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Abstract. This paper reviews some common knowledge about estab-
lishing correctness of programs and the current status of program spec-
ification and verification. While doing so, it identifies several challenges
related to the grand challenge of building a verifying compiler. The paper
argues that invariants are central to establishing correctness of programs
and that thus, a major part of an automatic program verifier must be
automated support for verifying invariants, a significant problem in it-
self. The paper discusses where the invariants come from, what can be
involved in establishing that they hold, and the extent to which the
process of finding and proving invariants can be automated. The paper
also discusses several of the related challenges identified, argues that ad-
dressing them would make the significance to global program behavior of
feedback from a verifying compiler clearer, and recommends that many
of them should be included within the scope of the grand challenge.

1 Introduction

In undertaking to construct and exploit an automatic program verifier, one must
first focus in on the problems to be solved. There are several natural questions
that arise, e.g.:

– What does it mean to verify a program?
– What does it mean for a program to be correct? (Is “verified” sufficient?)
– Assuming program verification involves proving a set of properties:

• What types of properties are to be established?
• Where do the properties come from?
• Are the properties capable of automatic proof?

– Finally, what support should be provided by the automatic program verifier
to allow a user to best exploit it?

This paper will explore these issues, summarizing some common knowledge
about program specification, verification, and correctness, and arguing that one
major problem on which to focus is the automation of invariant proofs. The pa-
per will then note several additional challenges related to establishing invariants
and other correctness properties of programs, and take the position that, given
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the numerous challenges, the notion of a verifying compiler as a grand challenge
should be given a broad scope.

Sections 2 through 5 discuss the questions listed above. Section 6 discusses
related challenges. Finally, Section 7 presents some conclusions and discusses our
current and future research that relates to some of the challenges.

2 What Does It Mean to Verify a Program?

Program verification can be approached in more than one way. Two major ap-
proaches are assertion-based verification and model-based verification. As will be
expanded on below, to be used for complete program verification, the second
(model-based) approach needs to be combined with the first (assertion-based)
approach.

Assertion-Based Verification. Since the seminal work in [12] and [7], pro-
gram verification is often thought of in terms of assertions that can be proved
to hold at various points in the program. In particular, for programs designed
to run to completion while performing some computation, assertions at the be-
ginning and end of the program can be used to specify the expected result of
the computation. The approach is also valid for programs that run indefinitely;
in this case, assertions (about input and output streams) before reads and after
writes can be used to specify the expected visible behavior of the program.

Model-Based Verification. In model-based program verification, desired pro-
gram properties are specified by way of a model. Certain programs, particularly
ones intended to run indefinitely, are primarily intended to react to events in
their environment. Such programs are often better specified not by providing
assertions at points in the program but by giving an operational model, usually
accompanied by invariant properties of the model. This is the approach used, for
example, in SCR (Software Cost Reduction) [14], TIOA (Timed Input/Output
Automata) [18,13] and other software development tools. What then needs to
be established in verifying the program is that it refines the specification in
the sense that there is a refinement mapping or relation from a state machine
representation of the program to the state machine of the operational model.
When the operational model (specification) is intended to capture all or most
of the intended behavior of the program, verification that the program refines
the specification can be done by relating preconditions and postconditions in the
model to assertions known to hold at appropriate locations in the program. Here,
rather than serving as the program specification, the assertions serve as proof
obligations about the program. The benefit of establishing a refinement relation
from program to model is that any properties proved of the model will translate
into properties of the program. The “refinement” approach can be generalized
to allow alternative notions of implementation of a specification: e.g., forward
simulation. This approach (establishing an implementation) is one version of
model-based verification.
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To many, the term “verification” principally means another form of model-
based verification: model checking. Model checking has been used more often in
the context of hardware verification than software verification, but recent ad-
vances such as automated abstraction refinement (see, e.g., [8]) have extended
the degree of its applicability to software. When used for true verification rather
than testing for counterexamples, model checking involves exhaustively exam-
ining a set of cases that covers all the reachable states of the model in some
manner (individually, or intelligently grouped). For this reason, the size of the
state space becomes a limitation, and model checking for program verification
usually compares a very spare model of the program to a second model that
captures one property (or a small set of properties) at a time.

Models used to capture just one or a small set of properties rather than the full
functional behavior of a program can be termed property models. In verification
using model checking, the specification to be met is given as a set of properties
that are represented (directly or by transformation) as property models. Thus
model checking for full program verification requires 1) a sufficient set of prop-
erty models to adequately specify the program; 2) for each property model, an
abstract model of the program that can be given as input to the model checker
together with the property model to establish a refinement; and 3) some form
of proof that each abstract program model used is a correct abstraction of the
program—i.e., that the program refines or implements the abstract model. The
use of property models is not limited to the model checking context: Property
models are also important for capturing properties of full operational models of
programs (as, for instance, in TIOA—see, e.g., [22,23]).

