
The Spec# Programming System:
Challenges and Directions

Mike Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs,
K. Rustan M. Leino, Wolfram Schulte, and Herman Venter

Microsoft Research, Redmond, WA, USA
{mbarnett,rdeline,maf,leino,schulte,hermanv}@microsoft.com

bart.jacobs@cs.kuleuven.be

1 Introduction

The Spec# programming system [4] is a new attempt to increase the quality of general
purpose, industrial software. Using old wisdom, we propose the use of specifications to
make programmer assumptions explicit. Using modern technology, we propose the use
of tools to enforce the specifications. To increase its chances of having impact, we want
to design the system so that it can be widely adopted.

For a programming system to be adopted widely, we think that it must:

– build on a widely used object-oriented programming language; in our case C#;
– build on existing infrastructure and allow interoperability with existing code, here

the .NET runtime.
– fully integrate into an development environment; in our case the Microsoft Visual

Studio environment.
– build on a teachable and sound methodology; in our case a revised design-by-

contract methodology;
– include tools that enforce the methodology; in our case this includes type checking,

easily usable dynamic checking, as well as high-assurance automatic static verifi-
cation;

– support a smooth adoption path whereby programmers can gradually start taking
advantage of the benefits of specification;

– be moderate; we added only a few constructs to C#, and soundness is guaranteed
only as long as the source comes from constructs that are under our control.

In this extended abstract, we give an overview of the Spec# programming system [as
of September 2005], the rationale of its design, and a sketch of some open problems.
Spec# is currently under development at Microsoft Research, Redmond.

2 The Language

The Spec# language is a superset of C#, an object-oriented language targeted for the
.NET Platform. C# features single inheritance whose classes can implement multiple
interfaces, object references, dynamically dispatched methods, and exceptions, to men-
tion the features most relevant to this paper.

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 144–152, 2008.
c© IFIP International Federation for Information Processing 2008

The Spec# Programming System: Challenges and Directions 145

Spec# adds to C# type support for distinguishing non-null object references from
possibly-null object references [14], method specifications like pre- and postconditions,
a discipline for managing exceptions [22], and support for constraining the data fields
of objects [2]. While conceptually simple, all have some complicated consequences.
Next, we give an overview of each feature.

2.1 Non-null Types

Many errors in modern programs manifest themselves as null-dereference errors. We
have opted to add type support for nullity discrimination to Spec#, because we think
types offer the easiest way for programmers to take advantage of nullity distinctions.
Here is a list of challenges with some solutions.

Initialization of fields and arrays. For type safety, any time a variable of a non-null
type is read, the value obtained must be non-null. Without further restrictions, this
is not guaranteed for instance fields, static fields, and array elements. Spec# offers a
simple syntactic solution for instance fields, which ensures that they are initialized
before the object being constructed can be accessed. Handling non-null static fields
requires ordering restrictions on the initialization of classes. Spec# supports non-
null static fields, but the initialization restrictions are checked only at run time.
Supporting non-null element types of arrays is tricky, because there is no language
construct that marks the end of the initialization of an array’s elements.

Language interoperability. The .NET platform supports multiple languages, not all of
which may be required to support non-null types. This raises many problems, like
calling from such a language methods whose in-parameters have non-null types.
One could disallow such calls, but we want to encourage libraries to be updated
with explicit non-null information without forcing changes in the clients. A better
solution is to add non-null types to the virtual machine and to adapt the just-in-time
compiler, but this would greatly impact all virtual-machine implementations.
Arrays with non-null element types also require changes in the virtual machine,
because of array covariance. For this reason, we do not support them in Spec#.

Stability of non-nullity. One must support some form of down-cast of an expression
from a maybe-null type to a non-null type. The Spec# compiler infers the non-
nullity of local variables by performing a data-flow analysis that takes into account
type casts and tests for null. However, this is problematic for fields, whose values
may be changed between a test and a use by calls or by other threads about which
the compiler has no information.

Non-null types with various degress of type soundness have also been used in pro-
gram checking systems like LCLint [13] and are being incorporated into the object-
oriented language Eiffel [24]; see Fähndrich and Leino’s paper [14] for more informa-
tion about previous work.

2.2 Method Contracts

To allow programmers to capture more complicated properties, which may involve
more than one variable, we advocate using general specifications instead of further

146 M. Barnett et al.

enrichments to the type system. Like for example Eiffel [23], Spec# supports pre- and
postconditions of methods; these use ordinary side-effect free boolean expressions.

Inheritance. Pre- and postconditions are inherited in method overrides. Spec# allows
overrides to declare additional postconditions. However, Spec# does not allow an
override to weaken the precondition, despite the fact that this would be sound.
Here’s our justification: There is a mindset in .NET (and in Java) that the misuse
of language primitives (like indexing an array outside its bounds) and methods
always be detected and reported immediately when the violation occurs at run time.
It would seem to go against this mindset to allow an override to eliminate this
detection. Actually, though a fine syntactic convenience, there is never a need for
weakening preconditions, because a subclass can always define a new method with
a weaker precondition and let the old method call the new one.

