
Verifying Design with Proof Scores

Kokichi Futatsugi1, Joseph A. Goguen2, and Kazuhiro Ogata3

1 Japan Advanced Institute of Science and Technology (JAIST)
futatsugi@jaist.ac.jp

2 University of California at San Diego
goguen@cs.ucsd.edu

3 NEC Software Hokuriku, Ltd. and JAIST
ogata@jaist.ac.jp

Abstract. Verifying design instead of code can be an effective and prac-
tical approach to obtaining verified software. This paper argues that
proof scores are an attractive method for verifying design, in that they
achieve a balance in which the respective capabilities of humans and
machines are utilized optimally.

1 Verifying Code or Design

Although creation of a verifying compiler is a difficult challenge, recent devel-
opments suggest that there are ways to make it easier. Systems that generate
lexical analyzers and parsers already have a long history (e.g. Lex and Yacc),
and recent work of Sorin Lerner [23] shows that the same can be done for com-
piler backends; there is also work suggesting that code generation modules can
be automatically generated (e.g. using intermediate languages). Unfortunately, a
great number of different compilers are needed in today’s software world, and the
underlying machine architectures are evolving, as are the languages, so it would
be difficult to create verifying compilers for all useful combinations of language
and platform, and code verification for such tools still remains very difficult.
Major impediments include the unsolvability of discovering loop invariants, the
potential unsolvability of loop once they are found, and the further difficulties
raised by interactivity, nondeterminism, concurrency, distribution, active agents,
and unreliable communication.

A long term approach is to use high level, application specific source lan-
guages, in order to greatly simplify source program verification by eliminating
many obscure features of current languages. In the meantime, a currently feasi-
ble approach is to verify the design of software, instead of its code; experience
shows that design verification often leads to better design, and nearly always
leads to greater conceptual clarity. An aditional motivation is that the main
sources of errors in software are in areas other than code, namely, requirements,
specification, and design.

2 The Proof Score Approach

The goal of verification in software engineering is to increase confidence in the
correctness of computer-based systems. For software verification to be genuinely

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 277–290, 2008.
c© IFIP International Federation for Information Processing 2008

278 K. Futatsugi, J.A. Goguen, and K. Ogata

useful, careful account must be taken of the context of actual use, including the
goals of the system, the underlying hardware, and the capabilities and culture
of users. Absolute certainty is not achievable in real applications, due to the
uncertainties inherent in implementation and use, e.g., breakdowns in physical
infrastructure (such as cables and computers), errors by human operators, and
flaws in connected systems (e.g., operating systems and databases).

Fully automatic theorem provers often fail to convey an understanding of their
proofs, and they are generally unhelpful when they fail because of user errors in
specifications or goals, or due to the lack of a necessary lemma or case split (both
of which are very common in practice). It follows that one should seek to make
optimal use of the respective abilities of humans and computers, so that comput-
ers do the tedious formal calculations, and humans do the high level planning;
the tradeoff between detail and comprehension should also be carefully balanced.

Proof scores are a central concept in our approach to meeting these goals; proof
scores are instructions to a proof engine, such that when they are executed (or
“played”), if everything evaluates as expected, then a desired theorem is proved.
Proof scores hide the detailed calculations done by machines, while revealing the
proof plan created by humans. Although proof scores can be used to verify code
in an imperative language (e.g., as in [20]), it generally makes more sense to
verify design rather than code. These techniques differ from model checking [5]
in their emphasis on re-usable designs (e.g., for protocols and other algorithms),
which may be instantiated in code in many different ways, as well as in their
ability to deal with systems that have an infinite number of states, and their
natural affinity for abstraction.

We have recognized that many attempts are done to use model checking tech-
niques to prove designs or algorithms which are expressed as, for example, finite
state transition systems. But they are usually expressed only using low-level
data types and very close to program code. Besides, model checking only gives
“yes” or “no with counter example”, and does not support interactive analyses
or understandings of designs.

Many proof scores have been written in CafeOBJ [6,9] for verifying properties
of distributed systems, especially distributed algorithms, component-based soft-
ware, and security protocols [8,27,31,32,34]. Several auxiliary tools have been also
been built to support this progress, including PigNose [25], Gateaux, Crème [26],
and Kumo [19]. The facilities for behavioral (or observational) proof in CafeOBJ
are important for verifying distributed systems, and its advanced module sys-
tem can be used to express the structure of proofs as well as specifications. In
addition, it provides a stable, portable, and reasonably efficient platform for the
execution of proof scores, supporting not only term rewriting, but also reason-
ing in equational logic, rewriting logic, and basic hidden algebra [3]. BOBJ [17]
has similar capabilities, featuring a powerful coinduction algorithm that has also
been used to verify distributed systems [14].

