

2 Theoretical Framework

2.1 Correlation-Based Measures

Pearson’s linear correlation coefficient is very popular in statistics [8]. For feature X
with values x and classes C with values c treated as random variables it is defined as

�(X, C) =
∑

i(xi − x̄i)(ci − c̄i)
√∑

i(xi − x̄i)2
∑

j(ci − c̄i)2
. (1)

�(X, C) is equal to ±1 if X and C are linearly dependent, and zero if they are com-
pletely uncorrelated. The simplest test estimating probability that two variables are re-
lated given the correlation �(X, C) is [8]:
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P(X ∼ C) = erf
(
|�(X, C)|

√
N/2

)
, (2)

where erf is the error function. Thus for N = 1000 samples linear correlation coeffi-
cients as small as 0.02 really signify probabilities of correlation around 0.5.

The feature list ordered by decreasing values of P(X ∼ C) provides feature ranking.
Similar approach is also taken with χ2 statistics, but the problem in both cases is that
for larger values of χ2 or correlation coefficient probability P(X ∼ C) is so close to 1
that ranking becomes impossible due to the finite numerical accuracy of computations.
Therefore initial threshold for P(X ∼ C) may be used in ranking only to determine
how many features are worth keeping, although more reliable estimations may be done
using crossvalidation or wrapper approaches.

Information theory is frequently used to define relevance indices. Mutual Informa-
tion (MI) is defined as MI(f, C) = H(f) + H(C) − H(f, C), where the entropy and
joint entropy are:

H(f) = −
∑

i

P(fi) log(P(fi); H(C) = −
∑

i

P(Ci) log P(Ci) (3)

and
H(f, C) = −

∑

i,j

P(fi, Cj) log P(fi, Cj) (4)

Symmetrical Uncertainty (SU) Coefficient is defined as [8]:

SU(f, C) = 2
[

MI(f, C)
H(f) + H(C)

]

(5)

If a group of k features has already been selected, correlation coefficient may be used
to estimate correlation between this group and the class, including inter-correlations
between the features. Denoting the average correlation coefficient between these fea-
tures and classes as rkc = �̄(Xk, C) and the average between different features as
rkk = �̄(Xk,Xk) the relevance of the feature subset may be defined as:

J(Xk, C) =
krkc

√
k + (k − 1)rkk

. (6)

This formula has been used in the Correlation-based Feature Selection (CFS) algorithm
[9] adding (forward selection) or deleting (backward selection) one feature at a time.
Non-parametric, or Spearman’s rank correlation coefficients may be useful for ordinal
data types.

F -score is another useful index that may be used for ranking [10]:

F (C, fi) =
1

(K − 1)σ2
i

∑

k

nk

(
f̄ik − f̄i

)2
(7)

where nk is the number of elements in class k, f̄ik is the mean and σ2
ki is the variance

of feature fi in this class. Pooled variance for feature fi is calculated from:

σ2
i = σ2(fi) =

1
(n − K)

∑

k

(nk − 1)σ2
ik (8)
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where n =
∑

k nk and K is the number of classes. In the two-class classification case
F -score is reduced to the t-score (F = t2).

Predominant correlation proposed by Liu et al. [11] in their Fast Correlation-Based
Filter (FCBF) compares relations between feature-class and feature-feature. First rank-
ing using the SU coefficient Eq. 5 is performed, and the threshold coefficient deter-
mining the number of features left is fixed. In the second step each feature fi is com-
pared to all fj lower in ranking, and if their mutual SU(fi, fj) coefficient is larger then
SU(C, fj) then fj is considered redundant and removed.

ConnSF, selection method based on a consistency measure, has been proposed by
Dash et al. [12]. This measure evaluates for a given feature subset the number of cases
in which the same feature values are associated with different classes. More precisely,
a subset of feature values that appears n times in the data, most often with the label
of class c, has inconsistency n − n(c). If all these cases are from the same class then
n = n(c) and inconsistency is zero. The total inconsistency count is the sum of all
the inconsistency counts for all distinct patterns of a feature subset, and consistency is
defined by the least inconsistency count. Application of this algorithm requires discrete
values of the features.

