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Abstract. Today’s software does not come with meaningful guarantees. This 
position paper explores why this is the case, suggests societal and technical 
impediments to more dependable software, and considers what realistic, 
meaningful guarantees for software would be like and how to achieve them. 

If you want a guarantee, buy a toaster. 
Clint Eastwood (The Rookie, 1990) 

1   Introduction 

Software today doesn’t come with guarantees.  Should it? What kinds of guarantees 
should they be? 

I wouldn’t want to argue with “Dirty Harry”, but toasters don’t really come with 
guarantees either, certainly not in the sense of a mathematical proof that they will 
satisfy a set of precisely defined requirements. What a toaster does come with is: (1) a 
reasonable expectation that a semi-intelligent user will be able to get the toaster to 
transform a typical slice of bread into toast; (2) a warranty that the manufacturer 
promises to replace the toaster if it is defective, and (3) in the United States to a large 
degree, and to varying degrees in other countries, the assurance that if the defectively 
designed or manufactured toaster causes your house to burn down, you will be able to 
sue the toaster manufacturer for damages far in excess of the cost of the toaster.  

Software is a long way from satisfying any of those properties: (1) purchasers of 
software do not expect it to work correctly; instead of returning misbehaving software, 
users are conditioned to blame themselves; (2) software usually comes with an offer to 
replace defective disks, by no warranty on correct behavior; and (3) software vendors, 
to date, have managed to be immune from liability lawsuits even in cases where 
negligent implementations produce serious losses.  We do, however, have many of the 
essential technologies in place to provide meaningful guarantees regarding software 
systems.  Research tools have been developed to check properties of large programs [5, 
10, 12, 14, 20, 22], and dozens of companies are now offering analysis tools and 
services (e.g., Coverity, Fortify, Ounce Labs, PolySpace, Reflective).  

The rest of this paper discusses four of the major impediments that remain before 
routine software comes with effective guarantees: a lack of mechanisms for providing 
the necessary incentives to encourage software vendors to invest resources and delay 
products to improve dependability; inadequate ways to identify properties worth 
checking; insufficient theoretical understanding of how to interpret the outcome of 
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checking, especially unsound analyses, as meaningful guarantees; and deficiently 
educated developers unable to effectively use and insist on the use of appropriate 
program verification tools and techniques. 

The first principle was security... A consequence of this principle is that 
every occurrence of every subscript of every subscripted variable was on 
every occasion checked at run time against both the upper and the lower 
declared bounds of the array. Many years later we asked our customers 

whether they wished us to provide an option to switch off these checks in the 
interests of efficiency on production runs. Unanimously, they urged us not 

to—they already knew how frequently subscript errors occur on production 
runs where failure to detect them could be disastrous. I note with fear and 

horror that even in 1980, language designers and users have not learned this 
lesson. In any respectable branch of engineering, failure to observe such 

elementary precautions would have long been against the law.  
Tony Hoare, describing Elliott Brothers’ Algol 60 implementation 

The Emperor’s Old Clothes, 1980 Turing Award Speech 

2   Incentivizing Verification 

Twenty-five years after Hoare’s speech, computing is still not a “respectable branch 
of engineering”: software developers and language designers continue to release code 
where memory references are unchecked and no one has yet been sent to jail or even 
fined for doing it. The technologies for preventing this particular type of error have 
been available for many decades, yet vendors still ship software without using them. 
If jail sentences had been established in 1980 for the CEO of any company that sells a 
product containing a buffer overflow vulnerability, I suspect there would have been 
no programs with buffer overflow vulnerabilities sold in 1981, and certainly not in 
2005. Alas, I know of no jurisdiction that has made programming in C++ or designing 
a language without bounds checking a criminal offense [8]. This is an incentive 
problem, not a technology problem.  

An automobile company could not sell a car that suffers from a problem like 
unchecked array references, without losing billions of dollars in lawsuits. As a result, 
technologies that improve safety are quickly deployed throughout the industry. Some 
parallels can be drawn between safety belts in cars and bounds checking in software. 
Safety belts were introduced in the 1950s because of biomechanical research suggesting 
their effectiveness; they were, however, rarely used by car occupants until mandatory 
belt wearing laws were passed [16]. As with bounds checking, a very effective 
technology was available but largely unused for many decades. However, unlike the 
case with software, legal mechanisms in the form of both regulation and liability, placed 
pressure on vendors to incorporate the best known technology in their products. In 1986, 
General Motors became the first US auto manufacturer to decide to install lap/shoulder 
belts in the rear seats of cars, instead of lap-only belts. GM began installing lap/shoulder 
belts in selected 1987 model cars. The other auto companies followed within a few 
years, and it later became a government standard. GM faced a $200M lawsuit (which 
was settled under seal) claiming that GM was negligent in not making the change 
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sooner since its internal research indicated that lap-only belts were less effective than 
previous government estimates [16, 17].  

