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Abstract. This paper proposes a new vector distance evaluation func-
tion for vector classifications. The proposed distance evaluation func-
tion is the weighted sum of the differences between vector elements. The
weight values are determined according to whether the input vector el-
ement is in the neighborhood of the prototype vector element or not. If
the element is not within the neighborhood, then the weight is selected so
that the distance measure is less significant The proposed distance mea-
sure is applied to a hardware vector classifier system and its feasibility
is verified by simulations and circuit size evaluation. These simulations
and evaluations reveal that the performance of the classifier with the pro-
posed method is better than that of the Manhattan distance classifier
and slightly inferior to Gaussian classifier. While providing respectable
performance on the classification, the evaluation function can be easily
implemented in hardware.

1 Introduction

Pattern classification covers very wide applications, such as face recognition,
character recognition, voice recognitions, etc. In the above mentioned applica-
tions, given patterns or data are treated as vectors. The vectors could be a
sequence of sampled voice data, feature vectors generated from the given im-
ages. Then a vector classification is carried out to identify the class to which
the given pattern belongs. The vector classification is a mapping process of a
D-dimensional space vectors into a finite set of clusters, each of which repre-
sents a particular class. Each cluster is associated with a reference prototype
vi that is center of the cluster, and a set of the prototypes is called as a code-
book ν = {v(1),v(2), · · · ,v(C)}. A vector classification algorithm encodes an
input vector with the closest prototype that minimizes the distance to the input
vector x.

s(∗) = arg min
vj∈ν d(x,vj) (1)

where, d(x,vj) is the distance between x and vj. x and v are D-dimensional vec-
tors, x = {x1, x2, · · · , xD}, vs = {m

(c)
1 , m

(c)
2 , · · · , m(c)

D }. Not only in the pattern
classification, but also the distance measure plays an important roles in various
field such as, data mining including self organizing maps, vector quantization,
etc.
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Many applications use Euclidian metrics to measure the distance between two
vectors.

dE(x,vc) =
√

(x1 − m
(c)
1 )2 + (x2 − m

(c)
2 )2 + · · · (xD − m

(c)
D )2 (2)

In hardware point of view, Manhattan distance is more desirable as it does not
require square root function.

dM (x,vc) =
D∑

i=1

| xi − m
(c)
i | (3)

Gaussian classifiers with the following function is widely used in the pattern
recognitions and radial basis function (RBF) networks.

dG(x,vc) = exp(−
∑D

i=1(xi − m
(c)
i )2

2σ2 ) (4)

The vector distance is evaluated by using the nonlinear function. dG(x,v) reaches
its largest value if the input vector is at the center of the cluster.

As equations (2) ∼ (4) show, the conventional distance measure treat all
vector elements with an identical weight. However, the relative importance of
each vector element varies and improvement on the classification performance
can be achieved by taking into account the relative importance of the vector
elements. In [1], a new weighted distance measure has been proposed, in which
the variances and mean values of vector elements of sample vectors are utilized
to determine the weight factors.

On the other hand, in spite of its formal simplicity, the computational cost in-
volved by (1) to associate a given input pattern with the best-matching prototype,
can be remarkable at run time, especially in high-dimensional domains or when the
code book is very large. The time required by an exhaustive-search process may
be impractical for most real-world problems. Many research tackled this drawback
by direct hardware implementations of the quantization math [2]-[5].

This paper proposes a new vector distance evaluation function that can be
implemented in hardware with low hardware cost. The function is an weighted
sum of the element distance, which is a modified version of the Manhattan dis-
tance measure. The weight value is selected according whether the input vector
element is within the neighbor of the prototype vector element or not. If the in-
put vector is not within the neighbor, the distance value is made less significant.
As the proposed method requires no multipliers, or complicated function, it is
suitable for the hardware implementation.

The proposed distance measure is applied to a hardware vector classifier to
evaluate the performance improvement on the pattern classification, and the
additional hardware cost. This paper is organized as follows: Section 2 describes
the new distance measure function. In section 3, the hardware vector classifier
with the proposed method is discussed. The feasibility of the method is verified
by simulations. Results of the simulations are presented in section 4. Then the
classifiers are designed by using VHDL, and their hardware costs are evaluated
in section 5 followed by conclusions in Section 6.
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Fig. 1. Evaluation functions, (A) range check, (B) proposed method

2 New Vector Distance Measure Function

The Manhattan distance measure in (3) is modified by introducing the weighting
on each | xi − m

(c)
i | calculation. The proposed vector measure function is,

dN (x,m) =
D∑

i=1

wi | xi − m
(c)
i | (5)

where wi is the weight, and its magnitude is selected from two values adaptively
according to whether the input vector element is within the neighbor of the
prototype vector element m

(c)
i or not.

wi =
{

1 if xi is within the neighbor of m
(c)
i

2L otherwise
(6)

where, L is an integer that determines the magnitude of the weight, which is a
power of two value, so that no actual multiplier is necessary.