2.2 Kolmogorov-Smirnov Test for Two Distributions

The Kolmogorov-Smirnov (K-S) test [8] is used to evaluate if two distributions are
roughly equal and thus may be used as a test for feature redundancy. The K-S test
consists of the following steps:

– Discretization process creates k clusters (vectors from roughly the same class), each
typically covering similar range of values.

– A much larger number of independent observation n1, n2 > 40 are taken from the
two distributions, measuring frequencies of different classes.

– Based on the frequency table the empirical cumulative distribution functions F1i

and F2i for two sample populations are constructed.
– λ(K-S statistics) is proportional to the largest absolute difference of |F1i − F2i|:

λ =
√

n1n2

n1 + n2
sup |F1i − F2i| for i = 1, 2, ..., k. (9)

When λ < λα then the two distributions are equal, where α is the significance
level and λα is the K-S statistics for α [13]. One of the features with distribution that
are approximately equal is then redundant. In experiments described below all training
samples n1 = n2 = n were used.

2.3 Kolmogorov-Smirnov Correlation-Based Filter Approach

Kolmogorov-Smirnov test is a good basis for the Correlation-Based Selection algorithm
(K-S CBS) for feature selection. This algorithm is sketched in Fig. 1. Feature ranking is
performed first, requiring selection of the ranking index. F-score index Eq. 7 is used in
all calculations here. The threshold for the number of features left for further analysis
may be determined in a principal way using the frapper approach, that is evaluating the
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Algorithm K-S CBS:
Relevance analysis
1. Order features according to the decreasing values of relevance indices creating S list.
Redundancy analysis
2. Initialize Fi to the first feature in the S list.
3. Use K-S test to find and remove from S all features for which Fi forms an approxi-
mate redundant cover C(Fi).
4. Move Fi to the set of selected features, take as Fi the next remaining feature in the
list.
5. Repeat step 3 and 4 until the end of the S list.

Fig. 1. A two-step Kolmogorov-Smirnov Correlation Based Selection (K-S CBS) algorithm

quality of results as a function of the number of features. In the second step redundant
features are removed using the K-S test. The optimal α significance level for feature
removal may also be determined by crossvalidation.

This is of course quite generic algorithm and other ranking indices and tests for
equality of distributions may be taken instead. Two parameters – the threshold for rele-
vancy and the threshold for redundancy – are successively determined using crossvali-
dation, but in some cases there may be a clear change in the value of these parameters,
helping to find their optimal values.

3 Empirical Study

To evaluate the usefulness of K-S CBS algorithm experiments on three gene expression
datasets [5], [6] [7] have been performed. Datasets used here 1 are quite typical for this
type of applications. A summary is presented in Table 1.

1. Leukemia data is divided into training set consists of 38 bone marrow samples (27
of the ALL and 11 of the AML type), using 7129 probes from 6817 human genes;
34 test samples are provided, with 20 ALL and 14 AML cases.

2. Colon Tumor contains 62 samples collected from colon cancer patients, with 40
biopsies from tumor areas (labelled as “negative”) and 22 from healthy parts of
the colons of the same patients. 2000 out of around 6500 genes were pre-selected,
based on the confidence in the measured expression levels.

3. Diffuse Large B-cell Lymphoma [DLBCL] has measurements of gene expression
data for two distinct types of diffuse large lymphoma B-cells (this is the most com-
mon subtype of non-Hodgkin’s lymphoma). There are 47 samples, 24 of them are
from “germinal centre B-like” group while 23 are from “activated B-like” group.
Each sample is represented by 4026 genes.

Splitting such small data into training and test subsets does not make much sense.
Results reported below for all data are from the leave-one-out (LOO) calculations, de-
terministic procedure that does not require averaging or calculation of variance.