Verification, Specification, and Correctness. Both verification methods
discussed above show that a program satisfies a specification. However, as will
be argued in the next section, this is not necessarily the same as showing that
the program is “correct”.

3 What Does It Mean for a Program to Be Correct?

As noted in Section 2, the term “program verification” in any sense means es-
tablishing that the program satisfies a specification. The specification may be
defined by assertions associated with various points in the program, by an oper-
ational model to which the program must conform, or by other assertions about
the program as a whole (such as liveness, or absence of deadlock or livelock),
which often are captured as specialized property models. However, correctness
of a program means that the program’s behavior matches a set of (behavioral)
requirements. Thus, for verification of a program to be equivalent to establishing
the program’s correctness, it is necessary for the specification against which it
is verified to capture these requirements.

For some programs, the requirements are clear. For example, a program that
sorts a list needs to take a list as input and produce a sorted version of the list
as output. For simple programs of this type, assertion-based verification is an
appropriate approach.
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For a very complex program, e.g., a graphical editor, the requirements for
completely correct behavior are equally complex, and it can even be unclear
what correctness ought to mean, precisely. A specification, even an operational
model, that captures all the desired behavior can be so complex as to make
reasoning about it in full detail an intractable problem. For such programs, one
may be most interested in only some particular subset of the required behavior.
This subset may cover “good” behavior from the user’s and operating system’s
point of view: Will the program terminate unexpectedly due to a segmentation
fault? Are there possible buffer overflows or deadlocks? Many properties of this
type can be captured in a straightforward way as program assertions.

Another subset of required behavior that is of interest as a program correct-
ness criterion (short of full functional correctness) is security relevant behavior.
For cases in which only the security relevant behavior is considered critically
important, correctness can mean conformance to a particular security model,
and thus model-based verification is especially appropriate.

Whatever the verification method used, verification will only establish correct-
ness of a program if the specification the program is verified against correctly
captures the requirements for the program. But, it is only possible to capture
requirements in a well-formed specification if they are consistent. Completeness
of the requirements can also be particularly important, e.g., if all exceptional
behavior must be described. Thus, analysis of well-formedness properties of re-
quirements specifications has a role in the overall effort of establishing the cor-
rectness of programs.

4 Properties: Formulation and Proof

4.1 What Types of Properties Are to Be Established?

All the program correctness properties mentioned above can be formulated as
invariants of some state machine. The simplest category from the point of view
of proof is that of state invariants: program assertions, absence of deadlock,
and many specified properties of models fall in this category. Conformance to a
model can also be cast as a state invariant of a composition automaton (repre-
senting some composition of the model and the program). Almost as simple are
safety properties, which involve at most a bounded sequence of transitions. More
difficult to prove are liveness properties, which can involve reasoning about an
unbounded sequence of states and may involve some fairness assumptions.

4.2 Where Do the Properties Come From?

In the interest of separation of concerns, one can assume, in tackling the challenge
of building an automatic program verifier, that the properties that must be
established of the program are given. However, it is clear that an automatic
verifier will not be much help in establishing program correctness if properties
that imply its correctness have not been formulated by someone. Thus, a related
challenge is to persuade developers (or other stakeholders in a piece of software)
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to specify in some form what the software is to do (i.e., its required behavior). A
further related challenge is to create a tool that, given appropriate information,
can derive assertions about a program to be used by an automatic program
verifier from assertions about an abstract model of the program’s behavior.

In the context of asserted programs, there has been some work [11] on dy-
namically discovering likely program invariants that could produce some of the
needed assertions in a program (which would then be subject to proof). There
has also been work on generating known invariants, starting from [9] and [10],
which consider program assertions. Later work includes [4], which also considers
program assertions, and [15], which considers invariant properties of specifica-
tions. Although these approaches can help furnish some of the assertions, the
connection between the assertions and program correctness would need to be
established by someone who understands what the program is supposed to do,
or how a model is supposed to behave. Creating automated support for gener-
ating program assertions from assertions about a model appears to be an open
problem.

4.3 Are the Properties Capable of Automatic Proof?

Some program assertions can be established without induction: e.g., input asser-
tions can be assumptions, other assertions can be established through weakest
precondition computations, and further assertions can be established from exist-
ing ones by the application of decision procedures. A challenge in this connection
is to develop additional decision procedures to be integrated into existing ones
that can handle data types (beyond numerical, boolean, and enumerated types)
for which many assertions are decidable.

