A Mechanized Program Verifier

J. Strother Moore

Department of Computer Sciences, University of Texas at Austin, Austin,
Texas 78712, USA
moore@cs.utexas.edu,
http://cs.utexas.edu/users/moore

Abstract. In my view, the “verification problem” is the theorem prov-
ing problem, restricted to a computational logic. My approach is: adopt
a functional programming language, build a general purpose formal rea-
soning engine around it, integrate it into a program and proof develop-
ment environment, and apply it to model and verify a wide variety of
computing artifacts, usually modeled operationally within the functional
programming language. Everything done in this approach is software ver-
ification since the models are runnable programs in a subset of an ANSI
standard programming language (Common Lisp). But this approach is
of interest to proponents of other approaches (e.g., verification of proce-
dural programs or synthesis) because of the nature of the mathematics of
computing. I summarize the progress so far using this approach, sketch
the key research challenges ahead and describe my vision of the role and
shape of a useful verification system.

1 Approach

The verification community seeks to build a system that can follow the reasoning
of an average human engaged in a creative, computational, problem solving task
lasting months or years and spanning an arbitrary set of application domains.

Now step back and reconsider what was just said: we seek to build a system
that follows — if not reconstructs or anticipates — the reasoning of an average
human in an arbitrary, creative, computational, problem solving task. This is
the theorem proving problem, perhaps restricted to a computational logic. We
seek to build a system that reasons about computation.

I believe one is not likely to achieve a goal unless one identifies precisely what
the goal is. My goal is build a practical theorem prover for a computational logic.
I believe that any attack on the verification problem will fail unless theorem
proving — machine assisted reasoning — is at its heart.

Myl approach to the “verification problem” is thus:

! This vision is consistent with McCarthy’s, was developed by Boyer and me and then
Kaufmann and me, and probably describes the vision of verification as seen by most
of the “Boyer-Moore” community. But the community has not been consulted. So I
use the first person pronoun here.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 268-270G] 2008.
© IFIP International Federation for Information Processing 2008

A Mechanized Program Verifier 269

Adopt a functional programming language so that programs are functions
in a mathematical theory. The particular language I use is the functional
subset of the ANSI standard programming language Common Lisp.

— The theory is described by a set of axioms and rules of inference, including
well-founded induction and a definitional principle that allows conservative
introduction of new concepts.

— The theory is directly supported by an interactive theorem prover.

— The theorem prover employs heuristics and various decision procedures so
that many “simple” proofs can be found completely automatically.

— The theorem prover is designed to operate automatically once a conjecture

is posed to it. Its behavior is determined by previously proved theorems

residing in its database. This addresses three key problems:

e Since verifying functional correctness of interesting programs requires
operation in an undecidable domain, provision for some user guidance is
unavoidable. It should not be an after-thought, nor should it force the
user to eschew powerful automatic features.

e Using previously proved lemmas to guide the system encourages the user
to think at the high level, i.e., about concepts involved in the specification
and their relationships. This also encourages the creation of libraries of
general concepts and lemmas.

e Automatic operation (with respect to previously proved theorems) fa-
cilitates proof maintenance: the task of verifying a system produced by
making incremental modifications to a previously verified one.

— The programming language and theorem prover are embedded in a pro-
gram/proof development environment in which prototyping, testing, and
proving are seamlessly integrated. Like any good programming environment,
ours supports a rich collection of code/proof structuring tools including name
scopes, modules, libraries, etc., in which the work of many other developers
can be made available. The theory must support such tools formally.

— While everything proved in this system exemplifies software verification —
the mathematical language is an ANSI standard programming language —
systems written in other languages may be modeled and verified by using
the system as a formal meta-language. This allows many different languages
to be related within a common framework.

— To demonstrate the practicality of a functional programming language the
system should be implemented in it.

— To keep the work focused on the goal, every opportunity should be taken to
verify systems of commercial (or at least, outside) interest.

A prototype of this vision of mechanized verification was first demonstrated by
Boyer and Moore in 1973 in what was called “The Edinburgh Pure Lisp Theorem
Prover.” The demonstration has been continuously improved and elaborated
through a series of so-called “Boyer-Moore theorem provers,” including Nqthm
[8] and ACL2 (by Kaufmann and Moore, with early contributions by Boyer) [21].

270 J.S. Moore

2 Progress So Far

Here is a chronology of work done by the Boyer-Moore community. This repre-
sents 35 years of unbroken pursuit of the software verification grand challenge.
This litany makes plausible the vision I describe later.

