
B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 204–215, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Evaluating an Authoring Tool for Model-Tracing
Intelligent Tutoring Systems

Stephen B. Blessing1 and Stephen Gilbert2,3

1 University of Tampa, Department of Psychology, 401 W. Kennedy Blvd., Tampa, FL USA
2 Clearsighted, 2321 N Loop Dr Ste 110, Ames, IA USA

3 Iowa State University, Department of Psychology, 1620 Howe Hall., Ames, IA USA
sblessing@ut.edu, gilbert@iastate.edu

Abstract. We have been creating an authoring tool, the Cognitive Model SDK,
which allows non-cognitive scientists and non-programmers to produce a cogni-
tive model for model-tracing tutors [1, 2]. The SDK is in use by developers at
Carnegie Learning to produce their commercial Cognitive Tutors for math.
However, it has never been evaluated with regards to the strong claim that non-
cognitive scientists and non-programmers could, without much effort, produce
useful cognitive models with it. The research presented here shows that this can
be done, using a task that past researchers have used [3]. The models are evalu-
ated across several metrics to see what characteristics of either them or their
creators may distinguish better models from worse models. The goal of this
work is to establish a baseline for future work examining how cognitive model-
ing can be opened up to a wider class of people.

1 Introduction

Model-tracing tutors have shown themselves to be one of the more effective types of
Intelligent Tutoring Systems (ITSs) in terms of student learning gains [4, 5, 6]. However,
they are very labor intensive to create, typically requiring a highly-qualified team of peo-
ple to produce the end product. The experts needed on this team include cognitive scien-
tists, programmers, and pedagogy and content experts. Estimates of how long it takes to
create such a tutor range as high as over 100 hours of development time for 1 hour of
instruction [7, 8]. For these tutors to see widespread use, this ratio needs to be greatly
decreased. We see two ways of doing this: provide authoring tools that are 1) not only
easier to use, but 2) also do not require high levels of expertise. The work presented here
describes an evaluation of such a tool, the Cognitive Model Software Development Kit
(SDK). While perhaps no authoring tool will obviate the need for a team of people from
different disciplines to collaborate on building an ITS, the results from our evaluation
indicate that non-cognitive scientists, historically the class of people who created the
cognitive model, can produce a basic cognitive model.

1.1 The Cognitive Model SDK

The Cognitive Model SDK assists in the development of the cognitive model that
forms the backbone of a Cognitive Tutor, a model-tracing tutor that is based on the

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 205

ACT Theory of cognition [9]. Carnegie Learning is a commercial company that pro-
duces Cognitive Tutors, primarily for topics in high school math. They have had great
success in this endeavor, both commercially and in terms of student learning gains.
The company currently uses the SDK to develop their Cognitive Tutors. To date six
large-scale cognitive models have been built within the SDK, providing tutoring on
over 5500 problems. However, no formal evaluation of this tool had been conducted
until the present study.

Fig. 1. Screenshot of Cognitive Model SDK

A full description of the Cognitive Model SDK is beyond the scope of the current pa-
per, but can be found elsewhere [1, 2]. In short, there are three main pieces to the SDK
and to creating a cognitive model. First, the type hierarchy used by the tutor must be de-
fined. In ACT Theory terminology, this is the declarative knowledge of the model, con-
taining the objects and properties that the student needs to be aware of in order to solve
problems. For instance, in a domain like fraction arithmetic, the type hierarchy would
contain information about what fractions are, their numerators and denominators, and
other aspects of the task. “Goalnodes” are one important piece of this hierarchy. They
represent the subgoals within the problem. There is typically an interface element (e.g.,
an entry box) that will allow the problem solver to complete a goalnode. The second
SDK piece is the Rule Predicate Editor, where the rules of the task are defined (the pro-
cedural knowledge, in ACT parlance). This is where one can discriminate between dif-
ferent problem types in the domain (e.g., adding fractions where the denominators are
already the same versus adding fraction that have different denominators). The help and
just-in-time messages that are common to model-tracing tutors are stored here. The last

206 S.B. Blessing and S. Gilbert

piece of the SDK is the instance editor, where a cognitive modeler can define problem
instances. The SDK contains a simple testing interface by which the cognitive modeler
can ascertain if the cognitive model is producing the correct behaviors, without attaching
the cognitive model to the interface. Figure 1 contains a screenshot of the SDK, where
the cognitive modeler is currently working on part of the predicate tree. Windows for the
Type Hierarchy and instance editor can be seen in the background.