However, for certain classes of assertions, induction is required. For example,
induction is generally needed to establish loop invariants. Induction in some form
is also generally needed to establish liveness properties. For a finite model, one
can sometimes avoid induction: properties of finite models can (if state explosion
is manageable) be established by exhaustive search (model checking). However,
establishing invariant properties of infinite (and sometimes, very large finite)
models requires theorem proving, and, typically, induction.

Thus, even though some program properties can be established by other
means, a general truly automatic program verifier would need to be able to do
induction proofs automatically. A completely general approach to doing this is
not possible, because the general problem of establishing whether an assertion is
an invariant is undecidable. In principle, provided the induction scheme is known
(as is the case, e.g., for state invariants, where induction is over the reachable
states), and provided the base and induction cases can be stated in first order
logic, valid invariants can be established by induction automatically. However,
efficiency is an issue; so is the problem that some properties being checked are
false—as may be the case for the induction step when one is trying to prove a
possibly true invariant by proving that it is inductive. In particular, proofs by in-
duction of invariants also often require strengthening of the invariants, a process
that is not always automatable. Strengthening can be automated, to a degree, as
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has been illustrated in SCR. Note that an equivalent approach to strengthening
is the introduction of additional invariants as lemmas. In the context of SCR, it
has been possible to create an induction proof strategy that uses automatically
generated invariants [15] as lemmas and that proves many properties of SCR
specifications automatically without user guidance; see, e.g., [20].

Thus, automating induction proofs of program properties is itself a challenge.
The goal would be to create a technique that would cover the kinds of asser-
tions that normally arise in practice. Techniques such as proof planning with
rippling [6,5] have had some success, but are still not sufficiently universal.

Mechanical proofs—by induction or otherwise—of correctness properties of
abstract models are often best constructed interactively. This is because for
abstract models, correctness properties can contain quite complex predicates
(e.g., the Authenticated predicate in the basic TESLA protocol model in [2]
involves existential quantifiers and is recursively defined) and are potentially
higher-order. As shown by our experience with TAME [3], efficient interactive
construction of proofs can be made more feasible if an appropriate special domain
tool or prover interface is provided. (TAME is discussed further in Section 5, and
in more detail in Section 7.)

5 How to Exploit an Automatic Program Verifier?

As has been noted above, an automatic verifier presupposes some form of spec-
ification against which to verify the program. A user better equipped to specify
is thus better equipped to verify. But such a user is also better equipped to test.
To state the obvious: the user should test the assertions before using the pro-
gram verifier, because verification is expensive; only after one has evidence that
a set of properties is likely correct should one undertake to prove the properties.
Thus, a program verifier is best used in conjunction with a testing tool.

Equally important to knowing that a program has certain properties is know-
ing why it has those properties. For example, one usually does not want a prop-
erty to be vacuously true, as might happen (in a program) for the postcondition
of an unintentionally nonterminating loop, or (in a model) when all preconditions
of transitions are false. Thus, in addition being able to prove properties, it is de-
sirable for the verifier to produce some degree of proof explanation. A variety of
theorem proving techniques provide some form of explanation. Several automatic
proof techniques provide proof explanation; examples include ACL2 [16,17] and
approaches based on proof planning such as [19]. Our tool TAME [3] provides
explanations for invariant proofs produced with interactive guidance.

However explanations are produced, the same techniques used in proof expla-
nation can be adapted to provide some explanation of proof failure—i.e., what
point and proof goal did the proof reach when the automatic verifier was unable
to continue? When the automatic verifier is unable to verify a program, the next
action needs to be either modification of the program or modification of the
specification. While performing the proper corrective action is an art form, un-
derstandable feedback from the automatic verifier is an important prerequisite
to making the correction.
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Addressing some other challenges related to the automatic program verifier
would allow the automatic verifier to be exploited as fully as possible as a tool
for establishing program correctness. The next section discusses a number of
these challenges and notes how addressing them would help.

6 Related Challenges

As noted above, the challenge of building an automatic invariant prover is a
part of the challenge of building an automatic program verifier. The challenge
of improving and expanding the scope of decision procedures also falls into this
category. But there are other challenges that, if addressed, would increase the
usefulness of an automatic verifier. Two have already been mentioned.

First, it would be helpful if software developers could be convinced to provide
some form of specification of what the software is supposed to do. With respect
to low level specification, this is not an unreasonable hope: for example, the
inclusion of assertions with C and Java code is provided for and beginning to
come into practice. It is likely unrealistic to hope that all software developers
will provide requirements specifications that capture the intended behavior of the
code. However, when the correctness of the code is essential, such specifications
are more likely to be developed.

