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Abstract. A digital spiking neuron (DSN) is a wired system of shift registers. By
adjusting the parameters (e.g., number of registers and wiring pattern), the DSN
can generate spike-trains having various inter-spike-intervals. In this paper we
present some basic relations between parameters of the DSN and characteristics
of the spike-train. We also discuss that the presented results will be fundamental
to consider ISI-based coding abilities of the DSN.

1 Introduction

Various simplified spiking neuron models have been proposed and their dynamics have
been investigated intensively (see [1]-[8] and references therein). Using such spiking
neuron models, pulse-coupled neural networks (PCNNs) have been constructed and
their possible functions and application potentials have been investigated, e.g., image
processing based on synchronization of spike-trains [6]-[8]. Inspired by such spiking
neuron models, we have proposed a digital spiking neuron (DSN) [9][10] as shown in
Fig.1. Depending on parameters (i.e., number of registers and wiring pattern among
the registers), the DSN can generate spike-trains with various patterns of inter-spike-
intervals. One of the biggest motivations for considering the DSN is that the parameters
of the DSN can be dynamically adjusted in real electrical circuits such as field pro-
grammable gate array (FPGA). This means that DSN is suitable for on-chip learning.
It should be note that it is troublesome to realize dynamical parameter adjustment (e.g.,
conductance and nonlinearity) of spiking neurons that are implemented in analog inte-
grated circuits. Previous results on the DSN include the followings.

(a) A learning algorithm for the DSN was proposed in order to approximate spike-trains
generated by analog neuron models [11]. The results suggest that the DSN may be able
to approximate dynamics of neuron models as well as biological neurons. Hence the re-
sults may contribute to develop communication interface with biological neurons, e.g.,
a digital circuitry that can mimic spike-based communication protocols of neurons.

(b) Another learning algorithm for the DSN was proposed in order to generate spike-
trains whose characteristics are suitable for ultra-wide band (UWB) impulse-radio tech-
nologies [10]. The results may contribute to develop a bio-inspired spike-based engi-
neering system, e.g., UWB sensor network with bio-inspired learning abilities.

(c) Some spike-based coding abilities of the DSN have been clarified [9][12]. Also, a
PCNN of DSNs has been constructed and its application potentials (e.g., spike-based
multiplex communication) have been studied.
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Fig. 1. (a) Analog spiking neuron model. Integrate-and-fire behavior of analog potential v for
continuous-time τ [1]-[4]. (b) Digital spiking neuron. Shift-and-reset behavior of digital state xj

for discrete-time t [9][10].

In this paper we present some basic relations between parameters of the DSN and
characteristics of the spike-train. Such results have not been shown in the previous
works. We also discuss that the presented results will be fundamentals to develop ap-
plications of the DSN such as the spike-based coding.

2 Digital Spiking Neuron

In this section we introduce our digital spiking neuron (DSN) proposed in Refs. [9][10].
The DSN operates on a discrete time t = 0, 1, 2, · · · . Fig.2(a) shows the DSN. First, let
us consider the p-cells that are usual shift registers. Let the number of p-cells be denoted
by M , where M ≥ 1. Let i ∈ {0, 1, · · · , M − 1} be an index for the p-cell. The p-cell
has a digital state pi ∈ {0, 1} ≡ B, where ”≡” denotes ”definition” throughout this
paper. The p-cells are ring-coupled and their dynamics is described by

pi(t + 1) = pi+1 (modM)(t). (1)

For convenience, initial states of the p-cells are fixed as follows: pi(0) = 1 for i =
Int(M−1

