Towards the Integration of Symbolic and
Numerical Static Analysis

Arnaud Venet

Kestrel Technology
4984 El Camino Real #230
Los Altos, CA 94022
arnaud@kestreltechnology.com

1 Introduction

Verifying properties of large real-world programs requires vast quantities of in-
formation on aspects such as procedural contexts, loop invariants or pointer
aliasing. It is unimaginable to have all these properties provided to a verifica-
tion tool by annotations from the user. Static analysis will clearly play a key
role in the design of future verification engines by automatically discovering the
bulk of this information. The body of research in static program analysis can be
split up in two major areas: one—probably the larger in terms of publications—is
concerned with discovering properties of data structures (shape analysis, pointer
analysis); the other addresses the inference of numerical invariants for integer
or floating-point algorithms (range analysis, propagation of round-off errors in
numerical algorithms). We will call the former “symbolic static analysis” and the
latter “numerical static analysis”. Both areas were successful in effectively an-
alyzing large applications [T6J6ITTI2/4]. However, symbolic and numerical static
analysis are commonly regarded as entirely orthogonal problems. For example,
a pointer analysis usually abstracts away all numerical values that appear in
the program, whereas the floating-point analysis tool ASTREE [2I[4] does not
abstract memory at all.

If one wants to use static analysis to support or achieve verification of real
programs, we believe that symbolic and numerical static analysis must be tightly
integrated. Consider the two code snippets in Fig. [Il If one wants to check that
the assignment operation in the first example is performed within the bounds
of the array, one needs a numerical property relating the sizes of the objects
pointed to by p and q and the parameter n. The second example constructs a
two-dimensional array of semaphores using VxWorks’ semCreate library func-
tion. If one wants to verify concurrency properties of the program, like the ab-
sence of deadlocks, one must be able to distinguish between the elements of
the sems array. In the first case, a static analyzer would have to construct an
abstract memory graph labeled with metavariables denoting the size of objects
and relate these metavariables with the program variables. The second case is
more complex, in the sense that the points-to relation itself has to be parame-
terized by array indices. These two examples are not artificial: the first one is
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void equate (int *p, int *q, int n) { for(i=0; i<10; i++)
int i; for(j=0; j<8; j++)
for(i=0; i<n; i++) sems[i] [j] = semCreate();
plil = qlil;
}

Fig. 1. Code samples illustrating the interaction of symbolic and numerical properties

characteristic of the object-oriented programming style used in the flight mis-
sion software developed at NASA for the Mars Exploration Program [23/3]; the
second one comes from the controller of a science payload developed at NASA
for the International Space Station [22].

Our research work has been mostly concerned with the design of techniques
for combining symbolic and numerical static analysis in order to discover the
kind of properties described above. We came up with a number of static analysis
algorithms [200T912TI22/23] aimed at various categories of properties and pro-
grams. This approach proved to be successful in achieving the large-scale verifi-
cation of pointer-intensive NASA flight software [23/3]. The major difficulty in
developing those kind of analyses lies in the absence of a general framework for
guiding the design. Except for the base idea of blending symbolic and numerical
structures together, these analyses have little commonalities. Since their archi-
tecture is quite complex and is tailored towards a specific class of applications,
one may cast doubts on the viability of this approach for the development of
production-level verification tools. This paper proposes a research agenda aimed
at making this technology mainstream and easily applicable to a broad spectrum
of verification problems. In Sect.[2] we will review the major achievements in the
design of mixed symbolic and numerical static analysis tools. Section [ gives an
informal description of the technical challenges of designing such analyses. In
Sect. [ we will sketch the bases of a general abstract interpretation framework
for automating the implementation of static analyzers. This framework is the
formal foundation for an effort underway at Kestrel Technology to industrialize
this static analysis technology.

2 Achievements

The first occurrence in the literature of a static analysis that mixes symbolic and
numerical approximations is an alias analysis for strongly typed languages [8/9]
that is able to discover properties such as “two lists of arbitray length share
their elements pairwise”. In that model, pointer aliasing is represented by an
equivalence relation over access paths into data structures. The abstraction is
based on a finite partitioning of the set of access paths by monomial unitary-
prefix path expressions, which are given by the Eilenberg decomposition of a
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rational language [10]. Monomial unitary-prefix path expressions have the form
mBime B ... mp, BTy where the m; are sequences of data selectors and the
B; are rational languages, called the bases of the decomposition. The key idea
consists of assigning a counter variable to each base and use standard numerical
lattices to set constraints between these counters. For example, two lists x and
y that share their elements pairwise can be described as follows:

