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Abstract. We previously proposed a memory system of motion patterns
[4] using an assotiative memory model. It forms symbolic representations
of motion patterns based on correlations by utilizing bifurcations of at-
tractors depending on the parameter of activation nonmonotonicity. But
the parameter had to be chosen appropreately to some degree by man-
ual. We propose here a way to provide the paremeter with self-organizing
dynamics along with the retrieval of the associative momory. Attractors
of the parameter are discrete states representing the hierarchical corre-
lations of the stored motion patterns.

1 Introduction

Symbols are important for intelligent systems. Extracting important informa-
tion from specific memories and experiences and memorizing them as abstract
symbols enable one to apply the acquired information to other different situa-
tions. Based on this point of view, the authors[4] proposed a memory system
for motion patterns of humanoid robots, which forms emergent abstract rep-
resentations of motions and maintains the representations in abstract-specific
hierarchical manner, based on the inherent global cluster structure of the mo-
tion patterns. The proposed memory system(Fig.1) consists of transforming the
motion patterns into feature vectors, storing them into the connection weights
by Hebb rule, and retrieval in the dynamics of the associative model parame-
terized by the nonmonotonicity of the activation function. Feature vectors clar-
ify the global structure of motion patterns. Nonmonotonic associative model
forms abstract representations integrating the clusters, and maintains abstract-
specific hierarchy by bifurcations of attractors depending on the parameter of
nonmonotonicity(Fig.2). The integrating dynamics was originally discussed by
[1] and then by other researches[2],[6],[8] for sigmoid networks. In [5], the au-
thors gave a mathematical explanation of the above nonmonotonic associative
memory dynamics. However, the nonmonotonicity parameter had to be chosen
appropriately to some degree by manual. We propose here a way to provide the
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Fig. 1. Memory system for motions of humanoid robots

Attractors

h0.5

Stepping0
Stepping1
Stepping2

Squat0
Squat1 Squat

Motion

Stepping

Kick0
Kick1 Kick

Fig. 2. Representation of hierarchy by bifurcations of attractors and basins proposed
in our previous research

parameter with self-organizing dynamics along with the retrieval of the associa-
tive memory. The system automatically finds out the hierarchy of the correlations
in the stored data, and forms attractors at the centers of clusters. The attractors
of the nonmonotonicity parameter are discrete states representing the discrete
levels of hierarchical correlations in the stored patterns. We will show the simu-
lation results when feature vectors of motion patterns are stored, where symbolic
attractors of motions and attractors of nonmonotonicity parameter are formed
according to the initial values of the nonmonotonicity parameter.

There are some related researches. Okada et al.[10] proposed a model for self-
organizing symbol acquisition of motions by combining Kohonen’s self organizing
map[7] and a polynomial dynamical system. Since Kohonen’s map uses elements
distributed on grids, the map is restricted in low dimensional spaces as the com-
putational cost increases exponentially with the dimension of the map space.
Sugita et al.[14] proposed a system that connects symbols and robot motions
by connecting two recurrent neural networks using a parameter called paramet-
ric bias, which self-organizes to represent the connection structure. However the
use of BPTT would restrict the number of neurons to small ones. Shimozaki et
al.[13] proposed a model that self-organizes spatial and temporal information us-
ing nonmonotonic associative memory, where it is needed to tune the connection
weights. Omori et al.[11] proposed PATON, which forms symbols as orthogonal
patterns from nonorthogonal physical patterns. Oztop et al.[12] proposed HHOP,
which suppresses the effects of correlations in the stored data by incorporating
three body interactions between the neurons, and applied it to imitation learning
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by a robotic hand. These methods were not capable of representing the hierarchy
of stored data by parameters.

2 Hierarchical Associative Memory with Self-organizing
Nonmonotonicity

2.1 Model

We use an associative memory model in continuous space and time. N is the
number of neurons, ui is the states of each neuron, yi is the output of each neuron,
f is the activation function and g is the output function. f is the nonmonotonic
function described by the following equation[9], in nonmonotonic networks.

fh(ui) =
1 − exp(−cui)
1 + exp(−cui)

1 + κ exp(c′(|ui| − h))
1 + exp(c′(|ui| − h))

(1)

The activation function f is parameterized by (κ, h) as shown in Fig.3 and
approximates sigmoid as κ → 1 or h → ∞. Here, we fix κ = −1. h is shown to
be the parameter of f , by the suffix. The output function g is a sign function.

The dynamics of the associative memory model is

τ u̇ = −u + Wfh(u) (2)
y = g(u) , (3)

where u ∈ RN is the state vector composed of ui and y ∈ RN is the output
vector composed of yi. W ∈ RN×N is the connection weight matrix and τ is the
time constant. fh and g are defined as vector functions calculating (1) and g for
each element of the vector respectively.

