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Preface 

Welcome to the proceedings of the Tenth International Conference on Simulation of 
Adaptive Behavior (SAB 2008). A symbolic creature in the SAB 2008 poster is based on 
GAKUTENSOKU, Japan's first modern robot created in 1928 by Makoto Nishimura. 
The robot, Gakutensoku (or "learning from natural law"), "was 7' 8'' tall, painted gold, 
could open and close its eyes, could smile, could puff out its cheeks, and at the beginning 
of each performance would touch its mace to its head and then begin to write (from 
http://www.robmacdougall.org/index.php/2008/04/gakutensoku/)." Gakutensoku was 
actuated by pneumatics and seems to have been "a sort of early Japanese animatronics." 
Designed 80 years ago, it still stimulates researchers’ minds. 

This year, we received 110 submissions, among which we selected 30 for oral pres-
entations and 21 for posters. In the main conference, we had four very interesting 
plenary talks: "Modelling Adaptive and Intelligent Behaviour: Some Historical and 
Epistemological Issues" by Roberto Cordeschi, "Insect-Machine Hybrid System for 
Understanding an Adaptive Behavior" by Ryohei Kanzaki, "Body Shapes Brain – 
Emergence and Development of Behavior and Mind from Embodied Interaction  
Dynamics" by Yasuo Kuniyoshi, and "Thinking and Learning Close to the Sensory-
Motor Surface Creates Knowledge That Transcends the Here and Now" by Linda 
Smith. On the second day, we had a special joint session with the British Council 
featuring special talks by Giacomo Rizzolatti and Ron Chrisley followed, by a panel 
discussion. After the main conference, we had a workshop and two tutorials.  
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Extended Homeostatic Adaptation:

Improving the Link between Internal and
Behavioural Stability

Hiroyuki Iizuka1 and Ezequiel A. Di Paolo2

1 Department of Media Architecture, Future University-Hakodate
116-2 Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan

2 Centre for Computational Neuroscience and Robotics,
Department of Informatics, University of Sussex

Brighton, BN1 9QH, UK

Abstract. This study presents an extended model of homeostatic adap-
tation designed to exploit the internal dynamics of a neural network in
the absence of sensory input. In order to avoid typical convergence to
asymptotic states under these conditions plastic changes in the network
are induced in evolved neurocontrollers leading to a renewal of dynam-
ics that may favour sensorimotor adaptation. Other measures are taken
to avoid loss of internal variability (as caused, for instance, by synaptic
strength saturation). The method allows the generation of reliable adap-
tation to morphological disruptions in a simple simulated vehicle using a
homeostatic neurocontroller that has been selected to behave homeostat-
ically while performing the desired behaviour but non-homeostatically in
other circumstances. The performance is compared with simple homeo-
static neural controllers that have only been selected for a positive link
between internal and behavioural stability. The extended homeostatic
networks perform much better and are more adaptive to morphological
disruptions that have never been experienced before by the agents.

1 Introduction

The use of homeostatic neurons as the basic building blocks for evolved neu-
rocontrollers proposed in [1] provides a novel approach to modelling adaptivity
in artificial systems in a way that resembles the adaptive dynamics of living
organisms. The idea behind homeostatic adaptation is based on that of the ul-
trastable system proposed by Ashby [7]. This is a system – open to interaction
with the environment – that will tend to change its own configuration plastically
whenever stability is lost and until it finds a new internal dynamics which will
make the system stable under the current conditions. Such systems are capable
of remarkable adaptation and learning. They have been applied to legged robot
locomotion [3], extended to different types of plastic functions [4], applied to the
study of the minimal dynamics of behavioural preference [5], and as a model of
perseverative reaching in infants (A-not-B error) [10].

In the original model, a neural controller inspired by this system was combined
for the first time with the techniques of evolutionary robotics. In this model, local

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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plastic mechanisms change the incoming synaptic weights only when neural acti-
vations move out of a bounded region that is defined in advance by the designer.
Plasticity keeps working until the neural activations return to the homeostatic
region resulting in a “stable” configuration in the sense that the network weights
do not change further as long the firing remains bounded. This mechanism was
implemented in a simulated agent evolved with a fitness function simultane-
ously rewarding phototaxis and the maintenance of neural activations within
the homeostatic region. The use of intermittent plasticity in combination with
this dual selective pressure allows controllers to evolve where an association is
created between internal homeostasis and the desired behaviour. This association
is evolved to be positive: high homeostasis goes together with good performance.
By selective design, once a neurocontroller gives rise to the right sensorimotor
coordination within a given environmental situation in a way that results in in-
ternal stability, synaptic weight changes no longer happen and the agent behaves
as desired. If the situation changes, such as in an inversion of the visual field or
some other sensorimotor perturbation, this causes a breakdown of coordination.
Under these circumstances some evolved agents also show a breakdown of in-
ternal homeostasis demonstrating that some agents evolve at least one negative
association: lack of phototaxis induces lack of homeostasis. As this happens, the
local adaptive mechanism activates until it finds a new synaptic configuration
which can sustain the activations within the homeostatic region. In these condi-
tions, some evolved agents are also able to re-form the behavioural coordination
(even if they had not been trained to adapt to the induced perturbation). These
agents are then able to re-create a positive association: regaining homeostasis
induces a recovery of the original behavioural performances.

However, the original work has a problem in that these necessary further as-
sociations between internal and behavioural stability that allow adaptation to
unseen perturbations are contingent. They may or they may not evolve in the
original setup. This contingency is demonstrated by the high fitness sometimes
achieved by solutions for which, under disruption of phototaxis, homeostasis re-
mains unaffected. This problem with the method was first noted in [2] where an
alternative model more closely resembling Ashby’s homeostat was presented as a
proof of concept. That model, however, was limited in that it used Braitenberg-
style controllers. Improving the method to avoid contingent solutions using
dynamical neural networks remains an important challenge if homeostatic adap-
tation is to be applied more widely in other areas of autonomous robotics. In this
paper we move closer towards this aim. We propose an extended homeostatic
neural controller where neurons are biased to have a strong resting membrane
potential and an additional fitness condition rewarding not only a positive link
between homeostasis and a desired behaviour but also a negative one between
the breakdown of homeostasis and undesired behaviour [6].

This paper will present the extended model of homeostatic adaptation and
compare it with more basic versions in terms of adaptivity and evolvability. It will
be shown that agents evolved in the extended model are more adaptive against
unexperienced morphological disruptions and random initial weight connections.
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2 Model

Our proposed method is implemented in a simulated mobile agent with a plastic
neural controller. The simulated agent is faced with a single light source. The
task for the agent is to approach the light source. This task is deliberately
simple in order to understand the basic interactions between neural mechanisms,
plasticity, homeostasis and selection pressures before moving into more complex
applications. Certain modifications are made to the original method for studying
homeostatic adaptation [1] with the aim of improving the chances of internal
homeostasis being linked with performance both in the positive and negative
senses. In all cases, the set of initial weights for a neural controller is given
randomly at the beginning of a trial. This modified setting makes the task more
difficult than the original one. The agent is expected to adapt to a suitable
weight set by the plasticity through interaction with the environment.

Agent. An agent is modelled as a simulated wheeled robot with a circular body
of radius 4 and two diametrically opposed motors. The motors can drive the agent
forwards in a 2-D unlimited plane. The agent has four light sensors mounted at
angles ±π/4,±3π/4 radians to the forward direction. Light from point sources
impinges on sensors with a local intensity proportional to the source intensity
and the inverse of the distance from sensor to source. The model includes the
shadows produced by the agent’s body.

Plastic controller. A fully connected continuous-time recurrent neural network
(CTRNN) [8] with 8 neurons is used as the agent’s controller. The equations
are modified from their ordinary form in order to enhance the conditions for
homeostasis to be able to activate intermittent plasticity. In particular, a result to
avoid is that of evolved agents capable of moving away from lights and remaining
homeostatic. The lack on sensory activation (typically leading a CTRNN to
converge to some form of asymptotic dynamics) should have as a consequence a
breakdown of homeostasis. As before, the local homeostatic condition is fulfilled
if a node is firing within a specified range. In the absence of sensory activation,
certain parameters controlling resting potentials, synaptic strengths and size of
the homeostatic region should be chosen as to enhance the chances for evolution
to find solutions with the desired internal/interactive associations. To realize
it, two parameters, α and β, are added in the typical CTRNN equations and
another parameter γ controls the size of the homeostatic region.

In addition, a common problem in plastic neural networks is that of weight
saturation. Typically, Hebbian-like rules, will tend to drive synaptic strengths
either to their maximum or minimum values. This can sometimes be avoided with
the use of directional damping factors [2]. But the problem is the more general
one of loss of variability. In order to expand the range of possible perturbations
that the system can adapt to, it is crucial that the ultrastable dynamics be
provided with enough variability for its plastic reconfigurations. A possible way
of achieving this is to map the weight values specified by the plasticity rules into
a continuous but non-monotonic space. Since we are interested in some minimal
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transformation that will solve this problem while still using simple plastic rules
we eschew biological plausibility and make connection strengths a sinusoidal
function of the weights. The time evolution of the states of neurons is then
expressed as:

τiẏi = −(yi − β) +
N∑

j=1

α sin(wji)zj(yj) + Ii, (1)

zi(x) = 1/(1 + e−x), (2)

where yi represents the cell potential of neuron i, zi is the firing rate, τi (range
[0.1, 10]) is its time constant, Ii represents the sensory input, which is given
to only sensory neurons. The sensory input is calculated by multiplying the
local light intensity by a gain parameter (range [1, 100]), which is genetically
encoded. There are two neurons for controlling each motor. The motor output
is calculated from the ratio of firing rates of the neurons, which is mapped onto
the range [−5, 5] and is then multiplied by a gain parameter (range [1, 10]).
This is to avoid that the agent cannot move when the dynamics converges to a
small value in the absence of sensory stimulations. The synaptic strength for the
connection from neuron j to i is determined α sin(wji), where α is a network
constant given genetically that regulates how much the pre-synaptic neurons can
affect post-synaptic neurons. The parameter β (resting potential) determines the
equilibrium point for a node in the total absence of input. The balance between
the two parameters, α and β, will become very important, because if α is too
small the firing rates converge to their resting potentials (notice that the equation
does not include bias terms), and if it is too big, β will not have a very significant
effect on the dynamics. Therefore, if β is negative and with an appropriate α,
firing rates will tend to converge to a small values unless there is enough stimulus
coming from the sensors. The use of such a balanced combination, together with
an appropriate choice of homeostatic region, will make it hard for networks to
remain within homeostatic bounds in the absence of sensory input.

The connection weights between neurons, wij , are randomly determined at
the beginning of a trial and a plastic mechanism allows for the lifetime modifica-
tion of the connections. A homeostatic region is described as the finite zero-value
set of a plasticity function of the post-synaptic firing rate. This function is mod-
ulated by parameter γ (range [0, 0.5]), which is genetically determined. Weights
from neuron i to j are updated according to :

Δwij = ηij(1− zi)p(zj), (3)

p(x) =
{

0 x > γ
1− x/γ else (4)

where zi and zj are the firing rates of pre- and post-synaptic neurons, respec-
tively, Δwij is the change per unit of time to wij , ηij is a rate of change (range
[−1, 1]), which is genetically set for each connection, and p(x) is the plastic func-
tion that defines the homeostatic region. The reason why this is called home-
ostatic is that if zj is more than γ, the weight connection does not change.



Extended Homeostatic Adaptation 5

Otherwise, the plasticity works and the weight connection keeps changing until
zj is stabilized in the homeostatic region (more than γ). Here we can see that
the effect of the balance between α and β can be (if α is small enough and β
negative enough) to land the dynamics into the zone of active plasticity. The
parameter, γ, is also evolved, however, the trivial solution of evolving γ = 0 so
that neurons are always homeostatic is prevented by the need to use plasticity
to organize the weight configuration at the beginning of a trial. The only way
this can happen is for firing rates to move out of the homeostatic regions, hence
gamma may evolve to be small, but not zero.

3 Evolutionary Setup

A population of agents is evolved using a rank-based genetic algorithm with
elitism. All fixed network parameters, τi, ηij , α, γ and the gains are represented
by a real-valued vector ([0,1]) which is decoded linearly to the range correspond-
ing to the parameters (with the exception of gain values which are exponentially
scaled). Crossover and vector mutation operators, which adds a small random
vector to the real-valued genotype, are used [9].

In the extension of the original method presented here, half of trials during
the evaluation process correspond to the presence of light and the other half are
carried out in the dark. The light condition consists of the serial presentation
of 8 distant light sources that the agent must approach and remain close to. A
single source is presented at a time for a relative long time period of 1000. In the
dark condition, there is no light in the arena. Consequently, the network receives
no sensory stimulus. The agent can move freely in the unlimited arena for the
same period as in the light condition. There will be a selective pressure to evolve
homeostatic dynamics in the light condition but to avoid homeostasis in the dark
condition. The scheme is expected to evolve networks for which lack of sensory
stimulation leads to non-homeostasis. Therefore, the agents are evaluated by
measuring three factors: the proportion of time that the agent spends near the
light source (at a distance less than 20 in this paper), fs, the time-average of the
proportion of neurons that have behaved homeostatically in the light condition,
fh, and that have not behaved homeostatically in the dark condition, fNh. The
fitness function is given by this, F = ζ ∗ fs ∗ fh + (1− ζ) ∗ avg.(fs) ∗ fNh, where
ζ decides the weighted selective pressure between light and dark conditions.

4 Results

The performance of the extended homeostatic neural controller is compared to
that of more basic forms of homeostatic neural controllers not using the biased
resting potential and that have only been evolved only in the light condition.
This basic homeostatic neural controller can be described in our formulations
with the two parameters, β and ζ, which are set to 0 and 1.0, respectively. For the
extended version, β and ζ are set to −5 and 0.5, respectively. In order to confirm
whether the basic homeostatic neural network with the evaluation of light/dark



6 H. Iizuka and E.A. Di Paolo

conditions can evolve agents properly to link internal and behavioural stability,
a controller with (β, ζ) = (0, 0.5) is also tested. It should be noted that this
basic homeostatic neural network has a different form to that of the original
homeostatic neural network proposed by Di Paolo [1] but follows the same basic
selection scheme.

4.1 Evolvability and Adaptivity

All homeostatic neural controllers are evolved for 4000 generations. Ten inde-
pendent runs were made for each of the three conditions. Extending the number
of generations to 10000 has not produced any observable increase in fitness.

The average of the best fitness values across 10 runs are shown in Fig. 1.
It is clear that the extended homeostatic networks evolve better than the other
conditions which become saturated at fitness ceilings of about 0.2 and 0.3 in each
case. The main observed difference between these conditions and the extended
one (β, ζ) = (−5, 0.5) is that agents are not able to sustain a configuration that
allows them to perform phototaxis reliably.

In order to study the homeostatic controllers evolved by the three conditions,
we select one successful agent at the 4000th generation from each run and in-
vestigate them in terms of their adaptivity.

First, we study adaptivity against variation of the initial weights by measuring
the performances by the best agents for different initial weight configurations.
The performances for phototaxis and neural homeostasis in 100 independent
trials are shown in Fig. 2.

The best agents evolved using β = 0 can in some cases establish phototaxis
but fail to adapt against the many initial weight configurations. It can also be
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Fig. 1. Average fitness values of the best agents at each GA generation over 10 inde-
pendent runs evolved with three kinds of the evolutionary regimes. The empty triangles
are the results of agents with the extended method, (β, ζ) = (−5, 0.5), and the filled
ones are for homeostatic networks without the biased resting potential nor evaluation
in the dark condition, (β, ζ) = (0, 1). The crosses are for the one without the biased
resting potential and with evaluation of both conditions, (β, ζ) = (0, 0.5).
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Fig. 2. A comparison of the performances for random initial weights of the best agents
evolved with different evolutionary regimes, i.e. our proposed method (left), the basic
homeostatic network (center), and the basic one with light/dark evaluation (right). The
solid lines show the proportion of time that the agent spends within 30-units distance
to light sources (initial distances to the light when it appears are 60). The dashed lines
represent the time-averages of the proportion of neurons that have behaved homeostat-
ically in each trial. A single trial consists of the serial presentation of 50 distant light
sources. Trial numbers indicate different random seeds for weight connections.

observed that the time-averages of the homeostatic neural firing are always high
regardless of the behaviour. This exemplifies the contingency of the link between
the two selected evolutionary aims: homeostasis remains unaffected even under
disruption of phototaxis since the two are realized independently. On the other
hand, the extended condition adapts more widely to the initial random config-
uration. Depending on the initial weight values, the network has a good chance
of establishing an appropriate sensorimotor coordination that results in photo-
taxis. Notice how the level of homeostasis correlates with phototaxis success.
This indicates that agents that do not perform the correct behaviour will also
tend to be non-homeostatic.

In the original homeostatic adaptation model agents show adaptation to radi-
cal unexperienced perturbations such as swapping sensor positions left and right.
Although it is not always guaranteed that such perturbations can be adapted to,
the extended model should be able to adapt more reliably than the basic home-
ostatic controllers because it decreases the chances of internal and behavioural
stability being independent of each other. Adaptation to sensory inversion is
measured by checking how much the agent can return to phototactic behaviour
in the new condition after having adapted to the random initial weights. A re-
covery of phototaxis is defined as approaching at least 10 lights in sequence at
some point after the sensor inversion.

Once having adapted to the initial weights, each pair of the diagonal sensors
are swapped left and right (±π/4↔ ∓3π/4). If the agent is able to recover pho-
totactic behaviour by the 300th light source presented, it is counted as a success.
The success rate is calculated over 100 trials after having adapted successfully
to the initial weights. Results are shown in Fig. 3. All controllers evolved with
the extended method can return to the phototactic behaviour with high proba-
bilities. Having evolved under a pressure to behave non-homeostatically in the
absence of sensor input has induced a condition where plasticity remains active
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Fig. 3. A comparison of adaptivity to a new sensor configuration after the best agents
have established the normal sensorimotor coupling. The new condition is achieved by
swapping each pair of diagonal sensors (±π/4 ↔ ∓3π/4). The vertical axis shows the
rate of each best agent successfully showing the phototactic behaviour after the disrup-
tion. From the left, the bars means the results of the best agent using the homeostatic
neural controller with (β = −5, ζ = 0.5), (β = 0, ζ = 1.0), and (β = 0, ζ = 0.5),
respectively. See text for details.

until sensors become active again. The system behaves in the desired ultrastable
manner and plastic changes stop only as phototaxis is recovered.

4.2 Homeostatic Adaptation at Work

An example of the lifetime adaptation to the initial weight configuration by the
best agent with the extended method is shown in Fig. 4. At the beginning of
the trial, weight connections are randomly set so that the resulting behaviour
cannot be approaching the light source. If too little light stimulus is provided the
neurons cannot maintain the neural dynamics in the homeostatic region. This
is the combined effect of using a biased resting potential and the extra fitness
constraint for the dark condition. Following the plastic rules, the network starts
changing the network structures that can lead to homeostasis and phototaxis at
the same time. Regardless of the initial weight values, the best agent can success-
fully establish both phototactic behaviour and homeostasis. Converged weight
values are very different each time the agent is re-initialized since the established
sensorimotor coupling is dynamically constructed through the interaction.

The best agents also show adaptivity to inversion of visual field. After hav-
ing adapted the normal positions of sensors, the left-right swapping is applied.
Figure 5(left) shows the distances from the agent to the light sources. The light
sources appear at a new place in every 1000 steps and the sensors are swapped
when the 13th light source appears. Adaptation to the initial weight set hap-
pens before swapping sensors. When the sensors are swapped, the agent moves
predictably away from the light source. This causes a breakdown of internal
homeostasis and synaptic plasticity is turned on. After a period of adaptation



Extended Homeostatic Adaptation 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5  10  15 20

di
st

an
ce

 to
 th

e 
lig

ht
 s

ou
rc

e

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  5 10  15  20
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20

w
ei

gh
t s

tr
en

gt
h 

(a
 x

 s
in

(w
ij)

)

w
ei

gh
t s

tr
en

gt
h 

(a
 x

 s
in

(w
ij)

)

w3 8

w2 8

w6 8

w3 8

w2 8

w6 8

time (x1000) time (x1000) time (x1000)

Fig. 4. Left: Distance from robot to sources. Each source lasts for 1000 time steps.
Center: Change of synaptic weights corresponding to the same run of the left. For the
clarity, only three of weights are shown. Right: Another example of synaptic changes
of the same agent starting from different initial configurations.
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Fig. 5. Left: Distance from robot to sources. The vertical dashed line shows onset of
swapping diagonal sensors (±π/4 ↔ ∓3π/4). All initial configurations are same as
Fig. 4. Center: Synaptic changes over time. Right: Re-adaptation to swapped sensor
positions. The sensors are swapped at the appearance of 13th light source and are
returned to original configuration when the 30th light appears.

the network finds a new homeostatic state that can approach the light. Once an
appropriate new sensorimotor coupling has been established, weights becomes
stable again (Fig. 5(center)). Re-adaptation is also tested. The measures that
enhance dynamical variability in the extended model allow the agent to re-adapt
when sensors are returned to the original configuration, something that was not
observed in the original model (Fig. 5(right)).

5 Conclusions

This paper presents an extended homeostatic adaptation method capable of im-
proved adaptive performance. The method works by addressing the problem of
contingent associations between internal and behavioural stability in the original
homeostatic adaptation model. The contingent link between these two require-
ments could always lead to solutions where behavioural disruption leaves internal
stability unaffected. This situation, presumably does not occur so easily in living
systems that must behave in a goal-directed manner in most cases in order to
guarantee continued inner stability. Our proposed method moves closer to this
natural situation by explicitly selecting an association between the undesired
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behaviour and lack of homeostasis and using a strong negative resting poten-
tial for neurons that contributes to this association. It also moves closer to the
original Ashbyan idea of ultrastability by preventing loss of variability during
the adaptation process (through avoidance of synaptic strength saturation). As
a result, evolved agents show improved adaptivity to previously unseen radical
perturbations such as sensor inversions.

This result leads to wider lessons despite the simplicity of the task. In con-
ventional evolutionary robotics models, sensorimotor connections as low level
descriptions are tightly related to the behavioural performances as macro ob-
servations. Even in those cases where sensorimotor coordination is allowed to
change plastically, the appropriate relation is established by an external process
of artificial selection. In the homeostatic adaptation models, the sensorimotor
coupling is intermittently reconfigured by the system to maintain the internal
requirement of homeostasis, which is associated with the desired behaviour by
the external selective process. Therefore, the bottom-up construction from the
sensorimotor dynamics and the top-down regulation from the behavioural per-
formances are mutually coupled processes intrinsic to the system. It is their
‘high-level’ link that is constructed by artificial evolution. The careful construc-
tion of this link can produce systems that are more adaptive and more lifelike.
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Abstract. We compare the performance of drive- versus perception-
based motivational systems in an unstable environment. We investigate
the hypothesis that valence systems (systems that evaluate positive and
negative nature of events) that are based on internal physiology will have
an advantage over systems that are based purely on external sensory in-
put. Results show that inclusion of internal drive levels in valence system
input significantly improves performance. Furthermore, a valence system
based purely on internal drives outperforms a system that is additionally
based on perceptual input. We provide arguments for why this is so and
relate our architecture to brain areas involved in animal learning.

1 Introduction

Reinforcement learning (RL) is a learning paradigm in which an animal or
agent learns to assign valence (positive or negative nature of events or objects)
to sensory input, or state, by updating its evaluation of a state based on re-
ceived reward or punishment following that state. Behaviour can subsequently
be adapted by selecting those actions that lead to the highest-valued states, and
hence maximise reward and minimise punishment. In animal brains, RL and a
sense of pleasure (reward) have been linked to the neurotransmitter dopamine
and brain areas involved in the dopaminergic pathway; for example, Schultz
et al. [1] showed that dopaminergic neurons are capable of propagating valence
information backward in time, thereby learning that a stimulus (e.g. a bell) is
predictive of reward (e.g. food). In artificial systems employing RL, reward was
traditionally implemented by having a pre-designed reward function provide the
agent with a scalar reinforcement signal.

1.1 Towards Truly Autonomous Agents

It is debatable whether an agent that has to rely on a pre-designed reward
function to learn can truly be called adaptive and autonomous: the range of
environments that the agent will be able to cope with is naturally bounded by
the environment types to which the pre-designed reward function applies. In
contrast, animals are able to adapt to a wide range of environments by relying
on an internal motivational system that is partly innate and partly learned.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 12–21, 2008.
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It must include some innate component since if it were learned completely, it
must have relied on some kind of feedback, and this feedback must have come
from somewhere. To avoid an infinite regress, one necessarily ends up with an
innate motivational component, shaped by evolutionary processes that selected
for valence systems (i.e. systems that evaluate the positive or negative nature of
events or objects) that increased a species’ chance of survival.

Several approaches for moving RL away from pre-designed reward functions
exist; for example, Evolutionary RL [2], that inspired the approach taken in this
paper, and, more recently, Intrinsically Motivated RL (IMRL) [3]. IMRL builds
a hierarchy of skills by employing behaviour motivated by an intrinsic reward
that is based on the novelty of salient events: intrinsic reward decreases with
increasing familiarity of an event to the agent. An important limitation of this
approach is that event saliency is pre-designed. One attempt to remedy this has
been made by [4], who let artificial neural networks (ANNs) determine saliency,
and evolved the ANNs by means of genetic algorithm (GA). This approach
bears similarities to the one taken in this paper, except that we evolve ANNs
that provide reinforcement based on the levels of internal drives.

1.2 Drive-Based Agents

Although IMRL and similar approaches correctly argue that there is more to
the motivation of behaviour than the classic Hullian notion of reduction of basic
drives such as hunger, thirst and libido, these drives are crucial for a species’
survival. It is therefore highly likely that evolutionarily advantageous valence
systems are linked to an organism’s internal physiology. Hence, an alternative
way of increasing an agent’s adaptivity might be to evolve its reward function
or valence system and to link it to a set of internal drives that the agent should
keep within a viable range.

Drive-based architectures for action selection were investigated by e.g. [7], and
[8] who took an approach in which an organism is made up of multiple simple,
non-intelligent agents that represent basic concepts such as sensors, motivations
and emotions. The organism should, by choosing the right actions, keep its in-
ternal physiological variables within a viable range. Action selection is mainly
driven by the organism’s motivations that are in turn influenced by emotions.
In [9] agents learn to associate objects with drives by extracting object affor-
dance information, and results showed that agents were able to associate objects
with the behaviour that these afforded. However, these approaches pre-designed
which action should be taken to satisfy a drive [9] and what kind of objects sat-
isfy which drives [7]. In this article we try to avoid wiring objects to actions or
actions to drives by design: the only aspect that is pre-designed (via the fitness
function of the GA) is that agents should try to maintain their internal drives
within a viable range.

As argued earlier, hard-wiring would not be such an issue if agents only had
to deal with one kind of static environment; but since environments are almost
never fixed, we aim to create systems that can efficiently deal with changing envi-
ronments. Recent research with this focus includes e.g. [10], in which adaptivity
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was increased by genetically encoding learning rules instead of synaptic weights,
and [11], in which a locally-recurrent ANN was found to outperform other net-
work types under changing environmental conditions by switching between mem-
ory levels and making use of locally recurrent connections.

This article focuses on the inclusion of internal drives in agent architectures
to deal with changing environments. We extend the work done in [2] and [5]
and investigate the evolution of different innate, non-learning valence systems
that should seek to maximise the agent’s internal drive levels, by providing a
reinforcement signal to a learning ANN that maps sensory input to actions. In
particular, to mimic the uncertainty of real-world environments, we investigate
the performance of these valence systems in an unstable environment (in which
object properties are reversed at regular intervals). We hypothesise that valence
systems that are based on internal physiology will have an advantage over sys-
tems based purely on sensory input: Essentially, a valence system based solely
on internal physiology is decoupled from environmental properties and changes
in these properties should therefore not interfere with the reinforcement signal it
produces. In contrast, a reinforcement signal that depends (partly) on environ-
mental input is likely to change if environmental properties change, and since
evolution has shaped the reinforcement signal to match the old environment, the
new signal is likely to be incorrect.

2 Methodology

2.1 Experimental Set-Up

The experimental set-up is largely based on Ackley and Littman’s “AL” world
[2]: a population of 10 agents with internal drives nutrition, hydration and health
lives in a toroidal 20x20 grid world that contains 40 plants (increase nutrition),
40 water “units” (increase hydration), and 40 rocks (decrease health). If an
agent enters a square with a plant or water, the relevant drive is updated and
the object is randomly relocated in the grid; agents cannot enter squares that
contain rocks. Agents have at their disposal the actions North (N), East (E),
South (S), and West (W). Moving slightly decrements nutrition and hydration,
and slightly increments health. An agent perceives its environment through a
state vector that consists of perceptual (the grid world) and physiological (the
drives) information. See figure 1 for an explanation of how the state vector is
constructed.

Agents’ “brains” are made up of two two-layer feed-forward ANNs that work
together in an actor-critic reinforcement learning scheme [12]. One ANN, the
actor, employs the complementary reinforcement back-propagation (CRBP) al-
gorithm [13] to select actions based on the state vector and to learn from the
feedback that it receives from the other ANN, the critic. CRBP adjusts network
weights by back-propagation of an error vector that is generated depending on
the received reinforcement signal: if the signal is positive, the error is such that
the last output of the network is made more likely given the state; if it is neg-
ative, the error is such that the network is pushed towards an output that is



Evolution of Valence Systems in an Unstable Environment 15

Fig. 1. Construction of the state vector. On the left, a schematic representation of the
gridworld, with agent A1’s visual field marked in bold. P=plant, W=water, R=rock.
Objects within the agent’s visual field but behind another object are not visible to the
agent. The marked visual field would give rise to the state vector values on the right.
Object distance is represented by a number that ranges from 0 (not visible) to 0.25
(edge of the visual field) to 1 (immediately adjacent the agent). The final state vector
is formed by placing the numbers on the right into a one-dimensional vector, ordered
from top to bottom.

Fig. 2. The complete model. A population of 60 chromosomes is evolved by a GA
during 1000 generations. At evaluation, each chromosome is decoded into an actor and
critic network and inserted into an agent. Each agent does 1000 steps in the grid world,
during which the actor learns by reinforcement signals coming from the fixed critic.
Final agent fitness is equal to the product of its average drive levels during the run.

the complement of the last output for this state (see [13] for more details). The
critic represents the valence system and computes a scalar temporal-difference
(TD) error [14] that is passed to the actor as feedback. The critic does not learn,
since we wish to investigate the evolution of an innate valence system that is
responsible for primary reinforcement. Additionally, there are no directly per-
ceivable rewards in the environment, nor is there an explicit reward associated
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with increasing drive levels. Instead, both the critic and the actor weights are
evolved by a GA. The complete model is summarised in fig. 2.

The GA evolves a population of 60 real-valued chromosomes for 1000 genera-
tions. Fitness is assessed by inserting the chromosome into an agent, setting the
agent’s ANN weights to the weights encoded by the chromosome, and letting the
agent walk around in the grid world for 1000 steps. Since the grid world contains
10 agents, 10 chromosomes are evaluated at a time by inserting one chromosome
into each agent. There are 60 chromosomes to assess, so this is repeated 6 times
for one complete evaluation of the whole population.

Final agent fitness is calculated by taking the product of the average drive
levels (taken over the agents’ lives); this ensures that if one of the drives reaches
0, fitness is 0 (since a 0 drive should represent agent death). Fitness is thus
assessed continuously, which stimulates the rate of genetic assimilation of be-
haviour since it implies a cost of learning [15]. Selection is carried out by the
tournament selection method with tournament size 2, no crossover takes place,
and mutation takes place with probability 0.2 per gene; the high mutation rate
might seem surprising, but these parameter values were determined experimen-
tally as optimal for this scenario [6]. Mutation consists of adding a uniformly
distributed random variable δ ∈ [−0.2, 0.2] to the value of the gene that is being
mutated.

We implemented an unstable environment by switching the properties of
plants and rocks every 20 generations; the properties of water were left un-
touched. A simple way of achieving this is to switch the position of plants and
rocks in the state vector that the agents receive; the objects that the agents
perceive as plants then have a negative effect on health, while the objects agents
perceive as rocks have a positive effect on nutrition.

Finally, we investigated the performance of three different critic architectures
that each receive a different state vector: one that only contains environmental
input (“percept-only”), one that contains both environmental and drive-level
information (“full”), and one which contains only drive-level information (“drive-

Table 1. Performance measures. The first three measures are measured at birth and
are calculated by averaging the evaluation / probability of approach over all 4 directions
in which an agent can face an object.

Measure Description

Object evaluation Measure of the critic’s evaluation of objects. Positive means ob-
ject is seen as good. Negative means it is seen as bad.

Drive evaluation Measure of the critic’s evaluation of drives. Positive means high
drive level is seen as good. Negative means it is seen as bad.

Object action Agent tendency to approach an object. 0.25 if agent is equally
likely to move in any direction. Higher if agent tends to approach
object at birth. Lower if it tends to avoid object at birth.

Delta object action Measure of how much the actor network has learned w.r.t. ob-
jects. Positive if agent object action measure has increased dur-
ing its lifetime, negative if it has decreased.
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only”). Of course, the input dimensionality of the critic changes according to the
state vector it receives. The actor network always receives the full state vector
and thus always has the same architecture.

2.2 Evaluation

Apart from the usual GA performance measures of average population fitness
and fitness of the best individual in the population, we also keep track of the
average and final drive levels per generation, averaged over the population. To
gain further insight into the underlying causes of agent performance, we defined
four additional performance measures, summarised in table 1.

3 Results

Figures 3 and 4 present the results of the experiments using the critic architec-
tures as explained in section 2. All results represent averages over 10 runs of the
GA. All population fitness and drive level graphs (fig. 3) exhibit a characteristic

Fig. 3. Population fitness and drive levels. N=nutrition, Hy=hydration, H=health.
Columns represent architectures, rows represent performance measures. Trial runs re-
vealed that evolution of the full architecture (middle column) continues slightly beyond
1000 generations but with no significant improvement; we therefore chose to cut off the
runs at 1000 generations. Environment switch occurs every 20 generations, as can be
seen from the drop in fitness / drive level every 20 generations. Error bars indicate one
standard deviation above respectively below the average.
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jagged pattern, caused by the switching of object properties (the first environ-
ment presented is the “normal” one). As expected, percept-only agents perform
worst: their average fitness in both environments fluctuates around 0.05. Drive-
only agents do best, reaching a top fitness of around 0.2 and a top fitness in the
switched environment of around 0.15. Agents employing the full architecture fall
somewhat in between: the fitness starts off low, but increases steadily, reaching a
maximum of around 0.15 and a maximum in the switched environment of around
0.08. All differences in performance, although small, are significant (P < 0.05)
as determined by a one-tailed Student t-test with 18 degrees of freedom (com-
paring two groups of 10 samples (i.e., runs), and degrees of freedom determined
by (N1 − 1) + (N2 − 1), where Ni denotes number of samples in a group) that
compares the average fitness and standard deviation taken over all generations.

The graphs of average and final drive levels (fig. 3, middle and last row) show
a clear difference between agents whose critic includes perceptual information
and those whose critic does not: while percept-only and full agents are on average
able to improve their health during their lives (compare the graphs of average
versus final drive level), the level of the other two drives generally decreases
during their lives, in both the normal and switched environment. Drive-only
agents are able to improve all drives during their lives, in both the normal and

Fig. 4. Performance measures. P=plant, W=water, R=rock. Columns represent ar-
chitectures, rows represent performance measures. Error bars indicate one standard
deviation above respectively below the average.



Evolution of Valence Systems in an Unstable Environment 19

switched environment; an indication that these agents are able to learn in both
environment types.

The performance measures we defined reveal some phenomena shared by all
architectures (fig. 4). In terms of objects, water is evaluated as something good
(see “object evaluation” graphs, first row), while rocks and plants are evaluated
as slightly negative: agents are unable to evolve a positive evaluation of plants
because of the insecurity caused by the unstable environment. As expected (e.g.
[16]), the tendency to approach water becomes hard-wired into the agents’ genes,
while plant- and rock-oriented behaviour remain near-random (see “object ac-
tion” graphs, third row): it is an evolutionary advantage to genetically assimilate
traits related to stable properties of the environment, while there is no advantage
in hard-wiring traits related to unstable factors.

All architectures (except percept-only, since it does not apply) evolve a pos-
itive evaluation of all drives (see “Drive evaluation” graphs, second row). The
differentiating factor between the drive-only and other architectures is what
is learned with respect to objects (“Δ object action” graphs, last row). The
perceptual architectures are only able to improve on rock- and plant-oriented
behaviour in one of the environments. Also, learning in these architectures has
a negative effect on water-oriented behaviour. In contrast, drive-only agents are
able to improve on their plant- and rock-oriented behaviour in both the normal
and the switched environment, and by a factor that is generally larger than
that of the percept-only and full architectures. Furthermore, drive-only agents
learn to further increase their tendency to approach water on top of their innate
water-approaching behaviour.

4 Discussion

This article is, to the best of our knowledge, the first to investigate the per-
formance of drive- versus perception-based motivational systems in an unstable
environment. Results showed that inclusion of internal drive levels in the in-
formation that the valence system bases its feedback on significantly improved
performance. Furthermore, a valence system based purely on internal drives
outperformed a system based on both perceptual input and internal drives, by
being able to improve the actor’s behaviour-selection policy in both normal and
switched environments. This makes sense since, in an environment in which
object properties change after a number of generations, a drive-based valence
system is not hampered by object evaluations that evolution hard-wired into
the network. Instead, it is able to help the agent adapt its behaviour by focusing
on its primary goal: surviving by maintaining its drive levels in a viable range.

These results reinforce our belief that the inclusion of drives in agent archi-
tectures can be a useful tool to specify agent goals and decouple them from
environmental properties. In a real-world example, a drive could be the energy
level of a mobile robot’s battery levels, and a robot employing a drive-based
motivational system could quickly learn to avoid objects that start negatively
affecting its battery (e.g., a faulty charge station).
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Although extremely simplified, the architecture we implemented bears re-
semblance to certain brain structures involved in animal learning. The critic is
typically associated with the substantia nigra and the part of the basal ganglia
called the striasomes, while the actor is associated with the matrisomes, another
part of the basal ganglia (e.g. [17]).

In terms of drives, it is known that the perceived reward of gustatory stimuli
depends on physiological state (e.g. [19]); an animal would thus e.g. choose food
over water when hungry. Results from an earlier, more extensive study that we
conducted [6] indicated such drive-influenced decision making might be an emer-
gent property of our architecture. On the neurological level, the hypothalamus
is a brain structure that is linked to both drive and reward information (e.g.
[18]). The ability of the drive-based critics to teach the actor to re-link object
types to drives in the switched environment in our study bears resemblance to
the Valenstein effect [20], in which a hypothalamic site that originally elicited
feeding behaviour when stimulated became associated with drinking behaviour
by repeatedly electrically stimulating the site in the presence of water.

As Barto [21] points out, the critic must include some fixed component, cre-
ated by evolution, that is responsible for primary reinforcement. Our results
and those from other studies support our opinion that, given species evolve in a
continuously changing environment, this component must (at least at birth) be
linked to an organism’s basic drives as opposed to receiving direct input from
sensory areas of cortex.
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Abstract. Controlling a highly dynamics and unknown system by ex-
isting control methods would be difficult because of its complexity. Re-
cent biological studies reveal that animals utilize biological fluctuations
to achieve adaptability to the environment and high flexibility. In this
paper, we propose a simple, but flexible control method inspired by a
biological adaptation mechanism. The proposed method is then applied
to control robotic arms. The results of simulation indicated that our
proposed method can be applied well to the control of a robot with
multi-DOF.

1 Introduction

Various robot systems are working in our society, and are indispensable for
our lives in these days. However most of them are working at production lines
in factories which are designed for robots. In the future, robots are expected to
support our daily lives [1,2], however, there are no robots which can work in real,
unstructured environments. In order for the robots to work in our daily lives,
they are required to have robustness against various disturbances, flexibility in
unknown environments, and utility in performing practical tasks. In order to
realize such functions, robots should have large degrees of freedom, and achieve
complex motions. Humans and animals have complex mechanical structures, and
many robot systems inspired by their structures have been developed [3,4].

Untill now various control methods have been studied. The representatives of
them are classical control theory which utilizes a transfer function, and optimal
control theory such as H∞ control. However, the higher the complexity of the
target system becomes, the harder also the modeling of the system becomes.
Learning methods such as reinforcement learning can also be utilized for opti-
mization, however, the number of necessary trials increases drastically when the
complexity of the system increases [5,6,7,8]. This paper focuses on the problems
in which the system is hard to be modeled due to its complexity and fluctua-
tions of the environment, and we propose a simple and robust control method
inspired by biological systems. The biological system is known to have a poten-
tial to adapts to new, unknown, and noisy environments. The mechanism of such
flexible adaptation is investigated especially in molecular biology, and the impor-
tance of the biological fluctuation is made clear [9]. The fluctuation in molecular
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science is actually a noise due to the heat fluctuation, which is unavoidable and
unpredictable. In conventional control for robot systems, such noise should be
removed to the maximum extent. However, it is now believed that biological
systems do not necessarily need to remove the noise, but rather make use of
it in order to adapt to the environment. In this research, we propose a novel
control method inspired by biological fluctuation. This method is expected to
handle control problems for complex systems in unknown environments without
explicitly modeling them.

Section 2 describes the proposed “adaptive attractor selection” control mech-
anism and Section 3 describes the formulation and simulation to the feasibility
of the proposed algorithm. In Section 5, the proposed method is applied to a
multi-DOF robot arm and we show the applicability of the proposed method.
Section 6 concludes the paper.

2 Biological Fluctuation

Bacteria can adapt to environmental changes. For example, even if some impor-
tant nutrients dramatically decrease, bacteria can handle such crisis by alteration
of gene expression. Kashiwagi et al. built a model of this adaptation mechanism
based on a biological fluctuation, and explained the behavior of the bacteria. In
this model, the gene expression is controlled by a dynamical system with some
attractors, and this model is called “attractor selection model”[10].

Attractor selection model. The attractor selection model can be represented
by Langevin equation as:

τxẋ = f(x)×A + ε, (1)

where x and f(x) are the state and the dynamics of the attractor selection
model, and τx and ε are the time constant and the noise, respectively.

A is a variable called “activity” which indicates the fitness of the state x
to the environment, and controls the behavior of the attractor selection model.
That is, f(x)×A becomes dominant in Eq. 1 when the activity is large, and the
state transition approaches deterministic behavior. On the other hand, the noise
ε becomes dominant in Eq. 1 when the activity is small, and the state transition
becomes more probabilistic. Because f(x) is designed to have some attractors,
the state of the system is entrained into one attractor when the activity is large as
depicted in Fig. 1(a), and the behavior of the system becomes like a random walk
when the activity is small as depicted in Fig. 1(b). The activity is designed to
be large (small) when the state x is suited (not suited) to the environment. As a
result, the state of the system is entrained into an attractor which is suited to the
environment and the activity becomes large. Otherwise the activity remains to
be small and a suitable attractor is searched for by a random walk. Our proposed
method is an algorithm searching for a sub-optimal attractor where the escape
from an unsuited attractor can be achieved by controlling the activity.
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(a) High activity (b) Low activity

Fig. 1. Behavior of attractor selection
model

Fig. 2. Block diagram

Bacteria survive even though their habitat environment is very complex such
that many unpredictable disturbances and many dramatic changes occur. This
fact suggests that their adaptive mechanism is flexible and would be useful as
a control mechanism for a complex system, because the control is a kind of
response against the change in state of the target system. In this research, we
propose a control method based on the attractor selection model. We apply our
method to the control of robot simulators and a human-like robotic arm, and
show that our method is well applicable to such types of problems.

3 Control Method Based on the Attractor Selection
Model

In this section, we describe the control mechanism using attractor section. We
explain our proposed control method, and show the result of the control of a
simple robot in simulation. The dynamics of robot is calculated by a simulation
software called “Open Dynamics Engine” [11].

The motion of a physical system like a robot can be represented by

S′ = F (S, u), (2)

where S, u, and F (S, u) are the state, the control signal and the dynamics of
the system, respectively. In this work, the control signal u is generated from the
state of the attractor selection model:

u = Ω(x), (3)

where x is the state of the attractor selection model. Fig. 2 shows the block
diagram of our control mechanism. The controller based on the attractor selec-
tion model receives the activity, which is generated from the state of the robot,
and changes its own state according to Eq. 1. The controller outputs the control
signal u to the robot based on the state x according to Eq. 3. The robot receives
the control signal u, and changes the state S according to its dynamics (2).
Ijspeert et al.[12] proposed a control scheme for a robot with large degrees of
freedom where a motor primitive is represented by an attractor and its learning
mechanism. In our proposed method, each attractor also correponds to a motor
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primitive, and a motor primitive suited to the situation is searched for by the
attractor selection model. In this framework, the attractor selection model is the
basis of the controller and we call this a “Yuragi Controller” 1.

3.1 Design of Attractors

In the attractor selection model, f (x) in Eq. 1 has to define the attractors. In
this paper, we employ following equations to design attractors:

f (x) =
na∑

i=1

Ni
(X i − x)
‖Xi − x‖ , (4)

where na denotes the number of attractors. Xi (i = 1, · · · , na) is a vector rep-
resenting the center of the i-th attractor. The function Ni = gi(x)�na

j=1 gj(x)
is a

normalized Gaussian where gi(x) = exp {−β‖Xi − x‖2}. The behavior of this
system is such that the state x approaches to the nearest attractor like a point
mass with gravitational pulls from many objects (attractors).

3.2 Design of Activity

In the attractor selection model, the activity controls the behavior of the attrac-
tor selection model. The yuragi controller is designed to behave as follows: If the
current output is suited to achieve the desired control, the state of the attractor
selection model is entrained into an attractor and is only slightly perturbed by
noise. Therefore, the desired control signal would be repeated. Otherwise, the
state x changes by a random walk and a desired control signal is searched for.
This can be achieved if the activity is set up such that the activity becomes large
(small) when the current control signal is suited (not suited).

We employ below equations as the activity:

A(t) = α(t)− ᾱ(t− 1), (5)
α(t) = {‖Ẑ −Z(t)‖}−1, (6)

ᾱ(t− 1) =
∑t−1

τ=1 γτα(t− τ)
∑t−1

τ=1 γτ
, (7)

where Ẑ and Z (t) represent the goal of the control task and the current state.
α indicates the current attainment level of the task, and ᾱ is the average of α
with forgetting factor γ. Therefore, A represents the instantaneous improvement
of the achievement.

In the case of a reaching task for the robotic arm, for example, Ẑ and Z (t)
are the target position and the current position of the hand, and α is the inverse
of the distance between the hand and the target position. The activity becomes
larger when the hand approaches the goal while the activity becomes smaller
when the hand moves away from the goal.
1 ‘Yuragi’ means fluctuation in Japanese.
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4 Control of 2-Link Robotic Arm

We apply our method to the control of the 2-link robotic arm, shown in Fig.
3(a). This robot consists of 2 rigid links whose length and weight are 0.5[m] and
0.2[kg]. Both links are connected by a hinge joint, and the motion of these links
is restricted in the 2-dimensional space. This hinge joint can rotate without
restriction except for the friction, and the gravity is ignored. The aim of the
control is to achieve a reaching task.

4.1 Conditions of the Simulation

The time constant τx in Eq. 1 was set to 0.1[sec]. The calculation of the dynamics
was discretized, and was performed by a 4-th order Runge-Kutta method with
0.001[sec] time interval. The goal Ẑ in Eq. 7 was the target point shown in
Fig. 3(a). Each element of the vector Xi is generated by a uniform random
number whose range is [−1, 1], and the number of attractors was na = 10. The
noise term ε in Eq. 1 was a Gaussian noise with mean of 0.0 and variance of 1.0.
The control signal u is the set of target angles of joints, and is generated from
the state x as

u = πx. (8)

The state x basically remains in the region [−1, 1] where attractors exist, and
consequently, the control signal u also becomes about [−π, π].

4.2 Control by the Yuragi Controller

Fig. 3(b) shows the result of the simulation. Vertical axes of these graphs show
the distance between the target point and the hand (top), the value of the
activity (middle), and the state x (bottom). The horizontal axis is time. The
task of this simulation is to make the hand move close to the target point, i.e.,
the distance (in the top graph) to be close to 0. Fig. 3(b) shows that after a few
moments the robot approached the target point, and the activity became large
at the same time. As a result, the state x was entrained into an attractor. At
about t = 35, the robot got away from the target point due to the noise, and
the activity became small. As a result, the behavior of the state x became like a
random walk. At about t = 45, the activity became large again, and the state x
was entrained into another attractor, and the robot approached the target point.
This result shows that the control for the reaching task can be achieved by our
method.

Our proposed method is not an optimal method and the robot can not keep
the position and fluctuates around the target position by the noise after the
robot achieves to the target position. That is, the robot repeats approaching the
target and getting away, but achieves the task robustly. Furthermore, the yuragi
controller only utilizes the position information of the hand through the activity.
This controller can be applied even if the sensory input is significantly restricted
or noisy.
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(a) Configuration (b) Control result

Fig. 3. 2-link robotic arm

4.3 The Number of Attractors

The performance of the control (the average distance from the target) would
depend on the arrangement and the number of attractors. In this section, we
investigate how the number and the arrangement of attractors affect the perfor-
mance of the control. Fig. 4(a) shows changes of the performance by the number
of attractors. The horizontal axis denotes the number of attractors. The vertical
axis denotes the performance of the control. We conducted 30 simulations by
altering the position of attractors, and plotted the average distance from the
target point to the hand. The average distance was calculated by the arithmetic
mean of the distance during the whole period of the simulation. The maximum,
25% point, median, 75% point and minimum value were plotted. This result
indicates the performance became the best when the number of the attractor
was 36.

In the following, we propose an adaptive allocating method of attractors based
on a clustering method called the Gaussian mixture model.

(a) The number of attractors (b) Adaptive attractors

Fig. 4. Performance of yuragi controller
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4.4 Adaptive Attractors

In the attractor selection model, the suitability of the state x is determined as
the activity. If the activity becomes large in some state x, this state x is suited to
the situation at the moment. This means such a state is helpful in some cases and
an attractor should be allocated there. In order to reallocate attractors where
the activity became large during the control, we employ a clustering technique.

As the value of the activity indicates the effectiveness of the state, the state
of each time x(t) was weighted by the activity A(t), and the dataset {x(t); t =
1, . . . , T} was divided into some clusters by the Gaussian mixture model. After
the clustering, each attractor is moved to the center of a cluster. The new center
of the cluster is calculated by

X i =
∑T

t=0NiA(t)x(t)
∑T

t=0NiA(t)
, (9)

Ni =
Gi(x)∑na

j=1 Gj(x)
, (10)

Gi(x) = exp {−‖Xi − x‖2
2σ2

}. (11)

The update of the position of each attractor was performed once in some con-
stant steps. We compared the performance of this adaptive Yuragi Controller
with the vanilla Yuragi Controller described in Section 3. Fig. 4(b) shows me-
dian performances of both controllers. The horizontal axis denotes the number
of attractors, and the vertical axis denotes the performance. In all cases, the
performance of the adaptive yuragi controller was better than that of the vanilla
yuragi controller.

5 Control of a Redundant Robot

In the previous section, we showed that our proposed method can be applied to
the control of the simple 2-DOF robotic arm. However, the aim of this research
is to develop a control method for a robot with large degrees of freedom, which
cannot be modeled due to its complex structure. In this section, we apply our
method to the control of a complex robotic arm with redundant joints and actu-
ators, as shown in Fig. 5(a). We conduct simulations to show that the complex
robotic arm can be controlled by our method.

5.1 Configuration of the Robotic Arm

The robotic arm consists of 4 rigid links and each link was connected by a
universal joint shown in Fig. 5(a). The weight of each link was 0.5[kg], and
lengths of each link were 0.5[m], 0.4[m], 0.3[m] and 0.2[m] in descending order.
Each joint was controlled by four linear actuators located at its four corners.
The linear actuator emulates the model of a pneumatic artificial muscle, and
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(a) Configuration (b) Joint (c) Control result

Fig. 5. Redundant robotic arm

expands or contracts to become the target length given the control signal. Each
joint has [−π/3, π/3]-[rad] range of movement, where the origin is the angle of
the initial position shown in Fig. 5(a). The shoulder (Link1) was fixed and the
gravity acceleration was set to 0.1[m/s2].

5.2 Conditions of the Simulation

The time constant τx in Eq. 1 was set to 0.1[sec]. The coordinate of the target
point shown in Fig. 5(a) was used as the target Ẑ in Eq. 7. In this simulation,
the control signal was generated by a yuragi controller which has 12 dimensional
state space. The number of attractors na was 30, and the center of each attractor
was generated by uniform random numbers. The noise in Eq. 1, ε, was generated
from a Gaussian whose mean and variance were 0 and 1.0, respectively. The
control signal u was a 12 dimensional vector, and each component of the vector
was corresponding to the target length of an actuator. The control signal was
generated as:

u = g
x

‖x‖ (12)

where g is a constant and was set to 10.0.

5.3 Control Result

Fig. 6 shows the motion of the robot. Fig. 5(c) shows the distance from the target
point, the activity and the state of the Yuragi Controller. In the bottom graph

Fig. 6. Snapshots of the 4-link robotic arm at different time instants t
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of Fig. 5(c), we only plotted four components out of the state vector, and these
components correspond to the control signal for joint1. These graphs indicate
that our method was successfully applied to the control of complex robotic arm.

6 Conclusion

In this article, we proposed a simple but flexible control mechanism for a complex
system which can not be modeled easily. In this method, the controller is based on
the attractor selection model referring to an adaptation mechanism of a bacteria
using biological fluctuation, and we call this controller “Yuragi Controller.”

We applied our method to the control of robot simulators and confirmed that
our method is applicable. Although these robot simulators have a relatively sim-
ple structure which might be controlled by an ordinary method, flexible control
was able to be achieved without modeling systems by our method. This suggests
that our method would be also applicable to the control of a complex system
which is hard to be modeled.

(a) (b) Control result

Fig. 7. Human-like robotic arm

Currently, we are applying our method to a robotic arm which imitates a
human upper limb, shown in Fig. 7(a). This robotic arm has complex bone
structure and redundant number of pneumatic actuators, and it seems to be
difficult to build a precise kinematic and dynamic model. However, a simple
task, i.e. holding its hand at a certain height can be realized by our method.
Fig. 7(b) shows a control result. The horizontal axis denotes the time, and the
vertical axes denotes the height of the hand and the activity. The aim of the
experiment was to keep the height of the hand at 450mm, and Fig. 7(b) shows
that this task was achieved well. Our control method is simple, but can be applied
to the control of such complex robotic arm. To achieve more practical tasks by
the robotic arm and evaluate its performance remains as our future work.
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Abstract. Continuous-time recurrent neural networks affected by random 
additive noise are evolved to produce phototactic behaviour in simulated mobile 
agents. The resulting neurocontrollers are evaluated after evolution against 
perturbations and for different levels of neural noise. Controllers evolved with 
neural noise are more robust and may still function in the absence of noise. 
Evidence from behavioural tests indicates that robust controllers do not undergo 
noise-induced bifurcations or if they do, the transient dynamics remain 
functional. A general hypothesis is proposed according to which evolution 
implicitly selects neural systems that operate in noise-resistant landscapes 
which are hard to bifurcate and/or bifurcate while retaining functionality. 

Keywords: Evolutionary robotics; Systemic robustness; Continuous-time neural 
networks; Neural noise; Bifurcations. 

1   Introduction 

The role of noise in systems with sensorimotor control has generated a growing interest 
in bio-inspired robotics – in particular, in its relation to systemic aspects of robust 
behaviour (e.g., [3, 4]). Neural noise is important to be studied in behavioural systems 
as it may result in movement inaccuracy (e.g., constant errors) and imprecision (e.g., 
variable errors and uncertainty) [3]. In the context of adaptive behaviour during goal-
oriented tasks, Bays et al. (2007) propose that the strategy of the central nervous 
system for dealing with neural noise, i.e., the spontaneous neural background activity 
present in most brain tissues, is to ‘optimally combine sensorimotor signals’. Despite 
this broad hypothesis, we have very little idea about how the algorithms underlying the 
management of the effects of neural noise are realized at the neuronal level because the 
majority of work in this area neither explains how these mechanisms emerge from 
sensorimotor interactions, nor analyses how such strategies may have originated during 
evolution. In the context of artificial evolution, evidence that noise also has some 
useful properties has been presented several times (e.g., [4, 6]) and this leads us to a 
second question: whether in natural systems noise should always be considered 
detrimental. Combining these two ideas, the question of what sort of control-strategy 
emerges if neural noise is induced during the evolution of neurocontrollers becomes 
one of conceptual and practical interest not only for evolutionary and autonomous 
robotics but potentially for neuroscience as well.  
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The use of noise is a widespread practice in evolutionary robotics (ER). Using his 
minimal simulations paradigm, Jakobi (1997) has investigated the uses of noise and 
parametrical uncertainty in the evolution of neurocontrollers and found that they have 
a significant rate of success when transferred from simulated solutions into real robots 
(where direct evolution is impractical or prohibitive). Minimal simulations work by 
avoiding the accurate but costly replication of the physical complexities of a real-
world robot-environment system and instead abstract a base set of factors upon which 
evolution must rely in order to produce the desired behaviour. All other factors in the 
robot-environment system are crudely modelled and subject to large amounts of 
environmental noise and variability between evaluations.  

Some of the lessons of the minimal simulations methodology may illuminate 
questions about natural robustness. Biological systems exhibit phenomena, such as 
sensorimotor robustness to noise [3] or robustness in functional terms [6], which may 
relate to the presence of neural noise and therefore warrant investigation. However, in 
an ER context, it is necessary to address the question of what mechanisms enable 
robustness of behaviour sustaining functionality in the presence of neural noise. 
Studying these mechanisms can inform our understanding of what to look for in 
natural systems and how to build better artificial ones. ER provides a useful, relatively 
assumption-free paradigm in which to do this (e.g., agent’s dynamics maintaining 
functionally the same during behaviours). 

This paper describes an attempt to understand how neural systems can maintain 
their function while dealing with neural noise. This is an exploratory piece of work 
aimed largely at generating hypotheses, and the motivations are conceptual as well as 
practical. We present results from ER simulations exploring the effects of neural noise 
on neurocontroller dynamics in order to investigate systemic robustness at the 
behavioural level. In this context, robustness refers to the ability to maintain 
performance in the face of perturbations (internal or external) and uncertainty [1]. In 
order to facilitate understanding of the results and comparative analysis, a simple 
phototaxis task is chosen. In the next section, the methods and experiments are 
introduced, and in the final section we examine the consequences of the results and 
discuss questions that remain open. 

2   Methods and Experimental Setup 

In order to avoid unnecessary complexity at this initial stage, a minimal approach is 
deliberately used [4, 6]. The aim is to evaluate the consequences of evolving networks 
under fixed and variable values of neural noise and to test the obtained solutions in 
terms of behavioural robustness with the purpose of uncovering the mechanisms at 
play. A population of simulated agents is evolved to perform phototaxis in normal 
body and environmental conditions while being disrupted by internal neural and 
external sensorimotor noise. In each test, one light source is presented every time step 
for an extended period. Limited random noise is applied locally to the dynamics of 
each neuron. The level of noise in each neuron (y0 ∈ [-A;A]) is modelled either as a 
fixed or a constantly changing activation parameter selected every time step, where A 
is a fixed value for each experiment (A=0,1,2,3,4). The range (A) of y0 is a control 
parameter in our studies. 
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Agents are modelled as solid circular bodies of radius 5 (arbitrary units) with two 
diametrically opposed motors that differentially steer the agent with their output (in range 
[0;1]) and two frontal light sensors positioned with a separation between sensors of 
47.75°. The agents' motors can drive backwards and forwards in an unlimited 2-D arena. 
Agents have a very small mass, so motor output is directly indicates the tangential 
velocity at the point of the body where the motor is located. The sensors respond to  
the closeness of a point light source by linearly scaling the distance from the light to  
each sensor ((clutteredSensorMiss)*(1-(distanceToLightSource/diagonalArena))). Dis-
tance and time units are of an arbitrary scale. The model includes sensor shadowing when 
an agent body occludes light. When not otherwise specified, each evaluation consists of a 
serial presentation of 6 light sources for a relatively long fixed time (Tls=50 time steps) 
during an agent’s lifetime (T=300 time steps). An agent's task is to approach light sources 
as they appear. After Tls, the light source is eliminated and another one appears at a 
random distance ([10;120]) and angle ([0;2π]). The intensity of each source is fixed and 
equal among them. Sensory inputs are on the range [0;1]. 

Agents are controlled by a continuous-time recurrent neural network (CTRNN). 
The dynamics of the network are governed by the following equations: 
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Using terms derived from an analogy with real neurons, yi represents the cell potential 
of the ith neuron (out of N) depending on a decaying time constant τi (scaled 
exponentially in range [1;2+e2]), θi the bias (calculated by center-crossing), zi the 
firing rate, wji the strength of synaptic connection from node j to node i (range  
[-10;10]), and Ii the degree of sensory perturbation as an incoming current, which is 
zero for non-input nodes. CTRNN are implemented using center-crossing (see [2, 5]). 
The center-crossing restriction helps to prevent the incidence of nearly saturated 
dynamics that would otherwise nullify the effects of neural noise. Time constants τi, 
sensory gain, and synaptic weight wji are genetically (real-valued) encoded and 
optimised using a genetic algorithm. The term y0 represents the level of additive 
neural noise as described above. 

The network topology consists of 2 motor neurons (#0 & #1), 2 input nodes (#2 & 
#3), and 2 internal neurons (#4 & #5). Full connectivity is used for connecting 
neurons, but only output neurons include self-connections. Left/right symmetry in 
synaptic weights is not enforced. We test the role of internal noise in neural systems 
by randomly biasing the dynamics of the neurons, considering it for each new 
evaluation in variable configurations of noise only. Even though the addition of the 
term y0 could be simply considered as a perturbation on the current input (Ii), this 
parameter can be also interpreted as influencing the asymptotic behaviour of each 
neuron including those that receive no sensory input.  

A population of 60 individuals is evolved using a steady state, rank-based 
(selection) genetic algorithm with elitism (50%). Each individual is run for a number 
of independent evaluations (10), and the fitness of each phenotype is calculated by 
averaging the fitness obtained in each evaluation. The mutation operator consists of 
the addition of a small vector displacement selected from a Gaussian distributed value 
in each gene (with mean 0.0 and standard deviation 1.0). When mutated genes are 
over or above their range, a non-reflective criterion is applied, generating a new 
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random value for affected genes. Crossover is not used. The network and other 
simulation variables are integrated with an Euler time step of 0.1. Fitness is calculated 
in the following manner: F = 1-Df/Di, (Df: final distance to source; Di: initial distance 
to source), and it is determined for each light source (goal) and then averaged for the 
whole evaluation. F is taken as 0 if Df > Di and F is in the range [0;1]. The search 
algorithm is run for a fixed number of generations (1000), for a fixed number of 
iterations per generation (200), generally taking a few hundred generations to achieve 
a high level of average fitness.  

3   Results 

3.1   Evolutionary Robustness 

We evolve populations with different levels of neural noise using independent random 
seeds, with either a variable or fixed y0 value during evolution (A=0,1,2,3,4). The 
genetic algorithm is run 1000 generations. Each data point in Fig. 1-left represents the 
average fitness of the best 10 neurocontrollers for 20 independent experiments (6 
randomly placed light sources) for different A values. The evolutionary algorithm 
generates relatively better results for phenotypes using variable instead of fixed values 
of y0 (around 20% higher with A=4 noise range). Error bars in Fig. 1-left indicate 
standard deviation. Performance in the presence of sensorimotor disruptions (e.g., 
sensor inversion, sensors removal, etc.) is also higher for neurocontrollers evolved 
with A=4 than with lower values of A. As described in our previous work [2], 
neurocontrollers evolved with A=0 obtain 84.8% of robustness against neural noise, 
while controllers evolved with A=1, A=2, A=3, and A=4 obtain 86.9%, 96.4%, 98.5%, 
and 99.7% respectively. These percentages indicate the average robustness based on 
the level of performance under disruptions over the level of fitness in the control case. 

Figure 1-right shows the performance of specific neurocontrollers evolved with 
A=0 and A=4 and achieving high fitness. These neurocontrollers, named NC#9, 
NC#10, NC#3, and NC#7 were selected because they present the highest or the lowest 
level of fitness during tests after evolution with A=0 or A=4. NC#9 and NC#10 were 
evolved with A=4, while NC#7 and NC#3 with A=0. All of these neurocontrollers 
demonstrate robustness against neural noise except NC#3. General better performance 
despite neural noise during tests after evolution are obtained when using A=4 for 
neurocontrollers evolved with A=4 (means: 0.89 for NC#9 and 0.87 for NC#10) than 
with neurocontrollers evolved with A=0 (means: 0.84 for NC#7 and 0.2 for NC#3) 
(Fig. 1-right). For neurocontrollers evolved with A=4 and when neural noise is 
applied in tests after evolution, agents continue to be able to move coherently toward 
light sources. Neurocontrollers evolved with A=4 also maintain this high performance 
with lower values of A (e.g., A=0 during tests after evolution, Fig. 1-right).  

In summary, neurocontrollers evolved with A=4 neural noise remain robust to 
disruptions (e.g., sensorimotor and structural disruptions) even when noise is removed 
during tests, suggesting that the variability of neural noise helps evolution find 
regions of higher general robustness in parameter space. Nevertheless, while most 
phenotypes maintain high levels of fitness in spite of induced variability of y0 (e.g., 
NC #9 with A=4 during tests in Fig. 1-right), other phenotypes show low level of  
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Fig. 1. Evolutionary and phenotypic performance in the presence of variable levels of neural 
noise (y0), with randomly positioned 6 lights. Left: Fitness values obtained after evolution (avg. 
of 20 independent experiments), the x-axis is the level of A. Right: Comparison between 
phenotypes evolved with A=0 and A=4 (x-axis); y-axis is the mean fitness reached by 
neurocontrollers. Each data point represents the average fitness over 100 independent 
experiments. 

fitness when neural noise is introduced (e.g., NC#3 with A=4 during experiments after 
evolution in Fig. 1-right). Understanding why some neurocontrollers perform 
differently than others under the influence of neural noise can provide clues toward 
the mechanisms that deal with neural noise. 

3.2   Analysis of Results 

We analyze here neurocontrollers from Fig. 1-right in order to discover the properties 
which allow robust performance in the presence of neural noise. The analysis focuses 
both on applying neural noise to single neurons and on the general effects of noise in 
neurocontrollers. Particularly, neurocontrollers NC#9 and NC#3 are studied in detail 
because they present robustness (i.e., NC#9) or low performance (i.e., NC#3) during 
tests after evolution (Fig. 1-left). While they represent only particular instances, 
understanding the difference between these neurocontrollers may shed some light on 
how evolution works differently in the presence or absence of neural noise.  

Most of evolved agents successfully acquired the capacity to perform phototaxis 
despite neural noise (Fig. 1). As expected, the approaching behaviour of agents is 
based on maintaining light sensory inputs regardless of neural noise effects, i.e. agents 
regulate their movements without losing signal from light source. For example, agents 
depicted in Fig. 2 tend to receive sensory stimulation mainly from one side, which is 
evidenced in agent’s trajectories. The effects of inducing neural noise in neurons (i.e., 
variable levels noise in range [-4; 4] in neuron #5 and deactivating neuron #4’s 
output), indicate that agents can approach to light or lose the light after turning in the 
‘wrong direction’ and thus sensing it again (Fig. 2). Analysing the asymptotic 
response of neurocontrollers when inputs are forced to be constantly activated or 
deactivated for each sensor could show in more detail how different behavioural 
responses are generated in the presence of neural noise.  
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Fig. 2. Examples of behaviours affected by neural noise and neural disruptions. Columns 
correspond to each neurocontroller indicated at the top of the figure, and each row describes the 
level of neural noise (A) during tests. Agents start their trajectories to a light source (the small 
circle at the centre of each figure) from positions separated by 45° on each plot. Top row 
represents behaviours in normal operation but disabling neuron #4’s activity; bottom row 
represents agent’s behaviour after including noise in neuron #5 (neural noise y0 in [-4; 4]) for 
each situation in the top row.  

Because the noise term y0 in Eq. 1 is an additive one, this means that nullclines in 
phase space will tend to be relatively displaced to each other for different values of y0, 
but not warped or changed (as would be expected if noise were added to a weight 
term) [7]. Table 1 shows the asymptotic responses of NC#9 and NC#3 determined by 
the difference between left and right motor neuron activities (neuron #0’s and neuron 
#1’s outputs activations). This difference indicates the action that neurocontrollers 
generate after inducing different fixed values of y0 (-4, 0, or 4) in neurons #4 and #5 
(y0 = 0 for the remaining neurons). To achieve these results, we forced inputs to be 
constantly activated (sensor input = 1) or deactivated (sensor input = 0). A positive 
difference means that agent turns left, while a negative difference that agent turns 
right in the asymptotic state.  

The asymptotic response of neurocontrollers for each sensor and fixed y0 
configuration helps to differentiate the neurocontrollers’ strategies for approaching 
light. Let us first consider NC#9 with no lights (sensor inputs = 0) and without noise 
in any neuron. In this situation, the agent moves slightly turning right (motor response 
-0.094) (indicated for (0;0) levels of noise in neurons #4 and #5 in Table 1). In the 
normal sensing situation, this motion will cause that right sensor to come into contact 
with the light. Then, the right sensor will start to receive more input, causing the agent 
to turn left slightly when approaching the light (motor response 0.199)(indicated for 
(0;1) levels of noise in Table 1). This will produce a decrease of the right sensing 
input up to a non sensing situation as in the starting condition, because sensor loses 
contact with the light. After approaching the light, the agent will generate a new 
movement to right (similar to that described before) generating a new increase of the 
right input sensing. 

This right sensor strategy for approaching light in NC#9 we also observe during 
normal sensing when the fixed values of y0 in the interneurons are (0;-4) and (0;4). 
From an asymptotic perspective, this strategy will cause the right sensor activity to be 
increased or decreased depending on robot’s approach to light and in left and right  
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Table 1. Asymptotic responses of NC#9’s and NC#3’s turning behaviours. Table shows the 
difference between left and right motor activities (motor response), when sensory input nodes 
#2 and #3 are forced to be constantly activated (sensor input = 1) or deactivated (sensor input = 
0) (indicated for each response data); y0 #4 and y0 #5 represent fixed levels of neural 
perturbation (y0=-4, 0, or 4) in neurons #4 and #5, respectively.  

NC#9 NC#3 NC#9 NC#3 #2 #3 y0 #4 y0 #5 
motor response 

#2 #3 y0 #4 y0 #5 
motor response 

0 0 -4 -4 0.103 0.200 0 1 -4 -4 0.172 0.249 
0 0 -4 0 0.170 0.102 0 1 -4 0 0.202 0.171 
0 0 -4 4 0.211 -0.019 0 1 -4 4 0.226 0.064 
0 0 0 -4 -0.114 0.205 0 1 0 -4 0.160 0.253 
0 0 0 0 -0.094 0.108 0 1 0 0 0.199 0.176 
0 0 0 4 -0.041 -0.012 0 1 0 4 0.225 0.070 
0 0 4 -4 -0.116 0.210 0 1 4 -4 -0.099 0.258 
0 0 4 0 -0.100 0.114 0 1 4 0 -0.043 0.182 
0 0 4 4 -0.075 -0.005 0 1 4 4 0.128 0.076 
1 1 -4 -4 0.214 0.065 1 0 -4 -4 0.200 -0.018 
1 1 -4 0 0.233 -0.060 1 0 -4 0 0.225 -0.139 
1 1 -4 4 0.242 -0.175 1 0 -4 4 0.238 -0.236 
1 1 0 -4 0.214 0.071 1 0 0 -4 0.200 -0.011 
1 1 0 0 0.233 -0.053 1 0 0 0 0.225 -0.133 
1 1 0 4 0.242 -0.168 1 0 0 4 0.238 -0.230 
1 1 4 -4 0.214 0.077 1 0 4 -4 0.192 -0.004 
1 1 4 0 0.233 -0.046 1 0 4 0 0.223 -0.126 
1 1 4 4 0.242 -0.162 

 

1 0 4 4 0.237 -0.225 

responses that depends on right input sensing. However, values of y0 are changed to 
(4;0) or (4;4) during normal sensing, the approaching strategy of NC#9 changes 
toward a left sensor configuration in order to develop phototactic behaviour. In this 
case, starting from the situation that the agent sees no light, eventually the right sensor 
will sense first more light producing that the agent moves to right (motor response -
0.043) or moves left slightly (motor response 0.128) for (4;0) and (4;4) values for y0, 
respectively (Table 1). When the levels of y0 are (4;0), the agent will move producing 
a decrease in right sensor input due its approaching angle to the light. The left sensor 
input will increase generating a left movement (motor response 0.223) instead of a 
right one as explained before for the right sensor configuration. A similar strategy 
using the left sensor is observed with (4;4) levels of y0, but it takes more time for 
generating such control because the robot turns left more slightly when the right 
sensor input increases during the approaching behaviour.  Therefore, the strategy of 
NC#9 for maintaining phototaxis behaviour with left of right sensors is based on the 
combination between motor responses and the approaching behaviour that activate 
eventually right or left sensors as described before. 

As described above, the agent falls into a left or right sensor configuration 
depending on the value of y0 in the interneurons. The phototactic behaviour is not 
demonstrated in other asymptotic configuration of noise during normal sensing 
approach. For example, adding y0=-4 to neuron #4, regardless of the level of noise in 
neuron #5, produces that the agent cannot perform phototaxis because it loses the 
capacity to turn right and also the ability to maintain right or left sensory inputs (see 
Table 1). Similarly, inducing y0=-4 in neuron #5, and y0=4 in neuron #4 also produces 
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a non-phototactic behaviour, because left movements are not reached correctly during 
normal sensing approach.  

Let us now look at NC#3 defining its input sensing to 0 (meaning that agent sees 
no lights) and without neural noise. This agent moves turning left (motor response 
0.108 indicated for (0;0) levels of noise in Table 1). Eventually, the left sensor will 
activate first abruptly in normal sensing situations, producing a right movement 
(motor response -0.133) (see Table 1) that will generate a decrease in left sensor input 
when agent approaches light. This use of the left sensor is also observed during 
normal sensing situations when the level of noise in internal neurons are (-4;0) and 
(4,0). In these cases, phototaxis is performed but not in the noisy configurations. This 
is the case mainly because the agent loses its capacity for turning left using its left 
sensor. For example, in (0;-4) y0 configuration, the agent turns left (motor response 
0.205) when it senses no lights, which eventually will produce an increase of left 
sensing and a slight right movement (motor response -0.011). However, this right 
movement is not enough to maintain left sensory input while the agent approaches 
light. This means that eventually the right sensor should become activated, producing 
a left movement (motor response 0.253). Thus, this also produces a new non-sensing 
situation with both sensors. According to the asymptotic response of NC#3 in Table 1, 
the agent sometimes turns in different directions with different levels of noise mainly 
when both sensors are activated or when no sensing is produced. Thus, the agent will 
in the end receive inputs from ‘the wrong side’ causing the agent turns to the wrong 
direction and cannot perform phototaxis as observed in successful situations.  

The asymptotic analysis only provides an indication of how the attractor landscape 
is affected for different configurations of sensory input and y0. Observations of the 
actual transient behaviour for the different configurations indicate that NC#9 
performs well in 5 out of 9 cases ((0;0), (0;-4), (0;4), (4;0), and (4;4) values of y0 in 
neurons #4 and #5) and NC#3 on 3 out of 9 ((0;0),(-4;0), and (4;0) values of y0 in 
neurons #4 and #5). Moreover, NC#9 is able to deploy at least two different 
behavioural strategies while only one has been observed for NC#3. By taking the 
values of y0 investigated as rough representatives of the whole space of variation for 
y0, we can conclude that for most levels of noise (but not all) NC#9 will perform 
phototaxis in a combination of two strategies,  but that this is not the case for NC#3. 
NC#9 is therefore sometimes undergoing bifurcations, but they are most of the time 
(roughly around two thirds of the time) functional allowing it still to perform 
phototaxis. Nevertheless, about one third of the time these bifurcations are non-
functional as described before. For example, NC#9 is not significatively affected by 
noise when sensors are simultaneously activated, but it generates wrong long-term 
responses (e.g., turning left instead of turning right) more frequently than in NC#3 
when input sensing are deactivated simultaneously depending on their levels of noise.  

The proposed hypothesis is that those controllers evolved with noise are not 
undergoing long-term dysfunctional bifurcations because of noise. In this case, 
evolution finds networks that operate in regions of phase space for which moderate 
displacement of the nullclines does not significatively affect the functionality of the 
system. In fact, because NC#9 has two different strategies for approaching light in the 
presence of noise, this implies that noise can generate bifurcations but they happen to 
be also functional, meaning that perturbations in the noise range do not cause 
qualitative changes to system functionality. Evolution is therefore not only searching 
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for regions of space where bifurcations induced by noise are unlikely to happen, but 
also for regions where “neighbouring” bifurcations are also functional. As long as the 
balance of functionality over the possible bifurcations induced by neural noise 
remains positive, the controller will be able to cope with noise and will moreover be 
likely to cope with other perturbations (assuming these perturbations induce similar 
structural changes in the dynamical landscape). 

We also observe that noise produces dysfunctional bifurcations in NC#3's 
dynamics more frequently than in NC#9. NC#9 demonstrates sharp changes in the 
behaviour of agents, however, indicating that there are still three possibilities to 
explain how fitness is maintained high despite neural noise. These are: (I) those 
particular bifurcations do not largely affect the transient dynamics of the network; (II) 
all (or most) bifurcations produce different forms of instantaneous phototaxis (they 
are mostly functional in themselves); (III) no bifurcations are produced. These two 
first possibilities also imply two explanations: (1) negative (non-functional) 
bifurcation may indeed happen in the range of the noise parameter, but they may be 
short lived while the agent performs phototaxis; (2) negative (non-functional) 
bifurcation may occur for significant amounts of time, creating bifurcations that lead 
asymptotically to non-phototaxis. 

In the first case (1), bifurcation during a transient seems to be related with NC#9 
because robustness against noise is functionally maintained despite increasing neural 
noise in most situations. The agent still performs phototaxis because it is held in a 
transient between attractors that are functional (see [8]). By contrast, NC#3 probably 
corresponds to case (2) with noise leading to the loss of performance when noise is 
increased. We have not ruled out transient effects for the situation described for 
NC#9, however. The pattern of sensor activation and of neural noise may induce 
bifurcations that are asymptotically non-functional (would not produce phototaxis in 
the long term) but their change keeps the neural and agent state in a functional 
transient when A=0 during test after evolution.  

4   Conclusion  

Experiments with neural noise have been presented here from an evolutionary and 
sensorimotor perspective. The simulation model in itself is minimal but results 
suggest that, at least in the experimental situations, evolution relies on mechanisms 
that maintain functional dynamics in transients, as shown for NC#9. Results also 
indicate that neural systems lose sensitivity to noise when systems are evolved with 
high levels of neural noise.  

From an evolutionary perspective, the interesting lesson is that neural noise in 
evolution seems to put pressure for selecting neural systems that are resistant to the 
effects of bifurcation, and so their robustness lies in having a dynamic landscape that 
remains, in the overall balance, functionally the same during behaviour. This is 
evidenced by the noise robustness of NC#9 and the noise sensitivity of NC#3. The 
relationship between evolutionary mechanisms selected under noise processes has 
been minimally investigated in the simulation studies so far. In fact, mechanisms 
where noise is irrelevant could vary from the simple attractors’ view where noise 
utility is removed because of convergence to stable system dynamics. Our results 
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suggest that the evolutionary process in the presence of neural noise – following the 
logic of Jakobi’s minimal simulations – is finding robust neural dynamics. However, 
this robustness has a structure. It is a combination of locating the neurocontrollers in 
regions of parameter space where bifurcations are unlikely to occur and 
simultaneously where, if and when bifurcations occur, they remain in balance 
functional. This finding suggests that robustness to other sensorimotor perturbations 
may be a by-product of locating such regions of parameter space. If this is so, a 
prediction from this result is that a similar evolutionary process under parametrical 
uncertainty, but applied to non-additive parameters (such as weight values) may 
result, if successful, in even higher levels of robustness to sensorimotor perturbations. 

In our results, and in accordance to the above explanation, adaptive performance 
was also observed when noise was removed, indicating that noise is not actively 
maintaining functionality in the analysed neurocontrollers. Nevertheless, we do not 
discard the idea that evolution may find solutions for which noise is advantageous, in 
which case our explanation will need to be appropriately modified. These questions 
will be further investigated in future work, including comparisons using embodied 
agents to perform different tasks.  
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Abstract. This article describes the robotic integration of a robust om-
nidirectional visual system with a control architecture inspired by neural
structures in a rat’s brain. The visual system relies on an optimal re-
cursive sampling of images into subimages that remains stable under
translation and makes self-localization and object recognition possible.
The control architecture affords navigation and action selection capaci-
ties. The operationality of both systems is demonstrated through a series
of experiments assessing their capacity to maintain the energy level of a
robot within the limits of a given viability zone.

Keywords: Sensory-motor coordination, Action selection and behav-
ioral sequencing, Navigation and mapping, Autonomous robotics.

1 Introduction

Previous contributions to the Psikharpax project [13] which aimed at designing
a biomimetic artificial rat - were done in simulation [6,7,8] or called upon partial
implementations of the robot’s control architecture [3,5]. The full sensory-motor
implementation of the final Psikharpax platform is still in progress, whereas the
various models that will be included in its control architecture are well advanced
enough for their complementarity and operationality being worth to be tested
in real conditions before final integration.

The work described in this article had two objectives. The first one was to
design a robust visual system that can be used in a variety of robotic implementa-
tions. The second one was to capitalize on this system to assess the capacity of a
rat-inspired control architecture to afford an ad-hoc robotic platform navigation
and action selection capacities mandatory for its viability [1].

This article first describes the visual system and control architecture that are
used. It then presents the experimental setting in which both were tested, as well
as the results that were obtained. It then discusses their applicability to future
research efforts.

2 The Visual System

Visual systems allowing navigation and scene recognition can be sorted into two
categories: local approaches relying on feature points, like SIFT and Harris [9],

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 42–51, 2008.
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Fig. 1. (a) Optimal sampling of an object A using 7 levels of recursion. (b) Quadtree
sampling of the same object. A sharper decomposition of the image is obtained with
optimal sampling, as the method aims at preserving information.

and global approaches that consider the whole content of an image, such as
histograms [14]. As local approaches are not adapted to the geometry of image
transformations occurring with omnidirectional systems, we designed a global
approach calling upon an image decomposition that proved to be more robust
than those based on traditional quadtrees. Indeed, quadtree algorithms cut an
image into four sub images recursively (Fig.1(b)). The optimal sampling method
that has been used here is based on the same principle, but relies on an entropy
measure to divide images which are cut at the location were the difference in the
quantity of information characterizing each sub-image is minimal (Fig.1(a)). In-
formation may depend on the application (color, texture, etc) but, in this work,
it was measured by the mean grey value of patches. A complete description of
the algorithm and its results can be found in [10]. Turns out that the quadtree
approach produces results that are not stable under translation. If an object or
a location is seen from two slightly translated points of view, the correspond-
ing images will lead to different patches and thus will not be recognized. On
the contrary, in the same situation, optimal sampling exhibits a strong stability
of decomposition as shown in Fig.2(a). It works even in case of complex back-
grounds and with catadioptric omnidirectional images as shown in Fig.2(b). If ng
is set to be the mean grey-value of a patch, then the similarity measure between
two image locations Ii et Ij is given by:

d(Ii, Ij) =
Nblevels∑

m=1

4m∑

n=1

‖ngi
m,n − ngj

m,n‖

with ngk
a,b the mean grey-value of patch Ik, at the level a, placed at the location

b. The positions of the different ng in the case of a specific image are given in
Fig. 2(b).
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(a) (b)

Fig. 2. (a) Optimal generation of patches in the case of two images corresponding
to a translated object. The patches generated cover the same zones making object
recognition possible. (b) Starting from an omnidirectional image, the optimal sampling
using 4 steps generates 4 patches sets and most of the initial information is preserved.

3 Control Architecture

The general architecture of Psikharpax (Fig. 3) includes a navigation system that
allows a robot to build a cognitive map [4,12] making self-localization possible [3],
as well as the recording of salient places where resources or potential dangers

Fig. 3. The control architecture of Psikharpax. The Action Selection module decides
which action to execute, according to information provided, on the one side, by the
Mapping and Planning module - which may suggest a move towards a given place in
the robot’s cognitive map - and, on the other side, by the Visual System - which may
suggest moving towards a perceived object.
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Fig. 4. Example of a cognitive map generated by the robot after exploring its environ-
ment (b). A blob of activity in this map indicates the current position of the robot.
Two panoramas are shown that respectively correspond to what the robot sees in its
current location (c) and to what it previously saw in a nearby location (a).

may be encountered. It also holds an action selection module that selects at
every time step the most adapted action ensuring the survival of the artificial
rat within its environment [5].

3.1 Navigation System

The navigation system affords two main complementary functionalities: map
generation and localization.

Map generation. The system creates and updates a dense topological map
relying on a graph where nodes represent locations, with arcs linking each pair
of adjacent nodes. Each node stores the optimal decomposition of the omnidi-
rectional image taken at that location, whereas each arc contains the odometric
and angular distances between two adjacent nodes.

Localization. The system computes a probabilistic estimate of its current loca-
tion, using the activities of map nodes combined with information given by the
visual system, on the one side, and by odometry and angular data, on the other
side. Fig. 4 shows the activity of each node in the map according to the position
of the robot.

3.2 Action Selection

To survive, a rat must be able to solve the action-selection problem. Likewise, the
robot is innately endowed with an artificial metabolism that imposes it to occa-
sionally find food resources and to return to its nest to be able to digest them [6].

The artificial metabolism. Two essential variables [1] are dealt with in the fol-
lowing experiment, energy (E) and potential energy (Ep). Each action consumes
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a certain amount of E. When it is close to its nest, the robot can transform part
of its Ep in E. To reload Ep, the robot must find in its environment a source of
food. The robot is assumed to not survive if E falls to 0. To solve constraints
imposed by its metabolism, the action-selection system uses the GPR computa-
tional model of basal ganglia described in [5].

Selection action without Navigation. This model (Fig. 5(a)) is implemented
as a network of leaky-integrator neurons, and assumes that the numerous seg-
regated channels observed in basal ganglia each correspond to a discrete motor
action that is inhibited by default and thus prevented from being executed. In-
puts to these channels are so-called saliences that take into account both internal
and external perceptions to assess the relevance of each action with respect to the
robot’s needs. Finally, at the output of these circuits, the action that is the least
inhibited by others is selected and allowed to be executed by the motor system. In
a first series of experiments, the robot had to choose between 5 different behav-
iors - Digest-in-Nest (Ep becomes E), Eat (increases Ep), Random-Exploration,
Go-To-Nest (if visible), Go-To-Food (if visible)- which one to execute at every
time step.

Action Selection with Navigation. The action selection model just men-
tioned has been connected to a navigation model according to recent hypotheses
concerning the role of dedicated structures within the basal ganglia, the nucleus
accumbens in particular, and the interaction of basal ganglia-thalamus-cortex
loops in the rat’s brain. The corresponding model is described in [6] and basi-
cally involves two such loops (Fig. 5(b)): a ventral loop that selects locomotor
actions - like moving north or east - and a dorsal loop that selects non-locomotor

(a) (b)

Fig. 5. (a) A single channel within the basal ganglia in the GPR model. D1 and D2: stri-
atal neurons with different dopamine receptors; STN: sub-thalamic nucleus; EP/SNr:
entopeduncular nucleus and substantia nigra reticula;. GP: globus pallidus. Solid ar-
rows represent excitatory connections, dotted arrows represent inhibitory connections.
(b) Interconnection of the ventral and dorsal loops in the basal ganglia. The ventral
loop selects locomotor actions, the dorsal loop selects non-locomotor actions. The latter
subsumes the former via STN connexions.
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actions - like feeding or resting. In a second series of experiments, the robot had
a third internal variable that measured its disorientation according to the pre-
cision of the activity blob that served to determine its position in the map.
Depending upon the value of this variable, the robot was urged to return to
previously mapped areas when it felt disoriented, or to explore new regions of
its environment when it felt both well localized and not lacking energy. Conse-
quently, its ventral loop was endowed with 36 channels - each of them coding for
a move in a 10◦ direction range - , while the dorsal loop was made of 2 channels,
one for each type of energy (E or Ep). Hence, the robot had to select the right
action among 38.

4 Experiments

The capacity of both the visual system and the control architecture described
above to afford the robot survival abilities - according to which it will be able
to find food in its environment and digest it in its nest - was tested in a series of
experiments including the two mentioned above. The robot was equipped with an
omnidirectional catadioptric sensor in an arena observed by four ceiling-mounted
cameras. This system allowed an accurate monitoring of the robot’s positions
and orientations, which were recognized according to colored marks on its roof
(Fig 6(b)). Fig 6(a) shows an on-line reconstruction of the scene, when the four
camera views are merged in a single one.

Visual system. Visual localization using the optimal sampling procedure was
compared with SIFT [11] and with an histogram-based method. In order to check
the robustness of each approach, and to study the precision of the correspond-
ing localization, several tests with additive noise were carried out. The acquired
images were transformed into cylindrical images of size 1400× 140 pixels. The
performance of the visual system was assessed in a complete navigation task,
where the robot had to explore an unknown environment and to build a cogni-
tive map hopefully making an accurate self-localization possible. Fig. 7(a) shows

Fig. 6. Upper view of the monitorized arena observed by four camera mounted in the
ceiling (a). Close view of the robot (b). The colored marks on the roof serve to monitor
the robot’s orientation and position.
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Fig. 7. (a) Upper view of the arena showing the estimated trajectory (white) of the
robot according to its map (white)) and its actual trajectory (black). (b) The error
between the real and estimated position: it is always inferior to the robot’s diameter,
i.e., 30cm.

the estimated and the real trajectories of the robot, while Fig. 7(b) provides
the corresponding localization errors when the optimal sampling approach was
used. The nodes were created every 20cm and the robot estimated its position
as the barycenter of map nodes’ activities. In order to compare the optimal sam-
pling approach with others, the acquired omnidirectional images were modified
according to different scenarios:

– Virtual occlusions were added (from 1 to 10 squares) at random positions,
their individual size never exceeding 10% of the size of the original image.

– Independent noise was added having a uniform distribution between 0 and
255 and concerning 10% of the maximum number of pixels.

– To simulate illumination variations, a constant noise was added to each pixel
in the image. This noise value was chosen randomly in a grey-value interval
of 0 to 40.

The evolution of localization rates is given in Table 1. These rates were assessed
by the percentage of places detected as similar by the visual system that were
actually neighbors in the map. Turns out that optimal sampling leads to the
most stable and accurate results, except for illumination changes, which is an

Table 1. Localization rates corresponding to three localization methods

Localization rate

Original images White noise Illumination Occlusions

SIFT 0.586 0.591 0.578 0.558

Histogram 0.395 0.398 0.146 0.326

Optimal (5th level) 0.758 0.781 0.223 0.746
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Table 2. Robustness of localization : Effect of orientation accuracy on localization

Robustness of localization

angles errors 0◦ (no noise) 5◦ 10◦ 15◦ 20◦

Localization rates 0.7261 0.6546 0.533 0.4496 0.4182

Fig. 8. Energy management when map-building is prohibited (a) or allowed (b). Plain
lines correspond to energy E, dashed lines correspond to potential energy Ep.

expected result as the method is relying on the mean grey-value of patches. To
overcome this limitation, the method could rely on textures to get more stable
results, but this approach is likely to be slightly more time-consuming (see [10] for
details). Because the optimal sampling procedure uses omnidirectional images
that are resampled and transformed into cylindric images, its performance in
case of orientation errors was assessed. Several tests were carried out in which
various orientation errors were introduced. The corresponding results are given
in table 2, and turn out to be very stable, even in case of large errors.

Autonomy. To assess the robot’s survival capacities, two experiments have been
done that reproduce in reality the simulation settings of [5,6]. In both conditions,
the robot had to manage its E and Ep levels to avoid dying from starvation but,
in the first case, it relied on mere chance to find food - because it did not use
any map - whereas, in the second case, it could build such a map to increase
its chances of survival. The corresponding results are given in Fig. 8. It appears
that energy is managed in a better way in (b) as it always reaches its maximum
each time it is possible, contrary to what is shown in (a). During 6 experiments
where map-building was prohibited, the robot survived an average of 848 time
steps. During 6 experiments where map-building was allowed, the robot always
survived beyond 1800 time steps.

5 Discussion

The optimal sampling procedure that has been used here proved to be applicable
to both classical and omnidirectional cameras. It is robust to noise and occlu-
sions, and leads to better results than SIFT and an histogram-based approaches.
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Moreover, it is low time consuming compared to SIFT, because its non-optimized
program was able to process 5-10 frames/sec on a P4M 2:20GHz/512Mb. As for
the autonomy capacities that the control architecture afforded an ad-hoc robot,
they may certainly be improved using additional perceptual modalities that are
currently implemented on the Psikharpax platform, i.e., 2 moving eyes, 2 mov-
ing ears, 2 whisker arrays, a more accurate odometry system, and accelerometers
generating vestibular data. In particular, the binocular system relying on wide-
angle cameras will provide an omnidirectional coverage with a common front
zone that will allow depth retrieval.

6 Conclusions

This article introduced a new visual module that ensures robust perception of
scenes based on an optimal sampling of images. Connected with a biomimetic
control architecture, it has been used to demonstrate the viability capacities it
afforded an ad-hoc robot. Results obtained so far are likely to be improved when
new sensors and new controllers will be implemented on the future Psikharpax
platform.
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Abstract. We used an evolutionary robotics methodology to generate pairs of 
simulated agents capable of reliably establishing and maintaining a coordination 
pattern under noisy conditions. Unlike previous related work, agents were only 
evolved for this ability and not for their capacity to discriminate social 
contingency (i.e., a live responsive partner) from non-contingent engagements 
(i.e., a recording). However, when they were made to interact with a recording 
of their partner made during a successful previous interaction, the coordination 
pattern could not be established. An analysis of the system’s underlying 
dynamics revealed (i) that stability of the coordination pattern requires ongoing 
mutuality of interaction, and (ii) that the interaction process is not only 
constituted by, but also constitutive of, individual behavior.  We suggest that 
this stability of coordination is a general property of a certain class of 
interactively coupled dynamical systems, and conclude that psychological 
explanations of an individual’s sensitivity to social contingency need to take 
into account the role of the interaction process. 

Keywords: evolutionary robotics, social cognition, social contingency. 

1   Introduction 

Evolutionary robotics is typically employed to investigate simulation models of 
minimally cognitive behavior, namely the simplest behavior that raises issues of 
genuine cognitive interest [1, 8, 7]. Recently there have been some initial efforts to 
extend this methodology into the domain of social cognition [4, 9, 10, 11, 3, 14]. 
While these are important advances within the field of artificial life, they also 
generate insights of relevance that could form the basis for mutually informing 
collaborations with the empirical sciences such as psychology.  

One promising target for such an endeavor is Murray and Trevarthen’s [12] double 
TV monitor experiment. In this psychological study 2 month old infants were 
animated by their mothers to engage in coordination via a live double video link. 
However, when the live video of the mother was replaced with a video playback of 
her actions recorded previously, the infants became distressed or removed. These 
results, and those of a more rigorous follow-up study by Nadel and colleagues [13], 
indicate that 2 month old infants are sensitive to social contingency, i.e. the mutual 
responsiveness during an ongoing interaction, and that this sensitivity plays a 
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fundamental role in the unfolding of coordination. Traditional explanations of this 
sensitivity have focused on innate abilities. For example, Gergely and Watson [6] 
have postulated the presence of an innate cognitive module which enables the 
detection of social contingency, and Russell [15] hypothesizes that infants have an 
innate capacity to understand intentionality and to process agency. 

Are these postulations of innate capacities on the part of the infant necessary in 
order to explain the empirical results? Iizuka and Di Paolo [9] used an evolutionary 
robotics approach to test whether simpler solutions could also emerge from the 
dynamics of the interaction process itself. In their simulation model the evolved 
agents successfully acquired the capacity to discriminate between ‘live’ (two-way) 
and ‘recorded’ (one-way) interaction. Moreover, an analysis of the resulting dynamics 
suggests that the interaction process itself plays an important role in enabling this 
behavior. Similar results were also found by the other simulation studies [4, 11, 10]. 

It could be argued that the result of Iizuka and Di Paolo’s [9] simulation study only 
represents a specific subset of the general solution space, in particular because they 
used evolutionary robotics to explicitly generate agents that terminate interaction 
when there is a lack of social contingency. We address this issue by testing whether 
termination of interaction emerges under more general conditions. Answering this 
question is important if the argument is made that these findings might apply more 
generally and in particular to human interactions. By changing the simulation setup in 
this manner we thus move closer to the original double TV monitor experiment: the 
infants presumably did not have the specific goal to detect whether they were dealing 
with a live video or just a recording. It is more likely that they were simply attempting 
to establish social coordination with their mothers but were unable to do so.  

2   Methods 

We implemented a minimal simulation model analogous to Murray and Trevarthen’s 
[12] double TV monitor experiment by building on work by Iizuka and Di Paolo [9]. 
A schematic of this simulation model is illustrated in Fig. 1. 

The goal of the agents is to cross their sensors as far away from their starting 
positions as possible, a task which requires mutual localization, convergence on a 
target direction, and movement in that direction while not losing track of each other. 
This task is non-trivial since sensory stimulation only correlates with the overlapping 
of position (when the centers of the agents are less than 20 units of space apart); it 
does not convey the direction or speed of movement of the other agent.  

 

Fig. 1. A schematic view of the model adapted from Iizuka and Di Paolo [9]. The two identical 
agents are 40 units wide, only able to move in a horizontal direction, and equipped with a single 
on/off sensor at their centre. They face each other in an unlimited continuous 1-D space. 
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The agents are controlled by two identical continuous-time recurrent neural 
networks (CTRNNs), as described by Beer [1]. They were chosen to be clones 
because work by Iizuka and Ikegami [10] on a related task suggests that genetically 
similar agents are potentially better at coordination. They face each other in an 
unlimited continuous 1-D space (i.e. one agent faces ‘up’ and one agent faces 
‘down’). Distance and time units are of an arbitrary scale. Each agent can only move 
horizontally. One on/off sensor is located in the centre of each agent. The sensor is 
activated (set to 1) when the agents cross each other, otherwise it is set to 0.  

Noise is introduced into the simulation for 2 main reasons: (i) since the agents are 
identical they will need to make use of noise in order to break the symmetry of their 
movements and converge on a common target direction, and (ii) robustness against 
noise increases the ability of ‘live’ agents to cope with playback situations [10]. 
Accordingly, at each Euler time step there is a 5% probability that the current sensory 
state is flipped into its opposite state. We add a small perturbation to the motor 
outputs at each time step drawn from a Gaussian distribution (μ = 0; σ2 = 0.05). The 
noise is applied to the outputs before the application of motor gains. 

In order to further increase the robustness of the behavioral strategies, the initial 
relative displacement between the agents varies (range [-25, 25]). Starting from any of 
these possible relative positions, the task for the agents is to coordinate their behavior 
such that they cross each other as far away from position 0 as possible. Since the 
agents are started in opposite orientation (‘up’ vs. ‘down’), it is not possible for the 
evolutionary algorithm to hard code any trivial solution (e.g. ‘always move left’).  

2.1   Agents 

The agents are 40 units wide, have an on/off sensor at their center, and can only move 
left or right by controlling the output of their left and right motor nodes (see Fig. 1). 
Agents are controlled by a CTRNN consisting of 3 fully-connected nodes with self-
connections. The time evolution of the node activation follows: 
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In this equation yi represents the cell potential of node i, zi is the firing rate as 
calculated by the standard sigmoid function, τi (range [1, 100]) is its time constant, bi 
(range [-3, 3]) is a bias term, and wji (range [-8, 8]) is the strength of the connection 
from the neuron j to i. Ii represents the sensory input to node I and S is the sensor gain. 
The total number of nodes N is set to 3; there are no hidden nodes (all nodes receive 
sensory input). The sensory input is calculated by multiplying 1/0 (on/off) by an 
sensor gain parameter S (range [1, 100]), and this is applied to all nodes. There is one 
node, which only receives input and does not produce motor output and two actuator 
nodes for controlling movement; one for leftward and the other for rightward velocity. 
Each velocity is calculated by mapping the actuator output onto the range [-1, 1] and 
then multiplying it by an output gain parameter (range [1, 50]). The overall agent 
velocity is calculated as the difference between the left and right velocities. The time 
evolution of the simulation environment and each agent’s CTRNN controller is 
calculated by using Euler integration with a time step of 0.1.  
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Similar settings have already been successfully used by Iizuka and Di Paolo [9]. 
The main differences are that (i) the agents of the current study only have 3 nodes, (ii) 
the input is fed to all nodes instead of one dedicated sensory node, (iii) and each 
actuator node has its own gain parameter. The first difference was chosen to further 
minimize the conditions of the model and facilitate analysis; differences (ii) and (iii) 
were implemented to increase the evolvability of the solutions. 

2.2   Evolutionary Algorithm 

The agents are optimized by using a simple genetic algorithm (GA) which is based on 
the microbial GA, a steady-state GA with tournament selection [7]. Until some 
termination criterion is reached, two members of the population are chosen at random, 
both have their fitness evaluated, and while the ‘winner’ of the tournament remains 
unchanged in the population, the ‘loser’ is replaced by a slightly mutated copy of the 
‘winner’. Each member is a clonal pair of agents. We define a generation as the 
number of tournaments required to generate a number of offspring equal to the 
population size. The population size is 40 and the run terminates at 5000 generations. 

All CTRNN parameters and gains are genetically encoded by a real-valued vector 
which is initialized randomly. The mutation operator changes each gene by a random 
value drawn from a Gaussian distribution (μ = 0; σ2 = 0.05) with reflection at the gene 
boundaries. Before evaluation, each gene is decoded linearly to the corresponding 
range (except gains and time constants which are exponentially scaled).  

During each fitness evaluation an agent is tested in 15 trials runs; to increase the 
robustness of the evolving solutions to noise and variations in initial conditions only 
the lowest score achieved in any of the trials is chosen as the overall score. Each trial 
run consists of 50 units of time (500 Euler time steps). At the start of each trial agents 
have their internal node activations set to small random values drawn from a standard 
Gaussian distribution. The initial distance between the agents varies; agent ‘down’ 
always gets placed at position 0, while agent ‘up’ starts at a different position for each 
trial (15 different positions evenly distributed across range [-25, 25]).  

The fitness score of a trial run is calculated on the basis of a single factor, namely 
the absolute value of the final crossing position of the two agents divided by a factor 
of 10. Thus, in contrast to the work done by Iizuka and Di Paolo [9], these agents 
were not evolved to break off the interaction pattern when detecting a lack of social 
contingency. Instead, we aimed to generate a simulation model that under normal 
circumstances results in highly fit coordination behavior. Presumably, such behavior 
should be more robust when faced with the ‘playback’ condition.  

3   Results 

The GA was run 4 times. The fittest agent, with a score of 244.8, was produced 
during the 4th run in generation 3477. This solution was then tested extensively; agent 
‘down’ was always placed at position 0, while agent ‘up’ starts at a different position 
for each trial (101 positions evenly distributed across range [-50, 50]). Each trial is 
repeated 150 times. The mean score across this range of initial conditions is plotted in 
Fig. 2 (left). The agents are able to generalize their behavior well beyond the range  
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Fig. 2. Left: Mean score achieved by the fittest agent starting from various initial positions, 
with standard deviation. Right: Mean score by the fittest agent but this time interacting with 
non-responsive, recorded movements obtained from the original trials. 
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Fig. 3. Robustness to noise: mean fitness score achieved over 150 trials by the fittest evolved 
agent starting from position 11 for a range of noise levels, with standard deviation. Original 
noise strength during evolution is 0.05 for motor (left) and 5% for sensor noise (right).  

that they were originally evolved to cope with. On average the best initial position for 
agent ‘up’ turned out to be at 11 (mean score: 292.9). 

In order to demonstrate the general robustness of the evolved agents under this 
initial condition, we ran another set of trials with agent ‘up’ starting from position 11 
while varying noise levels. The motor noise was varied while the sensor noise 
remained constant at evolutionary strength (5%), and sensor noise was varied while 
motor noise remained constant (σ2 = 0.05). At each noise level we tested the agents 
for 150 trials. As shown in Fig. 3, the agents are able to cope with a wide range of 
perturbations. Indeed, their overall performance degrades gracefully until the sensor 
and motor signals are completely swamped by noise. In the case of sensor noise, for 
example, average performance only approaches 0 just before reaching the 50% mark 
(at which point sensory activation becomes completely arbitrary). This demonstrates 
that the agents are able to produce highly robust coordination behavior. 

Finally, another 150 trials were conducted with agent ‘up’ at position 11 (under 
normal noise conditions). The movement of agent ‘down’ during the best trial (score: 
321) was recorded for playback. Another 150 trials were then run under playback 
conditions: the initial conditions reflect those of the recorded best trial run (agent ‘up’ 
always starts at position 11 and with the same initial internal activation), and the 
movement of agent ‘down’ replicate those which it produced during the recording. 
While the sensorimotor noise for agent ‘up’ was different during each of these trials, 
no additional noise was added to the recorded movement of agent ‘down’.  

The results are striking: whereas the original 150 trials of mutual (two-way) 
interaction were highly successful (mean score: 268), the 150 trials of playback  
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(one-way) interaction were a drastic failure (mean score: 19). The severity of this failure 
is surprising since under normal conditions the active agent is robust against various 
forms of noise, and able to cope effectively with a wide range of initial conditions. 
Moreover, during the playback condition its ‘partner’ performs what had previously  
been a highly fit behavioral repertoire. Still, the active agent is unable to adapt to  
the situation of interacting with a non-responsive ‘partner’. It could be argued that  
this result is unique to the chosen situation. However, this is not the case: when testing 
agent ‘up’ with each of the original trials we get the same result (see Fig. 2, right). 

3.1   Behavioral Analysis 

The behavior of the agents under normal conditions can be broken down conceptually 
into three important aspects: (i) localization, (ii) alignment, and (iii) coordination. We 
will briefly discuss the first two aspects and then focus on the third. The activity 
during the first time steps of the best trial run is shown in Fig. 4. 

Initially the agents have no knowledge of how their own position relates to that of 
their partner. Moreover, they have no way of gaining that information except when 
changing their sensory input by engaging in movement. However, it turns out that one 
stereotypical behavioral pattern is sufficient to solve the non-trivial problem of 
reliable localization. First, each agent moves rightwards for a few units of time, and 
then starts moving leftwards. This sweeping behavior usually takes up to 5 units of 
time and under evolved conditions always enables the agents to locate each other. In 
the case of negative initial displacement they will encounter each other during their 
rightward sweep; otherwise they will cross their positions during their leftward return. 
Interestingly, the agents always end up with positive relative displacement after their 
initial localization. With this clever maneuver the agents have significantly reduced 
the complexity of their coordination task: while sensory input is ambiguous (there is  
 

  

Fig. 4. Initial activity of the two agents during the best trial run. From top to bottom the traces 
show the evolution over time of (i) their relative displacement, (ii) their noisy input signal and 
actual sensory contact, (iii) their velocity, and (iv) the CTRNN node outputs of agent ‘up’. 
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no indication about the direction or speed of the other agent’s movement), it has now  
been co-arranged as a ‘touching on the left’ indicator! This change of the sensory 
meaning is possible because the CTRNN controllers are not symmetric.  

How does the final oscillatory coordination pattern emerge out of the relative 
movements of the agents? Before analyzing the behavior of the agents in more detail 
it is necessary to briefly describe the evolved CTRNN controller. Most importantly, 
the sensory input excites all of the nodes with a gain of S = 10.9, and the right output 
gain (44.5) is almost twice as high as the left output gain (24.9). The two motor nodes 
are inhibited by the non-motor node and they also inhibit each other while hardly 
affecting the non-motor node. As an example, we can see that the output of the right 
motor node (z3) of agent ‘up’ starts to slightly decrease just before time t = 8, due to 
lack of sensory stimulation. This shift in velocity entails that agent ‘down’ catches up 
with agent ‘up’ and they remain in contact (Ii = 1) until just before t = 9. During this 
contact agent ‘up’ regains its previous rightward velocity due to sensory stimulation. 
After separating again (Ii = 0) the firing of the left motor node goes down followed by 
the right motor node which eventually leads to the behavioral pattern being 
reinitiated. Accordingly, agent ‘up’ should be able to engage with a playback re-
cording. The activity during the playback trial run is shown in Fig. 5. 

At first the ‘live’ agent aligns itself with the ‘playback’ agent as in the original 
situation (Fig. 4). During mutual (two-way) interaction agent ‘down’ would always 
respond to contact by moving away slightly. However, in the playback situation this 
co-regulation is prevented from occurring. Accordingly, every encounter results in a 
slight decrease of relative displacement between the two agents, thereby in turn 
making it more likely that there will be another sensory stimulation. Up to about t = 3, 
agent ‘up’ is still able to partially regulate this displacement on its own by adjusting 
the output of its right motor node. However, from that point onwards the right motor 
node saturates at z3 = 1, and thereafter remains unaffected by further sensory  
 

 

Fig. 5. Initial activity during a playback trial run in which the movements of agent ‘down’ are 
the same as in Fig. 4. From top to bottom the traces show the evolution over time of (i) the 
relative displacement between the agents, (ii) their noisy input signal and the actual moments of 
sensory contact, (iii) their velocities, and (iv) the CTRNN node outputs of agent ‘up’.  
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stimulation. Finally, at around t = 6 the positive feedback loop between increasing 
sensory stimulation and mounting leftward velocity becomes unstable in such a way 
that recovery from breakdown is impossible. The live agent falls behind the playback 
agent, and heads in the opposite direction. 

Why does this breakdown of coordination not occur when both agents engage in 
‘live’ interaction? The simple answer provided by this model is that the stability of 
ongoing coordination requires mutuality of interaction. After the initial alignment we 
find that coordinated movement in one direction consists of continuous co-regulated 
oscillatory behavior. Agents control their respective velocities such that they cross 
their sensors at relatively regular intervals. This iterative reaction chain constitutes an 
ongoing pattern of turn-taking; noise perturbations get amplified in a way that 
requires continuous co-regulated re-establishment of the interaction [11]. 

3.2   Dynamical Analysis 

Can we account for the oscillating pattern in dynamical terms? Since the output of the 
non-motor node z1(y1) = 1 during coordination, it can be treated as a fixed parameter. 
The rest of the system consists only of the two motor nodes. The parameters are τ2 = 
1.6, b2 = 2.6, w12 = -3.7, w22 = 1.0, w32 = -7.9, and τ3 = 1.1, b3 = 2.9, w13 = -5.8, w23 = -
5.8, w33 = 2.3. If agents are not in contact with each other (Ii = 0), there is a globally 
attracting stable equilibrium point at (-3.4, -7.5). Being in this state effectively slows 
down rightward velocity. Because of this the agents eventually make contact. When Ii 
= 1 the equilibrium point is shifted to (0.3, 1.9). This effectively speeds up the 
rightward velocity of the agent. 

Interestingly, under normal conditions the dynamical system never reaches either 
of these two equilibrium points, because their existence is made transitory through the 
ongoing interaction. This is illustrated in Fig. 6 (left) in terms of the motor node firing 
rates for agent ‘up’ over a whole run (50 units of time). The trajectory settles down 
into an oscillatory pattern that traces the corner near point (0, 1), in the middle of the 
two equilibrium points (located at (0.95, 1) when Ii = 1, and at (0.30, 0) when Ii = 0). 
The state trajectory for the playback situation of the same run is displayed in Fig. 6 
(right). At first the trajectory moves into the same region of state space but then, 
during the period of prolonged contact, the left motor node gets saturated while the 
right motor node remains at 1. This continues until the system almost reaches the 
equilibrium point at (0.95, 1), but it eventually causes agent ‘up’ to slow down too 
much thereby breaking out of the coordination pattern.  

      

Fig. 6. State trajectory of the outputs for the 2 motor nodes of agent ‘up’ during 50 units of 
time. The trace starts at the top right corner of each graph. The gray and black dot represent the 
globally attracting stable equilibrium point when sensory input I = 0 and I = 1, respectively. 
Left: mutual (two-way) interaction. Right: playback (one-way) interaction. 
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After agent ‘up’ slows down enough such that the playback movement of agent 
‘down’ overtakes it, its input Ii stays at 0. This causes its motor system to settle near 
the equilibrium point at (0.30, 0), from where it is occasionally perturbed by sensor 
noise. Thus, without the responsive help of the other agent, agent ‘up’ is unable to 
regulate its behavior such as to avoid falling into this attractor, an event which limits 
its further behavior to mere leftward movement. 

4   Concluding Remarks 

With our simulation study it was found that stable and robust coordination can be 
reliably established between simulated agents. While the agents were only selected on 
the basis of this coordination ability (rather than their capacity to detect social 
contingency), coordination still breaks down when a ‘live’ agent is forced to interact 
with a playback of movements from a previous, successful trial. Agents interacting 
with such a non-responsive ‘partner’ do not have the capacity to generate and sustain 
the kind of oscillatory behavior necessary for coordination. Thus, what at first appears 
to be a behavioral capacity of the individual agent emerges out of a combination of 
the internal dynamics as well as the interaction process. This role of the interaction 
process is also consistently demonstrated in previous models [9, 4, 11, 3]. 

We are thus faced with a peculiar situation in which the behavior of the individual 
agents brings forth the interaction process, and that interaction process enables the 
behavior of the individual agents. This makes a reduction of the coordination 
breakdown to an individual agent’s capacity to detect social contingency impossible. 
Moreover, it points to the autonomy of the interaction process, as postulated by an 
enactive approach to social cognition [2]. A more detailed analysis of the dynamics of 
the interaction process in this context is desirable, especially in terms of an artificial 
life investigation of the systemic basis of “constitutive autonomy” [5]. 

It is worth emphasizing that we do not claim that our model instantiates the 
phenomenon which we are investigating or that the baby-mother interaction studied 
by Murray and Trevarthen [12] is reducible to such a simple system. The model is 
purely conceptual in that it shows at work a possible explanation that may later be 
considered and tested in specific empirical cases. Thus, by generating simple models 
which do not presuppose the methodological individualism which prevails in social 
cognitive science and psychology, we can re-conceptualize the space of possible 
explanations [4]. In particular, the model presented in this paper suggests that the 
capacity for social behavior is strongly dependent on the existence of an appropriate 
social context, one whose stability is in turn dependent on the active and responsive 
engagement of the participants. On this basis we propose that an explanation for the 
distressed reaction, observed when confronting infants with a video recording rather 
than a live stream of their mother, also needs to take into account the role of the 
interaction process. Of course, this does not mean that the infants cannot detect social 
contingency or that they cannot develop this ability, but it does open up the possibility 
for explanations that do not suppose any necessity for innate behavioral capabilities 
and/or a complex perceptual strategy on the part of the infant. 
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Abstract. This paper deals with the topic of learning through neuroevolutionary 
algorithms in non-stationary settings. This kind of algorithms that evolve the 
parameters and/or the topology of a population of Artificial Neural Networks 
have provided successful results in optimization problems in stationary settings. 
Their application to non-stationary problems, that is, problems that involve 
changes in the objective function, still requires more research. In this paper we 
address the problem through the integration of implicit, internal or genotypic, 
memory structures and external explicit memories in an algorithm called Pro-
moter Based Genetic Algorithm with External Memory (PBGA-EM). The ca-
pabilities introduced in a simple genetic algorithm by these two elements are 
shown on different tests where the objective function of a problem is changed in 
an unpredictable manner. 

Keywords: evolutionary algorithms, artificial neural networks, learning, non-
stationary problems, autonomous robotics. 

1   Introduction 

Learning in real-world robotics implies that the optimal behavior must be learnt by 
exploring different actions and observing their consequences, as there are usually no 
direct targets for a learning process to choose the correct action. The results of this 
exploration can be stored by obtaining models of the interaction with the world, 
which are usually complex due to the fact that the real-world is dynamic and the robot 
state, the environment and the objective may change in time. It is in this context 
where neuroevolution, that is, to evolve artificial neural networks (ANN) using some 
type of evolutionary algorithm, becomes a reference learning tool due to its robust-
ness and adaptability to dynamic environments [1] and non-stationary tasks [2]. 

The episodic nature of these problems, however, must also be considered. This  
involves that whatever perceptual streams the robot receives could contain sequences 
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of information corresponding to different learning processes or models that are  
intermingled that is, learning samples need not arise in an orderly and appropriate 
manner. The problem that appears is how to learn all of these different models whose 
samples are perceived as sequences within the same stream.  

The application of evolutionary algorithms to non-stationary tasks or dynamic en-
vironments has been extensively studied in the last decade, in most cases focused in 
optimization problems. According to Trojanowsky [2], in the case of non-stationary 
optimization problems, three types of time related changes are possible: changes in 
the variables of the problem and their domains, changes in the objective function to be 
learnt and changes in the set of constraints that must be satisfied. This work will focus 
on unpredicted changes in the objective function.  

The existing approaches for applying evolutionary algorithms to non-stationary 
problems can be grouped into two types [3]: memory-based approaches and search-
based approaches. In the first group, the algorithm includes some kind of memory 
structure that stores information that can be used in the future to improve the optimi-
zation. This memory may be internal, that is, included in the chromosomes [4][5] and 
evolved, or external, storing successful individuals that are usually introduced in the 
population as seeds [6][7]. External memory-based approaches perform better in peri-
odic non-stationary problems, with predictable changes or when the changes are easy 
to detect, where the individuals can be associated to a given objective function and 
stored. For problems where the changes of objective functions are not predictable or 
are hard to detect, most authors have resorted to search-based techniques enhancing 
their ability for continuously searching, usually by trying to preserve a high level of 
diversity in the population [3][8]. These techniques have had success to some degree 
in the case of quasi-stationary changes, but when abrupt changes occur they are basi-
cally starting neuroevolution from scratch. 

With regards to learning with ANNs, the most relevant neuroevolutionary methods 
presented in last few years are SANE [9], a cooperative coevolutionary algorithm that 
evolves a population of neurons instead of complete networks; ESP [10], similar to 
SANE but which allocates a separate population for each of the units in the network, 
and where a neuron can only be recombined with members of its own subpopulation; 
and NEAT [11], nowadays the most used neuroevolutionary algorithm. It can evolve 
networks of unbounded complexity from a minimal starting point and is based on 
three fundamental principles: employing a principled method for the crossover of 
different topologies, protecting structural innovation through speciation, and incre-
mentally growing networks from a minimal structure. Some of these neuroevolution-
ary techniques have been tested in non-stationary periodic tasks using external mem-
ory elements [10] [11]. 

In order to deal with both predictable and unpredictable non-stationary problems 
with quasi-stationary or brusque changes in the objective function, in this work we 
propose an neuroevolutionary algorithm that uses an internal or genotypic memory 
and that, in addition, tries to maintain diversity using a genotype-phenotype encoding 
that prevents the loss of relevant information throughout the generations. An external 
memory is added to improve the adaptive capabilities of the algorithm. The algorithm 
is called the Promoter Based Genetic Algorithm with External Memory (PBGA-EM).  
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2   The Promoter Based Genetic Algorithm 

There are two basic biologically based approaches to gene expression: diploid 
representations and promoter based mechanisms. Diploid genotypes are made up of a 
double chromosome structure where each strand contains information for the same 
functions. In this work, however, we will concentrate on the use of gene promoters. In 
prokaryotes (bacteria and other simple cells) the entire DNA coding for a protein is 
continuous. In more complex, eukaryotic, cells, however, the encoding DNA is 
generally discontinuous: sequences of encoding DNA (exons) are interspersed with 
long sequences of non-encoding DNA. This non-encoding DNA sequences, usually 
about 10-fold longer than the exons, are called introns. The fact that they are so 
common and have been preserved during evolution leads many researchers to believe 
that they serve some function. 

To control where a protein is encoded, the chromosome contains protein begin and 
protein end signals called codons. Almost every cell in an organism has a copy of 
every single gene the whole organism needs. Different genes are expressed in cells 
corresponding to different organs. Gene promoters are in charge of controlling these 
effects. Gene promoters are important regulatory structures that control the initiation 
and level of transcription of a gene. 

To include these concepts in an evolutionary algorithm, we have considered a GA 
that evolves the weights of artificial neural networks. These neural networks, in our 
case, are encoded into sequences of genes for constructing a basic neural unit. Each of 
these blocks is preceded by a gene promoter acting as an on/off switch that deter-
mines if that particular unit will be expressed or not. In order to simplify the algo-
rithm, we have decided to make use of these gene promoters also as start and end 
codons due to the position they occupy in the chromosome. For example, in the case 
of the simple feedforward ANN shown in Fig. 1 left, the genotypic representation 
used in the PBGA is shown in Fig. 1 top right. All the genes with a value of 1 are 
promoter genes. Thus, the first two genes represent that the two input neurons are 
enabled, the third gene represents that neuron unit 3 is enabled (controlling weights 
W13 W23), and so on. Following with the same example, Fig. 1 center right shows the  
 

 

Fig. 1. Phenotypic representations of the ANN genotypes shown 
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phenotype corresponding to the same genotype with a different promoter setting (the 
one on the bottom right part), where the promoter genes of neurons 4 and 5 are dis-
abled and consequently these two neurons and their inbound connections are not 
shown in the phenotype. 

The basic functional unit in the PBGA is a neuron with all of its inbound connec-
tions. By concatenating units of this type according to the activation genes, the whole 
network is constructed. This encoding provides a way for the information that is not 
expressed to still be carried by the genotype during evolution, but shielded from direct 
selective pressure, preserving this way the diversity in the population. Therefore, a 
clear difference is established between the search and the solution space, permitting 
information learnt and encoded into the genotypic representation to be preserved by 
disabling promoter genes. 

Although other approaches are possible, in these first tests, we have chosen to use 
the same topology for the genotypic representation of all the ANNs in the population 
to avoid complexities such as a continuous growth in the ANN size (resulting in cpu 
intensive tasks) or the large number of parameters that are needed to control the com-
bination of the different topologies, associated to other approaches where the topol-
ogy is completely free like in NEAT [11]. This way, all the ANN genotypes contain 
the same number of total neurons, in this case, within a two-layer feedforward repre-
sentation. This does not mean that the ANNs resulting from the genotype-phenotype 
transformation have the same topology, as the phenotype depends on what functional 
units are enabled by the promoters. The PBGA usually starts with minimal phenotypic 
ANNs (just one neuron enabled per hidden layer) and evolution makes different types 
of ANNs (in terms of enabled neurons) coevolve together. 