2 ), and pi(0) = 1 otherwise, where Int(α) gives the integer part of α. Then
the p-cells oscillate periodically with period M . In order to consider dynamics of the
DSN, we introduce a state vector P (t) ≡ (p0(t), · · · , pM−1(t))t ∈ BM . Second, let
us consider the reconfigurable wirings from p-cells to x-cells. Let the number of x-cells
be denoted by N , where N ≥ M . Let j ∈ {0, 1, · · · , N −1} be an index for the x-cell.
In the dotted box of Fig.2(a), the left terminals are denoted by {p0, · · · , pi, · · · , pM−1}
and the right terminals are denoted by {b0, · · · , bj , · · · , bN−1}. Each left terminal pi

has one wiring and each right terminal bj can accept any number of wirings. In order
to describe pattern of the wirings, let us define an N × M matrix A whose elements
are a(j, i) = 1 if pi is wired to bj , and a(j, i) = 0 otherwise. The matrix A is referred
to as a wiring matrix. In the case of Fig.2(a), the wiring matrix is given by a(i, i) =
1 for all i and a(i, j) = 0 for i �= j. The right N terminals output a signal vector
(b0(t), b1(t), · · · , bN−1(t))t ≡ b(t) ∈ BN which is given by

b(t) = AP (t). (2)
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Fig. 2. (a) Digital spiking neuron. M = 7 and N = 10. (b) Basic dynamics. The initial state is
x7(0) = 1. p is the period and q is the ISI-number. (c) Co-existing spike-train. The initial state is
x3(0) = 1.

The signal b(t) is referred to as a base signal and is to be periodic with period M as
illustrated by gray circles in Fig.2(b). Third, let us consider the x-cells that are special-
ized shift registers. Each x-cell has a digital state xj ∈ B. The x-cell has three digital
inputs (bj , xN−1, xj−1) for j ≥ 1 and has two digital inputs (bj , xN−1) for j = 0.
If xN−1(t) = 0, the x-cell operates xj(t + 1) = xj−1(t) for j ≥ 1 and operates
xj(t + 1) = 0 for j = 0. If xN−1(t) = 1, the x-cell operates xj(t + 1) = bj(t) for
all j. Let us define a state vector of the x-cells: (x0(t), · · · , xN−1(t))t ≡ X(t) ∈ BN .
Then, using a shift operator S((x0, · · · , xN−1)t) = (0, x0, · · · , xN−2)t, the dynamics
of the x-cells is described by

X(t + 1) =
{

S(X(t)) if xN−1(t) = 0 (Shift),
b(t) if xN−1(t) = 1 (Reset).

(3)
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Basic dynamics of the x-cells is illustrated by black boxes in Fig.2(b). If xN−1 = 0,
the DSN is governed by the shift operation: the state xj = 1 is shifted upward. At
t = t1, the (N − 1)-th x-cell has state xN−1 = 1. In this case the DSN is governed by
the reset operation: the state vector X is reset to X(t1+1) = b(t1) = (0, 1, 0, · · · , 0)t.
Repeating such shift-and-reset behavior, the x-cells oscillate as shown in Fig.2(b). The
state xN−1 of the (N − 1)-th x-cell is used as an output Y of the DSN. Then the DSN
outputs a discrete-time spike-train Y (t) as shown in Fig.2(b):

Y (t) ≡ xN−1(t) ∈ B, t = 0, 1, 2, · · · . (4)

As a result the DSN is governed by the set of Equations (1), (2), (3) and (4). Also,
the DSN is characterized by the following parameters:

# of p-cells M, # of x-cells N, elements a(j, i) of wiring matrix A

where ”#” denotes ”the numbers.” The DSN has a controllable initial state vector
X(0) = (x0(0), x1(0), · · · , xN−1(0))t of the x-cells. In this paper we assume that
only one element of X(0) is 1. The black boxes in Fig.2(b) show a trajectory of X un-
der such an assumption. As shown in Fig.2(b), let tn ∈ {0, 1, 2, · · · , }, n = 1, 2, 3, · · ·
be the n-th spike position. Also let Δn = tn+1 − tn be the n-th inter-spike-interval
(ISI). Here let us give some definitions.

Definition 1. A spike-train Y∗ is said to be a periodic spike-train if there exist positive
integers p and q such that tn+q = tn + p for all n ≥ 1. In this case, the possible
minimum integers p and q are said to be period and ISI-number of the periodic spike-
train Y∗. q means the number of ISI-intervals during the period 0 ≤ t ≤ p, and the
period is to be p =

∑q
n=1 Δn. A spike position t∗ of a periodic spike-train Y∗ is said to

be a periodic spike position. A spike position t1 = te is said to be an eventually periodic
spike position if te is not a periodic spike position but tn is a periodic spike position for
some n ≥ 2.