W is determined by the simplest Hopfield type [3] covariance learning. When
p storage patterns ξ1, ξ2, · · · , ξp ∈ {−1, 1}N are given,

W =
1
N

p∑

μ=1

ξμξT
μ − αI , (4)

where α is a real value and I is an identity matrix.
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Fig. 3. Non-monotonic activation function
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2.2 Hierarchically Correlated Storage Patterns and Hierarchically
Bifurcating Attractors[5]

Kadone et al.[5] gave a theoretical description of the bifurcations of attractors in
associative memory dynamics depending on the parameter of nonmonotonicity
when storage patterns have hierarchical correlation, as an explanation of their
simulations in which motion patterns are stored. We briefly summarize their
results in this subsection.

Hierarchically correlated stored patterns are represented by a tree structure.
Refer to Fig.6 in [5] for the image of the tree structure. Let us consider the case
where a pattern at around the center of a certain cluster A in the tree structure
becomes an attractor. For the storage patterns ξμ and the state of neurons u,
a division into three is defined so as to separate the part belonging to the layer
in consideration (Na-dim), the part belonging to the upper layers (Np-dim) and
the part belonging to the lower layer (Nc-dim).

ξμ = [ξT
μ,p ξT

μ,a ξT
μ,c]

T , u = [uT
p uT

a uT
c ]T (5)

ξ⊥
∗ is a pattern vector perpendicular to ξ∗, where half of the elements of the

vector is reversed. pA is the number of storage patterns in the cluster A in
consideration. With these assumptions, the following u∗ is an attractor on h � γ∗

u∗ =

⎡

⎣
γ∗ξA,p − αξ⊥

A,p

(γ∗ − α)ξA,a

γ∗ξ̄A,c − αg(ξ̄A,c)

⎤

⎦ , (6)

where

γ∗ = (Na + NcO(1/
√

pA))pA/N (7)
ξ̄A = (1/pA)Σμ∈Aξμ (8)

ξA,p = g(ξ̄A,p) (9)

ξA,a = g(ξ̄A,a) (10)

The output pattern on u∗ is,

g(u∗) = [ξT
A,p ξT

A,a g(ξ̄A,c)
T]T , (11)

which is at around the center of the cluster A. Also, by setting Nc = 0, pA = 1,
we can consider the case where the outputs from the attractors coincide with
storage patterns.

2.3 Self-organizing Nonmonotonic Activation Function

In the previous subsection, we described the equilibrium points. Here, we first
consider the retrieval process into the equilibrium points. In associative memory
dynamics, the state is first attracted into the direction of large correlation of the
storage patterns [8] with the current state, and the amplitudes of the activations
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become large in the subspace of large correlation. As the amplitudes of the
activations become large, the output of the neurons become to be reversed by
the nonmonotonic activation function. As the half number of neurons in the
subspace of the large correlation are reversed, they become not to effect on the
associative dynamics[5]. Then, the state is attracted into the average direction of
the stored patterns in the subspace of second largest correlation with the current
state, which is the direction of the center of cluster A. Therefore, by defining uγ

as an replacement of γ∗ in the attractor (6) by a parameter γ

uγ =

⎡

⎣
γξA,p − αξ⊥

A,p

(γ − α)ξA,a

γξ̄A,c − αg(ξ̄A,c)

⎤

⎦ , (12)

the state u transits from u(0) to uh, where γ = h. Next, on u = uh, since
Wfh(uh) = u∗ the dynamics (2) degenerates into

τ u̇ = −uh + u∗ , (13)

which means that there exists a flow towards u∗ on uh. Therefore, the state
transits from u(0) to uγ and then to u∗, where γ = γ∗ (Fig.4). Note that it does
not necessarily mean that u∗ is an attractor when h �= γ∗.

From the above discussion, we can expect a pattern at the center of the
cluster A in consideration to be an attractor, by estimating γ from the state
u and making h to trace γ, which would bring h from h(0) to γ and then to
γ∗. In uγ of (12), the amplitudes of the upper two rows are about γ and the
amplitudes of the lower row scatters with small order since they are the average
of the subspace of the small correlations by definition. Hence we determine the
estimation γ̂ of γ by the following

γ̂ = σ2

∑N
i=1 k(ui, σ1h)|ui|∑N

i=1 k(ui, σ1h)
, (14)

where k(ui, σ1h) is a function that gives 1 when the absolute value of ui is
larger than σ1h, and 0 otherwise. σ2 is a parameter that compensates that the
second row of (12) is smaller by α than γ. The dynamics of the nonmonotonicity
parameter is given by the following

τḣ = −h + γ̂ , (15)

which evolves with the associative memory dynamics (2).

u

u* γu

Fig. 4. Flow of the state u
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Fig. 5. Cluster structure in feature vector mi space

3 Hierarchical Memory Integration for Motion Patterns
with Self-organizing Nonmonotonicity

3.1 Feature Vectors of Motion Patterns[4]

Let θi[k] ∈ R20 be the angular vector of humanoid robot motion i at time k.
Motions we use are, 28 ”Stepping”s, 15 ”Stretching”s, 7 ”Dance”s, 19 ”Kick”s,
14 ”Punch”s, 13 ”Sumo-stomp”s, 13 ”Squat”s, 13 ”Throw”s, 15 ”Bending”s,
137 motions in total that are obtained from motion capture. Sampling time is
0.033[ms]. Suffix i of θi[k] is an index for these, for example ”Stepping0”.

