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Preface

The 9th International Conference on Intelligent Tutoring Systems (ITS 2008) was
held June 23-27, 2008 in Montreal. This year we celebrated the 20th anniversary
of the conference founded in 1988 in Montreal. We have had biennial conferences
for most of the past 10 years around the world, including in Brazil, Taiwan,
France, Canada, and the USA. These ITS conferences provide a forum for the
interchange of ideas in all areas of computer science and human learning, a
unique environment to exchange ideas and support new developments relevant
for the future. The 2008 conference was a symbolic milestone that enabled us to
look back at what has been achieved and what is currently being done, in order
to face the challenges of tomorrow.

Much has changed in the last 20 years in terms of hardware, software, pro-
grammers, and education stakeholders. Technology is now networked, pervasive,
and available anyplace and anytime. The potential exists to provide customized,
ubiquitous guidance and instruction. However, much has remained the same and
the need is just as great to model the learner, teaching strategies and domain
knowledge. This year we saw an increase in research into student affect (moti-
vation, boredom, and frustration), specifically attempts to detect student affect,
while feedback studies considered which responses to provide given both student
cognition and affect. Studies also looked at the impact on learning of positive
feedback and politeness in feedback. New research was seen in data mining based
on larger studies that use data from real students to diagnose effective learning
and teaching. So much interest has been generated in this area that the first
International Conference on Educational Data Mining was co-located with ITS
2008.

This year we received 207 submissions from six continents and accepted 63 full
papers (30.4 %) and 61 short papers. Presented papers came from 20 countries,
several of which have not been represented in previous ITS conferences. All
accepted papers are published in this proceedings volume long papers are allotted
ten pages and short papers three pages. We also present brief abstracts of the
talks of our five invited speakers: Alan Collins, Julita Vassileva, Kurt VanLehn,
Judy Kay, and Alan Lesgold. The conference also included seven workshops,
interactive events, two tutorials, and a Young Researcher’s Track.

The conference provided opportunities for the cross-fertilization of informa-
tion and ideas from researchers working on interactive and adaptive learning
environments for learners of all ages, for subject matter that spans the school
curriculum (e.g., math, science, language learning), and for professional applica-
tions in industry, military, and medicine. Presented papers offered a rare profes-
sional opportunity for researchers to present cutting-edge research from a wide
range of topics, including the fields of artificial intelligence, computer science,
cognitive and learning sciences, psychology, and educational technology.



VI Preface

This year we instituted a meta-review process in which Senior Program Com-
mittee (PC) members managed three reviewers for each submitted paper and
were able to engage in an e-mail discussion with reviewers for each paper. This
resulted in more detailed reviews and enabled reviewers to consider and explore
more deeply the reactions of other reviewers to each paper.

We thank the many, many people who helped make this conference possible.
We especially thank our energetic PC, with over 100 members, including Senior
PC, PC members and external reviewers who read numerous papers, managed
other reviewers, and generally submitted their reviews on time. We thank the
external reviewers who were recruited by PC members to assist us when we
exhausted our initial cadre of reviewers. We thank the individual committees,
including an Organizing, Program and Conference Committee along with the
Chairs for Tutorial, Young Researchers, Demonstration, Poster, and Workshop
activities. We are grateful to our longstanding International Steering Committee
(14 members) who helped and guided us when decisions were needed. We are
especially grateful to the General Chairs, Claude Frasson and Gilles Gauthier,
who kept us on schedule and provided supportive advice. All these people are
acknowledged in the next few pages and at http://gdac.dinfo.uqam.ca/its2008/.

Finally, we gratefully acknowledge Springer for its continuing support in pub-
lishing the proceedings of ITS 2008 and the generous support of our sponsors
including University of Quebec at Montreal, McGill University, and the Univer-
sity of Montreal.

April 2008 Beverly Park Woolf
Esma Aimeur

Roger Nkambou

Susanne Lajoie



Organization

Conference Committee

Conference Chairs

Program Chairs

General Chairs

Local Arrangements

Tutorials Chairs

Workshops Chairs

Posters Chairs

Panels Chairs

Young Researchers

Demonstrations Chairs

Sponsorship Chair

Local Assistance

Susanne Lajoie (McGill University, Canada)
Roger Nkambou (UQAM, Canada)

Esma Aimeur (University of Montreal, Canada)
Beverly Park Woolf (University of Massachusetts,
USA)

Claude Frasson (University of Montreal, Canada)
Gilles Gauthier (UQAM, Canada)

Jacqueline Bourdeau (TELUQ, Canada)

Peter Brusilovsky (University of Pittsburg, USA)
Valery Shute (ETS, USA)

Roger Azevedo (University of Memphis, USA)
Tak-Wai Chan (National Central University, Taiwan)

Cristina Conati (UBC, Canada)
Judy Kay (University of Sydney, Australia)

Kenneth Koedinger (CMU, USA)
Riichiro Mizoguchi (Osaka University, Japan)

Guy Gouarderes (University of Pau, France)
Rosa Maria Vicari (Universidade Federal do Rio
Grande do Sul, Brazil)

Aude Dufresne (University of Montreal, Canada)
Neil Heffernan (Worcester Polytechnic Institute, USA)
André Mayers (University of Sherbrooke, Canada)

Daniel Dubois (UQAM, Canada)

Line Marier, Marie-France Frasson, Nadia Amara, Mo-
hamed Gaha, Sébastien Gambs, Philippe Fournier-
Viger, Genevieve Gauthier, Usef Faghihi, Emmanuel
Blanchard, Amal Zouaq, Valery Psyché, Hicham Hage



VIII Organization

Senior Program Committee

Esma Aimeur (University of Montreal, Canada)

Vincent Aleven (Carnegie Mellon University, USA)

Kevin Ashley (University of Pittsburgh, USA)

Ryan Shaun Joazeiro de Baker (Carnegie Mellon University, USA)
Ben du Boulay (University of Sussex, UK)

Bert Bredeweg (University of Amsterdam, The Netherlands)
Jacqueline Bourdeau (TELUQ-UQAM, Canada)

Paul Brna (Glasgow University, UK)

Peter Brusilovsky (University of Pittsburgh, USA)

Stefano Cerri (University of Montpellier, France)

Tak-Wai Chan (National Central University of Taiwan, ROC)
William Clancey (NASA/Ames Research Center, USA)
Cristina Conati (University of British Columbia, Canada)
Isabel Fernandez de Castro (University of the Basque Country, Spain)
Gerhard Fisher (University of Colorado, USA)

Claude Frasson (University of Montreal, Canada)

Gilles Gauthier (University of Quebec at Montreal, Canada)
Jim Greer (University of Saskatchewan, Canada)

Guy Gouarderes (University of Pau, France)

Monique Grandbastien (Université de Nancyl, France)
Mitsuru Ikeda (Japan Advanced Inst. of Science and Technology, Japan)
Lewis Johnson (University of Southern California, USA)
Marc Kaltenbach (Bishop’s University, Canada)

Judith Kay (University of Sydney, Australia)

James Lester (North Carolina University, USA)

Ken Koedinger (Carnegie Mellon University, USA)

Susanne Lajoie (McGill University, Canada)

Chee-Kit Looi (Information Technology Institute, Singapore)
Rosemary Luckin (University of Sussex, UK)

Gordon McCalla (University of Saskatchewan, Canada)
Tanja Mitrovic (University of Canterbury, New Zealand)
Riichiro Mizoguchi (University of Osaka, Japan)

Jack Mostow (Carnegie Mellon University, USA)

Roger Nkambou (University of Quebec at Montreal, Canada)
Toshio Okamoto (UEC, Japan)

Helen Pain (University of Edinburgh, UK)

Valerie Shute (Florida State University, USA)

Kurt Van Lehn (University of Pittsburgh, USA)

Julita Vassileva (University of Saskatchewan, Canada)

Felisa Verdejo (UNED, Spain)

Beverly Woolf (University of Massachusetts, USA)



Organization

Program Committee

Mohamed Abdelrazek (University of Cairo, Egypt)
Elizabeth Andre (University of Augsburg, Germany)
Roger Azevedo (University of Maryland, USA)

Joseph Beck (Worcester Polytechnic Institute, USA)
Gautam Biswas (Vanderbilt University, USA)

Ricardo Conejo (University of Malaga, Spain)

Cyrille Desmoulins (University of Grenoble, France)
Vladan Devedzic (University of Belgrade, Serbia)
Aude Dufresne (University of Montreal, Canada)
Ulrich Hoppe (University of Duisburg, Germany)

Paul Held (University of Erlangen-Nuremberg, Germany)
Neil Heffernan (Worcester Polytechnic Institute, USA)
Jean-Marc Labat (University of Paris 6, France)
Brent Martin (University of Canterbury, New Zealand)
Alessandro Micarelli (University of Rome, Italy)
Claus Moebus (University of Oldenburg, Germany)
Jean-Francois Nicaud (University of Nantes, France)
Khalid Rouane (University of Montreal, France)

Ana Paiva (University of Lisbon, Portugal)

Fabio Paraguacu (University of Maceio, Brazil)
Jean-Pierre Pécuchet (INSA of Rouen, France)
Carolyn Rose (Carnegie Mellon University, USA)
Carole Redfield (St. Mary’s University, USA)

Eileen Scanlon (Open University, UK)

Amy Soller (Institute for Defense, USA)

Akira Takeuchi (Kyushu Institute, Japan)

Pierre Tchounikine (University of Maine, France)
Gheorghe Tecuci (George Mason University, USA)
Wouter van Joolingen (University of Twente, The Netherlands)
Gerhard Weber (University of Freiburg, Germany)
Kalina Yacef (University of Sydney, Australia)

Steering Committee

Claude Frasson (University of Montreal, Canada) - Chair

Stefano Cerri (University of Montpellier II, France)

Isabel Fernandez-Castro (University of the Basque Country, Spain)
Gilles Gauthier (University of Quebec at Montreal, Canada)

Guy Gouarderes (Université de Pau, France)

Mitsuru Ikeda (Japan Advanced Institute of Science and Technology, Japan)

Marc Kaltenbach (Bishop’s University, Canada)
Judith Kay (University of Sidney, Australia)

Alan Lesgold (University of Pittsburgh, USA)

James Lester (North Carolina State University, USA)

IX



X Organization

Fabio Paraguagu (Federal University of Alagoas, Brazil)
Elliot Soloway (University of Michigan, USA)
Daniel Suthers (University of Hawaii, USA)

Beverly Park Woolf (University of Massachusetts, USA)

Referees

Marie-Hélene Abel
Lisa Anthony
Nilufar Baghaei
Nicholas Balacheff
Scott Bateman
Emmanuel Blanchard
Denis Bouhineau
Christopher Brooks
Susan Bull

Hao Cen

Scotty Craig

Ben Daniel
Elisabeth Delozanne
Toby Dragon

Daniel Dubois

Sonia Faremo

Philippe Fournier-Viger

Sebastien Gambs
Abdelkader Gouaich
Nathalie Guin
Zinan Guo

Robert Hausmann
Hage Hicham
Tanner Jackson
Clement Jonquet
Panayiota Kendeou
Chad H. Lane
André Mayers
Ruddy Lelouche
Bernard Lefebvre

Sponsoring Institutions

Vanda Luengo

Chas Murray

Tom Murray

Marie-H. Nienaltowski
Andrew Olney

Amy Ogan

Kaska Poraska-Pomsta
Michael Ringenberg
Ido Roll

Erin Walker

Amali Weerasinghe
Ruth Wylie

Diego Zapata-Rivera
Amal Zouaq

ITS 2008 was organized by the Univeristy of Quebec at Montreal, McGill Uni-
versity and the University of Montreal in cooperation with ACM/SIGSCE,
ACM/SIGAPP.fr, IEEE, IEEE Computer Society, AAAI, ATED Society, JSAI
(Japanese Association for Artificial Intelligence), JSISE (Japanese Society for
Information and Education), and CAAI (Chinese Association for Artificial In-

telligence)



Table of Contents

Keynote Speaker Abstracts

Rethinking Education in the Age of Technology ...................... 1
Allan M. Collins

Life-Long Learning, Learner Models and Augmented Cognition ........ 3
Judy Kay

Intelligent Training Systems: Lessons Learned from Building Before It
Is TIme . ..o 6
Alan M. Lesgold

The Interaction Plateau: Answer-Based Tutoring < Step-Based
Tutoring = Natural Tutoring . ......... .. .. . .. . . i .. 7
Kurt VanLehn

Social Learning Environments: New Challenges for Al in Education .. .. 8
Julita Vassileva

Emotion and Affect

Self Versus Teacher Judgments of Learner Emotions During a Tutoring
Session with AutoTutor. ... ... .. 9
Sidney D’Mello, Roger Taylor, Kelly Davidson, and Art Graesser

Towards Emotionally-Intelligent Pedagogical Agents.................. 19
Konstantin Zakharov, Antonija Mitrovic, and Lucy Johnston

Viewing Student Affect and Learning through Classroom Observation

and Physical Sensors ........... .. .. 29
Toby Dragon, lvon Arroyo, Beverly P. Woolf, Winslow Burleson,
Rana el Kaliouby, and Hoda Eydgahi

Comparing Learners’ Affect While Using an Intelligent Tutoring
System and a Simulation Problem Solving Game..................... 40
Ma. Mercedes T. Rodrigo, Ryan S.J.d. Baker, Sidney D’Mello,
Ma. Celeste T. Gonzalez, Maria C.V. Lagud, Sheryl A.L. Lim,
Alexis F. Macapanpan, Sheila A.M.S. Pascua, Jerry Q. Santillano,
Jessica O. Sugay, Sinath Tep, and Norma J.B. Viehland

What Are You Feeling? Investigating Student Affective States During

Expert Human Tutoring Sessions ................oiuiiiinennennn .. 50
Blair Lehman, Melanie Matthews, Sidney D’Mello, and
Natalie Person



XII Table of Contents

Responding to Student Uncertainty During Computer Tutoring:

An Experimental Evaluation ............... .. ... .. .. ... ... ... . ...,

Kate Forbes-Riley, Diane Litman, and Mihai Rotaru

Tutor Evaluation

How Does an Intelligent Learning Environment with Novel Design

Marina Lepp

Learning Linked Lists: Experiments with the iList System.............

Davide Fossati, Barbara Di Eugenio, Christopher Brown, and
Stellan Ohlsson

Re-evaluating LARGO in the Classroom: Are Diagrams Better Than

Text for Teaching Argumentation Skills? ........... ... . ... . .....

Niels Pinkwart, Collin Lynch, Kevin Ashley, and Vincent Aleven

Automatic Multi-criteria Assessment of Open-Ended Questions:

A Case Study in School Algebra ......... ... ... i i

Elisabeth Delozanne, Dominique Prévit, Brigitte Grugeon, and
Francoise Chenevotot

Why Tutored Problem Solving May be Better Than Example Study:

Theoretical Implications from a Simulated-Student Study .............

Noboru Matsuda, William W. Cohen, Jonathan Sewall,
Gustavo Lacerda, and Kenneth R. Koedinger

A Case Study Empirical Comparison of Three Methods to Evaluate

Tutorial Behaviors .. ....... . e

Xiaonan Zhang, Jack Mostow, and Joseph E. Beck

Student Modeling

Children’s Interactions with Inspectable and Negotiated Learner

Models ...

Alice Kerly and Susan Bull

Using Similarity Metrics for Matching Lifelong Learners ..............

Nicolas Van Labeke, Alexandra Poulovassilis, and George Magoulas

Developing a Computer-Supported Tutoring Interaction Component

with Interaction Data Reuse. . ... ... ... ... . . . . .

Chi-Jen Lin, Chih-Yueh Chou, and Tak-Wai Chan

60

70

80

90



Table of Contents

Machine Learning

Towards Collaborative Intelligent Tutors: Automated Recognition of
Users’ Strategies ... ...
Ya’akov Gal, Elif Yamangil, Stuart M. Shieber, Andee Rubin, and

Barbara J. Grosz

Automatic Generation of Fine-Grained Representations of Learner
Response Semantics .......... .
Rodney D. Nielsen, Wayne Ward, and James H. Martin

Automatic Construction of a Bug Library for Object-Oriented Novice
Java Programmer Errors .. ...
Merlin Suarez and Raymund Sison

Authoring Tools

Helping Teachers Build ITS with Domain Schema ....................
Brent Martin and Antonija Mitrovic

Evaluating an Authoring Tool for Model-Tracing Intelligent Tutoring
SYSEEIMS .« o oo
Stephen B. Blessing and Stephen Gilbert

Open Community Authoring of Targeted Worked Example Problems . ..
Turadg Aleahmad, Vincent Aleven, and Robert Kraut

Agent Shell for the Development of Tutoring Systems for Expert
Problem Solving Knowledge .. ....... .. ... i
Vu Le, Gheorghe Tecuci, and Mihai Boicu

Tutor Feedback and Intervention

Balancing Cognitive and Motivational Scaffolding in Tutorial

Dialogue . . ...
Kristy Elizabeth Boyer, Robert Phillips, Michael Wallis,
Mladen Vouk, and James Lester

Assessing the Impact of Positive Feedback in Constraint-Based

UBOTS o
Devon Barrow, Antonija Mitrovic, Stellan Ohlsson, and
Michael Grimley

The Dynamics of Self-regulatory Processes within Self-and Externally

Regulated Learning Episodes During Complex Science Learning with

Hypermedia . ... ..o
Amy M. Witherspoon, Roger Azevedo, and Sidney D’Mello

XIII



X1V Table of Contents

The Politeness Effect in an Intelligent Foreign Language Tutoring
System . ..o 270
Ning Wang and W. Lewis Johnson

Investigating the Relationship between Spatial Ability and Feedback
Style in ITISS . oo ot 281
Nancy Milik, Antonija Mitrovic, and Michael Grimley

Individualizing Tutoring with Learning Style Based Feedback .......... 291
Shahida M. Parvez and Glenn D. Blank

Use of Agent Prompts to Support Reflective Interaction in a
Learning-by-Teaching Environment .. ....... ... .. .. ... .. .. . ... 302
Longkai Wu and Chee-Kit Looi

A Standard Method of Developing User Interfaces for a Generic ITS
Framework .. ... 312
Mikagl Fortin, Jean-Francois Lebeau, Amir Abdessemed,
Francois Courtemanche, and André Mayers

Data Mining

Helping Teachers Handle the Flood of Data in Online Student
DISCUSSIONS . . o oot e e 323
Oliver Scheuer and Bruce M. McLaren

What’s in a Cluster? Automatically Detecting Interesting Interactions
in Student E-DiSCUSSIONS . . . ...ttt 333
Jan Miksatko and Bruce M. McLaren

Scaffolding On-Line Discussions with Past Discussions: An Analysis

and Pilot Study of PedaBot ...... ... .. ... .. 343
Jihie Kim, Erin Shaw, Sujith Ravi, Erin Tavano,
Aniwat Arromratana, and Pankaj Sarda

How Who Should Practice: Using Learning Decomposition to Evaluate

the Efficacy of Different Types of Practice for Different Types of

StUdents . . ..ot 353
Joseph E. Beck and Jack Mostow

How Does Students’ Help-Seeking Behaviour Affect Learning? ......... 363
Mo at Mathews and Tanja Mitrovit

Toward Automatic Hint Generation for Logic Proof Tutoring Using
Historical Student Data.............. . i 373
Ti any Barnes and John Stamper



Table of Contents

Does Help Help? Introducing the Bayesian Evaluation and Assessment

Methodology ... ..o

Joseph E. Beck, Kai-min Chang, Jack Mostow, and Albert Corbett

Using Knowledge Discovery Techniques to Support Tutoring in an

IIl-Defined Domain . . ...

Roger Nkambou, Engelbert Mephu Nguifo, and
Philippe Fournier-Viger

More Accurate Student Modeling through Contextual Estimation of

Slip and Guess Probabilities in Bayesian Knowledge Tracing...........

Ryan S.J.d. Baker, Albert T. Corbett, and Vincent Aleven

E-Learning and Web-Based ITS

Interoperable Competencies Characterizing Learning Objects in
Mathematics ... ...
Erica Melis, Arndt Faulhaber, Anja Eichelmann, and
Susanne Narciss

Comparing Classroom Problem-Solving with No Feedback to
Web-Based Homework Assistance .............. ... ...,
Leena Razzaq, Michael Mendicino, and Neil T. He ernan

Harnessing Learner’s Collective Intelligence: A Web2.0 Approach to
E-Learning . . .. ..o o
Hicham Hage and Esma Aimeur

Bridging the Gap between ITS and eLearning: Towards Learning
Knowledge Objects. .. ..ot
Amal Zouaq, Roger Nkambou, and Claude Frasson

Natural Language Techniques and Dialogue

Semantic Cohesion and Learning ............ .. ... ... .. .. .. ...
Arthur Ward and Diane Litman

Dialogue Modes in Expert Tutoring ......... ... ... ... ... .. ... ....
Whitney L. Cade, Jessica L. Copeland, Natalie K. Person, and
Sidney K. D’Mello

Seeing the Face and Observing the Actions: The Effects of Nonverbal
Cues on Mediated Tutoring Dialogue ........... ... ... .. ... ........
Federico Tajariol, Jean-Michel Adam, and Michel Dubois

Affective Transitions in Narrative-Centered Learning Environments . . ..
Scott W. McQuiggan, Jennifer L. Robison, and James C. Lester

XV



XVI Table of Contents

Word Sense Disambiguation for Vocabulary Learning ................. 500
Anagha Kulkarni, Michael Heilman, Maxine Eskenazi, and
Jamie Callan

Narrative Tutors and Games

Student Note-Taking in Narrative-Centered Learning Environments:
Individual Differences and Learning Effects.......................... 510
Scott W. McQuiggan, Julius Goth, Eunyoung Ha,
Jonathan P. Rowe, and James C. Lester

Assessing Aptitude for Learning with a Serious Game for Foreign
Language and Culture . ...... .. .. 520
W. Lewis Johnson and Shumin Wu

Story-Based Learning: The Impact of Narrative on Learning

Experiences and Outcomes . ........... . i 530
Scott W. McQuiggan, Jonathan P. Rowe, Sunyoung Lee, and
James C. Lester

Semantic Web and Ontology

An Architecture for Combining Semantic Web Techniques with
Intelligent Tutoring Systems. ... ... ... ... 540
Pedro J. Mufioz Merino and Carlos Delgado Kloos

The Use of Ontologies to Structure and Support Interactions in LOR ... 551
Aude Dufresne, Mohamed Rouatbi, and Fethi Guerdelli

Leveraging the Social Semantic Web in Intelligent Tutoring Systems.... 563
Jelena Jovanovit, Carlo Torniai, Dragan GaSevic,
Scott Bateman, and Marek Hatala

Structurization of Learning/Instructional Design Knowledge for
Theory-Aware Authoring Systems. ...... ... ... ... .. ... 573
Yusuke Hayashi, Jacqueline Bourdeau, and Riichiro Mizoguchi

Expanding the Plausible Solution Space for Robustness in an Intelligent
Tutoring System .. ... 583
Hameedullah Kazi, Peter Haddawy, and Siriwan Suebnukarn

Cognitive Models

Using Optimally Selected Drill Practice to Train Basic Facts .......... 593
Philip Pavlik Jr., Thomas Bolster, Sue-mei Wu,
Ken Koedinger, and Brian MacWhinney



Table of Contents  XVII

Eliminating the Gap between the High and Low Students through
Meta-cognitive Strategy Instruction ........ ... ... ... ... .. . ... 603
Min Chi and Kurt VanLehn

Using Hidden Markov Models to Characterize Student Behaviors in
Learning-by-Teaching Environments .. ......... ... ... .. ... ... .... 614
Hogyeong Jeong, Amit Gupta, Rod Roscoe, John Wagster,
Gautam Biswas, and Daniel Schwartz

To Tutor the Tutor: Adaptive Domain Support for Peer Tutoring . ... .. 626
Erin Walker, Nikol Rummel, and Kenneth R. Koedinger

Collaboration

Shall We Explain? Augmenting Learning from Intelligent Tutoring
Systems and Peer Collaboration ............ .. ... ... .. .. ... .... 636
Robert G.M. Hausmann, Brett van de Sande, and Kurt VanLehn

Theory-Driven Group Formation through Ontologies ................. 646
Seiji Isotani and Riichiro Mizoguchi

Poster Papers

Self-assessment in Vocabulary Tutoring ............................. 656
Michael Heilman and Maxine Eskenazi

Automatically Generating and Validating Reading-Check Questions .... 659
Christine M. Feeney and Michael Heilman

Dynamic Browsing of Audiovisual Lecture Recordings Based on
Automated Speech Recognition . ........ ... . ... il 662
Stephan Repp, Andreas GroR3, and Christoph Meinel

Agent-Based Framework for Affective Intelligent Tutoring Systems . . ... 665
Mahmoud Neji, Mohamed Ben Ammar, Adel. M. Alimi, and
Guy Gouardeéres

Measuring the Perceived Difficulty of a Lecture Using Automatic Facial
Expression Recognition ........ .. .. . . 668
Jacob Whitehill, Marian Bartlett, and Javier Movellan

Minimal Feedback During Tutorial Dialogue ........... ... ... ... ... 671
Pamela Jordan and Diane Litman

Can Students Edit Their Learner Model Appropriately? .............. 674
Susan Bull, Xiaoxi Dong, Mark Britland, and Yu Guo