The following principles can be seen as a requirements analysis for the proof
score approach, based on the authors’ extensive experience using OBJ [10,18],
BOBJ, and CafeOBJ.

Verifying Design with Proof Scores 279

Human Computer Interaction. Since fully automatic theorem proving is
often infeasible for system verification, it is desirable to integrate the human
user in the best possible way: in particular, the proof plans or “scores” should
be as readable as possible, and helpful feedback should be provided by machines
to humans, in order to maximize their ability to contribute.

Flexible but Clear Structure. It is often desirable to arrange the parts of
a verification so as to facilitate comprehension. For example, it is often helpful
to state and use a result before it is proved, or even (during proof the planning
process) before it is known to be true. Long sequences of proof parts can be
difficult to understand, especially when there is no obvious immediate connec-
tion between two adjacent parts. But such discontinuities are rather common in
published proofs, e.g., when a series of lemmas is proved before they are used in
proving a main result. This implies that both subgoals and goal/subgoal relations
should be very clear.

Flexible Logic. Although first order predicate logic is the dominant modern
logical system, many other logics are used, and in particular, computer scientists
have developed many new logics, e.g., for database systems, knowledge repre-
sentation, and the semantic web; these include variants of propositional logic,
modal logic, intuitionistic logic, higher order logic, and equational logic. It is
desirable to be able to support as many of these as possible, as well as their
combinations, within a single tool. Moreover, the necessary incompleteness of
formal logics that have sufficient expressive power, means that users may want
to incorporate new rules of inference “on the fly,” for example, to take advantage
of a symmetry at the meta level to reduce the cases that need to be considered
in a proof.

It is often possible to simulate one logic within another, by imposing a suitable
discipline on how its rules are used; in fact, this is precisely what proof scores
accomplish. The choice of underlying basic logics for such a purpose is impor-
tant in at least three dimensions: its efficiency, its simplicity and ease of use,
and its ability to support other logics. We believe that equational logic and its
variants are the most suitable for this purpose: Equational logics are relatively
simple, have many decidable properties with associated efficient algorithms, are
relatively easy to read and write, and can support reasoning in most other logics,
e.g., by supplying appropriate definitions to an engine that can apply them by
as rewrite rules. By contrast, higher order logic and type theory are much more
complex, harder to read and write, harder to mechanize, and harder to reason
with, for both humans and machines.

Behavioral Logic. Distributed systems consist of abstract machines in which
states are hidden, but can be “observed” by certain “attribute” functions with
values in basic data types (such as integer or boolean). Behavioral (also called
observational) logic is a natural approach to verifying such systems. Three major
approaches in this area are: coalgebra (e.g., see the overview [22]); the “observa-
tional logic” of Bidoit and Henniker [2,21]; and hidden algebra [15,7], on which
our own work is based.

280 K. Futatsugi, J.A. Goguen, and K. Ogata

CafeOBJ mechanizes the special (but common) case of coinduction in which
the effects of methods (or actions) need not be considered for behavioral equiv-
alence, i.e., for which s, s′ are behaviorally equivalent if a(s) = a(s′) for all
applicable attributes a. More sophisticated models can be embedded within this
framework, particularly the OTS (Obsevational Transition Systems) model [27]
(the power of which is similar to that of unity [4]), and the TOTS (timed OTS)
model [28], which provides a logical basis for verifying real time concurrent sys-
tems with CafeOBJ.

3 Development of Proof Scores

If a specification is expressed as a set of equations and if the equations can be
used as rewriting rules for getting a simplest form of a given expression, then
the validity of a statement about the specification can be checked by getting
a simplest form of a boolean expression for the statement. The word reduction
is used for simplifying an expression by rewriting rules. If a reasoning process
can be designed in such a way that all the tedious calculations are done by
reductions, and all rules of inference are applied by setting up special contexts
for such reductions, and if every reduction gives the expected result, then the
desired theorm is proved.

Several well polished small proof scores for data types appeared in OBJ al-
ready in 80’s, e.g., see [18]. For example, they use reductions to prove induction
steps and bases, based on the structure of initial term algebras. Typical exam-
ples are proofs of associativity and commutativity of addition for Peano natural
numbers, and the identity n × (n + 1) = 2 × (1 + 2 + · · · + n) for any natural
number n.

