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1 Motivation

The technologies developed to solve the verifying compiler grand challenge should
be generic, that is, not tied to a particular language but widely applicable to
many languages. Such technologies should also be semantics-based, that is, based
on a rigorous formal semantics of the languages.

For this, a computational logical framework with efficient executability and a
spectrum of meta-tools can serve as a basis on which to: (1) define the formal
semantics of any programming language; and (2) develop generic program anal-
ysis techniques and tools that can be instantiated to generate powerful analysis
tools for each language of interest.

Not all logical frameworks can serve such purposes well. We first list some
specific requirements that we think are important to properly address the grand
challenge. Then we present our experience with rewriting logic as supported by
the Maude system and its formal tool environment. Finally, we discuss some
future directions of research.

2 Logical Framework Requirements

Based on experience, current trends, and the basic requirements of the grand
challenge problem, we believe that any logical framework serving as a computa-
tional infrastructure for the various technologies for solving the grand challenge
should have at least the following features:

good data representation capabilities,

support for concurrency and nondeterminism,

simplicity of the formalism,

efficient implementability, and efficient meta-tools,

support for reflection,

support for inductive reasoning, preferably with initial model semantics,
support for generation of proof objects, acting as correctness certificates.
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While proponents of a framework may claim that it has all these features, in
some cases further analysis can show that it either lacks some of them, or can
only “simulate” certain features in a quite artificial way. A good example is the
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simulation/elimination of concurrency in inherently deterministic formalisms by
implementing or defining thread/process scheduling algorithms. Another exam-
ple might be the claim that the lambda calculus has good data representation
capabilities because one can encode numbers as Church numerals.

3 The Rewriting Logic/Maude Experience

At UIUC, together with several students, we are developing semantic definitions
of programming languages based on rewriting logic (RWL) [27]. Rewriting logic
meets the requirements mentioned above, and supports semantic definitions of
programming languages that combine algebraic denotational semantics and SOS
semantics in a seamless way [29]. Given a language L, its rewriting logic semantics
is a rewrite theory

Rp = (XL, EL,Ry),

where X, is a signature expressing the syntax of L, Ep is a set of equations
defining the meaning of the sequential features of L together with that of the
various state infrastructure operations, and Ry, is a set of rewrite rules defining
the semantics of the concurrent features of L.

3.1 Maude and Its Formal Tools

Rewrite theories are triples (X, E, R), with (X, E') an equational theory and R
a set of rewrite rules. Intuitively, (¥, E, R) specifies a computational system in
which the states are specified as elements of the algebraic data type defined by
(X, E), and the system’s concurrent transitions are specified by the rewrite rules
R. Rewrite theories can be executed in different languages such as CafeOBJ [22],
and ELAN [I]. The most general support for the execution of rewrite theories is
currently provided by the Maude language [6l7], in which rewrite theories with
very general conditional rules, and whose underlying equational theories can be
membership equational theories [28], can be specified and can be executed, pro-
vided they satisfy some basic executability requirements. Furthermore, Maude
provides very efficient support for rewriting modulo any combination of associa-
tivity, commutativity, and identity axioms. Since an equational theory (X, E)
can be regarded as a degenerate rewrite theory of the form (X, F, (), equational
logic is naturally a sublogic of rewriting logic. In Maude this sublogic is sup-
ported by functional modules [6], which are theories in membership equational
logic. When executed in Maude, the RWL formal semantics Ry of language L
automatically becomes an efficient interpreter for L: for example, faster than
the Linux bc interpreter, and half the speed of the Scheme interpreter.

