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Abstract. Without a doubt the most sophisticated behavior seen in biological 
agents is demonstrated by organisms whose behavior is guided by a nervous 
system. Thus, the construction of behaving devices based on principles of 
nervous systems may have much to offer. Our group has built series of brain-
based devices (BBDs) over the last fifteen years to provide a heuristic for 
studying brain function by embedding neurobiological principles on a physical 
platform capable of interacting with the real world. These BBDs have been used 
to study perception, operant conditioning, episodic and spatial memory, and 
motor control through the simulation of brain regions such as the visual cortex, 
the dopaminergic reward system, the hippocampus, and the cerebellum. 
Following the brain-based model, we argue that an intelligent machine should 
be constrained by the following design principles: (i) it should incorporate a 
simulated brain with detailed neuroanatomy and neural dynamics that controls 
behavior and shapes memory, (ii) it should organize the unlabeled signals it 
receives from the environment into categories without a priori knowledge or 
instruction, (iii) it should have a physical instantiation, which allows for active 
sensing and autonomous movement in the environment, (iv) it should engage in 
a task that is initially constrained by minimal set of innate behaviors or reflexes, 
(v) it should have a means to adapt the device’s behavior, called value systems, 
when an important environmental event occurs, and (vi) it should allow 
comparisons with experimental data acquired from animal nervous systems. 
Like the brain, these devices operate according to selectional principles through 
which they form categorical memory, associate categories with innate value, 
and adapt to the environment. This approach may provide the groundwork for 
the development of intelligent machines that follow neurobiological rather than 
computational principles in their construction.  
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1   Introduction 

Although much progress has been made in the neurosciences over the last several 
decades, the study of the nervous system is still a wide open area of research with 
many unresolved problems. This is not due to a lack of first-rate research by the 
neuroscience community, but instead it reflects the complexity of the problems. 
Therefore, novel approaches to the problems, such as computational modeling and 
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robotics, may be necessary to achieve a better understanding of brain function. 
Moreover, as models and devices become more sophisticated and more biologically 
realistic, the devices themselves may approach the complexity and adaptive behavior 
that we associate with biological organisms and may find their way in practical 
applications. In this review, we will outline what we believe are the design principles 
necessary to achieve these goals (Krichmar and Edelman, 2005; Krichmar and Reeke, 
2005). We will illustrate how these principles have been put into practice by 
describing two recent brain-based devices (BBDs) from our group. 

2   Brain-Based Modeling Design Principles 

2.1   Incorporate a Simulated Brain with Detailed Neuroanatomy and Neural 
Dynamics 

Models of brain function should take into consideration the dynamics of the neuronal 
elements that make up different brain regions, the structure of these different brain 
regions, and the connectivity within and between these brain regions. The dynamics 
of the elements of the nervous system (e.g. neuronal activity and synaptic 
transmission) are important to brain function and have been modeled at the single 
neuron level (Borg-Graham, 1987; Bower and Beeman, 1994; Hines and Carnevale, 
1997), network level (Izhikevich et al., 2004; Pinsky and Rinzel, 1994), and synapse 
level in models of plasticity (Bienenstock et al., 1982; Song et al., 2000; Worgotter 
and Porr, 2005). However, structure at the gross anatomical level is critical for 
function, and it has often been ignored in models of the nervous system. Brain 
function is more than the activity of disparate regions; it is the interaction between 
these areas that is crucial as we have shown in a number of devices, Darwins IV 
through XI (Edelman et al., 1992; Fleischer et al., Krichmar and Edelman, 2005; 
Krichmar et al., 2005b; Seth et al., 2004). Brains are defined by a distinct 
neuroanatomy in which there are areas of special function, which are defined by their 
connectivity to sensory input, motor output, and to each other. 

2.2   Organize the Signals from the Environment into Categories without a Priori 
Knowledge or Instruction 

One essential property of BBDs, is that, like living organisms, they must organize the 
unlabeled signals they receive from the environment into categories. This 
organization of signals, which in general depends on a combination of sensory 
modalities (e.g. vision, sound, taste, or touch), is called perceptual categorization.  
Perceptual categorization in models (Edelman and Reeke, 1982) as well as living 
organisms makes object recognition possible based on experience, but without a 
priori knowledge or instruction. A BBD selects and generalizes the signals it receives 
with its sensors, puts these signals into categories without instruction, and learns the 
appropriate actions when confronted with objects under conditions that produce 
responses in value systems. 
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2.3   Active Sensing and Autonomous Movement in the Environment 