¿From around 1997, the CafeOBJ group at JAIST [3] started to extend the
proof score method (1) to apply to distributed and real-time systems, such as
classical distributed (and/or real-time) algorithms, component-based software,
railway signal systems, secure protocols, etc., (2) to make the method applicable
to practical size problems, and (3) to automate the method. As a result, the
proof score method using reduction (rewriting) has become a promising way to
do serious proofs.

From Static to Dynamic Systems. Early proof scores in CafeOBJ included
(1) equivalences of functions over natural numbers, (2) equivalences of func-
tions over lists, (3) correctness of simple compilers from expressions to machine
code for stack machines, etc. These small proof scores realized an almost ideal
combination of high level planning and mechanical reduction. However, even for
this class of problems, some non-trivial lemma discovery and/or case spliting is
required.

Dynamic systems (i.e. systems with changing states) are common in net-
work/computer based systems, but there is no established methodology in alge-
braic specification for coping with this class of problems. The CafeOBJ language
is designed for writing formal specifications of dynamic systems based on hidden
algebra [6,12,9]. Many specifications and proof scores for dynamic systems have

Verifying Design with Proof Scores 281

been done based on hidden algebra semantics, and OTS has been selected as a
most promising model. OTS corresponds to a restricted class of hidden algebras,
such that it is possible to write specifications for OTS in a fixed standard style
that facilitates the development of specifications, and also helps in writing proof
scores, since case splits can be suggested by the specifications. The followings
publications show stages in the evolution of proof scores for dynamic systems:

– Specifying and verifying mutual exclusion algorithms by incorporating the
unity model [27].

– Introduction of a primitive version of OTS [29].
– Introduction of real-time features into OTS/CafeOBJ, and accompanying

development of proof scores methodology [28,11].
– A proper introduction of OTS/CafeOBJ and the related proof score writing

method [30,33].
– Examplesofverificationswithproof scores inOTS/CafeOBJ [31,32,34] (among

others).

From Explaining to Doing Proofs. A major factor distinguishing the stages
of evolution of proof scores is the extent of automation. This is a most important
direction of evolution for proof scores, although full automation is not a goal.
Automation by reduction is suitable for a mechanical calculation with a focused
role and a clear meaning in the context of a larger reasoning process. Early
proof scores assisted verification by doing reductions to prove necessary logical
statements for a specification. It is intended to gradually codify as many kinds
of logical statements as possible into reductions in CafeOBJ. Recently, a fully
automatic verification method for a subset of OTS has been developed. This
algorithm can be seen as an unification of several techniques for proof scores
in OTS/CafeOBJ. The following publications show the stages of automation of
proof scores:

– Mainly used for writing formal specifications, but also for proof scores [27].
– Examples with sufficiently complete proof scores [31,32,34] (among others).
– A different attempt for automatiing proof scores [25].
– A fully automatic (algorithmic) method of verification for OTS [26]1.

Environment for Proof Score Development. The Kumo system [19,13]
provides the proof score approach with greater rigor and better support for
proof debugging, although at the cost of learning to use an additional tool. Kumo
generates a website, called a proofweb, for each proof attempt that it executes.
This website has links to background tutorial material, including tutorial pages
for each major proof method used, and for the less familiar mathematical theories
used, such as hidden algebra. A somewhat similar experimental tool has been
developed for generating and displaying proof scores [36].

1 This work used the Maude rewriting engine [24] because it provides faster associative
and commutative rewriting.

282 K. Futatsugi, J.A. Goguen, and K. Ogata

4 An Example of Proof Score in CafeOBJ: An
Identify-Friend-or-Foe (IFF) Protocol

This section gives a simple but non-trivial example of proof score in CafeOBJ
to help readers get a more concrete idea of what proof score is.

Let us consider an Identify-Friend-or-Foe (IFF) protocol2, which is supposedly
used to check if an agent is a member of a group. The IFF protocol can be
described as follows:

1. Check p → q : r
2. Reply q → p : EK(r, q)

We suppose that an agent belongs to only one group, a symmetric key is given
to each group, whose members share the key, and keys are different from group
to group. If an agent p wants to check if an agent q is a member of the p’s group,
p generates a fresh random number r and sends it to q as a Check message. On
receipt of the message, q replies to the message by sending the random number r
received and the ID q, which are encrypted with the symmetric key K of the q’s
group, to p as a Reply message. On receipt of the message, p tries to decrypt the
ciphertext received with the symmetric key of the p’s group. If the decryption
succeeds and the plaintext consists of r and q, then p concludes that q is a
member of the p’s group. The protocol is supposed to have the property that if
p receives a valid Reply message from q, q is always a member of the p’s group.
The property is called the IFF property in this paper.