XVIII Table of Contents

When Is Assistance Helpful to Learning? Results in Combining Worked
Examples and Intelligent Tutoring ......... ... .. .. ... .. ... . ... 677
Bruce M. McLaren, Sung-Joo Lim, and Kenneth R. Koedinger

Enabling Reputation-Based Trust in Privacy-Enhanced Learning
SYSEEIMS . oo 681
Mohd Anwar and Jim Greer

Authoring Educational Games with Greenmind ...................... 684
Brent Martin

An Experimental Use of Learning Environment for Problem-Posing as
Sentence-Integration in Arithmetical Word Problems ................. 687
Tsukasa Hirashima, Takuro Yokoyama, Masahiko Okamoto, and
Akira Takeuchi

Automatic Analyses of Cohesion and Coherence in Human Tutorial

Dialogues During Hypermedia: A Comparison among Mental Model

JUIMPETS .« oo 690
Moongee Jeon and Roger Azevedo

Interface Challenges for Mobile Tutoring Systems .................... 693
Quincy Brown, Frank J. Lee, Dario D. Salvucci, and Vincent Aleven

Agora UCS Ubiquitous Collaborative Space ......................... 696
Pascal Dugénie, Stefano A. Cerri, Philippe Lemoisson, and
Abdelkader Gouaich

Adapte, a Tool for the Teacher to Personalize Activities .............. 699
Marie Lefevre, Nathalie Guin, and Stéphanie Jean-Daubias

Framework for a Competency-Driven, Multi-viewpoint, and Evolving
Learner Model . . ... . 702
Lucie Moulet, Olga Marino, Richard Hotte, and Jean-Marc Labat

Use Chatbot CSIEC to Facilitate the Individual Learning in English
Instruction: A Case Study . . ... ..o 706
Jiyou Jia and Meixian Ruan

Using an Adaptive Collaboration Script to Promote Conceptual

Chemistry Learning . ......... i 709
Dimitra Tsovaltzi, Bruce M. McLaren, Nikol Rummel,
Oliver Scheuer, Andreas Harrer, Niels Pinkwart, and Isabel Braun

Towards an Intelligent Emotional Detection in an E-Learning
Environment . ... . 712
Iness Nedji Milat, Hassina Seridi, and Mokhtar Sellami



Table of Contents XIX

How Do We Get the Pieces to Talk? An Architecture to Support
Interoperability between Educational Tools.......................... 715
Andreas Harrer, Niels Pinkwart, Bruce M. McLaren, and
Oliver Scheuer

Cognitive Load Estimation for Optimizing Learning within Intelligent
Tutoring Systems . ... 719
Francgois Courtemanche, Mehdi Najjar, and André Mayers

Investigating Learner Trust in Open Learner Models Using a ‘Wizard
of Oz Approach ... ... 722
Alice Kerly, Norasnita Ahmad, and Susan Bull

Personalized Learning Path Delivery: Models and Example of
Application .. ... . 725
Hend Madhour and Maia Wentland Forte

Semi Automatic Generation of Didactic Resources from Existing
Documents . . ... 728
Mikel Larrafnaga, Jon A. Elorriaga, and Ana Arruarte

An Evaluation of Intelligent Reading Tutors . ........................ 731
Sowmya Ramachandran and Robert Atkinson

An Intelligent Web-Based Learning System for Group Collaboration
Using Contracts . .........oiu it e 734
Henri Eberspacher and Michelle Joab

An Adaptive and Customizable Feedback System for Intelligent
Interactive Learning Systems ... ........ .. i, 737
Maite Lopez-Garate, Alberto Lozano-Rodero, and Luis Matey

Detection of Learning Styles from Learner’s Browsing Behavior During
E-Learning Activities . ... ...t 740
Nabila Bousbia, Jean-Marc Labat, and Amar Balla

Analyzing Learners’ Self-organization in Terms of Co-construction,
Co-operation and Co-ordination ............. .. .. .. ... .. .. .. .. .... 743
Patrice Moguel, Pierre Tchounikine, and André Tricot

Authoring Mobile Intelligent Tutoring Systems ...................... 746
Rambn Zatarain, M.L. Barron-Estrada,
Guillermo A. Sandoval-Sanchez, and Carlos A. Reyes-Garcia

XTutor: An Intelligent Tutor System for Science and Math Based on
Excel . .o 749
Roxana Gheorghiu and Kurt VanlLehn

Tying Ontologies to Domain Contents for CSCL ..................... 752
Seiji Isotani and Riichiro Mizoguchi



XX Table of Contents

One Exercise — Various Tutorial Strategies ............ ... ... ... ... 755
George Goguadze and Erica Melis

Bi-directional Search for Bugs: A Tool for Accelerating Knowledge
Acquisition for Equation-Based Tutoring Systems . ................... 758
Sung-Young Jung and Kurt VanlLehn

Design of a System for Automated Generation of Problem Fields. . ..... 763
Ildikd Pelczer and Fernando Gamboa Rodriguez

Lessons Learned from Scaling Up a Web-Based Intelligent Tutoring

SYSEEIM .o 766
Jozsef Patvarczki, Shane F. Almeida, Joseph E. Beck, and
Neil T. He ernan

Tailoring of Feedback in Web-Based Learning: The Role of Response
Certitude in the Assessment . ... ... ... ... 771
Ekaterina Vasilyeva, Mykola Pechenizkiy, and Paul De Bra

Trying to Reduce Bottom-Out Hinting: Will Telling Student How Many
Hints They Have Left Help? .. .. ... i e
Yu Guo, Joseph E. Beck, and Neil T. He ernan

Leveraging C-Rater’s Automated Scoring Capability for Providing
Instructional Feedback for Short Constructed Responses .............. 779
Jana Sukkarieh and Eleanor Bolge

An Authoring Tool That Facilitates the Rapid Development of Dialogue
Agents for Intelligent Tutoring Systems ........ ... . ... ..., 784
Yue Cui and Carolyn Penstein Rosé

Using an Emotional Intelligent Agent to Reduce Resistance to
Change . ..o .ot 787
llusca Lima Lopes de Menezes and Claude Frasson

Story Generation to Accelerate Math Problem Authoring for Practice
and ASSESSINENT . . ..ottt e 790
Yue Cui, Rohit Kumar, Carolyn P. Rosé, and Kenneth Koedinger

Supporting the Guide on the SIDE .. ........ .. .. .. ... .. ... .... 793
Moonyoung Kang, Sourish Chaudhuri, Rohit Kumar, Yi-Chia Wang,
Eric R. Rosg, Carolyn P. Rosg, and Yue Cui

Comparing Two IRT Models for Conjunctive Skills................... 796
Hao Cen, Kenneth Koedinger, and Brian Junker

The Effect of Providing Error-Flagging Support During Testing . ....... 799
Amruth Kumar



Table of Contents XXI

Cognitive Tutoring System with “Consciousness” .................... 803
Daniel Dubois, Mohamed Gaha, Roger Nkambou, and Pierre Poirier

It’s Not Easy Being Green: Supporting Collaborative “Green Design”
Learning .. .. ... 807
Sourish Chaudhuri, Rohit Kumar, Mahesh Joshi, Elon Terrell,
Fred Higgs, Vincent Aleven, and Carolyn Penstein Rosé

Cognitive and Technical Artefacts for Supporting Reusing Learning
Scenario Patterns . ......... ... 810
Emmanuelle Villiot-Leclercq and Aude Dufresne

Integration of a Complex Learning Object in a Web-Based Interactive
Learning System ... ... 813
Francoise Le Calvez and Héléne Giroire

Semantic Web Reasoning Tutoring Agent ........................... 816
Christiana Panayiotou and Brandon Bennett

An Affective Behavior Model for Intelligent Tutors ................... 819
Yasmin Hernandez, Enrique Sucar, and Cristina Conati

Decision Tree for Tracking Learner’s Emotional State Predicted from
His Electrical Brain Activity .......... ..., 822
Alicia Heraz, Tariq Daouda, and Claude Frasson

Toward Supporting Collaborative Discussion in an Ill-Defined

Amy Ogan, Erin Walker, Vincent Aleven, and Chris Jones

Author Index . ... ... . 829



Rethinking Education in the Age of Technology

Allan Collins

Learning Sciences, Northwestern University
Evanston, Illinois, 60208-0001
a-collins@northwestern.edu

All around us people are learning with the aid of new technologies: children are play-
ing complex video games, workers are taking online courses to get an advanced de-
gree, students are taking courses at commercial learning centers to prepare for tests,
adults are consulting Wikipedia, etc. New technologies create learning opportunities
that challenge traditional schools and colleges. These new learning niches enable
people of all ages to pursue learning on their own terms. People around the world are
taking their education out of school into homes, libraries, Internet cafes, and work-
places, where they can decide what they want to learn, when they want to learn, and
how they want to learn.

The emergence of alternative venues for learning threatens the identification of
learning with school. The tension between new forms of learning and old forms of
schooling will not be resolved with the victory of one or the other. Rather, we see the
seeds of a new education system forming in the rapid growth of new learning alterna-
tives such as home schooling, learning centers, workplace learning, distance educa-
tion, Internet cafes, educational television, computer-based learning environments,
technical certification, and adult education. This does not mean that public schools are
going to disappear, but their dominant role in education will diminish considerably.

The changes we see happening in education are neither all good nor all bad. We
see many benefits to the kinds of education that technology affords, such as the ability
of learners to pursue deeply topics of interest to them and to take responsibility for
their own education. We also see many benefits in the successful history of traditional
public schooling, which has provided extraordinary access to learning, status, and
economic success for millions of students over the course of the past two centuries.
But at the same time the roads to dystopia are also open. In particular, the new tech-
nologies can undermine both Thomas Jefferson’s vision of educating citizens who can
make sensible public policy decisions, and Horace Mann’s vision of a society where
everyone can succeed by obtaining a good education. Increasing the ability to person-
alize educational opportunities gives a natural advantage to those who can afford the
services. Our fear is that citizenship and equity may be undermined by the fragmenta-
tion and customization afforded by the information revolution.

The developments described above are changing how people think about educa-
tion. This rethinking will take many years to fully penetrate our understanding of the
world and the society around us. Eventually when people and politicians become
worried about what kids are learning or what adults don’t know, their automatic reac-
tion may not be “How can we improve the schools?” Instead they may ask, “How can
we develop games to teach history?”’, “How can we make new technology resources
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available to more people?” or “ What kinds of tools can support people to seek out
information on their own?” These are all questions that push the envelop for improv-
ing education out of the schools and into new venues. The link between schooling and
learning forces our conversation into institutional responses - we don’t yet know how
to ask wider questions when we think about improving education. To be successful,
leaders will need to grasp these changes in a deep way and bring the government’s
resources to bear on the problems raised by the changes that are happening. They will
have to build their vision of a new education system around these new understand-
ings.

The rethinking that is necessary applies to many aspects of education and society.
We are beginning to rethink the nature of learning, motivation, and what is important
to learn. Further the nature of careers are changing and how people transition back
and forth between learning and working. These changes demand a new kind of educa-
tional leadership and changing roles for government. New leaders will need to under-
stand the affordances of the new technologies, and have a vision for education that
will bring the new resources to everyone.



Life-Long Learning, Learner Models and
Augmented Cognition
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Abstract. Our field of Intelligent Tutoring Systems has long been in-
spired by the vision of achieving huge improvements in learning via ex-
pert personalised teaching. As we now see computers become ubiquitous
and pervasive, we can broaden that vision to include new ways to learn
what we need to know, when we need to know it, throughout our lives.
In this 20th anniversary of the ITS conferences, we can see that the fu-
ture will bring an ITS vision that is broadened to include augmented
cognition, where systems provide, not only teaching, but also the means
to augment our memory by facilitating access to information as needed,
be that as mediated contact with other people or access to our own ex-
ternal memory, a collection of the things we want to be able to re-find
or remember as needed.

Central to this vision is the life-long learner model because it bears
the responsibility for modelling relevant aspects of the learner so that
an ITS can help us access the information we need to meet our needs.
This talk draws on the foundations of ITS work to create a view of the
nature of that life-long learner model, the processes of life-long learner
modelling and the ways that an ITS can make use of these. The talk
illustrates the vision in terms of representations of learner models, user
interface and other practical concerns such as privacy.

1 ITS as a Grand Challenge Problem

The ITS research community has been driven by the importance of the human
need to learn and to access information. We now have a long track record of
work towards understanding how to push the limits of technology in support of
improved learning. This draws on both improved understanding of learning and
human cognition and equally, on creating new ways to build software systems
that are effective aids for learning.

More recently, there has been clear recognition of the importance of our vi-
sion and goals as well as the challenges in achieving them. In 2002, the Com-
puting Research Association (CRA) identified five Grand Research Challenges
in Computer Science and Engineerin@. One of these, Provide a Teacher for

! http://www.cra.org/grand.challenges/
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Every Learner, matches the ITS goal of personalised teaching. Subsequently,
the United Kingdom Computing Research Committee (UKCRC) identified nine
Current Grand Challenges for Computingﬁ. One of these GCS8, Learning for
Life, recognises the importance of the multidisciplinary research that is already
a strong part of the ITS tradition. Another, GC3, Memories for Life is also
closely aligned ITS research. In the last year, another peak body, the National
Academy of Engineering identified 14 wide-ranging grand challenge problems.
One of these is Advance personalized Iearningﬁ, which recognises the importance
of research into technology to support instruction that “can be individualized
based on learning styles, speeds, and interests to make learning more reliable”.
This, too, is directly aligned with the goals of the ITS community. This talk will
explore two key aspects that are at the core of a research agenda that tackles
these grand challenge research problems.

2 Life Long Learner Models

Learner models are at the heart of the personalisation of ITSs [I]. For life-long
learning, we need to explore ways to build life-long learner models. These have
the potential to track learning progress over long periods and across the range
of sources of evidence about the learner’s progress.

This talk will explore some of the issues that arise as we move towards such
models. Some of these have already had considerable attention within our com-
munity. Notably, there has been wide recognition of the importance of inter-
operability, where there can be effective communication between I'TSs. The talk
will review approaches based on semantics and standardisation efforts and how
these appear to provide some potential foundations for ensuring that a mean-
ingful long term learner model can draw upon information that is harvested by
the range of learning systems, as well as other software, that a person may use
throughout their life. The talk will examine ways we will be able to make use of
both conventional learning tools and environments, such as learner management
systems (LMSs) as well as ITSs, with their especially rich information about the
learners. The talk will explore alternative lines of research that can enable us
to exploit the vast quantities of electronic traces of learner activity within con-
ventional software. Taking the example of an LMS, we can, on the other hand,
explore the challenges on enhancing it with learner models. Alternatively, we
can make post-hoc interpretations of the vast data available from such tools, the
electronic traces that learners leave through their interaction. These have huge
potential to provide invaluable evidence for a rich life-long learner model. An-
other key is the human-in-the-loop approaches, particularly open, transparent
and scrutable learner models. Our research agenda for life-long learner models
must also make meaningful progress on privacy management for these models.

% http://www.ukerc.org.uk/grand challenges/current/index.cfm
3 http://www.engineeringchallenges.org/cms/8996/9127.aspx
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3 Life-Long Augmented Memories

The ubiquity and pervasive nature of computers has the potential to have im-
portant impact on the our learning needs and goals because we may be able to
rely on technology to augment our memories. This talk will explore key direc-
tions for research which takes account of this ubiquitous nature of computing:
approaches to just-in-time learning, delegation of remembering to the computer
and ways that electronically mediated collaboration can support remembering
by indirection, aided by other people. Our focus will be on the links between
such augmented cognition and life-long learner models.

Reference

1. Self, J.: The defining characteristics of intelligent tutoring systems research: ITSs
care, precisely. International Journal of Artificial Intelligence in Education 10(3-4),
350-364 (1999)



Intelligent Training Systems: Lessons Learned
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I discuss what I learned while developing five generations of intelligent coached
apprenticeship systems somewhat earlier than hardware, basic software support,
programmers, or users were ready for them. First, it was essential to remain focused
on the central instructional principles driving our work. Second, we learned that the
social issues in deploying novel systems trump any demonstrations of return on
investment or efficacy. People only use what they are comfortable using. Third, we
learned that being as free as possible of specific operating system or software
commitments was absolutely necessary. Fourth, we learned that the fundamental role
of coached apprenticeship systems is to efficiently provide the rare moments from
real life that afford the chance to learn deep and transferable skills and knowledge.
Fifth, we learned that developing intelligent coached environments affords
opportunities for learning by teachers/trainers and designers of work processes as well
as by students/trainees. Finally, we learned that capabilities for which we can have
complete student models are exactly those destined to be taken over by machines,
placing a premium on far transfer as the goal for high-end training/teaching systems.
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The Interaction Plateau: Answer-Based Tutoring < Step-
Based Tutoring = Natural Tutoring

Kurt VanLehn
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Face-to-face tutoring by an expert human tutor is widely thought to be more effective
than intelligent tutoring systems (ITS), which are in turn thought to be more effective
than computer-aided instruction (CAI), computer-based training (CBT), etc. The latter
tutoring systems have students work out complex solutions on paper, then enter their
answer into the tutor, which gives them feedback and hints on their answer. Thus,
CAI CBT, etc. are answer-based tutoring systems. This is a low level of interactivity,
in that the student may make many inferences between the time they start the problem
and when they first get feedback on their thinking. With a typical ITS, such as the
Andes physics tutoring system, students enter every step of a complex solution into
the tutor, which gives them feedback and hints, either immediately or when they have
finished entering all the steps. These systems are step-based tutoring systems, because
the feedback and hints are directed at steps rather than the final answer. They are
moderately interactive, because students make a moderate number of inferences per
step. When interacting face-to-face with a human tutor, students often talk aloud as
they reason, and thus allow the tutor to hear and intervene at almost every inference
made by the student. Thus, human tutoring is highly interactive. Natural language
tutoring systems, such as Why2-Atlas and Cordillera, are engineered to act like hu-
man tutors, so they too are highly interactive. If we use “natural tutoring” to cover
both human tutoring and natural language tutoring, then the three types of tutoring can
be ordered:

answer-based tutoring < step-based tutoring < natural tutoring

This certainly holds for their degree of interactivity, as just argued. This is also
thought to be the ordering for their learning effectiveness. Moreover, it is sometimes
thought that higher interactivity affords or perhaps even causes higher learning gains.

This talk will debunk that myth. In particular, experiments with human and com-
puter tutors usually find that learning gains are ordered this way:

answer-based tutoring < step-based tutoring =natural tutoring

Increasing interactivity beyond the step level appears to neither afford nor cause
higher learning gains.
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Abstract. The advance of new social computing technologies (called often Web
2.0) brings new opportunities and challenges for eLearning. They allow us to
leverage an endless amount of learning resources, repositories and people —
learners, tutors, and teachers. By wise selection and combination of these re-
sources, the “holy grail” of Al and Education can potentially be achieved — a
personalized, adaptive learning environment. Yet there are many challenges
along the way. To combine functionality offered by various applications, proto-
cols are required (e.g. SOAP) and smooth interface integration (e.g. mash-ups).
The resources are distributed and decentralized, created by different authors and
organizations and following different semantic and annotation agreements. Im-
posing hard standards is not going to work, if we want to tap into a wide pool of
user-contributed resources, which is the key feature of Web 2.0. Combining
these resources requires shared meaning, even if just on a limited scale and
time, for the purpose at hand. Community-based semantic agreements (ontolo-
gies) that are constantly evolving are one way to deal with this problem. User
data is collected by many applications that create their own user models. Shar-
ing this data brings many advantages for personalization, but also creates risks
related to privacy. Mechanisms for combining user data and taking action need
to be developed. Trust and reputation mechanisms and decentralized user mod-
eling address this problem. Finding appropriate data and applications/services
for a given learner at a given time is a big issue. Collaborative filtering is a
well-established, relatively light-weight technique in areas that do not require
interpreting complex user input. However, learning applications require com-
plex user input. Complex models of learner knowledge need to be correlated,
and the cold-start / sparse data problem is a serious hurdle. Finally, the most
critical problem from my point of view is motivating stakeholders (authors,
teachers, tutors, learners) to participate. Without their participation, the pool of
resources and learners (peers and collaborators) to interact with will never reach
the level of diversity necessary to ensure personalized, adaptive learning envi-
ronments for a large number of learners. Designing incentive mechanisms for
participation can be viewed as a kind of instructional planning, which can be
successful in achieving certain levels and quality of participation. The talk pro-
vides an overview of these issues and research that addresses them.
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Abstract. The relationship between emotions and learning was investigated by
tracking the affective states that college students experienced while interacting
with AutoTutor, an intelligent tutoring system with conversational dialogue.
An emotionally responsive tutor would presumably facilitate learning, but this
would only occur if learner emotions can be accurately identified. After a learn-
ing session with AutoTutor, the affective states of the learner were classified by
the learner and two accomplished teachers. The classification of the teachers
was not very reliable and did not match the learners self reports. This result
suggests that accomplished teachers may be limited in detecting the affective
states of learners. This paper discusses the implications of our findings for theo-
ries of expert tutoring and for alternate methodologies for establishing conver-
gent validity of affect measurement.

1 Introduction

Researchers in the ITS community have always considered it important to develop a
model of the learner. The model parameters can come from different sources, such as
static trait measures that are extracted form learner self reports and dynamic measures
that are induced from the stream of behaviors and thoughts of the learner during the
course of learning. ITSs are expected to adapt their tutoring strategies to the learners’
aptitude, personality, prior-knowledge, goals, progress, and a host of other parameters
that presumably impact learning. It is also widely acknowledged that the scope of
learner modeling need not be restricted to cognitive factors alone, because the affec-
tive states (emotions) of learners are inextricably bound to the cognitive states and
ultimately linked to learning gains [1-4]. A person’s affective response to an ITS can
change, depending on their goals, preferences, expectations and knowledge state. For
example, academic risk theory contrasts adventuresome learners who want to be chal-
lenged with difficult tasks, take risks of failure, and manage negative emotions when
they occur, whereas cautious learners want to tackle easier tasks, take fewer risks, and
minimize failure and the resulting negative emotions [5].

We know that events that arise during a tutoring session with an ITS cause learners
to experience a variety of possible emotions that depend on the learning challenges,
the amount of changes they experience, and whether important goals are blocked.
Negative emotions such as confusion and frustration occur when learners confront
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contradictions, anomalous events, obstacles to goals, salient contrasts, perturbations,
surprises, equivalent alternatives, and other stimuli or experiences that fail to match
expectations [6-7]. Positive emotions (such as engagement, flow, delight, excitement
and eureka) are experienced when tasks are completed, challenges are conquered,
insights are unveiled, and major discoveries are made.

There is some evidence that there are significant relationships between affective
states and learning gains. Kim [8] conducted a study which demonstrated that the
interest and self-efficacy of a learner significantly increased when the learner was
accompanied by a pedagogical agent that served as a virtual learning companion that
was sensitive to the learner’s affect. Linnenbrink and Pintrich [9] reported that the
posttest scores of physics understanding decreased as a function of negative affect
during learning. Graesser and colleagues have demonstrated that the affective state of
confusion, where learners’ are in a state of cognitive disequilibrium, with more height-
ened physiological arousal and with more intense thought, is positively correlated with
learning [1], [3]. Of course, it is important to differentiate the state of being produc-
tively confused, which leads to learning and positive emotions, from being hopelessly
confused, which has no pedagogical value. The affective state of flow, where the
learner is so absorbed in the material that time and fatigue disappear [10], is positively
correlated with learning, whereas prolonged experiences of boredom seem to nega-
tively impact learning gains [1].

An affect-sensitive tutor would presumably enhance intelligent learning environ-
ments [3], [11-13]. Such an ITS would incorporate assessments of the students’ cog-
nitive, affective, and motivational states into its pedagogical strategies to keep stu-
dents engaged, boost self-confidence, heighten interest, and presumably maximize
learning. For example, if the learner is frustrated, the tutor would need to generate
hints to advance the learner in constructing knowledge, and make supportive empa-
thetic comments to enhance motivation. If the learner is bored, the tutor would need
to present more engaging or challenging problems for the learner to work on. We are
currently in the process of developing a version of AutoTutor that is sensitive to both
the cognitive and affective states of learners [11], [6]. AutoTutor is an intelligent
tutoring system that helps learners construct explanations by interacting with them in
natural language and helping them use simulation environments [3].

At this point in science, we need to answer several questions about the role of emo-
tions in deep learning before we can build a functional affect-sensitive ITS. One im-
portant question needs to be addressed by all theoretical frameworks and pedagogical
practices that relate emotions and learning: How are affective states detected and
classified?.

A first step is to explore a simple measurement question: How reliably can
emotions be classified by humans and machines. An emotionally sensitive learning
environment, whether it be human or computer, requires some degree of accuracy in
classifying the learners’ affect states. The emotion classifier need not be perfect, but
it must have some degree of accuracy.

We have previously conducted a study that investigated the reliability by which
emotions can be classified by the learners themselves versus peers and versus trained
judges [14]. Our results supported a number of conclusions about emotion measure-
ment by humans. First, the interrater reliability between the various pairs of judges
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(self-peer, self-trained judge 1, self-trained judge2, peer-trained judge 1, peer-trained
judge 2, trained judgel- trained judge 2) was quite low, with an average kappa of
0.18. Second, trained judges who are experienced in coding facial actions and tutorial
dialogue provided affective judgments that were more reliable (x = .36) and that
matched the learners’ self reports better than the judgments of untrained peers.