— 1970-1979. Fully automatic proof of insertion sort, including the permu-
tation property, and fully automatic proofs of many other theorems about
Pure Lisp programs [3]; the correctness of a McCarthy-Painter-like expres-
sion compiler, the soundness and completeness of a propositional tautology
checker, and the correctness of the Boyer-Moore fast string searching algo-
rithm in FORTRAN 77 [d]; proof of the correctness of a linear-time majority
vote program written in FORTRAN 77 [7]; proof that a “cruise control” pro-
gram keeps a vehicle on course in a smoothly varying cross-wind and homes
to the course if the wind becomes steady [10]. During this period, Boyer and
Moore worked on the Software Implemented Fault Tolerance (SIFT) project
[15] and our attempts to formalize the BDX 930 to explain the mix of Pascal
and machine code in that system drove much of the subsequent improvement
to the theorem prover.

— 1980-1989. The invertibility of the RSA encryption algorithm [6]; the un-
solvability of the halting problem [5]; Godel’s First Incompleteness Theorem
[34]; the correctness of a gate-level microprocessor design [I9]; the correctness
of an operating system kernel [I]; the correctness of an assembler, linker and
loader for a stack based relocatable symbolic assembly language supporting
Booleans, integer arithmetic, bit vectors, arrays, and recursive subroutine
calls — the system produced binary images for the microprocessor mentioned
earlier and the proof guaranteed functional correctness of the binary images
with respect to the machine code ISA [2]; the correctness of a compiler from
a subset of Pascal to the assembly code above and the verification of some
simple applications written in that language [38]; the correctness of a com-
piler from a subset of Pure Lisp to the assembly code [I4]; the composition
of many of the above theorems to make it possible to prove an application
program correct with the high-level language semantics and then derive in
one step the correctness of its binary image under the gate-level semantics of
the microprocessor — — this is known as the verified stack of Computational
Logic, Inc., and it was completed and published in a special issue of the
Journal of Automated Reasoning in 1989.

— 1990-1999. Proof that an NDL netlist implements the machine code ISA
of a 32-bit microprocessor and the fabrication of the microprocessor by LSI
Logic [20]; porting the verified stack to the fabricated machine by re-targeting
and re-verifying the assembler [27]; verification that a Nim-playing program
plays winning Nim and the demonstration of this program on a fabricated,
verified microprocessor using the verified stack [37]; verification of 21 of the
22 routines in the Berkeley Unix C String Library — performed by compil-
ing the library with gcc -o to obtain binary machine code for the Motorola
68020 and then verifying that with respect to a formal operational semantics
capturing 80% of the user-level 68020 instructions [I1]; proof by the same

A Mechanized Program Verifier 271

technique of a variety of other C programs, including the C code for binary
search and Hoare’s in situ Quick Sort from [24]; proof that the microarchi-
tectural design of the Motorola CAP digital signal processor (dsp) imple-
ments a certain microcode engine, including the verification that a pipeline
hazard detection algorithm was sufficient to insure bit- and cycle-accurate
equivalence of the two models [12]; use of the formal dsp microcode engine as
a simulator for the microarchitecture, because the formal microcode model
was three times faster than Motorola’s SPW model of the microarchitecture
[12]; proof of several dsp microcode programs written by Motorola [T2/T3];
proof that the microcode for the AMD K35 correctly implemented IEEE float-
ing point division — carried out before the K5 was fabricated [29]; proof that
all elementary floating point on the AMD Athlon was correctly implemented
in RTL (a variant of Verilog)[32]; proof of the soundness of a Lisp program
that checks the proofs produced by the Ivy theorem prover from Argonne
National Labs — Ivy proofs may thus be generated by unverified code but
confirmed to be proofs by a verified Lisp function [26]; proof that a security
model of the IBM 4758 secure co-processor satisfied properties required for
FIPS 140-1 Level Four certification [35]; development and production use
of a formal model at Rockwell Collins as the microarchitectural simulator
for the first silicon-implemented JVM (the design became the JEM1 of alJile
Systems, Inc.) [I8] — the formal simulator runs at 90% of the speed of a
comparable simulator written in C.

