
A Mini Challenge:
Build a Verifiable Filesystem

Rajeev Joshi and Gerard J. Holzmann

Laboratory for Reliable Software�,
Jet Propulsion Laboratory,

California Institute of Technology,
Pasadena, CA 91109, USA

{Rajeev.Joshi,Gerard.Holzmann}@jpl.nasa.gov
http://eis.jpl.nasa.gov/lars

Abstract. We propose tackling a “mini challenge” problem: a nontriv-
ial verification effort that can be completed in 2-3 years, and will help
establish notational standards, common formats, and libraries of bench-
marks that will be essential in order for the verification community to
collaborate on meeting Hoare’s 15-year verification grand challenge. We
believe that a suitable candidate for such a mini challenge is the devel-
opment of a filesystem that is verifiably reliable and secure. The paper
argues why we believe a filesystem is the right candidate for a mini chal-
lenge and describes a project in which we are building a small embedded
filesystem for use with flash memory.

1 A Mini Challenge

The verification grand challenge proposed by Hoare [1] sets the stage for the
program verification community to embark upon a collaborative effort to build
verifiable programs. At a recent workshop in Menlo Park [2], there seemed to
be a consensus that a necessary stepping stone to such an effort would be the
development of repositories for sharing specifications, models, implementations,
and benchmarks so that different tools could be combined and compared.

We believe that the best way of reaching agreement on common formats and
forging the necessary collaborations to build such a repository is to embark
upon a shorter-term “mini challenge”: a nontrivial verification project that can
nonetheless be completed in a short time. An ideal candidate for such a mini
challenge would have several characteristics: (a) it would be of sufficient com-
plexity that traditional methods such as testing and code reviews are inadequate
to establish its correctness, (b) it would be of sufficient simplicity that specifi-
cation, design and verification could be completed by a dedicated team in a
relatively short time, say 2-3 years, and (c) it would be of sufficient importance

� The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 49–56, 2008.
c© IFIP International Federation for Information Processing 2008

50 R. Joshi and G.J. Holzmann

that successful completion of the mini challenge would have an impact beyond
the verification community.

At the Menlo Park workshop, some participants (notably Amir Pnueli) sug-
gested that a suitable candidate would be the verification of the kernel1 of the
Linux operating system [3]. While the task of verifying the Linux kernel un-
doubtedly meets conditions (a) and (c) above, it does not meet condition (b).
In fact, given that the current Linux kernel is well over 4 million lines of source
code, it seems a tall order to write a formal specification for it within 2 years,
much less verify the correctness of the implementation. Instead, we propose that
a more suitable candidate for such a mini challenge would be the development
of a verifiable filesystem. We believe there are several reasons why a filesystem is
more attractive as a first target for verification than an operating system kernel.

Firstly, most modern filesystems have a clean, well-defined interface, con-
forming to the POSIX standard [4], which has been in use for many years. Thus
writing a formal specification for a POSIX-compliant filesystem would require
far less effort than writing a kernel specification. In fact, one could even write an
abstract reference filesystem implementation which could be used as the speci-
fication for a verification proof based on refinement.

Secondly, since the underlying data structures and algorithms used in filesys-
tem design are very well understood, a verifiable filesystem implementation could
conceivably be written from scratch. Alternatively, researchers could choose any
of several existing open-source filesystems and attempt to verify them. This
makes filesystem verification attractive, since it allows participation by both
those researchers interested in a posteriori verification, as well as those inter-
ested in “constructing a program and its proof hand-in-hand”.

Thirdly, although filesystems comprise only a small portion of an operating
system, they are complex enough that ensuring reliability in the presence of
concurrent accesses and unexpected power failures is nontrivial. Indeed, recent
work by Yang et al shows that many popular filesystems in widespread use have
serious bugs that can have devastating consequences, such as deletion of the
system root directory [7].

Finally, since almost all data on modern computers is now managed by filesys-
tems, their correctness is of great importance, both from the standpoint of reli-
ability as well as security. Development of a verified filesystem would therefore
be of great value even beyond the verification community.