Besides supporting efficient execution, often in the order of several million
rewrites per second, Maude also provides a range of formal tools and algorithms
to analyze rewrite theories and verify their properties. These tools can be used
almost directly to provide corresponding analysis tools for languages defined as
rewrite logic theories. A first useful formal analysis feature is its breadth-first
search command. Given an initial state of a system (a term), we can search for
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all reachable states matching a certain pattern and satisfying an equationally-
defined semantic condition P. By making P = =@, where @ is an invariant,
we get in this way a semi-decision procedure for finding failures of invariant
safety properties. Note that there is no finite-state assumption involved here:
any executable rewrite theory can thus be analyzed. For systems where the set
of states reachable from an initial state are finite, Maude also provides a linear
time temporal logic (LTL) model checker. Maude’s is an explicit-state LTL model
checker, with performance comparable to that of the SPIN model checker [24]
for the benchmarks that we have analyzed [TTUT§].

Reflection is a key feature of rewriting logic, and is efficiently supported in the
Maude implementation through its META-LEVEL module. One important fruit of
this is that it becomes quite easy to build new formal tools and to add them
to the Maude environment. Indeed, such tools by their very nature manipulate
and analyze rewrite theories. By reflection, a rewrite theory R becomes a term
R in the universal theory, which can be efficiently manipulated by the descent
functions in the META-LEVEL module. As a consequence, Maude formal tools
have a reflective design and are built in Maude as suitable extensions of the
META-LEVEL module. They include the following:

— the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence Com-
pletion tools [RITHIT3IT2]

— the Full Maude module composition tool [I1IT6]

— the Maude Predicate Abstraction tool [34]

— the Maude Inductive Theorem Prover (ITP) [5I89]

— the Real-Time Maude tool [33];

— the Maude Sufficient Completeness Checker (SCC) [23]

— the Maude Termination Tool (MTT) [14].

3.2 Unifying SOS and Equational Semantics

For the most part, equational semanticd] and SOS have lived separate lives.
Pragmatic considerations and differences in taste tend to dictate which frame-
work is adopted in each particular case. For concurrent languages SOS is clearly
superior and tends to prevail as the formalism of choice, but for deterministic
languages equational approaches are also widely used. Of course there are also
practical considerations of tool support for both execution and formal reasoning.

In the end, equational semantics and SOS, although each very valuable in its
own way, are “single hammer” approaches. Would it be possible to seamlessly
unify them within a more flexible and general framework? Could their respec-
tive limitations be overcome when they are thus unified? Our proposal is that

! In equational semantics, formal definitions take the form of semantic equations,
typically satisfying the Church-Rosser property. Both higher-order (denotational se-
mantics) and first-order (algebraic semantics) versions have been shown to be useful
formalisms. We use the more neutral term equational semantics to emphasize the
fact that denotational and algebraic semantics have many common features and can
both be viewed as instances of a common equational framework.
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rewriting logic does indeed provide one such unifying framework. The key to
this unification is what we call rewriting logic’s abstraction knob. The point is
that in equational semantics’ model-theoretic approach entities are identified by
the semantic equations, and have unique abstract denotations in the correspond-
ing models. In our knob metaphor this means that in equational semantics the
abstraction knob is always turned all the way up to its maximum position. By
contrast, one of the key features of SOS is providing a very detailed, step-by-
step formal description of a language’s evaluation mechanisms. As a consequence,
most entities —except perhaps for built-in data, stores, and environments, which
are typically treated on the side— are primarily syntactic, and computations are
described in full detail. In our metaphor this means that in SOS the abstraction
knob is always turned down to its minimum position.

How is the unification and corresponding availability of an abstraction knob
achieved? Since a rewrite theory is a triple (X, E, R), with (¥, E) an equational
theory with X' a signature of operations and sorts, and E a set of (possibly
conditional) equations, and with R a set of (possibly conditional) rewrite rules,
equational semantics is obtained as the special case in which R = ), so we only
have the semantic equations E and the abstraction knob is turned up to its
maximum position. SOS is obtained as the special case in which & = (, and
we only have (possibly conditional) rules R rewriting purely syntactic entities
(terms), so that the abstraction knob is turned down to the minimum position.