In the case of reproduction, the main problem that had to be dealt with in the im-
plementation of the algorithm is how to perform crossover and mutation without  
being extremely disruptive or generating a bias in the evolution of what genes are 
expressed. Bear in mind that not only are weight values being crossed over, but the 
whole neuron units that conform the topology of the ANN. It is thus necessary to take 
care of how disruptive crossover or mutation will be on the information units in the 
genotype.  

Crossover is panmitic in the PBGA, that is, from two parent chromosomes one 
child chromosome is created. Crossover is performed over the neuron units as blocks. 
To be statistically neutral regarding the expression of the genes, the crossover for the 
promoters of functional units is carried out according to the following 2 rules: 

1. If both parent units are expressed, the offspring unit is expressed and the 
weights are obtained applying a BLX-α crossover operator. 

2. If both parent units are not expressed, the offspring unit is not expressed and 
the weights are directly inherited from one of the parents (50% chance) 

3. If one unit is expressed and the other isn’t, the offspring will inherit with a 
50% chance weights and promoters from the neuron unit of one of the parents.  

Thus, on average, the number of expressed units is maintained and a bias in this 
term is avoided. In addition, we follow the strategy of preserving the disabled neuron 
units and perform information crossover only in cases where both neurons are active, 
that is, where the crossover effect can be tested when the network is evaluated. 
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Regarding mutation, things are simpler, and the only consideration that needs to be 
made is that gene promoters must be mutated at a different rate from that of regular 
genes. Note that mutating gene promoters may be very disruptive as it seriously af-
fects the composition of the phenotype, whereas mutation of the rest of the genes is, 
on average, much more gradual on the resulting phenotype. Consequently, we decided 
to use different mutation rates on the gene promoters (structural mutation) and on the 
real valued genes (parametric mutation). The structural mutation operator simply 
inverts the activation value from 0 to 1 or from 1 to 0, and the parametric mutation 
operator applies a non linear cubed random mutation mechanism (f(x) = f(x) + 
rand(0,1)3 ) only to genes belonging to active neuron units. As will be shown in the 
examples presented later, the values for these mutation probabilities are quite critical 
for the performance of the algorithm. 

Summarizing, the complete PBGA working cycle is: 

1. Creation of a population of N individuals using the representation com-
mented above. The values of all the genes are randomly generated. 

2. Fitness calculation over the whole population 
3. Selection of 2N individuals using a tournament operator 
4. Panmitic crossover with a probability of Pc over the 2N population. This op-

erator is applied twice over the same parents and the offspring with highest 
fitness is selected. This results in an N individual offspring population 

5. Mutation with probabilities Psm, Ppm over the offspring population 
6. Fitness calculation over the offspring population 
7. Elitism that substitutes the worst r individuals of the offspring population 

with the best r individuals of the original population 
8. Return to step 3 for n generations 

The number of parameters that must be established by the user are 6: maximum 
number of neurons of the ANNs (size of the genotype), population size, crossover 
probability, structural mutation probability, parametric mutation probability and the 
number of generations of evolution. All of them are problem-dependent but, as we 
will show in the next section, their values are intuitively easy to set up. 

An initial approach to the introduction of promoter genes was implemented on the 
Structured Genetic Algorithm (sGA), developed by Dasgupta and McGregor [4] as a 
general hierarchical genetic algorithm. They applied a two level interdependent ge-
netic algorithm for solving the knapsack problem and developing application specific 
neural networks [12]. A two-layer sGA was used to represent the connectivity and 
weights of a feed-forward neural network. Higher-level genes (connectivity) acted as 
a switch for sections of the lower level weight representation. Sections of the weight 
level, whose corresponding connectivity bits were set to one, were expressed in the 
phenotype. Those whose corresponding bits had the value of zero were retained, but 
were not expressed. The main difference between the sGA applied to neuroevolution 
and the PBGA we are presenting here, is that the activation genes in the sGA act at 
the connection level whereas the PBGA works with neuron units, that is, functional 
units. This is a very relevant difference as, even though to enable/disable a neuron 
may seem much more disruptive, it permits preserving complex functional units. 
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3   Execution Results Using Promoters 

To display the capabilities of an algorithm that implements promoters in its structure 
in the most unfavorable situation, we have resorted to abrupt unpredicted changes in 
the objective function. To simulate this changing situation, two different 3D functions 
that the PBGA must learn were used and as time passes they are switched: 

F1(x,y) = (x+y)/2   x,y ∈ [-10,10] 
F2(x,y) = sin(4x) + ysin(y)  x,y ∈ [-10,10] 

These functions are very different (the second one is much more complex than the 
first one) in order to test the capability of the PBGA for preserving the learned infor-
mation in completely new situations. To show the basic features of the PBGA as a 
consequence of its architecture, in a first experiment we alternatively used objective 
functions F1 and F2 for 100 generations and continued with this cycle. The parameters 
for this first trial are shown in Table 1. We expect the PBGA to converge faster as the 
iterations (fitness function switch cycles) progress, because some of the previously 
learned information has a chance of remaining in the unexpressed part of the geno-
type. Fig. 2 displays the root mean squared error (RMSE) for the first 1000 genera-
tions (10 cycles) of evolution (top graph) and 26000 generations (260 cycles) later 
(bottom graph), where we can see, firstly, how the F1 function is learnt with a lower 
error than the F2 function, as expected. Furthermore, the RMSE decreases on each 100 
generations cycle as in a typical error evolution, but when the change occurs, there is 
an error peak that decreases rapidly. This peak is larger in the cycle from F1 to F2 due 
to the higher complexity of the second function. In addition, we can observe how the 
error level at the end of each 100 generation cycle decreases in both functions as more 
cycles take place until it stabilizes. 

In the case of a non-periodic change in the fitness function, this capability of pres-
ervation of the learned information with the promoter genes depends on the time each  
cycle lasts. If the cycle is too short, the algorithm may not be capable of learning the 
function, on the other hand, if it is too long, there is a higher probability of losing the 
unexpressed information. For example, in Fig. 3 we have represented the evolution  
of the RMSE with the same periodical change of fitness function from F1 to F2 every 
100 generations until cycle 50 (generation 5000) where we maintain function F1 as  
 

Table 1. Parameter values of the PBGA used in the examples 

 Parameter value 
(Figs. 2, 3) 

Parameter 
value (Fig. 4) 

Generations  30000 20000 
Population size 2000 2200 
Maximum number of neurons in hidden layers 15 12 
Crossover probability  70% 70% 
Structural mutation probability 2% 2% 
Parametric mutation probability 1% 1% 
Stability error percentage (SE), only PBGA-EM - 20 % 
Stability generations (SG), only PBGA-EM - 40 
Stability similarity percentage (SS), only PBGA-EM - 30% 
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Fig. 2. Evolution of the RMSE for the first 1000 generations (left) and 26000 generations later 
(right) using the PBGA cycling between functions F1 and F2 every 100 generations 

 

Fig. 3. Evolution of the RMSE with a periodic change of fitness function between F1 to F2 every 
100 generations until cycle 50 (generation 5000) where the function F1 is maintained for 7 cycles 
(700 generations). At the end of this period (generation 5700), the previous periodic change every 
100 generations starts again. 

objective function for 7 cycles (700 generations). At the end of this period (generation 
5700), the previous periodical change every 100 generations starts again. As we can 
see in Fig. 3, from generation 5000 to 5700 the error level is very low because the 
PBGA is learning only the simple function F1. At generation 5700, the PBGA must 
learn function F2 again and is able to reach, in this case, an error level of 1.564 RMSE 
in just 100 generations, where the cycle of function F1 starts again. We must point out 
that at the beginning of the run, this error level was achieved for the first time in gen-
eration 1186, as observed in Fig. 3, which means that the PBGA required, in this case, 
6 cycles of function F2 to reach this level, and now it only takes one cycle. As a con-
sequence, we can conclude from this experiment that the PBGA is able to maintain 
information of a fitness function in the chromosomes after a period of learning a 
completely different function and, thus achieving low error levels in the previous 
functions earlier. 
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As a conclusion of this section, we can say that the PBGA is able to work in peri-
odic and non-periodic dynamic tasks or environments. This algorithm uses an internal 
memory provided by the promoter genes that, together with the preservation of diver-
sity provided by the use of a genotype-phenotype encoding, permits adaptive learning 
in several dynamic situations without having to explicitly detect these changes of 
objective function. It is obvious that there is a limit in the information that can be 
stored in the unexpressed genes, so there is a limit in the number of different changes 
that the PBGA population can store. In addition, if a learning cycle is too long, the 
population could converge and the probability of losing the information stored in the 
unexpressed genes would increase. 

4   Adding an External Memory 

To solve the kinds of problems derived from the use of internal memories described 
above, different authors have proposed the addition of external memories to the evo-
lutionary algorithms [6]. These memories directly store individuals that perform suc-
cessfully in a given situation. In the case of neuroevolution, in [7] the authors apply 
the real-time version of the NEAT algorithm and study how to increase the probabil-
ity of obtaining populations that can remember old skills as they learn new ones while 
in a dynamic video game situation by considering an external memory that stores 
successful ANNs, which are inserted as seeds in future generations.  

However, the main problem of external-memory based approaches to non-
stationary problems is that they are limited to predictable or detectable changes as it is 
necessary to know when an individual must be stored in the memory [7]. That is, it is 
necessary to identify the different functions the system is learning or, at least when 
they change, usually by analyzing the evolution of the error. This procedure is very 
noisy and hard to apply in complex problems [13]. 

To combine the advantages provided by internal and external memories in non-
stationary problems, we have introduced an external memory together with the PBGA 
(thus creating the PBGA-EM) in order to apply this algorithm to robotic problems in 
the process of learning world models [14]. We just want to store in the external mem-
ory one ANN for each different model of the environment or cycle and, consequently, 
a management strategy for this external memory was implemented as follows: 

1. To decide if an ANN must go into the external memory, a stability criterion 
was established in terms of the RMSE error in predicting the objective func-
tion in a given generation. If this error value is stable (as a percentage SE) dur-
ing a number of generations SG, we assume that the ANN is stable and may be 
stored in the external memory. 

2. Every time a new ANN is selected as stable, we compare it with all those al-
ready stored over the current objective function. If both errors are similar 
within SS, we assume that the models correspond to the same model and leave 
the best one in the external memory. If the errors are very different, we assume 
that we are dealing with a new objective function and the model is automati-
cally stored. 

3. All the models in the external memory are introduced in the evolving popula-
tion as seeds every generation replacing the worst individuals. 
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A 2D simulator of the Pioneer 2 robot considering a simple task of finding an ob-
ject with its sonar sensors and reaching it was used to test the PBGA-EM. The world 
models are represented by ANNs that are learnt with the PBGA and have 5 inputs and 
3 outputs. The inputs are: distance given by the nearest sonar, angular position of that 
sonar, a boolean value that permits distinguishing if the sonar is in the front or back of 
the robot and the two motor values given as linear and angular speed. The outputs are 
the predicted distance given by the nearest sonar, the predicted angular position of 
that sonar and the predicted boolean value. 

Fig. 4 displays the evolution of the RMSE when learning the angular position (with 
respect to the values provided by the simulator) using the PBGA-EM (dotted line) and 
without the external memory as in the typical PBGA (solid line). In this experiment, 
the world changed every 2400 generations from a normal operation of the robot to a 
case where we simulated a hardware failure: the input distance was interchanged with 
the angle and their ranges were reduced by 80%. The parameters of the PBGA and the 
PBGA-EM in this case are shown in Table 1.  

As shown by the solid line of Fig. 4, this is a hard case for the simple PBGA be-
cause the cycles are too long and the functions very complex. Consequently, the in-
formation learnt after one cycle will disappear from the population during the next 
one due to the complexity of the new fitness function, which implies reusing the inac-
tive neuron units to improve the error level. But what is very relevant from this figure 
is that the PBGA-EM in the second cycle (about generation 4500) achieves an error 
level below 0.1 RMSE. The best individual in the population at that point is stored in 
the external memory and the next time the PBGA-EM must learn the same function 
(cycle 4, generation 7200), the previous error level is achieved immediately. This is 
because the individual stored in the external memory is introduced in the population 
every generation so, when the function to be learnt corresponds to the previous model, 
it performs successfully.  

 

Fig. 4. Evolution of the RMSE in the learning of the angular position using an external memory 
(dotted line) and without the external memory in the PBGA (solid line). The fitness function is 
changed every 2400 generations between simulating a hardware failure and normal operation. 
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In cycle 6 and around generation 13000, the PBGA without external memory (solid 
line) also reaches this error level below 0.1 RMSE but, as a consequence of the for-
getting effect commented before, in cycle 8 (generation 16800) it must relearn the 
function almost from scratch and does not achieve the same error level as in cycle 6. 

5   Conclusions 

This paper describes the Promoter Based Genetic Algorithm together with an external 
memory for learning in non-stationary environments. The PBGA-EM uses promoter 
genes to create a sort of genetic memory within the genotype. We have shown that the 
immediate result of this memory is that when a fitness function that has been seen 
before (or which requires combinations of basic units that were used in previous suc-
cessful runs) is contemplated again, the GA achieves the desired phenotype much 
faster than before. To overcome the different problems of internal and external memo-
ries operating separately, we have shown the advantage of combining both in order to 
reduce the time spent on relearning previous situations. This way, the PBGA with 
external memory is a very powerful neuroevolutionary technique to deal with non-
stationary problems and dynamic environments. The algorithm must be improved in 
the future to deal with non-stationary real tasks, for example, those involved in 
autonomous robotics, that could contain highly complex non-periodic changes in the 
environment or in the robot’s behavior. 
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Abstract. We present a system that automatically selects and param-
eterizes a vision based obstacle avoidance method adapted to a given
visual context. This system uses genetic programming and a robotic sim-
ulation to evaluate the candidate algorithms. As the number of evalua-
tions is restricted, we introduce a novel method using imitation to guide
the evolution toward promising solutions. We show that for this problem,
our two-phase evolution process performs better than other techniques.

1 Introduction

Our goal is to design vision based obstacle avoidance controllers for mobile
robots. The most popular method to perform obstacle avoidance with a sin-
gle camera uses optical flow and is directly inspired by the flight of insects [1,2].
However, systems based on optical flow don’t cope well with thin or lowly tex-
tured obstacles. There is also evidence that information based on appearance
rather than movement, like texture information, is extracted in the first stages
of the vision chain [3]. This kind of information can also be used for obsta-
cle avoidance. For instance, Michels implemented a system to estimate depth
from texture information in outdoor scenes [4]. Other systems use this kind of
information to discriminate the floor from the rest of the scene and calculate
obstacle distances in several directions [5]. Nevertheless those methods suppose
that the floor may be clearly discriminated and they neglect potentially useful
information from the rest of the scene.

As there is no method that can deal with all contexts, we want our robot
to automatically select and adapt an obstacle avoidance method for the cur-
rent environment. For now, this adaptation is an offline process based on genetic
programming which creates original controllers adapted to a given simulation en-
vironment. The next step will be either to install this system on a real robot for
online evolution or to design a higher level controller able to select in real-time
an algorithm adapted to the current context in a database of evolved algorithms.
As we only use artificial evolution as an optimization technique, we won’t make
assumptions about implications on the development of vision processing in the
brain of animals by natural selection and evolution. However there is an impor-
tant issue addressed by this work which is of interest in a bio-inspired framework:
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how can Imitation increase the learning speed, and what are the consequences
on performances and generalization?

Evolutionary techniques have already been widely used for robotic navigation
and the design of obstacle avoidance controllers [6] but in general vision is either
overly simplified or not used at all. For instance, Marocco used only a 5 × 5
pixels retina as visual input [7]. On the other hand, genetic programming has
been proved to achieve human-competitive results in image processing systems,
e.g. for the detection of interest points [8]. Parisian evolution has also been shown
to produce very good results for obstacle detection and 3D reconstruction but
those systems need two calibrated cameras [9].

To our knowledge, only Martin tried evolutionary techniques with monocular
images for obstacle avoidance [10]. The structure of his algorithm is based on the
floor segmentation technique and the evaluation is done with a database of hand
labeled real world image. The advantage of such an approach is that the evolved
algorithms are more likely to work well with real images than those evolved with
computer rendered images. Nevertheless, it introduces an important bias since
the algorithms are only selected on their ability to label images in the database
correctly and not on their ability to avoid obstacles.

2 Evolution of the Vision Algorithms

2.1 Structure of the Vision Algorithms

Generally speaking, a vision algorithm can be divided in three main parts: First,
the algorithm will process the input image with a number of filters to highlight
some features. In our case, this filter chain consists of spatial and temporal filters,
optical flow calculation and projection that will produce an image highlighting
the desired features. Then these features are extracted, i.e. represented by a small
set of scalar values. We implemented this with a mean computation of the pixel
values on several windows of the transformed image(s). Finally these values are
used for a domain dependent task, here to generate motor commands to avoid
obstacles. Fig. 1 shows an example program for a simple obstacle avoidance be-
havior based on optical flow. Here is the list of all the primitives (transformation
steps) that can be used in the programs and the data types they manipulate:

– Spatial filters (input: image, output: image): Gaussian, Laplacian, thresh-
old, Gabor, difference of Gaussians, Sobel and subsampling filter.

– Temporal filters (input: image, output: image): pixel-to-pixel min, max,
sum and difference of the last two frames, and recursive mean operator.

– Optical flow (input: image, output: vector field): Horn and Schunck global
regularization method, Lucas and Kanade local least squares calculation and
simple block matching method. The rotation movement is first eliminated
by a transformation of the two images in order to facilitate further use of
the optical flow.

– Projection (input: vector field, output: image): Projection on the horizontal
or vertical axis, Euclidean or Manhattan norm computation, and time to
contact calculation using the flow divergence.
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Fig. 1. Left: Algorithmic tree of a program example for obstacle avoidance. Rectangles
represent primitives and ellipses represent data. Right: Snapshots of the simulation
environment.

– Windows integral computation (input: image, output: scalar): For this
transformation, we define a global coefficient α0 and several windows on the
left half of the image with different positions and sizes. With each window
is paired a second window defined by symmetry along the vertical axis.
A coefficient αi and an operator (+ or −) are defined for each pair. The
resulting scalar value R is a simple linear combination calculated with the
following formula:

R = α0 +
∑n

i=1 αiμi

μi = μLi + μRi or μi = μLi − μRi

where n is the number of windows and μLi and μRi are the means of the
pixel values over respectively the left and right window of pair i.

– Scalar operators (input: scalar(s), output: scalar): Addition, subtraction,
multiplication and division operators, temporal mean calculation and simple
if-then-else test.

– Command generation (input: two scalars, output: command): The mo-
tor command is represented by two scalar values: the requested linear and
angular speeds.

Most of those primitives use parameters along with the input data to do their
calculations (for example, the standard deviation value for the Gaussian filter
or the number and position of windows for the windows integral computation).
Those parameters are specific to each algorithm; they are randomly generated
when the corresponding primitive is created by the evolution process.
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2.2 Evaluation in the Simulation Environment

For the evaluation of the different obstacle avoidance algorithms, we use a simu-
lation environment in which the robot moves freely during each experiment. The
simulation is based on the open-source robot simulator Gazebo. The simulated
camera produces 8-bits gray-value images of size 320×160 (representing a field of
view of approximately 100◦× 60◦) at a rate of 10 / sec. The simulation environ-
ment is a closed room of 36 m2 area (6 m × 6 m) containing three bookshelves
(Fig. 1). All the obstacles are immovable to prevent the robot from just pushing
them instead of avoiding them. In each experiment, the goal of the robot is to
go from a given starting point to a goal location without hitting obstacles.

Due to the complexity of the vision algorithms, we’re limited to about 40,000
evaluations to keep the evolution time acceptable (a few days at most). We
therefore face a common problem with genetic programming systems, that is
the state space is immense compared to the number of evaluations so large
parts of it will never be explored. More, the fitness landscape is very chaotic
so the evolution can easily get stuck in a local minima of the fitness function.
In previous work we showed that a classical evolution process often produces
controllers with a seemingly random trajectory, even if the visual features they
use are coherent with the environment [11]. To overcome those problems, we
propose a novel approach based on the imitation of a given behavior in a first
phase to guide the evolution toward more efficient solutions in the second phase.

2.3 First Phase: Evolution of Algorithms That Imitate a Behavior

In this first phase, the population is initialized with random algorithms and the
evolution lasts for 50 generations. The goal will be to match a recorded example
behavior. More precisely, we first record the video sequence and parameters of
an experiment where we manually guide the robot from the starting point to
the target point while avoiding obstacles. We make the trajectory as short and
smooth as possible to limit the difficulty of the matching task.

For the evaluation of the algorithms, we replay this sequence and compare the
command issued by the evaluated algorithm with the command recorded during
the manual control of the robot. The goal is to minimize the difference between
these two commands along the recorded sequence. Formally, we try to minimize
two variables F and Y defined by the formulas:

F =

√√√√
n∑

i=1

(fRi − fAi)
2 and Y =

√√√√
n∑

i=1

(yRi − yAi)
2

where fRi and yRi are the recorded forward and yaw speed commands for frame i,
fAi and yAi are the forward and yaw speed commands from the tested algorithm
for frame i and n is the number of frames in the video sequence.

2.4 Second Phase: Evolution of Efficient Solutions

In this second phase, the population is initialized with the final population of
the first phase and the evolution lasts for 50 more generations. The algorithms
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will be evaluated on their ability to really avoid obstacles and reach the target
location. For that, we place the robot at the fixed starting point and let it move
in the environment during 30 s driven by the obstacle avoidance algorithm. Two
scores are attributed to the algorithm depending on its performance: a goal-
reaching score G rewards algorithms reaching or approaching the goal location,
whereas contact score C rewards the individuals that didn’t hit obstacles on
their way. Those scores are calculated with the following formulas:

G =
{

tG if the goal is reached
tmax + dmin/V otherwise

C = tC

where tG is the time needed to reach the goal in seconds, tmax is the maximum
time in seconds (here 30 s), dmin is the minimum distance to the goal achieved
in meters, V is a constant of 0.1 m/s and tC is the time spent near an obstacle
(i.e. less than 18 cm, which forces the robot to keep some distance away from
obstacles). The goal is hence to minimize those two scores G and C.

For the two phases of evolution, the evaluations consist in fact in two runs
with a different starting point and a different goal location. Final scores are
the sum of the scores obtained for the two runs. Performing two different runs
favors algorithms with a real obstacle avoidance strategy while not increasing
evaluation time too much. The starting points are fixed because we want to
evaluate all algorithms on the same problem.

2.5 The Genetic Programming System

We use grammar based genetic programming to evolve the vision algorithms [12].
As usual with artificial evolution, the population is initially filled with randomly
generated individuals. In the same way that a grammar can be used to generate
syntactically correct random sentences, a genetic programming grammar is used
to generate valid algorithms. The grammar defines the primitives, data and
the rules that describe how to combine them. The generation process consists
in successively transforming each non-terminal node of the tree with one of
the rules. This grammar is used for the initial generation of the algorithms
and for the transformation operators. The crossover consists in swapping two
subtrees issuing from identical non-terminal nodes in two different individuals.
The mutation consists in replacing a subtree by a newly generated one. Table 1
presents the exhaustive grammar that we used in all our experiments.

The numbers in brackets are the probability of selection for each rule. A major
advantage of this system is that we can bias the search toward the usage of more
promising primitives by setting a high probability for the rules that generate
them. We can also control the size of the tree by setting small probabilities
for the rules that are likely to cause an exponential growth (rules like real →
ifThenElse(real,real,real,real) for example).

As described previously, we wish to minimize two criteria (F and Y in the first
phase, G and C in the second phase). There are different ways to use evolutionary
algorithms to perform optimization on several and sometimes conflicting criteria.
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Table 1. Grammar used in the genetic programming system for the generation of the
algorithms

[1.0] start → command [0.14] spatial filter → threshold
[1.0] command → directMove(real,real) [0.14] spatial filter → gabor
[0.1] real → targetDistance [0.14] spatial filter → differenceOfGaussians
[0.1] real → targetHeading [0.14] spatial filter → sobel
[0.1] real → scalarConstant [0.15] spatial filter → subsampling
[0.05] real → add(real,real) [0.2] temporal filter → temporalMinimum
[0.05] real → subtract(real,real) [0.2] temporal filter → temporalMaximum
[0.05] real → multiply(real,real) [0.2] temporal filter → temporalSum
[0.05] real → divide(real,real) [0.2] temporal filter → temporalDifference
[0.05] real → temporalRegularization(real) [0.2] temporal filter → recursiveMean
[0.05] real → ifThenElse(real,real,real,real) [0.33] optical flow → hornSchunck(image)
[0.4] real → windowsIntegralComputation(image) [0.33] optical flow → lucasKanade(image)
[0.3] image → videoImage [0.34] optical flow → blockMatching(image)
[0.4] image → spatial filter(image) [0.2] projection → horizontalProjection
[0.15] image → projection(optical flow) [0.2] projection → verticalProjection
[0.15] image → temporal filter(image) [0.2] projection → euclideanNorm
[0.15] spatial filter → gaussian [0.2] projection → manhattanNorm
[0.14] spatial filter → laplacian [0.2] projection → timeToContact

For the experiments described in this paper, we chose the widely used multi-
objective evolutionary algorithm called NSGA-II. It is an elitist algorithm based
on the non-dominance principle. A diversity metric called “crowding distance”
is used to promote diversity among the evolved individuals. All the details of
the implementation can be found in the paper by K. Deb [13].

In order to prevent problems of premature convergence, we separate the pop-
ulation of algorithms in 4 islands, each containing 100 individuals. Those islands
are connected with a ring topology; every 10 generations, 5 individuals selected
with binary tournament will migrate to the neighbor island while 5 other indi-
viduals are received from the other neighbor island. For the parameters of the
evolution, we use a crossover rate of 0.8 and a probability of mutation of 0.01
for each non-terminal node. We use a classical binary tournament selection in
all our experiments. Those parameters were determined empirically with a few
tests using different values. Because of the length of the experiments, we didn’t
proceed to a thorough statistical analysis of the influence of those parameters.

3 Experiments and Results

3.1 Comparison with Other Evolution Strategies

We compare here our own system with a classical one-phase evolution process
and with two methods commonly used to guide the evolution toward promising
solutions, namely incremental evolution and seeding. For these three experiments
we only use the evaluation function described in 2.4, to select the controllers on
their ability to reach the goal while avoiding obstacles.

Seeding an evolution consists in inserting in the initial population one or
several individuals (generally hand written solutions) performing reasonably well
on the target problem. This seeding method guides the evolution towards a
specific part of the state space where we know that there is a good probability
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to find interesting solutions. Here we simply inserted our manually designed
controller presented before in the initial population of one of the four islands.
The evolution then proceeds normally for 100 generations.

Incremental evolution [14] is based on the decomposition of a problem in a
set of problems of increasing complexity. Starting with a simple problem, the
evolution quickly finds good solutions. The difficulty is then progressively in-
creased and new individuals emerge to adapt to those more and more complex
conditions. Here, we proceed for the 20 first generations with a simplified envi-
ronment with only one bookshelf (the one that is closest to the wall). This way,
there is no real obstacle between the starting points and the target points. Then
we proceed for 40 more generations with one more bookshelf, and finally for the
40 last generations with the complete environment containing three bookshelves.

In total, all the experiments last for 100 generations, that is 40,000 evalua-
tions. Fig. 2 presents the Pareto fronts at different times of the evolution for the
different methods. With the classical one-phase evolution, the first generation
contains only individuals with poor performance. After 50 generations we obtain
controllers with interesting behaviors, performing better than the hand designed
controller. The end of the evolution doesn’t improve these results much, we can
say here that the evolution process has become stuck in a local minimum of the
fitness function. With seeding, the first generations contain better controllers
due to the seed individual but the evolution doesn’t manage to further improve
this behavior. In the incremental evolution experiment, the evolution finds very
efficient controllers in the two first environments. But when we introduce the
third bookshelf, the evolution doesn’t find a way to adapt to those new con-
ditions. Nevertheless the final controllers perform better than in the previous
cases. With two-phase evolution, we obtain very good individuals even at the
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Fig. 2. Pareto fronts at different times of evolution for the different evolution strategies.
Those fronts are created by taking the best individuals in the generation in all the four
islands and keeping only non-dominated ones. In some cases one individual dominates
all others, reducing the front to one point.



80 R. Barate and A. Manzanera

end of the first phase. The second phase will then optimize those controllers and
the final ones definitely surpass the ones obtained with the other methods.

3.2 Analysis of the Controllers

We represent on Fig. 3 the trajectories of the robot in the environment with
controllers issued from the different evolution processes. The hand written con-
troller manages to avoid obstacles but the robot goes too slowly and never reaches
the target points. With the one-phase evolution process, the evolved controllers
sometimes manage to reach one of the target points without hitting obstacles
but generally they move in an almost random way and with a lot of rotations.
Turning quickly on themselves prevents the robots from getting stuck against
obstacles and thus generally improves their goal reaching score in the first gen-
erations. This kind of controllers quickly overcomes the rest of the population
and prevents the evolution from finding better controllers. As shown before, the
seeded evolution didn’t manage to improve the seed individual much. The tra-
jectory obtained with evolved controllers is very close to the trajectory of the
hand written controller used as seed.

The incremental evolution produces efficient solutions with one and two book-
shelves but when we add the final one, the evolution fails to adapt the controllers.
The trajectory clearly shows this problem: one of the bookshelf is quickly avoided
but the robot just stops before hitting the second one without trying to avoid
it. The first phase here selects very simple controllers going straight on to the
target points. To achieve this, they just use the target heading value for the

a b c d

e f g Starting point 1
Target point 1
Trajectory 1

Starting point 2
Target point 2
Trajectory 2

Contact points

Fig. 3. a) Trajectory of the hand written controller. b) Trajectory of a controller
evolved with one-phase evolution. c) Trajectory of a controller evolved with seeded
evolution. d) Trajectory of a controller evolved with incremental evolution. e) Trajec-
tory of the recorded sequence. f) Trajectory of a controller evolved with only example
matching evaluation during 50 generations (end of the first phase). g) Trajectory of the
controller evolved with two-phases evolution process (end of the second phase). The
small dots on the trajectories are placed every 2 seconds and thus indicate the speed
of the robot.
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yaw speed command. Although it is a good strategy without obstacles, these
controllers are difficult to adapt afterward for more complex problems.

With two-phase evolution, the first phase evolves controllers with smooth
trajectories very similar to the recorded sequence. Some of those controllers
even reach the two target points although most of them get stuck on an obstacle
as shown on Fig. 3. With this initialization, the second phase quickly evolves
very efficient controllers reaching the two target points without hitting obstacles
and even faster than when the robot is manually controlled. The structure of the
controllers evolved in this environment is generally quite simple (mainly based on
contrast information obtained with simple threshold filters) and there’s almost
no structure difference between the end of the first phase and the end of the
second phase. This means that the imitation phase is crucial for the evolution of
the structure to produce efficient controllers. The second phase mainly optimizes
the parameters of the algorithms to obtain a faster and more robust behavior.

The main limitation of all those controllers is that they don’t generalize well to
different conditions. If we move around the obstacles, the starting point and the
target point, the performance of the controllers decreases quickly. The controller
issued from two-phase evolution still shows some obstacle avoidance abilities
but it doesn’t move toward the target point. Some other controllers just seem
to move randomly in the environment. There are two reasons for this mediocre
generalization behavior: First, it seems that the choice of only two trajecto-
ries in the evaluation environment was too optimistic. The controllers overlearn
these trajectories and this decreases their generalization performance. Second,
the evolved controllers often use the target heading information in quite compli-
cated ways or even not at all. In this case when we move the target point they
are not able to find it unless by chance. To overcome these problems we have
designed experiments with more trajectories during the evolution and with a
different grammar which facilitates an efficient use of the target heading for the
controllers. The generalization performance of the controllers evolved this way
is presented in [15].

4 Conclusion

In this paper, we present a system that selects and adapts automatically an
appropriate obstacle avoidance method to a given visual context. This system
is based on genetic programming and we introduced a novel evolution process
to guide the evolution toward promising solutions in the state space. We have
shown that for our target application, it improves the performance of the final
controllers greatly compared to classical evolution, seeding or incremental evolu-
tion. This method could be adapted for many evolutionary robotic systems and
it would be interesting to validate it on other applications.

Our goal is now to test this method on a wide range of environments (including
real-world environments) to check if some primitives are selected more often
than others and how they are combined by the evolution. This will lead to a
better understanding on how to combine different vision information in a robotic
navigation system in order to obtain more adaptive and robust behaviors.
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Abstract. We present the results from an evolutionary robotics simu-
lation model of a recent unpublished experiment on human perceptual
crossing in a minimal virtual two-dimensional environment. These ex-
periments demonstrate that the participants reliably engage in rhythmic
interaction with each other, moving along a line. Comparing three types
of evolved agents with radically different embodiment (a simulated arm,
a two-wheeled robot and an agent generating a velocity vector in Eu-
clidean space), we identify differences in evolved behaviours and struc-
tural invariants of the task across embodiments. The simulation results
open an interesting perspective on the experimental study and generate
hypotheses about the role of arm morphology for the behaviour observed.

1 Introduction

In a recent unpublished study, Lenay et al. (personal communication) from the
perceptual supplementation group (GSP) at the UT Compiègne tested human
subjects on their capacity to discriminate static and mobile objects from other
intentional sensing entities in a minimal two-dimensional virtual environment.
This paper presents the results from an evolutionary robotics simulation model
of this experiment that aims at exploring the space of possible behavioural strate-
gies afforded by the experimental design, in order to help explain their results.

In the experiment, the blindfolded participants’ task was to indicate via
mouse-clicks whether an object encountered by moving the mouse (tactile stim-
ulus to the finger) was another sensing entity (i.e. another participant) or not,
where the only two other objects in the toroidal simulated two-dimensional en-
vironment were a mobile lure that shadows the other participants’ movements
and a static lure (see Sect. 2 for details of the task). This paradigm was a direct
extension of a previous experiment on perceptual crossing in a one-dimensional
simulated environment by the same group [1], to test whether the experimental
results transfer qualitatively or quantitatively from a one-dimensional to a two-
dimensional scenario. Some preliminary results from their study are that the
results transfer qualitatively (i.e. 65% correct clicks), and that the behavioural
strategies are strikingly and unexpectedly similar to those observed in the 1D
version of the experiment. In particular, even though participants search for in-
teraction exploring both dimensions, they move back and forth on a line once
they encounter an interaction partner or object.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 83–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Having shown in our previous work [2,3] that evolutionary robotics simu-
lations of this kind of minimal sensorimotor experiments (in particular of the
one-dimensional version of the same task [2]) can be a rich source of clarifica-
tion, inspiration and illustration, we conducted the present simulation in order
to understand the dynamical principles of the task and to generate hypotheses
for the analysis and evaluation of the experimental data based on the analogy
with the simpler and more controllable simulated agents.

Our intuition was that the rhythmic one-dimensional interaction is related to
the morphology of the human arm. To explore this intuition, we compared a
simple model of a human arm moving a mouse on a desk surface with two other
types of agents that are controlled by the same control network, but have rad-
ically different bodies and sensorimotor dynamics: a two-wheeled robotic agent
and an agent generating a velocity vector in Euclidean space with a vertical and
a horizontal component (similar to a joystick; model described in Sect. 2).

The results (Sect. 3) allow to identify interesting differences and common-
alities between the solutions evolved for these different types of agents and the
results from the original experiment. Firstly, the same behavioural patterns (e.g.,
independent realisation of search and interaction, rhythmic oscillations) evolve
for all agents. Secondly, the realisation of these behaviours varies a lot with mor-
phology, which includes the production of near-linear rhythmic trajectories in
arm agents, as hypothesised. Thirdly, the evolution of a viable yet unintuitive
strategy (avoiding interaction with each other) in some of the agents. This refu-
tation of our hypothesis that the results would qualitatively resemble those from
the experiment is not a shortcoming: the existence of a counter-intuitive efficient
strategy opens a different perspective on the experimental data (see Sect. 4).

Analysing sensorimotor data from experimental studies like the one we mod-
elled is a difficult task because of the multitude of factors influencing human
behaviour. Exploring the space of possible solutions in simulation (the task and
the simulated environment used here are, apart from parametric details, iden-
tical with those used in the experiment), we hope that our results will directly
facilitate the data analysis and interpretation for the researchers at the GSP.

2 The Model

The artificial agents evolved, just as the experimental participants, move around
a virtual plane (200× 200) that wraps around in both dimensions (i.e., a torus;
see Fig. 1 (A)). In this plane, there are six different objects. Two circular simu-
lated agents (circular objects in Fig. 1 (A)), two mobile lures that are attached
to the agents and two fixed lures that are statically installed at (50, 50) and
(150, 150) respectively. All objects are circular of diameter 20, even if the lures
are represented as boxes in Fig. 1 (A) and other figures. The attached lures
shadow the trajectories of each of the agents at a distance of 93 units, being
attached in perpendicular directions (see Fig. 1 (A)).

The only sensory signal S that the agents receive is a touch signal, i.e. if
the distance d between the agent and something else is d < 20, an input SG
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Fig. 1. Schematic diagram of the simulation model and control network. (A) The sim-
ulated environment with the two agents (circles), the attached lures (boxes attached
with a line) and the fixed lures (boxes). Diagrams of the two-wheeled agent (B), the
agent moving in Euclidean space (C) and the simulated arm agent, with the space in
which they can act (D). The control network (E).

(sensory gain, evolved) is fed into the control network. Each agent can only
perceive the other and one of each kind of lure, i.e., the dark agent can perceive
all light objects in Fig. 1 (A), but not the dark ones, and vice versa, in order for
interaction between the agents not to be mediated through another object.

Three different types of agents were evolved: 1.) A two-wheeled agent that
generates the velocity vl,r ∈ [−20MG, 20MG] for each wheel (Fig. 1 (B); MG is
the evolved motor gain; velocities are specified in units/s). 2.) An agent that
generates a horizontal and a vertical velocity vector vh,v ∈ [−30MG, 30MG] that
are summed up (‘Euclidean agent’, Fig. 1 (C)). 3.) A simple simulated arm with
two segments of length 400 units that is steered through angular velocity signals
ωe,s ∈ [−0.05MG, 0.05MG] to the elbow and the shoulder joint (see Fig. 1 (D)).

In order to approximate the dynamics of human mouse motion, the arm agent
is restricted in its movements in two ways: through joint stops αs ∈ [0.1π, 0.6π]
and αe ∈ [0.2π, π] and through the delimitation of movement to an area of
600× 600 units that represents the ‘desk’ surface (i.e., the area within which a
human participant would move the mouse), whose bottom left corner is fixed at
(−200, 200) taking the shoulder joint as the origin. The desk area is translated
randomly with respect to both the desk area of the other agent and the simulated
virtual environment (see Fig. 1 (D)) to avoid that agents evolve to meet in the
middle of the desk.

For purpose of comparison, all three kinds of agent are controlled by struc-
turally identical neural network controllers (Fig. 1 (E)), i.e., continuous-time
recurrent neural network (CTRNN, see e.g., [4]) with one input neuron, four
fully connected interneurons and 5 output neurons. Four output neurons reg-
ulate the two motor outputs (M1 = aM1 − aM2, M2 = aM3 − aM4) that are
interpreted as vl,r, vh,v or ωe,s respectively. The fifth output neuron generates
the categorisation signal MC . CTRNN dynamics are governed by
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τi
dai(t)

dt
= −ai(t) +

N∑

j=1

wijσ(aj(t) + θj) + Ii (1)

where σ(x) = 1/(1+e−x) is the standard sigmoid function, θi a bias term, τi the
activity decay constant and wij the strength of a connection from unit j to unit
i. The parameters evolved (74 parameters) are: SG, MG ∈ [1, 50]. τi ∈ [20, 3000],
θi ∈ [−3, 3] and wi,j ∈ [−6, 6].

The dynamics are simulated using the forward Euler method with a time step
of 1 ms. All three kinds of agents were evolved with and without a 100 ms sensory
delay. A modified version of the arm agent with three sensory neurons received
the joint angles as additional proprioceptive inputs (S2,3 = SGαe,s).

Each trial lasts T ∈ [6000, 9000] ms. The task is to interact with something
and correctly classify the object encountered as either of the lures (MC ≤ 0.5)
or the other agent (MC > 0.5). Agents are matched with clones of themselves in
the task. The starting positions are random for the wheeled and the Euclidean
agent and random within the centre area for the arm agent. The starting angle
for the wheeled agents is random. For the arm agent and the Euclidean agent,
the relative orientation of the agents to each other is random ∈ {−π

2 , 0, π
2 , π}.

The fitness F (i) of an individual i in each trial is given by the following function

F (i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if (ds ≤ D) ∧ (do > D) ∧ (MC > 0.5) (true positive)
1 if (ds > D) ∧ (do ≤ D) ∧ (MC ≤ 0.5) (true negative)
0.25 if (do < D) ∧ (ds < D) (ambiguity)
0.1 if false classification and S > 0 (touch)
0 else

(2)

where D = 30, do the distance to the closest of the two lures and ds the distance
to the other agent. Agents are tested on eight trials and fitness is averaged.

The search algorithm used to evolve the parameters of control networks (1000
generations) is a generational genetic algorithm (GA) using a population of
30 individuals with a real-valued genotype ∈ [0, 1], truncation selection (1/3),
vector mutation of magnitude r = 0.6 and reflection at the gene boundaries. The
weights wij and the bias θi are mapped linearly to the target range, the sensor
gain SG, the motor gain MG and the time constants τi are mapped exponentially.

3 Results

3.1 Evolvability

All agents evolved to a higher level of performance with delays than without
(see Fig. 2 (A)). A similar counter-intuitive benefit of sensory delays had already
been observed in the one-dimensional scenario [2]. As explained in the following
section 3.2, this is because overshooting of the target bootstraps the evolution
of active perceptual strategies.

The wheeled agent and the Euclidean agent evolve to a much higher level of
performance (see Fig. 2 (A)), with the best individual from the best evolution-
ary run achieving nearly perfect performance (Fig. 2 (B)), whilst even the best
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Fig. 2. (A): Population fitness average F̄ (mean and maximum of 10 evolutionary
runs). (B): Performance average across 100 evaluations for the best individual from the
best evolution. Light: no delay, dark: 100 ms sensory delay. (C) Fitness for rhythmic
solutions (white) is on average much higher than that for non-rhythmic solutions (grey).
(No rhythmic activity was evolved for Euclidean or arm agents without delay; note that
the measure for rhythmicity is an approximation as explained in section 3.2.)

evolved arm agent stays well below the 50 % performance level. As explained in
Sect. 3.2, this is because evolution of search strategies is much more difficult for
the arm agent than for the other two.

3.2 Evolved Behaviours

Two large classes of behaviour dominate the fitness landscape for the evolved
task, irrespective of embodiment. The more successful strategy (1) is to always
output ‘no’ (MC ≤ 0.5) and seek contact with the fixed lure, avoiding any
interaction with any mobile entity (up to perfect fitness). This perfectly viable
yet slightly ‘autistic’ behaviour differs a lot from the participants’ behaviour,
who avoid the fixed lure and seek interaction with each other. This discrepancy
is interesting, not lamentable, because it illustrates alternative solutions afforded
by the paradigm. Replicating human behaviour was not the main objective. The
other predominating strategy (2) is to interact with anything indiscriminately
and constantly output ‘yes’ (MC > 0.5) and yields a fitness of up to ca. 40%.
The arm agents nearly exclusively evolve strategy (2), whereas the Euclidean and
wheeled agents evolve strategy (1), frequently passing during evolution through
a phase of strategy (2). What evolved, therefore, were preferences rather than
discriminatory capacity: only four agents (one arm, one wheeled, two Euclidean)
evolved additionally a classification output contingent on stimulation.

Both strategy (1) and strategy (2) can in principle be realised by rhythmi-
cal interaction with the target or simply by halting. It appears that rhythmic
behaviour is more effective: as an approximation, let rhythmic behaviour be ac-
tivity confined to a radius of d = 50 around an entity with least five inversions of
sensory state during the last second of a trial. Within each condition for which
both rhythmic and non-rhythmic solutions evolved, the rhythmic ones were on
average 9% more successful (see also Fig. 2 (C); some rhythmically interacting
arm agents that were not captured by the approximate measure). The reason
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for this advantage is that an agent that evolves to simply stop will be clueless
upon unexpected cessation of the stimulus, e.g. when crossing the object at an
unfortunate angle, and therefore re-start the search for sensation. An agent that
interacts with an object rhythmically and stays in touch with its boundary can
reverse the effect of actions that make stimulation disappear and return to where
it last had been stimulated. This minimal spatialisation increases the probability
to re-encounter a lost object.

Sensory delays seem to be crucially involved in the evolution of rhythmic
behaviour, accounting for their evolutionary advantage: We compared the 60
best individuals from all evolutionary runs (across bodies). Only two of the 30
individuals evolved without delays behaved rhythmically at least once in 10 trials
(opposed to 16 out of 30 evolved with delay). Sensory delays lead the agents to
overshoot an object, which triggers the evolution of return trajectories. This,
in turn, facilitates the evolution of rhythmic interaction as effective and active
perceptual strategy, and thus helps to overcome the local fitness maximum to
stop upon any stimulation and start the search anew if stimulation ceases.

Despite these abstract commonalities, the exact realisation and behavioural
dynamics vary quite significantly between the different agents. The following
subsections analyse in detail the strategies evolved (with delays) to explore the
strategy space and how it is constrained by different embodiments.

The Two-Wheeled Agent. Two behavioural phases that can be variably
realised independent of each other can be identified: search and interaction.
Wheeled agents evolved a variety of strategies to establish contact: some shoot
off straight, others drive around in large circles, yet others in arches or spirals.
Interaction is initiated immediately on contact, or, otherwise, the agent backs off
and comes back to see if the stimulating object is still there. All wheeled agents
evolved to drive in circles (of variable size) around the encountered entity, most of
them aiming at a distance from the object that makes stimulation rhythmically
appear and disappear.

Figure 3 depicts a sample behaviour of the best agent evolved (F (i) = 0.92).
Whilst agent 1 is in stable interaction with the fixed lure, agent 2 is momentarily
trapped in an interaction with agent 1’s attached lure (t = [500, 1500]), eventu-
ally abandons it, passes the other agent twice and then finds the fixed lure (Fig 3
(A)). Stimulation received by either of the mobile stimuli is not long and rhyth-
mic enough for interaction to stabilise. Even if interaction with the attached lure
is maintained over a number of crossings, the irregularity and intermittence of
the sensation, which becomes amplified through gradual modification of return
trajectories, eventually allows the agent to move on. This strategy only fails in
very exceptional cases in which interaction with a mobile entity is phase-locked
in a way that resembles interaction with a fixed lure.

The Euclidean Agent. The Euclidean agents evolved mostly scan the space
by infinitely going straight around the torus in a direction that produces slightly
inclined thin stripes (see best agent with F (i) = 0.96 in Fig. 4). This extremely
effective search strategy is made possible by the fact that their motor outputs
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define absolute direction in space. Only two agents evolved to start search in
a large curve. About half of the agents evolve to simply stop upon stimula-
tion (hence the slight across population disadvantage compared to the wheeled
agents), while the other half engages in rhythmic interaction along one dimen-
sion, making stimulation continually appear and disappear. Some of the agents
evolved to slowly grind past objects encountered, or to move a bit further away
with each oscillation. With such strategies, interaction with the fixed lure is not
permanently stable, even if it lasts much longer than interaction with a mobile
object (thus avoiding mobile objects). Due to the efficient search behaviour, the
chances that to re-encounter the fixed object are still very high. This strategy,
again, is very effective and fails only in exceptional cases. Fig. 4 shows how the
best agent is hardly perturbed by encountering the fixed lure of the stabilised
other because both of them move so fast that stimulation is too short to induce
an actual return to the locus of stimulation.
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Fig. 5. (1) Agent with neural oscillator as CPG. (2) Best evolved agent. (3) Example
agent with proprioception. Trajectories (2A, 3A): Both diagrams depict the rhythmic
linear interaction of both agents. In (2A) these oscillations are not visible, because
moving just one joint leads to the exact inversion of the path just made. Sensorimotor
diagrams (1, 2B, 3B): ωe,s and S (rectangular) for agent 1 (top) and agent 2 (bottom).

The Arm Agent. For the arm agent, scanning the environment is much more
difficult than for either of the other agents. Without proprioceptive feedback it
has no way of telling where it is and whether it is still moving or has run up to
a joint stop or the edge of the ‘desk’. Most of the agents evolved to sweep across
the surface just once (either by running up to the desk edge in a large arch and
then grinding down or by running up to a joint stop and then back in a large
arch, using slow and fast τs). If during their sweep no object is touched, they will
indefinitely remain immobile and receive F = 0, as there is no environmental
feedback to guide or inform further action. This enters an element of chance
into fitness evaluation, which makes arm evolution noisy and probably accounts
for the performance disadvantage. The only way to reliably sustain motion is to
evolve a neural oscillator as central pattern generator (CPG), as it was found
in one of agents (Fig. 5 (A)), which, by virtue of this CPG, is the second best
agent, despite just stopping when being stimulated.

There are, in principle many possibilities to mitigate this problem. A modified
evolution with proprioception (joint angles), for instance, immediately produced
much higher results (population average/best after 1000 generations in 10 runs:
0.33/0.70; see Fig. 5 (3) for example behaviour). However, as stated earlier, it
is not the primary objective of the paper to reproduce human behaviour but
to explore dynamical principles given the simulation set-up. Even in the sub-
optimal solutions evolved, nearly all arm agents evolve to rhythmically interact
with any entity encountered (which is not always recognised by the criterion
specified in Sect. 3.2), making the sensory stimulation constantly appear and
disappear (see Fig. 5 (2) and (3)). This rhythmic activity is realised by vary-
ing one of joint angles that control the arm, which leads to the generation of
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one-dimensional near straight trajectories, similar to those observed in the
human participants. Our hypothesis that this kind of behaviour can result from
arm morphology is thus supported by the present results.

4 Discussion

The behavioural strategies that the different kinds of evolved agents employ,
even though they differ a lot in immediate appearance and quantitative aspects,
follow the same dynamical principles. The behaviour evolved for all three agents
is dominated by the two local maxima in the fitness landscape (i.e., ‘say yes
and indiscriminately interact’ and ‘say no and seek out the fixed lure’). Also,
for all embodiments, a scanning strategy and an interaction strategy can be
distinguished and independently realised. Furthermore, all three types of agents
have a tendency to evolve rhythmic interactions that make sensations appear
and disappear, which is more likely to evolve with delayed sensory feedback and
implies an advantage in fitness, irrespective of preference for the other or for the
fixed lure. This is because agents that stay in touch with the boundary of their
stimulant are more likely to adjust interaction patterns to a certain degree and
maintain interaction against perturbations.

Comparing the different sensorimotor diagrams, there are some remarkable
similarities as to how such rhythmic interaction is realised. Irrespective of em-
bodiment, once a stimulation is encountered, one of the motor signals is frozen
(statistically significant p � 0.01 difference between variance in M1 and M2

during the last second of a trial across conditions), in order to keep interaction
in one place, and only becomes active again if stimulation ceases for too long a
period of time. The motor neurons that generate this ‘frozen’ output also tend
to have slower time constants (difference not statistically significant). The other
motor signal is used to implement local motion and quickly reacts to changes
in the rhythmic inputs, actively maintaining interaction. In the wheeled agent,
implementing this principle results in small circular trajectories, whereas in the
Euclidean and the arm agents, it results in oscillation along a line, just like
those observed in human participants. The simulation results thus support our
hypothesis that arm morphology plays a role in constituting the one dimensional
rhythmic interaction, as the arm-specific implementation of a more general dy-
namical principle of dimensionality reduction during rhythmic interaction. These
simulation results generate the hypotheses that the direction in which the par-
ticipants oscillate should be orthogonal to the orientation of the arm, and that
dimensionality reduction should serve rhythmic interaction.

Two phenomena already observed in the model for the one-dimensional ver-
sion of the experiment have been found to occur again: the role of delays in
the evolution of oscillatory scanning behaviour and the distinction between the
fixed lure and the other agent on the basis of integrated stimulation time, which
propose the investigation of dependencies between a) latencies in sensorimotor
action and frequency of oscillations and b) the variation in integrated stimulation
time due to anti-phase co-ordination and its role in behavioural preference.
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In our earlier simulation model [2], we had evolved agents to seek interaction
with one another, presuming a preference for live interaction. Leaving artificial
evolution to determine an agent’s preference, however, favours ‘autistic’ agents
that avoid any interaction with moving entities, because stable interaction with
a static object is easier established and more reliably maintained. This opens
an interesting perspective on the previous experiment and simulation, for which
we had concluded that perceptual crossing is a nearly inevitable result from the
mutual search for each other. In the light of the present simulation results, it be-
comes clear that the dynamics of the task alone (i.e., leaving aside motivational
factors such as boredom) do not favour perceptual crossing, but much rather in-
teraction with the static lure, and that perceptual crossing is established despite
this strong basin of attraction. Interestingly, a recent modified replication of the
one-dimensional experiment with humans (Di Paolo, personal communication)
appears to produce results that resemble more the ‘autistic’ behaviour reported
here than the social behaviour observed in the original study in some subjects.

The results presented identify dynamical principles in all evolved solutions and
variations in how these principles are realised across different embodiments. Our
simulation experiments have generated a number of hypotheses for analysis of
the empirical results and thus reaffirm our conviction that evolutionary robotics
simulation models are a rich source of illustration and proofs of concept to aid
minimalist experimental research on human sensorimotor dynamics.
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Abstract. Optimal feedback control has been proposed as an attractive
movement generation strategy in goal reaching tasks for anthropomor-
phic manipulator systems. Recent developments, such as the iterative
Linear Quadratic Gaussian (iLQG) algorithm, have focused on the case
of non-linear, but still analytically available, dynamics. For realistic con-
trol systems, however, the dynamics may often be unknown, difficult to
estimate, or subject to frequent systematic changes. In this paper, we
combine the iLQG framework with learning the forward dynamics for
a simulated arm with two limbs and six antagonistic muscles, and we
demonstrate how our approach can compensate for complex dynamic
perturbations in an online fashion.

Keywords: Adaptive optimal control, learning dynamics, redundant
actuation.

1 Introduction

In this work, we focus on the issues related to planning and control of reaching
movements for anthropomorphic manipulators with redundant actuation based
on antagonistic muscles. While such systems are becoming more and more pop-
ular especially where compliance and interaction with humans is required, con-
trolling these systems remains a big challenge: Apart from the problem of often
highly non-linear and hard to model system dynamics, the controller has to make
a choice between many different possible trajectories (kinematics) and a multi-
tude of applicable motor commands (dynamics) for achieving a particular task.
How do we resolve this redundancy?

Optimal control theory [1] answers this question by establishing a certain cost
function, and selecting the solution with minimal cost (e.g., minimum jerk [2]).
Quite often these control schemes are only concerned with trajectory planning
and an “open loop” optimisation of the control commands, while the correction
of errors during execution is left to simple PID controllers.

As an alternative, closed loop optimisation models are aimed at providing a
control law which is explicitly based on feedback from the system. In the ideal
case, the system state is directly mapped to control signals during execution, and
the form of this mapping is again governed by a cost function. A key property
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of such optimal feedback controllers (OFC) is that errors are only corrected
if they adversely affect the task performance (minimum intervention principle
[3]). This is important especially in systems that suffer from control dependent
noise, since task-irrelevant correction could destabilise the system beside expend-
ing additional control effort. Empirically, OFC also accounts for many motion
patterns that have been observed in natural, redundant systems and human
experiments [4] including the confounding trial-to-trial variability in individual
degrees of freedom that, remarkably, manages to not compromise task optimality
[5,6]. Therefore, this paradigm is potentially a very attractive control strategy
for artificial anthropomorphic systems (i.e., many degrees of freedom, redundant
actuation, flexible lightweight construction, variable stiffness).

Unfortunately, finding a globally valid optimal control law is a very hard
problem especially for non-linear and high-dimensional systems. We therefore
resort to hybrid algorithms that present a compromise between open loop and
closed loop optimisation, that is, algorithms which iteratively compute an opti-
mal trajectory together with a locally valid feedback law. Examples of these are
differential dynamic programming (DDP) [7,8], iterative linear-quadratic reg-
ulator designs [9], or the recent iterative Linear Quadratic Gaussian (iLQG)
framework [10], which will form the basis of our work.

A major shortcoming of iLQG (and DDP) is the dependence on an analytic
form of the system dynamics, which often may be unknown or subject to change.
We overcome this limitation by learning an adaptive internal model of the sys-
tem dynamics using an online, supervised learning method. We consequently
use the learned model to derive an iLQG formulation that is computationally
efficient, reacts optimally to transient perturbations, and most notably adapts
to systematic changes in the plant dynamics.

The idea of learning the system dynamics in combination with iterative opti-
misations of trajectory or policy has been explored previously in the literature,
e.g., for learning to swing up a pendulum [11] using some prior knowledge about
the form of the dynamics. Similarly, Abeel et al. [12] proposed a hybrid reinforce-
ment learning algorithm, where a policy and an internal model get subsequently
updated from “real life” trials. In contrast to their method, however, we employ
a second-order optimisation method, and we refine the control law solely from
the internal model. To our knowledge, learning dynamics in conjunction with
control optimisation has not been studied in the light of adaptability to chang-
ing plant dynamics. In this paper, we successfully apply our adaptive control
formalism to a movement system with six antagonistic muscles, which exhibits
large redundancies and complex non-linearities of the dynamics.

2 A Simulation Model of Redundant Actuation

We wish to study a two degrees of freedom (DoF) planar human arm model,
which is actuated by four single-joint and two double-joint antagonistic muscles
(Fig. 1, left). The arm model described in this section is based on [13]. Although
kinematically simple, the system is over-actuated and therefore an interesting
testbed for our control scheme, because large redundancies in the dynamics
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Fig. 1. Left: Human arm model with 6 muscles (adapted from [13]). Right: Same
arm model with three selected targets (circles) and iLQG generated trajectories as
benchmark data. The physics of the model is simulated using the Matlab Robotics
Toolbox [14].

have to be resolved. The dimensionality of the control signals makes adaptation
processes (e.g., to external force fields) quite demanding.

The dynamics of the arm is in part based on standard equations of motion.
For our planar 2-DoF manipulator the joint torques τ are given by

τ = M(q)q̈ + C(q, q̇)q̇, (1)

where q and q̇ are the joint angles and velocities, respectively; M(q) is the
two-dimensional symmetric joint space inertia matrix and C(q, q̇) accounts for
Coriolis and centripetal forces.

Given the antagonistic muscle-based actuation, we can not command joint
torques directly, but rather we have to calculate effective torques from the muscle
activations u. For the present model the corresponding transfer function is given
by

τ (q, q̇, u) = −A(q)T T(l, l̇, u), (2)

where A represents the moment arm. For simplicity, we assume A to be constant
and independent of the joint angles q:

A(q) = A =
(

a1 a2 0 0 a5 a6

0 0 a3 a4 a7 a8

)T

. (3)

The muscle lengths l depend on the joint angles q through the affine relationship
l = lm−Aq, which also implies l̇ = −Aq̇. The term T(l, l̇, u) in (2) denotes the
muscle tension, for which we follow the Kelvin-Voight model [15] and define:

T(l, l̇, u) = K(u)
(
lr(u)− l

)−B(u)l̇. (4)

Here, K(u), B(u), and lr(u) denote the muscle stiffness, the muscle viscosity
and the muscle rest length, respectively. Each of these terms depends linearly
on the motor commands u, as given by

K(u) = diag(k0 + ku), B(u) = diag(b0 + bu), lr(u) = l0 + ru. (5)
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The elasticity coefficient k, the viscosity coefficient b, and the constant r are
given from the muscle model. The same holds true for k0, b0, and l0, which are
the intrinsic elasticity, viscosity and rest length for u = 0, respectively. For the
exact values of these coefficients please refer to [13].

Please note that in contrast to standard torque-controlled robots, here the
dynamics (1) is not linear in the control signals, since u enters (4) quadratically.

3 Locally-Optimal Feedback Control

Let x(t) denote the state of a plant and u(t) the applied control signal at time
t. In this paper, the state consists of the joint angles q and velocities q̇ of the
arm, and the control signals u are the muscle activations. If the system would
be deterministic, we could express its dynamics as ẋ = f(x, u), whereas in the
presence of noise we write the dynamics as a stochastic differential equation

dx = f(x, u)dt + F(x, u)dω. (6)

Here, dω is assumed to be Brownian motion noise, which is transformed by a
possibly state- and control-dependent matrix F(x, u). We state our problem as
follows: Given an initial state x0 at time t = 0, we seek a control sequence u(t)
such that the system’s state is x∗ at time t = T . Stochastic optimal control theory
approaches the problem by first specifying a cost function which is composed
of (i) some evaluation h(x(T )) of the final state, usually penalising deviations
from the desired state x∗, and (ii) the accumulated cost c(t, x, u) of sending a
control signal u at time t in state x, typically penalising large motor commands.
Introducing a policy π(t, x) for selecting u(t), we can write the expected cost of
following that policy from time t as [10]

vπ(t, x(t)) =
〈

h(x(T )) +
∫ T

t

c(s, x(s), π(s, x(s)))ds
〉

. (7)

One then aims to find the policy π that minimises the total expected cost
vπ(0, x0). Thus, in contrast to classical control, calculation of the trajectory
(planning) and the control signal (execution) is not separated anymore, and for
example, redundancy can actually be exploited in order to decrease the cost.
If the dynamics f is linear in x and u, the cost is quadratic, and the noise
is Gaussian, the resulting so-called LQG problem is convex and can be solved
analytically [1].

In our case of non-linear dynamics, global solutions can in theory still be
found by applying dynamic programming methods [16] based on the Hamilton-
Jacobi-Bellman equations. However, in their basic form these methods rely on a
discretisation of the state and action space, an approach that is not viable for
large DoF systems. Some research has been carried out on random sampling in a
continuous state and action space [17], and it has been suggested that sampling
can avoid the curse of dimensionality if the underlying problem is simple enough
[18], as is the case if the dynamics and cost functions are very smooth.
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As an alternative, one can compute linear and quadratic approximations to
the dynamics and the cost, respectively, and iteratively solve a “local” LQG
problem to improve the control solution, until at least a local minimum of the
cost function is found. The resulting iLQG algorithm has only recently been
introduced [10], so we give a brief summary in the following1.

One starts with an initial time-discretised control sequence ūk ≡ ū(kΔt) and
applies the deterministic forward dynamics to retrieve an initial trajectory x̄k,
where

x̄k+1 = x̄k + Δt f(x̄k, ūk). (8)

Linearising the discretised dynamics (6) around x̄k and ūk and subtracting (8),
one gets a dynamics equation for the deviations δxk = xk−x̄k and δuk = uk−ūk:

δxk+1 =
(
I+Δt

∂f
∂x

∣∣∣
x̄k

)
δxk+Δt

∂f
∂u

∣∣∣
ūk

δuk+
√

Δt

(
F(uk) +

∂F
∂u

∣∣∣
ūk

δuk

)
ξk. (9)

Similarly, one can derive an approximate cost function which is quadratic in δu
and δx. Thus, in the vicinity of the current trajectory x̄, the two approxima-
tions form a “local” LQG problem, which can be solved analytically and yields an
affine control law δuk = lk+Lkδxk (for details please see [10]). This control law is
fed into the linearised dynamics (eq. 9 without the noise term) and the resulting
δx are used to update the trajectory x̄. In the same way, the control sequence ū is
updated from δu. This process is repeated until the total cost cannot be reduced
anymore. The resultant control sequence ū can then be applied to the system,
whereas the matrices Lk from the final iteration may serve as feedback gains.

In our current implementation we do not utilise an explicit noise model F for
the sake of clarity of results; in any case, a matching feedback control law is only
marginally superior to one that is optimised for a deterministic system [10].

4 iLQG with Learned Dynamics (iLQG–LD)

In order to eliminate the need for an analytic dynamics model and to make
iLQG adaptive, we wish to learn an approximation f̃ of the real plant forward
dynamics ẋ = f(x, u). Assuming our model f̃ has been coarsely pre-trained, for
example by motor babbling, we can refine that model in an online fashion as
shown in Fig. 2.

For optimising and carrying out a movement, we have to define a cost function
(where also the desired final state is encoded), the start state, and the number
of discrete time steps. Given an initial control sequence ū0, the iLQG iterations
can be carried out as described in the previous section, but utilising the learned
model f̃ . This yields a locally optimal control sequence ūk, a corresponding
desired state sequence x̄k, and feedback correction gain matrices Lk. Denoting
the plant’s true state by x, at each time step k, the feedback controller calculates
the required correction to the control signal as δuk = Lk(xk − x̄k). We then use
1 DDP works similarly, but requires quadratic approximations of both the dynamics

and the cost function.
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Fig. 2. Illustration of our iLQG–LD learning and control scheme

the final control signal uk = ūk + δuk, the plant’s state xk and its change dxk

to update our internal forward model f̃ . As we show in Section 5, we can thus
account for (systematic) perturbations and also bootstrap a dynamics model
from scratch.

The domain of real-time control demands certain properties of a learning algo-
rithm, namely fast learning rates, high prediction speeds at run-time, and robust-
ness towards negative interference if the model is trained incrementally. Locally
Weighted Projection Regression (LWPR) has been shown to exhibit these prop-
erties, and to be very efficient for incremental learning of non-linear models in
high dimensions [19]. In LWPR, the regression function is constructed by blend-
ing local linear models, each of which is endowed with a locality kernel that de-
fines the area of its validity (also termed its receptive field). During training, the
parameters of the local models (locality and fit) are updated using incremental
Partial Least Squares, and models can be pruned or added on an as-need basis,
for example, when training data is generated in previously unexplored regions.

LWPR learning has the desirable property that it can be carried out online,
and moreover, the learned model can be adapted to changes in the dynamics
in real-time. A forgetting factor λ [19], which balances the trade-off between
preserving what has been learned and quickly adapting to the non-stationarity,
can be tuned to the expected rate of external changes.

5 Experiments

We study movements of our arm model (Section 2) for a fixed motion duration
of one second, which we discretise into K = 50 steps (Δt = 0.02s). The manip-
ulator starts at an initial position q0 and reaches towards a target qtar. During
movement we wish to minimise the amount of muscle activation (≈ energy con-
sumption) of the system. We therefore use the cost function

v = wp |qK − qtar | 2 + wv | q̇K | 2 + we

K∑

k=0

|uk | 2Δt, (10)

where the factors for the target position accuracy (wp), the final target velocity
accuracy (wv), and for the energy term (we) weight the importance of each
component.
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5.1 Stationary Dynamics

In order to make iLQG–LD work for our three reference targets (see Fig. 1,
right) we coarsely pre-trained our LWPR model with a focus on a wide coverage
of the workspace. For the arm model we use in this paper, the training data
are given as tuples consisting of (q, q̇, u) as inputs (10 dimensions in total),
and the observed joint accelerations q̈ as the desired two-dimensional output.
We stopped training once the normalised mean squared error (nMSE) in the
predictions reached ≤ 0.005. At this point LWPR had seen 1.2 · 106 training
data points and had acquired 852 receptive fields, which is in accordance with
the previously discussed high non-linearity of the plant dynamics.

We carried out a reaching task to the three reference targets using the feedback
controller (feedback gain matrix L) that falls out of iLQG(-LD). To compare
the stability of the control solution, we simulated control dependent noise by
contaminating the muscle commands u just before feeding them into the plant.
We applied Gaussian noise with 50% of the variance of the signal u.

Figure 3 depicts the generated control signals and the resulting performance
of iLQG–LD and iLQG over 20 reaching trials per target. Both methods show
similar endpoint variances and trajectories which are in close match. As can be
seen from the visualisation of the control sequences, antagonistic muscles (i.e.,
muscle pairs 1/2, 3/4, and 5/6) are never activated at the same time. This is
a direct consequence of the cost function, which penalises co-contraction as a
waste of energy. Table 1 quantifies the control results of iLQG–LD and iLQG
for each target with respect to the number of iterations, the generated running
costs and the end point accuracy.

5.2 Adaptation Results

A major advantage of iLQG–LD is that it does not rely on an accurate analytic
dynamics model; consequently, it can adapt ‘on-the-fly’ to external perturbations
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Fig. 3. Illustration of an optimised control sequence (left) and resulting trajectories
(right) when using a) the known analytic dynamics model and b) the LWPR model
learned from data. The control sequences (left target only) for each muscle (1–6)
are drawn from bottom to top, with darker grey levels indicating stronger muscle
activation.
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Table 1. Comparison of the performance of iLQG–LD and iLQG with respect to the
number of iterations required to compute the control law, the average running cost,
and the average Euclidean distance to the three reference targets (left, center, right).

iLQG iLQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

Center 19 0.0345± 0.0060 0.11± 0.07 14 0.0427± 0.0069 0.38± 0.22
Left 40 0.1873± 0.0204 0.10± 0.06 36 0.1670± 0.0136 0.21± 0.16
Right 41 0.1858± 0.0202 0.57± 0.49 36 0.1534± 0.0273 0.19± 0.12

and to changes in the plant dynamics that may result from altered morphology or
wear and tear. We carried out adaptive reaching experiments (towards the center
target) in our simulation similar to the human manipulandum experiments in
[20]. We generated a constant unidirectional force field (FF) acting perpendicu-
lar to the reaching movement (see Fig. 4). Using the iLQG–LD model from the
previous experiment, the manipulator gets strongly deflected when reaching for
the target because the learned dynamics model cannot yet account for the “spu-
rious” forces. However, using the resultant deflected trajectory as training data,
updating the dynamics model online brings the manipulator nearer to the target
with each new trial. In order to produce enough training data, as is required for a
successful adaptation, we generated 20 slightly jittered versions of the optimised
control sequences, each with length K = 50. We then ran those 20 trajecto-
ries on the plant, and trained the LWPR model with a total of K × 20 = 1000
samples. We repeated this procedure until the iLQG–LD performance converged
successfully, which was the case after 27000 training samples. At that point, the
internal model successfully accounted for the change in dynamics caused by the
FF. Then, we switched off the FF while continuing to use the adapted LWPR
model. This resulted in an overshooting of the manipulator to the other side,
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Fig. 4. Left: Adaptation to a unidirectional constant force field (indicated by the ar-
rows). Darker lines indicate better trained models. In particular, the left-most tra-
jectory corresponds to the “initial” control sequence, which was calculated using the
LWPR model before the adaptation process. The fully “adapted” control sequence re-
sults in a nearly straight line reaching movement. Right: Resulting trajectories during
re-adaptation after the force field has been switched off.
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trying to compensate for non-existing forces. Just as before, we re-adapted the
dynamics online over repeated trials. The arm reached the target again after
7000 training points.

For accelerating the adaptation process, we set LWPR’s forgetting factor to
λ = 0.95 (instead of the default 0.999), which allows the learner to weight the
importance of new data more strongly [19]. It is interesting to note that since the
iLQG–LD control scheme always tries to correct the system towards the target, it
produces relevant dynamics training data in a way that could be termed “active
learning”.

Figure 4 summarises the results of the sequential adaptation process just
described. Please note how the optimised “adapted” control sequence contains
considerably stronger activations of the extensor muscles responsible for pulling
the arm to the right (denoted by “2” and “6” in Fig. 1, left), while still exhibiting
practically no co-contraction.

6 Conclusion

In this work we introduced iLQG–LD, a method that realises adaptive opti-
mal feedback control by incorporating a learned dynamics model into the iLQG
framework. Most importantly, we carried over the favourable properties of iLQG
to more realistic control problems where the analytic dynamics model is often
unknown, difficult to estimate accurately or subject to changes. As with iLQG
control, redundancies are implicitly resolved by the OFC framework through a
cost function, eliminating the need for a separate trajectory planner and inverse
kinematics/dynamics computation.

Using a non-linear arm model actuated by six antagonistic muscles, we em-
pirically showed that iLQG–LD performs reliably in the presence of noise and
that it is adaptive with respect to systematic changes in the dynamics; hence,
the framework has the potential to provide a unifying tool for modelling (and
informing) non-linear sensorimotor adaptation experiments even under complex
dynamic perturbations.

Acknowledgements. This work has been carried out within the SENSOPAC
project which is supported by the European Commission through the Sixth
Framework Programme for Research and Development.
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Abstract. Recent artificial neural networks for machine learning have exploited
transient dynamics around globally stable attractors, inspired by the properties
of cortical microcolumns. Here we explore whether similarly constrained neural
network controllers can be exploited for embodied, situated adaptive behaviour.
We demonstrate that it is possible to evolve globally stable neurocontrollers con-
taining a single basin of attraction, which nevertheless sustain multiple modes
of behaviour. This is achieved by exploiting interaction between environmental
input and transient dynamics. We present results that suggest that this globally
stable regime may constitute an evolvable and dynamically rich subset of recur-
rent neural network configurations, especially in larger networks. We discuss the
issue of scalability and the possibility that there may be alternative adaptive be-
haviour tasks that are more ‘attractor hungry’.

Keywords: Global stability, echo state networks, evolvability.

1 Introduction

Certain regions of the cortex are organised into neural microcolumns. It has been sug-
gested that the computational power of these cortical microcolumns stems from their
transient dynamics rather than their attractor structure [1]. This could be the result of
weak coupling between the neurons, both in terms of their connectivity and weight
strength, which can confer global stability on their dynamics [2]; consider that ripples
on the surface of a liquid are only a temporary echo of a stone dropped into a it. Any
“computation” undertaken by such a system may only be achieved by exploiting inter-
action between its environmental input and its transient dynamics within a single basin
of attraction. Recently, the echo state and liquid state approaches have employed artifi-
cial neural networks that share this constrained dynamics [1,3]. They have been shown
to perform well on a range of machine learning tasks [4]. Despite this, and notwith-
standing the biological heritage of these artificial neural networks (ANNs), it is not
immediately obvious that they can serve as effective control systems for adaptive be-
haviour since, in general, such controllers must cope with an agent that is embodied
and situated in a changing environment that demands different modes of behaviour in
different circumstances.

Here we explore whether continuous-time recurrent neural networks (CTRNNs) con-
strained to exhibit transient dynamics around a globally asymptotically stable fixed
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point attractor are capable of successfully completing a task that demands different
behavioural modes. First, we briefly recap the role of attractor dynamics in the use and
understanding of ANNs. Subsequently, we introduce a state-hungry task and evolve a
solution that employs bistability. Section 3 presents results from evolutionary studies
in which systems constrained to exhibit a single attractor are demonstrated to solve
the task. After making a preliminary investigation of the difference between the two
kinds of solution, we go on to consider the scalability of this type of constrained neural
network. We conclude by discussing the implications of these results.

1.1 Mechanisms of State Retention in Neural Networks

Much of the early work on artificial neural networks focused on feedforward architec-
tures [5]. Here, information is processed along a unidirectional pipeline mapping sen-
sory input onto motor output. This process is necessarily atemporal and does not involve
internal state. Stateful networks only really arrived in the 1980s, when Hopfield pop-
ularised recurrent neural networks (RNNs). Hopfield’s (1982) RNNs were constrained
such that each was guaranteed to exhibit a number of fixed point attractors. In such
networks, an input is a static or slowly time-varying signal and the system is allowed
to converge to an equilibrium. The particular attractor that is achieved is interpreted
as a recognition or recall event. The success of Hopfield style systems resulted in the
attractor becoming the dominating neurological metaphor for memory and state within
biological organisms.

More recent work in neuroscience and adaptive behaviour research have reconsid-
ered organisms as dynamical systems, and foregrounded the role of time [7]. This has
led to the frequent observation that, far from settling into stable attractor states, neural
systems often spend most of the time exhibiting transient dynamics, often far from equi-
librium. Systems that tend to settle into static states when examined in isolation (either
in a petri dish or as computational models) may in fact be far from equilibrium when
coupled to bodies and environments. However, while one need not subscribe to the idea
that attractors within the agent’s control system dynamics are ‘representational’, intu-
itively, it may still be attractive to interpret the presence of distinct attractors as enabling
for tasks that demand distinct behavioural modes.

Here we probe this intuitive correspondence between behavioural modes and distinct
attractors by comparing control systems that are constrained to exhibit a single attractor
with those that are capable of exhibiting multiple fixed-point and/or cyclic attractors.
Before defining the task, agent architecture and evolutionary scheme that will be em-
ployed for the remainder of the paper, we introduce and formalise some constraints on
global asymptotic stability.

1.2 Single Fixed-Point Attractors and the Echo State Property

An echo state machine, comprising a large neural network “reservoir” and a simple
feedforward network “readout”, must satisfy the echo state property, typically achieved
by enforcing global asymptotic fixed-point stability (GAS). Informally, the echo state
property demands that the dynamics of the recurrent neural network (the reservoir) will
“wash out” all information from the initial conditions after some sufficient period of
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time [3]. One formulation of this condition demands that the distance between any two
trajectories in the system is a monotonically decreasing function of time, i.e., the system
exhibits a single limit set [3]. Jaeger provides a sufficient condition for GAS, however, it
is difficult to check efficiently. Furthermore, it is believed to be overly restrictive since
many systems which do not meet this strict condition may exhibit GAS. In practice,
a simpler but only necessary condition can be derived for systems with an equilibrium
coincident with the centre of each node’s transfer function (i.e. centre-crossing networks
[8]). While not sufficient for GAS, this condition has been shown to confer the echo
state property in the majority of echo state applications [3].

In this paper we modify this condition so that it can be used with a CTRNN equation
given by:

τiẏi = −yi +
∑

j

ωji tanh(yj + θj) + Ii (1)

Here yi represents the activation at the ith neuron, ωji is the weight of the connection
from neuron j to neuron i, θi is the bias value at the ith neuron, τi defines the rate of
leakage or decay of the activation, and tanh is the transfer function. While this equation
is not identical to either Jaeger or Beer’s formulations, all such networks fall in the larger
class of Cohen and Grossberg networks [9] to which the following stability results will
apply.

As stated above, we first require that the network is in the centre-crossing configura-
tion. While this is not trivial to impose in general [8], for Equation (1) it can be achieved
by setting all of the system’s biases to zero ensuring that there is an equilibrium at the
zero state, i.e., y∗ = 0̄, where y∗ is a vector describing the position of an equilibrium
point. We then construct a criterion for local stability by linearising the system around
this point. Given that the slope of the tanh function is equal to unity at its centre, the
linear dynamics is completely described by a Jacobian at the equilibrium point given
by:

J =

⎛

⎜⎜⎝

ω11−1
τ1

. . . ω1N

τ1

...
...

ωN1
τN

. . . ωNN−1
τN

⎞

⎟⎟⎠ (2)

This system will be locally stable around the zero state if all real parts of the eigenvalues
of the Jacobian are negative, otherwise it will be unstable [10]. Local stability is a
necessary but not sufficient precondition for global stability of the full, nonlinear centre-
crossing system [11]. For a full discussion of the condtions for local and global stability
in CTRNNs see [10].

2 Methods

In order to experimentally investigate the role of attractor structure in an embodied, be-
having agent, we needed to construct a task that demands state and encourages multiple
modes of behaviour. We carried out experiments using a simulated agent required to
perform phototaxis towards a sequence of lights using a single light sensor. The task
was made more challenging by alternating the location of the light sensor intermittently
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between the front and back of the agent’s body throughout its lifetime. Since the agent
cannot reverse, the nature of the agent’s phototactic task is fundamentally altered by
this unsignalled change to its sensor. In previous work on this task evolved solutions
employed bistable controllers [12].

The experiment consists of a circular agent with radius equal to unity located in an
infinite 2-D plane. (Distance and time are measured in arbitrary units.) At the start of
each trial, a single light source is presented, located at a random distance, d from the
agent, drawn from a uniform random distribution over the range [10, 15], in any random
direction. After a variable time period drawn uniformly at random from the range [40,
60], the trial finishes, and a new trial commences with a new randomly re-positioned
light. Less frequently, the sensor is switched from the front to the back of the agent (or
vice-versa) at the start of a trial.

The agent is controlled by a neural network receiving input from the light sensor and
driving two motors, which differentially steer the robot with their output (in range [0,
1]). The light sensor accepts incoming light so long as it is not occluded by the agent’s
body, and provides a value, I , in [0, 1] varying inversely with the distance between the
sensor and the light source up to a maximum of 150% of the largest possible initial
distance between the agent and the light.

The agent is controlled by a network of continuous time recurrent neurons governed
by Equation (1). Time constants (τi) were scaled as exi with xi drawn from the uniform
distribution [0, 5], and weights wij and biases θi drawn from the uniform distribution
[-10, 10]. The sensor value is scaled by a sensor weight s uniform in [-10, 10], and is
made available to the first neuron, only. The outputs of each of the last two neurons
were used to generate left and right motor speeds, respectively.

Motor neuron outputs are first scaled by a motor weight, ωr, and translated by a mo-
tor bias, θr, before being squashed and rescaled in the range [0, 1] to prevent reversing.
Thus, the speed of the right motor, r, was derived from the output of the right motor
neuron, yr, as r = 1

2 [1 + tanh(ωryr + θr)]. The network (and other simulation vari-
ables) are integrated with an Euler time-step of 0.1 during optimisation of the agent’s
controller, and 0.01 during analysis (to ensure stability).

Network parameters were optimised using a genetic algorithm employing pairwise
tournament selection and a population of 50, for up to 6000 generations. A losing geno-
type was replaced with a copy of the winner subject to parameter mutation via Gaussian
perturbation (zero mean, variance scaled between 0.02 and 0.05 as the previous gener-
ation’s elite genotype fitness varies between 0.4 and 0.8). Fitness was calculated as the
normalised average distance of the agent from the light during the last 25 time units
of each trial. The first trial after the sensor was switched does not contribute towards
fitness, allowing for a possible adaptation phase to occur without punishing the agent.

Evolution progressed according to a shaping scheme. When the best agent of each of
the 15 prior generations had attained a fitness greater than 0.8, the phase was advanced.
During phase one, the sensor was solely located on the front of the agent, so standard
phototaxis was all that was required. During its lifetime, the agent was subject to eight
sets of six sequential light presentation trials, with its internal state reset between each
set. The average of these eight sets was taken as the overall fitness score. Phase two
consisted of the phase one presentations followed by an additional eight sets of six trials
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with the sensor located on the back of the agent. The overall fitness score was the mean
of all 16 sets. A third phase proceeded as per phase two, but with double the number of
trials per set (i.e., 12). During each set of trials the sensor was switched to the opposite
side of the agent at the start of a random trial number drawn uniformly from the range
[4, 8]. In the final phase, three changes of sensor location took place at random intervals
within each of 16 sets, each comprising 16 trials. As such, the successful completion
of phase four demands that an agent must be able to cope with repeated alternation
between front-mounted and rear-mounted sensors.

3 Results

Before exploring the behaviour of different recurrent networks on the task described
above, we ran experiments with feedforward neural networks that are unable to exploit
internal state. These networks comprised nodes governed by Equation (1). However,
all recurrent connections were removed, all time constants were set to unity (τi = 1),
and each network’s Euler integration step was also set to unity. Of 70 runs, not a single
evolved controller was able to progress beyond phototaxis (the first phase of the shaping
scheme). Based on these results, we conclude that it is difficult, or perhaps impossible
for a reactive control system to solve the full behavioural task for the agent/environment
combination explored here.

Unconstrained CTRNNs. We wish to determine whether the two behavioural modes
that were exploited in previously reported work [12] result from bistability in the au-
tonomous dynamics of such controllers, and whether this is a necessary property of
evolved CTRNN solutions. To this end, we examined successfully evolved four-node
CTRNNs and compared them with four-node CTRNNs that are biased towards having
global stability and hence are less likely to express bistable dynamics.

It proved somewhat difficult to evolve controllers in this scenario. Of the 50 evolu-
tionary runs evolving standard CTRNNs, only three agents were produced that were
able to successfully complete the final phase of the task. In order to investigate whether
the intrinsic dynamics of the successful control systems were bistable, we first consid-
ered their autonomous dynamics, i.e., in the absence of input. We tested for autonomous
global stability by allowing each network to relax from 50 different random initial con-
ditions (yi ∈ [−10, 10]). This analysis revealed that the networks were not globally
stable, revealing the presence of two fixed point attractors within the intrinsic dynamics
of all three of the successful control systems.

The fact that more than one fixed-point attractor is present in a network’s dynamics
does not necessarily imply that the agent’s internal state spends time in more than one
basin of attraction during its behaving lifetime, i.e., a network might exhibit lifetime
global stability in the absence of autonomous global stability. We tested for this pos-
sibility by running trials of each successful agent, and removing any sensory input at
various stages during these trials. For all of the successful solutions, the agent’s dy-
namics settled to one attractor when its light sensor was front-mounted, and the other
attractor when it was rear-mounted.
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Stable CTRNNs. We have described how, when permitted to explore the full CTRNN
parameter space, successful solutions exhibited bistable lifetime dynamics. In order to
determine whether it was possible to satisfy this task in a network that possessed only
a single attractor in its autonomous dynamics, the stability constraint developed above
(Section 1.2) was applied during a further 50 evolutionary runs. Recall: this is only a
necessary condition for stability, and therefore can only bias the population towards
globally stable fixed point (monostable) solutions.

The stability constraint was implemented by initialising all weights ωij ∈ [−0.3, 0.3],
and rejecting any of these random networks that did not satisfy the constraint. While
evolution was permitted to explore a full CTRNN weight range (ωij ∈ [−10, 10]), any
mutations that generated a network which failed to satisfy the stability constraint were
rejected, and a new offspring was attempted.

From 50 runs, two evolved working solutions. In order to confirm that these solutions
exhibited autonomous and/or lifetime global stability, we repeated the tests described
above for unconstrained networks. For both solutions, the network’s autonomous in-
ternal state always settled to same fixed point from every initial condition tested. Fur-
thermore, we ensured that they exhibited autonomous global stability in the presence of
constant input (over the range experienced by the agent during its lifetime). Straightfor-
wardly, this carried over to stability in their lifetime dynamics, also.

3.1 Contrasting Solutions

How did the bistable and globally stable solutions differ from one another? Figure 1
depicts a projection of the internal dynamics of two successful controllers undergoing a
series of trials during which the sensor’s position is switched. The bistable solution (on
the left) transitions between two basins of attraction, exhibiting two modes correspond-
ing to the two types of phototactic behaviour demanded by the task. By contrast, while
the dynamics of the stable system also exhibit two distinct quasi-oscillatory modes,

Fig. 1. Phase space plots of a typical trajectory during several consecutive trials of the best
evolved unconstrained (left) and constrained (right) networks. Half way through, the sensor
switches from the front to back. The discs indicate the attractor locations (in the absence of
input); one (the origin) in the constrained case, and two in the bistable case.
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these trajectories all occur within the same basin of attraction. In both cases, the tran-
sition from one basin to another is prompted by “pathological” sensory input, which
occurs soon after the sensor location is changed. In the former case, this is responsible
for moving the controller’s internal state across a separatrix in the system’s dynamics. In
the latter case, rather than using environmental input to transition across a separatrix, the
monostable controller uses it to shuttle between different regions of the same basin of
attraction. Whereas a monostable system must rely solely upon this environmental cou-
pling to maintain at least one behavioural mode, a bistable solution may exploit its au-
tonomous dynamics to maintain two distinct modes of behaviour. However, accounting
for the importance of the intrinsic dynamics in the complete brain/body/environment
system is problematic. We will return to this issue in Section 4.

Figure 2 presents time series for two runs of the same monostable controller, one of
which undergoes sensor relocation at the beginning of the second trial. In this trial the
trajectories proceed identically until the light is first detected, at which point they begin
to diverge. The unchanged agent’s behaviour proceeds as before, with the positive slope
of the bursts of sensory input indicating that the agent is approaching the light. However
the neural trajectories diverge as the sensory input of the agent whose sensor has been
switched at the start of this trial diminishes, due to the now maladaptive behaviour. By
the third trial a different and adaptive pattern of behaviour is achieved and maintained.

3.2 Scalability and Stability

The four-node networks that we have considered so far are clearly much smaller than
typical liquid state machines and echo state networks, and even smaller than the cortical

Fig. 2. Time series for three of the four nodes plus sensory input, during three consecutive trials
(separated by dotted lines). The solid line depicts front-mounted sensor behaviour in three con-
secutive trials. The dashed line depicts rear-mounted sensor behaviour in trials two and three. At
the outset of trial two, in both cases the light is positioned such that it is initially occluded from
the sensor by the agent’s body.
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networks that inspired them. Like other kernel methods, the high dimensionality of
these networks is core to their ability to use transient dynamics for pattern recognition
and machine learning tasks. By contrast, high-dimensional CTRNNs are not typically
employed for adaptive behaviour tasks. This stems partly from the computational de-
mands of simulating large networks and partly from the analytic challenge that must be
overcome in understanding their behaviour.

In addition, as network size increases, significant portions of the search space exhibit
saturating dynamics that may be unhelpful for the production of interesting behaviour
[13]. One possible method for encouraging interesting generic dynamics in large net-
works is to bias evolutionary search toward interesting regions of parameter space.
Specifically, recall that in order to obtain the echo state property in the networks con-
sidered here, we have placed them in the centre-crossing configuration. In general, such
networks have been shown to oscillate readily, making them an appropriate substrate
for the evolution of, e.g., pattern generators [8]. Furthermore, it has been suggested
that networks in the centre-crossing configuration will exhibit rich dynamics because
their nodes interact at the most sensitive parts of their transfer functions. However, this
oscillatory behaviour, which becomes more pronounced in large CTRNNs, can be dis-
ruptive, interfering with effective signal transduction. One possible solution is to further
constrain them to exhibit global asymptotically stable fixed point behaviour, as we have
done here. Such a constraint mitigates against destructive reverberative oscillation while
retaining sensitivity to input. This has been shown to encourage effective signal propa-
gation in large networks and has been conjectured to constitute a computationally rich
subregion of CTRNN space [14].

To explore this we perform a preliminary study of the scalability of constrained ver-
sus unconstrained networks by repeating the evolutionary experiments reported above
for networks comprising ten nodes. We also evolved unconstrained networks with all
bias values set to zero in order to distinguish the contribution to performance of the sta-
bility constraint from that of the centre-crossing property. The results of 50 evolutionary
runs per network type are reported in table 1.

Table 1. Success and stability rates for three classes of 10-node CTRNN

(50 runs) Unconstrained Constrained Centre crossing
(i) % Successful Runs 28% 60% 44%
(ii) % of (i) that were Lifetime Stable 50% 90% 55%
(iii) % of (ii) that were Globally Stable 43% 89% 8%

Increasing the number internodes in the networks increases the number of success-
ful evolutionary runs for each of three network classes. However, both the constrained
and unconstrained centre-crossing systems produced more successful solutions than the
unconstrained CTRNNs, with the constrained networks producing the greatest number
overall. Furthermore, the majority of solutions even for unconstrained CTRNNS em-
ployed a single basin of attraction.
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4 Discussion

One of the initial demands that we placed on our agent is the requirement for a con-
trol system that maintains some kind of internal state. It is important to be clear that
we are not talking about any form of representation within the agents, but merely the
ability to retain information over temporally extended periods. The construction of a
task that demands state to be held specifically within a control system is problematic.
For example, doubt has been cast on how much can be understood about the cogni-
tive limitations of an agent’s behaviour from the limitations on its internal dynamics.
It has been shown that even purely reactive systems with no internal state are capable
of behaviour that can be interpreted as non-reactive [15]. However, while many tasks
could theoretically be satisfied with a reactive controller in interaction with a rich and
dynamic environment, in practice, both biological and artificial control systems fre-
quently exploit internal state. Consequently, while it may be hard to specify tasks that
can never be satisfied with a purely reactive controller, it is likely that many tasks could
be described as being at least ‘state hungry’, possibly because the agents involved do
not have the necessary privileged access to their environment.

Adaptive behaviour research typically discusses the dynamics of internal state in
terms of transients around the attractors of a system (even if the equilibirum associated
with an attractor is never reached). In this paper we have made an attempt to understand
the dynamics of transients in the absence of complex attractor structure. To this end we
have examined a task that demands multiple behavioural modes. Given the bistability
exhibited by evolved CTRNN solutions, it might be tempting to equate distinct attrac-
tors with distinct behavioural modes. However, we were subsequently able to evolve
networks able to satisfy the same task with only a single fixed point attractor. Closer
inspection reveals that both kinds of solution exhibit two distinct bundles of transients
corresponding to the two behavioural modes. Given that the agent has recourse to some
kind of environmental interaction with which to separate these two bundles, it need not
rely on a seperatrix to differentiate these behaviours in its autonomous dynamics.

While monostable solutions to the task were evolved, for small CTRNNs they did
not arise readily under a conventional evolutionary robotics methodology. Indeed, in or-
der to obtain such solutions we had to explicitly encourage stable controllers. However,
in larger networks (see Section 3.2) solutions that utilised a single basin of attraction
evolved readily, even when the networks were unconstrained. One possible implica-
tion is that the utility of monostable versus multi-stable controllers may be sensitive to
network size.

Lastly, might there be classes of behavioural task that cannot be satisfied without
the presence of multiple attractors? In the same way that one can conceive of a task as
being ‘state hungry’, might a particular subset of tasks be ‘attractor hungry’? Consider
the challenge posed by multiple time-scales of adaptive behaviour. While a bistable
controller can retain certain state information indefinitely, by virtue of relaxing to one
of many stable states, a monostable controller must rely on environmental stimuli on an
appropriate timescale. Conversely, opting to solve a task by employing a minimal num-
ber of basins of attraction may also afford certain advantages in terms of evolvability,
tunability and generalisability. This is supported by the fact that, for the task consid-
ered here, unconstrained CTRNNs often evolve to exploit a single basin of attraction,
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and that constraining CTRNNs in this way improves their chances of evolving a suc-
cessful controller. However, further studies of the interaction between network scaling
and evolvability are necessary before we can confirm that in order for larger networks
to achieve their full computational potential, they will benefit from mechanisms that
constrain them into a stable centre-crossing configuration.
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Abstract. The distribution of bifurcation angles found in ant foraging
networks has been shown to give polarity to the networks so that nest-
bound ants reaching a bifurcation can choose the appropriate direction.
In this paper, we use an individual-based model to test the hypothesis
that this distribution is an emergent property of a population of for-
aging ants optimising the trade-off between exploitation of the existing
network to maximise food intake and exploration of the environment to
maximise the population’s ability to rapidly adapt to novel or chang-
ing environments. We identify a parameter regulating an ant’s drives to
forage existing trails and explore uncovered areas of the environment as
a collective variable controlling the distribution of bifurcation angles in
the foraging network and we show that when the exploration-exploitation
trade-off is realised, the resulting distribution exhibits the same informa-
tional characteristics as that found in the original study.

Keywords: Exploration-exploitation trade-off, ant foraging, network
polarisation, bifurcation angle, stigmergy, self-organisation.

1 Introduction

Whilst many ant species use a wide variety of cues to orientate themselves (see
[1,2,3,4], for some examples), some ants rely primarily on chemical trails. For
those species, reorientation when displaced may be harder unless trails are po-
larised. In a recent study on Pharaoh’s ants, Jackson et al. [6] showed the dis-
tribution of bifurcation angles in their foraging networks to follow a normal
distribution with mean 53◦ and standard deviation 15◦. They argued that this
value (which is shared by other trail-laying species such as the leaf-cutters and
seed harvester ants studied by Acosta et al. [5]) is particularly information rich
since a returning forager would have a choice of two paths, one only of which
deviating greatly from its current heading. In a series of neat experiments, they
validated their geometry hypothesis by showing that whilst in straight trails
reorientation was as likely to be incorrect as correct, with a bifurcation angle
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of 55◦, the ratio of correct reorientations to incorrect reorientations was a sig-
nificant 5.63. Forty three percent of fed ants heading away from the nest (the
‘wrong’ direction) made a U-turn on meeting a bifurcation, and only 8% when
heading in the correct direction. Similarly, 47% of unfed ants made a course
change when heading in the wrong direction, and again, only 8% made incorrect
changes when heading away from the nest. Testing their hypothesis further, the
authors showed that the ability of ants to make correct course changes degraded
as the bifurcation angle was increased to 120 degrees, at which point the trail
lost its polarisation. These results clearly suggest that ants can use the trail
geometry to orientate themselves. As Collett and Waxman [7] pointed out, how-
ever, the study does not answer the question of how these angles are formed.
In particular, it does not explain whether they occur as a result of directional
decisions made by individuals when they first branch from a trail, or whether
they are formed when the trails become well-travelled.

Central to this question are the concepts of stigmergy [8] and self-organisation,
that is, the processes by which large numbers of agents interacting on a local
level can coordinate these interactions to produce the complex global behaviours
that are apparent in social insects colonies. Ants leave chemical trails in their en-
vironment so as to recruit more ants to forage newly discovered food sources, this
in turn recruits more ants to the trail in a positive feedback loop. This method
of communication through the environment was first described by Grassé [8]
and is known as stigmergy. Importantly it does not need any form of centralised
control, and individuals need only to react to local changes left by others within
their environment. Holland and Melhuish [9] described two minimal qualities
needed by an agent and its environment to support stigmergic interactions: (i)
the agent must be able to move within the environment, and modify parts of
it; (ii) the environment must be able modifiable, and the modifications should
persist long enough for other agents acting within it to be affected by them.
With such a small set of key features, it is no surprise that we should see many
cases of stigmergic interactions with nature. Many of the amazing displays by
social insects can in part be explained by stigmergy, however, on its own, it is
not enough. Stigmergy only describes how individual colony members are able
to communicate indirectly, but it does not explain how these interactions are co-
ordinated to produce the complex colony level behaviours. For this, we need to
include the ideas of self-organisation, that is, the ”set of dynamical mechanisms
whereby structures appear at the global level of a system from interaction among
its lower-level components” [10]. Bonabeau et al. [10] described four basic ingre-
dients needed for self-organising patterns to emerge (positive and negative feed-
back, amplification of fluctuations, and the presence of multiple interactions),
the signatures of which are the creation of spatiotemporal structures in an ini-
tially homogeneous medium, the possibility of multistability and the existence
of parametrically determined bifurcations. Applied to ant foraging, the positive
feedback relates to trail recruitment through the leaving of chemical markers.
Negative feedback can occur when food sources become depleted, or through
saturation when ants are physically unable to access a food source or to enter
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the nest owing to the number of other ants. Amplification of fluctuations occurs
in situations where ants lose the trail they are following and stumble upon a
new food source, the resulting trails will be amplified as more ants are recruited
to the new source. The presence of multiple interactions naturally results from
the sheer size of ant colonies. Bifurcation angles then become the signatures
of the resulting self-organised foraging network. These ideas are central to the
concept of quantitative stigmergy [11] which gives us a process by which we can
coordinate and regulate stigmergic interactions.

In this paper, we put forth the hypothesis that the distribution of bifurcation
angle observed by Jackson et al. is an emerging property of a population of forag-
ing ants optimising the trade-off between exploitation of the existing network to
maximise food intake and exploration of the environment to maximise the pop-
ulation’s ability to rapidly adapt to novel or changing environments. To test this
hypothesis, we constructed a simple individual-based model that incorporates
the qualities necessary for self-organisation and stigmergy to take place.

2 Model

The methods used to test our hypothesis are based on common techniques used
to examine ant behaviour and pattern formation in natural sciences. The simu-
lation used is a cellular automata (CA), of which the two major components of
our model are the ants and the pheromone concentration map. In the context of
CA, the ants are modeled as a Lattice Gas class of CA, in which particles operate
in a bi-directional grid, and their movement contains a random component. The
pheromone concentration map on the other hand falls in the deterministic class
of CA, in which states are associated with sites on the grid, and a state’s change
is a deterministic function of its surrounding sites [12,18]. The environment in
which the ants operate is a 500x400 lattice (the unit of distance used throughout
this study is the length of one ant). The single nest is located at the centre of the
grid, and has a radius of 7.5 units. Ants are released from the nest at a rate of 1
ant every 5 updates. The food sources are randomly placed in the environment,
and have a finite amount of food. Once a food source is depleted, it is removed
from the environment, and replaced by a new food source in a different location.

Each ant is described by its position on the lattice, its heading and velocity
and two coefficients that represent how fatigued the ant is (cf ) and the food
load it is carrying (cfl). At each update, the ant’s fatigue coefficient increases
by 0.0005 until its maximum value of 1 when the ant is considered dead from
exhaustion and is removed from the environment. Only when the ant is either
at a food source, or in the nest, does the fatigue coefficient decrease (multiplied
by a factor 0.9 at each update). The food load coefficient increases when an ant
is at a food site (+0.1 unit per update), and decreases when the ant is in the
nest (−0.1 unit per update).

Environmental stimuli and internal variables modulate five drives that con-
trol the ant’s heading and velocity. For simplicity, each of these drives will be
described in a polar coordinate system where the pole is the position of the ant
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on the lattice, and the polar axis is the ant’s current heading. Radial coordinates
will denote the velocity component of each drive.

Exploratory drive: This drive implements an ant’s ’urge’ to change to a new
heading deviating randomly from its current heading by ±15◦. The trajectory
is smoothed by spreading the change over αr updates.

d1 = (0,
−15 + rnd ∗ 30

αr
) (1)

where rnd is a random value between 0 and 1 drawn from a uniform distribution.

Exploitation drive: The movement of the ant is affected by the pheromone con-
centrations φ of its eight Moore neighbours

d2 = (
8∑

i=1

φi(1− cfl)(1− |θi|
180

), θi) (2)

where θi is the angular deviation to the ith Moore neighbour. Note that this
expression favours pheromone sites ahead of the ant. This is to prevent the ant
from turning around to follow its own trail.

’Move to food’ drive: Each food source has a draw area (of diameter fd = 3) in
which ants become ’aware’ of the food source, either visually or, in the case of
the blind army ants, through olfactory perception. This drive is only activated
when the ant gets within this area.

d3 = ((1− cfl)(1− df

fd
), θf ) (3)

where θf is the angular deviation to the food source and df is the distance to
the food source. The attraction to the food source is inversely proportional to
the distance to the food source.

’Return to nest’ drive: An ant will be drawn back to the nest either when it
has collected food, or when its fatigue coefficient increases above a threshold.
For simplicity, ants maintain a memory of the exact location of the nest relative
to their current position. This isn’t biologically plausible, of course, but since
ants can use path integration and other cues to locate their nest (see [19], for
example), it is an acceptable compromise.

d4 = (
8∑

i=1

φicfl(1− |θi|
180

)r, θi) + (e−k(1−cf ), θn) (4)

where θn is the angular deviation to the nest, θi is the angular deviation to the ith

Moore neighbour, r regulates the ant’s directional selectivity, and k determines
at which fatigue level the drive will kick-in. The bias toward stronger pheromone
concentrations in front of the ant corresponds to observations that ants move
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quicker on trails than on unmarked areas [11]. Since the fatigue coefficient is
updated at each step, this is a plausible mechanism from an energetic viewpoint.
A value of r = 4 was used that implements a good compromise between accuracy
and energy saving by way of trail following. Parameter k was set to 10 throughout
the study, which corresponds to a fatigue coefficient of 0.5. The drive to return
to the nest increases in a non-linear fashion with the fatigue coefficient.

’Move forward’ drive: This drive simply ’motivates’ the ant to go forward.

d5 = (minv, 0) (5)

where minv is a constant ant velocity (set to 0.3 units per update in all runs).
It guarantees that all ants will move at a minimum speed, and also puts a limit
to the ant’s angular velocity (a similar constraint was used in [20]).

The ant’s actual movement is given by the weighted sum

d = γd1 + (1− γ)d2 + d3 + d4 + d5 (6)

where γ is in the range [0, 1] and is used to regulate how exploratory/exploitative
the ant is. At γ = 1.0, the ant is fully exploratory and ignores pheromone con-
centrations. Conversely, at γ = 0.0, the ant will fully exploit existing chemical
trails. Consistent with animal observations [14,15] and other models [16,17,18],
ants lay pheromones both when leaving the nest and returning with food, al-
though returning ants do so at a higher concentration (0.1cfl unit of food per
location visited for ants returning to the nest compared with a fixed 0.01 for
ants leaving the nest). In addition, the level at which pheromones are no longer
deposited differs whether ants are returning to the nest (maximum concentration
of 1) or leaving the nest (maximum concentration of 0.2). A similar constraint
was used in [16,17].

Finally, two constraints complete the model: (i) as in [16,17], an ant’s maxi-
mum velocity is limited to 1 unit per update; (ii) a single lattice location can hold
a maximum of 15 ants. If an ant’s move takes it into a location that contains 15
ants, it attempts to move to the next grid location 1 unit away from its current
position while retaining its desired heading. This minimises the occurrence of
unwanted branching that might confound our results. It no site is available, the
ant remains in place.

3 Results

To examine the relationship between our putative controlling variable γ and the
distribution of bifurcation angle in the resulting foraging trail network, we run
simulations varying γ in the interval [0, 1] in steps of 0.1. The environments in
each simulation had two food sources. To avoid the random bias of differing
food source locations, the locations of food sources stayed constant between
simulations. Simulations were run for 10000 iterations, with a colony size of
1500 and food source size of 2000.
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Fig. 1. Left: Cumulated food intake (vertical axis, per run of 10,000 iterations) as a
function of γ (horizontal axis) over 16 runs. Food intake is given in unit of food where
1 is the maximum food load of an ant entering the nest at a given time. Solid line:
logistic regression (y=1274.00/(1+exp(-(0.93-x)/0.038), d.f.=157, p < 0.0001). Right:
Recovery times (per run of 10,000 iterations) as a function of γ (horizontal axis) over
16 runs. No data is available at γ = 1.0 since no food sources got depleted. Times are
given in number of iterations. Solid line: cubic fit by nonlinear regression (y=1788.08x3-
3190.93x2+1367.34x+49.88, d.f.=6, p < 0.01).

The trade-off between exploitation of the network and exploration of the en-
vironment was assessed through two ’fitness’ measures based on the amount of
food entering the nest at each time step. Cumulated food intake over the 10000
iterations of each run provided a measure of the ability of the network to exploit
the existing network. Robustness of the population to environmental changes
was assessed by the average time (recovery time) it took for the population to
find a new food source once a food source had been depleted. As shown by
Figure 1, simulations confirmed the role of γ in controlling the overall behaviour
of the population. Lower γ settings (highly exploitative) resulted in higher cu-
mulated food intake, whilst higher γ settings (highly explorative) resulted in
faster recovery times. The fact that recovery times were faster at γ = (0.1, 0.2)
than at γ = 0.3 was unexpected but finds its origin in a flaw of the model owing
to an absence of published data on the behaviour of the first ant off the nest in
a novel environment. The model being an individual-based model, such data is
critical to determine what the behaviour of a highly exploitative ant should be
when no established trail network exists. To circumvent this problem, ants were
sent off the nest at an angle drawn from a uniform distribution, with a minimal
amount of exploratory drive. In a small environment, when food sources are not
too far from the nest, this actually amounts to a fairly effective systematic ex-
ploration of the environment, thus the fast recovery times. For a given colony
size, increasing the size of the environment or placing the food source further
from the nest should suppress this artefact.
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Fig. 2. Left: Snapshot of a foraging network. The nest is found at the centre of the
figure. In the upper right quadrant, a new food source has just been discovered. The
brightness of a trail is proportional to its concentration in pheromone. The purple lines
denote bifurcations as used to construct Figure 3. Right: Close-up on a bifurcation.
Only Y junctions were considered, and a bifurcation angle θ was determined as the
angle between branches away from the nest.

To determine the optimal trade-off between exploration and exploitation, we
derived a ’fitness’ function y=I(1-1/RT) maximising food intake I for low recov-
ery time RT with I and RT approximated by the nonlinear regressions given in
Figure 1, after normalisation to [0, 1]. Theoretically, the maximum of this func-
tion is obtained when I = 1/RT . Experimentally, the maximum was obtained
at γ = 0.8, a highly explorative setting.

As in Jackson et al. [6], bifurcation angles were measured from well-structured
foraging networks over three of the 16 simulation runs collected1. Only networks
that showed well-established Y junctions were considered (see Figure 2, left).
A bifurcation angle was defined as the angle between the two branches away
from the nest (see Figure 2, right). The distribution of bifurcation angle for each
γ was determined using normal mixture modelling [21]. At γ = 0.8, the puta-
tive optimal trade-off between exploration and exploitation, the density function
showed a mean angle of 40.84◦ and a standard deviation of 12.69◦ (n = 67). In
comparison, Jackson et al. [6] found a mean of 53.48◦, and a standard deviation
of 14.88◦. The model used in this study being an abstract model with parameters
having little or no biological relevance, any outright comparison of the numer-
ical values of the means and standard deviations would have little significance.
Nevertheless, the data shown in Figure 3 (top) display three important char-
acteristics. First, the probability of bifurcation angles of more than 80◦ is very
small, which means that the resulting network is polarised. It is not the case
in more exploitative settings. Second, the number of clusters (or components)
as identified by Bayesian Information Criterion (BIC) decreases as γ increases.
As in Jackson et al.’s study, the distribution of the bifurcation angles at high
γ (highly explorative population) is a normal distribution. Third, as shown by
1 This is a very laborious activity which we are trying to automatise.
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Fig. 3. Top: Densities of bifurcation angles for γ = (0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9) (from
top to bottom) from three separate runs (n > 69 for all γ setting except for γ =
0.9 when n = 50. Note the different scale in vertical axis for γ = 0.9.). Horizontal
axis denotes angular values in degrees. Solid line, fit from normal mixture modelling
[21]. Bottom left: Mean (in degrees) of the largest cluster as a function of γ. Fit by
linear regression (R2 = 0.700; d.f. = 5, F = 11.69, p = 0.019). Bottom right: Standard
deviation (in degrees) of the largest cluster as a function γ. Fit by linear regression
(R2 = 0.637; d.f. = 5, F = 8.76, p = 0.032).
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Figure 3 (bottom), both mean and standard deviation of the main cluster (com-
ponent) show a statistically significant correlation with γ. This suggests that
γ, an individual-based control parameter, is indeed a control variable for the
distribution of bifurcation angle in the foraging network.

4 Conclusion

In providing evidence that an individual-based parameter can turn into a collec-
tive variable controlling the geometry of the foraging network, this paper aims to
answer an important question raised by Jackson et al.’s study, namely, whether
bifurcation angles occur though directional decisions made by individuals ants
when they first branch from a trail, or whether they form when travelled by
many ants [7]. Our results support the latter view, that is, bifurcation angles
are an emergent property of the stigmergic system. Our results also support
our hypothesis that the distribution of bifurcation angles observed by Jackson
et al. results from an optimisation of the trade-off between exploitation of the
existing network to maximise food intake and exploration of the environment
to maximise the population’s ability to rapidly adapt to novel or changing envi-
ronments. Whilst such an hypothesis is not unreasonable from an evolutionary
perspective, the limitations of using an abstract model with parameters have
little or no biological relevance are obvious. Yet, and as often when using the
animat approach, constructing a model raises interesting questions that warrant
further study: (i) what is the behaviour of the first ant off the nest? could indi-
vidual ants’ trajectories be modelled by correlated random walk? (ii) how could
the γ parameter be implemented: switching individual behaviour or changing
ratio of scouts to foragers?
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5. Acosta, F.J., López, F., Serrano, J.M.: Branching angles of ant trunk trails as an
optimization cue. Journal of Theoretical Biology 160, 297–310 (1993)

6. Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: Trail geometry gives polarity to
ant foraging networks. Nature 432, 907–909 (2004)



122 L. Berthouze and A. Lorenzi

7. Collett, T.S., Waxman, D.: Ant navigation: Reading geometrical signposts. Current
Biology 15(5), 171–173 (2005)
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Abstract. A computer model of learning and representing spatial lo-
cations is studied. The model builds on biological constraints and as-
sumptions drawn from the anatomy and physiology of the hippocampal
formation of the rat. The emphasis of the presented research is on the
usability of a computer model originally proposed to describe episodic
memory capabilities of the hippocampus in a spatial task. In the present
model two modalities – vision and path integration – are contributing to
the recognition of a given place. We study how place cell activity emerges
due to Hebbian learning in the model hippocampus as a result of random
exploration of the environment. The model is implemented in the Webots
mobile robotics simulation software. Our results show that the location
of the robot is well predictable from the activity of a population of model
place cells, thus the model is suitable to be used as a basic building block
of location-based navigation strategies. However, some properties of the
stored memories strongly resembles that of episodic memories, which do
not match special spatial requirements.
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1 Introduction

Animals spend considerable amount of time moving from one place to an other
in their habitat looking for food and avoiding possible dangers. Their survival
depends upon how well they are able to find or identify certain places and return
to them later. Although, they often make mistakes, routes they choose may not
be optimal from a mathematical point of view still they are able to learn rapidly
and adapt their behavior to changing environments in a highly flexible way.
Thus, the study of brain structures responsible for spatial behavior might offer
a unique opportunity to ameliorate artificial navigational algorithms and mobile
robotic applications.
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Early laboratory experiments have already drawn the attention to the good
navigation capabilities of rodents, which are able to quickly find the location of
food sources even in complicated mazes. The idea of the formation of a cognitive
map was first proposed by Tolman [45] in the late 40s and was later supported
by the discovery of place cells by O’Keefe and Dostrovsky [35]. According to
their definition an animal possesses a cognitive map if it is able to make novel
short-cuts. For interpreting our present results, however, a weaker definition of
a cognitive map is sufficient: any neural representation of the space is called a
cognitive map [16] (for a comparison of different cognitive map definitions see
eg. Bennett [6]).

One of the most widely accepted theory places the cognitive map of rodents
into their hippocampal regions [36]. Electrophysiological experiments with rats
in test environments led to the discovery that the firing rate of hippocampal
neurons was correlated with the location of the animal in a test environment
(these cells are referred to as place cells) [35, 32, 34]; and that hippocampal
damage causes spatial learning deficits [31] (for a review see [17]).

In humans and rodents the hippocampus plays a key role encoding and stor-
ing episodic memories [41]. The question whether the primary function of the
hippocampus of rodents is the generation and storage of a cognitive map or it
is only a side-effect of a more general memory have arisen in a number or of
researchers. For example the experiments by Eichenbaum and co-workers [48]
supported the results that hippocampal place cells can code the location of the
animal, however, pointed out that similarly, non-spatial properties (desired ac-
tions to specific stimuli) might be coded by the hippocampal cells as well. They
trained rats to perform a non-matching-to-sample odor recognition task where
cups with scented sand in them were placed at different locations in an open
platform. They found cells that showed correlated activity with spatial variables
but also cells that changed their activity in relation with non-spatial variables
like odor, match/non-match, approach of the cup. In a review paper Eichen-
baum [11] concludes that “the defining features of hippocampal representation
in rodents, as in humans, lie not in the modality of the information processed,
but in the organization of the information that supports a capacity for flexible
memory expression.”

In this article we study the performance of a hippocampus model of the rat
[37] – originally created to describe the episodic memory capabilities of the hip-
pocampus – in spatial learning. The basic theory building on detailed anatomical
and physiological experiments originates in the early work by Marr [26]. Accord-
ing to Marr’s theory the hippocampal formation acts as a temporary memory
store that rapidly acquires new memory traces and encodes them by a sparse
code. During encoding Hebbian learning takes place in its synaptic pathways,
while during recall the recurrent collaterals of the Cornu Ammonis 3 (CA3) re-
gion of the hippocampus mediate associative retrieval of the memories initiated
by noisy or partial recall cues. This system would enable a gradual consolidation
of memories by transferring them into the neocortex for long-term storage.
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In our experiments the above theory was implemented in a mobile robot
simulator, which moved in a test arena. The simulated robot was equipped with
cameras providing visual inputs to the hippocampus model, distance sensors,
representing whisker inputs to detect obstacles and wheel rotation sensors used
to guide grid cell-based path integration.

2 Premises of Our Computer Model

2.1 Hippocampal Memory Models

Our model of the hippocampal formation benefits mostly from the theory by
Treves and Rolls [47] and its numerical realization [37], which is closely related
to the highly influential theory proposed by Marr [26]. Models [27, 37, 20, 22, 5],
which build on Marr’s theory follow some key assumptions. First, the dentate
gyrus (DG) region of the hippocampal formation serves the function of a pre-
processing stage for the CA3 acting as a competitive network that creates a
sparse and clustered code of the pre-synaptic entorhinal cortical (EC) input,
which – similarly to other neocortical regions – realizes a denser representation.
This sparse, orthogonal code is in turn used as a teaching signal for the subse-
quent CA3 region. Second, the CA3 region acts as an autoassociation memory,
which stores memory traces in its extensive recurrent collateral (RC) network
for later retrieval. Third, many previous hippocampal models assume that the
hippocampus operates in two distinctly different modes during learning and re-
trieval, which we also incorporated into our model. In most of the models (but
see the suggestions by Hasselmo [19] or Lisman and Otmakhova [25]) switching
between the two modes is done manually, as in our model.

2.2 Models of Hippocampal Place Cell Generation

Since the discovery of the place cells in 1971 by O’Keefe and Dostrovsky many
different models have emerged to explain the generation of place cell activity in
the hippocampus.

The first models used distance from and bearing to identified landmarks as
input to the hippocampus [49, 42, 46, 10]. Hippocampal place cells were activated
when the currently perceived scene matched the stored landmark configuration.
However, these models requires exact object recognition, and representation of
distances and angles between objects in the EC.

Other models [1, 14] trained their multi-layered neural networks with filtered
visual information and showed that place correlated cell activity emerges in
these simple feed-forward networks. Computations performed by these cell layers,
however, are hardly analogous to that of neuron populations in the hippocampus.
Furthermore, in the Arleo and Gerstner [1] model resetting of the idiothetic place
representation by the allothetic information incorporates heuristic mechanisms.

An other class of the models uses continuous attractors in the CA3 region
of the hippocampus According to these models [40, 22] path integration takes
place in the CA3 region of the hippocampus, where the pre-configured recurrent
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connections provide continuous attractor representation of the location.
Associations of the attractors with sensory input can be used to reset the path
integration system. In contrast to the grid cell (see Sect. 2.4 below) system in the
EC, the hippocampus realizes a multichart attractor map, i.e. there are different
relations among place fields in different environments. However, the development
of specific internal connections required for this multichart architecture is still
an open question.

To introduce the continuous properties of space into our model two steps are
made. First, the simulated robot moves continuously in its environment and as
a result the camera image changes continuously. Second, we implemented the
entorhinal grid cell system as a part of the input to the hippocampal model. In
the next section we give a brief summary of the properties of grid cells and in
Sect. 3.4 its mathematical implementation is described.

2.3 Hippocampally-Inspired Robotic Models

Bio-inspired spatial mapping and navigation algorithms have a long history in
robotics. Milford and co-workers studied an effective mapping and navigation
system (RatSLAM) [29] on real robots in indoor and outdoor environment. They
used place cells modelled as a two dimensional competitive attractor network
[30] motivated by hippocampal anatomy. Brain-based devices were designed and
tested by Krichmar and colleagues using computational neuroscience techniques
(eg. [12]). The Darwin series of robots utilize intricate cortico-hippocampal in-
teractions, while the physical device moves in a real environment [23].

Our motivation is primarily routed in the neurosciences besides building a
functional algorithm to be used in navigating robots. Similarly to the study of
Banquet et al. [2], our question is how the hippocampal formation can fulfill its
role in the formation and possible storage of episodic memories, and, at the same
time place representation.

2.4 Entorhinal Cortical Grid Cell Models

Since the discovery of the existence of grid cells in 2005 [15, 18] several theories
and models of the generation and function of this cell type were proposed [33,
8, 44, 39, 13, 7]. Grid cells are located in the medial EC and are characterized
by special firing properties: they fire selectively when the rat visits points of
a hexagonal lattice. So far this is the only neural system we know about that
represents a metric space in the brain [21].

Grid cells are characterized by their spatial frequency or scale, the orientation
and the phase of the grid [18]. From our perspective, grid cells are good can-
didates to be used in the path integration mechanism of animals as suggested
by Fuhs and Touretzky [13] or to form synapses with hippocampal principal
cells to yield place cells as in the model of Rolls et al. [39] or help in location
determination in an economical way as in the theory of [9].
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3 Methods

Our model – used in computer simulations – aims at understanding how place cell
activity is generated in the hippocampus using pre-processed sensory information
coming from the EC. In our work the model proposed by Rolls [37] was used and
modified to accommodate it with spatial inputs. We simulated topographically
mapped, pre-processed sensory information in the EC and two regions of the
hippocampus the DG and the CA3 regions (see Fig. 1 for an overview).

Below we demonstrate that using only local learning rules, a realistic connec-
tion scheme and realistic sparsity of cell activities, associating visual, tactile and
proprioceptive information together in an autoassociative memory network, cell
activities show spatial correlates.

3.1 Biological Constraints and Assumptions

Similarly to previous modelling efforts, we incorporated the following biological
constraints: 1. Representation of memory traces (coding) is sparse in the DG
and in the CA3, while denser in the EC. 2. All hippocampal regions receive pre-
processed sensory information from the neocortex via its perforant path (PP)
input. 3. The EC innervates both the DG and the CA3, the DG innervates
the CA3 and the CA3 innervates itself. Furthermore, to set up the model the
following assumptions are made: 1. Only local, Hebbian learning rules are used
throughout the model. 2. The DG translate the dense code of the EC to a sparser
code used throughout the hippocampus. 3. The mossy fiber (MF) synapses are
an order of magnitude stronger than the PP or the RC synapses. 4. The hip-
pocampus operates in two distinct modes: learning (also used as encoding) and
recall (also used as retrieval). During learning modification of synaptic strengths
is allowed, during recall synaptic strengths are fixed (see Fig. 1). 5. During en-
coding activity of CA3 cells is determined by their MF input from the DG cells.
6. Synaptic strengths of the PP – both in the DG and in the CA3 – and of the
RC are modifiable, while the strength of MF synapses do not change in time. 7.
During retrieval activity of CA3 cells is cued by its PP input. This subsystem
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Fig. 1. Modelled areas and pathways. Thick arrows represent active pathways, ie. path-
ways that add to the activation of the target region. Red arrows represent pathways
being modified.
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operates as a hetero-associative network. 8. Memory recall is refined by the RC
synapses of the CA3 region.

In general, the above outlined scheme serves as a framework to store and recall
memories. In particular, the information composing the memories in our model
have spatial aspects, which results in the generation of place cell-like activity.

3.2 Representation of the Hippocampal Input

In the simulations we accounted for the following modalities: dead reckoning via
the grid cell activities, whisker activity and vision coded as firing rate vectors
of real values in the [0..1] interval, respectively. In the EC firing rate of cells is
immediately calculated from the simulated sensors.