The overall low kappa scores between the various judges highlight the difficulty in
measuring a complex construct such as emotion. It is illuminating to point out, how-
ever, that the kappas for the two trained judges in the Graesser et al [14] study are on
par with data reported by other researchers who have assessed the reliability of emo-
tion detection by [15-18]. Statisticians have sometimes claimed that kappa scores
ranging from 0.4 — 0.6 are typically considered to be fair, 0.6 — 0.75 are good, and
scores greater than 0.75 are excellent [19]. Based on this categorization, the kappa
scores obtained in these studies would range from poor to fair. However, such claims
of statisticians address the reliability of multiple judges or sensors when the phe-
nomenon is more salient and when the researcher can assert that the decisions are
clear-cut and decidable. The present research goal on emotions is very different. Our
goal is to use the kappa score as an unbiased metric of the reliability of making affect
decisions, knowing full well that such judgments are fuzzy, ill-defined, and possibly
indeterminate.

Critics might attribute the low kappa scores achieved in previous studies to various
inadequacies of our methodology. Predominant among these concerns is the lack of
knowledge about emotions that people have in general, irrespective of whether the
affect judges are the participants, their peers, the trained judges, and other researchers
conducting field observations on affect. Perhaps people with heightened emotional
expertise (i.e., knowledge, intelligence), such as social workers or FBI agents, would
provide more accurate models of learners’ emotions.

In this paper, we directly investigated the above criticism by measuring the degree
to which people with presumably heightened emotion-detection expertise match the
judgments of the learner. In particular, we assessed the reliability by which middle
and high school teachers judged the emotions of the learner. The notion of teachers
having heightened emotion-detection expertise emerges from diverse investigations of
accomplished teachers and expert tutors. For example, Goleman [2] stated in his
book, Emotional Intelligence, that expert teachers are able to recognize a student’s
emotional state and respond in an appropriate manner that has a positive impact on
the learning process. Lepper and Woolverton [13] have claimed that it takes expertise
in tutoring before accurate detection of learner emotions can be achieved. This re-
quirement of expertise is apparently quite important because, according to Lepper and
Woolverton [13], roughly half of expert tutors’ interactions with the student are fo-
cused on affective elements. These important claims would be seriously limited if
teachers are unable to detect the affective states of the learner. This question moti-
vated the present study.

The present study tracked the affective states that college students experience while
interacting with AutoTutor. We investigated the extent to which teachers can accu-
rately identify the affective states of learners who interact with AutoTutor. This im-
mediate objective feeds into the long-term goal of building a version of AutoTutor



12 S. D’Mello et al.

that identifies and responds adaptively to the affective states of the learner. AutoTu-
tor will never be able to adapt to the learner’s emotions if it cannot detect the learner’s
emotions. Peer tutors and expert tutors similarly will be unable to adapt to the
learner’s emotions if they cannot identify such affective states.

2 Methods

The participants were 28 undergraduates at the University of Memphis who partici-
pated for extra course credit. After completing a pretest, participants interacted with
AutoTutor for 32 minutes on one of three randomly assigned topics in computer liter-
acy: hardware, Internet, or operating systems (see [3] for detailed information about
AutoTutor). Two videos were recorded during the participant’s interaction with
AutoTutor. A video of the participant’s face was recorded with a camera and a screen-
capturing software program called Camtasia Studio was used to capture the audio and
video of the participant’s entire tutoring session.

Figure 1 depicts the experimental setup for the study. The participant interacted
with the AutoTutor program on the center monitor, while the left and right monitors
captured the participants body movements and face respectfully. During the interac-
tion phase, the left and right monitors were turned off.

Fig. 1. Learner interacting with AutoTutor

After the tutorial session, participants completed a posttest on the learning of com-
puter literacy (which is irrelevant data from the standpoint of the present study). Par-
ticipants subsequently participated in a retrospective emotion judgment procedure.
The videos of the participants’ face and screen were synchronized and displayed to
the participants (see middle and right monitors in Figure 1). The participants were
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instructed to make judgments on what affective states were present at 20-second in-
tervals; at each of these points, the video automatically paused (freeze-framed). Par-
ticipants could also pause the videos at any time in between these 20-second points
and make affective judgments at those points.

A list of the affective states and definitions was provided to the participants. The
states were boredom, confusion, flow, frustration, delight, neutral and surprise, the
emotions that were most frequently experienced during previous research with Auto-
Tutor [1], [20].

In addition to the self judgments that were provided by the participants, two middle
school teachers judged all of the sessions individually. The teachers were accom-
plished Master teachers in Memphis middle and high schools who were recognized
for their accomplishments in motivating students and promoting student learning.
Since affect judgment is a time consuming procedure, both teachers judged either the
first half or the second half of each participants session. Specifically, for 14 randomly
assigned participants, both teachers made affective judgments on the first half of the
participants’ AutoTutor session. Both teachers judged the second half of the remain-
ing 14 sessions.

3 Results and Discussion

Interjudge reliability in judging emotions was computed using Cohen’s kappa for the
three possible pairs of judges (self vs. teacherl, self vs. teacher2, and teacherl vs.
teacher2). The observations included those judgments at the 20-second interval poll-
ing (N = 1459) and those in-between observations in which at least one judge ob-
served an emotion in between two successive pollings (N = 329). Cohen’s kappa
scores were computed separately for each of the 28 learners.

We performed a repeated measures ANOVA, with the three judge pairs as within
subject factors, and the order (first half vs. second half of participants session) as a
between subject factor. There were statistically significant differences in kappa
scores among the three judges, F(2, 52) = 6.783, MSe = .01, p < .01, partial n2 =.207.
Bonferroni post-hoc tests indicated that there were no significant differences in the
kappa scores between the self and the teachers (Kgeit.ieachert = -070, Kselfteacherz = -027).
However, kappa score between the self and teacher2 was significantly lower than the
kappa between the two teachers (Kiacheri-teacherz = -123). Furthermore, the interaction
between judge pair and order was not significant F(2, 52) < 1, p = .859, indicating
that kappa scores were the same irrespective of whether the judgments were made on
the first or the second half of the learners’ AutoTutor session.

These results support the conclusion that teachers are not particularly good at judg-
ing the learners emotions. Judgments provided by the two teachers were not very
reliable (i.e. the teachers did not agree with each other) and did not match the learn-
ers’ self reports. Before we accepted this conclusion too cavalierly, we examined
whether the different judge types (self vs. teachers) are sensitive to a different set of
emotions. We answered this question by examining the proportion of emotions re-
ported by each judge. Table 1 presents means and standard deviations for the proportion
scores that were computed individually for each of the 28 learners and 3 judges.
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Table 1. Proportion of emotions observed by self and teachers

Emotion  Self Teacherl Teacher2 Mean Judges

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Boredom  0.155 0.137 0.044 0.078 0.074 0.072 0.091 0.057
Confusion 0.186 0.149 0.065 0.051 0.188 0.119 0.146  0.070
Delight 0.031 0.048 0.019 0.027 0.009 0.021 0.020 0.011
Flow 0.192 0.173 0.634 0.107 0.575 0.187 0.467 0.240
Frustration 0.130 0.122 0.145 0.097 0.032 0.044 0.102 0.061
Neutral 0.284 0.248 0.074 0.060 0.108 0.107 0.155 0.113
Surprise 0.022  0.029 0.018 0.027 0.014 0.026 0.018 0.004

We performed a 3x7x2 factor repeated measures ANOVA on the proportions of
emotions observed by the three judges. The two within subject factors were the affect
judge with 3 levels (self, teacherl, and teacher2) and the emotion with 7 levels (bore-
dom, confusion, delight, flow, frustration, neutral, surprise). The order (first half vs.
second half of participants session) was included as a between subject factor. The pro-
portion scores are constrained to add to 1.0 within order and judge, so it is not meaning-
ful to consider the main effects of order and judge. However, the main effect of emo-
tion and the remaining interactions are not constrained and therefore justifiable.

The main effect for emotion was statistically significant, F(6, 156) = 118.455, MSe
=.017, p <.001, n2 = .820, as was also the interactions between emotion x order, F(6,
156) = 2.627, MSe = .017, p < .05, partial nZ =.092, judge x emotion, F(12, 312) =
32.204, MSe = .012, p < .001, partial n° = .553, and the three way interaction of judge
x emotion x order, F(12, 312) = 1.997, MSe = .012, p < .05, nZ =.071. Quite clearly,
most of the variance is explained by the main effect of differences in emotions and by
the judge x emotion interaction. Therefore, we performed follow up analyses of sim-
ple main effects between three judges within the seven emotions.

Bonferroni post-hoc tests indicated that the proportions of boredom, neutral, and
frustration reported by the two teachers were statistically similar and quantitatively
lower than the self judgments. Therefore, it appears that teachers have difficulty in
detecting states such a boredom and neutral that are accompanied by a generally ex-
pressionless face that is devoid of diagnostic facial cues [21]. But what about frustra-
tion? This is arguably a state that is expressed through significant bodily arousal and
animated facial expressions. We suspect that the difficulty experienced by the teach-
ers in detecting frustration might be explained by the social display rules that people
adhere to in expressing affect [22]. Social pressures may result in the learner disguis-
ing of negative emotions such as frustration, thus making it difficult for the teachers
to detect this emotion.

It appears that the affective state of flow was detected at higher proportions by the
two teachers than by the self. However, if self reports of affect are considered to be
the ground-truth measure of affect, a majority of the instances of flow that were ob-
served by the teachers would be considered to be false positives. It appears, that in the
absence of sufficient facial and contextual cues, the teachers attribute the learners’
emotions to the flow experience. This is clearly attributing too much to the learner.

Confusion, an emotion that is fundamental to deep learning [1], [3] has a facial im-
print of a lowered brow and tightened eyelids [21]. This was detected at similar rates
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by the self and teacherl, but at lower rates than teacher2. This pattern is plausible
because judgments provided by teacher]l matched judgments provided by the partici-
pants at a somewhat higher rate, although not statistically significant, than teacher2.

Finally, delight and surprise were detected at similar rates by the self and the two
teachers. Experiences of delight and surprise are rare, however (2% each when aver-
aged across all judges), and are typically accompanied by highly animated facial ac-
tivity [21]. Such salient constraints would explain why they were detected at similar
rates by all the judges.

The low kappa scores between the self and the two teachers, coupled with the dif-
ferences in the proportion of emotions experienced by the self and the teachers, sug-
gest that the teachers tend to judge self classified experiences of boredom, confusion,
frustration, and neutral as similar to the state of flow. This was verified by conducting
a follow-up analyses that focused on isolating the source of errors in the teachers’
judgments. Two confusion matrices were computed, each contrasting the self judg-
ments with judgments by teacherl and teacher 2. Table 2, presents an average of the
two matrices.

An analysis on Table 2 revealed two clear sources of discrepancies between the
self judgments and the judgments provided by the two teachers. First, the teachers
appear to annotate several of the emotions as being in the state of flow or heightened
engagement. For example, the teachers classified 41% of self diagnosed experiences
of boredom as flow. This miscategorization is heightened for neutral, with 61% self
reported neutral instances being classified as flow. The second source of classification
errors occurs at instances where the teacher fails to make an emotion judgment, but
the self provides a rating (see the None column). This occurs during instances when
the learner makes a voluntary affect judgment, in between the 20 second stops, and
the teachers fail to detect those points.

Table 2. Confusion matrix contrasting self judgments with average of teachers’ judgments

Self Teachers Judgments

Judgments Boredom Confusion Delight Flow Frustration Neutral Surprise None
Boredom 0.13 0.10 0.00 041 0.08 0.07  0.01 0.25
Confusion 0.05 0.14 0.01 040 0.05 0.06  0.02 0.31
Delight 0.02 0.06 0.03 0.38 0.05 0.01 0.02 0.42
Flow 0.05 0.13 0.01 052 0.04 0.09  0.00 0.10
Frustration 0.03 0.08 0.01 046 0.05 0.05 0.01 0.28
Neutral 0.05 0.09 0.01 0.61 0.05 0.09 0.01 0.10
Surprise 0.02 0.04 0.05 0.19 0.05 0.05 0.00 0.56
None 0.02 0.03 0.01 0.07 0.04 0.01 0.01 0.83

4 General Discussion

An emotionally sensitive tutor, whether human or artificial, would presumably pro-
mote learning gains, engagement, and self-efficacy in the learner. Such a tutor should
have different strategies and dialogue moves when the learner is confused or frus-
trated than when the learner is bored. However, both human and automated tutors can
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be emotionally adaptive only if the emotions of the learner can be detected. The ac-
curacy of the detection need not be perfect, but it should be approximately on target.

We have previously documented that trained judges who are experienced in coding
facial actions and tutorial dialogue provide affective judgments that are more reliable
and that match the learner’s self reports better than the judgments of untrained peers.
[14]. The results of this study support a number of additional conclusions about emo-
tion detection by humans. It appears that accomplished teachers do not seem to be
very adept at detecting the learners’ emotions. Emotion judgments provided by the
two teachers were not very reliable, i.e. the teachers did not agree with each other, and
their judgments showed very little correspondence to the learner’s self reports. In fact
the degree to which the teachers affective judgment matched the self reports of the
learner were on par with peer judges and were quantitatively lower than the trained
judges. So untrained peers and accomplished teachers do not seem to be very profi-
cient at judging the emotions of the learner.

It is possible that the assessments of learner affect provided by peers and teachers
would be more accurate in naturalistic settings such as tutoring sessions or class-
rooms, where the judgments would occur in real time and the peers and teachers
would have established a rapport with the students and have vested interests in their
learning. These conditions are difficult to recreate in a laboratory, as it would be diffi-
cult to envision a scenario where the learner, a peer, trained judges, and teachers
could simultaneously provide online emotion judgments. Nevertheless, our results
suggest that, when presented with the identical stimulus (videos of the participants
face and screen), judgments by the self and trained judges were more reliable than
judgments by the peers and teachers.

It appears that each type of affect judge, be it the self, the untrained peer, the
trained judges, or the accomplished teachers, bring a unique set of perspectives, stan-
dards, and experience to the affect judgment task. For example, it is reasonable to
presume that participants tap into episodic memories of the interaction in addition to
the prerecorded facial cues and contextual features when they retrospectively judge
their own emotions (self judgments).

Unlike the self, the trained judges are not mindful of the episodic memory traces of
the participants. However, they have been extensively trained on detecting subtle
facial expressions with the Facial Action Coding System [22], and are more mindful
of relevant facial features and transient facial movements. They also have consider-
able experience interacting with AutoTutor. Our results suggest that training on facial
expressions (diagnostic assessment) coupled with knowledge on AutoTutor dialogue
(predictive assessment), makes the trained judges robust affect detectors. The trained
judges exhibit reliability (they agree with each other) as well as convergent validity
(their judgments match self reports). Therefore, from a methodological perspective,
retrospective affect judgments by the participant combined with offline ratings by
trained judges, seems to be valuable protocol to establishing construct validity in
emotion measurement, at least when compared to untrained observers, peers, and
even teachers.

Affect sensitivity is an important requirement for ITSs that aspire to bridge the
communicative gap between the highly expressive human and the socially challenged
computer. Therefore, integrating sensing devices and automated affect classifiers is an
important challenge for next generation ITSs that are attempting to broaden the
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bandwidth of adaptivity to include the learners’ cognitive, affective, and motivational
states. Although, a handful of automated affect detection systems operate in an unsu-
pervised fashion, supervised machine learning techniques are at the heart of most of
the current affect detection systems. Consequently, providing accurate models of
ground-truth for a complex construct such as emotion is an important requirement for
such supervised affect classifiers. We hope to have scaffolded the development of
automated affect-detection systems by providing a methodology to annotate the emo-
tions of a learner in an ecologically valid setting (randomly selected participants
rather than actors and the emotional expressions occurred naturally instead of being
induced), and contrasting our methodology of self plus trained judgments with alter-
natives (peers, teachers, observers [1], and emote-aloud protocols [20]. We are cur-
rently developing such an emotion classifier with an eye for integrating it into an
affect-sensitive version of AutoTutor. Whether an automated affect-sensitive AutoTu-
tor has a positive impact on learning awaits future research and technological devel-
opment.
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Abstract. Research shows that emotions play an important role in learning.
Human tutors are capable of identifying and responding to the affective states of
their students; therefore, for ITSs to be truly affective, they should also be capa-
ble of tracking and appropriately responding to the emotional state of their us-
ers. We report on a project aimed at developing an affect-aware pedagogical
agent persona for an ITS for teaching database design skills. We use the dimen-
sional approach to affective modeling, and track the users’ affective state along
the valence dimension as identified from tracking the users’ facial features. We
describe the facial-feature tracking application we developed, as well as the set
of rules that control the agent’s behavior. The agent’s response to the student’s
action depends on the student’s cognitive state (as determined from the session
history) as well as on the student’s affective state. The experimental study of the
agent shows the general preference towards the affective agent over the non-
affective agent.

Keywords: facial feature tracking, affect recognition, emotional intelligence,
affective pedagogical agents, evaluation.

1 Affective Gap in Intelligent Tutoring Systems

Computers have been implicitly designed without awareness of the affective commu-
nication channel. The lack of affective fit between technology and its users is particu-
larly significant in Intelligent Tutoring Systems (ITSs): failing to acknowledge the
complex interaction between the cognitive and affective processes ubiquitous in hu-
man activities, educational systems might never approach their full potential. Kort and
Reilly [1] call for a re-engineering of the ITSs’ pedagogy by shifting the focus of re-
search towards expert teachers “who are adept at recognizing the emotional state of
learners, and, based upon their observations, take some action to scaffold learning in
a positive manner”. In educational research the difference between learning perform-
ance under the ideal one-to-one tutoring conditions and other methods of instruction
has been referred as the 2 Sigma problem [2]. It is very likely that the affective gap in
ITSs can partially explain the 2 Sigma problem in the ITSs’ context.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 19 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The semantic component of social interaction, most frequently taking the form of
speech, is often accompanied by the affective interaction component, which is consid-
ered equally or sometimes even more important then the semantic component [3]. Al-
though people in general are not always aware of how exactly their language, posture,
facial expression and eye gaze convey their emotions, these underpin their interac-
tions and navigation in the social world [4]. Recent research on affect recognition in
computer-mediated environments opens new perspectives, although very little re-
search has explored the ways in which a computer can be used to address the emo-
tional state of its user in the learning context [5]. However, present-day ITS research
is facing a wide range of interaction design and technical problems that arise during
the development of affect-aware ITSs.

In this paper we present a pedagogical agent capable of active affective support,
guided by the logic which integrates the learner’s cognitive and affective states. Sec-
tion 1 outlines the supporting research on cognitive and affective processes in the
learning context. Section 2 presents our approach to affective state detection, while
Section 3 describes its implementation. Section 4 presents the affective pedagogical
agent we developed for EER-Tutor, an ITS for relational database design [6]. Section
5 describes the experiment and its outcomes. Finally, Section 6 concludes the paper
by discussing our findings.

2 Affective Processes in the Learning Context

Prior research suggests a strong interaction between cognitive and affective processes
in the human mind; in the educational context, stress, anxiety, and frustration experi-
enced by a learner can severely degrade learning outcomes [7]. Researchers have been
grappling with the question of how to define appropriate behavior within an interac-
tive learning environment. Etiquette is highly context-dependent; consequently what
may be appropriate in one context may be inappropriate in another. Generic HCI re-
search emphasizes the need to avoid negative affective states such as frustration; fre-
quently mentioned solutions include either (a) trying to determine and fix the problem
causing the negative feelings, and/or (b) preemptively trying to prevent the problem
from happening in the first place. However, there are some fundamental differences
between general HCI etiquette and educational HCI etiquette. Learning from a com-
puter is not just about ease of use; learning can be frustrating and difficult because it
involves learners’ exposure to errors and gaps in their thinking and knowledge [4].

Unfortunately, there is no cookbook defining all the rules for HHI (human-to-
human interaction) that HCI and ITSs developers can simply implement; however,
one simple rule of thumb suggested in the work of Mishra and Hershey [4] is to apply
what has been found appropriate in HHI to the design of HCI. However, the feedback
design in many computer-based educational systems is often based on the simplistic
and erroneous assumption that praise is assumed to affect behavior positively, irre-
spective of context [4]. Recent studies with AutoTutor explore strategies to address
boredom, frustration, flow and confusion[8]; AutoTutor detects affective states
through conversational cues, posture and facial features.

Kort and Reilly [1] propose a model of constructive cognitive progress that relates
learning and emotions in an evolving cycle of affective states. The model suggests
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that this cycle, including its negative states, is natural to the learning process. The
theory of flow, initially proposed by Csikzentmihalyi in 1990 [9], also attempts to tie
together cognitive and affective processes. Flow is described as a mental state of op-
eration in which people are fully immersed in what they doing; this state is character-
ized by a feeling of energized focus, full involvement, and success in the process. The
study of flow has shown that conscious awareness of “flow zone” tends to diminish
happiness and flow [9]. These findings suggest that conscious awareness of frustra-
tion, feeling of an impasse and other similar negative influences may diminish these
states. In other words, affective self-awareness, fostered by affective support can as-
sist users in mitigating the detrimental influences of negative affective states on their
learning. Myers [10] describes two generic varieties of support for emotion regulation
applicable in HHI: passive and active support. Passive support is used by people to
manipulate moods, without necessarily addressing the emotions themselves. In con-
trast, active support occurs when people discuss or otherwise address their emotions
directly as a means of managing them.

Bringing together the emotional self-regulation, Kort’s theory of emotions in learn-
ing and the theory of flow, Burleson and Picard [11] implement an approach that uses
affective agents in the role of peer learning companions to help learners develop
meta-cognitive skills such as affective self-awareness for dealing with failure and
frustration. In our research we adopt a similar approach by developing an affective
agent playing the role of a caring tutor capable of offering active affective support.

If the pedagogical agents are to mimic the human tutors’ affective behavior, the
agents’ designers need to endow them with social and emotional intelligence. Affec-
tive pedagogical agents should possess the knowledge of how to link the cognitive
and affective experience of the learner in an attempt to meet the learner’s needs; the
agents should be able to choose an affective-behavioral strategy suitable for achieving
the desired effect. Consequently, affective pedagogical agents need to embody a
higher order of emotional behavior; they have to maintain the history and status of
their own emotional state and that of the learners, and they have to have the capability
of self-regulation of emotional state and support for the learner’s emotional state [5].

3 Identifying Users’ Affective States

There are two major theoretical approaches to the study of emotion: dimensional and
categorical. Theorists who use the categorical approach to emotion attempt to define
specific categories or types of emotions [12]. Research in this area suggests that there
are a number of basic emotions (estimates range from three to more than 20) which
combine to produce all the emotional states which people experience. The dimen-
sional approach conceptualizes emotional space as having two or perhaps three under-
lying dimensions along which the entire range of human emotions can be arranged
[13]. The most common dimensions are valence (ranging from happy to sad) and
arousal (ranging from calm to excited).

In our research, we adopt the dimensional approach: the continuous nature of the
valence dimension in this approach (versus the discrete states in the categorical ap-
proach) underpins the choices which determine the implementation of modeling of the
agent’s and user’s emotions. The dimensional approach eliminates the need for
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classifying the emotional states as belonging to certain categories; potentially, this re-
solves a number difficulties arising in emotion modeling—the label associated with a
particular emotional display carries a lot less significance then the observed parame-
ters of the emotional state.

Facial feature tracking techniques are based directly on action units listed in the
Facial Action Coding System (FACS) [14]. Positive affective valence can be indexed
through a decrease in the distance between the corner of the mouth on one side of a
face—action unit #4 (Lip Corner Puller) activated by Zygomaticus major; this action
results in the upward and outward turning of the mouth into a smile. Negative
affective valence can be indexed through a decrease of the distance between the inner
corners of eyebrows—action unit #12 (Brow Lowerer) activated by Corrugator
supercilii; this results in the furrowed eyebrows look. We developed an algorithm for
feature tracking which utilizes a combination of common image processing tech-
niques, such as thresholding, integral projections, contour-tracing and Haar object
classification; many of these operations are available though the OpenCV' library.
Throughout the algorithm, the focus of attention is shifted among a number of regions
of interest, determined on the basis of the anthropomorphic constraints describing
human face geometry [15]. The algorithm relies on a few session-dependent threshold
values for processing eye, brow and mouth regions. To accommodate lighting varia-
tions, the threshold values have to be chosen manually during algorithm calibration at
the start of each tracking session. The feature detection algorithm includes five steps:
(1) face region extraction; (2) iris detection; (3) outer eye corners detection; (4) mouth
corners detection and (5) inner brow corners detection.

Fig. 1. The left image shows an example frame with the detected features. The right image
shows the core features tracked by the feature-tracking algorithm.