The prototype vectors and their neighborhoods are defined from the training
vectors. First, the data processed by the proposed system, including the training
vectors are normalized as follows,

xi = x̂i/Xi (7)
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where, x̂i is a raw sample data and Xi is the largest value among all i-th vector
element, Xi = maxc x

(c)
i . From the training data set, Xi is obtained in the

training phase.
Here, the training vector is expressed as,

T (c) = {ξ
(c)
1 , ξ

(c)
2 , · · · , ξ(c)

D } ∈ �D (8)

where, ξ
(c)
i is i-th training vector element belonging to class c. Class c prototype

vector is defined as

v(c) = {m
(c)
1 , m

(c)
2 , · · · , m(c)

D } ∈ �D (9)

m
(c)
i is the mean value of the samples,

m
(c)
i =

∑M(c)

i=1 ξ
(c)
i

M (c) (10)

where, M (c) is the number of the training vectors.
Then the neighborhood of the prototype vector elements are defined by U

(c)
i ,

L
(c)
i , which are the upper and lower limit of the neighborhood of the cluster c

vector element i, respectively.

U
(c)
i = μ

(c)
i + α · σ(c)

i , (11)

L
(c)
i = μ

(c)
i − α · σ

(c)
i (12)

σ
(c)
i is the standard deviation of the vector elements and α is a coefficient to

adjust the range. To test if the input vector element xi is within the neighborhood
or not, following range check function is employed.

r
(c)
i ( xi ) =

{
1 if U

(c)
i > xi > L

(c)
i

0 otherwise
(13)

Fig. 1(A) shows the function of the range check. As the figure shows, the function
is a crisp function, which can be considered as the binary quantized Gaussian
function. In [8], the classifier using the range check method has been proposed.
Using eq.(13), the equation (6) is rewritten as,

wi =
{

1 if r
(c)
i ( xi ) = 1

2L otherwise
(14)

The evaluation function realized by the eq. (14) is depicted in Fig. 1(B).
If the input vector element is not in the neighborhood, the larger weight value

2L is assigned to that element difference, resulting that the distance is made
larger than the actual distance. As eq. (1) shows, in the classifying process, the
smaller the distance, the more the possibility of the input vector belonging to
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Fig. 2. Vector classification system

that cluster increases. Thus the assignment of the large weight decreases the
possibility of the vector having the smallest distance to the prototype vector.

3 Vector Classifiers Based on the Proposed Distance
Measure

The proposed vector distance measure described in Section 2 is applied to the
hardware vector classifier. The block diagram of the classifier is shown in Fig. 2.
The system consists of class estimators and a minimum value finder circuit.

3.1 Class Estimator

The class estimator output E(c) is given by calculating the weighted sum of the
element distance as shown in Fig. 3.

E(c) = dN (x,m(c)) (15)

The class estimator consists of D subtractors, absolute circuits, range check
circuits, 2:1 multiplexers, and an adder. While the absolute values of the dif-
ference between the input vector and prototype vector elements, | xi - mi | are
calculated, the range check circuit checks if the input xi is in the neighborhood
by comparing it with the upper and the lower limit values. If the input is in the
neighborhood, then the absolute value | xi - mi | is selected and fed to the adder,
otherwise 2L× | xi - mi | is sent to the adder. In this way eq. (14) is realized.
It should be noted that the multiplication with 2L requires no hardware as it can
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Fig. 3. Class estimator with the proposed vector distance measure
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Fig. 4. Range check circuit

be implemented by the bit-shift wiring. The output E(c) is given as the sum of
the multiplexer outputs.

3.2 Range Check Circuit

The range check circuit shown in Fig. 4 performs the range test given by equation
(13). Comparator becomes active and yields ‘1’ if the input element is between
the upper and lower limit.
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3.3 Class Identification

As described by the previous section, E(c) becomes smaller as the input vector
is closer to the prototype vector of class c. Winner-takes-all competition by the
minimum finder circuit is employed for the final classification. The minimum
finder circuit searches for the minimum output from the class estimators, which
is the winner and the class assigned to that estimator is given as the recognition
results.

Each class uses a single estimator in the classifier shown in Fig. 2 as it is
assumed that each class can be associated with a single clusters. However, in
the case where classes are made of multiple clusters, then each class must have
multiple estimators.

4 Simulations

The classifier system is described by C and the classification performance is
examined.

4.1 Data Set

This section presents performance of the proposed algorithm on three data sets,
i.e., IRIS [7], THYROID [6] and WINE [6] data set. They are different in terms
of the data structure and the dimensionality of the feature vectors.

The IRIS data set [7] is frequently used as an example of the problem of
pattern recognition. The data set consists of four features belonging to three
physical classes. The features are; sepal length, sepal width, petal length and
petal width. The four dimensional vector is classified into three classes, i.e., Iris
Setosa, Iris Versicolour, and Iris Virginica. This data set contains 50 samples per
class, totaling 150 samples.