The spike-train Y (t) in Fig.2(b) is a periodic spike-train with period p = 3M and
ISI-number q = 3, where M = 7. The DSN can exhibit the following phenomena.

– The DSN has the finite states P and X operating on the discrete-time t. Then the
DSN oscillates periodically and generates a periodic spike-train Y∗ in a steady state.
The periodic spike-train Y∗ can have various patterns of ISIs (Δ1, Δ2, · · · , Δq).

– The periodic spike-trains Y (t) in Fig.2(b) and (c) are caused by different initial
states x7(0) = 1 and x3(0) = 1, respectively. Such phenomenon is referred to
as co-existence for initial state. The DSN can have multiple co-existing periodic
spike-trains and generates one of them depending on the initial state X(0).

– The DSN may have an eventually periodic spike position depending on parameter
values. The existence of an eventually periodic spike position implies existence of
a transient phenomenon.

3 Analysis of Various Spike-Trains

In order to consider dynamics of the spike position tn, let us define the following base
index function β(t) ≡ j such that bj(t) = 1. Fig.3(a) shows the base index function β(t)
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Fig. 3. Maps corresponding to the DSN in Fig.2(a). (a) Base index function β(t). (b) Spike posi-
tion map f .

corresponding to the DSN in Fig.2(a). The base index function β(t) can be regarded as
a trajectory of the gray circle (i.e., the state ”bj(t) = 1”) in Fig.2(b). The shape of β(t)
is determined by the wiring matrix A as follows:

β(t) = j such that a(j, M + γ − t (modM)) = 1 for 0 ≤ t ≤ M − 1 (5)

where β(t + M) = β(t). Using the base index function β(t), the dynamics of the spike
position tn is described by the following spike position map:

tn+1 = f(tn) ≡ tn + N − β(tn), f : L → L ≡ {0, 1, 2, · · · }. (6)

Fig.3(b) shows the spike position map f corresponding to the DSN in Fig.2(a). The
first spike position t1 of the spike position map f is determined by the initial state of
the x-cells as follows:

t1 = j such that xN−1−j(0) = 1. (7)

We emphasize that the shape of the spike position map f is determined by the wiring
matrix Awhich describes pattern of the reconfigurable wirings of the DSN (see Fig.2(a)).
That is, various shapes of f (i.e., various dynamics of the spike position tn) can be realized
by adjusting the wiring matrix A. In the following part, we give some new results by
focusing on a simple form of A.

Let us focus on the following parameter case hereafter:

M ≥ 1, N = Int(3M−1
2 ), a(j, i) =

{
1 for i = j,
0 otherwise.

(8)

In this case the DSN is characterized by one parameter: the number M of the p-cells.
For short, let us refer to M as a system size hereafter. The DSN in Fig.2(a) satisfies
the condition in Equation (8) with the system size M = 7. We can see in Fig.2(a) that
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Fig. 4. The co-existing periodic spike-trains under the parameter condition in Equation (8) with
the system size M = 14. The number S of co-existing periodic spike-trains is 7.
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Fig. 5. Characteristics of the number S of co-existing periodic spike-trains

the pattern of wirings is simple: each right terminal pi is wired to each left terminal bi

straightly. Under the condition in Equation (8), the spike position map f is given by

f(tn) =
{

2tn + M for 0 ≤ tn ≤ γ,
2tn for γ + 1 ≤ tn ≤ M − 1,

f(tn + M) = f(tn) + M. (9)

Fig.3(b) shows this spike position map f for M = 7. As shown in this figure, let
us define the sets Lk ≡ {kM, kM + 1, kM + 2, · · · , kM + M − 1}, where
k = 0, 1, 2, · · · . Then we can confirm f(Lk) ⊆ Lk+1, where f(Lk) represents the set
{f(t) | t ∈ Lk} of images of f . This means that the spike-train Y (t) has one spike in
each set Lk, i.e.,

tn ∈ Ln−1 for all n = 1, 2, 3, · · · . (10)

