
B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 354–361, 2008.
© IFIP International Federation for Information Processing 2008

Toasters, Seat Belts, and Inferring Program Properties

David Evans

University of Virginia, Department of Computer Science
Charlottesville, Virginia

evans@cs.virginia.edu

Abstract. Today’s software does not come with meaningful guarantees. This
position paper explores why this is the case, suggests societal and technical
impediments to more dependable software, and considers what realistic,
meaningful guarantees for software would be like and how to achieve them.

If you want a guarantee, buy a toaster.
Clint Eastwood (The Rookie, 1990)

1 Introduction

Software today doesn’t come with guarantees. Should it? What kinds of guarantees
should they be?

I wouldn’t want to argue with “Dirty Harry”, but toasters don’t really come with
guarantees either, certainly not in the sense of a mathematical proof that they will
satisfy a set of precisely defined requirements. What a toaster does come with is: (1) a
reasonable expectation that a semi-intelligent user will be able to get the toaster to
transform a typical slice of bread into toast; (2) a warranty that the manufacturer
promises to replace the toaster if it is defective, and (3) in the United States to a large
degree, and to varying degrees in other countries, the assurance that if the defectively
designed or manufactured toaster causes your house to burn down, you will be able to
sue the toaster manufacturer for damages far in excess of the cost of the toaster.

Software is a long way from satisfying any of those properties: (1) purchasers of
software do not expect it to work correctly; instead of returning misbehaving software,
users are conditioned to blame themselves; (2) software usually comes with an offer to
replace defective disks, by no warranty on correct behavior; and (3) software vendors,
to date, have managed to be immune from liability lawsuits even in cases where
negligent implementations produce serious losses. We do, however, have many of the
essential technologies in place to provide meaningful guarantees regarding software
systems. Research tools have been developed to check properties of large programs [5,
10, 12, 14, 20, 22], and dozens of companies are now offering analysis tools and
services (e.g., Coverity, Fortify, Ounce Labs, PolySpace, Reflective).

The rest of this paper discusses four of the major impediments that remain before
routine software comes with effective guarantees: a lack of mechanisms for providing
the necessary incentives to encourage software vendors to invest resources and delay
products to improve dependability; inadequate ways to identify properties worth
checking; insufficient theoretical understanding of how to interpret the outcome of

 Toasters, Seat Belts, and Inferring Program Properties 355

checking, especially unsound analyses, as meaningful guarantees; and deficiently
educated developers unable to effectively use and insist on the use of appropriate
program verification tools and techniques.

The first principle was security... A consequence of this principle is that
every occurrence of every subscript of every subscripted variable was on
every occasion checked at run time against both the upper and the lower
declared bounds of the array. Many years later we asked our customers

whether they wished us to provide an option to switch off these checks in the
interests of efficiency on production runs. Unanimously, they urged us not

to—they already knew how frequently subscript errors occur on production
runs where failure to detect them could be disastrous. I note with fear and

horror that even in 1980, language designers and users have not learned this
lesson. In any respectable branch of engineering, failure to observe such

elementary precautions would have long been against the law.
Tony Hoare, describing Elliott Brothers’ Algol 60 implementation

The Emperor’s Old Clothes, 1980 Turing Award Speech

2 Incentivizing Verification

Twenty-five years after Hoare’s speech, computing is still not a “respectable branch
of engineering”: software developers and language designers continue to release code
where memory references are unchecked and no one has yet been sent to jail or even
fined for doing it. The technologies for preventing this particular type of error have
been available for many decades, yet vendors still ship software without using them.
If jail sentences had been established in 1980 for the CEO of any company that sells a
product containing a buffer overflow vulnerability, I suspect there would have been
no programs with buffer overflow vulnerabilities sold in 1981, and certainly not in
2005. Alas, I know of no jurisdiction that has made programming in C++ or designing
a language without bounds checking a criminal offense [8]. This is an incentive
problem, not a technology problem.