3.3 Hippocampal Computation

In this section we separate the two working modes of the hippocampus (see Sect.
3.1) to clearly indicate what processes take place during learning and during
recall, respectively.

Learning: Treves and Rolls [47] suggested that any new event to be memorized
is represented in the CA3 as a firing rate pattern (vector) of pyramidal cells. To
create this pattern, sensory information of the EC is first processed by the DG
and its sparse, orthogonalized version is generated. First, the activation of DG
cells is calculated:

hEC→DG
j =

∑

i

W
(EC, DG)
i,j ECi, (1)

using the synaptic weight matrix and the activity of EC cells. Then a nonlinear
activation function (fj(·)) is applied on the activation vector to calculate the
firing rate of each cells:

DGj = fj(hEC→DG, sDG), (2)

where sDG is the desired sparseness of the code in the DG area. The sparseness of
a given pattern defined by [38] is based on averaging the r firing rate distributions
of cells over the stored patterns p (< r >p): a =< r >2

p / < r2 >p.
Learning takes place in the associatively modifiable W(EC, DG) synapses based

on the following learning rule:

ΔW
(EC, DG)
i,j = α(EC, DG)DGj

(
ECi −W (EC, DG)

i,j

)
, (3)

where α(EC, DG) is the learning rate.
During learning activation of CA3 cells is determined by the MF (ie.

W(DG, CA3)) input (hDG→CA3
j ) following the form of Eq. 1. Similarly to the

case of the DG, activity of CA3 cells is computed by an equation of the form of
Eq. 2.

Learning takes place in all synaptic pathways of the CA3 region as it is hypoth-
esized that due to the activation by the DG afferents the membrane potential
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of CA3 pyramidal cells is depolarized and enables plastic changes in synapses
originating from the PP and the RC:

ΔW
(EC, CA3)
i,j = α(EC, CA3)CA3j

(
ECi −W (EC, CA3)

i,j

)
, (4)

ΔW
(CA3, CA3)
i,j = α(CA3, CA3)CA3jCA3i

�
1 − W

(CA3, CA3)
i,j

�
− β(CA3, CA3)W

(CA3, CA3)
i,j ,

(5)

where αs are the learning rates, β is the “forgetting” rate, respectively.

Recall: During recall the EC input is used to initiate retrieval of a stored mem-
ory pattern. First, the activation of CA3 cells resulting from the PP (hEC→CA3

j )
is calculated based on Eq. 1, and used to compute the CA3 activity vector by
an equation of the form Eq. 2. Second, this initial activity vector was used as the
cue to retrieve the memory trace in the autoassociative network. In this process
activation vectors hEC→CA3 and hCA3→CA3 resulting from the PP and the RC
input, respectively, were calculated and normalized to unitary length. Finally,
activation of CA3 cells were computed:

CA3j = fj(hEC→CA3 + χhCA3→CA3, sCA3), (6)

where χ is a scaling factor, sCA3 is the sparseness of coding in area CA3. Calcu-
lation of hEC→CA3, hCA3→CA3 and CA3 were iterated a number of times (τR) to
allow the network to find a stable attractor corresponding to the memory being
recalled.

3.4 The Grid Cell System

To represent grid cell activity in our model we used a formula motivated by the
cosine grating model of Blair et al. [7]. Firing rate of a grid cell can take a value
from the G(i) = {0.0, 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.0} set where the index i
is given by:

i(r) = 20

(√
1
3

∑

k

cos2(ωk · (r
ζ
− c)) + 0.5

)
, (7)

where r is the position of the robot, ζ sets the scale, the direction of the ωk

vectors which were 60◦ apart from each other sets the orientation and c sets the
phase of the grid.

We used five scales ({36, 41, 47, 53, 61} centimeters), five uniformly distributed
orientations and five phases to cover the space.

3.5 Parameters and Initial Values of the Model

In the simulations all-to-all connections were applied in all synaptic matrices
except for the W(DG, CA3) connections. The learning rules we used in the sim-
ulations ensure that while activities are in the [0..1] interval, synaptic weights
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are also constrained to the [0..1] interval. Initial matrix values are generated
randomly from a normal distribution in all four cases (the DG → CA3 matrix
was constant in time):

P (W (X, Y)
i,j = w) =

1√
2πσ

e−
(w−μ)
2σ2 , if 0 < w < 1 (8)

with parameter values listed in Table 1.
Parameters of our model are summarized in Table 2.

3.6 Numerical Simulation

The model was simulated in the Webots [28] mobile robotics simulation software.
We constructed a simple, wheel driven model robot equipped with a camera
of 360◦ field of vision, 10 distance sensors, representing whiskers used partly
to detect obstacles. The robot moved in an open arena bounded by vertically
striped walls . The robot was restricted to move in the middle of the arena and
not allowed to approach the wall closely to assure high variability in the visual
signal. The motion of the robot was a random walk with basic obstacle avoidance

Table 1. Parameter values used to generate the initial synaptic weight matrix elements
according to Eq. 8

synapse (X → Y) μ σ

EC → DG 0.6 0.1
EC → CA3 0.1 0.05
CA3 → CA3 0.1 0.05
DG → CA3 0.2 0.05

Table 2. Default parameter values used in simulations of our model

Parameter Value Description

NEC 265 Number of cells in the EC
NDG 1000 Number of cells in the DG
NCA3 1000 Number of cells in the CA3

CDG→CA3 30 Convergence of DG cells to CA3 cells

α(EC, DG) 0.05 Learning rate of PP synapses from EC to DG

α(EC, CA3) 0.05 Learning rate of PP synapses from EC to CA3

α(CA3, CA3) 0.05 Learning rate in the RC of the CA3

β(CA3, CA3) 2 · 10−5 “Forgetting” rate of the CA3 RC
sEC 0.2 Sparseness of coding in the EC
sDG 0.01 Sparseness of coding in the DG
sCA3 0.02 Sparseness of coding in the CA3
χ 3 Scaling factor of RC activation relative to PP acti-

vation in CA3
τR 5 Number of iterations in the CA3 RC
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and was in no connection with the hippocampal model. The EC input vector
was composed of a row of the camera image matrix, the value of the distance
sensors and the activity vector of the grid-cell system. In the first phase of the
simulation the robot moved around the arena for 2000 simulation steps (equaling
4 minutes), which usually allowed the robot to acquire a sufficient sampling of
the continuous space. During the first phase the robot was in the learning mode.
In the second phase we switched to recall mode and let the robot move around
for an other 2000 time steps on a different route. Although routes were different,
the EC activity pattern at near-by places were similar due to similar visual and
grid inputs.

4 Results

Simulation results show that although learning occurs simultaneously in the DG
and the CA3 stable place representation evolves in both the DG and the CA3
under 4 minutes of exploration (Fig. 2, left panel). We found that in the DG
majority of the cells exhibit one place field, out of the 1000 cells simulated only
one had two and one had three place fields. In the CA3 50% of the cells had one
single place field, about 32% had two, 15% had three and the rest had more than
three place fields (Fig. 2, left panel). Place fields were identified as continuous
places not smaller than 64 cm2, where a given cell had high activity. Activities
below 25% of the maximal firing rate were discarded from the calculation.

The population of the place cells redundantly covered the space and could
reliably be used to predict the location of the robot. For this calculation first,
firing rate map of each CA3 cells were calculated on a 4 x 4 cm lattice (see Fig. 2,
left panel, column 2 and 4). In every step of the recall process, active cells
were selected, and their rate maps were multiplied in every spatial point. The
maximum value in the resulting matrix was considered to give the most probable
location of the robot on Fig. 2, right panel.

The input to the hippocampus model arises from sensory readings obtained
during continuous motion. As a result, temporally close EC representations are
similar. In his paper Rolls [37] showed that recall of different memories in the
CA3 region is sufficiently good in certain circumstances. However, input patterns
were decorrelated in his model, while highly correlated in ours. To clarify the
significance of input correlations in spatial memories we analyzed the similarity
of the hippocampal representation of positions.

Our simulations show that the initially temporally uncorrelated CA3 activ-
ity vectors (AVs) that follow each other in time become correlated as shown in
Fig. 3. First, due to competitive learning in the DG similar EC activity pat-
terns are grouped and evoke the same DG activity, which in turn determines the
CA3 activity during learning. Second, modification of the W(EC, CA3) synapses
temporally close AVs become correlated. Third, this correlation is further in-
creased by iterating the CA3 activity via the W(CA3, CA3) matrix and results
in a partitioning of the space into areas within which AVs are highly correlated
(Fig. 3B, C ).
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Fig. 2. Left panel : Cell activity in the CA3 region. Images in the first and third column
show the path of the robot in the 1 mx 1m square arena. Lines represent the path of
the robot, green dots show where a certain cell had non-zero activity. In the second
and fourth columns color coded images show the firing rate. On the left columns place
cells with one single place field, on the right place cells with multiple places fields are
shown. Right panel : Estimation of the robot’s position based on the population of place
cells. On a short section of the path we predicted the position based on the current
activity of place cells. Real position is denoted by black dots, estimated position by
red dots connected to the real positions they estimate. Mean and std of the difference
between real and estimated positions was 2.5 ± 1.4 cm.
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Fig. 3. Temporal correlation of activity vectors in the CA3 area. Correlation among
AVs composed of the firing rates of CA3 cells were calculated along the random path
of the robot (inset). A: during learning the AVs are decorrelated (note that increased
correlation is seen at sharp turns (a, b) and at points I., II. and III. where the path
crosses itself. The robot started from the bottom left corner.) B : during recall the EC
input initiates memory retrieval. AVs in nearby time points show high correlations. C :
(same time points are analyzed as in B) after the EC input promoted some of the CA3
cells the CA3 RC refine the cell activities and drive the associative memory system into
an attractor, which classifies space into distinct categories within which correlations
are high. Note the increased correlation at points I and II, where the robot crosses its
path, or moves on parallel to it.
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5 Discussion

We have set up and analyzed a biologically constrained computational model of
associative memory in the hippocampal formation based on previous works by
Treves and Rolls [47] and Rolls [37], which was used in a spatial context. Extero-
and interoceptive sensory signals were used as inputs to the hippocampal model.
Specifically, our model is composed of the entorhinal cortex, which represented
the source of inputs segregated by their type of modality, the dentate gyrus
serving as a pre-processing stage, where learning keys are generated from the
entorhinal input and the CA3 region of the hippocampus, which served as an
attractor network. We showed that combining pre-processed visual and tactile
sensory information with grid cell activity, cells in the DG and the CA3 showed
place cell behavior.

We studied the properties of the system of place cells and concluded that
– even though we have not implemented a biologically based neural system to
decode the place cell code – using their activity vector a good prediction of the
current position of the animat can be gained.

The model presented and the behaviour it produces agree with the classical
view of hippocampal processing and the previous physiological measurements.
In the light of the most recent electrophysiological studies, however, the assump-
tions made in Sect. 3.1 need to be reviewed. Experimental results [24] show that
while principal cells in the CA3 region, which exhibit place correlated activity
mostly have a single place field, DG granule cells usually have multiple place
fields. This phenomena is hard to explain in the framework presented previously
as DG cell activities are used as the teaching signal for the CA3 cells in the
learning mode of the system. It might, however, be possible to solve the problem
of missing multiple place fields in the DG. Solstad et al. [44] showed that sum-
ming the activity of a few tens of grid cells with completely random phase would
produce a rate maps with multiple poorly defined and scattered place fields even
in the absence of any learning. An other solution is that places corresponding
to place fields of a given DG cell are indistinguishable for that cell. This means
that the grid pattern of afferent grid cells is the same, which would be the case if
there were too few grid scales (for an indication see the Supplementary material
of Barry et al. [3]). Finally, the morphology of dentate granule cells might enable
that synapses on separate dendritic branches of this cell type would be modi-
fied independently. Thus, a given DG cell would be active if any of its dendritic
branches were activated.

The goodness of the position reconstruction also depends on the quality or
the number of place fields of CA3 cells. If co-activation of multiple DG cells is
required to activate a post-synaptic CA3 cell the firing probability of CA3 cells
would decrease relative to the case when a single DG cell can activate a CA3
cell. Indeed, cells with a single place field at well defined positions would better
encode location that cells with several poor place fields.

The analysis of Fig. 3 reveals a fundamental difference between models de-
signed to describe place cell formation (eg. [22, 40, 43]) and our approach. To
introduce the continuous nature of space into computer models of place cells, a
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usual approach is to use continuous attractor models to describe the CA3 region.
The model by Rolls [37] and similar auto-associative memory models generate
discrete attractors. In our model the continuity of space is introduced via the
grid cell system, which exhibits a space-periodic activity, the hippocampus itself
does not reflect any property of space. As a result, instead of a smoothly chang-
ing representation of space nearby positions are clustered as shown in Fig. 3,
C. Indeed, compared with measurements (eg. see Fig. 6 in [4]) a CA3 without
attractor dynamics (Fig. 3, B) is closer to experimental results.

In summary, the presented model is capable of generating place cell-like be-
havior but misses some of the fine-scale properties of the real hippocampal place
representation. Using the resulting space code reliable prediction of the robot’s
position can be achieved, thus the model might be used as a basic building block.
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Abstract. We present a neuromimetic navigation system modelling the colum-
nar structure of the cortex to mediate spatial learning and action planning. The
model has been validated on a spatial behavioural task, namely the Tolman &
Honzik’s detour protocol, which allowed us to test the ability of the system to
build a topological representation of the environment, and to use it to exhibit
flexible goal-directed behaviour (i.e., to predict the outcome of alternative trajec-
tories to avoid blocked pathways). First, it is shown that the model successfully
reproduces the navigation performance of rodents in terms of goal-directed path
selection. Second, we report on the neural response patterns characterising the
learnt columnar space representation.

1 Introduction

This paper presents a biomimetic model of action planning inspired by the columnar
organisation of the mammalian neocortex. Planning is defined here as the ability, given
a state space S and an action space A, to “mentally” explore the S × A space to infer
an appropriate sequence of actions leading to a goal state sg ∈ S. This definition calls
upon the capability of (i) predicting the consequences of actions, i.e. the most likely
state s′ ∈ S to be reached when an action a ∈ A is executed from a state s ∈ S,
(ii) evaluating the effectiveness of the selected plan on-line. The model generates a
topological representation of the environment, and it employs an activation-diffusion
mechanism to plan goal-directed trajectories. The activation-diffusion process is based
on the propagation of a reward-dependent activity signal from the goal state sg through
the entire topological network. This propagation process enables the system to generate
sequences of actions (i.e., trajectories) from the current state s towards sg .

Topological map learning and path planning have extensively been studied in biomi-
metic robotics [1]. We focus on models inspired by the anatomical organisation of the
cortex, and implementing an activation-diffusion planning principle. The existence of
cortical columns was first reported by Mountcastle [2], who observed vertical groups
of neurones responding to the same external stimuli simultaneously. Neuroanatomi-
cal findings suggest that these “functional columns” can be further divided into several
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“minicolumns”, i.e. vertical bundles of neurones across the layers of the cortex
separated from each other by a cell-poor area [3].

Burnod [4] proposed one of the first models of the cortical column architecture,
called “cortical automaton”. He also described a “call tree” process that can be seen
as a neuromimetic implementation of the activation-diffusion principle. Several action
selection models were inspired by Burnod’s hypothesis. Some of these works employed
the cortical automaton concept explicitly [5,6,7]. Others used either more classical con-
nectionist architectures [8,9,10] or Markov decision processes [11]. Yet, none of these
works took into account the multilevel coding property offered by the possibility to
refine the cortical organisation by adding a sublevel to the column, i.e. the minicol-
umn. The topological representation presented here exploits this idea by associating the
columnar level to a compact representation of the environment, and by employing the
minicolumn level to characterise the agent’s behaviour.

In order to validate the preliminary version of the model, we have implemented it
on a simulated robot, and tested it on the classical navigation task designed by Tolman
& Honzik [12]. This protocol allowed us to assess the ability of the system to learn
topological representations, and to exploit them to perform flexible goal-directed be-
haviour (e.g., planning optimal detour trajectories). The Tolman & Honzik’s task is a
purely spatial navigation protocol. Our middle-term goal is to extend the cortical model
presented here to elaborate more abstract contextual representations. For example, be-
sides learning the spatial properties of the environment, the system shall be able to
encode multidimensional information, such as motivation-dependent memories, multi-
scale spatio-temporal correlates, and action cost/risk constraints.

2 Methods

2.1 Single Neurone Model

The elementary computational units of the model are artificial firing-rate neurones i,
whose mean discharge ri ∈ [0, 1] is given by:

ri(t) = f
(
Vi(t) · (1 ± ε)

)
(1)

where Vi(t) is the membrane potential at time t, f is the transfer function, and ε is a
random noise uniformly drawn from [0, 0.01]. The potential Vi varies according to:

τi · dVi(t)
dt

= −Vi(t) + Ii(t) (2)

where τi = 10 ms is the membrane time constant, and Ii(t) is the synaptic drive gener-
ated by all the afferent inputs at time t. Eq. 2 is integrated by using a time step Δt = 1
ms. Both the synaptic drive Ii(t) and the transfer function f are characteristic of the
different types of model units, and they will be defined thereafter.

2.2 Encoding Space and Actions: The Minicolumn and Column Model

The main inputs to the cortical model are the location- and orientation-selective activ-
ities of hippocampal place (HP) and head-direction cells, respectively [13,14]. The HP
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Fig. 1. The cortical model and the activation-diffusion process. (A) The architecture of two col-
umn units c and c′. Columns are composed of sets of minicolumns (vertical grey regions), each
of which consists of a supragranular layer unit (SL) and an infragranular layer unit (IL). (B)
Top: back-propagation of the motivational signal through the network of SL neurones. Bottom:
forward-propagation of the goal-directed action signal through the IL neurones.

field representation is built incrementally as the animat explores the environment, and it
provides the system with a continuous distributed and redundant state representation S
[15,16]. A major objective of the cortical model is to build a more compact state-action
representation S ×A suitable for topological map learning and action planning.

In the model, the basic component of the columnar organisation is the minicolumn
(vertical grey regions in Fig. 1). An unsupervised learning scheme (see Sec. 2.3) is
employed to make the activity of each minicolumn selective to a specific state-action
pair (s, a) ∈ S ×A. Notice that a given action a ∈ A represents the allocentric motion
direction of the animat when it performs the transition between two locations s, s′ ∈ S.
According to the learning algorithm, all the minicolumns selective for the same spatial
location s ∈ S are grouped to form a higher-level computational unit, i.e. the column
(see c and c′ in Fig. 1A). This architecture is inspired by biological data showing that
minicolumns inside a column have similar selectivity properties [17]. Thus, columns
consist of a set of minicolumns that are incrementally recruited to encode all the state-
action pairs (s, a1···N ) ∈ S × A experienced by the animat at a location s. During
planning (see Sec. 2.4), all the minicolumns of a column compete with each other to
locally infer the most appropriate goal-directed action.

Every minicolumn of the model consists of two computational units, representing
supragranular layer (SL) and infragranular layer (IL) neurones (Fig. 1A). The discharge
of SL and IL units simulates the mean firing activity of a population of cortical neu-
rones in layers II-III, and V-VI, respectively. Each minicolumn receives three different
sets of afferent projections (Fig. 1A): (i) Hippocampal inputs conveying space coding
activity converge onto IL neurones; these connections are plastic, and their synaptic
efficacy is determined by the weight distribution wp (all the synaptic weights of the
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model are within the maximum range of [0, 1]). (ii) Collateral afferents from adjacent
cortical columns converge onto the SL and IL neurones via the projections wu and
wl, respectively. These lateral connections are learnt incrementally (see Sec. 2.3), and
play a prominent role in both encoding the environment topology and implementing
the activation-diffusion planning mechanism. (iii) SL neurones receive projections wm

conveying motivation-dependent signals. As shown in Sec. 2.4, this input is employed
to relate the activity of a minicolumn to goal locations.

SL neurones discharge as a function of the motivational signals conveyed via both
wu and wm inputs. The synaptic drive Ii(t) depolarising a SL neurone i that belongs
to a column c is given by:

Ii(t) = max
i′∈c′ �=c

{
wu

ii′ · ri′ (t)
}

+ wm
i · rm (3)

where i′ indexes other SL neurones of the cortical network; wm
i and rm are the weight

and the intensity of the motivational signal, respectively. In the current version of the
model the motivational input is generated algorithmically, i.e. wm

i = 1 if column c is
associated to the goal location, wm

i = 0 otherwise, and the motivational signal rm = 1.
The membrane potential of unit i is then computed according to Eq. 2, and its firing rate
ri(t) is obtained by means of an identity transfer function f .

Within each minicolumn, SL neurones project onto IL units via non-plastic projec-
tions wc (Fig. 1A). Thus, IL neurones are driven by HP cells p (via the projections wp),
by IL neurones belonging to adjacent columns (via the collaterals wl), and by SL units
i (via wc). The synaptic drive of a IL neurone j ∈ c is:

Ij(t) = max
{ ∑

p∈HP

wp
jp · rp(t) , max

j′∈c′ �=c

{
wl

jj′ · rj′ (t)
}}

+ wc
ji · ri(t) (4)

where j′ indicates other IL neurones of the network;wc
ji = 1 if the SL neurone i and the

IL neurone j belong to the same minicolumn, wc
ji = 0 otherwise. Then, the membrane

potential Vj(t) is computed by Eq. 2, and a sigmoidal transfer function f is employed
to calculate rj(t). The parameters of the transfer function change online to adapt the
electroresponsiveness properties of IL neurones j to the strength of their inputs [18].

2.3 Unsupervised Growing Network Scheme for Topological Map Learning

The topological representation is built incrementally as the animat explores the envi-
ronment. At each location visited by the agent at time t the cortical network is updated
if-and-only-if the infragranular layers of all existing minicolumns remain silent, i.e.∑

jH(rj(t) − ρ) = 0, where j indexes all the IL neurones, H is the Heaviside func-
tion (i.e., H(x) = 1 if x ≥ 0, H(x) = 0 otherwise), and ρ = 0.1. If at time t the
novelty condition holds, a new group of minicolumns (i.e., a new column c) is recruited
to become selective to the new place. Then, all the simultaneously active place cells
p ∈ HP are connected to the new IL units j ∈ c. Weights wp

jp are initialised according
to: wp

jp = H(rp − ρ) · rp. For t′ > t, the synaptic strength of these connections is
changed by unsupervised Hebbian learning combined to a winner-take-all scheme. Let
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c be the column selective for the position visited by the animat at time t′, i.e. let all the
j ∈ c be the most active IL units of the network at time t′. Then:

Δwp
jp = η · rp · (rj − wp

jp) (5)

with η = 0.005. Whenever a state transition occurs, the collateral projections wl and
wu are updated to relate the minicolumn activity to the state-action space S×A. For in-
stance, let columns c and c′ denote the animat position before and after a state transition,
respectively (Fig. 1A). A minicolumn θ ∈ c becomes selective for the locomotion ori-
entation taken by the animat to perform the transition. A new set of projectionswl

j′j are
then established from the IL unit j ∈ θ of column c to all the IL units j′ of the column c′.
In addition, at the supragranular level, a new set of connectionswu

ii′ is learnt to connect
all the SL units of column c′, i.e. i′ ∈ c′, to the SL unit i of the minicolumn θ ∈ c. The
strengths of the lateral projections are initialised as: wl

j′j = wu
ii′ = βLTP , ∀i′, j′ ∈ c′,

with βLTP = 0.9. Finally, in order to adapt the topological representation online, a
synaptic potentiation-depression mechanism can modify the lateral projections wl and
wu. For example, if a new obstacle prevents the animat from achieving a previously
learnt transition from column c to c′ (i.e., if the activation of the IL unit j ∈ θ ∈ c is not
followed in the time by the activation of all IL units j′ ∈ c′), then a depression of the
wl

j′j synaptic efficacy occurs: Δwl
j′j = −βLTD · wl

j′j , ∀j′ ∈ c′, where βLTD = 0.5.
The projectionswu

ii′ are updated similarly. A compensatory potentiation mechanism re-
inforces both wl and wu connections whenever a previously experienced transition is
performed successfully:Δwl

j′j = βLTP −wl
j′j , ∀j′ ∈ c′. The weightswu

ii′ are updated
similarly. Notice that wl,wu ∈ [0, βLTP ].

2.4 Action Planning

This model aims at developing a high-level controller determining the agent’s behaviour
based on action planning. Yet, a low-level reactive module enables the animat to avoid
obstacles. Whenever the proximity sensors detect an obstacle, the reactive module takes
control and prevents collisions. Also, the simulated animal behaves in order to either
follow planned pathways (i.e., exploitation) or improve the topological map (i.e., ex-
ploration). This exploitation-exploration tradeoff is governed by an ε-greedy selection
mechanism, with ε ∈ [0, 1] decreasing exponentially over time [16].

Fig. 1B shows an example of activation-diffusion process mediated by the columnar
network. During trajectory planning, the SL neurones of the column corresponding to
the goal location sg are activated via a motivational signal rm (see Eq. 3). Then, the
SL activity is back-propagated through the network by means of the lateral projections
wu (Fig. 1B, top). During planning, the responsiveness of IL neurones (Eq. 4) is de-
creased to detect coincident inputs. In particular, the occurrence of the SL input ri is a
necessary condition for a IL neurone j to fire. In the presence of the SL input ri, either
the hippocampal signal rp or the intercolumn signal r′j are sufficient to activate the IL
unit j. When the back-propagated goal signal reaches the minicolumns selective for the
current position s this coincidence event occurs, which triggers the forward propagation
of a goal-directed path signal through the projections wl (Fig. 1B, bottom).

Goal-directed trajectories are generated by reading out the successive activations
of IL neurones. Action selection calls upon a competition between the minicolumns
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Fig. 2. (A) Tolman & Honzik’s maze [12]. The gate near the second intersection allowed the rats
to go from left to right only. (B) The simulated maze and robot. The dimensions of the simulated
maze were taken so as to maintain the proportions of the real Tolman & Honzik’s experimental
setup. Bottom-left inset: the real e-puck mobile robot has a diameter of 70 mm and is 55 mm tall.

encoding the (s, a1···N ) ∈ S×A pairs, where s is the current location, and a1···N are the
transitions from s to adjacent positions s′. For sake of robustness, competition occurs
over a 10-timestep cycle. It is worth stressing that each SL synaptic relay attenuates the
goal signal by a factor wu

ii′ (Eq. 3). That is, the smaller the number of synaptic relays,
the stronger the goal signal received by the SL neurone corresponding to the current
location s. Because the model column receptive fields are distributed rather uniformly
over the environment, the intensity of the goal signal at a given location s is correlated
to the distance between s and the target position sg.

2.5 The Behavioural Task and the Animat

In order to validate our navigation planning system, we chose the classical experimen-
tal task proposed by Tolman & Honzik [12]. The main objective of this behavioural
protocol was to demonstrate that rodents undergoing a navigation test are able to show
some “insights”, e.g. to predict the outcome of alternative trajectories leading to a goal
location in the presence of blocked pathways. The original Tolman & Honzik’s maze
is shown in Fig. 2A. It consisted of three narrow alleys of different lengths (Paths 1, 2,
and 3) guiding the animals from a starting position (bottom) to a feeder location (top).

We implemented our model by means of the Webots c© robotics simulation software.
Fig. 2B shows a simulated version of the Tolman & Honzik’s apparatus, and the simu-
lated robot. We emulated the experimental protocol designed by Tolman & Honzik to
assess the subjects’ navigation performance. The overall protocol consisted of a train-
ing period followed by a probe test. Both training and probe trials were stopped when
the subject had found the goal.

Training period: it lasted 14 days with 12 trials per day. The subjects could explore the
maze and learn a navigation policy by developing their preferences for P1, P2, and P3.
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– During Day 1, a series of 3 forced runs was carried out, in which additional doors
were used to force the subjects to go successively through P1, P2, and P3. Then,
during the remaining 9 runs, all additional doors were removed, and the subjects
could explore the maze freely. At the end of the first training day, a preference for
P1 was expected to be already developed [12].

– From Day 2 to 14, a block was introduced at place A (Fig. 2B) to require a choice
between P2 and P3. In fact, additional doors were used to close the entrances to
P2 and P3 to force subjects to go first to the Block A. Then, doors were removed,
and subjects were forced to decide between P2 and P3 on their way back to the
first intersection. Each day, there were 10 “Block at A” runs that were mixed with
2 non-successive free runs to maintain the preference for P1.

Probe test period: It lasted 1 day (Day 15), and it consisted of 7 runs during which a
block was placed at position B to interrupt the common section (Fig. 2B). The subjects
were forced to decide between P2 and P3 when returning to the first intersection point.

For these experiments, Tolman & Honzik used 10 male rats of mixed breed, from
5 to 8 months old, with no previous training. In our simulations, we used a population
of 100 animats, and we assessed the statistical significance of the results by means
of an ANOVA analysis (the significant threshold was set at 10−2, i.e. p < 0.01 was
considered significant).

3 Results

3.1 Behavioural Analysis

Day 1. During the first 12 training trials, the animats learnt the maze topology, and
planned their trajectory in the absence of both block A and B (Fig. 2B). Similar to
Tolman & Honzik’s findings, our results show that the model learnt to select the shortest
pathway P1 significantly more frequently than the alternative paths P2, P3 (ANOVA,
F2,297 = 168.249, p < 0.0001). The quantitative and qualitative analyses reported on
Fig. 3 (left) describe the path selection performance averaged over 100 experiments.

Days 2-14. During this training phase (consisting of 156 trials), a block was intro-
duced at location A (Fig. 2B), which forced the animats to update their topological maps
dynamically, and to plan a detour to the goal. The results reported by Tolman & Honzik
provided strong evidence for a preference for the shortest detour path P2. Consistently,
in our simulations (Fig. 3, centre) we observed a significantly larger number of transits
through P2 compared to P3 (ANOVA, F1,198 = 383.068 p < 0.0001), P1 being ignored
in this analysis (similar to Tolman & Honzik’s analysis) because blocked.

Day 15. In agreement with Tolman & Honzik’s protocol, seven probe trials were
performed during the 15th day of the simulated protocol, by removing the block A
and adding a new block B (Fig. 2B). This manipulation aimed at testing the “insight”
working hypothesis: after a first run through the shortest path P1 and after having en-
countered the unexpected block B, will rats try P2 or will they go directly through P3?
According to Tolman & Honzik’s results, the rats behaved as predicted by the insight
hypothesis, i.e. they tended to select the longer but effective P3. The authors concluded
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that rats were able to inhibit the previously learnt policy (i.e., the “habit behaviour” con-
sisting of selecting P2 after a failure of P1 during the 156 previous trials). Our probe
test results are shown in Fig. 3 (right). Similar to rats, the animats exhibited a significant
preference for P3 compared to P2 (ANOVA, F1,198 = 130.15, p < 0.0001). Finally, in
order to further assess the mean performance of the system during the probe trials, we
compared the action selection policy of learning animats with that of randomly behav-
ing (theoretical) animats. Fig. 4A provides the results of this comparison by showing
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the error distribution over the population of learning agents (black histogram) and ran-
domly behaving agents (grey curve). The number of errors per individual are displayed
in the boxplot of Fig. 4B. These findings indicate a significantly better performance of
learning animats compared to random agents (ANOVA, F1,196 = 7.4432, p < 0.01).

3.2 Analysis of Neural Activities

A series of additional analyses were done to begin to characterise the underlying pro-
cesses (e.g., neural activities) subserving the action selection behaviour of the model.
We measured the mean spatial density of the receptive fields of HP cells and cortical
column units of the model. We recall that one of the aim of our cortical column model
was to build a less redundant state-space representation, compared to the HP field rep-
resentation. Fig. 5A shows that the cortical network permitted to reduce the redundancy
of the learnt spatial map significantly, compared to the upstream hippocampal space
code (ANOVA, F1,316 = 739.2, p < 0.0001). Finally, Fig. 5B displays some samples
of cortical column receptive fields of the model.

4 Discussion

We presented a navigation model based on the columnar organisation of the mammalian
cortex. It builds a topological map of the environment incrementally, and it uses it to
plan an efficient course of actions leading to a goal location. The model was success-
fully employed to solve the classical Tolman & Honzik’s behavioural task [12]. As
aforementioned, other models have been proposed to solve goal-directed navigation
tasks. They are mainly based on the properties of hippocampal (e.g., Samsonovich and
Ascoli 2005, [19]), and prefrontal cortex (e.g., Hasselmo 2005, [7]) neural assemblies.
However, most of these models do not perform action planning as defined in this pa-
per (see Sec. 1). Samsonovich and Ascoli [19] rather implement a local path finding
mechanism to select the most suitable orientation leading to the goal. Similarly, Has-
selmo’s model [7] does not plan a sequence of actions from the current location s to the
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goal sg but only infers the first local action to be taken, based upon a back-propagated
goal signal. Yet, these two models rely on discretized state spaces (where predefined
grid units code for places), whereas our model uses a distributed population of HP cells
providing a continuous representation of the environment [16]. Also, our model learns
topological maps coding for the state-action space S ×A simultaneously. In the model
by Samsonovich and Ascoli (2005) no topological information is represented, but only
a distance measure between each visited place and a set of potential goals. Likewise,
in Hasselmo’s model states and actions are not jointly represented, which generates a
route-based rather than a map-based navigation system [20].

The preliminary version of the model enabled us to investigate some basic compu-
tational properties, such as the ability of the columnar organisation to learn a compact
state-space representation encoding topological information, and the efficiency of the
activation-diffusion planning mechanism. Further efforts will be put to extend the cur-
rent model to integrate multiple sources of information. For example, the animat should
be able to learn maps that encode all the reward (subjective) values, and action-cost con-
straints. Also, these maps should be suitable to represent multiple spatio-temporal scales
to overcome the intrinsic limitation of the activation-diffusion mechanism in large scale
environments. Additionally, these multiscale maps should allow the model to infer high-
level shortcuts to bypass the low-level constraints of the environment.

To conclude, although the model has been based upon biological knowledge, some
of our working hypotheses are still under debate. First, the existence of cortical columns
has been questioned recently [21]. Second, the hippocampus has also been proposed as
a likely brain structure encoding topological maps [22]. Yet, the HP cell representa-
tion seems too redundant and distributed to constitute a suitable substrate for compact
topological map learning [23]. Also, the evidence for high-level spatial representations
mediated by neocortical areas (such as the prefrontal cortex, PFC [24]) corroborates
the hypothesis of an action planning processing shared among multiple cortical regions
[25]. In particular, several experimental observations [24,26] point towards a role of the
PFC in abstract map building and action selection.
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Abstract. We created a neural architecture that can use two different types of 
information encoding strategies depending on the environment. The goal of this 
research was to create a simulated agent that could react to two different 
overlapping chemicals having varying concentrations. The neural network 
controls the agent by encoding its sensory information as temporal coincidences 
in a low concentration environment, and as firing rates at high concentration. 
With such an architecture, we could study synchronization of firing in a simple 
manner and see its effect on the agent’s behaviour. 

Keywords: spiking neural network, neural encoding, firing rate, temporal 
coincidence. 

1   Introduction 

Animals are able to react to chemicals (odours, pheromones…) present in the 
environment. The key sense to detect these chemical cues is smell [18]. Almost all 
animals have a similar olfactory system including olfactory sensory neurons (OSN) 
that are exposed to the outside world and linked directly to the brain. Pheromones and 
other odour molecules present in the environment are converted into signals in the 
brain by first binding to the olfactory receptor protein situated in the cell membrane of 
the OSN. Spikes are then sent down the axon of the OSN [10]. A chemical blend is 
composed of many molecules that can be detected with tuned odour receptors and 
therefore, activates a large range of olfactory sensory neurons. Odours are coded by 
which neurons emit spikes and also by the firing patterns of those neurons sending 
spikes to others during and after the stimulus. In many vertebrates and insects, 
oscillations of the neural activity have been recorded in the olfactory systems [18]. 
Therefore, the synchronization of firing between different sensory neurons seems to 
be very important for odour perception and interpretation. The firing rate and the 
number of sensory neurons are also important in odour recognition when stronger 
stimuli increase the frequency of firing of individual sensory neurons but also 
stimulate a larger number of them. 
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Different studies have been done on the perception of simulated chemicals using 
artificial neural networks where neural synchronization occurs [2, 6, 7] and also using 
robots [11, 13, 15-17]. We were interested in studying the behaviour of an agent in 
response to changes of its environment. The primary research question is how two 
encoding strategies can be used to integrate sensory information in order to control a 
simulated agent. To the best of our knowledge, no neural architecture, controlling a 
simulated agent, has been created that encodes the sensory information onto both the 
firing rate and the synchronization of firing (temporal coincidence) depending on the 
environment. As the interaction between the two encoding strategies is complex, we 
decided to create a simple architecture using a spiking neural network. This model 
could encode the sensory information onto both the firing rate and the 
synchronization of firing depending on the environment. The neural network 
controlled the agent by encoding the sensory information onto temporal coincidences 
in a low concentration environment, and firing rates at high concentration. 

2   Environment 

We created a simulation of a continuous world including an agent and a maximum of 
two chemicals. We decided to use a simple model of chemicals that are not diffused 
and evaporated but with concentrations that can be calculated directly at any given 
point. In this experiment, each chemical source had a circular shape and the same 
fixed value all over its surface. Our agent was equipped with two antennae and a 
differential steering system using two wheels. The two antennae were separated 
widely enough to detect the presence of the chemical concentration (Fig. 1 & 2). The 
left and right wheels were situated in the appropriate position (middle of each side) so 
the gravity centre was in the middle of the agent’s body (excluding the antennae).  

To control the agent, we had to decide which neurons’ model to use in order to 
study firing synchronization of the sensors. 

 
 
 
 
 
 

Chemical 
concentration Agent 

 

100 

50 

70 

250 

100 

100 

 

Fig. 1. An agent equipped with two wheels and 
two antennae used to detect chemicals 

Fig. 2. Properties of an agent. Units are 
arbitrary. 

3   Neural Network 

There are three main ways to encode the intensity of sensory information into spiking 
neurons based on biological evidences [3-5, 8, 9, 12] . The most commonly used 
method consists of mapping the stimulus intensity to the firing rate of the neuron 
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(firing rate encoding). Another method encodes the intensity of the stimulation into 
the number of spikes sent by different neurons arriving at a pre-synaptic neuron at the 
same time (firing synchronization or temporal coincidence encoding). The last main 
encoding scheme maps the strength of the stimulation in the firing delay of the neuron 
(delay encoding). As we saw earlier, spatial configuration is an important feature in 
odour recognition of neurons as is the synchronization of firing between neurons [10, 
14, 18]. J. Hopfield and C. Brody [2, 6] created simple neural networks using spiking 
neurons to simulate an olfactory process. In their system, the recognition of an odour 
was signalled by spike synchronization in artificial glomeruli. In our system, the 
neural network was supposed to detect the blend of two different chemicals and 
modify the agent’s behaviour. We used a model of neural network that allowed us to 
study synchronization of firing in a simple manner. The neural network could control 
the agent by encoding the sensory information onto temporal coincidences in a low 
concentration environment, and firing rates at high concentration. 

a) Models of Spiking Neurons 

It is well known that compared to the complex and computationally slow Hodgkin 
and Huxley model, simple spiking models like integrate-and-fire neurons can run 
quickly enough and have a more realistic behaviour than firing rate ones [4, 5, 8, 9, 
12]. This is why more and more researchers are implementing spiking neurons in 
robots and simulated agents. Therefore, we decided to use a simple model of a spiking 
neuron. Our model is based on a leaky-integrator model which includes synaptic 
integration and conduction delays. The idea is that a spike sent by a neuron will take 
some time to arrive at another neuron. This time delay depends on the distance 
between the sender and the receiver. All the spikes arriving at a neuron are summed to 
calculate the neuron’s input current (in Amperes per Farad) and membrane potential 
(in Volts) after every time step  Once the membrane potential reaches a 
certain threshold θ, the neuron will fire and then will be set to 0 for a certain time 
(refractory period). During this time, the neuron cannot fire another spike even if it is 
highly stimulated. Many real neurons’ membrane potential is around -70mV during 
resting state [10]. When a neuron fires, its membrane potential will increase rapidly to 
about 30mV, so the height of a typical spike is approximately 100mV [10]. We set the 
resting potential to 0 and the potential of a spike to 100mV. It is reasonable to set the 
neuron’s threshold at 20mV, the refractory period to 3ms and the membrane time 
constant to 50ms. We also decided to set a synaptic time constant  to 2ms: a 
spike that arrives at a synapse triggers a current given by: 

 (�� � �����).
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where  is the synaptic input current, corresponds to the time a spike has 
been sent to the neuron, is the time delay in seconds before the spike arrives to 
the neuron (delay = coeff_delay * distance) with coeff_delay . 
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The change of membrane potential is given by: 

b) Sensory Neurons 

We created a model of a spiking sensory neuron in which the chemical 
concentration is processed so that a quasi-linear relationship between the 
concentration and the firing rate of the sensor is produced. Such relationships exist 
in biological systems. For example in humans, the relationship between the 
frequency of firing and pressure on the skin is linear [10]. We used a two step 
process where two biologically realistic non-linear mappings between sensory 
information and input current and between input current and firing rate results in a 
linear relationship. The sensory neurons used in our model are able to encode the 
stimulus intensity, measured at the tip of the antenna, into sensory input current using a 
biologically plausible sigmoid function. In this paper, we are using a very simple 
model chemical concentration that has only one value. Therefore, the sensory 
neurons encode this value onto the appropriate firing rate. The sensors were 
configured in order to distinguish a large range of concentrations between 1 and 
300. Over this 300, they were saturating. 

c) Motor Neurons 

We decided that, in order to move, the agent should be driven by two wheels each 
controlled by two motor neurons: one to go forward, one to go backward. We created 
sensors able to detect a chemical gradient. But an agent equipped with such sensors 
will not move without any stimulus. So we decided for simplicity that an agent should 
always move forward in the absence of any external input. We performed this by 
adding a small baseline input current (0.5 A/F) in the motor neurons responsible to go 
forward. The final velocity of the wheels was calculated by subtracting the firing rate 
of the motor neurons, responsible for moving the agent forward and backward, 
running over a certain period of time. 

4   Experiments 

We used the agent and world described in Section 2. The world contained either one 
or two chemicals denoted by A or B. One agent, placed in the world, was controlled 
by a simple spiking neural network implementing the neurons described in Section 3. 
The neural controller was based on a Braitenberg vehicle (anger behaviour) [1] where 
an agent moves faster toward a stimulus when it detects it (Fig. 3).  

  
�2
�3 � '4 2
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 : 	
  9� where  is the membrane potential,  is the membrane time constant and  the 
synaptic weight. 
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Fig. 3. Agent’s neural controller. The sensors S0 and S3 detect the chemical A and the sensors 
S1 and S2 detect the chemical B. The sensory axons’ lengths are all similar (delays = 2.5ms). 
The motor neurons M1 and M3 are responsible to move the agent forward. The threshold of the 
neurons (N0 and N1) was set to 4.6 mV. W is the synaptic weight. 

Our hypothesis was that by using this architecture, the sensory neurons needed to 
encode the sensory information onto the firing rates, and also onto temporal  
coincidences between spikes sent by sensors. To verify this hypothesis, we performed 
three series of tests to study the effect of the starting positions, the sensory delays and 
the value of the concentrations on the agent’s behaviour. 

a) Experiment I 

The first test was to study the effect of the agent’s starting position on its behaviour. 
Both concentration values for the chemicals A and B were set to be low. In all the 
experiments described in this paper, the concentration range was from 1 to 300. In 
this instance, A and B concentrations were set to 1 or 2. We tried ten different starting 
positions and five different settings for the environment: with one chemical A, one 
chemical B, and finally one concentration of the chemical A overlapping with one 
concentration of the chemical B. Each run lasted 600 seconds and the neural network 
was updated every 0.1ms. Every 10ms, the agent was moved and the sensory inputs 
updated. In these experiments, the agent could detect double concentrations of one 
chemical (A or B) but did not react to it. However, the agent was able to react only to 
the blend of both chemicals A and B, where it stayed inside the overlapping 
concentrations. We recorded the agent’s neural activity during each run. Figure 4 
shows an example where an agent starts from the position P2. In this case, the agent 
was able to stay in the overlapping area. 

By looking at Figure 5, we can see that the agent begins by moving horizontally 
left to right until its right antenna detects the chemicals A and B (T1, Fig. 4 and 5). At 
this point, the sensors S2 and S3 fire and the temporal coincident arrival of their  
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Fig. 4. Path of the agent starting from the left at P2. The circle in the centre represents the two 
overlapping concentrations of chemicals A and B. 

spikes causes N0 to fire. M1 is then stimulated and increases its firing rate turning the 
left wheel faster than the right one. Soon after this, both antennae detect the chemicals 
causing also the neuron N1 to fire so the agent moves straight forward again. At T2,  
the left antenna of the agent goes outside the overlapping area so the sensors S0 and 
S1 stop to fire and therefore, do not stimulate the neuron N1. The motor neuron M3 
then fires at a lower rate than M1 resulting in a left turn of the agent to stay inside the 
area. Finally, from T3, the interaction between the left antenna and the concentration 
causes the edge-following behaviour. 

We also recorded the current density and membrane potential of the neuron N0 
during a small interval of time when the agent was inside the blend of chemicals A 
and B. The input current of the neuron N0 was increasing when spikes coming from 
both S2 and S3 arrived at the same time. Then, the membrane potential also increased 
and reached the threshold θ (0.0046 Volts) making the neuron N0 fire. The potential 
was then set to 0 during the refractory period. As the sensors were synchronized and 
the delay between them and the neurons were the same, the spikes arrived at the same 
time to the neuron allowing it to detect them and fire (Fig. 6). 

b) Experiment II 

The second experiment was to test our hypothesis by modifying the sensory response 
delays to verify that our architecture necessarily needed to encode the sensory  
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Fig. 5. Firing rates f (in spikes/s) of the neural network cells recorded every 2s during one run 
(Experiment shown in Fig. 4). The motor neurons M0 and M1 are not shown here as they do 
not fire. On the left panel, the sensors detecting the chemicals A (S3) and B (S2) from the right 
antenna activates the neuron N0 that stimulates the motor neuron M1 controlling the left wheel 
to move forward. On the right panel, the sensors detecting the chemicals A (S0) and B (S1) 
from the left antenna activates the neuron N1 that stimulates the motor neuron M3 controlling 
the right wheel to move forward. 
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information onto temporal coincidence. We changed the delays by modifying the 
position of the sensors therefore modifying the length of their axons linked to the  
neurons. We only changed the delays of the sensors detecting the chemical B (S1 and 
S2). We used the same set up as for the experiment shown in Figure 4. 

We tried different values of delays (from 1ms to 50ms) and we noticed that a small 
change (up to 7.5ms) did not modify the agent’s behaviour. But a further change in 
the delays (from 7.5ms) made the agent unable to react to the blend of chemicals A 
and B so it could not stay inside the concentrations.  

As in the Experiment I, we recorded the current density and membrane potential of 
the neuron N0 during 0.5s when the agent was inside the chemical blend. In Figure 6, 
we can see that the current of the neuron N0 increases when a spike coming from both 
S2 and S3 arrive but as the delay has been changed, the spikes do not arrive at the 
same time so the current is lower than in Experiment I. Therefore, the neuron’s 
potential increases but never reaches the threshold so the neuron does not fire (Fig. 6). 
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Fig. 6. Current density (in Amperes per Farad) and membrane potential (in Volts) of the neuron 
N0 recorded between 100s and 100.5s. On the top panel (Experiment I), the spikes sent by the 
sensors arrived at the same time increasing the current density to 1 A/F. The membrane 
potential was then increased and reached the threshold making the neuron N0 fire. On the 
bottom panel (Experiment II), the spikes sent by the sensors were not coincident as the delays 
were changed to 50ms in this case, so the current was never above 0.5 A/F and therefore, the 
membrane potential could not reach the threshold to make the neuron N0 fire. 
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c) Experiment III 

In order to investigate the use of firing rate encoding, we used only one concentration 
of either A or B and increased it. When the concentration was augmented from 1 to 
above 50, the agent was then able to react to it. Therefore, the neural network showed 
much more sensitivity to two chemicals than to one. We also realized when using two 
overlapping chemicals A and B, as the concentration value increased, modifying the 
delays had a minor effect and the agent was still able to react to the chemicals. The 
firing rates were increasing too so the agent was moving faster. In these experiments, 
the temporal coincidence encoding was not necessary. The sensory information was 
encoded onto the firing rates of the sensors. 
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Fig. 7. Firing rates of the sensor S3 and neuron N0 recorded every 2s. On the left panel, as the 
environment contained a low concentration (=1) of chemical A only, the neuron could not 
detect it and therefore, the agent did not stay within the chemical source area. On the right 
panel, the concentration was high (=300) so the neuron could detect it and the agent stayed 
inside the area. 

5   Conclusion 

We presented in this paper a simple neural architecture where temporal coincidence 
and firing rate encoding strategies were both important mechanisms used in different 
environmental settings. In a low concentration setting, synchronization of spikes sent 
by the sensors was essential to allow the agent to detect the blend of two chemicals. 
We changed the sensory delays and noticed that the agent was then not able to react to 
the chemicals anymore. In a high concentration setting, the temporal coincidence 
between sensors firing was not a necessary condition and the agent was able to stay 
inside the chemical concentration using just the firing rate encoding strategy.  
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Interestingly, the model showed much more sensitivity to the presence of two 
chemicals than a single chemical. In principle, more than two chemicals can be 
detected and processed. The architecture presented here also works when the 
chemical concentration has a linear gradient. 

Future work will investigate evolving such architectures using a developmental 
model (evolving the number of neurons and their connections, the synaptic weights, 
and delays of the neural network). Moreover, we will add noise to the neural network 
and use a more complex environment. 
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Abstract. Theta frequency oscillations are a prominent feature of the 
hippocampal EEG during active locomotion and learning. It has also been 
observed that the relative timing of place cell firing recedes as its place field is 
traversed – a phenomena known as phase precession. This has led to the 
development of a theory of theta phase coding, whereby spatial sequences being 
encountered on a behavioural timescale are compressed into a firing sequence 
of place cells which is repeated in each theta cycle and stored in an auto-
associative network using spike-timing dependent plasticity. This paper 
provides an abstract, descriptive model of theta phase coding in a spiking neural 
network, and aims to investigate how learning and recall functions may be 
separated by the neuromodulatory action of Acetylcholine (ACh). It is 
demonstrated that ACh is not essential for concurrent learning and recall 
without interference in this case, thanks to the robust nature of the theta phase 
coding implementation. However, the neuromodulation of synaptic plasticity 
offers other advantages, and may be essential to avoid continually consolidating 
false predictions when learning new routes. 

Keywords: Acetylcholine, attractor network, cognitive map, Hippocampus, 
neuromodulation, place cells, spatial memory, STDP, theta phase coding. 

1   Introduction 

The hippocampus has long been identified with spatial and episodic learning and 
memory. This theory has been bolstered by the discovery of several distinct groups of 
cells throughout the region whose activity corresponds directly to an animal’s location 
(place, grid and spatial view cells) or idiothetic inputs (head direction and vestibular 
information cells). This in turn has led to the notion that the hippocampus may 
function as a cognitive map, which integrates environmental cues, past experience and 
self-motion input in order to aid efficient navigation [1, 2]. The mechanisms by which 
the cognitive map might operate have often been modelled using auto-associative 
networks – recurrent neural architectures with synaptic plasticity which can store 
input patterns and recall them from incomplete or noisy cues [3, 4, 5, 6]. These 
models are inspired by the presence of a large number of recurrent collaterals within 
the hippocampal formation, and the ease with which synaptic plasticity can be 
induced and observed in the region. The corresponding neural networks have been 
very successful in replicating the update of head direction cell activity from idiothetic 
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cues and path integration over a learned environment in the absence of sensory input, 
as well as some more abstract functions of episodic memory. Elsewhere, the anatomy 
and postulated function of the hippocampus has also inspired several successful 
simultaneous localisation and mapping (SLAM) implementations on robotics 
platforms [7, 18]. 

However, these models have often utilised rate-coded neural and synaptic 
dynamics, while it has become clear from neurobiology that changes in the strength of 
synapses in the hippocampus are primarily mediated by the temporal sequence, rather 
than frequency, of neuronal firing. According to this spike-timing dependent plasticity 
(STDP), only those pre-synaptic inputs which have been active in a short time 
window (~50ms) before post-synaptic spiking are potentiated, while those which are 
active within a similar time window after post-synaptic spiking are depressed [8, 9]. 
In order to implement STDP within an associative network, a spiking model which 
can replicate the dynamics of real neurons as accurately as possible is required. 
Neurons in the hippocampus demonstrate one of the most well known dynamic firing 
patterns in the mammalian EEG. Pyramidal cells throughout the region exhibit theta 
(~8Hz) frequency oscillations in their local field potential whenever an animal is 
actively locomoting, attending to external stimuli or during REM sleep [10, 11]. 
Furthermore, it has been established that the firing of place cells is not simply 
modulated by this oscillation, but advances in phase relative to theta as their place 
field is traversed [10, 12, 13]. This produces a compressed temporal firing sequence 
within each theta cycle which corresponds directly to the current sequence of 
locations being navigated on a behavioural timescale – a firing sequence which is 
ideally suited for storage in an associative network using STDP. It has been suggested 
that this theta-phase coding may be the mechanism by which the hippocampus 
processes continuous spatial information [10, 11, 14, 15]. 

It has also been noted that the release of the neuromodulator Acetylcholine (ACh) is 
closely linked to the theta oscillation [16]. ACh acts on muscarinic and nicotinic 
receptors within the hippocampus, and is known to be involved in learning and recall 
processes. This is demonstrated by experiments in which the infusion of ACh 
antagonists impairs performance on spatial tasks [17]. Neurobiological research has 
revealed several effects of ACh on neurons and synapses in this brain region, among 
them the enhancement of afferent input relative to excitatory feedback, and the 
enhancement of synaptic plasticity. These properties have led to the theory that the role 
of ACh is to separate phases of learning and recall within each theta cycle [10, 11]. 
Associative memory models can encounter significant problems if learning and recall 
processes are concurrently active. During learning, for example, the activity in an auto-
associative memory model must approximate external input, or the patterns which are 
stored will be a combination of novel experience and the recall of earlier, similar 
experience [4, 10, 11]. If recurrent connections are made too weak to provoke neural 
activity, this interference will disappear, but recall of an activity pattern from a partial 
cue is rendered impossible. The changes in neural and synaptic dynamics which are 
incurred by ACh suggest that it may act as a trigger to switch between functions of 
learning and recall. When the neuromodulator is present, afferent input (from the 
entorhinal cortex or dentate gyrus) dominates the dynamics of the auto-associative 
CA3 network, and this activity is maintained while information is stored via enhanced 
synaptic plasticity. When ACh is absent, feedback from recurrent collaterals dominates 
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and plasticity is vastly reduced, allowing the network to make predictive recall from 
the patterns stored in the synaptic weights of the CA3 network [10, 14, 16]. This posits 
an elegant and biologically plausible solution to the problem of interference between 
the processes of learning externally applied input patterns and recall via recurrent 
feedback which has been encountered in previous auto-associative memory models, 
and which may occur in the hippocampus.  

This aim of this research is to construct an abstract, descriptive model of theta 
phase coding, in order to investigate the possible advantages of ACh modulation in 
storing and recalling temporal sequences on a behavioural time scale. To our 
knowledge, this is the first attempt to investigate the phenomena of both phase 
precession and Acetycholine modulation in a spiking neural network which 
implements STDP. Previous research has examined theta phase coding in a similar 
network, but with more simplified - and therefore, less biologically realistic - models 
of neural or synaptic dynamics [10, 15]. To our knowledge, neither theta phase coding 
nor STDP have yet been examined on a robotics platform with a similar focus [7, 18]. 

2   Methods 

2.1   Network Properties and Neural Dynamics 

The neural network consisted of N=20 neurons, whose activity corresponds to that of 
place cells in the CA3 region of the hippocampus. Each had a randomly assigned 
axonal delay in the range 1 : 5ms. The network was fully recurrently interconnected 
by excitatory synapses except for self-connections. The neurons operated according to 
the Izhikevich (2004) spiking model, which dynamically calculates the membrane 
potential (v) and a membrane recovery variable (u) based on the values of four 
dimensionless constants (a,b,c and d) and a dimensionless current input (I), according 
to Eqn. 1. This model can exhibit firing patterns of all known types of cortical 
neurons by variation of the magnitude of applied current and the parameters a – d 
[19]. The values used for tonic spiking in a standard excitatory neuron are a=0.02, 
b=0.2, c=-65 and d=6. 
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2.2   Synaptic Dynamics 

At the beginning of each simulation, all of the recurrent synaptic weights were 
assigned a value of w=0.1. Mathematically, with s = tpost - tpre being the time 
difference between pre- and post- synaptic spiking, the change in the weight of a 
synapse (∆w) due to STDP can be calculated using equation 2.  
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Fig. 1. The asymmetric time window of STDP 

The parameters A+ and A- effectively correspond to the maximum possible change 
in the weight of a synapse per spike pair, while τ+ and τ- denote the decay constants of 
potentiation and depression increments respectively (see Fig. 1). Previous research 
suggests that the window of depression should be set larger than that of potentiation – 
in order to ensure that the STDP model depresses chance spike pairings and thus 
operates stably [20]. This constraint was observed throughout our simulations, by 
setting τ+ =20ms and τ-=40ms and constraining the relative size of A+ and A-. 

2.3   Network Input 

In order to replicate the phenomena of phase precession, input to our network was 
formulated as a combination of theta frequency inhibition and gradually increasing 
excitation [21]. Every neuron in the network was fed with inhibitory input which 
oscillated sinusoidally between a value of I=-1nA and I=-3nA at a frequency of 8Hz. 
A route which consisted of a series of N=20 overlapping place fields was then 
traversed. Each place field was divided into seven equal segments, and each place 
field overlapped with five segments of those on either side. The level of excitation in 
the corresponding place cell would increase from a value of I=2nA as the place field 
was entered, by increments of I=0.25nA as each segment was traversed. This method 
is not intended to replicate the possible generation mechanisms of phase precession in 
vivo, but to replicate all the key features of those activity patterns – including that the 
phase of firing corresponds with distance travelled through the place field, rather than 
time spent within it [2]. Once a place field is exited, excitation for that place cell was 
reset to zero. The weights of the recurrent synapses were adjusted according to the 
temporal sequence of the firing of these place cells, as the route was traversed. 

2.4   Acteylcholine Modulation 

When neuromodulation was employed, the concentration of ACh oscillated uniformly 
across the network in the range 0 : 1, in synchrony with inhibitory input. Excitatory 
synaptic currents from the recurrent collaterals were inversely modulated by this 
concentration in the range 0 : f. The plasticity of recurrent synapses was also 
dynamically adjusted, by directly scaling each weight change by the instantaneous 
concentration of neuromodulator. Hence, in the presence of ACh, the strength of 
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recurrent excitatory feedback tended towards zero, while synaptic plasticity was 
active in order to store incoming activity patterns without interference. When ACh 
was absent, the excitatory feedback was enhanced and synaptic plasticity was 
suppressed, in order to allow predictive recall activity which would not be stored. 

3   Results 

3.1   Theta-Phase Coding without Acetylcholine Modulation 

Initial tests of the model aimed to establish how well activity in the network 
approximated what is known of phase precession in vivo. Figure 2 illustrates a typical 
spike raster from our network, whereby a section of the place field sequence is 
translated into a compressed sequence of place cell firing. Because one behavioural 
sequence is repeated many times on the theta temporal scale, it is possible to store a 
spatial route in a single trial. The learning rate in the network is effectively 
determined by the parameters A+ and A- in the STDP model. The higher these values 
are, the more quickly synaptic weights re-arrange to a stable distribution which 
reflects the input sequence. One of the weaknesses of our model is that it does not 
replicate the magnitude of phase precession seen in vivo, which can closely approach 
360 degrees [2]. However, in the absence of ACh modulation, this provokes 
associations between the initial and final place cells firing at each stage of the route, 
creating artificial, circular associations and thus corrupting the ideal final weight 
matrix (data not presented).  

External input corresponding to five laps of a circular route consisting of twenty 
overlapping place fields was then applied to the network, and the resultant weight 
matrix and spike raster is shown in Fig. 3. In the absence of a mechanism to differentiate  
 

 
Fig. 2. The theta phase coding mechanism. As the place fields of place cells 1-4 are 
sequentially traversed, the phase at which the neurons fire precesses, and thus a compressed, 
representative firing pattern (i.e. sequential firing in place cells 1-4) is generated in each cycle. 
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Fig. 3. Final synaptic weight matrix and overall spike raster for the network when traversing a 
circular route five times, with wmax=0.5 ; A+=0.012 and A-=0.01. (a) Synaptic weights from 
each neuron to those which follow it on the learned route have been potentiated, and to those 
which immediately precede it have been depressed. The majority are unchanged from their 
initial value, due to the absence of neural noise. (b) The spike raster illustrates the sequential 
firing activity, and the absence of any recall activity. 

 
between learning and recall periods, the value assigned to the maximum achievable 
weight of a synapse becomes critical. Although the synaptic weight matrix in Fig. 3 has 
re-arranged to reflect the behavioural sequence being learned, the recurrent connections 
are not powerful enough to provoke spiking activity, and so no predictive recall from 
these weights can occur. Hence, some separate mechanism is required to decode the 
weight matrix and effectively produce a representative sequence of activity from it 
when cued. Similarly, the number of upcoming locations with which each place cell can 
associate is limited by the number of neurons which are active in each theta cycle. As 
the spike raster in figure 3 illustrates, only four place cells were ever concurrently active 
in our model, and so (without neural noise) only synaptic connections between each 
neuron and the three which follow or precede it can be modified.  

If wmax is increased, however, then predictive recall becomes possible, and, 
surprisingly, the remarkably robust nature of this theta phase coding implementation 
means that this process does not interfere with the ideal structure of the synaptic  
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Fig. 4. Recall activity in the network with wmax=5, A+=0.12 and A-=-0.1 following a single 
traversal of the entire route. Place cells 17 – 20 were being stimulated sequentially by external 
input, and activity in place cells 1-3 being recalled immediately after this activity had 
terminated. The sequence of firing is maintained during recall by the increasing level of 
recurrent synaptic input from activity in the preceding neurons and the axonal delays.  

 
weight matrix. As Fig. 4 illustrates, the spiking dynamics, gradually increasing level 
of recurrent excitation from preceding place cells and axonal delays conspire to 
concentrate recalled activity (in place cells 1-3) after that generated by external input 
(in place cells 17-20) within each theta cycle. This recall activity is further illustrated 
by the spike raster for this simulation (Fig. 5), which also shows that our model 
replicates a well known property of phase precession in vivo – the experience-
dependent expansion of place fields against the direction of motion, so that place cell 
firing starts earlier in each successive traversal [2]. The increased number of 
concurrently active place cells which results from this recall activity means that each 
neuron can alter the strength of its connections with a greater frequency of those 
adjacent to it on the behavioural sequence – and this is clearly illustrated by the 
greater spread of potentiated synapses in the weight matrix (see Fig. 5). 

3.2   Phase Precession with Acetylcholine Modulation 

When ACh modulation is introduced into the network, the value of the maximum 
synaptic weight becomes less important (unless it is set trivially low), and predictive 
recall and the experience-dependent expansion of place fields are present in all 
incarnations of the network. The final weight matrix for a typical simulation (using an 
identical route to that examined above) is shown in Fig. 6, and is remarkably similar 
to that produced by the model in the absence of neuromodulation, but with a large 
maximum weight limit (see Fig. 5). The one key difference lies in the spread of the 
peak of the weight matrix. Because plasticity is absent during recall when ACh is 
present in the network, no associations are generated between those neurons which  
are active due to external input, and those which are concurrently active due to 
recurrent (recall) input. The spike rasters observed with ACh modulation are also very 
similar to those obtained from the network in the absence of neuromodulation, but  
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Fig. 5. Final synaptic weight matrix and overall spike raster for the network when traversing a 
circular route five times, with wmax=5 ; A+=0.12 and A-=0.1. (a) A comparison with the weight 
matrix in Fig.3 illustrates how each place cell has become associated with a greater number 
ahead of it on the route, due to the concurrent learning and recall activity. (b) The experience 
dependent expansion of place fields against the direction of travel, and predictive recall are also 
clearly visible in the spike raster (the activity corresponding to the beginning of the sixth run 
was not externally applied). These features can also be seen with neuromodulation. 

 
with a higher value of wmax (see Fig. 5), as recall activity and the experience-
dependent expansion of place fields are clearly visible (data not presented). 

4   Conclusions 

We have presented an abstract, descriptive model of theta-phase coding in place cells 
within the auto-associative CA3 network of the hippocampus. This implementation of 
theta-phase coding is remarkably robust, and can function effectively even in the 
presence of significant recall activity without interference. Concurrent learning and  
recall activity is possible both with and without Acetylcholine modulation, provided  
that the maximum weight limit is set sufficiently high. This result leaves us with the 
question of what significance this form of neuromodulation may have in vivo. While  
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Fig. 6. Final synaptic weight matrix for theta phase coding simulation with ACh modulation. 
The weight matrix retains its ideal structure, but has a narrower spread, as plasticity is absent 
during the recall phase and hence external input is not associated with recurrent activity. 

 
this research is still in its early stages, it suggests that one advantage of ACh 
modulation may be to prevent circular associations between the first and last active 
place cells in sections of the behavioural sequence. Also, since our model does not 
incorporate the suspected mechanisms which generate phase precession in vivo, it 
seems likely that the neuromodulation also offers control over the timing and 
sequence of recall activity – conspiring to place it after that stimulated by the current 
external input, and in the correct order. Finally, although it has not been examined 
here, previous research has suggested that the main role of ACh may be to allow the 
elimination of redundant learned spatial sequences, and their subsequent replacement 
with new navigational routes which make use of the same place fields [10]. This 
makes intuitive sense, as synaptic plasticity is almost absent during the recall phase 
when ACh is present, and hence the predictions of future location which are made are 
not stored in the recurrent weights. This is illustrated by the narrower peak of 
potentiation in the synaptic weight matrix of Fig. 6. Without this scaling of synaptic 
plasticity, redundant sequences will be continually recalled and simultaneously 
consolidated. Although the ACh modulated network may still predict future locations 
based on past experience, new associations (and thus new predictions) will be rapidly 
acquired. The next step in this research, therefore, is to assess how incarnations of the 
network with and without neuromodulation can learn, recall, un-learn and re-learn a 
wider variety of complex behavioural sequences.  
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Abstract. After a short review of properties of biological place cells,
mainly found in the hippocampal region of rodents, and a brief pre-
sentation of a biologically inspired navigation architecture relying on
these cells, we will show how contextual information could facilitate scale
changes to large environments. We thus present a simple model of spatial
context allowing to both reduce noise effects on place cells (in biological
model) and increase its computational performance.

1 Introduction

The startling discovery by O’Keefe & Dostrovsky [15] of the spatial correlates
of neural activity in the hippocampal system of rodents was a first step to un-
derstand the mechanisms by which the brain processes spatial information. This
pioneer work has stimulated a substantial body of computational models to
understand the role of these place sensitive cells in spatial representation and
navigation. These cells exhibit the property to fire selectively in different regions
of an environment and were named place cells (PC). PC regions of high activity
are termed place fields. Later, PC like property neurons have been detected in
other structures near the rodent hippocampus. Indeed, neurons of these regions
also show significant activity in localized regions of spatial environments while
performing spatial tasks: the superficial [16,17] and deep [7] entorhinal cortex
(EC), the dentrate gyrus (DG) [11] and the subiculum (SUB) [18] where also
grid cells are found [10,8].

Thus, ensembles of PC are thought to form spatial representations that can
be used in navigation and numerous models have been proposed, see [4] for a
short rewiew of navigational model based on PC.

In previous papers [3,5,4], we had proposed a control architecture based on
transition cells and a cognitive map for planned navigation tasks (see figure 1).
Whereas our model relies on transition cells to navigate, place cells are still a key
element of the system, since PC are constitutive elements of transition cells and
successful spatial task performance is associated with stable place fields (like in
rodents). Without describing here the whole model in detail, we just mention
that this architecture has been already successfully tested on a robot with a
panoramic camera in several indoor environments (one room, two rooms and a
corridors).

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 169–178, 2008.
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Fig. 1. Control architecture for planned navigation involving a simplified view of the
loop between the hippocampus, the prefrontal cortex and the basal ganglia (here limited
to ACC)

Instead of describing the global architecture, we will focus in this paper on
its two main scaling problems impairing navigation in large environments which
have been shown by our last robotics experiments:

1. The computational cost of the PC layer is linear in the number of learned
place cells, which itself increases with the number of environments explored.
Moreover this growing number of place cells involved in the competitions
increases the noise level.

2. In our architecture, planning relies on a single cognitive map. Problems ap-
pear when one wants to code several different maps coding for different
environments or subsets of a big environment.

A contextual information could overcome these difficulties for large scale nav-
igation:

– First, contextual information could increase the reliability of PC response by
selecting only a subset of the PC population. Appropriate context activity
and connectivity reduce the number of place cells in competition and thus
avoid false detection. Furthermore, from a computational point of view, we
can also use this contextual information to increase the simulation speed
(reducing the number of place cells that have to be computed).

– Second, each map could be linked with a kind of context signal (linked for
instance to the global recognition of a room) that should be able to ”reload”
the previous learned map (or a part of it) into the different neural structures
used here.



Interest of Spatial Context for a Place Cell Based Navigation Model 171

Place fields of rodent hippocampal place cells are strongly determined by the
local geometry of the environment. Thus spatial representations in the hippocam-
pus proper are highly context-specific. It is well established that modifications in
environment change the spatial ring properties of PC, a phenomenon also known
as remapping. The dependencies of the place code on geometric information
(visual cues) have been investigated extensively [13,14]. However, place repre-
sentations also exhibit strong dependence on nongeometric information such as
sounds, odors, somatosensory stimuli and behavioral context [1,6]. This suggests
the existence of a context-representation system which biases the hypocampal
representations. We have chosen to begin our study by focusing on the geomet-
ric information since they seem to be of importance for this context code [12].
Nethertheless, we still have in mind that context doesn’t rely exclusively on this
sole information [1]. Future works will try to integrate nongeometic information
in the model (see section 4).

In the next sections, we will show how a simple mechanism, based on a PC
system with several resolution scales, could be a fisrt step toward the constitu-
tion of this contextual information. We will show some experiments enlightening
the interest of this model. Finally, we will discuss the results and the future
extentions of the model.

2 Model

We present a model of modulation between two levels of PC (context and ECs).
We show how such a modulation could be modified by experience in a Hebbian
manner, thus explaining the context specificity of PC.

In order to capture and learn geometric contextual information, context neu-
rons are modelled by a specific PC layer. We name context neurons (XContext),
see figure 2. This new layer takes its inputs from a network (PrPh) merging
recognized landmarks and azimuths in a product space. One can refer to [4] for
more details on this process.

Activity of the the jth context neuron is expressed with the same equation
than in our previous work, as follows:

XContext
j (t) =

1
Wj

(
NPrP h∑

kl

WPrPh−Context
j,kl .XPrPh

kl (t)

)
(1)

with Wj =
∑NPrP h

kl WPrPh−Context
j,kl , XPrPh

kl (t) the activity of the klth neuron
in the product space (PrPh) merging landmark recognition and their azimuth.
The learning of context neurons follows a Hebbian like rule:

dWPrPh−Context
j,kl (t)

dt
= −λ1.W

PrPh−Context
j,kl (t).XPrPh

kl (t)+λ2.

(
1 −

∑

kl∈NP rP H

WPrPh−Context
j,kl (t)

)
.XPrPh

kl (t).XContext
j (t)

( )
(2)

With λ1 a decay term and λ2 a learning constant.
The recruitment of a new neuron for encoding a new location occurs dur-

ing the exploration of an unknown environment. This mechanism is performed
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Fig. 2. Our model with a PC layer linked to the context layer. Context neurons also
exhibit PC properties but with a larger firing field.

autonomously, without any external signal, relying only on the PC population
activity. If the activity of any previously learned place cell is below a fixed recog-
nition threshold (RT), then a new neuron is recruited for coding this new loca-
tion. We need PCs of the Context layer with bigger place field than PCs on ECs.
Place field size of the winning PC (or generalization) can be set by adjusting this
RT parameter. We thus choose a RT for the context population lower than the
one chosen for the ECs population (see section 3). If at a given place, several PC
respond with an activity greater than the recognition threshold, a competition
takes place so that the most activated cell wins and codes the current location.
However, place fields are overlapping.

The PC population previously identified in our model as cells in the enthorinal
cortex (ECs) still also receive inputs from PrPh. But ECs has now another input
from the context layer (possibly located in a cortical area). PCs are linked to
contextual PC with a weigth equal to one. Hence, at the beginning, each PC can
receive an activity from all the context neurons. This choice has been ruled by
the following modification of the activity equation on the ECs layer: activity of
a neuron XEC

i is modulated by active context neurons. Thus in the beginning,
since all weigths WContext−ECs

i,j are equal to 1, any PC on ECs can be activated
and recruited. The context modulation operates under a multiplicative form,
according to the following equation:

XECs

j (t) =

(
NContext∑

i

WContext−ECs

j,i .XContext
i (t)

)
.

1
Wj

(
NPrP h∑

kl

WPrPh−ECs

j,kl .XPrPh
kl (t)

)

(3)
At this state, since there is always at least one context neuron activated (a

large PC), the activity of the PCs on ECs remains the same as without the
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context layer. But we want that each PC belongs only to coactivated contexts
and not to the others. This specialization process occurs online via the learning of
links WContext−ECs

i,j following a hebbian learning rule. Coactivation of a context
neuron and a PC is detected and memorized (coact). This information modulates
the modification applied to the corresponding synaptic weight:

WContext−ECs

j,i (t) = (WContext−ECs

j,i (t−1)+(XContext
j )∗XEC

i ∗c))−α.(1−coact)
(4)

with α a penality term. If a coactivation has been already detected (c = 1) and
both input (context) and PC are activated, the weight is increased otherwise the
weight remains inchanged. Otherwise, if no coactivation has been yet detected
(c = 0), the weight is decreased.

After some time exploring the environment, the PC only keep connections
(WContext−ECs > 0) with very few context neurons. A majority of PC are linked
with one context neurons. We thus has constructed a two resolutions PC system.
Context neurons code for a broad and large zone of the environment, whereas
ECs can have a much better resolution. Only two levels of hierarchy have been
used, but this could be generelized to other level (for instance the landmark
recognition,or a more generalcontext for PCs)...

3 Experiments

As our context neurons are themselve place cells, they are sensible to the same
parameters: proximity of landmarks (closer landmarks have greater angular dis-
placement when moving) and the complexity of the environment (number of
room, gates etc...). Actually, more locations are learned near walls or doors due
to the fast changes in the angular position that can occur near landmarks, or in
the (dis)appearance of landmarks caused by these obstacles.

We have thus performed several experiments on differents large simulated
environments (one room, three rooms and nine rooms) with serveral RT for the
context neurons see fig 3.

For each one, we measure the number of PC linked to each context neuron
and the number of context neuron linked to each PC.

This preliminary statistical study implies very long experiment that can’t be
easely performed on a real robot. We thus use simulation performed over more
than 400000 simulation step (around 56h on bi-core bi-processor PC with 4Gb
of ram). Simulation is alway different from real robot experiment; netherthe-
less simulations are based on the results of real robotics experiments and some
previous simulations were confirmed by real experiments. Moreover real data
experiment are currently performed on an image data base > 100 giga octets
corresponding to a loop of more than 30km and robotic tests will be performed
to definitively validate this approach. We use in our simulation a fixed RTPC

since we already have studied the impact of this parameter over a population of
PC [4].

Table 1 show the mean number of cells recruited over several tries with (α = 1,
RTPC = 0.966):
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Fig. 3. Example of two enviroments. Blue crosses are landmarks. Each colored region
represents the place field of a particular place cell. After a complete exploration of the
environment, the entire environment is covered by the place cell population. Context
place field are delimited in black.

Table 1. Mean results for different values of context R.T. and several environments.
(See text for an explanation.)

Context R.T=0.65 1 room 3 rooms 9 rooms

PC recruited on ECs 243 525 647

Context neurons recruited 8 26 61

PC over context neurons 43.87 26.38 23.87

Context R.T=0.75 1 room 3 rooms 9 rooms

PC recruited on ECs 238 531 760

Context neurons recruited 13 51 101

PC over context neurons 43.87 26.38 23.8689

Context R.T=0.85 1 room 3 rooms 9 rooms

PC recruited on ECs 212 501 720

Context neurons recruited 29 106 244

PC over context neurons 17.51 12.38 10.36

These results confirm several expectations:

– the number of PC associated to a given context increases when the context
RT decreases (Context PCs have larger place field)

– this number of PC associated to a given context decreases with the number
of rooms. This was expected since PC are sensible to the complexity induced
by obstacle (hiding landmarks). Moreover the global size of the whole envi-
ronment remain inchanged for all the environments. Hence, combining the
fact that rooms in the three (and nine) rooms environment are much smaller
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and that landmarks are placed along the wall leads to an increase of context
and place cell neurons.

This last point can balance the apparently medium result found in the three
and nine rooms environments, since we know that, for a given RT, our PC place
fields are homothetic: bigger in a large environment than in a smaller one [9].
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Fig. 4. Histograms of the number of PCs linked to each context neuron and of the
number of context neurons linked to each PC respectively a) and b) for a given one
room environment and c) and d) for agiven tree rooms environment. R.T. for the
context neurons have been set to 0.75. Histogram c) en d) show how are distributed
PCs according to context neurons. For the one room environment, the first two cells
are linked with around half of the PC population size. In the three room environment,
more context neurons are recruited and consequently the distribution is more equally
dispatched, but there are still three major context neurons. Histrograms b) and d)
show that the majority of PCs are link with at most 2 context neurons.
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Fig. 5. Measure of the computational cost of the PC updating process for a three rooms
environment. The computational cost is, in mean, reduced by a factor of two after the
entire exploration of the environment (iteration 0.5105).

Figure 4 shows detailed histograms for the number of PC linked to each con-
text neuron and for the number of context neuron linked to each PC in two given
experiments (one and three rooms environment). RT for the context layer has
been fixed to 0.75 in these simulations.

Finally, we analysed the impact of this contextual bias on the computationnal
cost of the PC activity update. Without contextual information, this cost is linear
to the number of PC recruited in the whole environment. Exploiting a contextual
information allows us to only update PCs (compute the equation) linked with
the activated context neurons, since we know the other ones will have a very low
activity. Figure 5 shows the number of place cells updated at each iteration over
a periode of 400000 iterations. This result shows an interesting decrease of the
updating process cost. After, the exploration of the entire environment (iteration
0.5105), this cost is really reduce, divided by two compared to the number of
recruted PC (500).

4 Conclusion

The results described in this paper confirm the validity and the computational
interest of our model of the interaction between place cells and contextual cells.
However, this work is a very first step toward the constitution of a context. The
model still need to be enhanced, for example by adding other information (like
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idiothetic information, other geometric or nongeometric information like sound).
Nethertheless, even at this preliminary stage, this first model leads to several
interesting properties, since contextual PCs can:

– increase the reliability of the PC code by limiting the range of the neurons
competing for a given place. For example, a place cell a learned in a part of
the environment coded by context neuron A can not pertubate the competi-
tion taking place in another location belonging to a context neuron B if no
link exist between PC a and context neuron B.

– decrease the computatinal cost of the PC update process of the activity .
– provide a multiresolution localisation system to a more general navigation

model.

We currently work on experimatal data (images and azimuth) acquired while
a car perfomed a loop in the city near over 30km. We will certainly have to
introduce path integration information and to introduce grid cell activity in order
to discriminate ambiguous visual places when visual stimuli are ambiguous (long
corridor for instance). We will also perform experiments on a real robot over a
whole floor to validate these first findings.

We also plan to modify the context layer to obtain a distributed code of
context, whereby context information is shared across a population of neurons.
We think this kind of coding could take care of the remapping phenomenon
observed in rodent hippocampus as recent finding suggest it [2]. Furthermore,
this code could reduce the number of both needed PC and context neurons.
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Abstract. This paper presents an investigation into the robustness to
motor noise of an insect-inspired visual navigation method that links
together local view-based navigation in a series of visual locales auto-
matically defined by the method. The method is tested in the real world
using specialist robotic equipment that allows a controllable level of mo-
tor noise to be used. Extensions to the method, which can improve its
robustness to severe motor noise and to major disruptions such as being
displaced along its route, are investigated.

1 Introduction

We recently introduced an insect-inspired method for navigating across relatively
complex environments by linking together local view-based navigation using the
across a series of automatically defined visual locales [1]. Within the Linked Lo-
cal Navigation (LLN) framework, local homing was achieved using the Average
Landmark Vector (ALV) model. The LLN method was demonstrated in a vari-
ety of simulated and real environments and was shown to be inherently robust
to visual noise. In addition, many mobile robot platforms also suffer from high
degrees of motor noise, as do insects while being buffeted by gusts of wind for
example. Hence, in order to further evaluate the LLN’s promise for real world
applications and its potential use in biological modelling, this paper presents
an investigation of the LLN method’s robustness to motor noise. Using special-
ist robotic equipment we can systematically explore the effects of motor noise
in controllable real world conditions, something not possible in previous route-
based models [2,3]. The LLN method is shown to be robust to even high levels
of motor noise.

We then investigate simple extensions of the LLN method, based on minimal
‘place recognition’, which can improve robustness to severe motor noise and to
major disruptions such as displacement along the learned route. The ability to
recognise a location depends on the representation of the visual scene and a
range of representations have been used from Fourier components [4] to colour
information [5]. Here we present an analysis of place recognition using only a
two and three-dimensional Average Landmark Vector and discuss how place
recognition can be used to augment our LLN method.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 179–188, 2008.
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After briefly describing the main navigation algorithm and the robotic equip-
ment used, the experimental results are presented.

2 Linked Local Navigation

This section describes the biologically inspired visual navigation algorithm under
investigation. At its core is a computationally efficient view-based navigation
method that performs well in locations close to the goal. View-based methods
compare the current visual scene with a stored representation of the scene at
the goal and derive a direction heading from the difference between the two. A
series of local view-based navigation steps are chained together in a novel way
to allow navigation over complex environments. For full details see [1].

While there are many algorithms capable of implementing local view-based
navigation (for review see [6]), the most parsimonious is the ALV method which
processes a view into a single vector. The ALV model requires little computation
and memory, and has been shown to be effective for visual navigation in both
simulation [7] and on autonomous mobile robots [8,1].

To calculate the ALV, features (landmarks) are selected from a 360 degree
panoramic view. The ALV is simply the average of the unit vectors from the
agent towards each landmark. For navigation, the agent is placed at a goal
location and the ALV there (the goal ALV) stored. To return to the goal, the
agent calculates the vector difference between the current ALV and the goal
ALV and moves in that direction. Since the difference between the ALVs gives
the approximate direction of goal, navigation is implemented by iterating this
process [7].

Prerequisites for the ALV are therefore a 360o visual system, an ability to
align views with an external reference (e.g., a compass direction) and a robust
object detection system. Ants and bees have near spherical vision, both gain
compass information from celestial cues [9] and it is assumed that they can
reliably segregate objects from the background [10]. Thus the ALV method is
biologically plausible and has been shown to be computable with simple artificial
neural networks [11].

Taking inspiration from observations of ant navigation [12], the full linked
local algorithm requires a training phase where a scaffolding behaviour dictates
the route to be learnt. In training, the agent travels along a path from start to
goal. If the number of landmarks currently seen is different to the number seen
at the previous time-step, the ALV calculated at the previous time-step is stored
as a waypoint; this simply requires that the agent can perceive the binary event
of an appearance or disappearance of a landmark. When the agent is within
5cm of the goal, the goal ALV is calculated and stored as the final waypoint. In
this way the environment is broken up into separate visual locales in which local
view-based navigation will be effective.

The navigation phase begins with the agent at the start position with an
ordered series of stored ALVs as waypoints. The agent then uses the local navi-
gation method (ALV) to navigate towards the first waypoint. When the number
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of landmarks changes, the agent is assumed to have crossed a boundary into
the next visual locale and the navigation system switches to using the ALV
associated with the next waypoint in the list. This process continues until the
agent reaches the final goal or times out.

While a movement calculation based purely on the difference between the
current and goal (or waypoint) ALVs, is adequate for local navigation, it causes
problems at the boundary between visual locales. As the difference becomes
small so does the the resultant movement and the agent will very likely not reach
the waypoint let alone cross the boundary. After investigating various methods
to overcome this [1], we settled on a method which applies momentum to the
heading of the agent together with an absolute step-size of 2cm. The heading
direction at time t, θt, is calculated as a weighted average of the angle dictated
by the difference of the current and goal ALVs, φt, and the previous heading,
θt−1, with the weight, ωt, of the previous heading increasing with the value of
|θt−1 − φt|, as described by the following equations.

θt = ωtθt−1 + (1 − ωt)φt, where ωt = min
( |θt−1 − φt|

0.5π
, 1

)
(1)

This method prevents large jumps in direction, ignoring φt altogether when
|θt−1−φt| ≥ π

2 . Using egocentric polar coordinates, the movement vector is thus
rt = (2, θt).

3 The Sussex Gantry Robot and Visual Processing

All experiments reported in this paper were performed on a gantry robot: a large
volume XYZ Cartesian robot (Figure 1) with an operating volume of 3×2×2m.
Black/dark-grey cardboard tubes of different diameters were placed within the
environment to make high contrast landmarks against the white walls of the
gantry. The gantry head can be moved with sub-millimetre precision which allows
us, through software control, to effectively control the amount of motor noise
experienced by the agent.

For the work presented here we used a panoramic camera mounted on the Z-
axis. The camera, a VCAM 360, is shown in Figure 1B. The hemispherical mirror
projects a 360o image of the environment on to the downward facing CCD video
camera. The image was transformed from a circular reflection to a 1-dimensional
image representing a 360- degree panorama (Figure 1C). The transformation was
accomplished by taking eight 1-pixel-wide radial samples from the panoramic
image. The radial positions of these annular samples are shown by the concentric
circles in Figure 1C. Three hundred and sixty one-degree, grey-scale levels were
calculated for each radial strip through interpolation. These are then averaged
across the eight samples to give a 1 x 360 strip of mean grey-scales rounded to
integers in the range [0, 255].

This one-dimensional strip is the raw visual input. At each time-step this
is processed into landmarks (Figure 1D) from which the ALV is generated, as
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Fig. 1. The gantry robot. A: The gantry robot is an XYZ Cartesian robot, which can
position a camera at any point in a 3mx2mx2m volume. B: The camera head is a
catadioptric system that projects a 360o panoramic image of the world onto a CCD
array. C: A frame capture from the video feed. The three concentric circles (outermost
to innermost) indicate the sampled area’s upper edge, horizon, and lower edge. The
resulting strip, after unwrapping, is shown underneath along with a thresholded strip.
D: A trace of the visual input experienced by the agent along a route. This trace
demonstrates: (i) occlusion, (ii) appearance of landmarks as they come into perceptual
range, and (iii) disappearance of landmarks as they leave perceptual range.

described briefly below. Note that due to occlusions and the limited perceptual
range of the agent, the set of perceived landmarks will change during locomotion.

Landmark recognition is accomplished in several sequential stages, described
in detail in [1]. Briefly, The raw visual input is first resolved into 90 panoramic
facets resulting in an inter-facet angle of the same order as the inter-ommatidial
angle of ants’ eyes [13]. Each facet has a receptive field covering 8o, that is,
itself and half of each of its neighbours. The activation within each facet is
averaged and then thresholded to -1 or 1 depending on whether the output is less
than 194. We take advantage of the robot’s movement to implement two further
processing steps based on lateral and temporal excitation/inhibition which serve
to ‘clean’ the visual signal by ameliorating the problem of perceptual ‘flickering’
of landmarks; that is, single landmarks which are on the edge of the agents’
perceptual range and occluding landmarks which are alternately perceived as
one or two objects. Effectively, these steps mean that a new landmark appearing
is not perceived until it is at least two facets in width. Similarly, once two
landmarks have been perceived as one, they are not perceived as 2 landmarks
until the gap between them is at least two facets.
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Once this visual processing is complete, landmarks are defined as connected
sets of active facets and the bearing of each landmark is calculated as the av-
erage of the angular position of the facets containing the landmark edges. Thus
landmark bearings are accurate to ±2o. These bearings are then used to gener-
ate the ALV and this, together with a signal determining whether the number
of landmarks has changed, is passed to the main algorithm.

Landmark heights were extracted from the full panoramic image generated by
the visual system. For each visible landmark (as detected by the image processing
method detailed above) we find the point where the central facet of the landmark
changes from 1 to -1, starting from the centre of the 2 concentric circles in Figure
1C and working downwards. As all our landmarks are equal height (1m, meaning
the tops of visible landmarks are above the field of view of our camera) the
elevation of the landmark base gives us a proxy for their perceived height. The
visual processing is specialized to the environments used in the experiments, but
could be generalized.

4 Results 1: Motor Noise

Controllable amounts of motor noise were added as follows. During the training
phase (see Section 2), the agent travels along a path from start, s, to goal, g, in
steps of 2cm. When noise is added to the learning route, the learning step lt is
defined by:

lt = 2
ht

‖ht‖ + (N (0,2npc) ,N (0,2npc)) (2)

where ht = g − lt−1 is the vector from current position to goal (so at the first
step, h0 = g − s) and N (0, 2npc) is a Normally distributed random number
drawn with mean 0 and standard deviation 2npc, where npc ∈ [0, 0.8] sets the
standard deviation to a percentage of the step-size 2cm. Thus noise is added
independently to x and y dimensions independently and alters both size and
direction of the step taken. At the highest noise levels, this can result in the step
being taken in the opposite direction than was intended.

During the navigation phase, after the heading vector, rt - as defined in Sec-
tion 2, is transformed into Cartesian co-ordinates ut = (2cos(θt), 2sin(θt)) noise
is added in the same way as for the learning step, to give a final step vt of:

vt = ut + (N (0,2npc) ,N (0,2npc)) (3)

with parameters as defined above. Note that the momentum on the heading is
calculated according to θt, the heading the agent ‘thinks’ it is taking, rather
than the actual direction it takes. We feel this is most realistic in terms of an
insect or robot’s movements being moderated by environmental noise.

To assess the algorithm’s robustness to motor noise, we initially ran the algo-
rithm with 5 different noise levels applied to the navigation part of the algorithm.
The learning run was performed with no noise so we could isolate the effects of
noise on the navigation and learning phases of the algorithm independently. 10
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Fig. 2. Navigation with motor noise. A: Simple and complex environments with land-
marks (circles), waypoints (squares) and learning run (solid line). Dashed line indicates
area shown in C-H. Simple environment is as complex environment minus open symbols
(2 waypoints and 2 landmarks). B: Navigation success over 10 runs in simple (black)
and complex (white) environments for various noise levels (npc). C-F: 10 navigation
runs in complex environment (npc = 20, 40 and 80%, C-E respectively) and simple envi-
ronment (npc = 80%, F). G: Learning run with 40% noise (straight line shows noiseless
learning). H: Navigation after noisy learning run (complex environment, npc = 40%).

runs were performed for each noise level in first a simple and then a complex
environment. The results are shown in Figure 2. Failures were counted as any
run in which the agent entered a visual locale which was not the next on its list
of waypoints. In both environments, the algorithm was robust to high levels of
motor noise.

In the simple environment, the algorithm was successful until the standard
deviation of the Gaussian noise reached 1.6 cm, 80% of the step-size. As this
noise is applied independently to x and y components of the movement vector,
individual steps often took the agent in the opposite direction to which it was
trying to home. Successful homing under these conditions demonstrates the ben-
efits of view-based homing as opposed to odometric information. At each step,
the direction to home is calculated anew and thus errors do not accumulate. The
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algorithm will therefore succeed unless by chance the noise on several sequential
steps takes the agent in a consistent direction towards a new visual locale which
is not the one the agnet ‘expects’ to encounter next. Thus, one can see that for
the high noise level, clusters of failures appear at points where incorrect visual
locales occur close to the paths taken by the agent.

In the complex environment, due to the increased number of waypoints and
erroneous visual locales, the algorithm’s performance dropped when the standard
deviation of the Gaussian noise reached 40% of the step-size. Note however
that two of the three failures ocurred near the end of the run where there are
a succession of waypoints very close to each other (Figure 3D). For many of
these ‘failures’, the algorithm did home successfully to the goal using the goal
waypoint and ignoring subsequent boundaries experienced. While the chances of
such ‘lucky’ successes are higher near the goal, success is not guaranteed and so
we count these runs as failures.

Finally, we performed a further 10 runs with the standard deviation of the
Gaussian noise at 40% on both the learning and navigation parts of the algorithm
(Figure 3G-H). The agent homed successfully in all runs. This demonstrates that
the algorithm is robust noise on the learning run. Moreover, the greater success
with a noisy learning run shows firstly, there is no advantage to the straight-
path learning runs we perform; and secondly, the lesser performance of the agent
at 40% noise in the complex environment could be due to a ‘difficult’ set of
waypoints to navigate.

5 Results 2: Route Recognition

We next wanted to investigate the effects of more severe noise. It is known
that ants who are taken from the end of their route near the goal (nest/food)
and placed at a new location somewhere near its usual route can successfully
navigate back to the route and from there, to the goal. To reproduce this sort of
robustness our agent needs, on displacement, to be able to assess which locale
it is in, or, more pertinently, which waypoint it should navigate to. Can this be
achieved using the minimal visual representation of the world that the agent has
available to it?

As a first step to answering this question, we examined the runs with 40% noise
and assessed which locale the agent ‘thought’ it was in at each step of each run.
This was accomplished by calculating the distance (according to various met-
rics) of the (possibly parameterised) current view from the view from each of the
stored waypoints. At each step, if the closest waypoint is the one associated with
the locale the agent is in, it is assumed the agent can home successfully from that
point, first to the winning waypoint and subsequently to the goal. We used three
distance metrics based on different representations of the visual scene. The first
is the sum square difference between a Cartesian representation of current and
waypoint ALV. The second uses only the absolute angular difference between the
headings of current and waypoint ALV. As a control, we also used the sum-square
difference between the current visual scene and that at the waypoint, that is the
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Fig. 3. A-C: Percentage route recognition success over 10 runs for Cartesian ALV
(black), angular ALV (grey) and unprocessed vision (white). A: Simple environment
with 40% noise. B: Complex environment with 40% noise. C: Different learning routes.
D-E: Route recognition success over 66 horizontal and vertical transects through the
complex environment. D: Mean and standard deviation of percentage success for (left
to right) Cartesian ALV, angular ALV, unprocessed vision and 3D sum ALV. E: Dis-
tribution of successes of different routes for Cartesian ALV (black), angular ALV (dark
grey), unprocessed vision (light grey) and 3D sum ALV (white).

visual input before it is processed into landmarks. Such raw visual input has
been shown to be a good indentifier of location in regions close to the goal [14].

Results are shown in Figure 3A-B. In both simple and complex environments
results show consistent patterns. The metric based on unprocessed vision is cor-
rect over less than half of the route (48 ± 9%), as would be expected from the
results of [14]. In both environments the ALV-based metrics perform well in all
runs (discounting run 6 of the complex environment, in which navigation failed
early) with the angular ALV performing better (69±13% compared to 59±12%).
All methods perform best close to the waypoints, on the side where the agent is
approaching the waypoints. This is to be expected as the waypoints are points
at which the visual scene changes significantly. This effect should be more ev-
ident for ALV rather than visual metrics. Indeed, examination of distances to
waypoints along each route shows asymmetric profiles for the ALV methods, but
characteristic symmetric funnels [14] for the unprocessed vision.

To assess the generality of this result, we examined place recognition over 10
learning runs from a fan of points around the complex environment. Results were
fairly consistent with those achieved for the noisy runs (Figure 3C). The angular
ALV was again the best (69 ± 17%), while the Cartesian ALV (61 ± 10%) and
vision-based metric (54 ± 10%) were slightly more successful than previously.
The angular ALV did however have a much greater variance than the other two
methods with an almost bi-modal distribution of results. It is therefore worth
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noting that learning run 1 of these results - in which the angular ALV performs
well - is the learning run used for the noisy runs in the complex environment. It
is therefore possible that the angular ALV is suited to this particular run, and
that its good performance in the noisy runs may well be an overestimate.

As a final test, we assessed route recognition for the whole environment using
a database of images gathered at a grid of points with a spacing of 5cm. To
generate routes, we took either horizontal or vertical transects through the envi-
ronment, with waypoints set down whenever the number of landmarks changed
across the route. Averaged over all the 66 transects, differences between the
ALV-based methods disappeared while the visual method remained at just over
50% (Figure 3D). To attempt to increase the success-rate we incorporated the
height of the landmarks into a 3-dimensional ALV, and assessed all methods
with a number of different metrics. Intriguingly, the best performing metric
(70 ± 16%)was one which used the sum of the 3-dimensional vectors to each
landmark (rather than an average which would result in a 3-D ALV). Presum-
ably the success of this method is linked to the fact that it incorporates a sense
of the number of visible landmarks. This latter factor is clearly important as it
delineates visual locales, though is prone to aliasing. While differences between
the best performing metrics were not statistically significant, the difference in
distribution of success rates over the runs (Figure 3E) indicates that the meth-
ods are correct indifferent parts of the environment. It is therefore possible a
combination of metrics could provide more robust route recognition.

6 Discussion

In this paper we have demonstrated that the linked local navigation framework
is robust to large amounts of motor noise. Moreover, we have shown that using
the ALV, or a representation derived from it, can provide a robust measure of
place within a route should a more radical displacement occur.

We have also begun preliminary work to increase robustness further by incor-
porating route recognition within the navigational algorithm, with encouraging
results. Briefly, the algorithm proceeds as usual, but should a change in the num-
ber of landmarks occur it does not automatically start using the next waypoint.
Instead, the agent assesses whether the current view is associated with the visual
locale it is expecting. If so, the algorithm proceeds to home to the next way-
point. If not, it continues homing with the current one. Our initial tests use the
number of landmarks to assess whether the locale is correct or not. Future work
will explore the use of the continuous encodings presented here, as well as more
flexible ways of incorporating route recognition. Finally, we are investigating
neural network-based implementations of route recognition.
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Abstract. Three factor Isotropic sequence order (ISO3) learning is a
form of differential Hebbian learning where a third factor switches on
learning at relevant moments for example, after reward retreival. This
switch enables learning only at specific moments and, thus, stablises the
corresponding weights. The concept of using a third factor as a gating
signal for learning at relevant moments has been extended in this pa-
per to perform second order conditioning (SOC). We present a biological
model of the sub-cortical nuclei of the limbic system that is capable of
performing SOC in a food seeking task. The 3rd-factor is modelled by
dopaminergic neurons of the VTA which are activated via a direct exci-
tatory glutamatergic pathway, and an indirect dis-inhibitory GABAergic
pathway. The latter generates an amplification in the number of tonically
active DA neurons. This produces an increase in DA outside the event
of a primary reward and enables SOC to be accomplished.

Keywords: Conditioning, Dopamine, Hebbian learning, three factor
ISO Learning.

1 Introduction

In second-order conditioning (SOC), a conditioned stimulus (CS1) that becomes
associated with a reward or unconditioned stimulus (US) can be used to develop
further learning of behavioral associations for a second conditioned stimulus
(CS2).

It has been established that Dopamine (DA) is involved in the reward system
of the brain [1] and is released in short phasic bursts in response to primary
rewards. Over time, dopaminergic neurons stop firing in the event of a reward and
commence instead at the onset of the conditioned stimuli (CS) that predicts the
reward [2]. The error signal in Temporal difference (TD) [3] learning has been a
popular interpretation of the DA neuron activity. [4,5] suggest that weight change
is achieved instead by using a modified form of differential Hebbian learning.
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Here the DA activity corresponds to the 3rd-factor which when active, functions
as a gating system and facilitates learning only at relevant moments. In SOC
the relevant moments occur at the CS1 and CS2 onset. Anatomical findings
suggest that there are two distinct methods that drive the spiking activity of
DA neurons. These are glutamatergic excitation and GABAergic dis-inhibition
[6] both of which result in an excitatory influence on the target neurons. We
suggest that the glutamatergic excitation results in burst spiking at the moment
of the primary reward while the GABAergic dis-inhibition is responsible for the
burst at the onset of the conditioned stimulus (CS). [5] demonstrate how learning
is achieved in event of the primary reward using the glutamatergic pathway. This
paper illustrates an extended model in which an added dis-inhibitory pathway
generates a second activity state of the DA neurons. These two activity states
produce the 3rd factor in concert with the US and both CS1 and CS2 events.

Our model is based on the sub-cortical nuclei of the limbic system. It is capable
of demonstrating a SOC behavior in a food seeking task. The model learns by im-
plementing a form of differential Hebbian learning and a model of dopaminergic
activity. A combination of these two systems is known as three factor Isotropic
sequence order learning (ISO3) [7]. The model uses cues from its environment
to eventually find a food reward. In the following section, we discuss the behav-
ioral model and the environment. We show how certain nuclei form a network
which is integrated into an agent. The agent utilises the signals obtained from
the environment to perform the food seeking task.

2 The Model and the Simulated Environment and Agent

Figure 1A shows the agent searching for food in an octagonal playground com-
prising two compartments. There is a small opening in the wall dividing the
playground at which a blue landmark is positioned for the agents navigation
from one demarcation to the other. A green food disk is located in the second
compartment and can only be detected when the agent enters the second com-
partment. The agent has left and right bump sensors for avoiding the walls and
light detectors for detecting the landmark and food disk (Fig. 1B). It starts in the
first compartment and explores in a straight line until it either bumps into the
walls and changes direction, or it comes in contact with the landmark and food
disk for which a natural reflex attraction reaction is exhibited. When the agent
comes into contact with the food disk, it is returned to its starting location in the
first compartment and the agent begins its search again. This process is repeated
for a set period of time steps and the agent slowly reduces the time required to
obtain the food disk by approaching the blue landmark and food disk from a
distance. There are red lights embedded in both the landmark and food disk
which are triggered when the agent comes into direct contact with either of the
objects. The signal obtained from the red light is used to bootstrap learning and
generates the stimulus that cause reflex approaching behavior towards the red
light. Embedding the red lights in both the landmark and food disk ensure that
a symmetry is maintained within the objects that interact with the naive agent.
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Fig. 1. A) A behavioral model of the agent in its environment in which the SOC
food seeking task is performed. B) The agent containing both left and right bump
sensors and red, blue and green light detectors. The agent uses the blue and green
light detectors to detect the signals of the blue landmark (Sb) and green food disk (Sg)
from a distance. The specific red lights enclosed in both the landmark and food disk
respectively generate the Sbr and Sgr signals when the agent touches either landmark
or food disk. C) The model of the limbic circuitry. The Sbr and Sgr signals activate
the reflex towards the landmark and food disk respectively. The distal Sb and Sg
signals converge onto the coreb decision unit with plastic weights ρbb,ρbg and coreg

decision unit with plastic weights ρgg,ρgb The Sb and Sg signals also feed into the
working memory neurons WMb and WMg of the PFdl which project to the shell with
variable weights ωb and ωg respectively. Abbreviations: ventral tegmental area: VTA;
lateral hypothalamus: LH; ventral pallidum: VP; dorsolateral prefrontal cortex: PFdl;
Nucleus Accumbens: Nac.

Certain nuclei are modelled as shown in Fig. 1C to form a network as fol-
lows: The ventral tegmental area (VTA) afferents a variety of nuclei causing DA
release at the target sites. This includes the nucleus accumbens (Nac) which is
located in the Ventral striatum (VS) and can be sub-divided into the shell and
core [8]. This doparminergic projection from the VTA to the VS is necessary
for reward seeking behavior and motivation [9]. The lateral hypothalamus (LH)
is known to be activated by natural reinforcers [10]. Its activation provides ex-
citatory glutamatergic inputs to the shell and the VTA and also results in an
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increase of dopaminergic activity in the shell [11]. The prefrontal cortex (PF)
in particular and the dorsolateral prefrontal cortex (PFdl) are established to be
the involved in short term memory [12]. Therefore the dorsolateral prefrontal
cortex (PFdl) has been integrated and has been modelled to maintain stimulus
activity for a certain period after its initiation. This is another source of exci-
tatory glutamatergic activity which feeds into the shell. The shell associates the
inputs received from the working memory inputs with food rewards. The shell
has inhibitory GABAergic projection neuron which innervate ventral pallidum
(VP) [13]. The VP also innervates the VTA with inhibitory GABAergic projec-
tions. Inactivation of the VP increases VTA-DA neuron population activity [6].
Therefore the shell exerts an overall dis-inhibitory influence on the VTA and is
responsible for the DA activity which develops at either the CS1 or CS2 onset.

The neighbouring core in the Nac develops motor responses by integrating
glutamatergic inputs from the PF with the dopaminergic activity from the VTA.
It performs similarly to the decision making model implemented in [14]. The
nuclei described have been modelled to utilise the signals obtained from the
environment to perform behavioral SOC in a food seeking task.

The blue landmark and green food disk produce signals Sb and Sg respectively
which feed into the PFdl. An active Sb or Sg signal enables its corresponding
working memory WMb or WMg input to maintain persitent activity for a set
period of time. The plastic synapses ωb and ωg respectively connect the WMb

and WMg inputs to the shell. An encounter with the food disk generates the
reward signal which feeds into the LH and results in the DA burst in the VTA.
Encountering the food disk results in shell activation via the LH and an associa-
tion is made between the most recently activated working memory input (CS1)
and the food reward.

The core comprises two decision making units namely coreb and coreg which
control the agents approach to the blue landmark and green food disk respec-
tively. The approach behavior is controlled by utilising a normalised difference
between left and right light sensors. Originally in the naive agent, the approach
occurs as a primary reflex reaction to the landmark or food disk. This behavior is
driven by the cortical inputs labelled Sbr and Sgr which are triggered by direct
encounter to the blue landmark and green food disk respectively i.e. when the
agent activates the individual red lights. The Sbr and Sgr feed into the coreb

and coreg units accordingly while Sb and Sg signals are both fed into each of
the core units via plastic synapses ρb and ρg. After learning the plastic synapes
are strengthened and the distal Sb and Sg signals enable anticipatory reactions
towards the landmark or food disk from a distance.

The next section describes how the plastic synapses develop and learning
occurs.

3 Plasticity in the Nac

The LH produces an excitatory glutamatergic activity to the shell and VTA and
this activity is triggered upon contact with the food disk. Thus the LH can be
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represented as: LH = hbp ∗reward i.e. the reward signal with a transfer function
hbp. Neuronal systems are simulated by transforming the inputs with bandpass
filters hbp in which f is frequency of oscillation and q is the quality factor. The
activity of the Nac shell is influenced by the weighted PFdl working memory
input (WMg or WMb) and LH signals. While the activity of the core units are
influenced by cortical inputs which signify distant and proximal contact with
both the landmark and food disk as follows:

shell = LH + (WMb · ωb) + (WMg · ωg). (1)
coreb = Sbr ∗ hbp + ((Sb ∗ hbp) · ρbb) + ((Sg ∗ hbp) · ρbg). (2)
coreg = Sgr ∗ hbp + ((Sb ∗ hbp) · ρgb) + ((Sg ∗ hbp) · ρgg). (3)

ρ and ω are the plastic synapses that change under the influence of the dopamin-
ergic neuron activity of the VTA which is dis-inhibited by the shell via the VP.

V P = θ(1− shell · ζ) (4)
V TA = lh · κ− V P · υ (5)

Where ζ, κ and υ represent the shell-VP, LH-VTA and VP-VTA pathways re-
spectively and θ(x) is given by:

θ(x) =
{
x, if x > 0
0, otherwise (6)

We model the VTA DA burst spiking by passing the VTA signal through a
highpass filter to give: burst = θ(V TA ∗ hhp). Note that this burst can originate
from excitation or from the dis-inhibition of the VTA which then generates the
R burst or the CS burst.

The plastic synapses of the shell and core undergo an identical process of
weight change. Therefore plastic weights in the Nac shell and core can be gen-
eralised with a symbol β as: β ← β + μ(uj · Nac′ · burst · (1 − β)) in which μ
represents the learning rate.

4 Results

We demonstrate the performance of the model in simulations using an open
dynamics engine (ODE) with the network of the model programmed in C++.
The simulations were run on a computer running Ubuntu Linux. The behavioral
environment and agent were programmed to perform the SOC food seeking task
as described in the previous sections. This section details some results of the
simulation which was run for a period of 500000 time steps. Figure 2 shows the
simulation traces for the WMb, WMg and LH signals which correspond to the
CS2, CS1 and US signals respectively. The VTA, resultant DA burst and shell
weights development are included. The focus is on traces which occur within two
specific time windows of the overall simulation. These are time steps between
8000 and 18000 and 43000 and 53000. Three relevant events numbered i, ii and iii
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Fig. 2. The detailed simulation results showing two specific time intervals which
demonstrate how the CS and US bursts indicated by the arrows are produced. At
the beginning of simulation between time step 8000 and 10000, the WMb/CS2 is trig-
gered but no DA burst is generated. The first burst occurs when the agent encounters
the reward and the LH becomes active as shown in the highlighted area i. Two bursts
are highlighted between the timesteps 43000 and 53000 which occur at the onset of
the WMG/CS1 and WMB/CS2 stimuli in the absence of LH activity (area ii and iii).
Parameters: The bandpass filters (Hbp) were set with f = 0.01 and q = 0.51. The
highpass filter producing a DA burst (Hhp) was set: f = 0.1, q = 0.71. The pathways
are weighted: shell-VP (ζ) = −1, LH-VTA (κ) = 0.00001 and VP-VTA (υ) = −1 The
learning rates of the shell μshell = 0.5 and the core μcore = 0.02.

have been highlighted within these time intervals and show the development of
the DA burst activity which occur originally at the onset of the US highlighted i
and later on at the CS1 and then CS2 events highlighted by ii and iii respectively.
At the beginning of the simulation, all plastic weights were set to zero thus
modelling a naive agent. The agent explored the environment until it encountered
the food disk (US activation). The LH was triggered and the VTA was activated
resulting in a DA burst which in turn enabled learning to occur at the relevant
synapse. In this case, the working memory (WMg) input from the green food
disk to the shell maintained activity which coincided with the DA burst and
facilitated the corresponding weight ωg to develop. This is indicated by the arrow
labelled US burst in the event i. The agent was returned to its starting location
and commenced exploration and slowly developed a behavioral attraction to the
food disk from a distance. The ωg weights develop further as the agent repeatedly



Second Order Conditioning in the Sub-cortical Nuclei of the Limbic System 195

Fig. 3. An overview of the simulation results. A) The VTA activity B) The LH/US
signal, C) The DA burst activity, D) The shell weights, E) The coreb weights, F) The
coreg weights.

encounters the food disk and an association is made between the detection of the
food disk form a distance (CS1) and the contact made with the food disk (US).
The shell is activated when the agent detects the food disk from a distance and
the WMg signal is triggered. This resulted in a dis-inhibition of VTA and a DA
release at the onset of the CS1. This is shown in the highlighted area ii in Fig. 2.
The activity maintained by the working memory (WMb) input from the blue
landmark occurs in concert with this CS1 burst and causes its corresponding
weight ωb to grow. The agents behavioral activity throughout the course of the
simulation can be seen in Fig. 3 which shows the (A) VTA, (B) DA burst,
(C) LH, (D) shell weight and individual (E) coreb and (F) coreg units weight
development. Figure 4 shows the paths made by the agent at (A) the first 10000
timesteps of the simulation and (B) the last 10000 time steps of the simulation.
It can be seen that the agent originally explores along the walls until it comes in
direct contact with the landmark or food disk. At the end of the simulation the
agent has developed a behavioral reaction towards both the landmark and food
disk. The agent makes five times more contacts with the food disk over the final
10000 time steps than it does during the first. It can be seen that after learning
the agent heads directly for both the landmark and food disk.
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Fig. 4. An overview of the simulation results showing a trace of the paths the agent
made when navigating through the playground. A) The trajectory of the agent during
the first 10000 timesteps. The agent bumps into the wall and explores along the wall
until it comes in contact with the landmark or food disk. The agent makes 1 contact
with the food disk. B) The path made by the agent during the last 10000 timesteps.
The agent makes its way directly to either the landmark or food disk when either is
detected. On approach to the landmark, the agent bumped into the edges of the walls
which forced it to change direction away from the landmark until the agent detects the
landmark once again heads directly towards it. The agent makes 5 contacts with the
food disk.

5 Discussion

In this paper, we have shown how a biologically inspired model has been devel-
oped which is capable of performing SOC in a food seeking task. The focus is
on two pathways that result in the generation of the bursts in the VTA. Pri-
mary rewards facilitate bursts through the LH-VTA pathway while the predictive
bursts are generated via CS activation of the shell and dis-inhibition of the VTA
through the VP. These DA bursts enable three-factor learning to occur [15,4] in
which the three interacting elements include the pre-synaptic activity triggered
by the CS, the post-synaptic activity triggered by the US and the dopaminergic
burst. Learning in this case is dependent on spike timing dependent plasticity
STDP occuring locally at target sites.

Among a variety of limbic circuitry models are two that show certain similari-
ties to the current model. [16,17] describe methods that emphasise two pathways
which facilitate the production of DA bursts. While [17] provides a model based
on the DA neurons of the substantia nigra compacta (SNc), similar nuclei are
employed to generate a DA burst. The US and CS produce a burst through
the LH and VS-VP pathways respectively. [16] accounts for the CS burst by
implementing an additional nuclei known as the central nucleus of the amygdala
(CNA).

The error signal which drives learning in TD methods incorporates predictions
of future rewards to produce associations between both CS and reward related
stimuli and CS and other CS in higher order conditioning. The earliest CS can
eventually trigger a DA burst if and only if there is a series of uninterrupted
chain of CS-CS and CS-US events. This system is biologically unrealistic. SOC
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is accomplished in the PVLV model by introducing a modification of the
Rescorla-Wagner learning rules into two separate subsystems. One calculates
the CS-US error while the other calculates the error between a second condi-
tioned stimuli and the CS associated with the reward. SOC can be performed by
both the current model and the PVLV model without the disadvantage of de-
pending on a continuous series of CS representations. While the latter achieves
this by using two systems as mentioned, our model uses CS traces which are
maintained by working memory input.

Although the current model focusses only on a process of generating predictive
bursts, [16,17] have also accommodated the eventual delayed inhibition of the
bursts by incorporating added nuclei. The current model could also theoretically
generate the inhibitory reward prediction by modifying the circuitry with an in-
hibitory GABAergic shell-LH pathway as confirmed in [18]. The PVLV model
achieves this by implementing a direct Nac-VTA pathway. Strong evidence sug-
gests that the major influence the Nac has on the VTA is through the indirect
pathway via the VP which receives an abundant GABAergic projection from
the Nac [19] and its inactivation results in an increase in the activity of the DA
neuron population [6]. [8] state that the direct Nac-VTA or VS-VTA pathway
implemented in the PVLV model is less prominent than the indirect pathway.
This means that activation of the Nac would produce an overall excitatory effect
on the VTA. In the TD and PVLV methods, omission is coded by a decrease in
activity of the VTA dopaminergic neurons which results in long term depression
(LTD). [20,21] have questioned the capability of the dip in DA activity to suffi-
ciently code for negative prediction errors. [20] proposes cholinergic mechanisms
of detecting the contrasts in DA neuron firing and [22] suggests that serotonin
might play a role in coding the negative prediction errors. We posit that an
increase in the number of tonically active dopaminergic neurons might be suf-
ficient to code for these negative prediction errors. This paper emphasises that
the dopaminergic signal which is distributed globally to various brain areas acts
like a gating mechanism for learning where learning occurring locally at target
sites depends on heterosynaptic STDP. It would be interesting to extend the
behavioral model so that the agent is made to navigate in an environment com-
prising of additional landmarks that do not necessarily guide the agent towards
the food disk. By implementing a mechanism by which STDP occurs locally, the
landmarks can either be ignored or acknowledged depending on their relevance.
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Abstract. We propose a novel methodology for learning and synthesising whole
classes of high dimensional movements from a limited set of demonstrated exam-
ples that satisfy some underlying ’latent’ low dimensional task constraints. We
employ non-linear dimensionality reduction to extract a canonical latent space
that captures some of the essential topology of the unobserved task space. In
this latent space, we identify suitable parametrisation of movements with control
policies such that they are easily modulated to generate novel movements from
the same class and are robust to perturbations. We evaluate our method on con-
trolled simulation experiments with simple robots (reaching and periodic move-
ment tasks) as well as on a data set of very high-dimensional human (punching)
movements. We verify that we can generate a continuum of new movements from
the demonstrated class from only a few examples in both robotic and human data.

1 Introduction

As we design robots to become more anthropomorphic with an aim for them to co-exist
in human friendly environments, the number of degrees of freedom and consequently
the variety of movements that they can execute have grown significantly. This raises
many issues concerning the control and planning in these robots: Who defines such a
large set of movements for every new robot? How do you make those movements look
natural? How do you cope with the large degree of redundancy?

A promising way out of this dilemma is for the robot (student) to learn the desired
movements from a teacher (e.g., human demonstrator) through imitation [1]. There are
several approaches to this problem depending on the information available to the stu-
dent. For example, Grimes et al. [2] observe the movement of a teacher in joint angles
and learn a probabilistic model which entails a common latent space between teacher
and student to produce a stable movement of the student. Peters and Schaal [3], on the
other hand, observe an imprecise, supervised movement in the student’s own joint space
and then, improve on it with reinforcement learning (which needs additional feedback).
Such approaches might solve the problems of producing naturally looking movements
and appropriate resolution of redundancy, but being only able to imitate one particular
movement is rather limiting. An interesting possibility would be to use the demonstrated
examples as a basis for generation of more generalised movements from the same class.

Here, we assume that a set of demonstrated examples belong to the same class of
movements, i.e., follows a consistent optimisation or redundancy resolution principle

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 199–209, 2008.
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in some lower dimensional (and common) unobserved task space. Additionally, we
assume a rich repertoire of movements that achieve different task goals.

The problem of generating similar movements to a set of examples has been ad-
dressed in the computer graphics and animation communities. The aim there often is to
generate natural looking human motion adapted to a certain situation given a database
of recorded human motion. If the database is big enough and contains all the motions
needed, it is often sufficient to use an efficient graph based search algorithm to generate
desired movement sequences – however, we consider situations where extensive and
exhaustive motion generation or capture is either expensive or infeasible. If two similar
motions are available, linear interpolation between these works surprisingly well when
they are represented as absolute positions and rotations of body parts in a global coordi-
nate system [4]. Also linear combination of motion sequences has been shown to work
reasonably well with the right representation [5]. These approaches, besides having to
extrapolate movements in (usually) high dimensional movement space, have the prob-
lem of scalability and robustness under perturbation or goal modification because they
generate an explicit, fixed movement plan indexed in time.

Ideally, we would want to represent and scale the movements in the corresponding
task space, since such representations are very compact and interpretable. However,
typically we only have access to the demonstrated movements in joint space. A poten-
tial solution to this problem is to find a low-dimensional space with similar properties
as the task space by employing appropriate dimensionality reduction [6]. Tatani and
Nakamura [7] apply autoassociative neural networks to find compact representations
for motions from a humanoid robot, but they are missing a way to represent motion dy-
namics. While Wang et al. [8] incorporate dynamics in their dimensionality reduction to
represent movements, this is not suitable for robotic applications, since it is not robust
against perturbations and expensive to compute.

In this paper, we first investigate the qualitative relationship between latent spaces
produced by the chosen dimensionality reduction technique and the task spaces of sim-
ple robotic setups. Then, we show that the resulting latent spaces can be used to encode
and learn control policies which act as robust representations of the example move-
ments and allow easy generalisation to new movements from the same class. Finally,
we apply this methodology to human motion capture data to demonstrate its feasibility
for complex, high-dimensional real world movement data.

2 Methodology

We adopt a 2-step approach, the schematic for which is laid out in Fig. 1. First, we
explore a suitable latent space representation of the observed high dimensional move-
ment data (e.g., in joint space) using appropriate dimensionality reduction techniques.
Then, we formulate a representation of trajectories as control policies such that they are
spatiotemporally scalable and robust against perturbations. In order to test the scalabil-
ity of the methods, modulated control policies are then mapped back into the original
movement space to generate novel target motion. While task space data (or constraints)
are generally not accessible in real world demonstrated examples, we will exploit this
formalism in artificial setups to test the viability of our methods against ground truth.
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Fig. 1. Experimental methodology. The steps are: (1) inverse kinematics, (2) GPLVM learning,
(3) control policy (CP) learning, (4) change of CP parameters, (5) generation of new trajectory
with CP, (6) GPLVM mapping, (7) forward kinematics.

Next, we explore the two essential components of our method: a dimensionality re-
duction algorithm which possesses an inverse mapping and a robust ’control policy’
representation that can be easily modulated.

2.1 Dimensionality Reduction

In general, joint and task spaces are nonlinearly related. Therefore, joint and latent
spaces should be, too. Furthermore, we need a mapping from latent to joint spaces to
generate new movements from modified trajectories in the latent space. Consequently,
we have identified the Gaussian process latent variable model (GPLVM) as a promising
candidate for our purposes, details of which are described below. An alternative method
with similar properties is the Laplacian eigenmap latent variable model [9] – an exten-
sion of the spectral technique of Laplacian eigenmaps that adds continuous mappings
between data and latent spaces. However, we do not follow up on this in this paper
since our explorative experiments suggest that latent spaces recovered did not maintain
a topology that was conducive to control policy modulation (see next subsection).

Gaussian Process Latent Variable Models. The Gaussian process latent variable
model [10] is a nonlinear generalisation of probabilistic PCA. It is based on a gen-
erative model which uses Gaussian processes to map low-dimensional latent variables
z ∈ R

d to high-dimensional observed variables q ∈ R
D. The corresponding likelihood

for a set of N latent variables Z = [z1, . . . , zN ]� can be written as

p(Q|Z,β) ∼
D∏

i=1

exp
[
−1

2
q̂�

i K−1q̂i

]

(D independent Gaussian processes) with q̂i = [q1i , . . . , q
N
i ]� the collection of all

observed points in dimension i and K a covariance matrix dependent on Z. Here we
use the standard squared exponential covariance matrix with independent, identically
distributed noise on the observed variables q:

Kmn = β1 exp
(
−1

2
‖(zm − zn)/β2‖2

)
+ δmnβ3

where δmn = 1 for m = n and 0 otherwise.
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Given the set of observed variables Q, their latent representations and values for
parameters are then computed by minimising the negative log-likelihood (− log p(Q|Z,
β)). This optimisation is highly susceptible to the initialisation of Z. Usually, we use a
PCA initialisation as suggested in [10], but where indicated, we also use initialisation
with Laplacian eigenmaps or other results.