The THYROID data set consists of five features belonging to three physical
classes. This data set was obtained by recording the results of five laboratory
tests conducted to determine if a patient has hypothyroidism, hyperthyroidism,
or normal thyroid function.

The WINE data set consists of 13 features belonging to three physical classes.
This data set was obtained by chemical analysis of wine produced by three
different cultivators from the same region of Italy. This data set contains 178
feature vectors with 59 in class 1, 71 in class 2 and 48 in class 3.

All vectors in the data sets are normalized beforehand according to eq. (7).

4.2 Simulation Procedure

Following procedure is repeated 100 times and the average classification rate
is used for the evaluation so that classification performance can be accurately
checked.
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Table 1. Recognition rate

Neuron type IRIS THYROID WINE Average

Gaussian 94.0 % 96.4 % 94.9 % 95.1 %
Manhattan 91.5 % 94.3 % 95.2 % 93.7 %

[1] 94.9 % 94.3 % 93.4 % 94.2 %
[8] 93.5 % 94.6 % 92.8 % 93.6 %

(M = 1) α = 2.4 α = 2.4 α = 2.0

Proposed 93.6 % 95.4 % 95.7 % 94.9 %
(L = 2) α = 2.5 α = 3.0 α = 2.0

Table 2. Circuit size and speed of the hardware classifier for IRIS data set

Classifier type Gate count Maximum delay

Manhattan 6,088 5.857 ns
[1] 14,233 5.857 ns

Proposed 8,582 5.857 ns

1. For each class, the quarter of the sample data set is randomly selected, and
used as “learning data”. The remaining data is used as “evaluation data”.

2. Using the learning data, the prototype vectors v(c), the upper and lower lim-
its U

(c)
i , L

(c)
i are defined. Then, classification rate is obtained by classification

test using the evaluation data.

After the trials, the average recognition rate is used for the evaluation.

4.3 Simulation Results

The simulation results of the classifier with the proposed method is shown in
Table 1. The recognition rates of the Gaussian classifier, classifier using the
vector distance measure proposed in [1] and classifier with the range check circuit
proposed in [8], are also obtained by the simulations and shown in the same table.

The table shows that the recognition rate of the proposed method is slightly
worse than the Gaussian classifier but better than other types of classifiers.

5 Circuit Size Evaluation

The vector classifiers with the proposed method, Manhattan distance, and the
measure proposed in [1], are described by VHDL, and the circuit size and speed
evaluations are carried out. The correctness of the VHDL design is verified by
confirming that VHDL simulation results and the C simulation results are iden-
tical. The circuit size and speed of the system are estimated by XILINX tool,



A New Hardware Friendly Vector Distance Evaluation Function 145

Subtract/Absolute circuit
( | xD − m

(c)
D | )

�xD � ×
	


��

w
(c)
D

�

�...

Subtract/Absolute circuit
( | x2 − m

(c)
2 | )

�x2 � ×
	


��

w
(c)
2

�
�

��

��

� �E(c)

Subtract/Absolute circuit
( | x1 − m

(c)
1 | )

�x1 � ×
	


��

w
(c)
1

�

�

Fig. 5. Configuration of the class estimator using the vector distance measure in [1]

assuming that the design is implemented on XILINX Virtex-E device, XCV400-
FG676-8. Circuit size and maximum delay of the proposed system targeting the
IRIS data are summarized in Table. 2. As the classifier is realized as a combina-
torial digital circuits, the maximum delay is used for the speed evaluation.

The circuit size of the proposed classifier is slightly larger than that of the
Manhattan classifier and its size is less than half of the classifier using the dis-
tance measure proposed in [1]. As shown in Fig. 5, the class estimator using
the distance measure in [1] uses numerical multipliers. The use of multipliers
increases the total hardware cost of the system. Due to the complex function
required by the Gaussian function, it is easily expected that the hardware cost
of the Gaussian classifier is much higher than the classifiers listed in the table.

With regard to the speed, all systems can process all three data within 6 ns
with the above mentioned FPGA.

6 Conclusions

This paper has proposed a new vector distance measure function, that is suitable
for hardware implementation. The proposed method employs weighting on the
vector element difference. The weight values are determined so that the element
evaluation is made less significant if the element is outside the neighborhood of
the prototype vector element. The proposed distance measure function is applied
to the hardware vector classifier system.

The algorithm and its hardware configuration have been described followed by
computer simulations to evaluate its performance. It has been revealed that the
performance of the classifier with the proposed method is better than Manhattan
distance and close to that of the Gaussian classifier. Even though the classifi-
cation performance of the proposed method is slightly inferior to the Gaussian
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classifier, the smaller hardware cost of the proposed method is the great advan-
tage over the Gaussian classifier.
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