An automobile company could not sell a car that suffers from a problem like
unchecked array references, without losing billions of dollars in lawsuits. As a result,
technologies that improve safety are quickly deployed throughout the industry. Some
parallels can be drawn between safety belts in cars and bounds checking in software.
Safety belts were introduced in the 1950s because of biomechanical research suggesting
their effectiveness; they were, however, rarely used by car occupants until mandatory
belt wearing laws were passed [16]. As with bounds checking, a very effective
technology was available but largely unused for many decades. However, unlike the
case with software, legal mechanisms in the form of both regulation and liability, placed
pressure on vendors to incorporate the best known technology in their products. In 1986,
General Motors became the first US auto manufacturer to decide to install lap/shoulder
belts in the rear seats of cars, instead of lap-only belts. GM began installing lap/shoulder
belts in selected 1987 model cars. The other auto companies followed within a few
years, and it later became a government standard. GM faced a $200M lawsuit (which
was settled under seal) claiming that GM was negligent in not making the change

356 D. Evans

sooner since its internal research indicated that lap-only belts were less effective than
previous government estimates [16, 17].

Software in embedded systems is subject to potential lawsuits if the containing
device fails with disastrous results. As a result, the development and validation
practices for such software is quite different from that typically used for software-
only systems. With a few notable exceptions, critical software in embedded systems
today is remarkably reliable compared to software in software-only systems.

Applying product liability to software is not without risks, however. If companies
that do not deploy the best known technology can be liable for negligence, this
provides a strong disincentive to developing new technologies and stifles creativity
and innovation. Software liability also raises serious issues for open source
developers and academic researchers who wish to develop and distribute software
without fear of lawsuits or needing approval from lawyers.

An alternative is to use market forces. This has proven difficult so far with
software, primarily because of the difficulty in measuring software quality, especially
security. A research community is emerging that considers economic approaches to
improving security [3, 4] as well as measuring it [23]. Good ideas for software
security metrics, however, remain elusive. One promising direction is work on
measuring relative attack surfaces [19].

There are no easy answers here, but it seems many of the challenges we face in
improving software dependability and security are not so much in developing tools
and techniques to analyze programs, but in making using those tools cost effective in
a business sense. This involves the technical challenges of decreasing the costs of
using them and increasing the value they provide, but also the large contextual
challenge of making the costs of improving software quality economically justifiable
by increasing the cost disadvantages associated with low qualify software. The trends
are in the right direction as evidenced most clearly by Microsoft’s trustworthy
computing initiative [18] and increasing willingness to sacrifice functionality and
delay product releases to enhance security over that past few years [21].

It is easier to write an incorrect program than understand a correct one.
Alan Perlis

3 Identifying Properties

We can group properties into three categories:

1. Generic language semantics properties.
2. Documented application properties.
3. Unknown (but necessary) application properties.

The first category comprises those properties that should always be true of all
programs, such as all memory references are in bounds and the program never leaks
memory. Since these properties are universal, they should be identified once by the
programming language designers and there is no need to identify them for a particular
application. Most program analysis tools available today are focused on checking or
detecting violations of this type of property. Few viable excuses remain for releasing
software today that suffers from these kinds of flaws.

 Toasters, Seat Belts, and Inferring Program Properties 357

In most cases, documented application-specific properties do not exist. There is no
precise description of required application properties, and even the developers don’t
know what those properties are. Efforts to improve education for software developers
(discussed in Section 5) may increase the likelihood of there being documented
properties, but progress here will be slow and limited. Except for the most safety-
critical (and thus expensive) software, it is unreasonable to expect required application
properties to be clearly documented in the near future. Even when developers are
willing to spend the effort required to formally document these properties, they often
do not know what properties are necessary for correctness or would be useful to
document.

Our efforts should focus, then, primarily on the third category – unknown and
undocumented, but necessary, application properties. Over the past few years, several
research groups have developed tools for inferring those properties. Daikon infers
data invariants on programs by analyzing execution traces on a test suite [13]. Other
researchers have developed techniques for inferring specifications of programs from
their dynamic behavior [2, 9, 31] and static analysis of their program texts [1, 30, 31].

My research group’s work in this area is motivated by the observation that many
properties in the third group are true during many or all test executions, but when they
are violated during real executions they produce serious consequences. We have
developed a tool, Perracotta [29], that takes a program and a test suite and produces a set
of inferred properties. We have focused primarily on inferring simple temporal
properties that constrain the order and occurrence of events in the program such as calls
to a particular method (such as all calls to the lock method must be followed by calls to
the corresponding unlock method) or combinations of temporal and data properties
(such as, object O is never modified between events A and B). The goal is not to produce
a specification of the program for human use, but rather to infer properties that are
useful for other purposes. We have used inferred properties to identify undesirable
behaviors [27]; unexpected differences between similar programs or different versions
of a program [28]; and as input to a model checker [29]. When a counterexample to an
inferred property is found, it may reveal a bug in the program or a deficiency in the
testing approach. By inferring properties this way and using them with automatic
checking and comparison tools, we are able to discover essential properties about a
program that developers would not think to document.