2 Directions and Challenges

The goal of the proposed mini challenge is to build a verifiable filesystem. In
particular, we are interested in the problem of how to write a filesystem whose
correctness can be checked using automated verification tools. After decades of
experience with automatic program verification, we know that such an effort
inevitably requires that key design knowledge be captured and expressed in
machine readable forms that can be used to guide the verification tools. This
1 Actually, Pnueli suggested verifying “Linux”; we assume he meant the Linux kernel.

A Mini Challenge: Build a Verifiable Filesystem 51

includes (a) a formal behavioral specification of the functionality provided by the
filesystem, (b) a formal elaboration of the assumptions made of the underlying
hardware, and (c) a set of invariants, assertions and properties concerning key
data structures and algorithms in the implementation. We discuss each of these
artifacts below.

Specification. Most modern filesystems are written to comply with the POSIX
standard [4] for filesystems. This standard specifies a set of function signatures
(such as creat, open, read, write), along with a behavioral description of
each function. However, these behavioral descriptions are given as informal En-
glish prose, and are therefore too ambiguous and incomplete to be useful in a
verification effort. The first task therefore is to write a formal specification of
the POSIX standard (or at least of a substantial portion of the standard) either
as a set of logical properties or as an abstract reference implementation. Such
formal specifications have been written in the past: for instance, by Morgan and
Sufrin [5], who wrote a specification of the UNIX filesystem in Z, and by Bevier,
Cohen and Turner [6], who wrote a specification for the Synergy filesystem in Z
(and also partially in ACL2). Although these specifications did not completely
model POSIX behavior (for instance, neither completely modeled error codes,
nor file permissions), they could serve as starting points for developing a more
complete specification.

Assumptions about underlying hardware. In order to provide a rigorous formal
statement of the properties of the filesystem (especially its robustness with re-
spect to power failure), it is necessary to rely on certain behavioral assumptions
about the underlying hardware. In order to make the filesystem useful, it is nec-
essary to understand what assumptions can reasonably be made about typical
hardware such as hard drives or flash memory. These assumptions need to be
explicitly identified and clearly stated, as opposed to used implicitly in correct-
ness proofs (as is often the case). In the ideal situation, the filesystem would be
usable with different types of hardware, perhaps providing different reliability
guarantees.

Properties of data structures and procedures. As noted before, an attractive
feature of the proposed mini challenge is that one could either write a verifiable
filesystem from scratch, or verify an available filesystem. In either case, however,
in order to use automatic checking tools to prove nontrivial correctness properties
of the implementation, it will inevitably be necessary to identify and express
design properties such as data structure invariants, annotations describing which
locks protect which data, and pre- and post-conditions for library functions.
Most typical filesystems require use of many common data structures such as
hash tables, linked lists and search trees. A proof of filesystem correctness would
therefore result in development of libraries of formally stated properties and
proofs about these data structures, which would be useful in other verification
efforts as well.

52 R. Joshi and G.J. Holzmann

3 A Reliable Flash Filesystem for Flight Software

At the NASA/JPL Laboratory for Reliable Software (LaRS), we are interested
in the problem of building reliable software that is less reliant on following tradi-
tional ad-hoc processes and more reliant on use of automated verification tools.
As part of this effort, we are currently engaged in a pilot project to help build
a reliable filesystem for flash memory, for use as nonvolatile storage on board
future missions.

Flash memory has recently become a popular choice for use on spacecraft
as nonvolatile storage for engineering and data products, since it has no moving
parts, consumes low power and is easily available. There are two common types of
flash memory, NAND flash and NOR flash [8]. While NOR flash is more reliable
and easier to program, it has lower density and poor write and erase times, and
is therefore less attractive as a data storage device. While it is possible to design
flight software to use flash memory directly as a raw device, it is typically much
easier to write robust flight software on top of a filesystem layer that provides
common file operations for creating, reading and writing files and directories.
In fact, the flight software on several recent NASA missions, such as the Mars
Exploration Rovers and Deep Impact, uses a filesystem to access flash memory.

Building a robust flash filesystem, however, is a nontrivial task. Performance
dictates the use of caches and write buffers, which increase the danger of incon-
sistencies in the presence of concurrent thread accesses and unexpected power
failures. To add to the challenge, flash memory, especially NAND flash mem-
ory, requires certain additional issues to be addressed such as arbitrary bit flips,
blocks that unexpectedly become “bad” (i.e., permanently unusable), and lim-
ited lifetimes (block usually become bad after they have been erased a certain
number of times, typically 100,000). In addition, a flash filesystem written for
use on a spacecraft must obey additional constraints; for instance, flight software
is typically allowed to allocate memory only during initialization.