Software in embedded systems is subject to potential lawsuits if the containing 
device fails with disastrous results. As a result, the development and validation 
practices for such software is quite different from that typically used for software-
only systems. With a few notable exceptions, critical software in embedded systems 
today is remarkably reliable compared to software in software-only systems. 

Applying product liability to software is not without risks, however.  If companies 
that do not deploy the best known technology can be liable for negligence, this 
provides a strong disincentive to developing new technologies and stifles creativity 
and innovation. Software liability also raises serious issues for open source 
developers and academic researchers who wish to develop and distribute software 
without fear of lawsuits or needing approval from lawyers. 

An alternative is to use market forces.  This has proven difficult so far with 
software, primarily because of the difficulty in measuring software quality, especially 
security.  A research community is emerging that considers economic approaches to 
improving security [3, 4] as well as measuring it [23].  Good ideas for software 
security metrics, however, remain elusive.  One promising direction is work on 
measuring relative attack surfaces [19]. 

There are no easy answers here, but it seems many of the challenges we face in 
improving software dependability and security are not so much in developing tools 
and techniques to analyze programs, but in making using those tools cost effective in 
a business sense.  This involves the technical challenges of decreasing the costs of 
using them and increasing the value they provide, but also the large contextual 
challenge of making the costs of improving software quality economically justifiable 
by increasing the cost disadvantages associated with low qualify software.  The trends 
are in the right direction as evidenced most clearly by Microsoft’s trustworthy 
computing initiative [18] and increasing willingness to sacrifice functionality and 
delay product releases to enhance security over that past few years [21].   

It is easier to write an incorrect program than understand a correct one.  
Alan Perlis 

3   Identifying Properties 

We can group properties into three categories: 

1. Generic language semantics properties.   
2. Documented application properties.  
3. Unknown (but necessary) application properties. 

The first category comprises those properties that should always be true of all 
programs, such as all memory references are in bounds and the program never leaks 
memory. Since these properties are universal, they should be identified once by the 
programming language designers and there is no need to identify them for a particular 
application. Most program analysis tools available today are focused on checking or 
detecting violations of this type of property. Few viable excuses remain for releasing 
software today that suffers from these kinds of flaws. 
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In most cases, documented application-specific properties do not exist. There is no 
precise description of required application properties, and even the developers don’t 
know what those properties are. Efforts to improve education for software developers 
(discussed in Section 5) may increase the likelihood of there being documented 
properties, but progress here will be slow and limited. Except for the most safety-
critical (and thus expensive) software, it is unreasonable to expect required application 
properties to be clearly documented in the near future. Even when developers are 
willing to spend the effort required to formally document these properties, they often 
do not know what properties are necessary for correctness or would be useful to 
document. 

Our efforts should focus, then, primarily on the third category – unknown and 
undocumented, but necessary, application properties. Over the past few years, several 
research groups have developed tools for inferring those properties. Daikon infers 
data invariants on programs by analyzing execution traces on a test suite [13]. Other 
researchers have developed techniques for inferring specifications of programs from 
their dynamic behavior [2, 9, 31] and static analysis of their program texts [1, 30, 31]. 

My research group’s work in this area is motivated by the observation that many 
properties in the third group are true during many or all test executions, but when they 
are violated during real executions they produce serious consequences. We have 
developed a tool, Perracotta [29], that takes a program and a test suite and produces a set 
of inferred properties. We have focused primarily on inferring simple temporal 
properties that constrain the order and occurrence of events in the program such as calls 
to a particular method (such as all calls to the lock method must be followed by calls to 
the corresponding unlock method) or combinations of temporal and data properties 
(such as, object O is never modified between events A and B). The goal is not to produce 
a specification of the program for human use, but rather to infer properties that are 
useful for other purposes. We have used inferred properties to identify undesirable 
behaviors [27]; unexpected differences between similar programs or different versions 
of a program [28]; and as input to a model checker [29]. When a counterexample to an 
inferred property is found, it may reveal a bug in the program or a deficiency in the 
testing approach. By inferring properties this way and using them with automatic 
checking and comparison tools, we are able to discover essential properties about a 
program that developers would not think to document.   