x.(tl) hd =y.(t1) hd <= i=j

by using the numerical lattice of affine equalities [I2]. The pointer aliasing re-
lation is thus completely abstracted by a finite number of numerical relations.
We have designed an abstraction of relations over free monoids inspired by this
model that did not require any type annotation and did not incur the possible
exponential cost of the Eilenberg decomposition [I7]. The main idea was to use a
regular automaton as the base symbolic structure and assign a numerical counter
to each transition of the automaton. The automaton describes the access paths
within data structures and is constructed jointly with the aliasing relation. Since
the aliasing relation is based on this structure, changing the automaton requires
to modify the representation of the aliasing relation accordingly. This opera-
tion was carried out by endowing the abstract domain with the structure of a
cofibered domain [I7]. This allowed us to construct a pointer analysis of similar
power for dynamically typed languages like Java [20], as well as a communica-
tion analysis for systems of concurrent processes based on the m-calculus [I§].
However, this numerical model has two important drawbacks: the operations on
aliasing relations are costly and arrays cannot be represented precisely.

In order to lift these limitations we built a new numerical model based on
a different interpretation of the semantics of memory allocation. Each object
allocated in memory is assigned a timestamp, which is a numerical abstraction
of the execution trace that led to the object creation. The memory is repre-
sented by a graph whose vertices are labels of allocation statements together
with a timestamp, and whose edges represent the points-to relation. Arrays can
naturally be integrated into this scheme by simply adding a numerical index to
edges. This new model allowed us to build a flow-sensitive pointer analysis for
Java-like languages [21] and a considerably simpler communication analysis for
the m-calculus [19). Tt also allowed us to tackle the analysis of multithreaded pro-
grams. Flow-sensitive analyses are impractical in the presence of threads due to
the combinatorial blowup of interleaving. We have developed a pointer analysis
for the C language that lies between flow-sensitive and flow-insensitive analy-
ses [22]. An inexpensive flow-sensitive analysis is first run on each function in
order to build flow-insensitive points-to equations that incorporate all local loop
invariants. Then, these equations are solved using a constraint resolution algo-
rithm. This analysis can be seen as an homeomorphic extension of Andersen’s
analysis scheme [I] in which inclusion constraints are annotated by numerical
invariants. The constraint resolution algorithm is similar to Andersen’s except
that numerical operations are performed at each elementary step. The analysis
scales well and has been successfully applied to the control software of a science
payload for the International Space Station [22].



230 A. Venet

These encouraging results motivated us to apply these techniques to the large
mission-critical programs developed at NASA for the Mars Exploration Program.
We have developed a static array-bound checker for NASA flight software, called
C Global Surveyor, which is based on a numerical abstraction of the heap [23].
The focus of this tool was not so much on memory allocation, which is scarcely
used in mission-critical software, but on pointer arithmetic. In the family of
programs considered, data are organized in large structures and manipulated by
transmitting their address to generic functions. We designed a model in which
all data are referenced using a byte-based offset within the memory block where
they belong. The abstract heap is a points-to graph labeled with numerical
intervals representing offset ranges. This graph is iteratively refined by narrowing
intervals and pruning edges. The process is bootstrapped by using the memory
graph produced by Steensgaard’s analysis [16], and subsequent phases essentially
consist of arithmetic manipulations on the labels of the graph. We have applied
this static checker to codes ranging from 140 KLOC to 550 KLOC (the flight
software of the current mission Mars Exploration Rovers). On average, 80% of all
array accesses could be decided by the verifier, with the analysis speed peaking
at 100 KLOC/hour [3]. The only limiting factor was the enormous amount of
artifacts produced by the analyzer, which forced us to use an external storage
management that degraded the performances.

3 Technical Challenges

Anyone reading the literature on mixed symbolic and numerical static analysis
will likely be struck by the conceptual complexity of the algorithms. However so-
phisticated it may be, a pointer analysis relies on few simple concepts that can be
clearly stated (unification-based /inclusion-based, flow-sensitive/flow-insensitive,
store-based/storeless, etc.). Similarly, a numerical static analysis framework is
acutely described by the family of geometric shapes used to approximate point
clouds: linear affine spaces (linear equalities), higher-dimensional rectangles (in-
tervals), convex polyhedra (linear inequalities), etc. In both cases, the technical
description essentially consists of carrying out the formalization of these basic
concepts in details. In a mixed symbolic and numerical analysis, the complex-
ity stems from the association between symbolic values (object addres, channel
name, etc.) and numerical components (index in an array, loop iteration counter,
index in a list, etc.). This association seems completely arbitrary and is not sup-
ported by any general underlying concept. One could naturally question the
need of building such complex analyses and suggest instead making pointer and
numerical analyses cooperate. Such an approach has become quite popular in
the theorem proving community [7]. In some sense, this is exactly what a mixed
symbolic-numerical static analysis does. However, there is no canonical way of
combining the symbolic and numerical components so that the resulting analysis
scales well and gives precise results. The rest of this section will be devoted to
discussing these points.
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As a basis for our discussion we consider the pointer analysis of C with a byte-
based representation of memory blocks [22]. For the sake of clarity, we ignore
dynamic memory allocation. In such a model, a pointer is given by a symbolic
address a and an offset o in bytes from the beginning of the block referenced
by a. This low-level representation greatly simplifies the analysis of union types
and casts. A program configuration is made of an environment F and a heap
H. The environment maps scalar variables i to integer values and pointers p to
pairs of address and offset as follows:

E - <Zl g n17"'aik g nkapl = (a1701)7~-~7pm g (CLWL7Om)>

The heap H is a graph (V, E), such that the set of vertices V' contains addresses
and an edge (as,0s,at,0;) of E denotes the existence of a pointer in memory
block as at offset og referencing the memory cell in a; located at offset o,. For
simplicity, we ignore scalar data stored in the heap. The role of a pointer analysis
consists of abstracting sets of configurations (E, H).

First, we need to recall briefly how numerical abstract interpretation works.
Given a finite set of integer-valued variables U = {v1,...,v,}, a numerical
abstract domain NU provides a computable approximation of point clouds in
©(Z2Y). The precision of the approximation is determined by the class of numer-
ical relationships between variables of U that can be expressed in the abstract
numerical domain. The domain of intervals is one of the least expressive domains,
since no relationship between variables can be expressed. The domain of convex
polyhedra [5] can describe arbitray systems of linear inequalities over variables
of U, Karr’s domain [I2] can describe systems of linear equalities whereas the do-
main of difference-bound matrices [I5] can only express inequalities of the form
x —y < c. Expressiveness comes with a price, and the maximum number of vari-
ables that can be handled by an abstract numerical domain in practice ranges
from about a dozen for convex polyhedra, to a few tens for difference-bound
matrices, to tens of thousands for intervals.

In the case of pointer analysis, it appears in many practical situations that the
approximation of environments and heaps can be carried out independenlty with-
out incurring a significant loss of accuracy. For example, in embedded applica-
tions the pointer structure in global memory is typically set up during the initial-
ization phase and remains stable at mission time [3]. One can use a graph-based
abstraction such that an edge (as, 0s, at, 0¢) is abstracted by a triple (as, at, v),
where v € N{og,0:} describes numerical relationships between the source and
target offsets. This clear separation between environment and heap abstractions
enables the use of modified versions of existing pointer algorithms [22], so that
the computation of numerical invariants can be carried out independently from
that of the points-to graph [22], or both can be interleaved [23]. At this level, the
numerical and symbolic algorithms do really work in cooperation. Experiments
on aerospace code have shown that simple choices for the abstract domain yield
good results in practice [23122].

As for environments, there is a very natural abstraction. Given an environment
structure with k scalar variables and m pointer variables as described above, we
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have to abstract a set of k + m integer variables (scalar variables plus offsets)
and m symbolic variables. Assuming that the set A of addresses is finite, we are
left with approximating an element of p(A™ x ZZ™*). This is isomorphically
equivalent to approximating a mapping of A™ — p(Zerk). If we denote by N
the set of numerical variables {iy,...,ig,01,...,0mn}, a natural abstract domain
for the analysis is A”™ — A'N. This can be regarded as a canonical abstraction
of a set of environments. However, it poses two major scalability issues:

— since A can be large, the mapping from A™ may cause a combinatorial
explosion,
— the size of N may preclude the use of expressive numerical abstract domains.

This is a major problem, since we do need epxressive numerical abstract do-
mains in order to infer e.g., that i < n in the first example of Fig. [l The
problem is actually much deeper than achieving good precision, since computing
numerical relationships between variables is precisely what enables us to keep
the construction of the abstract heap as a separate phase [23122].

A solution to this problem consists of breaking down the “big” abstract do-
main A™ — AN into a collection of smaller, more manageable domains. This
essentially amounts to grouping variables into small clusters and applying the
same reasoning for each cluster individually. For example, one can group vari-
ables in clusters of the form C; = {a;,0j,41,...,i}. BEach cluster C; yields
an abstract domain A — N{oj,i1,...,i,}. With this collection of abstract do-
mains the analysis can infer relationships between each pointer offset and all the
integer variables. These relationships are parameterized by the address of the
memory block that may be referenced by the pointer. However, relationships
between pointers that are simultaneously manipulated within a loop (like in the
statement *p++ = *q++) are lost. This is an example of clustering using a static
criterion. Clustering can also be performed dynamically during the analysis as
done in C Global Surveyor [23]. Using variable clusters is what makes the design
of the analysis complex and intricate, mostly because a semantic operation on
a variable does not only affect this variable but also all the clusters in which
it appears. The choice of a particular clustering sets a certain tradeoff between
precision and efficiency, and depends on the characteristics of the program or
family of programs considered. This implies that clustering has to be empirically
validated on the target applications.

