Verified Software: The Real Grand Challenge

Ramesh Bharadwaj

Center for High Assurance Computer Systems,
Naval Research Laboratory,
Washington DC, 20375, USA
ramesh@itd.nrl.navy.mil

Abstract. This position paper addresses, and attempts to propose solu-
tions for, critical issues in software engineering that need to be resolved
before the Verified Software grand challenge as proposed by Professor
Tony Hoare can be usefully exploited in industry to increase the assur-
ance of software intensive systems.

1 Introduction

The following assumptions about programs and their correctness (which I refer
to in the sequel as “assumptions”) are implicit in the problem description of
the Verifying Compiler Grand Challenge: 1) Associated with each program are
types, assertions, and other annotationd] that are readily available. 2) They are
unassailable, inviolable, and invariant. 3) Their correctness is both necessary
and sufficient for the correctness of the programs they annotate. In this paper,
I argue that for programs that are intended to solve real-world problems, the
subject of my research for more than fifteen years, none of these assumptions
necessarily holds. I proceed to explain how this problem may be addressed, and
conclude with what I think are more realistic expectations on the impact of the
grand challenge problem and its solutions on real-world software development
projects.

2 Problem Statement

For programs whose behavior is easily specified as mathematical functions, it is
conceivable that the assumptions are valid. An example of such a program is
one that implements the 4-coloring algorithm for planar graphs. If we assume
that program annotations can characterize the function being computed by the
program, the proof of its correctness is probably derivable from the proof of
correctness of the 4-coloring problem. However, even for such programs, the cor-
rectness of its annotations is often predicated upon extraneous factors in the
program’s execution environment, such as the word length of the processor, the
size of the address space, or the amount of available memory. This is because

1 T shall loosely use the term “annotations” to refer to this redundant information.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 318-324] 2008.
© IFIP International Federation for Information Processing 2008

Verified Software: The Real Grand Challenge 319

program code is generically written for an abstract machine; the program may
execute on a real machine that may not correctly implement some of these ab-
stractions. In such an event, the program will fail in unexpected ways. Also,
program annotations may never be able to capture quantitative aspects such
as the space and time requirements of the program. Such properties are central
to the program’s “correctness” since correctness often entails user expectations
about the time and space requirements for successful execution on specific data
sets. Even if we assume that it is feasible to precisely characterize such ma-
chine requirements and non-functional properties, it is not clear to me how their
correctness could possibly be established by a verifying compiler.

The situation becomes hopeless for programs the correctness of whose anno-
tations depends upon extraneous factors. This is the case even when the speci-
fication of a program is precisely characterized as a mathematical function; the
problem is, it is often impossible to ascertain with 100% accuracy what this
function is. My favorite example is sales tax computation. In a bygone era, when
I used to write programs for a living, I was under the naive impression that
the precise nature of mathematical logic makes the problem of program correct-
ness a mere exercise in calculation. Imagine my surprise when, in response to
my Management’s decision to start charging for certain transactions, I had my
first brush with sales tax laws. In the United States, for businesses that conduct
transactions with customers in more than one state, correctly figuring out the
sales tax for a specific transaction can be a daunting challenge [12]. Sales tax
collection falls within the purview of more than 7,500 state and local administra-
tions, each with its own specific set of rules and regulations. A business located
in the United States is required to comply with all the regulations in effect at
the location of each of its customers. Clearly, computing the correct sales tax is
crucial to the very survival of the business.

Consider a program that is required to compute the sales tax associated with
a sale: the correct tax rate varies with the location of the sale (which may not
necessarily be the location of the computer on which the program is run), the
sales tax to be levied at that location, and all applicable legislation(s) pertaining
to the transactior]. For example, California law provides for the exemption of
sales tax on food products subject to the following restrictions:

Sales of food for human consumption are generally exempt from tax un-
less sold in a heated condition (except hot bakery items or hot beverages,
such as coffee, sold for a separate price), served as meals, consumed at
or on the seller’s facilities, ordinarily sold for consumption on or near
the seller’s parking facility, or sold for consumption where there is an
admission charge.

It is inconceivable that the above conditions and restrictions could be specified
precisely in the form of program assertions. For example, how does one formalize
notions such as “except hot bakery items” or “near the seller’s parking facility?”