1.2 Past Evaluations of Authoring Systems

Evaluations of tutors built using authoring systems have been conducted in the past
(e.g., [7, 10]), but evaluations of the authoring systems themselves are much more
rare. Henry Halff and his colleagues conducted an early set of studies on the XAIDA
authoring system [11]. While XAIDA did not produce model-tracing tutors, the stud-
ies that examined how authors used the system serve as a good model and can inform
for future research in terms of the qualitative and quantitative data they collected.
These studies showed very promising results, with findings like 30 hours of develop-
ment time for 1 hour of instruction. Other authoring systems have also been evaluated
in a similar manner (e.g., [7,12]).

We were motivated by two recent studies. First, Suraweera and his colleagues [3]
performed a study looking at their Constraint Authoring System (CAS), a tool for
developing a constraint-based tutor. In the context of a graduate student ITS class, 12
of 13 students were able to produce a constraint-based tutor for fraction arithmetic in
an average of 31.3 hr. That almost all of the students could create an ITS, when creat-
ing ITSs may or may not have been the focus of their graduate studies, shows that the
tool lowered the bar with regards to the expertise needed to create an ITS. We used
the procedure outlined in this study to model the design of our own.

Second, researchers at Carnegie Mellon University are also developing an author-
ing tool for Cognitive Tutors. This tool, the Cognitive Tutor Authoring Tools
(CTAT), approaches the task of developing a cognitive model from a different angle
than ours [13]. Whereas a focus of their tool is to make it easy to create focused, more
specialized tutors that center on a particular problem, what they term Example-
Tracing Tutors, our authoring tool focuses on creating cognitive models that are more
generalizable in nature. In a sense, our two different approaches are complementary in
nature, perhaps with the long-term goal of finding that middle spot that exists between
generality and ease-of-use.

1.3 This Evaluation

What follows is a description of an initial evaluation we did of the Cognitive Model
SDK. We had conducted a study that examined whether or not the representations
used in the SDK (e.g., the object/property view when working with types) were us-
able by undergraduates [1]. We found that they were. Participants in that study, how-
ever, did not create any working cognitive models. Furthermore, we have anecdotal
evidence that non-cognitive scientists at Carnegie Learning and Clearsighted could
create working cognitive models in a fraction of time that previous cognitive models
were constructed [2]. This current study is the first controlled evaluation of the Cogni-
tive Model SDK. Given that, it will serve mostly as a baseline for future evaluations.

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 207

Our main interest is to determine if non-cognitive scientists/non-programmers can
create usable cognitive models with the tool.

2 Method

2.1 Participants

Seventeen graduate students from Iowa State University participated in this study. Six
of these participants were students in the first-year HCI course at Iowa State Univer-
sity who chose to do this assignment for course credit. The other eleven participants
were recruited from among the HCI and instructional design graduate students at
Iowa State University. These students were paid $150 for their participation.

None of these participants had cognitive psychology or cognitive science as their
home department, nor had any done cognitive modeling before. Some had program-
ming experience, and this will be highlighted in the results.

2.2 Materials

An assignment similar to the one used by [3] was used. In this assignment, partici-
pants were asked to create a cognitive model, consisting of the needed goalnodes,
properties, hints, and just-in-time messages, of a fraction arithmetic task. For our ver-
sion of the assignment, participants were told that their model had to provide distinct
and specific hints for three types of problems: 1) ones in which the two fractions
started with the same denominators (e.g., 1/5 + 2/5); 2) ones where one denominator
is a multiple of the other (e.g., 1/5 + 1/10); and 3) ones in which the least common
denominator is neither of the two given fractions (e.g., 1/5 + 1/7).