4 Towards Software Guarantees

Let’s return to the rather degenerate toaster example and the toaster guarantee is
shown in Figure 1. The guarantee does not claim that the toaster will always behave
according to a particular specification. Rather, it states that if the toaster “goes wrong”
it will be replaced, provided the user does not misuse, “neglect”, modify, or damage
the toaster. Despite its limitations, this guarantee has some value to the purchaser, and
it would be a major advance if software came with a similar guarantee.

The technical challenge is to determine the equivalent of “goes wrong” for a
complex software system. Automatic property inference and checking is a step towards
this goal. Instead of attempting to formally specify the exact behavior for software, by
using property inference techniques to infer properties that are true of the “normal”

358 D. Evans

Fig. 1. Kenwood TT360/TT390 Toaster Instructions (excerpted)

behavior of the software, and checking (or ensuring at run-time) that they are always
true we can establish claims about the scope of executions covered by the testing
strategy. If the inferred properties capture enough of the behavior of the software, then
we can claim that executions that satisfy those properties are “okay”, and executions
that do not satisfy them have “gone wrong”. In such circumstances, measures can be
taken to put the software right again to return to the “normal” behavior. Rinard and his
colleagues’ work on acceptability-oriented computing [11, 24, 25] and Swift et al.’s
work on hiding device driver failures from executing programs [26] illustrate the
possibility of executing programs in ways that programming errors are automatically
recovered from. When unsound analysis techniques are used, we cannot expect to
make full correctness guarantees; instead, we should strive to find ways to formalize
guarantees more like the toaster guarantee of nothing “goes wrong”, and to develop
tools and techniques that allow us to make such guarantees.

The use of COBOL cripples the mind;
its teaching should, therefore, be regarded as a criminal offence.

Edsger W.Dijkstra, How do we tell the truths that might hurt? (EWD 498), June 1975

5 Education

The single most important factor in determining the quality of software is the
knowledge, experience and attitudes of people who design and implement it. People
choose the programming languages, compilers, analysis tools and testing and
validation approaches to use. Hence, it is unlikely that software quality will improve
dramatically without also changing the ways we educate programmers. Although
increasing automation can make analysis tools accessible to less sophisticated
developers, it will be up to developers to decide to use those tools and to correctly
interpret their results.

Computer science curricula have traditionally followed industry, not led it. With
rare exceptions, the choices of programming languages and tools used in most

 Toasters, Seat Belts, and Inferring Program Properties 359

introductory software engineering courses follow a few years behind the current needs
of industry rather than envisioning the future and focusing on producing graduates with
conceptual understanding and the ability to lead industry forward. To improve the state
of software engineering, academia needs to take the lead in teaching students in
introductory software engineering courses the theories, tools and techniques that will
be important for verified programming. Instead of focusing on the technical details of
complex programming languages that are popular in industry, introductory software
engineering courses should be teaching students to think about preconditions,
postconditions, data invariants, and temporal properties and to understand what
program analysis tools and testing techniques can allow them to state about their
programs. At the University of Virginia, we are developing a curriculum towards these
goals [6, 7] (which draws heavily from the MIT curriculum), and have experimented
with introducing static analysis tools in our introductory software engineering course
[7]. Although the state of the art in available tools presents some challenges, and it is
difficult for students in introductory courses to formally document complex invariants,
we are optimistic that incorporating automatic property inference tools into the process
can help [15] and that this approach can provide students with the necessary
background to develop more secure and dependable software.

6 Summary

The research and industrial communities have made tremendous progress in program
analysis and verification tools over the past several years, and these tools have now
reached the point where they can be usefully applied to large, complex programs. In
order for their use to become prevalent, however, the appropriate incentive structure
must be in place. Technical challenges remain in determining useful properties to check
that go beyond generic language properties, and in better understanding the claims that
can be made as a result of unsound analyses. Promising directions for research towards
these goals include automatic property inference and automatic detection of and
recovery from errors. Full program verification against a precise specification will
remain expensive and rare, but perhaps advances in technology and changes in incentive
structure will make meaningfully guaranteed software commonplace.