2 An interesting discussion on Sales and Use taxes for transactions carried out via the
Internet in the United States is found at [12].

320 R. Bharadwayj

How can one ascertain that the formulations are correct? How will a program-
mer devise algorithms for their computation? How is the correctness of these
algorithms established? Automatically?

One could argue that since the tax code is vague, confusing, and open to inter-
pretation, the above example does not invalidate the aims of the grand challenge.
Therefore, the argument goes, no methodology, formal or informal, can ever pro-
duce a system that is correct with respect to such an imprecise specification. An
optimist may therefore suggest that one of the benefits that society will derive
from this grand challenge would be to make the notion of precise and ambiguous
specification a widely known and accepted concept of humankind. But, I'm too
wizened and all too familiar with the fraility of human beings that I remain
a skeptic. T put forth three arguments in my defence: (1) The pace of current
day systems development, coupled with ever-changing requirements, and the
non-technical background of major decision makers, precludes such optimistic
thinking. There’s never going to be enough time or money to maintain two dis-
tinct, yet accurate descriptions of the same system. (2) Even if we assume that
we have the time and money to maintain a mathematically precise specification,
how (who) is this going to be maintained (by)? Let’s face it, we’re never going to
become a technocratic society. Technology is, and will continue to be understood
by a small minority whose job is, and will continue to be, the “dumbing down”
of systems to make them usable by the masses. Since specifications are never
intended to be “run” (I consider the term “executable specification” to be an
oxymoron) the social processes necessary to weed out bugs are never going to be
in place. According to reliable sources [I1], the “specification” in Z of the IBM
CICS system was understood and read by only one member of the project team,
i.e., the writer of the specification; subsequent attempts to wean developers away
from their informal specification proved futile, which is when, as a last resort,
English text was derived manually from the formal specification for developers to
comment upon. (3) It is not the case that specifications are always clearer, more
concise, or more comprehensible than the corresponding implementations (i.e.,
code). Case in point: In the ’70s, incompleteness in the formal specification of
something as trival as the routine “sort” went unnoticed by several great minds,
including members of this august body. Therefore, it is my firm belief that the
social processes needed to weed out the bugs in specifications are likely to be
more expensive (and unnecessary) in comparison to the weeding out of bugs in
the code. Specifications may not be always worth the trouble.

3 Requirements Specifications

My exposure to programs that solve real-world problems led me to the world of
software engineering, where one addresses the problem of determining customer
needs and their precise characterization in the form of a specification. By speci-
fication I mean a description of the required behavior of a system, sub-system, or
component. In general, a specification describes what is being computed, omitting
details of how this is achieved. Two important goals are to make the specification

Verified Software: The Real Grand Challenge 321

of a system understandable to the users of the system (to enable its validation)
and making it precise, i.e., avoiding overspecification (also known implementation
bias) as well as underspeciﬁcatioxﬁ

This is a tall order, since the two goals are often in conflict: On the one hand,
the specification must be understandable to the users; therefore, its vocabulary
must only include user-visible (or environmental) quantities and exclude vari-
ables and other artefacts used in the implementation. On the other hand, since
a specification is also a “build-to” document, i.e., it is the specification of the
behavior of the implementation, its vocabulary must be linked to implementa-
tion detail. One solution to this conundrum is to specify a mapping between
the two behavioral descriptions (the so-called refinement mapping) — the specifi-
cation and the implementation. However, providing this is infeasible in practice
and I advocate instead an approach [5l6l9] where the implementation vocabulary
includes the user vocabulary, i.e., environmental quantities associated with the
externally visible behavior of the system.

This approach has two limitations: it does not address the problem of legacy
systems; it also unnecessarily constrains design choices. A more general solu-
tion to this problem (also known as the “traceability problem” in requirements
engineering) remains a daunting challenge. By traceability we mean a formal
argument that establishes a relationship between two artefacts that describe a
system at different levels of abstraction. We do not mean the manual genera-
tion and maintenance by developers of ad-hoc links (akin to hyperlinks in html)
whose semantics are not interpreted or captured by the analysis tools. The set
of problems whose solutions remain elusive are: 1) Reverse Engineering: Given a
legacy implementation, how can one automatically extract a user-understandable
description? 2) System verification: Given a user-visible specification of system
behavior, how does one ensure that an implementation satisfies the specification?
3) Refinement Mapping: How are relations between user-visible and system-
specific vocabularies established? 4) Requirements Traceability: Given an in-
stance of user-visible behavior, which components of the implementation are
responsible for implementing this behavior? 5) Trojans and Dead Code: Given
a requirements specification, which components, sub-systems, or lines of code in
the system are irrelevant to the correct operation of the system?