A series of extensions to the GPLVM has been proposed in the literature. All of them
lead to some kind of regularisation on the latent variables. This is mostly achieved by
introducing a prior over the latents p(Z). For example, the prior suggested in [8] defines
dynamics on the latents.

2.2 Control Policies

We use discrete and periodic control policies (CPs) to represent goal-directed and peri-
odic movements as attractors of nonlinear dynamical systems [11]. The advantages of
this approach are robust representation of movements and easy modifiability of move-
ment parameters such as amplitude, goal point and baseline of oscillations while shape
of the CPs is maintained. Alternative ways of representing dynamics, for example with
HMMs or linear Gaussian models, do not provide the same level of robustness, suffer
from being either restricted to a fixed set of discrete states, only allowing linear dy-
namics, or expensive computations. In the following, we present our adaptation of the
formulation in [11] such that we can explicitly incorporate modifiable start and end
positions. Note that only motion in one dimension (e.g. joint) is represented. Conse-
quently, for motion in d dimensions d control policies must be learnt.

Discrete. Discrete movements (e.g., reaching) are characterised by a starting state, z0,
some state trajectory and a goal state, g. The formalisation of such a system is shown
in Table 1(left). Ignoring the details of the modulating function f , this is a linear, two-
dimensional dynamical system with a single, attracting stable point at [g, 0]. f is used
to shape the trajectory of the dynamical system between z0 and g. It can be represented
as a weighted sum of RBF basis functions which depend on the state, ξ, of a canonical
system that converges to 0. The number of basis functions, n and their width and cen-
tres, hi, ci, are chosen a priori. Given a complete movement [z, ż, z̈], the weights, wi,
of the nonlinear component are learnt. Once the movement is learnt (or encoded as a
CP with start state z∗0 and goal g∗), we can change the start state and goal to produce

Table 1. Definitions of discrete and periodic control policies. For discrete CPs the dynamic vari-
able governing the nonlinearity converges to 0 while it monotonically increases for periodic CPs.

discrete periodic
1

τ
v̇ = αv(βv(g − z) − v) +

g − z0

g∗ − z∗
0

f(ξ)
1

τ
v̇ = αv(βv(zm − z) − v) + Af(φ)

1

τ
ż = v

1

τ
ξ̇ = −αξξ

1

τ
ż = v

1

τ
φ̇ = ω

f(ξ) = ξ

�n
i=1 Ψi(ξ)wi�

i Ψi(ξ)
f(φ) =

�n
i=1 Ψi(φ)wi�

i Ψi(φ)

Ψi(ξ) = exp
�−hi(ξ − ci)

2
�

Ψi(φ) = exp (−hi(1 − cos(φ − ci)))
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a qualitatively equivalent dynamics of motion in different parts of the state space of z
(which can either be a joint angle, or a dimension in our latent space).

Periodic. Periodic control policies work similarly, as shown in Table 1(right). Instead of
a goal state, we have a baseline of oscillation, zm. The nonlinearity, f , is now governed
by a periodic, canonical system with phase velocity ω. Once the weights are learnt to
fit a given periodic movement, we can adapt the amplitude, A, of that movement and
move it around in state space by changing the baseline, zm, without losing the shape of
the CP. In our implementations, we choose the mean of a data set as an approximation
for the initial baseline of the oscillation.

3 Experiments

We use the robotics toolbox for Matlab 1 to implement simulations of two different
robots. Our first simulation features a 3 Degree of Freedom (DoF) planar robot arm
that has a shoulder joint and 2 elbow joints, with the end effector constraint to move in
a 2D plane. We resolve the redundancy in the inverse kinematics by choosing the joint
space configuration, q, closest to a default pose, q∗, for which the task space constraints
are fulfilled. In other words, we minimise ‖q − q∗‖2 subject to k(q) − x = 0 with
k(q) being the forward kinematics. The second platform that we use is the PUMA-560
robot arm with 6 DoFs joints (3 translational plus 3 rotational). However, we fix the
rotation of the end-effector to a default value in our simulation. For the PUMA-560
robot, there are always 8 alternative joint angle configurations which all correspond to
the same translation and rotation of the end-effector. Of these alternatives, we choose
the solution which is right handed, has elbow up and non-flipped wrist.

3.1 Task Space vs. Latent Space

In our first experiment, we explore the relationship between the task space used to
produce the example movements and the latent space resulting from nonlinear dimen-
sionality reduction on such data. To begin with, we use a uniform grid data in task space
to verify that the important properties of the task space are recovered. In particular, we
sample 256 data points regularly spaced from a 2D task space. For the planar arm, the
data points are spaced at 0.1m (see Fig. 2, left, blue +) while for the Puma arm2 the
points are separated by 0.027m (see Fig. 2, left, green +). For each of the 256 points in
task space, we obtain a corresponding robot configuration in joint space using inverse
kinematics and run the GPLVM on them to find a latent space configuration.

If for the same robot, a different inverse kinematic solution is chosen, i.e. existing
redundancies are resolved in a different way, the data in joint space corresponding to
the original task space points will change. Ideally, we would like the dimensionality
reduction technique to show some sort of invariance to this source of variability. We
investigate resulting latent spaces for 3 different simulations: we use the planar arm
with the inverse kinematics as described above as well as one where the deviation from

1 http://www.petercorke.com/Robotics%20Toolbox.html
2 The Puma’s workspace is 3D, here the data points lie in the X-Y plane with Z=0.
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Fig. 2. GPLVM results on simulated robot poses with end-effector positions spanning a 2D grid.
(a) The grid in task space (end-effector positions). GPLVM result on: 3DOF planar arm data with
(b) standard inverse kinematics (c) weighted inverse kinematics; (d) 6 DOF PUMA arm.

default for the first joint is weighted four times higher. In the third simulation, we use
the Puma arm as described above.

Fig. 2 shows the resulting GPLVM latent spaces. Compared to the original grids, we
see that the grids in latent space are nonlinearly distorted. However, the spatial topology
of the original task space grids are maintained in the latent space. This suggests that in-
terpolation between neighbouring points in latent space has a direct correspondence to
modulation in the underlying task space. As expected, the GPLVM is sensitive to the
exact choice of redundancy resolution (e.g., inverse kinematics) – the nonlinear distor-
tions are subtly different in all three examples. However, the properties of all resulting
latent spaces allow that a continuous trajectory in task space can be represented as a
continuous trajectory in latent space, i.e., recovering a structure topologically similar to
the unobserved task space is possible from joint data only.

3.2 Reaching and Periodic Movements with Control Policies

Next, we investigate reaching movements which are constrained in specific ways in the
task space. The aim of this investigation is three fold. Firstly, we would like to verify
that topology is maintained in the extracted latent space. Secondly, we would like to
investigate whether modulations of the CPs in the latent space recovers the same class
of task (and joint) space movements that was used to train the GPLVM. Thirdly, we
want to assess the level of generalisation to novel, unseen movements.

The following experiments are done with the simulated Puma robot which has more
degrees of freedom than the planar arm. We start with a family of straight line, minimum
jerk, reaching movement data in task space. To test whether we can reliably reconstruct
a movement in latent (and task) space that was not used to produce the latent space, we
leave one movement out when training the GPLVM (Step 2, Fig. 1).

After we obtain the latent space, we fit discrete control policies (Step 3, Fig. 1) to a
single representative trajectory in latent space. We then generate new latent space move-
ments through modulating the CPs (Step 4, Fig. 1) by reparametrising the start state and
goal to match those of the remaining desired movements in latent space. Importantly, to
test the generalisation ability, we generate a movement that was not used in the GPLVM
training by interpolating the start and goal state of two neighbouring movements. We
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Fig. 3. Fitted (bold), modulated (thin) and interpolated (dashed) discrete CPs for the parallel
trajectories of the PUMA arm in latent and task space

then evaluate movements generated by the CPs against the original one in latent, joint
and task space.

Parallel Trajectories. We begin by considering parallel task space trajectories depicted
by grey dots in Fig. 3(right) with the resulting trained latent space shown on the left.
The shading visualises the probability that the GPLVM puts on a corresponding point in
joint space. In both panels, the grey dots are the data points available in that space. The
bold lines in latent space represent the fitted control policy while the thin lines are the
result of CP modulation. The trajectories in task space result from mapping the latent
space trajectories through joint space to task space (Steps 6-7, Fig. 1).

The deviation of the trajectories from the data points in task space has two possible
sources: (i) discrepancy between the latent space data and CP modulated trajectories
(thin lines); (ii) reconstruction errors of the GPLVM( i.e, Steps 2 & 6, Fig. 1). Statistics
of the trajectory errors in various spaces are summarised in Table 2. We find that the
GPLVM reconstruction error is negligible (see first column, Table 2). Consequently
most of the deviation in task space is due to deviation of the CP modulation from latent
space data exemplars. Overall, however, the generated movements fit the original task
space and joint space movements exceptionally well.

One can note that, as expected, the fitted control policy has smaller trajectory errors
than the result of modulation of the CPs to other movements. This can be attributed
to the slightly varying shapes that the representations of the movements have in latent
space. Also, the topological relationship is preserved as can be seen by the fact that
movements close by in latent space have similar ‘shapes’ - lending itself to better CP
modulation. Indeed, that explains the very low error of the interpolated CP (being near
the original fitted CP).

Star Trajectories. Next, we test whether these findings transfer to reaching movements
where the task constraints are slightly more complex. Our data consists of 10 minimum
jerk trajectories in task space where the start and end points are distributed along a
quarter circle with radius 0.5 and 2, respectively (see Fig. 4(top right)).

Wefind comparable results to theearlierdiscussion–bothqualitatively (seeFig.4(top))
and quantitatively (the statistics of the error, which is very similar to Table 2, is left out
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Table 2. Reconstruction and Trajectory Errors (nMSE×10−3 and standard deviation)

Parallel Trajectory
space reconstruction fitted modulated interpolated
latent − 0.14 ± 0.16 4.12 ± 4.70 −
joint 0.006 ± 0.009 0.13 ± 0.17 4.14 ± 5.19 0.36 ± 0.41

task 0.009 ± 0.013 0.16 ± 0.21 3.85 ± 4.95 0.31 ± 0.42

Figure-8 Trajectory
space reconstruction fitted modulated interpolated
latent − 2.14 ± 5.44 2.52 ± 2.58 −
joint 0.000 ± 0.000 1.81 ± 3.76 2.83 ± 3.37 7.96 ± 15.71

task 0.000 ± 0.000 0.61 ± 1.36 3.17 ± 3.18 4.98 ± 7.66
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Fig. 4. Fitted (bold), modulated (thin) and interpolated (dashed) Control Policies for the (TOP
row) star; (BOTTOM row) figure-8 trajectories of the PUMA arm in latent and task space

in the interest of space). Consequently, we expect our method to be applicable to a wide
range of reaching movements with diverse task constraints and orientation.

Periodic Movements. Having explored discrete, point-to-point movements, the natu-
ral question is whether the method extends to periodic movements? Again we utilise
the Puma platform and simulate figure-8 movements in a 2D task space. We now fit,
modulate and interpolate periodic control policies. The task space trajectories: x(t) =
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A sin(πt), y(t) = A sin(2πt) are generated and then, translated and rotated to fit the
Puma workspace. In the latent space, we fit CPs on the figure 8 with A = 0.3, modulate
with A = 0.1 and interpolate for A = 0.2.

Results are shown in Fig. 4(bottom) and Table 2. Again, the generated movements
follow the figure 8s in task space. However, movement shapes show larger variation
in latent space, resulting in slightly higher error rates in task space. It is remarkable,
though, that we can generate a continuum of complicated task space movements from
just two examples.

3.3 Human Motion Capture

The simulation experiments are useful to compare our results to known ground truth,
but compared to what we want to achieve the problem setting in these experiments is
still easy with very regular movements in only a few degrees of freedom. A realistic
setting is provided by real human data recorded with motion capture.

Here, we apply our method to 3 different punching motions from the same person.
The 3 movements all have the same style of punch, but differ in the height that the punch
hand (right) is travelling. In particular there is a high, a low and a very low punch (see
Fig. 5, top right). The recorded data has 63 dimensions (60 angles plus the root offset).

Latent Space
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−1

−0.8
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0.2

0.4

0.6

0.8

space reconstruction fitted modulated interpolated
latent − 0.44 ± 0.81 72.75 ± 65.56 −
joint 0.001 ± 0.002 2.78 ± 5.00 351.55 ± 510.42 −
task 0.000 ± 0.000 0.67 ± 1.07 399.42 ± 657.52 −

Fig. 5. Fitted (bold), modulated (thin) and interpolated (dashed) discrete Control Policies for
the human punching motion in latent and end effector space. MIDDLE: Very low punch with
path of right hand for original punch (red triangles) and result from CP modulation (solid line).
BOTTOM: Errors for human movements (nMSE×10−3 together with its standard deviation).
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First, we note that linear dimensionality reduction like PCA does not work for this
data set. For a 2D PCA latent space the reconstruction error of the data in joint space is
very high (nMSE: 4780.6e-3). Even for a 10D latent space this error is still significantly
higher than for the GPLVM with a 2D latent space (86.8e-3 versus 0.001e-3).

Although a standard GPLVM with 2D latent space has virtually no problem recon-
structing the data used to train it, the resulting latent space is not useful for learning
control policies, because spatiotemporal topological relation is not well maintained,
e.g. data points belonging to single punch sequences are broken up and spread discon-
tinuously. Adding a dynamics prior on the data sequences as suggested in [8] improves
results a little bit, but not sufficiently.

We find that a suitable initialisation of the latent space is of key importance. We car-
ried out Laplacian Eigenmaps (LE) on a subset of the movement data that only contains
motion of the punch arm and then trained a GPLVM on the same data, initialising with
the LE result. This gives a good latent space in which topological invariance is main-
tained, but in this form, it did not provide a mapping to the full body; and furthermore,
low and very low punches were switched in order in latent space. We overcome these
problems by recomputing a GPLVM on the full data while using an initialisation based
on the previous result which we bias towards correct order of the movements.

The resulting latent space is shown in Fig. 5(top left). We learn discrete CPs on the
low punch and adapt their start state and goal to fit those of the high and very low
punches. We also interpolate a new punch by taking the average of start state and goal
between low and high punches. Using the position of the right hand (also compare Fig.
5, top right) to define the task space of these movements, we report nMSEs as presented
in Fig. 5(bottom), which produce satisfying results. The learnt punch closely resembles
the original, although it was not possible to modulate the learnt control policies such
that they match the other punches very precisely – especially , for the high punch sce-
nario. However, playing a sequence of the generated movement creates natural looking
punches that have slight offsets in the joint space. This is a consequence of the differ-
ent intrinsic shape of the latent representation of the high punch compared to the low
punch, which also influences the interpolation.

4 Conclusion

We have proposed a new method of generating a family of movements from examples
which is suited for robotic applications with a large number of degrees of freedom.
The method uses nonlinear dimensionality reduction to extract a low-dimensional space
which captures the essence of the task space constraints and then, learns control policies
on the resulting compact representations. New movements are generated by adapting
parameters of the learnt control policies in the low-dimensional space and mapping the
result back to the original joint space. We have demonstrated this approach in simulated
experiments with simple robots and have shown its feasibility for more complicated
movements with human motion capture data. In future work, we will investigate how
to iteratively use feedback from the mapping to bias the dimensionality reduction such
that representations of movements in the resulting latent spaces share stronger shape
similarity and hence, allow better interpolation of new movements.
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Abstract. Evolutionary algorithms have been successfully used to cre-
ate controllers for many animats. However, intuitive fitness functions like
the survival time of the animat, often do not lead to interesting results
because of the bootstrap problem, arguably one of the main challenges
in evolutionary robotics: if all the individuals perform equally poorly,
the evolutionary process cannot start. To overcome this problem, many
authors defined ordered sub-tasks to bootstrap the process, leading to an
incremental evolution scheme. Published methods require a deep knowl-
edge of the underlying structure of the analyzed task, which is often not
available to the experimenter. In this paper, we propose a new incre-
mental scheme based on multi-objective evolution. This process is able
to automatically switch between each sub-task resolution and does not
require to order them. The proposed method has been successfully tested
on the evolution of a neuro-controller for a complex-light seeking simu-
lated robot, involving 8 sub-tasks.

1 Introduction

One of the main goal of animat research is to design controllers so that the
“intelligence” of the animat emerges from its interactions with its environment,
avoiding the biases inducted by human analysis and, hopefully, leading to so-
lutions as smart as the ones found by nature [1]. Evolutionary methods have
been widely used to that aim (see [2] for an overview), succeeding in creating
controllers for complex behaviors like the combination of locomotion, obstacle
avoidance and gradient following in an insect-like robot [3].

However, many early researches in evolutionary robotics showed that reward-
ing the efficiency of the final behavior was not enough to obtain working con-
trollers because of the bootstrap problem: if the objective is so hard that all
the individuals in the first generations perform equally poorly, evolution cannot
start and no functioning controllers can be found. For instance, it has been found
hard to evolve a light-seeking behavior in a complex arena without having before
evolved an obstacle-avoidance reflex [4].

In consequence, researchers emphasized the need to help the evolutionary
process by adding some kind of reward for intermediate steps. More precisely,
we will call an incremental task a task such that:

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 210–219, 2008.
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– no fitness gradient exists on most part of the search space, i.e. the fitness of
all random individuals for the goal task is minimum;

– the experimenter is able to define some simpler sub-tasks whose completion
is useful to the completion of the whole task.

Evolutionary processes specially designed for such tasks will be referred as incre-
mental evolution. A lot of experiments have been reported to be more efficiently
solved with such approaches than with direct evolution [5,6,3,7].

Despite these successes, published incremental evolution rely on some assump-
tions that require an accurate knowledge of the problem to solve and can lead the
evolutionary algorithm to a local extremum. Most of them, for instance, require
to precisely order the different sub-tasks or to determine when to switch from
a sub-task to another one. These biases prevent published methods to scale-up
well to more complex or more open tasks; noticeably, most of them have been
tried with only two or three sub-tasks.

In this article, we propose an original view of incremental evolution based
on multi-objective optimization [8], each sub-task defining an objective. Recent
multi-objective evolutionary algorithms can then be employed to efficiently solve
the bootstrap problem while automatically switching between sub-tasks and not
requiring to order the sub-tasks or even to exploit all of them before solving the
goal task. This work is a milestone on the way towards the generation of complex
behaviors by evolutionary algorithms; nevertheless, to focus ourselves on the
evolutionary process, the benchmark task and the genotype have been chosen as
simple as possible. To that aim, we evolved feed-forward neuro-controllers for a
simulated robot that has to avoid obstacles and turn on a target light, a task
that requires to successively switch on at least four different lights in a predefined
order. The task has been designed to be extensible and easily modifiable.

This paper is organized in four parts. In the first part, we briefly review the
literature concerning incremental evolution. Next, we introduce a way to view
incremental evolution as multi-objective optimization. In the third part, we show
how multi-objective evolutionary algorithms can be used on incremental tasks.
The fourth part describes a simulated robotics experiment using the presented
method. A short discussion concludes this paper.

2 Previous Work

Papers dealing with incremental evolution can be categorized in four main ap-
proaches: staged evolution, environmental complexification, fitness shaping and
behavioral decomposition.

In staged evolution, the main task is split into ordered sub-tasks, each with
a corresponding fitness function. Individuals are first selected using the first
fitness. Once a convergence criterion has been reached for a stage, for instance
when a “good enough” fitness is obtained by the best individual or when the
best fitness doesn’t change for some generations, the experimenter switches to
the next sub-task. This technique has first been successfully employed by Harvey
[5] to evolve a vision-based target location task. Three stages were used, from
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locating a large immobile target to tracking a moving smaller one. Many other
examples of staged evolution can be found in the literature [3,9,10,11,7,12].

Environmental complexification allows to more continuously change the com-
plexity of the task through the tuning of dedicated parameters. Gomez et al. [6]
thus worked on a prey-capture task parameterized with the prey speed and the
delay before starting the pursuit. Ten ordered sub-tasks were thus defined by
specific values of these parameters and their use proved to lead to more efficient
solutions.

In behavioral decomposition, the robot controller is divided into sub-con-
trollers, each one evolved separately to solve a sub-task. The sub-controllers are
then combined together using a second evolutionary process. This approach led
to controllers for a composite behavior where a Lego robot had to push a movable
light into a designated goal area [13]. A variation of this concept has been recently
used to evolve a position controller for an autonomous helicopter [14].

Fitness shaping is sometimes used to help bootstrapping an evolutionary pro-
cess, though it is not often seen as an incremental evolution scheme. The fitness
is defined as an aggregation (a weighted sum or a product) of different evaluation
criteria in order to create a followable fitness gradient. Using this idea, Nolfi et
al. [15] successfully evolved a feed-forward neuro-controller for a robot to locate,
recognize and grasp a target object. The fitness was increased if the individual
was close to the target object, if the target was in front of the robot, if the robot
tried to pick-up the object, if the robot had the object in the gripper and if the
robot released the object outside the area.

3 Incremental Evolution as a Multi-objective
Optimization

While the four previously described approaches allowed the evolution of sub-
stantially complex behaviors, they imply an accurate knowledge of the global
task and of the defined sub-tasks. Staged evolution methods, for instance, imply
a manual switch between the sub-tasks. Such an approach can be represented
in the fitness space by a “L” shape (in 2D, figure 1 (a)): the first sub-task Ts is
optimized first, while the second Tg is not and, after the switch, the performance
on the Ts remains constant – it is at least expected not to decrease either because
a good behavior on Ts is required to solve Tg or because Ts controller is frozen
– while the performance on Tg starts to climb. This method requires to choose
when to trigger the switch: if too early, the first sub-task won’t be completely
solved and if too late, generated solutions might be over-specialized and make
optimizing Tg even more difficult (figure 1 (b)). More generally, viewing incre-
mental tasks using this figure suggests that a trade-off can exist between Tg and
Ts. For instance, a controller could use all the available ressources to obtain an
optimal fitness with regard to Ts, leaving nothing left to solve the goal-task.

The order of the sub-tasks is another important bias of current incremen-
tal methods. Let us consider the sub-tasks a typical rodent should manage to
survive:
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Fig. 1. (a) Staged evolution: a goal task depends on the minimal completion of a
sub-task. The first sub-task is optimized and, at a given generation, the experimenter
changes the fitness to optimize the final task. (b) Typical fitness space for an incremen-
tal task with one sub-task. (1) the first sub-task is optimized; (2) the minimal fitness
required to try the goal task is reached, therefore it is possible to have a non-minimum
fitness for the goal task; a trade-off can exists between the goal-task and the sub-task,
leading to over-specialized individuals.

– walking;
– running;
– avoiding obstacles;
– avoiding predators, implying being able to perceive them and to know an

escape strategy;
– eating, implying to be able to explore its environment and locate the food;
– resting, when necessary;
– finding a sexual partner;
– procreating (final goal).

How to successfully learn all these sub-tasks? All of them share complex de-
pendencies but organizing them in a single incremental learning scheme is a
challenging problem which could have no solution, even for this simplified rodent.

Consequently, a good incremental algorithm should explore all the sub-tasks
and the goal task at the same time, continuing to improve on each tasks at each
moment and trying to switch automatically to other tasks when possible. This
is exactly what multi-objective evolutionary algorithms do if each task is viewed
as an objective.

4 Multi-objective Evolutionary Algorithms

Recent research in evolutionary computation proposed numerous algorithms to
simultaneously optimize several objectives [8]; most of them rely on the concept
of domination and generate the so-called Pareto Front (figure 2):
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Fig. 2. Dominated and non-dominated solutions for a problem for which the two ob-
jectives f1 and f2 must be maximized

Definition 1. A solution x(1) is said to dominate another solution x(2), if both
conditions 1 and 2 are true:

1. the solution x(1) is not worse than x(2) with respect to all objectives;
2. the solution x(1) is strictly better than x(2) with respect to at least one ob-

jective.

The non-dominated set of the entire feasible search space is the globally Pareto-
optimal set (Pareto front).

A typical multi-objective algorithm [8] sorts individuals with respect to domi-
nation. Non-dominated individuals may, for instance, be ranked 1, making them
the most suitable for reproduction. Individuals which are only dominated by
non-dominated ones may be ranked 2, and so on.

Such an algorithm will first try all sub-tasks and the goal-task simultaneously.
If the task is incremental, only a small subset of corresponding fitnesses should
be different from the minimum. As the fitness on other tasks will be almost
equal, the most simple sub-tasks only differentiate individuals and will then be
the support of selection. They will be automatically considered as the first sub-
tasks to solve. Once individuals are able to test their skills on other sub-tasks or
on the goal-task, the algorithm will automatically sort individuals using theses
objectives, maintaining the complete set of optimal trade-offs, from the best
individuals for each sub-task to the best one for the goal-task.

The aggregation of objectives, as used by Nolfi et al. [15], is a simple way to
perform a multi-objective optimization. However, at least three aspects differen-
tiate their approach to the one presented here:

– depending on the shape of the Pareto front, some optimal trade-offs cannot
be found using an aggregation approach [8];

– weights have to be chosen using a time-consuming and often not theoretically
justified trial-and-error approach;

– best individuals on sub-tasks are not kept, making impossible the simultane-
ous exploration of different paths potentially leading to more efficient results;
for instance, an aggregation approach can be trapped in area (3) of figure 1
or lead to over-specialized individuals;
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5 Example: A Complex Light-Seeking Robot

5.1 Light-Seeking Robot

To benchmark the proposed approach on a typical incremental task, we designed
a variant of the light-seeking task which involves eight sub-tasks with complex
dependencies. A simulated wheeled robot is placed in an arena with some ob-
stacles and seven different colored lights (figure 3(a)). Each light is mounted
on a button switch which, when pressed, turns on one or more lights in the
arena. Once a light is on, it remains in the same state during the whole exper-
iment. The main goal is to turn on a particular light. The connection between
lights and switches, a simple explicit dependency between tasks, is to be dis-
covered by the evolutionary algorithm. The only knowledge used to bootstrap
the process is that turning on a light should help to turn on the goal-light. As
we consider separately each light, turning on a particular light is considered a
particular sub-task1. To benchmark future incremental algorithms, the task can
be easily complexified by adding lights or changing the dependencies between
lights.

The underlying structure of this incremental task is depicted on figure 3
(a). The first light turns on two other lights, creating two paths to accom-
plish the goal-task. A part of the population may choose to learn to turn on
lights {0, 1, 2, 3, 6} and another one may learn sequence {0, 4, 5, 6}. This task
can therefore be learned in different ways. Moreover, all robots have to avoid
obstacles. Despite the simplicity of this problem and of the different sub-tasks,
it involves at least five sub-tasks (avoiding obstacles, turn on the good lights

(a) (b)

Fig. 3. (a) Overview of the benchmark task. Seven colored lights and two obstacles are
placed in a arena delimited by four walls. Each light is mounted on a button switch
which turns on some other lights, the light circuit (unknown to the algorithm) being
represented by arrows. The goal-task is to turn on the sixth light. (b) The simulated
robot is equiped with two bumpers and six pairs of binary light sensors, each one
sensing a different light. The controller is a multi-layer perceptron with 14 inputs, 14
hidden nodes and 2 outputs (the speed of the motors).

1 This corresponds to seven sub-tasks, the eighth being obstacle avoidance.
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of the path having the least number of sub-tasks), making it one of the most
complex composite tasks explored with incremental evolution at this time.

The simulated robot (figure 3(b)) is equiped with two bumpers, to avoid
obstacles, and six pairs of light-sensors, each one sensing a different light color.
Light sensors have a 90 degrees field of view and a binary output (1 if the light is
in the field of view, 0 otherwise). Robots are controlled by a simple feed-forward
neural network with 14 inputs, 2 outputs and 14 hidden nodes. Neurons use the
following activation function, based on tanh(x), to easily allow the inhibition of
a neuron in the case of negative inputs:

f(x) =
{

tanh(x) if x > 0
0 otherwise

Cross-over is not used and a Gaussian mutation is applied to weights.
Runs of a direct evolution algorithm designed to minimize the number of time-

steps to turn-on the last light, did not find any working controller, all individuals
obtaining the minimum fitness. An incremental method seems therefore required
to bootstrap the process.

To use the proposed approach, eight objectives are defined. The first one
evaluates the obstacle avoidance skills by rewarding how much the robot moves
during the whole experiment, thus punishing robots blocked by obstacles2:

F0 =
1
T

t=T∑

t=0

√(
x(t) − x(t− 1)

)2 +
(
y(t) − y(t− 1)

)2

where T is the length of an experiment and (x(t), y(t)) the position of the robot
at time-step t. The six remaining objectives are defined as the number of time-
steps since the beginning of the experiment before pressing each switch button.
To avoid over-learning, each objective is the minimal score for three experiments
in which the robot starts from different positions:

Fi = min
n=1,2,3

−ϕ(n, i)
T

where i = 1, 2, ..., 7 is the identifier of the light and ϕ(n, i) denotes the number
of time-steps spent before turning on light i, for experiment n.

We launched 10 evolutionary runs, with a population of 150 individuals and
the multi-objective evolutionary algorithm ε-MOEA [16]. 60 new individuals
were generated at each generation.

5.2 Results

About 300 generations are needed to obtain efficient neuro-controllers able to
reach the sixth light. The best individuals found by evolution are those that
2 In the simplified simulation we used, a robot touching an obstacle is systematically

stopped until it goes backward.
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(a) (b)

Fig. 4. (a) Typical trajectory of an evolved simulated robot. Lights 0, 4, 5 and 6
are successfully turned on. (b) Best fitness obtained for each fitness with regards to
generation. Lights 0, 1 and 4 are first optimized; they are followed by light 5 (gen. 50),
2 (gen. 70), 3 (gen. 130) and 6 (gen 200).

Fig. 5. Typical patterns observed in fitness space. (a) light 4 (y axis) versus light 0
(x-axis); (b) light 5 versus light 0. (c) light 0 versus obstacle avoidance.

used the shortest path, i.e. {0, 4, 5, 6}. They can be found by looking at the best
individuals on the “light 6” criterion. Figure 4(a) depicts a typical trajectory
followed by an evolved robot which uses its sensors to avoid obstacles and to
locate the successive lights. When the last light has been turned on, it draws an
infinite circle around it.

Figure 4(b) shows the best fitness obtained on each sub-task with regards to
the generation number. The successive steps followed by the evolutionary process
are visible: good controllers are obtained in the first generations for lights 0, 1
and 4; a controller able to reach the fifth light is found around generation 50
and the sixth at generation 230. This switch between sub-tasks was automatic
and allowed the process to continue to optimize the first objectives.

Figure 5 shows the explored search space projected on two dimensions. Ana-
lyzing these representations may help in finding the dependencies between the
criteria, but their interpretation must be careful as they also include historical
aspects of the search process3. The triangular shape of light 4 versus light 0
criterion (figure 5 (a)) shows the linear dependency of this criterion on light 0 –
it is an example of part (2) of figure 1(b). Equivalent figures with light n relative
to its predecessor in the path representing the whole task (figure 3(a)) show a
similar structure, although it may be shifted or scaled down. The “L” shape of

3 Actually, these sets are only subsets of the whole search space.
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the graph of light 5 relative to light 0 (figure 5 (b)) may be interpreted in differ-
ent ways. At first glance, it may indicate that a fitness above −0.3 is mandatory
before the search can begin on these criteria. But another interpretation may be
that the search on these criteria may have started late, at a time when the only
remaining individuals were behaving very well on light 0. Anyway, this clearly
shows that the search on this criteria has automatically started when some con-
ditions were met and the main point is that we did not tell the algorithm when
to start or even what these conditions were. Graph of light criteria relative to
obstacle avoidance show a more or less densely populated square (figure 5 (c))
indicating that the two objectives are relatively independent.

6 Discussion and Conclusion

In this paper, we proposed an original method to solve the bootstrap problem
observed in evolutionary robotics. It removes some important biases present in
the previously published methods by requiring less knowledge from the experi-
menter and less constrains the search. The sub-tasks does not have to be ordered
and actually different orders are automatically explored by the evolutionary pro-
cess. Moreover, the system behaves as an automatic switch between the stages
while not stopping to improve already explored sub-tasks.

This method relies on a multi-objective view of incremental evolution which
could lead to powerful future algorithms by exploiting the particular shape of
the fitness space. One of the difficulties for the proposed method to scale up is
the high number of objectives involved. Current multi-objective algorithms are
designed to handle a few objectives (typically up to four) and are not as efficient
in presence of more objectives. However, the particular shape of the fitness space
suggests that the number of dimensions could be reduced during the evolutionary
process, for instance using principal component analysis methods. This kind of
dimension reduction could allow to neglect the evaluation of sub-tasks during
some generations and possibly to reduce the computational cost induced by the
simultaneous evaluation of the sub-tasks. Indeed, in the light-seeking task, an
agent is observed during a certain amount of time and some fitness functions are
derived. Consequently, adding new sub-tasks does not require new evaluations;
but some other problems may require sub-tasks to be evaluated in different
contexts, thus adding a significant computational cost.

The cross-over operator, not used in this work, could benefit from the proposed
method and should be investigated in future work. Since the process maintains
specialists in each sub-task, the cross-over operator could allow the evolutionary
process to combine sub-parts of each specialist to create more efficient indi-
viduals. Such investigations probably requires a modular encoding for neural-
networks, as ModNet [17]. Increasing the complexity of the neural-network dur-
ing evolution also seems to be a key element. All this pleads for considering
both selection algorithms and controller encodings as a whole in future work on
incremental evolution.
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Abstract. The active vision and attention-for-action frameworks pro-
pose that in organisms attention and perception are closely integrated
with action and learning. This work proposes a novel bio-inspired in-
tegrated neural-network architecture that on one side uses attention to
guide and furnish the parameters to action, and on the other side uses
the effects of action to train the task-oriented top-down attention com-
ponents of the system. The architecture is tested both with a simulated
and a real camera-arm robot engaged in a reaching task. The results
highlight the computational opportunities and difficulties deriving from
a close integration of attention, action and learning.

1 Introduction

Consider a primate exposed to a new environment scattered with bushes carrying
red fruits. It might initially look at the bright green foliage and trunks of bushes
popping out of the scene, and try to interact with them without any useful result.
Then it might look at a fruit and then pick and taste it. Now that it understands
that fruits are useful, how can it find more of them? As its gaze often focuses on
the bushes’ foliage, it should learn to look away from them, and below them, as
the fruits of these bushes hang below their leaves. It should also learn to trigger
reaching actions on the basis of the fruits’ sight and to shape actions on the
basis of the gaze direction.

This example shows typical interactions between attention, perception, action
and learning processes taking place in an organism acting in a natural context.
These interactions have often been overlooked by the information-processing
� This research was supported by the EU Projects ICEA, contract no. FP6-IST-
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framework widely used in machine vision, initiated with Marr’s theory of vision
[1]. This framework views attention and vision as processes directed to construct
“objective” detailed general-purpose representations of the environment later
used to guide action and learning [2]. Computationally, building representations
totally detached from the embodiment and the specific needs of the system
tends to produce scene representations containing an overwhelming amount of
non-needed information and hence often computationally heavy or intractable.

The active vision approach [3] introduced action in visual processes to allow a
high-sensitive fovea to scan the scene and perform heavy computations only on
portions of it relevant for the task in hand, similarly to what happens in human
attention [4,5]. Moreover, it proposed to exploit gaze motion to simplify repre-
sentations and learning processes, for example by using “deictic representations”
encoding information with respect to the current state of sensors, or by applying
object or feature recognition processes only to the foveated points [3].

As it emphasizes the importance of action in perception, the active vision per-
spective has been fully embraced by evolutionary robotics [6]. This has proposed
systems that fully integrate actions directed to gather information (epistemic ac-
tions) and actions directed to accomplish the systems’ goals in the environment
(pragmatic actions) [7]. In general, with respect to active vision, evolutionary
algorithms have the advantage of co-evolving complementary fovea movements
and feature detectors [8,9]. Moreover, they are not affected by the perceptual
aliasing problem [10] introduced by the fovea’s partial view of scenes as rein-
forcement learning algorithms are. In this respect, an important feature of the
architecture proposed here is that, while it uses reinforcement learning to ex-
ploit the advantages of on-line adaptation, it ameliorates the aliasing problem
by using a potential action map (PAM) that stores information on past percepts
in the form of potential actions (memory is a typical solution to aliasing).

Interestingly, within psychology, Allport [11] proposed a new perspective on
attention that, in line with the ideas of active vision, claims that attention serves
primarily to guide organisms’ action, for example by directly setting some of its
parameters [12]. Within the modeling literature, Balkenius [13] echoes this view
and specifies the attention-for-action perspective with four basic principles: (1)
inhibition can be used to disengage the focus of attention from the current loca-
tion; (2) attentive (epistemic) actions can be computationally treated as other
(pragmatic) actions; (3) focussing processes can lead to select targets for (prag-
matic) action; (4) gaze direction can be used to produce implicit arguments
for action. These principles not only emphasize that attention and action are
closely coupled, but they also stress that learning principles generally used to
acquire pragmatic actions can also be used to learn attentive actions (principle
(2)). Indeed, in the past several systems have been proposed that, contrary to
processes that detect information on the basis of intrinsic salience of images’ fea-
tures (bottom-up attention; e.g. [14]), exploit reinforcement learning algorithms
to learn to detect task-relevant information (top-down attention; e.g. [15]).

This work proposes a novel neural-network architecture where perception,
attention (bottom-up and top-down), action, and learning are integrated to an
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extent that goes well beyond what is done in existing models. The architecture
is tested both with a simulated and with a real camera-arm robot engaged in a
reaching task. As we shall see, Sect. 2 on methods and Sect. 3 on results show
that the principles of attention-for-action proposed in [13] are fully integrated in
the system, either by design or as features emerging from the learning processes.
The overall value of this research resides not only in the mechanisms that are
proposed to implement the aforementioned integration, but also in the analysis
of the system that shows the computational advantages that derive from it.

2 Methods

This section first overviews the system and then explains in detail its compo-
nents’ functioning. The system (Fig. 1b) integrates two previous models: (1) a
bottom-up and top-down attention model [16]; (2) an arm control model [17].
These models are based on common computational principles: population codes
(here 2D neural maps) to represent sensorimotor information and probability dis-
tributions of variables controlling eye/arm behavior [18,19]; dynamic neural-field
networks to integrate information and select actions through biased competition
mechanisms [20,21]; a progressive developmental of skills of the neural compo-
nents (cf. [17]). These principles were chosen for their biological plausibility.

The simulated/hardware experimental setup is formed by a down-looking we-
bcam set above a robotic arm (Fig. 1a). The arm’s working plane is a CRT
monitor. A host computer grabs the camera images, runs the robot’s controller,
issues motor commands to the arm, and controls the images of the monitor
(task). A moving sub-image (input image) is extracted from the camera image
to simulate eye movements. The input image is used by a periphery map that
implements bottom-up attention. The central part of input image (fovea) is the

(a)

(b)
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Fig. 1. (a) Robotic setup. (b) Model’s architecture. (c) Examples of input images.
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input of reinforcement-learning actor-critic component that learns to predict the
spatial position of the rewarded arm targets with respect to the foveated cues
(top-down attention). A potential action map (PAM) accumulates this evidence
while the fovea explores various cues. A saliency map integrates information
from the periphery map and the PAM to select the next eye movement using a
biased competition. Each fixation point, encoded in a eye posture map, suggests
a potential arm target to a arm posture map: when the eye fixates a location for
long, the arm posture map triggers a related action on the basis of a biased com-
petition. If the reached target is a “fruit”, the system gets rewarded otherwise
it gets slightly punished (energy consumption).

2.1 Robotic Setup and Task

In the following, with the exception of some weight matrices, the bold symbols
of mathematical notations represent column vectors.

Camera. A low cost Spacecam 150 Live webcam (by Trust; see Fig. 1) was used
to acquire visual information from the environment. The webcam grabs ten
RGB images per second with a 240 × 320 pixel definition (24 bit/pixel). The
webcam is set above the robotic arm with its view field covering exactly the
monitor’s screen forming the arm’s working plane. The webcam is connected to
the host computer via a USB port and is interfaced with software built with Java
Multimedia Framework libraries (by SUN). In the tests running in simulation,
the camera is simulated by directly using the task’s monitor images.

Robotic Arm. The robotic arm was built using low cost components (e.g. by
Lynxmotion). The arm (Fig. 1) is composed of a base and 3 segments (upper
arm 15.9cm, forearm 17.5cm, and “hand” 9.5cm). The arm has four degrees of
freedom: two at the shoulder (planar rotation, 15◦− 165◦, and vertical rotation,
20◦ − 140◦), one at the elbow (35◦ − 145◦), and one at the wrist (110◦ − 220◦).
Each joint is powered by one digital servo (by Hitech) with the exception of the
shoulder vertical-rotation joint having two servos. The servos are controlled by
a servo controller SSC32 (by Lynxmotion) connected to the host computer via
a serial port. The simulated version of the arm is a simplified kinematic plant
with segments’ size and degrees of freedom like those of the real arm.

Environment and Task. The horizontal working plane of the arm is a CRT mon-
itor screen (37× 28cm) connected to the host computer. The monitor generates
the images of the task used to test the system. These images are formed by red,
green and blue squares set on the vertexes of a 5 × 5 grid covering the whole
screen. In particular, the images form stylized “trees” (see Fig. 1) with 2-5 green
blocks representing the foliage (100% luminosity), 1-4 blue blocks representing
the trunk (80% luminosity), and 1 red block representing a fruit (80% luminos-
ity). After each reaching action, the system gets a reward of 1 if it touches a
fruit and a punishment of -0.05 otherwise. Saccades are not directly rewarded
or punished. A new tree randomly structured and positioned in the image is
generated after the execution of each reaching action.
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2.2 Attention Control Components

Preprocessing Filters. The 240 × 320 pixel RGB image of the webcam is noisy
and contains reflections, so it is first subtracted by an image grabbed by the
camera with the screen switched off (black image), and then it is filtered into
main-color components. The resulting image in copied into the centre of a bigger
480× 640 pixel black image, and a 240× 320 pixel image is extracted from this
to simulate the system’s input image grabbed by a moving eye.

Periphery Map (Bottom-Up Attention). The 30× 40 periphery map pm is acti-
vated with a grayscale image: first the input image is divided into 30×40 blocks
of 8 × 8 pixels each, then the RGB color values of the pixels of each block are
averaged to obtain a gray value. A more sophisticated bottom-up saliency (e.g.
as in [14]) is not needed as this research focuses on top-down attention.

Actor-Critic Component (Top-Down Attention). The fovea is simulated with an
image f of 2 × 2 RGB pixels taken from the input image centre. This image is
fed into two feedforward neural networks forming a reinforcement-learning actor-
critic architecture [22]. The critic is a network with a linear output unit vt which
learns to evaluate the current state on the basis of the expected future discounted
rewards. The system gets a reward rt after the execution of a reaching action,
and this, together with vt, is used to compute the surprise signal st [22] used to
update both the critic’s weights wc and the actor’s weights Wa. The actor is a
network whose output layer is a vote map vm of 60× 80 sigmoid neurons which
signal to the PAM the possible positions of rewarded targets with respect to the
currently foveated visual cue (γ = 0.9; T is the transpose operator):

vt = wcT f st = (rt + γ vt) − vt−1 vm = g [Waf ] g[x] = 1/(1 + e−x) (1)

The critic is trained on the basis of st, used as error signal, and the input signal f
[22]. The actor is trained with a Hebb rule involving the activation of the saliency
map smt (encoding the last eye displacement, see below) and the input signal f
so as to increase or decrease the probability of doing the same saccadic movement
again on the basis of the surprise signal st [16] (ηc = 10−7, ηa = 10−5):

wc
t+1 = wc

t + ηc st ft Wa
t+1 = Wa

t + ηa st smt • (vmt • (1 − vmt)) fT
t (2)

where • is the entrywise product operator.

Potential Action Map (Top-Down Attention Memory). The PAM pam is formed
by 60 × 80 leaky neurons and accumulates evidence, furnished by the vote map
vm via topological connections, on the possible positions of rewarded targets.
During each saccade the map’s activation is shifted in the direction opposite to
the eye’s motion to maintain eye-centred representations (as it might happen in
real organisms [23]). The PAM is reset each time the tree image from the camera
changes (also this might happen in real organisms [24]).

Saliency Map. The 60 × 80 saliency map sm selects saccade movements on the
basis of the sum of the topological input signals pm and pam. The saccade
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movement is selected by first identifying the unit with the maximum activation
and then by activating the map with a Gaussian population code centred on it
(σ = 1). The eye movement is the winning neurons’ preferred eye displacement
(Δx,Δy). This selection mechanism is a computationally fast approximation of
a biased dynamic competition process as the one reported in [21] (cf. Eq. 3).

2.3 Arm Control Components

Eye Posture Map. This 30 × 40 neuron map encodes the current eye posture as
a Gaussian population code emp (σ = 0.3).

Arm Posture Map. This 40×40 map apm is the output layer of a neural network
pre-trained with a Kohonen algorithm (see below and [17]) and encodes arm
postures in the 2D map space. During the tests reported in Sect. 3, a neural
biased competition [21] takes place in the map (similarly to what happens in
real organisms [20]) in order to select a target for reaching actions when any
neuron achieves a threshold th (th = 0.3; δ = 0.1):

apmt+1 = max
[
(1 − δ)apmt + Wapm lapmt + Wapmepmt, 0

]
(3)

where Wapm l are the weights of lateral close-excitatory far-inhibitory connec-
tions having a Gaussian distribution dependent on the distance between neurons
(see [17] for details), and Wapm are the weights from the eye posture map.

Arm Posture Readout Layer. This is a layer of four sigmoid neurons aprl that
encode the desired arm joint angles issued to the arm real/simulated servos. The
map is activated by the arm posture map through the weights Waprl.

Training. The weights Waprl and Wapm are trained using the simulated arm
to avoid stressing the hardware robot. Training is composed of three succeeding
learning phases based on random movements of the arm (motor babbling). To
avoid redundancy problems during training, the hand segment is kept parallel to
the working plane at a fixed distance from it (see Fig. 1a; see [25] for a version of
the model addressing redundancy issues). In these phases the system (see [17] for
details): (a) performs a vector quantization of postures, within the arm posture
map, on the basis of a Kohonen algorithm; (b) learns the inverse kinematic
mapping (Wapm) between the gaze directions corresponding to the seen hand
(epm) and the corresponding arm posture (apm) with supervised learning; (c)
trains the arm posture readout map (Waprl) with supervised learning.

3 Results

This section analyses the behavior of the system tested in the simulated and
real robot and the functioning of its neural components emerged with learning.
Fig. 2.a shows the reward received by the robot for every reaching action during
learning. After the first reward, the performance of both the simulated and real
robot increases rapidly and soon reaches a near-optimal steady state. Fig. 2.b
shows the average distance between reaching actions’ targets and the τ th sac-
cade’s target executed before such actions during learning. For τ = 1 the distance
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Fig. 2. Learning dynamics during 1000 reaching actions of the simulated and real robot.
(a) Moving average of reward. (b) Moving average of the distance between the targets
of the last five saccades (τ ) and the reaching targets. (c) Moving average of saccades
per reaching action. All moving averages have a 50-step window.

initially increases from 2cm to 4cm and then goes back to 2cm, for τ = 2, 3, 4
the distance goes from 4 − 8cm to 2cm, for τ = 5 the distance decreases from
6 − 8cm to 3cm and then goes to 3 − 4cm. This data indicate that initially
only the last saccade (τ = 1) is related to the reaching target but with learn-
ing the attention-action coordination increases until the last four/five saccades
are focussed on the target. Fig. 2.c shows how the average number of saccades
per reaching action evolves during learning. Initially this number is about 20
but then increases to 50 in correspondence to the maximum learning progress
in reaching (Fig. 2.a), and finally stabilises at about 10. This dynamics is due
to the fact that the system initially tends to trigger reaching actions directed
to bushes’ foliage (which has a high salience) or trunk, then it learns to inhibit
these actions so that eye exploration increases, and finally it learns to anticipate
the position of fruits so that saccades become very efficient in localising fruits
and in triggering correct reaching actions.

This interpretation is corroborated by data reported in Fig. 3 that shows the
20 most frequent sequences of objects foveated by the trained simulated and real
robots in 1000 reaching actions. In both cases, the two most frequent sequences
start with a saccade on foliage followed by 4-5 saccades on fruit that trigger
action: the system has learned to suitably inhibit the high-saliency foliage cues
and to stay on the fruit once found. Other sequences focus only on fruit: these
are the “lucky” cases where the eye is already on the fruit in the new tree image.
Finally, other sequences are those that start with a foliage saccade followed by a
trunk saccade and then a fruit: they indicate that the PAM retains information
on the first “ambiguous” saccade target and integrates it with the information
from the second saccade target, so in part solving the partial observability prob-
lem caused by the limited view of the fovea (see Sect. 1). Note that the most
frequent sequences are quite similar for the simulated and real robot. However,
the number of total sequences in general is higher for the real robot (53) than
for the simulated one (391) due to a higher noise which in the latter case tends
to lead saccades to the background.

Fig. 4 shows the activation of the vote map, the PAM and the saliency map
in a sequence of three saccades targeted respectively to the foliage, trunk and
fruit. While foveating the foliage (or the trunk), the vote map activates as follows
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Fig. 3. Most frequent sequences of targets foveated in 1000 reaching actions by the
simulated (a) and real robot (b), and corresponding frequencies (c).
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Fig. 4. Activation of the vote map (a-c), PAM (d-f), and saliency map (g-i) in a
sequence of three saccades targeted to the foliage (a, d, g), trunk (b, e, h), and fruit
(c, f, i) of the tree of the top graph of Fig. 1.c. White and black dots indicate neurons
activated respectively above and below 0.5 (a-c) or above and below 0 (d-i).

(Fig. 4a-c): (a) a cluster of neurons activates below 0.5 in correspondence to the
whole row of foliage elements (or the column of trunk elements): this biases the
eye to move away from them and constitutes an emergent form of self-tuned
inhibition of return related to visual cues (as in organisms [24]) and not to
spatial locations, as in the hardwired implementations of it of previous models
(e.g. [14,16]); (b) a cluster of neurons activates above 0.5 in correspondence to the
row of elements below the foliage (or left and right to the trunk): this biases the
eye to move there and captures the spatial relations existing between the foliage
(or trunk) and the fruit. While foveating the fruit, the vote map exhibits a high-
contrast Mexican-hat-shaped activation formed by a cluster of neurons activated
above 0.5, surrounded by neurons activated below 0.5, in correspondence to the
centre: this bias the eye to stay on the target. The activations of the PAM
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(Fig. 4d-f) show how this memory plays an important function in integrating
information in time (the system’s performance decreases of 50% without this
memory, see [17]). In particular, Fig. 4e shows that if the system first foveates
the foliage and then, by chance, the trunk it maintains a strong inhibition in
correspondence to the foliage and sums up the bias to go on the fruit (below the
foliage and laterally to the trunk) coming from both the foliage and trunk cues.
Last, the saliency map (Fig. 4g-i) shows how top-down information is suitably
integrated with bottom-up information in order to select the most promising
locations. For example, notice the strong activation in correspondence to the
fruit, laterally to the trunk, in Fig. 4h compared to Fig. 4e.

4 Conclusions and Future Work

This paper presented an architecture for controlling a camera-arm robot that in-
tegrates attention, perception, action and learning well beyond existing models.
The integrated nature of the system allows it to instantiate the four principles of
attention-for-action [13], and this gives the system several interesting properties
and strengths: (1) it leads the system to learn self-tuned object-related inhibi-
tions that allow it to disengage attention from scanned or non-relevant visual
cues: this can be considered as an emergent inhibition-of-return mechanism com-
monly hardwired in attentional systems (e.g. [14,16]); (2) it allows using similar
neural structures and algorithms, such as reinforcement learning, to train both
epistemic and pragmatic actions [13]; (3) it allows selecting the targets of prag-
matic action, and triggering the latter, on the basis of attention processes: this
lead to a strong integration of the decision and parametrisation of actions, as
observed in real organisms’ brains [20]; (4) it allows using the direction of gaze to
furnish an implicit parameter to reaching actions: this simplifies computations
as it allows extracting a simple and clean information for guiding action (the
“where” of targets) from complex visual scenes [11,12]. A further advantage pro-
duced by the integration is that the architecture does not need to be furnished
the representation of “target objects” to which associate a reward signal, as it
usually happens (cf. [8]) in other top-down attention learning systems (e.g., [15]).
In fact. the reward produced by behaviour allows the system to autonomously
build representations of objects that should trigger actions.

Notwithstanding its strengths, the model has various limits: a simplified fea-
ture extraction component, based on simple colour-detection, a simplified bottom-
up attention component, based only on luminosity (see the components used in
[14]), and a hardwired reset of the PAM memory when the scene changes (cf.
[24]). However these limits, which will be tackled in future work, concern the
specific system’s components used here and not its overall architecture.
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Abstract. The information flow along the dorsal visual stream of the
primate brain is being thoroughly studied in neuroscience, and this re-
search is being used in artificial intelligence applications. The knowledge
regarding one of its most critical stages though, the posterior intrapari-
etal area CIP, remains relatively undeveloped. This paper offers new
computational descriptions of the tasks performed by CIP as a funda-
mental relay station between the visual cortex and the visuomotor areas
downstream. Analytical expressions of the transfer functions realized by
surface and axes orientation selective neurons (SOS and AOS) of CIP
are derived and discussed.

1 Introduction

The visual system of human and other primates is composed of two main infor-
mation streams [1]. The ventral stream is devoted to perceptual analysis of the
visual input, such as in recognition, categorization, assessment tasks. The dorsal
stream is instead concerned with providing the subject the ability of interacting
with its environment in a fast, effective and reliable way. In our laboratory, we
are developing a model involving various areas of the dorsal stream and their
interaction with the ventral stream in vision-based grasping actions [2]. The goal
of the project is to validate neuroscience findings through implementation on a
real robotic setup. At the same time, we expect to endow our robotic system
with advanced grasping capabilities typical of primates.

In this paper, we deal with an area of the primate cortex which plays a
fundamental role in the sequence of transformations performed along the dorsal
stream. The caudal intraparietal area, CIP, constitutes the central node of a
spatial analysis process which endows the subject with the ability of interacting
with her/his surrounding proximal environment. Neuroscience studies both on
monkeys and humans have depicted a reasonably clear image of the sort of
processing performed by CIP. At the computational level, though, this area has
been rather neglected compared to its downstream neighbor AIP, more directly
related to grasping actions. The goal of this paper is to fill this gap by providing
a detailed analytical interpretation of CIP tasks which takes into account both
the computational and the neurophysiological point of view. The focus is put
on two kinds of neurons that have been described in the literature, that is,
axis orientation selective and surface orientation selective neurons. We provide
plausible transfer functions for these neurons, and discuss the consequences of
the proposal for neuroscience research and computational implementations.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 230–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 The Dorsal Visual Stream of the Primate Cortex

The basic visual areas of the primate brain, V1 and V2, perform the most funda-
mental processing on the input coming from the retina. They send their output,
consisting of simple but consistent visual features, such as edges, corners, tex-
tures, to visual area V3. This area has orientation-selective cells disposed in
columns of similar disparity tuning properties, and such layout is ideal for sim-
plifying the processing of extracting more complex properties, such as disparity
gradients. Area V3A is the first which belongs exclusively to the dorsal stream,
and it is in charge of computing gradients, thus refining the job of detecting the
pose of visual features began in V3.

Following the dorsal stream, the posterior parietal cortex (PPC) is largely
recognized as the main associative area of our brain dedicated to the coordination
between sensory information and motor response. The intraparietal sulcus (IPS)
separates the superior and inferior lobes of the PPC. Several areas within and
close to the IPS are dedicated to visuomotor transformations [3,4,5].

AIP (anterior intraparietal) is the most anterior zone of the IPS, and is largely
recognized as the area of the primate brain (humans included) dedicated to the
planning and monitoring of grasping actions. In AIP the visuomotor transfor-
mations necessary to map visual stimuli onto hand configurations suitable for
grasping target objects are performed [6].

The posterior lateral part of the IPS (usually called cIPS or CIP, caudal intra-
parietal) is dedicated to 3D shape and orientation processing, and is also active
during visually guided grasping. CIP has a central role in the dorsal stream, as
it connects visual area V3A with grasping area AIP. CIP neurons are strongly
selective for the orientation of visual stimuli, represented in a viewer-centered
way. Exhaustive studies [7,8] showed that selectivity toward disparity based ori-
entation cues is predominant, but many neurons also respond (some exclusively)
to perspective based disparity cues. Indeed, it seems that cue integration for
obtaining better estimates of orientation is performed in this area. This sort of
processing performed by CIP neurons is the logical continuation of the simpler
orientation responsiveness found in V3 and V3A [5,9].

Two main neuronal populations have been distinguished in CIP: surface ori-
entation selective and axis orientation selective neurons. Surface orientation se-
lective (SOS) neurons [10] respond to a 2D shape in different orientations, but
extract the signal of 3D surface orientation from a 2D contour viewed in a linear
perspective: i.e., these neurons interpret the stimuli as the silhouette of a square
plate slanted in depth. Experiments with different proportions of the visual fea-
tures showed that the responsiveness is maximum for “square” shapes, in which
the two major dimensions are similar, whilst elongation in either width or length
inhibits the response. The third, minor dimension seems not affect the response
up to a certain thickness threshold. Above this, a clear decrease in responsiveness
can be noted. We hypothesize that such threshold could represent the graspabil-
ity of the feature, as it appears close to the size of the hand. The second class of
CIP neurons, axis orientation selective (AOS) neurons, represent the 3D orien-
tation of the longitudinal axes of elongated objects [11]. Their response increases
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with decreasing thickness (the two minor dimensions) and with increasing length
(the major dimension), showing a complementarity with SOS neurons. It is not
clear from the provided data if the reduced responsiveness with thicker objects
is only due to the relative proportion between the object dimension or also by
some comparison with the hand size. We rather promote this last possibility, for
consistency with the role of CIP in providing AIP information regarding gras-
pable features. Some AOS neurons are also shape selective, distinguishing for
example between cylinders and square columns of similar length and thickness.
This supports the view that disparity gradients are used in CIP to detect also
the curvature of objects.

Overall, a population of mixed CIP neurons, including different types of SOS
and AOS is able to provide full information about 3D proportion and orientation
of a target shape. It is most likely this sort of information that is forwarded to
AIP, where 3D orientation and shape can be coded as a unique combined feature
and possible grip configurations generated.

3 Modeling the Caudal Intraparietal Sulcus

The research presented in this work is part of a detailed model of the information
flow through the dorsal stream of the primate brain [2]. In the situation to face
a simple object (possibly box-like, or cylindrical) lies on a table, slanted about
a vertical axes. The goal is to generate, using only binocular visual information,
possible grips on the object, emulating as much as possible the data flow connect-
ing V3/V3A - CIP - AIP. In particular, we focus here on the tasks performed by
the caudal intraparietal area, which can be schematized as in Fig. 1. The module
on the left of the image, already developed [12], integrates stereoscopic and per-
spective visual information to estimate distance, orientation and size of simple
3D objects. Its fidelity to the findings described in the neuroscience literature
has been proved through experimental validation on a simulated environment.
The module has also been implemented on a robotic setup to work on real world
situations (submitted research).

The following step (right side of Fig. 1) requires an action-based point of view,
to assess the intermediate level object features with the purpose of evaluating
their suitability for grasping. Orientation, relative and absolute size of the major
axes of the object are thus compared and the response is synthesized in the
SOS and AOS neurons output. The activation of these two kinds of neurons
will depend on the general proportion of the object (two similar dimensions,
a smaller one: prevailing SOS activation; two similar dimensions, a bigger one:

 

Stereoscopic vision 

Perspective vision 

Orientation 

Size 

Position 
 

SOS response 
 
AOS response 
 

Proprioception 

Fig. 1. Elaboration of visual data in the posterior intraparietal sulcus (CIP)
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prevailing AOS activation). As a convention, from now on the three dimensions
will be named a, b and c, where a and b are close in size, and c is the bigger
(AOS) or smaller one (SOS).

3.1 Understanding and Interpreting the Available Data

Despite the recent efforts and encouraging advancements [13], the most impor-
tant insights regarding the nature of 3D object representation by CIP neurons
date back to the second half of the last decade [10,11]. The basic concepts were
clear from the beginning, such as the distinction between SOS and AOS neurons
and their responsiveness trend as a function of an object relative dimensions.
The number and variety of different experiments is nevertheless reduced, and
their characterization remains at most qualitative. Our goal is to analyze such
experiments with modeling purposes, and possibly hazard new interpretation
hypothesis deriving from a pragmatic point of view.

Fig. 2(a) reproduces the response of an AOS neuron to the view of a slanted
elongated object as a function of object width [11]. The authors of the original
study briefly comment on it suggesting that neuronal response and object width
are inversely proportional. As an alternative, we propose a sigmoidal response
function, which fits better with the observed data, as can be observed in Fig. 2(b),
where two differently parameterized sigmoidals are superposed to the data of
Fig. 2(a). Moreover, the sigmoidal is a transfer function very commonly found
in brain mechanisms, especially when some threshold effects have to be taken
into account. Indeed, in our case there is a very important threshold to consider,
that is, the size of the grasping hand.

We suggest that the cut-off value for the sigmoid is the dimension of the
open hand or even better the extension of a comfortable grip. For the monkey
performing the experiment of Fig. 2(a) this value is reasonably around 12-15cm.
Such hypothesis is supported by the fact that many CIP neurons are sensitive
not only to relative object dimensions (and thus shape) but also to its absolute
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Fig. 2. Response of an AOS neuron as a function of object width. Experimental data
(adapted from [11]) and interpolation with sigmoidal functions.
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size. Thus, if the size of a potentially graspable object has to be represented in
the brain, hand size is a very useful and convenient unit of measure to use. In
the next section, we further develop and exploit this principle for defining the
analytic expressions which model the function of SOS and AOS neurons.

Overall, CIP is responsive for all the following features of an object: relative
size of main axes, absolute size, orientation in 3D, local curvature. Studies re-
ported in the literature describe SOS and AOS neurons that are selective only
for width and not for thickness, or only for relative and not for absolute size.
Indeed, just a minority of CIP neurons are selective for all the features at the
same time, but globally, at a population level, all relevant information regarding
object shape in relation to potential grasping actions is processed by the poste-
rior intraparietal area [5]. The transfer functions we propose take into account
dimensional aspects at a neural population level, leaving aside for the moment
orientation and curvature.

3.2 SOS Neurons Transfer Function

As a general principle, SOS neurons respond preferentially when two dimen-
sions of the object are similar, while the third is sensibly smaller: a > b � c.
Experiments performed varying the width and the thickness of the object gave
the results reproduced in Fig. 3 [10]. These graphs and the comments of the
authors, together with the principles previously introduced, allowed us to define
a transfer function for modeling the behavior of a population of SOS neurons.
The transfer function we propose takes into account three main aspects repre-
sented by three penalty, or inhibition terms. In a hypothetical ideal situation,
all inhibition terms would be zero and activation maximal.

We call the first component of the transfer function Is, symmetry inhibition
term. It takes into account the difference between the two major dimensions of
the object a and b: responsiveness is maximal, and inhibition minimal, for equal
major axes. Asymmetrical situations are given higher penalties. The value of Is
is 0 when the major dimensions are equal, and increases with their difference:

Is =
(
a− b
a+ b

)ks

(1)

It can be noticed how, if the constant ks is bigger than 1, Is grows more than
proportionally with respect to the difference between a and b. Indeed, this seems
to be the case, as suggested by the single-cell studies. The exact value of ks can
be deduced only experimentally, and is not necessarily stable across conditions.

The second term considers the relation between the minor dimension c and the
major ones a and b. It is called If , flatness inhibition term, and it just increases
with the thickness of the object:

If =
c

a+ b
(2)

The two previous terms are independent from the absolute size of the object.
As discussed in the previous section, it is though likely that the hand size is
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Fig. 3. Response of an SOS neuron as a function of object width (average of two major
sizes response, dotted lines) and thickness. Experimental data adapted from [10].

playing an important role in determining the global responsiveness of CIP to a
given target object. We thus introduced Ig, the graspability inhibition term. As
anticipated, it is expressed as a sigmoidal function. Ig decreases when increasing
the graspable dimension c, and its symmetry point is the limit of a comfortable
hand opening, called H :

Ig = σ(c,H) =
1

1 + e−kg(c−H)
(3)

Constant kg affects in this case the non-linearity of the equation: the larger kg,
the steepest the slope of the sigmoid function, and thus the importance of hand
size H .

The global response RSOS of a population of SOS neurons is thus estimated
detracting the inhibitory quantities, appropriately weighted, from the theoretical
100% activation:

RSOS = 1− ws ∗ Is − wf ∗ If − wg ∗ Ig (4)

The given equation is still undetermined, as the two parameters ks and kg and
the three weights w have not been assigned any value yet. Starting with the
symmetry term alone, we used least squares fitting to compute the value of ks

and ws that best fits (1) to the data corresponding to Fig. 3(a). This gave us
ks = 1.948, and ws = 1.059. It looks reasonable to simplify setting ks = 2 and
ws = 1. In this way, Is is the square of the fraction (a− b)/(a+ b) and its weight
can be omitted. Similarly, we fitted (3) to the data of Fig. 3(b) and obtained
0.042 for the estimation of kg and 0.458 for wg. With a little approximation,
kg = 0.04 and wg = 0.5. Finally, the only remaining coefficient wf was estimated
through least squares fitting of (2) to the data of Fig. 3(b) (taking into account
the contribution of (3)). The final result was wf = 0.030. After substituting all
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Fig. 4. Response of an SOS neuron as a function of object width and thickness. Sim-
ulated data obtained with (5).

these values in the corresponding formulas, the response of (4) remains more
explicitely defined as:

RSOS = 1−
(
a− b
a+ b

)2

− 0.03
c

a+ b
− 0.5

1
1 + e−0.04(c−H)

(5)

We calculated the global SOS response according to 5, as a function of object
width and thickness. The results depicted in Fig. 4 show how the proposed model,
properly parameterized, nicely fits to the experimental data (H = 150mm).

3.3 AOS Neurons Transfer Function

Axis orientation selective (AOS) neurons activate when one of the three dimen-
sions of the object is quite larger than the other two, which are closer in size:
c� a > b. Compared to SOS, less numerical results are though available in the
literature, and the main source of information is Fig. 2(a) with the description
of the corresponding experiments [11].

SOS and AOS neurons are intermixed in CIP, and it is thus plausible to
assume that their response functions are similar. We thus decided to compose
the hypothetical transfer function of AOS neurons starting from the same three
inhibition terms introduced above.

AOS symmetry inhibition term is equal to 0 when the two similar dimensions
of the object a and b are equal, and increases proportionally with their difference,
exactly as in (1):

Is =
(
a− b
a+ b

)ks

(6)

No experiments explicitly design to verify the effect of differences between the
two minor dimensions have been carried out for AOS neurons. This effect is
probably not very strong, but it can be reasonably assumed that a strong asym-
metry would indeed affect the perception of the elongated object. Such reduced
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influence of the fraction (a − b)/(a + b) on the total response can be obtained
with a smaller constant ks.

Similarly to (2), the next term compares the major and minor dimensions
of the object. This time, we call it length inhibition term, as it decreases with
increasing the major dimension c of the object:

Il =
a

c
(7)

The graspable dimension, a in this case, is again the numerator of the fraction,
as was c in (2). In this case the numerator could also be (a+ b)/2, but if a and
b are quite similar this would likely be a pointless calculation.

The graspability inhibition term is again a sigmoidal function decreasing with
the increasing of the minor dimension a, having as symmetry point the limit of
a comfortable hand opening H .

Ig = σ(a,H) =
1

1 + e−kg(a−H)
(8)

Again, the activation of a population of AOS neurons is estimated detracting
the inhibition quantities from the theoretical 100% activation:

RAOS = 1− ws ∗ Is − wl ∗ Il − wg ∗ Ig (9)

Due to the limited availability of data, a bigger extrapolation effort is needed
in the AOS case to estimate appropriate values for parameters and coefficients.
The case of the symmetry term is the most critical, as there is no published
numerical data which can help in determining the values of ks and ws. This
second coefficient can be set to the same value as for SOS neurons, ws = 1,
whilst ks should be assigned a value such that the influence of the term on the
overall response is reduced with respect to the SOS case. The easiest solution,
but certainly no the only possible one, is to set ks = 1, and leave only the fraction
component. Response would thus linearly increase when reducing the difference
between a and b.

Regarding graspability, there are no reasons to believe that parameter kg and
weight wg should be much different from the SOS case. Least squares fitting
of (8) to the data of Fig. 2(a) gives values included in [0.02, 0.05] for kg and in
[0.5, 0.8] for wg, depending on the initial conditions. It seems thus reasonable,
for symmetry and ecological reasons, to set kg = 0.04 and wg = 0.5, as in (5).
Sakata and colleagues [11] state that: “discharge rate of the AOS neurons in-
creased monotonically with increasing length of the stimulus”. The authors did
not provide further information on this issue, but this comment describes how
to generate additional data which could help us in fitting our functions. We thus
prepared a small dataset of 6 points in which response linearly increases with
c. We used the newly generated dataset to fit (7) and thus set the value of wl.
We obtained values between 0.2 and 1 using different graspable sizes of a. There
is no reason why the value of wl should not changed dynamically, but for the
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Fig. 5. Response of an AOS neurons as a function of object width and length. Simulated
data obtained with (10).

moment we chose an intermediate value of wl = 0.374, obtained for a = 80. The
overall formula for AOS response is thus defined as:

RAOS = 1− a− b
a+ b

− 0.37
a

c
− 0.5

1
1 + e−0.04(a−H)

(10)

The behavior of (10) with changing thickness and length of the object is
shown in Fig. 5 (H = 150mm). Fig. 5(a) tries to reproduce the effect depicted in
Fig. 2(a), whilst Fig. 5(b) shows how the response grows when increasing c.
Again, the effects described in the neurosciense literature are well reproduced.

4 Discussion and Future Developments

The model we put forth offers some solutions to the problem of identifying the
transfer functions of the different areas of the dorsal stream, but opens at least
as many questions.

More experiments are needed to validate the proposal. The actual importance
of hand size on SOS and AOS activation should be explicitly analyzed, through
experimental protocols designed to distinguish the effect of relative and absolute
size of features. For example, no experiments are described in the CIP literature
regarding non graspable (or strangely shaped) objects, and these are definitely
required at this point. Similarly, there is the need to disambiguate the influence
of shape and size on neuronal response. This can be done changing gradually the
proportion and size of objects, and analyzing the response as a function of only
one driving variable at a time. It is very likely that the equations we propose
will need to be updated and suited to the new findings, but they constitute a
helpful tool for orienting the future studies on the subject.

The second development regards the transformation from object description
to hand configuration. This is performed in AIP, and various studies can help in
defining what sort of operations are done on the data coming from CIP in order
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to generate suitable hand configurations. Taking as a reference the responsiveness
patterns of AIP neurons described by Murata and colleagues [6], a preliminary
study we have performed suggests that visuomotor AIP neurons could elaborate
a simple linear combination of SOS and AOS activation. Moreover, although
hand shape is strongly dependent on hand size, it is not at all unlikely that
flexion of proximal phalanges is more associated to SOS activation (flat objects,
opposing grips), whilst AOS activation would affect more the distal phalanges
(elongated objects, involving grips).
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Abstract. The Lateral Superior Olive (LSO) codes for interaural inten-
sity difference (IID), a cue used for sound localization. Between birth and
maturation, the LSO undergoes plasticity driven by input neurons activ-
ity. During this developmental phase, a number of inputs are pruned out
leading to a refinement of the frequency tuning. The goal of this paper
is to show that, using a physiologically plausible network architecture
and neuronal model, the activity dependent plasticity of the LSO can be
modeled using Spike-Timing Dependent Plasticity (STDP). In particu-
lar, we show that the time properties of STDP coupled with the fact that
the frequency axis in the LSO can be considered as a delay axis leads
to the observed tonotopical map refinement. The response of both the
individual neurons as well as population are shown to be in accordance
with data taken from physiological analysis.

1 Introduction

It is believed that mammals use predominantly Interaural Intensity Differences
(IID) to determine the azimuth of an acoustic target [1,2]. Due to the shadowing
effects of the head and the pinna, the intensity perceived by the ear ipsilateral to
the sound will be higher than the one on the contralateral side. This shadowing
effect changes along with the sound source position allowing the IID to code for
the latter.

In the Lateral Superior Olive (LSO), the neurons show a firing rate dependent
on IID [3] by integrating excitatory inputs from the ipsilateral ear and inhibitory
inputs from the contralateral one. The rate is maximum for IID values corre-
sponding with the sound coming from the ipsilateral side and decreases as the
sound becomes more centered to reach zero at a particular IID value. Neuro-
physiological experiments on bats [3] have shown that response of the neurons
in the LSO to transient stimuli (short sounds) can be explained by a latency hy-
pothesis: the relative arrival times of the inputs from the two ears differ among
cells.

Before it reaches maturity, activity-driven synaptic plasticity shapes the LSO
network [1,4]. This plasticity, which involves the strenghtening of certain input
synapses and the pruning of others, is driven by the activity of the input neu-
rons. The decrease in the number of input synapses leads to a refinement of the

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 240–249, 2008.
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frequency tuning as the inputs come from a more restricted area of the tonotopic
map.

Else where we have shown [5] that individual LSO neurons can be tuned to
particular IID’s using STDP by presenting teacher stimuli from a fixed azimuth.
This paper extends this concept by considering population learning with teacher
stimuli taken from a gaussian distribution centered around azimuth zero. The
STDP based learning mechanism described here could be used to implement
developmental systems [12] that allow real robots to learn, in a bottom-up way,
models of their own sensory systems.

We choose an FM-bat, the Eptesicus fuscus [2], as case-study because its
received stimulus is mainly transient and thus the response can be explained
by a pure latency hypothesis. However, most of the parameters of our model
are taken from neurophysiological studies of gerbils and rats for the LSO and
of guinnea pigs for the peripheral system. The assumption, that those data
can be used to model the bat auditory system is consistent with the numerous
similarities encountered in the development of this part of the auditory system
among mammals.

2 The Lateral Superior Olive

2.1 Mature LSO Response Mechanisms

Most of the LSO neurons receive their excitatory inputs from the ipsilateral ear
through the cochlear nucleus (CN) and inhibitory inputs from the contralateral
ear. The contralateral pathway passes first through the contralateral CN and
then through the ipsilateral Medial Nucleus of the Trapezoid Body (MNTB)
which finally projects to the LSO. The different connections can be seen in
Fig.1.

Neurons in the LSO have firing behaviours which depend on IID. By con-
vention we express the IID as the difference between ipsilateral intensity and
contralateral intensity. As shown in [3], every neuron in a LSO population has
a different IID-firing rate curve but most of them have the same sigmoid shape

contralateral ear ipsilateral ear

cochlea

CNAN
MNTB

LSO

cochlea

CN

AN

excitatory

inhibitory

Fig. 1. Auditory pathway until the LSO. AN: Auditory Nerve, CN: Cochlear Nucleus,
MNTB: Medial Nucleus of the Trapezoidal Body, LSO: Lateral Superior Olive.
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Fig. 2. (a): Firing response of different LSO neurons when the IID is varied. (b): Mech-
anisms explaining the firing rate curve of an LSO neuron with complete inhibition at
0dB IID (adapted from[3]). (c):Histogram of IID of complete inhibition of a population
of 50 LSO neurons (adapted from[3]).

shifted along the abscissa as sketched in Fig.2a. A standard response feature al-
lowing the characterisation of these IID-firing rate curves is the IID of Complete
Inhibition (IIDCI). IIDCI denotes the IID value for which the neuron passes
from a firing to a completely silent state.

The response of a population of LSO neurons is presented in Fig.2c as the
histogram of the IIDCI of 50 neurons. From these results it can be concluded
that the population is mostly sensitive to IIDs around zero ranging from 20dB
(excitatory ear more intense) to -40dB (inhibitory ear more intense). This range
of IID selectivities corresponds well with the range of IIDs that this species
would normally encounter in the free field [3].

For the LSO cells considered in the present analysis, the IID-firing rate curve
can be explained by the so-called latency hypothesis [3]. This hypothesis is based
on two features of the input spike trains: i. the relative arrival times of the
inputs from the two ears differ among LSO cells, and ii. changes in the intensity
of the stimuli at the ear shift the latencies of the inputs [7]. For example, as
shown in Fig.2b, if, for a particular LSO cell, the contralateral input arrives
after the ipsilateral input when presented with identical stimuli at both ears,
the contralateral intensity must be increased to achieve coincidence.

2.2 LSO Development

The properties of the mature LSO and of its inputs are not yet present at birth.
We take as starting point of our learning model the first postnatal day (P1).
At this time the LSO is already innervated by its inputs thanks to molecular
tracers [4] and there is already a good matching of frequency selectivity between
ipsilateral and contralateral inputs [1].
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Between birth and LSO maturity, the ipsilateral and contralateral input path-
ways are refined by the pruning of the afferent axon terminals of CN and MNTB
neurons within the LSO. The spread of the inputs over the frequency axis de-
creases leading to a tonotopical refinement. The morphological remodeling of
these pathways seems to be activity dependent, because it is prevented by re-
ducing neural activity of the inputs [4]. The amplitude of the post-synaptic
potential due to an individual synapse changes during development [1] suggest-
ing that the plasticity can be modeled as a change in the synaptic efficiencies or
weights.

This evidence suggests that a learning algorithm using neural activity as driver
could be feasible. Due to the immaturity of the peripheral system, the initial
input available to the LSO is spontaneous activity (noise) until the auditory
onset (P12 for the gerbil). After hearing onset, the inputs have mature temporal
properties, thus reflecting the cues present in the acoustic stimuli.

3 Models

The peripheral auditory system model takes as input an acoustic signal and
gives as output a stream of spikes in a collection of Auditory Nerve (AN) fibers.
The basilar membrane, the inner hair cells and the spike generation in the AN
are modeled as in [8]. This model, which is based on the guinea pig data, is
applied to the bat peripheral auditory system by changing the parameters of the
filterbank to values known to apply for bats .

The AN fibers project to neurons in the Cochlear Nucleus (CN). We model CN
neurons using single-variable Leaky Integrate and Fire (LIF) neurons. We chose
the membrane time constant so that the modeled neurons behave as coincidence
detectors [9]. This peripheral system model yields a intensity-dependent latency
as shown in Fig.3.

The LSO neurons are modeled as conductance based neurons, taking into
account the synapses but not the ion channels. This simple model is precise
enough as we use transient stimuli and thus need not model the steady-state
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Fig. 3. Intensity-dependent mean output latency function (length error bars is equal
to 2σ) of a modeled CN neuron
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behaviour of those neurons. The membrane voltage Vm follows the differential
equation

Cm(t)
dVm(t)
dt

= −Vm(t)− Em

Rm(t)
−

Nipsi∑

i=1

gipsi
i (t)

(
Vm(t)− Eipsi(i)

rev (t)
)

−
Ncontra∑

i=1

gcontra
i (t)

(
Vm(t)− Econtra(i)

rev (t)
)

(1)

where the synaptic conductance gi(t) is given by

gi(t) = wi(t) exp
(−(t− tini − di)/τi

)
u(t− tini − di) (2)

u(t) is the step function. Cm is the membrane capacitance, Rm is the membrane
resistance. The membrane time constant is τm = RmCm. Em =55mV is the
membrane resting potential. Nipsi is the number of ipsilateral inputs. Ncontra is
the number of contralateral inputs. Erev is the reversal potential of a synapse.
wi is the weight of the synapse i and di the corresponding synaptic delay. tini
is the arrival time of an input neuron spike at the synapse i. τi is the synaptic
time constant, and is computed using the value of maximum duration of the
corresponding synapse (see Fig.4b).

Output LSO spikes are formal events characterized by a firing time tout. tout is
defined by the time when Vm crosses a threshold voltage (Vthreshold = −45mV )
coming from lower values. Immediately after tout, the potential is reset to a new
value Vreset = −60mV and the neuron cannot fire for a refractory period of
0.75ms.

Some neuronal parameters also change over time independently of activity to
reach maturation after a certain period [4]. Of great importance for us, using time
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Fig. 4. (a): LSO postsynaptic potentials at three different developmental stages: the
temporal precision increases over time. (b): LSO neurons parameters used in the sim-
ulation [4]. Durationmax is the maximum duration of an PSP. The other parameters
are explained in the text.
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as principal cue, is the temporal precision of the neurons and synapses. Indeed,
both the time constant of the membrane and the time constant of the input
synapses decrease during development. This leads to a more precisely defined
spike time by increasing the slope of the rising edge of a PSP and by shortening
its duration. In Fig.4a, we can see an excitatory PSP (EPSP) of an LSO neuron
at different stages of development.

The contralateral connections also change properties during development. In
the case of the rat, from P1 to P4, the contralateral side sends excitatory inputs
to the LSO whereas at P8 this pathway is entirely inhibitory [4]. We model
the switch from excitatory to inhibitory of the glycinergic synapses by changing
over time their reverse potential, being above the membrane resting potential
(-20mV) when excitatory and under the membrane resting potential (-70mV)
when inhibitory [4].

The prelearning LSO network consists of 40 LSO neurons fully connected with
50 CN neurons and 50 MNTB neurons (Fig.5). The input neurons are uniformly
distributed over the frequency axis between 40kHz and 60kHz. This range does
not span the entire frequency range of interest to the bat in order to take into
account the gross tonotopical convergence already present at birth.

The input synapses differ systematically in their delay. Indeed, the finite speed
of the traveling wave on the BM causes delays in the displacement onset of the
latter[6]. In our model, the response onset occurs after a delay of 2ms for the
highest frequency increasing linearly to reach 8ms for the lowest frequency. A
random term drawn from a normal distribution centered around zero with stan-
dard deviation of 0.5ms (N(0, 0.5)) is added to take into account synaptic delay
differences due to, for example, differences between nerve fibers in conductance,
length or diameter. The synaptic delay di (see Eq.2) of an individual synapse of
an LSO neuron having center frequency at f [kHz] is then

di = −0.3(f − 40) + 8 +N(0, 0.5) [ms] (3)
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4 Learning

During development, the contralateral inputs become inhibitory but are still
plastic. Applying STDP to training inhibitory networks is not straightforward.
STDP follows a modified Hebb’s rule, such that weights are increased if the
activity between pre- and postsynaptic neurons is correlated and the weights are
decreased if this activity is uncorrelated. Unlike excitatory synapses, the activity
of an inhibitory presynaptic neuron is negatively correlated with the activity of
its postsynaptic partner. We propose a modified learning window to take this
into account.

The learning process is as follows: starting from an initial value, the synaptic
weights wi(t) are updated at the end of every learning period TL (20ms) chosen
to contain the interval between stimulus onset and the last LSO output spike
elicited by this stimulus. The learning rule we used for the modification of the
synaptic weights w±

i of an LSO neuron consists of three parts [10]: (1) the arrival
of an input spike from a synapse i changes wi by a certain amount cin, (2) when
an output spike is triggered, all the weights change by a certain amount cout

and (3) time differences between all pairs of input and output spikes influence a
third change of weights:

Δw±
i = η±

⎡

⎣
′∑

tin
i

c±in +

′∑

tout

c±out +

′∑

tin
i ,tout

W±(tini − tout)

⎤

⎦ . (4)

The ± sign denotes excitatory and inhibitory synapses. η± is the learning
rate. η, which can be seen as the efficiency of the plasticity, decreases linearly
with time to reach zero at maturation.The prime indicates that only firing times
tini and tout in the time interval [t, t+ TL] are to be taken into account.

To avoid unlimited growth we impose an upper and lower bound on the
weights: w±

i ∈ [0, wmax]. wmax is set to 1.5e-8 for the ipsilateral inputs and
to 6e-8 for the contralateral ones. The weights wi are initialized randomly from
normal distributions:N(1e−8, 0.2e−8) for the ipsilateral one andN(3e−8, 0.8e−8)
for the contralateral one.

A synaptic change due to the co-occurence of an input and an output spike
takes place if presynaptic spike arrival time and postsynaptic firing time both fall
within some window. The window W used to train excitatory synapses (Fig.6b)
has the same formulation as in [5]. The window used for the inhibitory synapses
W−(Fig.6b) is a mirrored version of the one used for the excitatory synapses W+

which in addition is shifted towards a positive time offset s∗−. Mirroring guar-
antees anti-correlation between pre- and postsynaptic activity after the learning.
This way, inhibitory input neurons that have fired before an output spike will
have their synaptic weights decreased.

The period between P1 and P21 is divided in 10000 time steps. At every time
step, a stimulus is presented to our system. To take into account the periph-
eral system development, the input response latency is taken initialy uniformly
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distributed between 2ms and 8ms for each ear. This interval decreases linearly
to reach at P10 the randomness encountered in the mature peripheral system
(Fig.3). After P10, the spike trains are elicited by simulated acoustic stimuli us-
ing the mature peripheral system model presented before. The acoustic stimuli
are downward FM-sweeps from 80kHz to 20kHz of 2ms. The sound intensity
of an individual stimulus is taken randomly between 50dB and 80dB (uniform
distribution) and the azimuth of an individual sound stimulus is drawn from a
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normal distribution N(0, 10). Before passing through the inner ear model, the
sound is first processed by a Head Related Transfer Function (HRTF) measured
on a big brown bat [2].

Next, the trained networks are presented with stimuli whose IID’s range from
-30dB to +15dB (with ipsilateral intensity kept constant) and the spike count
response is computed (Fig.6a). Note that the resulting responses of individual
modeled LSO neurons have the same shapes as the one measured in neurophysi-
ological experiments (see Fig.2). In Fig.6b, the distribution of the input neurons
along the frequency axis is shown before and after learning for one individual
LSO neuron.

The population response characteristics, plotted as the histogram of IIDCI ’s,
is shown in Fig.7a. The mean IIDCI of the population is 0.8dB, not far from
the mean of the distribution of the teaching stimuli. This shows that experience
shapes the mature population reponse. Indeed, if we vary the mean of the teach-
ing stimuli distribution, the population mean response changes as well (Fig.7b).

5 Conclusion

Whereas in our pre-learning architecture the inputs span the entire considered
frequency band, after learning, the tonotopical connectivity is refined corre-
sponding with what is observed in the mature LSO system. Moreover, experi-
ence, through the position of the teacher stimuli, shapes the resulting population
response, i.e. the system adapts to its environment.

Differently from the measured tonotopical map [1], however, the learned one
here does not always results in a correspondence between the center frequency
of ipsilateral input and contralateral input as can be seen from the difference
in center frequencies of the inputs (Fig.7). To explain this result, we note that
our model is based on a pure latency hypothesis. Hence, the only way to get
IIDCI ’s different from zero is to have inputs from the two ears arriving at differ-
ent times. Moreover, in our model the only systematic delay difference between
inputs is due to the finite propagation time along the basilar membrane. Con-
sequently, to have different delays between ipsilateral and contralateral inputs,
an LSO neuron has to receive inputs from different frequency ranges from both
sides.

This discrepancy could be remedied by replacing the pure latency hypoth-
esis with a weak latency hypothesis [11], i.e. also modelling the difference in
thresholds among input neurons, would result in neurons having non-zero IIDCI

but still a correspondence between the frequency spread of ipsilateral input and
contralateral input. It would therefore restrict the number of neurons in the pop-
ulation not having correspondence between frequency spread from both sides.

Acknowledgments. This work is sponsored by the EU as part of the CILIA
project. The authors would like to thank A. Murat and C. Moss for having made
available their Big Brown bat HRTF measurements.
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Abstract. We have developed a new reinforcement learning (RL) tech-
nique called Bayesian-discrimination-function-based reinforcement learn-
ing (BRL). BRL is unique, in that it does not have state and action spaces
designed by a human designer, but adaptively segments them through
the learning process. Compared to other standard RL algorithms, BRL
has been proven to be more effective in handling problems encountered
by multi-robot systems (MRS), which operate in a learning environment
that is naturally dynamic. Furthermore, we have developed an extended
form of BRL in order to improve the learning efficiency. Instead of gen-
erating a random action when a robot functioning within the framework
of the standard BRL encounters an unknown situation, the extended
BRL generates an action determined by linear interpolation among the
rules that have high similarity to the current sensory input. In this study,
we investigate the robustness of the extended BRL through further ex-
periments. In both physical experiments and computer simulations, the
extended BRL shows higher robustness and relearning ability against an
environmental change as compared to the standard BRL.

Keywords: Multi-Robot System, Reinforcement Learning, Autonomous
Specialization, Action Search.

1 Introduction

A robust instance-based reinforcement learning (RL) approach for controlling
autonomous multi-robot systems (MRS) is introduced in this paper. Although
RL has been proven to be an effective approach for behavior acquisition for an
autonomous robot, it generates considerably sensitive results for the segmenta-
tion of the state and action spaces. This problem can yield severe results with
increase in the complexity of the system. When segmentation is inappropri-
ate, RL often fails. Even if RL obtains successful results, the achieved behavior
might not be sufficiently robust. In conventional RL, human designers segment
the state and action spaces by using implicit knowledge based on their personal
experience, because there are no guidelines for segmenting the state and action
spaces.
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Two main approaches for solving the abovementioned problem and for learn-
ing in a continuous space have been discussed. One of the methods applies
function-approximation techniques such as artificial neural networks to the Q-
function. Sutton [1] used CMAC and Morimoto and Doya [2] used Gaussian soft-
max basis functions for function approximation. Lin represented the Q-function
by using multi-layer neural networks called Q-net [3]. However, these techniques
have the inherent difficulty that a human designer must properly design their
neural networks before executing RL. The other method involves the adaptive
segmentation of the continuous state space according to the robots’ experiences.
Asada et al. proposed a state clustering method based on the Mahalanobis dis-
tance [4]. Takahashi et al. used the nearest-neighbor method [5]. However, these
methods generally require large learning costs for tasks such as the continuous
update of data classifications every time new data arrives.

Our research group has proposed an instance-based RL method called the con-
tinuous space classifier generator (CSCG), which proves to be effective for behav-
ior acquisition [6]. We have also developed a second instance-based RL method
called Bayesian-discrimination-function-based reinforcement learning (BRL) [7].
Our preliminary experiments proved that BRL, by means of adaptive segmen-
tation of state and action spaces, exhibits better performance as compared to
CSCG.

BRL has an extended form that accelerates the learning speed [8]. Our focal
point for the extension is the process of action searching. In a standard BRL, a
robot performs a random action and stores an input-output pair as a new rule
when it encounters a new situation. This random action sometimes produces
one novel situation after another, which results in unstable behavior. In order to
overcome this problem, we added a function that performs an action on the basis
of acquired experiences. Our previous study demonstrated that MRS that employ
the extended BRL learn behaviors faster as compared to those that employ the
standard BRL. In this study, we conduct further experiments in which a robot
in an MRS is initialized after successful learning, and thus we investigate the
robustness and relearning ability of the extended BRL.

The remainder of this paper is organized as follows. The target problem is
introduced in Section 2. Our design concept and the controller details are ex-
plained in Section 3. The results of our experiments are provided in Section 4.
The conclusions are provided in Section 5.

2 Task: Cooperative Carrying Problem

Our target problem is a simple MRS composed of three autonomous robots, as
shown in Fig. 1. This problem is called the cooperative carrying problem (CCP),
and it involves requiring the MRS to carry a triangular board from the start
position to the goal position. A robot is connected to the different corners of the
load so that it can rotate freely. A potentiometer measures the angle between
the load and the robot’s direction θ. A robot can perceive the potentiometer
measurements of the other robots as well as its own. All three robots have
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Fig. 1. Cooperative carrying problem

the same specifications; each robot possesses two distance sensors d and three
light sensors l. The larger the value of d / l, the shorter is the distance to an
obstacle or a light source. The resolutions of the distance sensor, light sensor,
and potentiometer are 350, 400, and 100, respectively. Each robot possesses two
motors for rotating two omnidirectional wheels. The resolution of the motor
signal is 16. A wheel provides a powered drive along the direction in which it
points and a passive coasting along an orthogonal direction, simultaneously.

The difficulties involved in executing this task can be summarized as follows:

– The robots have to cooperate with each other to move around.
– They begin with no predefined behavior rule sets or roles.
– They have no explicit communication functions.
– They cannot perceive the other robots through the distance sensors because

the sensors do not have sufficient range.
– Each robot can perceive the goal (the location of the light source) only when

the light is within the range of its light sensors.
– Passive coasting of the omnidirectional wheels causes a dynamic and uncer-

tain state transition.

3 APPROACH

3.1 BRL: RL in Continuous Learning Space

Our approach, called BRL, adaptively updates classifications on the basis of in-
terval estimation, only when such an update is required. In BRL, the state space
is covered by multivariate normal distributions, each of which represents a rule
cluster, Ci. A set of production rules is defined by Bayesian discrimination. This
method can assign an input, x, to the cluster, Ci, which has the largest posterior
probability, maxPr(Ci|x). Here, Pr(Ci|x) indicates the probability (calculated
by Bayes’ formula) that a cluster Ci holds the observed input x. Therefore,
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by using this technique, a robot can select a rule that is most similar to the
current sensory input. In this RL, production rules are associated with clusters
segmented by Bayes boundaries. Each rule contains a state vector v, an action
vector a, a utility u, and parameters for calculating the posterior probability,
i.e., a prior probability f , a covariance matrix Σ, and a sample set Φ.

The learning procedure is as follows:

(1) A robot perceives the current sensory input x.
(2) By means of Bayesian discrimination, the robot selects the most similar rule

from a rule set. If a rule is selected, the robot executes the corresponding
action a; otherwise, it performs a random action.

(3) The robot transfers to the next state and receives a reward r.
(4) All rule utilities are updated according to r. Rules with utility below a certain

threshold are removed.
(5) When the robot performs a random action, the robot produces a new rule by

combining the current sensory input and the executed action. This executed
new rule is memorized in the rule table.

(6) If the robot receives no penalty, an interval estimation technique updates the
parameters of all the rules. Otherwise, the robot updates only the parameters
of the selected rule.

(7) Go to (1).

Action Selection and Rule Production. In BRL, a rule in the rule set is
selected to minimize g, i.e., the risk of misclassification of the current input. We
obtain g on the basis of the posterior probability Pr(Ci|x). Pr(Ci|x) is calculated
as an indicator of classification for each cluster by using Bayes’ Theorem:

Pr(Ci|x) =
Pr(Ci) Pr(x|Ci)

Pr(x)
. (1)

A rule cluster of i-th rule, Ci, is represented by a vi-centered Gaussian with co-
variance Σi. Therefore, the probability density function of the i-th rule’s cluster
is represented by

Pr(x|Ci) =
1

(2π)
ns
2 |Σi| 12

· exp
{−1

2
(x− vi)TΣ−1

i (x− vi)
}
. (2)

A robot requires gi instead of calculating Pr(Ci|x)1, because no one can cor-
rectly estimate Pr(x) in Eq.(1). A robot must select a rule on the basis of only
the numerator. The value of gi is calculated as

gi = − log(fi · Pr(x|Ci))

=
1
2
(x− vi)TΣ−1

i (x− vi) − log
{

1
(2π)

ns
2 |Σi| 12

}
− log fi, (3)

where fi is synonymous with Pr(Ci).
1 The higher the value of Pr(Ci|x), the lower is the value of gi.
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After calculating g for all the rules, the winner rlw is selected as that with the
minimal value of gi. As mentioned in the learning procedure in Sec. 3.1, the action
in rlw is performed if gw is lower than a threshold gth = − log(f0 · Pth), where
f0 and Pth are predefined constants. Otherwise, a random action is performed.

3.2 Extended BRL

Basic Concept. We have some RL approaches that provide learning in con-
tinuous action spaces. An actor-critic algorithm built with neural networks has
a continuous learning space and modifies actions adaptively [9]. This algorithm
modifies policies based on TD-error at every time step. Theoretically, the RE-
INFORCE algorithm requires immediate rewards [10]. These approaches are not
useful for tasks such as the navigation problem shown in Sec. 2, because the
robot gets a reward only when it reaches the goal. However, BRL proves to be
robust against a delayed reward.

In the standard BRL, a robot performs a random search in its action space;
such random actions often resulted in instability in the global behavior of MRS in
our preliminary experiments. Therefore, reducing the chance of random actions
may accelerate behavior acquisition and provide a more robust behavior. Instead
of performing a random action, BRL requires a function that determines actions
on the basis of acquired knowledge.

BRL with an Adaptive Action Generator. In order to accelerate learning,
in this study, we introduce an extended BRL by modifying the learning pro-
cedure, Step (2) in Sec. 3.1. In this extension, instead of a random action, the
robot performs a knowledge-based action when it encounters a new environment.
Therefore, we set a new threshold, P ′

th(< Pth), and provide three cases for rule
selection in Step (2), as follows:

– gw < gth: The robot selects the rule with gw and executes its corresponding
action aw.

– gth ≤ gw < g′th: The robot executes an action with parameters determined
based on rlw and other rules with misclassification risks within this range,
as follows:

a′ =
nr∑

l=1

(
ul∑nr

k=1 uk
· al) +N(0, σ), (4)

where nr denotes the number of referred rules, and N(0, σ) is a zero-centered
Gaussian noise with variance σ. This utility-weighted-average action is re-
garded as an interpolation of previously-acquired knowledge.

– g′th ≤ gw: The robot generates a random action.

In this rule selection, the first and third cases are the same as the standard BRL.



A Reinforcement Learning Technique with an Adaptive Action Generator 255

4 Experiments

4.1 Settings

Figure 2 shows the general view of the experimental environments for the sim-
ulation and physical experiments. In the simulation runs, the field is a square
surrounded by a wall. The real robots are situated in a pathway with length
and width 3.6 m and 2.4 m, respectively. The task for the MRS is to move from
the start position to the goal position (light source). All the robots get a reward
when one of them reaches the goal (l0 > thrgoal ∨ l1 > thrgoal ∨ l2 > thrgoal).
A robot gets a punishment when it collides with a wall (di

0 > thrd ∨ di
1 > thrd).

We represent a unit of time as a step. A step is a sequence that allows the three
robots to obtain their own input information, make decisions by themselves, and
execute their actions independently. When the MRS reaches the goal, or when
it cannot reach the goal within 200 steps in the simulations and 100 steps in
the physical experiments, it is returned to the start position. This time span is
called an episode.

The robot controller comprises a prediction mechanism and a behavior learn-
ing algorithm. The settings for these two mechanisms are as follows.

Prediction Mechanism (NN). In our previous study [7], we verified BRL to
be a successful approach to CCP by introducing reformations such that the
state space was constructed by using sensory information and predictions
of the posture of the other robots in the subsequent time step in order to
decrease the learning problem dynamics.

The prediction mechanism attached is a three-layered feed-forward neu-
ral network that performs back propagation. The hidden layer has eight
nodes. The input of the i-th robot is a short history of sensory informa-
tion, Ii = { cos θi

t−2, sin θi
t−2, cosψi

t−2, sinψi
t−2, cos θi

t−1, sin θi
t−1, cosψi

t−1,

sinψi
t−1, cos θi

t, sin θi
t, cosψi

t, sinψi
t}, where ψi

t = (θj
t + θk

t ) /2 (i �= j �=
k, j and k indicate the IDs of the neighboring robots). The output is a
prediction of the posture of the other robots in the subsequent time step
Oi = {cosψi

t+1, sinψ
i
t+1}. The behavior learning mechanism utilizes Oi as a

part of sensory information input.
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(b) Real robots

Fig. 2. Experimental environment
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Behavior Learning Mechanism (BRL). The input of the i-th robot is xi =
{ cos θi

t, sin θi
t, cosψi

t+1, sinψi
t+1, d

i
0, d

i
1, l

i
0, l

i
1, l

i
2 }. The output is ai =

{mi
rud,m

i
th}, where mi

rud and mi
th are the motor commands for the rud-

der and the throttle respectively. The value of σ in Eq.(4) is 0.05. For the
standard BRL, Pth = 0.012. For the extended BRL, Pth = 0.012 and P ′

th =
0.01. The other parameters are the same as the values recommended in our
journal [7].

We introduce a change in an environment by initializing one of the three
robots. This may correspond to a situation in which a robot is replaced with a
new one. Such changes occur when the MRS continuously reaches the goal for
100 consecutive episodes in the simulations and for 25 consecutive episodes in
the physical experiments.

4.2 Result: Simulations

We have investigated the improved performance of the extended BRL by means
of three-/four-/five-robot CCP simulations in which robots must learn cooper-
ative behavior from scratch [8]. In these experiments, we observed that robots
always achieve cooperative behavior by developing team play organized by a
leader, a sub-leader, and a follower. This implies that acquiring cooperative be-
havior always involves autonomous specialization.

The experiments in this section are conducted to observe the robustness of
BRLs against a change in an environment. The MRS is disturbed in such a
manner that one of the three robots is initialized immediately after a globally
stable behavior is observed. Then, we count the number of episodes required for
the MRS to relearn a new, stable behavior.

Figure 3 shows the average and the deviations in the number of episodes
for 10 independent runs. The difficulty in relearning is apparently different for
each case. The most difficult cases are those in which the initialized robot is the
leader of the team (Fig. 3(a)). If a leader robot is initialized, the robots require
a large number of episodes to relearn a new, stable behavior; however, such
cases show the largest difference among those employing BRLs. The extended
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Fig. 3. Numbers of episodes required to relearn a behavior after an environmental
change
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BRL generates 50% better results as compared to the standard BRL. Since
the acquired cooperative behavior possesses slight instability and the robots
must coordinate their behaviors, particularly in a case in which a follower is
initialized, the extended BRL provides a slightly worse result. The improvement
can be observed from the graphs for our proposed extensions. This implies that
in terms of learning speed, the extended BRL outperforms the standard BRL.

4.3 Result: Physical Experiments

We conducted five independent experimental runs for each case employing the
BRL. The standard BRL provided two successful results and the extended BRL
provided four successful results from scratch [8].

Figures 4–6 illustrate the learning results after one of the robots is initialized
by using the best results in [8] for the standard and extended BRL. Before an
environmental change, Robot1, Robot2, and Robot3 are the leader, sub-leader,
and follower, respectively, in the experiments for both the BRLs. These figures
illustrate the number of steps and punishments in each episode. Comparing these
results shows that the extended BRL requires fewer episodes to newly develop
a globally stable behavior. Similar to the simulation results, the case where a
leader robot is initialized demonstrates the most significant difference. In this
case, the standard BRL could not achieve a globally stable behavior and hence
resulted in failure. In the other cases, the extended BRL required smaller number
of episodes to relearn cooperative behavior. Further, the extended BRL is more
stable than the standard BRL because the MRS with the standard BRL gets
several punishments.

0
20
40
60
80

100
120

0’ 10’ 20’ 30’ 40’ 50’ 60’ 70’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(a) Standard BRL

0
20
40
60
80

100
120

0’ 10’ 20’ 30’ 40’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(b) Extended BRL

Fig. 4. Learning history after a leader is initialized

20
40
60
80

100
120

0’ 10’ 20’ 30’ 40’ 50’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(a) Standard BRL

0
20
40
60
80

100
120

0’ 10’ 20’ 30’ 40’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(b) Extended BRL

Fig. 5. Learning history after a sub-leader is initialized



258 T. Yasuda and K. Ohkura

0
20
40
60
80

100
120

0’ 10’ 20’ 30’ 40’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(a) Standard BRL

0
20
40
60
80

100
120

0’ 10’ 20’ 30’

S
te

p

Episode

Robot1 Step
Robot2 Step
Robot3 Step

Punishment
Punishment
Punishment

(b) Extended BRL

Fig. 6. Learning history after a follower is initialized

Robot1Robot1Robot1

Robot3Robot3Robot3 Robot2Robot2Robot2

(a) Before initializing Robot1

Robot1Robot1Robot1

Robot3Robot3Robot3 Robot2Robot2Robot2

(b) After successful relearning

Fig. 7. Acquired behavior: extended BRL

Figure 7 shows examples of the stable behaviors acquired by the extended
BRL, before and after Robot1 is initialized. Although an environmental change
occurred for Robot2 and Robot3, the robots achieved a globally stable behavior
similar to the behavior before initialization. The robots trooped right, left and
right, and then reached the goal. By observing the rule parameters, we found
that Robot1 learned to be another type of a leader and the other robots utilized
some rules stored before initialization and the newly generated rules based on
our extension.

Although parameters that are more refined might provide better performance,
parameter tuning is outside the scope of this study because BRL is designed for
acquiring a reasonable behavior as quickly as possible, rather than the optimal
behavior. In other words, the focal point of our MRS controller is not optimality
but versatility. In fact, we obtain similar experimental results through experi-
ments with an arm-type MRS, similar to that in [6], by using the same parameter
settings.

5 Conclusions

We investigated an RL approach for the behavior acquisition of an autonomous
MRS. Our proposed RL technique, BRL, has a mechanism for the autonomous
segmentation of the continuous learning space, and it proves to be effective for



A Reinforcement Learning Technique with an Adaptive Action Generator 259

an MRS through autonomous specialization. For improving the robustness of
an MRS, we proposed an extension of BRL by adding a function to generate
interpolated actions based on previously acquired rules. The results of the simu-
lations and physical experiments demonstrated that the MRS with the extended
BRL relearns behaviors faster than that with the standard BRL, after an envi-
ronmental change.

In the future, we plan to analyze the learning process in detail. We also plan
to increase the number of sensors and adopt other expensive sensors such as
an omnidirectional camera that will allow a robot to incorporate a variety of
information, and thereby acquire more sophisticated cooperative behavior in
more complex environments.
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Abstract. This paper introduces a novel multi-cellular developmental
system where cells are placed in a continuous space. Cells communicate
by diffusing and perceiving substances in the environment and are able
to migrate around following affinities with substance gradients. The op-
timization process is performed using Echo State neural networks on the
problem of minimizing tile size variations in the context of a tiling prob-
lem. Experimental results show that problem complexity only impacts
the number of substances used, rather than the number of cells, which
implies some sort of scalability with regards to the size of the pheno-
type. Symmetry breaking and robustness are addressed by adding noise
as an intrinsic property of the model. A (positive) side effect is that the
resulting model produces very robust solutions with efficient self-healing
behavior in the presence of perturbations never met before.

1 Introduction

Evolutionary Design deals with the optimization of structures such as objects,
buildings or robot morphologies (to name a few). A key problem in this con-
text is the search space: it is now widely accepted that indirect encoding ap-
proaches [16, 10, 2] (ie. representing a construction plan) may yield to better
results in some cases than direct encoding (ie. representing the construction it-
self). However, these approaches failed to address scalability issues since the size
of the construction plan still grows with the size of the construction itself. Recent
works on developmental systems have taken a step further by optimizing the very
developmental process rather than the construction plan. This new approach is
often referred to as multi-cellular Artificial Ontogeny [4, 17] and addresses both
scalibility and robustness issues.

A multi-cellular developmental system is defined as a dynamical system with
a group of interacting cells. These cells communicate by emitting and receiving
substances in the environment (e.g. concentration of chemicals) and may perform
a given number of operations depending on substances concentration. The most
basic operation is cell differentiation, where a cell appearance may change to a
given state (e.g. color, size or shape of a cell). At each step of development, all
cells are updated synchronously until a halting criterion is met (e.g. maximum

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 260–269, 2008.
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number of development steps, stability measure, etc.). When development stops,
the state of all cells is considered as the resulting phenotype. The important point
is that all cells share the same duplicated controller, which results in different
output values depending on each cell current context.

Some few works have addressed evolutionary design problems using a multi-
cellular approach, ranging from evolution of neural networks [11] to artificial
creatures morphologies [4] and gene regulatory networks [3]. However, these se-
tups make it difficult to study the internal dynamics of such systems and most
recent works have focused on simpler problem. The basic setup for studying
such developmental systems, proposed by [13], is to consider a matrix of pix-
els (ie. an image) where each pixel contains one cell. Each of these cells may
emit and receive substance concentration to neighboring cells, usually in either
a von neumann or moore neighborhood fashion. Evaluation of a developmental
model is usually performed by optimizing the cell controller so that the resulting
phenotype matches a given image pattern.

This paper proposes an extension of multi-cellular developmental systems in
the context of a continuous environment. In this scope, development is considered
both through time and space: cells communicate with one another by diffusing
substances in the environment and are either attracted or repulsed along the
gradient of the diffused substances. Each cell perceives substance concentration
at its position in a totalistic fashion so that the search space is dependant only
on the number of substances in the environment rather than the number of cells.
As a result, a simple yet large phenotype may be build with very few substances.
Another key issue of our model is that symmetry breaking and robustness to-
wards noise are both addressed by featuring noise as an intrinsic property of the
environment. Such a model makes possible to address problem where cell posi-
tionning is necessary such as group behaviors in swarm robotics, mobile sensor
optimal positionning, light sources positionning in an architectural building, etc.

In section 2, a model for multi-cellular developmental system in the continuous
space is described. Cell migration, symmetry breaking and controller issues are
also addressed. Section 3 presents an implementation of the model and describes
the benchmark problem used for evaluation. Section 4 gives the experimental
settings as well as results regarding both optimization performance and self
healing capabilities. Then, section 5 provides a comparaison between our model
and multi-cellular developmental models from the litterature and establish some
links with some application problems such as mobile sensor deployment and
diffusion of a swarm of robots

2 Development in a Continuous Space

Our model for multi-cellular development addresses the problem of develop-
ment of a group of moving cells in a continuous environment. In this setup,
cells are placed in a continuous environment and are free to move around (ie.
cell migration). Cell communication is performed through emitting and perceiv-
ing substance concentrations from the neighborhood. Cell substance emission is
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performed through radial diffusion. Substance concentration decreases depend-
ing on the distance to the emitting cell. As a result, a cell neighborhood is defined
in a given radius and neighboring cells influences depend on distance to the tar-
get cell. Substance concentrations is thus perceived in a totalistic fashion, ie. the
number of inputs for a cell depends on the number of substances only.

2.1 Cell Migration

Cell migration refers indirectly to a coordinate system. In this model, cell migra-
tion is performed depending on available substances in the environment, limited
to the cell perception radius. A cell controller determines current affinities with
substance concentrations in the environment. Affinities range between −1.0 (ie.
repulsed) and +1.0 (ie. attracted), if affinity is close to 0.0, the cell maintains its
current position. By considering each substance affinities with substance actual
concentrations nearby the cell at hand, it is possible to compute a migration
vector (direction and (bounded) force) for each cell. Given N substance concen-
trations perceived by a cell, the cell migration vector

−−→
Δc0 for one specific cell c0

at time t is computed as follow:
−−→
Δc0 =fmax(

∑Ns

i=1(aff
i
c0
∗∑Nc

k=1(
−−−−−−−−→
(xNd

ck
− xNd

c0
)∗fθrec

c0
(i)(θemit

ck (i), d(xNd
c0
, xNd

ck
)))))

Roughly, this means that the migration vector for a given cell is computed at
each time step from the cell affinities with substances produced by neighboring
cells within a predefined radius, given that perceived substance concentrations
depend both on distance and neighboring cells production. Notations are as fol-
low: c0 is the target cell, Δc0 is the localization update for the current iteration,
Nd is the number of space dimensions, Ns is the number of substances used
for communication, Nc is the number of cells in the (possibly limited) neigh-
borhood of c0, xNd

ck
is the coordinate of cell ck in the Nd-dimensional space,

and d(xNd
c1
, xNd

c2
) is the euclidian distance between cell 1 and cell 2. aff i

c0
state

affinity of cell c0 with substance i and fmax is a function to limit the norm of
the resulting migration vector such as, for example, a simple maximum norm
threshold. θemit

ck (i) is the concentration value of substance i produced by cell ck
and fθrec

c0
(i) is the corresponding concentration value perceived by cell c0. In this

setup, −→Δc0 determines the instant speed to update the position of cell c01. Step 2
of figure 1 illustrates the cell migration operation in a 2D world.

A key feature of our model is that the coordinate system is generated by
the developing system itself as there is no reference to any external coordinate
system - for example: given three cells and three substances, these cells may
form an equilateral triangle by each emitting one specific substance (through
radial diffusion) and migrating so that perceived concentrations of the two other
substances is equal. As a consequence, this triangle of cells result in a non-
ambiguous two dimensional space where each point in the 2D space is defined
by a unique triplet of substance concentrations.
1 However it should be noted that

−→
Δc0 could be used to determine acceleration, for

example.
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Fig. 1. Example of development of an embryo to produce a voronoi diagram. Starting
with an initial condition where cells are placed in an environment (step 1), cells migrate
by communicating with each other (step 2) so as to reach a stable state (step 3). At this
point, the resulting embryo may be rendered as a phenotype which can be evaluated
(step 4 - an example of voronoi diagram rendering).

However, two (or more) cells may be located at the exact same position. In
this case, cells potentially receive exactly the same inputs and may produce
exactly the same outputs thereafter. This is what happens if all cells start at
the same initial position: at each step, all cells behave in a mimetic fashion. In
order to avoid this, it is necessary to introduce a random perturbation during
cell migration, ie. each cell position is updated at each step according to its
migration affinities and migration noise.

Because substance concentrations are perceived in a totalistic fashion, a cell
may have Ns inputs (perceived substance concentrations) and 2 ∗ Ns outputs
(diffused substance concentrations + substance affinities for migration), with Ns

the number of substances in the environment. If cell differentiation is enabled
(which is not the case in the scope of this paper), additional outputs may be
required (e.g. cell color/size/shape state).

3 Optimization of Tiling Problems

The objective function is defined as follow: given Nc cells in an environement,
the goal is to position the cell in the environment such as each cell determines a
voronoi site. The phenotype is then evaluated as the voronoi diagram built from
these voronoi sites and the goal is to minimize the standard deviation σ of the
average of the resulting voronoi regions. More formaly, the objective function is
the following:

fitness(x) =
√

1
Nc
∗∑Nc

i (surfacei − surface)2

With the following notations: x is the genotype to be optimized; Nc is the
number of cells (ie. voronoi sites); surfacei the surface covered by the ithvoronoi
region and surface the average surface of all voronoi regions. This benchmark
problem is referred to as the ”tiling problem” since the goal is to tile space
with possibly repeating patterns, or at least with patterns of the same size (if
not of the same shape). Figure 1 shows an example of development from the



264 N. Bredeche

initial starting point which results in a voronoi diagram where cell positions act
as voronoi sites. Moreover, the environment is considered as a non-bounded 2D
world (ie. a toroidal world) in order to avoid interfering with cell migrations. This
makes it possible to take into account the fact that the very coordinate system of
our model implies that cell positions are dependant only on one another (i.e. not
related to the image translation/orientation as it is perceived after rendering).

Evaluation is performed as follow: development starts from an initial state
where Nc cells are placed in the center of the image. As stated in the previous
section, cells move away from one another because of migration noise, then each
cell is able to behave in a different fashion as it is experiencing a different envi-
ronmental context. Development stops when a termination criterion is met. In
this particular setup, development stops after a maximum number of iterations,
as proposed in other works [9,13,14]. Then, the resulting phenotype is evaluated
by rendering the corresponding Voronoi diagram and computing the aforemen-
tionned fitness value. Voronoi sites are located in a continuous environment and
Voronoi regions are rendered (and evaluated) in a discrete environment. Both
migration and rendering assumes that the environment is a toroidal world.

In practical, voronoi regions are rendered in a 32x32 or 128x128 RGB image
(depending on the number of cells) using cell coordinates in the environment.
At each iteration it, cell position update (δ) results from the combination of
random noise perturbation and cell migration vector as follows:

−→
δ

c0

it = maxit−it
maxit

∗ −−−−−−−−−→perturbation+
−−→
Δc0

it

Cell migration maximum speed (
−−→
Δc0) is bounded and scaled so that a cell may

not move faster than one pixel per iteration. Cell random noise perturbation
(−−−−−−−−−→perturbation) starts with a maximum bounded at 1.0 pixel-equivalent size and
decreases linearly over time so as to reach zero influence when development stops
(maxit is the number of development iterations).

4 Experiments

In order to evaluate our model, a set of experiments with a different number
of cells have been conducted. The number of cells is either 3 or 16 cells (cor-
responding to tiling the environment with 3 or 16 voronoi regions) with only
one substance for communication. The perception radius for each cell is set to a
little more than twice (= 2.15) the radius of the optimal surface voronoi regions
should cover. It also ensures that each cell is still able to communicate with
its neighbors. Finally, this means that some cells may possibly not be able to
directly communicate with one another depending on their respective position.

The experiments presented hereafter evaluate the relevance (or not) of an
additional internal substance which is different to each cell and is set with a
unique read-only value. This makes it possible to number each cell in a unique
fashion, so that the controller has access to a cell identification number.
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An echo state network with a reservoir size of 10 (with a connection density
of 0.2 and damping factor set to 0.8) is used as controller2. The state-of-the-art
CMA Evolution Strategy algorithm with restart feature [1] is used to optimize
the set of neural network weights. The genotype size depends on the number
of inputs and outputs as well as the size and connectivity of the hidden layer
and is set here to 20 (ESN with or without cell identification - while number of
inputs varied, only weights from the reservoir to the output nodes are considered
for optimization). In preliminary experiments, classic multi-layered perceptron
(MLP) was also considered (results not shown here). MLP used 6 hidden nodes
so that the number of dimensions of the optimization problem remains the same
as with ESN. Results were shown to be comparable in the end of the evolution
process with that obtained with ESN (which implies that temporal capability is
not crucial), but convergence tends to be slower than with ESN.

The number of iterations for the development process of one genotype is set
to 256 (note that less than 32 iterations is enough for one cell to travel accross
the whole environment) and noise perturbation is set as stated before. In order
to compute an accurate performance, evaluation is averaged from 2 tries so as
to smooth the effect of random perturbation, which is particularly useful in
the first steps of optimization where genotypes either fail to feature robustness
wrt. developmental perturbations or suffer from the discretization process during
rendering3. All experiments in the next section are limited to 1000 evaluations
(approx. 60 generations). CMA-ES automatically selects population size (initial
population size is 12) and default restart parameters are used.

4.1 Result, Robustness Towards Perturbations and Scaling Issues

All results are shown in Figure 2. All figures show results of the best individuals
from 11 independant runs (median best, best of best, worst of best and 25%
and 75% quartiles for each generation) - the y-axis features the fitness values
and the x-axis features the number of evaluations (rather than the number of
generations). Columns: either 3 or 16 cells problems ; Rows: without or with
Cell Identifier. Random development figures are given as a naive baseline, and
are always quickly outperformed. From these results, two main considerations
emerge: (1) a cell unique identifier does not provide any advantage, which is no
surprise in this context since the cell population may be homogeneous and there
is no clear gain as to identify each celll explicitely ; (2) Problem complexity
seems not to be related with the number of cells as the 3 cells problem even

2 ESN can be defined as a discrete-time recurrent neural network based on the reservoir
computing framework known to perform very well in the context of temporal data.
The reader may refer to [12] for a full description of ESN and to [7] for application
in control problem related to multi-cellular developmental systems.

3 Fitness values for the same phenotype may vary slightly since Voronoi diagram
rendering leads to slightly different phenotypes depending on cell positions because
of the discretization process that results in a 32x32 or 128x128 image. Evaluation
for the 16 cells problem is performed in 128x128 so as to provide comparable fitness
figures with that of the 3 cells problem.
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3 cells 16 cells
random controller: 4.16 random controller: 6.99

Fig. 2. Summary of results (see text for details)

show slightly slower convergence, which may be explained by the fact that each
cell must cover a wider region (implying more freedom of migration).

In order to evaluate robustness towards noise, best individuals from all the
runs were put to the test by applying two kind of perturbations: development
is started with either (1) all cells positionned at the same location, as used
during optimization (ie. intrinsic random perturbation may lead to a different
outcome); or (2) cells are randomly placed in the environment. In both case, the
resulting phenotype is evaluated and fitness values are compared to the predicted
fitness values recorded during evolution. Development in case 1 shows robustness
toward noise for all runs, which is no surprise since this setup is very close to
what was used during optimization (which confirms that individuals are able to
cope with the noisy fitness function). Case 2 leads to similar results - which is
more difficult since robustness wrt. random starting positions was not considered
during optimization. In this latter case, all individuals showed great robustness
and converged towards phenotypes that displayed the awaited fitness, both in the
3 and 16 cells setup, whatever the starting initial cell positions. Figure 3 shows
an example monitoring the development from an optimized genotype for the 16
cells problem. The instant fitness value at each of the development step is traced
in both case and the development course for the two experimental conditions
can be compared: in case 2, convergence is not as straight-forward as in case 1
at first, but the cell population displays an efficient self-healing behavior as it
quickly recovers from the initial localization pertubation and end up with the
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Fig. 3. Example of robustness towards development for the 16 cells problem (best
individual). Left: development with centered voronoi sites (ie. all cells start from the
same position). Right: development from random starting positions (all cells start from
a different position). the y-axis gives the instant fitness value (translation/rotation
invariant) of the phenotype and the x-axis gives the number of development steps so
far for this individual. Voronoi region colors are randomly assigned and are used only
for visualization.

Fig. 4. Scaling up to 32, 64 and 96 cells (best controller from the 16 cells setup)

same fitness value as expected. In both case, the best fitness value is also reached
before the end of development.

Lastly, the scaling problem was considered. Figure 4 shows the final stage of
development of the best individual from the 16 cells problem but in the context
of 32, 64 and then 96 cells. Indeed, optimized controllers produced behaviors
very close to a simple repulse behavior (where each cell flies away from sub-
stance concentration) combined with a threshold limit so as to maintain a stable
distance between cells, which is very simple yet efficient solution for this prob-
lem and scales up easily. It is interesting to note that resulting phenotype closely
resemble a regular tiling, which is the optimal solution whenever it is possible
(i.e. when all regions have either 3,4 or 6 borders, which may not be the case for
the problems at hand).

5 Discussion and Conclusions

This paper introduces a new model for multi-cellular artificial embryogeny in a
continuous space for optimization. The proposed model relies on cell migration
based on substance affinities rather that explicit cell neighborhood and noise
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so as to break possible symmetries. Results showed that problem difficulty in
our model is related to the number of substances rather than the number of
cells, which is a key feature with regards to scalability since the size of the
cell population is independant from problem complexity. It was also shown to
produce a robust and, to some extent, scalable behavior at least for the problem
at hand.