4.1 Modeling and Specification of the Protocol

We suppose that the cryptosystem used is perfect, there is only one legitimate
group, all members of the group are trustable, and there are also untrustable
agents who are not members. Trustable agents exactly follow the protocol, but
untrustable ones may do something against the protocol as well. The combination
and cooperation of untrustable agents is modeled as the most general intruder
(or enemy). The enemy gleans as much information as possible from messages
flowing in the network and fakes messages based on the gleaned information,
provided that the enemy cannot break the perfect cryptosystem.

We first describe the basic data types used to model the protocol. The visible
sorts corresponding to the basic data types and the related operators (if any)
are as follows:

– sort Agent denotes agents; constant enemy denotes the enemy,
– sort Key denotes symmetric keys; given an agent p, k(p) denotes the key of

the p’s group; operator p returns the argument of k(p),
– sort Rand denotes random numbers, and

2 The IFF protocol used in this paper is a modified version of the IFF system described
in Subsect. 2.2.2 of [1].

Verifying Design with Proof Scores 283

– sort Cipher denotes ciphertexts used in the protocol; given a key k, a random
number r and an agent p, enc(k, r, p) denotes the ciphertext obtained by
encrypting r and p with k; operators k, r and p return the first, second and
third arguments of enc(k, r, p).

In addition to those visible sorts, the built-in sort Bool denoting truth values is
used.

The two operators to denote the two kinds of messages are cm and rm, which
are declared as

op cm : Agent Agent Agent Rand -> Msg
and

op rm : Agent Agent Agent Cipher -> Msg ,

where Msg is the visible sort denoting messages. Operators crt, src and dst
return the first, second and third arguments of each message; operator r returns
the fourth argument of a Check message; operator c returns the fourth argument
of a Reply message. Operators cm? and rm? check if a given message is a Check
message and a Reply message, respectively. The first, second and third argu-
ments of each of cm and rm mean the actual creator, the seeming sender and the
receiver of the corresponding message. The first argument is meta-information
that is only available to the outside observer and the agent that has sent the
corresponding message, and that cannot be forged by the enemy, while the re-
maining arguments may be forged by the enemy. The network is modeled as a
multiset of messages, which is used as the storage that the intruder can use.
The network is also used as each agent’s private memory that reminds the agent
to send messages, whose first arguments are the agent. Any message that has
been sent or put once into the network is supposed to be never deleted from the
network. Consequently, the emptiness of the network means that no messages
have been sent.

The enemy tries to glean two kinds of values from the network, which are
random numbers and ciphertexts. The collections of these values gleaned by the
intruder are denoted by operators rands and ciphers, which are declared as

op rands : Network -> ColRands
and

op ciphers : Network -> ColCiphers ,

where Network is the visible sort denoting networks, ColRands is the visible
sort denoting collections of random numbers, and ColCiphers is the visible sort
denoting collections of ciphertexts. The two operators are defined in equations.
ciphers is defined as follows:

eq C \in ciphers(void) = false .
ceq C \in ciphers(M,NW) = true if rm?(M) and C = c(M) .
ceq C \in ciphers(M,NW) = C \in ciphers(NW) if not(rm?(M) and C = c(M)) .

Constant void denotes the empty multiset and operator ‘,’ in M,NW denotes the
data constructor of nonempty multisets. The equations say that a ciphertext C is

284 K. Futatsugi, J.A. Goguen, and K. Ogata

available to the enemy iff there exists a Reply message, which includes C. rands
is defined likewise.

We describe the OTS SIFF modeling the protocol. The foundation behind
the modeling is basically behavioral logic (precisely a restricted class of hidden
algebras), but other logics such as the UNITY logic can be incorporated into the
proof score approach flexibly and faithfully such as [35] thanks to the flexible
logic capability of the CafeOBJ system. Two observations and five parametrized
transitions are used. The two observations are denoted by observation operators
nw and ur, which are declared as

bop nw : Field -> Network
and

bop ur : Field -> URands,

where Field is the hidden sort denoting the state space and URands is the visible
sort denoting sets of random numbers. nw and ur are used to observe the network
and the set of used random numbers. The five transitions are denoted by action
operators sdcm, sdrm, fkcm1, fkrm1 and fkrm2, which are declared as follows:

bop sdcm : Field Agent Agent Rand -> Field
bop sdrm : Field Agent Msg -> Field
bop fkcm1 : Field Agent Agent Rand -> Field
bop fkrm1 : Field Agent Agent Cipher -> Field
bop fkrm2 : Field Agent Agent Rand -> Field .