1Downloaded from http://sdmc.lit.org.sg/GEDatasets/Datasets.html

http://sdmc.lit.org.sg/GEDatasets/Datasets.html
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Table 1. Summary of microarray dataset properties

Title # Genes # Samples # Samples per class Source

Colon cancer 2000 62 40 tumor 22 normal Alon [5]
DLBCL 4026 47 24 GCB 23 AB Alizadeh [6]
Leukemia 7129 72 47 ALL 25 AML Golub [7]

The original gene expression data contain real numbers. To calculate mutual infor-
mation probabilities Eq. (3, 4) are needed, therefore the data has been discretized. This
also helps to reduce the amount of noise in the original observations and facilitates di-
rect use of such predictive techniques as the Naive Bayesian Classifier (NBC). Although
quite sophisticated methods of discretization exist, for comparison of information selec-
tion techniques simple discretization of gene expression levels into 3 intervals is used
here. Using the variance σ and the mean μ for a given gene any value larger than μ + σ

2
is transformed to +1, any value in the [μ − σ

2 , μ + σ
2 ] interval is transformed to 0,

and any value smaller than μ − σ
2 becomes −1. These three values correspond to the

over-expressions, baseline, and under-expression of genes. Results obtained after such
discretization are in some cases significantly improved and are given in parenthesis in
the tables below.

For each data set K-S CBS algorithm using F-measure (results with SU coefficient
are similar) in the filtering stage is compared with the three state-of-the-art feature selec-
tion algorithms: FCBF [11], CorrSF [9], ConnSF [12]. The number of features selected
obviously depends on the parameters of the feature selection method. The authors of
the FCBF algorithm recommend taking the relevance threshold corresponding to the
n log n features, and treating as redundant features with larger SU index between fea-
tures than between the classes. The CorrSF correlation coefficient Eq. 1 is used in a
forward best-first search procedure with backtracking up to 5 times before search is
terminated, and selecting only those features that have larger feature-class correlations
than correlation to already selected features. For ConsSF the usual practice is followed,
searching for the smallest subset with consistency equal to that of the full set of at-
tributes. One could introduce additional parameters in FCBF, CorrSF and ConnSF to
change the preference of the relevance vs. redundancy and optimize them in the same
way, but we have not done so. For comparison the K-S CBS algorithm is used with
α = 0.05, representing quite typical value of confidence. This value can easily be opti-
mized for individual classifiers in the frapper approach, therefore results for other values
are provided.

Table 2. Number of features selected by each algorithm

Data Number of features selected
Full set FCBF CorrSF ConnSF K-S CBSF

Colon Cancer 2000 9 17 4 5
DLCBL 4026 33 18 3 16
Leukemia 7129 52 28 3 118
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Table 3. Balanced accuracy from the LOO test for C4.5, NBC, 1NN and SVM classifier on
features selected by four algorithms, results on discretized data in parenthesis

Method C 4.5
Data All features FCBF CorrSF ConnSF K-S CBSF,α=0.05

Colon Cancer 72.05 (68.30) 81.36 (80.11) 77.84 (80.11) 78.07 (78.07) 73.30 (68.30)
DLCBL 89.40 (74.55) 82.77 (85.14) 72.28 (89.49) 87.14 (85.24) 80.80 (85.24)
Leukemia 73.23 (85.74) 86.68 (95.72) 79.49 (93.74) 96.94 (95.74) 86.55 (85.74)
Average 78.22 (76.20) 83.60 (86.99) 76.53 (87.78) 87.38 (86.35) 80.22 (79.76)

Method NBC
Data All features FCBF CorrSF ConnSF K-S CBSF,α=0.05

Colon Cancer 57.84 (66.59) 85.91 (90.68) 84.43 (88.18) 74.77 (79.32) 78.64 (66.59)
DLCBL 97.92 (91.58) 100.0 (100.0) 100.0 (100.0) 91.49 (89.40) 97.92 (93.66)
Leukemia 100.00 (82.55) 96.94 (100.0) 98.94 (100.0) 86.94 (100.0) 98.00 (82.55)
Average 85.25 (80.24) 94.28 (96.89) 94.46 (96.06) 84.40 (89.57) 91.52 (80.93)