! http://www.intel.com/technology/computing/opencv/—Open Source Computer Vision library.
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Figure 1 shows facial features labeled according to the corresponding algorithm
steps. Facial feature detection is the first stage of affect detection—the rest is based on
the idea of facial animation parameter normalization described in [16]; in this tech-
nique the feature displacement is measured on the basis of a set of facial parameters
for a neutral expression. At the start of every session, during calibration, the algorithm
stores three parameters which are ratios of distances EgMg + E;M; and BiB| to the
distance between the pupils, PgP; shown in Figure 1. Real-time analysis of the differ-
ences between the ratios saved during calibration and the ratios calculated for each
frame is the key to feature displacement. The algorithm does not attempt to determine
affective state in every frame; rather our algorithm makes its decisions on the basis of
observed changes throughout the session. Positive affective valence is indexed by the
reduced distance between the corners of eye and mouth; negative valence is indexed
by the reduced distance between the inner eyebrow corners. With every consecutive
update received from the feature tracking code, the affective state is updated, register-
ing transitions between negative, neutral and positive affective states.

4 Affective Pedagogical Agent for EER-Tutor

To accommodate the preferences of users, we created two female and two male Hap-
tek” characters. The agents were designed to appear as young people approximately
20 to 30 years of age. Haptek’s People Putty SDK allows for fine-grain control over
the agent’s features and behavior in a way which is consistent with the dimensional
approach to emotion modeling. People Putty exposes a two-level API for controlling
its characters’ emotional appearance. On the lower level, the emotional appearance
can be controlled through a set of parameters associated with the characters’ facial
features; these parameters define the position and shape of the eyebrows, the corners
of the mouth, the overall position of the head and so on. We chose a subset of
parameters to control the characters’ appearance changes along the affective valence
dimension ranging from sad to happy. Haptek characters use Microsoft Speech API-
compatible Text-to-Speech (TTS) engines to generate verbal narrations along with re-
alistic lip-sync movements. For the experimental studies we acquired two reportedly
high-quality TTS Cepstral® voices—one male and one female.

The agent’s persona is guided by a set of fifteen rules which implicitly encode the
logic of session history appraisal. The rules assume that continuous lack of cognitive
progress will be accompanied by a negative affective state, because the user will be
dissatisfied with the progress of the current task; conversely, a satisfactory progress
will result in a positive affective state. Each rule corresponds to a pedagogically-
significant session state which requires the agent’s response. For example there are
rules requiring the agent to greet users when they sign on, submit a solution, ask for a
new problem and so on. Each rule has a set of equivalent feedback messages deter-
mining the agent’s verbal response; in addition, each rule includes a numeric value
which triggers a change in the agent’s affective appearance. For example, when the
user reaches correct solution, along with a congratulatory message the agent responds
with a cheerful smile. On the other hand, when the user is struggling with the solution

2 http://www.haptek.com/—Haptek People Putty SDK site.
3 http://www.cepstral.com/—Cepstral Text-to-Speech engires.
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resulting in multiple submissions with errors, the agent’s verbal response consists of
the list of errors, along with an affective facial expression—the agent’s face looks sad
as if the agent is empathizing with the user (Figure 2). The agent’s responses de-
scribed above rely only on the appraisal of the cognitive state. The agent has its own
affective module, which stores the current affective state; in the course of a session,
the agent’s affective state may be affected by the session events, but in the absence of
the affect-triggering changes, the agent’s affective state always gravitates towards the
neutral state, as it is the case with human emotions.

The agent’s affective awareness is intended to give the agent the capability of pro-
viding active affective support by addressing the user’s feelings. The affective state
appraisal is implicitly encoded in a set of rules corresponding to a subset of pedagogi-
cally-significant situations described above. The agent is capable of differentiating be-
tween positive and negative affective states; however, the agent addresses only steady
negative affective states. The rationale for this approach is based simultaneously on
the flow theory and on the model of cyclic flow of emotions in learning. The state of
positive flow may be disrupted by making the subject aware of the flow; thus the
agent does not need to interfere if there is no negative affect. When the user is happy
with the state of the session, it is unlikely the agent’s affective feedback will improve
anything, even if the agent is beaming with happiness and enthusiasm; if anything,
such an interference may break the mood or unnecessarily distract the user. On the
other hand, making the subject aware of their negative state may distract them from
their negative feelings and move them along towards their goal. Apart from
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responding to user-generated interface events (i.e. solution submission), the agent can
intervene with affect-oriented messages when the user’s affective state degrades.

Certainly, the affect-oriented messages triggered by negative affective states run
the risk of making a bad situation worse, because a user afflicted by negative feelings
might consider any interruptions irritating. With this in mind, we tried to design our
agent’s behavior to be as unobtrusive as possible; the agent only provides affect-
oriented content if the subject’s facial feature tracking data indicates the dominance of
the negative affective state. In our implementation, the interval to be taken into con-
sideration is a configurable parameter; for the evaluation study it was set to two min-
utes. Thus the agent, while responding to interface events, such as solution submis-
sion, may add an affect-oriented message to its feedback only if the negative affect
has been prevalent during the last two minutes and if the user did not receive affective
feedback during that time. The same logic is applied to the agent’s affective interjec-
tions in the absence of interface events. The following are examples of feedback mes-
sages used by the agent for affect-oriented feedback both for user-generated events
and unsolicited affective interventions—these messages are intended to address the
user’s negative feelings and express empathy in a way suitable in the given context:

* “I'm sorry if you are feeling frustrated—it’s just that some of the problems de-
mand a lot of work.”

* “T apologize if you feel negative about this practice session—some of the solu-
tions are quite complex.”

* “It does not look like you are not enjoying this practice session—but if you keep
solving these problems, you will be better prepared for future assessment.”

5 Experiment

In order to evaluate the affective agent, we performed a study in an introductory data-
base course in March—April 2007. The experimental group had access to the affect-
aware version of the agent, while the control group had the affect-unaware version of
the agent. This version of the agent was guided by rules without affect-oriented con-
tent so the agent did not generate affective facial or verbal reactions, but always re-
mained neutral. The task-oriented feedback for both conditions was identical. The
participants were randomly allocated to the control and experimental conditions. All
users were familiar with EER-Tutor, because the class was introduced to the sans-
agent version of this system a week before the study.

The study was conducted as a series of individual sessions, one session per partici-
pant. A webcam for facial feature tracking was mounted on top of the monitor and
aimed at the participant’s face. We used the Logitech Quick-Cam Pro 5000 webcam,
operating at the frame rate of 15 fps. at a resolution of 640x480px. For improving the
accuracy of facial feature tracking, we ran the sessions in a controlled lighting envi-
ronment—two 1000W video-studio lights were pointed away from the participant to-
wards a white screen, which worked as a source of diffused white light. Participants
wore head-phones to hear the agent’s feedback.

The participants were expected to spend 45-minutes with EER-Tutor, while solv-
ing problems of their choice from EER-Tutor’s curriculum at their own pace. Before
each session the experiment convener provided a verbal description of the task. At the
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end of the session, the participants were asked fill out the questionnaire. Finally the
participant was debriefed on the nature of the experiment and the underlying research.

A total of 27 participants took part in the experiment—13 participants (11 male, 2
female) were allocated to the control and 14 (13 male, 1 female) to the experimental
condition. The average age in the control and experimental conditions was 22 (s =
6.5) and 24 (s = 7.1) years respectively. We did not expect to observe significant dif-
ference between the conditions in the objective learning performance measures, be-
cause the sessions were short; therefore the between-condition comparison was made
on the basis of the questionnaires responses.

There was no significant difference between the groups in reported levels of exper-
tise in database modeling. The main positive outcome of the evaluation was deter-
mined by the responses to questions, which ranked the appropriateness of the agent’s
behavior and its usefulness: 64% of the experimental groups thought that the agent’s
behavior was appropriate, compared to only 30% of the control group; furthermore,
43% of the experimental group rated the agent as a useful addition to EER-Tutor,
compared to the 15% of the control group. The affect-aware agent’s behavior was
rated higher than the affect-neutral agent in terms of both its behavior (Mann-Whitney
U Test, U =57, Nc = 13, Np = 14, p < 0.05) and usefulness (Mann-Whitney U Test, U
= 56, Nc = 13, N = 14,p < 0.05). There was no significant difference in the users’
perception of learning and enjoyment levels with either version of the agent. The
rankings of the participants’ perceptions of the agents’ emotional expressiveness did
not reveal significant difference between the two conditions—30% in the control con-
dition noticed the agent’s emotions versus 15% in the experimental condition. This
result is somewhat unexpected, because the affective facial expressions were gener-
ated only for the experimental condition.

Free-form questionnaire responses suggest that the participants received the affect-
aware version with interest and approval; for example, one participant commented: “I
liked when the avatar told me I shouldn’t worry because of feeling uncomfortable
about the question I was working on.” Three participants, however, stated they felt
annoyed when the agent misdiagnosed their affective state; one user commented:
“The avatar kept asking me if I was feeling negative when I wasn’t.” Another com-
ment suggests that we, as interaction designers, were not clear enough about the inten-
tion the agent was to communicate to the user: “I needed encouragement when I
wasn’t doing very well, but instead got a sad face”—this particular user clearly did
not find the agent’s empathy encouraging. In this situation, verbal expression of em-
pathy combined with a positive facial expression could have had a better effect.

Verbalized feedback was enthusiastically welcomed by the participants; even
though the questionnaire did not elicit comments on verbalized feedback, 33% of par-
ticipants (approximately equal proportions for each condition) stated that verbal feed-
back was a useful addition to EER-Tutor because it helped the users to remain fo-
cused on the workspace and work faster. Only 11% stated that verbalized feedback
was unnecessary or distracting. The participants were able to silence the agent and
stop verbal feedback; only 20% used this feature, but all these participants turned the
verbal feedback back on within one to four minutes. The participants’ interest in
the verbal feedback can be explained in the work of Nass and Brave [17], who offer
the evidence that the awareness of non-human origin of speech is not enough for the
“brain to overcome the historically appropriate activation of social relationships by
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voice.” These findings have a vast potential for the future development of affective
pedagogical agents in ITSs.

It appears that the agent’s presence raised the level of users’ expectations associ-
ated with the EER-Tutor’s ability to guide them and provide hints. This functionality
is implicit in EER-Tutor, because at any time the list of errors can be obtained by
submitting an incomplete solution; in the agent’s presence, however, some users
wanted the agent to take it upon itself to provide context-specific hints. We observed
in some cases that the agent did not match the users’ expectations in its ability to take
control of the situation and provide context-specific unsolicited task-oriented hints
and assistance when the participants were struggling with the task. For example, one
user commented: “When it was obvious I was lost, the avatar didn’t offer any tips or
appropriate questions.” Another user commented that without this ability the agent
was “a helper that was not very helpful.”

In general, approval of the pedagogical agent’s presence in EER-Tutor dominates
the questionnaire responses. The agents’ uptake was not unanimous, but the evalua-
tion results advocate the presence of affective pedagogical agents, with the affect-
aware agent demonstrating superiority over its non-affective counterpart.

6 Conclusions and Discussion

The active affective support that we attempted to implement theoretically takes the in-
teraction between the agent and learner to a new level—it brings the pedagogical
agent closer to the learner. This opens a whole new horizon of social and ethical de-
sign issues associated with the human nature traits. The experiment results indicate a
range of preferences associated with pedagogical agents and affective communica-
tion. Affective interaction is individually driven, and it is reasonable to suggest that in
task-oriented environments affective communication carries less importance for cer-
tain learners. Also, some learners might not display emotions in front of a computer,
or some users might display emotions differently; even though people do tend to treat
computers and other digital media socially, it does not necessarily mean that people’s
responses in the HHI and HCI contexts are equivalent. On the other hand, some peo-
ple are naturally more private about their feelings; such individuals might respond to
the invasion of their private emotional space by a perceptive affective agent with a
range of reactions from withdrawal to fear. Others might resent being reminded about
their feelings when they are focusing on a cognitive task; in such situations, people
might unconsciously refuse to acknowledge their feelings all together. Although the
interplay of affective and cognitive processes always underpins learning outcomes, af-
fective interaction sometimes may need to remain in the background; whatever the
case, an ITS should let the user decide on the level of affective feedback, if any, thus
leaving the user in control [18].

Affective state in learning environments and in HCI in general is known to be
negatively influenced by the mismatch between the user’s needs and the available
functionality; inadequate interface implementations, system limitations, lack of flexi-
bility, occurrences of errors and crashes—all these factors contribute to the affective
state. In most cases, it is difficult or virtually impossible to filter out the affect gener-
ated by this kind of problems. These considerations add another level of complexity
to the modeling of such ill-defined domains as the human-like emotional behavior.
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At the same time, the inevitable and undisputed truth is that humans are affective
beings, guided by a complex system of emotions, drives and needs. Some aspects of
affect-recognition in HCI may forever remain ill-defined or hidden, just as in some
HHI scenarios one can never be completely and utterly sure of the perceived experi-
ence. Affective agents may improve the learner’s experience in a variety of ways, and
these will be perceived differently by every individual learner; agents may ease frus-
tration and may make the process more adaptive, interesting, intriguing or appealing.
If affect-recognition and affective agents can attract more learners and improve learn-
ing outcomes, thus taking the ITS research a step closer to bridging the affective gap
and possibly resolving the 2 Sigma problem, then this step is worth taking.
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Abstract. We describe technology to dynamically collect information about
students’ emotional state, including human observation and real-time multi-
modal sensors. Our goal is to identify physical behaviors that are linked to emo-
tional states, and then identify how these emotional states are linked to student
learning. This involves quantitative field observations in the classroom in which
researchers record the behavior of students who are using intelligent tutors. We
study the specific elements of learner’s behavior and expression that could be
observed by sensors. The long-term goal is to dynamically predict student per-
formance, detect a need for intervention, and determine which interventions are
most successful for individual students and the learning context (problem and
emotional state).

1 Introduction and Previous Work

The obvious next frontier in computational instruction is to systematically examine
the relationship(s) between student affective and learning outcome (performance)
[18]. Human emotion is completely intertwined with cognition in guiding rational
behavior, including memory and decision-making [18,11,16,5]. Students’ emotion
towards learning can have a drastic effect on their learning experience [10]. An in-
structor who establishes emotional and social connections with a student in addition
to cognitive understanding enhances the learning experience. Responding to a
learner’s emotion, understanding her at a deep level, and recognizing her affect (e.g.
bored, frustrated or disengaged) are key elements of quality teaching. If computer
tutors are to interact naturally with humans, they need to recognize affect and express
social competencies. This research attempts to understand how students express emo-
tion, detect these emotions, and quantify emotional variables.

Previous projects have produced computational tutors that recognized and re-
sponded to models of emotion (e.g., self-efficacy and empathy [15]). Projects have
tackled the sensing and modeling of emotion in learning and educational gaming en-
vironments [14, 17]. A dynamic decision network was used to measure student emo-
tional state based on variables such as heart rate, skin conductance and eyebrow
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position [7]. Studies have evaluated the impact of affective interface agents on both
affective and motivational outcomes based factors (e.g., gender, ethnicity). Lack of
engagement was shown empirically to correlate with a decrease in learning [4]. In this
study, however the tutor elicited negative feelings from students, in part because it
blocked those who were presumed to be gaming the system [1]. Most prior work on
emotion recognition has focused on deliberately expressed emotions within a labora-
tory setting and not in natural situations such as classroom learning. Many of earlier
systems did not use fully adaptive learning environments and some were games. The
research described here takes the next step by integrating emotion detection within an
intelligent tutor as part of learning in a natural classroom setting.

2 Overall Plan

The long-term goal of this research is to dynamically collect information about stu-
dents’ emotional state in order to predict performance, detect a need for intervention,
and determine which interventions are most successful for individual students and
context (problem, emotional state). To accomplish these tasks, we implement emotion
detection within an existing tutor in three phases: classroom observations, the use of
physiologic sensors, and software algorithms (e.g., machine learning). We triangulate
among these approaches to resolve toward agreement (with the realization that we
may be far away from realizing any consensual agreement). This paper describes the
first two methods for detection of emotion; classroom observations and a sensor plat-
form.

In the first phase of this research human observation in the classroom approxi-
mated the type of information the sensors would collect, and corroborated what sensor
information indicates about students’ emotional state. Classroom observations are a
useful exploratory strategy because human observers can intuitively discern high-
level behaviors and make appropriate judgments on limited information that may be
difficult to automatically decide from raw sensor data.

In the second phase we evaluate low-cost portable and readily deployable sensors
that dynamically detect emotion using the theoretical basis formed from classroom
observations. Sensors are can collect constant streams of data in parallel, allowing for
much more consistent observation than a human ever could accomplish. They are also
increasingly inexpensive and fast at processing/collecting data. Thus, human observa-
tions identify behaviors that are worth observing and then sensors gather this behav-
ioral data in bulk. We will evaluate the effectiveness of sensors in predicting student
emotional state, and use reinforcement-learning techniques to decide which interven-
tions are most successful for students in certain emotional states.

3 C(Classroom Observations

Our goal in the first phase of this research was to observe student behavior and iden-
tify variables that represented 1) emotions and desirable/undesirable states linked to
student learning, and 2) physical behaviors linked to emotion states. This involved
quantitative field observations in the classroom in which researchers recorded the
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behavior of students using intelligent tutors. Observations by multiple observers, us-
ing this method, have had high inter-rater reliability and report relatively low impact
on student behavior once students are used to the observer’s presence [4]. Research-
ers observed students using the Wayang Mathematics Tutor, a tutor that prepares 12-
16 year old students for the mathematics section of standardized exams [2]. The tutor,
which has been used by a thousand of students represents mathematic skills and rec-
ognizes which skills a student has learned. It shows students their progress and offers
them a choice of problem difficulty.

3.1 Experimental Design

The study included thirty four (34) students in a public school in urban Holyoke, MA,
split into 3 different classes. Students took a pretest survey to evaluate their attitudes
towards math (self-concept and value) and goal (learning vs. performance) orientation
[10], as well as a mathematics pretest with multiple problems to evaluate diverse con-
cepts taught within the Wayang Outpost math tutoring software. Students used the
tutoring software during a period of 3 weeks and were then given a posttest. While
students used the Wayang software, three researchers coded behavioral variables and
subjective variables, such as valence of the student’s emotion. Researchers were
trained during several sessions to code these variables by observing videos of students
using Wayang. Coders rotated around the classroom, coding one student at a time.
Observation periods lasted for approximately 15 seconds, with the following 15 sec-
onds to confirm the observation. Because students may have experienced several be-
haviors/emotions during one time period (e.g., the student was seen forward and then
back on the chair), we coded the first state seen, but the second one was coded and
taken account later in the analysis.

Behavioral and Task-Based Variables. Researchers coded physical behavior (chair
and head posture, movement, face gestures) and looked for expressed affect in spe-
cific facial expressions (smile, frown, nod) and verbal behavior (loud comments, talk
with others). They also coded whether a student appeared to be on- or off-task. The
process of identifying this behavior is obviously somewhat subjective and noisy (i.e. a
student may look to be on task when they are not). Students were marked as being
off-task when they were clearly not using the software appropriately. This includes
not looking at the screen, using other programs on the computer, staring blankly at the
screen without taking any action, conversing with peers about other subject matter,
etc [4]. On-task students might be reading/thinking about the problem, talking to a
friend about the problem, or writing a solution on paper. Off-task students are not
concentrated/engaged on learning and this is undesirable for learning.

Emotional Indicators. Because it is often difficult to distinguish one emotion from
another, we limited the conventional emotional terms to four categories of emotions
that result from the combination of two indicators: (i) valence (positive or negative
nature of the emotion/energy the student seemed to be expressing) and (ii) arousal or
level of physical activity. These emotion indicators are used to express the four basic
emotions in Table 1, and are consistent with early research on emotions [20]. How-
ever, our concern was that this emotional state variable might not be correlated to
learning without also considering on-task or off-task behavior. It is highly desirable
for a student to experience a state of joy/excitement when she is on-task, but if the
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Table 1. Desirable State Variables and Possible Emotion Indicators

Valence | Arousa | On/Off Example Student Behavior Desirability
| task value
+ + On Aha moment, yes! That'’s it! 2 | Highly Desirable
+ -— On Concentrated on problem-solving 2 | Highly Desirable
-— + On Frustrated with tutoring software, 1 | Maybe desirable
— — On Yawning, zoned out within software | 0 Not desirable
+ + Off Laughing with friend 0 Not desirable
+ — Off Very focused but on other software 0 Not desirable
— + Off Angry quarrel with friend 0 Not desirable
— — Off Zoned out, or sleeping 0 Not desirable

student tends to be joyful while off-task, the emotion variable will not correlate
strongly with optimal learning. Thus, we created another variable, Desirability Value,
which is both task- and emotion-dependent (on/off-task, valence and arousal), see
Table 1. The values reflect the fact that being off-task is undesirable, but also that
being tired/bored (negative valence, negative arousal) while being on-task is also not
desirable, as the student may give up. Frustration while being on-task is not necessar-
ily negative; learning episodes often have productive moments of frustration. Finally,
states of positive valence while being on-task are highly desirable, whether accompa-
nied by high arousal or by low levels of arousal where students experience high men-
tal activity without significant observable emotional expression.

3.2 Results

We evaluated correlations among the frequency of behaviors, task and emotional state
variables. Correlations were computed between global emotion indicators and inter-
mediate emotion/task-based state variables. Then we analyzed the correlation between
these state-based variables and student behaviors. Students were detected to be on-
task 76% of the time, slightly lower than previous findings regarding off/on-task be-
havior with software learning environments [3].

Table 2 shows the frequencies of different emotional states. Note that negative va-
lence emotions were observed only 8% of the time. This could be largely due to the
fact that a neutral or indiscernible valence was coded as positive. Table 2 shows that
73% highly desirable states were observed, 3% medium desirable states, and 24%
non-desirable states.

Table 2. Frequency of Emotion Indicators and Desirable Learning States

Emotion indicators: Valence & Arousal Frequency Percent
+ valence & --arousal (concentrated, satisfied) 148 58%
+ valence & + arousal (excited, joyful, actively engaged) 85 34%
- valence & +arousal (frustrated, angry) 16 6%
- valence & --arousal (bored, tired) 5 2%
Total 254 100%
Desirable State Frequency Percent
Highly desirable 181 73%
Not desirable 61 24%
Medium Desirable 7 3%




Viewing Student Affect and Learning through Classroom Observation 33

Correlations Between Emotion Indicators and Learning/Attitudes. We analyzed
whether we can use emotional indicators and other state variables to predict learning
and motivation, the variables we want to optimize.

Valence. Valence (or student energy) was significantly correlated to pretest math
score (N=34, R=.499, p=.003). This suggests that students who are good in math to
begin with, also have substantially more positive emotions while using the software,
or at least less unpleasant emotions (e.g. boredom, frustration). Valence was also
positively correlated to posttest learning orientation (N=30, R=.499, p<.01), but not to
pretest learning orientation, suggesting that having positive valence during the tutor-
ing session may instill higher learning orientation goals at posttest time. A similar
effect happened for posttest self-concept and valence (R=.48, p<0.01) where students
who had higher valence emotions had higher posttest self-concept scores. Thus, the
presence of positive or negative emotions can help predict more general attitudes to-
wards math at posttest time.

Arousal. Arousal (or student activity) was negatively correlated with pre-tutor learn-
ing orientation (N=30, R=-.373, p<0.05), suggesting that students who are perform-
ance-oriented (characterized by a desire to be positively evaluated by others) are
more likely to be physically active or ‘aroused’, as opposed to those who are learning
oriented, who tend to express less physical activity.

Emotion (Valence + Arousal). Our emotional scale was correlated with pretest self-
concept (R=.385, p<0.05) and posttest learning orientation (R=.463, p<.05), suggest-
ing that the presence of four types of emotions (determined by combinations of va-
lence and arousal) can help predict more general attitudes towards learning math.

On/Off task. Being on-task is significantly correlated to posttest self-concept in math
(N=30, R=.442, p=.02), but not to pretest self-concept in math, suggesting that being
on-task is not a result of an incoming high self-concept in math. However, it indicates
that being on-task may generate better self-concept after using the tutor. There is a
significant correlation between math posttest performance and being on-task (R=.640,
p<.018). Again, being on-task is not correlated with math pretest performance, mean-
ing that prior math knowledge will not predict students’ tendencies towards on or off-
task behavior. Instead, being on-task seems to lead to higher posttest scores, again
implying that being engaged with the tutoring system is part of the reason for achiev-
ing higher posttest scores. This is consistent with past research results on on/off task
behavior [3]. If we can encourage students to be on-task, we will foster better atti-
tudes for math and higher posttest scores.

Desirable Learning State. Similar significant correlations were found for this variable
as on/off task (i.e., it predicted posttest scores and posttest self-concept in math to a
similar extent as on/off task behavior). If we can encourage students to be in our de-
sirable learning states (Table 1), we will also foster better attitudes for math and
higher posttest scores.

Correlations Between Emotional/Task-Based States and Behavior. Several corre-
lations were discovered among student behavior (chair, head and hand position), emo-
tion indicators (valence and arousal) and the desirability value, see Table 3. Clearly, a
high positive correlation exists for arousal and chair movement since we defined
arousal by physical activity. Meanwhile, valence is not linked to chair movement,
meaning that students do not express their positive or negative emotions with chair



34 T. Dragon et al.

movement. A negative correlation exists for desirable state and being on-task,
meaning that students are in a more desirable learning state (and more on-task) when
they don’t move so much in the chair.

Other interesting findings (some not shown) are that students with positive valence
emotions tend to sit in the middle of the chair, instead of being towards the side, the
front or the back of the chair. Last, students leaning on their hands correlated nega-
tively with arousal —as leaning is a fairly inactive posture. It is not that obvious
though that students in a state of positive valence also tend to lean on their hands.