The first two action operators formalize sending messages exactly following the
protocol and the remaining the enemy’s faking messages.

The action operators are defined in equations. sdrm is defined as follows:
ceq nw(sdrm(F,P1,M1)) = rm(P1,P1,src(M1),enc(k(P1),r(M1),P1)) , nw(F)

if c-sdrm(F,P1,M1) .
eq ur(sdrm(F,P1,M1)) = ur(F) .
ceq sdrm(F,P1,M1) = F if not c-sdrm(F,P1,M1) .

c-sdrm(F,P1,M1) equals M1 \in nw(F) and cm?(M1) and P1 = dst(M1),
which means that in state F, there exists a Check message M1 in the network,
which is addressed to P1. If this condition holds, the Reply message denoted by
rm(...) is put into the network nw(F). fkrm1 is defined as follows:
ceq nw(fkrm1(F,P1,P2,C)) = rm(enemy,P1,P2,C) , nw(F)

if c-fkrm1(F,P1,P2,C) .
eq ur(fkrm1(F,P1,P2,C)) = ur(F) .
ceq fkrm1(F,P1,P2,C) = F if not c-fkrm1(F,P1,P2,C) .

c-fkrm1(F,P1,P2,C) equals C \in ciphers(nw(F)), which means that in state
F, a ciphertext C is available to the enemy. The equations say that if a ciphertext
C is available to the enemy, the enemy can fake and send a Reply message using C.

The remaining three action operators are defined as follows:

-- for action sdcm
op c-sdcm : Field Agent Agent Rand -> Bool
eq c-sdcm(F,P1,P2,R) = not(R \in ur(F)) .

Verifying Design with Proof Scores 285

--
ceq nw(sdcm(F,P1,P2,R)) = cm(P1,P1,P2,R) , nw(F) if c-sdcm(F,P1,P2,R) .
ceq ur(sdcm(F,P1,P2,R)) = R ur(F) if c-sdcm(F,P1,P2,R) .
ceq sdcm(F,P1,P2,R) = F if not c-sdcm(F,P1,P2,R) .

-- for action fkcm1
op c-fkcm1 : Field Agent Agent Rand -> Bool
eq c-fkcm1(F,P1,P2,R) = R \in rands(nw(F)) .
--
ceq nw(fkcm1(F,P1,P2,R)) = cm(enemy,P1,P2,R) , nw(F) if c-fkcm1(F,P1,P2,R) .
eq ur(fkcm1(F,P1,P2,R)) = ur(F) .
ceq fkcm1(F,P1,P2,R) = F if not c-fkcm1(F,P1,P2,R) .

-- for action fkrm2
op c-fkrm2 : Field Agent Agent Rand -> Bool
eq c-fkrm2(F,P1,P2,R) = R \in rands(nw(F)) .
--
ceq nw(fkrm2(F,P1,P2,R)) = rm(enemy,P1,P2,enc(k(enemy),R,P1)) , nw(F)

if c-fkrm2(F,P1,P2,R) .
eq ur(fkrm2(F,P1,P2,R)) = ur(F) .
ceq fkrm2(F,P1,P2,R) = F

if not c-fkrm2(F,P1,P2,R) .

4.2 Proof Score of the IFF Property

The IFF property is denoted by operator inv1. inv1(F,P1,P2,P3,K,R) equals
(not(K = k(enemy)) and rm(P1,P2,P3,enc(K,R,P2)) \in nw(F)) implies
not(P2 = enemy). We describe a proof score to prove inv1(F,P1,P2,P3,K,R)
invariant wrt SIFF. The proof is done by induction on the number of transitions
(or action operators) applied. As described, a proof score is a proof plan to prove
that a property holds for a specification. Figure 1 shows the proof plan used to
prove inv1(F,P1,P2,P3,K,R) invariant wrt SIFF. In the figure, edges mean case
splits, ovals represent intermediate nodes, which mean case splitting in progress,
and rectangles represent leaves, which mean results of case splitting. For each
rectangle, a fragment of a proof score is written; such a fragment is called a
proof passage. For case II.4.d, we use inv2(f,k,r) as lemma. inv2(F,K,R)
equals enc(K,R,enemy) \in ciphers(nw(F)) implies (K = k(enemy)).