Mi(l) ∈ R20×20 is an auto-correlation matrix of the time sequence of θi[k],

Mi(l) =
1
T

T∑

k=1

θi[k]θT
i [k − l] (16)

Feature vector of motion i is obtained by arranging the elements of matrix
Mi(l) into a column vector mi(l) ∈ R400. Fig.5 shows the plots of mi(l = 2) by
principal component analysis with some samples of motion sequences. Cluster
structures can be seen clearly, except for ”Punch” and ”Throw”. This is because
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Fig. 6. Time evolution of h by (15) for representatives of each kind of motions

Fig. 7. Representation of hierarchy by bifurcations of attractors and basins with self-
organizing nonmonotonicity, compared to Fig.2.

of executing PCA for all motions at one time. Executing PCA alone for these
overlapping clusters results in clear cluster structures (Fig.5: Bottom Left).

In order to store these feature vectors into the associative networks, they are
quantized into bit patterns whose elements are {−1, 1}. By quantizing mi ∈ R400

with 10 bits for each real value, quantized pattern ξi ∈ {−1, 1}4000 is obtained.
These quantized patterns have hierarchical correlations.
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Fig. 8. Correspondences between initial states (’o’) and attractors (’x’) for various
initial values of h, shown in the same space as Fig.5 top
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3.2 Symbol Formation of Motion Patterns by Self-organizing
Nonmonotonic Activation Function

The storage patterns are the quantized feature vectors of motion patterns ob-
tained by the way described in the previous subsection. They are stored into
the network by (4), and the dynamics (2)(15) are simulated to investigate the
attractors. The number of neurons is N = 4000, the parameter of the function
k of (14) is σ1 = 0.6, and σ2 = 1.08. σ1 and σ2 are chosen by some trials. Some
of the storage patterns are given as the initial states of u, and the initial values
of h are given from 0.2 to 11.6 with the interval of 0.6. Fig.6 shows the time
evolutions of h for representatives of each kind of motion. They are entrained
into some discrete attractors. The time evolution of h is almost the same for
the same kinds of motions. Fig.8 shows, in the same PCA space as Fig.5, the
correspondences between the initial states u(0) and the attractors. Symbolic
attractors are formed at h(0) = 0.8 for “bending” and “squat”, at h(0) = 1.4
for “kick”, “stretching”, “punch”, “throw” and “sumo-stomp”. At larger h(0)s,
symbolic attractors are formed that hierarchically integrates the larger clusters.

By comparing Fig.6 and Fig8, we can see correspondences between the at-
tractors of h and the cluster integration, an image of which is shown in Fig.7.
For example “kick” in Fig.6 shows three level attractors, for h(0) of (0.2,0.8),
(1.4,4.4) and (5.0,10.4). In Fig.8, they correspond to retrieval of the storage
patterns, the symbolic patterns integrating the same kinds of motions and the
symbolic pattern integrating all the patterns. Other pattens except “stepping”
have similar properties. “stepping” have two attractors in Fig.6, which corre-
spond to retrieval of the storage patterns and the symbolic pattern integrating
all the patterns.

4 Conclusion

We proposed a method to automatically find out the hierarchy of the correlations
in the stored data, and form attractors at the centers of clusters, by providing
the parameter of nonmonotonicity with dynamics, that evolves through time
along with the retrieval in the associative dynamics. This method has its base
on an estimation of the nonmonotonicity utilizing the vector fields that drives
the states towards the centers of clusters when larger correlations in the upper
level cluster than the one in consideration is suppressed by the nonmonotonicity,
during the retrieval. Storing the feature vectors of motion patterns, it forms
attractors hierarchically corresponding to the storage patterns and symbols of
motions, reflecting the hierarchical correlations and clusters of motion patterns,
depending on the initial values and therefore attractors of the nonmonotonicity.
The attractors of the nonmonotonicity parameter are discrete states representing
the discrete levels of hierarchical correlations in the stored motion patterns.

Future scope can be a connection to motion generation and control mecha-
nisms. To generate embodied symbols by our methods, we need a motion control
mechanism that generates clusters of motions in some space. Another way may
include storing the pairs of motion patterns and control patterns like proposed
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by Oztop et al.[12]. By using our neural network, we may be able to generate
motions from symbolic attractors and provide interactions between symbols and
bodily situations.
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