From Equation (10), we can restrict the following first spike position into t1 ∈ L0.
Let us refer to L0 as an initial state set. In addition, from Equation (10), we can have
the relation p = Mq. In the case of Fig.2(b), we can confirm q = 3 and p = 3M .
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3.1 Number of Periodic Spike-Trains

Fig.4 shows all the co-existing periodic spike-trains of the DSN for the system size
M = 14. Let us consider the following quantity:

S ≡ # of co-existing periodic spike-trains for the initial state X(0).

In the case of Fig.4, S = 7. Fig.5 shows characteristics of S for the system size M , that
can be given by a function of M as shown below. Let M0 be the maximum odd divisor
of M and let M be decomposed into even and odd components:

M = 2rM0, r ∈ {0, 1, 2, · · · }, M0 ∈ {1, 3, 5, · · · }. (11)

In the case of Fig.4, M0 = 7 and r = 1. Let us divide the initial state set L0 into the
following two disjoint subsets Lp and Le:

Lp ≡ {0, 2r, 2r2, · · · , 2r(M0 − 1)}, Le ≡ L0 − Lp. (12)

In the case of Fig.4, Lp = {0, 2, · · · , 12} and Le = {1, 3, · · · , 13}. We can generalize
this results into the following properties for any given system size M .

– The number S of co-existing periodic spike-trains is M0.
– Lp is a set of all the periodic spike positions in the initial state set L0.
– Le is a set of all the eventually periodic spike positions in L0.

Proof of these properties will be given in a journal paper.

3.2 Period and ISI-Number

Here let us consider periods and ISI-numbers of the co-existing spike-trains. Let us give
some definitions (see Fig.4).

Definition 2. Let the S pieces of co-existing periodic spike-trains be denoted by {Y
(1)
∗ ,

Y
(2)
∗ , · · · , Y

(S)
∗ } in the order of the first spike position t1. Let the period and the

ISI-number of each spike-train Y
(s)
∗ be denoted by p(s) and q(s), respectively, where

s ∈ {1, 2, · · · , S}. Let the least common multiple of the periods {p(s)} be denoted by
P and let it be referred to as a common period. Let the least common multiple of the
ISI-numbers {q(s)} be denoted by Q and let it be referred to as a common ISI-number.

The set {Y
(s)
∗ } of co-existing periodic spike-trains can be characterized by the common

period P and the common ISI-number Q. In the case of Fig.4, the common period is
P = 3M and the common ISI-number is Q = 3. Fig.6 shows characteristics of Q
for the system size M , that can be given by a function of M as shown below. As a
preparation, let us define the following function K(l) for a positive odd integer l:

K(l) ≡ min{z | z ∈ {1, 2, · · · , l}, 2z − 1 (mod l) = 0}. (13)

For example K(7) = 3. Let the system size M be given. Let a periodic spike position

t1 ∈ Lp be the first spike position of a periodic spike-train Y
(s)
∗ . Let a fraction t1

M be

reduced into an irreducible fraction m′

M ′ . Then we can give the following properties.
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Fig. 7. ISI coding. The parameters satisfy the condition in Equation (8) with the system size
M = 14. The spike-trains are identical with that in Fig.4. The periodic spike-trains have one-to-
one relation to all the 3-bit binary numbers except for (1, 1, 1).

– The period p(s) and the ISI-number q(s) of the spike-train Y
(s)
∗ are given by

MK(M ′) and K(M ′), respectively.
– The common period P and the common ISI-number Q of the co-existing periodic

spike-trains {Y
(s)
∗ } are given by MK(M0) and K(M0), respectively.