References

1. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of Interface Specifications for
Java classes. In: Proceedings of the ACM Symposium on Principles of Programming
Languages (2005)

2. Ammons, G., Bodik, R., Larus, J.R.: Mining Specifications. In: Proceedings of the ACM
Symposium on Principles of Programming Languages (January 2002)

3. Anderson, R.: Economics and Security Resource Page,
 http://www.cl.cam.ac.uk/users/rja14/econsec.html

4. Camp, L.J., Lewis, S. (eds.): Economics of Information Security, September 2004. Kluwer
Academic Publishers, Dordrecht (2004)

360 D. Evans

5. Chen, H., Dean, D., Wagner, D.: Model Checking One Million Lines of C Code. In:
Proceedings of the 11th Annual Network and Distributed System Security Symposium
(NDSS) (February 2004)

6. CS150: Computer Science from Ada and Euclid to Quantum Computing and the World
Wide Web. University of Virginia Course, http://www.cs.virginia.edu/cs150

7. CS201j: Engineering Software. University of Virginia, http://www.cs.virginia.edu/cs201j
8. CS655: Graduate Programming Languages. University of Virginia Course. (Spring, 2000),

http://www.cs.virginia.edu/evans/cs655-S00/mocktrial/
9. Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: Discovering Models of Behavior for Concurrent

Workflows. Computers in Industry 53(3), 297–319 (2004)
10. Das, M., Lerner, S., Seigle, M.: ESP: Path-Sensitive Program Verification In Polynomial

Time. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (June 2002)

11. Demsky, B., Rinard, M.: Data Structure Repair Using Goal-Directed Reasoning. In:
Proceedings of the 2005 International Conference on Software Engineering (May 2005)

12. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking System Rules Using System-
Specific Programmer-Written Compiler Extensions. In: Symposium on Operating Systems
Design and Implementation (October 2000)

13. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. IEEE Transactions on Software
Engineering (February 2001)

14. Evans, D.: Static Detection of Dynamic Memory Errors. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (May
1996)

15. Evans, D., Peck, M.: Simulating Critical Software Development. University of Virginia
Computer Science Technical Report, UVA-CS-TR2004-04 (February 2004)

16. Evans, L.: Traffic Safety. Science Serving Society Press (2004),
 http://scienceservingsociety.com/traffic-safety.htm

17. Evans, L.: Personal communication (April 2005)
18. Gates, B.: Trustworthy Computing Initiative (memo to all Microsoft employees) (January

15, 2002)
19. Howard, M., Pincus, J., Wing, J.M.: Measuring Relative Attack Surfaces. In: Proceedings

of Workshop on Advanced Developments in Software and Systems Security, Taipei
(December 2003)

20. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabilities. In:
USENIX Security Symposium (August 2001)

21. Microsoft Corporation. Trustworthy Computing, http://www.microsoft.com/twc
22. Musuvathi, M., Park, D., Chou, A., Engler, D.R., Dill, D.L.: CMC: A Pragmatic Approach

to Model Checking Real Code. In: Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (December 2002)

23. Ozment, A.: Bug Auctions: Vulnerability Markets Reconsidered. In: Workshop on
Economics and Information Security (May 2004)

24. Rinard, M.: Acceptability-Oriented Computing. In: ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications Companion
(OOPSLA 2003 Companion) Onwards! Session, California (October 2003)

25. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., Beebee Jr, W.S.: Enhancing
Server Availability and Security Through Failure-Oblivious Computing. In: Proceedings of
the 6th Symposium on Operating Systems Design and Implementation (December 2004)

 Toasters, Seat Belts, and Inferring Program Properties 361

26. Swift, M., Annalamai, M., Bershad, B., Levy, H.: Recovering Device Drivers. In:
Proceedings of the 6th Symposium on Operating Systems Design and Implementation
(December 2004)

27. Yang, J., Evans, D.: Dynamically Inferring Temporal Properties. In: ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (June
2004)

28. Yang, J., Evans, D.: Automatically Inferring Temporal Properties for Program Evolution.
In: 15th IEEE International Symposium on Software Reliability Engineering (November
2004)

29. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: Mining Temporal API
Rules from Imperfect Traces. In: 28th International Conference in Software Engineering
(May 2006)

30. Weimer, W., Necula, G.: Mining Temporal Specifications for Error Detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476. Springer,
Heidelberg (2005)

31. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented component
interfaces. In: International Symposium on Software Testing and Analysis (July 2002)

	Toasters, Seat Belts, and Inferring Program Properties
	Introduction
	Incentivizing Verification
	Identifying Properties
	Towards Software Guarantees
	Education
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