Participants were shown a picture of an interface (see Figure 2) in which students
would be given two fractions to add. The students would need to write both fractions
in terms of a common denominator and would then need to compute the final, but
unreduced, answer. Note that the participants did not actually have access to this in-
terface, but had to use the more rudimentary interface that is constructed automati-
cally by the SDK itself in its Goalnode Testing Tutor (GNTT) interface. For this par-
ticular task, the two differ only by the placement of the boxes. The GNTT provides
just a linear list of the goalnodes, represented by entry boxes, defined by the cognitive
model and the current problem instance.

Fig. 2. Example interface shown to participants for the fraction addition task

208 S.B. Blessing and S. Gilbert

Four pieces of background information were provided to the participants. First,
some general information concerning Cognitive Tutors was given. For the students in
the HCI class, this was a short in-class demonstration of the Carnegie Learning Alge-
bra I Cognitive Tutor. For the other participants, this was a similar demo done via a
screen capture movie (8.30 min in length) of the same demonstration. Second, partici-
pants were given a four-page document that introduced the vocabulary and basic
concepts of cognitive modeling. It explained the difference between hints and JIT
messages, introduced the concepts of hierarchical types, predicates, instances, and
goalnodes

The other two pieces of information amounted to worked examples of cognitive
models constructed using the SDK. The first worked example was a completed cogni-
tive model of multi-column addition. The model could add two multi-digit numbers
together, including problems involving a carry. A screen capture movie (25.97 min)
was created that walked the viewer through creating all parts of the model using the
SDK: the type hierarchy, the rules, and an instance. An additional problem instance
was provided to participants, as well as the movie’s transcript. The purpose of this
information was to provide students a reasonably real-world example of a cognitive
model within the SDK. While both this model and the model that the participants
were asked to create both involved addition, the participants could not simply take
this model, make a few simple modifications, and have a fraction addition model. The
creation of the fraction addition model required the student to start from the begin-
ning, constructing all new goalnodes, hint messages, and instances. This model served
as inspiration and reference to show what is possible to do within the SDK at an ap-
propriate level.

The last piece of information was another screen movie (10.70 min) and its tran-
script that stepped participants through the creation of a very simple tutor. The tutor in
this movie asked students to indicate if the presented number is even or odd. This
gave the participants an example of how to construct the bare minimum framework
for a tutor from the start. That is, this example had one goalnode, one defined prop-
erty, and one hint, plus enough glue to test the tutor within the GNTT.

The version of the SDK used by the participants was the full version of the SDK
used by Carnegie Learning. In addition, it also logged how long they spent perform-
ing each action. In this way we were able to determine not only how much total time
it took to complete the model, but also how long each participant spent doing the in-
dividual components of authoring a cognitive model, such as creating properties on
goalnodes or writing hint messages. Participants were also given an exit questionnaire
concerning their experiences, and also asked for certain demographic information
such as previous programming experience.

2.3 Procedure

Participants were first given the demo of the Algebra I Cognitive Tutor. They were
then given the assignment and the two worked examples as described above and
asked to complete a cognitive model of fraction addition using the SDK. They could
choose to do with these examples as they willed. In all, they were given about 45 min
worth of instruction, and as much time as they desired to complete the assignment,
though we suggested they plan between 8-12 hours for the assignment.

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 209

3 Results

The results are divided into three parts: 1) quantitative and qualitative measurements
of the cognitive models; 2) timing data concerning cognitive model creation; and 3)
exit questionnaire data.

3.1 Cognitive Model Measurements

Of the 17 participants, 13 of them completed a runnable cognitive model. One per-
son’s rule file became corrupted and so could not be scored, and three people did not
complete the assignment, all of which were paid participants.

The first author scored the 13 completed cognitive models on a 5-point scale. The
criteria used and the number of models within each criterion is in Table 1. We rated
models on behavioral characteristics, not on implementational aspects. The average
score is 3.31, indicating that the average model at least met expectations. The mean
time to complete the assignment was 7.68 hr.