Table 3. Pearson correlations among student behavior (chair, head and hand position), emotion
indicators (valence and arousal), the desirability value and student talk

VALENCE AROUSAL ON TASK? Desirability TALK
Value
Chair Movement| -.467 (0.46*) [.420 (.000***) -.140 (.027*) | -.154 (.015%) | -
N= 252 252 249 247
CHAIR Middle | .148 (.018%) | .107 (090) | -.002 (.974) | -.003 (.967) | -
N= 252 252 249 247
HEAD MOVE | -.224 (.000***) | .345 (.000***) |-.417 (.000***)[-.435 (.000***)
249 249 246 244
HEAD SIDE | -.195 (.002**)| .247 (.000***) |-.325 (.000***)|-.337 (.000***)  -----
254 254 251 249
HEAD MOVE SIDE|-270 (.000***)| .230 (.000***) | -.422 (.000***)|-.443 (.000***)]  ---—-
N = 249 249 246 244
HEAD MIDDLE |.202 (.000***)|-.186 (.000***)|.427 (.000***)|.436 (.000***)|  --—--
N = 254 254 251 249
HEAD UP -097  (123)| .062 (.326) |-.214 (.001**)|-.235 (.000***) — -----
N= 254 254 251 249
TALK -117  (.064) | .304 (.000***) [-.644 (.000***)|-.628 (.000***)|  --—--
N= 251 251 251 249
SOUND -.075  (.248)| .370 (.000***) |-.388 (.000***)|-.379 (.000***)|  -----
N= 242 242 241 239
SMILE -.086 (.185) | .313 (.000***) | -.430 (.000***) | -.420 (.000***) |.485 (.000***)
N = 240 240 237 235 237
NEUTRAL 142 (028*) | -.238 (.000***) | .395 (.000***) | .409 (.000***) |-.285 (.000***)
= 240 240 237 235 237
SOUND -.075 (.248) .370 (.000***) | -.388 (.000***) | -.379 (.000***) | .533 (.000***)
= 242 242 241 239 241

*** Correlation is significant at the 0.001 level (2-tailed); ** Correlation is significant at the 0.01 level (2-
tailed); * Correlation is significant at the 0.05 level (2-tailed).

Head movement was correlated with negative valence, high arousal, off-task be-
havior and non-desirable states. This implies that students move their heads when
they feel negative emotions, when being off-task and in a non-desirable learning state.
When students are in such unproductive learning state, and when they are off-task,
they tend to move their heads to the side. Also, students tend to move their head to the
side when they have negative feelings. It is possible that students avoid the computer
screen when they don’t feel good about the software or the learning situation. At the
same time, having their head in the middle had the opposite effect: it was correlated
with positive valence, low arousal, on-task behavior, and desirable state for learning.

Students holding their head up indicates off-task behavior and an undesirable state
for learning, while holding their head down is not (possibly because many students
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tend to work on paper on their desk). Again, head up could be an indication of screen
avoidance. Talking and environmental sound are both correlated to high arousal and
positive emotion, although they are associated with off-task behavior and undesirable
states. This means that students tend to have off-task talk, which seems reasonable for
a system that does not encourage on-task collaboration with a partner.

It seems obvious that frowning is related to having a negative valence emotion.
However, frowning doesn’t appear to be a good predictor of being on-task or being in
a desirable learning state (not shown). A smile on the face does predict off-task be-
havior (R=-.430 with on-task) and undesirable state for learning (R=-.420), Table 3.
Surprisingly, smiling was not linked to valence, but it is positively correlated with
arousal and talk (students probably moved and talked with friends while they smiled).
The opposite effect happened for a neutral face: it was positively correlated to desir-
able learning state and on-task behavior. A neutral face was linked to positive va-
lence, most likely because we coded seeing a neutral emotion as positive valence. A
neutral face was an indicator that the student was not moving (negative arousal) and
not talking. Last, an environmental sound that is louder than background noise was a
good predictor of talking (R=.533) suggesting that a microphone that senses for odd
sounds can detect if a student is talking with good accuracy, which in turn was evi-
dence for a non-desirable state for learning within the software, see Table 3.

4 Sensor Technology

These human observations in the classroom
are continuing as a way to understand the
impact of student emotions on learning. Yet
these student emotions can be detected auto-
matically by intelligent tutors, which can then
also respond dynamically with appropriate
interventions. In order to establish a social
and emotional connection with students, tu- Fig. 1. Pressure mouse sensor

tors should recognize students’ affect and

respond to them at a deep level. Towards this end, our goal in the second phase was to
automate the observation process using sensors. We have developed a low cost multi-
modal sensor platform that is being integrated into the Wayang Tutor and evaluated in
classrooms. The platform includes a custom produced Pressure Mouse, a Wireless
BlueTooth Skin Conductance sensor, a Posture Analysis Seat, and a Facial Expression
System. This platform expands on an earlier one at an order of magnitude reduction in
the overall cost. The sensors are developed from an earlier system that had several
sensors in common with AutoTutor [9]. Pre-production prototypes of each sensor
have been developed and we are producing thirty sets of these sensor platforms for
simultaneous use in classrooms. The intent is to provide a better understanding of
student behavior and affect and to determine the contribution of each sensor to the
modeling of affect [14].
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Pressure mouse. A pressure mouse is used to detect the increasing amounts of pres-
sure users place on their mice related to their increased levels of frustration. The
pressure mouse system has six force sensitive resistor sensors and an embedded mi-
croprocessor, Figure 1. It uses the standard communication channel of a USB mouse
for pointing and clicking functions and then in parallel uses a second channel, a serial
communications port, to provide pressure data at 20ms intervals from each of the six
sensors. Pressure sensors located under the mouse button measure the force of the
users click in addition to their overall pressure across the surface of the mouse.

Posture Analysis Seat. We have developed and are now testing a low-cost/low resolution
pressure sensitive seat cushion and back pad with an incorporated accelerometer to
measure elements of a student’s posture and activity, Figure 2. This system captures
many student movements relevant to education that were previously captured by the
TekScan system, that used an extremely expensive Posture Analysis Seat, developed for
medical and automotive applications [19]. The previous system used pattern recognition
techniques while watching natural behaviors to learn which behaviors tended to accom-
pany states such as interest and boredom. We are now developing similar algorithms
based on the new low-cost
posture analysis chair.

Wireless skin conduc-
tance. A wireless version
of a earlier glove that
sensed conductance was
developed by Carson
Reynolds and  Marc
Strauss at the MIT Media Fig. 2. Posture State Chair Sensor. The previous sensor
Lab, in collaboration with resulted in posture recognition (89-97% accurate). And
. classification of high/low interest and break taking (69-
Gary McDarby, at Media ¢ aweurate) [1 4].g &

Sit upright Lean Forward Slump back Side Lean

Lab Europe, see Figure 3.
While the skin conduc-
tance signal is not valenced (i.e. does not describe how positive or negative the affec-
tive state is) it is strongly correlated with arousal. High levels of arousal tend to ac-
company significant and attention-getting events [6].

Facial Expression Camera. A person's mental state is not directly available to an ob-
server; instead it is inferred from a range of non-
verbal cues including facial expressions. We are
using a facial expression recognition system that
incorporates a computational model of mind reading
as a framework for machine perception and mental
state recognition [12]. This facial action analysis is
based on a combination of bottom-up vision-based
processing of the face (e.g. head nod or smile) with
top-down predictions of mental state models (e.g.
interest and confusion) to interpret the meaning un-
derlying head and facial signals over time [12]. A
multilevel, probabilistic architecture (using dynamic
Bayesian networks) mimics the hierarchical manner

Fig. 3. Wireless Skin Conduc-
tance Sensor
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with which people perceive facial and other human behavior [21] and handles the uncer-
tainty inherent in the process of attributing mental states to others. The output probabili-
ties represent a rich modality that technology can use to represent a person’s state and
respond accordingly. The resulting visual system infers mental states of people from head
gestures and facial expressions in a video stream in real-time. At 30 fps, the inference
system locates and tracks 24 feature points on the face and uses motion, shape and color
deformations of these features to identify 20 facial and head movements (e.g., head pitch,
lip corner pull) and 11 communicative gestures (e.g., head nod, smile, eyebrow flash)
[21]. Dynamic Bayesian networks model these head and facial movements over time,
and infer the student’s “hidden” affective-cognitive state.

5 Discussion and Future Work

This paper described the use of human observations and wireless sensors to detect
student emotions, learning, and attitudes towards learning. We identified emotion
indicators (valence and arousal) that combined with on and off-task variables to rep-
resent desirable/undesirable states linked with student learning, as well as physical
behaviors linked to emotional states. This was achieved through quantitative field
observations in the classroom in which researchers recorded the behaviour of students
using intelligent tutors. We described correlations between low-level observations
(i.e. chair movement) and higher-level observations (valence, arousal, on-off task
behavior) and then between these higher-level observations and student learning and
attitudes. Through these links, we propose that low-level sensor information can tell
us about emotion indicators and other state-variables linked to learning. Sensors can
provide information about how students perform and information about when students
are in non-productive states so that the tutor can provide appropriate interventions. In
turn, sensors can also inform us whether the given interventions are working or not.
With this goal in mind, low cost portable sensors are being used in natural classroom
settings. Thus, once we know which variables are useful predictors of learning and
affective outcomes, these sensors can replace the human observers and predict stu-
dents’ emotional states related to learning.

Table 4. Guide to interpreting sensor data and predicting learning

<« Predict student learning and attitude <<

Desirable Learn- Emotion/task Biologic indicators Sensors to use
ing States indicators
Most desirable + Valence Lean on hand; Little Chair sensors
(Joy, Aha moment, AND chair/head movement; Sit | Camera
Concentrated Ac- On-task in middle of chair; Head in
tively engaged) middle; Neutral face;
Medium desirable | TSR | LR g or | mowser
(Frustrated, angry) mouse Chair Sensors
Off-task Talking; Large chair Skin conductance;
Least desirable OR movement; Head move- Camera;
(Bored, tired) -- Valence ment; Head to side or Chair sensors;
-- Arousal head up; Smile Microphone

== Detect strong and weak student learning behavior =>=
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This paper unveiled several interesting findings: 1) observed fluctuating states of
emotion and on/off task behavior help predict posttest performance and atti-
tudes/motivation; 2) student states are expressed with specific behaviors that can be
automatically detected with sensors; and 3) a mechanism for strong/weak learning
behavior detection was identified. As a result of these findings we identify how sen-
sors can predict and reflect student learning, see Table 4. Moving from right to left
sensor readings and emotion/biologic indicators are used to predict student learning
and other motivational variables; moving from left to right indicates how strong/weak
learning and attitudes are expressed and detected by sensors.

Future work consists of using these behaviors to predict emotions and desir-
able/undesirable learning states that would in turn help us predict learning and atti-
tudes towards learning mathematics. The long-term goal is to dynamically collect
information about students’ emotional state and predict student states, and in turn
predict posttest performance in real time. Moreover, because certain states such as
negative valence and high levels of arousal are unproductive for post-tutor assess-
ments of learning/attitudes, such states will lead to the selection of an intervention. At
that point we must also decide which interventions are most successful for individual
students and context (e.g. topic, emotional state). Finally, we intend to resolve the
nature of data from different sensors. The camera provides very high-level judgments
as it uses its own inference engine to decide emotional states, whereas all other sen-
sors provide relatively raw data. We are engaged in the development of machine
learning algorithms that relate these data sets to learners’ diverse emotional states.
Using all of these techniques, we plan to recognize and help students cope with states
of negative valence and support their return to on-task behavior.
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Abstract. We compare the affect associated with an intelligent tutoring envi-
ronment, Aplusix, and a simulations problem solving game, The Incredible Ma-
chine, to determine whether students experience significantly better affect in an
educational game than in an ITS. We find that affect was, on the whole, better
in Aplusix than it was in The Incredible Machine. Students experienced signifi-
cantly less boredom and frustration and more flow while using Aplusix. This
implies that, while aspects unique to games (e.g. fantasy and competition) may
make games more fun, the interactivity and challenge common to both games
and ITSs may play a larger role in making both types of systems affectively
positive learning environments.

1 Introduction

Games are fun. The same adolescents who are often reluctant to put significant time
into their studies are often enthusiastically willing to put dozens of hours into playing
modern computer games [6]. In recent years, researchers have suggested that embed-
ding games into education can be a way to improve students’ affect, interest, and
motivation towards education, and in turn improve their learning. Some educational
games have successfully built upon competition, curiosity, challenge, and fantasy to
make learning more enjoyable, increase students’ desire to learn, and complete more
difficult work than with traditional educational materials [1,8,16]. However, there is
also evidence that educational games may not have entirely positive effects on learn-
ers’ affect and motivation. Bragg [S5] found that students exhibited negative attitudes
towards the use of games as the main instructional method for learning mathematics.
Similarly, Vogel [24] argues that games and simulations that fail to make seamless
connections between the subject matter and the game play will also inhibit learners’
engagement and motivation.

While it is commonly believed that educational games will lead to better affect than
non-gamelike learning environments, the evidence supporting this belief is not yet
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conclusive. In many cases, educational games have been studied in relation to rela-
tively weak comparison conditions, such as paper worksheets with no feedback [16]
and games with game features ablated [8]. Furthermore, it has been found that intelli-
gent tutoring systems lead to significantly improved affect and motivation as com-
pared to traditional, non-computerized learning contexts [22], though not necessarily
to expert human tutors. Intelligent tutors generally lack game-like features like
competition and fantasy, but share in common with games features such as instant
feedback, and measures of continual progress. It is possible that the additional motiva-
tional features of educational games lead to more positive affect than intelligent tutors
(i.e. more delight and engagement, and less frustration and boredom), but it is also
possible that the largest motivational benefits come from the interactivity that both
games and intelligent tutors share.

The differences among effects of educational games and intelligent tutoring sys-
tems on students’ usage choices are also not yet fully studied. Consider hint abuse and
systematic guessing, behaviors categorized as gaming the system, i.e. “attempting to
succeed in an educational environment by exploiting properties of the system rather
than by learning the material and trying to use that knowledge to answer correctly”
[3]. As Rodrigo et al [20] discussed, students generally know that gaming behavior is
undesirable in intelligent tutoring systems, as the primary goal is to learn the domain
content — and students demonstrate this belief by hiding this behavior from their
teachers. By contrast, there may be a perception that since games are primarily for
fun, it is acceptable to use them in any fashion; hence, students may game the system
more often in educational games than in intelligent tutoring systems.

In this paper, we compare the affect associated with an intelligent tutoring envi-
ronment, Aplusix II: Algebra Learning Assistant [17,18] (http://aplusix.imag.fr/), and
a simulation problem solving game, The Incredible Machine: Even More Contrap-
tions [20]. Earlier studies [4,20] collected affect and usage data on students’ affective
states when using The Incredible Machine. We collect similar data for Aplusix, within
similar populations and following virtually identical data collection and analysis pro-
cedures. By comparing these two data sets, we can determine whether students ex-
perience significantly better affect in an educational game than in an intelligent tutor,
and in turn study which aspects of educational games explain their positive effects on
student affect.

1.1 Descriptions of the Learning Environments

As mentioned in the introduction, affect and usage data were gathered from partici-
pants using two different interactive learning environments: the Incredible Machine
and Aplusix.

The Incredible Machine [21], called TIM for short, is a simulation game where stu-
dents complete a series of logical “Rube Goldberg” puzzles. In each puzzle, the stu-
dent is given a limited set of objects, including mechanical tools like gears, pulleys,
and scissors; more active objects like electrical generators and vacuums; and even
animals. The student must combine these objects in a creative fashion to accomplish
each puzzle’s goal. Objectives range from relatively straightforward goals, such as
lighting a candle, to more complex goals such as making a mouse run. If a student is
stuck, he or she can ask for a hint; hint messages display where items should be
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located in a correct solution to the current problem (without displaying which items
should be placed in each location). TIM is thought to be highly entertaining, having
won multiple awards for its innovative gameplay, most recently including an award
for best casual mobile game at the 5 Annual Spike TV Video Game Awards in 2007.
Hence, if an intelligent tutor can produce comparable levels of affect as those pro-
duced by this game, the ITS can be considered highly motivating. A screenshot from
TIM is shown in Figure 1.

TUTORIAL #2: GEARS AND BELTS

Fig. 1. A screen shot from The Incredible Machine: Even More Contraptions (TIM)

Aplusix [18,19] (http://aplusix.imag.fr/) is an intelligent tutoring system for
mathematics. Topics are grouped into six categories (numerical calculation, expan-
sion and simplification, factorization, solving equations, solving inequations, and
solving systems), with four to nine levels of difficulty each. Aplusix presents the
student with an arithmetic or algebraic problem from a problem set chosen by the
student and allows the student to solve the problem one step at a time, as he or she
would using a paper and pen. At each step, Aplusix displays equivalence feedback:
two black parallel bars mean that the current step is equivalent to the previous step,
two red parallel bars with an X mean that the current step is not equivalent to the
previous step (see Figure 2). This informs the student about the state of the problem
in order to guide him or her towards the final solution. Students can end the exercise
when they believe they are done. Aplusix then tells the student whether errors still
exist along the solution path or whether the solution is not in its simplest form yet.
The student has the option of looking at the solution, a “bottom out” hint with the
final answer. Hence, Aplusix both reifies student thinking and gives instant feedback,
two key characteristics of modern intelligent tutoring systems [cf. 2]. However, Aplu-
six lacks one game-like feature found in many intelligent tutoring systems — indica-
tions of the probability that students have learned relevant skills, in the form of “skill
bars”. It has been suggested that students view skill bars as being like points in games,
and that skill bars give students the perception of progress and encourage competition
between students [22], although, in a lab study, Jackson & Graesser [14] did not find
evidence that progress-only skill bars improve motivation.



Comparing Learners’ Affect While Using an Intelligent Tutoring System 43

Aplusix - Student : ris01 - Training (CHABRO-1.082)  [C][E][X)
Eile Edit Step Calculaton Parameters Past activities Help

Training (list] = ‘ 3xi| End of the exercise | 6/10

Expand and simplify

7(2x%+3x+2) -4 (-4x2-2x-5)
[
14x2421x+14-4 [-4x?-2x-5)

‘14x2+21x+14+16x2+8x+20

| 30x2+21x+14+81 =
LA

E

ET| ol

State: Ok

Fig. 2. A screen shot from Aplusix: Algebra Learning Assistant

These two systems provide a strong comparison between intelligent tutoring sys-
tems and games. TIM has won awards for its enjoyable gameplay; Aplusix can be
considered a fairly traditional intelligent tutoring system, as it includes the continual
feedback and reification of student thinking that is characteristic of most intelligent
tutoring systems, but lacks skill bars, which some researchers think lend intelligent
tutors a game-like feel. Hence, the two systems are good representatives of their re-
spective classes, and similarities or differences in learner affect between the two sys-
tems will be representative of similarities or differences in affect between games and
ITSs in general. It is worth noting that the two systems do not cover the same educa-
tional material, as TIM covers general problem-solving skill while Aplusix covers
algebra; this possible confound will be considered in the discussion section.

2 Methods

The data gathering procedures for the two environments was very similar. The subse-
quent section discusses the profile of the participants, the observers, the coding proce-
dures, and the inter-rater reliability of the observations.

The participants for the TIM study were students in a private high school in Quezon
City (Metro Manila), the Philippines. Student ages ranged from 14 to 19, with an
average and modal age of 16. Thirty-six students participated in this study (17 female,
19 male). The participants in the Aplusix study were first and second year high school
students from four schools within Metro Manila and one school in Cavite, a province
south of Manila. Students’ age ranged from 12 to 15 with an average age of 13.5 and
a modal age of 14 (high school begins earlier in the Philippines than in many other
industrialized nations). One hundred and forty students participated in the Aplusix
study (83 female, 57 male). The participants in both studies were computer-literate.
However, none of them had previously used either TIM or Aplusix. The sample of
participants did not overlap between studies.
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Each student used TIM for ten minutes, and each student used Aplusix for 45 min-
utes. The different time spent in each system is a potential confound. In specific, this
difference might lead to greater boredom or frustration within the Aplusix system
(because students may experience more boredom or frustration later in a learning
session) — if either of these effects is found, it may be due to differences between the
studies rather than differences between the systems. Students used the software in
small groups (9 for The Incredible Machine, 10 for Aplusix), one student per com-
puter, during their class time. Each student’s affect was observed several times as he
or she used the learning software.

The observations were carried out by a team of six observers, working in pairs. The
observers were Masters students in Education or Computer Science, and all but one
had prior teaching experience. The set of observers was overlapping but not identical
between systems. TIM was studied in 2006 [20] Aplusix was studied in 2007. Each
observation lasted twenty seconds, and was conducted using peripheral vision, i.e.
observers stood diagonally behind or in front of the student being observed and
avoided looking at the student directly [cf. 3], in order to make it less clear when an
observation was occurring. If two distinct affective states were seen during an obser-
vation, only the first affective state observed was coded; similarly, if two distinct
behaviors were seen during an observation, only the first behavior observed was
coded. Any behavior by a student other than the student currently being observed was
not coded. Each pair of observers was assigned to a small number of students and
alternated between them — more observers participated in the TIM study than the
Aplusix study, thus a greater amount of time passed between observations in Aplusix
(180 seconds) than The Incredible Machine (40 seconds).

In the studies, both affect and behavior were coded. The observers trained for the
task through a series of pre-observation discussions on the meaning of the affective
and behavior categories. Observations were conducted according to a guide that gave
examples of actions, utterances, facial expressions, or body language that would im-
ply an affective state, and observers practiced the coding categories during a pilot
observation period prior to the studies. The guide was based on earlier work by [3,11],
and is discussed in detail in [20]. The affective categories coded were boredom, con-
fusion, delight, surprise, frustration, flow, and neutral, in line with earlier research by
D’Mello et al [11] suggesting that these states are most relevant to students’ affective
experiences within an Intelligent Tutoring System. “Flow” refers to full immersion in
an activity; the participant is focused on a task to the point that he or she is unaware of
the passage of time [cf. 10]. The behavior categories coded were on-task, on-task
conversation, off-task conversation, off-task solitary behavior, inactivity, and gaming
the system; in both systems, gaming behavior consisted of systematic guessing — such
as trying an object in every possible place in TIM — and use of help features to arrive
at a solution without engaging in problem-solving.

706 observations were collected in TIM, for an average of 19.6 observations per
student. Inter-rater reliability was acceptably high across all observations — Cohen’s
[7] ¥=0.71 for usage observations, k=0.63 for observations of affective state. Thirteen
pairs of observations were collected per student in Aplusix, totaling 3,640 observa-
tions in all. Inter-rater reliability was again acceptably high: Cohen’s k=0.78 for
usage observations, k=0.63 for observations of affective state.
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3 Results

3.1 Prevalence of Affective States

The most common affective state in both Aplusix and TIM was flow, occurring 62%
of the time in TIM and 68% of the time in Aplusix. The difference in the prevalence
of flow between environments was marginally statistically significant, t(174)= -1.66,
two-tailed p=0.10, for a two-tailed, two-sample t-test with pooled variance.

The second most common affective state in both environments was confusion, oc-
curring 11% of the time in TIM and 13% of the time in Aplusix. The difference in the
prevalence of confusion between environments was also not statistically significant,
t(174)= 0.73, two-tailed p=0.46. Delight was also not significantly different between
environments, t(174) = 0.55, two-tailed p=0.58.

However, the frequency of two negative affective states was significantly different
between systems. Frustration was more common in TIM (6%) than Aplusix (2%),
t(174)=3.25, two-tailed p=0.001. Boredom was also more common in TIM (7%) than
Aplusix (3%), t(174)=2.27, two-tailed p=0.02.

The overall pattern of results (shown in Figure 3) is that the affective experiences
were, on the whole, more positive within Aplusix than TIM, with the effect more
pronounced among negative affective states than positive affective states.

3.2 Prevalence of Negative Usage Behaviors

Gaming the system occurred in both Aplusix and The Incredible Machine. The aver-
age student gamed the system 1.4% of the time in Aplusix, about half of the preva-
lence in previous observations of gaming behavior in Cognitive Tutors [cf. 3]; the
average student gamed the system 7.5% of the time in The Incredible Machine, about
double the prevalence in previous observations of gaming behavior in Cognitive Tu-
tors. The difference between the prevalence of gaming in the two environments was
statistically significant, #(174)=4.72, p<0.0001, for a two-tailed two-sample t-test with
pooled variance.

Aplusix
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Fig. 3. Affective categories’ prevalence of occurrence (standard error bars shown)
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Fig. 4. Usage categories’ prevalence of occurrence (standard error bars shown)

There was the appearance of a difference in the prevalence of off-task behavior be-
tween the two environments, with students being off-task 2.2% of the time in TIM
and 1.3% of the time in Aplusix, but this difference was not statistically significant,
t(174)=1.25, two-tailed p=0.21.

The time spent on-task, working with the system, within the two environments,
was almost identical: 80.9% on-task in TIM, 79.9% on-task in Aplusix, t(174)=0.33,
two-tailed p=0.74. However, the time spent on-task, talking to another student or the
teacher, was significantly higher in Aplusix (17.3%) than TIM (9.4%), t(174)= -3.14,
two-tailed p=0.001. Hence, the overall pattern of results (shown in Figure 4) is that
students spent significantly more time gaming the system in TIM, and significantly
more time in on-task conversation in Aplusix.