Because of interfaces, there is a limited form of multiple inheritance. In these
cases, a method implementation can inherit its specification from several sources.
However, to avoid weakening preconditions, Spec# allows this multiple inheritance
only in certain situations where all the inherited preconditions are the same. Actu-
ally, this is not a semantic restriction in Spec#, because a class can provide different
implementations for multiply inherited methods.

Frame conditions. To reason statically about a call, one needs to know what vari-
ables the callee may modify. Specifying this frame condition is difficult, because
of information hiding: the frame condition must say that the caller’s variables are
unchanged and must allow the implementation’s variables to be changed. But these
variables are in general not visible to both the caller and the implementation. Spec#
uses syntactic and semantic abstractions to address this problem, but we do not yet
have enough evidence to evaluate whether or not this particular solution is the right
one.

Evaluation of contracts. We take the view that contracts should contribute to the spec-
ification of programs, but not to their effects. Therefore, Spec# insists that expres-
sions used in contracts be side-effect free. We do allow procedural abstraction in
contracts, as long as any procedure (method, rather) called also is side-effect free,
that is, pure. A syntactic notion of purity is overly restrictive, so we are exploring
notions of behavioral purity, but don’t have all the answers yet [6,26].

The fact that contracts are given by expressions of the language raises the prob-
lem that the evaluation of those expressions can fail. Spec# chooses to hold the
specification writer accountable for such errors. That is, contracts are enforced to
be totally defined.

2.3 Class Contracts

Invariants are key to describing the correctness of programs, and Spec# allows classes
to declare invariants that describe the internal consistency of the state of their objects.
However, the problem of maintaining invariants that span several objects has been
under-studied. Two central problems are delineating when an object invariant holds
(which is made difficult because of re-entrancy) and controlling changes to sub-objects
(which is made difficult because references to these sub-objects may be leaked).

The Spec# Programming System: Challenges and Directions 147

Spec# uses a sound methodology that addresses both of these central problems (and
the problem of writing frame conditions) [2,18,5,19]. Spec# provides a block statement
that delineates where object invariants may temporarily be violated, and it uses owner-
ship domains to confine references.

2.4 Concurrency

Multi-threading introduces the possibility of race conditions and deadlocks. This makes
data consistency even more difficult to achieve in a multi-threaded program. We feel that
a programming methodology should permit extensions that cover concurrent programs,
too. We have formulated an extension of our object-invariant methodology for multi-
threading [15]. It ensures mutual exclusion on ownership domains and maintains data
consistency. But our extension still has several shortcomings, including: it does not
check for deadlocks [but see our newer work [16]] and its locking is sometimes too
coarse-grained.

2.5 Data Abstraction

More elaborate specifications of programs require a way to present a view of objects that
abstracts away from implementation details. We find that this form of data abstraction
already exists in many .NET programs in the form of properties (which are essentially
parameter-less methods). If a property is a pure function of the state of an object and its
immediate ownership domain, then we call it a model field [9,17,21,25]. We are hopeful
that one can formulate the definition and use of model fields in a way that is amenable
to static program verification [see our newer work [20]].

3 System Architecture

Architecturally, the Spec# programming system consists of the compiler, a runtime li-
brary, and the static program verifier. Spec# has been integrated into the Microsoft Vi-
sual Studio environment. For example, violations of the non-null type system are in-
dicated by “red squigglies”, specifications of methods (including any specifications on
library methods) are available in tool tips. The static program verifier runs continuously
while editing the program and interactively produces red squigglies for semantic errors,
but it can also be run as a standalone tool.

3.1 Levels of Checking

Spec# provides three levels of checking.
The first level of checking is provided by the type checker, which runs as part of

the compiler and which must accept the program before any code is emitted. The type
checker is stronger than some other traditional type checkers in that it is sometimes
sensitive to data flow.

The second level of checking is provided by compiler-emitted run-time checks. These
checks are always emitted, but we do provide some compiler options that disable them,

148 M. Barnett et al.

because development organizations sometimes feel they have reached a point in the de-
velopment cycle where they are willing to risk not having the checks and would rather
gain performance. The run-time checks enforce many contracts, but do not enforce
the entire Spec# programming methodology. For example, frame conditions (modifies
clauses) are not checked at run time and, by default, ownership domains are not en-
forced at run time.

The third level of checking, which is optional, is provided by the Spec# static pro-
gram verifier. It enforces all contracts and the entire Spec# programming methodology,
except assume statements, which are provided for the specific purpose of introducing
a run-time check for programmer assumptions that would take great effort to prove
statically.

