
Methods and Tools for Formal Software Engineering

Zhiming Liu1,� and R. Venkatesh2

1 International Institute for Software Technology
United Nations University, Macao SAR, China

Z.liu@iist.unu.edu
2 Tata Research and Design Development Centre, Pune, India

r.venky@tcs.com

Abstract. We propose a collaboration project to integrate the research effort and
results obtained at UNU-IIST on formal techniques in component and object sys-
tems with research at TRDDC in modelling and development of tools that support
object-oriented and component-based design. The main theme is an integration of
verification techniques with engineering methods of modelling and design, and
an integration of verification tools and transformation tools. This will result in
a method in which a correct program can be developed through transformations
that are either proven to be correct or by showing that the transformed model can
be proven correct by a verification tool.

1 Formal Software Engineering and the Grand Challenge

The goal of the Verifying Compiler Grand Challenge [7,6] is to build a verifying com-
piler that

“uses mathematical and logical reasoning to check the programs that it
compiles.”

This implies that “a program should be allowed to run only if it is both syntactically
and semantically correct” [20]. To achieve this goal, the whole computing community
have to deal with a wide range of issues, among which are [2]

1. arriving at automated procedures of abstraction that enables a compiler to work in
combination with different program verification tools including testing tools,

2. studying what, where, when and how the correctness properties, i.e. assertions and
annotations, are identified and specified,

3. identifying properties that can be verified compositionally, and designing specifi-
cation notations and models to support more compositional specification, analysis
and verification.

4. making tools that are scalable even with specified correctness criteria,

In our view, theories and techniques are a long way from being able to solve the first
three problems, and solutions to these problems is obviously vital for dealing with the
fourth problem.

� This work is partially supported by the projects HighQSoftD funded by Macao Science and
Technology Fund, NSFC-60573085, NSFC-60673114 and 863 of China 2006AA01Z165.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 31–41, 2008.
c© IFIP International Federation for Information Processing 2008

32 Z. Liu and R. Venkatesh

In this position paper, we propose the development Formal Software Engineering
as a method to develop large software systems using engineering methods and tools
that are verifiable. We propose formal modelling of requirements and design, and the
automatic generation of code to achieve this. We believe that this effort will contribute
towards a solution to the problems stated earlier, in a way that combine techniques and
tools of verification and those of correctness by construction [20].

1.1 The State of the Art in Software Engineering

Software engineering is mainly concerned with the systematic development of large and
complex systems. To cope with the required scale traditional software engineers divide
the problem along three axes - development phases, aspects and evolutions. The de-
velopment phases are - Requirements, Design and Implementation. Each development
phase is divided into different aspects, such as:

– static data model, control flow and operations in the requirements phase;
– design strategies for concurrency, efficiency and security in the design phase. These

strategies are commonly expressed as design patterns [3]; and
– databases, user interface and libraries for security in the implementation phase.

The third axis is that of system evolution and maintenance [9,8] where each evolu-
tionary step enhances the system by iterating through the requirements - implementation
cycle. Unfortunately all aspects are specified using informal techniques and therefore
this approach does not give the desired assurances and productivity. The main problems
are:

– Since the requirements description is informal there is no way to check for its com-
pleteness, often resulting in gaps.

– The gaps in requirements are often filled by ad-hoc decisions taken by program-
mers who are not qualified for the same. This results in rework during testing and
commissioning.

– There is no traceability between requirements and the implementation, making it
very expensive to accommodate changes and maintain the system.

– Most of the available tools are for project management and system testing. They are
not enough to ensure the semantic alignment of the implementation w.r.t a require-
ments specification and semantic consistency of any changes made in the system.

1.2 The State of the Art of Formal Methods

Formal methods, on the other hand, attempt to complement informal engineering meth-
ods by techniques for formal modelling, specification, verification and refinement. They
have been extensively researched and studied. A range of semantic theories, specifica-
tion languages, design techniques, and verification methods and tools have been de-
veloped and applied to the construction of programs of moderate size that are used in
critical applications. However, it is still a challenge is to scale up formal methods and

Methods and Tools for Formal Software Engineering 33

integrate them into engineering development processes for the correct construction and
maintenance of software systems, due to the following problems:

– Each development is usually a new development with very little reuse of past
development.