Other models have already addressed development of patterns as benchmark
problem for artificial embryogeny. While the main feature of our model is that we
consider development in a continuous environment with cell migration, it shares
some similarities with other models. Firstly, Gordon and Bentley’s model [9] also
relies on a totalistic approach to compute information perceived by a specific cell
as neighboring cell states are summed. However, this implies breaking symmetry
by introducing some bias as initial starting condition. This differs from our model
because symmetry breaking is automaticaly handled through the combination of
additional random positional noise and cell relative positionning through selected
affinities. The model presented here is able to automaticaly build from scratch
a coordinate system. A direct advantage of such a system is that the number of
substances is directly related to the problem complexity, and not to the number
of cells (ie. scalability wrt. size). Secondly, Miller’s model [13] already considered
spatial development so as to limit the size of the cell population wrt. to the task
at hand. In this setup, a cell would trigger cell division by growing a new cell
on a nearby free site targeted in an explicit coordinate system (in this setup:
North, South, East, West). As a consequence, the population of cells would grow
spatially even if each cell position is fixed at birth (no cell migration involves).
While it is possible to position a cell with a specific state at one precise location,
a possibly large population may be needed. Thirdly, Miller [13], Federici [8] as
well as our previous work in [6] addressed the issue of self-healing, ie. robustness
of development toward noise. In [6], we showed that impressive results could be
achieved by adding a strong penalization to individuals that could not reach a
stable state4 before the maximum number of development steps allowed. This
feature provided very reliable controllers which were able to completely recover
even from a 100% noise perturbation. In the current model, stability is also
achieved but in a different fashion: positional noise perturbation is intrinsic to
the environment and robustness is thus forced from the beginning and results in
very robust phenotypes even if perturbation occurs.

The work presented here has also some connections with the problem of dis-
persion of a swarm of robots (or, more generally, particles). Swarm dispersion
is a distributed coverage control problem defined by a clustering of the environ-
ment where each agent applies a local strategy based on information from its
neighborhood. In this context, both homogeneous and heterogeneous dispersions
have been addressed in simulation [5] and with a real-world robot swarm [15]. To
some extent, our model can be related to these approaches and is indeed more
general in the sense that it relies only on raw information and does not require

4 In this previous work, a stable state is reached when all neural network controller
internal activity does not change for a given number of iterations.
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explicit identification of cells/particles. Of course some fundamental differences
still exist since our model does not rely on physical cells that are subject to envi-
ronmental dynamics when moving around and that noise is artificially added to
the model. However, it is considered as a promising direction for future works.
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Abstract. The purpose of this paper is to outline a new formulation
of statistical learning that will be more useful and relevant to the field
of robotics. The primary motivation for this new perspective is the mis-
match between the form of data assumed by current statistical learning
algorithms, and the form of data that is actually generated by robotic sys-
tems. Specifically, robotic systems generate a vast unlabeled data stream,
while most current algorithms are designed to handle limited numbers
of discrete, labeled, independent and identically distributed samples. We
argue that there is only one meaningful unsupervised learning process
that can be applied to a vast data stream: adaptive compression. The
compression rate can be used to compare different techniques, and sta-
tistical models obtained through adaptive compression should also be
useful for other tasks.

1 Introduction

One striking characteristic of human competence is that it requires many years of
learning to develop. Learning can be regarded as a form of statistical adaptation
in which the brain adjusts to data flowing into it from the senses. Recently,
researchers in the field of statistical learning have made important progress in
understanding the nature of learning and the conditions under which learning can
occur. This understanding supports the definition of several powerful learning
algorithms [1,2].

The field of embodied artificial intelligence is also deeply concerned with the
issue of adaptation, and has recently made several important conceptual ad-
vances [3]. One such advance is the realization that in many cases good perfor-
mance can be achieved without advanced information processing, by relying on
techniques such as reactivity, self-organization, and exploitation of body dynam-
ics [4,5]. Another achievement is the identification of a set of design principles
to guide the construction of robotic systems [3].

Unfortunately, there is not much communication between these two disci-
plines. In particular, it is difficult for roboticists to apply the strong results of
statistical learning theory to embodied agents research. This difficulty is caused
by a mismatch between the form of data assumed by current statistical learning
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algorithms and the form of data available to embodied agents. The purpose of
this paper is to argue for a new formulation of statistical learning that can be
applied to the vast unlabeled data stream generated by robotic systems. Fur-
thermore, we argue that given this type of input, there is only one meaningful
learning process that can be applied: adaptive compression. An important ad-
vantage of the view of learning as compression is that it provides a rigorous and
highly practical research methodology within which to proceed. We refer to the
hybrid field resulting from a combination of ideas from statistical learning and
embodied artificial intelligence as “Embodied Statistical Learning” (EStL).

2 Background

2.1 Statistical Learning: The Current Formulation

The goal of the field of statistical learning is to discover algorithms which build
statistical models from data. This field has developed an impressive mathemat-
ical theory [2,6,7] and has demonstrated strong results on various applications,
such as face detection, handwritten digit recognition, and machine translation.
The basic problem statement of statistical learning, in its current form, is given
in the first sentence of the first chapter of the great work by Vapnik [6]:

In this book we consider the learning problem as a problem of finding a
desired dependence using a limited number of observations.

Several important ideas are contained in this statement. First, a critical as-
pect of this type of learning is the limitations on the amount of available data.
Second, the goal is to find dependencies - for example, finding a rule that can
assign a label to an image (e.g. “face” or “no face”). Third, the data is assumed
to be partitioned into a number of distinct “observations”. Because of this as-
sumption of partitionability, it is then natural to assume that the samples are
independent and identically distributed (IID). A critical piece of the VC theory
is a set of probabilistic bounds on the difference between the real and empirical
performance of a model class, in terms of the complexity of the class and the
number of observations. These bounds are obtained using the assumption of IID
samples, and their purpose is to describe when it is possible to generalize from
limited data [6]. Thus, the above assumptions are essential to the theory. Other
formulations of statistical learning are mostly similar to Vapnik’s; we refer to
these collectively as CStL.

2.2 Embodied Artificial Intelligence

The subfield known as embodied artificial intelligence originated with the work
of Brooks [8,9]. Writing in the early 1990s, Brooks was reacting to what he saw as
an unhealthy overemphasis on the physical symbol system hypothesis, which was
a major influence on AI at the time. In this view, the key role of intelligence was
to use formal logic and symbolic manipulation to construct plans from logical
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propositions about the world, which would be delivered by an unspecified per-
ceptual system. The typical strategy for finding a plan was to conduct a heuristic
search in a large action space. Brooks made two important criticisms of this ap-
proach. First, he noted that perception was a major problem in itself, and it was
näıve to assume that the “vision guys in white hats down the corridor” would be
able to obtain the necessary world descriptions [9]. Second, he argued that search
was not the right tool for intelligence. As a counter-point to the symbol system
hypothesis, Brooks offered his own physical grounding hypothesis: “to build a
system that is intelligent it is necessary to have its representations grounded
in the physical world” [9]. This view motivated Brooks’ research into embodied
agents, i.e. real robots operating in the real world.

The ideas of Brooks were pursued vigorously by later researchers [3,4,5,10].
An important part of this work is the development of a set of design principles
to guide the construction of embodied agents [3]. The principles were obtained
through extensive experience with robotic systems and from detailed study of
biological organisms. These ideas were primarily targeted toward the physical
construction of robots, but they have important implications for the design of
learning algorithms as well. In particular, the Complete Agent Principle instructs
designers to build agents that are “autonomous, self-sufficient, embodied, and sit-
uated”. Another important idea is the Principle of Information Self-Structuring,
which states that the agent should take advantage of statistical regularities in-
duced by body-environment interactions, and should actively attempt to seek
out such regularities [5,10,11]. As we discuss below, it is difficult to reconcile
these principles with the current formulation of statistical learning.

3 The Setting of the Embodied Learning Problem

3.1 Two Types of Learning

To motivate the following discussion, we postulate a rough separation of learning
into two types: perceptual and behavioral. The former allows the agent to under-
stand the world, while the latter guides the agent’s choice of actions. A necessary
component of behavioral learning is reinforcement. Agents are assumed to re-
ceive a reward signal from the environment that instructs them to behave in an
adaptive way: actions that produce positive rewards are strengthened, while ac-
tions that produce negative rewards are weakened. Reinforcement learning is an
active area of research [12], and the fundamental principles are well understood.

Our view is that reinforcement is sufficient to explain behavioral learning but
not perceptual learning. Simply stated, the information from the reinforcement
signal is not sufficient to determine the huge complexity of the brain, which
has on the order of 1012 synapses. For example, it is difficult to believe that
differential reinforcement can be used to tune the synaptic weights in the lower
levels of the visual cortex.

One can imagine constructing a Complete Agent and equipping it with two
learning mechanisms: one for behavioral learning, and one for perceptual learn-
ing. For these two learning tasks, one might reasonably choose a reinforcement
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Table 1. Summary of differences between problem formulation in Embodied Statistical
Learning (EStL) and the current formulation of statistical learning (CStL)

Aspect of problem EStL CStL Section

Form of data stream discrete samples 3.2

Supervisory signal scarce frequent 3.3

Volume of data vast limited 3.4

Key problem prediction recognition 3.6

Agent contribution actively structures data passively observes data 3.7

learning algorithm for the behavioral component, and a CStL algorithm for the
perceptual component. The problem with this approach is that the current for-
mulation of statistical learning is not well suited to the type of data encountered
by robots. We now outline the setting of the problem of EStL, and contrast it
to the CStL formulation. The constrast is summarized in Table 1.

3.2 Data Is a Stream

In the real world, for both robots and organisms, data arrives in the form of a
stream. No obvious method exists for partitioning the stream into samples that
can satisfy the assumptions of CStL. Any such partitioning of the stream will
destroy the IID property. If one partitions a stream of visual images into frames,
then each frame is strongly dependent on the previous frames.

The data is a stream, but it is not necessary to treat the stream simply as
a sequence of bits. For example, if the stream is a sequence of images, it is
reasonable to assume that the dimensions of the images are known. Or, if the
stream is a sequence of video, audio, and sonar data, then it is reasonable to
assume knowledge of which bits correspond to each sensory modality. In return
for giving up the assumption of discrete sample data we get a “consolation prize”:
the temporal structure of the data stream, which can and should be exploited.

3.3 Labels and Reinforcement Events Are Scarce

The Complete Agent Principle instructs us to build agents that are “autonomous,
self-sufficient, embodied, and situated” [3]. When applied to learning in robotic
systems, this principle requires that the agents should learn in an unsupervised
or self-supervised way. The amount of supervisory information provided to the
agents, in the form of labeled training data and reinforcement signals, should be
strictly limited.

In order to perform a pattern recognition task in CStL, one typically assumes a
set of data points (e.g., images) and associated labels. Usually there are as many
labels as data points. The labeling process may require a substantial amount
of human labor, and is often error-prone. For example, in an image annotation
task one must label each image with a set of words describing the objects and
activities displayed in the image. However, different people might use different
sets of words to describe an image. Also, this model of learning is fundamentally
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limited to the labels: a vision system trained using labeled data to recognize car
models will not be able to determine if the car is parked or in use.

Reinforcement learning for perception faces similar limitations. Imagine we
have built a humanoid robot and want to train it to fetch coffee in an office
environment. The simplest method would be to give the robot a big reward
when it arrives with the coffee. However, this simple scheme will require the
robot to explore for years before it happens to retrieve the coffee and get the
reward. By adding some complexity to the reward signal, we can potentially
improve performance. Maybe we give the robot a small reward for obtaining the
coffee, and a larger reward for delivering it. We could then go further, defining
rewards for entering the hallway, pouring the coffee into the cup, adding sugar
and cream, and so on. We could also define negative rewards for spilling the coffee
or bumping into people. However, this violates the Complete Agent Principle,
because it requires us to provide greater and greater levels of supervision to the
robot, in the form of defining complex reward signals.

In the view of EStL we are developing, the agent is able to learn in an un-
supervised and autonomous manner. However, this learning should be thought
of as preparation, so that when supervisory information arrives, the agent can
adapt to it as quickly as possible. When the user gives the coffee fetching robot a
command, it should not have to perform a lengthy learning process; it should al-
ready know enough about the world to execute the command. Thus, if the robot
is a humanoid, it must already have complex knowledge of grasping, walking,
the visual stimuli corresponding to coffee cups, and so on.

3.4 The Stream Is Vast

Above we argued that data should be thought of as a stream. We now point out
that it is an enormous stream. Robotic systems can obtain data from cameras,
microphones, laser range finders, odometers, gyroscopes, and many other devices.

One of the great insights of statistical learning theory [6,7] is that when the
data is limited, the model employed must be simple. There are various ways to
calculate the model complexity, but the idea is the same. A basic rule of thumb
is that the complexity of the model cannot exceed the information content of
the data being modeled.

Consider the problem of classifying handwritten digits, which can be thought
of as a “typical problem” of CStL. We wish to learn a rule that gives a good
estimate of the probability distribution p(Y |X) where Y is the label and X is the
image. In this case the data being modeled is the set of labels, each of which has
an information content of log2 10 ≈ 3.2 bits. Assuming there are 10000 samples,
the information content of the entire set of labels is about 32000 bits. Thus we
cannot use models that have complexity of greater than 32000 bits. The essence
of learning in this low-data regime is to find low complexity models that have
high explanatory power. The success of the Support Vector Machines can be
attributed to the fact that only a small number of parameters corresponding to
the support vectors need to be specified, and the data is separated using the
optimal separating hyperplane.
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The data available to robots is enormously more vast than the 32000 bits
available in the handwritten digit recognition problem. This multiple order of
magnitude difference means that the learning problem must be thought about
in an entirely new way. In particular, the vast amount of data available justifies
the use of highly complex models. To sum up, the basic problem of CStL is: how
can one generalize well from a limited amount of data? In contrast, the basic
problem of EStL is: how can one efficiently exploit the huge amount of data to
build a complex model of the complex world?

3.5 Fast Is Better Than Slow

This point is a combination of three distinct ideas, all of which emphasize speed
in different ways. The first idea is that an agent must react rapidly to supervisory
information when it appears, as was illustrated by the example of the coffee
fetching robot. Similarly, when considering biological situations, strong negative
reinforcement signals often relate to life-threatening events (e.g. a rabbit eating
a poisonous plant), so the agent must adapt to those signals rapidly. To allow
the behavioral learning component to adapt quickly, the perceptual learning
component must provide it with meaningful abstractions.

The second reason for emphasizing speed is a consequence of our emphasis
on learning vast data. If the computational architecture cannot process the data
efficiently, it will choke on the vast size of the stream. In CStL, the learning bot-
tleneck is the limited amount of data; in EStL it will likely be the computational
complexity of learning.

The third idea is that the learning process should be primarily online. Learning
should begin immediately once the sensor data stream starts flowing, and should
proceed in a continuous fashion thereafter. Ideally, at each step the learning
machine should update itself to reflect the new piece of data that has arrived.

3.6 Prediction Is Critical

The claim of this section is that the ability to predict is necessary and sufficient
for intelligent behavior in the sense of optimizing future reward. To see that
prediction is sufficient for reward-optimizing behavior, consider the following
reinforcement learning strategy. We assume that the agent has experienced a
large amount of data with sensor, motor, and reward components. It has built a
model which interleaves these data types, allowing it to predict the future reward
from the sensor stimulation and motor actions. Then it predicts the future reward
given the current stimulus and a variety of action plans, and chooses the plan
corresponding to the highest predicted reward.

To see that prediction is necessary, notice that real agents must be able to
predict that an action like jumping off a cliff will be harmful without actually
experimenting with it. This is fairly obvious, but standard reinforcement learning
algorithms do not provide a mechanism to avoid bad states without actually
visiting those states.
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Note that other problems of classification, recognition, and so forth can be
thought of as subproblems of prediction. If one can recognize the numbers and
letters written on a business card, one can predict the identity of the person who
will answer the phone when the number is dialled.

Because of its relationship to reward-optimization and classification, predic-
tion can be thought of as a fundamental cognitive task. Thus, if a powerful and
general purpose prediction method can be achieved, it will bring us much closer
to the goal of intelligent machines. The critical role of prediction was recently
articulated by Hawkins [13].

3.7 Agents Influence Their Own Learning

An agent learns by adapting to the vast stream of data entering its experience.
However, some types of data are better suited to the learning process than
others. For example, it is probably not very useful to observe visual data from a
television tuned to a dead channel. On the other hand, data that has a certain
kind of statistical regularity may be especially helpful in guiding the learning
process. We say that this type of data is structured.

The Principle of Information Self-Structuring discussed in Section 2.2 states
that an agent should actively attempt to induce structure in the data entering
its experience. If this can be done successfully, the learning machine will be able
to adapt more rapidly to the environment.

One mechanism of information self-structuring is the idea of intrinsic rewards
for learning, referred to as the “autotelic drive” by Steels [11]. In order to imple-
ment an autotelic drive, the learning machine reports a signal that characterizes
the degree of information structure in the incoming stimuli. It should also reflect
the extent to which the information structure is useful in improving the perfor-
mance of the learning machine: even if a certain pattern is highly structured, it
may not be useful to observe it repeatedly after it has been thoroughly learned.
This intrinsic reward is combined with external reward to guide behavior.

Another mechanism of information self-structuring is morphological compu-
tation, which is the idea that the body can act as a computational device to
reduce the cognitive burden on the brain [14]. For example, it can be shown that
a fly’s eye is morphologically suited to the problem of detecting motion, because
of the curvature of the lens [15]. The lens preprocesses the incoming sensory data
in such a way as to simplify the computational problem of motion detection.

The Principle of Information Self-Structuring does not fit easily into the CStL
paradigm. With the important exception of research in active learning [16], most
CStL algorithms assume that the agent itself plays no part in the selection of data
points used for training. This is required because if the robot uses information
from the first N

2 data points to decide how to select the next N
2 samples, the

IID assumption breaks down. Thus, the CStL theory does not provide insight
regarding how to implement an autotelic drive, or how to design agent bodies
to facilitate fast learning.
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4 Synthesis: Adaptive Compression

Historically, there have been two main paradigms in statistical learning. The
first is that of learning as induction, described by the Vapnik quote above. The
second is the view of learning as compression, which has its roots in the idea of
Minimum Description Length modeling [7]. There is a deep relationship between
induction and compression [6,7].

In the above discussion, we described what we consider to be the proper in-
puts to the learning algorithm. We are now faced with the question of what
the learning algorithm should actually do with the input. We claim that the
only meaningful learning process that can be performed on the basis of a vast
stream of unlabeled data is adaptive compression. Specifically, the learning al-
gorithm should incrementally update a statistical model so as to reduce the bit
rate per unit time required to represent the incoming data stream. This view
connects directly to the idea of redundancy reduction which has been proposed
as a fundamental principle explaining the function of the cortex [17].

Compared to the compression view, the induction view may seem more at-
tractive for practical reasons. A program that can determine if a face is present
in an image may seem more useful than a program that can compress images
with faces in them. Thus, to further justify the goal of compression, we pro-
pose the following hypothesis: statistical models obtained through the adaptive
compression process will be useful for other applications. There is a variety of
evidence for this hypothesis. In recent work by Hinton et al., it is demonstrated
that building a generative model of handwritten digit images is useful in recog-
nizing their labels [2]. Also, in the field of statistical natural language processing,
improvements in the language model immediately yield improvements in appli-
cations such as speech recognition and machine translation [18]. In both cases,
the model is obtained by finding a set of parameters that minimizes the log-
likelihood of the original data (text or digit images); this process is basically
equivalent to compression.

Note also the strong link between compression and prediction. If one can pre-
dict a data stream, then one can compress it. Thus while we use the compression
rate for comparison purposes because it is a hard number, what we are really
measuring is an algorithm’s ability to predict.

It is important to note that this view is agnostic with regard to the choice
of computational approach (e.g. dynamical systems or physical symbol systems)
underlying the learning process. Given a computational model, it is easy to con-
struct a compression algorithm on top of it. Thus the compression rate can be
used by advocates of various perspectives on cognition to provide strong quanti-
tative evidence for their views. One simply constructs a compression algorithm
inspired by a particular idea about cognition and applies it to some large dataset
(ideally, a benchmark dataset). If the new algorithm achieves a significant re-
duction in compressed data size, this provides strong quantitative evidence for
the cognitive model. Thus, the view of learning as compression supports a rigor-
ous methodology, and we consider this to be one of the major arguments in favor
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of it. This rationale for using compression rates to quantify progress in artificial
intelligence research was recently articulated by Mahoney [19].

As an example of how the compression methodology can benefit embodied
agents research, consider the work of Tani and Nolfi [20], which describes a
method for hierarchical learning of different categories of sensory-motor data
generated by a mobile robot. The authors show that the recurrent neural network
modules self-organize such that each module becomes an expert at one type of
data. This is an interesting result, but it is difficult to compare the method to
other possible techniques. If the paper reported the compression rate achieved
by the system on the sensory-motor data, it would be a much more powerful
vindication of the method. In work using a similar experimental setup, but a
very different modeling scheme, we showed how the compression rate can be used
as a performance measure in cases where there is no obvious task to perform
(i.e., the robot is simply exploring without a specific goal) [21]. The important
result here is that the statistical model obtained in this process is useful for other
tasks such as localization, thus supporting the hypothesis given above. However,
our modeling method is fairly simplistic; it is likely that other methods (such
as the one proposed by Tani and Nolfi) will provide better performance. The
compression rate should allow us to select the best general method.

5 Conclusion

The goal of Embodied Statistical Learning is to fuse together the strong mathe-
matical theory of statistical learning with the design principles of Embodied AI.
This requires a new setting for the learning problem, because of the mismatch
between the type of data available to embodied agents, and the type of data as-
sumed by the current theories. In the new formulation, the input data is a vast
unlabeled stream which is actively structured by the agent. We argued that the
only meaningful learning process that can be applied to a vast unlabeled data
stream is adaptive compression. Compression is equivalent to prediction, and al-
lows for rigorous comparisons of results. We also hypothesize that the statistical
model obtained through compression will be useful for other applications.

Compared to CStL, we consider EStL to be a more realistic setting of the
learning problem. It may also be an easier setting, for the following reasons.
First, the agent can exploit the temporal structure of the data stream. Second,
the agent can perform information self-structuring. But the most important
reason is that the amount of data available is enormous. The exploitation of this
vast data resource may allow us to construct models of complexity comparable
to the human brain.
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Abstract. It has been shown recently that dopamine signalled mod-
ulation of spike timing-dependent synaptic plasticity (DA-STDP) can
enable reinforcement learning of delayed stimulus-reward associations
when both stimulus and reward are delivered at precisely timed inter-
vals. Here, we test whether a similar model can support learning in an
embodied context, in which timing of both sensory input and delivery
of reward depend on the agent’s behaviour. We show that effective re-
inforcement learning is indeed possible, but only when stimuli are gated
so as to occur as near-synchronous patterns of neural activity and when
neuroanatomical constraints are imposed which predispose agents to ex-
ploratative behaviours. Extinction of learned responses in this model is
subsequently shown to result from agent-environment interactions and
not directly from any specific neural mechanism.

1 Introduction

There is much evidence to suggest that the activity of midbrain dopamine neu-
rons is correlated with both prediction and receipt of reward under reinforce-
ment learning paradigms, for example in the monkey Macaca fascicularis [10].
Dopamine levels are known to increase both in anticipation of expected reward
and on the occurrence of novel reward, as well as to decrease when previously
expected rewards are omitted. Further evidence that changes in dopamine lev-
els affect synaptic efficacy (see Schultz [9] for a review) suggests that dopamine
signalled modulation of synaptic spike-timing dependent plasticity (DA-STDP)
might act as a neurobiological mechanism for reinforcement learning.

One recent computational model of DA-STDP [6] has demonstrated how such
a mechanism might solve what is known as the distal reward problem, in which
reinforcing reward signals arrive some time after corresponding stimuli, using a
method similar to TD(λ) learning [14]. In this model, synapse-specific records
of correlated neural activity (eligibility traces) enable associations between past
events to persist over time, allowing rewarded responses to be appropriately
reinforced when reward eventually arrives. An extension of this model, to include
topological representation of cortical projections to the midbrain dopaminergic
system [6], further demonstrated temporal shifts in reward predicting responses
similar to those found in vivo.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 280–290, 2008.
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In this paper we analyse a simple agent-based computational model incor-
porating DA-STDP on its capacity to implement reinforcement learning in an
embodied context in which the precise timing of sensory stimuli and reward
signals result directly from agent-environment interactions. We show that it is
possible for the DA-STDP mechanism to support reinforcement learning in this
context, but only when constraints are imposed on both neuroanatomy and on
the encoding of sensory input. We also find that feedback from the agent’s en-
vironment, occurring in response to changing patterns of rewarded behaviour,
allow for the extinction of conditioned behaviour under conditions in which the
DA-STDP mechanism alone does not.

2 Dopamine Signalling in a Simple Foraging Task

The agent-based model presented consists of a simulated low-inertia wheeled
robot [11] controlled by a spiking neural network implementing the Izhikevich
model of DA-STDP [5] [6], detailed in Appendix A. The circular agent (Figure
1a) has a radius of 2 units and is tasked with navigating a 200×200 unit toroidal
environment in which two types of resource (green and blue) are present.

Five instances of each resource type (each having a radius of 4 units), are
randomly distributed in the environment at the beginning of each trial, along
with the agent itself, which faces in a random direction. Agents are able to move
freely around the environment and can collect resources by making contact with
them. Reward is signalled to the agent in the form of a burst of dopamine to
its neural controller upon collection of just one of the two types of resource.
Collection of a resource results in another instance of the same resource type
immediately being created at some other random location in the environment.

Each agent is provided with 2 arrays (left and right) of 100 evenly distributed
ray sensors for each type of resource (i.e. 4 arrays and a total of 400 ray sensors)
and 2 motors (one per wheel). Each array extends over an angle of 2.5 radians
with the arrays positioned such that they overlap slightly in front of the agent.
Each sensor innervates a single input neuron in the network and signals the exact
distance (up to a maximum of 100 units) at which the associated ray intercepts
the nearest resources of the corresponding type. The agent’s motors are each
driven by the activity of a further 200 (output) neurons in the neural controller.

In each trial agents roam their environment continuously for a total of 6
simulated hours, taking just over 30 minutes of real time on a 2.66Ghz PC.
In the first 2 hours reward is delivered on collection of green resources. In the
second 2 hours reward is shifted to blue resources. In the final 2 hours neither
resource is rewarded.

2.1 Neural Controller

The agent’s neural controller consists of 800 excitatory and 200 inhibitory neu-
rons (Figure 1b), initially having 10% random synaptic connectivity (i.e. 100
synapses per neuron projecting uniformly throughout the network). Synaptic
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Fig. 1. Agent morphology (a) and neuron function (b). Sensors are connected such
that objects placed directly in front of the agent appear as stimulus to higher indexed
neurons in left hand clusters and to lower indexed neurons in right hand clusters. When
imposed, anatomical constraints (i) predispose a simple taxis behaviour.

conductance delays are uniformly distributed in the (integer) range [1,10] and
STDP parameters are equal for every synapse with a 50% negative asymmetry
(A+ = 0.1, A− = 0.15, τ+/− = 0.02s). A small random excitatory input is pro-
vided to each neuron such that it spikes with an average frequency of 1Hz when
not receiving external stimulation.

3 Experiment 1: Constraint on Sensory Input

3.1 Experimental Setup

Embodied simulations generate a continuous stream of sensory input, yet many
cognitive functions such as visual processing appear to function too rapidly for
information to be coded simply in mean spike firing rates [15]. This, among other
things, suggests that sensory information may instead be encoded by temporal
patterns of activity, distributed across a population of neurons [3] [8]. In our
first experiment we therefore investigate two alternative ways of encoding this
input stream, classical ‘rate coding’ and a novel method we refer to as ‘stimulus
gating’, on their ability to support reinforcement learning. Our ‘stimulus gating’
mechanism yields volleys of sensory activity that are reminiscent of the ‘spike
waves’ described by VanRullen and Thorpe [16]. In particular, this procedure
implements a reset mechanism of the kind hypothesised by these authors to en-
sure separate processing of successive inputs; or in our case, separate processing
of inputs from different stimuli. Examples of typical firing patterns induced by
each method of stimulus composition are shown in Figure 2.
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Fig. 2. (a) Sample neural activity and (b) synaptic strength distributions after 2 hours
rewarding green resource collection, with and without stimulus gating. Histograms show
the strength of synapses leading from input neurons associated with blue and green
resources. Without gating, stimuli result in a continuous stream of neural activity
and no significant long-term synaptic potentiation occurs. However, stimulus gating
results in near-synchronous pulses of activity and a small proportion of those synapses
associated with the green type (highlighted) are potentiated.

Rate coded input to the neural controller is implemented by the constant
application of a small current I to each sensory neuron, proportional to the
strength of the stimulus. This induces Poisson distributed spike trains in the
sensory neurons with spike rates varying with the strength of stimulation.

Stimulus gating is applied by modulating the sensory input with a Poissonian
distributed delta function at a frequency of 10Hz. This causes input neurons to
fire near synchronously in short bursts rather than independently in continual
streams. Each of the 4 clusters of input neurons are gated separately to ensure
that stimuli of the same type (i.e. from the same bank of sensors) occur as
synchronous patterns of activity, whilst those from different types occur asyn-
chronously. The information content of the stimulus presented to the network is
therefore available not only in the spike rates of individual neurons, but also in
the spike patterns of different groups of neurons firing at similar times [12].

3.2 Results

Responses from ten randomly initialised agents produced similar results in which
a marked difference is seen in both neuronal activity the corresponding pattern of
synaptic potentiation, between the two coding regimes (Figure 2). When stimuli
are rate coded, synapses leading from sensory to motor neurons do not undergo
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significant potentiation and, due to the asymmetry of the STDP window, instead
fall to near minimal values very rapidly. With gated stimuli however many of
those same sensory-motor synapses remain above their minimum values for the
duration of each trial. Furthermore, with gated stimuli a clear difference can be
seen between the strengths of those synapses projecting from input neurons as-
sociated with the currently rewarded object type and those associated with the
unrewarded type. In the stimulus gating trials a higher frequency of strong po-
tentiation is found for sensorimotor synapses associated with rewarded resource,
than those associated with unrewarded resource.

The agent’s behaviour is of course affected by these changes, resulting in a
significant increase in mean collection frequency from 1.65/min (σ2 = 1.82)
without stimulus gating, to 2.62/min (σ2 = 1.31) with (p << 10−3 by a two-tail
t-test). This change can be attributed to an increase in the average velocity of the
agent from 8.6 units/sec to 9.2 units/sec, enabled by the greater potentiation
found at synapses leading to motor neurons. However, little difference is found
in either coding regime between the strengths of synapses leading from sensory
neurons to either left or right motor neurons, which means that the motors
receive similar input in response to any sensory stimulation, driving the agent in
a straight line regardless of the location of sensed resources. Consequently there
is no increase in the relative rate at which rewarded resources are collected.

4 Experiment 2: Neuroanatomical Constraints

In our second experiment the connectivity of the agent’s neural network is con-
strained so as to predispose it toward learning generic approach behaviours.
In this way, any changes in the relative potentiation of synapses occurring in
response to reward should be reflected in a greater tendency for the agent to
approach one or other type of resource, thus facilitating a more effective explo-
ration of possibly rewarding behaviours. If DA-STDP is able to reinforce only
those synapses associated with one particular behaviour (i.e. approaching the
rewarded resource), then the agent will gain greater rewarding feedback from
the environment and further reinforcement should result.

4.1 Experimental Setup

The agent’s neuroanatomy is constrained so as to cause simple taxis behaviour
[2] whenever synapses leading from neurons associated with a particular type
of input stimuli are potentiated (Figure 1). Specifically, projections from left
hand sensory neurons terminate on right hand motor neurons and vice-versa.
Synaptic potentiation may therefore lead only to approach behaviours, although
the designation of which resource types are to be approached is deferred for
selection by the DA-STDP mechanism. The distribution of synapses connected
to inhibitory neurons is left unchanged as these are thought to function mainly
in modulating the overall excitation in the network [7].
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4.2 Results

The results of this experiment show a marked difference from Experiment 1.
Figure 3 shows a representative trial in which green resources are rewarded first.
After approximately 30 minutes the agent begins to collect a significant number
of those resources. Whilst there is a slight increase in the number of blue resources
collected (from ≈1/min to ≈4/min), the increase in green is significantly greater
(up to ≈13/min). When reward is switched to blue resources the agent immedi-
ately begins to alter its behaviour. Within 15 minutes collection frequencies are
completely reversed, with more blue (≈13/min) than green (≈4/min) resources
being collected. After reward is removed from either resource type, instead of
extinguishing, the agent’s blue-selective behaviour is maintained up to the end
of the trial. This behavioural persistence is reflected in continued potentiation
of the corresponding synapses (Figure 3, top right).
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Fig. 3. Synaptic strength distributions (top, vertical bars denote mean synaptic
strengths) and resource collection frequencies (bottom) with anatomical constraint
whilst rewarding green resources (a), blue resources (b) and after reward has been re-
moved from either type (c). Synaptic strengths were measured at the end of each time
period, whilst collection frequencies were measured in non-overlapping 1 minute win-
dows. Within the first hour agents learn to collect significantly more green (rewarded)
resource. When reward is switched to blue resources (a) this preference is reversed.
At the end of each phase a significant proportion of those synapses projecting from
input neurons corresponding to the currently rewarded type are potentiated to near
maximal values. When reward is finally removed from either type (b) the previous
pattern of (de)potentiation is maintained and agents continue preferentially to collect
blue resources.
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The distribution of synaptic strengths at the end of each phase reveals that
synapses leading from input neurons corresponding to the rewarded resource type
undergo significantly more potentiation than in the previous experiment. Rather
than showing a slight increase in the frequency of strongly potentiated synapses
there is now a complete redistribution, such that the majority of synapses leading
from such neurons are potentiated to near maximal values (Figure 3, top).

The results also show the agent switching almost entirely from collecting green
to blue resources after reward is reallocated part way through the trial. As well
as seeing an increase in the collection frequency of blue resources, we also find
that the number of green resources collected is significantly reduced. This effect
cannot simply be explained by the fact that collection of one instance of resource
(usually) negates the simultaneous collection of another. If this were the case we
would expect to see an equal yet smaller number of each resource type being
collected after the switch. Instead, the observation of a clear preference for blue
resources indicates that the previous behaviour has undergone almost complete
extinction.

The observed extinction presumably functions by means of an increase in the
proportion of motor neuron activity occurring in response to (now more fre-
quent) interaction with the newly rewarded resource type. This increased pro-
portion of (post-synaptic) activity is uncorrelated with any continued activity of
those (pre-synaptic) input neurons receiving stimulation from the previously re-
warded resource type and is sufficient to cause depotentiation of the correspond-
ing synaptic pathway through the asymmetry of the STDP window, which tends
to decrease the strength of synapses connecting neurons that fire independently.

In contrast, when reward is removed from both types of resource no alter-
native behaviour is reinforced and we see no significant decrease in either the
collection frequency of the previously rewarded resource type or the strength
of the corresponding synaptic pathway. Apparently, there is no inherent mecha-
nism for the depotentiation of a functional synaptic pathway (i.e. no mechanism
for extinction), beyond learning a new behaviour, once the corresponding be-
haviour has been established. If the agent does not begin to acquire a competing
behaviour (as in the final phase) no change in post-synaptic neuronal activity
occurs and extinction via depotentiation does not result.

5 Discussion

Although the mechanisms of DA-STDP have previously been shown to support
reinforcement learning in abstract network models [6], it has thus far remained
unclear whether it can do so in an embodied context in which the precise tim-
ing of sensory input and reward signals is contingent upon agent behaviour. We
have shown here that embodied reinforcement learning via DA-STDP is possi-
ble, however in our model it was necessary both to modulate sensory input so
as to induce near-synchronous patterns of neural activity, as well as to impose
constraints on the agent’s neuroanatomy which predispose generic foraging be-
haviours. The results we report have several additional implications which we
discuss below.
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Firstly, our experiments on the effects of stimulus encoding are clearly related
to the growing body of work suggesting the importance of temporal patterning
in neuronal signalling [3]. Of interest in this context is the old but recurring
idea that perception might occur in discrete ‘frames’ [4]. A key component of
this idea is that cortical rhythms modulate neuronal excitability so as to imple-
ment a ‘shutter’ separating successive perceptual frames. In this light our results
show a functional benefit of such a mechanism in terms of facilitating embodied
reinforcement learning. Our findings invite further work testing the functional
benefits of sensory gating (perceptual framing) for embodied cognition.

Secondly, the need for constraints upon the agent’s neuroanatomy in our
model demonstrates a further extension to the DA-STDP model useful in embod-
ied contexts. When exploration of the environment is not under the direct control
of an experimenter, the agent must be predisposed to some form of exploratory
behaviour in order to attain reward at an adequate frequency. Without such
a predisposition there is little chance that random neural activity will consis-
tently generate the behaviour necessary to bootstrap the reinforcement learning
process. We have shown here that constraining the agent’s neuroanatomy to
predispose generic foraging behaviours can be sufficient to enable this process.
Further work will address how sufficient exploratory behaviours can emerge au-
tonomously, in embodied models not incorporating such task-specific constraints.

Finally, we observed that feedback from the agent’s environment was critical
for behavioural extinction, as mediated by synaptic depotentiation occurring in
response to increased rates of uncorrelated neuronal activity. This result suggests
that changes in sensory stimulation which result from engaging in a novel be-
haviour may have more of an active role in extinction than previously recognised
[13]. In our experiments, because uncorrelated neuronal activity results from on-
going agent behaviour as well as from intrinsic network activity, an interaction
between environmental feedback and synaptic depotentiation is implicated, along
with removal of reinforcement, in extinction. This finding therefore invites new
conditioning experiments with real organisms in which ongoing behaviour and
environmental feedback are explicitly kept to a minimum after the removal of
reinforcement, so that the effect of these factors upon extinction might be in-
vestigated. More generally however, our findings lend support to the embodied
approach to computational neuroscience undertaken here and encourage contin-
ued investigation under this paradigm.
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Appendix A: Neural Model

The agent’s neural controller was implemented using the Izhikevich model of
spiking neurons [5] with axonal conductance delays, synaptic spike-timing de-
pendent plasticity [1] and dopamine neuromodulation [6].

According to this method, neurons are modelled by the two differential equa-
tions

v′ = 0.04v2 + 5v + 140− u+ I (1)

and
u′ = a(bv − u) (2)

which calculate the membrane potential (v) of the neuron and a membrane
recovery variable (u). Variable I represents synaptic current injected into each
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neuron, whilst parameters a, b, c and d define the type of neuron being modelled.
If v ≥ 30mV, neurons emit a spike and are reset according to

v ← c (3)

and
u← u+ d (4)

In the experiments implemented here excitatory neurons are regular spiking
(a = 0.02, b = 0.2, c = −65, d = 8) and inhibitory neurons are fast spiking
(a = 0.1, b = 0.2, c = −65, d = 2) [5].

Input to the network is implemented by scaling the value of each sensor by a
gain of 2 before clipping to ≤ 1. Corresponding input neurons are subsequently
innervated by a direct current of magnitude I = 26S, in which I is the ap-
plied current and S is the sensor reading after gain and clipping. Conversely,
motor output is generated via a leaky integrator whose value is incremented by
a value of 0.1 whenever an output neuron spikes, otherwise decaying exponen-
tially with a time constant of 0.02s. The value of the integrator at each time
step is converted directly to wheel velocities after linearly scaling by a motor
gain of MG = 20, enabling agents to reach a maximum speed of approximately
15 units/s under normal conditions. Finally, neural noise is introduced into the
network by perturbing I by a random number in the range [−6.5, 6.5] at each
time-step.

Synaptic conductance delays are modelled separately for each neuron in the
range [1,10ms] with excitatory neurons projecting plastic synapses with strengths
in the range [0,4mV]. In all experiments excitatory synaptic strengths were ini-
tially set to s = 0.1mV , whilst inhibitory neurons projected non-plastic synapses
with constant strength s = −0.1mV .

Following Izhikevich [7], synaptic spike-timing dependent plasticity is imple-
mented via the derivative of synaptic strength, sd, such that only the rate of
change in synaptic strength is affected directly by the relative timings of pre-
and post-synaptic spikes. Using an earliest-neighbour method, the firing of a

post-synaptic neuron i at time t increases the value of sd by A+e
tj−t

τ+ , where tj
is the time of arrival (after axonal conductance delay) of the last spike of each
pre-synaptic neuron j. Similarly, when a pre-synaptic neuron fires and emits a
spike (again, after axonal conductance delay) at time t the value of sd is reduced

by A−e
ti−t

τ− , where ti is the time of last spike of each post-synaptic neuron i.
The variable sd otherwise decays exponentially with time constant τsd = 1s.
The parameters A± and T± therefore determine the relative size of the STDP
window for both causal and anti-causal firings.

Dopamine modulation of synaptic plasticity is subsequently implemented (fol-
lowing Izhikevich [6]) in the calculation of s from sd, where

s′ = d× sd (5)

Here the variable d corresponds to the current level of extracellular dopamine
and regulates the rate at which synaptic strength changes with respect to the
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value of sd. The value of d decays exponentially with time constant τd = 0.2s.
A 2nM baseline concentration of dopamine was maintained by the tonic release
of 0.01μM/s, allowing synaptic plasticity to occur at a slow rate at all times.
Whenever reward was received however, d was step increased by a value of 0.5μM
and therefore increases synaptic plasticity significantly for a period of around 1s.
In all experiments, membrane potentials were integrated by the Euler method
with an time-step of 0.5ms, whilst synaptic plasticity was integrated at 1ms and
updated every 10ms.
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Abstract. Both self-learning architecture (embedded structure) and ex-
plicit/implicit teaching from other agents (environmental design issue)
are necessary not only for one behavior learning but more seriously for
life-time behavior learning. This paper presents a method for a robot to
understand unfamiliar behavior shown by others through the collabora-
tion between behavior acquisition and recognition of observed behavior,
where the state value has an important role not simply for behavior
acquisition (reinforcement learning) but also for behavior recognition
(observation). That is, the state value updates can be accelerated by ob-
servation without real trials and errors while the learned values enrich
the recognition system since it is based on estimation of the state value
of the observed behavior. The validity of the proposed method is shown
by applying it to a dynamic environment where two robots play soccer.

Keywords: Reinforcement Learning, Behavior Recognition, Value sys-
tem, Learning by Observation.

1 Introduction

Reinforcement learning has been studied well for motor skill learning and robot
behavior acquisition in both single and multi-agent environments. Especially, in
the multi-agent environment, observation of others make the behavior learning
rapid and therefore much more efficient [1,2,3]. Actually, it is desirable to acquire
various unfamiliar behavior with some instructions from others in real environ-
ment because of huge exploration space and enormous learning time to learn.
Therefore, behavior learning through observation has been more important. Un-
derstanding observed behavior does not mean simply following the trajectory of
an end-effector or joints of demonstrator. It means reading his/her intention, that
is, the goal of the observed behavior and finding a way how to achieve the goal
by oneself regardless of the difference of the trajectory. From a viewpoint of the
reinforcement learning framework, this means reading rewards of the observed
behavior and estimating sequence of the value through the observation.
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Takahashi et al.[4] proposed a method of not only to learn and execute a
variety of behaviors but also to recognize behavior of others supposing that the
observer has already acquired the values of all kinds of behaviors the observed
agent can do. The recognition means, in this paper, that the robot categorizes the
observed behavior to a set of its own behaviors acquired beforehand. The method
seamlessly combines behavior acquisition and recognition based on “state value”
in reinforcement learning scheme. Reinforcement learning generates not only an
appropriate behavior (a map from states to actions) to accomplish a given task
but also an utility of the behavior, an estimated discounted sum of rewards that
will be received in future while the robot is taking an appropriate policy. This
estimated discounted sum of reward is called “state value.” This value roughly
indicates closeness to the goal state of the given task if the robot receives a
positive reward when it reaches the goal and zero else, that is, if the agent
is getting closer to the goal, the value becomes higher. This suggests that the
observer may recognize which goal the observed agent likes to achieve if the value
of the corresponding task is going higher.

This paper proposes a novel method that enhances behavior acquisition and
recognition based on interaction between learning and observation of behaviors.
A robot learns its behaviors through not only trials and errors but also reading
rewards of the observed behaviors of others (including robots and humans). Fig.1
shows a rough idea of our proposed method. V (s) and V̂ (s) are the state value
updated by oneself and the state value estimated though observation, respec-
tively. Takahashi et al. [4] showed the capability of the proposed method mainly
in case that the observer has already acquired a number of behaviors to be
recognized beforehand. Their case study showed how this system recognizes ob-
served behaviors based on the state value functions of self-behaviors. This paper
shows how the estimated state value of observed behavior, V̂ (s), gives feedback
to learning and understanding unfamiliar observed behaviors and this feedback
loop enhances the performance of observed behavior recognition. The validity of
the proposed method is shown by applying it to a dynamic environment where
two robots play soccer.

Fig. 1. Interaction between Learning
and Observation of Behavior

Fig. 2. Robots with a human player in
a Soccer Field
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2 Experimental Setup and an Assumption

Fig.2 shows two robots, a human player and color-coded objects, e.g., an orange
ball, and a goal. The robot has an omni-directional camera on top. A simple
color image processing is applied in order to detect the color-coded objects and
players in real-time. The mobile platform is based on an omni-directional vehicle.
These two robots and the human play soccer such as dribbling a ball, kicking
it to a goal, passing a ball to the other, and so on. While playing with objects,
they watch each other, try to understand observed behaviors of the other, and
emulate them. In this paper, all experiments are done in computer simulation
environment due to space limitation.

A learning/recognizing robot assumes that all robots and even the human
player share reward models of the behaviors. For example, all robots and the
human player receive a positive reward when the ball is kicked into the goal. This
assumption is very natural as we assume that we share “value” with colleagues,
friends, or our family in our daily life.

3 Outline of the Mechanisms

3.1 Behavior Learning Based on Reinforcement Learning

An agent can discriminate a set S of distinct world states. The world is modeled
as a Markov process, making stochastic transitions based on its current state and
the action taken by the agent based on a policy π. The agent receives reward rt
at each step t. State value V π, the discounted sum of the reward received over
time under execution of policy π, will be calculated as follows:

V π =
∞∑

t=0

γtrt . (1)

In case that the agent receives a positive reward if it reaches a specified goal
and zero else, then, the state value increases if the agent follows a good policy
π. The agent updates its policy through trials and errors in order to receive
higher positive rewards in future. Analogously, as animals get closer to former
action sequences that led to goals, they are more likely to retry it. For further
details, please refer to the textbook of Sutton and Barto [5] or a survey of robot
learning [6].

Here we introduce model-based reinforcement learning method. A learning
module has a forward model which represents the state transition model and a
behavior learner which estimates the state-action value function based on the
forward model in a reinforcement learning manner. Each learning module has its
own state transition model. This model estimates the state transition probability
P̂a

ss′ for the triplet of state s, action a, and next state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (2)
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Each module has a reward model R̂s, too:

R̂(s) = E{rt|st = s} (3)

All experiences (sequences of state-action-next state and reward) are simply
stored to estimate these models. Now we have the estimated state transition
probability P̂a

ss′ and the expected reward R̂s, then, an approximated state-action
value function Q(s, a) for a state action pair s and a is given by

Q(s, a) =
∑

s′
P̂a

ss′

[
R̂(s′) + γV (s′)

]
(4)

V (s) = max
a

Q(s, a) , (5)

where γ is a discount factor.

3.2 Modular Learning System

In order to observe/learn/execute a number of behaviors in parallel, we adopt
a modular learning system. Many modular architectures have been proposed so
far (for example [6]). Each module is responsible for learning to achieve a single
goal. One arbiter or a gate module is responsible for merging information from
the individual modules in order to derive a single action performed by the robot.

We prepare a number of behavior modules each of which adopts the behavior
learning method described in 3.1. The module is assigned to one goal-oriented
behavior and estimates one action value function Q(s, a). A module receives
a positive reward when it accomplishes the assigned behavior or zero reward
else. The behavior module has a controller that generates predictions of next
state values, selecting the action with the maximum value. The gating module
will then select one output from the inputs of the different behavior modules
according to the player’s intention.

The same behavior modules are used for the behavior recognition. Each be-
havior module estimates the state value based on the estimated state of the
observed demonstrator1 and calculates reliability of observed behavior, that is,
how likely the demonstrator is taking the behavior of the module. The details
are described in following sections.

3.3 Behavior Recognition Based on Estimated Values

Each behavior module can estimate a state value of observed behavior at an
arbitrary time t to accomplish the specified task. An observer watches a demon-
strator’s behavior and maps the sensory information from an observer viewpoint
to a demonstrator’s one with a simple mapping of state variables. Fig.3 shows
a simple example of this transformation. It detects color-coded objects on the
1 For reasons of consistency, the term ”demonstrator” is used to describe any agent

from which an observer can learn, even if the demonstrator does not have an intention
to show its behavior to the observer.
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Table 1. List of behaviors learned by self and state variables for each behavior

Behavior State variables

Approaching a ball db

Approaching a goal dg

Approaching the teammate dr

Shooting a ball db, dg, θbg

Passing a ball db, dr, θbr

Fig. 3. Estimation of view of the demonstrator. Left : a captured image the of observer,
Center : object detection and state variables for self, Right : estimation of view of the
demonstrator.

omni-directional image, calculates distances and directions of the objects in the
world coordinate of the observer, and shifts the axes so that the position of the
demonstrator comes to center of the demonstrator’s coordinate. Then it roughly
estimates the state information in the egocentric coordinate and the state of the
demonstrator. Every behavior module estimates a sequence of its state value
from the estimated state of the observed demonstrator and the system selects
modules which values are increasing. The learner tries to acquire a number of
behaviors shown in Table 1. The table also describes necessary state variables
shown in Fig.3 for each behavior. Each state variable is divided into 11 in order
to construct quantized state space. 4 actions are prepared to be selected by the
learning modules: Approaching the goal, approaching the teammate, going in
front of the ball while watching the goal, and going in front of the ball while
watching the teammate.

While an observer watches a demonstrator’s behavior, it uses the same be-
havior modules for recognition of observed behavior as shown in Fig.3. Each
behavior module estimates the state value based on the estimated state of the
observed demonstrator and sends it to the selector. The selector watches the se-
quence of the state values and selects a set of possible behavior modules of which
state values are going up as a set of behaviors the demonstrator is currently tak-
ing. As mentioned before, if the state value goes up during a behavior, it means
that the module is valid for explaining the behavior. The observed behavior is
recognized by a set of behaviors whose modules’ values are increasing.
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Here we define reliability g that indicates how much the observed behavior
would be reasonable to be recognized as a behavior

g =

⎧
⎨

⎩

g + β if Vt − Vt−1 > 0 and g < 1
g if Vt − Vt−1 = 0
g − β if Vt − Vt−1 < 0 and g > 0 ,

where β is an update parameter, and 0.1 in this paper. This equation indicates
that the reliability g will become large if the estimated utility rises up and it
will become low when the estimated utility goes down. Another condition is to
keep g value from 0 to 1.

3.4 Learning by Observation

In the previous section, behavior recognition system based on state value of its
own behavior is described. This system shows robust recognition of observed
behavior [7] only when the behavior to be recognized has been well-learned
beforehand. If the behavior is under learning, then, the recognition system is
not able to show good recognition performance at beginning. The trajectory of
the observed behavior can be a bias for learning behavior and might enhance the
behavior learning based on the trajectory. The observer cannot watch actions
of observed behavior directly and can only estimate the sequence of the state of
the observed robot. Let so

t be the estimated state of the observed robot at time
t. Then, the estimated state value V̂ o of the observed behavior can be calculated
as below:

V̂ o(s) =
∑

s′
P̂o

ss′

[
R̂(s′) + γV o(s′)

]
(6)

where P̂o
ss′ is state transition probability estimated from the behavior observa-

tion. This state value function V̂ o can be used for can be used as a bias of the
state value function of the learner V . The learner updates its state-action value
function Q(s, a) during trials and errors based on the estimated state value of
observed behavior V̂ o as below:

Q(s, a) =
∑

s′
P̂a

ss′

[
R̂(s′) + γV ′(s′)

]
(7)

while

V ′(s) =
{
V (s) if V (s) > V̂ o(s)
V̂ o(s) else

This is a normal update equation as shown in (4) except using V ′(s). The update
system switches the state value of the next state s′ between the state value of
own learning behavior V (s′) and the one of the observed behavior V̂ o(s′). It
takes V (s′) if the state value of own learning behavior V (s′) is bigger than
the one of the observed behavior V̂ o(s′), V̂ o(s′) else. This means the state value
update system takes V̂ o(s′) if the learner does not estimate the state value V (s′)
because of lack of experience at the state s′ from which it reaches to the goal of
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the behavior. V̂ o(s′) becomes a bias for reinforcing the action a from the state
s even though the state value of its own behavior V (s′) is small so that it leads
the learner to explore the space near to the goal state of the behavior effectively.

A demonstrator is supposed to show a number of behaviors which are not
informed directly to the observer. In order to update the estimate values of
the behavior the demonstrator is taking, the observer has to estimate which
behavior the demonstrator is taking correctly. If the observer waits to learn some
specific behavior by observation until it becomes able to recognize the observed
behavior well, bootstrap of leaning unfamiliar behaviors by observation cannot
be expected. Therefore, two strategies of updating value functions of observed
behaivors here:

– update all value functions of observed behaviors (V̂ o(s′)) based on all ob-
served trajectories

– update value functions of observed behaviors with high reliability using his-
tory of the observed trajectories

The former strategy contributes to propagate values/rewards to the neiboring
state. Even if the observed behavior does not match the expected behavior, the
state transition through the observation gives rough hints on distances between
states that help to develop rough state values of behaviors. The latter strategy
enhances to estimate appropriate values of the observed behavior. This directly
contributes to bootstrap learning of the behavior. The former strategy some-
times produces wrong state value estimation and the latter strategy corrects the
estimation based on appropriate state transition of the behaviors.

4 Behavior Learning by Observation

4.1 Experimental Setup

In order to validate the effect of interaction between acquisition and recogni-
tion of behaviors through observation, two experiments are set up. One is that
the learner does not observe the behavior of other but tries to acquire shoot-
ing/passing behaviors by itself. The other is that the learner observes the behav-
ior of other and enhances the learning of the behavior based on the estimated
state value of the observed behavior. In former experiment, the learner follows
the learning procedure:

1. 10 episodes for behavior learning by itself
2. evaluation of self-behavior performance
3. evaluation of behavior recognition performance
4. goto 1.

On the other hand, the later experiment, it follows :

1. 10 episodes for observation of the behavior of the other
2. 10 episodes for behavior learning by self-trials with observed experience
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3. evaluation of self-behavior performance
4. evaluation of behavior recognition performance
5. goto 1.

The both learners attempt to acquire behaviors listed in Table 1. The demonstra-
tor shows the behavior one by one but the observer does not know which behav-
ior the demonstrator is taking. In both experiments, the learner follows ε-greedy
method; it follows the greedy policy with 80% probalibity and takes a random
action else. Performance of the behaviors execution and recognition of observed
behavior during the learning time is evaluated every 10 learning episodes. The
performance of the behavior execution is success rate of the behavior while the
learner, the ball, and the teammate are placed at a set of pre-defined positions.
The one of the behavior recognition is average length of period in which the
recognition reliability of the right behavior is larger than 70% during the obser-
vation. The soccer field area is divided 3 by 3 and the center of the each area
is a candidate of the position of the ball, the learner, or the teammate. The
performances are evaluated in all possible combinations of the positions.

4.2 Recognition of Observed Behaviors

Before evaluating the performance of the behavior execution and behavior recog-
nition of other during learning the behavior, we briefly review how this system
estimates the values of behaviors and recognizes the observed behavior after the
observer has learned behaviors. When the observer watches a behavior of the
other, it recognizes the observed behavior based on repertoire of its own behav-
iors. Figs.4 (a) and (b) show sequences of estimated values and reliabilities of
the behaviors, respectively. The line that indicates the passing behavior keeps
tendency of increasing value during the behavior in this figures. This behavior
is composed of behaviors of approaching a ball and approaching the teammate
again, then, the line of approaching a ball goes up at the earlier stage and the
line of approaching the teammate goes up at the later stage in Fig.4(a). All
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Fig. 4. Sequence of estimated values and reliabilities during a behavior of pushing a
ball to the magenta player, red line : approaching a ball, green line : approaching the
goal, light blue line : passing, blue line : approaching the other, magenta line : shooting
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reliabilities start from 0.5 and increase if the value goes up and decrease else.
Even when the value stays low, if it is increasing with small value, the reliability
of the behavior increases rapidly. The reliability of the behavior of pushing a
ball into the teammate reaches 1.0 at middle stage of the observed behavior.
The performance of observed behavior recognition is 85% here ,that means, the
period in which the reliability of passing behavior is over 70% is 85% during the
observation.

4.3 Performance of Behavior Learning and Recognition

In this section, performances of the behavior execution and behavior recognition
during learning the behavior are shown. Fig.5 shows success rates of the behav-
iors and their variances during learning in cases of learning with/without value
update through observation. The success rates with value update of all kinds
of behaviors grows more rapidly than the one without observation feedback.
Rapid learning is one of the most important aspect for a real robot application.
The success rate without value update through observation sometimes could not
reach the goal of the behavior at the beginning of the learning because there is
no bias to lead the robot to learn appropriate actions. This is the reason why
the variances of the rate is big. On the other hand, the system with value up-
date through observation utilizes the observation to bootstrap the learning even
though it cannot read exact actions of observed behavior.

Recognition rates for observed behaviors and their variances shown in Fig.6
indicate a similar aspect with the ones of success rates. The performance of the
behavior recognition depends on the learning performance. If the learning system
has not acquired data enough to estimate state value of the behavior, it cannot
perform well. The learning system with value update with observed behavior
rapidly enables to recognize the behavior while the system without value update
based on the observation has to wait to realize a good recognition performance
until it estimates good state value of the behavior by its own trials and errors.

Those figures show the importance of learning through interaction between
behavior acquisition and recognition of observed behaviors.
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Fig. 5. Success rate of the behaviors during learning with/without observation of
demonstrator’s behavior
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Fig. 6. Recognition rate of the behaviors during learning with/without observation of
demonstrator’s behavior

5 Conclusion

Above, values are defined as behaviors, which are defined by the achieved goals.
The observer uses its own value functions to recognize what the demonstrator will
do. Preliminary investigations in a similar context have been done by Takahashi
et al. [7] and they showed much better robustness of behavior recognition than
a typical method. In this paper, unknown behaviors are also understood in term
of one’s own value function through learning based on the estimated values
derived from the observed behaviors. Furthermore, value update through the
observation enhances not only the performance of behavior learning but also the
one of recognition of the observed behavior effectively.

References

1. Whitehead, S.D.: Complexity and cooperation in q-learning. In: Proceedings Eighth
International Workshop on Machine Learning (ML 1991), pp. 363–367 (1991)

2. Price, B., Boutilier, C.: Accelerating reinforcement learning through implicit imita-
tione. Journal of Articial Intelligence Research (2003)

3. Bentivegna, D.C., Atkeson, C.G., Chenga, G.: Learning tasks from observation and
practice. Robotics and Autonomous Systems 47, 163–169 (2004)

4. Takahashi, Y., Kawamata, T., Asada, M., Negrello, M.: Emulation and behavior un-
derstanding through shared values. In: Proceedings of the 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, October 2007, pp. 3950–3955
(2007)

5. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

6. Connell, J.H., Mahadevan, S.: ROBOT LEARNING. Kluwer Academic Publishers,
Dordrecht (1993)

7. Takahashi, Y., Kawamata, T., Asada, M.: Learning utility for behavior acquisition
and intention inference of other agent. In: Proceedings of the 2006 IEEE/RSJ IROS
2006 Workshop on Multi-objective Robotics, October 2006, pp. 25–31 (2006)



Improving Situated Agents Adaptability Using

Interruption Theory of Emotions
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Abstract. Emotions play several important roles in the cognition of hu-
man beings and other life forms, and are therefore a legitimate inspira-
tion to provide adaptability and autonomy to situated agents. However,
there is no unified theory of emotions and many discoveries are yet to
be made in the applicability of emotions to situated agents. This paper
investigates the feasibility and utility of an artificial model of anger and
fear based on Interruption Theory of Emotions. This model detects and
highlights situations for which an agent’s decision-making mechanism is
no longer pertinent. These situations are detected by analyzing discrep-
ancies between the agent’s actions and its intentions, making this model
independent from the agent’s environment and tasks. Collective foraging
simulations are used to characterize the influence of the model. Results
show that the model improves the adaptability of a group of agents by
simultaneously optimizing multiple performance criterion.

Introduction

In spite of significant evidence that emotion plays several crucial roles in cog-
nitive processes [1][2][3][4], no consensus currently exists about a unified theory
from which an artificial model can be derived. Therefore, to enhance our under-
standing of existing theories and to appreciate their usage and effects, it is still
appropriate to implement them on artificial systems. Among research related to
process models of emotions [5] which are applied to situated agents, we can find
emotional mechanisms aimed at enhancing interaction quality between humans
and synthetic agents [6], increasing synthetic agents learning abilities [7], and
improving coordination among situated agents [8][9]. In these previous works,
emotions are generated in two ways : by detecting specific features in the envi-
ronment [6][7], or monitoring specific task progress variables without taking into
account the agent’s intentions [8][9]. Once generated, emotions either directly
modify the agent’s behavior [8][9][6], or influence other cognitive process of the
agent decision-making architecture [7]. These models of emotions are limited in
their versatility because they are specific either to environmental conditions for
emotions generation or to mission objectives for emotional responses. However,
emotions should be derived from a generic model to capture the fact that differ-
ent situations can lead to the same emotions, and that the same situation can
lead to different emotions. To our knowledge, no environment-independent and
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task-independent artificial model of emotions has yet been validated, and that
is the purpose of our research.

This paper presents an artificial model of anger and fear that reproduces func-
tions of emotions identified by the Interruption Theory of Emotions (ITE) [2][3].
This theory has not yet been implemented in situated agents. ITE states that
emotions are elicited when the current decision-making process of an individ-
ual is not adapted to the experienced situation [2][3][1].Our model detects these
conditions and generates emotions by monitoring temporal models of the agent’s
intentions. These models are independent of the agent’s environment. The main
function of emotions identified by ITE is to highlight the cause of the current
emotional state [1][2][3]. In our model, the cause of the current emotional arousal
is determined by an analysis of the agent’s intentions. Identifying this cause
allows the agent’s motivations to adapt the agent’s intentions. This signaling
process is independent of the agent’s tasks.

Section 1 presents ITE, followed by the description of our model in Section 2.
To demonstrate and evaluate this model, it has been implemented in a behavior-
based cognitive architecture and applied to a collective foraging task. Section 3
presents the experiments carried out and the results, illustrating that our emo-
tional process improves the adaptability of a group of agents.

1 Interruption Theory of Emotions

ITE has been primarily developed by Hebb [2] and Mandler [3]. It states that
interruptions of ongoing cognitive or behavioral activity trigger the arousal of the
sympathetic nervous system which is the beginning of an emotional experience.
This is also supported by the Affect Control Theory and the Self-Discrepancy
Theory [10]. ITE identifies three main sources of interruption:

1. Experiencing an unexpected effect of a behavior. This occurs when conditions
hinder or prevent a behavior from carrying out its function.

2. Experiencing conflicting intentions. This occurs when different decisional
processes generate incompatible intentions, i.e. intentions that cannot be
carried out simultaneously by actions.

3. Experiencing an unexpected situation, not anticipated by a predictive model
of the world.

According to ITE, the main function of the arousal triggered by the occurrence
of such interruptions is to signal to the individual that events in the environ-
ment require attention and adjustment. This generic arousal is followed by the
orientation of the individual’s attention toward the cause of the arousal. This
highlighting process allows the individual to focus on the cause of the emotion
and take the appropriate actions accordingly. Unlike other cognitive theories of
emotions ITE focuses on elicitation of emotion rather than on elicitation of the
different emotions. It is thus not a complete theory of emotions and a model
based on this theory should be extended by models of other aspects of human
emotions such as appraisal [4] and stimulus analyses to get the full range of
functions associated with human emotions.
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2 Artificial Model of Emotions

The artificial model of emotions we have developed aims at detecting and high-
lighting interruptions of cognitive or behavioral activities in order to trigger an
adaptive reaction when ’normal’ decision-making is no longer pertinent. This
relates to ITE’s first two sources of interruption. Figure 1 illustrates the hy-
potheses we make about the decision-making architecture of an agent to design
the process which implement our model of emotions. Actions of the agent are
derived from concurrent processes (i.e., Behaviors) which are activated by an Ac-
tion Selection mechanism according to the agent’s Intentions. The agent must
have cognitive processes (i.e., Motivations) responsible for generating Intentions
and determining their desirabilities. Intentions are data structures which repre-
sent particular activations and configurations of one or several Behaviors. The
information regarding which Intentions are realized by the agent’s actions must
be available to the decision-making processes.

Fig. 1. Cognitive processes and concepts required by our model of emotions

The emotional process we have developed unfolds as follows: when a situation
needing adaptation occurs, an interruption is detected by the appearance of a
discrepancy between the agent’s intentions and the way they are satisfied by its
actions (exploited). Once an interruption is detected, its cause is identified by
an analysis of the current agent’s intentions. The occurrence of an interruption
and its cause are then signaled to the agent’s motivations, which can change the
agent’s intentions accordingly.

Coherence between intentions and actions is checked through the monitoring
of temporal models of intentions’ exploitation. These models depend on the type
of intentions: Goal-Oriented intentions are related to behaviors which make the
agent accomplish actions aimed at fulfilling it’s goals and Safety-Oriented inten-
tions are there to keep the agent away from problematic situations. Therefore, a
Goal-Oriented intention has an exploitation model of being exploited when de-
sirable and, conversely, a Safety-Oriented intention conform to its exploitation
model when not exploited.

The accumulated time aI(t) during which intention I does not conform to its
exploitation model at time t is expressed by (1) and (2):

aI(t) =
∫ 0

−WI

bI(t)dt (1)



304 C. Räıevsky and F. Michaud

bI(t) =

⎧
⎨

⎩

0 if intention I conform to its exploitation model

1 otherwise

(2)

where WI is the length of the sliding time window over which intention I is
monitored. An interruption is detected when aI(t) becomes greater than a time
threshold.

Anger is elicited by interruptions involving Goal-Oriented intentions, and con-
versely Fear is elicited by interruptions involving Safety-Oriented intentions.
These emotions are used to modify the agent’s behavior through its motiva-
tions, but the associated results are beyond the scope of this article.

Detecting and highlighting the cause of the interruption is carried out by an
analysis of the agent’s current intentions. It is important to distinguish the in-
tention which triggers the interruption (by not conforming to its exploitation
model) from the intention which is the cause of this interruption (i.e., the ”re-
sponsible intention”). The responsible intention prevents the triggering intention
to conform to its exploitation model and is, therefore, the subjective source of
the interruption. The nature of the triggering intention determines which in-
tention is responsible of the interruption. A Goal-Oriented intention triggers an
interruption if it is desirable but not exploited during a certain period of time.
Therefore, the responsible intention is the one which is being exploited the most
during the recent past because it hinders the exploitation of the triggering in-
tention. Conversely, a Safety-Oriented intention triggers an interruption because
it has been exploited during a certain period of time. The responsible intention
is, in this case, the triggering one. Once identified, the responsible intention is
signaled to the agent’s motivations as the cause of the interruption. The agent’s
motivations are then responsible for the adaptation of the agent behavior, keep-
ing the model independent of particular adaptive reaction and of the agent’s
mission.

Interestingly, the exploitation models of intentions used by the interruption
detection process are independent of the way intentions are carried out by ac-
tions; only the intentions’ nature is taken into account and this is independent of
the expected specific effects of the intention on the environment. Furthermore,
these models are independent of the situation experienced by the agent because
its perceptions are not taken into account. However, a model of emotions cannot
be completely disembodied and independent from reality because emotions are
not pure cognition. The emotional process we have developed is grounded in
agent’s reality for two reasons: first, the model parameters are time periods (i.e.,
a time window length and a time threshold) and capture the ’normal’ operation
of the agent. They therefore are bounded to the agent reality (and can then
be determined by a designer through observation and measurement instead of
a tedious trial and error process). Second, the emotional process originates in
the intentions’ exploitations which is the result of the interaction between the
agent’s action selection process and its environment.
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The key strength of the emotional process described here is its independence
from both specific effects of intentions on the environment and from reactions
triggered by interruptions. This independence implies that our model is not
coupled with the way the agent’s behaviors carry out its intentions and ensure
its applicability to other behaviors and other missions.

3 Experiments and Results

Multi-agent foraging is a widely used task with clear metrics to evaluate per-
formance (e.g., physical interferences, traveled distance, time to complete). It is
therefore suitable to illustrate our emotional mechanism. Fig. 2 illustrates the
simulated environment (implemented in Stage [11]) used for the foraging ex-
periments. The simulated agents are Pioneer 2 DXs in a pen of 6×10 meters.
Six agents have to collect 12 pucks and take them one-by-one to the home re-
gion. Each agent is given two simulated sensors: one laser range finder with an
8 meter range and 180◦ of field of view, and one fiducial finder which returns
the identifier and relative position of objects with a fiducial tag, in a range of
5 meters and a 180◦ field of view. Each agent has an unique fiducial identifier
which allow them to perceive others’ relative positions. Home flags and pucks
have also fiducial ids. Agents are considered to be homogeneous, i.e., they all
have the same physical and decisional capabilities. They can communicate with
each other using broadcast mode (through network link).

To apply our emotional process to this mission, we integrated it in a modular
decision-making architecture called Motivated Behavioral Architecture (MBA)
[12]. In MBA, the Behaviors are independent modules issuing commands based
on the agent’s perception and Intentions. Behaviors issue commands only if
they are activated. Their activations and parameters are derived by a Selec-
tion module from the agent’s Intentions. These intentions are generated by the
Motivational Modules (MM) and are stored in the Dynamic Task Workspace
(DTW). They are organized in a tree-like structure according to their inter-
dependencies, from high-level/abstract intentions to primitive/behavior-related
intentions. MMs are asynchronous, independent modules that can add Inten-
tions, modify or monitor their parameters, and give activation recommendations

Fig. 2. Experimental setup for multi-agent foraging
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about them. These recommendations correspond to the desirabilities of Inten-
tions according to MMs and can take three different values: positive, negative
and undetermined. The Selection module applies a policy to these recommen-
dations to determine the behaviors’ activations; a behavior is activated if its
corresponding intention has at least one positive and no negative recommen-
dation. The associations between Intentions and Behaviors is implemented in a
System Know-How (SNOW) module. This module is also in charge of updating
information about exploited Intentions, i.e., Intentions which are being carried
out by the agent’s actions.

For this mission, the five behaviors, arbitrated using subsumption, are (in
order of priority):

– Escape makes the agent turn on itself to find a safe passage to leave the
current location.

– Obey makes the agent execute a particular action such as stopping or turn-
ing left, according to a parameter associated with the agent’s intentions.

– Avoid makes the agent move safely in the environment by avoiding obstacles
using the laser range finder readings. Only obstacles within a 0.9 meter radius
of the agent are taken into account.

– Forage tracks pucks, collects them one at a time and takes them back to
the home region.

– Move Forward gives the agent a constant linear velocity.

The motivational modules and intentions they manipulate are:

– Survive ensures the security of the agent by adding and recommending the
high-level Stay Safe intention, and specifying it by adding Avoid intention
or Escape intention as its child. These two intentions are directly associated
with behaviors.

– Curiosity makes the agent explore its environment by recommending the
Explore intention, associated with Move Forward.

– Forage manages the foraging task by recommending the Forage intention
(which is associated with the Forage behavior) and inhibiting the Stay
Safe intention when a puck is about to be collected by the agent.

– Social carries out the group coordination strategy which is based on a dom-
inance hierarchy. When an agent perceives a higher-ranked agent in a range
of 1.5 meter in front of it, it stops (through the activation of the Obey
behavior with its parameter set to stop). This distributed strategy aims at
avoiding physical interference while minimizing distance traveled.

The emotional process has been implemented in a separate module, called
the Emotional Module (EM). To detect interruptions, the EM monitors the Stay
Safe and Forage intentions. The Forage intention has a time window length of
70 seconds and and time threshold of 60 seconds. Stay Safe has a time window
length of 140 seconds and a time threshold of 120 seconds. These parameters have
been fixed from pre-experiments trials by observation of intentions exploitations
during normal situations.
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Fig. 3. Adaptation Process Example

These models have shown useful in detecting and adapting to two typical kinds
of situation. The first typical situation occurs when the agent is in a high obstacle
density area. In this situation, the Stay Safe intention is used often enough to
trigger an interruption from the under-exploitation of the Forage intention or
an over-exploitation of the Stay Safe intention. In both cases, the responsible
intention is Stay Safe and is signaled as the cause of the interruption to the MM.
The Survive MM uses this signal to adapt the avoidance strategy by switching
the children intention of Stay Safe in the DTW from Avoid to Escape.

The second typical situation occurs when an agent stops because it perceives
a superior agent which is experiencing some kind of failure. Fig. 3 presents
the concepts involved in the adaptation mechanism triggered by this kind of
situation. This adaptation process is triggered by the prolonged exploitation of
Obey intention which prevents the Forage intention from being exploited. The
Forage intention then generates an interruption after not being exploited during
60 seconds over the last 70 seconds. Because Forage is a goal-oriented intention,
the EM looks for the most exploited intention as the cause of the interruption
and find Obey. This intention is then signaled to the agent’s motivations as the
cause of an interruption. This intention has been added by the Social MM to
enforce the social rules of the group. The Social MM is therefore responsible to
adapt this intention in response to the emotional signal. To do so, it triggers an
update of the dominance link established between the superior and the inferior
agent. The result of this update depends on the emotional state of the superior
agent : if its dominant emotion is fear (meaning it is experiencing an unwanted
situation involving its security) the agent is lowered in the hierarchy. Conversely,
if it is experiencing anger, the agent keeps its rank in the hierarchy. This update
only changes the relationship between the two involved agents.

Work by Murphy et al. [9] and Parker [8] are closely related to ours as they
trigger behavioral adaptation from affective evaluation of task progression. How-
ever, in their work, emotion related variables are generated from an analysis of
the agent’s perceptions and from dedicated social messages. Their models are
therefore tightly coupled with the agent’s environment and with its task. Fur-
thermore, adaptations triggered by their emotional mechanisms are dedicated
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to group task allocation. The main difference with our work is that our model
is intended to be a generic self-analysis mechanism allowing an agent to detect
problematic situations, whereas their emotional mechanism aim at improving
performances of specific algorithms.

3.1 Results

To characterize the influence of our emotional mechanism while neutralizing the
influence of other architectural components, we compared performances of four
controllers which differ only by the presence or absence of the Social MM and of
the EM: 1) the Control Group (CG) does not use the Social MM nor the EM;
2) EM refers to the controller only using the EM without the Social MM, and is
used to characterize the influence of the EM without social coordination; 3) CG-
So is a controller using the Social MM without the EM, and is used as a reference
to evaluate the coordination strategy performance during the foraging task; 4)
EM-So has both the EM and the Social MM, and is used to characterize the
combined influence of the EM on the avoidance behavior and on the coordination
strategy. Each controller has been used on the same series of forty randomly
generated initial positions of agents and pucks to eliminate the influence of the
initial conditions on the group’s performance. Table 1 summarizes the observed
results in terms of the following metrics. Success Rate is the ratio of failed trials
(determined when pucks remain to be collected after 30 min) over the total
number of trials. This metrics captures the ability of the group to recover from
situations that cause it to fail and that we have not anticipated reflecting the
adaptability of the group. Physical Interference Ratio is the part of time spent at
a distance of 0.7 m from other agents. This metric represents the risk of collision
between agents. Completion Time is the time spent to take all pucks to the home
region. Traveled Distance is the total distance traveled by the agents during one
trial. All these metrics, except Success Rate, take only successful experiments
into account.

Comparing controllers both with the EM (i.e. EM and EM-So) and without
(i.e. CG and CG-So) shows that the presence of the EM has improved the Success
Rate of the group with and without coordination. This therefore suggests that
our emotional process improves both the adaptability of the avoidance behavior
and of the coordination strategy. As expected, the introduction of the Social MM
has reduced the physical interferences between agents, making them safer, and

Table 1. Experiments results

Control Type CG EM CG-So EM-So

Success Rate 90 % 95 % 54.8 % 87.5 %

Physical Interference Ratio 26.4 % 24.1 % 15.6 % 16.8 %

Completion Time 439 462 467 429

Traveled Distance 375 404 338 327
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the total distance they have traveled to complete the task, making them more
efficient. However, without the EM, the coordination strategy has dramatically
reduced the Success Rate of the group. This can be explained by the recurrent
occurrence of an endless situation, illustrated in Fig. 2. In this situation, an
agent (the black one in the bottom left corner), carrying a puck, is surrounded
by inferior agents which are thus blocking it. Adding the EM to the Social MM
has balanced the effects of this typical situation, bringing the Success Rate,
Physical Interference Ratio, Completion Time, and Traveled Distance metrics
to an optimum.

These results also show that emotions we have generated can be used to partly
replicate the structuring function of emotions in some human groups [13]. It does
so by keeping hierarchy relations between individuals coherent with the situation
experienced by the group allowing it to adapt to the situation.

4 Conclusion

Situated agents adaptability ultimately depends on the detection of the situa-
tions for which their decision-making is not pertinent and which require a behav-
ioral or cognitive reaction. This detection is a key problem for situated agents
because their environment is dynamic, continuous and unpredictable. Psychol-
ogists have identified that one of the human emotions’ functions is to highlight
this kind of situation, allowing other cognitive processes to address them. We
have developed an emotional mechanism which allows situated agents to detect
this kind of situation by using temporal models of intentions. One of the key
strength of this mechanism is that it increases the agent’s adaptability with-
out introducing either specific knowledge about the environment or about the
tasks. Results from simulation experiments show that agents can recover from
the malfunction of two specific algorithms (i.e., an avoidance behavior and a co-
ordination strategy) through the use of our emotional mechanism. This has been
achieved without relying either on specific knowledge about these algorithms or
about specific features of the environment. The independence between our model
of emotions and these algorithms guarantees the applicability of our emotional
process to other algorithms and by extension to other applications. Our emo-
tional process can be extended by adding other kind of intentions analyses such
as observation of intentions resulting status, desirabilities oscillations (eliciting
confusion) or lack of change in intentions (eliciting boredom) for example. We
believe this versatility allows us to see our emotional process as the basis of
a generic self-analysis mechanism allowing situated agents to detect and then
adapt to situations for which their actions or decisions are not pertinent. Such a
generic mechanism will be useful to autonomously trigger modification of deci-
sional processes which are needed by situations or environments not anticipated
by human designers and therefore, bringing artificial systems closer to complete
autonomy.
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Abstract. The current paper studies possible neuronal mechanisms for
meta-level cognition of rule switching. In contrast to the conventional
approach of hand-designing the cognitive functions, our study employs
evolutional processes to search for neuronal mechanisms accounting for
meta-level cognitive functions required in the investigated robotic tasks.
Our repeated simulation experiments showed that the different rules are
embedded in separate self-organized attractors, while rule switching is
enabled by the transitions among attractors. Furthermore, the results
showed that although certain segregation between the lower sensory-
motor level and the higher cognitive level enhance the task performance,
meta-level cognition is significantly supported by the embodiment and
the lower level sensory-motor properties.

1 Introduction

Both animals and humans, use meta-level cognition in order to adapt their action
strategies to unpredictable environment situations. Three decades ago, Gregory
Bateson [1] demonstrated this ability in dolphins that learned both behavior
scheme rules and additionally how to manipulate them in a meta-level, consid-
ering that rules have to repeatedly switch in order for the overall behavior to be
successful. He argued that dolphins were manipulating rules at a meta-level, but
how humans and other animals acquire a meta-rules, has yet to be explained.
What are the neural mechanisms that enable meta-level phenomena?

To better understand how animals and humans execute rule switching, neuro-
scientists have relied on tests like the Wisconsin Card Sorting (WCS). The WSC
task creates a situation in which the subject needs to have meta-level awareness
of the rules to accomplish card sorting. A large number of experiments with
humans and monkeys have shown that impairments to the prefrontal lobe ad-
versely affect performance in WCS tests, suggesting that this region is important
for meta-level cognitive behaviors.

In order to explain rule switching in meta-level, modelling researchers describe
possible brain mechanisms from a human-specified cognitive science perspective.
In a typical explanation, a rule is retrieved from long-term memory to working
memory in order to be applied to the current situation. If the rule matches the
situation (i.e. it supports gaining a reward) it is kept in the working memory.
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Otherwise, the rule is switched. Such predefined cognitive mechanisms have been
implemented in neural network models of prefrontal functionality [2,3]. The mod-
els describe rule switching mechanisms by combining discrete cognitive modules
responsible for memory retrieval, matching, working memory, long-term memory
and rule alternation.

However, these hardwired explanations seem to lack generality because of their
potential arbitrariness. Therefore, the question now is, can we explain meta-
level cognition only by combining these predefined cognitive modules? Is there
any alternative approach that accounts for meta-level cognition? In order to
investigate this issue, we should model meta-cognitive phenomena from the lower
grain size level, without assuming apriori functions. Then, we might find novel
and more natural mechanisms for explaining the same phenomena. The current
paper pursues this type of approach for investigating meta-rule processing.

The motivation for our experiments is to examine possible neuronal mecha-
nisms accounting for rule switching, by providing self-organization pressure on
simple neural network models. Our research methodology is based on the com-
bination of evolutionary robotics [4] and dynamic neural networks [5,6]. Specif-
ically, we conduct robotics simulation experiments without abstracting prede-
fined processes at different cognitive levels. The tasks used in our study inte-
grate meta-level rule manipulation with sensory-motor interaction, highlighting
the inseparable nature of these processes. In summary, our experiments and the
analysis of the obtained results elucidate that:

– Attractor switching could be a universal mechanism accounting for rule
switching in meta-level.

– Some kind of information processing segregation between higher and lower
levels enhances the overall network performance. This findings may account
for the higher level role of prefrontal lobe in tasks.

– Embodiment is essential even for meta-level cognitive processes because
sensory-motor dynamics can support the rule switching mechanisms.

2 Behavioral Tasks

We have designed a robotic task that resembles Wisconsin Card Sorting test, but
additionally emphasizes dynamic body-environment interaction. Following this
approach, we consider both meta-level cognition and sensory-motor coupling as
inseparable parts of a complex behavioral problem.

The task goes as follows. Let’s assume that a simulated robotic agent is located
in the lower part of a T-maze, and a light sample appears at its left or right side
[7]. The agent has to move to the end of the corridor making a 90o left or right
turning, depending on the side of the light sample. Two different response rules
are defined (see Fig 1) similar to [8]. According to the Same-Side (SS) rule, the
agent should turn left if the light source appeared at its left side, and it should
turn right if the light source appeared at its right side. The complementary
response rule named Opposite-Side (OS), implies that the robot should turn to
the opposite direction of the light source sides. For both rules, when the agent
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Same Side (SS) Rule Opposite Side (OS) Rule

Fig. 1. A schematic representation of the delayed response rules. Light samples are
represented by double circles. Target locations are represented by ×, while reward cor-
responds to the gray area. The behavioral task asks for controllers capable of switching
between the two rules.

Exploratory Trials Evaluation Trials

Phase p+1

Phase p+2

Phase p

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

rule switching −−>SS

rule switching −−>OS

SS

Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Fig. 2. A schematic demonstration of the task. For the current example, we assume
that Tp = 10, Tp+1 = 8, Tp+2 = 10.

responds correctly it receives positive reinforcement indicating it is following the
correct rule.

The task trials are repeated with resetting robot position to the start position
but without resetting the neural state of the robot controller (see below). Because
the rules are switched from one to the other unpredictably after several trials,
the robot has to adapt its response strategy to the newly adopted rules by
monitoring the reward signal. The details of the experimental procedure are
described below.

2.1 Task Setup

The task is separated to P ∈ {1...10} phases, each one including Tp trials. The
number of trials Tp ∈ {8, 10, 12, 14} is randomly specified, so that the agent
can not predict the end of a phase. During phase p, the agent has to follow
the same response rule for all Tp trials. Let’s assume for example that it should
follow the SS rule. Each trial tests the response of the robot after light sample
appearance at its left or right side (their order is randomly chosen). When a
trial starts, the robot is sensing the light and then it moves to the end of the
corridor where it makes a turn choice. According to the SS rule, the response is
correct when the robot turns towards the side of light sample. If the robot makes
the correct choice, it drives to a reward area receiving positive reinforcement. In
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case that the robot turning is not correct, it will drive to an area that no reward
exists, indicating that the currently adopted rule is not correct and it should
be switched. During phase p, the robot is given six free exploratory trials to
discover what is the correct rule. In the remaining Tp− 6 trials the performance
of the robotic agent is evaluated in terms of following the desired response rule.

If phase p is completed successfully, the robot moves to phase p + 1, where
the response rule is switched. This means that the reward signals have changed
places and -for our example- they are now positioned according to the OS rule.
However, the agent is not informed that the rule has been switched and thus it
will continue responding according to the previous rule. In that case, the agent
will be unable to get more reward, that indicates it is not following the correct
rule. In order to get a new reward, the robot must reconsider its rule choice,
switching to OS. In phase p + 1, the robot is given again six free exploratory
trials to discover rule switching. In the remaining Tp+1−6 trials agent’s responses
are evaluated according to the currently correct response rule. If any of these
trials is incorrect, the evaluation is interrupted.

If phase p + 1 is completed successfully, the robot moves to phase p + 2,
where the response rule is switched again -to SS, for our example- and a similar
experimental procedure is repeated. Overall, the task evaluates agent’s switching
behavior for a maximum of P phases (if all of them are completed successfully).

Computational Details. At the beginning of trials the robot is located at a
predefined starting position with its direction randomly specified in the range
[85o − 95o] degrees. The robot is kept in the same initial position for five simu-
lation steps, and then it is allowed to navigate freely in the environment for 165
more simulation steps. After the completion of one trial the simulated robot is
automatically transferred to the initial position having a new random direction,
in order to experiment for the next trial.

3 CTRNN Model and Input-Output Connectivity

We use Continuous Time Recurrent Neural Network (CTRNN) models to inves-
tigate how meta-level mechanisms self-organize in neuronal dynamics under the
given task pressure. Interestingly, in CTRNNs contextual memory is implicitly
represented by internal neurons dynamics. In our experimental setup, the neu-
ronal state is initialized only once in the beginning of the first trial, and then
neuronal dynamics continues across trials and phases without resetting. In this
manner, we speculate that dynamical states will emerge for representing the rule
stored in working memory, and additionally, these dynamical states might switch
to one another according to the currently adopted rule.

Additionally, both bottleneck (BN) [6] and fully connected CTRNN config-
urations are explored (see Fig 3), investigating what kind of network structure
is essential for achieving meta-level functions. As shown in Fig 3(a), a CTRNN
is squeezed in the middle with BN neurons (i.e. the upper and lower parts can
interact only through BN neurons). The lower part perceives the sensory flow
and outputs motor flow and the higher part receives reward stimuli. The BN
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Fig. 3. Schematic representation of (a) the bottleneck CTRNN and (b) the fully
connected CTRNN

is supposed to segregate information processing in different levels, maintaining
minimum interactions between them. In contrast, in the fully connected case
(see Fig 3(b)) information processing levels can hardly differentiate. Overall, the
CTRNN consists of 15 neurons for the case of the bottleneck structure and 13
neurons for the case of fully connected structure. All neurons are governed by
the standard leaky integrator equations described in previous studies [5,6].

In order to investigate embodied rule switching in meta-level we employ a two
wheeled simulated robotic agent equipped with 8 uniformly distributed distance,
light and reward sensors. The robotic platform is based on YAKS environment1,
which simulates motion dynamics of the Khepera robot.

4 Evolutionary Procedure

A Genetic Algorithm2 (GA) is utilized to explore how the desired meta-level
switching behavior can self-organize in the CTRNNs.

Incremental Evolution. In order to facilitate successful convergence of the
evolutionary process we have used an incremental approach investigating grad-
ually more complex versions of the problem. In the first 60 generations (see
Table 1) the evolutionary process asks for robot controllers capable of adopting
both SS and OS response rules. Two different tasks are used to evaluate robot
controllers. Each task consists of only one phase. The accomplishment of Task1
implies that the robot can adopt SS rule, while the accomplishment of Task2
implies that the robot can adopt OS rule. At the beginning of each task the
states of all CTRNN neurons are reset to zero, which means that the robot is in
a neutral state without following any rule. The robot explores the environment
to find out which is the rule that should be adopted in order to get rewards.

During generations 61-140, the tasks are getting more complex asking for
controllers capable of switching between rules. At this version of the tasks only
1 The simulator has been slightly modified for the needs of the present study.
2 The current evolutionary procedure does not mean to represent an artificial coun-

terpart of biological evolution. It only serves our study as a consistent mechanism
to explore the domain of solutions for our problem.
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Table 1. The incrementally more complex tasks solved in different parts of the evolu-
tionary procedure

Generations Task Type Description

Single CTRNN reset - Task 1: SS
1-60

Phase CTRNN reset - Task 2: OS

Two CTRNN reset - Task 1: SS → OS
61-140

Phase CTRNN reset - Task 2: OS → SS

Multiple CTRNN reset - Task 1: SS → OS → SS → OS . . . SS → OS
141-300

Phase CTRNN reset - Task 2: OS → SS → OS → SS . . . OS → SS

one switching step is explored, therefore tasks consist of two phases. Properly
positioned reward signals indicate the desired response strategy in each phase.
The Task1 examines agent’s ability to adopt SS and then switch to OS. In a
similar way, the Task2 examines robot’s ability to first adopt OS and then switch
to SS. At the beginning of each task the CTRNN state is reset to zero, but then
it is kept continuous implying that special memory pathways have to develop
facilitating rule switching from SS to OS and visa versa.

Finally, in generations 141-300 we ask for controllers capable of repeatedly
switching between rules. Both Task1 and Task2 are now described by ten phases.
Similarly to previous generations CTRNN is reset to zero at the beginning of
each task, and then keeps continuous memory state when passing from one phase
to the other (i.e. continuously switching between SS and OS rules).

Task Evaluation. The accomplishment of tasks is evaluated based on the goal
positions of each trial. The goal positions are specified according to (i) the current
rule, and (ii) the side of the light sample (see Fig 1). For each response of the
robot the minimum distance dmin ∈ [0, D] between the goal and the robot route,
is used to measure the success of robot turning choice (D is the distance between
the starting position and the goal). For a task i evaluating the behavior of the
robot for p phases, the success on rule switching is given by:

Ei =
p∑

q=1

⎛

⎝
Tq∑

t=7

(
1− dmin

D

)⎞

⎠ (1)

The evaluation starts from trial t = 7 because the first six trials of each phase
are exploratory and they are not considered in evaluation. The higher the value
of Ei the more rule switches the agent has accomplished.

Fitness Measure. The individuals encoding CTRNN controllers are tested on
Task1 and Task2 described above. The accomplishment of each task is evalu-
ated separately according to eq (1). The total fitness of the individual is then
estimated by:

fit = ETask1 ·ETask2 (2)
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SS response

OS response

Fig. 4. The response of the agent in two consecutive phases

5 Results

For each network topology (either bottleneck or fully connected) we have con-
ducted ten independent evolutionary runs to acquire CTRNN controllers capable
of rule switching in meta-level. Specifically, a standard GA with mutation, but
without crossover, is employed to evolve populations of 500 encoded CTRNN
solutions. In the case of the bottleneck network eight out of the ten runs con-
verged successfully, producing controllers capable of switching between SS and
OS rules. However, for the fully connected networks, the success of evolutionary
runs was reduced to five out of ten. This significant difference of the success rate
implies that bottleneck structures are more appropriate to address meta-level
cognitive process. This is because the bottleneck adequately segregates the com-
posite system facilitating self-organization of distinct partial functionalities. For
the rest of the paper we will concentrate on the results of bottleneck networks.

The performance of the agent for one representative CTRNN is demonstrated
in Fig 4. Despite the fact that evolutionary procedures have been statistically
independent, they have all produced CTRNNs with similar internal dynamics.
The consistently similar characteristics of neural networks supports the valid-
ity of our results in terms of considering their internal dynamics as a valuable
alternative scenario for rule switching in meta-level.

Additionally, we have investigated neural activity in the higher and lower
levels of the CTRNN network observing different qualitative characteristics in
their firing (see Fig 5), implying that layers have acquired different roles in
the functionality of the overall system. In particular, the activity of higher level
neurons varies mostly in (i) the beginning of trials, indicating they are involved in
deciding the response of the agent, and (ii) the end of trials, indicating they are
involved in assessing agent’s response in terms of accomplishing the expected
reward (Fig 5 (a),(b) top two lines). In contrast, variance in the activity of
lower level neurons is observed during the whole trial indicating its involvement
in the execution of higher level plans taking also into account environmental
interaction issues, e.g. wall avoidance (Fig 5 (a),(b) lower two lines). It is worth
emphasizing that the design procedure does not artificially force CTRNN to
develop different roles in the higher and lower levels. This property is an emergent
result of evolutionary self-organization, and appears consistently in all CTRNNs
capable of rule switching in meta-level.

Comparing higher level activity for all four possible cases (left and right re-
sponse for either the SS or the OS rule), we observe that the two rules are sepa-
rated by the activation of neurons at the beginning and end of trials. Specifically,
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Fig. 5. The activation of two higher (H-N1, H-N2) and two lower (L-N1, L-N2) level
neurons when the agent follows the SS rule and the OS rule. SS is demonstrated with
a solid line while OS is demonstrated with a dashed line.
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Fig. 6. Phase plot of higher level neural activity when the agent follows (a) the SS
rule and (b) the OS rule. Neural activities stabilize to attractors having distinct shapes
for each case.

both left and right SS rule turnings start and end with maximum activity at
H-N1, and minimum activity for H-N2 (see Fig 5(a)). In contrast, these neurons
have a complementary activation pattern for OS rule, that is common for both
the left and the right turnings (see Fig 5(b)). The fact that the neurons have
similar activities for both turnings of a rule facilitates positioning agents behavior
in the same context when the underlying rule is adopted. At the same time,
the fact that neural activity is very different when different rules are followed
facilitates separating agent’s behavioral context between OS and SS rules.

The higher level differences between the two rules can be clearly demonstrated
by conducting the attractor analysis taking the phase plots of neuron activities
in the higher level. Specifically, for both rules, we ask the agent to perform 30
random turning trials (either left or right) after randomly resetting the neurons
in the higher level (Fig 6). For each rule we observed the same shape of attractors
to appear in the plot, regardless of the randomness in the initial state. Therefore,
each plot represents a distinct invariant set for the corresponding rule. The
neuronal state always converge to one of the two invariant sets depending on the
reward stimuli condition that specify the currently correct rule. The generation
of distinct attractors for each rule is observed in all successful evolutionary runs,
implying that this might be a general mechanism for rule encoding.
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Fig. 7. Higher level neural activity during rule switching. In the trial 1 the agent
follows the SS rule giving a successful right response (demonstrated with a solid line).
In the next trial the rule has unexpectedly changed to OS, therefore the agent gives
an erroneous response (demonstrated with dotted line). In the trial 3 the agent tries
the OS rule that is correct (demonstrated with dashed line), and therefore it continues
with the same rule in the next trial (demonstrated again with a dashed line).

The activity of neurons for the case of rule switching is demonstrated in Fig 7.
Specifically, when the agent makes a wrong response (due to an unexpected rule
change) higher level neurons are unable to get values that confirm the current
rule is correct, providing instability to the whole system. This unstable condition
facilitates changing the currently adopted rule to the new one (i.e making a
transition from the one attractor to the other). We note that according to the
current experimental setup the robot is provided 6 free trials to consider rule
switching. However, in the majority of cases, the attractor state can transit
immediately after a single wrong response, and rarely two or three unsuccessful
trials are necessary.

6 Discussion

The current study investigates possible mechanism capable of accomplishing rule
switching in meta-level. In contrast to traditional approaches using cognitive sci-
ence terminology to explain rule switching, our results showed that new mech-
anisms based on dynamical systems principles can also accomplish meta-level
manipulation of behavioral rules.

In our results, the self-organized internal dynamics encode each rule to a dis-
tinct attractor, while switching of rules takes place by accompanying state tran-
sition from one attractor to another. This mechanism seems to be widely valid
because the same internal dynamics was observed in the most of our experiments
and additionally because the assumptions made in our neural network model
are minimal. Our only constraint is the bottleneck connectivity in the network
[6]. In that case it is shown that partial segregation of information processing
between the meta-level and the sensory-motor level enhances the performance
of the global network. This may account why meta-level cognition has developed
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in a semi-autonomous higher level module (i.e. prefrontal cortex) in mammals
and especially in humans.

It is noted that the agent follows different trajectories depending on the rules
adopted. In other words, sensory-motor level dynamics have considerable cor-
relations with meta-level processing. This means that distinct attractors are
generated not only by abstract meta-level processing but with the active partic-
ipation of sensory-motor dynamics. Therefore, we argue that the embodiment
plays an important role in meta-level cognition.

Our results can be related to the study on emergence of turn-taking, con-
ducted by Ikegami and Iizuka [9]. In this work, a couple of evolved agents
alternates predator-pray roles acquiring autonomous, self-generated behavior
switching mechanisms without external triggering. A similar phenomenon of self-
generated rule switching was observed in our study, when the reward signal is
completely removed for all trials. In that case, the agent repeatedly switches the
adopted rule from one trial to the other whenever the robot enters the location
where reward “used to be”.

Our future research includes more complex cases with having more than two
rules. Our preliminary result showed that 3 rules case can be evolved but with
slightly lower success rate. The rule switching dynamics becomes much more
complex compared to the two rule case. The detail analysis of these results is
left for a future study.
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Abstract. The mechanisms underlying learning in classical condition-
ing experiments play a key role in many learning processes of real organ-
isms. This paper presents a novel computational model that incorporates
a biologically plausible hypothesis on the functions that the main nuclei
of the amygdala might play in first and second order classical condi-
tioning tasks. The model proposes that in these experiments the first
and second order conditioned stimuli (CS) are associated both (a) with
the unconditioned stimuli (US) within the basolateral amygdala (BLA),
and (b) directly with the unconditioned responses (UR) through the
connections linking the lateral amygdala (LA) to the central nucleus of
amygdala (CeA). The model, embodied in a simulated robotic rat, is val-
idated by reproducing the results of first and second order conditioning
experiments of both sham-lesioned and BLA-lesioned real rats.

1 Introduction

Individual learning plays a fundamental role in adaptive behavior of organisms,
especially in most sophisticated ones like mammals. Some of the most important
mechanisms underlying learning are those studied in classical (Pavlovian) con-
ditioning experiments. In these experiments an animal experiences a systematic
association between a neutral stimulus, for example a light (the “conditioned
stimulus” or “CS”), and a biologically salient stimulus, for example food (the
“unconditioned stimulus” or “US”), to which it tends to react with an innate
set of responses appropriate for the US, for example orienting and approaching
(the “unconditioned responses” or “UR”). After repeated exposure to couples of
CS-US the animal produces the UR even if CS are presented alone.

Since Pavlov’s pioneering works [1], a lot of research has addressed classical
conditioning phenomena producing a huge amount of behavioral and neural data
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[2]. However, we still lack a comprehensive theory able to explain the full range
of these empirical data. Trying to build detailed biologically plausible computa-
tional models is a necessary step to overcome this knowledge gap. The current
most influential models on classical conditioning, those based on “temporal-
difference reward prediction error” [3,4] , suffer of several limitations. The main
reason is that they have been developed within the machine learning framework
with the aim of building artificial machines capable of autonomously learning
to perform actions useful for the user. For this reason they are suitable to in-
vestigate instrumental conditioning phenomena – a type of associative learning
based on stimulus-actions associations – but less adequate to explain Pavlovian
phenomena mainly based on stimulus-stimulus associations [5,6].

A crucial question on classical conditioning regards the nature of the acquired
association between the CS and the UR: is this association direct (CS-UR), as
Pavlov himself seemed to claim [1], or does it pass through the unconditioned
stimuli (CS-US-UR), as Hull [7] suggested? The long-lasting debate on this topic
[2] seems now settled in favor of both hypotheses: in fact, there is now strong
empirical evidence supporting the co-existence of both CS-UR and CS-US as-
sociations [5,8]. However, a clear understanding of the neural substrates which
might be responsible for these two kinds of associations has yet to be gained. In
particular, none of the computational models of classical conditioning based on
the temporal-difference mechanisms, nor the models which have been proposed
as alternatives to them [5,6,9,10], make any significant claim on this point.

Within the empirical literature, Cardinal et al. [8] formulated an interesting
hypothesis on the neural basis of stimulus-stimulus and stimulus-response Pavlo-
vian associations. According to this hypothesis, the basolateral amygdala (BLA)
stores the CS-US associations, whereas the central nucleus of amygdala (CeA)
receives or stores the CS-UR associations (CS-UR associations encoded in the
cerebellum [11] are not considered here).

This paper presents an original computational model implementing that gen-
eral hypothesis. In particular, it represents the first working model specifying
the different functions played by the main sub-nuclei of amygdala in classical
conditioning. The model, embodied in a simulated robotic rat, is validated by
reproducing the results obtained with some first and second order conditioning
experiments conducted with sham and BLA-lesioned real rats [12].

Sect. 2 presents the target experiment and the simulated experimental setup.
Sect. 3 describes the model’s general functioning and the biological constraints
taken into account. The mathematical details of the model are presented in the
Appendix. Sect. 4 shows the results of the tests of the model and compares them
with those obtained with real rats. Finally, Sect. 5 concludes the paper.

2 The Target Experiment and the Simulated
Environment

The model is validated by reproducing second-order conditioning experiments on
real rats (reported as experiment 1a in [12]). The real experiment was conducted
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with 19 BLA-lesioned rats and 27 sham-lesioned rats, measuring the behaviours
of walking, orienting and “food-cup” (insertion of head in the food dispenser).
Namely, in the first phase both groups were trained for 8 sessions lasting 64 min
each to acquire a first order conditioned behaviour. Each session was formed by
a sequence of trials. In each trial a 10 sec light stimulus was presented, followed
by the delivery of Noyes pellets (food) in the food dispenser. Recordings showed
that both sham and lesioned rats were able to acquire first order conditioned
behaviours. In the second phase the same rats were trained for 3 sessions of
64 min each to acquire a second order conditioned behaviour. A tone stimulus
was presented for 10 sec followed by the light stimulus; every 3 trials a “reminder”
of the light-food association was presented. The key result was that only sham
rats acquired the second order CS-UR association. In accordance with other
empirical evidences (see [8] for a review), these experiments suggest that BLA
plays a fundamental role in the formation of the association between the CS and
the incentive value of the US, and that this association plays a key role in the
acquisition of the CS-UR association in second order conditioning.

The real experiment was simulated through a robotic rat (“ICEAsim”) de-
veloped within the EU project ICEA on the basis of the physics 3D simula-
tor WebotsTM. The model was written in MatlabTM and was interfaced with
ICEAsim through a TCP/IP connection. The robotic setup is shown in Fig. 1.
The environment is formed by a gray-walled chamber, and the stimuli are ex-
pressed by 3 panels (vision is used, as no sound is supported by Webots): food
delivering in the dispenser occurs when the green panel turns on, light when the
yellow one is on, and tone when the red one is on. When one of those stimuli
elicits an orienting response within the controller (see Sect. 3), the rat turns
toward the panel and then approaches it (these behaviors are hardwired). This
behavioural sequence terminates when the rat touches the food-dispenser (that
is assumed to correspond to a food-cup behaviour).Although the “degree of em-
bodiment and situatedness” of the setup is rather limited, nevertheless a robotic
test was used because in the future we plan to scale the model to more realis-
tic scenarios (for example, the random-lasting time intervals elapsing between
rats’ orienting and food deliver already started to challenge the robustness of
the associative learning algorithms used).

3 The Model

This section presents a general description of the functioning of the model and
the biological constraints that it satisfies, while a detailed mathematical de-
scription of it (included all the equations) is reported in the Appendix. A key
feature of the model (Fig. 1) is the explicit representation of the three major
anatomical components of the amygdala [13]: the lateral amygdala (LA), the
basolateral amygdala (BLA), and the central nucleus of amygdala (CeA). The
model assumes that these components form two functional sub-systems: (1) the
LA-CeA sub-system, which forms S-R associations, and (2) the BLA sub-system,
which forms S-S associations. Note that in the following “neurons” have to be
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(a) (b)

Fig. 1. (a) A snapshot of the simulator, showing the simulated rat at the centre of the
experimental chamber, the food dispenser (at the rat’s right hand side), the light panel
(behind the rat) and the tone panel (in front of the rat). (b) The architecture of the
model: bold and plain arrows indicate innate and trained connections, respectively.

intended as units whose functioning abstracts the collective functioning of whole
assemblies of real neurons.

The Stimulus-Response Associator (LA-CeA). The LA is the main input of
the amygdala system. It receives afferent connections from various sensory and
associative areas of cortex, from thalamus, and from deeper regions within the
brain-stem, and it sends efferent connections both to BLA and to CeA. The
model has an input layer (INP) of four leaky neurons (inp) activated by four
binary sensors (s) which encode the presence/absence of four stimuli: light (sli),
tone (sto), food sight (sfs) and food taste (sft) (Eq. (1)). LA (la) is formed by
four leaky neurons receiving one-to-one afferent connections from INP (Eq. (2)).

The CeA is one of the main output gates of amygdala. Its efferent connections
innervate regions of the brainstem controlling mainly: (1) body and behavioral
reactions through the hypothalamus and periaqueductal gray [14]; (2) the release
of basic neuromodulators through the ventral tegmental area (dopamine), the
locus coeruleus (norepinephrine), and the raphe nuclei (serotonin) [13,15,16].
These neuromodulators play a fundamental role in learning processes but for
simplicity this model considers only dopamine [17] (in particular it ignores the
role that norepinephrine plays in AMG learning [18]). In the model CeA (cea) is
formed by two leaky neurons, one (ceaor) encoding the rat’s orienting behavior,
and one (ceada) connected to the ventral tegmental area (VTA) to produce the
dopamine signal (da) (Eqs. (4) and (5)).

In the model, all LA neurons are connected to the orienting neuron of CeA
(ceaor), whereas only the food taste neuron (laft) is connected to the neuromod-
ulator neuron of CeA (ceada). These connectivity allows stimuli representations
of LA to be associated with the orienting behaviour in CeA but not with the
dopamine neuromodulation. This is a key assumption to explain why LA-CeA
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associations can learn first order CS-US associations but not second order ones:
conditioned stimuli cannot access the incentive value of rewarding stimuli.

The connections from LA to CeA are trained on the basis of a Hebb rule. In
particular, the strengthening of connections takes place in the presence of three
conditions (Eq. (6)): (1) a high value of the trace of the LA activation onset
(la tr): the use of the onset makes learning happen only when LA neurons’
activation precedes CeA neurons’ activation, while the use of the trace allows
overcoming the time gap between CS and UR; (2) a high activation of CeA
neurons (ceaor and da); (3) a dopamine level (da) over its threshold (thda).

The Stimulus-Stimulus Associator (BLA). The BLA has afferent connections
from LA and efferent connections to CeA [19,20]. BLA is also interconnected
with the orbitofrontal cortex and hippocampus, and sends efferent connections
to the nucleus accumbens: all these connections are ignored here (see [21] for a
model where BLA-nucleus accumbens connections play a key role).

In the model, BLA (bla) is formed by four leaky units which receive one-to-
one connections from LA (la) and have all-to-all lateral connections (Eq. (7)).
Only the neuron encoding food taste (blaft) is connected to CeA neurons. This
implies that all neurons of BLA representing stimuli different from the US (blaft)
can exert effects on the CeA output neurons only via lateral stimulus-stimulus
connections with the BLA’s US neuron.

Learning of BLA lateral connections is based on a time-dependent Hebb al-
gorithm. The key aspect of the algorithm is that it allows both the onset and
the offset of BLA neurons preceding the onset of other BLA neurons to increase
the connection from the former to the latter, provided that dopamine overcomes
its threshold (Eqs. (8), (9), (10)). The sensitivity to the offset of stimuli was
necessary due to the long duration of the CS stimuli, see Sect. 2 (cf. [21] for a
simpler version of the algorithm using only the onset of presynaptic neurons).

4 Results

Figure 2a compares the percentage of times the tone elicits an orienting be-
haviour in real [12] and simulated rats after the second order conditioning phase.
The main result of the experiment has been qualitatively reproduced by the
model: in both real and simulated rats a BLA lesion prevents second order con-
ditioning to take place. The analysis of the detailed functioning of the model
provides an explanation for this result. Figure 2b shows the activations of some
key neurons of: (1) a simulated sham rat during the first order conditioning
phase with the light-food contingency; (2) the same sham rat during the sec-
ond order conditioning phase with the noise-light contingency; (3) a simulated
BLA-lesioned rat during the second order conditioning phase.

Figure 2b, first block, shows the mechanisms underlying first order condition-
ing in a sham simulated rat. At the beginning of the first trial, the appearance of
light activates the light-related BLA neuron (blali). After a while, the appearance
of food activates the food-sight BLA neuron (blafs). The blafs pre-activates the
BLA food-taste neuron (blaft) before the rat actually reaches the food thanks
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Fig. 2. (a) Percentage of orienting behaviours of sham (S) and lesioned (L) rats in
response to the tone after second order conditioning: data from real (first two bars) and
simulated rats (last two bars). (b) Stimuli, activations of key neurons, and dopamine
release in 3 conditions: first-order and second-order conditioning phases of a sham rat
(first and second block, respectively), and second-order conditioning phase of a BLA-
lesioned rat. Trials are separated by short vertical dotted lines; thresholds (for orienting
behavior and dopamine learning) are represented as gray horizontal dotted lines.

to a blafs-blaft excitatory connection which is assumed to be learned before
the conditioning training (see the Appendix). In turn, the blaft triggers both
the orienting behavior via the orienting CeA neuron (ceaor) and the release of
dopamine (da) by the VTA via the CeA neuromodulation neuron. The release
of above-threshold dopamine triggers the learning of both the connection be-
tween the light neuron in LA and the orienting neuron in CeA (implementing
the CS-UR association) and the connections linking the light neuron with the
food sight and food taste neurons in BLA (implementing the CS-US association).
The result is that after a very few trials the blafs and blaft neurons start to be
pre-activated as soon as the light is perceived. This results in an early activation
of both CeA neurons and, consequently, in an early dopamine release and an
early orienting response to the light.

As in the target experiment, during the second order conditioning phase the
rats are exposed to sequences of four trials composed by three tone-light presen-
tations and one light-food “reminder”. Thanks to the CS-US BLA association
acquired during the first phase, in sham rats (Fig. 2b, second block) the presenta-
tion of light immediately triggers both orienting behavior and dopamine release.
This ability of light to trigger dopamine release permits the acquisition of the
second-order association between the tone and the URs (orienting response and
dopamine release) in a manner which is completely analogous to what happens
in the first-order conditioning with respect to light.

On the other hand, second order conditioning cannot take place in BLA-
lesioned rats (Fig. 2b, third block). The reason is that in this case light can trigger
only the orienting response via the connection linking the light representation in
LA with the orienting neuron in CeA (the direct CS-UR association), but not the
dopamine release, which requires the activation of the food-taste representation
in either BLA (which is lesioned) or LA (which is activated only when food is
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effectively eaten). As a result, since synaptic modification depends on dopamine,
no learning can takes place during second-order conditioning.

5 Conclusions

This paper presented an original computational model of the basic brain mecha-
nisms underlying classical conditioning phenomena. The architecture and func-
tioning of the model was constrained on the basis of neural empirical data on
the amygdala. The fundamental assumption underlying the model is that the as-
sociation between conditioned stimuli (CS) and unconditioned responses (UR)
formed in classical conditioning experiments is due to two related but distinct
mechanisms: (1) stimulus-stimulus associations (CS-US-UR) involving uncondi-
tioned stimuli (US) stored in the BLA; (2) direct stimulus-response associations
(CS-UR) stored in the LA-CeA neural pathway.

The model was embedded in a simulated robotic rat and was validated by
reproducing the behaviours exhibited by both sham and BLA-lesioned rats in
first and second order conditioning experiments. In particular, as in real rats,
while after training the simulated sham rats react with UR (orienting) to both
first and second order CS, BLA-lesioned simulated rats associate UR only to
first order CS, but not to second order CS. The model is able to reproduce and
explain these results thanks to the fundamental aforementioned assumption.
During first order conditioning sham rats acquire both the direct CS-UR and
the indirect CS-US-UR association. It is the first order CS-US association within
BLA which permits the acquisition of the second order association as it allows
the CS to reactivate the appetitive value of the US even when the US is absent.
In contrast, BLA-lesioned rats can acquire direct first order CS-UR associations
stored in the LA-CeA neural pathway but they cannot acquire the second order
association because the first order CS has not access to the appetitive value of
the US. To the best of the authors knowledge, this is the first model to propose
such a specific computational hypothesis regarding the double association CS-US
and CS-UR in classical conditioning.

Notwithstanding its strengths, the model suffers at least two significant limi-
tations. First, the whole behavioral sequence triggered by the activation of the
orienting neuron in CeA (orienting, approaching, and food-cup) is fully hard-
wired. For this reason, the model cannot reproduce the results on CeA-lesioned
rats which are reported in the same article of the experiment targeted here [12].
Second, in contrast to most existing models of classical conditioning [5,6,9], the
current model does not implement any mechanism for reproducing the exact
timing of dopamine release observed in real animals. For this reason the model
cannot reproduce another fundamental aspect of classical conditioning, that is
extinction (the ability to re-learn not to respond to the CS if it stops to be fol-
lowed by the US). We are currently working on improved versions of the present
model for tackling both these limits.
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Appendix: Mathematical Details of the Model

Throughout the Appendix, τx denotes the decay rate of a leaky quantity x,
the sub-index ·p denotes the activation potential of the corresponding neuron,
symbols X, x, and x are used respectively to denote matrices, vectors and scalars,
the function ϕ is defined as ϕ[x] = max[0, x] and the function χ as χ[x] = 1if x ≥
0 else χ = 0. The values of parameters are listed at the end of the Appendix.

LA-CeA: Functioning and Learning. INP (inp) processes the input signal from
sensors s = (sli, sto, sfs, sft)′ with a leak function:

τinp · ˙inp = −inp + s . (1)

LA is formed by four leaky neurons (la) activated as follows:

τla · ˙lap = −lap + winp,la · inp , la = ϕ[tanh[lap]] (2)

where winp,la is the fixed weight of the connections from IMP to LA. The “double
leak” processing of signals implemented by IMP and LA is used to smooth the
derivative of LA (see Eq. (3)).

The trace of LA neurons (la tr) is a leak function of the positive value of the
derivative of their activation ( ˙la):

τla tr · ˙la trp = −la trp + bla tr · ϕ[ ˙la] , la tr = ϕ[tanh[la trp]] (3)

where bla tr is an amplification coefficient.
CeA is formed by two leaky neurons (cea) activated as follows:

τcea · ˙ceap = −ceap + Wla,cea · la + Wbla,cea · bla (4)
cea = ϕ[tanh[ceap]]

VTA is formed by a dopamine leaky neuron (da) which activates as follows:

τda · ḋap = −dap + blda + wcea,da · cea , da = ϕ[tanh[dap]] (5)

where blda is the dopamine baseline.
The weights of the LA-CeA connections (Wla,cea) are updated with a three-

element Hebb rule involving CeA, LA’s trace and dopamine:

ΔWla,cea = ηla,cea · (χ[da− thda] · da) · cea · la tr′ · (1 − |Wla,cea|) (6)

where ηla,cea is a learning rate, the term (χ[da− thda] ·da) implies that learning
takes place only when da ≥ thda, and the term (1 − |Wbla|) keeps the weights
in the range [−1, 1].
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BLA: Functioning and Learning. BLA is formed by four leaky neurons (bla)
activated as follows:

τbla · ˙blap = −blap + Wbla · bla + (wla,bla · la + cbla · la tr) (7)
bla = ϕ[tanh[blap]]

where cla tr is an amplification coefficient. According to this equation, with a
transient constant input signal the activation of a BLA neuron presents a high
initial peak (due to la tr) followed by a lower constant value (due to la) and then
by a smooth descent to 0 (due to the leak after the signal end): this activation
has a derivative suitable for BLA learning (see below).

In order to train lateral connections of BLA, a trace of the derivative of the
activation of BLA neurons bla tr is computed as follows:

τbla tr · ˙bla trp = −bla trp + · ˙bla . (8)

Small values of this trace are ignored in the learning algorithm by consider-
ing the “cut trace” bla tr cut defined as: bla tr cut = bla tr if |bla tr| <
thbla tr else bla tr cut = 0. Given the activation dynamics of BLA (Eq. (7)),
the corresponding derivative (and, with some delay, its trace) presents: (1) an
initial peak at signal onset; (2) a negative peak at the end of the signal onset;
(3) a negative peak at the signal offset. The key point of the learning algorithm
of BLA is that a connection between two neurons is potentiated in coincidence
of a negative peak of the presynaptic neuron and a positive peak of the postsy-
naptic neuron. These two events mark a pre-synaptic-onset/post-synaptic-onset
sequence (or a pre-synaptic-offset/post-synaptic-onset one). The matrix S, re-
ported below, captures these conditions for all couples of neurons:

S = χ[bla tr cut] · χ[−bla tr cut]′ − χ[−bla tr cut] · χ[bla tr cut]′ . (9)

Denoting with pre and post the presynaptic and postsynaptic neurons, S has an
entry equal to 1 when bla tr copre < 0 and bla tr copost > 0, equal to −1 when
bla tr copre < 0 and bla tr copost > 0, and equal to 0 otherwise. The learning
rule of lateral connections is then:

ΔWbla = ηbla · χ[da− thda]da · (ltpbla · ϕ[S] + ltdbla · ϕ[−S])(1 − |Wbla|)
(10)

where ηbla is a learning rate, ltpbla is a long time potentiation coefficient, and
ltdbla is a short term depression coefficient.

Model’s Parameters. The model’s parameters were set as follows: τinp = τla =
τbla = 500 ms, τla tr = τbla tr = 5000 ms, τcea = 100 ms, τda = 50 ms,
winp,la = 10, bla tr = 1000, wla,bla = 0.5, cbla = 60, blda = 0.3, thda = 0.6,
thla tr = 0.00001, ηbla = 0.0005, ηla,cea = 0.15, ltpbla = 1.0, ltdbla = 0.3. Some
connections, assumed to be innate or pre-learned, are clumped to 1 (l=learned):

wblafs,ft = 1, wcea,da = (1, 0), Wla,cea =
(
l l l 1
l l 1 1

)
, Wbla,cea =

(
l l l 1
l l l 1

)
. The

model’s equations were integrated with the Euler method with a 50 ms step.
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Abstract. We propose a sub-symbolic connectionist model in which a
functionally compositional system self-organizes by learning a provided set of
goal-directed actions. This approach is compatible with an idea taken from usage-
based accounts of the developmental learning of language, especially one theory
of infants’ acquisition process of symbols. The presented model potentially ex-
plains a possible continuous process underlying the transitions from rote knowl-
edge to systematized knowledge by drawing an analogy to the formation process
of a geometric regular arrangement of points. Based on the experimental results,
the essential underlying process is discussed.

1 Introduction

In this study, we try to examine the mechanisms in our mind that are involved in the shift
from unrelated rote knowledge acquired by learning examples of objects or events into
a flexible conceptual system by which we can conceive something not experienced as a
recombination of the examples. Tomasello reported in [1] that infants can appropriately
use holophrases, which are indivisible sentences such as “lemme-see,” in a communica-
tive context before understanding reusable units, which include phrases and words such
as “let,” “me” and “see.” In his usage-based accounts of language development, each
transition of the performance is explained in terms of the acquisition of a new type of
smaller and more abstract symbolic device.

It is, however, difficult to transfer the idea that the utilization of wholes precedes
the emergence of parts from explanatory to computational models. One of the most
substantial problems is how to implement the acquisition of a composition rule, which
combines smaller units into a whole concept. Cognitive theories often neglect the com-
position rule, since the rule and the units are considered to be two sides of the same coin
[2]. This belief is plausible only as far as symbolic manipulation is concerned. How-
ever, the realization of an embodied composition rule, which is the correspondence of
the symbolic manipulation in reality, requires much more than the acquisition of a mere
syntactic structure of the symbolic system. Let us consider the case in which an agent
generates an action specified by a target object and an operation on it. It is quite easy to
represent the action in a symbolic system; a pair of symbols representing the target and
operation is enough. On the contrary, an embodied composition rule, which is required
to generate an action relevant to the pair, is not so trivial. The problem is that the rule
tends to be too abstract to be learned by examples, because the rule needs to capture
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Fig. 1. Systematicity among concepts can be represented based on the geometric regularity

the anything residual that cannot be collected as symbols, which are usually grounded
to something concrete. In fact, many computational models employ a pre-programmed
composition mechanism, although their objectives are different from ours [3,4,5].

In order to avoid the difficulty concerning the abstractness of the explicit composition
rule, this study investigates a novel embodied implementation of a functionally compo-
sitional system in the domain of goal-directed actions of a simulated agent. A function-
ally compositional system is one which does not keep any reusable units explicitly in
the form of symbols but works like a conventional compositional system [6]. Instead of
dealing with reusable parts explicitly, the functionally compositional system focuses on
the systematic relationships among wholes. Each whole concept is embedded as points
in a conceptual space implemented as an n-dimensional vector space. The geometric
arrangement of these points represents the underlying combinatoriality among them.
For example, a system of six actions specified by every possible combination of one of
three objects and one of two operations is represented as a triangular prism, as shown in
Fig. 1. Even if the positions of some actions are unknown, they can be inferred by utiliz-
ing the geometric regularity. Furthermore, this framework explains the transitions from
rote knowledge to systematic knowledge in terms of a continuous internal process. The
emergence of the regularity involved in the transition can be realized by the continuous
motion of each point. It is also remarkable that each whole concept does not change
through the transition. Only their relationships are altered, whereas the conventional
implementation undergoes the replacement of a holistic symbol with a combination of
elemental symbols.

In the following, we propose a computational model whereby the geometric regu-
larity self-organizes through the learning of examples. Our experimental setting and
connectionist architecture is explained in Section 2. In Section 3, the experimental
results, which demonstrate that three different types of combinatorial generalizations
are realized by the same model, are presented. An analysis of the result is shown in
Section 4, and some related cognitive problems are discussed in Section 5.

2 Experimental Setting

In our experiment, a simulated mobile agent learns incomplete parts of a total of 36
different goal-directed actions; the actions are characterized by combinations of a tar-
get object, an operation on the target, and an optional verb modifier. The learning is
conducted under the supervision of teaching programs written for this study. The agent
is a model of the mobile robot depicted in Fig. 2(a). This robot has a color camera with
a range of view of 120 degrees and two rotating motors driving each of its two wheels.
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Fig. 2. The simulated agent. The agent is
based on (a) a mobile robot that performs
36 types of goal-directed actions on a stage
(b) where a target and an optional dummy
colored object are placed randomly within
a dashed square.
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Fig. 3. The architecture of the learning network
is presented. A rectangle represents a layer. The
number of nodes contained in the layer is de-
noted by the number in the rectangle. The gray
layers have a slower time constant than do the
white layers. PB (parametric bias) storage is a
working area.