4 Discussion and Conclusions

In this paper we have asked: are educational games associated with better affect be-
cause they are games, or simply because they are highly interactive learning environ-
ments? We investigated that question by comparing the incidence of positive and
negative affective states and usage behaviors in an intelligent tutoring system, Aplu-
six, and a simulation problem solving game, The Incredible Machine.

Considering the high popularity of The Incredible Machine as a game, it would be
reasonable to expect students using that environment to experience more positive
affect, and less negative affect than students using an intelligent tutoring system such
as Aplusix. At the same time, it might be reasonable to expect more students to game
the system when playing The Incredible Machine than Aplusix, since by its very na-
ture a game may encourage gaming the system relative to an intelligent tutor.

The evidence from our research partially aligns with these expectations. There is
indeed more gaming the system in TIM than Aplusix; however, surprisingly, affect
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was on the whole better within Aplusix than TIM — there was significantly more
boredom and frustration in TIM, and a less flow.

This suggests that a well-designed intelligent tutoring system can lead to equally
positive — or even more positive — affect than an educational game. In turn, this sug-
gests that while factors such as fantasy may make games more fun [cf. 8], the interac-
tivity and challenge common to both games and intelligent tutors may play a larger
role in making games affectively positive learning environments.

The results in this paper are not fully definitive, however, for four reasons. First,
there are a number of differences between the two studies. Although the two studies
were conducted by the same research group with a single methodology, TIM and
Aplusix cover different subject matter and the studies were conducted with samples
recruited in different years (and differing subtly, demographically) rather than with
random assignment within a single population. This is not a fatal flaw for the study
presented here, but does suggest that its result should be replicated before being
treated as proven truth (as, in fact, all research results should be). Second, TIM and
Aplusix differ pedagogically from each other in a number of ways. In comparing an
intelligent tutor to an educational game, multiple substantial differences between
environments are unavoidable; games have several characteristics that distinguish
them from other types of interactive environments [19], as do intelligent tutoring
systems [23]. A comparison that varied on only one factor would not fairly represent
one type of environment or the other; however, determining which factors lead to the
largest positive improvements on student affect and behavioral choice will be key.
Third, TIM and Aplusix differed substantially in terms of curricular relevance. While
TIM fostered problem solving skills in general, Aplusix focused specifically on Alge-
bra, a subject that the participants were studying at the time. Participants may have
perceived Aplusix as relevant to the larger goal of getting good grades in mathemat-
ics, motivating them to invest more effort and attention when using the software [cf.
15]. Finally, affect’s impact on learning can be counterintuitive. Positive affect in
some cases appears to reduce perseverance and increase distraction [12]. On the other
hand, the affective state of confusion, sometimes considered negative, has been shown
to promote deep thinking [9].

In recent years, there has been rapidly increasing interest in educational games.
Some of this interest has been based on the hypothesis that games will lead to better
affect than existing learning environments [cf. 8,13]. However, in the research re-
ported here, we have found that a traditional intelligent tutoring system can produce
equally good — or better — affect as an award-winning educational game. The key
question, therefore, appears not to be which type of learning environment is better, but
how we can leverage the best practices developed by each of these design communi-
ties in order to develop a new generation of engaging and educationally effective
learning environments.
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Abstract. One-to-one tutoring is an extremely effective method for producing
learning gains in students and for contributing to greater understanding and
positive attitudes towards learning. However, learning inevitably involves fail-
ure and a host of positive and negative affective states. In an attempt to explore
the link between emotions and learning this research has collected data on
student affective states and engagement levels during high stakes learning in
one-to-one expert tutoring sessions. Our results indicate that only the affective
states of confusion, happiness, anxious, and frustration occurred at significant
levels. We also investigated the extent to which expert tutors adapt their peda-
gogical and motivational strategies in response to learners’ affective and cogni-
tive states.

1 Introduction

It is widely acknowledged that one-to-one human tutoring is a powerful method for
promoting active knowledge construction, increased conceptual understanding, aug-
mented self-efficacy, and a more positive learning attitude — all factors that foster
engagement and ultimately impact learning gains [1, 2]. Furthermore, it is also docu-
mented that accomplished (or expert human tutors) have a higher impact on learning
than unaccomplished tutors (novices), and Intelligent Tutoring Systems (ITSs) [1, 2,
3]. However, while it is not feasible for every student to have access to an expert hu-
man tutor, ITSs are available to anyone with a computer. Therefore, one plausible
solution is to model ITSs after expert human tutors, a task that requires a detailed un-
derstanding of expert tutoring strategies. So what do expert human tutors do? Lepper
and Woolverton [4] have claimed that individualization, immediacy, and interactivity
are the three major factors that enable expert tutors to be more effective than tradi-
tional learning in the classroom. Through modeling and monitoring student knowl-
edge, tutors have the ability to adapt to the specific needs of individual students [5]. In
addition to cognitive scaffolds, it has been claimed that expert tutors also provide mo-
tivational and emotional support for students in social, affective, and emotional
ways [6].

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 50{59]2008.
© Springer-Verlag Berlin Heidelberg 2008
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However, the story of expert tutoring is not restricted to pedagogical and motiva-
tional strategies; emotions (or affective states) play an important role in positive learn-
ing outcomes [7, 8, 9]. While certain emotional states such as the flow experience, [7]
where the student is completely absorbed in the learning process, or confusion, where
the learner experiences cognitive disequilibrium and is forced to think, are positively
correlated with learning [10], other states such as frustration, boredom, anxiety, and
despair can negatively impact learning [8]. For example, learners who are unsure of
their ability often avoid tasks or give up when they encounter difficulties [11]. Thus,
emotional states that are associated with low self-efficacy, such as feelings of anxiety,
interfere with learning because the student is no longer fully motivated or engaged
with the material.

Research on the cognitive and motivational strategies of tutors is quite extensive
[5, 12, 13, 14, 15, 16], whereas empirical research on the affective dimension in tutor-
ing is considerably more sparse and scattered. Furthermore, it is unclear whether
expert human tutors divert more attention to respond to students’ cognitive states or
motivational and affective states. For example, Cromley and Azevedo [17] studied the
practices of more and less experienced reading tutors to determine if there was a pri-
ority placed on cognitive or motivational scaffolding. More experienced tutors were
found to use significantly less forms of motivational scaffolding and significantly
more forms of cognitive scaffolding than less experienced tutors.

A very different depiction of expert tutoring emerges from the INSPIRE model
proposed by Lepper and Woolverton [4]. According to this model the most effective
tutors are highly knowledgeable about their domain and pedagogical strategies, de-
velop a rapport with their students, utilize a Socratic method, plan for effective use of
time, are indirect in their feedback, encourage articulation of acquired knowledge, and
use a variety of techniques to maintain student engagement (p. 145-150). By utilizing
a Socratic Method tutors are allowing students to construct their own knowledge
within a highly organized framework for the progression of the session. Tutors are
also creating a learning environment in which students feel comfortable and can de-
velop greater confidence and self-efficacy. These highly effective tutors are very at-
tentive to all of the student’s needs and respond in ways to support both learning gains
and affective experiences.

Our interest in the affective dimension of expert tutoring comes from a desire to
build ITSs that are based on the pedagogical, motivational, and affective strategies of
expert tutors. In particular, we seek answers to the following questions. What are the
student emotions that occur during expert tutoring sessions? How do expert tutors
adapt their pedagogical and motivational strategies to incorporate students’ affective
states? In this paper we describe a study that collected data on student affective states
during 40 one-to-one expert tutoring sessions. We focused on a list of affective states
that was obtained by investigating current theories of emotion [18, 19, 20], research
on learning [7, 8, 21], and empirical research [10, 22, 23, 24]. The affective states
were confusion, frustration, anxious, anger, fear, sadness, disgust, contempt, surprise,
happiness, eureka, and curiosity. In addition to student affect, student engagement
was also investigated as a separate construct with four levels: disengagement, socially
attending, actively attending, and full engagement.
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2 Method

Participants

Our participants consisted of eight expert tutors and 29 students. Tutors and students
had been working together prior to the start of this study. Expert status for a tutor was
defined as licensed to teach at the secondary level, having five or more years of tutoring
experience, being recommended by local school administrators, and working for a pro-
fessional tutoring agency. Some students had two sessions with the same expert tutor.
The unit of analysis in this study was the tutor-student dyad. The subjects studied were
algebra, geometry, physics, chemistry, basic math, and standardized test preparation.

Procedure

Tutors and students were given an informed consent form to read and sign. The ses-
sion lasted approximately one hour. All sessions were videotaped with a camera that
was positioned at a great enough distance to not disturb the tutoring session but still
close enough to record sound and visual data. The researcher left the room during the
tutoring session.

Data Treatment

The videos were digitized and then transcribed. They were then coded with respect to
student cognitive states, tutor pedagogical and motivational strategies, and student
affective states and engagement levels.

Coding Student Affective States and Engagement Levels — Student affective states for
each one hour session were coded along two dimensions: Ekman’s six “basic” emotions
[18] and a set of learning-centered affective states [8, 23, 25, 22, 24]. The list of affective
states with definitions appears in Table 1. Affective events were considered to be specific
instances of the tutoring session where emotions could be detected through facial move-
ments, perceivable paralinguistic cues of speech, and gross body movements. When an
affective state was perceived, the engagement level of the student was also recorded with
respect to four engagement levels as illustrated in Table 1. Engagement Levels were con-
sidered to be the degree to which a student has invested mental resources to the topic
during perceivable affective states. We computed reliabilities using Cohen’s Kappa for
the affective states that occurred at a significant level in each analysis. Kappas for the
five affective states that occurred consistently were: happiness (.80), confusion (.65),
frustration (.72), anxious (.68), and contempt (.66). Sessions were divided evenly be-
tween two coders after sufficient levels of reliability were achieved, such that each coder
was responsible for individually coding half of the expert tutoring sessions.

Coding Tutor Pedagogical and Motivational Moves — The coding scheme developed
by Person et al. [26] was used to code 14 pedagogical and 10 motivational tutor
moves. The pedagogical moves were developed from past research on the ways in
which tutors aid students in problem solving and knowledge construction [5, 17, 27,
28, 29, 13, 30]. Some of these dialogue moves include direct instruction, simplified
problem, hint, and comprehension gauging question. From research on the practices
of expert tutors, the motivational strategies that have been used by expert tutors in-
clude such dialogue moves as positive feedback, negative feedback, humor, and soli-
darity statement [4].
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Table 1. Definitions of Affective States and Engagement Levels

State Definition

Learning-Centered

Confusion poor comprehension of material, attempts to resolve erroneous belief
Frustration difficulty with the material and an inability to fully grasp the material
Anxious nervousness, anxiety, negative self-efficacy, embarrassment
Contempt annoyance and/or irritation with another person

Eureka sudden realization about the material, a ha! moment

Curiosity desire to acquire more knowledge or learn the material more deeply

Basic-Emotions

Anger negative affect toward material or person to an extreme degree

Fear feelings of panic and/or extreme feelings of worry

Sadness feelings of melancholy, beyond negative self-efficacy

Disgust annoyance and/or irritation with the material and/or their abilities
Surprise genuinely does not expect an outcomes or feedback

Happiness satisfaction with performance, feelings of pleasure about the material

Engagement Level

Disengagement bored, uninterested in the topic being discussed

Socially Attending attends to conversational conventions, only acknowledges tutor speech
Actively Attending attends to content of the conversation, content-driven responses

Full Engagement every mental resource is invested in the current topic, in a flow state

3 Results and Discussion

Proportion of Affective States that Occurred During Tutoring

We examined the proportion of occurrences of each of the affective states and engage-
ment levels (see Table 2). A Repeated Measures ANOVA indicated that there was a sig-
nificant difference in the various affective states experienced by the students, F(11,308) =
51.11, Mse = .01, p < .001, (partial eta-square) = .646. Bonferroni posthoc tests con-
firmed that confusion, anxious, and happiness were the common emotions that learners
experienced during an expert tutoring session. Incidences of contempt, eureka, and curi-
osity were rare, and with the exception of happiness, all of the “basic” emotions almost
never occurred. Incidences of frustration were less than confusion, anxious, and happi-
ness but greater than the other emotions.

The affective profiles of the students during expert tutoring sessions is quite con-
sistent with previous research on student emotions while they interacted with AutoTu-
tor, a dialogue based ITS. D’Mello, Graesser, and colleagues have previously reported
that confusion reigns supreme during deep learning activities of complex science top-
ics, while incidences of contempt, eureka, curiosity, anger, and surprise are rare [22,
23, 24]. Confusion has been found to be a facilitator of learning [10, 24], where stu-
dents are forced to think. Therefore, the recurrent appearances of confusion during the
tutoring session demonstrate a high potential for students to learn. The high incidence
of anxiety may be traced to students struggling with academic material who are seek-
ing the help of a tutor in a high stakes learning situation. Anxiety includes negative
feelings of self-efficacy, embarrassment, and being overwhelmed — states that reso-
nate with difficulty in the subject matter. Students may enter the tutoring session with
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Table 2. Descriptives of Student Affective States & Engagement Levels

Affective States

Non-Basic Emotions Mean Stdev Basic Emotions Mean Stdev
Confusion 0.38 0.19 Anger 0.00  0.01
Frustration 0.05 0.04 Fear 0.00 0.00
Anxious 0.20 0.12 Sadness 0.00 0.00
Contempt 0.02 0.04 Disgust 0.01 0.04
Eureka 0.01 0.03 Happiness 029 022
Curiosity 0.01 0.02 Surprise 0.02 0.03

Sum 0.67 Sum 0.32

Engagement Levels
Engagement Mean Stdev
Disengagement 0.00 0.01
Socially Attending 0.23  0.18
Actively Attending 0.77  0.18
Full Engagement 0.00  0.00

low self-efficacy from past experiences of failure with the material and may have
feelings of embarrassment from having to seek out the help of a tutor.

Incidences of frustration were lower than what was expected from students in need
of help from a tutor. The rate of occurrence of frustration documented in this study
with expert tutors was consistent with earlier findings [22, 23, 24]. We suspect that
the reduced rates of frustration may lie in the social display rules that people adhere to
in expressive affect [31]. Social pressures may result in the disguising of negative
emotions such as frustration, thus making it difficult for judges to detect this emotion.
The perceived status difference between the student and the expert tutor, coupled with
their lack of knowledge and heightened anxiety may supplement the desire to disguise
frustration. Another important finding is that happiness was the only “basic” Ekman
[18] emotion that reliably occurred. A paired sample t-test confirmed that the basic
emotions occurred at a significantly lower rate than the other emotions, #(28) = 4.305,
p < .001. This is yet another finding that challenges the significance of these “basic”
emotions to learning and raises concern of the adequacy of basing an entire theory of
emotions on the six “basic” emotions [18].

Levels of Student Engagement

An examination of student engagement levels indicated that learners were socially
and actively attending for the majority of the tutoring session, F(3, 84) = 167.405,
Mse = .023, p < .001, (partial eta-square) = .857. Experiences of complete disen-
gagement (boredom) or full engagement (flow state) were rare, as could be expected
due to the interactive nature of these tutoring sessions. The finding that students were
actively attending for 77% of the tutoring session, while the remaining 23% of the
time involved social attending, can be readily explained by considering the anatomy
of a typical tutoring session. Social attending occurs when students cannot provide
content-rich answers and only contribute by maintaining social conventions. Thus
socially attending to the session is likely to occur for at least a portion of the session.
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Given the nature of a human one-to-one tutoring session, actively attending appears to
be the highest level of engagement that a student can achieve when interacting with
both the tutor and the material. This bodes well for potential learning gains since stu-
dents are focusing on the material and displaying their knowledge and misconceptions
to the tutor.

Exploring Tutor Responses to Student Affective States

We investigated the extent to which expert tutors adapted their pedagogical and moti-
vational strategies in response to the affective states of the students. In particular, if
student experienced emotion E at turn t, we computed the probability that the tutor
deployed dialogue move M at turn t+1, which is functionally equivalent to the condi-
tional probability Pr{M ,IE,}. Our analyses focused on the most common tutor dia-
logue moves which were conversational okay, positive feedback, off-topic conversa-
tion, prompt, simplified problem, direct instruction, and comprehension gauging ques-
tion [26]. For each frequent dialogue move, repeated measures ANOVAs were con-
ducted to determine whether there were significant differences in deployment when
considering student affective state.

The ANOVAs indicated that there were significant differences in the deployment
of positive feedback (F(1, 7) = 75.384, Mse = .691, p < .001), off-topic conversation
(F(1,7) =52.727, Mse = 1.312, p < .001), direct instructions (F(1,7) = 149.053, Mse =
2.945, p < .001), and simplified problems (F(1,7) = 37.115, Mse = .191, p < .001) in
response to the students’ affect. However, prompting, conversational OK’s and com-
prehension gauging questions were deployed independent of learners’ affective states.

Table 3. Descriptives of Tutor Dialogue Move Given Student Affective State

Student Affective State at turn t

Tutor Move at

turn t+1 Confusion Frustration Anxious Happiness
M SD M SD M SD M SD
Ok 0.149  0.099 0.187 0.156 0.17 0.129 0.104  0.123

Positive Feedback 0.225 0.082 0.051  0.06 0.2 0.136 0.112  0.106

Off-Topic 0.133 0062 0087 0072 0243 0164 0347  0.189
Prompt 0051 0057 0006 0017 0037 0035 0001 0002
Simplified 0.153 0081 0048 0063 0051 0048 0057 0.042
Problem

Direct Instruction 0.383 0.112 0.213 0.107 0.3 0.138 0.316 0.111

Comprehension

. . 0.029 0.018 0.026 0.059 0.063 0.061 0.059  0.044
Gauging Question

Post-hoc tests on for the significant ANOVA’s revealed the following patterns in
the data. In the interest of brevity, we report the major findings only. It appears that
expert tutors were more likely to provide positive feedback when students were con-
fused than when frustrated. This finding is consistent with predictions by theories on
impasse-driven learning [32]. These theories postulate that opportunities for learning
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occur when students experience an impasse, defined as “when a student realizes that
he or she lacks a complete understanding of a specific piece of knowledge” (p. 220).
This is consistent with the affective state of confusion and explains why tutors pro-
vide more positive feedback to encourage students during this critical moment in
learning. By scaffolding both the cognitive and affective state of the student, the tutor
allows the impasse to occur but circumvents the shift to an unproductive affective
state by maintaining a positive milieu.

While off-topic conversation during a tutoring session may seem to impede the ef-
fective construction of knowledge, it has been found to be an effective strategy and
viewed as important by students [33, 34]. We found tutors to be more likely to utilize
off-topic conversation when students were happy or anxious, which suggests that this
dialogue move is being strategically deployed for two different purposes. Catt, Miller,
and Schallenkamp [35] investigated the importance of instructor-student rapport and
found it to be vital in maintaining good communication and producing greater learn-
ing gains. When students are happy tutors may take advantage of that situation and
build a sense of trust and solidarity through conversation about day-to-day events.
During states of anxiety, the tutor may use a temporary change in topic to relieve
those negative feelings.

Expert tutors were found to provide students with a simplified problem more
frequently when students were confused than during frustration or happiness. This
finding is intuitively plausible and suggests that positive feedback coupled with a
simplified problem seem to be the motivational and pedagogical strategies that expert
tutors deploy in response to student confusion. Expert tutors are more likely to give
direct instruction when students are anxious than if they are frustrated. The affective
state of anxious includes several different feelings such as anxiety, nervousness, nega-
tive self-efficacy, worry, and being overwhelmed, and tutors may attribute these feel-
ings to a lack of knowledge. Tutors might use direct instruction as a strategy to fill in
these knowledge deficits in an attempt to alleviate such negative feelings instead of
calling direct attention to the student’s uncertainties.

4 Conclusion

The last decade has witnessed a surge in research that investigates the role of emo-
tions in complex learning. We hope to have expanded this body of knowledge by
identifying the affective states which students experience during expert tutoring ses-
sions and the ways in which expert human tutors strategically respond to these states.
Our findings suggest that with the exception of happiness, it is not the “basic” emo-
tions that are prominent during learning but the affective states of confusion, frustra-
tion, and anxiety. Furthermore, we suspect that most of the experiences of happiness
might in fact be states of contentness. Experiences of absolute happiness might be
rarer than our data suggests. However, further research would be required to test this
hypothesis.

The analysis of student engagement levels indicated that learners were socially at-
tending and actively attending, but were rarely bored or in a state of flow; whereas
learners experience both of these states while learning with ITSs [10, 25, 23, 24].
Taken together, these results highlight both the positive and negative aspects of
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human and artificial tutoring sessions, because while it is beneficial to avoid boredom,
flow is a state that is highly correlated with learning [10]. Of the pedagogical and mo-
tivational tutor dialogue moves that occur frequently [26], tutors only strategically
deployed positive feedback, off-topic conversation, simplified problem, and direct
instruction when responding to those affective states that occurred at significant lev-
els. However, these results should be interpreted with a modicum of caution since the
learners’ affective states were not coded by the tutors themselves.

The next step is to use the findings from the present study to scaffold the develop-
ment of ITSs that are capable of sensing and responding to student affect. Success in
this endeavor depends upon adequately addressing three major issues: (1) what are the
student affective states that occur during learning, (2) how can ITSs automatically
detect these states, and (3) how should assessments of learner’s affect influence peda-
gogical and motivational strategies of ITSs. The next step in this line of research is to
begin constructing affect sensitive ITSs that are informed by the strategies of expert
human tutors. Given the inextricable link between cognition and emotion, it is our
position that modeling ITSs after human tutors will prove especially effective if emo-
tions are taken into consideration. By implementing tutor pedagogical and motiva-
tional strategies in conjunction with affect sensitivity, ITSs will be able to produce
heightened engagement, lower attrition, and increased self-efficacy, all factors that
lead to positive learning gains.
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Abstract. This paper evaluates dialogue-based student performance in
a controlled experiment using versions of a tutoring system with and
without automatic adaptation to the student affective state of uncer-
tainty. Our performance metrics include correctness, uncertainty, and
learning impasse severities, which are measured in a “test” dialogue af-
ter the tutoring treatment. Although these metrics did not significantly
differ across conditions when considering all student answers in our test
dialogue, we found significant differences in specific types of student an-
swers, and these differences suggest that our uncertainty adaptation does
have a positive benefit on student performance.

1 Introduction

In recent years, tutoring researchers have shown increasing interest in the in-
terplay between student affect and learning (e.g. [II2I3]). Numerous tutoring
dialogue system researchers are investigating the hypothesis that student per-
formance can be improved by automatically detecting and adapting to affective
states (e.g., [AIBI6IT7]). Student uncertainty is one state of primary interest due to
its theorized relationship to correctness and learning. Researchers hypothesize
that uncertainty can signal to the tutor that there is an opportunity for learning
to occur, and that experiencing uncertainty can motivate a student to engage in
learning (e.g. [6l8/9]). Moreover, correlational studies have shown a link between
uncertainty and learning (e.g. [6]). However, few controlled experiments have
investigated the performance impact of uncertainty adaptations in computer
tutoring; most computer tutors respond based only on student correctness.

Based on this prior research, we hypothesized that responding to uncertainty
- in addition to correctness - should improve student performance. We tested this
hypothesis in a controlled experiment using adaptive and non-adaptive versions
of a spoken dialogue tutoring system. Uncertainty and correctness were manually
annotated in real-time by a human “Wizard”. The experiment had three condi-
tions. In the experimental condition, the system provided additional knowledge
at places of uncertainty. In one control condition, the system did not provide this
knowledge after uncertainty; in a second control condition the system provided
this knowledge randomly.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 60[69] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Section [2] of this paper describes the experimentEl Section [ presents a com-
parison of student performance metrics across condition. Section Ml discusses the
implications of these results. Section [ explains how we used these results to
improve the design of a larger version of this experiment that is now underway.

2 The Experiment

In prior work we developed ITSPOKE (Intelligent Tutoring SPOKEn dialogue
system) [I1], a spoken dialogue tutor that is built on top of the Why2-Atlas
text-based tutor [12] and tutors 5 qualitative physics problems. The spoken
dialogues have a Question - Answer - Response format, implemented with a
finite state dialogue manager. ITSPOKE responses (states) depend only on the
correctness of the student answer (transitions between states). If the answer
is correct, ITSPOKE moves on to the next question. ITSPOKE responses to
incorrect answers take two forms: 1) For incorrect answers to easier questions,
ITSPOKE provides the correct answer with a brief statement of reasoning. 2)
For incorrect answers to harder questions, ITSPOKE engages the student in a
remediation subdialogue, containing questions that walk the student through
the more complex line of reasoning required for the correct answer.

2.1 Adaptive Wizard-of-Oz Spoken Dialogue Tutoring System

We've begun enhancing ITSPOKE to automatically respond to student affect?
over and above correctness. For two reasons, we have initially targeted uncer-
tainty. First, uncertainty occurred more than other affective states in our prior
ITSPOKE dialogues [14]. Second, uncertainty is of primary interest to tutoring
researchers due to its theorized relationship to learning (e.g. [6I819]). In [§], Van-
Lehn et al. view uncertainty and incorrectness as signalling “learning impasses”:
opportunities for the student to learn the material about which s/he is uncertain
or incorrect. From this view we derived a specific uncertainty adaptation hypoth-
esis to test in a controlled experiment: Responding to uncertainty in the same
way as incorrectness will improve student performance, by providing students
with the knowledge needed to resolve their uncertainty impasses.