Rewriting logic’s “abstraction knob” is precisely its crucial distinction between
equations E and rules R in a rewrite theory (X, E, R). States of the computation
are then E-equivalence classes, that is, abstract elements in the initial algebra
Ty /g A rewrite with a rule in R is understood as a transition [t] — [t'] between
such abstract states. The knob, however, can be turned up or down. We can
turn it all the way down to its minimum by converting all equations into rules,
transforming (X, E, R) into (X, ), RUE). This gives us the most concrete, SOS-
like semantic description possible. Can we turn the knob “all the way up,” in the
sense of converting all rules into equations? Only if the system we are describing
is deterministic (for example, the semantic definition of a sequential language)
is this a sound procedure. In that case, the equational theory (X, RU E) should
be Church-Rosser, and we do indeed obtain a most-abstract-possible, purely
equational semantics out of the less abstract specification (X, E, R), or even out
of the most concrete possible specification (X,0, R U E). What can we do in
general to make a specification as abstract as possible? We can identify a subset
Ry C R such that: (1) Ry U E is Church-Rosser; and (2) Ry is biggest possible
with this property. In actual language specification practice this is not hard to
do. Essentially, we can use semantic equations for most of the sequential features
of a programming language: only when interactions with memory could lead to
nondeterminism (particularly if the language has threads, or they could later be
added to the language in an extension) or for intrinsically concurrent features,
are rules (as opposed to equations) really needed. In our experience, it is often
possible to specify most of the semantic axioms with equations, with relatively
few rules needed for truly concurrent or nondeterministic features. For example,
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the semantics of the JVM described in [2IIT9] has about 300 equations and 40
rules; and that of Java described in [I9] has about 600 equations but only 15
rules. A semantics for an ML-like language with threads given in [30] has only
two rules.

This distinction between equations and rules, besides giving to equational se-
mantics and SOS their due in a way not possible for the other alternative if we
were to remain within each of these formalisms, has also important practical
consequences for program analysis; because it affords a massive state space re-
duction which can make formal analyses such as breadth-first search and model
checking enormously more efficient. Because of state-space explosion, such anal-
yses could easily become infeasible if we were to use an SOS-like specification in
which all computation steps are described with rules. This capacity of dealing
with abstract states is a crucial reason why our generic tools, when instantiated
to a given programming language definition, tend to result in program analysis
tools of competitive performance. Of course, the price to pay in exchange for
abstraction is a coarser level of granularity in respect to what aspects of a com-
putation are observable at that abstraction level. For example, when analyzing
a sequential program using a semantics in which most sequential features have
been specified with equations, all sequential subcomputations will be abstracted
away, and the analysis will focus on memory and thread interactions. If a finer
analysis is needed, we can always obtain it by “turning down the abstraction
knob” to the right observability level by converting some equations into rules.
That is, we can regulate the knob to find for each kind of analysis the best
possible balance between abstraction and observability.

3.3 Languages Defined in Rewriting Logic

Many languages have already been given semantics in this way using Maude.
The language definitions can then be used as interpreters, and —in conjunction
with Maude’s search command and its LTL model checker— to formally ana-
lyze programs in those languages. For example, large fragments of Java and the
JVM have been specified in Maude this way, with the Maude rewriting logic
semantics being used as the basis of Java and JVM program analysis tools that
for some examples outperform well-known Java analysis tools [21JT9]. A similar
Maude specification of the semantics of Scheme at UTUC yields an interpreter
with .75 the speed of the standard Scheme interpreter on average for the bench-
marks tested. The specification of a C-like language and the corresponding formal
analyses are discussed in detail in [3I]. A semantics of an ML-like language with
threads was discussed in detail in [30], a modular rewriting logic semantics of
CML has been given in [4], and a definition of the Scheme language has been
given in [I0]. Other language case studies, all specified in Maude, include: BC [2],
CCS [34412], CTAO [40], Creol [25], ELOTOS [42], MSR [3138], PLAN [39140],
and the pi-calculus [41]. In fact, the semantics of large fragments of conventional
languages are by now routinely developed by UTUC graduate students as course
projects [36] in a few weeks, including, besides the languages already mentioned:
Beta, Haskell, Lisp, LLVM, Pict, Python, Ruby, and Smalltalk.
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3.4 Formal Analysis

Furthermore, Maude’s formal tools, such as its inductive theorem prover, linear
temporal logic (LTL) model-checker, and breadth-first search (BFS) capability
then become meta-tools from which we derive useful program analysis tools for
L using Rp.