We split models based on model quality. There were 6 “better” cognitive models
that scored either a ‘4’ or a ‘5.’ Seven “poorer” models scored a ‘3’ or below. These
categories will be used in later analyses. Three models each came from the class and
paid participants.

Table 1. How the cognitive models were scored

Score

Description

Models
Meeting
Criterion

5 A model that produces behaviors close to an ideal
model for fraction arithmetic, in terms of hints and
just-in-time messages

4

4 A very good model that is beyond just being sufficient 2
3 A sufficient model, one that provides distinct and spe-

cific hints
3

2 An adequate model, but lacking in one or two ways
(e.g., hints for only 2 of the 3 problem types)

2

1 Lacking in multiple ways; while it produces hints, it
does not meet the specifications of the assignment
(e.g., hints largely static)

2

Participants had to write a model that provided hints on 6 different entry boxes (see

Figure 2). A cognitive modeler could use a single goalnode type to provide all hints,
creating properties to distinguish them, or the modeler could use up to 6 goalnode
types. Participants in our study used all possible numbers of goalnodes, with an aver-
age of 2.93. There were no statistically significant differences between the better and
poorer cognitive models (2.50 v. 3.00, t < 1). All participants produced a flat object

210 S.B. Blessing and S. Gilbert

model, meaning all defined goalnode types hung directly from the main default goal-
node type. Participants defined 6.27 properties per goalnode type on average (the bet-
ter and poorer cognitive models did not differ on this measure, 6.83 v. 6.22, t < 1).

We also examined participant’s rule trees. The tree contains the hints that students
will receive, as well as the just-in-time messages. Each node of the rule tree contains a
predicate that tests aspects of the current problem’s object instantiation and state. On
average, the trees contained 13.12 nodes and were 2.08 nodes deep. The better and
poorer cognitive models did not differ on either of these measures (for number of
nodes, 13.17 v. 13.14, and for depth, 2.17 v. 2.00). The better and poorer cognitive
models did differ somewhat on the number of just-in-time message defined (4.50 v.
0.86, t(11) = 1.73, p = . 1), but it was the case that to be considered a better cognitive
model it had to have at least one just-in-time message.

 It is hard to be evaluative as to whether better models should be deeper on either
the object model or rule tree. We have debated with other modelers whether “bushes”
(flat models with more properties) or “trees” (deeper models with more object types)
are better with regards to the object model, which has consequences for the predicated
tree. Among our colleagues, there are a variety of opinions, so perhaps it is not sur-
prising there is little difference on these measures.

3.2 Timing Data Concerning Cognitive Model Creation

As stated above, the average time to complete a cognitive model was 7.68 hr. The
participants who produced the better cognitive models spent on average almost the
same amount of time (7.67 hr, with a range of 4.98 hr to 13.08 hr) than the partici-
pants who produced the poorer models (7.68 hr, with a range of 3.42 hr to 13.82 hr).

The logging produced by the SDK provided much more detail than this. Each ac-
tion that the participant performed within the tool’s interface was time stamped with
millisecond precision. Table 2 shows how much time the participants spent perform-
ing the component actions of creating a cognitive model, time spent on 1) the objects
(creating objects and defining properties); 2) the rules (predicates, hints, and just-in-
time messages); 3) defining instances; and 4) testing the model. One sees no differ-
ences on these measures between the better and poorer participants.

Table 2. Average time spent on various aspects of cognitive model construction (n = 13)

Category Time (hr) Percentage
Objects 2.45 31.8%
Rules 3.07 39.9%

Instances 1.65 21.4%
Testing 0.52 6.8%
Total 7.68 100%

A further analysis was performed that examined what actions the participants were
performing during the time course of creating the cognitive model. Did most partici-
pants create their object model at the very beginning, and then turn to rule writing?
Or, was there more give-and-take between working on the object model and the rules?