Proof of these properties will be given in a journal paper. In the case of Fig.4, Y
(1)
∗

has the first spike position t1 = 0. The fraction 0
14 can be reduced into an irreducible

fraction 0
1 and then Y

(1)
∗ has period p(1) = MK(1) = M and ISI-number q(1) =

K(1) = 1. Y
(3)
∗ has the first spike position t1 = 4. The fraction 4

14 can reduced into an

irreducible fraction 2
7 and then Y

(3)
∗ has period p(3) = MK(7) = 3M and ISI-number

q(3) = K(7) = 3. The common period and the common ISI-number can be given by
P = MK(7) = 3M and Q = K(7) = 3, respectively.



Fundamental Analysis of a Digital Spiking Neuron for Its Spike-Based Coding 95

3.3 Inter-Spike-Interval Coding

Fig.7 shows the co-existing periodic spike-trains for the system size M = 14. As shown
in this figure, let us consider an ISI coding:

ω(Δn) = 0 for Δn ≥ M, ω(Δn) = 1 for Δn ≤ M − 1. (14)

Using the ISI coding, the periodic spike-train Y
(3)
∗ in Fig.7 is coded by a 3-bit digital

sequence (ω(Δ1), ω(Δ2), ω(Δ3)) = (0, 1, 0). We refer to this sequence as a ISI code.
In the case of Fig.7, the common ISI-number is Q = 3 and each spike-train Y (s)

is coded by a 3-bit ISI code. We can see that the set {Y
(s)
∗ } of co-existing periodic

spike-trains can have one-to-one relation to the set of 3-bit binary numbers except for
(1, 1, 1). For general system size M , recalling Theorem 2, the common ISI-number is
to be Q = K(M0). In this case the co-existing periodic spike-trains are coded by Q-
bit ISI codes (ω(Δ1), ω(Δ2), · · · , ω(ΔQ)). We can give the following property for a
given system size M .

– Let M be given. A periodic spike-train Y
(s)
∗ having a first spike position t1 ∈ Lp

is coded by a Q-bit ISI code (ω(Δ1), ω(Δ2), · · · , ω(ΔQ)) such that
∑Q

n=1 2Q−nω(Δn) = 2Q−1
M t1. (15)

Proof of this property will be given in a journal paper. Equation (15) suggests that the
set of co-existing periodic spike-trains can have one-to-one relation to a set of some
Q-bit binary numbers, where the binary number representation of 2Q−1

M t1 is identical

with the ISI code (ω(Δ1), ω(Δ2), · · · , ω(ΔQ)). In the case of Y
(3)
∗ in Fig.7, we can

confirm that the binary number representation of 2Q−1
M t1 = 7

144 = 2 is (0, 1, 0) which
is identical with the ISI code.

Discussion: Ref. [9] proposes a pulse-coupled network of DSNs and its application to
a multiplex communication system, where the DSN is used to code binary information
into spike-train. The theorems in this paper will be mathematical basis to investigate
such an application as follows.

(i) The number S of co-existing periodic spike-trains corresponds to the number of
binary numbers (informations) that can be coded into the spike-train.

(ii) The common ISI-number Q corresponds to the code length.

(iii) Equations (7) and (15) show relation between the initial state X(0) and the ISI
code. These equations suggest that the DSN can code a binary number (information)
into the spike-train by adjusting the initial state (which can be regarded as an input)
appropriately.

We note that Ref. [9] analyzes the DSN for a very limited parameter case, and this paper
generalizes the analysis.

4 Conclusions

We have introduced the digital spiking neuron (DSN) and clarified the basic relations
between parameter of the DSN and characteristics of the spike-train, e.g., the number of
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co-existing periodic spike-trains, their initial states, their periods, and their ISI-numbers.
We have also clarified the relation between the initial state of the spike-train and its
corresponding ISI code, and have shown that the set of co-existing periodic spike-trains
can have one-to-one relation to a set of some binary numbers. Then we have discussed
that the presented results will be fundamental to study coding functions of the DSN.
Future problems include: (a) analysis of the DSN for various cases of wiring matrix;
(b) synthesis of a pulse-coupled neural network of DSNs with interesting functions; and
(c) development of on-chip learning algorithms for the DSN and/or its pulse-coupled
neural network.
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