– Because of the theoretical goal of completeness and independence, refinement cal-
culi provide rules only for a small change in each step. Refinement calculi there-
fore do not scale up in practice. Data refinement requires definition of a semantic
relation between the programs (their state space) and is hard to be applied system-
atically.

– Given low level designs or implementations it is not easy for software engineers to
build correct and proper models that can be verified by model checking tools.

– There is no explicit support for productivity enhancing techniques such as compo-
nent-based development or aspect-oriented development.

We also observe that verification techniques and tools (e.g. model checking, SAT solv-
ing, etc.) have only been relatively effective only in the development of hardware sys-
tems. An integration of such methods with software development is highly required by
the manufacturers of critical and embedded software (avionics, telecom, public trans-
port, etc.). However, the sophisticated nature of software (complex data structures, re-
cursion, multithreading) poses challenging theoretic and practical problems to the de-
velopers of automatic analysis and verification methods.

Both formal methods and the methods adopted by software engineers are far from
meeting the quality and productivity needs of the industry, which continues to be
plagued by high development and maintenance costs. Complete assurance of correct-
ness requires too much to specify and verify and thus a full automation of the verifica-
tion is infeasible. However, recently there have been encouraging developments in both
approaches. The software engineering community has started using precise models for
early requirement analysis and design [18]. Theories and methods for object-oriented,
component-based and aspect-oriented modelling and development are gaining the atten-
tion of the formal methods community. There are attempts to investigate formal aspects
of object-oriented refinement, design patterns, refactoring and coordination [12].

1.3 Aims and Objective

The aim of this project is to combine the strengths of software engineering techniques
and formal methods thus enabling the development of systems that have the assurances
possible due to formal methods and productivity and scale-up achievable by methods
adopted by software engineers.

We will focus on the development of a theory of modelling (or specification), anal-
ysis and refinement of component and object systems, and a toolset that integrates two
kinds of complementary tools: tools for analysis (model checkers and theorem provers)
and tools for correctness preserving transformations, including design patterns and do-
main specific transformations. We will study and verify the correctness of the transfor-
mations, aiming at verified designs transformations to scale up formal methods by

34 Z. Liu and R. Venkatesh

– exploiting standard design patterns and strategies existing in large applications,
even across applications;

– providing verified design patterns and strategies to reduce the burden on (auto-
mated) proofs; and

– proving functionality correctness only at the specification stage.

We can also think this is about the development of a CASE tool that is supported by a
formal theory and combines model transformation and model verification.

2 Formal Modelling of Complex Systems

This section gives a brief outline of the technique and solution to be investigated by this
project. The techniques are explained using a simple example of a library system, that
maintains a collection of books. Members belonging to the library borrow and return
books. In order to keep the explanation simple and readable we have not been rigorous
in the specification of the library system. For more formality, we refer the reader to
the paper [14]. Also in [17], a Point of Sale (POST) system was formally developed,
including a C# implementation.

2.1 Requirements Modelling

For an object system or a component, the development process begins with the spec-
ification of functional requirements. Functional requirements of a system consists of
three aspects: the state, a set of operations through which external agents may interact
with the system, and a set of global properties that must be satisfied by the state and
operations. This can be represented as a triple RM = 〈S, O, I〉 where S is a model of
the state, O is a set of operations that modify the state and I is a set of global invariants.
Each operation in O is expressed as a pre- post-condition pair [12]. A requirements
model is consistent if each operation in O is consistent with the state model and pre-
serves the global invariant. The model can be further enhanced by adding descriptions
of interaction protocols with the environment [5], timing aspects, features of security,
etc. A multi-view and multi-notation modelling language, such as a formalized subset
of the Unified Modelling Language(UML) [19], can be used to specify this model and
analyzed for inconsistencies using model-checking techniques as demonstrated in [22].
The analysis can be carried out incrementally, a small number of use cases at a time
that only involve a small number of domain classes [14]. This is obviously important to
development of tool support to the analysis.