Method 1NN
Data All features FCBF CorrSF ConnSF K-S CBSF,α=0.05

Colon Cancer 73.07 (64.55) 82.39 (83.18) 83.41 (78.41) 79.09 (93.75) 74.55 (64.55)
DLCBL 76.27 (74.46) 100.0 (97.83) 100.0 (100.0) 93.66 (93.48) 93.66 (91.39)
Leukemia 84.81 (88.81) 96.94 (100.0) 93.87 (100.0) 94.81 (100.0) 92.94 (88.81)
Average 78.05 (75.94) 93.11 (93.67) 92.42 (92.80) 89.18 (95.74) 87.05 (81.58)

Method SVM
Data All features FCBF CorrSF ConnSF K-S CBSF,α=0.05

Colon Cancer 80.11 (70.80) 84.89 (80.11) 87.16 (83.41) 74.77 (75.80) 82.61 (70.80)
DLCBL 93.66 (95.74) 100.0 (100.0) 100.0 (100.0) 91.58 (91.58) 95.83 (91.49)
Leukemia 98.00 (88.81) 98.00 (100.0) 96.94 (100.0) 85.87 (100.0) 98.00 (96.00)
Average 90.59 (85.12) 94.29 (93.37) 94.70 (94.47) 84.08 (89.13) 92.15 (86.09)

Features selected by each algorithm serve to calculate balanced accuracy using four
popular classifiers, decision tree C4.5 (with default Weka parameters), Naive Bayes
(with single Gaussian kernel, or discretized probabilities), nearest neighbor algorithm
(single neighbor only) and linear SVM with C = 1 (using Ghostminer implementa-
tion2). Each of these classifiers is of quite different type and may be used on raw as
well as on the discretized data.

The number of features selected by different algorithms is given in Table 2. K-S
CBF selected rather small number of features except for the Leukemia data, where
significantly larger number of features has been created. Even for α = 0.001 the number
of features is 47, which is relatively large. Unfortunately with the small number of
samples in the microarray data a single error difference in the LOO test is translated
to quite large 1.6% for colon, 2.1% for DLCBL and 1.4% for leukemia. Thus although
percentages may clearly differ the number of errors may be similar.

First observation from results given in Table 3 is that feature selection has signifi-
cant influence on the performance of classifiers. Improvements for C4.5 on Leukemia

2http://www.fqs.pl/ghostminer/
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Table 4. LOO balanced accuracy for different significance levels α for all data set; KSCBSF on
standarized data

α 0.001 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Dataset Colon cancer
No. feat. 2 5 5 8 9 10 10 13 13 17 17
C4.5 77.61 80.34 73.30 77.84 66.25 70.80 70.80 74.09 74.09 69.32 69.32
NBC 82.61 67.95 78.64 74.89 79.89 82.16 82.16 78.64 78.64 81.93 81.93
1NN 78.64 75.34 74.55 72.61 72.05 71.82 71.82 71.82 71.82 76.82 76.82
SVM 72.50 72.50 82.61 81.36 81.36 81.36 81.36 80.34 80.34 84.89 84.89

Average 77.84 74.03 77.28 76.68 74.89 76.54 76.54 76.22 76.22 78.24 78.24

Dataset DBCL
No. feat. 7 13 16 22 22 30 43 43 43 63 63
C4.5 85.14 82.97 80.80 93.66 93.66 91.49 74.46 74.46 74.46 74.37 74.37
NBC 91.49 93.57 97.92 93.57 93.57 97.83 97.83 97.83 97.83 100.0 100.0
1NN 87.32 95.83 93.66 93.75 93.75 89.40 93.75 93.75 93.75 93.57 93.57
SVM 89.49 100.0 95.83 89.49 89.49 95.83 100.0 100.0 100.0 100.0 100.0

Average 88.36 93.09 92.05 92.62 92.62 93.64 91.51 91.51 91.51 91.99 91.99

Dataset Leukemia

No. feat. 47 75 118 167 207 268 268 331 331 456 456
C4.5 85.74 88.81 86.55 84.68 91.74 77.36 77.36 80.43 80.43 88.68 88.68
NBC 94.94 96.94 98.00 100.0 98.00 100.0 100.0 98.94 98.94 100.0 100.0
1NN 90.94 89.87 92.94 92.94 90.94 92.94 92.94 92.94 92.94 90.94 90.94
SVM 90.00 96.00 98.00 98.00 98.00 96.94 96.94 98.00 98.00 98.00 98.00