4   Towards Software Guarantees 

Let’s return to the rather degenerate toaster example and the toaster guarantee is 
shown in Figure 1. The guarantee does not claim that the toaster will always behave 
according to a particular specification. Rather, it states that if the toaster “goes wrong” 
it will be replaced, provided the user does not misuse, “neglect”, modify, or damage 
the toaster. Despite its limitations, this guarantee has some value to the purchaser, and 
it would be a major advance if software came with a similar guarantee.  

The technical challenge is to determine the equivalent of “goes wrong” for a 
complex software system. Automatic property inference and checking is a step towards 
this goal. Instead of attempting to formally specify the exact behavior for software, by 
using property inference techniques to infer properties that are true of the “normal”  
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Fig. 1. Kenwood TT360/TT390 Toaster Instructions (excerpted) 

behavior of the software, and checking (or ensuring at run-time) that they are always 
true we can establish claims about the scope of executions covered by the testing 
strategy. If the inferred properties capture enough of the behavior of the software, then 
we can claim that executions that satisfy those properties are “okay”, and executions 
that do not satisfy them have “gone wrong”. In such circumstances, measures can be 
taken to put the software right again to return to the “normal” behavior. Rinard and his 
colleagues’ work on acceptability-oriented computing [11, 24, 25] and Swift et al.’s 
work on hiding device driver failures from executing programs [26] illustrate the 
possibility of executing programs in ways that programming errors are automatically 
recovered from. When unsound analysis techniques are used, we cannot expect to 
make full correctness guarantees; instead, we should strive to find ways to formalize 
guarantees more like the toaster guarantee of nothing “goes wrong”, and to develop 
tools and techniques that allow us to make such guarantees. 

The use of COBOL cripples the mind; 
its teaching should, therefore, be regarded as a criminal offence.  

Edsger W.Dijkstra, How do we tell the truths that might hurt? (EWD 498), June 1975  

5   Education 

The single most important factor in determining the quality of software is the 
knowledge, experience and attitudes of people who design and implement it.  People 
choose the programming languages, compilers, analysis tools and testing and 
validation approaches to use. Hence, it is unlikely that software quality will improve 
dramatically without also changing the ways we educate programmers. Although 
increasing automation can make analysis tools accessible to less sophisticated 
developers, it will be up to developers to decide to use those tools and to correctly 
interpret their results. 

Computer science curricula have traditionally followed industry, not led it. With 
rare exceptions, the choices of programming languages and tools used in most 
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introductory software engineering courses follow a few years behind the current needs 
of industry rather than envisioning the future and focusing on producing graduates with 
conceptual understanding and the ability to lead industry forward. To improve the state 
of software engineering, academia needs to take the lead in teaching students in 
introductory software engineering courses the theories, tools and techniques that will 
be important for verified programming. Instead of focusing on the technical details of 
complex programming languages that are popular in industry, introductory software 
engineering courses should be teaching students to think about preconditions, 
postconditions, data invariants, and temporal properties and to understand what 
program analysis tools and testing techniques can allow them to state about their 
programs. At the University of Virginia, we are developing a curriculum towards these 
goals [6, 7] (which draws heavily from the MIT curriculum), and have experimented 
with introducing static analysis tools in our introductory software engineering course 
[7]. Although the state of the art in available tools presents some challenges, and it is 
difficult for students in introductory courses to formally document complex invariants, 
we are optimistic that incorporating automatic property inference tools into the process 
can help [15] and that this approach can provide students with the necessary 
background to develop more secure and dependable software. 

6   Summary 

The research and industrial communities have made tremendous progress in program 
analysis and verification tools over the past several years, and these tools have now 
reached the point where they can be usefully applied to large, complex programs. In 
order for their use to become prevalent, however, the appropriate incentive structure 
must be in place. Technical challenges remain in determining useful properties to check 
that go beyond generic language properties, and in better understanding the claims that 
can be made as a result of unsound analyses. Promising directions for research towards 
these goals include automatic property inference and automatic detection of and 
recovery from errors. Full program verification against a precise specification will 
remain expensive and rare, but perhaps advances in technology and changes in incentive 
structure will make meaningfully guaranteed software commonplace. 
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