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 211

We created graphs for each participant that divided their progress in writing the model
into deciles. Within each decile we calculated what percentage of the time was spent
on object actions, rule actions, instances, and testing. Figure 3 shows two of these
graphs, the one on top illustrating one of the participants who produced a better cogni-
tive model, and the one on the bottom showing a poorer cognitive modeler.

The average participant produced 1156 actions (e.g., working on a hint, defining a
property) as they worked on their cognitive model. These include edits and re-edits to
the same entity. Again, there are no differences between the better and poorer partici-
pants on this measure (1181 v. 1205).

We examined the quantitative and qualitative aspects of these graphs for each par-
ticipant. One difference that stands out, and can be seen in Figure 3, is the proportion

A Better Cognitive Modeler (P14)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Decile

Objects
Rules
Instance
Testing

A Poorer Cognitive Modeler (P16)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Decile

Objects
Rules
Instance
Testing

Fig. 3. Activity graphs of two participants

212 S.B. Blessing and S. Gilbert

of time spent on the object model during the first half of the participant’s time on task
versus the second half. Some participants spent relatively less time on this task during
the last half of their time than during the first half. That is, these participants appeared
to have gotten the object model mostly right up front, and then did not modify it much
after that. To quantify this observation, we counted as an “up-fronter” any participant
who did not spend 30% of their time for more than one decile working on the object
model during the last half of their editing. Under this definition, all of the better cog-
nitive modelers were “up-fronters,” whereas only 3 of the 7 poorer cognitive modelers
were. This is a marginally significant difference by a chi-square test, χ2(1, n = 13) =
2.86, p < .1. Getting the model “right” (there are many potential “right” models) early
appears important in creating a successful cognitive model. We investigated the pos-
sibility that some attribute associated with the cognitive modeler correlated with the
ability to produce a “right” model early.

3.3 Exit Questionnaire Data

Participants completed an exit questionnaire. We asked demographic information
such as undergraduate major, current department, and number of programming
courses. Examining undergraduate majors, there was 1 communication major, 1 jour-
nalism major, and 2 who did not specify a major. The rest had majors associated with
technology (5 computer scientists, 2 engineers, and 2 information technologists).
Their graduate degree programs reflect a similar trend (5 HCI, 2 engineers, 1 CS, 1
economics, 1 journalist, 1 information systems, 1 instructional technology, and 1 did
not specify). There were no psychologists or cognitive scientists in the group. In look-
ing across who created the better versus the poorer cognitive models, there is no clear
trend. There were roughly equal numbers of computer scientists and engineers who
created better models than who created poorer models. And, one could find the “non-
technology” majors represented in both groups.

Participants had taken an average of 4.36 programming classes prior to working on
the cognitive model. Examining this measure with regards to the better versus poorer
cognitive modelers does yield a significant difference, with the better cognitive mod-
elers having taken more programming classes, 6.83 v. 1.57, t(11) = 3.37, p < .01.

Participants were also asked free response questions, where they reflected on their
experiences doing the activity. In particular, they were asked to consider the chal-
lenges they encountered in creating the cognitive model, as well as the benefit in the
approach. Almost all participants saw both positive and negative features of these
kinds of cognitive models in general, and using this tool specifically. The software is
still somewhat of a beta quality, and the documentation is not complete. Indeed, the
screen capture movies and example models were created specifically for this assign-
ment in order to obviate the need for more complete documentation. Furthermore, the
means by which properties are referred to in predicates and hint messages, tutorscript
(in Figure 1, one can see a couple examples of tutorscript inside curly braces), is not
well defined. In all, 10 of the 13 participants mentioned either insufficient documenta-
tion or bugs in their response, with 5 specifically mentioning tutorscript. However,
despite some issues with this particular tool, 11 of the 13 participants mentioned the
generality of the tool; that is, it could be used to create tutors in a variety of different
domains. Most (8) qualified their answer to include only domains with specific, finite