Brains do not function in isolation; they are tightly coupled with the organism’s 
morphology and environment. In order to function properly, an agent, artificial or 
biological, needs to be situated in the real world (Chiel and Beer, 1997; Clark, 1997). 
Therefore, models of brain function should be embodied in a physical device and 
explore a real as opposed to a simulated environment. For our purposes, the real 
environment is required for two reasons. First, simulating an environment can 
introduce unwanted and unintentional biases to the model. For example, a computer 
generated object presented to a vision model has its shape and segmentation defined 
by the modeler and directly presented to the model, whereas a device that views an 
object hanging on a wall has to discern the shape and figure from ground 
segmentation based on its on active vision. Second, real environments are rich, 
multimodal, and noisy; an artificial design of such an environment would be 
computationally intensive and difficult to simulate. However, all these interesting 
features of the environment come for “free” when we place the BBD in the real 
world. The modeler is freed from simulating a world and need only concentrate on the 
development of a device that can actively explore the real world. 

2.4   Engage in a Behavioral Task 

It follows from the above principle that a situated agent needs to engage in some 
behavioral task. Similar to a biological organism, an agent or BBD needs a minimal 
set of innate behaviors or reflexes in order to explore and initially survive in its 
environmental niche. From this minimal set, the BBD can learn, adapt and optimize 
its behavior. How these devices adapt is the subject of the next principle, which 
describes value systems (see section 2.5). This approach is very different from the 
classic artificial intelligence or robotic control algorithms, where either rules or 
feedback controllers with pre-defined error signals need to be specified a priori. In 
the BBD approach, the agent selects what it needs to optimize its behavior and thus 
adapts to its environment. 

A second and important point with regard to behavioral tasks is that they give the 
researcher a metric by which to score the BBD’s performance. Moreover, these tasks 
should be made similar to experimental biology paradigms so that the behavior of the 
BBD can be compared with that of real organisms (see section 2.6). 

2.5   Adapt Behavior When an Important Environmental Event Occurs 

Biological organisms adapt their behavior through value systems, which provide non-
specific, modulatory signals to the rest of the brain that bias the outcome of local 
changes in synaptic efficacy in the direction needed to satisfy global needs. Stated in 
the simplest possible terms, behavior that evokes positive responses in value systems 
biases synaptic change to make production of the same behavior more likely when the 
situation in the environment (and thus the local synaptic inputs) is similar; behavior 
that evokes negative value biases synaptic change in the opposite direction. Examples 
of value systems in the brain include the dopaminergic, cholinergic, and 
noradrenergic systems (Aston-Jones and Bloom, 1981; Hasselmo et al., 2002; Schultz 
et al., 1997) which respond to environmental cues signalling reward prediction, 
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uncertainty, and novelty. Theoretical models based of these systems and their effect 
on brain function have been developed (Doya, 2002; Friston et al., 1994; Montague et 
al., 1996; Yu and Dayan, 2005) and embedded in real world behaving devices (Arleo 
et al., 2004; Krichmar and Edelman, 2002; Sporns and Alexander, 2002).  

2.6   Comparisons with Experimental Data Acquired from Animal Models 

The behavior of BBDs and the activity of their simulated nervous systems must be 
recorded to allow comparisons with experimental data acquired from animals. The 
comparison should be made at the behavioral level, the systems level, and the 
neuronal element level. These comparisons serve two purposes: First, BBDs are 
powerful tools to test theories of brain function. The construction of a complete 
behaving model forces the designer to specify theoretical and implementation details 
that are easy to overlook in a purely verbal description and it forces those details to be 
consistent among them. The level of analysis permitted by having a recording of the 
activity of every neuron and synapse in the simulated nervous system during its 
behavior is just not possible with animal experiments. The results of such situated 
models have been compared with rodent hippocampal activity during navigation, 
basal ganglia activity during action selection, and attentional systems in primates 
(Burgess et al., 1997; Guazzelli et al., 2001; Itti, 2004; Prescott et al., 2006). Second, 
by using the animal nervous system as a metric, designers can continually make the 
simulated nervous system closer to that of the chosen model animal. This should 
eventually allow the creation of practical devices approaching the sophistication of 
living organisms. 

3   Illustrative Examples of Brain-Based Devices 

In this section, we will use our group’s two most recent BBDs as illustrative examples 
of the above principles. The first example, embodied in Darwin X and XI (Fleischer 
et al., 2007, Krichmar et al., 2005a; Krichmar et al., 2005b), is a BBD that develops 
spatial and episodic memory by incorporating a detailed model of the hippocampus 
and its surrounding regions. The second example is a BBD capable of predictive 
motor control based on a model of cerebellar learning (McKinstry et al., 2006). 