We are furthermore developing new generic program analysis technologies such
as, for example, a generic partial-order reduction technique [20] than can apply to
any language L with threads, and does not require any changes to an underlying
model checker.

Correctness of a compiler can and should mean more than just correctness
with respect to functional behavior. Depending upon particular applications of
interest, certain important safety policies that transcend the basic semantics of
the language under consideration may need to be preserved. For example, in
an application referring to physical objects, consistency with respect to units of
measurement or coordinate systems needs to be assured. We are also developing
domain-specific certifiers, which are static analysis tools that check conformance
of computation with respect to particular but important domains of interest.
For example, we developed RWL-based certifiers for conformance with units of
measurement [37], and with coordinate frames [26].

The cost of generating tools for a language L this way using its formal semantic
definition Ry, is much lower (in the order of weeks) than that of building similar
language specific analysis tools (man years). For example, it took Feng Chen at
UIUC only a few weeks to develop the formal semantics of Java 1.4 (except for
its libraries) as a RWL theory R juva specified in Maude.

Furthermore, the formal analysis tools obtained for free from R j.,, and
R v m are competitive for some applications with similar language-specific tools
such a NASA-Ames’ Java Path Finder [45] and Stanford’s Java model checker
[35]. Similarly, our experiments with the generic partial order reduction tech-
nique indicate that it can achieve rates of space and time reduction similar to
those of language-specific tools such as SPIN [24].

4 Future Directions Related to the Grand Challenge

Our main point has been to emphasize the need for genericity in approaching
the grand challenge; otherwise, an answer to the challenge would have a limited
applicability to other languages besides those chosen in the challenge project.
For this, we have argued that both a computational logical framework in which
to give a precise formal semantics to programming languages, and on which to
base generic program analysis tools, would be very useful.

We have also summarized our experience so far with one such logical frame-
work, namely rewriting logic, and for applying the Maude RWL language and its
generic tools to formally analyze programs in different programming languages.
Our results, although encouraging, are very much work in progress; we would
like to advance in addition the following directions:



262

1.

J. Meseguer and G. Rosu

Modular programming language definitions in the spirit of MSOS [32]. The
goal is to build a database of reusable semantic definitions, with the seman-
tics of each language feature defined in a separate module. It should then be
possible to define the semantics of a whole language by just combining the
modules for the language features, renaming the syntax of each module to
the chosen concrete syntax.

. Developing various language-generic program analysis tools; we have already

mentioned the ongoing work on partial order reduction, which should be
further advanced; but generic abstraction tools, and also generic tools for
static analysis are two other important areas to advance.

Language-generic theorem proving environments, based on an axiomatic se-
mantics that uses the language rewriting semantics as its foundation are also
an important direction to investigate.

. Finally, it would be useful to investigate semantics-preserving translations

between languages, in particular the generation of provably correct compilers
from the formal semantics Ry, of a language L.
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A Discussion on Grigore Rosu’s Presentation

Peter Schmitt

I do not want to belittle your work, but the information you gave on formalizing
semantics of programming languages in Maude, should be taken with a little
grain of salt. We have looked at your Java semantics, the one that your grad
students did in three weeks; it is very preliminary. There are lots of Java fea-
tures that are not covered. There are no exceptions, there is no abrupt program
termination. So, it covers some parts, but not too much.