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 213

answers, such as chemistry, physics, and math. In actuality, this tool can be used to
create any tutor appropriate for a model-tracing tutor. Lastly, a number of participants
mentioned that in order to create a cognitive model, one needed to be very explicit
about the steps the students should and can take, and that the steps needed to be com-
plete in order to have a useful cognitive model. This is an accurate statement regard-
ing these kinds of cognitive models, and we believe can be taken as both a strength
and a weakness. Interestingly, it was 4 of the 6 better cognitive modelers who made
such an observation, none of the poorer cognitive modelers made such a statement. A
quote from one of the better cognitive modelers sums up many of our participants’
reactions, “I was skeptical at first. It seemed like it took much more time to think
through the model than just design a more direct system that would provide feedback
to the user for each empty box…. However, my opinion changed when I got to the
phase of the project where I could create instances of the problems. It went much
faster than I expected, and I began to see that this system is much more flexible than I
gave it credit for.”

4 Discussion

We would like to highlight three main results from this study. First, the fact that the
majority of participants (13 of 17, 77%) created a usable cognitive model with mini-
mal instruction (less than 1 hr) is remarkable. Of the four who did not create a model,
one experienced computer issues resulting in file loss and two had partial models.
Historically, creating a cognitive model of this type required a Masters or Ph.D. level
cognitive scientist with much training in ITSs and in the particular ITS tool. Indeed,
the tool used to create the cognitive model was often directly within a programming
language or within rudimentary tools built on top of a programming environment,
requiring much programming knowledge. None of our participants were psycholo-
gists or cognitive scientists, and none were in their graduate training to produce ITSs.
They created their models quickly, in under 8 hr on average. Accounting for watching
demos and other instructional activities, these participants went from ITS neophytes
to having a model in about 10 hr. A proper interface, more problems, and refinements
to even the best model would still have to be made (in general, the “better” cognitive
models would require little work to be usable by a student, but the “poorer” ones
would have needed much additional help), so it is unclear how to gauge this effort
with regards to hours of development per hour of instruction. However, it would be
closer to 10:1 than it would 100:1. While the tools and methodology are different, it is
somewhat interesting to compare these results to those of [3]. In their study, 12 of 13
graduate students (92%) taking a class specific to ITSs completed constraint-based
tutor for a similar fraction addition task. It took them on average 31.3 hr to do so, but
that included much time to manually transfer pseudo-code into a runnable system. To
do the initial constraints, it took them 6.5 hr. However, that time does not include
writing hints and the just-in-time messages that our participants wrote, in addition to
the predicates. On par then it seems like these are at least somewhat similar results.

The second notable observation is how similar the better and poorer cognitive
models were across a number of measures. In terms of time to construct the model,
including an examination of working on certain subcomponents, along with certain

214 S.B. Blessing and S. Gilbert

quantitative aspects of the model (number of objects and predicates, for example),
there were no differences between the better and poorer models. This would make it
difficult to look for certain markers (such as average depth of the predicate tree) or
time measures and quickly determine if the model appears to be a quality model, if
this observation holds true in future studies.

Perhaps the main difference we found between the better and poorer cognitive
models is the third observation. The creators of the better cognitive models had taken
more programming courses prior to the experiment. Given the correlational nature of
this observation, it is hard to know the causal influences; did having more program-
ming courses help them create better cognitive models, or did the fact that they might
be better cognitive modelers to begin with attract them to programming courses? It
seems reasonable to assume that programmers, either by their nature or because of
their training, are better equipped to think about tasks that are conducive to putting
them into a cognitive model. Specifically, we can think of at least two reasons why
this might be so. First, much programming now is object-oriented in nature, and this
is the representation used by the SDK. If a person is used to thinking about objects,
properties, and inheritance, then being able to represent a task in the SDK should be
easier. Second, although the rules are also represented in a hierarchy, they still have
the “if-then” quality of production rules. Again, this kind of thinking is probably more
natural to programmers.