The proof score to prove inv1(F,P1,P2,P3,K,R) invariant wrt SIFF corre-
sponds to the proof plan shown in Fig. 1 faithfully, namely that the proof score
has clear structure. Therefore, the proof score helps human users comprehend
the proof. When writing such a proof score, what you are required to do is
mainly case analyses and necessary lemma discoveries. For each case analysis,
you write a proof passage for each case obtained by the case analysis. By hav-
ing the CafeOBJ system execute the proof passage and examining the result
returned by the CafeOBJ system, you can judge that the proof is successful in
the case, a further case analysis is needed, or a lemma is needed. This is because
the proof score approach and the CafeOBJ system provide a flexible human
computer interaction mechanism in good balance such that humans make proof
plans and machines conduct tedious and detailed computations, and proof scores
have flexible structure. In the proof score approach, lemmas have not necessarily

286 K. Futatsugi, J.A. Goguen, and K. Ogata

Proof Plan

II. Inductive casesI. Base case

1. sdcm(f,q1,q2,r1)

a. c-sdcm(f,q1,q2,r1) b. not c-sdcm(f,q1,q2,r1)

2. sdrm(f,q1,m1)

a. not(rm1 = rm2)
d. not c-adrm(f,q1,m1)

b. dst(m1) = enemy c. not(dst(m1) = enemy)

rm1 = rm2

c-sdrm(f,q1,m1)

3. fkcm1(f,q1,q2,r1)

a. c-fkcm1(f,q1,q2,r1) b. not c-fkcm1(f,q1,q2,r1)

4. fkrm1(f,q1,q2,c)

d. p2 = enemy
(use inv2(f,k,r) as lemma)

c. not(p2 = enemy)

b. k = k(enemy)

a. not(rm3 = rm4)

e. not c-fkm1(f,q1,q2,c)

c-fkrm1(f,q1,q2,c)

rm3 = rm4

not(k = k(enemy)

5. fkrm2(f,q1,q2,r1)

a. not(rm5 = rm6) b. rm5 = rm6

c. not c-fkrm2(f,q1,q2,r1)c-fkrm2(f,q1,q2,r1)

Fig. 1. Proof plan to prove the IFF property

to be proved in advance thanks to flexible structure of proof scores. In the proof
of inv1(F,P1,P2,P3,K,R), inv2(f,k,r) is used before it is proved.

In this paper, we show the proof passage for case II.4.d, which is as follows:

open ISTEP
-- arbitrary objects
ops q1 q2 : -> Agent .
op c : -> Cipher .

-- assumptions
-- eq c-fkrm1(f,q1,q2,c) = true .
eq enc(k,r,enemy) \in ciphers(nw(f)) = true .
--
-- eq rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2)) .
eq p1 = enemy . eq q1 = p2 . eq q2 = p3 . eq c = enc(k,r,p2).
--
eq (k = k(enemy)) = false .
eq p2 = enemy .

-- successor state
eq f’ = fkrm1(f,q1,q2,c) .

-- check if the predicate is true.
red inv2(f,k,r) implies istep1(p1,p2,p3,k,r) .

close

Verifying Design with Proof Scores 287

Command open makes a temporary module, which imports a given module
(ISTEP in this case), and command close destroys such a temporary module.
Necessary operators and equations are declared in ISTEP. A comment starts
with a double hyphen and terminates at the end of the line. Constants q1 and
q2 denote arbitrary agents and constant c an arbitrary ciphertext. Constants
p1, p2 and p3 denote arbitrary agents, constant k an arbitrary key, and con-
stant r an arbitrary random number; those constants are declared in ISTEP
(precisely module INV imported by ISTEP). Constant f denotes an arbitrary
state and constant f’ a successor state of the state; those constants are de-
clared in ISTEP. Operator istep1 denotes a basic formula to prove in each in-
ductive case; istep1(P1,P2,P3,K,R) equals inv1(f,P1,P2,P3,K,R) implies
inv1(f’,P1,P2,P3,K,R). rm3 and rm4 in Fig. 1 correspond to rm(enemy,q1,
q2,c) and rm(p1,p2,p3, enc(k,r,p2)) in the proof passage. Instead of
rm(enemy,q1,q2,c) = rm(p1,p2,p3,enc(k,r,p2)), the four equations p1 =
enemy, q1 = p2, q2 = p3 and c = enc(k,r,p2) are declared because the for-
mer can be deduced from the latter with rewriting only, but not vice versa.
Instead of c-fkrm1(f,q1,q2,c) = true, the equation enc(k,r,enemy) \in
ciphers(nw(f)) = true is declared because the left-hand side of an equation
should be in normal form so as to use the equation effectively as a rewrite rule.
Feeding the proof passage into the CafeOBJ system, the CafeOBJ system returns
true as expected, which means that the proof is successful in this case.