Implementing this adaptation involved changing the next state transitions in
the finite state dialogue manager; instead of transitioning based only on the
correctness of the answer, the transition is based on the answer’s combined
correctness and uncertainty value. More specifically, our uncertainty adaptation
consisted of treating all uncertain—+correct answers as if they were incorrect (note
that uncertain+incorrect answers are already treated as incorrect).

! [10] describes the resulting publicly available Uncertainty Corpus in detail.

2 We use “affect” to cover emotions and attitudes. Some argue for separating them, but
some speech researchers find the narrow sense of “emotion” too restrictive since it
excludes speech where emotion is not full-blown, including arousal and attitude [13].
Some tutoring researchers also combine emotion and attitude (e.g. [5I7]).
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For an initial investigation into the impact of this adaptation on student
performance, we implemented it in a Wizard of Oz (WOZ) version of ITSPOKE
that tutors only one physics problem (as opposed to five). In this WOZ, a few
system components are replaced by a human “wizard”: The wizard performs
speech recognition, correctness annotation, and uncertainty annotation, for each
student answer. In this way, we tested the adaptation hypothesis without any
potentially negative impact of automated versions of these tasks. Upon hearing
each student answer, the Wizard annotates if it is correct or uncertain. These
distinctions are binary: a “correct” answer may be partially or fully correct, and
a “nonuncertain” answer may be certain or neutral for certaintyﬁ

2.2 Experimental Design

The experiment had 3 conditions, designed to test whether our uncertainty adap-
tation improved student performance. For use in these 3 conditions, the dialogue
manager was parameterized, so that it could adapt contingently on the student
state of uncertain+correct as discussed above, or randomly, or not at all.

In the experimental condition, the dialogue manager adapted to uncer-
tainty by treating all uncertain+correct student answers as incorrect.

In the normal control condition, the dialogue manager did not adapt to
uncertainty (it was merely logged); it treated only incorrect answers as incorrect.
In other words, this condition corresponds to the original system.

In the random control condition, the dialogue manager did not respond
to uncertainty (it was merely logged), but it did treat a percentage of random
correct answers as incorrect. This condition was included to control for the ad-
ditional tutoring dialogue given to students in the experimental condition. The
percentage was toggled to be statistically the same as the percentage of answers
adapted to in the experimental condition (approximately 20%).

Note that the uncertainty adaptation for uncertain+correct answers was al-
ways preceded by the correctness feedback “Okay”; all other answers received
the regular ITSPOKE correctness feedback. “Okay” was intended to mirror this
feedback behavior. In particular, ITSPOKE is fully automated and uses some-
what vague correctness feedback (e.g. “Fine” and “Well...” for recognized correct
and incorrect answers, respectively) because it may misrecognize an answer.

Figures illustrate how system responses differ across conditions. In both
figures, STUDENT,; is wuncertain+correct. In Figure [ (experimental),
TUTOR: says “Okay”, then asks an additional remediation question to re-
mediate the student’s uncertainty. In Figure 2] (normal control), TUTOR: says
“Good” and the remediation question is not asked. Section ] discusses the tutor
turn labels.

The experimental procedure was as follows. Each subject: 1) Read a small
document of background physics material; 2) took a pretest of 7 fill in the blank

3 In prior ITSPOKE corpora, this wizard displayed interannotator agreement of 0.85
Kappa on labeling binary correctness, and 0.62 Kappa on binary uncertainty [14].
Other possible approaches to labeling student affect include self-report (e.g. [4]).



Responding to Student Uncertainty During Computer Tutoring 63

TUTOR,: What will the velocity of the object be a second after that (where the

initial velocity is 9.8m/s and the acceleration is 9.8m/s*)? [Depth 1]

STUDENT;: Uh. 19.6 m/s? [uncertain+correct]
TUTOR,;: Okay. As we have seen, if a falling object has an acceleration of
9.8m/s?, that means that its velocity changes by 9.8m/s every second. So if a
second after it began falling the object’s velocity is 9.8m/s, a second later its
velocity will be 9.8m/s+9.8m/s=19.6m/s. So what will its velocity be a second
after it is 19.6m/s? [Depth 2+]
STUDENT;: Um. I'm thinking. 29.4 m/s. [nonuncertain+correct]

TUTORs3: Right. So at every point in time during the fall of the man and his keys,
how do their velocities compare with each other? [Depth 1]

Fig. 1. Corpus Excerpt: Experimental Condition

TUTOR,: What will the velocity of the object be a second after that (where the
initial velocity is 9.8m/s and the acceleration is 9.8m/s*)? [Depth 1]

STUDENT;: 19.6 m/s? [uncertain+-correct]

TUTOR:: Good. So at every point in time during the fall of the man and his keys,
how do their velocities compare with each other? [Depth 1]

Fig. 2. Corresponding Corpus Excerpt: Normal Control Condition

questions; 3) used a web/voice interface to work through one physics training
problem with a version of the WOZ (depending on condition); 4) took a posttest
isomorphic to the pretest; 5) worked through a test problem isomorphic to the
training problem with the non-adaptive WOZ (from the normal condition). Note
that unlike the posttest, completing the test problem yielded a new dialogue.

Subjects were native English speakers who had not taken college physics. 60
subjects were randomly assigned to the 3 conditions (20 per condition), except
conditions were gender-balanced. After the experiment, we found that 3 subjects
in the experimental condition had no correct+uncertain answers and so never
received the adaptation; 2 subjects in the random condition had no correct
answers randomly selected for adaptation. These subjects were reclassified into
the normal condition for our performance analysis.

3 Comparing Dialogue-Based Performance Metrics

We hypothesized that the training problem might be too short to yield sig-
nificant differences between conditions in learning as measured by our pretest
and posttest. This expectation was borne out; a two-way ANOVA with condi-
tion by repeated test measures design showed a significant main effect for test
phase, (F(1,57) = 33.919, p = 0.000, MSe = 0.032), indicating students learned
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overall, but there was no significant interaction effect between condition and test
phase, indicating that amount of learning was not dependent on condition. One-
way ANOVAs with post-hoc Tukey indicated no significant difference between
conditions in raw (post-pre) or normalized ((post-pre)/(1-pre)) learning gain.
Thus, we used the test problem as an additional test of how the uncertainty
adaptation in the training problem impacted student answers to the isomorphic
questions in the test problem (where all students used the non-adaptive system,
thereby receiving the same “test”). Below we analyze differences between con-
ditions in dialogue-based performance metrics extracted from the test problem.

3.1 Comparing Impasse State Severities

In order to resolve a learning impasse, the student must first perceive that an
impasse exists. Incorrectness and uncertainty differ in terms of this perception.
Incorrectness simply indicates that the student has reached an impasse, while
uncertainty - in a correct or incorrect answer - indicates that the student per-
ceives s/he has reached an impasse. Based on this distinction, we associated each
of our four answer combinations of uncertainty (U, nonU) and correctness (I,
C) in the test problem with a scalar value from 3 to 0, as shown in Figure Bl

We hypothesized that these scalar values correspond to the severity of the
student’s current learning impasse state with respect to the test question, after
receiving tutoring about the question in the training problem. Thus, 0 is a state
in which the student is not experiencing an impasse, because s/he is correct and
not uncertain about it. 3 is a state in which the student is experiencing the most
severe type of impasse, because s/he is incorrect and not aware of it. 2 and 1 are
states of lesser severity: the student is incorrect but aware that s/he might be,
and the student is correct but uncertain about it, respectively.

Nominal State: InonU U CU CnonU
Scalar State: 3 2 1 0
Severity Ranking: most less  least none

Fig. 3. Different Impasse State Severities

After assigning a scalar state to each answer in the test problem, we computed
a total and average impasse state severity per student. For example, suppose Fig-
ure [T constituted our dataset for one student. The two student turns are labeled
uncertain+correct and nonuncertain+correct, corresponding to scalar values 1
and 0, respectively. Thus the total = 1 (14-0), and the average = 0.5 (1/2).

We hypothesized that the experimental condition would show significantly
lower total and average impasse severity in the test problem, because the uncer-
tainty adaptation helped resolve more impasses during training. The “Means”
columns in Table[lshow the means per condition. As expected, the experimental
condition had lower total and average severity than the random condition, and
random was lower than the normal condition. However, a one-way ANOVA with
post-hoc Tukey showed no significant differences or trends (p > 0.10).
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Table 1. Means and Correlations for Total and Average Impasse Severity

Metric Means Correlation (60)
Expmntl (17) NormCtrl (25) RandCtrl (18) R p

Tot. Impasse Severity 6.76 7.36 7.28 -0.38  0.003

Ave. Impasse Severity 0.38 0.42 0.41 -0.41  0.001

Despite this, we still hypothesized that lower impasse severities in the test
problem are better, from a learning perspective. To support this, we computed a
partial Pearson’s correlation over all 60 students between both total and average
impasse severity and posttest score, controlled for pretest score (pretest and
posttest are significantly correlated in our data). The last two columns in Table[I]
show the results. As shown, both total and average severity are significantly
negatively correlated with learning, suggesting that lower impasse severities in
the test problem are related to increased learning. We thus continue to use this
hypothesis in our interpretation of results in the next sections.

3.2 Comparing Questions Originally Answered Correct+Uncertain

To further examine the impact of the uncertainty adaptation, we investigated
student answers to those tutor questions that were asked in the training prob-
lem, answered as correct+uncertain, and then repeated in the test problem. In
other words, we investigated student performance on the intended target of the
uncertainty adaptation: the correct4+uncertain (CU) answers. Note that these
answers were all adapted to in the experimental condition, some were adapted
to in the random condition, and none were adapted to in the normal condition.

The goal of our uncertainty adaptation was to increase correctness and de-
crease uncertainty in the test problem. In terms of these two dimensions com-
bined, the goal was to decrease the frequency of the more severe nominal impasse
states in Figure Bl Thus for each student’s answers, we computed a total and
percent of answers labeled with each (nominal) impasse severity (InonU, IU,
CU, CnonU), as well as of correct (C) and nonuncertain (nonU) answers. For
example, suppose both tutor questions in Figure [[l were originally answered CU
in the training problem and are now repeated in the test problem. The totals
then are: C=2, nonU=1, InonU=0, IU=0, CU=1, CnonU=1. The percents are:
C=100%, nonU=50%, InonU=0%, ITU=0%, CU=50%, CnonU=50%.

We hypothesized that the totals and percents in the experimental condition
would be lower for InonU and IU, and higher for C, nonU, CU, and CnonU,
because the uncertainty adaptation would have helped resolve impasses about
these questions (or would have helped increase correctness and decrease uncer-
tainty independently of each other). To test this hypothesis we ran a one-way
ANOVA with post-hoc Tukey for each of the 12 metrics. Table [2 only shows
metrics yielding significant differences or trends (p<0.1). The first column indi-
cates these are answers to repeated questions originally answered CU (CU — ...).
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Table 2. Means and Differences for Answers to Questions Originally Answered CU

Metric Condition  Mean Diff P
Expmntl 4.53 > NormCtrl 0.07
Tot. CU — C NormCtrl  2.64

RandCtrl 5.11 > NormCtrl 0.01
Expmntl  96.20% > NormCtrl 0.09
Pct. CU — C NormCtrl 76.50%
RandCtrl  91.06%
Expmntl 3.47
Tot. CU — nonU NormCtrl 2.32
RandCtrl 4.00 > NormCtrl 0.03
Expmntl 3.35
Tot. CU — CnonU  NormCtrl 2.20
RandCtrl 3.89 > NormCtrl 0.02

The remaining columns list the condition, its mean, the condition with which a
difference is found, the direction of this difference (> or <), and its significance.

The first two results suggest that (significantly or as a trend) CU answers are
more likely to stay correct in the test problem if they receive the uncertainty
adaptation in the training problem. Put another way, CU answers are more likely
to become incorrect during testing if the uncertainty adaptation is not received
during training. The last two results suggest that the uncertainty adaptation
reduces uncertainty in both the experimental and random conditions; however,
only in the random condition do these results reach significance.

3.3 Comparing Answers at Different Dialogue Depths

We next tested whether the differences observed for answers to repeated ques-
tions generalized to all student answers in the test problem. However, one-way
ANOVAs with post-hoc Tukey indicated no differences between conditions (p >
0.10) for any of the metrics (totals and percents for each nominal impasse state
severity, for correct answers, and for uncertain answers).

We hypothesized that this lack of generalization might be due to the fact that
student answers in remediation subdialogues can behave differently than those
in the top-level dialogue, as we’ve shown in prior work [II]. As discussed in
Section 2 the top-level dialogue is driven by correct answers to questions about
the main problem topics, while a remediation subdialogue about a main topic is
initiated by an incorrect answer to a top-level question. Thus as a final analysis,
we distinguished these two answer types, which we refer to as “Depth 1”7 and
“Depth 2+” answers. We computed the same metrics as above for each answer
type and ran a one-way ANOVA with post-hoc Tukey for each metric. We found
a trend for more Depth2+ answers to be CU in the experimental condition,
as compared to the normal condition. More generally, the means for total and
percent CU at Depth2+ were highest in the experimental condition, and lowest
in the normal control condition. These results thus suggest that the uncertainty
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adaptation helped increase correctness, but did not help decrease uncertainty,
specifically regarding remediation questions. We hope to find firmer evidence of
this when we repeat this type of analysis using data from the ongoing study
discussed in Section (Bl

4 Discussion and Related Work

Overall, our results in this paper are encouraging but inconclusive as to the
benefit of our uncertainty adaptation on student performance. We hypothesize
that two experimental design issues may have prevented larger differences be-
tween conditions. First, the training problem was likely too short. On average, it
lasted 15 minutes, contained 20 student turns, and only 4 student turns on aver-
age received the adaptation in the experimental and random conditions. Second,
the correctness feedback, “Okay”, which preceded the uncertainty adaptation,
was likely too vague. During the experiment, the wizard observed that uncer-
tain+correct students were often confused by this feedback. We believe that
the vagueness of “Okay” may have left these uncertain students ignorant as to
whether their answer was correct. This vagueness may have been less noticeable
to the random students, because roughly half of the time they were not uncertain
when receiving the adaptation. This may explain why our analyses show little
reduction in uncertainty in the experimental condition. Although resolving these
issues should yield larger performance increases in the experimental condition,
it still may not tease apart differences with the random condition. For one thing,
some CU answers in the random condition receive the adaptation. A solution
might be to only adapt to CnonU answers randomly; however, this too might
benefit performance, by increasing the certainty of those answers (i.e., a CnonU
answer may be neutral or certain). We assume it would not benefit performance
to adapt to every correct answer, as this gives an identical response to incorrect
and correct answers (except for correctness feedback).

Another complication is that it is not clear what is the best way to handle the
fact that not all subjects in the two adaptive conditions actually received the
adaptation. Although we moved into the normal condition the 5 subjects who
didn’t receive the adaptation, this is not necessarily the best solution because
it can introduce sample bias; however, note that both before and after moving
the subjects, the conditions had no significant difference in the total number
or percent of correct answers in the test problem. Alternative approaches are
also problematic. Removing the 5 subjects, as in [I0], can also bias the samples.
Retaining the subjects can yield ambiguous performance metrics. For example,
for these 5 subjects, the metric %#CU — CnonU would have to be set to 0 or left
undefined because the denominator is 0 (# training CU), but if set to 0, then
the value has another interpretation where this denominator is nonzero but the
numerator is 0 (# training CU — testing CnonU). Note finally that if we use the
Bonferroni correction, then the p-value required for a trend in Table[2is 0.1/12
= 0.01. While this corrects for spurious results due to chance (type I errors), it
can allow actual results to be overlooked (type II errors). We thus emphasize
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that our results are exploratory and suggest specific hypotheses to be tested in
our performance analysis of a larger experiment now underway (Section [Bl).

Determining when to adapt based on uncertainty is still an open question.
To our knowledge only one other controlled experiment has tested uncertainty
adaptations in spoken dialogue tutoring. In [5], Pon-Barry et al. implemented
and evaluated two human tutor responses to uncertain answers (correct and in-
correct) in the SCoT-DC tutor. In their “random” condition, the adaptations
were used after all answers. They found significantly increased learning in this
random condition as compared to a normal condition, but not in the experimen-
tal condition, where the adaptations were used only after uncertainty. Although
most other work targeting uncertainty in the tutoring system community has
involved correlational studies (e.g. [@]), there are other examples of adaptive tu-
toring systems developed or in development, which recognize affect and respond
with various forms of empathy or politeness (e.g. [2I3I15]).

5 Conclusion and Current Directions

We presented one of the first experimental evaluations of student performance
in a dialogue-based tutoring system that automatically adapts to student uncer-
tainty. Our performance metrics include correctness, uncertainty, and learning
impasse severity, which is a novel metric combining these two dimensions. These
were measured in a test problem dialogue after the training dialogue. Though
not conclusive, our results suggest that the uncertainty adaptation does have
a positive benefit on student performance. In particular, correct+uncertain an-
swers are more likely to become incorrect in the test problem if the uncertainty
adaptation is not received during training, but only in the random condition are
these answers also more likely to become nonuncertain. While learning impasse
severity didn’t differ significantly across conditions, it did significantly negatively
correlate with student learning.

We hypothesized that two experimental design issues may have prevented
more performance benefits of the uncertainty adaptation: short tutoring treat-
ment and vague correctness feedback. We are now conducting a larger version
of this experiment that resolves these issues. For this new experiment, we have
implemented the uncertainty adaptation for all five ITSPOKE physics problems
(rather than one); students are tutored for approximately an hour before taking
the posttest, and thus are more likely to benefit from the uncertainty adaptation.
In addition, we have replaced the vague “Okay” feedback with phrases that are
clearly indicative of correctness (e.g. “That’s correct”).
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How Does an Intelligent Learning Environment with
Novel Design Affect the Students’ Learning Results?
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Abstract. We present an intelligent learning environment, T-algebra, for step-
by-step solving of algebra problems using a novel design of step dialogue,
which combines two known approaches: conversion by rules and entering the
result. Each solution step in T-algebra consists of three stages: selection of
the transformation rule, marking the parts of expression, entering the result of
the operation. The designed dialogue enables the student to make the same mis-
takes as on paper and to receive understandable feedback about mistakes. The
evaluation demonstrated that even a brief use of T-algebra affects the results of
learning. The students who used T-algebra did better on consecutive paper test
than the students who did not use T-algebra. Furthermore, T-algebra tends to af-
fect specific error types, i.e., after using T-algebra the students make fewer mis-
takes of certain type on paper as well.

1 Introduction

Learning environments for step-by-step solving of expression manipulation problems
(inc. linear equations) have been designed for a long time. Even the earlier environ-
ments could be divided into two groups according to the type of dialogue they use: rule-
based or command-based environments (EXPRESSIONS [21], ALGREBRALAND [4],
DISSOLVE [14]) and input-based environments (BUGGY/DEBUGGY system [5, 6],
LMS [19], EMMA [16], Algebra tutor [2]). This division is still applicable today.

Rule-based environments (such as MathXpert [3], AlgeBrain [1], Cognitive alge-
bra tutor [7], E-tutor: An Equation Solving Tutor [17]) are based on the principle that
the student selects the transformation rule and in some cases a part of the expression;
the transformation itself is made by the computer. In such environments, the student
learns and practices the solution algorithm, but the learning of performing algorithm
steps is passive, because the computer performs more work than the user. In addition,
the student is not given the possibility to make certain mistakes; many typical mis-
takes are simply impossible.

Input-based environments (like Aplusix [13], Treefrog [20]) use paper-and-pencil-
like dialogue design where a transformation step consists mainly of entering the next
line. The student has the possibility to perform whatever steps and as much as he/she
wants in one step and to make arbitrary mistakes. Yet such programs usually do not
handle the solution algorithms of different types of problems and do not provide a
precise diagnosis of the errors made.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 70 2008.
© Springer-Verlag Berlin Heidelberg 2008
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This article presents the intelligent learning environment T-algebra with a novel
design of step dialogue [12, 15]. The design is novel, because it combines two known
approaches: rule-based and input-based environments (conversion by rules is supple-
mented by entering the result). By choosing the rule, the appropriate parts of the ex-
pression and entering the result of the operation, the student can learn the algorithms
and their steps and make mistakes in the same way as on paper. The proposed dia-
logue enables the program to check the knowledge and skills of the student, to diag-
nose errors and to offer feedback.

Before distribution of T-algebra to all Estonian schools, we organized an experiment
to clarify how the program affects the learning results. 126 students of 7th grade (about
13 years old) from four different Estonian schools participated in the experiment. Pre-
test-posttest control-group design [8] was used in research. Pre-test and post-test were
solved on paper in both (experimental and control) groups. Between these tests the con-
trol group received traditional instruction using paper and pencil, while the experimental
group received experimental instruction using T-algebra. This experiment compared
T-algebra with the paper-and-pencil method, not with other learning environments.

The second part of this article presents an overview of the T-algebra environment
and error diagnosis principles in T-algebra. The third section describes the conditions
of the experiment. The fourth part summarizes the pre-test and post-test results of the
experimental and control groups, compares them, presents interesting findings of this
comparison and answers the question: How does an interactive learning environment
with novel design affect the students’ learning results? The article also examines the
types of errors in post-test in experimental and control groups.

2 Description of T-algebra Environment

T-algebra is an interactive learning environment for step-by-step solving of school al-
gebra problems, including linear equations. Each solution step in T-algebra consists of
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Fig. 1. The problem-solution window of the T-algebra program
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three stages: selection of the transformation rule, marking the parts of expression, en-
tering the result of the operation. The presented scheme improves the ability of the
program to check the student’s solutions, respond to the errors made by the student
and give advice when the student is at loss. The program monitors whether the student
works according to the algorithm, and supports it with the respective dialogue, diag-
noses transformation errors, offers advice and, if necessary, performs the next stage of
the step by itself.

The problem solution window of T-algebra is shown on Figure 1. The main part of
the window contains solution steps and a virtual keyboard that can be used for active
input. On the right side is the menu of possible actions. The lower part includes in-
structions for the student in this particular situation.

Figure 2 demonstrates performance of one step in the program (applying the rule
Move terms to other side).
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Fig. 2. Example of one step in T-algebra

In T-algebra, the student is left the possibility to make mistakes at all three stages
of the step. If a mistake can be made then T-algebra can respond to it as well. First,
the student could err in choosing the rule. If the application of the selected rule is im-
possible, the program does not immediately inform the student about the error, be-
cause the student will not find suitable objects for applying this rule or will make an
error by choosing unsuitable objects. This gives the student a chance to correct the er-
ror without assistance.

Second, the student can make mistakes in marking the parts of expression. The
program performs a number of different checks, like syntactical correctness, compati-
bility, position, etc. When wrong parts have been selected, the program does not per-
mit to continue.

The input stage has the largest selection of potential mistakes, because the student
must apply the rule for the marked parts and enter the result. The program tries to de-
termine whether the student has made a standard error, which occurs often in student so-
lutions (for example, not changing the sign of a moved term is a common mistake made
by Estonian students). If the mistake is in the set of standard mistakes (some studies
have been conducted to collect the students’ mistakes made on paper [9, 11, 18]) then
T-algebra is able to diagnose it and offer an appropriate error message (Fig. 3). Besides
standard mistakes, T-algebra can also check the non-equivalence of equations.



How Does an Intelligent Learning Environment 73

Move terms bo other side

9u[T8 - suff35 = 158u - 15 Add to/Subhact from bl
Multply /D both side:
Mowe terms to ather side Clear parentheses
9u-5 E —1-15[F H s H Dpen pareniheses
" “I I . Combine like terms:
L L e Lol ] | | dd/Subtact mambers
| Errorl 'numbers
#7 % When moving terms to other side the  raclion

ae signs of terms should be changed :
= e parl
o Nt e

(o imprope
nk i b e

Fig. 3. Error message displayed when entering the result

3 Description of Experiment

The study was carried out in the winter 2007. Seven classes (126 students) of 7th
grade (13 years old) from four different Estonian schools participated in the experi-
ment. Classes from two schools, where there was more than one 7th grade class, were
divided into experimental classes and control classes. The remaining two schools par-
ticipated as experimental classes. After the division, we had 2 control classes and 5
experimental classes. Classes from the schools with more than one 7th grade class
were taught by the same teacher.

The topic of linear equations was chosen for the experiment and the experiment
began when the topic had been explained and practiced in the schools. The experi-
ment consisted of four 45-minute sessions. In the first session, the students solved a
pre-test on paper. In the next two sessions, the students practiced solving the problems
of the same topic (linear equations). The experimental group practiced solving these
problems with T-algebra, while the control group practiced solving exactly the same
problems using traditional instruction technology — paper and pencil. In the last ses-
sion, the students solved a post-test on paper. Teachers had exact instructions what,
when and how to do and the same materials (pre-test, problems for practicing and
post-test) were prepared for all teachers.