Given the nature of the Cognitive Model SDK, particularly in relation to CTAT
and its goal of addressing more specifically non-programmers [13], the association
between programming and producing better cognitive models using the SDK is not
surprising. Future lines of research should investigate this relationship in more depth,
to examine which pieces of programming knowledge most helps in creating a cogni-
tive model. In such a way we can move towards more people being able to make
higher quality cognitive models.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. OII-0548754. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation. We would also
like to thank Matt McHenry, Tristan Nixon, Steven Ritter, Janea Triplett, and Leslie
Wheeler for their help on this project.

References

1. Blessing, S.B., Gilbert, S., Ritter, S.: Developing an authoring system for cognitive models
within commercial-quality ITSs. In: Proceedings of the Nineteenth International FLAIRS
Conference, pp. 497–502. AAAI Press, Melbourne (2006)

2. Blessing, S., Gilbert, S., Ourada, S., Ritter, S.: Lowering the bar for creating model-tracing
intelligent tutoring systems. In: Proceedings of the 13th International Conference on Arti-
ficial Intelligence in Education, Marina del Rey, CA, pp. 443–450. IOS Press, Amsterdam
(2007)

3. Suraweera, P., Mitrovic, A., Martin, B.: Constraint authoring system: An empirical evalua-
tion. In: Proceedings of the 13th International Conference on Artificial Intelligence in
Education, Marina del Rey, CA, pp. 451–458. IOS Press, Amsterdam (2007)

 Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems 215

4. Corbett, A.T.: Cognitive computer tutors: Solving the two-sigma problem. In: Bauer, M.,
Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109. Springer,
Heidelberg (2001)

5. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring goes to
school in the big city. International Journal of Artificial Intelligence in Education 8, 30–43
(1997)

6. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D.,
Weinstein, A., Wintersgill, M.: The andes physics tutoring system: Lessons learned. Inter-
national Journal of Artificial Intelligence and Education 15(3) (2005)

7. Murray, T., Blessing, S., Ainsworth, S.: Authoring tools for advanced technology educa-
tional software. Kluwer Academic Publishers (2003)

8. Woolf, B.P., Cunningham, P.: Building a community memory for intelligent tutoring sys-
tems. In: AAAI 1987, pp. 82–89 (1987)

9. Anderson, J.R.: Rules of the Mind. Erlbaum, Hillsdale (1993)
10. Ainsworth, S.E., Fleming, P.F.: Evaluating a mixed-initiative authoring environment: is

redeem for real? In: Proceedings of the 12th International Conference on Artificial Intelli-
gence in Education, pp. 9–16. IOS Press, Amsterdam (2005)

11. Halff, H.M., Hsieh, P.Y., Wenzel, B.M., Chudanov, T.J., Dirnberger, M.T., Gibson, E.G.,
Redfield, C.L.: Requiem for a development system: Reflections on knowledge-based, gen-
erative instruction. In: Murray, T., Blessing, S., Ainsworth, S. (eds.) Authoring tools for
advanced technology educational software, Kluwer Academic Publishers (2003)

12. Mathan, S., Koedinger, K., Corbett, A., Hyndman, A.: Effective strategies for bridging
gulfs between users and computer systems. In: Proceedings of HCI-Aero 2000: Interna-
tional Conference on Human Computer Interaction in Aeronautics, Toulouse, France, Sep-
tember 27- 29, pp. 197–202 (2000)

13. Aleven, V., Sewall, J., McLaren, B.M., Koedinger, K.R.: Rapid authoring of intelligent tu-
tors for real-world and experimental use. In: Kinshuk, R., Koper, P., Kommers, P., Kir-
schner, D.G. (eds.) Proceedings of the 6th IEEE International Conference on Advanced
Learning Technologies (ICALT 2006), pp. 847–851. IEEE Computer Society, Los Alami-
tos (2006)

	Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring Systems
	Introduction
	The Cognitive Model SDK
	Past Evaluations of Authoring Systems
	This Evaluation

	Method
	Participants
	Materials
	Procedure

	Results
	Cognitive Model Measurements
	Timing Data Concerning Cognitive Model Creation
	Exit Questionnaire Data

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