3.2 Contract Persistence

The Spec# compiler preserves the specifications as metadata in the same binary assem-
bly as the compiled code. This enables reuse of specifications across tools.

To enable clients of a legacy library to be verified, such a library needs to be retrofitted
with specifications. If the library cannot be converted into Spec#, we support the com-
pilation and use of out-of-band contracts in shadow assemblies. These give the illusion
that the specifications were declared in the library itself.

3.3 Static Verification

From MSIL (the .NET bytecode), Spec#’s static program verifier (whose codename
is Boogie [1]) constructs a program in its own intermediate language, BoogiePL [12].
BoogiePL is a simple imperative language with procedures. BoogiePL also supports
the introduction of uninterpreted function symbols and axioms, which makes it suitable
as a stepping stone in program verification. In fact, all of the Spec# to be verified is
translated into BoogiePL, including the axiomatization of the Spec# type system, etc.
From the BoogiePL program, Boogie infers loop invariants using abstract interpreta-
tion [10,11,7,8] and generates verification conditions (logical formulas that are valid iff
the program is correct) that it passes to an automatic theorem prover [3]. Counterexam-
ples reported by the theorem prover are translated back into error messages about the
source code, which are reported to the user.

Technology for abstract interpretation and theorem proving exist. We feel that the
work in this area has reached the kind of maturity where what is needed for Spec#
consists mainly in adapting and tuning existing technologies for the verification task
at hand. One difference from previous work is perhaps the emphasis on the heap in
Spec# programs. There is also room for improving the combination of various ab-
stract domains as well as exploring the combination of abstract domains and decision
procedures.

In the verification community, various standard or canonical formats have been
useful for interoperability, substitutability, and evaluation of tools (for example, the
primitive DIMAC format for SAT formulas). Our position is that BoogiePL is a good
candidate for playing that same role in the space of verifying programs. Boogie can
be invoked not just on MSIL assemblies, but also on BoogiePL programs directly.

The Spec# Programming System: Challenges and Directions 149

This means that other researchers can reuse the abstract interpretation and verification-
condition generation in Boogie.

4 Conclusion

We are excited about the Verification Grand Challenge working conference. We see the
largest remaining challenge to be the formulation of programming methodology that
allows modern programs to be specified and verified, as well as the serious engineering
effort to build such a programming system.

The Spec# system, including the Boogie program verifier, can be downloaded from
http://research.microsoft.com/SpecSharp.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

2. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6) (2004), www.jot.fm

3. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: Proceedings
of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering, PASTE 2005, September 2005, ACM, New York (2005)

4. Mike Barnett, K., Rustan, M.: Leino, and Wolfram Schulte. In: Barthe, G., Burdy, L., Huis-
man, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69.
Springer, Heidelberg (2005)

5. Barnett, M., Naumann, D.A.: Friends Need a Bit More: Maintaining Invariants Over Shared
State. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer, Heidelberg
(2004)

6. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstractions in spec-
ifications. In: Proceedings, 6th workshop on Formal Techniques for Java-like Programs (June
2004)

7. Chang, B.-Y.E., Leino, K.R.M.: Abstract Interpretation with Alien Expressions and Heap
Structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163. Springer,
Heidelberg (2005)

8. Chang, B.-Y.E., Leino, K.R.M.: Inferring object invariants. In: Proceedings of First Inter-
national Workshop on Abstract Interpretation of Object-Oriented Languages (AIOOL 2005)
(2005)

9. Cheon, Y., Leavens, G.T., Sitaraman, M., Edwards, S.: Model variables: cleanly supporting
abstraction in design by contract. Software—Practice and Experience 35(6), 583–599 (2005)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Fourth
Annual ACM Symposium on Principles of Programming Languages, January 1977, pp. 238–
252. ACM, New York (1977)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, January 1978, pp. 84–96 (1978)

www.jot.fm

150 M. Barnett et al.

12. DeLine, R., Rustan, K., Leino, M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical report, Microsoft Research (2005)

13. Evans, D., Guttag, J.V., Horning, J.J., Tan, Y.M.: LCLint: A tool for using specifications
to check code. In: Wile, D.S. (ed.) SIGSOFT 1994, Proceedings of the Second ACM SIG-
SOFT Symposium on Foundations of Software Engineering, December 1994. ACM SIG-
SOFT Software Engineering Notes, vol. 19(5), pp. 87–96 (1994)

14. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented
language. In: Crocker, R., Steele Jr., G.L. (eds.) Proceedings of the 2003 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications, OOP-
SLA 2003, October 2003. SIGPLAN Notices, vol. 38(11), pp. 302–312. ACM, New York
(2003)

15. Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for aggregate objects
with invariants. In: Aichernig, B.K., Beckert, B. (eds.) 3rd International Conference on Soft-
ware Engineering and Formal Methods, September 2005, pp. 137–146. IEEE, Los Alamitos
(2005)

16. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming model
for concurrent object-oriented programs. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 420–439. Springer, Heidelberg (2006)

17. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06-rev28, Iowa State University, De-
partment of Computer Science, See (2003), http://www.jmlspecs.org

18. Rustan, K., Leino, M., Müller, P.: Object invariants in dynamic contexts. In Martin Odersky.
In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg
(2004)

19. Rustan, K., Leino, M., Müller, P.: Modular verification of static class invariants. In: Fitzger-
ald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 26–42. Springer,
Heidelberg (2005)

20. Rustan, K., Leino, M., Müller, P.: A verification methodology for model fields. In: Sestoft,
P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg
(2006)

21. Rustan, K., Leino, M., Nelson, G.: Data abstraction and information hiding. ACM Transac-
tions on Programming Languages and Systems 24(5), 491–553 (2002)

22. Rustan, K., Leino, M., Schulte, W.: Exception safety for C#. In: Cuellar, J.R., Liu, Z. (eds.)
SEFM 2004—Second International Conference on Software Engineering and Formal Meth-
ods, September 2004, pp. 218–227. IEEE, Los Alamitos (2004)

23. Meyer, B.: Object-oriented Software Construction. Series in Computer Science. Prentice-
Hall International, New York (1988)

24. Meyer, B.: Attached Types and Their Application to Three Open Problems of Object-
Oriented Programming. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 1–32.
Springer, Heidelberg (2005)

25. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262. Springer, Heidelberg (2002)

26. Naumann, D.A.: Observational purity and encapsulation. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 190–204. Springer, Heidelberg (2005)

A Discussion on Rustan Leino’s Presentation

Roderick Chapman

I noticed, you spent a lot of time on declaring objects to be of type int, and then saying:
”Oh no they’re not, they’re positive.” You say it’s an int, then you say ”oh no it’s not,

http://www.jmlspecs.org

The Spec# Programming System: Challenges and Directions 151

it’s greater than or equal to nought, or it’s greater than nought, it’s positive, blah, blah,
blah...” and you seem to have to do this quite a lot.

Rustan Leino: Yes.

Roderick Chapman

Am I completely missing something about C# or does the language not have a facility
to declare integer subrange types?

Rustan Leino: No integer subrange types.

Roderick Chapman

Is this not an abominable decision? It shatters me to find that that is not in the language!

Rustan Leino

It would be great to have. Of course, the type system would not do everything for
you. You would get runtime checks or the static verifier would pick up where the type
checker leaves off, like for so many other things. But sure, that would be great. Actually,
there are a number of such things that one can imagine wanting. We’ve added a few
things to C# to make Spec#, but not everything.

Bertrand Meyer

On that last point, I am with you, Rustan. Next, you’ll be asked about even integers:
Are you going to have a special type for that? But actually, I had a different question.
In my experience, it is extremely common to have a postcondition that refers to a secret
attribute, and there is absolutely nothing wrong with this conception. Preconditions,
of course, are a different business. And the way you addressed the supposed error-
which, I think, is not an error-scared me, because then you made the attribute public,
and I suspect that in the C++/Java-tradition making an attribute public means making it
public for write as well as read. It is not the path that I would like to follow.

Rustan Leino

Yes, thank you for that comment. I made the chunk size read-only here, if that perhaps
would make you feel a little bit better. But yes, in general, we would not have to re-
port that error message for postconditions, you are quite right. You have to be a little
bit careful that it is at least protected, because if you inherit the method, then the sub-
class also has to live up to that postcondition. But indeed, preconditions-that’s more a
requirement-and invariants also help you there, because invariants can talk about the
private state. And of course, you need some ways to abstract over the state in other
ways, which we will support, but actually, for the moment, we don’t, but we will.

152 M. Barnett et al.

Jianjun Zhao

Would you tell us some lessons learned from the design of Spec# for programming
language design?

Rustan Leino

To the programming language community, for example. I think we learned many lessons
and it would be nice, if the programming language community would pick up some. Let
me just say something simple, since we are short on time, maybe we can take it more
in discussion later. You saw me move the base class constructor call I move that from
the beginning of the method to the end. Well, that is required for soundness, if you have
something like non-null types. And the interesting thing is that if you go through your
C# programs to convert them into Spec# and you add some non-null features and things,
it turns out that almost always, you call the base class constructor last. So, if we should
have any default at all, it should be to call it last. But neither C# nor Java supports that
today. So, that would be one lesson, but I think, there are more lessons as well.

	The Spec# Programming System: Challenges and Directions
	Introduction
	The Language
	Non-null Types
	Method Contracts
	Class Contracts
	Concurrency
	Data Abstraction

	System Architecture
	Levels of Checking
	Contract Persistence
	Static Verification

	Conclusion
	Discussion on Rustan Leino's Presentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