— 2000—-2005. Proofs of properties of components of the AMD Opteron and
other processors [private communication]; proof of the soundness and com-
pleteness of a Lisp implementation of a BDD package that achieves runtime
speeds of about 60% those of the CUDD package (however, unlike CUDD,
the verified package does not support dynamic variable reordering and is
thus more limited in scope) [36]; proof of correctness of the algorithms used
for floating point division and square root on the IBM Power 4 [33]; proof of
instruction equivalence between different implementations of a commercial
microprocessor [16]; proof that microcode for the Rockwell Collins AAMP7
implements a given security policy having to do with process separation [I7];
verification that the JVM bytecode produced by the Sun compiler javac on
certain simple Java classes implements the claimed functionality [28], in-
cluding verification of a small class file that spawns an unbounded number
of non-terminating threads in contention for a common data structure [30];
verification of certain properties of the Sun bytecode verifier as described in
JSR-139 for J2ME JVMs [25] (part of an ongoing effort to verify the runtime
safety of the JVM).

Many other applications are available at [23].

3 Research Challenges and Milestones

Kaufmann and T describe the our research challenges in [22]. These include the
mechanized invention of lemmas and new concepts, including the discovery of

272 J.S. Moore

inductive invariants (perhaps by augmenting a user supplied core invariant); the
use of examples and counterexamples to guide search and concept and conjecture
formation; analogy, learning and data mining in theorem proving; the adoption of
an open architecture for a theorem prover allowing it to build on other work and
to be tailored by the user in a sound way; support for parallel and collaborative
theorem proving projects; an empowering interactive user interface supporting,
among other things, interactive steering of an ongoing proof attempt; training
people to use these tools; the construction of a useful and verified theorem prover
hosted on a verified platform.

4 Discussion and Speculation

While I strongly advocate and actively work on the integration of decision pro-
cedures and static analyzers into mechanized theorem provers to ease the burden
of proof, I do not believe they are the breakthroughs needed to make software
verification palatable to the masses. I do not believe software verification will
ever be palatable to the masses (until the AI challenge is solved).

I believe that mechanized verification of the functional correctness of software
crucially depends upon the designer or some other human annotating the code
to explain the intention of important routines or blocks. This will not happen
until programmers and their masters stop measuring productivity in lines-of-
code per day and start insisting on functional correctness as a deliverable. This
will probably never be commonplace because most software is non-critical.

Nevertheless, for critical applications the software industry ought to have a
way to check the correctness of its products.

What follows is my own speculation as to the verification system of the future.
The references below point to closely related work mentioned above. Scrutiny of
those references will support my conviction that this proposal is plausible.

The necessary tool suite will have to be tightly integrated with several program-
ming languages to provide the necessary assurance, runtime efficiency and proof
power. Code portability will be provided by a virtual machine (VM). Two levels
of programming language are provided. The high-level language will be a func-
tional one — and that same language will be the mathematical language in which
proofs are conducted. [The entire Boyer-Moore project supports the conclusion
that adequate speed can be obtained via a functional language while providing
a unified framework for machine-aided reasoning.] A verified compiler will map
that language into the low level language, which will be the assembly code of the
VM [27IT4]. The formal semantics of the VM are given operationally in the logic
[25]. Thus, VM code can be verified, using the techniques of [3T] to mix induc-
tive assertion-style proofs with direct proofs. Special static analyzers, especially
something akin to escape analysis or the restrictions enforced by ACL2 on single-
threaded objects [9] (ACL2’s version of monads), will allow the mixture of func-
tional high-level programs with occasional calls to VM code for efficiency.

The entire programming environment is integrated into a theorem proving en-
vironment [21]. This keeps the user focused on the obligation to deliver correct

A Mechanized Program Verifier 273

code and eliminates cognitive dissonance. The theorem prover will make our
current systems seem weak and rigid. It will: be fully automatic but steered by
context; provide visualization and animation of the proof search process so the
user understands what is happening; be capable of using a vast database of ex-
amples to guide search, concept formation, and conjecturing; and be parallelized
so that multiple strategies can be pursued simultaneously.

5 Summary

I believe the “verification problem” is the theorem proving problem, restricted
to a computational logic. Are we likely to build a system that follows and recon-
structs human reasoning if we adopt a lesser goal?

References

1. Bevier, W.R.: A verified operating system kernel. Ph.d. dissertation, University of
Texas at Austin (1987)

2. Bevier, W.R., Hunt, W.A., Moore, J.S., Young, W.D.: Special issue on system
verification. Journal of Automated Reasoning 5(4), 409-530 (1989)

3. Boyer, R.S., Moore, J.S.: Proving theorems about pure lisp functions. J.
ACM 22(1), 129-144 (1975)

4. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York
(1979)

5. Boyer, R.S., Moore, J.S.: A mechanical proof of the unsolvability of the halting
problem. Journal of the Association for Computing Machinery 31(3), 441-458
(1984)

6. Boyer, R.S., Moore, J.S.: Proof checking the rsa public key encryption algorithm.
American Mathematical Monthly 91(3), 181-189 (1984)