4 Domain Models

I have also explored another area in software engineering where precise notation
and mathematical analysis prove to be very useful. This is in requirements engi-
neering, i.e., the processes and methods employed by users and system developers
to gain an understanding of the problem being solved in building the system.
This is complementary to the specification based approach above and can be
used in addition to or instead of requirements specifications. In contrast to the

3 In other words, every implementation that satisfies the specification must be ac-
ceptable to the customer and the specification must describe every acceptable
implementation.

322 R. Bharadwayj

conventional approach, which can be costly and time consuming, requirements
engineering advocates the creation and analysis of “domain models” just for the
purpose of answering specific questions about the domain [§]. The effort involved
in creating such models is minimal and is comparable to the effort required to
peruse prose requirements to find answers to the same questions (which often
turn out to be incorrect). Using domain models, not only is there the advantage
of arriving at the right answer with mathematical certainty, but as an added
bonus, they uncover anomalies and raise issues about the domain that informal
approaches do not. Research challenges in this area include the automatic trans-
formation of domain models into requirements specifications, their verification,
validation, and maintenance. Other challenges are related to the challenges I
enumerate above pertaining to Requirements Specifications.

5 Architectural Patterns

Today’s systems are built using highly reusable software or hardware compo-
nents using the so called “system of systems” approach. Systems are typically
built by integration of highly disparate components that interact with one an-
other via a middleware infrastructure [I4]. Some of these components may be
Commercial Off The Shelf (COTS) or standard IP hardware components which
may have been developed without taking into account the requirements of the
system in which they are deployed. Further, during the design of a component,
consideration of non-functional requirements such as reliability may complicate
the design. Therefore, satisfying certain requirements of the system, such as
fault-tolerance, is better done at later stages of the development cycle during
hardware/software integration. Since the sub-components are not easily mod-
ified during system integration, the only alternative is to implement these re-
quirements by appropriately configuring the components so as to alter their
behavior at run-time. Architectural patterns are a means to rapidly develop
such mechanisms by reusing existing solutions to “similar” requirements. Using
such patterns, the system integrator can quickly develop architectural models by
assembling existing patterns to meet specific dependability requirements of an
application. The research challenges include the automatic translation of these
models into efficient runnable code, automated deployment of code on a secure,
perhaps distributed platform, and initiation of repair actions in the case of hard-
ware, network, or software failures.

We have conducted an initial study in formal verification of architectural pat-
terns in support of dependable distributed applications [I0]. This initial study
has shown that it is relatively straightforward to associate safety properties with
generic modules that implement such architectural patterns. Proofs of these prop-
erties were carried out using the standard induction technique [7] using an assump-
tion/guarantee proof system for compositional reasoning similar to [13]. Although
we have automated the proofs of safety properties for concrete instances of an ar-
chitectural pattern, an open problem is to develop automatic proof strategies for
the generic case. Also required is a polymorphic type system and generalized proof

Verified Software: The Real Grand Challenge 323

methodologies in support of architectural frameworks, which are the generators of
architectural patterns.

6 Dependable Middleware

A goal of the NRL dependable middleware project [TU213l4] is to develop infras-
tructure to support secure deployment, coordination, security, and encapsulation
mechanisms for untrusted software COTS components. With such middleware,
it should be feasible to compose and deploy untrusted components in mission-
critical applications, while guaranteeing the compliance of the application with
performance-critical properties. Such middleware is also the enabler in the cre-
ation of service-oriented architectures (SOAs), where organizations can delegate
to other organizations the responsibility of implementing, deploying, and main-
taining certain functions constituting a mission-critical application. For instance,
most businesses routinely use third-party vendors for carrying out credit card
transactions. Getting back to the problem of sales tax computation, a business
may delegate to a third party responsibility (and associated legal liability) for
computing this function within an application. The correctness of such an ap-
plication is obviously predicated upon the correctness of these outsourced func-
tions. Therefore, to ensure compliance, organizations must enter into Service
Level Agreements (SLAs) that are legally binding contracts similar to design
contracts in object oriented programming. Automatic discovery of services rel-
evant to an application’s requirements, protocols for automatically drawing up
service level agreements, ensuring the compliance of services provided by vendors
with the SLAs, dynamic composition of available services to meet the require-
ments of a specific mission-critical application, and verifying that the composed
application meets its performance-critical properties, are some of the multitude
of challenges posed by application development for service-oriented architectures.