3.1   An Embodied Model of Spatial and Episodic Memory 

Darwin X and XI were used to investigate the functional anatomy specific to the 
hippocampal region during a memory task. Darwin X and XI incorporate aspects of 
the anatomy and physiology of the hippocampus and its surrounding regions, which 
are known to be necessary for the acquisition and recall of spatial and episodic 
memories. The simulated nervous system contained 50 neural areas, 90,000 neuronal 
units, and 1.4 million synaptic connections. It included a visual system, a head 
direction system, a hippocampal formation, a basal forebrain, a value or reward 
system, and an action selection system. Darwin X used camera input to recognize the 
category and position of distal objects and odometry to construct head direction cells.  
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Darwin X successfully demonstrated the acquisition and recall of spatial and 
episodic memories in a maze task similar to the Morris water maze (Morris, 1984) by 
associating places with actions. The association was facilitated by a dopaminergic 
value system based on the known connectivity between CA1 and nucleus accumbens 
and frontal areas (Thierry et al., 2000). The responses of simulated neuronal units in 
the hippocampal areas during its exploratory behavior were comparable to neuronal 
responses in the rodent hippocampus; i.e., neuronal units responded to a particular 
location within Darwin X’s environment (O'Keefe and Dostrovsky, 1971). 

Darwin XI was tested on a plus maze in which it approached a goal arm from 
different start arms (see Fig. 1A). In the task, a journey corresponded to the route 
from a particular starting point to a particular goal. Darwin XI was constructed on 
Darwin X’s platform, but added artificial whiskers for texture discrimination, an 
internal compass for determining head direction, and a laser range finder for 
estimating position.  

During maze navigation, journey-dependent place fields, whose activity differed in 
different journeys through the same maze arm, were found in the recordings of 
simulated CA1 neuronal units (See Fig. 1B). Neuronal units in Darwin XI's CA1 area 
developed place fields through experience-dependent plasticity while traversing the  
 

 

 

Fig. 1. A. Darwin XI at the choice point of its plus-maze environment. Darwin XI began a trial 
alternatively at the east arm or west arm and used its whiskers to follow the maze arm until it 
reached the intersection. In this trial, Darwin XI was given a reward stimulus if it chose the 
North goal arm. Motor area activity in Darwin XI’s neural simulation was used to decide which 
goal arm to traverse. Darwin XI sensed patterns of pegs with its whiskers, sensed color cue 
cards with its camera, developed head direction cells from an internal compass, and got range 
information from a laser. B. Place fields emerged in Darwin XI’s simulated hippocampus as a 
result of its experience in the environment. Over half of these place fields were journey-
dependent; Retrospective - active in the goal arm when it arrived there from a particular start 
arm, or Prospective - active in the start arm prior to choosing a particular goal arm. Adapted 
from Fleischer et al., 2007. 



162 J.L. Krichmar and G.M. Edelman 

plus maze. Of 2304 CA1 neuronal units (576 CA1 neuronal units per subject, four 
Darwin XI subjects), 384 had journey-dependent fields, and 303 had journey-
independent fields. This roughly equal distribution of journey-dependent and journey-
independent fields in hippocampal place units is similar to findings in rodent 
hippocampus (Ferbinteanu and Shapiro, 2003). The journey-dependent responses 
were either retrospective, where activity was present in the goal arm, or prospective, 
in which activity was present in the start arm. 

Darwin X and XI took into consideration the macro- and micro-anatomy between 
the hippocampus and cortex, as well as the within the hippocampus. In order to 
identify different functional hippocampal pathways and their influence on behavior, 
we developed two novel methods for analyzing large scale neuronal networks: 1) 
Backtrace - tracing functional pathways by choosing a unit at a specific time and 
recursively examining all neuronal units that led to the observed activity in this 
reference unit (Krichmar et al., 2005a), and 2) Granger Causality - a time series 
analysis that distinguishes causal interactions within and between neural regions 
(Seth, 2005). These analyses allowed us to examine the information flow through the 
network and highlighted the importance of the perforant pathway from the entorhinal 
cortex to the hippocampal subfields in producing associations between the position of 
the agent in space and the appropriate action it needs to reach a goal. This functional 
pathway has recently been identified in the rodent (Brun et al., 2002). The backtrace 
analysis also revealed that the tri-synaptic circuit in the hippocampus was more 
influential in unfamiliar environments and in journey-dependent place responses. This 
suggests more extensive hippocampal involvement in difficult or contextual 
situations. 