7. Boyer, R.S., Moore, J.S.: Mjrty — a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 105-117.
Kluwer Academic Publishers, Automated Reasoning Series, Dordrecht (1991)

8. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Second Edition. Aca-
demic Press, New York (1997)

9. Boyer, R.S., Moore, J.S.: Single-threaded objects in ACL2. In: Krishnamurthi, S.,
Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, Springer, Heidelberg
(2002),
http://www.cs.utexas.edu/users/moore/publications/stobj/main.ps.gz

10. Boyer, R.S., Moore, J.S., Green, M.W.: The use of a formal simulator to verify a
simple real time control program. In: Beauty is Our Business: A Birthday Salute to
Edsger W. Dijkstra, pp. 54-66. Springer, Heidelberg (1990) (Texts and Monographs
in Computer Science)

11. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used micropro-
cessor. Journal of the ACM 43(1), 166-192 (1996)

12. Brock, B., Hunt Jr., W.A.: Formal analysis of the motorola CAP DSP. In:
Industrial-Strength Formal Methods, Springer, Heidelberg (1999)

13. Brock, B., Moore, J.S.: A mechanically checked proof of a comparator sort algo-
rithm. In: Engineering Theories of Software Intensive Systems, IOS Press, Ams-
terdam (to appear, 2005)

http://www.cs.utexas.edu/users/moore/publications/stobj/main.ps.gz

274

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J.S. Moore

Flatau, A.D.: A verified implementation of an applicative language with dynamic
storage allocation. Ph.d. thesis, University of Texas at Austin (1992)

Goldberg, J., Kautz, W., Mellear-Smith, P.M., Green, M., Levitt, K., Schwartz,
R., Weinstock, C.: Development and analysis of the software implemented fault-
tolerance (sift) computer. Technical Report NASA Contractor Report 172146,
NASA Langley Research Center, Hampton, VA (1984)

Greve, D., Wilding, M.: Evaluatable, high-assurance microprocessors. In: NSA
High-Confidence Systems and Software Conference (HCSS), Linthicum, MD
(March 2002), http://hokiepokie.org/docs/hcss02/proceedings.pdf

Greve, D., Wilding, M.: A separation kernel formal security policy (2003)

Greve, D.A.: Symbolic simulation of the JEM1 microprocessor. In: Gopalakrishnan,
G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 203-203. Springer,
Heidelberg (1998)

Hunt, W.A.: FM&501: A Verified Microprocessor. LNCS, vol. 795. Springer, Hei-
delberg (1994)

Hunt, W.A., Brock, B.: A formal HDL and its use in the FM9001 verification. In:
Proceedings of the Royal Society (April 1992)

Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Press, Boston (2000)

Kaufmann, M., Moore, J.S.: Some key research problems in automated theorem
proving for hardware and software verification. Revista de la Real Academia de
Ciencias (RACSAM) 98(1), 181-196 (2004)

Kaufmann, M., Moore, J.S.: The ACL2 home page. In: Dept. of Computer Sciences,
University of Texas at Austin (2006),
http://www.cs.utexas.edu/users/moore/acl2/

Kernighan, B.W., Ritchie, D.M.: The C Programming Language, Second Edition.
Prentice Hall, Englewood Cliff (1988)

Liu, H., Moore, J.S.: Executable JVM model for analytical reasoning: A study. In:
Workshop on Interpreters, Virtual Machines and Emulators 2003 (IVME 2003),
San Diego, CA, ACM SIGPLAN, New York (2003)

McCune, W., Shumsky, O.: Ivy: A preprocessor and proof checker for first-order
logic. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Rea-
soning: ACL2 Case Studies, Boston, MA, pp. 265-282. Kluwer Academic Press,
Dordrecht (2000)

Moore, J.S.: Piton: A Mechanically Verified Assembly-Level Language. In: Auto-
mated Reasoning Series, Kluwer Academic Publishers, Dordrecht (1996)

Moore, J.S.: Proving theorems about Java and the JVM with ACL2. In: Broy, M.,
Pizka, M. (eds.) Models, Algebras and Logic of Engineering Software, pp. 227-290.
IOS Press, Amsterdam (2003),
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03
Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the cor-
rectness of the kernel of the AMD5K86 floating point division algorithm. IEEE
Transactions on Computers 47(9), 913-926 (1998)

Moore, J.S., Porter, G.: The Apprentice challenge. ACM TOPLAS 24(3), 1-24
(2002)