Library requirements. The state space of the library system is represented by the tu-
ple 〈Shelf, Book, Member, Loan : Book × Member, isIn : Book × Shelf〉 where, Book,
Member and Shelf are set of books, members and shelves in the library. Loan is a set
of tuples representing the books that have been currently loaned to members. The asso-
ciation isIn is a set of tuples representing books that are currently on some shelf. This
state space corresponds to a UML diagram and can be formalized as a class declartion
section of an OO program [14,13].

Methods and Tools for Formal Software Engineering 35

The set of operations will be {Borrow(Member, Book), Return(Member, Book)}.
These operations are identified from the use cases [14]. The Borrow operation can be
described as

signature : Borrow(S, S′ : State, b : Book, m : Member)
pre − condition : ¬∃m1 : Member • 〈b, m1〉 ∈ S.Loan
post − condition : S′.Loan = S.Loan ∪ 〈b, m〉 ∧ S′.isIn = S.isIn − 〈b, s〉

Return can be defined similarly.
A sample invariant is BookInvariant, which states that every book in the library is

either on the shelf or loaned to a member. This can be stated as follows.

BookInvariant(S : State) def= ∀b : S.Book • ∃m : Member • 〈b, m〉 ∈ S.Loan∧
¬∃s : Shelf • 〈b, s〉 ∈ S.isIn

∨ ¬∃m : Member • 〈b,m〉 ∈ S.Loan∧
∃s : Shelf • 〈b, s〉 ∈ S.isIn

Details on the formalisation of a use-case model and its consistency relation with a class
model (i.e. the state space) can be found in [14].

2.2 Design

Design involves transforming the requirements model of a system to a model with de-
sign details, by design strategies or patterns as functional decomposition and object or
class decomposition. This model is still platform independent models (PIM) [13].

In a later stage, the PIM is transformed to a model of a platform or a family of plat-
forms (PDM) with desired non-functional properties such as - support for concurrent or
parallel execution, performance and usability. The platform may be modelled by a tu-
ple, 〈Sp, Op〉 where Sp is a meta-model of the platform state and Op is a set of platform
operations which maybe combined using a set of available operators.

Given a PDM, a system is designed by transforming the PIM state, S to a design state
Sd that is an instance of the PDM state Sp and transforming each operation o ∈ O to
an operation od, which is expressed as a composition of operations in Op. The design
step also specifies a set of design invariants Id that the design operations must preserve.
Thus the design model is a triple, 〈Sd, Od, Id〉 where Od is the set of all transformed
operations and the design process consists of two transform functions 〈Ts, To〉 where
Ts : S → Sd is the state transformation function and To : O → Od is the operations
transformation function. A design is correct if the two transformation functions are
consistent that is the diagram in Figure 1 commutes and the design operations preserve
the design invariants.

Library design. To simplify the presentation assume the library requirements model
to consist of 〈Sr, Or〉, where Sr is a set of class and association names and Or the
operations:

Sr = {Shelf, Book, Member,Loan, isIn}, Or = {Borrow, Return}

36 Z. Liu and R. Venkatesh

s1 s2

sd1 sd2

Ts Ts

o

Td(o)

Fig. 1. Design Transformations

Further associate each operation op with the set of state objects obj(op) it accesses,
because for concurrency only the object being accessed is relevant and not the details
of the modifications to the object. So

obj(Borrow) = obj(Return) = {Loan, isIn}

Assume the library system is to be implemented on a platform where multiple processes
run the library operations and all of these refer to a set of shared objects. The design
model will be 〈Sd, Od〉, where

Sd = Sr ∪ {sl, si}, Od = {Borrowd, Returnd, P, V }

where sl and si are semaphores corresponding to Loan and isIn objects, and P and
V are the semaphore operations. The operations in the design are defined by a sequence
of semaphore operations and objects accessed. Thus,

objd(Borrowd) = objd(Returnd) = [sl; si; Loan; isIn; sl; si]

This design guarantees - correctness, mutual exclusion and deadlock freedom.
Instead of designing each library operation individually we can write two design

transformation functions for the library design as follows

Tls
def
= Sr ∪ {Si | Si is a semaphore for si ∈ Sr}

Tlo(op)
def
= [P1; · · · ; Pk; a1; · · · ; ak; V1; · · · ; Vk] if op is realized by the sequence

a1; . . . ; ak of accesses to s1, . . . , sk

We can prove the correctness of the transformation as required by figure 1. Also,
mutual exclusion and deadlock freedom can be guaranteed. Since the design has been
implemented as a transformation we do not have to prove correctness of the design
specification for each operation, instead we prove correctness of the transformation.