Average 90.41 92.91 93.87 93.91 95.17 91.81 91.81 92.58 92.58 94.41 94.41

exceed 20%, for NBC on colon cancer reach almost 30%, for 1NN on DLCBL almost
20% and for SVM on colon data over 7%. Discretization in most cases improves the
results. For colon cancer SVM reaches the best result on all features (80.1%), and the
highest accuracy on the 17 CorrSF selected features (87.2%), that also happens to be
the largest subset. However, on the discretized data better results are achieved with
Naive Bayes with 9 FCBF features (90.7%). For DLCBL with all features Naive Bayes
reaches 97.9%, and 100% for both FCBF and CorrSF selections, with 1NN and SVM
reaching also 100% on these features. For Leukemia again Naive Bayes is the win-
ner, reaching 100% on all data, and for discretized data selected by FCBF, CorrSF and
ConnSF achieving 100% balanced accuracy. K-S CBF always gives worse results on
the discretized data, but on the raw data (K-S test is more appropriate for real-valued
features) is not far behind.

It is clear that the default value for redundancy in K-S CBS is far from optimal;
unfortunately Kolmogorov-Smirnov statistics can be used only to discover redundant
features, but cannot be directly compared with relevance indices. In real applications
estimation of optimal α using crossvalidation techniques for a given classifier will sig-
nificantly improve results, as is evident from Table 4. Detailed analysis of the depen-
dence of the number of features and balanced accuracy on α is presented in Table 4
starting from very small α.
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With optimized α the best results with K-S CBS features are very similar to the
best results of the other algorithms. For colon cancer SVM gives 84.9% on 17 features,
which translates to 9 instead of 8 errors. For DBCL data SVM and Naive Bayes reach
100%, while for Leukemia 100% is also reached with Naive Bayes, although for some-
how larger number of features. However, with such small statistics larger number of
features is actually desirable to stabilize the expected profile. For example, with the
original division between training and test data [7] a single gene gives 100% accuracy
on the training set, but this does not mean that it is sufficient as it makes 3 errors on the
test. It is much safer to use leave-one-out evaluation in this case.

4 Conclusions

Information filters may be realized in many ways [1]. They may help to reject some
features, but the final selection should remove redundant features, not only to decrease
dimensionality, but also to avoid problems that are associated with redundant features.
Naive Bayes algorithm is clearly improved by removing redundancy, and the same is
true for similarity-based approaches and SVM. Kolmogorov-Smirnov test for determi-
nation of redundant features requires only one parameter, the significance level, and is
a well-justified statistical test, therefore it is an interesting choice for feature selection
algorithms.

The K-S CBS algorithm presented here combines relevance indices (F-measure,
Symmetrical Uncertainty Coefficient or other index) to rank and reduce the number of
features, and uses Kolmogorov-Smirnov test to reduce the number of features further.
It is computationally efficient and gives quite good results. Variants of this algorithm
may identify approximate redundant covers C(fi) for consecutive features fi and leave
in the S set only the one that gives best results (this will usually be the first one, with
the highest ranking). Some ways of information aggregation could also be used, for ex-
ample local PCA in the C(Fi) subspace. In this case the threshold for redundancy may
be set to higher values, leaving fewer more stable features in the final set, and assuring
that potentially useful information in features that were considered to be redundant is
not lost. One additional problem that is evident in Table 4 and that frequently arises
in feature selection for small microrarray data, but may also appear with much larger
data [3], is stability of results. Adding more features may degrade results instead of
improving them. We had no space here to review literature results for microarray data
(see comparison in [14] or results in [15]) but they are all unstable and do not signifi-
cantly differ from our results given in Tables 3 and 4. The instability problem may be
addressed using the frapper approach to select most stable (and possible non-redundant)
subset of features in O(m) steps, where m is the number of features left for ranking.
This and other improvements are the subject of further investigation.
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