The goal of our pilot project is to build a robust flash filesystem by following
a design methodology that is based on documenting as much as possible in a
machine readable form that is amenable to automatic verification. Thus the
intent is not only to build a working filesystem, but also to produce key design
documents in machine-readable forms that can be used by automated verification
tools. Although less ambitious than the mini challenge we have described above
(which is aimed at building a general purpose filesystem), our project has similar
interests and goals with the mini challenge we have proposed.

4 Summary

An important first step toward the Verification Grand Challenge is the develop-
ment of a repository containing specifications, models and implementations. We
believe the best way to develop this repository is to tackle a “mini challenge”
that can be completed in a short period of time, around 2-3 years. An excellent

A Mini Challenge: Build a Verifiable Filesystem 53

candidate for such a mini challenge seems to be the development of a verifiable
filesystem that is both reliable and secure. Since filesystems are well-defined
and well-understood, different research teams can take different approaches to
building such a verifiable filesystem, from building it from scratch to verifying
one of many available filesystems. We believe that the problem is well-suited as
a mini challenge for the verification community and will serve as a starting point
for the grand verification challenge.

References

1. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research.
Journal of the ACM 50(1), 63–69 (2003)

2. Workshop on the Verification Grand Challenge, SRI International, Menlo Park, CA
(February 2005), http://www.csl.sri.com/users/shankar/VGC05

3. Pnueli, A.: Looking Ahead, Presentation at the Workshop on The Verification Grand
Challenge, SRI International, Menlo Park, CA (February 2005),
http://www.csl.sri.com/users/shankar/VGC05/pnueli.pdf

4. The Open Group, The POSIX 1003.1, 2003 Edition Specification,
http://www.opengroup.org/certification/idx/posix.html

5. Morgan, C., Sufrin, B.: Specification of the UNIX Filing System. IEEE Transactions
on Software Engineering SE-10(2), 128–142 (1984)

6. Bevier, W.R., Cohen, R., Turner, J.: A Specification for the Synergy File System,
Technical Report 120, Computational Logic, Inc., (September 1995)

7. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using Model Checking to Find
Serious File System Errors. In: Proceedings of the Conference on Operating Systems
Design and Implementation (OSDI), San Francisco, pp. 273–288 (December 2004)

8. Data I/O, A Collection of NAND Flash Application Notes, Whitepapers and Arti-
cles, http://www.data-io.com/NAND/NANDApplicationNotes.asp

A Discussion on Rajeev Joshi’s Presentation

Jayadev Misra

[Inaudible question]

Rajeev Joshi

I believe, the specs could be written by a group of five people-any five people
in this room-in less than six months. So, how long would it take to write a file
system? I think the big problem is getting the machine-verifiability part of it.
So, if we go back and think about the level of ambition, I think the first one
should be doable by a group of less than ten people in a year. But remember, we
are not solving the general problem; we are solving the problem in the context
of a filesystem. So, the harder part is as you go down the list. I do not really
have an answer. I would be guessing, and I do not know what to guess.

http://www.csl.sri.com/users/shankar/VGC05
http://www.csl.sri.com/users/shankar/VGC05/pnueli.pdf
http://www.opengroup.org/certification/idx/posix.html
http://www.data-io.com/NAND/NANDApplicationNotes.asp

54 R. Joshi and G.J. Holzmann

Greg Nelson

Rajeev, when you talked about the options for translating the POSIX English
language spec into a formal form, you mentioned two options, neither of which
seems to me to be the translation into preconditions and postconditions and
modifiers, because this would have been the first thing I would think of. Can
you educate me or tell me, how I suffer this disconnect?

Rajeev Joshi

That is because I should have said: ”like pre- and postconditions or temporal
logical properties or a reference implementation”.

Tevfik Bultan

You mentioned, that there was a paper that found errors in the existing filesys-
tems. So, what types of errors, you listed a categorization of types of correctness,
could we check? So, did they find null dereferences or...