Design Patterns. Different systems adopt similar design transformation functions.
Therefore the process of formal design can be scaled up by abstracting away from
individual design transformation functions to a design pattern. A design pattern is a
meta-function that maps a requirements model to a design transformation function for
that requirements model. A design pattern is correct if the mapped design functions are
correct as described above. Design patterns can be proved correct independent of the
requirements model making them scalable. In the presence of design pattern a design
step will involve selecting and applying the appropriate design patterns.

Methods and Tools for Formal Software Engineering 37

For the Library example, the design strategy of imposing a total order on the
semaphores can be abstracted out into a transformation function. The transformation
function takes the total order and a requirements specification as input and transforms
the requirements of an arbitrary system into a corresponding design specification. Thus
a design pattern for databased applications that supports multiple users and guarantees
mutual exclusion and deadlock freedom consists of two transformation functions in the
form of Tls and Tlo of the library system.

MasterCraft [1] implements a few such design patterns for some select platforms
and design strategies. MasterCraft however does not support formal specification and
verification of these design patterns. If implemented as a design pattern the atomicity
preservation and deadlock freedom will not have to be proved for each application of
the transformation. All we need to show is that for a given application there the given
total order on objects includes all the objects that are referred to by any of the operations
of the system. We believe that is achievable in the framework of rCOS.

rCOS also provide a general refinement calculus for correctness preserving trans-
formation between PIMs. General software design patterns, such General Responsibil-
ity Assignment Software Pattern (GRASP) [10], are formalized as refinement rules in
rCOS [13]. Here we use UML to represent some of the refinement rules in rCOS:

Functional Decomposition: This is also known as the expert pattern which allows us
to delegate that part of the functionality of method N in Figure 2, which only refers to
attributes x of class M , to the expert M of information x.

Class Decomposition: Figure 3 shows how we can decompose a complex class into
a number of related but simpler classes. Figure 4 represents another way of class de-
composition. Class decomposition rules are known by OO engineers as High Cohesion
Pattern.

1n{c[c (o.x)]}

N
o

N

n{c[o.m]}

M

x

1m{c (x)}

M

x

1m{c (x)}

o

Fig. 2. OO Functional Decomposition

 M 2

o : M (o . o = o . o . o) .
1 2 1

1 1

M 1

22 2m {o . .m }

y
 1 1

2m {c . [o . m] } 2 1 1

x
m {c (x)}

M o

 1

2

1

2 1
m {c [m]}
m {c (x)}

y
x

M

m {o . .m } 1 1 1

o
1

o
2

M

Fig. 3. Class Decomposition 1

38 Z. Liu and R. Venkatesh

 M 2

22 2m {o . .m }

1 1

M 1

2

M

m {o . .m } 1 1

 1

2

1

2 1
m {c [m]}
m {c (x)}

x
m {c (x)}

y
x

M

m { c [o . m] } 2 1 1

m {o . m } 1 1 1

y

o

o 1

2

2

Fig. 4. Class Decomposition 2

Low Coupling: The Low Coupling Pattern represented in Figure 5 allows us to obtain
the design in Figure 4 from the design in Figure 3.

M1

m1{c[o1.m3()]

M2

M3

m3()

o2

o3

o1
o: M1 o.o2.o3=o.o1.

m2{o3.m3()}

M2

M3

m3()

o3

M1

m1{c[o2.m2()]

o2

Fig. 5. Low Coupling

More design patterns and pattern-directed refactoring are also studied and applied to
the case study POST [17]. We will extend MasterCraft by adding the implementations
of these rules.

3 Research Problems

The previous section presented an overview of a proposed method for formal devel-
opment of large scale systems. To realize this method, we first need to define it more
formally. We aim at a logically sound and systematic method (that we are tempted to
call a formal engineering method) and tools that themselves are provably correct for
supporting the method. The method includes:

1. A language and a logic for specifying and reasoning about a system at different
levels of abstractions. The main task is to develop a notation for describing each
aspect of correctness of a model. This will allow a developer to split a model of
a system into several aspects making it more manageable. This is important for
tool development too. The notation for a particular aspect should be expressive
enough for describing all the concerns about that aspect. However, overlapping
features among different notations should be kept to a minimum else, problems of
inconsistency and integration will become overwhelming1.