In each experimental trial, the agent was required to perform either of two operations
reach or turnto one of six colored objects (blue, cyan, green, yellow, orange,
and magenta) in the environment shown in Fig. 2(b), where one or two objects, one of
which is the target, are randomly placed. In actions involving reach, the agent is re-
quired to move toward the target and then to stop just before touching it. In the turnto
actions, it has to pivot to the target. In our experiment, an operation turnto takes a verb
modifier, which designates the offset angles (-30, -18, 0, +18, and +30) of the final po-
sition of the target in the visual field from the agent’s center. A negative offset indicates
the offset to the left, and zero is omitted. In the following, the action is denoted as a
triplet consisting of the operation, target, and offset, for example, turnto-blue+18. It
should be noted that this notation is used only for our convenience and the agent has no
way to access it. In some situations, turnto with an offset is regarded as an operation,
and, for example, is denoted as turnto+18.

As mentioned above, the actions are embedded in the concept vector space through
the learning process. Unlike the conventional associative learning between an action and
a vector, the vector is not provided a priori. Instead, the geometric arrangement of the
vectors self-organizes the structure, reflecting the relationships among the actions, in-
cluding unseen ones. The learning model which acquires this structure-preserving map
is a connectionist network shown in Fig. 3. The network consists of two parts, each of
which is tailored to its own functions. One part is a base-level network (base-net) which
takes the visual information from the camera as input and outputs the angular velocities
of the wheels (the left side of Fig. 3). The base-net is basically a conventional layered
neural network except that it has second-order connections [7] between the vrepr and
motor layers. This special mechanism enables the base-net to switch its function. De-
pending on an action to be performed, the base-net generates different motor values for
identical vision input. The second-order connection is controlled by the meta-level net-
work (meta-net) depicted on the right side of Fig. 3. The meta-net is also a conventional
layered network. As input, it takes a vector encoding an action once at the beginning of
the action, then, it outputs the weights of the second-order connections constantly until
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the action finishes. The input layer works just like a conventional parametric bias (PB)
layer [8] which has an infinitely long time constant, and therefore we name this as the
PB layer. PB storage is as the working area during the learning, as will be explained
later in detail. It also keeps the self-organized PB vectors for a later test phase.

An experimental session consists of three phases: the creation of training data, the
learning of the data, and the evaluation of the performance. The training data were cre-
ated by sampling sensor-motor time series involving actions generated in an algorithmic
manner. Then, the network learned a part of the data in an offline manner. Four sessions
were conducted with supervised data consisting of a different number of actions: 4 and
21 out of 36 actions in the most sparse and dense cases, respectively. After the training
error of the network decreased sufficiently, the performance was evaluated. A PB vector
of an unseen action was computed by recognizing unused training data, as explained be-
low. The agent, which was controlled by the network, was tested to determine whether
it could make a previously unexperienced action in a novel environment with using the
PB vector. In the remaining sections, each phase is explained in detail.

Phase 1: Generating Examples by Teaching Programs. For each of the 36 actions,
120 time series were recorded in different environments. In 20 out of the 120 cases,
only a target object was placed in the stage, and in the remaining 100 cases, a dummy
object was placed in addition to the target object. The dummy object was chosen from
5 objects, and therefore 20 time series were generated for each. Both a target and an
optional dummy object were arranged at random positions within the area range shown
by the dashed square in Fig. 2(b). Any arrangement where the target was occluded by
the dummy at the home position of the agent was omitted.

Each exemplar time series consists of pairs of visual information and the correspond-
ing motor value computed by a manually coded teaching program. This approach may
seem inappropriate. However, if the agent learns the exemplars by rote, there would be
no need to learn the action by using the network. The actual objective of the learning is,
therefore, to establish the relationships among the provided exemplars in an unsuper-
vised manner. Also, it should be mentioned again that a PB vector has no exemplar.

The teaching program calculates the desired rotation speed of the two wheels of the
agent from the position of the specified target taken from a camera image at a constant
time interval. At the same time, 27-dimensional visual and 10-dimensional motor in-
formation are recorded for later learning (see Fig. 3). The visual input vector does not
have the position of the target explicitly. From the viewpoint of the network, the visual
field is composed of nine vertically divided regions. Each region is represented by the
fraction of the region covered by colored patches and the dominant hue of the patches
in the region. The hue is encoded by the position (cos θ, sin θ) in the color circle, where
pure red, yellow, green, and blue are represented as θ = 0◦, 90◦, 180◦, and 270◦, respec-
tively. The desired speed of the wheel takes a real value ranging from -0.2 to 1.0. A
negative value indicates reverse rotation. The motor vector is composed of two five-
dimensional real-valued vectors, each of which represents the speed of the wheel in the
form of [ f (0), f (0.25), f (0.5), f (0.75), f (1.0)], where f is a Gaussian distribution with
the mean of the desired speed and a sigma of 0.25. This increases the robustness against
the re-generation error of the network.
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Phase 2: Batch Learning. The network learns incomplete parts of the 36 actions in a
batch manner by employing the data prepared in the previous phase as the supervising
signal. The learning process is formulated as a conventional iterative, steepest descent
optimization with respect to the error function E, defined in (1). The model has two
types of parameters to be optimized: one is the vector W consisting of all the connection
weight values of the network; and the other is the set PB consisting of PB vectors pbi

for all supervised actions i ∈ A.

E(W, PB) =
∑

i∈A
Ei(W, pbi) (1)

Ei(W, pbi) =
119∑

j=0

li j∑

t=0

Ei j(t; W, pbi) (2)

Ei j(t; W, pbi) = ‖m̂i j(t) − m(vi j(t); W, pbi)‖2 , (3)

where li j is the length of the j-th training data of an action i, m̂i j(t) is the desired motor
vector corresponding to the visual vector vi j(t) at the time step t in the training data, and
m(vi j(t); W, pbi) is its actual value generated by the network under the condition that
the connection weight is W, and the PB vector for the action is pbi with the identical
vision input. The parameters W and PB are updated simultaneously by learning all the
provided data in a batch manner. The learning procedure is implemented by using the
conventional back-propagation algorithm. At the beginning, all the connection weight
values are randomized with a small value, and pbi,∀i ∈ A are set to the zero vector. All
the PB vectors reside in the storage since the values of the PB nodes are switched so that
the network can learn all the given actions at the same time. And then, the following
procedure is conducted 30,000 times.

(1) Do the following for each actions i inA:
(1.1) Load the stored pbi to the PB nodes.
(1.2) For each of the 120 sensor-motor time series, calculate the delta errors of

connection weights ∂Ei j/∂W (t; W(T ), pbi(T )) and of PB vector ∂Ei j/∂pbi (t;
W(T ), pbi(T )) by using the back-propagation algorithm.

(1.3) Update pbi by using the summation of all the delta errors of pbi for all time
steps t of all time-series j of the action i, and store the updated vector to the
storage.

(2) Update W by using the summation of all the delta errors of W for all time steps t of
all time-series j of all the provided actions i.

Thus, the connection weights capture the common characteristics among all the
actions and play a background part while each PB vector is specialized to its corre-
sponding vector. In the analysis of the experimental results, we observe the acquired
geometric structure constructed by the PB vectors in the conceptual space.

Phase 3: Examining the Generalization Capability. Two aspects of the generaliza-
tion capability of the agent, 1) transfer of the skill to a novel environment and 2) re-
combination of the supervised actions into an unexperienced action, were tested. For
examining the transfer of skill to a novel environment, the agent was tested to determine
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if it could accomplish each known action in 280 novel environments where a target and
dummy object were placed in a systematic manner. The PB vectors acquired through
the second phase were employed. This test reveals the kind of information kept in the
vectors. If the vector codes only specific trajectories of taught examples without gener-
alization, it is impossible to generate a goal-directed action in a different environment.
In order to investigate the recombination of supervised actions into an unexperienced
action, the PB vector encoding a novel action i′ � A should be examined. The vector
can be computed by the recognition procedure. The algorithm is basically identical to
the learning procedure except that W is not updated. By employing 30 out of 120 ex-
amples of the action i′ produced in the first phase, pbi′ is optimized with regard to the
error function for the action i′ defined in (2) by using W acquired in the second phase.
Once pbi′ is obtained for each unseen action, the generation test can be conducted in
the same way as in the trained action cases.

3 Results

We next observe the changes of the generalization capability depending on the sparse-
ness of the provided examples. The degrees of generalization are compared for four
sessions of teaching data of different sparseness. In Fig. 4, a trained action is indicated
by a black box. In all the experiments, all the trained actions were regenerated success-
fully; this means the agent could accomplish the goal in more than 80 percent of the test
environments explained above. A gray box shows an action achieved by the combina-
torial generalization without extra teaching. The criteria of success for the novel action
are identical to that for the trained action. In the remaining sections, the results are dis-
cussed only from the viewpoint of the performance. We’ll re-examine issues about the
underlying mechanism in the next section.

Experiment 1: Learning by Rote. In this case, no combinatorial generalization was
observed because of very sparse training data (Fig. 4(a)). This suggests that the agent
regarded the provided actions as being holistic; namely, it could not find any re-usable
parts such as an operation and a target.

 blue cyan green yellow orange magenta
reach
turnto

turnto-18

turnto+18

turnto-30

turnto+30

(b)

(d)(c)

 blue cyan green yellow orange magenta
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Fig. 4. The result of experiments 1-4 are shown in (a)-(d), respectively. A black box represents a
trained action, and a gray box represents an action acquired as a recombination.
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Experiment 2: A Local Compositional System. As training data increases, two novel
actions turnto-yellow-18 and turnto-orange-30were acquired without learning
exemplars (Fig. 4(b)). This implies that the local compositional system is self-organized
since one of the reusable operations turnto-18 and turnto-30 and one of the reusable
targets yellow, orange, and magenta could be composed in any possible way, includ-
ing unseen ones.

Experiment 3: Two Independent Compositional Systems / Categorization. Two
separate local compositional systems emerge when further training data were added.
One is system { turnto, turnto+18, turnto+30 } × { blue, cyan, green }, and the
other is system { reach, turnto-18, turnto-30 } × { yellow, orange, magenta }.
They are independent of each other since the targets of one system cannot be applied to
the operations of the other system. The result can be interpreted as the categorization of
targets based on operations applicable to these targets [9].

Experiment 4: Operation (Target, Offset). Finally, all the possible actions were ac-
quired when the robot was trained with examples consisting of 21 out of the 36 actions.
At least two incompatible interpretations of the results are possible. One is that all
six operations have an equal relationship with one another. In this case, each opera-
tion is regarded as being a discrete symbol. The other possibility is that the similar-
ity based on the offset values is understood. If so, the operations concerning turnto
could have the structure turnto × { -30, -18, 0, +18, +30 } (= OFFSET), and the
reach operation exists apart of them. The result of an additional experiment proved
that the latter interpretation is correct: the similarity based on the offset values was
understood. The agent could re-generate some actions which have intermediate offsets
such as turnto-blue-24 by recognizing newly created examples of the actions. Last
but not least, all six targets form TARGET class, since they can be applied to all opera-
tions equally. Thus, the roles of a target, an operation, and an offset emerge to organize
the argument structure TARGET × (( turnto × OFFSET ) + reach).

4 Analysis

For the analysis of the acquired PB structure, we discuss the underlying mechanism of
the combinatorial generalization proposed in Section 1: the geometric regularity self-
organized in the conceptual space. A main objective of the discussion is to bridge the
gap between the symbolic behavior of the system and its sub-symbolic implementation.

Figure 5(a) shows a concept structure underlying the local compositional system ob-
served in the second experiment. PB vectors for six actions included in the system are
displayed (see also Fig. 4(b)). The displayed vectors are obtained through the learning
process for a trained action and through the recognition process for an untrained one.
The original 12-dimensional vectors are projected onto a 2-dimensional plane com-
puted by applying the conventional principal component analysis (PCA) method to the
six vectors. The accumulated contribution rate up to the second principal component
(PC) is 0.79. A regular structure similar to the prism shown in Fig. 1 is observed in the
figure, although the third and subsequent PCs show irregularity. Thus, an unexperienced
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Fig. 5. Two parts of the PB space self-organized in experiment 2 are presented. Actions depicted
in (a) constitute a geometric regularity as the underlying structure of the compositional system,
whereas the actions depicted in (b) do not, as the agent failed to generate actions marked by *.

action has the “correct” position in the concept space. Two congruent triangles repre-
senting the two elements turnto-18 and turnto-30 are regarded as being equivalent
in terms of their relation to the three elements yellow, orange, and magenta. This is a
possible underlying representation of role-governed categories [10] of elements: these
two groups have the role of an operation and a target, respectively. It should be noted
that both roles emerge at the same time since both are defined in a circular manner. This
is well represented geometrically in that the congruency of two triangles always accom-
panies the congruency of three lines corresponding to each of the targets. Meanwhile,
no regularity is found in the plot of actions { reach, turnto } × { blue, cyan, green }
(Fig. 5(b)). This is consistent with the performance that no combinatorial generalization
was realized with regard to the abovementioned actions. A similar picture is found in
the first experiment, where no generalization was realized.

In the third experiment, we can find two separate regular structures in accordance
with the observed performance. They exist on different sub-spaces, although these sub-
spaces are not orthogonal to each other. This explains the incompatibility of elements
between the systems.

A new facet is discovered in the concept structure self-organized in the last exper-
iment. Not only a structure representing the relationships among elements of different
roles but also one representing the similarity among elements within each role are ob-
served clearly. The former is the congruency of sub-units, which is similar to the struc-
ture found in the second and third experiments. The latter, with regard to each role of a
target and an operation, are shown in Figs. 6(a) and (b), respectively.

The projection plane of Fig. 6(a) is chosen by applying PCA to representative vectors
of the targets obtained by averaging the PB vectors for all operations for each of the
targets. If a component of a target and an operation in the PB vectors are independent
of each other, this method averages away the operation information. This assumption
is shown to be true later in this paper. The accumulated contribution rate up to the
second PC is more than 0.98, and so almost all the information is displayed in the
plot. Six clusters corresponding to each of the targets are observed in the figure. This



Acquiring a Functionally Compositional System of Goal-Directed Actions 339

1st PC

2n
d 

P
C

1st PC

2n
d 

P
C

blue
cyan
green
yellow
orange
magenta

reach
turnto

turnto-18

turnto+18

turnto-30

turnto+30

(a)

(b)

(a) (b)

Fig. 6. The concept space self-organized in experiment 4. The space is projected to the planes in
which the difference of 36 actions with respect to targets (a) and operations (b) are maximized.

implies that each target has its own representation in the subspace regardless of its
surrounding context; namely, an operation takes the target as its argument. This can
also be stated as follows: a subspace holding information of a specific role, a target in
this case, emerges. Furthermore, the clusters are arranged in a circle like the continuum
of color by hue. This arrangement suggests that the agent understands the similarity
of color of the target. This is indirectly proven by the tendency to choose a target of a
closely related but incorrect color. The more similar a dummy object is to a target with
respect to color, the more easily the agent mistakes the dummy for the target. And so, the
generalization of color is realized. When there is no specified target in the environment,
the agent chooses an object that has a color similar to the target as a substitute.

In Fig. 6(b), the projection plane to see the difference among the operations is chosen
by averaging the target information instead of the operation information. The accumu-
lated contribution rate up to the second PC is more than 0.86. Here, both continuous
and discrete sub-structures exist at the same time. In the first PC (x-axis of the figure),
the continuum of operations turntos by offset emerges. Apart from that, the cluster of
the operation reach is positioned. This implies that the second PC (y-axis of the fig-
ure) carries the distinction between reach and turnto. In addition, another continuum
of the turnto operations by the absolute value of the offsets is found in the third PC,
of which the contribution rate is approximately 0.12. Thus, the subspace of operations
consists of three orthogonal components. In addition, the subspace of both targets and
operations are also orthogonal to each other.

5 Discussion and Conclusion

We discover at last an underlying analog mechanism of the phenomenologic system of
symbols inferred in Section 3 by considering the following correspondences:

(1) The analog correspondence of an elemental symbol is the center of gravity of a
cluster of actions containing the element as a part (see Figs. 6(a) and (b)).

(2) The composition of symbols is realized by summing up their corresponding vectors.
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It should be remembered that the conceptual elements are dependent on each other,
although the vectors representing them are independent of each other. The superficial
independence of elements strongly relies on the structure-preserving map between a PB
vector and an action, which self-organizes in the connections of the network. The map
provides all the fundamental devices to maintain the functional compositionality of the
system, such as the composition rule and the role-governed categorization of elements.
Without them, the conceptual elements cannot constitute an embodied whole action,
just as chess pieces without a chessboard cannot constitute a game.

The above discussion can be transferred to a conventional symbolic system by re-
placing the independence of vectors with the atomicity of symbols. We usually think
that a symbol carries its meaning independently; however, the discussion suggests that
this idea is based on a lack of attention to the existence of the background mecha-
nism. Keeping the connection between a symbol and its referent in the real world is not
enough to maintain the coherency between an internal compositional system and the re-
ality outside. The symbol grounding problem proposed by [11] should be reconsidered
from the broader perspective of a system in which both symbols and their background
are essentially inter-related.

To conclude, a sub-symbolic implementation of the recombination of goal-directed
actions is presented. Three different types of functionally compositional systems emerge
depending on the sparseness of the provided examples by using an identical learning
model. Thus, our model provides a possible dynamical interpretation of conventional
usage-based models. In future work, the transition process of the internal structure in-
volved in the transition from a holistic system to a compositional one will be presented.
Also, associative learning between goal-directed actions and sentences will be investi-
gated by employing the technique proposed in [12].
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Abstract. Learning when and how to generalize knowledge from past experi-
ence to novel circumstances is a challenging problem many agents face. In an-
imals, this generalization can be caused by mediated conditioning—when two
stimuli gain a relationship through the mediation of a third stimulus. For exam-
ple, in sensory preconditioning, if a light is always followed by a tone, and that
tone is later paired with a shock, the light will come to elicit a fear reaction, even
though the light was never directly paired with shock. In this paper, we present
a computational model of mediated conditioning based on reinforcement learn-
ing with predictive representations. In the model, animals learn to predict future
observations through the temporal-difference algorithm. These predictions are
generated using both current observations and other predictions. The model was
successfully applied to a range of animal learning phenomena, including sensory
preconditioning, acquired equivalence, and mediated aversion. We suggest that
animals and humans are fruitfully understood as representing their world as a set
of chained predictions and propose that generalization in artificial agents may
benefit from a similar approach.

The texture of our experience is often dotted by aversions and affinities that are only
indirectly related to rewarding or punishing outcomes. For example, if I have a near-
death experience in an ambulance on the way to the hospital, I am likely to shudder
next time I hear a siren go by, even if the ambulance was not playing its siren during my
traumatic episode. Or if I get really sick at a restaurant before ordering, I will certainly
think twice about eating their food in the near future. In these two examples, stimuli that
were never directly experienced in the offending situations still gain some of the residual
response that memory of the initial situation provokes. In the animal learning literature,
this indirect learning has been termed mediated conditioning and repeatedly reproduced
in the laboratory with notable instances including sensory preconditioning [1,2], as in
the ambulance example, acquired equivalence [3,4], and mediated aversion [5,6], as
in the restaurant example. Generalization between stimuli based on their experienced
history seems prima facie like a valuable asset to an animal or human (or animat) facing
novel stimuli or situations and may even form part of the basis for categorization and
conceptual knowledge [7].

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 342–351, 2008.
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This learned generalization hints at a larger puzzle that has troubled researchers in
both machine learning and cognitive science: When should what you learn in one sit-
uation generalize to what you do in another? Generalization is a cornerstone of adap-
tive behavior that allows agents to take advantage of previous experience beyond the
particulars of the original learning context. In the psychological literature, most stud-
ies of generalization have focussed on how responding generalizes amongst physically
similar stimuli (e.g., tones of different frequencies). Mediated conditioning, however,
presents an instance whereby long-term equivalences can be established between physi-
cally distinct stimuli, merely because of the animal’s experience with the consequences,
antecedents, and associates of those stimuli [4]. In this paper, we propose that the com-
putational formalism of predictive representations [8,9,10] from reinforcement learning
provides an efficient and effective mechanism for the mediated conditioning exhibited
by many animals and humans. In this predictive representation (PR) approach to adap-
tive learning, stimuli are represented as the constellation of predicted future observa-
tions, rather than as composites of their physical properties. We leverage this idea to
develop a real-time PR model and show how this reinfrocement-learning model ex-
plains the learned generalization observed in mediated conditioning experiments.

1 Predictive Representation Model

The key insight behind our model is that stimuli are represented as a collection of
chained predictions about future observations [9]. This predictive representation for
a stimulus implies that generalization will occur readily between stimuli that share sim-
ilar predictions about the future—in a strong parallel to the manner that generalization
occurs most readily between stimuli that share physical properties. These PRs play a
similar role to the images or associatively activated representations in other theories of
animal conditioning [4,6,11,12].

Figure 1 presents a schematic of the PR model, illustrating how these representations
fit into the full learning scheme. Prediction generation in the model is a two-step pro-
cess: On a given time step, the observations (stimuli) are first used to generate interim
predictions for every potential stimulus. These interim predictions are then combined
with the same initial observations to generate a new set of final predictions for that time
step. These final predictions determine behavior, so, for example, in a simple learning
task where a light is followed by a tone and then by food, the light would lead to a
prediction of the tone which would lead to a prediction of the food. As a result, after
learning, the light would also (indirectly) lead to a (weaker) prediction of the food and
thereby elicit some of the associated conditioned responding.

We approach these tasks as a reinforcement-learning prediction problem, except that
we calculate a separate value function for every stimulus—not only rewards. More for-
mally, on every time step t, a value function Vt is computed for every potential obser-
vation as a semi-linear function of the vector xt of the observation/prediction values xi

t

and the vector wt of the learned weights wi
t:

Vt = σ(wT
t xt) = σ(

n∑

i=1

wi
tx

i
t) (1)
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where the squashing function, σ(x) = 1
1+e−x , is used to keep the value of V between

0 and 1. Half the components of the vector xt are binary, indicating whether a partic-
ular stimulus was present on that time step (1) or not (0). Such a simplification is not
strictly necessary, and real-valued noisy observations are surely possible, but not con-
sidered here for ease of exposition. The other half of the components are real-valued
elements that correspond to predictions (see Fig. 1). The key to our model is that this
computation is performed twice on each time step. The first iteration uses only the bi-
nary observations (with all predictions set to 0) to calculate an interim prediction. On
the second iteration, this interim prediction becomes part of the stimulus representation
and is used to generate the final prediction that is compared to future experience.

Learning in the PR model occurs on the ensuing time step when new observations
are encountered, through the temporal-difference (TD) learning algorithm [10,13]. With
this learning rule, an error δt is formed for each potential outcome, which is the differ-
ence between the current prediction and the sum of the new observations and resultant
new predictions (as discounted by γ):

δt = xt+1 + γṼt+1 − Vt . (2)

Note that Ṽt+1 is the prediction as calculated using the vector of the new observations
and predictions, xt+1, and the weight vector before being updated, wt, through the
same two-step process described above. The discount factor, γ, determines the tem-
poral horizon of the prediction. A low γ makes the model short-sighted, focusing the

Representation

PredictionsStimuli

+

Update

Fig. 1. Schematic of the PR Model. Observations (blue circles) at one time step are first used
to generate interim predictions (boxed green clouds) for every stimulus. The same observations
are then combined with these interim predictions to generate the final predictions (larger green
clouds). Finally, on the next time step, the new observations and resultant new predictions are
combined to update (red arrow) the weights based on the discrepancy between the predictions
from the previous time step and these observed outcomes.
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prediction on the near future; a higher γ extends the temporal window which the model
is trying to predict.

The prediction calculation is updated on every time step by changing each weight,
wi, according to the TD error for that potential outcome:

wi
t+1 = wi

t + αδtx
i
t (3)

where α is a step-size parameter that influences the learning rate. In the model, events
that have high salience, such as shocks, have a large step size, whereas less salient
events, such as tones and lights, have a lower step size (and thus learning rate). For
simplicity, we chose to only update the weights from the second iteration and force
the weights in the first iteration to be identical to the corresponding weights in the
second iteration. Other versions of this PR model with deeper (multi-layer or recurrent)
predictions or with multiple cascading or independent learning updates are certainly
possible and may even capture further empirical phenomena not considered here.

An important element of the PR model is that all experimental situations are mod-
eled as real-time. In previous models of mediated conditioning and related phenom-
ena [12,15], the flow of experience was often divided into discrete trials and punctate
events—a structure which is not immediately apparent in the real world. The PR model
allows stimuli to exist for multiple time steps, thereby predicting the continuation of
themselves, a feature that is vital in explaining sensory preconditioning and mediated
aversion (see Tables 2 and 3).

2 Results

We demonstrate successful performance of the PR model on three animal learning tasks
that seem to involve mediated conditioning: acquired equivalence [3], sensory precon-
ditioning [2], and mediated aversion [5]. For each of these experiments, we simulated
the PR model with 100 trials in the first stage, 3 trials in the second stage, and a sin-
gle test trial in the final stage. Sensory stimuli all lasted for 15 time steps, while food
reward, shock, and illness lasted 3 time steps; an inter-trial interval of 60 time steps
separated trials. In all simulations, the discount factor γ was .98, and the step size α
was .4 for shock and illness, .3 for food reward, and .05 for other stimuli. Weights were
initialized to 0 and capped at 3.

2.1 Application: Acquired Equivalence

When two stimuli are repeatedly followed by the same outcome, they often come to be
treated more similarly in the future; that is, these stimuli acquire an equivalence rela-
tion [4,16]. For example, Honey and Hall [3] presented rats with three different stimuli
(A, B, and C): A and B were always followed by food reward (f) while C was never
rewarded (see upper part of Table 1). Rats then received parings of stimulus A with an
electric shock (sh). When subsequently tested with stimuli B and C, rats showed sig-
nificantly greater conditioned fear to stimulus B, which shared a common history with
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Table 1. Experimental details and model interpretation of the acquired equivalence experiment
from Honey and Hall [3]. Each column is a different stage of the experiment. A, B, and C are
different sounds; f = food; sh = shock; pr = prediction.

Stage 1 Stage 2 Test Result
Experiment: Honey and Hall [3]
A→f A→sh B B > C
B→f C
C

PR Model Explanation:
A→pr(f) A→pr(f)→sh B→pr(f) B→pr(sh)

B→pr(f) Therefore: & pr(f)→pr(sh)
A→pr(sh)
pr(f)→pr(sh)

shocked stimulus A. This transfer of conditioned fear to the stimulus that shared a train-
ing history with the shocked sound is the hallmark of an acquired equivalence relation-
ship. This acquired equivalence by common consequences has also been demonstrated
in pigeons [14] and humans [7,17].

Figure 2 presents simulation results from the PR model on this acquired equivalence
task. As with animals, the model produced a greater prediction of shock (equivalent
to more conditioned fear) with the stimulus (B) that shared a training history with the
shocked stimulus (A). The lower part of Table 1 gives an intuitive account of how our
model yields these results. After the first stage, both A and B produce a prediction
of food. In the second stage of training, A produces a prediction of food, which is
followed by shock. Thus, A produces a prediction of shock, and, here is the key point,
the prediction of food also produces a prediction of shock. Finally, in the third stage, B
still produces a prediction of food, which, in turn, produces a prediction of shock. This
indirect prediction of shock is the basis of the acquired equivalence effect (and other
forms of mediated conditioning) in our PR model.
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Fig. 2. PR model simulation results (left) and empirical data (right) from an acquired equivalence
experiment. Data are re-plotted from Honey and Hall [3]. Stimulus B shared a training history
with the shocked stimulus, while stimulus C did not.
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2.2 Application: Sensory Preconditioning

Sensory preconditioning is another experimental situation wherein one stimulus gains
an association with reward through the mediation of a second stimulus [1,2]. The upper
portion of Table 2 displays the experimental design for a typical sensory precondition-
ing procedure. Animals are first trained with pairings of two previously neutral stimuli
(A, B) as well as a third, unpaired stimulus (C). In the second stage, one of the paired
stimuli (B) is then followed by a mild shock (sh). Finally, in the test stage, the other
two stimuli are presented alone, and animals display greater conditioned fear to the
paired stimulus (A) than the unpaired stimulus (C). The link established between B and
A by their training history (in Stage 1) results in greater subsequent generalization be-
tween the two stimuli. This effect can be further augmented by presenting the stimuli
simultaneously rather than sequentially in Stage 1 (bracketed conditions in Table 2).

Figure 3 displays the empirical data (right) and corresponding simulation results
(left) from the real-time PR model in a sensory preconditioning procedure. As with real
animals, in the model, sensory preconditioning results in greater generalization to the
paired stimulus (A) from the first stage, most markedly for the simultaneous training
case [2]. The lower portion of Table 2 schematizes how the PR model explains this
generalized responding to stimulus A in the test stage. After the first stage of training,
stimulus A produces a prediction of stimulus B. Because stimuli last for multiple time
steps in the real-time PR model, all stimuli also learn to produce self-predictions. In
the second stage, stimulus B produces a prediction of itself, so both the stimulus and
its prediction are followed by the shock. As a result, both B and the prediction of B
lead to predictions of shock. In the final, test stage, stimulus A leads to a prediction of
B, which leads to a prediction of shock and the associated conditioned response. The
simultaneous case shows greater sensory preconditioning than the sequential version in
the PR model because, in the first stage, in the simultaneous case, the model additionally
learns that stimulus B predicts stimulus A (bracketed value in Table 2). This additional

Table 2. Experimental details and model interpretation for a sensory preconditioning experiment.
Each column is a different stage of the experiment. For clarity, only predictions directly pertinent
to the explanation of the primary effect are included. Bracketed items refer to the simultaneous
version of the task. A, B, and C are different stimuli; sh = shock; pr = prediction.

Stage 1 Stage 2 Test Result
Experiment: Rescorla [2]
A→B [AB] B→sh A [A] > A > C
C C

PR Model Explanation:
A→pr(A),pr(B) B→pr(B)→sh A→pr(A),pr(B) A→pr(sh)

B→pr(B),[pr(A)] [B→pr(A)→sh] & pr(B)→pr(sh) [A→pr(sh)]
Therefore: [& pr(A)→pr(sh)]

B→pr(sh)
pr(B)→pr(sh)
[pr(A)→pr(sh)]
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Fig. 3. PR model simulation results (left) and empirical data (right) from a sensory precondition-
ing experiment. Data are re-plotted from Figure 4 in Rescorla [2] as degree of response suppres-
sion. SIM = simultaneous; SEQ = sequential; CON = control.

prediction results in the prediction of A directly preceding shock in Stage 2, leading to
greater generalization in Stage 3 because of the self-prediction of stimulus A.

2.3 Application: Mediated Aversion

A final set of empirical phenomena that nicely illuminate properties of this PR model are
the series of mediated aversion experiments [5,6]. Table 3 shows the design for a typical
experiment: Animals are first trained with 2 neutral stimuli (A, B) each paired with one
of 2 different foods/flavours (f1, f2). In the second stage, animals are presented one of
the two stimuli followed by injection with lithium chloride (LiCl), an illness-inducing
agent. On the final, test stage, animals are presented with the 2 foods/flavours and will
typically preferentially eat from the food whose associate was not paired with illness in
the second stage.

Table 3. Experimental details and PR model interpretation for a mediated aversion experiment.
Each column is a different stage of the experiment. For clarity, only predictions directly pertinent
to the explanation of the primary effect are included. A, B = stimuli; f1, f2 = foods/flavours; G1,
G2 = 2 groups of animals; pr = prediction; LiCl = Lithium Chloride, an illness-inducing agent.

Stage 1 Stage 2 Test Result
Experiment: Holland [5]
A→f1 G1: A→LiCl f1 G1>G2
B→f2 & G2: B→LiCl

PR Model Explanation:
A→pr(A),pr(f1) A→pr(f1)→LiCl f1→pr(f1) f1→pr(LiCl)

f1→pr(f1) Therefore: & pr(f1)→pr(LiCl)
A→pr(LiCl)
pr(f1)→pr(LiCl)
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Fig. 4. PR model simulation results (left) and empirical data (right) from a mediated aversion
experiment. Data are re-plotted from Figure 1 in Holland [5] as percent decrease in consumption
of food f1 for the groups that had the same food (G1) or a different food indirectly devalued (G2).

Figure 4 shows how the PR model effectively captures the key result: In both the data
and simulations, the group that had food f1 indirectly devalued showed a much greater
prediction of illness than the second group. As sketched out in the lower part of Table 3,
the PR model learns that stimulus A leads to a prediction of food f1 in the first stage.
As a result, in the second stage, both stimulus A and the prediction of food f1 precede
(and learn to produce predictions of) illness (LiCl administration). Finally, in the final
test phase, food f1 leads to a prediction of itself which leads to a prediction of illness
and the observed food aversion. Once again, self-prediction is an important component
of the explanation, but this time in a different guise than with sensory preconditioning.
In sensory preconditioning, self-prediction is the important feature in the second phase
when stimulus B’s self-prediction leads to the prediction of B producing a prediction
of food (cf. Table 2). In the mediated aversion experiment, the crucial self-prediction
occurs in the final phase when food predicts itself, leading to a prediction of illness
(cf. Table 3).

3 Conclusions

In this paper, we have shown how mediated conditioning can be effectively modeled
with our real-time PR network model. The PR model conceives of humans and ani-
mals as generating a network of chained predictions of future observations, which, in
some ways, cashes out the “image” or “representation” of earlier theories of condition-
ing [4,6,11]. The selected empirical examples—acquired equivalence, sensory precon-
ditioning, and mediated aversion—each illustrate additional properties of the model in
explaining this form of learned generalization.

In their neural network model, Gluck and Myers [12] also address many of the same
empirical phenomena. They suggest that redundancy compression and predictive dif-
ferentiation are the two functions largely responsible for the increased generalization
observed in mediated conditioning experiments. Here, we propose an alternate compu-
tational account, based on the notion that stimuli are represented as the chained pre-
dictions of all future observations. Similarities in this predictive space produce learned



350 E.A. Ludvig and A. Koop

generalization between stimuli. In addition, the real-time dynamics of our PR model
proffers novel explanations for more phenomena, including the difference between si-
multaneous and successive sensory preconditioning (see Fig. 3). Our model also bears
some similarity to Sutton’s TD Models [10], which allow artificial agents to incremen-
tally learn a full-world model for better planning.

Where in the brain might all these iterative predictions be computed? One possibility
is suggested from the few studies that have examined lesion effects on these tasks. We
know that acquired equivalence and sensory preconditioning are both dependent on the
hippocampus and the surrounding entorhinal and perirhinal cortices [12,18,19,20,21].
Moreover, humans with hippocampal atrophy show deficits in the transfer (general-
ization) stage of an acquired equivalence task [17]. These results, taken together, hint
that the medial temporal areas might be responsible for creating new predictive repre-
sentations for use by reinforcement learning systems elsewhere in the brain (e.g., basal
ganglia; see [22]). These predictive representations could also provide a unifying frame-
work for knowledge creation [23], including spatial learning and object memory, two
of the more common processes attributed to the hippocampus and perirhinal cortex,
respectively.

In conditioning, animals clearly learn more than a simple association between a neu-
tral cue and a rewarding stimulus. They learn a panoply of interrelations among all
the different stimuli in their environment—relationships that can be exposed through
clever experimental manipulations, as in the generalization tests central to acquired
equivalence, sensory preconditioning, and mediated aversion. These three examples
of mediated conditioning or learned generalization demonstrate the value of trying to
model animal learning as a network of chained predictions. This predictive promiscu-
ity, as captured by our PR model, helps animals learn and adapt more quickly when
confronted with novel situations and stimuli. No doubt the empirical story in each of
these cases is more nuanced than this brief exposition has allowed (for more details,
see [4,6]), but our model captures the core effects and offers a framework for thinking
about how the empirical exceptions might constrain future modeling attempts.

Acknowledgments. The authors would like to thank Rich Sutton for inspiration with-
out constraint, the Alberta Ingenuity Fund and iCore for support, and Karen Skinazi for
editing help.
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Abstract. This paper reports a new finding on functionalities of trem-
bling, the bodily manifestation of fear and joy. We consider trembling of
a physically-simulated agent consisting of a vision system and a neural
system. It is demonstrated that the noise to visual streams generated by
trembling enhances signal to noise ratio of the neural system.

Keywords: Fear, Joy, Emotions, Embodiment, Stochastic Resonance.

1 Introduction

Most organisms are capable to behave rationally in the real-world. They can infer
a potential threat from subtle sensory signals [6]. They can select the most ratio-
nal action from a vast amount of options[3]. They can recognize the mental state
by observing a subtle changes of a facial expression[7][20]. One of the surprising
scientific findings in recent decades is that these rational abilities are funda-
mentally based on emotion. That is, impairment of emotions, in particular of
’emotional states’ such as drastic changes of blood pressure or skin conductance,
leads immediately to impairment of learning, decision-making, and sociality [3].

Though functionalities of emotional ’states’ have been well-addressed, emo-
tional ’movements’ such as laughter and trembling have been largely neglected
and been regarded simply as movements representing “overflowed neural and
mental states” [1][5]. In contrast, this paper argues that emotional movements,
trembling in particular, provide something more than representations, and that
in order to fully understand emotions it is crucial to investigate the effects of
emotional movements on the flow of sensory information.

The main goal of this paper is to propose functions of trembling for fear and
joy from the perspective of embodiment and physics. Later in this paper, we
demonstrate immense benefits of trembling; trembling provides additive noise to
sensory streams, and then, response of the nonlinear neural system is enhanced
due to stochastic resonance. In the next section, we sketch prospective roles of
emotional movements in contrast with the roles of emotional states, from the
perspective of embodied artificial intelligence.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 352–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Prospective Functions of Emotional Movements

2.1 Beyond Representational and Biasing Roles of Emotions

Emotion manifests itself in diverse ways, some manifestations are in blood pres-
sure, bodily temperature, neural state, or hormone density, and some are in
facial expression, vocalization, bodily movement, or behavior. The former ’inter-
nal’ manifestations are addressed as emotional states, roles of which are assumed
to be fundamental for both survival and social activities. For example, modu-
lated bodily states of anger or fear, are for the preparation of fight or flight
[9]. Modulated neurochemical distributions due to emotions such as increased or
decreased acetylcholine, serotonin, dopamine, are known to be serving effective
control of behavioral tendencies via short-term as well as long-term modulation
of neural states, cognitive modes, and mental states [26][27][29][30].

One of the most reliable accounts for the role of emotional states is that emo-
tional states provide “markers” which represent values of events for an organism,
and the markers in turn, bias attention, motivation, action-selection, and other
cognitive activities [3][8][18][31]. On the contrary to the representational and
relatively indirect biasing roles of the internal manifestations, we expect that
external manifestations of emotions actively and directly deform, constraint, or
even create sensory streams by actions and bodily movements.

2.2 Emotional Movements and Active Sensing

Beneath our expectation for dynamical influences of emotions, the theory pro-
vided by J.-P.Sartre is underlying, that emotion is a special kind of action to
reduce frustration among one and the world [4]. For example, fainting, which
tends to be regarded as a ’marker’ of exhausted mental as well as biological
states, is a means to “escape from frustrations”. That is, emotion (e.g., anxi-
ety or sadness) is addressed as escape for the sake of self-defense, and bodily
manifestation, fainting, is addressed as a concrete means of the escape.

As far as bodily manifestation is a means of emotion, bodily manifestation
is inseparable from the purpose of emotion. And, since bodily movements in-
evitably influence sensory data, it is reasonably expected that we can find bene-
fits of emotional movements within the sensory stream. In particular, we expect
that emotional movements provide ’extractor’ of hidden information, or ’ampli-
fier/canceler’ of weak/over-gained sensory signals. The perspective of embodied
artificial intelligence and active sensing support this expectation. For instance,
the length and the shape of a rod are perceived by “shaking” [21]. Saliency-
driven attention gives statistically well-tuned sensory information which is easy
to be learned [28]. To further support, we note erection of the ears of mammals.
Erection of ears is not to represent their arousal states, but to ascertain the
source and nature of the danger [1].

In next sections, we first focus on trembling, a typical manifestation of fear and
joy, and organize prospective situations when we fear and rejoice, and purposes
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why we fear and rejoice. And, we build a simulated creature to identify and
quantify functions of emotional trembling.

3 Model of Emotion-Derived Stochastic Resonance

3.1 When and Why We Fear and Rejoice

Usually we fear when a predictable “deterministic” world starts ruining, and
when indeterministic world appears where we can predict neither incoming sen-
sory signals nor consequences of our actions. This apprehension can be adopted
to several developmental studies. For example, fear of infants to strangers[22],
which emerges later in the development, will be because strangers are not pre-
dictable to infants, compared to caregivers. Furthermore, fear of an infant sitting
in the edge of a cliff, will be due to the inability to suppress the instability of the
posture, and in fact, it is clearly shown that an infant fears because the infant
cannot control the bodily-posture in the edge of a cliff[19]. Likewise, it is possible
to claim that joy appears when we experience unpredictable events, and when
indeterministic world appears, as joy occurs when we anticipated a reward, not
when we actually get it[1][4], and as pleasant tickle sensation occurs when infants
cannot predict incoming sensory signals [23]. Recent findings on brain science
support this claim. Response of dopamine neurons, which is strongly correlated
to joy, depends on the unpredictability of rewards [24][25].

As far as fear and joy appear in response to indeterminacy, the purpose of
fear and joy is reasonably expected to be in the reduction of indeterminacy.
Next, we propose our hypothesis on how trembling reduces indeterminacy, after
introducing a physical phenomenon, stochastic resonance.

3.2 Stochastic Resonance Derived from Fear and Joy

Stochastic resonance is a phenomenon where the ability of a nonlinear system
to detect sub-threshold weak signals is enhanced due to the presence of noise
[10]. It is known that a lot of non-linear systems exhibit stochastic resonance not
only under white noise [16], but also under temporally or spatially colored noise
[12][13][14]. It is also known that in order to maximize the effect, the variance of
noise should be reasonably large; small noise does not effect the system, whereas
too large noise hides the signals [11][15][32].

The scenario of the emotion-derived stochastic resonance is simple. Let’s say
an agent is walking in a dark forest and hears something moving. The agent
can anticipate the existence of a potential threat or reward, but cannot identify
because it is too dark to see. Thus, the world around the agent becomes inde-
terministic, because the agent has no model to behave adaptively without the
information of the potential threat or reward. And immediately, the agent will
fear, or rejoice, will possibly start trembling, and the trembling body, head, and
eyes, will result in a noisy visual stream. If the variance of the noise sequence is
adequate, the neural system of the agent will be able to detect weak signals by
exploiting stochastic resonance. And by this, the agent will successfully identify
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potential threat or reward, and reduce the unpredictability of the environment. If
only the agent identifies the source of potential threat or reward, indeterminacy
will disappear, and thus, the agent will be able to behave adequately.

4 Implementation

4.1 Design of Overall Architecture

To test our hypothesis, we implemented a physically-simulated active vision
system. Implemented system consists of vision system, active joint, and neural
system. Within the environment, we prepared a “windmill” in order to add
periodic visual stimuli to the system. The schematic model of the active vision
system and design of the physical agent are depicted in Fig.1. Overall simulation
is integrated within Ageia PhysX as Fig.2 with time-step 0.005.

4.2 Active Vision System

The video camera samples gray-scaled images It
G at every simulation step at the

resolution of 320 × 240 pixels, temporally subtracts It−1
G from It

G, and thus, gets
ΔIt

G. The sensory input, It, is calculated by down-sampling |ΔIt
G| to 16 × 12

pixels. Note It
i , ith bin of It, consists of the information of movements of objects

in the environment, st
i, and the camera itself, nt

i.
The one motor of the simulated active vision system is controlled by the

angle command am(t), generated randomly by “trembling source” at frequency
ft = 40 Hz unless specified otherwise. In this paper, we adopt noise of uniform
distribution for am, whose range is [-σ, σ]. For example, in case σ = 0, then

320 x 240

16 x 12

I t

16 x 12

ut

motors

camera
I t-1

G

I t
G

= s + nt t

trembling source

x
z

c
c

y

xz

Fig. 1. Left: schematic model of the active vision system. It
G means gray-scale image

sampled by the camera mounted on the top of the agent. It means sensory stimuli
added to neural system ut, where st is signal term and nt is noise term induced by
trembling. Angle of a motor is controlled by random position command generated by
trembling source. Middle and right: schematic model of the physical agent and its
surrounding environment. The character ’c’ denote the camera, and the circles with a
cross denote the joint controlled by motors. Pitch of the camera is tilt around y axis.
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Fig. 2. Integration of the whole simulation. (A): physically-simulated environment and
agent within Ageia PhysX. (B): original camera image. (C): |ΔIt

G|, image obtained by
temporal subtraction of the gray-scaled images. (D) and (F): examples of It, 16 × 12
sensory input to the bistable neurons during trembling at 2.5 sec and 2.7 sec. (E) and
(G): examples of 16 × 12 output of the bistable neurons at 2.5 sec and 2.7 sec.

the system keeps am = 0. And in case σ = 20.0, then, am takes random value
between −20 and 20 [deg]. Note frequency of the bodily trembling depends on
the function of ft and characteristics of the body such as torque limit or stiffness.

4.3 Ensemble of Nonlinear Bistable Neurons

As a neural system, we consider an ensemble of 16×12 bistable nonlinear neurons,
each of which has two potential well, that is two stable states U±

s . The model of
ith neuron is described as:

τ
dui

dt
= −ui + Jiif(ui) + gsIi, (1)

f(ui) =
2

1 + exp (−5(ui − θi))
− 1, (2)

where ui and f(ui) are the internal state and the sigmoidal output of ith neuron,
respectively. Jii is a self-coupling coefficient, and is 2.5 in this paper. Time
constant τ is 0.01. Ii is sensory input consisting of signal term si and noise term
ni, and gs is signal gain. θi is the bias parameter of the ith neuron, and is 1.0
consistently. The height of the potential barrier, U±

0 , is roughly estimated as
U+

0 ≈ 2.66 and U−
0 ≈ −0.66 (shifted from U±

0 ≈ ±1.66 by θ). Note input gsIi,
where U−

0 < gsIi < U+
0 , does not effect switching of the neuronal state between

the two potential well, and hence, induces ’locking’ of the neural state. For more
detail information on the dynamics of this kind of neurons, refer [16].

4.4 Calibration of Mean Noise E(n)

Sensory input to the ith neuron, It
i , takes the form It

i = st
i+n

t
i, where st

i is signal
and nt

i is noise to the ith bin. Since in order to confirm stochastic resonance,
mean value of noise E(ni) should be zero, and since it is impossible to separate
ni from si, therefore, we implement time-window, and within the time-window,
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estimate mean noise of the ith bin, Ẽ(ni), as mean-value of It
i . Here, length of a

time-window is 0.2 [sec]. Based on the estimated mean noise, we compute input
to the ith neuron, It

i = It
i − Ẽ(ni)T j

.

5 Experiments and Results

5.1 Experimental Setup

Stochastic resonance is observed as the enhancement of the signal-to-noise ratio
(SNR) by the presence of additive noise [15][16]. Therefore, in order to confirm
stochastic resonance, following two conditions are considered: (1) input sensory-
signal si should be far below U+

0 and should be periodic; (2) mean value of
noise should be zero or should be smaller than zero, that is, E(ni) ≤ 0. Note
that si + E(ni) should be smaller than U+

0 , but |si + ni| must be large enough,
otherwise, neurons can never switch between the two potential well.

To prepare periodic sensory input, we instantiate an environment where a
windmill is “slowly” rotating, at the angular velocity, aV [rad/sec]. Here, if an
environment is not textured, or textures are “flat”, sensory-input goes to zero,
because we are temporally differentiating camera images. Therefore, we select
“complex” textures to avoid zero sensory-input (see Fig.2). Note movements of
the windmill give approximate sinusoidal signals around 1.52 [Hz]. Here, since
sensory signal si is far below the height of the potential barrier U+

0 , and since
U−

0 ≈ −0.66, the neuron without additive noise stays at U−
s (see Fig.3).

And, for histogram analysis of embodied noise, we prepare an environment
where the agent is trembling at ft = 20, 40, and 200 Hz, whereas the wind-
mill is not rotating. The distribution shown in Fig.3 indicates that embodiment
distorted the uniform distribution of position command am.

5.2 Detection of Subthreshold-Signal by Trembling

We first demonstrate that trembling enables the agent to detect weak signals.
We rotated the windmill at aV = 0.8 [rad/sec], generated trembling with σ =
20 deg., arbitrarily selected one neuron, and observed the neural output. The
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Fig. 3. Left: typical sensory input Ii to the ith neuron and the neural output without
trembling. Note that the signal is far below the potential barrier U+

0 . Right: histogram
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result shown in Fig.4 indicates that neuron successfully detects the input sensory
signals both in ft =40 and 200 Hz, which is too weak to detect without trembling.

5.3 Enhancement of Signal to Noise Ratio by Trembling

Signal to noise ratio (SNR) is estimated by the following equations [11];

SNR = 10 log
S

N
= 10 log

2|Y (k0)|2∑L−1
k=0 |Y (k)|2 − 2|Y (k0)|2

. (3)

Signal power is represented with the magnitude of the spectrum Y (ω) of neural
output at the input frequency ω0. The background noise spectrum N(ω0) is
estimated as the summation of the output power spectrum Y (ω), for ω �= ω0.
Here, Y (k) denotes output of kth bin of L-point DFT of neural output, and k0

denotes the bin corresponding to the peak frequency ω0.
Using this method, we observed SNR of output of arbitrary selected one neu-

ron, while changing angular velocity of the windmill, and changing standard
deviation σ of am. The result shown in Fig.5 indicates significant enhancement
of SNR around 10 < σ < 20 and decrement of SNR for larger σ, independently
from trembling frequency and angular velocity.

6 Discussion and Conclusion

6.1 Biological Plausibility Implied by the Experimented Results

In order to demonstrate stochastic resonance by emotional trembling, we dared
implement so simple agent that it could lose plausibility as a biological system.
Despite of the simplicity, however, the experimented results strongly support our
hypothesis that biological systems are exploiting stochastic resonance by emo-
tional trembling. Fig.5 indicates that the remarkable effect exists within limited
parameter space (i.e., within 10 < σ < 20), regardless of the frequency of the
visual stimuli and of trembling. Moreover, Fig.5 indicates that trembling at 20
Hz, which biological systems definitely can reproduce, is enough to generate
stochastic resonance. Though fluctuation and randomness are required for trem-
bling to induce stochastic resonance, it will not be a difficult task for any kind
of embodied agent to learn how to exploit stochastic resonance by trembling.
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6.2 Emotional Trembling as a Novel Kind of Active Sensing

Most of perceptions of natural and artificial embodied agents are achieved by
’active sensing’. For example, “seeing” object surface from several different angles
enables effective object discrimination [17]. The important factor to realize active
sensing, which is derived by studies of embodied artificial intelligence, is that
motor commands should be adequately controlled by and coupled with sensory
data, otherwise, no movement provides any function [2]. In this context therefore,
trembling does not seem to serve any information processing, because trembling
is not much more than movements decoupled from sensory data. Nevertheless,
it provides the role of fundamental importance to detect and to perceive weak-
signals. Given that fear and joy serve reduction of indeterminacy, one possible
interpretation of the result will be that emotional trembling is a special kind of
active sensing exploiting embodied noise.

6.3 Ambivalence of Emotions

According to J.-P. Sartre, emotions are rational and intended. Whereas, our
common-sensed apprehension is opposite; emotions are irrational and unintended.
This contradiction is explained by the ambivalence of emotions, and by the char-
acteristics of our consciousness and subconsciousness.

As demonstrated, in an environment where only weak signals exist, trembling
might be the only one method to identify the source of a potential threat or a
potential reward. In this context, we have no choice other than to generate trem-
bling. Thus, ambivalence emerges here; we intentionally generate trembling by
our rational thinking, while on the other suffer the pains of fear or feel awkward
at the pleasure of joy, being exposed to the flood of sensory signals as a result
of trembling. The reason why we intuitively tend to assume emotions as unin-
tended products is because of self-deceit and because of lack of the monitoring
process of the causal relationship between our subconscious intentions and the
consequent painful or pleasant flood of sensory signals [4].
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6.4 Spatiotemporal Structure within Embodied Noise

One might think that internal noise (e.g., neural noise) also can induce stochas-
tic resonance. We agree that this claim is quite reasonable. However, emotional
trembling seems to provide further functions in addition to stochastic resonance,
which internal noise cannot provide. That is, embodied noise essentially involves
spatial correlation due to the environmental structure and temporal correlation
due to the agent’s motion, whereas internal noise cannot have such structures.
Though further investigations are left as future works, embodied noise and inter-
nal noise should have different roles, and we hope understanding the difference
among roles of embodied and internal noise let us understand emotions further.

7 Conclusion

In this paper, we started from pointing out the effects of emotional movements
on the sensory stream of an embodied agent, and then, we hypothesized that
trembling for fear and joy, is active sensing to detect subthreshold weak signals.
Using physically-simulated active vision system consisting of a bistable nonlinear
neural system, we demonstrated stochastic resonance by trembling. We hope this
research sheds light on the embodied basis of emotions.
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Abstract. We examine the influence of asynchronism in the Spatial
Prisoner’s Dilemma game. Previous studies reported that less coopera-
tion is achieved with the asynchronous version of the game than with
the synchronous one. Here, we show that, in general, the opposite is the
most common outcome. This conclusion is only possible because a larger
number of scenarios was tested, namely, different interaction topologies,
a transition rule that can be tuned to emulate different levels of deter-
minism in the choice of the next strategy to be adopted and different
rates of asynchronism. The influence of stochastic and deterministic pe-
riodic updating in the outcome of the system is also compared. We found
that these two update disciplines lead basically to the same result. This
is an important issue in the simulation of social and biological behavior.

1 Introduction

Spatial evolutionary games are used in the area of evolutionary game theory as
models to study, for example, how could cooperation ever emerge in nature and
human societies [11]. They are also used as models to study how can cooperation
be promoted and sustained in artificial societies [9]. In these models, a structured
population of agents interacts during several time steps through a given game
which is used as a metaphor for the type of interaction that is being studied.
The population is structured in the sense that each agent can only interact with
its neighbors. After each interaction session, some or all the agents, depending
on the update method used, have the possibility to change their strategies. This
is done using a so called transition rule that models the fact that agents tend
to adapt their behavior to the context in which they live by imitating the most
successful agents they know. It can also be interpreted as the selection step of an
evolutionary process in which the least successful strategies tend to be replaced
by the most successful ones.

The final outcome of these models, that is, the proportion of cooperating
agents eventually achieved, can be influenced by, for example, the game that is
being used, the interaction topology, the transition rule or the update method.
The most used game in this area is the Prisoner’s Dilemma game (see section 2.1).

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 362–371, 2008.
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There are some works where the influence of some of those aspects on the spatial
version of this game is studied. For example, in [10] the influence of the interac-
tion topology is analyzed. Also, in [7] the influence of the interaction topology,
the transition rule and the update method are studied.

In this area, the discussion about using synchronous or asynchronous update
methods started with a paper by Huberman and Glance [5]. Synchronous up-
dating means that, at each time step, the revision of strategies happens for all
agents simultaneously, while this is not the case for asynchronous updating. In
that paper the authors contested the results achieved in [8] by Nowak and May
who showed that cooperation can be maintained when the game is played in a
regular 2-dimensional grid by agents which do not remember their neighbors’
past actions. Huberman and Glance criticized the fact that the model used in
[8] was a synchronous one, which is an artificial feature. They also presented
the results of simulations where cooperation was no longer sustainable when
an asynchronous updating was used. After this work, in [7] Nowak et al tested
their model under several conditions, including synchronous and asynchronous
updating and showed that cooperation can be maintained for many different
conditions, including asynchronism. However, the results are presented through
system snapshot images, which render difficult to measure the way they are
affected by the modification from synchronous to asynchronous updating. Re-
cently, in [6], a similar scenario was studied using various asynchronous update
methods besides synchronous updating. The authors found that ”The most no-
table difference between the synchronous and asynchronous schemes, is that the
synchronous updating scheme supports more cooperators than the other updating
schemes”.

In this paper, we show that, in general, more cooperation is achieved with
the asynchronous version of the Spatial Prisoner’s Dilemma game than with the
synchronous one. The conclusions derived in [5] and [6] result from the fact that
a limited number of conditions were tested, namely, the utilization of only the
best-neighbor transition rule, according to which an agent always imitates the
strategy of its most successful neighbor. Here, we use the transition rule used
in [7] (see Section 2.3). This rule can be tuned to cover the spectrum between
proportional updating, with which agents can imitate strategies other than the
one used by their most successful neighbor, and the best neighbor rule. Different
types of interaction topologies were also used so that the conclusions derived can
have a more general character.

In what concerns to the update methods, we first used an asynchronous
stochastic update method [2] that allows us to cover the spectrum from syn-
chronous to sequential updating. Usually, asynchronous updating is understood
as sequential updating, which means that, at each time step, only one agent
updates its strategy after interacting with its neighbors. But, reality seems to
lie somewhere between these two extremes and, so, sequential updating can be
considered as artificial as synchronous updating. In a population of interacting
agents, many interaction and decision processes can be occurring at the same
time but not necessarily involving all the agents. If both were instantaneous
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phenomena we could model the dynamics of the system as if they occurred one
after another but that is not usually the case. These processes can take some
time, which means that their output is not available to other ongoing decision
processes. Even if we consider them as being instantaneous, the time that infor-
mation takes to be transmitted and perceived implies that their consequences
are not immediately available to other agents.

We also compare the results achieved using the stochastic update method
with the ones achieved with a deterministic periodic one. There are numerous
examples of periodic behaviors where not all the population is necessarily syn-
chronized [3][6]. This comparison can help us understand to what extent the
results depend on this type of updating.

The paper is structured as follows: in Sec. 2 we describe the model we used
in our simulations and in Sec. 3 we present and discuss the results. Finally, in
Sec. 4 some conclusions are drawn and future work is advanced.

2 The Model

2.1 The Prisoner’s Dilemma Game

In the Prisoner’s Dilemma game (PD), players can cooperate (C) or defect (D).
The payoffs are the following: R to each player if they both play C; P to each if
they both play D; T and S if one plays D and the other C, respectively. These
values must obey T > R > P > S and 2R > T + S. It follows that there is a
strong temptation to play D. But, if both play D, which is the rational choice
or the Nash equilibrium of the game, both get a smaller payoff than if they
both play C, hence the dilemma. For practical reasons, the payoffs are usually
defined as R = 1, T = b > 1 and S = P = 0, where b represents the advantage
of D players over C ones when they play the game with each other. This has
the advantage that the game can be described by only one parameter without
loosing its essence [7].

2.2 Population Topologies

We used two types of topologies: small-world networks (SWNs) [13] and scale-
free networks (SFNs) [1]. We build SWNs as in [12]: first, a toroidal regular
2-dimensional grid is built so that each node is linked to its 8 surrounding
neighbors by undirected links; then, with probability φ, each link is replaced
by another one linking two randomly selected nodes. Parameter φ is called the
rewiring probability. In some works [7] self-links are allowed because it is con-
sidered that each node can represent not a single agent but a set of similar
agents that may interact with each other. Here, we do not allow self-interaction
since we are interested in modeling nodes as individual agents. Repeated links
and disconnected graphs are also avoided. The rewiring process may create long
range links connecting distant agents. For simplicity, we will call neighbors to all
interconnected agents, even if they are not located at adjacent nodes. By varying
φ from 0 to 1 we are able to build from completely regular networks to random
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ones. SWNs have the property that, even for very small values of the rewiring
probability, the mean path length between any two nodes is much smaller than
in a regular network, maintaining however a high clustering coefficient observed
in many real systems including social ones.

Although frequently used to model real networks, SWNs do not have a power
law degree distribution that is frequently observed on such networks [10]. SFNs
are network models that have this property since their degrees follow the power
law distribution P (k) ∼ k−γ . We build SFNs in the following way: the network
is initialized with m0 fully connected nodes. Then we add nodes, one at a time,
until the network has the desired size. Each added node is linked to m0 already
existing nodes so that the probability of creating a link with some existing node i
is equal to ki�

j kj
, where ki is the degree of i, that is, the number of nodes to which

it is connected. This method of link creation is called preferential attachment,
since the more links a node has, the greater is the probability of creating links
to it. This has the effect that a little proportion of nodes has a big connectivity
while the most part has a very low connectivity.

2.3 Interaction and Strategy Update

On each time step, agents first play a one round PD game with all their neigh-
bors. Agents can only play C or D and the only way they can change their
strategy is by way of the application of the transition rule, after the interaction
process. This rule is used to model the fact that agents tend to imitate the most
successful agents they know. In order to be able to model intermediate levels of
asynchronism in the strategy update process, we use an update method called
asynchronous stochastic dynamics (ASD)[2]. When ASD is used, at each time
step, each agent has a given probability 0 < α ≤ 1 of applying the transition
rule in order to decide which strategy to use next. The α parameter is called the
synchrony rate and is the same for all agents. When α = 1 we have synchronous
updating and as α → 1

n , where n is the population size, ASD approaches se-
quential updating.

To model the strategy update process, we used a generalization of the pro-
portional transition rule [7]. Let Gi be the average payoff earned by agent i in
the second stage, Ni be the set of neighbors of agent i, si be equal to 1 if i’s
strategy is C and 0 otherwise, and d a positive number. According to this rule,
the probability that an agent i adopts C as its next strategy is

pC(i) =

∑
l∈Ni∪i sl(Gl)d

∑
l∈Ni∪i(Gl)d

. (1)

The d parameter acts as a weight that favors the most successful neighbor’s
strategy B in the update process: the bigger d, the larger is the probability that
i adopts B. When d→ +∞ we have a deterministic best-neighbor rule such that
i always adopts B as its next strategy. When d = 1 we have the proportional
update rule. It can be viewed, as well, as the deterministic degree of the transition
rule. We use average payoffs instead of total payoffs because agents may have a
different number of neighbors.
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3 Simulations and Results

All the simulations were done with populations of 50× 50 = 2500 agents, ran-
domly initialized with 50% of Cs and 50% of Ds. When the system is running
synchronously, i.e., when α = 1, we let it run during a transient period of 900
iterations. After this, we let the system run during 100 more iterations and, at
the end, we take as output the average proportion of cooperators during this
period, which is called the sampling period. When α �= 1 the number of selected
agents at each time step may not be equal to the size of the population and it
may vary between two consecutive time steps. In order to guarantee that these
runs are equivalent to the synchronous ones in what concerns to the total num-
ber of individual updates, we let the system first run until 900× 2500 individual
updates have been done. After this, we sample the proportion of cooperators
during 100× 2500 individual updates and we average it by the number of time
steps needed to do these updates. Each simulation is a combination of the φ/m0,
α, b and d parameters, and all the possible combinations of the values shown in
Table 1 were tested. For each combination, 30 runs were made and the average
of these runs is taken as the output.

Table 1. Parameter values used in the simulations

Parameter Values

φ (SWNs) 0 (regular), 0.01, 0.05, 0.1, 1 (random)

m0 (SFNs) 4, 8, 12

α (ASD) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 (synchronous)

b (PD game) 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2

d (transition rule) +∞ (best neighbor), 100, 10, 8, 6, 4, 2, 1 (proportional)

In [4] we presented results of simulations done with the ASD update method
where only SWNs were used. In the next section, we present an analysis of
the results achieved based also on simulations done with SFNs. Most of the
conclusions apply to both types of topologies but we will point the differences
where they exist. In order to help the understanding of the conclusions, in Fig. 1
we show four typical charts produced by the simulations. In Sec. 3.2 we then
compare the results achieved using ASD with the ones achieved using a periodic
deterministic update method.

3.1 ASD Results

We can conclude that, for most conditions, the system is not very sensitive to
small changes in the α value (we consider that the system is sensitive when its
outcome changes by more than 0.1 when the α value is changed by 0.1). There
are, however, some situations of big sensitivity (Ex: Fig. 1d). Also, the results
show that, in general, the system responds monotonically to changes in the α
value. The few situations of non-monotonicity happen almost only for SWNs
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(a) d = +∞. (b) d = 10.

(c) d = 4. (d) d = 1.

Fig. 1. % of cooperators for m0 = 4 (SFNs) and different combinations of d, b and α

and mainly for large values of d, that is, when the probability that an agent
imitates its most successful neighbor is high. As to the influence of the interaction
topology on these two aspects, the results show that the system becomes more
robust and monotonous as φ and m0 are increased. We hypothesize that the
real reason for this coincidence of results can be due to the fact that the mean
path length between the nodes decreases as we increase φ and m0, respectively,
on SWNs and SFNs. Another possibility would be the clustering degree of the
network. However, while the clustering degree decreases on SWNs as we increase
the φ value, it can not decrease on SFNs as we increase the value of m0. So, this
result can not be ascribed to this property. More work must be done, however,
in order to confirm this.

There is a somewhat unexpected result that can be phrased like this: the lower
the value of the d parameter, the more is cooperation favored when we decrease
the value of α. That is, as we decrease the value of d, the slope of the curves
increases. This also means that the system becomes more sensitive to α changes
as the d parameter is decreased. We call this effect the small determinism degree
and small synchrony rate effect.

Possibly, the most relevant result is that, as we decrease the α value, the
proportion of cooperators increases for the big majority of the simulations. That
is, in general, asynchronism supports more cooperators than synchronism. This
conclusion can only be derived because several scenarios were tested, namely,
different interaction topologies and different values for the determinism degree
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of the transition rule. Indeed, this allowed us to verify that the situations where
this conclusion does not apply are the ones where big values of the determinism
degree of the transition rule, d, are used. Putting it another way, asynchronism
is detrimental to the emergence of cooperation only when the probability of
committing errors in the choice of the next strategy to use is very low. But
reality is far from such perfection and phenomena like noise, be it deliberate
or not, perception errors, or simply bad evaluations, often prevent agents from
choosing what would seem the best choice.

Finally, we would like to stress that using an update method able to cover all
the spectrum from synchronous to near sequential updating, as the ASD method
is, allows a deeper analysis of the system being studied. It allows, for example,
the identification of existing phase transitions: often the level of cooperation is
0 for α = 1 and it remains there until a given α = c value is reached. Then,
suddenly, the level of cooperation starts to increase, sometimes in a significative
way, as α decreases from c to 0.1. For many of such situations c is very near to
1 or even equal to 1 (see, for example, Fig. 1d). This may suggest that in these
cases the existence of some degree of cooperation is the most probable outcome
in the system being modeled since it exists for almost the entire α domain.

3.2 Stochastic Versus Deterministic Updating

In [3] a classification of random boolean networks (RBNs) is given based mainly
on the update methods used. The authors found that the behavior of asyn-
chronous deterministic RBNs is much closer to the behavior of synchronous
RBNs than to the one shown by asynchronous stochastic RBNs. In spite that
our intention in this paper is not to make a comparison between the model
studied here and RBNs, a question arises: is this also the case for spatial evolu-
tionary games? An affirmative answer could help in the formulation of a general
explanation for the influence of asynchronism on dynamical systems, if there is
any. A negative answer is also important because, not only it takes this hypoth-
esis off the path, but also because it can help us understanding the influence of
deterministic updating on the modeled systems.

In order to model asynchronous deterministic dynamics, the authors of [3] used
a sequential update method and another one (DGARBN)1 that allows more than
one agent to be updated at the same time. DGARBN is also a periodic update
method: each agent has two parameters, p and q that, respectively, determine
the period of the updating, and the phase (the translation of the update). Agents
updated at the same time step are updated synchronously. The problem with this
method is that it doesn’t allow us to control the synchrony rate so that a direct
comparison with the results achieved with ASD can be made. Besides, it doesn’t
provide the same number of updates for all agents when time grows. This means
that agents can not be considered homogeneous anymore, which is a significant
modification generating a different problem. Therefore, we changed the method
so that the p parameter is the same for all agents. We call asynchronous deter-
ministic dynamics (ADD) to this update method. As in the original method,
1 DGARBN: Deterministic Generalized Asynchronous Random Boolean Networks.
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q < p and is defined randomly for each agent. This way, when p = 2, p = 5, or
p = 10, respectively, 50%, 20% and 10% of the population is updated each time
step, on average. These are the values we used in our simulations. They allow
us to compare the results achieved with the ASD method for α = 0.5, α = 0.2
and α = 0.1. It would be desirable that we could compare results for other α
values, namely for 0.5 < α < 1.0, but we don’t know about any deterministic
and periodic update method that allows us to cover that interval.

Let us consider ResSync, ResASD and ResADD as the results achieved for a
given combination of parameters with synchronous updating, ASD and ADD,
respectively (each point in the charts of Fig. 1 corresponds to a given combina-
tion of parameters). In order to see which one of the two methods is closer to
synchronous updating and how different they are, we first compute the quantities
difASD = |ResASD−ResSync| and difADD = |ResADD−ResSync| for each com-
bination of parameters. difASD and difADD are not considered in the following
when ResSync = ResASD = ResADD since in these cases it makes no sense to
talk about which method is closer to synchronous updating. After this, we sepa-
rately compute the averages of difASD and difADD values. Let us call these two
quantities AvgASD and AvgADD, respectively. Finally, we compute the quanti-
ties s = AvgASD − AvgADD and r = x/y, where x = min(AvgADD, AvgASD)
and y = max(AvgADD, AvgASD). The s value tells us two things: which method
is closer to synchronous updating and how different they are from each other in
absolute terms. If s > 0, ADD is closer to synchronous updating than ASD and
vice-versa. Also, as s → 0 the two methods become closer. The r meaning is
the following: if F and C are, respectively, the method that is farther and closer
to synchronous updating, then r < 0.5 means that C is closer to synchronous
updating than to F . If r > 0.5, C is closer to F than to synchronous updating.

The results are (s = 0.011, r = 0.928) for SWNs and (s = 0.010, r = 0.922)
for SFNs. This means that ADD is closer to synchronous updating than ASD.
However, we are talking about s values very close to 0. Furthermore, the r values
are very close to 1, which means that the two methods are much closer to each
other than to synchronous updating. Given that these values result from all the
combinations simulated for each type of interaction topology, we later separated
the results along the different values of each parameter in order to enquire if there
are certain types of combinations for which there is a clear difference between the
two methods. We made separations for all the parameters and, as Table 2 shows,
the same conclusions derived above can be applied no matter how we separate the
results. This means that, although ADD is almost always closer to synchronous
updating than ASD, it is much closer to ASD than to synchronous updating.
This result indicates that the conclusions derived for ASD also apply to ADD
and that possible different levels of cooperation observed in the system being
modeled are not due to the deterministic or stochastic nature of the updating
scheme used by the agents. Also, this means that if we are willing to explain the
influence of update methods on the level of cooperation we must look somewhere
else away from their deterministic versus stochastic nature.
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Table 2. s and r values for the different values of each parameter

SWNs SFNs

φ = 0.0 φ = 0.1 φ = 1.0 m0 = 4 m0 = 8 m0 = 12

s r s r s r s r s r s r

0.020 0.877 0.006 0.952 0.011 0.940 0.013 0.916 0.008 0.928 0.011 0.900

m = +∞ m = 100 m = 2 m = 1

s r s r s r s r

0.009 0.876 0.007 0.919 0.012 0.939 0.017 0.932

α = 0.5 ≡ p = 2 α = 0.2 ≡ p = 5 α = 0.1 ≡ p = 10

s r s r s r

0.025 0.792 0.011 0.933 −0.002 0.985

4 Conclusion and Future Work

In this work we examined the influence of asynchronism on the evolution of co-
operation in models where agents try to adapt their behavior to the context in
which they live. We showed that, in general, asynchronism supports more cooper-
ators in the Spatial Prisoner’s Dilemma game than synchronism. This conclusion
contradicts previous ones but it results from a more general analysis, based on a
bigger number of tested conditions, namely, different types of topologies, various
values for the determinism degree of the transition rule and different levels of the
synchrony rate. Besides this conclusion, the asynchronous update method used
allowed us to derive some conclusions concerning, for example, the sensitivity
and monotonicity of the model to changes in the synchrony rate. Finally, we
found that the outcome of the studied model is approximately the same whether
a stochastic or a deterministic asynchronous updating is used.

Future extensions to this work will explore the ASD update method with
other games in order to verify if the results achieved with the PD game as, for
example, the small determinism degree and small synchrony rate are also present.
The results achieved in [12] with the Snowdrift game, where the best-neighbor
(+∞) and the proportional (m = 1) transition rules, as well as synchronous and
sequential updating were used, seem to indicate that this is the case. However,
only by exploring intermediate levels of asynchronism and intermediate levels
of determinism of the transition rule we can confirm this. We will also try to
answer the question ”Is there an explanation for the influence of asynchronism
on the emergence of cooperation?” and, if it turns out that there is a positive
answer ”Is this explanation extensible to other dynamical systems?”.
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Abstract. In a simulated guards-and-thieves scenario we study how
the behavioral system of an autonomous agent, which consists of mul-
tiple perceptual and motor schemas endowed with anticipatory mecha-
nisms, self-organizes for satisfying its drives. Furthermore, we study how
schemas acquired for navigation can be re-used off-line, ‘in simulation’,
for forecasting future dangers, and planning trajectories leading to goal
locations. We argue that off-line simulations permit not only to coordi-
nate with the present, but with the future, too, and to act goal-directed.

1 Introduction

In a previous study [15] we have shown that a schema-based agent architecture
endowed with anticipatory mechanisms (internal forward models) running on-
line with action can adaptively satisfy multiple motivational pressures (drives)
in a complex environment better than a purely reactive system, despite the
costs of prediction. Here we extend the analysis by investigating how the same
anticipatory mechanisms can be exploited off-line to produce internal, ‘mental’
simulation of behavior for the sake of preventing dangers and planning goal-
directed action.

Our model includes elements of three theories. The first is Hesslow’s simu-
lation hypothesis [6], arguing that the brain reenacts sensorimotor structures
used for actual interaction for the sake of exploring the effects of one’s own ac-
tions ‘in simulation’; see also [4]. Several artificial systems have been proposed
[7,20,22,23,25] that generate long-term predictions by chaining short-term pre-
dictions, and use this capability for simulative planning (a virtual exploration of
multiple possible plans before—or instead of—attempting them in practice) or
for evaluating the outcome of their actions in advance. While those architectures
are based on a single neural network and have a single task, in our model mul-
tiple schemas run and simulate concurrently, and the agent deals with multiple
motivations.

The second is Baars’ global workspace theory (GWT) [2], which introduces the
idea of broadcast of sensory content from the sensory cortex (either activated
externally, or self-activated, like in imagery) to a wide set of ‘expert networks’
in the brain that compete for processing it (see [19] for a recent implementation
of the GWT). Here we implement planning via a broadcast mechanism from
a ‘goal location neural unit’ to the schemas repertoire: broadcast then triggers

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 372–382, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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competition among multiple schemas that simulate alternative paths to the goal
location.

The third is Damasio’s somatic marker hypothesis [3] in which ‘as if’ predictive
loops serve for forecasting potential dangers and stopping planning or action if
negatively-marked sensory states are predicted that were previously stored.

2 The Agent Architecture

Schema-based agent architectures [1] are inspired by ethological models of behav-
ior, in which several behavioral units (e.g., for grasping or reaching) are encoded
in separated modules called schemas, which cooperate and compete for realizing
complex behavior which exceeds the capabilities of isolated schemas.

The agent architecture used in our experiments, implemented on the top of
the AKIRA Schema Library (AKSL) [16], is shown in fig. 1 (left). It includes
16 schemas for navigation, 4 schemas for recognizing and catching the treasure,
6 schemas for detecting and escaping from guards, and 2 schemas for avoid-
ing obstacles. The architecture also includes two drives (hunger and fear) and
a goal (goal location unit), that play the role of simple and complex motiva-
tional units respectively. It also includes a broadcast mechanism, a lookup table
of somatic markers, a plan unit, a pool of limited resources, and sensors and ac-
tuators (camera and wheels controllers) that receive asynchronous commands by
schemas with different firing rates (see the two diamond-shaped edges, where Fs
are firing rates of schemas). Arrows represent learned Hebbian links (see later).

2.1 Schemas Repertoire

In our architecture, like in several related systems (e.g., [1]), there are two kinds
of schemas: perceptual schemas and motor schemas. Perceptual schemas (e.g., de-
tect treasure and detect guard) control the vision of the agent by moving a camera

(i) (ii)

Fig. 1. (i) The agent architecture; see explanation in the text. (ii) Each schema is
implemented as a Jordan-type RNNs [10] that realizes inverse and forward modeling
and includes a context loop. See explanation in the text. It includes 3 sensory inputs
S(t), 3 sensory outputs, 3 motor inputs M(t), 3 motor outputs, 2 context inputs C0(t)
and C1(t), 2 context outputs, 10 hidden nodes.
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(the only sensor). Motor schemas (e.g., catch treasure and escape guard) receive
sensry input from related perceptual schemas (e.g., escape guard from detect
guard) and command the movements of the agent by moving its wheels. More-
over, each perceptual schema send sensory information to one motor schemas.

Each schema is a complete sensorimotor unit: it includes specific (neural)
circuits for processing stimuli and generating motor commands (inverse models),
plus a predictive component for generating sensory predictions (forward models)
[15,24]. Both components are integrated in the same neural network, a Jordan-
type RNN [10] illustrated in fig. 1 (right), which includes a sensorimotor loop
and a context loop and permits both to control action (at time t) and to predict
its sensory effects (at time t+1). The sensory input node represents three nodes
(encoding positions in the three axis, < x(t), y(t), z(t) >) and the motor output
node represents three nodes (encoding < vx(t), vy(t), vz(t) >, i.e., the motor
command for reaching < x(t+ 1), y(t+ 1), z(t+ 1) >).

Generation vs. Simulation. Schemas run in 2 modes: generation or simula-
tion.

Generation mode is the default. After preprocessing (features extraction) op-
erated by hand-coded routines (see [15]) the RNN receives the estimated po-
sition < x(t), y(t), z(t) > of the feature it is specialized to deal with (e.g.,
a red shape) with from the camera (in the case of perceptual schemas) or
a perceptual schema (in the case of motor schemas), produces a motor com-
mand < vx(t), vy(t), vz(t) > and sends it to the camera (or wheels) controller.
The RNN also receives an efference copy of the final motor command exe-
cuted by the camera (or wheels) controller and generates the sensory prediction
< xp(t+ 1), yp(t+ 1), zp(t+ 1) >.

Any schema can run off-line in simulation mode, too, for predicting the long-
term sensory consequences of its motor commands. In this case its motor com-
mands are inhibited (not sent to the actuators), but fed as sensory inputs to the
forward model. It then produces new sensory predictions that are used by the
inverse model for generating a new motor command ‘as if’ the agent actually
sensed the predicted future. The loop between forward and inverse models allows
generating long-term predictions for an arbitrary number of future steps.

Schemas Activity Level. Several schemas can be active at once. Each schema
executes its operations asynchronously and with different speed, that depends
on its current activity level act (calculated anew at the beginning of each cycle).
More active schemas then receive more up-to-date sensory information, and send
motor commands with higher firing rate. act is calculated as follows: rel+links+
plan (normalized in [0,1]) if this sum is larger than pool, otherwise to pool, where:

– rel indicates how much the schemas is expected to be successful in the current
context; in our model (like in [24]) this depends on its prediction accuracy:
position sensed and predicted (by the frward model) are compared, and rel
is set to (1− || < x(t), y(t), z(t) > − < xp(t), yp(t), zp(t) > ||).

– links is activation received by drives or other schemas due to Hebbian links;
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– plan is activation received by plan units due to Hebbian links;
– pool is the amount of resources currently available in the limited pool.

Each schema has a threshold thr (set to 0.3 in our simulations). If act < thr
the schema functions normally but its motor commands to the actuator are
inhibited. See [16] for a more detailed specification of the parameters.

2.2 Other Components of the Agent Architecture

Drives. The architecture includes two internal, motivational states, fear and
hunger, modeled as simple homeostatic variables whose satisfaction is a primary
source of behavior [9]. Hunger is raised (of 0.1 every 10 cycles) by a ‘biological
clock’, and is set to 0 when the treasure is grabbed. Fear is set to 1 when a
guard is detected, and decreases (of 0.1 every 5 cycles) otherwise. In the learning
phase (see later) fear and hunger develop associative links with schemas. Their
main roles are steering behavior (by activating schemas for escaping guards
and reaching the treasure respectively when the context is appropriate), and
creating positive feedback and persistence (aka hysteresis). A Fuzzy Cognitive
Map (FCM) [13], a hybrid neural network - fuzzy system, is used for calculating
drives activity level (in [0,1]): fear and hunger are modeled as two nodes in the
FCM and have mutually inhibitory links set to -0.6.

Goal Location Units. Goal location units are self-exciting units (with weight
1) that encode a specific position in the map < xg, yg, zg > and broadcast them to
location schemas for triggering goal-directed action. Moreover, they are able to
recognize when the agent reaches the location < xg, yg, zg >. In our simulations
the (normalized) activity level of goal location units is set to 0.7. Goal location
units represent complex motivations that ‘compete’ with drives for determining
the agent’s behavior: the former introduces top-down pressures, while the latter
allows remaining opportunistic and responsive to dangers.

Broadcast mechanism. The broadcast mechanism, implemented as a black-
board (see [16]), permits to feed sensory states from the goal location unit to
all navigation schemas, or from a navigation schema to all others. As it will
become clearer in the tasks description, when a schema is successful in ‘simula-
tion mode’ it is allowed to broadcast its simulated sensory state; schemas that
receive a broadcast start simulating, too, and if successful they can broadcast.
Goal location unit broadcast for triggering goal-directed navigation, too.

Plan Units. While schemas are specialized for fine-grained movements, plan
units permit to realize more complex ones by storing and then reenacting se-
quences of schemas. Plans are first ‘imagined’ then executed: the plan in fact
stores sequences of schemas whose simulations were effective. Plan units imple-
mentation follows the competitive queuing model in [8]: they run an internal
context signal (a ‘clock’) and create on the fly Hebbian links between states of
the clock and schemas which broadcast (i.e., those effective in simulation). When
the clock is replayed, the same schemas are triggered in sequence.
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Somatic Markers. Somatic markers are implemented as a simple lookup table
that stores sensory states in which high (> 0.9) fear was experienced during
learning. When a sensory state included in the lookup table is perceived or
simulated, the value of fear is raised to 1. If a schema has simulated a dangerous
state, it is inhibited : its activity level set to 0.

Limited Pool of Resources. The total amount of resources shared by the
schemas is limited. This represents negative feedback among them, that together
with positive feedback provided by the associative links is an essential element
of emergent, self-organizing phenomena [11]. The total amount of resources,
total pool, is set to 5.0 in our simulations.

Sensors andActuators. The two actuators (camera and wheel motors) function
in the same way. They receive asynchronously motor commands from schemas,
with different firing rate (F in fig. 1), and fuse them. There is then no actual se-
lection of one single schema for execution: the agent’s behavior depends on the
graded contribute of all active schemas, whose influence is proportional to their
activation (this action selection scheme is called ‘emergent’ in [21]).

3 Experimental Set-Up

The experimental set-up is intended to test the off-line re-enactment of anticipa-
tory mechanisms originally developed to be used on-line. For this reason, several
agent’s mechanisms are kept simple and learning serves only for bootstrapping
a reliable architecture for supporting off-line simulation and its broadcast.

The agent plays the role of a thief in a guards-and-thieves scenario located in
a simulated ‘house’ composed of 19 rooms whose positions vary between -10000
and +10000 in the three axes. In the design we used the 3-D engine Irrlicht
(irrlicht.sourceforge.net), having realistic physics based on ODE (www.ode.org).
During the learning phase, the agent first learns its four sets of schemas and
then integrates them in a coherent schema repertoire. The agent is then tested
in two tasks, consisting in catching the treasure (whose position can be known
or unknown) and, at the same time, avoiding being captured by guards.

Schemas learning. Perceptual and motor schemas for dealing with guards,
treasure, and obstacles are learned in a supervised way. During learning, treasure
and obstacles appear in fixed locations and guards follow predictable trajecto-
ries. Circular and oval trajectories having different amplitudes were used. The
RNN of each schema is trained with the BPTT algorithm [18]. One example (of
guard, treasure, or obstacle) was sampled every twelve, with a total of thirty-six;
learning stopped when the error of at least one forward model (the Euclidean
distance between the actual and predicted position in 3D, 0.1 ∗ 10−6) was less
than 0,0000001.

Perceptual and motor schemas for navigation are instead learned in two phases
by navigating in the house map (without treasure and guards). In the first phase
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(i) (ii)

Fig. 2. (i) Landmarks (crosses) placed in the first phase in the 3D house map. (ii)
Movements executed while learning in the second phase (L start, right, and L goal,
left, are in two different rooms). Each segment is a unitary movement, crosses are
landmarks.

the agent navigates all the map at constant velocity with a wall-following pre-
defined routine (encoded by hand) and a coupled perceptual-motor schema for
obstacle avoidance, and places landmarks in the environment. For each 10 cycles
of the wall-following routine a landmark is randomly placed in the neighbors of
the agent. The landmarks are shown in fig. 2, left (note that in proximity of
obstacles or turns the agent is slower and then it places more landmarks).

In the second phase the agent performs motor babbling for learning to navigate
among landmarks, and its movements are selected or discarded on the basis of
the simulated annealing (SA) algorithm [12]. The agent is placed in a random
landmark location (L start). Another landmark (L goal) is selected randomly
having a predefined distance (300 ±υ units, where υ is a learned parameter).
The agent has to learn a schema for navigating from L start to L goal which
allows accurate control and sensory prediction (this is why a schema’s ‘size’
matters). The agent then begins its motor babbling. The next movement is
selected by using the method described in [14] that conducts the agent in one
of the adjacent locations by performing a unitary movement in one of the two
axes x or y. The simulated annealing algorithm is used for evaluating if that
movement gets the agent closer to L goal. If this is the case, the agent actually
moves there. Otherwise, it executes that movement with a probability of eδE/T

where δE/T is calculated as current goal location minus expected goal location,
and T is a function of the temperature parameter of simulated annealing (which
decreases for each attempted movement). If no movement is executed, the next
execution cycle of simulated annealing starts. When the agent reaches L goal, the
whole ‘history’ of the movements is stored (a quadruple: position of the agent,
desired position, movement executed, position reached). Fig. 2 (right) shows the
movements executed while learning to navigate in a portion of the environment.

The history is then used as the training set for the navigation schemas
(RNNs) with the BPTT algorithm [18] (with the same method used for the
other schemas). If a schema does not reach the desired level of accuracy in pre-
diction it is discarded, the υ parameter is lowered (of 20 units) and the second
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phase restarts from the same L start, but a new L goal is selected randomly. If
learning succeeds, the schema is stored (note that stored schemas generalize the
data set and permit navigation in a space that is wider than ‘from L start to
L goal’). Now a new random landmark in a fixed range (10 units) from L goal
is selected as the new L start, a new L goal is choose with the same criterion as
before, and the process restarts. Learning ends when no new L start can be gen-
erated that lies outside any of the already learned schemas. In our simulations
16 schemas were learned.

Schemas integration. The agent architecture now includes four sets of schemas
learned independently: the challenge is integrating them. For this purpose the
agent (that now includes all the schemas) navigates again in the environment in
which two guards dwell in fixed locations. All schemas are active but their motor
commands are inhibited. The agent is instead controlled by the wall following rou-
tine used in the first learning phase. Schemas do not learn their internal models any
more. Instead, energetic links among all the schemas and drives are learned with
the following Hebb rule [5]:ΔWji = ηaiaj , where η is the learning rate (set to 0.2)
and ai, aj represent the activations of two schemas, or a schema and a drive (nor-
malization is applied at each cycle). This means that schemas and drives which are
active in the same span of time develop associative links (e.g., fear with schemas
for avoiding guards). The associative topology of the network implicitly encode
possible trajectories or location/drive associations. Somatic markers are learned
in this phase, too, by simply recording in the lookup table the sensory context in
which guards are detected.

Task 1: finding the treasure. After learning, the agent is placed in a ran-
dom location in the house and its hunger is set to 0.5. Two guards are in the
same positions experienced during learning, and two more appear in random
locations. The task consists in satisfying hunger by finding the treasure, which
appears in random locations; it ends either with the treasure grabbed (success)
or the agent captured by guards (failure). This tasks serves to test the trade-off
between simulation/imagination and action: simulations allow discovering future
dangers, but come at the risk of ‘distracting’ from immediate dangers (schemas
can not ‘generate’ when they are simulating). In this task we compared two
agent architectures.

Agent 1 (AG1) can only run schemas in ‘generation’ mode. Thus, although
it exploits (short-range) anticipatory mechanisms, its behavior is driven by the
environment’s immediate affordances (guards and treasure) only.

Agent 2 (AG2) selects actions depending on its long-term predictions, too.
It operates alternatively in ‘generation’ and ‘simulation’ modes. In ‘generation’
mode AG2 navigates and all its schemas compete for recognizing its current
context/position by generating sensory predictions; the more accurate ones gain
activity and priority over the effectors. When the predictions of one schema are
accurate enough over a certain span of time (set to 3 consecutive good pre-
dictions), AG2 is ready for generating reliable simulations (in [20] this state is
referred as situated). It thus switches to ‘simulation’ mode, produces long-term
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sensory predictions, and then broadcasts them to all navigation schemas. Those
able to match (for 3 times) the simulated sensory stimuli they receive via broad-
cast are allowed to simulate and broadcast, and so on. This mechanism, that
chains several schemas’ predictions and (in principle) can ‘image’ (or ‘plan’)
paths in the whole house, is used by AG2 for preventing future dangers. Every
sensory prediction generated by schemas is compared with the ‘dangerous’ sen-
sory states stored in the somatic markers lookup table. If a schema simulates a
dangerous state, it is inhibited (its activity level is set to 0), and this prevents
that path to be selected; see [3]. Moreover, fear is set to 1: this causes activation
of avoidance schemas in anticipation of possible dangers. Otherwise, the path
is considered ‘safe’ and the agent’s actions planned by schemas in simulation
are executed. No memory of the sequence of simulating schemas is maintained,
but the first simulating schema runs in generation mode (by restoring the last
context it had in generation mode). This is likely to produce the appropriate
sensory context for the second simulating schema, and so on. Note that, due to
dynamics in the environment and errors in prediction, there is no guarantee that
the ‘imagined’ sequence of schemas will be actually executed.

We have run 100 experiments, and compared the average number of times
AG1 and AG2 successfully reach the treasure, and the average time of success.
Our results (see tab. 1, left) show that AG2 performs significantly better than
AG1. The costs of running simulations (time spent in imagination rather than
action) are by far overwhelmed by the advantages of predicting possible dangers
in dynamic and dangerous environments.

Task 2: reaching known goal locations. Task 2 consists in reaching the
treasure, which appears in a random location (but ‘known’ by the agent and set
as its goal location unit) without being captured by the guards, which appear
randomly. The task ends when the agent grabs the treasure or is captured by
a guard. Differently from task 1, here the treasure location is known, and thus
simulations can be used for planning and not only for avoiding dangers. In [17]
we have argued that the simplest form of adaptivity for an agent consists in
exploiting self-organization of its behavior repertoire for coordinating with its
present needs and the most immediate affordances, but in order to realize pur-
posive, goal-directed action it has to coordinate with the future, too. Simulative
planning permits to realize such coordination encompassing present and future
states without losing situatedness.

Table 1. Results of the tasks 1 and 2. (a) AG2 vs. AG1 is significant with ANOVA
both for success % (p<,001) and Time (p<,001). (b) AG4 vs. AG3 is significant with
ANOVA both for success % (p<,01) and Time (p<,001).

Agent Success % Time (in secs.)

AG1 .505 157.8
AG2 .803 81.3

Agent Success % Time (in secs.)

A3 .872 71.2
A4 .927 56.4

(a) Results of Task 1 (b) Results of Task 2
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In this task we compared two agent architectures. Agent 3 (AG3) is the same
as AG2 but includes a goal location unit that broadcasts the goal (treasure)
location (the sensory input < xg, yg, zg >) to all navigation schemas, that then
run in simulation mode (since no actual context information can be used, a
sample of their possible sensory inputs is used instead). As for AG2, those which
predict dangerous sensory states are inhibited. Those which successfully predict
achievement of the goal location can either run in generation mode, if their
sensory context is appropriate (i.e., if they are ‘one step’ from the goal location),
or broadcast their context (< xg(t − 1), yg(t − 1), zg(t − 1) >) as the new goal
location, and so on. This continues until a schema has the appropriate context
for running in generation mode and can send a valid motor command. This in
turn is likely to produce the right context for one or more other schemas, and so
on, until the goal location is reached. The functioning of AG3 then differs from
AG2 since the former ‘plans’ by using all its navigation schemas as a backward
chaining mechanism (from goal to current location), and the latter as a forward
chaining mechanism (from current to possible locations). Again, due to dynamics
in the environment, there is no guarantee that the ‘planned’ sequence of schemas
will be actually executed.

Agent 4 (AG4) is the same as AG3 but includes a plan unit, too. For each
experiment, it stores the sequence of successfully simulating schemas, from goal
location to start location. When the goal location is reached in simulation, the
(reversed) context signal is replayed for activating the right sequence of schemas
(this is done by setting their activity level to 1). However, all the other schemas
remain active, too (although with a lower activity level). This means that AG4’s
behavior depends both on ‘top-down’ commands received by the plan (that ac-
tivate schemas in the pre-planned sequence) and on ‘bottom-up’ influences of
all the other schemas that do not belong to that sequence (that are still able
to temporarily gain priority over the effectors if their predictions are accurate).
This permit to follow the plan and, at the same time, to remain opportunistic
and responsive to novel events such as guards.

We have run 100 experiments, and compared the average number of times
AG3 and AG4 successfully reach the treasure, and the average time of success.
Both agents had a high success rate and were able to ‘simulate’ a valid path to
the goal location in all experiments: simulative planning can thus be considered
an effective strategy for coordinating with future, desired goal states. Our results
(see tab. 1, right) show that AG4 performs significantly better than AG3: once
a good plan has been built, it is better to ‘store’ and use it to control action
top-down, even with the risk of being less opportunistic. Qualitative observation
indicates that AG3 and AG4 are often diverted from their simulated trajectories
(e.g., by guards), but plan units in AG4 provide stronger persistence toward the
goal location.

4 Conclusions

There are currently several limitations in our agent architecture that need to
be addressed in future work. Learning is mainly supervised, the implementation
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of several mechanisms (e.g., somatic markers, broadcast) is very simple, there
is no replanning, and some parameters are tuned by hand. However, our design
choices are motivated by the necessity of realizing the complex architectural
set-up necessary for a study of simulative capabilities (the aim of our paper):
anticipatory schemas that can be reliable used on-line and off-line are difficult
to obtain [25].

Consistently with recent simulative theories of cognition [3,4,6], the results
of our experiments indicate that mental simulation is an effective strategy for
avoiding dangers and planning in dynamic environments despite the fact that
‘imagination’ can in principle make an agent less efficacious in its current sen-
sorimotor interaction. As argued in [4,17], we believe that off-line, mental simu-
lation is a suitable, embodied alternative to ‘reasoning by symbol-crunching’ of
traditional AI systems, since it permits internal manipulation of (anticipatory)
representations without losing grounding and situatedness. Although further in-
vestigation is necessary for studying the trade-offs of engaging with ‘the present’
or ‘the future’, this study contributes to shed light on how mental simulation
enabled increasingly complex cognitive capabilities and the role it played in the
passage from present-directed to goal-directed, purposive action.
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Abstract. Adaptive division of labour is one key characteristic of eu-
social insect colonies and of high relevance in biology, ethology, swarm
intelligence and robotics. We constructed an individual based model of
division of labour in a honeybee colony. Our model incorporates distinct
worker cohorts (foragers, storers, nurses), unemployed bees and larvae.
Our goal was a model as accurate as possible, thus we implemented a
heterogeneous environment, agents’ physiology and the flow of nutrients
within the colony. In our model, the bees decide which task to choose,
depending on the intensity of stimuli and on individual thresholds, which
are modulated in response to task performance. We describe the main
aspects of this model and demonstrate the stability of the emerging di-
vision of labour. The model predicts the energetic costs of sudden per-
turbations (removing/adding cohorts of workers of one task), as well as
the resulting shifts in task cohort sizes.

1 Introduction

In social insects thousands of workers generate a characteristic heterogeneous en-
vironment inside of their colony’s housing. The workers cooperate and share the
colony’s workload (nursing the brood, foraging and processing for food, . . . ). Eu-
social insect species developed the ability of workers to specialize in distinct sets
of tasks. In some species this specialisation is permanent (e.g., due to specialized
morphology), in other species such specialisation is temporary. In honeybees, di-
vision of labour is highly related with workers’ age under normal conditions, but
is also quite flexible and adaptive after perturbations.

Studies showed, that specialised worker bees tend to locate in specific areas in
the hive, which correlate to the performed task: nurse bees are most prominently
found in the brood nest. Foragers are found at food sources and near the hive
entrance, and food storer bees, which are often found near the entrance area and
in the honey storage area.

Several models have been discussed about how the observed age-correlated but
still adaptive division of labour can be explained. While the ultimate colony-level
effects are well known, the underlying proximate mechanisms are still discussed:
Early (and some recent) studies suggest a rather fixed age-related scheme [10] [4]
[5], based on age-related physiological and morphological differences of workers.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 383–392, 2008.
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Other studies suggest that workers motion and search for work determines the
chosen task [2]. In contrast to that, other authors suggest that division of labour
is driven by an adaptive process inside of workers, which adapts thresholds ac-
cording to the work history of the worker [3].

Since the studies of Nobel laureate K. Lorenz [6] the importance of behavioural
thresholds has been known. These thresholds determine whether or not a stim-
ulus of a given intensity triggers a corresponding behaviour in an animal. The
exposure to stimuli as well as the performance of a behaviour can modulate these
thresholds. The processes of sensitisation and facilitation are of high relevance
for the mechanisms depicted in our model presented here: If a stimulus once
triggers a certain behaviour, the animal is more likely to repeat this behaviour
again, even at lower stimulus levels. Thus, the performance of behaviours can
lower the corresponding thresholds. After some time without such a stimulus,
these effects disappear, thus the thresholds rise again, in the absence of the cor-
responding behaviour. Such adaptations were suggested by recent studies [12]
[3] to explain task specialisation in social insects, an approach that we follow in
our model.

Several of the model approaches mentioned above have been investigated in
mathematical terms, and in several simulation studies. These studies showed that
the suggested models suffice to explain observed aspects of division of labour.
However, these models, and also the published simulation studies, are very ab-
stract. They often treat the movement of the agents and the heterogeneous
environment in very simple ways, like chess figures that jump from field to field
on a chess board. Significant aspects like the agents’ energetic expenditures,
which are related to the performed task, are neglected as well as other physi-
ological parameters. Our model depicts the regulation of division of labour in
a honeybee colony. In contrast to other models our model incorporates many
honeybee specific constraints and the most important aspects of the stimuli that
can trigger the behavioural tasks. We describe the model’s implementation, its
basic ideas and we investigate the stability and the efficiency of the predicted
emerging division of labour in the simulated colony.

2 The Model

We constructed a multi-agent model of a honeybee colony (TaskSelSim) con-
sisting of 700 adult bees and 100 larvae. The model is implemented in NetLogo
3.1.4 [13]. The details of the model’s implementation (equations, all parameters)
are described in [9]. The paper at hand focuses on using this model for simulation
experiments that investigate the stability and efficiency of the predicted division
of labour. The model depicts the environment in the hive as a discrete set of
patches organized as a grid of 31 x 52. See figure 1 for details on the spatial or-
ganisation of the modelled colony. These patches can contain quantities of larvae
(one per patch) or nectar (40 units per patch). In this model, we use the terms
’nectar’ and ’honey’ synonymously. All other honeybee nutrients (pollen, jelly)
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a nectar comb cell

a larva
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Fig. 1. Spatial organization of the model. In all sub-figures the border of the hive is
shown as a rectangle with the hive’s entrance/exit as small hole in the lower left corner.
All figures show exemplary a typical situation at time t = 3000steps. (a) Typical
distribution of forager bees. (b) Typical distribution of storer bees. (c) In the upper
part of the hive the nectar storage area is shown (honeycomb). In the center of the
hive, the brood is located. (d) Typical distribution of unemployed bees. (e) Typical
distribution of nurse bees. All figures: The nectar source is shown as a symbolized
flower left of the hive. To simulate plausible foraging distances, the motion speed of
foragers is slowed down as soon as they leave the hive.

were neglected in our model. The basic unit of fluid quantities (nectar/honey) is
one crop load of an average adult bee. The discrete patches also hold the stimuli
that can be emitted by agents. These stimuli are: vibration signals emitted by
bee dances, touch signals performed by returning foragers and chemical signals
emitted by larvae to signal their hunger status. Although the environment is
discreet, the agents can move in continuous space. In each time step, the model
executes the following procedures (once per time step):

1. Process the status of each patch (decay of chemical signals).
2. All agents emit the appropriate stimuli for that step, chemical stimuli are

diffused.
3. Process the agents’ physiological processes (consumption of nectar).
4. Perform one behavioural step per agent (e.g., navigation or nursing).
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Figure 1 shows typical spatial distributions of bees assigned to working tasks.
These tasks determine which behavioural programs are performed by the agents:

Unemployed bees: These bees move randomly in the hive. They perform no
exhaustive task, so they consume their nectar load in their crop at a low rate
(crlow). Like all other adult bees, they can refill their nectar crop load at
storage cells in the upper part of the hive. In our model, bees had to switch
to this unemployed state at least for one time step before they could engage
in a different task.

Forager bees: These bees leave the hive with a low (but sufficient) crop load.
They fly to the nectar source, fill up their crop and fly back to the entrance.
There they emit the unloading stimulus within a radius of 1 patch to attract
nearby storage bees which can take over the nectar load. Then they move for
some time trest in the hive and occasionally perform a communication dance:
A forager bee that has waited too long (Tsearch >= 50steps) for a receiving
bee will perform a tremble dance, which will motivate some of the nearby
unemployed bees to become storer bees. In contrast, if the queuing delay
was short (Tsearch <= 20steps) the forager performs a waggle dance, which
motivates unemployed bees to become forager bees. This regulation principle
was shown by [11] with real bees. To represent these dances in our model,
the forager agents emit a stimulus locally (within a radius of 3 patches).
The waggle dance acts as a stimulus that triggers foraging in other bees, the
tremble dance lowers the threshold associated with the task ’storing’. These
dance stimuli are only emitted for several time steps and disappear as soon
as the emitter stopped to produce them. After the resting time is over, they
leave the hive again towards the nectar source.

Storer bees: These bees wait near the entrance for returning foragers. They
take the crop load of returning foragers and head towards the storage area.
They drop their nectar load there and head back towards the entrance.

Nurse bees: These bees navigate (uphill) in the chemical stimulus emitted by
hungry larvae. If they are located on a patch containing a hungry larva, they
start to feed this larva until it is saturated or the nurse is almost empty.
These feedings last for several time steps.

Larvae: The brood resides in cells (patches) in the central broodnest area (see
figure 1c). Larvae cannot move. If they have low nectar reserves, they emit
a chemical hunger signal, which is stored in the patch they are located in.
A diffusion process allows the signal to spread and a decay process removes
the stimulus from the system over time. In contrast to the dance stimuli,
the chemical stimulus stays a longer time present in the local area after the
emitter stopped the emission.

2.1 Simulated Physiology

All adult bees basically consume their nectar loads in their crops at low rates
(crlow = 0.0004units/step). Flying forager bees are the only exception: They
consume nectar at higher rates (crhigh = 0.001units/step). Larvae consume
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Fig. 2. Schematic representation of the flow of nectar in our model. Boxes represent
cohorts of worker bees, larvae or combs. Arrows indicate nectar flows. The flower sym-
bolises the outside nectar source and the cross-like symbols represent sinks.

nectar at the rate crlarva = 0.0004units/step. If an agent (bee or larva) runs out
of nectar, it dies and is removed from the system. Figure 2 shows the resulting
flow and consumption of nectar among and within the cohorts of bees. For a
detailed reasoning of these values, please see [9].

2.2 The Key Aspects of Our Model of Division of Labour

The most important aspect in our model is the implementation of the task selec-
tion mechanism. We followed the approaches of [3] and implemented a threshold
based system. Each patch can hold a set of stimuli of varying intensities, de-
pending on the type of each stimulus and depending on the emission of stimuli
of that type by nearby agents. Each type of stimulus can motivate an employed
adult bee agent (task = ’no-task’) to join one of the tasks m ∈ { ’foraging’, ’stor-
ing’, ’nursing’ }. Whenever one of these stimuli exceeds an individual threshold
of an agent i located on that patch x, the agent engages in the associated task
m. Each of these thresholds is modelled in a non-linear manner, as is shown
by equation 1. pi,m models the probability to engage in task m in one time
step. sx,m is the local intensity of the task-associated stimulus. Θi,m is used to
shift the threshold individually up and down, n is used to express the degree of
non-linearity in these behavioural decisions.

pi,m =
sn

x,m

sn
x,m +Θn

i,m

(1)

Employed bees switch back to the unemployed state with probabilities of
λ′nursing′ = λ′storing′ = 0.005/step and λ′foraging′ = 0.001/step. To allow spe-
cialisation within this systems, the levels of the thresholds are adapted individ-
ually during run time. In the case that an unemployed agent engages in task m′,
the Θi,m is reduced by ξm, making it more likely that the agent will engage in
this task in future. Whenever an umployed agent does not engage in a task, the
corresponding threshold is increased by ϕm, making it more unlikely that these
behaviours will be triggered later on. In our simulations, all values of ξ were set
to ξ = 0.1 and all values of ϕ were set to ϕ = 0.001. It was shown in [9] that
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these parameter values lead to plausible division of labour. In our simulations
we used n = 2 for all agents and all agents initially started with Θ values of
0.001 for all tasks. During run time, values of Θ are confined between 0 and 1.

3 Experimental Setup

We investigated how well the modelled colony can handle sudden disturbances
in the division of labour. Additionally, we investigated the impact of such dis-
turbances on the colony’s nectar accumulation. We started our simulations with
700 adult bees randomly distributed in the hive (685 unemployed bees, 15 for-
agers). 100 larvae with randomized nectar reserves were distributed randomly
(normal distribution) around the hive’s center and nectar storage cells were ran-
domly filled. Using these initial conditions, we simulated 10000 time steps to
allow the colony to converge to a stable equilibrium of task cohorts. The whole
simulation structure was saved on hard disk (at t = 10000). This structure was
then reloaded multiple times, every time a perturbation was performed after
this ’reloading’. Then the model was evaluated for additional 10000 time steps.
Each experiment was repeated 6 times, our figures show mean values of these
6 repetitions. All runs are compared to the mean values of 6 repetitions of a
control run (no perturbation was performed). During all performed simulation
runs, no adult bees died during the runtime of the experiments. Up to 6 larvae
disappeared in consequence of the induced fluctuation (removal of worker bees).

4 Results and Discussion

4.1 Experiment 1: Removal of Forager Bees

Figure 3 shows the predicted colony-level reactions to a sudden loss of forager
bees. Compared to the control experiment (’no change’), the colony’s cohort of
foragers was affected for approx. 1500 time steps. After that, the worker cohorts
reached a stable equilibrium again. For the period with the lowered amount of
foragers, also the cohort of food storer bees was decreased, which is in good
agreement with empiric results gained with real bees. The cohort of nurse bees
showed almost no reaction to the induced disturbance. Both cohorts (foragers,
storers) reached a lowered equilibrium in the second phase of the experiment,
which can be explained by the fact that a fraction of the adult worker bees was
removed, thus the total population size decreased.

4.2 Experiment 2: Removal of Storer Bees

Figure 4 shows the predicted colony level effects to a sudden removal of storer
bees. Compared to the control experiment, the colony’s cohort of foragers was
also affected by a decrease in the storer cohort. The decreased cohort of storer
bees could unload less foragers per time step, thus queueing delays of foragers in-
creased. This lowered the number of waggle dances (less foragers were recruited)
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Fig. 3. Colony-level reaction to removal of several fractions of the foraging cohort.
Mean values of 6 repetitions, arrows indicate the timing of the removal.
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Fig. 4. Colony-level reaction to removal of several fractions of the storer cohort. Mean
values of 6 repetitions, arrows indicate the timing of the removal.

and increased the number of storer bees quickly to the new (lowered) equilib-
rium. Again, the cohort of nurse bees was almost unaffected. The adaptation of
the cohort of storer bees worked rather quickly compared to compensation in
the cohort of foragers in experiment 1, demonstrating that the group of storer
bees is regulated stronger under the regime of tremble dances than is the cohort
of foragers by the performance of waggle dances.

4.3 Experiment 3: Removal of Nurse Bees

Figure 5 shows the predicted colony level effects to a sudden removal of nurse
bees. Like in the previous experiment, the cohort of foragers showed no sudden
response (no peak), but the perturbation decreased the colony’s population,
leading to a lowered stable equilibrium. Also the cohort of storer bees was not
strongly affected. As shown in figure 5c, the cohort of nurse bees was strongly
affected by the perturbation, but the cohort size quickly increased again after
the perturbation. This demonstrates the strong regulation of nursing by the
chemical signals emitted by hungry brood. Please note that in consequence to
our manipulation, the cohort of nurse bees reached a higher equilibrium than
before. This ’over-compensation’ is typical for homeostatic systems and can be
explained by the delayed effects of the larvae’s simulated physiology: The removal
of nurse bees resulted in a less feeding of larvae, resulting in more hungry larvae
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Fig. 5. Colony-level reaction to removal of several fractions of the nurse bee cohort.
Mean values of 6 repetitions, arrows indicate the timing of the removal.
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Fig. 6. (a) Final nectar stores after perturbations: A=no perturbation, B=50% foragers
removed, C=95% foragers removed, D=50% storers removed, E=95% storers removed,
F=50% nurses removed, G=95% nurses removed. Bars indicate mean values of 6 rep-
etitions each, markers indicate standard deviation within repetitions. (b) Dynamics of
the size of nectar stores resulting from a sudden removal of forager bees.

that emit more hunger signal. Empiric studies showed, that after a removal of
nurse bees, forager and storer bees are recruited to the job of nursing [7], as we
observed it in our simulations.

4.4 Analysis of Efficiency

The costs of adaptation are very important for a species: Each disturbance of
a well-balanced system will induce costs in term of energy losses or population
losses. The better (more precise) and the faster the adaption works, the higher
is the expected fitness of such a species. This fitness is important for a species’
chances in natural selection during biological evolution [1]. To investigate this
aspect with our model, we analyzed the dynamics of the nectar stores, as the
accumulation of nectar is one of the main indicators for assessing the fitness of a
colony. As figure 6 shows, the perturbations we induced affected the efficiency of
the nectar collection. All perturbations reduced the final nectar stores compared
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to the control run (A). The more bees were removed due to our perturbations,
the less nectar was accumulated, although each bee is also a consumer. This
demonstrates that our model predicts a net gain of nectar per bee, what is im-
portant to ensure plausibility of the models predictions. Figure 6 shows that
the removal of foragers (B-C) had the most detrimental effect on the nectar
stores, compared to the other perturbations (D-G). Figure 6b shows the typical
dynamics of nectar stores in response to forager removal: The removal act re-
sulted in a sudden drop of nectar reserves. The more foragers were removed, the
more prominent was this effect. But also after the adaptation period the nectar
dynamics differed significantly from the pre-perturbation period. The new equi-
librium in division of labour was shifted to a lower number of foragers, thus the
slope in nectar gain was lowered. These dynamics are in good agreement with
other studies, which we achieved with a different model that focused on foraging
target decisions in honeybees [8].

5 Conclusion

Our analyses showed that our model is able to predict the adaptive division
of labour in a honeybee colony. The predicted results are in good agreement
to known empiric studies. We could identify how ’deeply’ the induced pertur-
bation disturbed the complex system of division of labour and how (fast) the
system responded by recruiting additional bees to the perturbed task cohort. Our
model is the first one that incorporates different types of stimuli in a near-nature
way, what was important to interpret the dynamics of the observed adaptation
phases. Also these dynamics correspond well to empiric findings. In addition,
our model allowed us to predict also the energetic costs of perturbations. With-
out implementing a simulated physiology and the correct flow of nectar among
the different groups of agents, such insights are impossible. This implementation
of agents’ physiology showed that the observed division of labour allowed all
agents to maintain (in most cases) a sufficient energy supply. Also the minimal
losses of adult bees showed that the colony itself could maintain a high level of
homeostasis. To the best of our knowledge, our model is currently the only one
incorporating these important factors. Other models can predict changes in task
allocation, but without observing the survival of bees and brood in those analysis
and without observing the energetic gains and costs, the efficiency of suggested
adaptation mechanisms is hard to assess. In future we will also incorporate comb
building and introduce age-related differences among bees, to further investigate
the honeybee system.
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Distributed Adaptation in Multi-robot Search
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École Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland
{jim.pugh,alcherio.martinoli}@epfl.ch

Abstract. We present an adaptive strategy for a group of robots en-
gaged in the localization of multiple targets. The robotic search algorithm
is inspired by chemotaxis behavior in bacteria, and the algorithmic pa-
rameters are updated using a distributed implementation of the Particle
Swarm Optimization technique. We explore the efficacy of the adapta-
tion, the impact of using local fitness measurements to improve global
fitness, and the effect of different particle neighborhood sizes on per-
formance. The robustness of the approach in non-static environments is
tested in a time-varying scenario.

1 Introduction

Designing even simple behaviors for robots that are efficient and robust can
be very difficult for humans; it is often not hard to implement a rudimentary
controller that accomplishes the task, but achieving near-optimal performance
can be very challenging. Unsupervised robotic learning allows for automated
design of efficient, robust controllers, which saves much design time and effort.
Learning is also essential for allowing robots to adapt to situations where the
task/environment is unknown beforehand or is constantly changing.

Particle Swarm Optimization (PSO) is a promising new optimization tech-
nique which models a set of potential problem solutions as a swarm of particles
moving about in a virtual search space. PSO achieves optimization using three
primary principles: evaluation, where quantitative fitness can be determined for
some particle location; comparison, where the best performing location for some
particle can be selected out of multiple possibilities; and imitation, where the
qualities of better particles are mimicked by others. The algorithm can be used
to evolve parameters for robotic controllers.

In the field of robotics, locating targets within an unknown environment is
a task well-suited to mobile robots. Robots can be equipped with sensors to
detect targets and programmed to explore the area in search of their goals. The
automated nature of this approach may save much time and effort as compared
� Jim Pugh and Alcherio Martinoli are currently sponsored by a Swiss NSF grant

(contract Nr. PP002-116913).
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to other search methods. Performance may be further improved by using multiple
robots in parallel, which will decrease the time needed to complete the search
task and increase robustness to failures of individual robots. Robotic search is
especially preferable when the area is hazardous or inaccessible to humans (for
example, finding victims in a disaster area [10]).

In the PSO algorithm, groups of virtual agents interact in order to achieve
optimization. In collective robotics, groups of robots interact to accomplish their
goals. It is therefore possible to make a one-to-one parallel between particles
and robots and to implement PSO in a distributed fashion for learning in multi-
robot systems. Each robot is responsible for a single particle, which it evaluates
at each iteration. After each evaluation, the robots communicate to share the
fitness information needed to progress to the next iteration of the algorithm.
By running the algorithms in this fashion, we need no external supervisor to
oversee the learning process, and the speed of learning is significantly improved,
as many robots evaluating in parallel decreases the number of required controller
evaluations and therefore decreases the total learning time.

2 Background

The original PSO method was developed by James Kennedy and Russell Eber-
hart [12]. Every particle in the population begins with a randomized position
(xi,j) and randomized velocity (vi,j) in the n-dimensional search space, where i
represents the particle index and j represents the dimension in the search space.
Candidate solutions are optimized by flying the particles through the virtual
space, with attraction to positions in the space that yielded the best results.
Each particle remembers the position at which it achieved its highest perfor-
mance (x∗i,j). Each particle is also a member of some neighborhood of particles,
and remembers which particle achieved the best overall position in that neigh-
borhood (given by the index i′). This neighborhood can either be a subset of the
particles (local neighborhood), or all the particles (global neighborhood). For
local neighborhoods, the standard method is to set neighbors in a pre-defined
way (such as using particles with the closest array indices as neighbors modulo
the size of the population, henceforth known as a “ring topology”) regardless of
the particles’ positions in the search space. The equations executed by PSO at
each step of the algorithm are

vi,j = w · vi,j + pw · rand() · (x∗i,j − xi,j) + nw · rand() · (x∗i′,j − xi,j)
xi,j = xi,j + vi,j

where w is the inertia coefficient which slows velocity over time, pw is the weight
given to the attraction to the previous best location of the current particle
and nw is the weight given to the attraction to the previous best location of
the particle neighborhood. rand() is a uniformly-distributed random number in
[0, 1).

Unsupervised robotic learning has been studied extensively in the past, includ-
ing some focus on multi-robot learning. Several multi-robot learning methods
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were shown to work in a wide variety of scenarios [1] [21]. Techniques for
increasing individual learning speed via multi-robot learning were studied in
[11] and [14]. Recently, PSO has been used for unsupervised learning of robotic
behaviors by evolving weights for Artificial Neural Networks (ANNs), both in
the case of single-robot learning [18] and distributed multi-robot learning [19].

Some exploration has been done in the past on multi-robot search and similar
tasks. This work has been relatively disjoint thus far, with most studies focusing
on a particular scenario which is not explicitly connected to other related work.
The cost of using additional robots in a search task was explored and tested
with simulation [7]. Detailed analysis has been done for swarms following a gra-
dient [16]. In 2001, a contest at the International Joint Conference on Artificial
Intelligence on collective robotic urban search and rescue [17] prompted some
research on the topic [10]. Other publications explore multi-robot search strate-
gies in simulation [6], for infrared tracking with simulation and real robots [7],
and for odor source localization with real robots [8].

In [5], PSO was used to tune the parameters of a PSO-inspired multi-robot
search strategy. Besides this, we are not aware of any previous publications on
synthesis of multi-robot search behavior, and no previous studies have considered
multi-robot search adaptation in changing environments.

3 Bio-inspired Multi-robot Search

The algorithm we use on our robot group for localizing targets in an unknown
environment is inspired by the chemotaxis behavior of some types of bacteria,
such as E. coli. By changing the rotation direction of their flagella, these bac-
teria can either swim in a straight line or to tumble in place. When moving,
if the bacterium observes that the chemical gradient is positive, it is likely to
continue to movement in the same direction. If it observes that the chemical gra-
dient is negative, it is more likely to tumble and therefore assume a new random
direction. This behavior results in overall movement in a positive gradient direc-
tion [2]. This type of chemotaxis behavior has inspired several effective robotic
search strategies in the past [4] [9] [13]. However, none of these strategies used
collaboration between robots in the search process.

In our algorithm, robots begin at some random locations within a bounded
environment containing one or more target. We assume that robots are capable
of perceiving the intensity of some emission from targets which fades non-linearly
with increasing distance from the target. The robot will measure the perceived
emission intensity and make a forward movement for a fixed distance. The robot
will then measure the new perceived emission intensity. If the intensity is higher,
the robot will maintain the same direction and make another step. If the intensity
is lower, the robot will assume a new bearing and make a step in that direction.
The process is then repeated. If a robot encounters any obstacles while moving
(i.e. walls or other robots), it will turn to avoid the obstacle using a reactive
obstacle avoidance algorithm.
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The collaboration aspect of our algorithm arises when a robot is choosing
a new bearing. Robots are assumed to be capable of relative localization and
communication with other nearby robots within a certain range (this could be
accomplished using an on-board module such as the one described in [20]). In
this scenario, relative localization is not restricted to line-of-sight, though this
assumption may not hold on a real robotic platform. Using relative localiza-
tion, robots continually share their current position and most recent perceived
emission intensity. When choosing a new angle, if a robot detects at least one
other robot in range with higher perceived intensity than its own, it will choose
a bearing directly towards the robot with highest perceived intensity. If it de-
tects no other robots with higher perceived intensity, it will uniformly select a
random bearing within some arc in the approximately opposite direction that it
currently faces.

This algorithm has four free parameters which can be adjusted to optimize
the behavior for different environments: STEP SIZE, RL RANGE, CW LIMIT,
and CCW LIMIT. STEP SIZE is the distance robots move forward at each step
of the algorithm. RL RANGE is the maximum range of the relative localization
and communication system (only robots with distance less than or equal to
RL RANGE will be perceivable by another robot). CW LIMIT is the maximum
angular offset from 180 degrees which the robot will consider when choosing a
random bearing in the clockwise direction, and CCW LIMIT is the maximum
angular offset from 180 degrees which the robot will consider when choosing
a random bearing in the counter-clockwise direction. The bearing is therefore
uniformly randomly selected from an arc of size CW LIMIT+CCW LIMIT.

Algorithm parameters can be seen graphically in Fig. 1a.

Fig. 1. (a) Graphical depiction of multi-robot search algorithm parameters with sim-
ulated e-puck robots. (b) Robot arena with e-puck robots and targets. Targets have
been circled.
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4 Distributed PSO for Parameter Adaptation in
Multi-robot Search

We now apply distributed Particle Swarm Optimization to adapt the free param-
eters of our multi-robot search algorithm in a realistically simulated environment.

4.1 Experimental Setup

For our adaptation technique, we use the noise-resistant PSO algorithm from
[19]. At each iteration, the algorithm reevaluates the previous best locations, av-
eraging the new fitness value with previous ones to get a more accurate measure
of the actual fitness. Although this requires twice as many fitness evaluations
at each iteration as their standard counterparts, this technique prevents noisy
fitness evaluations from severely disrupting the learning process and often gives
better results given the same number of evaluations of candidate solutions.

Initial particle elements are randomly generated in the range [0.0, 1.0]. The
elements are allowed to change to any value during evolution, but are bounded
to this range and scaled appropriately during evaluation (i.e. any negative value
is considered as 0.0 and any value greater than 1.0 is considered as 1.0 and then
scaled during evaluation). Velocity is randomly initialized in the range [−0.5, 0.5]
and prevented from ever going outside this range. We use a swarm size of 50,
with pw = nw = 2.0 and w = 0.6.

To explore the impact of particle neighborhood size in this scenario, we con-
sider three different particle neighborhoods in experimentation: an lbest local
neighborhood in a ring topology with one neighbor on each side (2 neighbors to-
tal), a gbest global neighborhood where all particles are neighbors (49 neighbors
total), and an intermediate neighborhood in a ring topology with five neighbors
on each side (10 neighbors total) which we denote ibest.