Ray, S., Moore, J.S.: Proof styles in operational semantics. In: Hu, A.J., Mar-
tin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 67-81. Springer, Heidelberg
(2004)

http://hokiepokie.org/docs/hcss02/proceedings.pdf
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03

A Mechanized Program Verifier 275

32. Russinoff, D.: A mechanically checked proof of IEEE compliance of a register-
transfer-level specification of the AMD-K7 floating-point multiplication, division,
and square root instructions. London Mathematical Society Journal of Computa-
tion and Mathematics 1, 148-200 (1998),
http://www.onr.com/user/russ/david/k7-div-sqrt.html

33. Sawada, J.: Formal verification of divide and square root algorithms using series
calculation. In: Proceedings of the ACL2 Workshop, 2002 (April 2002),
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002

34. Shankar, N.: Metamathematics, Machines, and Godel’s Proof. Cambridge Univer-
sity Press, Cambridge (1994)

35. Smith, S:W., Austel, V.: Trusting trusted hardware: Towards a formal model for
programmable secure coprocessors. In: The Third USENIX Workshop on Electronic
Commerce (September 1998)

36. Sumners, R.: Correctness proof of a BDD manager in the context of satisfiability
checking. In: Proceedings of ACL2 Workshop 2000. Department of Computer
Sciences, Technical Report TR-00-29 (November 2000),
http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/final/

sumners2/paper . ps

37. Wilding, M.: Nim game proof. Technical Report CLI Tech Report 249, Computa-
tional Logic, Inc. (November 1991),
http://www.cs.utexas.edu/users/boyer/ftp/nqthm/nqthm-1992/examples/
numbers/nim.eventsq

38. Young, W.D.: A verified code generator for a subset of Gypsy. Technical Report 33,
Comp. Logic. Inc. Austin, Texas (1988)

A Discussion on J. Strother Moore’s Presentation

Kathi Fisler

In both the introduction to your talk and your list of open problems, there are
suggestions of strong connections to artificial intelligence. The Al researchers
that I know, all believe that the foundations of Al are now statistical more than
logical. Are we being short-sighted, if we look at this as a logical problem?

J Moore

I do not think so, because of the constraint I have posited, which was: We are
trying to reason about programs. I agree that trying to reason about the world
in general is beyond the scope of that book; but I believe trying to reason about
programs is within the scope. I could not agree more with John Rushby about
the fact that in the end, system verification requires arguing about the physical
world, and I am explicitly not trying to do that. I am trying to stay focused on
something that I believe is achievable and is amenable to a formal approach.

Greg Nelson

Jay, in discussing the Clink stack, you commented that you believe that software
verification inherently has to handle multiple levels of abstraction. A comment

http://www.onr.com/user/russ/david/k7-div-sqrt.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002
http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/final/sumners2/paper.ps
http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/final/sumners2/paper.ps
http://www.cs.utexas.edu/users/boyer/ftp/nqthm/nqthm-1992/examples/numbers/nim.eventsq
http://www.cs.utexas.edu/users/boyer/ftp/nqthm/nqthm-1992/examples/numbers/nim.eventsq

276 J.S. Moore

with which I deeply agree. In my work, I have aimed at different kinds of ab-
straction layers. There are a lot of abstractions, of course, between a while-loop
and the RTL [register transfer level], and it is enormously impressive you are
able to do that stuff. But there are equally many layers of abstraction between
the print() of "Hello world” and the bitmap that finally actually puts the bits
into the window. And most of my work has been on building verification tools
that can properly and with modular soundness reason about the abstraction
layers in object-oriented systems in higher levels of the software. They definitely
spin abstraction layers. And I guess my question is, whether you think that I
am missing anything in working at multiple abstraction layers, but the higher
layers?

J Moore

No, I agree. I feel, it is almost about abstraction, and we should recognize that.
But unfortunately, a lot of work on abstraction recognizes it by dealing what I
would guard as toy abstractions, and not actually the practical abstractions we
use, like compilers and the semantics of languages like Java, which are powerful
abstractions in themselves. And the whole idea of print(). One of the interesting
things that I did at computational logic was actually implementing a printer
that puts out a bitmap, and spend some time thinking about the question: How
do T know, that bitmap has got an "A” in it? So, yes, I believe that that level
of abstraction is just as important as the ones that we explicitly dealt with in
the stack. And all of them have to be dealt with in order to follow the kind of
reasoning, a programmer engages in constantly. And that is the real challenge
in my view.

	A Mechanized Program Verifier
	Approach
	Progress So Far
	Research Challenges and Milestones
	Discussion and Speculation
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