1 This is a serious problem in the application of UML.

Methods and Tools for Formal Software Engineering 39

The logic should provide a sound link among the different notations to deal with
the problems of model consistency and integration. It should support compositional
reasoning about the whole model by reasoning about the sub-models of the aspects.
Different verification techniques and tools maybe applied to models of different
aspects of functionality, interaction and structure of the system.

2. A Language and logic for specifying the transform functions and reasoning about
correctness. The language should preferably be composable. That is, it should
be possible to specify various design transformations independently and compose
them to get a design from requirements. The techniques and tools will include for-
mally proved pattern-directed transformations of specifications to scale up the clas-
sical calculi of refinement. We will also investigate the use of model checking and
static analysis techniques and tools for consistency and analysis of properties of
models. For specification and analysis of coordination among components, simu-
lation techniques and tools can be used. Transformation of different sub-models
may need different verification techniques and tools. Data refinements will be real-
ized by structural transformations following design patterns that are scaled up from
object-oriented design.

3. Automatic code generators that implement the implementation functions for vari-
ous platforms. Refactoring transformation of designs and implementations will be
studied and implemented in the tool support.

4. Techniques and tools for domain-specific languages and their programming (such
as web-based service and transaction system based on internet).

The main theme of the project is to integrate formal verification techniques and tools
with design techniques and tools of model (or specification) transformations. Verifi-
cation and transformation will work complementary to ensure the correctness of the
resultant specification. The design techniques and transformation tools are essential in
the development to transform the requirements specification to a model that is easy to
be handled with the verification techniques and tools. The design and transformation
have to be carried interactively between the designer and the tool. Verification tools can
be also invoked during a transformation [21].

This project will be conducted in a close collaboration between UNU-IIST and
TRDDC. UNU-IIST is particularly strong in theories and techniques for program mod-
elling, design and verification, and TRDDC is the largest industry research development
and design centre in India. We will investigate how the research results at UNU-IIST
in theories and techniques of program modelling, design and verification can be used
in the design of software development tools at TRDDC. A separate position paper by
UNU-IIST is also presented at this conference [2].

4 Related Work at UNU-IIST and TRDDC

TRDDC and UNU-IIST have been approaching the above problem from two different
ends. TRDDC has expertise in software engineering techniques and has been research-
ing this area for several years now. These efforts have resulted in MasterCraft [1], a tool
that generates code for different platforms from design specifications. Current research

40 Z. Liu and R. Venkatesh

activities at TRDDC include graph-based languages for specifying requirements [22]
and transformations. The requirements group has successfully used model checking to
verify correctness of requirements of a few projects. The work on transformation spec-
ifications has resulted in a proposal as a standard in response to an OMG request. The
proposal is in an advanced stage of acceptance.

UNU-IIST has been working on formalizing object-oriented development. This work
has resulted in a relational model for object-oriented design and an associated refine-
ment calculus [13]. The refinement calculus supports incremental and iterative develop-
ment [14]. The model is current being extended to support component-based develop-
ment [5]. Initial progress have been made in experimental development of tool support
[11,16]. Promising results have been achieved in unifying different verification meth-
ods [4,15].

5 Summary

We believe that we need to advance theories, tools and experiments for both verification
and design, and to scale them up to meet business and engineering projects need. For
this, we propose component-based modelling and design by transformations so that a
software designer can

– apply verified model transformations or define a transformation and verify it after
applying it,

– model method bodies (hopefully, the methods now are simple)
– generate proof-carrying code from target model

References

1. Mastercraft. Tata Consultancy Services, http://www.tata-mastercraft.com
2. Aichernig, B.K., He, J., Liu, Z., Reed, M.: Theories and techniques of program modelling,

design and verification. In: Meyer, B., Woodcock, J. (eds.) Verified Software: Theories,
Tools, Experiments (VSTTE 2005). LNCS, vol. 4171, pp. 291–300. Springer, Heidelberg
(2008) (this volume)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, London (1994)