We use Webots, a realistic simulator, for our robotic simulations [15], using
50 e-puck1 robots [3]. Every robot is responsible for the evaluation of a single,
unique particle from the PSO swarm. The robot(s) operate in a 4.0 m x 4.0
m square arena with no additional obstacles (see Fig. 1b). Several targets are
randomly placed in the environment. If a robot comes within range r = 0.10 m
of a target, the target is considered to be “found”, and it is randomly moved
to a new location in the arena. The emission intensity perceived by a robot i is
equal to:

Ii = η(.) +
∑

j

Pj

d2
ij

where Pj is the power of target j, dij is the distance between robot i and target
j (in meters), and η(.) is random background noise, given by the absolute value
of a sample taken from a Gaussian probability density function with mean 0 and
standard deviation σ = 10.

1 http://www.e-puck.org



398 J. Pugh and A. Martinoli

For the robot controller, we use the bio-inspired multi-robot search algorithm
described previously, with parameters STEP SIZE, RL RANGE, CW LIMIT,
and CCW LIMIT determined by the distributed PSO algorithm; these param-
eters are linearly scaled from the [0.0, 1.0] range given by PSO to the ranges
[0.1, 1.0], [0.0, 3.9], [0, π], and [0, π], respectively. To evaluate a candidate solu-
tion, we run the multi-robot search algorithm with the specified parameters for
a span of 120 seconds. During that time, robots average their perceived emis-
sion intensity, sampling every 64 milliseconds, and use this value as their fitness
(normalized to a maximum of 1.0, assuming an upper intensity limit of 255).
This fitness function rewards robots who spend more time in close proximity to
a target (where emission intensity is higher) over those who remain farther away.

For our initial experiments, we use three targets with emission power Pj = 10
for all targets. Each of the 50 robots is responsible for a single member of the
PSO swarm (i.e. they must evaluate that member at each iteration and commu-
nicate the resulting fitness measure). We assume all robots are synchronized in
their evaluation here, something which might not necessarily be possible on real
multi-robot systems. With 100 iterations of the PSO algorithm, the adaptation
requires a total simulated learning time of approximately 6 hours 40 minutes
(100 iterations comprised of 2 evaluations each lasting 2 minutes).

4.2 Results

The average progress of individual robot fitness throughout adaptation for the
three different particle neighborhoods can be seen in Fig. 2a. Clear improvements
in fitness for all neighborhood types can be observed over the course of the
algorithm, although the overall change in fitness is not dramatic (approximately
a 30% increase from the initial average fitness value). There do not appear to
be major differences in performance for different particle neighborhood types;
using an lbest neighborhood seems to cause slower initial improvements, but
final performances are similar for all neighborhood types, with gbest doing only
slightly better than ibest, which does slightly better than lbest.

While individual robot fitness is useful for adaptation, it does not necessarily
provide us with a good indicator of the performance of the robot swarm as a
whole. To measure this, we use the number of targets “found” at every eval-
uation of multi-robot search as a group fitness value. The average progress of
group fitness throughout adaptation can be seen in Fig. 2b. We again see clear
improvements in fitness for all neighborhood types, though with a significantly
larger improvement (more than a 100% increase from the initial average fit-
ness value); this shows that our individual and group fitness measures are very
well-aligned. We also notice more pronounced differences between results for
different particle neighborhoods: lbest improves quite slowly throughout adapta-
tion; gbest improves more quickly initially, but plateaus early in the adaptation
process; ibest offers a compromise between the two, improving more slowly than
gbest but continuing throughout adaptation to eventually achieve a higher fitness
than the other two neighborhood types. This is similar to what was observed in
[19], where an intermediate neighborhood size gave optimal performance.
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Fig. 2. Average individual fitness of particles throughout adaptation averaged over 250
runs for lbest, ibest, and gbest particle neighborhoods for (a) individual fitness, and (b)
group fitness. Error bars represent standard error.

When using PSO for optimization, the standard approach is to run the al-
gorithm for repeated iterations until a termination criterion is reached (e.g., a
certain number of iterations have occurred) and then select the best found solu-
tion. While this is straight-forward for numerical optimization, it can be much
more difficult in robotic learning. Determining which solution is actually best
requires repeated evaluations to obtain low-noise fitness measures, which may re-
quire significantly more running time for robots. In addition, once a final solution
is selected by all robots, the robotic swarm can no longer adapt to changing en-
vironmental parameters which may occur in its surroundings. For these reasons,
there are clear advantages to running distributed PSO optimization without
termination, where robots continue to adapt their parameters indefinitely. The
possible drawback to this method is that the performance of robot swarm may
be significantly lower than if it were to use the best found solution.

In order to assess whether continuing adaptation incurs a performance penalty,
we compare the final average group fitness and the best found solution group
fitness after 100 iterations of adaptation. The final average group fitness was
taken as the average group fitness over the last five adaptation iterations. The
best found controller was selected by evaluating the final personal best solutions
for all particles five times and selecting the one with the highest average indi-
vidual fitness; this solution was run on all robots to determine its group fitness.
The average performance over 250 runs for different neighborhood types can
be seen in Fig. 3. The final average group fitness is as high as the best found
solution group fitness for all neighborhood types. This indicates that continu-
ing adaptation indefinitely will not result in a significant performance decrease.
Oddly, for gbest, the average group fitness is actually higher than the best found
controller fitness. One possible explanation is that the gbest neighborhood may
overfit on individual fitness, causing a slight decrease in the group fitness when
an over-optimized solution is selected. We can also confirm here that the ibest
neighborhood significantly outperforms lbest and gbest using an ANOVA test,
both for the best found solution (P-value of 0.0084 for lbest and 0.0005 for gbest)
and average group fitness (P-value of 1.6 · 10−8 for lbest and 0.0014 for gbest).
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Fig. 3. Final average group fitness and best found solution group fitness averaged over
250 runs for lbest, ibest, and gbest particle neighborhoods. Error bars represent standard
error.

5 Adaptation in Non-static Environments

A major potential benefit to unending robotic adaptation is that robots could
automatically adjust to changes that might arise in the environment. To test
this possibility, we rerun our experiments in a non-static environment. We use
the same simulated scenario as in the previous experiments. At the start of
adaptation, we use three targets with emission power Pj = 3 for all targets.
After 50 iterations, we switch to using ten targets with emission power Pj = 10
for all targets. We again run 100 iterations total using 50 robots.

The average of individual robot fitness throughout adaptation in the non-
static environment can be seen in Fig. 4a (fitness in the last 50 iterations is
significantly higher due to the increased power and number of targets and is
shown at a reduced scale in the plot, with the scaling factor chosen to best align
the data). We observe the same trend as in the previous experiment for the first
50 iterations. At this point, there is a fitness shift for all neighborhood types as
the simulations switches over to the new environmental parameters and fitness
scaling. In the last 50 iterations, we see a slightly larger increase in individual
fitness compared to what was observed in the static environment, with similar
final fitness for all neighborhood types.

The group fitness throughout adaptation in the non-static environment can
be observed in Fig. 4b (fitness in the last 50 iterations is significantly higher due
to the increased power and number of targets and is shown at a reduced scale,
with the scaling factor chosen to best align the plots). Progress in the first 50
iterations is the same as for the static environment. In the last 50 iterations,
we see continuing fitness improvements for lbest and ibest neighborhoods, with
larger gains than were observed in the last 50 iterations in the static environ-
ment, particularly for lbest. This indicates that robots successfully adapt from
the initial scenario to the new environmental parameters. The fitness for the
gbest neighborhood remains approximately constant. This could be caused by
premature convergence, which would lead to lower particle diversity and prevent
further adaptation. Higher diversity in the other neighborhoods allow them to
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Fig. 4. Average fitness of particles throughout adaptation in a non-static environment
averaged over 250 runs for lbest, ibest, and gbest particle neighborhoods for (a) indi-
vidual fitness, and (b) group fitness. Fitness in the later iterations is scaled to match
fitness in the initial iterations. Error bars represent standard error.

continue to adapt in non-static environments, particularly in the case of lbest,
which achieves final performance as high as ibest in this scenario.

6 Conclusion and Outlook

We have shown that distributed Particle Swarm Optimization can be used for
adaptation in multi-robot systems, illustrated with the case study of multi-robot
search. Best performance is obtained by using an intermediate particle neighbor-
hood between lbest and gbest, which offers fast optimization without premature
particle convergence in this scenario. Adaptation can be continued indefinitely
without a significant performance penalty, making it possible for the robot swarm
to automatically adapt in non-static environments.

In this paper, we have devoted our focus to the multi-robot adaptation process
using distributed PSO and spent little time studying the multi-robot search algo-
rithm itself. Observing the final solutions found by the adaptation process could
give us insight into the impact of each of the different algorithmic parameters
and how they influenced the robots’ performance. The bio-inspired multi-robot
search technique should also be compared to other common search strategies for
similar scenarios (such as standard “optimal” search techniques or PSO-inspired
search) to evaluate its overall potential.

References

1. Balch, T.: Behavioral diversity in learning robot teams. PhD Thesis, College of
Computing, Georgia Institute of Technology (1998)

2. Berg, H.C.: E. coli in motion. Springer, NY (2003)
3. Cianci, C., Raemy, X., Pugh, J., Martinoli, A.: Communication in a swarm of

miniature robots: The e-puck as an educational tool for swarm robotics. In: Şahin,
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Abstract. We present a novel approach to self-organisation of coordinated be-
haviour among multiple resource-sharing agents. We consider a hierarchical
multi-agent system comprising multiple energy-dependent agents split into local
neighbourhoods, each with a dedicated controller, and a centralised coordinator
dealing only with the controllers. The coordinated behaviour is required in order
to achieve a balance between the overall resource consumption by the multi-agent
collective and the stress on the community. Minimising the resource consumption
increases the stress, while reducing the stress may lead to unrestricted and highly
unpredictable demand, harming the individual agents in the long-run. We iden-
tify underlying forces in the system’s dynamics, suggest a number of quantita-
tive measures used to contrast different strategies, and introduce a novel strategy
based on persistent sensorimotor time-loops: homeotaxis. Homeotaxis subsumes
the homeokinetic principle, extending it both in terms of scope (multi-agent self-
organisation) and the state-space, and allows to select the best adaptive strategy
for the considered system.

1 Introduction

In general, the ability to coordinate (e.g., synchronise) multiple individual actions
within large multi-agent groups is an adaptive response observed in many biological
systems. As noted by Trianni and Nolfi [17], “synchrony can increase the efficiency of
a group by maximising the global outcome or by minimising the interference among
individuals”. An investigation of Baldassarre et al. [3] characterised coordinated mo-
tion in a swarm collective as a self-organised activity of the constituent independently-
controlled modules, and measured the increasing organisation of the group on the basis
of Boltzmann entropy. The emergent common direction of motion, with the chassis ori-
entations of the robots spatially aligned, was related to high synchrony and coordination
within the group.

While synchronisation has been extensively studied in a variety of applications, rang-
ing from swarm robotics [3,17], to coordinating sensors in wireless networks [18], to
models of fireflies flashing in unison in biology [11], the inverse problem of desynchro-
nisation has received less attention, as noted by Patel et al. [13]. Patel et al. consider
desynchronisation as the task of spreading a given set of identical oscillators through-
out a time period, resulting in a round-robin schedule, and argue that this can be useful
in several applications. For example, in wireless sensor networks sensor nodes can (i)
desynchronise their sampling times to distribute the energy cost, while still providing
efficient coverage, and (ii) desynchronise their transmission times to avoid collisions

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 403–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



404 M. Prokopenko, A. Zeman, and R. Li

and message loss. The study of Patel et al. is motivated by biology: “cells, acting as
oscillators, control animal gaits and regulate heart valves through desynchronisation”
[13], leading to biologically-inspired algorithms for achieving desynchronisation.

Thus, both synchronisation and desynchronisation may be desirable at different
stages in a multi-agent system. We believe, synchronisation enables better exploitation,
while desynchronisation allows the system to explore alternatives. In general, a system
that is well-balanced in terms of synchronisation and desynchronisation (i.e., in terms
of exploitation and exploration) achieves an adequate coordination of its components
through space and time, and across multiple activities. In other words, synchronisation
and desynchronisation are interleaved sub-tasks of a more generic task: multi-agent
spatiotemporal coordination.

A coordinated system may involve a degree of centralisation. For example, a bio-
inspired control architecture for artificial muscle materials is proposed by Odhner et al.
[12]. The active material is broken up into many small cells, coordinated to produce
a combined force or displacement. A single central controller uses only one input and
one output: it measures only the summed displacement of all of the cells, producing a
feedback signal that is broadcast to the cells. Each cell controls its displacement with
a stochastic automaton, that is “a small local control automaton containing a pseudo-
random number generator, so that it contracts and relaxes stochastically, with a proba-
bility distribution dictated by the input from the central feedback controller” [12]. This
closed-loop system results in a smooth and predictable motion (e.g., tracking a desired
position), and is scalable to many cells.

This paper solves the task of coordination in a model setting (distributed power load
management system) using a novel domain-invariant and bio-inspired principle: homeo-
taxis, that incorporates homeokinesis and self-organisation of perception-action loops.
The coordinated behaviour in our model system is required in order to balance the
overall energy consumption by a multi-agent collective and the stress on the commu-
nity. Minimising the energy consumption strains the system, while removing the stress
typically leads to unrestricted and highly unpredictable demand, harming the individual
agents in the long-run.

Section 2 introduces our model problem: resource-sharing agents connected to a
power load management system, and presents the motivation for the study. Domain-
invariant approaches to multi-agent coordination are reviewed in Section 3. The follow-
ing sections describe the proposed approach, and present simulation results, followed
by conclusions.

2 A Distributed Power Load Management System

Electricity distribution is a complex system, consisting of loads (appliances), genera-
tors, transformer stations and distribution networks, and influenced by a market. During
most times of the year, the market price is low (e.g., less than AUD$20 per megawatt
hour), but it can also be very high (near or at the maximum price, e.g., AUD$10,000 per
megawatt hour) during a peak demand, when energy supply is under extreme pressure.

Energy demand management is a new technology proposed to cope with the unpre-
dictability of the energy market and provide a rapid response when supply is strained by
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Fig. 1. Strategy qt = lt. Circles on solid line:
xt; crosses on dashed line: lt; dotted line: ut.
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Fig. 2. Strategy qt = ut. Circles on solid line:
xt; crosses on dashed line: lt; dotted line: ut.

demand. Energy demand management essentially equips appliances with simple agents,
and enables these agents to defer their electricity consumption when price suddenly sky-
rockets. We consider a hierarchical multi-agent system comprising multiple appliance-
level agents split into local neighbourhoods, each with a dedicated neighbourhood’s
controller (middle-level), and a high-level centralised coordinator dealing only with the
middle-level controllers. Appliances within a neighbourhood can be switched on or off
by their middle-level controller, within the constraints defined by customer preferences.
The neighbourhood’s controller agent in turn receives an energy quota from the high-
level coordinator — this energy quota is the limit on the total energy consumption for
the neighbourhood.

In this paper, we focus on the behaviour of the high-level coordinator, i.e., on how
to choose the optimal strategy setting the real-time quota to a middle-level controller.
The high-level coordinator needs to incorporate information from the market (e.g., the
current local price of energy pt), as well as inputs from middle-level controller. The
coordinator is required to balance the risk of exposure to volatile prices, and reduce
strain in the load network.

The local energy demand limits for a neighbourhood are obtained by each
middle-level controller as two values per interval: 1) the minimal consumption lt of the
local neighbourhood, and 2) the unconstrained (default) consumption ut of the neigh-
bourhood. The first value is defined as the total minimal consumption over an entire
future market cycle (e.g., five minute interval). The minimal load requirements of ap-
pliances depend on the hardware and operating limits of individual appliances. The
unconstrained consumption of the neighbourhood refers to its total consumption when
the individual agents operate under normal conditions without any external influence.
The limits lt and ut are computed by each middle-level controller in the beginning of a
market cycle, using an optimisation procedure described elsewhere [9].

The coordinator sets the quota qt for the next market cycle, as a value inclusively
between the values of the minimal and unconstrained demand: lt ≤ qt ≤ ut. In response
to this quota the middle-level controller selects the best control plan for each load in
its neighbourhood [9], resulting in actual total consumption xt in the neighbourhood.
These interactions essentially create a control loop where multiple individual agents
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plan their consumption for the next interval t, producing the aggregate limits lt and ut,
while the coordinator reacts to these inputs (as well as the dispatch price pt) by setting
the quota qt. This results in the actual consumption xt, affecting the agents’ plans for
the next interval (t+ 1) and the future limits lt+1 and ut+1, and so on. Thus, the limits
depend on the quotas set in the past.

One may assume that an optimal quota-setting strategy would be the minimal achiev-
able consumption for a neighbourhood: qt = lt, that is, restricting the agents’ energy
consumption levels to the lowest possible value that they can cope with. This does re-
duce the total cost S(T ) =

∑T
t ptxt. However, when the minimal quota is imposed,

some of the energy which is not consumed in one period will need to be consumed
at a later time. The longer a minimal quota is imposed, the more loads are pushed to
a stressful limit. The results of such undesirable synchronisation are shown in Fig. 1:
the minimal quota increases the minimal achievable consumption lt after some initial
period during which the agents can still defer their demand. The agents become even-
tually synchronised when none of them can defer the demand any longer, stressing the
neighbourhood. Such stress would result in a peak demand if a quota is released, and
can cause negative effects such as shortage of energy or a peak price, threatening sys-
tem stability. In short, when qt = lt, the minimal consumption lt itself grows over time,
and while the cost S is low, the stress (the total uncompromisable “incompressible”
demand), defined as R(T ) =

∑T
t lt, is very high.

Similarly, setting the quota to another possible extreme qt = ut (except during the
period around cycle 200 when an extremely high price pt forces the coordinator to use
the default qt = lt) results in an unbalanced outcome (Fig. 2). In this case, the stress
R(T ) is minimal, but the cost S(T ) is high. The stability of the actual consumption xt,
measured as the variance σ2

x(T ), is also quite significant.
Hence the coordinator needs to define an optimal quota which not only reduces en-

ergy costs, but also avoids instability and stress within the system. More precisely, opti-
mality of the quota over a time period T depends on (i) the total cost S(T ); (ii) stability
σ2

x(T ) of the actual consumption xt; and (iii) the stress R(T ). In order to derive an
optimal quota-setting strategy we turn to domain-invariant principles of multi-agent co-
ordination.

3 Domain-Invariant Principles of Adaptive Behaviour

A few approaches were recently proposed in order to characterise and achieve spatiotem-
poral coordination in a general way. For example, a modular robotic system modelling
a multi-segment snake-like organism, with actuators (“muscles”) attached to individual
segments (“vertebrae”) was evolved according to generic information-theoretic measure
(excess entropy or predictive information, defined in Shannon sense) [16]. In general,
one may argue that information-driven self-organisation is one of the main evolution-
ary forces that may be used in both design (e.g., information-driven evolutionary design
[15]) and biological evolution [14]. An example of such information-driven dynamics
is the acquisition of information from the environment: there is evidence that pushing
the information flow to the information-theoretic limit (i.e., maximisation of information
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transfer through the system’s perception-action loop) can give rise to intricate behaviour,
induce a necessary structure in the system, and ultimately adaptively reshape the system
[8].

Information-driven self-organisation that relies on dynamics of predictive informa-
tion [15,10] is related to the search of domain-invariant principles carried out by Der
et al. [4,7,6,5]. While traditionally an objective function, measuring the distance be-
tween the current and a desired behaviour, is provided explicitly by the designers, Der et
al. consider self-referential adaptive systems: the systems for which the objective func-
tion is derived from the dynamics of the system itself, i.e. “adaptive, embodied systems
where the objective of adaptation is a function of the robots sensor values alone” [5].
In doing so they follow the principle of homeokinesis — the dynamical analogue of
homeostasis [1]. The principle of homeokinesis was developed by Der et al. [4,7] as a
general domain-invariant principle for self-organisation in robot behaviour. The princi-
ple is based on the assumptions that the robot is able to (i) learn an internal representa-
tion (self-model) of its current behaviour, and (ii) adapt its behaviour by minimising the
difference between the self-model and true behaviour in the real world. Importantly, the
principle does not lead to stabilisation of stationary states (that would result in a “do-
nothing” behaviour), but rather suggests a smooth and predictable kinetic regime.

In developing the principle of homeokinesis, Der and Liebscher [7] have introduced
a reversal of time in the modelling process, capturing a time-loop error. The time-loop
error is formalised in Section 4 — at this stage we note, following [7], that it is driven
by two opposite forces. On the one hand, the time-loop error is small if the current be-
haviour is well represented by the internal model, producing behaviours that correspond
to smooth and predictable sensor values. The second tendency is that the time reversal
in the modelling process inverts a stable behaviour into unstable, and vice versa. Specif-
ically, if the behaviour is stable in the forward time direction, it is unstable if the time
is reversed, and therefore, the time-loop error is minimised if the kinetic behaviour of
the robot is unstable in the forward time direction. This feature eliminates trivial be-
haviours (e.g., a “do-nothing” behaviour). Nevertheless, the instability cannot continue
unrestricted, as the first tendency (the faithful self-model) demands smooth trajecto-
ries in the sensor space. This closed-loop interplay between a smooth and predictable
sensor space exploration and an unstable kinetic behaviour balances exploration and
exploitation aspects of the behaviour.

Importantly, both the information-driven self-organisation and the principle of home-
okinesis emphasise the role of behaviour’s predictability as well as non-stationary
sensorimotor dynamics in achieving the desired balance between exploitation and ex-
ploration. A possible unification is described by Ay et al. [2] and Der et al. [5].

4 Homeotaxis as Coordination with Persistent Time-Loops

In deriving the optimal quota-setting strategy we extend the homeokinetic principle
to the task of multi-agent coordination, by considering the consumption xt within a
multi-agent system to be among sensory inputs of the high-level coordinator, and the
coordinator’s output qt to be its actuation. This extends the principle to homeokinetic
coordination. Homeotaxis is achieved by enhancing the time-loop error with persistence
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error, and is motivated by taxis: “an innate behavioural response by an organism to a
directional stimulus“ [19]1.

4.1 Example

Let us begin by exemplifying the original use of the time-loop error, following a simple
homeokinesis model of Der and Liebscher [7]. Consider the linear system with dynam-
ics

xt+1 = ctxt + ξt (1)

where ct is the controlling variable, and ξt is the part not handled by the model. The
system can be modelled forward in time:

x̂t+1 = ctxt , (2)

as well as backward in time:

x̌t = xt+1/ct = (ctxt + ξt)/ct = xt + ξt/ct (3)

Here x̂t+1 is the predicted value given the current observation xt, while x̌t is the recon-
structed value, given the latest observation xt+1. Traditionally, having observed xt+1,
one uses E = (xt+1 − x̂t+1)2 as the error to minimise, i.e. as a feedback signal. The
time-loop error is defined as

W = (x̌t − xt)2 , (4)

that is, it is obtained by going forward in time from xt to xt+1, followed by a step
(3) from xt+1 to the reconstructed state x̌t backward in time. The full sequence xt →
xt+1 → x̌t is called the time loop. Using gradient descent to minimise the time-loop
error (4) W = ξ2t /c

2
t , with respect to the controlling variable ct, yields the update rule

(for a small number ε > 0 determining the rate of descent)

ct+1 = ct + ε ξ2t /c
3
t (5)

As mentioned in the previous section, the time-loop error W is small if the current be-
haviour is well represented by the internal model (2), producing behaviours that obtain
smooth and predictable (“exploitable”) sensor values. On the other hand, the time-loop
error is minimised if the kinetic behaviour is unstable in the forward time direction,
eliminating trivial stationary behaviours, and encouraging exploration.

4.2 General Case

In general, one considers a system with an adaptive controller, defined by the con-
troller’s parameter vector ct, and output that depends on the sensor values xt observed
at time t. The adaptive model M aims to predict the true sensor values xt+1 at (t+ 1):

x̂t+1 = xt +M(xt, yt;m) , (6)

1 Taxis differs from kinesis, “a non-directional change in activity in response to a stimulus that
results in the illusion of directed motion due to different rates of activity depending on stimulus
intensity” [19].
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where m is the predictor’s parameter. Abbreviating M(xt, yt;m) as M(xt), and min-
imising the prediction error

E = (xt+1 − x̂t+1)2 = (xt+1 − xt −M(xt))2 = (�xt −M(xt))2 (7)

by gradient descent yields an update rule for the controller and the predictor, respec-
tively (the latter does not have to be updated in real-time), where ε > 0, η > 0:

ct+1 = ct − ε ∂E
∂ct

mt+1 = mt − η ∂E
∂m

(8)

Assuming the dynamics
xt+1 = xt +M(xt) + ξt , (9)

where ξt is the vector of perturbations not covered by the model M , the model can be
written backward in time [7] as

x̌t = xt+1 +M (−)(xt+1) , (10)

where we define the reverse model M (−) as follows:

xt = x̂t+1 +M (−)(x̂t+1) (11)

The definition (11) is symmetric to the expression (6). This definition corrects the one
given in [7] that specifies xt = M (−)(xt + M(xt)), which is equivalent to xt =
M (−)(x̂t+1). The time-loop error then is given by

W = (x̌t − xt)2 = (ξt +M (−)(xt+1)−M (−)(x̂t+1))2 (12)

yielding the update rules for the controller and the predictor, respectively:

ct+1 = ct − ε∂W
∂ct

mt+1 = mt − η∂W
∂m

(13)

4.3 Extension

In developing the principle of homeotaxis and applying it to the distributed energy
management, we consider a system with an adaptive controller and output

qt+1 =

⎧
⎨

⎩

lt+1 if ct+1xt < lt+1

ut+1 if ct+1xt > ut+1

ct+1xt otherwise
(14)

during a transition from t to (t+1). Specifically, xt is the last observed actual consump-
tion (the sensor value) achieved in response to the quota qt; the current limits lt+1 and
ut+1 are known as well. The quota-controlling parameter ct+1 is to be updated before
setting the quota (the output) qt+1.

The adaptive model aims to predict the true sensor value

xt+1 = ct+1xt + ξt (15)
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Fig. 3. Minimising error Q. Circles on solid
line: xt; crosses on dashed line: lt; dotted line:
ut.
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Fig. 4. Basic homeokinesis. Circles on solid
line: xt; crosses on dashed line: lt; dotted line:
ut.

that will result when the quota is set:

x̂t+1 = qt+1 (16)

The quota dynamics may also be described recursively:

qt+1 = qt + ζt (17)

for some perturbation ζt that needs to be minimised to maintain persistent quotas. The
persistence error can be formulated, by applying relationships (17) and (14), as

Q = (qt − qt+1)2 (18)

In our case, Q = (qt − ct+1xt)2 is minimised by

ĉt+1 = qt/xt (19)

The control strategy using this simplistic update rule balances cost, stability and stress
reasonably well, but is not responsive to sudden changes in the underlying demand.
Fig. 3 shows the dynamics for a scenario where there is a spike in demand at market
cycle 500 — it is evident that the optimal balance is lost after the spike. However, it can
be complemented by a signal produced by the time-loop error:

WQ = (x̌t;Q − xt)2 = (xt+1/ĉt+1 − xt)2 = ((ĉt+1xt + ξt)/ĉt+1 − xt)2 = ξ2t /ĉ
2
t+1

(20)
The error WQ exemplifies persistent time-loop error:

WQ = (x̌t;Q − xt)2 = (ξt +M (−)(xt+1; ĉt+1)−M (−)(x̂t+1))2 (21)

where ĉ is determined by minimisation of the persistence error Q (18). The controller
update rule that minimises both the persistence error Q and the usual time-loop error is
given by

ct+1 = ĉt+1 − ε ∂WQ

∂ĉt+1
= ĉt+1 + ε′

ξ2t
ĉ3t+1

(22)
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In summary, the persistent time-loop error WQ is obtained by (i) minimising the per-
sistence error (18), and (ii) using the corrected controlling variable in the time-loop
reconstruction. Essentially, it explicitly demands smoothness and predictability of tra-
jectories in both the sensor-space and action-space. It is interesting to note, at this stage,
that a basic homeokinetic strategy where update rule is given by (5) does not work in
this case: as shown in Fig. 4, the actual consumption is too unstable, while being rea-
sonably smooth and predictable on average.

The next step is to estimate the perturbation ξt. We used the following approxima-
tions:

ξ
(1)
t = |x̌t − xt| ξ

(2)
t = |xt+1 − xt| ξ

(3)
t = |x̌t − qt| (23)

Perfect control is indicated by c = 1. According to (20), ξ(1)t yields ĉ = 1, while

ξ
(2)
t yields c = 1 according to (15), and ξ(3)t yields ĉ = 1 according to (20) and (19)

considered together.

5 Results

In this section we present experimental results of three different homeotaxic strate-
gies that minimise persistent time-loop error with approximations ξ(1)t (Fig. 5), ξ(2)t

(Fig. 6), and ξ(3)t (Fig. 7). Each experiment involved 100 individual agents in the neigh-
bourhood coordinated over a 5000 cycle run, including a short period around cycle 200
during which the coordinator used the default qt = lt, and an instantaneous spike in
demand to min(5000;ut) at cycle 500. The performance was measured in terms of
the cost S, stability σ2

x, stress R over T = 5000 cycles, and their linear combination
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Fig. 5. Minimising ξ
(1)
t . Circles on solid line: xt; crosses on dashed line: lt; dotted line: ut.



412 M. Prokopenko, A. Zeman, and R. Li

0

2000

4000

6000

8000

10000

12000

100 200 300 400 500 600

P
ow

er

Market cycle

Fig. 6. Minimising ξ
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Table 1. Comparative results (bold: best in each category)

Strategy S(T ) σ2
x(T ) R(T ) Loss RMSEc

homeotaxis ξ
(1)
t 376,477 38,806 5,405,235 95,581 0.04371

homeotaxis ξ
(2)
t 385,528 41,967 5,101,962 93,769 0.04440

homeotaxis ξ
(3)
t 373,629 47,850 5,551,528 97,663 0.04388

persistent quota 547,045 394,167 2,941,011 123,531 0.03922

qt = lt 334,945 109,560 8,498,646 129,437 ct not used

qt = ut 833,075 3,454,456 973,996 438,493 ct not used

basic homeokinesis 723,124 20,900,555 1,751,512 2,179,883 0.52995

(the “loss”): 0.1(S + σ2
x) + 0.01R (assuming, e.g., that cost and stability contribute

ten times as much as stress). All homeotaxic strategies achieve good results (Table 1),
easily outperforming the strategies considered above (minimisation of persistence er-
ror; qt = lt; qt = ut; and basic homeokinesis). We used the root mean square error
(RMSEc) in estimating how close the controller ct is to the perfect case (ct = 1), i.e.

RMSEc =
√∑T

1 (ct − 1)2/T . The success can be explained by the combination of
homeokinetic exploration and exploitation of persistent actions. The optimal strategies
based on ξ(1)t , ξ(2)t and ξ

(3)
t have also shown robustness to selfishness of individual

agents (selfishness is defined here as a fraction of agents that always refuse to follow a
control plan), and to additive noise in actual consumption, that can be due to a fraction
of agents that intermittently decide against following a control plan (these experimental
results are omitted due to a lack of space).

6 Conclusions

We argued that adaptive coordination of multiple resource-sharing agents requires both
synchronisation and desynchronisation, balancing exploitation and exploration stages.
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This balance can be derived (learned) from dynamics of the multi-agent system itself, if
there is a feedback measuring the distance between current and a desired behaviour. A
model hierarchical system comprised multiple energy-consuming agents split into local
neighbourhoods, each with a dedicated controller, and a centralised coordinator dealing
only with the controllers. The overall consumption within a neighbourhood was con-
sidered as a sensory input of the high-level coordinator, while the coordinator’s output
formed its actuation. This interpretation allowed us to develop homeotaxis: a generic
domain-invariant approach, based on the homeokinetic principle, extended in terms of
scope (multi-agent self-organisation) and the state-space (predictable perception and
action spaces). A number of homeotaxic strategies, based on persistent sensorimotor
time-loops, were introduced and experimentally verified, achieving a balance between
resource consumption and stress within the multi-agent community.

Acknowledgments. The authors are grateful to Oliver Obst for suggesting the term
homeotaxis, and to Peter Corke for pointing out the work of Odhner et al. [12].
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Abstract. Ant foraging is a paradigmatic example of self-organized be-
havior. We give new experimental evidence for previously unobserved
short-term adaptiveness in ant foraging and show that current mathemat-
ical foraging models cannot predict this behavior. As a true extension, we
develop Itô diffusion models that explain the newly discovered behavior
qualitatively and quantitatively. The theoretical analysis is supported by
individual-based simulations. Our work shows that randomness is a key
factor in allowing self-organizing systems to be adaptive. Implications for
technical applications of Swarm Intelligence are discussed.

1 Introduction

Groups of humans or animals often make decisions collectively without any cen-
tral control or coordination. The paradigmatic example of self-organized groups
are colonies of social insects, such as ants and bees, whose strikingly organized
and seemingly purposeful behavior at the group level is organized without any
central “master plan” [4]. Their complex behavior at the colony level emerges
from simple interactions between myriads of individuals that only process local
information [19]. Such decentralized coordination exhibits a number of proper-
ties that are highly desirable in technical applications, specifically robustness,
adaptiveness and parallelism. Hence, social insect behavior has been used as an
inspiration for a wide range of engineering tasks [2,13].

Despite the central importance of self-organized decision-making for many
natural and technical systems, the theoretical understanding of its fundamental
properties is still in its infancy. A core problem is that there is very little insight
into how self-organized processes work in dynamic environments. Most research
addresses only static conditions. Yet, being able to adapt in dynamic environ-
ments on all timescales is crucial for almost all natural systems and for many
engineering artifacts using similar organizational principles.

Foraging in mass-recruiting ant species is arguably the best understood form
of self-organized behavior, and detailed knowledge about different forms of orga-
nization as well as quantitative and qualitative mathematical models are avail-
able [4]. However, until recently this research has focused almost entirely on static
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environments where the available resources are constant. The conventional wis-
dom is that the ability of ants to quickly adapt to a changing environment is
generally very limited, and this is in agreement with the predictions of existing
mathematical models. Recently new experiments with dynamic environments
have started to cast some doubt on the scope of these models. These new exper-
iments clearly demonstrate that at least some mass recruiting ant species can
flexibly and quickly adapt their foraging behavior to environmental changes.
As the standard models cannot explain this adaptive decision-making, a more
powerful way of modelling is required. The purpose of the present paper is to
introduce such a type of model.

We will show that the conventional models have limited predictive power be-
cause they are mean field descriptions based on the general assumption that the
net influence of noise is zero. As we will show, this is not the case in dynamic en-
vironments. Here, noisy communication has a crucial role in allowing ant colonies
to behave adaptively. Our technical contributions are three-fold: Firstly, we give
new experimental evidence for short-term adaptation in the foraging behavior
of the mass recruiting ant species Pheidole megacephala. Secondly, we introduce
continuous stochastic models based on Itô diffusions [12] and Fokker-Planck equa-
tions [18] as a new tool for theoretical research in ant behavior. Thirdly, we ap-
ply this method to our experiments obtaining a quantitative mathematical model
that explains the adaptation and coincides with the conventional model in the
noise-free limit. Our mathematical analysis is supported by individual-based sim-
ulations which confirm our experimental findings and validate the formal model.

2 Standard Models of Ant Foraging

n
u
m

b
e
r 

o
f 

a
n
ts

time
20 40 60 80 100 120

20

30

40

50

60

70

80

Fig. 1. Average Number of Foragers at
Better Source [4]. Dashed: Both Sources
Presented Simultaneously; Solid: Better
Source Presented with Delay.

Mass recruiting ant species, such
as Lasius niger and Pheidole mega-
cephala, coordinate their foraging
activities mainly using pheromone
communication [14]. When return-
ing from a food source to the nest,
the foragers deposit pheromones on
the paths they use. New foragers
that venture out from the nest in
search of food probabilistically follow
the pheromone gradients in the en-
vironment and pheromone gradually
evaporates over time. In this way a
self-limiting positive feedback loop is
created and increasingly more pheromone is deposited on the paths to food
sources. As the amount of pheromone deposit is generally (directly) modulated
by food source quality or (indirectly) by the distance of the food source to the
nest, the majority of the traffic tends to converge on the paths to more desirable
food sources [4].
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A classical binary decision experiment to investigate this behavior is the “Y-
Bridge” [4]. In this experiment the colony is presented with two food sources at
the two ends of a forking path from the nest (Fig. 3, top). When the quality of
the food sources or the path lengths to the sources are different the ants typically
make the correct collective choice: the vast majority of foragers converge on the
shorter path or on the richer source, respectively. However, this is generally
only true if both choices are present right from the beginning. If at first only
the inferior choice is presented (longer path or worse quality) and the superior
one is only added after the traffic has stabilized, the colony will generally not
adaptively adjust and will stick with the inferior solution instead [4] (Fig. 1).

A widely used class of models that explains these and related experiments
in static environments is based on dynamic systems using ordinary differential
equations [8,17]. Let the amount of pheromone on the two branches be denoted
by c1, c2. In the standard model [8], the probabilities of an individual ant to
choose either branch when leaving the nest are pi = (k+ci)

α

�2
j=1(k+cj)α where k, α

are non-negative constants fitted to experimental data. Each individual forager
deposits an amount of pheromone qi upon its return to the nest. While the
total number of foragers leaving the nest per time unit in reality depends on
the amount of trail pheromone present, it has been shown that this flux may be
assumed to be constant without changing the characteristics of the model [17].
Assuming a constant total flux of Φ foragers, the number of foragers on Branch i
is ni = pi Φ, and the development of the two pheromone levels is dci

dt = piQi−ρ ci
where ρ is the rate constant for pheromone evaporation, Qi = Φqi.

Let Branch 1 be the superior path. There are two reasons why it may attract
more traffic than Branch 2: Either the food sources are of different quality and
pheromone deposit is actively modulated by food quality (q1 > q2) or Branch 1
is shorter and thus receives pheromone deposits by returning foragers earlier, i.e.
it gets a head start in the competition. Pheromone deposit on the shorter path
may also be (indirectly) modulated, for example due to a lower trail fidelity or a
higher rate of U-turns on the longer branch [4] or due to home range marking [9].
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Fig. 2. Standard Model Fixpoints

It is well known that this model ex-
hibits three fixpoints [4,17]. The first
fixpoint corresponds to a proportional
usage of paths (i.e. pheromone on both
paths and in the case of equal de-
posits q = q1 = q2 both sources will
be equally exploited). The other two
fixpoints correspond to the situation
where predominantly one source is ex-
ploited and the other resource is ex-
ploited far less, even for q1 = q2. The
exact proportion of exploitation depends on the parameters k, α, Φ, ρ and the
proportion q1/q2. The first fixpoint is only stable in a limited parameter range.
The fixpoint diagram for p1 in Fig. 2 summarizes the situation for k = 0 [15]. For
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α < 1 only the first fixpoint p∗1 = 1/
(

1 +
(

q2
q1

) α
1−α

)
is stable, but it exchanges

its stability with the other two fixpoints at α = 1. Interestingly, for α > 1 two
fixpoints are stable: the one that corresponds to exclusive exploitation of the
superior source as well as the one that corresponds to only exploiting the in-
ferior source. The model has experimentally been matched to the behavior of
real ant colonies, specifically for L. niger with α = 2, k = 6 [4,1]. When k � 0
the situation remains in principle the same, but there will always be a residual
amount of exploitation of the less used resource. This amount depends on k.

Note that the model so far does not fully predict which of the two stable
fixpoints will be observed in any given experiment. The decision depends on the
differences between food source qualities and path lengths and on the times at
which the two sources are first discovered. However, it has been observed that
the decision is successfully made for the superior choice in most cases if the
differences (and thus deposit ratio q1/q2) and the flux Φ are large enough [4].
Once a stable fixpoint has been reached the behavior is locked regardless of
changes in the reward ratio. It is thus in agreement with the model that the
colony will not adapt if the better source is presented with significant delay.

3 Experiments with Dynamic Environments

Fig. 3. Experimental Set-up

To investigate the adaptiveness of for-
aging in the mass recruiting “big
headed ant” P. megacephala we used
a slightly modified version of the clas-
sical Y-bridge experiment. In each ex-
periment, a colony starved for 5 days
was given access to two equal food
sources (3ml of 1M sucrose solution)
placed on a platform (70 × 70mm) at
the ends of a Y-shaped bridge with two
branches of different length: 180mm
and 60mm (Fig. 3). The experiment
had three phases. In the first phase
(top) we let the colony forage freely for one hour at both sources. After this
time the short branch was blocked at the level of the food source preventing
ants from reaching this source in Phase 2 (middle). One hour later the short
branch was reopened for Phase 3 (bottom). A control experiment was performed
with 3 hours of duration in which no changes were applied to the set-up. We
replicated the experiment with 21 colonies of approximately 2,000 workers each
with brood and queen kept at room temperature (25± 1◦C) with a 12 : 12 L/D
photoperiod. Fig. 4 shows the average proportion of the number of foragers on
the branches. The behavior of P. megacephala is surprisingly different from that
of L. niger : This species does indeed manage to adapt to the change in food
sources (or their accessibility). It is obvious that the ants initially commit to the
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more desirable short branch and switch to the longer branch when the shorter
one becomes unavailable in Phase 2. In Phase 3 the colonies generally switch
back to the more desirable shorter branch.

We can attempt to model our experiment using the standard model and chang-
ing the deposit constants qi when switching from one phase to another. There
is nothing surprising about the switch from Phase 1 to Phase 2. As the food
source on the short branch becomes unavailable, this branch does not receive
any further pheromone in Phase 2 and the pheromone left from Phase 1 simply
evaporates until nothing is left. At the same time the longer branch still receives
new recruitment pheromone. The ants therefore must eventually switch to the
longer branch. The model predicts this. However, the switch from Phase 2 to
Phase 3 is not as expected from the predictions of the standard model. At the
end of Phase 2 sufficient time has elapsed for the colony to focus predominantly
on the longer branch, and we know from control experiments that by this time
the pheromone on the blocked shorter branch has evaporated sufficiently to not
influence the path choice anymore. From Section 2 we can be certain the ants
should not be able to refocus on the shorter branch when it is re-opened, because
the traffic has reached a stable fixpoint.

Fig. 4. Average Proportion of Foragers

It is crucial to realize that the stan-
dard model cannot be coaxed into any
other behavior by tuning its parame-
ters. Specifically, the only way to tune
the model such that it switches the
predominant exploitation from one re-
source to the other when the deposit
ratio q1/q2 changes after one branch
has reached saturation is to set α ≤ 1.
However, for α ≤ 1 the model has only
one fixpoint and we should always ob-
serve this fixpoint in real experiments. What we do see, however, is that every
trial has two possible outcomes. The standard model thus fails to predict Phase 3
correctly. The necessity to modify it is clear.

4 Noise-Induced Adaptiveness

The question is, which crucial aspect of P. megacephala’s decision making does
the standard model ignore. We will show that no new mechanism needs to be in-
voked. It is simply and somewhat counter-intuitively the noisiness of the decision
making behavior which enables the colonies to behave adaptively. Despite the
fact that the role of individual error in foraging has long been recognized [7,16],
current foraging models are generally mean-field descriptions, and errors are
simply treated as average error rates. The fundamental problem with this is
that mean-field models, strictly speaking, only give us a correct description if
the behaviors of all individuals are identical (conforming to the average of their
true behaviors). This simplification is not always justified. In the presence of
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non-linear responses, behavioral deviations of only a few individuals from the
mean can trigger qualitative changes in the colony behavior. To model these
fluctuations, we must use stochastic models. Leading researchers have called for
analytic stochastic models of ant foraging in the past already [17]. This call is
still echoed in the most recent surveys [13], but it has gone unanswered as yet.
In this section we will derive a stochastic model of mass recruitment based on
the standard model and show how it explains the newly observed effects.

We rewrite the two-dimensional model into a single dimension, exploiting p1 =
1− p2. It is convenient to introduce a “re-normalized deposit” z = Q2 c1 +Q1 c2
for which dz

dt = Q1Q2 (p1 + p2)− ρ (Q2 c1 +Q1 c2) = Q1Q2 − ρ z Observe that
z develops completely deterministically with finite limit limt→∞z(t) = Q1 Q2

ρ .
Note that z equilibrates quickly. We run each phase of the experiment long
enough so that the pheromone levels are saturated. Thus, to describe the switch-
ing behavior between the phases we can replace z(t) with its limit and eliminate
c2 from the model. From the standard model with α = 2 we obtain

dc1
dt

= Q1
(k + c1)2

(k + c1)2 + (k +
Q1 Q2

ρ −Q2c1

Q1
)2
− ρc1 (1)

c2 is given implicitly by c2(t) = z(t)−Q2 c1(t)
Q1

. We plot the general shape of dc1
dt for

the relevant parameter region in Fig. 5. Clearly c1 will eventually converge on one
of the axis intersections. The first and last axis intersection correspond to stable
fix points (exclusive use of a single source), whereas the middle point is unstable.
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Fig. 5. Drift term

Let c1 stand for the pheromone level on the
longer branch. The stability of the high-
est fixpoint of c1 in the mean field model
(corresponding to most pheromone on the
longer/inferior path and thus its almost ex-
clusive use) is what makes it impossible
for the model to switch to the exploita-
tion of the superior food source when it
is re-introduced at the commencement of
Phase 3. However, if we take random fluc-
tuations into account this is no longer true:
Any fluctuation that pushes the pheromone level on the longer branch momen-
tarily to the left of the second axis intersection will be amplified and lead to a
switch to the short branch. As we observe reasonably large random fluctuations
of the forager counts on each branch in experiments, the assumption of such ran-
dom fluctuations is justified. The first reason why the counts must be “noisy” is
that each ant makes an individual binary decision with decision probability pi

(Bernoulli trial). Thus the distribution of the number of foragers selecting path
i is given by the binomial distribution B(N, pi) with mean N · pi and variance
σ2 = Npi (1− pi). If we want to be able to model possible developments of in-
dividual trials (instead of just averages), we have to replace pi with (pi + σW )
where W is a (Gaussian) random variable with mean 0 and unit variance. In
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addition to this intrinsic noise, it is reasonable to assume random fluctuations
in the ants’ behavior due to individual variations, additional (random) inter-
actions between colony members, physical limitations of their sensory systems,
and environmental influences. The behavioral fluctuations enter into the model
as fluctuations of the model parameters during the course of an experiment. We
can determine the influence of parameter fluctuations on pi for fixed ci by the
Delta-Method [6], which approximates the variance of a function f(X) of a ran-
dom variableX with mean μX and variance σ2

X as Var(f(X)) =
(

d
dxf (μX)

)
2σ2

X .
It is easy to verify that even small fluctuations in α have significant influence on
pi, especially when c1 is close to the unstable fixpoint (the decision point). We
could endeavor to model the noise precisely using the Delta-Method for all rate
constants in Eq. 1. However, this would be a very treacherous form of precision
given that all model parameters are only estimates, that the basic model itself
is only an approximation and that many other environmental factors can cause
fluctuations. A good and simple approximation of the experimental data is to
set σ to an appropriately fitted constant. We substitute pi with (pi + σW ) in
the basic model equation and write the result formally as a diffusion in the form
of an Itô stochastic differential equation where μ(x) describes the deterministic
development and σdW describes the influence of noise [12].

dx = μ(x)dt + σdW (2)

μ(x) = Q1
(k + x)2

(k + x)2 + (k +
Q1 Q2

ρ −Q2x

Q1
)2
− ρ x (3)

5 Fokker-Planck Analysis of Itô Diffusion Model

We have obtained the Itô diffusion Eq. (2,3) as our basic model for the pheromone
level on the longer branch, where σ is a constant noise level. We are mainly
interested in the steady-state pheromone levels. Instead of just a mean, the
model allows us to obtain an explicit density function π(c) for the probability
to find a pheromone level c on the longer branch after the system has run for a
long time. Let f(t, y) be the probability density for the longer branch to carry
y units of pheromone at time t. The time-development of f(·, ·) is described by
the Fokker-Planck Equation (FPE [18]).

∂t f(t, y) = −∂y [μ(y) f(t, y)] + ∂yy

[
1
2
σ2(y) f(t, y)

]
(4)

The steady state π(c) = f(c, t) is time-independent, so Eq. 4 reduces to an ODE

0 = − d

dy
[μ(y)π(y)] +

1
2
d2

dy2

[
σ2(y)π(y)

]
(5)

Since the pheromone level on the longer branch is physically limited to the
interval (0, Q1/ρ), we must assume reflecting boundaries at both interval ends
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which prevents x from becoming negative and implies zero net flow of probability
across the interval boundaries. The solution of Eq. 5 then is

ψ(x) = e
�

x
a

(2μ(y)/σ2(y))dy

π(x) = C ψ(x)
σ2(x)

(6)

where C is a suitable normalization constant [12]. We plot the solution of Eq. 6
for q1 < q2 in Fig. 6 (here, q1/q2 = 1/3). Obviously, the vast majority of the
probability mass is assigned to the vicinity of zero. The interpretation of this is
that in the long run all pheromone will almost certainly vanish from the longer
branch, provided both branches are available. Regardless of the start state of the
system, the long branch will always be disused and the exploitation will switch
back to the shorter (better) branch. This is indeed what we see in the P. mega-
cephala experiments. However, our model must be able to account for both
types of behavior, where the switching takes place and where it does not occur.
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Fig. 6. Stationary Distribution π

By inspection of the drift term μ(x) in
Fig. 5 we may suspect that something
special is happening in the range of
the upper limit of c1. We magnify the
range of the saturation level of c1 in
the inset of Fig. 6 and observe a (tiny)
local maximum of probability. The key
to why this local maximum explains
both cases is that the stationary dis-
tribution is only reached after infinite
time. To know how long it will take for
the colony to disuse the longer branch
after the shorter branch is reopened, we must find the expected time that it
takes for the system to reach a very low pheromone level on the longer branch
after starting it with the longer branch being (almost) completely saturated.
This expected time is given by the so-called “First Passage Time” which can be
obtained by solving the Kolmogorov-Backward Equation [12] for Eq. 2. For a
reflecting boundary at the upper end b of the interval, the expected time t(x)
for the pheromone level on the longer branch to fall from x to a is

t(x) =
x∫
a

(
2

ψ(y)

b∫
y

ψ(z)
σ2(z)dz

)
dy (7)

The numeric solution to Eq. 7 for a = 100 (in minutes) is plotted on the left in
Fig. 7 for a variance of 0.04 which is approximately matched to our experiments
for the 30 minutes before switching to Phase 3 (k = 16 for P. megacephala).
We note that this escape time is short, so we expect the pheromone level on
the longer branch (and thus the number of foragers) to fall of relatively quickly,
exactly as observed in the experiments. In the experiments with L. niger we see
significantly lower noise levels [11]. Solving Eq. 7 for such low levels, we find
that the escape time is dramatically higher (Note the scale in Fig. 7, right). We
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Fig. 7. Escape Time. left: σ2 = 0.04, P. megacephala, right: σ2 = 0.002 L. niger

would thus not expect to see such a switch happen in real experiments or only
in very rare cases. This is consistent with all experiments and demonstrates that
the same stochastic model explains the P. megacephala experiments where the
switch does happen and the L. niger experiments, where it is not observed.

To verify our findings we have implemented an individual-based simulation
of the P. megacephala experiments (Java code can be obtained by request from
the first author). Our model represents each ant in the colony as an individual
object. All actions are controlled with probabilistic decisions independently for
each object, including resting, feeding, leaving the nest, moving and branch
choice. The individual-based model also includes details from which the analytic
model abstracts, specifically deposit reduction over time and stochastic total
flux, to validate that the inclusion of these factors does not influence our results.
Parametric studies are in agreement with the analytic model and confirm that
the qualitative behavior of the model does not depend on these factors.

6 Discussion and Conclusions

We have given experimental evidence for truly adaptive behavior in ant foraging
for P. megacephala. This behavior is qualitatively different from the behavior of
other species, specifically L. niger, and to the best of our knowledge this is the
first report of evidence for fully adaptive foraging in ants. We note that L. niger
is non-invasive and relies on permanent food sources, while P. megacephala is
an invasive species and opportunistic feeder exploiting ephemeral sources.

Surprisingly no new functional mechanisms needed to be invoked to explain
the adaptive behavior. Randomness in the decision making turned out to be the
crucial factor that allows the self-organized process to be adaptive. The standard
models for ant foraging are unable to capture this behavior because they are
mean field descriptions. We have presented a new type of analytic model based
on stochastic differential equations that explains this behavior. Our findings are
confirmed by individual-based simulations.

On a more general level, our main finding is that noise can enable self-organizing
systems to adapt readily to changing environments. While self-limiting positive
feedback loops are a core mechanism for self-organizing group activities, random-
ness is the driving factor that allows such systems to be adaptive. As always, there
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is a price to be paid: higher noise levels result in less efficient decision making in
static environments. Cost and benefit of noise must thus be balanced. One could
come to the bold conjecture that each ant species should have evolved to the opti-
mum noise level for its typical environment. For example, when food patches dif-
fer little in quality, adaptiveness may not be required and less noise in the system
would allow a quick and committed decision, i.e. generally more efficient foraging.
On the other hand, when sources with large quality differences occur, it may be
advantageous to use more noise in the system to be able to compare a new find to
the currently used source. The slightly decreased general efficiency will be more
than compensated for by the ability to adapt.

Our results are not only interesting in the context of natural systems but may
have far reaching implications for applications of swarm intelligence [2]. Ant
Colony Optimization algorithms, for example, are very directly modelled on the
foraging behavior of real ants [3]. For some algorithms the resemblance is so close
that the algorithms’ function can fundamentally be understood as a simulation
of ant foraging in an abstract phase space, and the fundamental model equations
describing the algorithms’ dynamic are virtually identical to those for real ant
colonies. We may thus expect the behavior of these systems to be governed by
the same rules. Similar considerations hold for swarm robots [2], self-organized
routing algorithms [10], and other applications of swarm intelligence. Our results
indicate that noise should be taken into account as a constructive component
when engineering such systems. For example, we may wish to use controlled
injection of noise to trigger adaptation when the environment changes.

Systems of coupled feedback equations comparable to those used in ant forag-
ing models are very common across a large variety of models for self-organized be-
havior and decision making. For example, the development of market trends [20]
or the dispersion of innovations [5] can be modelled in this form. In consequence
it is highly likely that here, too, we will need stochastic models to fully under-
stand the characteristics of these mechanisms in dynamic environments. For one
case we have demonstrated how this can be achieved using stochastic differen-
tial equations and Fokker-Planck equations. We are confident that this class of
models has wide applicability to other self-organizing systems.
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Abstract. In social insect colonies, many tasks are performed by higher-
order entities, such as groups and teams whose task solving capacities
transcend those of the individual participants. In this paper, we investi-
gate the emergence of such higher-order entities using a colony of up to 12
physical robots. We report on an experimental study in which the robots
engage in a range of different activities, including exploration, path for-
mation, recruitment, self-assembly and group transport. Once the robots
start interacting with each other and with their environment, they self-
organise into teams in which distinct roles are performed concurrently.
The system displays a dynamical hierarchy of teamwork, the cooperating
elements of which comprise higher-order entities. The study shows that
teamwork requires neither individual recognition nor inter-individual dif-
ferences, and as such might contribute to the ongoing debate on the role
of such characteristics for the division of labour in social insects.

Keywords: cooperation, division of labour, foraging, group transport,
hierarchy, path formation, self-organisation, swarm robotics, teamwork.

1 Introduction

The field of swarm intelligence draws inspiration from decentralised and self-
organising biological systems in general and from the collective behaviour of
social insects in particular [1,2]. At present, little is known about the mecha-
nisms that regulate such biological systems, and in particular, about how such
mechanisms could enhance the design of swarm intelligence systems. Thus, it
is not surprising that the complexity exhibited in current implementations of
swarm intelligence systems does neither come close to the complexity of bio-
logical systems, nor does it come close to the complexity of systems men built
following the more traditional “top-down” approach.

In this paper, we investigate the conditions under which complexity can
“emerge” in swarm intelligence systems. One way of measuring complexity is
to look at the structural organisation of individuals when performing a task. In
an insect colony, various organisational levels can be observed. Both behaviours
at the individual level as well as at the colony level have been extensively stud-
ied [3]. “However, between these two extremes, numerous functional adaptive

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 426–436, 2008.
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units, or ‘parts’ exist” [4, page 291]. These intermediate-level parts comprise
groups and teams.

Teamwork is widely observed in vertebrates. Here, individual recognition is
believed to be an important factor [5]. Fewer examples of teamwork are known
in invertebrates. Oster and Wilson ([6]; reviewed in [7]) argue that members of
social insect colonies can not form teams as a consequence of their low grade
of discrimination: social insects can discriminate “nest mates from aliens, [and]
members of one caste as opposed to another” [6, page 151], however, “there is
very little evidence that social insects can recognise each other as individuals
(but see Tibbetts [8])” [7, page 6]. In contrast, in the recent literature [3,7,9],
biologists suggest that teams are indeed formed in social insects, and do not
require individual recognition. Another aspect that is subject of the ongoing
debate is whether inter-individual differences (e.g., members of different castes)
are fundamentally required in teamwork [3,10,11].

In the following, we investigate whether tasks that require a complex division
of labour fundamentally require individual recognition or inter-individual differ-
ences. We illustrate the methods and results of a series of experimental works in
which a set of “identical” robots is required to perform a complex, cooperative
task. At the beginning of a trial, the robots are randomly scattered in a bounded
arena that contains two objects—the prey and the (static) nest. The task is to
retrieve the prey to the nest. The following constraints are given:

– the prey requires concurrent, physical handling by multiple robots to be
moved,

– each robot’s perceptual range is small when compared to the distance be-
tween the nest and the prey; moreover, perception is unreliable,

– no robot has any (explicit) knowledge about the environment beyond its
perceptual range,

– communication among robots is unreliable and limited to a small set of
simple signals that are locally broadcast.

In the following we use the terms groups and teams as defined by Anderson
and Franks [11]. In particular, a group is a set of individuals that tackle a group
task; a team is a set of individuals that tackle a team task. A group task is a task
that “requires multiple individuals to perform the same activity concurrently”;
a team task is a task that “requires different subtasks to be performed concur-
rently” (page 535). Furthermore, a partitioned task is “a task that is split into
two or more subtasks that are organised sequentially (Jeanne [12]; reviewed in
Ratnieks and Anderson [13]; Anderson and Ratnieks [14])” [7, page 4]. Anderson
and Franks [7,11], and Anderson and McMillan [15] found that the definition of
teamwork, developed primarily from studies of social insects, also applies more
generally to societies of other animals, including humans, and robots.

Fig. 1 (left) summarises the division of labour present in our robotic colony.
Overall, the robots accomplish a partitioned task comprising three subtasks that
are organised sequentially: (i) path formation requires robots to explore the
environment and form a path in between the nest and the prey that can be
traversed in both directions; (ii) recruitment requires some robots to maintain
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(path visible)
transport

transport
(path invisible)

path following
& grasp

path formation

recruitment retrieval

transport

path decompositionpath maintenance

Fig. 1. Left: illustration of the division of labour in our robotic colony that accomplishes
a group foraging task. The task is a partitioned task (see arcs). Individual tasks, group
tasks and team tasks are framed respectively by dotted, dashed and solid lines. Right:
side view of a colony member, the s-bot robot.

the path, while other robots follow the path from the nest to the prey and then
grasp either the prey directly or other robots already gripped onto it; (iii) re-
trieval requires some robots to decompose the path, while other robots transport
the prey along the path to the nest (until the prey, or a robot transporting it, is
in physical contact with the nest). Path formation itself is a group task, because
only a group of robots can establish a path. Similarly, path maintenance and
path decomposition are group tasks. Recruitment is a team task, because it re-
quires two different sub-tasks to be performed concurrently—path maintenance
and path following & grasp, where the latter is an individual task. Retrieval is a
team task as some robots have to engage in transport, while others, at the same
time, have to reside in the path to guide the transport robots towards the nest.
Transport can be considered a (nested) team task, as (i) multiple robots are
required to transport the prey, and as (ii) the transporting robots, when unable
to perceive the path, need to perform distinct actions to avoid that the group
transport is ineffective.

The remainder of this paper is organised as follows. In Section 2, we detail
the methods, that is, the robot’s hardware, the controller and the experimental
setup. In Section 3 we present the results. Finally, in Section 4, we discuss the
results and conclude the paper.

2 Methods

2.1 Hardware

We use a robotic system called swarm-bot lying at the intersection between col-
lective and reconfigurable robotics [16]. The system is composed of basic robotic
units, called s-bots, which are fully autonomous and mobile, and capable of con-
necting to each other. Fig. 1 (right) shows the physical implementation of the
s-bot. The robot has a total height of 19 cm and weighs approximately 700 g. An
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Fig. 2. State diagram of the finite state machine that controls each s-bot. Circles rep-
resent states (i.e., behaviours). Edge labels specify conditions that trigger transitions
between the corresponding states. The initial state is search chain. Variable Pjoin

(and Pleave) is True with probability Pjoin (Pleave), and False otherwise.

s-bot can connect with another by grasping the connection ring with its gripper,
and it can receive connections on more than two thirds of its perimeter. The chas-
sis can be rotated in any horizontal direction. This allows s-bots, once assembled
into a physical entity, to move in a common direction. A 2-D traction sensor,
mounted between the s-bot ’s turret and the chassis, measures the mismatch be-
tween the direction in which the chassis is trying to move and the direction in
which the connected group is trying to move. For the purpose of communica-
tion, the s-bot is equipped with an omni-directional camera, four microphones,
eight RGB LEDs, and two loudspeakers. For a comprehensive description of the
s-bot ’s hardware, see [16].

2.2 Controller

The controller consists of a collection of basic behaviours that are implemented
using either the motor schema paradigm, neural networks, or simple hand written
commands. A comprehensive description of the individual behaviours is available
in [17,18,19,20]. Following the behaviour-based approach [21] we could comfort-
ably merge all basic behaviours into a common framework, which is illustrated
by a state diagram in Fig. 2.

Fig. 3 shows a sequence of images taken from the experiment. The s-bots are
initially located at random positions. If an s-bot does neither perceive a (visu-
ally connected) chain of s-bots nor the nest, it performs a random walk (state
search chain). An s-bot that finds a chain or the nest follows the perimeter of
the encountered structure (state explore chain). The nest can be considered
as the root of all chains. When the s-bot reaches the tail of a chain, it will join
the chain with probability Pjoin per time step (state join chain). S-bots that
are part of a chain do not leave it unless they are situated at the chain’s tail,
in which case they leave it with probability Pleave per time step. The process of
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Fig. 3. Sequence of images taken for the trial with group size N = 12 s-bots and
distance D = 240 cm between the nest (blue cylindrical object) and the prey (red
cylindrical object). This trial last 15 minutes. For a detailed description, see Section 3.

probabilistically joining/leaving a chain is at the basis of the exploration of the
environment as it allows the formation of new chains in unexplored areas.

If a chain member perceives the prey it does not leave the chain; thereby
the chain becomes stable. If the prey is still far, other s-bots can still join to
extend the chain in the direction of the prey; otherwise a path connecting the
nest to the prey has been formed that can be traversed in both directions. Once
a path is formed, it is maintained and in this way automatically recruits other
s-bots to assemble to the prey (state assemble). S-bots that do not succeed self-
assembling within a hard-coded time period, move back to the nest to rest for
a while (state recovery). Once a sufficient number of s-bots has assembled to
the prey, the transport effectively starts; the s-bots pull the prey towards the
tail of the chain (state transport target). In the event that some s-bots can
not perceive the path, they use their force sensors to estimate the direction of
transport (state transport blind). When the prey reaches the tail of the chain,
the corresponding s-bot leaves the chain and moves back to the nest to rest for a
while (state recovery). In this way the transporting s-bots are guided from node
to node of the dissolving chain to eventually reach the nest. An s-bot leaving the
chain to rest at the nest emits a sound signal for a period of 30 s. Transporting
s-bots respond to this signal by temporarily suspending the transport. This gives
the chain s-bot sufficient time to move away.

2.3 Experimental Setup

The experiments take place in a bounded arena of size 500 cm × 300 cm. The
nest is positioned in the centre of the arena. The prey is put at distance D away
from the nest towards one of the four corners. N s-bots are positioned on a grid
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Table 1. Left: number of s-bots required to accomplish sub-tasks path formation (Np),
recruitment (Nr) and retrieval (Nt) for different initial distances (D in cm) between the
nest and the prey. Right: overall level of success achieved for setups (N , D): no success
(0), sub-task path formation accomplished (1), sub-task recruitment accomplished (2),
and sub-task retrieval accomplished (3). Entries in parentheses denote setups that were
not tested as the number of s-bots N is clearly not sufficient to solve the task. Grey
levels of cells represent the best achievable level of success: white denotes no success,
light grey denotes success level 1, and dark grey denotes success level 3.

D 60 90 120 150 180 210 240
Np 1 2 3 4 6 7 8
Nr 3 4 5 6 8 9 10
Nt 3 4 5 6 8 9 10

D / N 1 2 3 4 5 6 7 8 10 12
60 1 1 3 3 3 3 3 3 3 3
90 0 1 1 3 3 3 3 3 3 3
120 0 0 1 1 3 3 2 3 3 2
150 0 0 0 1 1 1 3 2 3 3
180 (0) (0) 0 0 1 1 1 3 3 3
210 (0) (0) (0) 0 0 1 1 0 2 2
240 (0) (0) (0) (0) (0) 0 0 0 3 3

composed of 60 points uniformly distributed in the arena. The initial position of
each s-bot is assigned randomly by uniformly sampling without replacement. An
s-bot ’s initial orientation is chosen randomly from a set of 12 possible directions.

We study a wide range of experimental setups, with group sizes N = 1, 2, 3,
4, 5, 6, 7, 8, 10 and 12, and distances (in cm) D = 60, 90, 120, 150, 180, 210 and
240. For each of these 70 setups we conduct a single trial.

The number of s-bots required to form a path connecting the prey with the
nest depends on the initial distance between the two objects. To calculate lower
bounds for the number of s-bots, we assume the s-bots to be organised in a single
chain that is perfectly linear and directed towards the prey. Then, the lower
bound values are computed based on the programmed (and measured) distances
between adjacent s-bots (27 cm) and between the first chain member and the
nest (30.5 cm), as well as the programmed (and measured) maximum distance
of the last chain member from the prey (38.5 cm). For the accomplishment of
the overall task, two additional s-bots are required (at the same time) to engage
in transport. The lower bound values so computed are shown in Table 1 (left).

3 Results

Table 1 (right) gives an overview of the results. In 46 out of the 70 setups sub-
task path formation can in principle be accomplished (see light grey cells). In
44 out of the corresponding 46 trials the s-bots succeeded in forming a path.
For setups (N, D) = (5, 180) and (6, 210) a path was formed even though the
number of s-bots was thought to be insufficient. A path of five (six) s-bots has
a maximum predicted length of 177 cm (204 cm), which is 3 cm (6 cm) less than
the distance that needs to be covered, and therefore still within the range of
perceptual error of the s-bots’ cameras. In 33 out of the 46 setups, also sub-tasks
recruitment and retrieval can in principle be accomplished (see dark grey cells
in Table 1 (right)). In 27 out of these 33 setups, the s-bot group was able to do
so, thereby the entire task was completed.
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Fig. 4. State dynamics observed in trials for two setups (N, D). The respective grey lev-
els indicate the number of s-bots in states search chain, explore chain and recovery,
join chain, assemble, transport target and transport blind.

Fig. 4 shows the state dynamics for two trials that are discussed below.

– (N, D) = (12, 150): all s-bots start in state search chain. Once the nest
has been found, they aggregate into chains. At t ≈ 80 s, a path to the prey
consisting of five chain members is established. Even though a path to the
prey is formed, other s-bots that find the nest self-organise into an additional
chain. The formation of the path is not explicitly communicated among the
s-bots of the group. However, as the s-bots in the newly formed chain leave
this chain with a constant positive probability, after some time only the
chain forming the path remains. At time t ≈ 130 s a first s-bot is recruited
and grasps the prey, joined by a second s-bot about 15 s later. While the
prey is transported towards the nest, the chain gradually dissolves. During
the transport, additional s-bots try to assemble with the pulling structure.
Two of them succeed, whereas others fail because the pulling structure is in
motion. By looking at the state diagram in Fig. 4 (left), one can see that
some of the s-bots engaged in transport are not capable of perceiving the
path (see white area). Thus, we have an example where the s-bots exhibit
a hierarchy of teamwork: the group of s-bots that cannot perceive the path
needs to interact with the group of s-bots that can perceive the path; thereby
these groups form a team. This team, which is composed of all transport s-
bots, can be considered a higher-order entity. It forms part of another team
which includes another higher-order entity—the group of s-bots maintain-
ing or decomposing the path. This nested structure is illustrated in Fig. 1
(left).

– (N, D) = (7, 150): at time t ≈ 30 s a path between nest and prey is al-
ready established. At time t ≈ 100 s, two s-bots have been recruited and
are assembled with the prey. The five remaining s-bots are aggregated in
the chain forming the path. During the transport, chain members disaggre-
gate once in the immediate vicinity of the prey, and follow the path back
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Fig. 5. Left: number of distinct behavioural roles an s-bot performed during a trial.
Data from all s-bots and all trials. Right: number of times an s-bot changed its be-
havioural role during a trial. Data from all s-bots and all trials.

to the nest to rest. After some time, the very same s-bots resume activ-
ity, follow the path, and eventually two of them assemble with the pulling
structure and participate in transport. This is an example of how the com-
position of teams can adapt to changes in the workload of the underlying
sub-tasks.

Fig. 3a–f show a sequence of images taken during the trial with group size
N = 12 and distance D = 240 (in cm). During the path formation phase, two
chains are formed concurrently (b), and it takes several rearrangements of the
chains until a path is formed. This path consists of a chain of eight s-bots (c).
Shortly thereafter, two s-bots get recruited and assemble with the prey (d).
During retrieval, most of the s-bots of the pulling structure loose sight of the
path, which is gradually dissolving, and the prey is moved in the wrong direction
(e). However, the path gets re-established by a new s-bot extending the chain
in the direction to the prey. As a consequence, the transport resumes and can
be completed (f). This is an example of a situation in which teamwork among
higher-order entities (such as teams or groups) requires a participating entity to
adapt its configuration to unexpected environmental circumstances.

Fig. 5 (left) shows the number of distinct behavioural roles (i.e., states) in-
dividual s-bots performed during the experiment. In 75% of the cases, an s-bot
performed either four or five of the seven roles. This suggests that the s-bots are
indeed inter-changeable. Only in 4% of the cases, an s-bot performed less than
four behaviours during the trial. In 15.7% of the cases, an s-bot performed all
seven behaviours.

Fig. 5 (right) shows the number of times an s-bot changed its behavioural role
during the trials of our experiments. The most frequently observed number of
changes in behaviour belongs to the six to ten changes range. Note, however,
that both mean and median number of changes are higher than this range of
values (20.9 and 14.5, respectively).
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4 Discussion

In this paper, we have presented an experimental study in which a colony of
autonomous robots has to solve a complex foraging task. The task requires a
range of sub-tasks to be performed including (i) exploration of the environ-
ment, (ii) formation of a path between a prey and a nest, (iii) recruitment of
nest mates to the prey, (iv) self-assembly into pulling structures, and (v) group
transport of the prey back to the nest. Due to the limited abilities of the robots,
the accomplishment of the task requires the concurrent activity of at least i
robots (i ∈ {3, 4, 5, 6, 8, 9, 10}), where i depends on the experimental setting.
Moreover, the accomplishment of the task requires division of labour, in other
words, the robots need to perform different sub-tasks concurrently. Such con-
straints are typically not considered in other studies of group foraging systems
(e.g., [22,23,24,25,26,20]), which often make use of some form of global percep-
tion or communication, and which often do not require a complex division of
labour. In general, we believe that the investigated problem provides a frame-
work that captures the essence of a variety of problems that are addressed at
the collective level in social insect colonies.

Inspired by the behaviour of the natural counterparts, we developed a rela-
tively simple, decentralised control algorithm. Although most of our primitive
behaviours as well as the overall framework, a finite state machine, were man-
ually designed, we believe that similar types of rules can result from natural or
artificial evolutionary processes. In this respect, such systems could be adaptive
to changes in the environment.

A series of experimental results from systematic trials with up to twelve phys-
ical robots confirm the efficacy of the system. In almost all of the trials where
the group size is sufficient to accomplish the overall task, the group succeeded
in retrieving the prey to the nest. Video recordings from the experiments are
available at http://iridia.ulb.ac.be/supp/IridiaSupp2008-008.

The colony displayed a self-organised and dynamically changing hierarchy
of teamwork in which collaboration took also place among high-order entities
including groups and teams. The higher-order entities (including the entire sys-
tem) proved surprisingly robust with respect to the inaccurate and sometimes
malfunctioning behaviour of their component modules—parts of a robot such
as the tracks, entire robots, and even groups of robots broke down or exhibited
unexpected behaviour.

We believe that these experiments are among the most sophisticated examples
of self-organisation in robotics to date. The study confirms in a new way that
complex forms of division of labour can indeed result from the interactions of
individuals that follow relatively simple and local rules. The study also demon-
strates that teamwork requires neither individual recognition (the robots we use
are inter-changeable) nor inter-individual differences (the robots we use are ho-
mogeneous in terms of “morphology” and “brain”), and as such might contribute
to the ongoing debate on the role of such characteristics for the division of labour
in social insects.

http://iridia.ulb.ac.be/supp/IridiaSupp2008-008


Division of Labour in Self-organised Groups 435

Acknowledgement

This work was supported by the Sixth Framework Programme of the Euro-
pean Community in the form of the IST FET project “SWARM-BOTS” (grant
no. IST-2000-31010) and of a Marie Curie Intra-European Fellowship (contract
no. MEIF-CT-2006-040312), and by the Scientific Research Directorate of the
French Community of Belgium in the form of the “ANTS” project, an “Action de
Recherche Concertée”. It reflects only the authors’ views. The European Com-
munity is not liable for any use that may be made of the information. Marco
Dorigo acknowledges support from the Belgian F.R.S.–FNRS, of which he is a
research director. The authors thank Nigel R. Franks for stimulating discussions
that helped in the preparation of the manuscript.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford Univ. Press, New York (1999)

2. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelli-
gence. Swarm Intelligence 1, 3–31 (2007)

3. Hölldobler, B., Wilson, E.O.: The Ants. Harvard Univ. Press, Cambridge (1990)
4. Anderson, C., McShea, D.W.: Intermediate-level parts in insect societies: Adaptive

structures that ants build away from the nest. Insectes Soc. 48, 291–301 (2001)
5. Wilson, E.O.: Sociobiology. Harvard Univ. Press, Cambridge (1975)
6. Oster, G.F., Wilson, E.O.: Caste and ecology in the social insects. Princeton Univ.

Press, Princeton (1978)
7. Anderson, C., Franks, N.R.: Teamwork in ants, robots and humans. Adv. Stud.

Behav. 33, 1–48 (2004)
8. Tibbetts, E.A.: Visual signals of individual identity in the wasp Polistes fuscatus.

Proc. R. Soc. Lond. B 269, 1423–1428 (2002)
9. Franks, N.R.: Teams in social insects: Group retrieval of prey by army ants (Eciton

burchelli, Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18, 425–429 (1986)
10. Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annu. Rev.

Entomol. 46, 413–440 (2001)
11. Anderson, C., Franks, N.R.: Teams in animal societies. Behav. Ecol. 12, 534–540

(2001)
12. Jeanne, R.L.: The evolution of the organization of work in social insects. Monit.

Zool. Ital. 20, 119–133 (1986)
13. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes

Soc. 46, 95–108 (1999)
14. Anderson, C., Ratnieks, F.L.W.: Task partitioning in insect societies: Novel situa-

tions. Insectes Soc. 47, 198–199 (2000)
15. Anderson, C., McMillan, E.: Of ants and men: Self-organized teams in human and

insect organizations. Emergence 5, 29–41 (2003)
16. Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.-L.,

Dorigo, M.: The cooperation of swarm-bots: Physical interactions in collective
robotics. IEEE Robot. Autom. Mag. 12, 21–28 (2005)

17. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Trans. Robot. 22, 1115–1130 (2006)



436 R. Groß et al.

18. Groß, R., Mondada, F., Dorigo, M.: Transport of an object by six pre-attached
robots interacting via physical links. In: Proc. 2006 IEEE Int. Conf. Robot. Autom.,
pp. 1317–1323. IEEE Comp. Soc. Press, Los Alamitos (2006)

19. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-
organized strategies to find your way home. Swarm Intelligence 2 (2008)

20. Tuci, E., Groß, R., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Cooperation
through self-assembling in multi-robot systems. ACM Trans. on Autonomous and
Adaptive Systems 1, 115–150 (2006)

21. Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
22. Kube, C.R., Zhang, H.: Collective robotics: From social insects to robots. Adapt.

Behav. 2, 189–218 (1993)
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Abstract. We study social control of a cow herd in which some of the animals
are controlled by a sensing and actuation device mounted on the cow. The control
is social in that it aims at exploiting the existing gregarious behavior of the ani-
mals, rather than controlling each individual directly. As a case study we consider
the open-loop control of the herd’s position using location-dependent stimuli. We
propose a hybrid dynamical model for capturing the dynamics of the animals
during periods of grazing and periods of stress. We assume that stress can either
be induced by the sensing and actuation device or by social amplification due to
observing/overhearing nearby stressed congeners. The dynamics of the grazing
part of the proposed model have been calibrated using experimental data from 10
free-ranging cows, and various assumptions on the animal behavior under stress
are investigated by a parameter sweep on the hybrid model. Results show that
the gregarious behavior of the animals must be increased during stress for control
by undirected stimuli to be successful. We also show that the presence of social
amplification of stress allows for robust, low-stress control by controlling only a
fraction of the herd.

1 Introduction

We wish to study the potential of low-stress managing a cow herd by exploiting the
cows’s innate gregarious behavior using a small number of controlled animals. The
idea of controlling herd animals using robotic agents [1] or by devices mounted on
the animals (“smart collars”) [2, 3, 4, 5] bears great potential for revolutionizing animal
husbandry. Cows seem to be particularly well suited for this endeavor as keeping them
in their natural environment is labor intensive and costly.

Recently, the idea of controlling groups of animals by integrating artificially con-
trolled agents into the animal society and leveraging the natural effects of gregarious
behavior has been brought forward in [6]. In [6], cockroaches were presented with
a dark and a bright shelter in a circular arena, and usually aggregate under the dark
shelter, which they prefer. Miniature robots [7] were then impregnated with cockroach
pheromones and integrated into the cockroach swarm. Unlike the cockroaches, the
robots were programmed with a preference for the bright shelter. As shelter selec-
tion was shown to be a social decision, the robots could thus bias the choice of the
cockroaches.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 437–446, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



438 N. Correll, M. Schwager, and D. Rus

Similarly for husbandry, we wish to identify social behavior in farm animals that can
be exploited by integration of a small number of controlled animals into the herd, in-
stead of controlling each individual separately. In this paper, we approach this goal for
a cow herd by using a hybrid model of the herd dynamics. The model has been devel-
oped based on physical principles and calibrated using a system identification process
based on data collected from 10 cows on the United States Department of Agriculture,
Agricultural Research Services (USDA-ARS) experimental ranch in Las Cruces, New
Mexico, USA [8].

We hypothesize that two social effects will enable the control of the herd. The first
social effect is that when an animal is stressed, its gregarious tendencies are increased,
thus drawing it to the center of the herd. The second social effect (which is backed-
up by observations in [9]) is that a stressed animal may pass on its stressed state to
its neighbors. Stress induced by a device mounted on the animal, e.g. due to an aural
stimulus, does not only alter the behavior of the animal itself, but also affects nearby
animals, which see or hear a stressed congener. This mechanism bears the potential for
amplifying the effect of external stimuli provided to only a few cows. In this paper we
extend the model from [8] to include these two social effects. The increased agreggation
tendency of stressed animals is parameterized by a constant factor, and the propagation
of stress from one animal to another is modeled by a radius of detection and a time
constant allowing for temporal stress decay. The resulting dynamical model is a hybrid
system with two modes: stressed and grazing.

Using extensive simulations of the hybrid dynamical model, we study the potential
for social herding by employing a mobile virtual fence [9], which induces stress in those
animals that are outside the fenced area and wear sensing and actuation devices. The
mechanism that we rely on to control the herd is quite different from those described
in previous virtual fencing studies, however. We do not give the animal any directional
information from the cue itself. That is to say, when an animal is cued in our model, it
does not know where it is “supposed” to go. It simply reacts in a stressed manner, which
causes it to draw closer to the center of the herd while propagating its stressed state to its
neighbors. In contrast, previous approaches have used graduated cuing intensity or stereo
cuing to give directional information to animals [4]. Directional cuing may be useful,
especially for animals that have been trained to interpret the directional cues. However,
it has been noted in human subjects that it is difficult to detect meaningful directional
information from such directional cuing [9]. The results of our simulation study imply
that a herd can still be managed effectively with a control system that gives no directional
information by leveraging the animals’ natural gregarious instincts. Our results show both
the potential and the conditions for social control of a cow herd. Furthermore, we provide
an agenda for further field experiments, which are required to identify the parameters of
the extended model proposed in this paper and validate our approach.

2 Data-Collection Experiments

Cows were equipped with a small light-weight box for data collection during field ex-
periments [8], see Figure 1. The box contains electronics for recording the GPS location
of the animal as well as other sensor data (e.g. position of the head, body orientation)
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Fig. 1. The sensing and actuation box [8] is roughly 21.5cm×12.0cm×5.5cm and weighs around
1kg. It is equipped with a GPS receiver, wireless networking features, and a suit of sensing and
actuation capabilities. The Lithium-Ion batteries and solar panel allow for indefinite operation
under normal conditions. The sensor box is mounted to the head of a cow with a leather strap
designed to use the cow’s ears to keep the box in position. Pictures courtesy of I. Vasilescu.

and environmental data (e.g. temperature). The box also contains electronics for net-
working the herd. The sensing box was used for collecting trajectory data from 10
free-ranging mature cows (Hereford and Hereford× Brangus genetics) in a 466ha area
on the USDA-ARS’s Jornada Experimental Range (JER). This site has an undulating
topography of predominantly sandy soil, populated with grasses and shrubs. Trajectory
data were collected over 3 days at a rate of 1Hz. Parts from these data were then used
for calibrating the parameters for the model used in this paper. The calibration pro-
cess as well as the animal experiments are described in more detail in [8]. For future
experiments, the box provides a two-tier animal control system consisting of a set of
speakers for applying arbitrary, differential sound stimuli and a set of electrodes that
enable the application of differential electric shock. The animal control system was not
used during the collection of the data used in this paper.

3 Model

In [8] we developed a linear-in-parameter model that provides good qualitative and
quantitative agreement with various individual and collective metrics when used for
simulating grazing cows. In this paper, we introduce a hybrid model, whose single dis-
crete state variable corresponds to the behavioral modes grazing and stressed. The dy-
namics in each behavioral mode only differ by an increased motivation to aggregate and
increased speed of the animal. The dynamics in both grazing and stressed behavioral
modes are governed by two naturally distinct mechanisms. First, each agent is given
internal dynamics to enforce the constrains of Newton’s laws. Second, a force is ap-
plied to each agent from its interaction with each of the other agents in the group. All
remaining effects are modeled as a white noise process.



440 N. Correll, M. Schwager, and D. Rus

p(ξτ+1
i = G ξτ

i = S)

p(ξτ+1
i = S ξτ

i = G)

SG

Separation Distance (m)

Fo
rc

e
M

ag
ni

tu
de

(N
)

0 5 10
-0.2

0

0.2

Fig. 2. Left: Probabilistic Finite State Machine modeling an agent’s behavioral mode and its tran-
sitions. Each behavioral mode has its own linear-in-parameter dynamics. Right: The magnitude of
the agent-to-agent interaction force for θ1 = .0225, θ2 = .0732 and α = 1, which corresponds
to the average value measured between 10 cows.

3.1 Individual Agent Dynamics

Given a group of m agents, every individual is modeled by a hybrid model consisting
of a continuous dynamical part, describing position and velocity of an individual, and
a discrete part modeling the individual’s behavioral mode. This model is illustrated by
the Finite State Machine depicted in Figure 2, left.

We distinguish between two different behavioral modes, which determine the dy-
namics of the agent. Agent i’s behavioral mode at any time τ is given by ξτ

i ∈ {G,S},
which corresponds to grazing (ξτ

i = G) or stressed behavior (ξτ
i = S). We define the

behavior mode transition rules as

p(ξτ+1
i = S|ξτ

i = G) =

{
1 ifN τ

S,i(R) > N τ
G,i(R) ∨ uτ

i = 1,
0 otherwise

(1)

where N τ
S,i(R) and N τ

G,i(R) are the number of agents in behavioral mode ξτ
i = S or

ξτ
i = G, respectively, within a radius of R around agent i. Also, uτ

i ∈ {0, 1} is the
binary control input to the cow, so that uτ

i = 0 corresponds to no control stimuli at time
τ , while uτ

i = 1 when the animal is receiving a stimuli at time τ . Similarly, we define

p(ξτ+1
i = G|ξτ

i = S) =
1
T

(2)

where T is a time constant modeling stress decay.
The dynamics of agent i ∈ {1, . . . ,m} can be written in state-space, difference

equation form as
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The state of agent i is given by the vector xτ
i , consisting of its East position, North

position, Eastern component of velocity, Northern component of velocity. An agent’s
position is thus given by, pτ

i = [eτ
i nτ

i ]T . The time step Δt is given by tτ+1 − tτ , and
we assume it is constant for all τ . The term ai represents damping, ai = 1 for zero
damping, and |ai| < 1 for stable systems. The function fij(pτ

i , p
τ
j , ξ

τ
i ) determines the

coupling force applied by agent j to agent i as a function of the agent’s behavioral mode
ξτ
i . Finally,wτ

i (ξτ
i ) is one of two zero-mean, stationary, Gaussian white noise processes

used to model the unpredictable decision-motive processes of agent i. Which of the two
processes that is applied to the model at a given time is determined by the behavioral
mode, ξτ

i . The two white noise signals are distinguished by different covariance ma-
trices, and each is uncorrelated with pj ∀j. Nonholonomic constraints of the cows are
neglected in this treatment, though they could be incorporated with an increase in the
complexity of the model structure. Note that the force terms are only applied to affect
changes in velocity in accordance with Newton’s second law.

3.2 Agent-to-Agent Interaction Force

Dropping the τ superscripts for clarity, the form of the agent coupling force fij(pi, pj , ξi)
is given by

fij(pi, pj, ξi) =
(
α(ξi)θ1 − θ2

‖pj − pi‖
)
nij , (4)

where nij = (pj − pi)/‖pj − pi‖ is the unit vector along the line from pi to pj (hence-
forth, ‖ · ‖ will denote the �2 norm).

The parameter α(ξi) is used to model the animal’s tendency to aggregate as a func-
tion of its behavioral mode. During grazing α(ξi = G) = 1, which corresponds to
nominal behavior. When the animal is stressed, α(ξi = S) > 1, corresponds to an
increased attraction to neighbors. In this work we investigate, among other things, the
effects of different values of α(ξi = S). Whereas in [8] we calibrated parameters θ1
and θ2 specific to each cow pair, we use values for θ1 and θ2 averaged over all cow pairs
in this paper, which allows us to extrapolate the models to larger herds. For illustration,
(4) given by ‖fij‖ = α(ξi)θ1 − θ2/‖pj − pi‖ is shown in the right of Figure 2.

4 Experimental Setup

We are interested in the impact of the number of controlled animals on the performance
of an open-loop control algorithm that moves the herd from an initial position to a
defined final goal position by using the concept of a virtual fence [5,9]. In all our exper-
iments, the fence is modeled by a circular disc of 25m diameter. The fence coordinates
and their time evolution are assumed to be known to the sensor box. If the cow leaves
the fenced area and is wearing an actuation device, it will be given a stimulus.

At its initial position the center is at (0m,−50m). The center of the fence then
moves with speed vf = 20m

h northwards. After 5h simulated time the experiment is
stopped. We then measure the average number of individuals within the fence over the
whole experiment as well as the final number of individuals within the fence at time 5h.
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Table 1. Parameters used for simulating the system defined by Equations 3 and 4

Δt = 1s ai = .9294 wi(ξi = G) =

�
1.22e − 2 −9e − 4
−9e − 4 1.46e − 2
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θ1 = .0225 θ2 = .0732 wi(ξi = S) =

�
2.44e − 2 −18e − 4
−18e − 4 2.92e − 2

�

-100 -50 0 50 100-100

-50

0

50

100

-100 -50 0 50 100-100

-50

0

50

100

-100 -50 0 50 100-100

-50

0

50

100

Fig. 3. Left: Random initial deployment of 30 cows and virtual fence configuration. Middle: Ex-
ample of a final configuration after successful control (all animals are controlled). The herd os-
cillates around the center of the fenced area; red dots (cows outside the fence) denote cows being
stressed. Right: Example of unsuccessful control (no animals were controlled). The herd does a
random walk around the center of its initial deployment area.

Figure 3 illustrates the experimental setup, showing a random initial distribution (left), a
successful final configuration (middle), and an unsuccessful final configuration (right).
All simulations have been conducted with 30 cows. The covariance of the driving noise,
wτ

i , during stress was set to be twice as high as during grazing, which roughly corre-
sponds to observations from [9]. The time constant for stress decay has been set to
T = 30s. All parameter values being used are summarized in Table 1.

Simulations are performed using the MATLAB Distributed Computing Toolbox on
the CSAIL computational cluster. The ratio between simulated and computational time
is roughly 15 on a modern 64bit workstation.

5 Results

As we are unaware of the effective amplification of the aggregation force α as well as
the existence and specific values of the radius within which cows are socially affected by
the behavioral mode of neighboring cows, we perform a parameter sweep over α(ξi =
S) = {1, 2, 4} and R = {0, 5, 10} for 1–10, 15, 20, 25 and 30 controlled cows.

Figure 4, left, shows the average number of individuals within the fence over the
whole experiment for α = 2, i.e. the attraction force between cows is twice as high
during stress when compared with grazing, and different values ofR for 50 simulations
per data point (2250 simulations in total). Figure 4, right, shows the ratio of experiments
where more than 15 cows where within the fence after 5h. These results confirm that
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Fig. 4. Left: Average number of individuals within the fenced area during 5h of simulated time
for R = 0, 5, 10 (– .,– –,— / blue, green, red) with α(ξi = S) = 2 vs. the number of controlled
individuals. Without assuming propagation of stress (R = 0) we observe a significant increase in
performance for 10 controlled individuals. Right: Ratio of successful to unsuccessful simulation
runs (success is defined as > 50% of the animals within the fence at the final fence location). 50
experiments per data-point, error bars are standard deviation.

manipulating 10 of 30 cows is sufficient for moving to a desired location using a virtual
fence, assuming that the aggregation forces are twice as large during stress as during
aggregation and that social amplification exists for a radius of R = 5m. For R = 10m,
however, the controller performance decreases. This can be explained by the fact that,
for a large radius, the whole herd tends to be in the same mode, inhibiting the controlling
action of the virtual fence. For example, if most animals are unstressed, a large number
of unstressed neighbors are always within the radius of any given cow, thereby out-
numbering the stressed neighbors and inhibiting the propagation of stress. Conversely,
if there is a large number of stressed animals, it is likely that the whole herd becomes
stressed and the virtual fence is rendered ineffective as crossing the fenceline will make
no difference as the animals are already stressed. We refer to this effect as a “stampede”
since it bears an obvious resemblance to that phenomenon in natural herds.

We were then interested in testing the influence of the presumed increase in gregari-
ous behavior for stressed animals. We tested two extreme cases: α(ξi = S) = 1, so that
stressed animals experience no greater attraction to their neighbors than grazing ani-
mals, and α(ξi = S) = 4, so that stressed animals experience four times the attraction
to their neighbors. Results for various values of R are shown in Fig.5 for both of these
cases. We clearly see that α(ξi = S) > 1 is a necessary condition for social herding,
and is independent of the number of artificially modified individuals, as well as poten-
tial social amplification. We also observe that social amplification seems to become less
important for high values of α(ξi = S).

We are also interested in the impact of the time constant of stress T and the size of
the driving noise covariance matrix. We therefore ran simulations for α(ξi = S) = 2
and R = 5 for T = {1s, 30s, 60s} and multiplied the covariance matrix of the noise
applied to the agents by 1, 2 or 4. Results for various T are shown in Fig. 6, left. We
observe that stress indeed needs to be maintained for some time after the stimulus as
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Fig. 5. Average number of individuals within the fenced area for the same experimental conditions
as in Figure 4 but with α(ξi = S) = 1 and α(ξi = S) = 4 (left and right plot). For α(ξi =
S) = 1, herd control fails (left). 50 experiments per data-point, error bars are standard deviation.
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Fig. 6. Left: Average number of individuals within the fenced area for the same experimental
conditions as in Figure 4, but for T = {1, 30, 60} (– .,– –,— / blue, green, red). Right: Percentage
of individuals within fence vs. percentage of controlled individuals for team sizes of 10, 30, and
100 animals (—,– –,-. / red, green, blue). 10 simulations per data point.

T = 1 yields poor performance. Although we did not explicitly test larger values than
60s for T , we conjecture that high values of T will eventually lead to all animals being
in the stressed mode, which will cause the fence to be ineffectual. With respect to the
driving noise covariance, we do not observe any significant difference in performance
for the values that we tried.

Finally, we are interested how social control scales and experimented with the ratio of
manipulated animals in team sizes of 10, 30 and 100 animals (Figure 6, right). Results
show that modifying only a part of the herd becomes increasinlgy efficient for larger
herds, and that controlling as little as 20% of the animals might be sufficient for the
fence geometry and speed being chosen. Whereas performance for 30 and 100 animals
is similar, control of herds with only 10 animals seems to be generally more difficult.
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6 Discussion

Our results show the potential for social control of a cow herd given that a) the gre-
garious behavior increases under stress, and b) stress propagates through the herd by
mutual observation. While further field experiments will allow us to better understand
the differences in the proposed behavioral modes, we argue that the gregarious behav-
ior might be stimulated to the necessary extent by providing directional impulses to the
cows, e.g. using the sound system available on our sensor box. In this case, results from
Fig. 5 suggest that high levels of gregarious behavior, be it innate to the species or arti-
ficially stimulated, can achieve the same level of performance (in terms of the number
of modified individuals required) as a system with weak gregarious behavior but social
amplification of stress.

In this paper, our model assumes that attraction and repulsion forces are the same
for every neighbor. Results from [8] and observations on feral cattle [10] suggest, how-
ever, the existence of social preferences among the cows. Depending on the strength
of such preferences, modifying a specific subset of the herd might increase controller
performance. While kinship is usually well known in a domestic herd, further studies
might reveal a relation between phenomenological properties and social leadership. It
would then seem beneficial to apply stimuli to known social leaders. In [9] also spatio-
temporal preferences within the herd (e.g. shadow seeking behavior or specific habits)
are observed. Although such preferences might jeopardize an open-loop control ap-
proach, they might also be exploited for more effective control by planning trajectories,
which are easily followed by the herd.

7 Conclusion

We extended the dynamical model for a cow herd presented in [8] by a hybrid struc-
ture, which differentiates between a grazing and a stressed behavioral mode. Using this
model, we show that open-loop control of the cow herd using virtual fences is possi-
ble if the gregarious behavior is sufficiently stronger during stress than during grazing.
Control of the herd exploits the natural gregarious behavior of the animal and does not
require any learning of stimulus/action patterns. Moreover, we showed that when stress
is propagated to neighbors (social amplification), robust control can be achieved by
endowing only a fraction of animals with sensing and actuation.

Although we did not calibrate parameters for the animal behavior during stress, sys-
tematic simulations of our model suggest that driving noise covariance and stress decay-
time are of little importance for the performance of social control, whereas an increase
in gregarious behavior and stress propagation within the herd seem to be of utmost
importance. In the future, we plan to artificially induce stress using aural signals of
varying strength. We would then like to quantitatively validate the existence of distinct
behavioral modes (grazing and stressed) and quantify its parameters. Specifically, we
are interested in the increase in gregarious behavior and the mechanisms of social am-
plification. Given such an enhanced model for this particular species, we would then
like to generalize the methodology to other gregarious animals and develop closed-loop
control schemes for robust, low-stress control of farm animals.
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Aggregating Robots Compute:

An Adaptive Heuristic
for the Euclidean Steiner Tree Problem

Heiko Hamann and Heinz Wörn

Institute for Process Control and Robotics,
Universität Karlsruhe (TH), 76131 Karlsruhe, Germany

Abstract. It is becoming state-of-the-art to form large-scale multi-agent
systems or artificial swarms showing adaptive behavior by constructing
high numbers of cooperating, embodied, mobile agents (robots). For the
sake of space- and cost-efficiency such robots are typically miniaturized
and equipped with only few sensors and actuators resulting in rather sim-
ple devices. In order to overcome these constraints, bio-inspired concepts
of self-organization and emergent properties are applied. Thus, accuracy
is usually not a trait of such systems, but robustness and fault tolerance
are. It turns out that they are applicable to even hard problems and reli-
ably deliver approximated solutions. Based on these principles we present
a heuristic for the Euclidean Steiner tree problem which is NP-hard. Ba-
sically, it is the problem of connecting objects in a plane efficiently. The
proposed system is investigated from two different viewpoints: computa-
tionally and behaviorally. While the performance is, as expected, clearly
suboptimal but still reasonably well, the system is adaptive and robust.

1 Introduction

With the increase of interdisciplinary research new concepts were developed in
the last decades. For example, swarm intelligence [2] applied to computational
problems leads to powerful meta-heuristics [4] and applied to robotics it results in
large-scale distributed robotic systems [16]. In this paper we try to pursue these
approaches and to combine swarm intelligence with robotics and heuristics.

The scientific approach to computation was significantly governed by the com-
putational devices used in the past. Thus, it began with sequential devices, later
parallel machines with shared memory were studied, and even later the focus
was on distributed but fully connected systems. All these approaches have de-
terminism and explicit communication in common.

A new philosophy is introduced by applying concepts of swarm intelligence,
e.g. simple local rules, indirect communication (stigmergy), and cooperation [2].
We can consider swarm intelligence as the final step of the process of getting
away from centralized and deterministic systems towards fully distributed and
probabilistic systems. Swarm intelligence was applied to computational problems
by using software agents. We provide our computational devices with actuators
making them mobile. Hence, they become real, embodied agents in the form of
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robots. The idea of using a group of autonomous agents as processing elements,
that are embedded in the environment, that sense and compute based only on
local information was published by Payton et al. [14] and propagated as ’world-
embedded computation’. This is related to an old question, whether an ant
colony’s struggle of survival might be viewed as computation or not [9]. Thus,
we note that problem solving by adaptive and cooperative behaviors might be
considered computation.

Combining the local and randomized approach of swarm intelligence with an
emphasis on positional information, results in an interesting computing paradigm
or also in a method of generating emergent behavior. The position of a robot in
the physical world becomes the building block of collective information process-
ing [8]. In a recent work Litus et al. [13] give a good summary of this idea:

The key insight that underlies our methods is that the physical locations
of the robots themselves could be considered as an approximate solution
to the entire problem. An individual robot can move itself, thus refining
the current solution approximation. No representation of the problem,
or the current solution, needs to be held by any robot: they manifest the
solution by their physical configuration.

Although these approaches suffer in principle from the same problems of in-
tractability as classical approaches concerning hard problems, they might lead,
nevertheless, to more efficient implementations. Such systems might be cheaper
than classical devices and easier to maintain due to less complexity.

We focus on the Euclidean Steiner tree (EST) problem which is basically the
problem of connecting objects in a plane efficiently. The agent-based heuristic,
that we investigated here, was shortly introduced in [8]. The objects in the plane
are connected by placing mobile relay stations, that we call robots in the following,
instead of using wires. Starting with a uniformly distributed population of robots
they aggregate in a way similar to diffusion-limited aggregation (DLA) [17]. Un-
like DLA all robots are always moving and turn to avoid collisions between two
moving robots. The objects to be connected serve as seeds from which trees of ag-
gregated robots ’grow’. The use of such ’random trees’ for planning in robotics
was introduced in [12]. In contrast to our approach these random trees are only
virtual and are centrally controlled. As we are growing several trees or clusters at
the same time this approach is also connected to diffusion-limited cluster-cluster
aggregation [11]. However, the clusters in the present work are static.

In the following section we define the EST problem and give a short survey of
the related work. In section 3 we present a robot control algorithm generating a
collective problem solving system for the EST problem. Thereafter, some results
and validations are given in section 4 which are discussed in section 5.

2 The Euclidean Steiner Tree Problem

The EST problem is named after the swiss mathematician Jakob Steiner and
is defined as follows: A given set Z of N points or terminals in a plane has to
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be connected by lines of minimal length and, in contrast to the related minimal
spanning tree problem, it is allowed to add a set of extra points S, called Steiner
points (for an example see Fig. 2(d)). The resulting network is a graphG = (V,E)
with nodes V = Z ∪ S and edges E accordingly defined. The probably better
known instance of the Steiner tree problem class is defined on graphs where
Steiner points can be picked from a finite set of points instead of placing them
anywhere in a plane.

There are many applications to this problem in circuit design, mining, network
design, and routing in ad hoc networks. Computing an optimal EST is NP-
hard, i.e. no efficient algorithm is known and is unlikely to be found, and the
discretized variant is NP-complete [5]. It is even hard to find an approximation
within 95/94 of the optimum [3]. A lot of work has been done to find both better
exact algorithms as well as polynomial time heuristics [10,15]. The best known
heuristic was presented in [19] usually yielding solutions close to the optimum
within a few seconds at least for N < 1000. A software to compute exact EST
is the GeoSteiner package [18].

An amusing anecdote reported by Aaronson [1] gives a reason to suspect
that anyway not too much intelligence might be of need for approximations of
lower quality: “Yet a well-known piece of computer science folklore maintains
that, if two glass plates with pegs between them are dipped into soapy water,
then the soap bubbles will rapidly form a Steiner tree connecting the pegs, this
being the minimum-energy configuration.” Aaronson even experimented with
real soap bubbles. He observed correct solutions but also cycles, incomplete trees,
entirely different trees for the same configuration, and a relaxation process of
several seconds leading to better soap bubble configurations. He follows that
soap bubbles do not solve NP-complete problems in polynomial time. However,
we note that (very) alternative approaches might be quite productive, too.

3 Growing Random Trees

3.1 Preconditions

We restrict ourselves to a two-dimensional setting but the proposed algorithm
would work in the same way in three dimensions. We assume objects called seeds
being placed in a bounded plane. Each seed represents a terminal out of Z of a
considered Steiner tree problem. Furthermore we need some kind of robots that
can move in the given environment. Whether these robots drive, crawl, fly, swim,
or submerge is not relevant as long as they are able to move and to remain with
sufficient accuracy at one spot. They have to be equipped with sensors allowing
them to perceive other robots and seeds within a very short range compared
to the dimensions of the bounded plane. Furthermore, they should be able to
communicate to and measure an approximate bearing of other robots in their
neighborhood. Their control mechanism suffice to be reactive. A large group of
such mobile robots is positioned uniformly distributed over the whole plane. This
could be done by the swarm autonomously in a previous phase.
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3.2 Algorithm

In the following we explain the control algorithm of the robots. See Fig. 1 for
a schematic overview. In general the robots move forward, try to find seeds,
and listen for pings by robots being already connected to a seed. When a robot
finds a seed (not shown in the schematic) and does not receive any pings it
stops next to it. The robot generates a tree identification number (tree ID), that
is with high probability unique, for example, by using a big random number.
Then it starts to ping. When another robot receives this signal it checks back
with the sender, if there is still an open slot (only 3 connections per robot are
allowed). If so it maximizes the angles between itself, the sender, and the sender’s
neighbors. In case of 1 neighbor it forms a straight line. In case of 2 neighbors they
try to reach a configuration with 120◦, but only if this requires the movement
of no more than 2 robots (local optimization). This can be achieved by some
communication overhead and relying on relative angles only (see [7] for details).
This restriction of 3 connections per robot and the consequent angle of 120◦ is
not arbitrarily chosen, as the optimal solution of a Steiner tree problem always
consists of Steiner points of degree 3 and angles of 120◦ only. Additionally, we
want to cover as much space in the plane as possible with a minimal number
of stopped robots. The optimal solution to this tiling problem is provably the
hexagon as it is found in honey-combs [6]. However, the robots form only partial
hexagons because the result should be a tree, i.e. a cycle-free graph.

Using this control algorithm the robots perform a process similar to diffusion-
limited aggregation [17]. Provided with a sufficient number of robots and time
a tree will grow at each seed. At some time, 2 trees will be connected. This is
the case if a robot approaches 2 aggregated robots of different trees virtually
at the same time. By communicating their tree ID they ensure not to form a
loop and agree upon a new tree ID, which is propagated through the new tree.
Later, more trees will join. When only one huge tree is left, cf. Fig. 2(a), or at an
assigned time (reduction condition), a new process is started: All robots being
connected to only one other robot, i.e. they are leafs, will cut this connection
and leave. In a chain reaction all unnecessary robots cut their connections and a
tree consisting of a relatively small number of robots is left, cf. Fig. 2(b). After
this reduction robots being connected to 3 other robots represent Steiner points.
By straightening the connections between the seeds and the Steiner points, i.e.
releasing surplus robots in between (for details see [7]), we get a first approxima-
tion to the optimal Steiner tree, cf. Fig. 2(c). Note, the positions of the Steiner
points were determined dynamically during the tree growth process. Interpreting
this in the sense of swarm intelligence: the Steiner point set S is the result of a
collective decision that emerges from the numerous agent-agent interactions. An
additional improvement is achieved by locally rearranging the Steiner points to-
wards their optimal position (an approximation to the Fermat-Torricelli point).
This is achieved by moving the robots at the Steiner point towards the direc-
tion of the smallest angle. This might result in the optimal solution as shown in
Fig. 2(d) but in general the optimal configuration of the Steiner points is only
achievable by global optimization.
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Fig. 1. Schema of the robot controller for the random tree growth algorithm

Keeping a reasonable amount of redundant robots in the lines this heuristic
is robust to breakdowns of single robots although it might seem very inefficient.
In addition, it is scalable because of its totally local approach. Whether this
method can be a fast way of approximating a Steiner tree is a question of the
reaction times and speed of the robots. At the time mass production of such
devices will become possible, this scenario might actually be feasible [16].
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(a) Aggregated robots. (b) Reduced to connected robots.

(c) Straightened lines. (d) Local optimization (identical
to optimum).

(e) Minimal spanning tree.

Fig. 2. Phases of the heuristic and minimal spanning tree

4 Results

The following results were obtained using a first-order geometric simulation with
continuous space. Our emphasis is on the general behavior of the agent system
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Fig. 4. Comparing the reduction of the heuristic for different robot numbers and varied
problem size N to the optimal solution; error bars are 95% confidence intervals

which we claim to be covered by this kind of simulation. A more complex sim-
ulation would have multiplied the computational complexity. However, already
this abstract simulation kept a personal computer busy for days computing thou-
sands of runs using 105 and more robots. As we do not yet have such quantities of
robots or other computational devices available we had to simulate our massively
parallel heuristic serially.

We compare the results of our heuristic to the optimal solution and the min-
imal spanning tree—the typical benchmark problem for Steiner tree heuristics.
For this purpose we compare the reduction in percent r of the (suboptimal)
Steiner tree length Lsteiner to the minimal spanning tree length Lspanning

r =
Lspanning − Lsteiner

Lspanning
· 100% (1)
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Fig. 5. Superimposed optimal solutions for the beginning set of terminals (gray) and
the final set of the adaptivity test scenario. The arrow indicates the rearranged terminal.

with
L =

∑

(μ,ν)∈E

‖μ− ν‖2, (2)

μ, ν ∈ R2 are node positions and ‖ · ‖2 denotes the Euclidean norm.
For the optimal Steiner tree this value ranges from instance to instance be-

tween rmin = 0% (minimal Steiner and spanning tree identical) and rmax > 10%.
For the minimal Steiner tree the reduction averaged over many instances con-
verges almost independently of the terminal number N to ropt ≈ 3.1%.

Before we compare the actual performance we have a look at the number of
Steiner points generated by the random tree heuristic. In principal this number
ranges from 0 (spanning tree) to N − 2. However, it turns out that the heuristic
generates reasonable numbers of Steiner points. See Fig. 3 showing the situation
of a single problem instance with a mean that overestimates the optimal number
of Steiner points by 5.8%.

Now we compare our heuristic to the exact solution focusing on the governing
parameter, the robot number. We omit a time analysis since the time consump-
tion can be kept constant with increasing robot number (due to strictly local
actions of each robot). Only the serialized simulation of the heuristic suffered
from the complexity of high robot numbers. The solutions become better the
more robots are used as shown in Fig. 4(a). The reduction decreases linearly in
problem size. Due to the probabilistic characteristic of the proposed heuristic
the average performance is improved by repeated runs. In Fig. 4(b) we show the
performance achieved by selecting the best solution out of 50 runs. Especially
for bigger instances N > 50 the performance could be furthermore improved by
increasing the number of robots.

While our heuristic is inferior to the state-of-the-art heuristics in the perfor-
mance we identify its advantage in its adaptivity and due to the decentralized
approach also in its robustness. We test the adaptivity by replacing a termi-
nal after 40 time steps. The terminal configuration shown in Fig. 5 and 104

robots were used. Only 8.2% were irregular approximations (not all terminals
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connected) evaluating 500 samples. The average reduction dropped by 42% com-
pared to the heuristic started with the final terminal configuration.

5 Discussion and Conclusion

The heuristic proposed in this paper is definitely not superior to the state-of-the-
art heuristics concerning quality and computing time (the best known heuristic
typically delivers approximations within about 4% from optimum [19]). However,
it shows a reasonable degree of adaptivity. Furthermore, it is supposed to be quite
robust as there is no single point of failure. Comparing the fault tolerance of our
method to the classical approach corresponds to answering the question: How
wrong can wrong be? One might argue that this comparison is unfair because the
difference is only due to different output methods: explicit and physical (motion,
positions, angles) compared to symbolic (numbers, calculations). However, this
actually is the fundamental difference in the method of information processing
between these approaches. The classical computer processes abstract symbols
while the agent system processes physical positions. Therefore, we consider a
comparison to be fair and the difference in the wrongness is big. A single error
might cause almost infinitely high deviations using a symbol-based approach as
there are virtually no limitations for what could happen to a symbol in the CPU
or the memory, e.g. a single bit shift might lead to negative distances. This is in
contrast to our agent system, where a single error might break two subtrees but
arbitrary deviations are impossible. This is one advantage of the strictly bounded
operating range of the robots, limiting not only their possibilities but also the
consequences of errors. An analysis of the proposed algorithm would obviously
be very hard due to its properties that might be considered ’emergent’. For
example, the growth of a random tree is dependent on its relative position to
other trees. Any model describing the tree growth independently would have
little explanatory power. Including all trees into the model would increase its
complexity significantly.
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Abstract. Robotic agents can self-organize their interaction with the
environment by an adaptive “homeokinetic” controller that simultane-
ously maximizes sensitivity of the behavior and predictability of sensory
inputs. Based on previous work with single robots, we study the inter-
action of two homeokinetic agents. We show that this paradigm also
produces quasi-social interactions among artificial agents. The results
suggest that homeokinetic learning generates social behavior only in the
the context of an actual encounter of the interaction partner while this
does not happen for an identical stimulus pattern that is only replayed.
This is in agreement with earlier experiments with human subjects.

1 Introduction

The concept of self-organization describes the formation of specific structures in
the presence of unspecific driving forces. It is considered to be relevant for the
ontogenesis of living beings, the generation of behavior in autonomous robots,
and the emergence of higher functions in agents. We have shown [1,2], that in-
teresting behaviors can be generated in robotic agents [3] by a self-organizing
controller that follows the cybernetic principle of homeokinesis1 [4]. It combines
the maximization of sensitivity with respect to external stimuli and the avoidance
of unpredictable behaviors. Driven by this principle, an agent becomes engaged
in a vivid interaction with its environment, it starts to move autonomously and
escapes from blockage as well as from unpredictable i.e. quasi-random situations.
In this way the agent shows a preference for states where the control actions are
effective. If the environment also contains other agents then the adaptation ca-
pabilities of the agents may play a role in the emergence of communication [5].
1 Greek: homoios (equally, likewise) and kinesis (movement), meaning the adaptive

control of a kinetic quantity and thereby self-regulate internal parameters.

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 457–466, 2008.
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Whether or not the adaptivity is indeed sufficient to enable the communica-
tion will be the main question of this contribution. Although the interaction is
contingent, i.e. may be negotiated to any level from no interaction to strongly
correlated behavior, it turns out that the homeokinetic principle induces a bias
toward intense interaction which is counterbalanced only by the self-generated
instability of the agents. We will explore the characteristics of the behavior ex-
hibited by two homeokinetic agents that interact in a shared environment, where
direct internal representations of other agents are not possible. Moreover, inter-
nal states in the agents will turn out to be unnecessary. The experiments reported
here are based on a variation of the perceptual crossing scenarios introduced and
studied on human subject by Auvray et al. [6] in which two human subjects can
move an object left or right along a single dimension and can perceive through a
tactile sensor an object corresponding to the other agent or to a “shadow” image
of the other agent. The interesting aspect of this scenario is that human subjects
display a good ability to discriminate between sensing and non-sensing objects
(corresponding to the other agent or to its shadow) which move exactly in the
same way, without the need of a specific training [6]. This can be explained by
considering the way in which the agents react to the perception or to the lack of
perception of the other agent. The same type of ability is demonstrated by the
ability of young children to spontaneously discriminate between a video showing
the behavior of their mother interacting live with the child with respect to a
video showing a pre-recorded interaction [7]. This discrimination skill has been
reproduced in evolutionary robotics experiments where agents have been selected
for the ability to discriminate between real agents and insensitive “shadows” [8]
or between interacting agents and their exact behavioral replay [9]. From these
experiments it has been concluded that the detection of social contingency does
not require complex cognitive skills [8].

We will demonstrate how an ability to discriminate social contingency arises
spontaneously in self-organizing agents which have been rewarded for paying
attention to objects independently on whether objects correspond to agents or
to their shadowed images. Indeed, as soon as agents develop a preference for
any tactile perception, they tend to display a preference for situations which
lead to a bi-directional sensation. This tendency is due to the characteristics
of the homeokinetic paradigm which maximize the sensitivity with respect to
external stimuli while minimizing unpredictability. These results suggest that
agency detection might result indirectly from the entrainment of the behavior
of the two agents which emerge spontaneously (i.e. even in absence of a direct
reward) in self-organizing homeokinetic agents.

The next section introduces homeokinetic learning. In Sections 3 and 4 we
describe result from our experiments which are discussed in Section 5.

2 Self-organized Control

Based on the concept of homeokinesis [4] and the concept of self-organization,
we developed in previous studies a controller [4,1,2] that establishes interesting
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sensorimotor couplings in a closed loop setup. This is achieved by the simulta-
neous maximization of the sensitivity with respect to sensory stimuli and the
maximization of the predictability of future inputs. Both predictability and sen-
sitivity are defined with respect to an adaptive internal representation of the
sensorimotor loop, cf. Fig. 1. From the difference of the sensor readings and the
model estimates an energy function is obtained that is used to modify the param-
eters of the controller by gradient descent. The internal model is simultaneously
improved. Details can be found in the appendix.

Sensor values xt

Motor values yt

t
=

t
+

1

World Model Net.

prediction error

Controller Network

Learning

Fig. 1. Schematic view of the self-organizing controller attached to a wheeled robot

The capabilities of homeokinetic control become obvious by considering some
examples that were realized on various robotic platforms [3]. The “rocking stam-
per” [2] consists of an inverse pendulum mounted on a bowl-like trunk. It exhibits
different rocking modes, preferably at the eigenfrequencies of the system.

A more complex example for the self-organization of natural behaviors is pro-
vided by a spherical robot [10] which is actuated by three internal massive
weights that can be moved along orthogonal axes. After an initial phase, the
system prefers to keep one mass fixed at one axis while performing a coordi-
nated movement of the other two such that the robot rotates around the first
axis. Thus the robot moves forward like a wheel or sometimes turns on the
spot. The behavior is changed every few tens of revolutions by an internal re-
organization that occurs even in the absence of external stimuli. Furthermore,
high-dimensional systems such as snake- or chain-like robots, quadrupeds, and
wheeled robots [2] have been successfully controlled, where it is of particular in-
terest that the control algorithm induces a preference for movements with a high
degree of coordination among the various degrees of freedom. All the robotic im-
plementations demonstrate the emergence of play-like behavior. However, it is
possible to shape the development of behaviors with reinforcement [11].

3 Interaction among Homeokinetic Agents

We use a set-up similar to Refs. [6,12], where two agents are moving along a
one-dimensional track with cyclic boundary conditions. Each agent has a copy
(shadow) that moves along at a fixed distance, cf. Fig. 2 (left). The agents in
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our experiments have an independent parameter dynamics and are initialized
randomly in order to avoid any implicit knowledge about the partner.

The controllers remain adaptive during the entire experiment, i.e. there is no
training phase. The behaviors are acquired on the fly rather than being acquired
during a previous evolutionary process. Each of the agents are equipped with a
tactile sensor, see Fig. 2 (right), that is activated in the same way when being
close to either the other agent or its copy. In contrast to Refs. [6,12], we use
a sensor with a continuous characteristic, which fits better into the paradigm
of dynamical systems and does not require internal states in the agents. The
sensor values depends only on the distance between the centers of the robots
and objects, cf. Fig. 2. Because the robots move in a one-dimensional world, it
is reasonable to assume point-like agents that are, however, assumed to obey
realistic physical laws for mass, inertia, friction, and motoric forces.

Distance d

Shadow of agent B
percieved by agent A

Shadow of
agent A

Range of tactile sensor
of agents A & B

B

A

�0.3�0.2�0.1 0.1 0.2 0.3
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0.4

Fig. 2. (left) Schematic setup with two agents and the respective shadows.(right) Ac-
tivation function of the tactile sensor with a sensor range of R = 0.3.

The motor forces affect the agent by the following dynamical equations

at+1 = (yt − μvt)/m a: acceleration, μ: friction, m: mass (1)
vt+1 = at+1Δt+ vt v: velocity, Δt: time step (2)
pt+1 = Env(vt+1Δt+ pt) p: position (3)

where y is the force produced by the motor and Env(·) is a function that maps
the position into the cyclic environment [−1, 1). The shadow has the fixed offset
position st = Env(pt + 0.6).

The motor value y is the controller output and hence depends on the sensory
inputs obtained by a velocity sensor x1 = vt and a tactile sensor x2. The latter
responses to the nearest object (either agent or shadow) at position o as

x2 =
e

2
γd e−|γd| d = Env(pt − o), γ = 6/R (4)

All sensor values are subject to a weak noise. The term “tactile” is understood
as in Ref. [12], practically it could be realized by a light sensor. The sensor
should however be spatially localized or provide a good signal at ranges where
the robot moves in a few time steps. We have tested tactile sensor characteristics
different from (4) without obtaining qualitatively different results. The function
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that connects the sensory inputs to the motor output y is adaptive and is updated
every simulation step, cf. Appendix. For all experiments the following parameters
were used: ε = 0.1 (Eqs. 10,11), Δt = 0.01, m = 0.1, μ = 1.5, R = 0.3.

Above a certain distance from the other agent the agent experiences hardly
any sensory errors and increases thus its sensitivity to sensory inputs, especially
to the velocity sensor which leads to high speeds. This and the fact that the pres-
ence of the other agent causes large prediction errors make extended interactions
with the other agent unlikely. In order to achieve reasonable search times, we
applied a reinforcement scheme [11] that introduces a preference for both the
other robot and its shadow in the same way. The agents receive a reward for
states with an activated tactile sensor

r(t) =

{
2 |d| < R

0 otherwise
(5)

The objective function E (9) of the self-organizing controller is modulated by
the reward,

Er = (1 − tanh(r(t)))E, (6)

which may be interpreted as a learning rate modulation. Small learning rates
correspond to high rewards and vice versa, such that the agent develops a ten-
dency to stay in the rewarded areas, i.e. interact with objects in the range of the
tactile sensor.

Fig. 3 displays the time that agent A received tactile input from agent B,
agent B’s shadow, and neither of both, respectively. The values are normalized
with respect to their prior frequencies, which are given by the relative area where
to encounter the events (agent and shadow have size 0.6 each, which leaves 0.8
for the free space).

In the case with reward the agent spends almost twice the time interacting with
the other agent than with the other’s shadow. This can be explained by the same
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Fig. 3. Normalized interaction time of agent A with agent B, with the shadow of agent
B, and with neither of the two, respectively for runs of 60 minutes simulated real time.
(left) Self-organizing behavior according to the homeokinetic principle without rewards.
(right) Homeokinetic learning with additional reinforcement of situations where tactile
input was received.
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Fig. 4. Interaction of homeokinetic agents with reinforcement. (left) Distribution of
distances between agent A and agent B. (right) Time course of the distance for four
minutes (out of 60). (a) agent A senses shadow of agent B, (b) both agents oscillate
around each other and (c) agent B senses shadow of agent A.

reasoning that applies to the experiments with human subjects. If both agents see
each other then they explore less, i.e. the changes in behavior become smaller, pos-
sibly in order to appear more predictable. However, if agent A senses the shadow
of agent B then agent B does not receive any tactile input and remain explorative.
In Fig. 4 the distribution of distances between both agents and the time course of
the distance for a short time is displayed. The histogram of distances shows clearly
the preference of a direct interaction between the two agents. Interaction with the
shadow results in the the small bumps at -0.6 and 0.6.

4 Agency Detection

In order to study the detection of agency, i.e. the distinction of the live interaction
with a partner and a passive replay, we have performed a variant of the above
experiment where one of the agents is replaced by an exact replay of an earlier
experiment. This set-up has been already studied in an evolutionary approach
[9] and is actually more similar to the double TV experiment [7,13]. In Ref. [9]
the agents developed a stable interaction, which leads to a compensation of the
influence of noise. In other words, the distinction of agent and replay is due to
a tendency towards an adaptive dynamical interaction.

As in the previous experiment we approach the problem by an on-line learning
scheme. Both the replayed and the exploring agent have again different parame-
ter sets and behave therefore differently. The agents are moving along the same
cyclic one-dimensional arena as above. Here no shadows are involved, see Fig. 5.