Rajeev Joshi (interrupts)

No, it is more complex. They used a kind of model checking and they found
issues where you can have kernel panics, or you could have data corruption,
metadata corruption, which should cause losing the system root directory under
certain conditions with multiple threads running. So, no, they used software
model checking, essentially.

Peter O’Hearn

Isn’t this awfully ambitious as a first step? The verification should be automatic,
I take it.

Rajeev Joshi

I don’t think that in the end we will have a tool that will work on an arbitrary
computer program, but we will have something, that will essentially be tailored
for this filesystem. I think part of the problem is doing it in a way that all the
machine-readable artifacts are published somewhere, which is the issue of setting
up a repository. So, somebody who writes the specification has to write it in a
format, so that other people know what the format is and have agreed upon it.

Peter O’Hearn

So, you are proposing not to test the proof tools so much as the specifications.

A Mini Challenge: Build a Verifiable Filesystem 55

Rajeev Joshi

Well, again it depends on your level of ambition when you say, ”proof tools”. I
don’t know how far we can go. If we stop with model checking then, if you write
a set of invariants and you say, ”well, we model-checked and we guarantee that
the model checker has actually covered the entire space”, then that is some level
of verification I think we could reach. I don’t think it is too ambitious from that
point of view. I think the harder problem is to make people agree on formats.
I mean, that’s a fact of life. I have seen this before in other instances that it is
not always... [sentence incomplete]

Peter O’Hearn (interrupts)

Now, if you ask for automatic verification, then the difficulty is very great, but if
you would allow manual verification, then I would agree with you. You could do
it with some number of man-years. But if the project is to have nearly automatic
methods, then your proposal seems like an extremely difficult one as a first step.

Rajeev Joshi

Ok... So, we can check it manually, maybe.

Egon Börger

Since you are speaking about details: I was surprised that you seem to sepa-
rate the core of specification from what you mention under ”design”, namely,
concurrency, fault tolerance, asynchrony. I think they should be part of the spec-
ification, because of the many things you will have to handle at that level. This
is something where you have to connect to the operating system somehow, or
your scheduling mechanism. And this may break your spec. So, it should be part
of the spec, I guess.

Rajeev Joshi

Yes that is of course one of the hard problems in computing science in ver-
ification: What assumptions can you make? Under what assumptions is your
program going to work? And I think that’s hard. Yes, it’s true-since the filesys-
tem typically runs as part of the operating system-that how the operating system
manages threads, for instance, is an issue. What guarantees the operating sys-
tem provides against threads writing on each other’s data would be an issue. Is
that the kind of thing you’re asking about?

Egon Börger

Yes, that is exactly the kind of reason why I believe it should be part of your
spec. You should analyze this really mathematically, because if you look at what
happened to Java, with thread handling in Java, the same you have in C#.
When you go to the thread handling mechanism, it is poorly described, and as a

56 R. Joshi and G.J. Holzmann

programmer, you are left with almost no knowledge of what is going on, except
you know all the details of compilers and maybe operating systems. The same
thing would happen to your filesystem spec. If you separate specification from
what has to do with asynchronous communication or whatever, then you can
throw away your spec later on. It does not tell you the real story. It is just a
purely functional view under the assumption that all the accesses are safe and
secure, or whatever.

Rajeev Joshi

Yes, I think that is an inherent property of specifications. And I think one just
writes with a certain model in mind.

Egon Börger

So, you need a communication model and an action model...

Rajeev Joshi

I don’t think that is necessary. But for instance, as Greg mentioned, if you write
pre- and postconditions, then it’s pretty well defined what the open()-operation
does with the pre- and postconditions. So, you can just check that the code for
the open() will satisfy the pre- and postconditions. Now, of course, if you are
running something concurrently with an open(), say if you are running a create(),
then those guarantees don’t hold, but that is a different problem. So, I think it
depends on, again, your level of ambition. You can say that we have checked it
so that it is correct with respect to pre- and postcondition semantics, but this
does not mean, it is correct with respect to everything else.

Egon Börger

The only thing I wanted to point out is that I would not relegate it to just
design; I would do this as high up as possible.

	A Mini Challenge: Build a Verifiable Filesystem
	A Mini Challenge
	Directions and Challenges
	A Reliable Flash Filesystem for Flight Software
	Summary
	Discussion on Rajeev Joshi's Presentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