In conclusion, combining symbolic and numerical analyses allows us to achieve
the high level of precision required to perform automatic verification of pointer-
intensive programs. The architecture of these static analyzers enables the inte-
gration of numerical and symbolic algorithms that work in cooperation. However,
in order to achieve scalability we must introduce a layer of complexity in the
structure of the analyzer. One may question the relevance of this approach to
program verification if a complex analyzer has to be constructed for each ap-
plication. The situation is aggravated by the absence of any methodology for
designing these analyzers. We will present perspectives for addressing these is-
sues in the next section.
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4 Perspectives

4.1 Towards a General Framework

The clustering technique exposed in the previous section basically consists of cov-
ering the abstract domain A™ — N'N using smaller domains A™ — N'M where
n < m and M C N. The semantic operations on this collection of abstract do-
mains are carried out by “patching” elements belonging to overlapping clusters,
without ever using the larger domain A™ — AN'N. This computational scheme
bears a striking analogy with the techniques provided by the theory of fiber bun-
dles and sheaves [14] for studying global properties of complex topological spaces
that possess a regular structure locally. Actually, there is more than a simple
analogy, and we are currently investigating the transposition of these topologi-
cal constructs into the theory of Abstract Interpretation. We have already come
up with a framework that is able to express existing mixed symbolic-numerical
pointer analyses. The major benefit of the framework is that it provides a sys-
tematic construction of the semantic operations from an arbitrary clustering of
variables. This means that the complexity of designing such analyses can be
encapsulated in a small set of semantic operators that are used to systemati-
cally derive the analysis algorithms from a simple specification of the concrete
semantics.

4.2 Automated Generation of Static Analyzers

The implementation of this framework is underway, based on the formal spec-
ification environment SpecWare [13]. Our first objective is to be able to re-
implement existing analyses with much lesser effort. In particular, we aim at
achieving the same level of scalability. This is probably the main characteristic
of our approach: unifying the construction of semantic transformers and the def-
inition of optimizations (variable clustering) within a single formal framework.
This comes in sharp contrast with three-valued logic for example, where there
is no handle for controlling the scalability. Our experience with C Global Sur-
veyor [23] showed that there is no universal strategy for achieving scalability.
This is based on a “try and fix” process, driven by empirical data and depen-
dent on the family of applications considered. Therefore, we believe that there
is no point in trying to build a sophisticated “push button” tool that will work
well on a broad spectrum of applications. It is more important to allow the de-
velopers to customize the analysis rapidly and find the best blend of semantic
approximation and optimization. In our opinion, this quick turnaround is the
key to a successful industrialization of the technology and its widespread use.

4.3 Spectrum of Applications

If pointer or communication analyses were the only applications of a mixed
symbolic-numerical static analysis framework, however important they are, there
would not be much interest in pursuing long-term research in this direction. We
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believe that this class of static analysis has a broader range of applications for it
basically permits to attach numerical invariants to discrete structures. Numer-
ical computations form the basis of the control structure for the vast majority
of applications, and numerical properties naturally appear in resource analysis
(cpu, memory, network) and the statement of some security properties (number
of times a cryptographic object is used, number of channels open simultaneously,
etc.). In order to analyze real code the analysis must be able to attach numerical
properties to objects of the program, for example:

— the number of bytes transmitted through a channel to the channel descriptor,
— the number of times cryptographic data are used to the corresponding objects
in memory.

The properties to analyze should be expressed in the semantics of the program
and interpreted by the static analyzer generator with little intervention of the
user. It means that the property to be analyzed should be part of the specification
that forms the input of the static analyzer generator. This opens the way to the
automated generation of custom static analyzers that verify properties defined
by users who are not experts in the field, like software developers.
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A Discussion on Arnaud Venet’s Presentation

Willem-Paul de Roever

I can try to recall my algebraic topology course. What I recall from this is
that you have to get change of groups to get homology theory. So, this is what
homology, as I knew, is about: a classification of topological spaces. So, the
mathematical analysis technique is that of groups, where you compute homology
groups. What is the analogy of a homology group here?

Arnaud Venet

)

The use of the term ”"homology” stems from the striking analogy between the
algebraic structures underlying this class of static analysis and those appearing
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in algebraic topology in the context of homology theory, or more exactly coho-
mology. At this point this is nothing more than an analogy, but the connection
between these two fields are intriguing enough to motivate a deeper investigation.
In standard algebraic topology, the cohomology groups define an equivalence re-
lation on cochains that define the same covering. In our case, the analogue of
a cochain is the definition of a semantic transformer as the gluing of numerical
relations over several sets of symbolic variables that overlap. We are working
on pushing this analogy further toward a more formal connection between both
fields.
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