Grigore Rosu

I said fragments of languages, and, actually, we have exceptions defined in other
languages. We teach exceptions in that way, which I didn’t put in the definition
of Java. And this is not about Maude. This is about the methodology to define
languages in rewriting logic; you can use another language instead of Maude if
you want to. But I think that the methodology is viable, with Maude or without
it; that is our point.

Patrick Cousot

I had a comment similar to this one but in a different form. You should wish to
have end-users for your tool at the end, because it must correspond to something
real, not an approximation of the language and things like that. That was my
negative comment. My positive one is: I see a great analogy with the TVLA
approach. Have you tried some universal abstractions like in TVLA?

Grigore Rosu

No. So, what was your negative comment?

Patrick Cousot

If you have a definition that is 95% complete, and the 5% that are missing that
all the [difficult] problems, then it’s vain. And so, you do not have end-users,
because it is not real, and that is...

Grigore Rosu (interrupts)

Right. So, the aim would be to have complete definitions. We are working with
these libraries of features, and we like to have full definitions of the language by
putting all these features together. So, not 95% but full definitions, that is our
purpose, and that is the language. The definition of the language, that’s what
the language is.

Kathi Fisler

To what extent are you trying to get interoperability between all those languages
that you are defining? Is that at all an advantage you are going to get out of
this framework?
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Grigore Rosu

We would like to. We have not thought of that. We have not tried anything along
those lines, but I think, we should be able to.

Kathi Fisler

But that is not a thing that you could get for free just because you would like
it. Wouldn’t you have to design that in at the beginning to get this kind of
interoperation?

Grigore Rosu

I have to understand what you mean by interoperation. I mean, just to call
functions from another language?

Kathi Fisler

To have a program that got fragments written in multiple languages.

Grigore Rosu

I think, that should be quite easy to do. I cannot say ”100%, absolutely sure”,
but my feeling is that this should not be a big problem. We should keep the
things disjoint somehow, yes.

Thomas Reps

Because Patrick [Cousot] mentioned TVLA, that prompted me to comment-
because actually I wanted to make a negative comment that says something bad
about TVLA. I think you're making the same mistake that was made in TVLA,
which was to try and be all things to all people. It’s a big mistake you've got to
accept our transition systems, our transition-system definitions, our logic, etc.,
as well as our abstractions.

The alternative model is to have well-defined fragments that can be picked
up by people who can drop them into Java programs or C++ programs. So, for
example, the Parma Polyhedra library is an excellent example of that. There
is a well-defined interface based on the primitives that one needs in abstract
interpretation, plus mechanisms for defining transformers. I think that is a much
better mechanism, and I think that we would do much better in TVLA by
packaging up the basic programming abstraction of logical structures, together
with a mechanism for defining abstract transformers, and then you do what you
want with it in your programs.

There is also another layer at which to consider the issue; let me put in a plug
for Stefan Schwoon’s Weighted Pushdown System library and the Wisconsin
system WPDS++. These are things that handle the question of reachability in
weighted pushdown systems: you drop ... different weight domains into them,
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and then you get static analyzers from them. So, both of these systems are
examples of a well-defined fragment with well-defined interfaces to little pieces
that can come from others. If you try and be all things to all people, you limit
your adoptability.

Grigore Rosu

First of all, I do not think we are making a mistake with what we started.
Keep in mind that we keep the syntax separate; we only focus on the semantic
definition of the particular features of languages. And, if I can get a chance to
show you some definitions, you can see that basically, there is one rule or two at
most per language feature. So, if your particular language does not have that,
the methodology can do it, if you want to. And here, we are focusing on defining
languages, what a language is. It is this logical specification. That is a definition
of the language that I am going to use. Otherwise, what is a language? What can
I start with? Well, how can I say what it means to verify a program, if I do not
have a definition? So, we accept specification languages for requirements, but
what is a language to start with? So here, we have a description of the language,
it is executable, efficiently executable, and easy to read. So, what else do you
want?
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