For the remaining cases shown in Fig. 1, similar proof passages are written.
The CafeOBJ system also returns true’s for those cases. To prove inv2(F,K,R)
invariant wrt SIFF, a similar proof score is written, but the proof does not need
any lemmas.

5 Conclusions and Future Issues

Promising features and points to be improved of the current proof score method
can be summarized as follows:
– Specifications in CafeOBJ can be expressed in relatively high level of ab-

straction thanks to facilities of user defined data types, OTS (observational
transition systems in behavioral logics), and powerful module systems, etc.
Proof scores enjoy the same merit and can make it possible to analyze or
verify the specifications or designs in a more higher level of abstraction than
other automatic theorem provers or model checkers.

– Proof scores have a high potential for providing a practical new way of doing
proofs for designs or specifications, and in particular for providing a relatively
low cost approach to compiler verification, and more generally, to verified
code produced by application generators.

– Correctness of proof scores is relatively clear but theory for rigid correctness
argument needs to be provided.

– Case analyses and lemma discoveries in proof scores can be tedious and
difficult, but the current support for systematic management of case split-
tings and lemma discoveries are not sufficient for large scale and practical
problems.

288 K. Futatsugi, J.A. Goguen, and K. Ogata

The following are important issues for future research on the proof score method:

– Introducing interactions into the Crème algorithm [26] for guiding high level
planning by users while keeping other parts including reductions automatic.

– Farther development of the Kumo/Tatami project (done at UCSD as a sub-
project of CAFE project) [19] to realize a web (or hypertext) based proof
score writing environment.

– Explore institution morphisms [16] as a formal formalization for proof scores.
– Incorporate specific decision procedures like Presburger arithmetic into re-

ductions or as basic units of proof scores other than ordinary reductions.

References

1. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc. NY (2001)

2. Bidoit, M., Hennicker, R.: Behavioural theories and the proof of behavioural prop-
erties. Theoretical Computer Science 165(1), 3–55 (1996)

3. CafeOBJ. CafeOBJ web page (2005), http://www.ldl.jaist.ac.jp/cafeobj/
4. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,

Reading (1988)
5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge

(2000)
6. Diaconescu, R., Futatsugi, K.: CafeOBJ report: The Language, Proof Techniques,

and Methodologies for Object-Oriented Algebraic Specification. In: AMAST Series
in Computing, 6, World Scientific, Singapore (1998)

7. Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic
specification. J. UCS 6(1), 74–96 (2000)

8. Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic specification
and verification in CafeOBJ. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.)
FM 1999. LNCS, vol. 1709, pp. 1644–1663. Springer, Heidelberg (1999)

9. Futatsugi, K.: Formal methods in CafeOBJ. In: Hu, Z., Rodŕıguez-Artalejo, M.
(eds.) FLOPS 2002. LNCS, vol. 2441, pp. 1–20. Springer, Heidelberg (2002)

10. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.
In: Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, New Orleans, Louisiana (POPL 1985), pp. 52–66. ACM,
New York (1985)

11. Futatsugi, K., Ogata, K.: Rewriting can verify distributed real-time systems.
In: Proc. of International Symposium on Rewriting, Proof, and Computation
(PRC2001), Tohoku Univ, pp. 60–79 (2001)

12. Goguen, J.: Hidden algebraic engineering. In: Chrystopher Nehaniv and Masami
Ito, editors, Algebraic Engineering, pp. 17–36. World Scientific, 1998. Papers from
a conference at the University of Aizu, Japan, 24–26 March 1997; also UCSD
Technical Report CS97–569 (December 1997)

13. Goguen, J., Lin, K.: Web-based multimedia support for distributed cooperative
software engineering. In: Proceedings, International Symposium on Multimedia
Software Engineering, Papers from a conference Held in Taipei, Taiwan, pp. 25–
32. IEEE Press, Los Alamitos (2000)

14. Goguen, J., Lin, K.: Behavioral verification of distributed concurrent systems with
BOBJ. In: Ehrich, H.-D., Tse, T.H. (eds.) Proceedings of Conference on Quality
Software, pp. 216–235. IEEE Press, Los Alamitos (2003)

http://www.ldl.jaist.ac.jp/cafeobj/

Verifying Design with Proof Scores 289

15. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)

16. Goguen, J., Roşu, G.: Institution morphisms. Formal Aspects of Computing 13,
274–307 (2002)

17. Goguen, J.A., Roşu, G., Lin, K.: Conditional Circular Coinductive Rewriting with
Case Analysis. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003.
LNCS, vol. 2755, pp. 216–232. Springer, Heidelberg (2003)

18. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introduc-
ing OBJ. Technical Report SRI-CSL-92-03, SRI International, Computer Science
Laboratory (1992)

19. Goguen, J.A., Lin, K., Mori, A., Rosu, G., Sato, A.: Distributed cooperative formal
methods tools. In: Proc. of 1997 International Conference on Automated Software
Engineering (ASE 1997), Lake Tahoe, CA, November 02-05, 1997, pp. 55–62. IEEE,
Los Alamitos (1997)

20. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge (1996)

21. Bidoit, M., Hennicker, R.: Observational logic. In: Haeberer, A.M. (ed.) AMAST
1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998)

22. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science 62, 222–259 (1997)

23. Lerner, S., Millstein, T.D., Chambers, C.: Automatically proving the correctness
of compiler optimizations. In: PLDI, pp. 220–231. ACM, New York (2003)

24. Maude. Maude web page (2005), http://maude.cs.uiuc.edu/
25. Mori, A., Futatsugi, K.: CafeOBJ as a tool for behavioral system verification. In:

Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 461–470. Springer, Heidelberg (2003)

26. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Automating invariant veri-
fication of behavioral specifications (2005) (to be published)

27. Ogata, K., Futatsugi, K.: Specification and verification of some classical mutual ex-
clusion algorithms with CafeOBJ. In: Proceedings of OBJ/CafeOBJ/Maude Work-
shop at Formal Methods 1999, Theta, pp. 159–177 (1999)

28. Ogata, K., Futatsugi, K.: Modeling and verification of distributed real-time systems
based on CafeOBJ. In: Proceedings of the 16th International Conference on Au-
tomated Software Engineering (16th ASE), pp. 185–192. IEEE Computer Society
Press, Los Alamitos (2001)

29. Ogata, K., Futatsugi, K.: Specifying and verifying a railroad crossing with
CafeOBJ. In: Proceedings of the 6th International Workshop on Formal Methods
for Parallel Programming: Theory and Applications (6th FMPPTA); Part of Pro-
ceedings of the 15th IPDPS, p. 150. IEEE Computer Society Press, Los Alamitos
(2001)

30. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols.
In: Proceedings of the 4th International Workshop on Rewriting Logic and its
Applications (4th WRLA), ENTCS 71, Elsevier, Amsterdam (2002)

31. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols.
In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS
2002. LNCS, vol. 2609, pp. 441–460. Springer, Heidelberg (2003)

32. Ogata, K., Futatsugi, K.: Formal verification of the Horn-Preneel micropayment
protocol. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI
2003. LNCS, vol. 2575, pp. 238–252. Springer, Heidelberg (2002)

http://maude.cs.uiuc.edu/

290 K. Futatsugi, J.A. Goguen, and K. Ogata

33. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

34. Ogata, K., Futatsugi, K.: Equational approach to formal verification of SET. In:
Proceedings of the 4th International Conference on Quality Software (4th QSIC),
pp. 50–59. IEEE Computer Society Press, Los Alamitos (2004)

35. Ogata, K., Futatsugi, K.: Proof score approach to verification of liveness proper-
ties. In: 17th International Conference on Software Engineering and Knowledge
Engineering (17th SEKE), pp. 608–613 (2005)

36. Seino, T., Ogata, K., Futatsugi, K.: A toolkit for generating and displaying proof
scores in the OTS/CafeOBJ method. In: Proceedings of the 6th International
Workshop on Rule-Based Programming (RULE’05), Electronic Notes in Theoreti-
cal Computer Science (ENTCS), Elsevier, Amsterdam (2005)

A Discussion on Kokichi Futatsugi’s Presentation

Mark Utting

So just, could you explain a little bit more how you use the proof scores? It looks
like it is a series of boolean propositions. Are they actually testing the definition
to see if they evaluate to true? Or are they proving properties about them? Or
do you do both?

Kokichi Futatsugi

It is a sort of proving theorem. Usually, it is an induction. The induction step
is expressed by the boolean expression. And that step is justified by using the
original specification to write rules. We write rules [and] try to find simplified
forms of the boolean expressions. And if that boolean expression comes out to
be true, you win. That is the main level. Of course, it is a typical domain: you
can use it in many other ways. It is a proof. [Remaining comments not recorded.]

	Verifying Design with Proof Scores
	Verifying Code or Design
	The Proof Score Approach
	Development of Proof Scores
	An Example of Proof Score in CafeOBJ: An Identify-Friend-or-Foe (IFF) Protocol
	Modeling and Specification of the Protocol
	Proof Score of the IFF Property

	Conclusions and Future Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