7 Conclusion

In this position paper, I have made an attempt to put into perspective the
daunting challenges associated with Verified Software. In my opinion, the Veri-
fied Software grand challenge is merely a good start for developing methods and
tools to solve the more challenging problems of the software development indus-
try. It is hoped that the attendees of the IFIP Working Conference on Verified
Software: Theories, Tools, Experiments, will give thought to these additional
challenges, and propose a road map for tackling some of these more pressing
problems. I think the Computer Science community has abdicated responsibil-
ity for improving the state-of-practice of software development many years ago.
It is my earnest hope that this forum will serve as a springboard to invigorate the
community into making genuine research contributions that have the potential
to truly transform the software development process into an engineering activity.
In other words, to put the “engineering” back into software engineering.

324

R. Bharadwayj

References

10.

11.
12.

13.

14.

. Bharadwaj, R.: SINS:a middleware for autonomous agents and secure code mobil-

ity. In: Proc. Second International Workshop on Security of Mobile Multi-Agent
Systems (SEMAS 2002), Bologna, Italy (July 2002)

. Bharadwaj, R.: Verifiable middleware for secure agent interoperability. In: Proc.

Second Goddard IEEE Workshop on Formal Approaches to Agent-Based Systems,
Greenbelt, MD (October 2002)

. Bharadwaj, R.: A framework for the formal analysis of multi-agent systems. In:

Proc. Formal Approaches to Multi-Agent Systems, Warsaw, Poland (April 2003)

. Bharadwaj, R.: Development of dependable component-based applications. In:

Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, Springer, Heidel-
berg (2006)

. Bharadwaj, R., Heitmeyer, C.: Hardware/software co-design and co-validation us-

ing the SCR method. In: Proceedings of the IEEE International High Level Design
Validation and Test Workshop (HLDVT 1999), San Diego, CA (November 1999)

. Bharadwaj, R., Heitmeyer, C.: Developing high assurance avionics systems with

the SCR requirements methods. In: Proc. 19" IEEE Digital Avionics Systems
Conference, Philadelphia, PA (October 2000)

. Bharadwaj, R., Sims, S.: Salsa: Combining constraint solvers with BDDs for au-

tomatic invariant checking. In: Proc. 6! International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 378-394 (March
2000)

Bharadwaj, R.: Formal analysis of domain models. In: Proc. International Work-
shop on Requirements for High Assurance Systems (RHAS 2002), Essen, Germany
(September 2002)

. Heitmeyer, C., Bharadwaj, R.: Applying the SCR requirements method to the

Light Control Case Study. JUCS 6(7) (2000)

Jeffords, R.L., Bharadwaj, R.: Formal verification of architectural patterns in sup-
port of dependable distributed systems. (Submitted 2005)

D.L. Parnas. Private Communication.

TurboTax. FAQs on Sales and Use Taxes and the Internet, http://www. turbotax.
com/articles/FAQonSalesandUseTaxesandtheInternet.html

Xie, F., Browne, J.C.: Verified systems by composition from verified components.
In: Inverardi, P. (ed.) Proc. Joint 9th Eur. Softw. Eng. Conf (ESEC) and 11th
SIGSOFT Symp. on Foundations of Softw. Eng (FSE-11), Helsinki,Finland, pp.
277-286 (September 2003)

Yau, S.S., Mukhopadhyay, S., Bharadwaj, R.: Specification, analysis, and imple-
mentation of architectural patterns for dependable software systems. In: Proc.
10th TEEE Int’l Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2005), Sedona, AZ (February 2005)

http://www.turbotax.com/articles/FAQonSalesandUseTaxesandtheInternet.html
http://www.turbotax.com/articles/FAQonSalesandUseTaxesandtheInternet.html

	Verified Software: The $Real$ Grand Challenge
	Introduction
	Problem Statement
	Requirements Specifications
	Domain Models
	Architectural Patterns
	Dependable Middleware
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