3.2   A Model of Predictive Motor Control Based on Cerebellar Learning and 
Visual Motion 

Recently, our group constructed a BBD which included a detailed model of the 
cerebellum and cortical areas that respond to visual motion (McKinstry et al., 2006). 
One theory of cerebellar function proposes that the cerebellum learns to replace 
reflexes with a predictive controller (Wolpert et al., 1998). Synaptic eligibility traces 
in the cerebellum have recently been proposed as a specific mechanism for such 
motor learning (Medina et al., 2005). We tested whether a learning mechanism, called 
the delayed eligibility trace learning rule, could account for the predictive nature of 
the cerebellum in a real-world, robotic visuomotor task.  

The BBD’s visuomotor task was to navigate a path designated by orange traffic 
cones (see Fig. 2A). The platform for this task was a Segway Robotic Mobility 
Platform modified to have a camera, a laser range finder, and infrared proximity 
detectors as inputs. The BBD’s nervous system contained components simulating the 
cerebellar cortex, the deep cerebellar nuclei, the inferior olive, and a cortical area MT. 
The simulated cortical area MT, which responds to visual motion, was constructed 
based on the suggestion that the visual system makes use of visual blur for 
determining motion direction (Geisler, 1999; Krekelberg et al., 2003). The simulated 
nervous system contained 28 neural areas, 27,688 neuronal units, and 1.6 million 
synaptic connections. Using an embedded Beowulf computer cluster of six compact 
personal computers, it took roughly 40 ms to update all the neuronal units and plastic 
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Fig. 2. A. The cerebellar BBD was constructed on a Segway Robotic Mobility Platform (RMP). 
The device navigated a pathway dictated by traffic cones. The middle course is shown in the 
figure. The device was also tested on a sharp course, in which the device was required to turn at 
right angles, and a gradual course, in which the device was required to turn slightly. Collisions 
were detected by a bank of IR sensors on the lower front region of the device. Visual optic flow 
was constructed from camera input. B. The mean motor error of five subjects during training on 
the gradual, middle, and sharp courses is shown in the plot. The magnitude of the motor error 
reflected the average per lap IR responses to the cones, where IR values ranged from 0 (no 
object in range) to 1 (an object within 1 inch or less of the IR detector). Adapted from 
McKinstry et al., 2006. 

connections in the model for each simulation cycle. Initially, path traversal relied on a 
reflexive movement away from obstacles that was triggered by infrared proximity 
sensors when the BBD was within 12 inches of a cone. This resulted in clumsy, 
crooked movement down the path. The infrared sensor input was also the motor error 
signal to the cerebellum via simulated climbing fiber input. Over time, the cerebellar 
circuit predicted the correct motor response based on visual motion cues preventing 
the activation of the reflex and resulting in smooth movement down the center of the 
path (see Fig. 2B). The system learned to slow down prior to a curve and to turn in the 
correct direction based on the flow of visual information. The system adapted to and 
generalized over different courses having both gentle and sharp angle bends. 

The experiments, which depended both on the dynamics of delayed trace eligibility 
learning and on the architecture of the cerebellum, demonstrated how the cerebellum 
can predict impending errors and adapt its movements. Moreover, by analyzing the 
responses of the cerebellum and the inputs from the simulated area MT during the 
device’s behavior, we were able to predict the types of signals the nervous system 
might select to adapt to such a motor task. The BBD’s nervous system categorized the 
motion cues that were predictive of different collisions and associated those 
categories with the appropriate movements. The neurobiologically inspired model 
described here prompts several hypotheses about the relationship between perception 
and motor control and may be useful in the development of general-purpose motor 
learning systems for machines. 

As with other BBDs in the Darwin series, Darwin X, XI, and the Segway 
cerebellar model, follow the brain-based modeling principles. They are physical 
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devices embedded in the real world, which carry out tasks similar to that conducted 
with animal models. They adapt their behavior based on their value systems, and the 
dynamics of their nervous systems, which are recorded during their behaviour, are 
compared with the responses of real nervous systems. 

4   Conclusions 

Higher brain functions depend on the cooperative activity of an entire nervous system, 
reflecting its morphology, its dynamics, and its interaction with its phenotype and the 
environment. BBDs are designed to incorporate these attributes in a manner that 
allows tests of theories of brain function. Like the brain, BBDs operate according to 
selectional principles through which they form categorical memory, associate 
categories with innate value, and adapt to the environment. Such devices also provide 
the groundwork for the development of intelligent machines that follow 
neurobiological rather than computational principles in their construction. 
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