4. He, J.: Link simulation with refinement. In: Proc. of The 25th anniversary of CSP (2004)
5. He, J., Li, X., Liu, Z.: Component-based software engineering – the need to link methods

and their theories. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp.
72–97. Springer, Heidelberg (2005)

6. Hoare, A.C.R., Misra, J.: Verified software: Theories, tools and experiments. In: Meyer, B.,
Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 1–18. Springer, Heidelberg (2008)
(this volume), http://vstte.ethz.ch/

7. Hoare, C.A.R.: The verifying compiler: A grand challenge for computer research. Journal of
the ACM 50(1), 63–69 (2003)

8. Joseph, M.: Formal techniques in large scale software engineering. In: Keynote at IFIP Work-
ing Conference on Verified Software: Theories, Tools and Experiments (VSTTE), Zurich
(October 10-13, 2005), http://vstte.ethz.ch/

http://www.tata-mastercraft.com
http://vstte.ethz.ch/
http://vstte.ethz.ch/

Methods and Tools for Formal Software Engineering 41

9. Kruchten, P.: The Rational Unified Process – An Introduction, 2nd edn. Addison-Wesly,
London, UK (2000)

10. Larman, C.: Applying UML and Patterns. Prentice-Hall, Englewood Cliffs (2001)
11. Li, X., Liu, Z., He, J., Long, Q.: Generating prototypes from a UML model of require-

ments. In: International Conference on Distributed Computing and Internet Technology
(ICDIT2004), Bhubaneswar, India. LNCS, Springer, Heidelberg (2004)

12. Liu, Z., He, J., Li, X.: Contract-oriented development of component systems. In: Proceed-
ings of IFIP WCC-TCS2004, Toulouse, France, pp. 349–366. Kluwer Academic Publishers,
Boston (2004)

13. Liu, Z., He, J., Li, X.: rCOS: A refinement calculus for object systems. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 183–
221. Springer, Heidelberg (2005)

14. Liu, Z., He, J., Li, X., Chen, Y.: A relational model for object-oriented requirement analysis
in UML. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 641–664.
Springer, Heidelberg (2003)

15. Liu, Z., Ravn, A.P., Li, X.: Unifying proof methodologies of Duration Calculus and Linear
Temporal Logic. Formal Aspects of Computing 16(2) (2004)

16. Long, Q., Liu, Z., He, J., Li, X.: Consistent code generation from uml models. In: Australia
Conference on Software Engineering (ASWEC), IEEE Computer Scienty Press, Los Alami-
tos (2005)

17. Long, Q., Qiu, Z., Liu, Z., Shao, L., He, J.: POST: A case study for an incremental devel-
opment in rCOS. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp.
485–500. Springer, Heidelberg (2005)

18. Mellor, S.J., Valcer, M.J.: Executable UML: a foundation for model-driven architecture.
Addison-Wesley, Reading (2002)

19. OMG. The Unified Modeling Language (UML) Specification - Version 1.4,
Joint submission to the Object Management Group (OMG) (September 2001)
http://www.omg.org/technology/uml/index.htm

20. Pnueli, A.: Looking ahead. In: Workshop on The Verification Grand Challenge 2005 SRI
International, Menlo Park, CA(February 21–23)

21. Rushby, J.: Integrating verification components. In: Keynote at IFIP Working Conference
on Verified Software: Theories, Tools and Experiments (VSTTE), Zurich, (October 10-13,
2005), http://vstte.ethz.ch/

22. Shrotri, U., Bhaduri, P., Venkatesh, R.: Model checking visual specification of requirements.
In: International Conference on Software Engineering and Formal Methods (SEFM 2003),
Australia, 3003., pp. 202–209. IEEE Computer Society Press, Los Alamitos

http://www.omg.org/technology/uml/index.htm
http://vstte.ethz.ch/

	Methods and Tools for Formal Software Engineering
	Formal Software Engineering and the Grand Challenge
	The State of the Art in Software Engineering
	The State of the Art of Formal Methods
	Aims and Objective

	Formal Modelling of Complex Systems
	Requirements Modelling
	Design

	Research Problems
	Related Work at UNU-IIST and TRDDC
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