The agents are rewarded when sensing each other in the same way as above (5).
In Fig. 6 the statistics of the behavior of the agents is plotted for both experi-
ments. It is clearly visible that the agent spends more time interacting with the
real agent than with the non-reactive replay. This implies that it is easier to
synchronize if both agents are adapting.
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Fig. 5. (left) Schematic setup of the experiment with replay; (right) Sensor response
in dependence of the distance between the agents
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Fig. 6. Statistics of the behavior of the agents for life interaction (left) and for replay
scenario (right). Top row depicts the relative time agent A spends on interacting with
agent B and nothing, respectively. In the bottom row the distribution of distances
between both agents is plotted.

5 Discussion

We have studied the social interaction of two agents that are capable of self-
organizing their behavior. The experiments are inspired by psychological effects
found in human subjects [6,7,13] and are intended to investigate the mechanisms
of the experience of agency. Phenomenologically the observations are similar to
those presented for the case of evolving robots [12,9], where the two agents
were assumed to have an identical configuration, while we have used an on-line
learning algorithm with random initial conditions. In a sense this is similar to
a real life situation where the knowledge about the partners is limited. Due to
the quasi-random occurrence of external inputs and the general destabilization
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of the parameter dynamics (Eq. 10,11) by the homeokinetic learning algorithm,
the agent’s parameters do not converge.

In the setup with perceptual crossings (Sect. 3) the agents showed a clear
distinction of the contingently reacting partner and the non-contingent shadow.
This is achieved even though the agents were rewarded for each tactile sensation
regardless of whether it was caused by a real agent or its shadow. One reason
for the successful distinction is the qualitatively different behavior of an agent
interacting with another agent and the agent searching quickly through an en-
vironment. These results reproduce the findings in humans subjects [6] as well
as in evolving robots [12].

The second experiment (Sect. 4) demonstrates that the self-organizing agents
can perform an agency detection merely by self-sufficient behavioral adaptation.
The interaction with the reactive agent turned out to be more probable than
with the statistically identical replay. It suggests that agency detection might
result indirectly from the entrainment of the behavior of the agent within the
robot-environmental interaction. This behavior emerges spontaneously i.e. even
in absence of a direct reward in the self-organizing homeokinetic agents. It is
thus not necessary to specify the distinction as a specific goal, it follows rather
from the adaptive explorativity level which requires predictable reactions from
the environment, while in the replay case a similar behavior as in the quasi-
random case is generated. Overall, this result confirms and extends the evidence
summarized above which indicates that detection of social contingency can be
properly characterized as a property of coupled dynamical systems that are
regulated by simple control rules.

In Ref. [14] we studied a different approach to the problem of self-organization
of interaction among agents which was based on an explicit maximization of the
learning progress. This scheme, however, relied on the accumulation of previous
knowledge and a discrete representation of the environmental information and
is thus not a minimal model as required in [9].

Studies of the present kind are relevant to an emerging formal theory of social
interaction. Results from numerical approaches essentially show that certain as-
sumptions about the agents complexity are not necessary. However, the precise
formulation of the forces in a social interaction cannot be identified by computer
simulations. Nevertheless, we can conclude from the current study that the emer-
gence of interaction with contingent agents might by rooted in a fundamental
requirement to the sensorimotor loop, namely the maximal integration of the
environment into the sensorimotor flow.
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A Derivation of the Learning Rule

The agents receive a vector of sensor values xt ∈ R
n at time steps t = 0, 1, 2, . . ..

The actions of the robot are determined by a controller described by a function
K that maps sensor values x ∈ R

n onto motor values y = (y1, . . . , ym)T ∈ R
m,

http://robot.informatik.uni-leipzig.de/Videos
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yi = Ki (x) = tanh

⎛

⎝
∑

j

Cijxj + hi

⎞

⎠ , (7)

where in terms of neural networks Cij denotes the weights and hi the biases.
The robot is further equipped with an adaptive model of its environment that
is also realized by a neural network. It approximates a function F that predicts
new sensor values based on earlier sensor and motor values via

xt = F (xt−1, yt−1) + ξt. (8)

The world model F is realized by a one-layer feed forward neural network. The
“noise” term ξt in Eq. 8 is the modeling error which is assumed to be of finite
variance. Inserting Eq. 7 into 8, we obtain a dynamical system

xt = ψ (xt−1) + ξt

representing the dynamics of the sensorimotor loop. The internal representation
ψ is used to define an error function. Predictability is achieved by minimizing
the prediction error ξ. Sensitivity can be expressed by the Jacobian matrix,

Lij (x) =
∂

∂xj
ψi (x) ,

which specifies the linear response of the map ψ to a perturbation. High sensi-
tivity requires large values of all eigenvalues of L which can be achieved by the
maximization of the smallest eigenvalue of L or equivalently by a minimization
of the largest eigenvalue of L−1. The error function is thus defined as

E =
∥∥L−1ξ

∥∥2
= ξT

(
LLT

)−1
ξ. (9)

The parameters of the controller are updated by gradient descent on E, where

Lij =
∑

k

(
∂

∂yk
Fi (x, y)

)
tanh′

(
∑

l

Cklxl + hk

)
Ckj ,

which leads to the following learning rule for the controller parameters.

ε−1ΔCij = ζivj − 2ζiρiyixj (10)

ε−1Δhi = − 2ζiρiyi (11)

where ρ = Cv, v = L−1ξ, ζi = g′iμi, μ = ( ∂
∂yF (x, y))�(LL�)†ξ and M † de-

notes the Moore-Penrose inverse of M . Note that the learning rate ε is chosen
such that the parameters change at the same time scale as the behavior, some-
times even synchronously. The interplay between synaptic and state dynamics
of the controller induces the potential for a high dynamical complexity of the
sensorimotor loop.
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Abstract. We aim to realize human-robot social game interaction as a
kind of communication. We proposed a hypothetical development of social
game interaction between an infant and a care-giver from a mechanism-
sided standpoint, based on developmental psychology. Social games have
rules, specific relationship between action and response. Applying the hy-
pothesis, we also propose a scheme to design a robot in which a partner can
teach interaction rules through interaction. To investigate the proposed
scheme, we built a dynamic model which realizes imitation and ruled in-
teraction and switches them observing partner’s response. In the experi-
ment, the partner can teach and the robot can acquire a rule adaptively
through interaction without explicit teaching and subsequently it is also
achieved about another rule without reset.

Keywords: human-robot communication, interaction rule, imitation, re-
sponse observation, contingency detection.

1 Introduction

In human-robot communication, it is important to design how a robot should
interact with a partner. It is necessary that a robot has an ability to extend
communicative behaviors adaptively, because a partner probably feels a sense of
alienation and boredom otherwise. For natural communication, it is important
for the robot to acquire new communicative behaviors through interaction, as
opposed to inhuman one-way programming. To realize this acquisition, we utilize
fundamental and general principles because we want to treat various problems
with a uniform framework. Here we focus on the principles of imitation and
contingency detection, which are key developmental mechanisms for infants [1].

In human-robot communication, it is believed that an important ability for a
robot is to imitate humans [2,3]. Of course, imitation is not enough for commu-
nication. In multi-agent robots, it is suggested that not only imitation but also
negotiation, which can maximize information transfer, contributes to communi-
cation for lexicon learning [4]. In human-robot communication, it is indicated
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that responsiveness, which increases the rate of information transfer, improves
the impression of communication [5]. A robot can realize joint attention, which is
a significant communicative behavior, by finding the causality between a human
face pattern and an appropriate response [6]. Detecting information transfer and
causality can be realized by contingency detection.

As stated above, imitation and contingency detection are expected to play
substantial role in robot’s acquisition of communicative behavior. We can say
that to realize acquisition of communicative behavior using these principles may
help understanding development of infant communication.

We aim to realize a human-robot social game interaction as a kind of com-
munication. Researchers have shown that social games have rules and structures
[7,8]. We focus on how, through interaction, a robot can learn and a partner can
teach an interaction rule which is a relationship between a specific action and
the other’s corresponding response in a social game. In this paper, we propose a
scheme to have a robot acquire interaction rules based on the principles of imi-
tation and contingency detection. We also build and investigate a system using
the proposed scheme, in which a partner can teach interaction rules to a robot.

2 Development of Social Game Interaction

To realize a natural form of human-robot social game interaction, we refer to
ideas about the development of infant’s social game interaction. If a robotic
system is equipped with this developmental mechanism, it should be able to
interact with its partner in a natural way.

Development of infant’s social game interaction such as “peek-a-boo” and
“roll-the-ball” progresses through the four stages described below [7,9]. Infants
gradually move from a passive role to an active one in the course of the game.

1. passive observation — The infant merely observes the care-giver passively.
2. taking part in one of the game’s elements — The infant takes part in

one of game’s elements and eventually grows to initiate more of elements.
3. sharing of the game’s activities — Each player takes a turn in a well-

organized fashion based on the convention of the game.
4. generating modifications — The infant generates variations within the

rules of the game. The infant has a sufficient understanding of the game’s
rule structure to be able to add new rules.

3 For Designing Social Game Robot

3.1 Development from Mechanism-Sided Standpoint

Considering imitation and contingency detection, which are general develop-
mental mechanisms in infants (as we noted at section 1), and based on the four
developmental stages of social game interaction (we have noted at section 2),
we propose a hypothesis about developmental stages from a mechanism-sided
standpoint (Fig. 1). Of course, these stages are continuous and the interaction
may regress to a previous stage.
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Fig. 1. A Hypothesis about Developmental Stages of Social Game Interaction from
Mechanism-sided Standpoint

1. passive observation — The infant passively observe the care-giver and get
to predict the care-giver’s action and the game flow.

2. taking part in one of the game’s elements — The infant just imi-
tates the care-giver’s actions. Thereby the infant participates the game flow
partially as a result.

3. sharing of the game’s activities — The infant detects the care-giver’s
response to own game-relevant action because the care-giver is expected to
respond clearly to the infant’s action if it is game-relevant. The infant under-
stands and uses the rule which is the relationship between the infant’s action
and the care-giver’s response. The infant is willing to invoke the response
repetitively. Thereby the infant comes to play active role in the game.

4. generating modifications — The infant varies a game-relevant action and
watches the care-giver’s response to find another stable loop of the game flow.
Thereby the infant generates modification of interaction rules.

3.2 A Scheme to Design Robot Behavior

We also propose a primary scheme to design a social game interaction robot.
The scheme partially covers the hypothesis described above (stage 1 to 3). The
scheme is described below.

A robot has functions of imitation, contingency detection and adaptive action
selection of imitative or game-relevant action. At first, the robot imitates the
partner’s action by the imitation function. In a game, the partner is expected
to respond to the robot’s action clearly if the action is game-relevant. Thereby
the robot finds the game rule via response observation by the contingency de-
tection function. The rule is the relationship between the robot’s game-relevant
action and the partner’s corresponding response. The robot tends to perform the
game-relevant and game-ruled action while the contingency appears and tends
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to perform imitative actions if the contingency disappeared. This tendency is
controlled by adaptive action selection function.

3.3 A Model in the Scheme

To investigate the proposed scheme described above, we build a dynamic model
which realizes imitation and ruled interaction, and switches them depending on
the partner’s response.

To acquire interaction rules, a robot adaptively selects whether imitation or
ruled interaction to perform. This model produces two interaction phases: imi-
tation phase and ruled interaction phase. At the outset, the robot performs only
imitation; this is called the imitation phase. Once the robot finds a rule where
the partner clearly responds to the robot’s game-relevant action, the robot starts
to perform the action frequently. Then the interaction will be mainly governed
by the rule; this is the ruled interaction phase. If the partner breaks the rule,
the robot goes back to the imitation phase.

Taniguchi et al. have built a model in which a robot acquires interaction rules
based on an idea of role reversal imitation [3]. But in this model, interaction
type (imitation or ruled response) is explicit and completely separated. It is
unlike a real interaction. In our model, interaction type is adaptively changed
via observing partner’s response.

We now summarize the mechanism of our model (Fig. 2). The model has three
modules: an action observation module, a contingency detection module, and an
action selection module.

For imitation, the action observation module estimates the partner’s action
tendency. Also, for each action a, the module calculates the occurrence frequency
wact(a) as its score. If the robot selects its action just according to the score
wact(a), the robot imitates the partner’s action tendency. This module gradually
forgets the tendency as well.

For ruled interaction, the contingency detection module estimates the co-
occurrence frequency of pairs of robot’s action and partner’s response. This
module also scores each action a by degree of causality from the robot’s action
to the partner’s first action after it as its priority wres(a). If the robot selects
its action purely according to the score wres(a), the robot performs ruled inter-
action. This module also gradually forgets the tendency.

To realize adaptive switching between imitation and ruled interaction, the
action selection module scores each action a as the sum of the two scores (wact(a),
wres(a)) as its priority wout(a). This module selects the robot’s next action. The
switching is realized by the balance of the two scores.

3.4 Implementation

We now explain the implementation of each module. In the experiment, the
posture of the robot and the partner is represented discretely. Time is also rep-
resented discretely. a is a posture transition, by the human or the robot, from a
posture to another or the same. r is a first action of the partner after an action
of the robot a. Time of r is defined as the next step of time of a.
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Fig. 2. A Model in the Proposed Scheme with Information Flow

Action Observation Module. The input is an observed action a of the part-
ner. The output is wact(a) for each a. This module has occurrence counters N(a)
for each a to estimate the partner’s action tendency. N(a) is a continuous real
number within the range from 0 to the parameter maxact. When an observed
a is input, N(a) is updated as (1). To implement gradual forgetting, N(a) is
updated at each time step as (2). δact is the parameter of the forgetting term.
The score wact(a) is calculated as (3) as the estimated occurrence probability
P (a).

N(a)← N(a) + 1 for observed a . (1)

N(a)← N(a)− δact for each a . (2)

wact(a) = P (a) ≈ N(a)∑
iN(ai)

. (3)

Contingency Detection Module. The input is a performed action a of the
robot and the first action r of the partner after the action of the robot. The
output is wres(a) for each a. This module has occurrence counters N(a, r) for
each pair (a, r) to estimate the tendency of the relationship between a and r.
N(a, r) is a continuous real number within the range from 0 to the parameter
maxres. When a given (a, r) is observed, N(a, r) is updated as (4). To forget
the tendency gradually, N(a, r) is updated at each time step as (5). δres is the
parameter of the forgetting term.

N(a, r)← N(a, r) + 1 for observed (a, r) . (4)

N(a, r)← N(a, r)− δres for each (a, r) . (5)
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—– Acquisition of Interaction Rules. P (a, r) is the occurrence probability
of the pair (a, r) as estimated in equation (6). Ruled(a, r), the degree of confi-
dence of a rule from a to r, is evaluated in (7) as relativeness between a and r
with Mutual Information [10] (denoted I in (7,8)).

P (a, r) ≈ N(a, r)∑
i,j N(ai, rj)

. (6)

Ruled(a, r) = I(a; r) = P (a, r) log2
P (a, r)
P (a)P (r)

. (7)

—– For Ruled Interaction. The score wres(a) is calculated in (8) as the
degree how a invokes ruled responses and is game-relevant.

wres(a) = I(a;R) =
∑

r

Ruled(a, r) . (8)

Action Selection Module. For this module, the input is the scores wact and
wres calculated by the action observation module and the contingency detection
module. The output is a next robot’s action a which is selected at the probability
Pout(a) calculated as (9). α is the parameter which biases the balance of imitation
and ruled interaction. Larger α leads to more ruled interaction.

Pout(a) = w(a) =
wact(a) + α wres(a)∑
i(wact(ai) + αwres(ai))

=
wact(a) + α wres(a)
1 + α

∑
i wres(ai)

. (9)

4 Simulation Experiment

4.1 Setup

The experiment is conducted in simulation. We suppose human and robot are
sitting face-to-face (Fig. 3).

In Fig. 3, the partner is on the left. The partner’s hand position is controlled
by the examiner. On the right is the robot, which is controlled by the system
described above. Arm posture is represented discretely so that the hand is located
at one of four positions (Fig. 4). a and r is a set (p0, p1) which represents a posture
transition from p0 to p1. The parameters are set as follows: maxact = maxres =
10. δact = δres = 0.2. α = 10.

4.2 Task

We investigate whether the partner can teach and the robot can acquire novel
interaction rules where the partner responds in a specific way to a specific ac-
tion of the robot. The task is for the partner to teach the robot two rules (rule
A(Fig. 5) and rule B(Fig. 6), noted later) in order. The aim of the task is to
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Fig. 3. Simulation Environment Fig. 4. Discrete Postures of Arm

Fig. 5. Rule A Fig. 6. Rule B Fig. 7. Names of Postures

confirm that the robot can find appearance and disappearance of a rule and find
the correct rule intended by the partner within many rule candidates.

We now explain the two rules. As in Fig. 7, the label of a posture corre-
sponds to the name of the circle where the hand is located. In rule A, the robot
acts [NL→NU→NL], and the partner should respond with [NL→FL→NL]. In
rule B, the robot acts [FL→NU→FL], and the partner should respond with
[NL→FU→NL]. Each ruled interaction is not realized by only imitation.

In this task, the partner basically performs the following four policies de-
scribed below in order (Fig. 8).

1. Policy 1 — Demonstration A
— The partner demonstrates action [NL→NU→NL] which the robot should
perform in rule A and have the robot imitate the partner.

2. Policy 2 — Ruled Response A
— The partner responds to the robot in rule A.

3. Policy 3 — Demonstration B
— The partner demonstrates action [FL→NU→FL] which the robot should
perform in rule B and have the robot imitate the partner.

4. Policy 4 — Ruled Response B
— The partner responds to the robot in rule B.

4.3 Result

The upper part of Fig. 9 represents transition of the partner’s and the robot’s pos-
ture through the experiment. The lower part of Fig. 9 also represents transition
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Fig. 8. Procedure of the Experiment

Fig. 9. Transition of Posture and Some of Internal States

of {wact(NL → NU) + wact(NU → NL)} (named actA) which is the score for
imitation of demonstration A, {wres(NL → NU) + wres(NU → NL))} (named
resA) which is degree of response contingency to the action, and {Ruled(NL →
NU,FL → NL) + Ruled(NU → NL,NL → FL)} (named ruledA) which is degree
of confidence of rule A . actB, resB and ruledB are in the same manner.

5 Discussion

In the period of policy 1, the robot imitates the partner. actA rises. This is con-
sidered the process in which the robot is recognizing the partner’s demonstration
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A. At the same time, resA is rising. This means that the robot started imitation
and the partner still demonstrates and thereby, as a result, the robot recognizes
as if the partner imitated the robot and the partner’s action were contingent on
the robot’s action.

In the period of policy 2, the interaction is almost in rule A. actA is falling.
This is considered the process in which the robot is recognizing that the partner
is no longer in demonstration A. At the same time, resA fell and subsequently
resA and ruledA rose. This means that the robot comes to recognize that the
partner is no longer in the imitative response but responds in rule A.

These phenomena are alike in the period of policy 3 and 4. But the effects
of the previous periods remain: we see that resA and ruledA continue to have
certain values. So the phenomena are a little more complex than the previous
periods. We see that the robot’s posture is sometimes in NL. Thereby the partner
has a little difficulty in teaching rule B. In the latter part of the period of policy
4, the interaction in rule B is stable and resB and ruledB rise.

The partner succeeded in adaptively teaching the robot different interaction
rules without reset. It may be effective to break a previous contingency and the
robot’s recognition intentionally to change interaction to a new one.

6 Conclusion and Future Work

We proposed a hypothetical development of social game interaction between an
infant and a care-giver from a mechanism-sided standpoint, based on develop-
mental psychology. Applying the hypothesis, we also propose a scheme to design
a robot in which a partner can teach interaction rules through interaction. To
investigate the proposed scheme, we built a dynamic model which realizes imi-
tation and ruled interaction and switches them observing partner’s response. In
the experiment, the partner can teach and the robot can acquire a rule adap-
tively through interaction without explicit teaching and subsequently it is also
achieved about another rule without reset. We suggest that the proposed ideas
contribute to improve social robot’s adaptivity.

A problem is that the model breaks a previous rule when it acquires a new
one. We aim to realize switching multiple game rules depending on the context of
the game flow. Another problem is that the shown adaptation is realized by just
changes of the internal state matrix. For developmental interaction, we think
that action primitives or rules should be represented hierarchically. A crucial
problem is that action primitives are represented discretely. Sugita et al. have
built a model which acquires relationships between sentences and behavioral
patterns [11]. We consider that RNNPB, the core component in that research,
may contribute to extracting and switching primitives or rules from continuous
interaction. Another future work is to avoid endless repetition of a specific in-
teraction. Watson reported that an infant examines contingency between the
infant’s action and a toy’s response and once the infant gets to know whether
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the contingency exists or not, the infant stops the examination [12]. We esti-
mate that this knowledge may lead to an idea which realizes the fourth stage
“generating modification” of the development and aim to investigate it.

This paper is concerned with gesture-based interaction, but it is pointed out
that there is analogy between social game and language [8]. We think that hu-
mans utilize similar fundamental abilities for both processes, so this research is
linked to explanation of language acquisition and its implementation in robots.

Acknowledgments. This research is supported by JST ERATO Asada Syner-
gistic Intelligence Project.

References

1. Rochat, P.: Mechanisms of Infant Development. In: The Infant’s World. Harvard
University Press (2001)

2. Andry, P., Gaussier, P., Moga, S., Banquet, J.P., Nadel, J.: Learning and Com-
munication via Imitation: An Autonomous Robot Perspective. IEEE Transactions
on Systems, Man, and Cybernetics -Part A: Systems and Humans 31(5), 431–442
(2001)

3. Taniguchi, T., Iwahashi, N.: Computational model of role reversal imitation
through continuous human-robot interaction. In: Proceedings of the 2007 work-
shop on Multimodal Interfaces in Semantic Interaction, pp. 25–31 (2007)

4. Fleischer, J., Shapiro, J.: Imitation is not enough for lexicon learning. In: From
Animals To Animats 8: Proceedings of the 8th International Conference on the
Simulation of Adaptive Behavior, pp. 477–486 (2004)

5. Nakata, T.: Expression with Informatical Factor in Human Robot Interaction. In:
Proceedings of the ACM CHI 2003 Workshop on Subtle Expressivity of Characters
and Robots, pp. 11–14 (2003)

6. Sumioka, H., Yoshikawa, Y., Asada, M.: Causality Detected by Transfer Entropy
Leads Acquisition of Joint Attention. In: Proceedings of the 6th IEEE International
Conference on Development and Learning, CD-ROM, No. 93 (2007)

7. Bruner, J.S., Sherwood, V.: Peekaboo and the Learning of Rule Structures. In:
Bruner, J.S., Jolly, A., Sylva, K. (eds.) Play—Its Role in Development and Evolu-
tion, pp. 277–285 (1976)

8. Ratner, N., Bruner, J.: Games, social exchange and the acquisition of language.
Journal of Child Language 5(3), 391–401 (1978)

9. Rome-Flanders, T., Cossette, L.: Comprehension of Rules and Structures in
Mother-Infant Games: A Longitudinal Study of the Early Two Years of Life. In-
ternational Journal of Behavioral Development 18(1), 83–103 (1995)

10. Shannon, C.E., Weaver, W.: The Mathematical Theory of Information. University
of Illinois Press (1949)

11. Sugita, Y., Tani, J.: A Connectionist Approach to Learn Association between Sen-
tences and Behavioral Patterns of a Robot. In: From Animals To Animats 8:
Proceedings of the 8th International Conference on the Simulation of Adaptive
Behavior, pp. 467–476 (2004)

12. Watson, J.S.: The perception of contingency as a determinant of social responsive-
ness, Origin of the Infant’s Social Responsiveness. Halsted Press Division of Wiley,
Chichester (1997)



M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 477–487, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

On Modeling Proto-Imitation 
in a Pre-associative Babel 

Elpida Tzafestas 

Institute of Communication and Computer Systems 
National Technical University of Athens  

Zographou Campus, 15773 Athens, Greece 
brensham@softlab.ece.ntua.gr  

Abstract. In this paper we present a model of generative proto-imitation that 
replicates external signals without associating with objects, as in higher-level 
imitation. A mixed population of adults, that have fixed associations objects-
signals, and infants, that do not have associations but imitate unconditionally, 
endowed with a kinship and interaction structure, allows infants to develop 
signal affinity with their kin in a variety of conditions and within an initial 
random world, i.e. in a Babel. Our results indicate that the communicative value 
of imitation can be discovered after the basic apparatus is in place, rather than 
that communication is the end to which imitation is the means. 

Keywords: Imitation, proto-imitation, kinship, Baldwin effect, development. 

1   Introduction 

Research in imitation spreads in various disciplines (for an overview see [1]) and 
generally centers around two major themes: the role of imitation in social interaction 
and communication and the mechanism by which imitated responses are produced. 
Functional studies related to social behavior and communication are common both in 
psychology and theoretical biology and rely on the implicit assumption that imitation 
is mainly a means to (learn to) communicate or interact socially [2][3][4]. Studies 
related to the neural mechanisms behind imitative response generation investigate 
mainly phenomena of neonatal or early infant imitation and are tackling questions 
such as the degree to which neonatal imitation is goal-directed, motivated and 
selective [5][6]. Other important issues we retained from the literature as 
specifications for modeling are: 

• Imitation should start as a reactive or impulsive process and subsequently 
catalyze itself through the social interaction itself. This self-catalysis may 
be through direct training by adults; adult turn-taking in imitation is one 
such way of training [4]. 

• Imitation is a multi-level process found in many different forms of 
varying degrees of complexity in a vast number of animal species [7]. 
However, even animals that can imitate cannot learn to communicate at a 
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human-like level of complexity and this is an instance of the major 
question in cognitive science “what makes humans different from 
animals” [8]. 

• When used in a communicative context, human-level imitation manages 
to co-exist with diverse, arbitrary sign systems, which is apparently 
contradictory with the effect of imitation [9][10]. 

• Disturbed versions of imitative mechanisms may be found in a spectrum of 
developmental disorders [11] and this is an indication that imitation cannot 
be studied outside a development context, at least functionally [12]. 

We are therefore developing a model that allows proto-imitation outside explicit 
communication but may allow emergence of communication in the medium or long 
term ontogenetically. This model separates response imitation from response 
association to external meaning so as to make room both for species that can imitate 
but not associate meaning and for disabled humans that cannot associate well or even 
proto-imitate well. We work at the response imitation level to show that a wealth of 
phenomena may later emerge and especially those related to direct associations. 

2   The Agent Model: Generative Imitation 

The usual agent model found in the literature (see for example [3]), supposes the 
existence of M objects with one signal associated with each object. The term “object” 
can denote anything from an individual or an inanimate object to an action or an 
event, in short any external thing that can be referred to. The signals are supposed to 
transfer information about the objects and can take values in any physical medium 
that an agent is able to use; however, the typical case is to think of signals as 
vocalizations. An imitative process is one that allows one agent to learn to use another 
agent’s signal to refer to the same object. As such, imitation allows to two or more 
agents to communicate by using the same signals for the same objects. One common 
formalization of this imitation process [9] in a population of agents is through the use 
of a MxL language matrix per agent where each entry denotes the probability for the 
agent to refer to object i (i=1,2,…,M) by using the signal j (j=1,2,…,L). This setup 
presupposes that associations between objects and signals should exist for imitation to 
take place and that the role of imitation is to make the associations of different agents 
converge to one common language. This assumption is partly due to the adoption of 
the language domain as the experimental field of imitation par excellence. 

Our own model of imitation of adult agent responses does not assume any prior 
association to any external object. Instead we model the way an infant agent 
recognizes and reproduces an observed signal coming from an adult agent and 
standing for the response to a perceived object without having access to the object 
itself and thus without associating with it. Our model is a functional model of a neural 
structure that generates responses to match and replicate an external stimulus, i.e. the 
signal received (a similar generative model has been reported in [13]). We opted for a 
study with the aid of a functional model of the neural structure rather than the 
structure itself, because we did not want to constrain our results within the 
possibilities of a given structure. We are rather seeking the organizational properties 
that such a structure should have to allow imitation. 
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We begin therefore by adopting the view that the ontegenetic development at the 
neural level follows the same principles as Darwinian evolution at the population 
level ([14]) and that any novel responses should be generated internally and selected 
within the environment rather than be directly “taught” by it. By applying this view to 
the proto-imitation level of low-level reproduction of external signals, we get a model 
where continuous internal generation of responses combined with an environmental 
selection (i.e. reinforcement through actual response matching to external signal) 
allows various imitative phenomena within a population of agents. Association of 
signals to objects can appear later, if at all. We use real-valued signals as in [2] 
instead of the more common discrete or symbolic signals ([3][15] etc.), because we 
feel we should not ignore the continuous nature of real-world signals (especially 
vocalizations) and because we want to explicitly model the distance between agent 
responses. 

An agent possesses a number of internal “frequencies” or eigenfrequencies (these 
could correspond to real vocal parameters or to neural patterns) that have varying 
degrees of affinity to a given signal: because frequencies as well as signals take real 
values in [0,1], affinities of frequencies will also take real values in the same interval.  
 

// Frequencies: f[] - size K, f[i] in [0,1] 
// External Signal: x in [0,1], Meaning/Object: n 

// 1. Matching step: Compute affinity of each frequency 
foreach frequency f[i] (i=1…K) 
{ diff = |f[i]-x| 
 if (diff <= T[i]) // T[i] = a threshold 
  affinity[i] = (1-diff) (affinity in [0,1])
  else affinity[i] = 0;  } 
// The (indirect through imitation) response of the 
// agent to the external meaning/object n is: 
language[n] = f[i] with max affinity[i] 
Agent’s total_affinity = avg(affinity[i],i=1…K); in [0,1] 

// 2. Selection step:
//    Reproduce frequencies proportionally to affinity 
foreach frequency f[i] (i=1…K) 
{ // Pop = Population size of clones of f[i] 
 pop = (affinity[i] * K / total_affinity);  
 for j=1…pop 
  //add new frequency in the range 
  // [f[i]-T[i],f[i]+T[i]]:  
   newf[j] = f[i]-T[i]+(random()*2*T[i])); } 
// 3. Normalization step:
//    Inject new random frequencies 
//    if less than K frequencies created (newf array) 

// 4. Mutation step:
//    Replace randomly K1 of the frequencies: 
 K1 = random()*ExplorationFactor*K  

 

Fig. 1. The eigenfrequency-based functional model of generative imitation 
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The response to a signal is the eigenfrequency with the highest affinity. At each step, 
new eigenfrequencies are generated proportionally to the affinity of the previous ones. 
The highest matching frequencies reproduce massively, while the lowest ones vanish 
and are replaced by newly generated random eigenfrequencies. An exploration factor 
is also defined, which is the maximum percentage of random eigenfrequency 
replacement independently of affinity. The overall affinity of an agent to an external 
signal is the average affinity of all its frequencies, thus it is internally generated and 
not externally imposed/designed in any way. This measure expresses how “well” an 
agent recognizes and can reproduce a signal and may therefore serve as a basis for 
subsequent emergence of communication. This model is summarized in Fig. 1. 

3   Experiments I: Adults, Infants and Kinship 

We have simulated populations of agents that follow the previous imitation model. In 
the same spirit as [3][15] we have separated the learning phase from the adult mode of 
behavior. Because in our system we have no predefined associations between objects 
and vocalizations we use two classes of agents, the adult and the infant agents. The 
former are supposed to have stabilized and to always respond to a particular object 
with one particular vocalization, while the latter are in a learning stage and are 
imitating the agents they encounter. Social encounters are based on the obvious 
intuition that infants are nurtured by a limited set of “parents” or kin agents and 
therefore they encounter most often or even exclusively these agents. All such 
parental relations are initialized randomly within the overall population with the aid 
of the kin factor parameter, which is the number of parents or kin agents per infant. 

In each simulation cycle, every infant encounters an adult selected randomly from 
its kin population, unless social noise is present. Each encounter involves the adult 
agent acting as a sender of one or more signals and the infant agent acting as a 
receiver that imitates the received signals. This process uses two parameters, the 
number M of actual external objects refered to by the adult agents and the imitation 
factor which is the maximum number of signals received and imitated on every 
encounter (imitation factor ≤ M). All adult vocalizations as well as all infant 
frequencies are initialized randomly in the range [0,1]. This combination of uniformed 
reactive imitation with a tight social interaction structure allows infants to develop 
high affinity with their kin, where affinity with one or more agents is defined as the 
average affinity for all external objects. We remind however that an infant cannot 
associate objects and vocalizations and its current signal (word) for a particular object 
is the last emitted one, as shown in Fig. 1. Figures 2 and 3 show how average infant 
affinities develop in the case of a single or two parents, when refering to one or more 
objects. In all cases, the affinity with kin is clearly higher than the affinity with adults 
in general and it develops slower as the number of refering objects increases. Final 
kin affinity is also lower as the number of kin agents increases. It is relevant to note 
that while average kin affinity rises, average adult affinity remains at best the same, 
thus the affinity with non-kin agents is on average negatively affected by the buildup 
of affinity with kin. Note also that in our simulations we have chosen K (the number 
of frequencies) to be high (50), to induce high initial affinity and learning speed. 
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Fig. 2. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, random parental relations. (a) Kin 
factor = 1, M=1, imitation factor = 1 (single parent and object). (b) Kin factor = 1, M=3, 
imitation factor = 2 (single parent, many objects). 

  

Fig. 3. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, random parental relations. (a) Kin 
factor = 2, M=1, imitation factor = 1 (many parents, single object). (b) Kin factor = 2, M=3, 
imitation factor = 2 (many parents, many objects). 

  

Fig. 4. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, random parental relations. Kin factor 
= 2, M=1, imitation factor = 1 (many parents). (a) Social exploration factor = 0.1, interaction 
factor = 5. (b) Signal noise probability: 0.1. 

In figure 4 we are introducing noise in the system either as social noise or signal 
noise. Social noise is implemented with the aid of a social exploration factor which is 
the probability that an infant will encounter a non-kin agent belonging to a larger 
group of predefined agents (the interaction factor is the total number of agents that 
form an infant’s social environment, kin and non-kin). Signal noise is implemented as 
a probability with which the received signal from another agent will be mutated to a 
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random value (again in the range [0,1]). Even when noise is present, the infants are 
still able to develop higher affinities with kin than with other agents. 

In figure 5, we replicate the experiment of [3] as can be implemented in our system: 
we examine role model or fitness-based matching and random matching as social 
interaction rules in place of our kin-based rule. Fitness-based matching means that an 
adult is selected for interaction by an infant with a probability proportional to its 
communicative fitness, that is in our case its average affinity with the agents it interacts 
with. Although the system is expected to be self-catalyzed by its own behavior 
(accidental communicative success will lead to higher probability to interact again in 
the future), it does not seem to allow consistent development of higher affinity with 
interacting agents. This is obvious in figure 5b, where the affinities for one particular 
infant are depicted: average kin affinity fluctuates above and below the average adult 
affinity levels without being able to settle (notice that in this case, where no kinship is 
defined, what we measure as kin affinity is actually the affinity with the interacting 
agents). The results are similar in the case of random matching. The lesson that can be 
drawn from this experiment is that informed matching is unnecessary for development 
of affinity with other agents; rather a blind observational imitation mechanism is 
sufficient, as has been also pointed out by [15]. 

Our final experiment, whose results are given in fig. 6, involves cultural learning 
from generation to generation. More specifically, we design a system where after 100 
cycles of execution (recall that, as shown in previous figures, the populations stabilize 
in less than 30 cycles), the whole population is replaced by a new population where 
the adults are swept from the system, the infants become adults with no possibility to  
 

  

 

Fig. 5. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, M=1, imitation factor = 1, no noise. 
(a) Fitness-based matching, average population measurements, (b) One typical infant’s 
measurements in the previous experiment, (c) Random-based matching, average population 
measurements. 
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Fig. 6. (x=generation, y=affinity in [0,1]) 10 adults, 10 infants, kin factor = 2, M=5, imitation 
factor = 3, no noise. 15 generations of 100 cycles each. 

imitate anymore and newly born, randomly initialized infants enter the population in  
the place of the former infants. We run this system for a number of generations and  
we find, not too unsurprisingly, that subsequent generations achieve much higher 
average adult and kin affinity scores, approaching the theoretical maximum of 1, even 
for big language sets (M=5, imitation factor=3 in the example). This is an example of 
how the Baldwin effect [16] can arise in the cultural domain: cultural instead of 
genetic inheritance combined with generation overlapping can play the role of the 
acquired features transmission mechanism, thus in the long term leading to a system 
that has learnt adaptive or even “optimal” behaviors. It also parallels the results of 
[17] who also found that language becomes highly regular if it is transmitted from 
generation to generation. Finally, this result further supports our initial hypothesis that 
the communicative function of an individualistic sign system can evolve after the 
structural apparatus for proto-imitation is in place: it is not difficult to imagine that an 
initial Babel population of agents with fully diverse vocalization sets endowed with 
such a rudimentary imitation mechanism can develop and “discover” a few 
generations later that signs are shared and can use them in a communicative manner, 
although the mechanics of such an extension will be most probably fairly complex. 

4   Experiments II: Social Structure and Individual Development 

Having completed the experiments of the previous section, we wondered how the 
otherwise obvious infant-adult attachment relations could be dissected in detail so as  
to identify exactly how social structure, age or developmental differences can influence 
the emergence of affinity or dynamic kinship in agent populations. In figure 7, we  
give the results of a single-parent system where one infant is reinitialized with a new 
parent before stabilization. Correspondingly, figure 8 gives the results of a single-
parent system where one infant is reinitialized with a new parent after it has stabilized. 
In both cases, if the agent is given enough time it can find the new stable position of 
maximum affinity with the new parent. However, re-initialization slows down the 
learning process because the infant frequency system at reinitialization is not 
completely random but more or less tuned to the former target, thus re-learning is 
slower than initial learning. 
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Fig. 7. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, kin factor = 1, M=3, imitation factor = 
2, no noise. At t=10 reinitialization of an infant with a new parent. (a) Average population 
measurements, (b) The infant measurements. 

  

Fig. 8. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, kin factor = 1, M=3, imitation factor = 
2, no noise. At t=30 reinitialization of an infant with a new parent. (a) Average population 
measurements, (b) The infant measurements. 

 

Fig. 9. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, kin factor = 1, M=3, imitation factor = 
2, no noise. At t=30 allow infants to match randomly and imitate all adults. Average adult 
affinity does not change. Compare the second part of the chart (after t=30) with figure 5c. After 
the system has stabilized, random matching and imitation does not seem to harm. 

A final experiment concerning the passage to adult age consists in reverting to 
random matching and imitation when the system has stabilized. In this case, counter-
intuitively, the average adult affinity does not drop, but the average kin affinity drops 
and fluctuates a little above the adult level (fig. 9). This result combined with the  
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Fig. 10. (x=time, y=affinity in [0,1]) 10 adults, 10 infants, M=3, imitation factor = 2, no noise. 
(a) Every infant has one parent and one friend infant. (b) Every infant has two parents and as 
many brethren as defined by shared parental links. 

  

Fig. 11. No adults, 20 infants, M=3, imitation factor = 2, no noise, random matching model. (a) 
(x=time, y=affinity in [0,1]) Average population affinity, (b) (x=time, y=signals in [0,1] x 100) 
All 20 agents vocalizations for one of the objects. If given sufficient time, they converge to one 
common vocalization for all agents. Vocalizations are amplified for visualization purposes. 

previous ones means that the proto-imitative system is very vulnerable during 
stabilization from a random starting point but fairly robust when stabilized. 

Because in reality, a young agent does not only interact with adults and it is not 
logical to assume that even then it only imitates adults, we extend the kinship 
relations by including either random other infants (friends) or the brothers of the 
infant. In figure 10, we give the results of a pair of such experiments. In both cases, 
and despite inferior convergence to high kin affinity values, there is clear separation 
of the trends for average adult and average kin affinity. 

Although the distinction between infants and adults is defined only with respect to 
their ability to imitate, it makes sense to investigate what would happen in the extreme 
case of an all-infant population with random interactions. As shown in fig. 11, the 
system develops very high average affinity close to the theoretical maximum of 1. 
Interestingly, if given enough time such a system converges to a single shared 
language (and this is why final average affinity is so high). So, what can only evolve 
culturally if age-dependent or other imitation differences exist, can appear within one 
generation that is imitative and initially “tabula rasa”. Once more this supports our 
hypothesis that proto-imitation precedes any notion of communication, it is purely 
reactive and does not need any association with meaning. Associations and the 
discovery of communicative value only come at a later stage. 
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5   Conclusion 

We have presented a model of generative proto-imitation of signals without 
association with an external meaning. Our model purported to show that an initial 
non-functional “Babel” of diversely vocalizing agents, if endowed with a non-
associative proto-imitation mechanism, allows communication to emerge at a 
subsequent, possibly associative, stage. We have shown how our model can yield a 
wealth of population phenomena that are generally taken with given explicit 
associations and especially how affinity can develop between initially tabula rasa 
imitative infants and adult agents to which infants are attached in a variety of ways. 
Other prominent results include the cultural development from generation to 
generation and convergence to one single “language”, as well as an impressive one-
generation convergence in the case an all-infant population. Immediate future work 
underway includes both an extension of the model with an association component as 
well as experimentation with explicit agent development that is absent in the current 
version of the model. 
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Abstract. We present an approach for automated design of the functionary of 
driving agent, able to operate a software model of fast running car. Our 
objective is to discover a single driving rule (if existent) that is general enough 
to be able to adequately control the car in all sections of predefined circuits. In 
order to evolve an agent with such capabilities, we propose an indirect, 
generative representation of the driving rules as algebraic functions of the 
features of the perceived surroundings of the car. These functions, when 
evaluated for the current surrounding of the car yield concrete values of the 
main attributes of the driving style (e.g., straight line velocity, turning velocity, 
etc.), applied by the agent in the currently negotiated section of the circuit. 
Experimental results verify both the very existence of the general driving rules 
and the ability of the employed genetic programming framework to 
automatically discover them. The evolved driving rules offer a favorable 
generality, in that a single rule can be successfully applied (i) not only for all 
the sections of a particular circuit, but also (ii) for the sections in several a priori 
defined circuits featuring different characteristics. 

1   Introduction 

The success of the computer playing sport games (e.g., chess [7], checkers, 
backgammon, tic-tac-toe [2], etc.) has long served as touchstone of the progress in the 
field of artificial intelligence (AI). The expanding scope of applicability of AI for the 
implementation of an agent with autonomous “learning” abilities includes soccer [9] 
and F1 racing [15] etc. [4], etc. Focusing in the domain of computerized car racing, in 
this work we consider the problem of the automated design of driving agent, able to 
operate a model of a fast running car. In order to drive a car fast around the circuit, 
the driver needs to define the best driving line and the way of approaching turns in the 
circuit. To realize the optimal line, the driver (agent) is also required to make a 
precise judgment about the state (i.e., position, orientation and velocity) of the car and 
its surrounding (distance to the apex of the turn, apex homing angle, etc.) and to react 
timely and precisely. 

The objective of our work is to design the functionality of a driving agent, able to 
control a fast running software model of the remotely controlled scaled racing car in 
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various circuits with diverse characteristics. The agent should be able to learn the 
most general rules about how to control the fast running car not only on a particular 
circuit, but also on several a priori defined circuits. The possibility to discover such 
general driving rules (if existent) implies that the agent, when trained on a set of 
circuits with diverse characteristics, would be able to optimally control the car in 
unknown circuits with the need of a little (if any) adaptation. The very feasibility to 
develop such a universal agent would open up opportunities to build a framework of 
adaptive racing games in which the human competes against the computerized racer 
in dynamic or a priori unknown (e.g., user-defined) tracks and dynamically 
changeable (moving cars, obstacles, etc.) environments. The proposed approach could 
also be applied for automated design of the control software for navigation of 
remotely operated vehicles capable to find an optimal solution to various tasks in 
uncertain and dynamic environment. 

Achieving our objective implies that the following four tasks should be addressed: 
(i) formalizing the driving style by defining the set of its key parameters, (ii) defining 
the notion of general driving rules that, when applied in the context of the concrete 
features of the current surrounding of the car, would yield concrete values of the key 
parameters of the driving style, (iii) defining the set of relevant features of the 
surrounding, that would facilitate the creation of general driving rules, and (iv) 
developing an algorithm paradigm for automated determination of the fastest, yet 
general driving rules, which yield concrete, optimal values of the parameters of the 
driving style when applied for the currently negotiated section of the circuit. 

The related work by Suzuki and Floreano [10] demonstrates the feasibility of 
applying an active vision for landmark navigation of a scale vehicle. Wloch and 
Bentley [15] applied genetic algorithms for automated optimization of the setup of the 
simulated racing car. Togelius and Lucas [14] used scale models of cars in their 
research to demonstrate the ability of the artificial evolution to develop optimal 
neurocontrollers with various architectures. Our previous work [13] shows that with 
addressing the video feedback latency through an anticipatory modeling a human 
competitive driving agent could be automatically evolved via genetic algorithms. 
However, in [13] we considered an agent obtained as a result of time-consuming 
simulated evolution on a single, a priori known circuit, and how well the agent would 
perform in unknown circuits was considered as beyond the scope of our work.  

In this work we attempt to address the problem of generality of the optimized 
driving agent by proposing an evolutionary framework, able to develop optimal, yet 
general driving “rules”, rather than concrete optimal values of the driving style 
parameters. We shall verify the generality of applying the evolved single rule both for 
all the sections of a single circuit, and for all the sections of several a priori known 
circuits with different characteristics. 

The remaining of this document is organized as follows. Section 2 explains the 
configuration of the system. In Section 3 we formalize the driving style and introduce 
the notion of driving rules. Section 4 explains the main attributes of the algorithm 
paradigm employed for evolution of the fastest, yet general driving rules. Section 5 
presents the experimental results, and Section 6 draws a conclusion. 



490 I. Tanev et al. 

2   Modeled Configuration of the Physical System 

2.1   System Configuration 

In our work we use a software model of the scaled (1/24) racing car. The main 
mechanical characteristics of the car are as elaborated in [12]. The perceptions of the 
agent are modeling the real physical system on which an image feed is obtained from 
a video camera mounted overhead. The camera features a CCD sensor and lenses with 
wide field of view (66 degrees), which allows to cover a sufficiently wide area of 
about 2800mm x 2100mm from an altitude of about 2200mm. The camera is modeled 
to operate at 640x480 pixels mode, scaling down the scene to about 4mm per pixel. 
The video sampling interval is 30ms, and the video feed latency is 90ms. 

The car is operated by the agent via modeled ratio remote control with functionality 
including “forward”, “reverse” and “neutral” throttle control commands and “left”, 
“right” and “straight” steering controls.  

2.2   Software Simulator 

The developed software simulator of the car and the environment allows to (i) 
"compress" the runtime of the fitness evaluation in the eventual implementation of 
agent's evolution and (ii) to verify the very feasibility of certain circuit configurations 
without the need to be concerned about the risks of possible damage to the 
environment or the car [12]. Furthermore, the internal model of the car and the 
environment comprises the kernel of the developed simulator. This model is 
continuously applied by the driving agent in order to anticipate the intrinsic, yet 
unperceivable state of the car from the currently available (outdated) perceptions. The 
model, calibrated with the concrete values of car’s parameters (e.g., mass, turning 
radius, max velocity, max acceleration, max deceleration, etc. [12]) takes into 
consideration (i) the Newtonian physics of the car including the handling attitude of 
car on cornering (neutral steering, oversteer and understeer), and (ii) the feedback 
latency of 90ms. 

The complexity of the effects of handling attitudes of the cornering car (e.g., 
understeer, oversteer, and neutral steering) on the lap time renders the task of 
optimizing the driving style of the agent quite challenging [13], which additionally 
motivated us to consider an automated evolutionary approach to address it. 

The realism of the model of the car is proved by the very limited need of 
adaptation to the physical system of the agent, initially evolved in the model [12]. 
Also, the realism is indirectly indicated by the consistence of both the obtained 
driving lines and the lap times of the physical car around predefined circuits [13], 
which is attributed to the negligibly small difference between the intrinsic, but 
unperceivable state of the car (i.e., position, orientation, and velocity) and the state, 
anticipated from the outdated perceptions. 

3   Representation of Driving Rules 

Achieving our objective to design a general driving agent, able to control the model of 
car in various circuits with diverse characteristics implies that we shall address the 
following four tasks:  
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(i) How to formalize the driving style by defining the set of its key parameters, 
(ii) How to define the notion of general driving rule, 
(iii) How to define the set of relevant features of the current surrounding of the car, 

that would facilitate the creation of general driving rules, and  
(iv) What algorithm paradigm could be used for automated evolution of fastest, yet 

general driving rules, which yield concrete, optimal values of the driving style 
parameters when applied for the currently negotiated section of the circuit? 

In this Section we elaborate on the former three, while in the following Section 4 we 
discuss the latter of these tasks. 

3.1   Parameterization of the Driving Style 

We consider the driving style as the driving line, which the car follows before and 
around the corners in the circuits, combined with the breakdown of the speed, at 
which the car travels along this line. Our choice of parameters of the driving style is 
based on the view, shared among the high-performance drivers from various teams in 
different racing formulas, that (i) the track can be seen as a set of consequent turns 
they need to optimize divided by simple straights, and that (ii) the turns with the 
preceding straights should be treated as a single whole [1][3]. Based on these 
standpoints, we introduce the following set of four key parameters of the driving 
style, pertaining to each of the turns of the circuit: 

(i) Approach (homing) angle – the constant bearing of the apex of the turn. Higher 
values of the latter parameter yield wider driving lines featuring higher turning 
radiuses, 

(ii) Straight-line velocity - the velocity at which the car approaches the turn,  
(iii) Turning velocity – the velocity inside the turn, and  
(iv) Throttle lift-off zone – the distance from the apex at which the car begins 

slowing down from the straight-line velocity to the turning velocity. 

Notice that the first parameter solely defines the driving line, and the latter three 
parameters define the breakdown of the velocity along this line. 

Viewing the desired values of these four parameters as values that the agent tries to 
maintain, the functionality of the agent can be algorithmically formalized in a way as 
shown in Figure 1. The usage of the values of the key driving style attributes are 
underlined in the figure and indicated as “desired”. As Figure 1 illustrates, both the 
orientation (lines 7-10) and the speed (lines 12-15) of the car are continuously 
adjusted in order to match the desired values of the corresponding attributes. The 
open-loop adjustment of the car’s velocity (lines 13 and 14) is implemented by 
macro-commands ShiftGear(Gear), implemented via pulse-width modulation of 
the sequence of “forward” and “neutral” throttle commands with duty cycle of 120ms 
(4 sampling intervals). The possible values of the input parameter Gear (and, 
consequently, the possible values of the driving style parameters “Straight-line 
velocity” and “Turning velocity”) are 1, 2, 3 or 4, which correspond to the duty ratios 
of PWM of 0.25, 0.5, 0.75, and 1 respectively.  
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1. At each time step do begin 
2. //--- Perceptions: 
3. Obtain the agent’s perceptions of car’s state: position (P), orientation and speed (V);
4. Obtain the agent’s perceptions of the environment: approach angle (AA), and distance (AD) to the current apex 
5. //--- Reaction of the agent to the current perceptions 
6. //--- A) Steering control: 
7. if (AA> Desired AA) and (abs(AA - Desired AA)> Desired Threshold AA)
8.    then SetSteering(Left) 
9.    else if (AA< Desired AA) and (abs(AA - Desired AA)> Desired Threshold AA)

10.                 then SetSteering(Right)    else SetSteering(Straight); 
11.//--- B) Throttle control: 
12. if AD > Desired Throttle Lift-off Zone
13.     then ShiftGear (Desired Straight Line Gear)
14.     else ShiftGear (Desired Turning Gear);
15. end  

Fig. 1. Functionality of driving agent 

Compared to the typical approaches of polynomial (spline) interpolation of curves, 
the use of the single parameter “Approach angle” to solely define the driving line 
significantly simplifies the representation of the driving style which, in turn reduces 
the search space of the simulated evolution which is intend to employed for 
automated optimization of driving rules. Fixing the homing angle of the car implies 
that the driving line is interpolated as an equiangular spiral. The proposed approach is 
inspired by the smooth decrease of the turning radius (and the corresponding optimal 
cornering velocity) along the spiral, which gives the agent an opportunity to 
smoothly, and progressively apply both the steering and the brakes as the car 
negotiates the turn. Moreover, “the smooth is fast” is among the most important rules 
in high-performing driving as the smoothness of both the radial (due to steering) and 
lateral (due to acceleration or braking) forces allows for a better control of the car 
near the traction limits of the tires [1]. The layouts of the roads in some highway 
junctions which can be approximated by equiangular spirals [6] could be viewed as a 
verification of the technical plausibility of the proposed an approach. 

3.2   Representation of the Driving Rules 

The driving rule in the proposed approach defines how to compute the four key 
parameters of the driving style for the currently perceived surrounding of the car. We 
implement the driving rule as a set of four evolvable algebraic functions. Each one of 
the four parameters of the driving style is associated with exactly one algebraic 
function and the value of the corresponding parameter is set to the value of the 
function, evaluated for the concrete features of the currently negotiated section of the 
circuit. Therefore, the same driving rule might potentially yield different values of the 
four driving style parameters when evaluated in different sections of the circuit. The 
relevant features of the currently negotiated section of the circuit are obtained from 
the features of the waypoint (or turn) at which the car is currently homing (Figure 2): 
(i) the length of the vector from the previous to the current waypoints dist_p_c, (ii) 
the length of the vector from the current to the next waypoints dist_c_n, and (iii) 
the angle between these two vectors angle_p_c_n.  
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Fig. 2. Relevant features of the currently negotiated section of the circuit comprising three 
waypoints #0, #1 and #2. The car is currently homing at waypoint #1. 

4   Evolution of Driving Rules 

We assume that the four key parameters of the optimal driving style around different 
turns of a circuit might feature different values, and that these values should be 
evaluated from a single driving rule comprising four algebraic functions (expressions). 
Therefore, the objective of automatic design of optimal driving rules can be rephrased 
as an automatic discovery of such a set of four expressions that yield optimal values  
of the four driving style parameters for each of the turns in given circuit. In this section 
we elaborate on the main attributes of the genetic programming (GP) framework  
[8, 11], employed for automated discovery of general driving rules. 

Table 1. Main Attributes of GP 

Category Value 
Function set { +, -, *, /  } 
Terminal set { dist_p_c dist_c_n, angle_p_c_n, random constant [0..10] } 
Population size 100 individuals 
Selection Binary tournament, selection ratio 0.1, reproduction ratio 0.9 
Elitism Best 4 individuals 
Mutation Random sub-tree mutation, ratio 0.01 
Trial interval Two laps around a predefined circuit 
Fitness Average lap time of two consecutive laps (ms) 

penalized with 0.6 ms for colliding with the “guardrails” 
Termination criteria Number of generations = 40 

 
 

The genotype in the proposed GP encodes for the evolving set of four algebraic 
expressions corresponding to the four parameters of driving style. The function set  
of GP comprises the addition, subtraction, multiplication and protected division 
operation. The terminal set consist of the three variables which correspond the three 
relevant features of the currently negotiated section of the circuit (as shown in Figure 2) 
and a random constant within the range between 0 and 10. The main attributes of GP are 
summarized in Table 1. 

Considering the evolving rule as a genotype and the evaluated concrete values of 
the four parameters of driving style as a phenotype, the fitness evaluation of GP is 
accomplished in the following two phases: 
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(i) Developing the genotype into phenotype by setting the values of the four 
parameters of the driving style associated with each of the turns of circuit to the 
concrete values evaluated from the four expressions comprising the driving rule 
(Figure 3), and  

(ii) A time trial of the car operated by the driving agent governed by the evaluated 
values of the four driving style parameters.  

Driving rule (evolved genotype) 
Approach_angle = FA( dist_p_c, dist_c_n, angle_p_c_n ) 
Straigh_line_speed = FSLS ( dist_p_c, dist_c_n, angle_p_c_n ) 
Cornering_line_speed = FCS( dist_p_c, dist_c_n, angle_p_c_n ) 
Braking_zone = FBZ ( dist_p_c, dist_c_n, angle_p_c_n ) 

(a)

Concrete values of parameters of driving style  
for all the turns (waypoints) in the circuit (phenotype) 

Turn #0: 
Approach_angle = <Concrete value evaluated from FA>
Straigh_line_speed =<Concrete value evaluated from FSLS>
Cornering_line_speed =<Concrete value evaluated from FCS>
Braking_zone = <Concrete value evaluated from FBZ>

Turn #1: Concrete values of the same four parameters
Turn #2: Concrete values of the same four parameters 
…
Turn #N-1: Concrete values of the same four parameters 

Time Trial 
Controlling the car according to the concrete values 
of driving style parameters for the current section of 
the circuit. For the currently displayed position of 
the car, the values of the parameters for Turn #1
(Waypoint # 1) are applied. 

0

1

2

(b) 

 

Fig. 3. The fitness evaluation accomplished in two phases: (a) developing the genotype (driving 
rule) into the phenotype (values of the driving style parameters), and (b) time trial with the 
driving agent being governed by the evaluated values of the four driving style parameters 

5   Experimental Results 

We conducted an experiment on evolution of the driving rules in order to verify the 
ability of the proposed evolutionary approach to automatically discover (if existent) a 
single driving rule that is general enough to be able to adequately control the car 
around all the turns in a predefined circuit. We considered the following four circuits 
featuring different characteristics: an O-shaped (two right, single-apex turns), 8-
shaped (a right and a left, double-apex turns), S-shaped (a series of right and left 
turns) and 2S-shaped (concatenated two S-shaped) circuits. The results of fitness 
convergence aggregated over 20 independent runs of GP and the driving line of the 
car controlled by a sample best-of-run driving rule are illustrated in Figure 4. As 
Figure 4 shows, the average of the best lap time over all runs improves from 3850ms 
to 3600ms for O-shaped (Figure 4a), from 5410ms to 5000ms for 8-shaped (Figure 
4b), from 4800ms to 4120ms for S-shaped (Figure 4c), and from 7810ms to 7060ms 
for 2S-shaped (Figure 4d). The result of the evolution of driving rules on all four 
circuits, intended to verify the generality of the evolved driving rules across several 
circuits with diverse characteristics is shown in Figure 4e). As Figure 4e) illustrates, 
the aggregated lap time improves in average from 25430ms to 21520ms within 40 
generations.  
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Fig. 4. The fitness convergence and the driving line of a sample best-of-run driving rules, 
evolved in 20 independent runs on O- (a), 8- (b), S- (c) and 2S-shaped circuits (d), respectively. 
The results of evolution on all four circuits are shown in (e), and the sample best-of-run driving 
lines are depicted in (f). 

Table 2. The values of the driving style parameters, evaluated from sample evolved best-of-run 
driving rule controlling the car as illustrated in Figure 5 

# CS Straight-line Gear Turning Gear Approach angle, degrees Throttle lift-off zone, mm 
0 4 1 17 380 
1 4 1 48 460 
2 4 1 44 120 
3 4 1 37 140 
4 4 1 11 370 
5 4 1 17 170  

 
The emergent driving line with the breakdown of the velocity of the car governed 

by sample evolved best of run driving rule on 2S circuit is shown in Figure 5. The 
corresponding values of the driving style parameters, computed for each of the six 
waypoints of the circuit are shown in Table 2.  

In order to estimate the degree of optimality of the evolved general driving rules, 
we conducted a comparative analysis of the lap times of the agent governed by these 
general rules with the lap times of the agent controlled by the values of driving style 
parameters, directly evolved for each of the turns of the considered circuits. In order 
to directly evolve these values, we employed genetic algorithms (GA) with the main 
attributes which are identical to those of the GP used for evolution of the driving 
rules. AS the results, summarized in Table 3 indicate, the driving rules evolved via 
GP on particular circuits performs equally well (and, occasionally even better) than 
the fixed, well-tailored (via GA) values of the driving style parameters. The maximal 
degradation of about 7% of the lap time associated with the driving rules in S-shaped 
circuit indicates the favorable generality of the evolved driving rules. 

The slight superiority of the evolved driving rules over the optimized values of 
driving style parameters in O-shaped and 8-shaped circuits (3.1% and 0.2% faster,  
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Fig. 5. The driving line and the breakdown of velocity of the car controlled by evolved sample 
best-of-run driving rule. The start-finish line of the illustrated 2S circuit is located next to the 
waypoint #0. The running direction is clockwise. The principal points of lap are marked with 
the timestamp information (the time into the lap) and the velocity of the car.  

Table 3. Comparison of the lap times obtained through a direct optimization of the driving style 
parameters employing GA and the driving rules, evolved via GP 

Circuit O-shaped 8-shaped S-shaped 2S-shaped 
Evolutionary 

approach
Lap

time, ms Degradation, % Lap
time, ms Degradation, % Lap

time, ms Degradation, % Lap
time, ms Degradation, % 

GA for a particular circuit 3721 --- 5011 --- 3848 --- 6684 --- 
GP for a particular circuit 3604 -3.1 5002 -0.2 4120 7.0 7060 5.6 

GP for all four circuits 4095 13.6 5430 8.4 4725 22.8 7219 8.0  
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Fig. 6. Fitness convergence of 20 independent runs of GA evolving the values of the four 
driving style parameters in O-shaped (a) and 8-shaped (b) circuits respectively 

respectively) can be explained by the reduction size of the evolutionary search of GP 
compared to that of GA. Indeed, as both the O-shaped and 8-shaped circuits feature 
identical turns, way the car negotiates these turns can be naturally expressed by a 
single driving rule. Conversely, GA needs to evolve the values of the driving style 
parameters for each of the turns separately, and the equality of the values of these 
parameters should be explicitly discovered. The presumed implications of the size of 
search space in both GP and GA for O- and 8-shaped circuits are illustrated by the 
corresponding fitness convergence characteristics. The fitness of GP converges faster 
(Figure 4a and 4b) than that of GA (Figure 6a and 6b), which suggests that a delaying 
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the termination of the evolution (e.g., by setting the termination criteria of GA to 
more than 40 generations) would facilitate the additional improvement of lap times. 
Consequently, the superiority of GP over GA on O- and 8-shaped circuits should be 
acknowledged only in the condition of the considered budget of the evolutionary runs 
of no more than 40 generations. 

6   Conclusion 

We presented an automated design of driving agent, able to operate a software model 
of fast running car and verified the ability of the employed evolutionary paradigm to 
automatically discover a single driving rule that is general enough to adequately 
control the car around all the turns in a predefined circuit. The optimality of the 
evolved general driving rules is shown by the favorable comparison against the 
corresponding lap times obtained by direct evolutionary optimization of the values of 
the main driving style attributes. 

In our future work we are planning to investigate how well the rules, evolved in 
predefined circuits would perform in a priori unknown circuits. Also, we contemplate 
a possible need of adaptation of the driving agent evolved in predefined circuits to the 
characteristics of unknown ones. 
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BehaviorSim: A Learning Environment for  
Behavior-Based Agent 

Fasheng Qiu and Xiaolin Hu 
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Abstract. Behavior-based control is one of the fundamental control paradigms 
for autonomous agents to achieve adaptive behavior in a dynamical 
environment. Existing work has mainly focused on the research aspect rather 
than on the learning and educational aspect. This paper presents an effort to 
develop a learning environment for behavior-based agents. It allows educators 
and students to develop and exercise behavior-based control by setting up 
entities, behaviors, and behavior networks without involving significant 
programming effort. Specification of behavior-based agent system is presented 
and demonstrative examples are provided.  

Keywords: Learning environment, BehaviorSim, behavior-based control, be-
havior network, action selection mechanisms.  

1   Introduction 

Behavior-based control is one of the fundamental control paradigms for autonomous 
agents to achieve adaptive behavior in a dynamical environment [1], [2]. It finds 
applications in many different fields such as robotics, AI, computer game design, and 
social crowd simulations. The behavior-based control features a set of behaviors 
working in parallel, each of which corresponds to a specific behavior of the agent. 
This results in a distributed control paradigm as oppose to the centralized deliberative 
control. Despites the tremendous work in behavior-based control, existing work has 
mainly focused on the research aspect rather than on the learning and educational 
aspect. It requires significant experience as well as programming skills in order to 
implement a behavior-based application, thus makes it difficult for beginners to learn 
and exercise the behavior-based control paradigm. This paper presents an effort to 
develop the BehaviorSim environment that supports learning of behavior-based 
control by defining simulated agents in an intuitive manner corresponding to the 
behavior-based paradigm. It allows educators and students to develop and exercise 
their own behavior-based applications by setting up entities, behaviors and other 
primitives without involving significant programming effort. The term “behavior-
based agent” used in this paper is adapted from behavior-based robotics [3]. Here an 
agent is a general term that can be a robot, an animat, an artificial agent in AI, a 
character in game design, or a simulated individual in social crowd simulation. 

One of the major challenges of developing a learning environment for behavior-
based control is to adopt a general and well-defined architecture to capture the 
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essence of behavior-based control. Such an architecture should also be intuitive 
enough to allow beginners to easily understand and grasp it. Unfortunately, behavior-
based control has taken many different formats and currently there is no such a 
“standard” behavior-based architecture (see a discussion in [1]). Several basic 
architectures exist, such as the Subsumption architecture [4], Activation spreading 
network [5], and Motor schema architecture [3], each of which has a different 
working mechanism. Some also include concepts, such as “goal” in the Activation 
spreading network [5], that are not explicitly supported by others. Furthermore, there 
is no common definition of what is a behavior and different works may define 
behaviors at different levels of details. For example, the work of [6] allows high level 
behavior modules (called options) to be broken down into low levels modules and 
basic behaviors. The approach that we adopted in this paper is mainly inspired from 
three sources of work: 1) the neurobiological study, in particular Edwards’ work [7], 
of the mutual inhibition mechanism to account for animals’ adaptive behavior in a 
dynamical environment, 2) the work of behavior-based robotics [3], and 3) the work 
of “Boids” [8] that demonstrates a variety of steering behaviors in a simulated 
environment. Inspired from these works, we define a general framework that captures 
the key components of behavior-based control (see details in Section 3). More 
advanced features, such as multi-layer control, hierarchical behavior decomposition, 
and concepts such as motivations and emotions are not explicitly considered for the 
purpose of easy to learn for new beginners. However, these features could be made 
explicit in future extensions of this work.  

We embody these concepts in a mobile agent simulation environment where users 
can define and exercise their own behavior-based applications in an interactive way 
and immediately see how the agents work. The simulation environment is carefully 
designed so the defining of agents and their behaviors match closely to the major 
components of behavior-based control. Meanwhile, the environment is general 
enough to allow different users to define their own different applications (three 
demonstrative examples are given in section 6). It promotes an engaged learning 
environment where users can create, save, load, and modify their own behavior-based 
control applications.  

2   Related Work 

As a background of this work, we review several basic behavior-based architectures 
that are closely related to this work. Our review focuses on the aspect of action 
selection, i.e., how different behaviors are coordinated. According to [9], two primary 
coordination mechanisms are: competitive method where the output of the action 
selection is a single behavior; and cooperative method where the output is a 
combination of all the active behaviors. The Subsumption architecture [4], the 
activation spreading network [5], and some voting-based methods belong to the 
category of competitive coordination mechanism. The neurobiological work [7] 
studied an asymmetry mutual inhibition behavior network, where different behaviors 
mutually inhibit each other to compete for controlling a simulated crayfish model. At  
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any time only one behavior takes control. Thus it also belongs to the competitive 
coordination mechanism. The Motor schema architecture developed in [3] is based on 
a cooperative action selection mechanism, where the output of the system is computed 
by vector summation of all the schema output vectors. Other approaches such as the 
ones using principles of potential fields and behavioral blending also belong to the 
cooperation coordination mechanism.  

Compared to the research work in this field, less work has devoted to the learning 
and educational aspect of behavior-based control. In the limited work that we are 
aware of, the work of Reynolds’ Boids [8] has inspired many to learn the behavior-
based paradigm. The Boids website hosts a description of the model as well as an 
animation. It also shows a set of steering behaviors of autonomous agents such as 
pursue and evade, collision avoidance, and path follow. However, no environment is 
provided to allow users to define and experiment with their own simulated agents 
with behavior-based control. Several education-related works exist in the field of 
robotics. Blank et al. [10] introduced Pyro, a Python-based programming framework 
which provides a set of abstractions that allow students to write platform-independent 
robot programs. The work of [11] develops an agent-oriented behavior-based 
interface framework for educational robotics. Both of these works support behavior-
based control. However the main focus of their work is on learning and programming 
educational robots. Agentsheets [12] is an agent-based simulation environment that 
provides user-friendly and intuitive interfaces for users to configure their own 
simulations by specifying scenes and the action rules for different agents. Another 
agent-based environment used for educational purpose is Netlogo [13], which 
provides a multi-agent programmable modeling environment where a scripting 
language is provided to code the agent behaviors as different procedures. These 
environments do not explicitly focus on agents with behavior-based control. This 
paper is extended from our previous work [14] that describes an early design and 
implementation of the BehaviorSim environment.   

3   Behavior and Behavior Network 

A major work in developing the BehaviorSim learning environment is to adopt a 
behavior-based architecture that captures the essence of behavior-based control. To do 
that we need to have an unambiguous view of what is a behavior and how multiple 
behaviors work together. As mentioned before, we adopted an approach inspired from 
the neurobiological work of mutual inhibition, behavior-based robotics, and the work 
of Boids. Specifically, we view a behavior as an independent computation module 
that can fulfill some particular task for an agent. Each agent can have multiple 
behaviors that run in parallel. These behaviors form a behavior network that defines 
how different behaviors compete or cooperate with each other for controlling the 
agent. This behavior network and its working mechanism represent the behavior-
based control architecture and act as the decision making component of the agent. 
Below we describe the structures of behavior and behavior network used in 
BehaviorSim.  
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In general, a behavior is excited by some (external) sensory stimulus and/or 
(internal) states of the agent. It defines some actions to fulfill the task associated with 
this behavior. Based on this view, in BehaviorSim a behavior is characterized by three 
elements: an activation value, an excitation module, and an action module. The 
activation is a real number and represents the level of strength of this behavior. Its 
value is computed from two sources: 1) stimulus of the sensory inputs and/or internal 
states, and 2) inhibitions/excitations from other behaviors. This value is computed in 
every time step and used in the action selection of the behavior network. The 
excitation module defines how this behavior is excited by the sensory inputs and/or 
internal states. It returns a value (a real number) called excitation. In BehaviorSim, 
this module is specified by the user as a piece of code and is an essential part of a 
behavior. Two things are worthy to mention here. First, the concepts of sensing and 
internal states are not explicitly modeled by BehaviorSim. They are represented by 
methods and variables that the user can define and use based on their specific needs. 
Second, although BehaviorSim currently does not explicitly model concepts such as 
emotion and motivation, these concepts can be implicitly defined as properties of the 
agent and used by the excitation module to change the excitation of the behavior.  

The action module of a behavior specifies the actions that will be carried out by the 
behavior if it is selected (a selected behavior is also referred to as active). Similarly, 
this module is defined by the user as a piece of code and is an essential part of a 
behavior. Typically, a behavior’s action defines a “one-step” task, for example, 
returning a speed vector that drives the agent to move for one step (if it is active). 
However, there are situations where a behavior needs to supports a sequence of tasks 
in order. For example, considering a “dance” behavior of a mobile robot, if this 
behavior remains to be active, the robot should dance (move) in a particular order, 
e.g., moving left first, then right, then….  To support this kind of sequential task, a 
task queue can be set up in the action module. A task queue defines an array of tasks 
that will be sequentially executed as long as the behavior continues to be active. 
When all the tasks in the queue have been executed, the task queue is reset and then 
executed from the beginning again. A behavior’s task queue can be resumeable or 
non-resumeable. A resumeable task queue allows a re-activated (from non-active) 
behavior to resume from the task that was previously interrupted. This is useful to 
keep track of the progress of a task sequence and to continue the task from where it 
stops. A non-resumeable task queue is always reset if it is interrupted. Similar to the 
works [15], BehaviorSim allows a task queue to be set up in a hierarchical manner and 
supports both sequential tasks and concurrent tasks. Pseudo code of how to set up a 
task queue is provided in section 4.  

Multiple behaviors can form a behavior network that specifies how these behaviors 
compete or cooperate with each other. In BehaviorSim, a behavior network is 
characterized by three types of elements: a set of behaviors, an action selection 
mechanism, and a set of coefficients (or weights) that define the connections among 
the behaviors. The action selection mechanism defines how the set of behaviors work 
together. Currently, two action selection mechanisms, namely the mutual 
inhibition/excitation mechanism and the cooperation mechanism, are supported. 
Figure 1 illustrates these two mechanisms, where the blue circles are the behaviors.  
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The mutual inhibition/excitation mechanism is a competitive mechanism that 
allows only one behavior to be selected at any time step based on the winner-take-all 
principle. In this mechanism, different behaviors asymmetrically inhibit/excite each 
other through the inhibitory/excitatory coefficients, which define the level of 
inhibition/excitation. A coefficient is a real number ∈  [-1, 1] with a negative value 
meaning inhibition, a positive value meaning excitation, and 0 meaning no inhibition 
or excitation. The amount of inhibition/excitation from one behavior to another is 
computed according to the product of the first behavior’s activation and the 
corresponding coefficient. Formula (1) shows how a behavior (behavior_j)’s 
activation is calculated. In this formula, cij is the coefficient from behavior_i to 
behavior_j; Excitationj(Sj, Ij) represents behavior_j’s excitation, which is a function of 
the behavior’s internal states Sj and sensory inputs Ij. After all behaviors’ activations 
are calculated, the behavior network selects the behavior with the highest activation 
level as the winner behavior. This winner behavior controls the action of the agent for 
this time step. In the context of mobile agent, Formula (2) shows that the agent’s 
speed vector Sv is defined by the action (speed vector) of the winner behavior. Note 
that the Select() method selects the winner behavior by comparing the activations of 
all behaviors. Different from the mutual inhibition/excitation mechanism that selects 
only one behavior, the cooperation mechanism combines the actions of multiple 
behaviors based on the vector sum principle. The amount of contribution of each 
behavior is defined by a weight w ∈  [0, 1]. Formula (3) shows that in this 
mechanism, the activation of a behavior only includes the excitation part (since no 
inhibition/excitation from other behaviors). Formula (4) shows the speed vector Sv of 
the agent is calculated as the vector sum of the actions of those behaviors whose 
activations are greater than or equal to a pre-defined threshold Tthreshold.  

The set of coefficients (weights) of the behavior network plays important roles in 
selecting the winner behavior or in vector summing the actions of multiple behaviors. 
In BehaviorSim, the values of these coefficients (weights) can be defined as 
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constants, or be dynamically computed in every time step based on user-defined rules. 
For example, it makes sense to dynamically adjust the weights of different behaviors 
used in Formula (4) according to the current activations of those behaviors. The work 
of [16] shows another example where the mutual inhibition coefficients among 
behaviors are dynamically changed under different conditions.  

4   System Specification 

This section gives a formal description of a behavior-based agent system in 
BehaviorSim, followed by an algorithm for the action selection that describes how the 
simulation works. 

Behavior-based Agent System Specification 
In BehaviorSim, a behavior-based agent system is described by a tuple <World, 
Entities>, where World is the 2D environment and Entities is the set of entities.   

• The world is described by a tuple <Dimension, Type>, where Dimension 
specify the dimension of the 2D map. Type = {closed | open | rounded}, where 
closed means there exists a “wall” surrounding the field that prohibits mobile 
agents from moving outside of the field; open means the field is open thus 
mobile agents can move outside of the field and disappear; rounded means that 
an agent moving outside an edge of the map will automatically appear on the 
other side of the map. 

• The Entities includes a set of stationary entities and a set of autonomous 
agents.  
− A stationary entity represents a stationary environmental object such as 

food, obstacle, or a source for sensing or a destination point, meaningful 
for the autonomous agents. A stationary entity is described by a tuple 
<EntityId, Position, Dimension, Category, Property>, where EntityId, 
Position, Dimension are the identity, the position and the size of the 
entity; Category is the entity type, such as “food”, “obstacle”. Multiple 
entities can belong to the same category and thus share common 
information of the category. Property is a set of properties that describe 
domain specific information of the entity. For example, a food entity can 
have a property of amount.  

 Each property is described by a tuple < Value, Dynamics>, where 
Value is the value of the property and Dynamics is a function 
specifying how the value of that property may dynamically change in 
every time step. For example, considering the amount property of a 
food entity, the dynamics function amount = amount + 0.05 can be 
defined to indicate that the food amount will continuously grow (by 
0.05) in every time step.  

− An autonomous agent represents a behavior-based agent such as a robot, 
an animat, or a game character. It is described by a tuple <EntityId, 
Position, Dimension, Category, Property, Speed, Behavior network>, 
where EntityId, Position, Dimension, Category, Property are the same as 
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those of stationary entities. Speed represents the current speed vector of 
the autonomous agent. Behavior network is responsible for the decision 
making of the agent.  

 The Behavior network is described by a tuple <Behaviors, Action 
selection mechanism, coefficients/weights>, where Behaviors is a set 
of behaviors; Action selection mechanism= {mutual 
inhibition/excitation | cooperation}; and coefficients/weights are a 
list of coefficients/weights of the behavior network. Each behavior is 
described by a tuple <Activation, Excitation, Action>. See Section 3 
for more details.  

Both the Excitation and Action modules of a behavior can invoke method calls. 
BehaviorSim provides a set of primitive system APIs, such as move(speed, direction) 
to move an agent, that can be called by users when defining behaviors. Besides these 
system APIs, users can also define their own methods and use them in defining 
behaviors (each method essentially is to get or to set some properties of the 
corresponding stationary entities or mobile agents). For example, in the crayfish 
example shown in Section 6, a eat() method is defined and used by the action module 
of the eat behavior. This method decreases the amount property of the food and also 
increases the energy property of the crayfish. BehaviorSim also allows a user to set up 
a plan for a set of sequential tasks. This is achieved by a task queue. The pseudo-code 
bellow shows an example of defining a task queue. As can be seen, the task queue can 
be set up in a hierarchical way (see the composite_task, which has sub-tasks). 
Multiple tasks can also be added into the task queue as concurrent tasks (executed in 
one time step), or sequential tasks (executed in different time steps). In the code, 
atomic_task1 and atomic_task2 are concurrent tasks. 

If (condition is true) { 
   AddToTaskQueue(composite_task(...)) }  
else { 
   AddToTaskQueue(atomic_task1(...); atomic_task2(...)) 
   AddToTaskQueue(atomic_task3(...)) } 

 
Action Selection 
Action selection is conducted in a cyclic manner as the simulation proceeds. In every 
time step, each autonomous agent goes through the following major steps:  

1 Compute the coefficients/weights if they are not constants.  
2 Calculate excitation of each behavior: Excitationj(Sj, Ij) in Formula (1) or (3). 
3 For the mutual inhibition/excitation mechanism, calculate activation of each 

behavior using Formula (1). Skip this step for the cooperation mechanism. 
4 For the mutual inhibition/excitation mechanism, select the one behavior (the 

winner behavior) with the highest activation. For the cooperation mechanism, 
select all the behaviors whose activations are greater than the threshold.  

5 Execute the actions associated with the selected behaviors. For the mutual 
inhibition/excitation mechanism, only one behavior is selected, thus execute 
the action for that behavior. For the cooperation mechanism, vector sum all the 
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speed vectors returned from the selected behaviors’ action modules. In both 
cases, if there is a task queue defined for a selected behavior, reset the task 
queue if the queue is empty. Otherwise, execute the next task in the queue.  

6 The executed actions modify the properties of the corresponding entities.  

5   The BehaviorSim Environment 

The BehaviorSim software can be downloaded from http://www.cs.gsu.edu/~cscxlh/ 
BehaviorSim.htm. It allows users to define a simulation system including behavior-
based agents and then run simulations to see the result. It has four major windows: a 
system editor window, a category definition window, a behavior network editor 
window, and a simulation window. The first three windows allow a user to setup the 
agent system, to define a category, and to define the behavior network for an agent, 
respectively. The simulation window allows a user to run simulations and see the 
results. Figure 2 shows the system editor window and the behavior network editor 
window. To set up an application in BehaviorSim, the following four steps are 
generally followed: 1). Define entity categories using the category definition window. 
Set up the common properties and methods for that category. 2). Set up the entities in 
the agent system using the system editor window. This can be done by dragging and 
dropping a corresponding category icon into the world (see Figure 2(a)). 3). Define 
the behavior networks for autonomous agents using the behavior network editor 
window as shown in Figure 2(b), where behaviors and the behavior network can be 
specified. 4). After all configurations are done, run simulations to see how agents 
behave. All the configurations can be saved as a XML file that can be loaded and 
modified in the future. 

Navigation panel

World View Defined Category

   
Available Behaviors

Added Behaviors

Coefficients

Behavior Network
View

 
                   (a) System editor window                       (b) Behavior network editor window 

Fig. 2. User Interface of BehaviorSim 

6   Demonstrative Examples 

Three examples belonging to three different applications are developed to 
demonstrate the BehaviorSim environment. The first example is based on the work of 
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[7] to simulate a crayfish model in an environment with a food source, a shelter, and a 
predator. In this example, the crayfish has seven behaviors: escape (escape from 
predator), retreat (retreat to shelter), defend (defend against predator), swim, hide 
(hide in shelter),  forage (forage for food), and eat (eat food to gain energy). These 
behaviors form a mutual inhibition behavior network and enable the crayfish to avoid 
the predator, to find and eat food, and to find and hide in a shelter. Details of these 
behaviors (including their excitation formulas) and the behavior network can be found 
in [7]. The predator is also controlled by a behavior network with three behaviors: 
wander, avoid, and chase (chase the crayfish if it is in its visibility range). The food 
and shelter are two static entities, with the food having a property of food amount. 
The second example is based on the work of [16]. It concerns a dynamical team 
formation including six robots, one of which is explicitly specified as the team leader 
through its identity. Each robot has four behaviors: search to search for neighboring 
robots before forming a team, avoid to avoid collision with other robots, follow to 
follow its front robot, and wait to wait for its back robot during convoy. These 
behaviors form a mutual inhibition behavior network and allow randomly deployed 
robots to dynamically form a team (based on identity) and then convoy in a line 
formation. The set of behavior network coefficients change before and after a robot 
finds its neighboring robots. Details can be found in [16]. The third example is based 
on the work of Boids [8] to show a flock of creatures, each of which has four 
behaviors: random move, separation, alignment and cohesion. Random move moves 
the creatures in a random direction. The other three behaviors are simplified version 
of the ones described in [8]. These behaviors form a cooperation behavior network 
with the weight of each behavior proportional to the excitation of the behavior. Space 
does not allow us to elaborate these examples. The major configurations of these 
examples are summarized in Table 1. For each example, a simulation movie as well 
as the system model (the XML file that describes the configurations of the agent 
system) can be found at: http://www.cs.gsu.edu/~cscxlh/BehaviorSim.htm.  

Table 1. Three Demonstrative Examples 

Examples Stationary
entities

Autonomous
agents

Action Selection
Mechanisms

Behaviors Behavior network 
coefficient/weight

Crayfish 
behaviors 
simulation

1 food, 
1 shelter

1 crayfish, 
1 predator

M utual inhibition Crayfish: forage, hide, eat, retreat, 
escape, defend, swim
Predator: chase, wander, avoid

Constant 
coefficients

Robot team 
formation

N /A 6 robots M utual inhibition Avoid, follow, search, wait Dynamic coefficients

Boids N /A 15 boids Cooperation Random move, cohesion,
alignment, separation

Dynamic weights

 

7   Conclusion 

This paper presents an effort to develop BehaviorSim that is a learning environment 
for behavior-based agent. The environment is designed to allow users to define and 
play with the behavior-based control paradigm in a configurable manner. A 
specification of behavior and behavior network for the purpose of learning is 
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developed. BehaviorSim is currently incorporated into a modeling and simulation 
class to be used by students. Future work includes improving the usability of the 
software and adding more advanced features.  
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Abstract. We define a simplified analogue of a kite control task that requires, 
in its simplest form, a situated artificial agent to switch between two mutually 
exclusive behaviours. In more complex versions of the task, the agent is 
required to adapt to changes within its environment that occur on different 
temporal scales. We describe the failure to evolve successful agents when a 
decision threshold is defined artificially and conversely the evolution of 
successful agents when they themselves are allowed to determine their own 
threshold through interaction with the environment. Agents are demonstrated 
capable of adapting both their switching behaviour and spatial domain 
according to environmental changes on three temporal scales, on the fastest of 
which, the agents behave in an opportunistic manner. 

1   Introduction 

There are novel wind energy systems in development using tethered airfoils – kites, as 
the wind intercepting element. The kites require active control that ideally modulates 
the flight behaviour according to environmental conditions, often to maintain the 
operation of the system within certain hard limits of viability. Additionally, the most 
efficient currently posited system configuration requires alternation between two 
discrete modes of operation. The point of switching between these two, mutually 
exclusive actions or ‘behaviours’ could be determined by a simple but rigid threshold 
or heuristic that is predetermined. However, it is likely to be beneficial to have an 
adaptive strategy that modulates behavioural hysteresis actively through some 
mechanism that takes into account the current state of the agent and its environment. 

Here we present a simplified analogue or ‘toy version’ of the kite control task 
where an environmental resource with spatially heterogeneous distribution is 
exploited by an evolved agent. The task is designed so as to mirror key aspects of the 
kite control problem at a ‘higher’ level i.e. that of behavioural modulation and/or 
hysteresis without the complication and heavy computational burden of simulating the 
dynamics of kite flight, treated elsewhere [2,3]. The task is designed to be simple 
enough to allow evolution to proceed rapidly whilst still retaining a dynamical 
embodied interaction between the agent and its environment. Assessing the adaptive 
abilities of the evolved agents may indicate the  potential of evolutionary robotics for 
generating kite control behaviours. Additionally, determining the best way in which to 
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evolve adaptive behaviour in this simple analogue task may inform future work in 
generating similar behaviours in real kite control.  

2   Background and Motivation 

The use of power kites for production of renewable energy from the wind is highly 
attractive due to the prospect of accessing the stronger and more consistent winds at 
altitudes above that of conventional wind turbines. This is especially so given that 
power generated increases with the cube of the wind velocity [4,6], meaning large 
gains in power output per unit area of the wind intercepting element can be realised. 
The lack of requirement for expensive and visually intrusive towers and much 
reduced territorial occupation [4,5] compounds the potential socio-economic 
advantages of such systems.  

 

Fig. 1. Generation (reel out) phase A and retraction (reel in) phase B 

Most current concepts (for review see [5]) for implementing kite energy operate 
with two functional phases as per Fig. 1. In the first (A), the kite is steered actively 
through the airspace in order to increase the apparent wind speed across the kite. The 
kite therefore pulls its lines out from a reel at ground level which is coupled to a 
dynamo, thus generating electricity. We have demonstrated previously in simulation 
[2,3] that an evolutionary robotics approach can be used to produce neural network 
controllers that both find an optimal flight trajectory for phase A and maintain it in the 
face of significant environmental perturbations. (see Fig. 2, right). In the second phase 
(B), the lines are retracted with the kite controlled so as to reduce resistance, the 
process is therefore cyclical and sustainable indefinitely whilst the wind allows. As 
long as A produces more energy than consumed in B then there is a net gain of 
energy. The kite control problem has some further key characteristics, firstly, the 
environment is highly dynamic, both the wind speed and direction can change rapidly. 
Secondly there are some hard constraints within which the agent must operate in order 
to keep the kite aloft and not overpower the hardware, as discussed below. Given 
these characteristics a high quality controller will have to perform a) in-behaviour 
adaptive modification in order to maximise productivity whilst b) meeting the 
viability limits imposed by the operational constraints.  

Our exercise here of building a task analogous to the kite control problem is 
intended primarily to be informative as to the validity of an evolutionary robotics 
(ER) approach to tackling its behavioural aspects and to gain insight into how it might 
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best be implemented. With this analogous task, without necessarily expecting direct 
cross-applicability, we aim to address two components of the kite control problem 
that may benefit from an adaptive controller. The first issue is one of switching 
between the two separate behaviours, that of generation and retraction. There is some 
time or performance cost to the switching from generation to retraction, given that the 
kite should be ideally be steered to zenith or the side of the wind window in order to 
minimise both the force and the time required to retract the lines. A heuristic of 
switching at predetermined points at some sensible intermediate values has been 
employed previously in the literature [4] constituting one potential strategy. Another 
possibility is much more frequent alternation, whereby retraction occurs within a 
given portion of every figure eight trajectory as posited by Houska [6]. The latter 
strategy avoids some of the problems of the former one, namely a reduction in yield at 
lower altitudes, and that of potentially reaching a hard line length limit and resulting 
wasted generation time or hardware damage. However, by not placing the kite at 
zenith or windows edge, greater energy needs to be expended to retract the kite and 
the momentum of the kite is reduced. We intend to approach this trade-off with our 
toy problem using standard ER techniques, and the as yet unaddressed question of 
whether to modify the switching points according to environmental conditions, a 
question closely coupled to the second issue. 

This second issue is specifically related to the spatial distribution of the wind 
resource in relation to the kite tether point. As mentioned above, in normal wind 
conditions, the kite is steered in a looping pattern (see Fig. 2, right) directly 
downwind of the tether point (the ++ and + area in Fig. 2, left), in order to maximise 
the aerodynamic forces away from the reel and therefore the energy that is generated. 
However, in strong wind conditions, this strategy will generate forces that may 
damage the generating hardware, the kite, or its lines.  

                       

Fig. 2. (Left) The wind window concept. The most powerful portion of the window is signified 
by ++, less powerful by + and the least powerful by -. (Right) A plot of the trajectory of the kite 
wingtips in a 42 second trial as controlled an evolved neural network, starting from zenith. 

This overpowered situation can be prevented by simply avoiding the most 
powerful region of flight space. As the wind speed increases, the extent of the avoided 
region should increase. Conversely with a weak wind resource the agent must confine 
itself to the most powerful region of flight space. These changes constitute short term, 
reactive modifications to the kite’s spatial domain of activity and are the second level 
of adaptation that we shall address in the model. As we detail below, we intend to 
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explore how changes in the intensity of the light source on different temporal scales 
affect the agent and its behaviour. 

3   Methodology 

3.1   Agent and Task Design 

We have designed a task that captures some of the key properties of the kite 
generation strategy problem without the computational burden of modelling the 
aerodynamics of the kite. Our task is based around a simple 2 wheeled, 2 sensor agent 
(see Fig. 3, left) situated within an unbounded 2d area. The analogy for the flying 
lines is a battery, charged by an orientation independent ‘solar panel’ on the agent. As 
with the lines, there are upper and lower hard limits to the battery level. As success is 
judged by quantity of energy passed to the battery, the agent can score more highly by 
repetitively switching between charging and discharging the battery, corresponding to 
the reeling out and in of the lines respectively. 

The agent’s sensors are mounted 90 degrees apart on its perimeter, each has a 180 
degree range and provides a signal describing its local light intensity. Within the 
simulated environment there is a point source light which constitutes an energy 
resource which the agent must exploit, the equivalent of the wind in the kite control 
problem. As the intensity of the light drops away exponentially with distance from the 
source, there is light intensity  gradient which mirrors the wind window of the kite 
problem in that the energy resource is distributed spatially. This radial distribution 
regionalises the arena into 3 key areas as per Fig. 3 (right).  

As would be expected in a kite hardware implementation, and in common with 
conventional wind turbines, we implement both a plateau of the generation/charge 
rate at some moderate to high light level (line B in Fig. 3, right), and a ‘cut out’ at a 
higher level still, where the environmental power source, if it were coupled to the  
 

  

Fig. 3. (Left) A diagram of the agent and its neurocontroller architecture, light grey neural 
connections are feed forward, bold black neural connections are reciprocal with asymmetric 
weights. The battery connects to two input neurons, one connection carrying battery level data 
and the other, rate of change of battery level. (Right) Diagram of a portion of the experimental 
area, light source marked by the sun icon. Between line C and the sun marks the overpowered 
region, between B and C, the region where the charging rate plateaus. A marks the line at which 
the switching threshold is met. 
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generator, would overload and damage it. To mimic the reduction of line tension by 
spooling out the lines with the generator uncoupled, when a threshold point is reached 
corresponding to entering the area between line C in Fig. 3 (right), and the light, the 
battery continues to increase but the agent does not accumulate fitness until it leaves 
the region. If the threshold is exceeded when the battery is full, the agent is 
considered to be broken and the trial is ended prematurely, implications for the agents 
fitness as detailed below. Similarly, if the agents battery reaches zero, the agent has 
failed to collect sufficient energy from the environment and  the trial is also ended.  

In order to restrict the scope of the problem for ease of analysis and potentially 
increased evolution speed, we first simplify the problem of making some trade off 
between time cost of switching and energy required to switch by defining a lower 
force threshold at which switching automatically occurs. Once the agent crosses line 
A, at which point the battery charge rate input to the neural network will become 
negative, it commits to switch behaviour although the ‘decision’ to do so may have 
been made at some earlier point. As the boundary is determined by an environmental 
threshold independent of the agents activity, we term this regime ‘threshold 
switching’. We subsequently assess a variation in which the rules are unchanged, 
except that the agent has some control over its own switching point. This is 
implemented implicitly by introducing a battery cost to movement, if the agent stays 
still, it will charge until full at any point in the environment at a rate determined by 
distance to the light, it is movement at a speed which consumes more energy than is 
recouped from the environment that will drive down the battery. The agent in this 
scenario is forced to make a more complex, but more realistic trade off in that moving 
far from the high-quality resource will speed up discharging, but mean that for 
portions of the return journey, time is spent near energy neutral and at suboptimal 
charging speeds. We term this regime ‘enactive switching’. 

3.2   Neural Network and Agent Dynamics 

The neural network that drives the agents behaviour is a small continuous time 
recurrent neural network (CTRNN) of 4 input neurons, 3 hidden layer neurons and 2 
output layer neurons, with both inhibitory and excitatory connections permissible. 
Each of the four input layer neurons receives input constituting one of the following 
four data values; left light sensor value, right light sensor value, proportion of battery 
capacity remaining, battery charge rate. Each input neuron connects to every hidden 
and output layer neuron, but receives no other input (see Fig. 3, left). The hidden and 
output layer neurons are fully interconnected, connection weights are asymmetric. A 
single neuron derives its dynamics from Eq.1:  

( )j j j ij i ia a w oτ σ θ= − + −∑&  (1) 

θ is the bias term, w the weight and σ is the sigmoid function, τj is the neurons time 
constant, and oi the old activation values from the previous timestep. In the simulation 
neuron activation values are integrated using Euler integration with a timestep of 0.1. 
The sigmoided values of the two output neurons form the motor activation values for 
the left and right wheels respectively. Average wheel speed determines the agent’s 
velocity and difference in wheel speed determines the agents angle, dependent on the 
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agents diameter. The agents position is also determined by Euler integration with a 
step size of 0.1.  As the motivation of this work is to answer the questions whether ER 
can as tool generate the kind of switching behaviour required for kite control devices 
and how best to implement the ER strategy, we do not intend to analyse the network 
dynamics that result from the evolved weights. 

3.3   Genetic Algorithm and Trial Configuration 

We use a simple microbial genetic algorithm [1], with a population of genotypes or 
artificial ‘DNA’, randomly initialised, specifying possible parameter values. Pairs of 
neurocontroller parameter sets taken from the population of 20 have their 
performance evaluated. The winner overwrites the loser with small additive random 
mutations ±0.05 added to a random 50% subset of its parameter values. This process 
continues for several hundred iterations, each consisting of 10 competitive trials. For 
all tasks, fitness is judged by the amount that the battery is charged, over the time 
course of the trial. As the battery cannot be further charged once a hard upper limit is 
reached, and given that the trial length is set between 30 and 300 seconds such that 
the battery could be charged and discharged fully at least twice, the agent is 
effectively rewarded for switching between charging and discharging behaviour.  

We perform three sets of experiments, the common elements to which are as 
follows: for each of the five trials that constitute one evaluation, the agent is 
reinitialised at a new random orientation, in a random location within a square of side 
30 units. Its battery level is randomised between a minimum of 20 units and its 
maximum value of 60 units. Competing pairs share the same random initialisations 
for fair comparison. 

In the first set of experiments, we evolve the agent (1000 generations) to maximise 
charging when the light intensity value of 5 remains virtually constant between 
experiments (+- noise of 0.2). In the second we use a successful population from the 
first experiment as a seed for evolution (500 generations) during which we vary the 
intensity of the light from evaluation to evaluation within a range of 1 to 10. In the 
third, (500 generations) the intensity of the light is varied within each experiment, 
with either continual, linear slow increases/decreases that run the whole length of the 
trial, constituting a gradual trend, or immediate discontinuous jumps between the 
original and higher or lower intensity values, constituting ‘gusts’ and ‘lulls’. In this 
final experiment, we only judge the agent on its fitness in the second half of the 
experiment, the agent is therefore given an opportunity to have adapted to the changes 
in the environment after a period of unassessed interaction. 

4   Results 

The first and most salient result was the poor performance of the agents evolved 
under the threshold switching regime. Although some dozens of evolutionary runs 
were completed, most resulted in the agent approaching the light and either stopping 
in that position or moving in a small stereotypic trajectory near the light. This was 
also true when the population was seeded with successful phototactic agents. In doing 
so they successfully completed one behaviour but were unable to switch to another. 
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This incomplete strategy consisted of approaching the light and then successfully 
stopping in the plateau zone of the resource, but never moving from that position. Due 
to the failure on this simple task, threshold switching was not carried on to either of 
the other two tasks. 

In contrast, the controllers evolved with ‘enactive’ switching evolved a variety of 
switching strategies all of which involved repetitively moving closer and further from 
the light. Interestingly, even though these agents were not evolved under the rules of 
threshold selection, they performed equally as well and with the same apparent 
strategy when operating under those rules. They seemed to be capable of generalizing 
from the smooth gradient of switching that they were evolved under to a sharp 
threshold, and are therefore surprisingly independent of the need to control their rate 
of discharge, once the behaviour is fully evolved. All the subsequent plots are of the 
‘enactive switching’ evolved agents, but operating under threshold selection rules for 
clarity of interpretation. With the exception of one of several alternative suboptimal 
solutions shown in Fig. 4 (left), all plots are of the best performing agent from the 
best evolutionary run. After evolution, populations tended to be highly converged, 
with each agent from a given population pursuing near-identical strategies that were 
highly robust to changes in agent starting location or orientation and light dynamics, 
at least within ranges experienced in evolution. 

As the centre and right plots of Fig. 4 demonstrate, the agents skim the edge or just 
enter the middle ring that marks the region where charging rate plateaus. They then 
continue the same trajectory until they make an abrupt turn once in the discharging 
portion of the arena.  

 

   

Fig. 4. An interesting but sub-optimal strategy is shown (left). The first few passes of the 
trajectory of the best performing agent with light source intensity of 5 are shown (centre) as 
well as the trajectory at the end of the experiment (right). 

Although it is not immediately apparent from Fig. 4, Fig. 5 (right) shows how this 
cycle initially is skewed in favour of charging, resulting in a gradual accumulation of 
battery which then settles out and oscillates round some intermediate capacity value 
(c. 75% of capacity). After a further period of evolution with the light intensity 
varying between experiments by up to a factor of 10, the controllers were able to 
adapt well to changes in the light intensity. This seemed to be achieved by modulation 
of the turning angle on exit from the charging area, however as Fig. 6 (left) shows, the 
agent enters the charging zone at the same angle. Changing the discharge rate had a 
similar effect with wide turns keeping the agent in the discharging area longer when  
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Fig. 5. Plots demonstrating the accumulation of fitness over the experiment shown in Fig. 4 
(left) and the cycling of battery level in the same experiment (right) 

   

Fig. 6. Adaptation to an increased light intensity of 10 (left), lowered (centre) and elevated 
(right) discharge rates 

  

Fig. 7. (left) The modulation of trajectories with continuous and gradual increase in light 
intensity (1-20). The right plot compares the fitness of the agents with (dotted line) and without 
(solid line) additional evolution with dynamic light strength when exposed to rapid 
perturbations in light intensity. 

the discharge rate was lowered (Fig. 6, centre) and tight turns occurring when the 
discharge rate is elevated (Fig. 6, right). 

Finally, we compared the performance of the intensity-adaptive agents from the prior 
experiment with that of agents subject to further evolution in which the light intensity 
changed within the experiment on one of two temporal scales. When slow linear 
changes of intensity occurred, the performance of both sets of agents was essentially 
equal, all agents continuously modulating their trajectories as per Fig. 7 (left).  

However when the intensity changes were rapid, gust-like perturbations, there was 
a marked improvement in the population that was further evolved (see Fig. 7 right), 
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Fig. 8. A dual plot showing the change in battery level over time (solid line) concurrently with 
the sudden changes in the light intensity (dotted line) 

which accumulates fitness more slowly than the agents naïve to intraexperimental 
changes in light intensity, but this trade-off allows it to survive indefinitely in the 
highly dynamic environment. Fig. 8 illustrates that the strategy of the non-naïve 
agents in response to gust-like perturbations in light intensity is an opportunistic one, 
in which during a gust the agent is always charging and immediately after a gust, 
always discharging. Additionally Fig. 8 seems to imply that the agent takes the 
strategy of charging at an appropriate rate for its battery level, presumably by 
regulating its turns to lead it closer or further from the source according to its battery 
state as it approaches the turn.  

At the start, when its battery is relatively high, it takes relatively small quantities of 
the available increased resource within gusts, then after much charge is lost during the 
lull that begins at c.1600 timesteps, much more energy is extracted from the 
subsequent three gusts. When the variation stops at the end of the trial, the agent 
reverts to it’s default behaviour. The fact that neither the charge speed nor the 
reversion to oscillatory behaviour seems consistent is likely due to the agents natural 
in/out oscillations and the delay inherent in turning where the agent is slowed due to 
the forward operation of only one wheel. 

5   Discussion 

Perhaps the most pertinent lesson of this exercise for future applications of evolutionary 
robotics for actual adaptive kite control was the relative success of evolution using the 
threshold and enactive rules sets for switching between charging and discharging 
behaviours. Imposing a sharp, externally-defined boundary between two behaviours 
prevented evolution of successful agents, contrary to their enactive peers which, through 
their own interactions with the environment determined their own behavioural boundary 
or lack of it. Given this experience, it would certainly seem prudent to assess an similar 
strategy for evolving reel-in and reel-out behaviours for kite control, especially given 
that a sharp boundary could be subsequently imposed on the enactive switching agents 
in the toy case with little impact on performance, which may be a necessity due to 
hardware constraints in kite energy systems.  

The strategy of the most successful neurocontrollers as presented in Figures 4 
through 8 was an elegant one that defied our prior expectations of how the problem 
would be solved. Instead of heading directly for the energy source and then doubling 
back for discharging, the supposedly discrete behaviours were subsumed into one 
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action constituting a single pass. The ‘decision’ is then reduced to when, and at what 
angle to turn in order to start the next charge/discharge pair whose duration and 
outcome, in a static environment at least, is essentially predetermined. The ability of 
the evolved neurocontrollers to adapt to changes in light intensity and indeed 
discharging rates (Fig. 6) both between and within (Figs. 7,8) experiments dispelled 
our early concerns as to the fragility of this strategy. Given that here, supposed 
problems such as a trade off between persistence and dithering almost appear to be 
resolved almost by the environment itself, this type of behaviour seems best described 
as an ongoing interaction between the agent and its environment and less well 
described as one of discrete decisions at the top of a hierarchy being passed down to 
subordinate effector systems. This may be a product of the relative simplicity of the 
task and the lack of constraints on the network connectivity, indeed the imposition of 
symmetry or other neuroanatomically inspired constraints would be an interesting 
comparison, and could potentially generate more transparent internal dynamics.  

The final experiment in which neurocontrollers were further evolved with exposure 
to dynamical environments produced the unexpected result of two co-existing 
strategies. The standard light passing behaviour switched seamlessly into one in 
which the environment was permitted to almost completely dominate whether the 
agent charged or discharged. This apparently submissive behaviour was much more 
robust than that of the naïve agents, with the agent exerting a more subtle control by 
increasing or decreasing its exposure to resource variations in order to regulate its 
state to a level that was notably more conservative than in the prior experiments (50% 
vs 75%). A thorough analysis of this final behaviour in response to a range of gust 
intensities and durations and indeed more realistic variations in intensity would be 
enlightening and is the subject of ongoing work. 

In summary, this work has succeeded in its brief of informing future work in the 
control of kite energy systems at a behavioural level, specifically by suggesting that 
highly adaptive spatially embedded, behaviour-switching agents can be evolved if 
decision boundaries are determined by the agents themselves. The opportunistic 
behaviour seen in the most complex task bodes well for the application of ER to the 
development of kite control behaviours. 
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Abstract. A semiconductor manufacturing factory is a very complicated  
production system. Typical characteristics of a semiconductor manufacturing 
factory include: fluctuating demand, jobs with various product types and priori-
ties, un-balanced capacity, jobs’ reentrance to the bottleneck machines, hun-
dreds of processing steps, alternative machines with unequal capacity, etc. 
Scheduling in a semiconductor manufacturing factory becomes a very difficult 
task owing to these characteristics. To enhance the performance of dynamic 
scheduling in a semiconductor manufacturing factory, a self-adaptive agent-
based approach is proposed in this study. Firstly, a self-adaptive agent-based 
scheduling model, which integrates release control, dispatching and machine 
maintenance scheduling, is presented. Secondly, the negotiation protocol  
between agents is given. Thirdly, scheduling algorithms for decision making of 
agents are offered. Unlike in the past studies a single pre-determined scheduling 
algorithm is used for all agents, in this study every agent develops and modifies 
its own scheduling algorithm to adapt it to the outside conditions. Finally, pro-
duction simulation is also applied in this study to generate some test data to 
evaluate the effectiveness of the proposed methodology. 

1   Introduction 

A semiconductor manufacturing factory is a very complicated production system. 
Typical characteristics of a semiconductor manufacturing factory include: fluctuating 
demand, jobs with various product types and priorities, un-balanced capacity, jobs’ 
reentrance to the bottleneck machines, hundreds of processing steps, alternative ma-
chines with unequal capacity, etc. Scheduling in a semiconductor manufacturing fac-
tory becomes a very difficult task owing to these characteristics. Many studies have 
shown that directly applying common scheduling rules (such as first-in first out 
(FIFO), earliest due date (EDD), least slack (LS), shortest processing time (SPT), 
shortest remaining processing time (SRPT), FIFO+, SRPT+, and SRPT++) to a semi-
conductor manufacturing factory does not lead to very good results. Lu et al. [1] pro-
posed two scheduling rules (fluctuation smoothing policy for variance of cycle time 
(FSVCT) and fluctuation smoothing policy for mean cycle time (FSMCT)) which 
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were tailored to a semiconductor manufacturing environment and achieved good 
performances in reducing the cycle time averages and standard deviations. However, 
every resource in a semiconductor manufacturing factory fabricating 12 or 18 inch 
wafers is very expensive, and therefore to construct an intelligent agent for each re-
source in order to fully use the resource is a direction that can be studied. In this way 
it is also possible to further elevate the performance of dynamic scheduling (such as 
reducing the cycle time averages and standard deviations, minimizing the maximal or 
average tardiness, minimizing the number of tardy jobs, the speed of scheduling or re-
scheduling, etc.) in the semiconductor manufacturing factory. Recently, agent-based 
planning or scheduling ideas have been concentrated on by academies and industries 
[2]. Agent technology has been widely used in all kinds of manufacturing systems 
successfully. To further enhance the performance of dynamic scheduling in a semi-
conductor manufacturing factory, a self-adaptive agent-based dynamic scheduling 
approach is proposed in this study. Firstly, a self-adaptive agent-based scheduling 
model, which integrates release control, dispatching and machine maintenance sched-
uling, is presented. Secondly, the negotiation protocol between agents (applying the 
extended contract negotiation protocol (ECNP) [3]) is given. Thirdly, scheduling 
algorithms for decision making of agents are offered. Unlike in the past studies (e.g. 
[3]) a single pre-determined scheduling algorithm is used for all agents, in this study 
every agent develops and modifies its own scheduling algorithm to adapt it to the 
outside conditions. In this respect, Monfared and Steiner [4] developed a framework 
for the design and development of adaptive scheduling and control systems, by incor-
porating concepts and techniques from the fuzzy set theory, the control theory, and 
the optimization theory. Through mathematical modelling and simulation, a real-time 
fuzzy adaptive scheduling and control system was constructed for a fully automated 
manufacturing system. Finally, production simulation is also applied in this study to 
generate some test data to evaluate the effectiveness of the proposed methodology. 
Some existing scheduling rules are also applied to the test data to make a comparison 
with the proposed methodology. 

The remainder of this paper is organized as follows. Section 2 presents the self-
adaptive agent-based scheduling model, which integrates release control, dispatching 
and machine maintenance scheduling. Subsequently in Section 3, the negotiation 
protocol between agents, ECNP, is introduced. Scheduling algorithms for decision 
making of agents are offered in Section 4. Every agent can develop and modify its 
own scheduling algorithm to adapt it to the outside conditions. To evaluate the effec-
tiveness of the proposed methodology, production simulation is applied in Section 4 
to simulate a semiconductor manufacturing environment and to generate some test 
data. Then the proposed methodology and several existing scheduling rules are all 
applied to the test data in Section 5. Based on the analysis results, some points are 
made. Finally, the concluding remarks and some directions for future research are 
given in Section 6. 

2   Self-adaptive Agent-Based Dynamic Scheduling Model 

The self-adaptive agent-based dynamic scheduling model is shown in Fig. 1, which 
integrates release control, dispatching and machine maintenance scheduling. There  
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Fig. 1. The self-adaptive agent-based dynamic scheduling model 

are six kinds of agents in the model, i.e. manager agent, release agent, workpiece 
agent, machine agent, transportation agent and operator agent: 

1. Manager agent: The manager agent manages all kinds of agents in the self-adaptive 
agent-based dynamic scheduling mode. Each agent must register to the manager 
agent. The manager agent then keeps information about each agent and monitors 
the activities of all agents, but does not interfere with the autonomous decision of 
any agent. Besides, the manager agent keeps generating new workpiece agents ac-
cording to the release plan made by the release agent, and canceling workpiece 
agents which controlled jobs have been finished. 

2. Release agent: The release agent is used to control the release into the semiconduc-
tor manufacturing factory. 

3. Workpiece agent: A workpiece agent controls a job in the semiconductor manufac-
turing factory, and is generated by the manager agent according to the release plan. 
The workpiece agent of a job owns all information about the job including product 
type, job size, priority, recipe, due date, etc. Workpiece agents have to negotiate 
with machine agents to realize the dynamic dispatching of jobs. 

4. Machine agent: A machine agent controls one machine in the semiconductor 
manufacturing factory, and owns all information about the machine including 
availability, utilization, maintenance plan, queuing list, etc. A machine agent nego-
tiates with incoming workpiece agents to determine whether accepting the process-
ing of the workpiece or not. Besides, a machine agent has to arrange the sequence 
of processing accepted jobs on the machine, taking the outside conditions into con-
sideration. 

5. Transportation agent: A transportation agent controls one transportation tool in the 
semiconductor manufacturing factory to transport jobs between machines. 

6. Operator agent: An operator agent controls one operator in the semiconductor 
manufacturing factory to load/unload jobs and to maintain machines. 
 
Among them the self-adaptive behavior of a machine agent is focused in this study. 

The self-adaptive behavior of a machine agent means that the machine agent can 
develop and modify its own scheduling algorithm to adapt it to the outside conditions. 
There are two types of outside conditions that are considered by a self-adaptive ma-
chine agent (see Fig. 2): 
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Fig. 2. The outside conditions of a machine agent x (k = 2) 

1. The whole factory conditions: the most recent scheduling performance of the 
whole factory, e.g. the cycle time average and standard deviation of some most re-
cently outputted jobs, the average tardiness of these jobs, the percent of tardy jobs, 
etc. If that is poor, then the machine agent might need to modify its scheduling al-
gorithm to help improve the performance. 

2. The k nearest neighbor conditions: the most recent scheduling performances of the 
k nearest neighbors, e.g. the stage cycle time averages and standard deviations of 
some most recently completed jobs by them, the deviations from the best and worst 
results, etc. If those are poor, then the machine agent might need to modify its 
scheduling algorithm to help improve the performances. 

These outside conditions are of unequal importance, which is also decided by the 
machine agent itself. 

3   The Negotiation Protocol 

The negotiation protocol used in the proposed methodology is ECNP [3] that is de-
scribed below: 

1. A workpiece agent announces the task to relevant machine agents, including the 
content of the task, the original proposal (the latest start processing time of the 
task), token, and the deadline for coming to an agreement. The original proposal is 
valid only during its token. 

2. The machine agents evaluate the proposal of the workpiece agent. Then they re-
sponse to the workpiece agent with their counter-proposals and tokens in the work-
piece agent’s token. The machines agents’ tokens should be less than the difference 
between the deadline for coming to an agreement and the workpiece agent’s token. 
The machine agents keep their promises only during their own tokens. 
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3. The workpiece agent evaluates the responses from the machine agents, and then 
selects the machine agent with the best response. Then the workpiece agent sends 
acknowledgement to the selected machine agent in its token. 

Compared with the traditional CNP, ECNP has advantages like higher efficiency 
negotiation, avoidance of valueless waiting, convergence of negotiation, avoidance of 
the deadlock of negotiation. 

4   Self-adaptive Scheduling Algorithms for Decision Making of 
Machine Agents 

The self-adaptive scheduling algorithm adopted by a machine agent is composed of a 
fuzzy back propagation network (FBPN) and a sorter. At first, the FBPN is used to 
generate a code for each job accepted by the machine agent. The configuration of the 
FBPN is established as follows: 

1. Inputs: six parameters associated with each job including the product type, priority, 
job size, due date, processing time, and processing type (batch or single wafer). 
These parameters have to be normalized so that their values fall within [0, 1]. Then 
some production execution/control experts are requested to express their beliefs (in 
linguistic terms) about the importance of each input parameter in determining the 
sequence of processing on the machine. Linguistic assessments for an input pa-
rameter are converted into several pre-specified fuzzy numbers. The subjective im-
portance of an input parameter is then obtained by averaging the corresponding 
fuzzy numbers of the linguistic replies for the input parameter by all experts. The 
subjective importance obtained for an input parameter is multiplied to the normal-
ized value of the input parameter. After such a treatment, all inputs to the FBPN 
become triangular fuzzy numbers, and the fuzzy arithmetic for triangular fuzzy 
numbers is applied to deal with all calculations involved in training the FBPN. 

2. Single hidden layer: Generally one or two hidden layers are more beneficial for the 
convergence property of the network. 

3. Number of neurons in the hidden layer: the same as that in the input layer. Such a 
treatment has been adopted by many studies (e.g. [5, 6]). 

4. Output: the code of the job. 
5. Network learning rule: Delta rule. 
6. Transformation function: Sigmoid function, 

).1/(1)( xexf −+=  (1) 

7. Learning rate (η): 0.01~1.0. 
8. Batch learning. 

At first, the FBPN is trained to fit a common scheduling rule, e.g. the FSMCT rule 
or the constant work-in-progress (CONWIP) rule. The training of a FBPN refers to 
Chen [6]. After that, the FBPN can be applied to generate the code of a job as follows. 
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At first, inputs are multiplied with weights, summated, and transferred to the hidden 
layer. Then activated signals are outputted from the hidden layer as: 
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and )(−  and )(×  denote fuzzy subtraction and multiplication, respectively; jh
~

’s are 

also transferred to the output layer with the same procedure. Finally, the output of the 
FBPN is generated as: 
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The fuzzy-valued output o~  is defuzzified according to the centroid-of-area (COA) 
formula: 

.4/)2()~(COA 321 ooooo ++==  (8) 

Then the defuzzified output o is the code of the job. The codes of all jobs are sorted 
by the sorter, and then the result determines the sequence of processing on the ma-
chine. 

To self-adjust the scheduling algorithm, the whole factory conditions and the k 
nearest neighbor conditions of the machine are continuously monitored. If the recent 
performances of the whole factory or the k nearest neighbors are poor, then adjust the 
parameter values of the FBPN as follows: 

new p = (1 – gn
w
g

w
n pp )(pmax + pmin – old p) + gn

w
g

w
n pp old p (9) 

where pmax and pmin are the maximum and minimum of parameter p, respectively; pn is 
the normalized neighbor performance, while pg measures the normalized global per-
formance; 0 ≤ pn, pg ≤ 1; wn and wg indicate the weights of pn and pg, respectively. It is 
a self-adjustment mechanism because every machine agent continuously considers the 
conditions of its neighborhood (see Fig. 3), and finally is able to construct a schedul-
ing algorithm of its own. 
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Fig. 3. The self-adjust mechanism considers only the neighbor of the machine agent 

5   Some Test Data from a Simulated Semiconductor 
Manufacturing Factory 

To evaluate the effectiveness of the proposed methodology, production simulation is 
applied in this study to simulate a semiconductor manufacturing environment and  
to generate some test data. A simulation model is often built to simulate the manufac-
turing process of a real semiconductor manufacturing factory [5-11]. To generate 
some test data, a simulation program coded using Microsoft Visual Basic .NET is 
constructed to simulate a semiconductor manufacturing factory with the following  
assumptions: 

1. Jobs are uniformly released into the factory. 
2. The distributions of the interarrival times of machine downs are exponential. 
3. The distribution of the time required to repair a machine is uniform. 
4. The percentages of jobs with different product types in the factory are predeter-

mined. As a result, this study is only focused on fixed-product-mix cases. However, 
the product mix in the simulated factory does fluctuate and is only approximately 
fixed in the long term. 

5. The percentages of jobs with different priorities released into the factory are con-
trolled. 

6. The priority of a job cannot be changed during fabrication. 
7. A job has equal chances to be processed on each alternative machine/head avail-

able at a step. 
8. A job cannot proceed to the next step until the fabrication on its every wafer has 

been finished. No preemption is allowed. 

The basic configuration of the simulated semiconductor manufacturing factory  
is the same as a real-world semiconductor manufacturing factory which is located in 
the Science Park of Hsin-Chu, Taiwan, R.O.C. A trace report was generated every 
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simulation run for verifying the simulation model. The simulated average cycle times 
have also been compared with the actual values to validate the simulation model. 
Assumptions (1)~(3), and (7)~(8) are commonly adopted in related studies (e.g.  
[5-8]), while assumptions (4)~(6) are made to simplify the situation. There are five 
products (labeled as A~E) in the simulated factory. A fixed product mix is assumed. 
The percentages of these products in the factory’s product mix are assumed to be 
35%, 24%, 17%, 15%, and 9%, respectively. The simulated factory has a monthly 
capacity of 20,000 pieces of wafers and is expected to be fully utilized (utilization = 
100%). Three types of priorities (normal lot, hot lot, and super hot lot) are randomly 
assigned to jobs. The percentages of jobs with these priorities released into the factory 
are restricted to be approximately 60%, 30%, and 10%, respectively. Each product 
has 150~200 steps and 6~9 reentrances to the most bottleneck machine. The singular 
production characteristic “reentry” of the semiconductor industry is clearly reflected 
in the example. Totally 102 machines (including alternative machines) are provided to 
process single-wafer or batch operations in the factory. Thirty replications of the 
simulation are successively run. The time required for each simulation replication is 
about 12 minute on a PC with 512MB RAM and Athlon™ 64 Processor 3000+ CPU. 
A horizon of twenty-four months is simulated. The maximal cycle time is less than 
three months. Therefore, four months and an initial WIP status (obtained from a pilot 
simulation run) seemed to be sufficient to drive the simulation into a steady state. The 
statistical data were collected starting at the end of the fourth month. For each repli-
cate, data of 30 jobs are collected and classified by their product types and priorities. 
Totally, data of 900 jobs can be collected. 

6   Experimental Results and Discussion 

To evaluate the effectiveness and efficiency of the proposed methodology and to 
make some comparisons with some existing scheduling rules – FIFO, EDD, SRPT, 
and FSVCT, all these methods were applied to five test cases containing the data of 
full-size (25 wafers per job) jobs with different product types and priorities. The re-
sults are summarized in Table 1. Since the information contained there may be too 
much to digest, we provide some bottom line comparisons. 

According to experimental results, the following points are made: 

1. As expected, FIFO performed well in reducing the cycle time average, but might 
show exceedingly bad performance in the standard deviation respect. 

Table 1. Experimental results 

 Cycle time average Cycle time standard deviation 
FIFO 249 84 
SRPT 278 79 
EDD 266 78 

FSVCT 242 55 
The proposed 
methodology 

172 46 
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2. The proposed methodology achieved very good performance in both the cycle time 
average and standard deviation respects. The average advantages over the baseline 
approach, FIFO, are 31% and 45%, respectively. No other policy comes close to 
possessing such behavior. 

3. Compared with the FSVCT policy aimed at reducing the cycle time variation, the 
proposed methodology still surpassed by 16% in reducing the cycle time variation. 

4. The FSVCT policy performed the best among the four existing scheduling rules in 
both respects. 

5. In the original ECNP-based approach, the scheduling approaches adopted by all 
agents were in fact the same, namely the CONWIP rule. Conversely, in the pro-
posed methodology, every agent develops its own scheduling rule based on a 
FBPN. In other words, the values of the parameters in the FBPN of an agent are 
different from those of the other agents. 

7   Conclusions and Directions for Future Research 

A semiconductor manufacturing factory is a very complicated production system. 
Typical characteristics of a semiconductor manufacturing factory include: fluctuating 
demand, jobs with various product types and priorities, un-balanced capacity, jobs’ 
reentrance to the bottleneck machines, hundreds of processing steps, alternative ma-
chines with unequal capacity, etc. Scheduling in a semiconductor manufacturing fac-
tory becomes a very difficult task owing to these characteristics. To further enhance 
the performance of dynamic scheduling in a semiconductor manufacturing factory, a 
self-adaptive agent-based dynamic scheduling approach is proposed in this study. The 
first part is a self-adaptive agent-based scheduling model, which integrates release 
control, dispatching and machine maintenance scheduling. Secondly, the negotiation 
protocol between agents applies ECNP. Thirdly, unlike in the past studies a single 
pre-determined scheduling algorithm is used for all agents, in this study every agent 
develops and modifies its own scheduling algorithm to adapt it to the outside condi-
tions. Finally, production simulation is also applied in this study to generate some test 
data to evaluate the effectiveness of the proposed methodology. Some existing sched-
uling rules are also applied to the test data to make a comparison with the proposed 
methodology. According to experimental results, the self-adaptive agent-based dy-
namic scheduling approach achieved very good performance in both the cycle time 
average and standard deviation respects. The average advantages over the baseline 
approach, FIFO, are 31% and 45%, respectively. 

However, to further evaluate the advantages and disadvantages of the proposed 
methodology, it has to be applied to a full-scale actual semiconductor manufacturing 
factory in the future. 
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Correll, Nikolaus 437
Crailsheim, Karl 383
Cuperlier, Nicolas 169

Davey, Neil 148
del Pobil, Angel P. 230
Di Paolo, Ezequiel A. 1, 32, 52, 83, 103
Doncieux, Stéphane 210
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