Next, as noted in Section 2, when an operational specification of the required
behavior is available, one approach to establishing that a program refines this
specification is to relate assertions in the specification (e.g., pre- and postcon-
ditions associated with transitions) to assertions in the code. This leads to a
second challenge: automating as far as possible the mapping of assertions in
the specification to assertions in the code, based on information provided by
the user that relates program states to abstract (specification-level) states and
program segments to transitions in the specification. Even if there are no decid-
ability issues here, deriving code assertions from assertions in the specification
may not be straightforward in cases where there is not a direct relation between
individual variables in the program to variables in the specification, or when the
relation of program states to abstract states is not a simple mapping. The design
and development of generic tool support for this part of the program verification
process can thus be complicated problem.

There is a third, additional challenge related to the second: To develop sound
procedures for transforming requirements specifications expressed in forms such
as natural language or a set of logical properties into an operational requirements
specification. Implicit in this challenge is the ability to analyze requirements
specifications for such properties as consistency and completeness.

A further, fourth challenge is to develop methods that can be applied by de-
velopers in designing programs for verifiability, and induce the developers to use
them. While some such guidance already exists (e.g., avoid certain constructs),
this guidance is mostly of a “local” nature. An open question is whether guidance
can be provided for structuring programs so that particular properties (e.g., for
security, separation of data) are easier to establish.
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Addressing these challenges would help ensure first, that the automatic pro-
gram verifier is proving properties of interest and second, that the automatic
verifier’s task is made as simple as possible.

7 Conclusions, Recommendations, and Plans for the
Future

A verifying compiler that verifies assertions in programs is only part of the answer
to the problem of producing verifiably correct programs. The challenge of build-
ing an automatic program verifier can be conceived more generally as covering
not only a (possibly interactive) mechanical verifier of assertions in programs but
a mechanical verifier (almost necessarily interactive!) that a program conforms
to a model. For either the program-assertion-based or model-based verification
style, the automation of (or, failing full automation, mechanized support for)
proofs of invariants, and in particular induction proofs, will play a central role.

This paper has identified several related challenges to be met; some of them
are directly implied by the challenge of building an automatic program verifier.
Others are associated with additional parts of the process of establishing correct-
ness properties of programs. Because addressing these others will increase the
effectiveness of the automatic program verifier, it is worth considering including
them as part of the overall challenge. Below is a summary of our current and
future work that does (or will) address some of the related challenges.

The challenges identified that relate to requirements specifications are ad-
dressed in part by the SCR tool set [14]. In particular, the SCR tool set provides
for consistency and completeness checking of SCR specifications, which define
operational models. Moreover, SCR specifications can include an associated set
of properties. While the tool set does not provide a means for transforming prop-
erties to an operational model, the associated set of properties can be used to
express a property-based version of the specification, and several tools in the
tool set can be applied to showing consistency between the properties and the
operational specification.

Two of the other challenges identified above are addressed to some degree
for model-based verification by the tool TAME (Timed Automata Modeling En-
vironment) [1,3], a specialized interface to PVS [24] for proving properties of
timed I/O automata [21,22]. In particular, by providing specification templates,
TAME attempts to make specification of models easier.1 It also partially auto-
mates proofs of invariants, including state invariants, transition invariants, and
abstraction properties such as refinement and forward simulation [23] by provid-
ing a set of high level proof steps that allow a proof sketch to be mechanically
checked. For SCR specifications, TAME can prove many invariant properties
automatically. TAME provides user feedback for failed proofs both inside the
prover at the point of a proof dead end and in saved TAME proofs through

1 The SCR tool set also aims at simplifying the specification of models, but uses a
quite different approach based on tables.



316 M. Archer

structure, proof step names, and automatically generated comments. A proto-
type proof tool that translates TAME proofs into English has been implemented.
Work is continuing on improving TAME in all these areas.

It is also planned to extend the work on TAME by increasing the degree to
which proofs of invariants can be automated. This will be done by 1) devel-
oping techniques that can prove more invariants automatically by building on
previously proved invariants, by finding useful alternative instantiations of the
inductive hypothesis, and so on; and 2) exploring the possible use of techniques
such as rippling in proving invariants of TAME models.

Other plans for the near future include:

– The use TAME or a similar “special domain” PVS interface to model some
medium-sized programs and establish their correctness. The goal is to build
on the techniques used in TAME to permit program verification on a level
nearer to the level of program assertions.

– Development of prototype automated support for translating assertions at
the model level into assertions at the program level.

Some interesting lessons, and perhaps some new associated challenges, are likely
to result from these efforts.
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