The pre-test was solved in both groups using paper and pencil. During the pre-test,
the students could not use any assistance materials. The test contained 17 problems (6
types of problems) and it was possible to earn 39 points in total. Several examples of
the problems (with maximum points) are listed below:

e Check if number 5 is solution of equation 10—-2(3y —-1)=2y—-7(y—1) 3p.);

e Reverse equation sides: 24 =3y +7 (1 p.);

¢ Divide equation sides by variable coefficient: 1,3n = -39 (1 p.);

e Multiply both sides of the equation by common denominator:
x+3 3x+1 _ 2x+5 N x-=5 2

9 12 4

e Move all variable terms to the left side and all constant terms to the right side and
then combine like terms: 5—7x+4—x=3x-9+x+11 (2 p.);

e Solve an equation: 5y —2(3y+4)=7-4y (5p.).
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The students were graded according to the following scale:

35.5 -39 points (91 - 100 %)
27.5 — 35 points (71 - 90 %)
19.5 — 27 points (51 - 70 %)
11.5 - 19 points (31 - 50 %)
0.0 — 11 points (0 - 30 %)

e AW

During the next two sessions (mathematics lessons), the experimental group prac-
ticed solving similar problems using T-algebra in computer class. The practice took
place immediately after the pre-test in the next mathematics lesson and linear equa-
tions were not taught in the ordinary class between pre- and post-tests. The students
had seen and tried T-algebra before when learning other topics, so the teachers did not
have to explain the environment to the students. After the second lesson the students
saved their solutions, the teachers collected them and sent to us for examination.

While the experimental group practiced solving in T-algebra, the control group sol-
ved exactly the same problems using paper and pencil. During the sessions the students
solved the problems in their notebook and one of them wrote the solution on the black-
board. The teacher highlighted and corrected mistakes in the solutions on the black-
board, but did not explain anything new and did not correct solutions in the notebooks.

During the fourth consecutive session, both groups solved a post-test using paper
and pencil. The arrangement of the post-test was the same as in pre-test and similar
types of problems were used. Again, the students could not use any assistance materi-
als, least of all the corrected pre-test.

After the experiment we collected the papers of the pre- and post-tests and the files
with solutions in T-algebra for analysis.

4 Results of Experiment

After an analysis of papers and files, the students who had missed at least one session
were excluded and the work of 115 students remained. The tests were analyzed fur-
ther and the students whose pre-test result was less than 11 points were excluded, be-
cause in the preconditions of the experiment we assumed that the topic had been
taught to the students, i.e., the students should be able to score at least 30 % of the
points. We wanted to evaluate how T-algebra affects practicing after the topic has
been explained by the teacher, not how it influences learning new material. While all
other students had some basic knowledge about linear equations, these students (who
scored under 30 %) did not. The work of 106 students remained after this step; 76 of
them had participated in the experimental group and 30 in the control. Table 1 shows
the results (average number of points) of pre- and post-test in both (experimental and
control) groups. As we can see, the average number of points in pre-test is almost
equal in experimental and control groups. The difference is not statistically significant
(unpaired #-test t = 0.0368, p = 0.97) and the groups can be considered as equal.

Table 1. Results (average number of points) of the tests

Experimental Control
Pre-test 294 29.3
Post-test 31.3 29.9
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Table 1 indicates that the knowledge of students from experimental group is statis-
tically significantly improved (paired #-test t=3.571, p<0.01), but no statistically
significant difference (improvement) can be found in the points earned by the control
group (paired t-test t = 1.2024, p > 0.05). Effect size (using Cohen’s d) is 0.179. This
implies that even a brief use (2 lessons) of T-algebra affects the results of learning.

Table 2 shows the percentages of students from the experimental group with dif-
ferent grades in pre- and post-tests. As we can see, the percentage of students with the
highest grade has grown. The percentage of students with grade 4 remained the same
while the percentage of students with low grades (3 and 2) has decreased.

Table 2. Division of students (from the experimental group) by pre- and post-test grades

Students with | Students with | Students with | Students with

grade 5 grade 4 grade 3 grade 2
Pre-test 25 % 38 % 24 % 13 %
Post-test 39.5 % 38 % 14.5 % 8 %

Checking the post-test of the experimental group, we noticed that one experimental
student emulated the writing style of T-algebra. The operation Multiply/Divide both
sides has a slightly different appearance in Estonian textbooks and in students note-
books from that used in T-algebra. On paper, the students perform this operation in
two rows and the result is a solution like the one on the left on Figure 4. However, the
application of this rule in T-algebra is written in three rows (Fig. 1). The mentioned
student was not able to solve problems of the type Multiply both sides in the pre-test.
In the post-test he solved all five problems of this type successfully, but he always
wrote the solution in three rows as illustrated on the right side on Figure 4.
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Fig. 4. Multiplication of both sides of equation in two rows (in textbooks, on paper) (left) and
in three rows (emulating T-algebra) (right)

This picture was very unusual on paper, so we drew the conclusion that even two
hours with T-algebra could affect the students’ writing style. Naturally, this assump-
tion still needs to be confirmed or refuted through future experiments.

Now we could look in more detail at the mistakes made in pre- and post-tests in the
experimental and control groups. Table 3 shows the percentage of students in each
group who made a specific mistake in the pre-test or in the post-test while the last
columns show the percentage of the students who repeated the mistake they had made
in the pre-test in the post-test as well. Many different kinds of mistakes were made,
but Table 3 presents only the mistakes that were made in the pre-test by more than ten
percent of the students in both groups (experimental and control). This restriction was
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introduced to enable comparison of mistakes in pre- and post-tests (it would be very
hard to distinguish the influence of T-algebra in case of mistakes made only by a few
students in one or another group). Table 3 does not reflect whether the student made
this mistake more than once in one test.

Table 3. Mistakes made in pre- and post-tests in experimental and control groups

INo| Nature of mis- | Example of mistake Pre-test Post-test Recur-
take rence in
post-test
lexperi- [con- [|experi- controllexperi- control
mental [trol [mental mental

1| Minus sign be':- 4y§ 2y 433 4l 55 56 | 29 46 52 82
fore fraction is | = ———(7— = [I'15
taken into ac- 3 > 15
count only at 20y-6y19=4
first term

2| Arithmetic mis- | 7s=9s=2-12 46 50 | 21 33 45 67
take in combin- | _25=_174
ing and in o
evaluating

3| In the problem Check if number is a solution | 40 30 19 10 48 33
the equation is solved

4| In the problem Reverse sides all variable 32 23 8 10 24 43
terms are moved to the left side and all con-
stant terms to the right side

5| Minus sign be- | 9-2@y-1)=3-2y 22 46 10 40 47 85
fore parenthe- | 9—6y-2=3-2y
ses is taken into
account only at
first term

6| Mistake in sign | —4y=-8 l:(-4) 21 20 7 7 31 33
in dividing y==2

7| Arithmetic mis- | —03y=-1.2 [:(-0.3) 17 14 9 7 53 50
take in dividing | =04

8| Sign is not | 8u—-Su+15=4u+6 16 20 8 10 50 50
changed when | 8y —5y—4u=15+6
moving to other
side

9| Whole number | 2 7! 15 23 3 10 18 43
is not multi- | 3 "'3:5 1-10
plied 2x+3=7

As we assumed, T-algebra affects some error types. We can see that the students
from the experimental group made fewer mistakes in the sign of second term (mis-
takes number 1 and 5) in the post-test. The same was observed in the earlier experi-
ments [10] and we believe that showing the error message immediately and directing
attention to the mistake and its location (box) is the cause of that. However, T-algebra
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does not affect mistakes in sign, which are not connected to the second term, such as
mistakes in sign in dividing and moving to other side (mistakes 6 and 8).

A decrease in the number of students from the experimental group who made the
mistake number 9 was also predictable. The same was noticed in the earlier experi-
ment [10]. The students working on paper often forget to multiply a number, which is
not fraction, but T-algebra does not allow proceeding with such solution and notifies
that all terms should be multiplied. This causes the reduction of this mistake in the
post-test.

T-algebra can also affect learning of algorithms. The students from the experimen-
tal group made the mistake number 4 (in the problem Reverse sides) less frequently
than the students from the control group. Experimental students made the mistake
number 3 (in the problem Check if number is a solution) in the post-test more often
than the control students, because teachers request checking the solution of linear
equations when solving on paper (sixth type of problems — solve an equation). There-
fore, the students solving equation on paper also practice checking the solution. This
checking stage is omitted in T-algebra, because the program does not permit incorrect
solutions. Consequently, the percentage of the students from the control group who
made this mistake decreased, because they had more practice with this type than the
experimental students.

It is hard to say whether T-algebra affects arithmetic mistakes or not. The students
from the experimental group made the mistake number 2 less frequently than the stu-
dents from the control group, but the frequency of the mistake number 7 was equal
(and even slightly higher in the experimental group). We assumed that T-algebra does
not affect arithmetic mistakes and we hope future experiments will explain the de-
crease in the frequency of the mistake number 2.

5 Conclusions

We have combined two known approaches for step-by-step solving of algebra prob-
lems and have designed a three-stage dialogue in T-algebra intelligent learning envi-
ronment. We have succeeded in creating such rule dialogue in T-algebra that gives the
student the possibility to learn both the solution algorithms and their steps, to make
the same mistakes as on paper, and enables the program to check the knowledge and
skills of the student, understand the student’s mistakes, offer feedback and give ad-
vice. We have conducted the experiment to answer the question: How do T-algebra
environment and its novel design affect the students’ learning results? The experiment
comprised pre- and post-tests on paper and practice with or without T-algebra.

As we saw in the post-test, the students from the experimental group did better
than the students from the control group (the average pre-test score was almost equal
in experimental and control groups). This shows that even a brief use (2 lessons) of
T-algebra affects the results of learning. We also saw a progress of the students from
the experimental group to a higher score in the post-test.

The experiment showed that even two hours with T-algebra could affect the stu-
dents’ writing style on paper. However, this observation needs further experiments for
confirmation or refutation.
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Finally, we saw that T-algebra could affect some error types, i.e., the students from
experimental group made fewer mistakes of certain types (like mistakes in the sign of
second term). However, this short period of use of T-algebra gave strange results for
arithmetic mistakes; we hope to find an explanation for the change in these mistakes
from a long-term experiment.

Obviously our decisions and ideas need some years of practical classroom trials be-
fore they can be finally confirmed. Starting from the school year 2006-2007, tens of
teachers in Estonian schools use T-algebra for practice. The results of the school trials
and teacher experiences will contribute to and support further development of
T-algebra.

The conducted experiment examined the influence of the T-algebra environment
on students and did not compare T-algebra with other environments. It would be very
interesting to organize an experiment to compare whether the novel design of
T-algebra produces better results than, for example, Aplusix [13] or MathXpert [3]
environment.
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Abstract. This paper presents the first experiments with an Intelligent
Tutoring System in the domain of linked lists, a fundamental topic in
Computer Science. The system has been deployed in an introductory
college-level Computer Science class, and engendered significant learning
gains. A constraint-based approach has been adopted in the design and
implementation of the system. We describe the system architecture, its
current functionalities, and the future directions of its development.

1 Introduction

In this paper, we present the first version of iList, an Intelligent Tutoring System
(ITS) in the domain of basic data structures and algorithms in Computer Science
(CS), and its evaluation. Among the innovative features of our work are: the
domain itself, and specifically, our focus on linked lists, due to pedagogical tenets
for CS; the choice of constraint-based modeling as the basis for our ITS; and the
structure of our graphical interface, itself partly due to the pedagogy of CS. This
work is situated within our larger research program, whose main goal is, similarly
to others [TI2I3/4], to better understand why human tutoring is effective, and to
discover computational models of effective tutoring that can be implemented in
ITSs. We are developing a second version of the ITS we present here, based on
our data collection and analysis in this CS domain.

Computer Science as a Domain. In recent years, interest in CS among col-
lege students in the US has dropped dramatically. However, CS and Information
Technology are of enormous strategic interest, and are projected to foster vast
job growth in the next few years [5]. We believe that by supporting CS education
in its core we can have the largest impact on reversing the trend of students’
disinterest, and on attracting women and minorities. Our belief is grounded
in the observation that the rate of attrition is highest at the earliest phases
of undergraduate CS curricula. This is due in part to students’ difficulty with
mastering basic concepts [6], which require a deep understanding of static struc-
tures and the dynamic procedures used to manipulate them [7]. These concepts

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 80-[89] 2008.
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require a high level of abstraction, and the ability to move seamlessly among
multiple representations, such as text, pictures, pseudo-code, and real code in
a specific programming language. Thus, we believe that the availability of an
ITS for basic CS would be of great benefit to both teachers and students. Such
an ITS does not exist yet. This is surprising, since CS education is an area of
active research, and ITSs are obviously software systems. Although I'TSs on CS
topics do exist, to our knowledge, only two of them tutor on the foundations.
ADIS [§] tutors on basic data structures, but its emphasis is on visualization,
and it appears to have been more of a proof of concept than a working system.
ProPL [9] helps novices design their programs, by stressing problem solving and
design skills. The other ITSs for CS focus on a diverse range of topics, from
basic literacy as in AutoTutor [I0], to teaching programming languages such as
Lisp [1I], C++ [12], and Java [13], to topics such as search algorithms used in
Artificial Intelligence [I4]. Of particular interest to us is the database suite of tu-
tors composed by SQL-Tutor, NORMIT, KERMIT, and EER-Tutor [15]. These
ITSs are built via constraint-based modeling, the same paradigm we chose for
the development of our system.

Constraint-Based Modeling. Our system is based on a design paradigm
known as constraint-based modeling. Originally developed from a cognitive the-
ory of how people might learn from performance errors [I6I17], constraint-based
modeling has grown into a methodology used to build full-fledged ITSs, and an
alternative to the model tracing approach adopted by many I'TSs. In a constraint-
based system, domain knowledge is modeled with a set of constraints, logic units
composed of a relevance condition and a satisfaction condition. A constraint is
irrelevant when the relevance condition is not satisfied; it is satisfied when both
relevance and satisfaction conditions are satisfied; it is violated when the rele-
vance condition is satisfied but the satisfaction condition is not.

In the context of tutoring, constraints are matched against student solu-
tions. Satisfied constraints correspond to knowledge that students have acquired,
whereas violated constraints correspond to gaps or incorrect knowledge. An im-
portant feature is that there is no need for an explicit model of students’ mistakes,
as opposed to buggy rules in model tracing. Errors are implicitly specified as the
possible ways in which constraints can be violated. This property simplifies the
difficult and time consuming task of knowledge modeling in an ITS.

There is currently a heated debate on whether constraint-based modeling is
more or less appropriate than model tracing for building ITSs [I8/I9/20]. The
application of the constraint-based paradigm to a new domain can contribute to
a better understanding of this issue.

Empirical Grounding. Our goal is not just to develop an ITS for CS, but to
endow it with a dialogue interface that can provide more sophisticated feedback,
that can help improve students’ learning [21I22]. To accomplish this goal, we are
conducting an extensive tutoring dialogue collection in the data structures do-
main. We already collected 54 tutoring sessions, transcribed the video-recordings,
and started annotating them. More details on our data collection and prelimi-
nary analysis can be found in [23I24]. The findings of future data analysis will
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guide further development of our system. The ITS we describe in this paper is in
fact a baseline to which we will compare the more sophisticated and empirically
grounded versions that will follow. We now describe the specific sub-domain of
our research, the basic ITS we have developed so far, and its first evaluation.

2 Linked Lists

A linked list is a data structure used to store information sequentially. It is
composed of a set of nodes. Each node contains two pieces of information: a value,
representing the data we are interested in storing, and a link to the following
node of the list. Links between nodes are realized using pointers, that are explicit
references to the memory locations where the nodes are stored. A graphical
representation of a linked list can be seen in Figure [I1

Among numerous different data structures, linked lists play a very important
role in the pedagogy of basic Computer Science, making them a particularly
good topic for our research. Linked lists are usually presented early in Computer
Science curricula; as such, more students see this topic. According to our expe-
rience on teaching data structures in classroom, students struggle with linked
lists more than with other —sometimes more complex— data structures, such as
stacks and binary search trees. The fundamental concepts of linked structures,
pointer manipulations, object allocation, and traversals, which students learn in
the context of linked lists, are all necessary for more complicated data struc-
tures, such as trees. Linked lists are important because students can learn these
concepts in a relatively simple context, and they should not cause additional
cognitive overhead when students are trying to understand more complicated
structures. Part of what students learn while they struggle with linked lists is
to think about an abstract visual model of their data, and to think of steps in
a program/algorithm as making changes to that model. Mastering that way of
thinking is a huge step for students, and one that they need to make to continue
successfully in Computer Science.

In the linked list domain, there are several structural properties that a solution
should have in order to be correct. For example, a list should contain the correct
values, as specified in the description of each problem; lists should be free of
cycles; lists should not terminate with undefined or incorrect pointers; no nodes
should be made unreachable from any of the variables, i.e., lost in the heap space;
nodes should be correctly deleted when necessary (this applies specifically to
non-garbage collected languages, like C++). Having these properties in form of
constraints allows our system to catch many common mistakes students make.

3 The iList System

The iList system works by providing a student with a simulated environment
where linked lists can be seen and manipulated. Lists are represented graphi-
cally, and can be manipulated with programming language commands. Students
are then asked by the system to solve problems in this environment, such as
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insert new nodes in a given linked list, remove nodes, or perform other more
complicated operations. As a student is working towards a solution, the system
can provide feedback to help the student make progress.

A key difficulty about linked lists, as well as with other more sophisticated
data structures, is that to really understand and use them effectively, students
must think in pictures but act in code. The issue of multiple representations
is subject of active research in science education [2526127]. In traditional data
structures books, linked lists are illustrated with pictures, and it is sometimes
difficult to connect that static representation with the dynamic procedures nec-
essary to manipulate the structure itself. That is in fact what iList addresses.
It makes the pictorial representation concrete. In a certain sense, the system
reifies that conceptual image and makes it more accessible to the students. The
central idea is that iList’s interface is not just a box for entering input, but a dy-
namic visual environment that connects code actions to their effects on machine
state.

Problem Types. The iList system supports two types of problems. The first
kind of problems can be solved interactively, step-by-step. Students can enter
a command into the system, and the system simulates the effect of that com-
mand, showing the effect of the action immediately on the simulated scenario.
The second type of problems require writing a complete snippet of code, possi-
bly involving structured conditional constructs like loops. Problems of this type
usually introduce more than one initial scenario, and ask the student to write
code that should work correctly in all the given scenarios. This setting forces
the student to abstract away the specific details of a scenario, and think about
more general algorithms for solving the problem on a wider range of situations.

The curriculum included in iList is currently composed of 7 problems, 5 of
them of the first type, 2 of them of the second type. These problems have been
carefully crafted based on some of the authors’ experience as computer science
educators, and on published CS curricula, such as ACM [7]. The goal is to
challenge the students with the most common difficulties in manipulating linked
lists. The problems are defined in the system using a human-readable XML
format, making it easy to add new problems as needed.

Architecture. The architecture of iList is currently composed of four important
modules: problem model, constraint evaluator, feedback manager, and graphical
user interface. A student model and a pedagogical module, important components
of a complete ITS [28], have not been implemented yet. Thus, the current version of
iList is better defined as an interactive learning environment, rather than an ITS.

The problem model includes the representation of the problems presented to
the student. A problem is given to the student in the form of a textual description
and an initial scenario, which includes a configuration of variables and nodes
(state space). The student is asked to progressively modify the state space by
interactively providing a sequence of operations, until the desired configuration
of the data structure has been reached.

When the student believes he/she is done with the current problem, the cur-
rent state space is submitted to the constraint evaluator, that checks the given
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solution. According to the constraint-based modeling paradigm, a solution is
correct if it does not violate any constraint. Computationally, the evaluation of
constraints is fairly simple. Each constraint is implemented as a computational
unit with three fundamental functions: a boolean function checking the rele-
vance of the constraint with respect to the solution, a boolean function checking
the satisfaction of the constraint, and a feedback function responsible to return
relevant information used to generate feedback for the student. A constraint is
violated if the logic implication isRelevant = isSatisfied is false for that particu-
lar state space. Constraints have access to two sources of information: the current
student solution, and a correct solution provided with the problem definition.
The specification of the correct solution needs only to include the minimum in-
formation necessary to evaluate a student solution, like the expected values of
final lists. This is indeed one of the advantages of the constraint-based approach:
the whole path towards a correct solution needs not to be specified in advance.
This simplifies problem authoring, and most importantly, it allows alternative
correct student solutions to be accepted by the system.

The feedback manager collects information from the individual constraints
and builds a message directed to the student. Currently, this module simply
relays messages provided by violated constraints, with minimum processing.

The graphical user interface is responsible for the main interaction with the
student (Figure[l]). The interface allows the student to interactively manipulate
a data structure using C++ or Java commands. The command interpreter is
quite flexible, allowing the student to focus more on the semantics of statements
rather than language-dependent syntax details.

The system has been entirely implemented using the Java programming lan-
guage. An early version of the system was interfaced to the WETAS system
[29] for constraint evaluation. In subsequent versions, the constraint evaluator
was re-implemented internally. To the user, the system appears as an applet
integrated into a web page.

4 System Evaluation

A first version of the system has been deployed in a Computer Science class of
a partner institution. 33 students took a pre-test before using the system, and a
post-test immediately afterwards. After the post-test, the students also filled in a
questionnaire about their subjective impressions on the system. The interaction
of the students with the system was logged.

T-test on test scores revealed that students did learn during the interaction
with iList (Table[Il). We compared students’ learning gain, defined as the differ-
ence between post-test score and pre-test score, with that of two other compa-
rable groups of students. A group of 54 students interacted with a human tutor
between the pre and post tests. The other group (control group, 53 students)
attended a lecture about a totally unrelated topic between the two tests. The tu-
tored group achieved statistically significant learning, whereas the control group
did not (Table [I).
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rProblem Feedback Operations
Change the list L so that it represents [2, 3, 1, 8]. Welcome to iList - Yersion 0.60 Node *T;
T = new Node;
Starting problem 1 T->data = 3;
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Warning:
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Fig. 1. A screenshot of iList

Table 1. Test scores. Range: 0 to 1.

Pre-test score Post-test score Gain T-test
Mean Std dev Mean St dev Mean St dev ¢t df P
None .34 .22 .35 .23 .01 .15 -0.56 52 ns
iList .39 .23 48 27 .09 17 -3.04 32 < .01
Human .40 .26 .54 .26 14 25 -4.24 53 < .01

Tutor

The learning gain of the iList group is somewhere in between the one observed
in the control condition and the one of the tutored condition. ANOVA revealed
overall differences between the three groups (F(2,137) = 5.96, P < 0.05). Post
hoc Tukey test indicated no significant difference between the control group and
the iList group, nor between the iList group and the tutored group, whereas the
difference between control and tutored groups is significant (P < 0.01).

The percentage of students who successfully solved each problem decreases
with the problem number, as can be seen in Table[2l Problems were of increasing
difficulty. Linear regression of individual problem success on learning gain showed
a positive correlation between the number of problems successfully solved and
learning. Also, we found significant positive correlation between solving the most
difficult problems (number 5, 6, and 7) and learning (Table [B]).

The first part of the questionnaire (Table M) revealed that students felt that
iList helped them learn linked lists to a moderate degree, and working with iList
was interesting to them. The students found the feedback provided by the sys-
tem somewhat repetitive, which is not surprising given the simple template-based
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Table 2. Attempt and success rates on individual problems

Problem 1 2 3 4 5 6 7
Attempt rate 100% 100% 94% 91% 77% 74% 80%
Success rate 91% 80% 74% 66% 57% 46% 31%

Table 3. Linear regression. Each line represents an independent model.

Predictor Dependent variable R? 3 df F t P

Number of problems solved Learning gain A7 .41 1, 32 6.31 2.51 < .05
Problem 5 solved (yes/no) Learning gain 12 .35 1, 32 4.25 2.06 < .05
Problem 6 solved (yes/no) Learning gain .16 .40 1, 32 5.80 2.41 < .05
Problem 7 solved (yes/no) Learning gain 13 .36 1, 32 4.63 2.15 < .05
Questionnaire question 1  Learning gain 22 .47 1, 31 8.33 2.89 < .01
Questionnaire question 4  Learning gain .16 -.40 1, 31 5.83 -2.42 < .05
Questionnaire question 5  Learning gain 37 .61 1,31 17.72 4.21 < .01
Questionnaire question 6  Learning gain 12 .36 1, 31 4.32 2.08 < .05
Questionnaire question 7 Learning gain .35-.59 1, 31 16.09 -4.01 < .01
Learning gain Final class grade .12 .36 1, 31 4.35 2.09 < .05

Table 4. Questionnaire: scaled questions

Question (Scaled response: 1=No to 5=Yes) Mean Std dev
1. Do you feel that iList helped you learn about linked lists? 2.9 1.2
2. Do you feel that working with iList was interesting? 4.0 1.3
3. Did you read the verbal feedback the system provided? 4.3 1.0
4. Did you have any difficulty understanding the feedback? 3.0 1.5
5. Did you find the feedback useful? 2.3 1.2
6. Did you ever find the feedback misleading? 2.2 1.2
7. Did you find the feedback repetitive? 3.9 1.2

generation mechanism. Also, the feedback was considered not very useful, but
at least not too misleading.

Linear regression of questionnaire answers on learning gain revealed some
significant correlations between students’ feelings about the system and their
learning (Table B)). The students who felt that iList helped them the most or
found the feedback useful did indeed learn the most (questions 1 and 5). Those
who had trouble understanding the feedback or found the feedback repetitive
learned less (questions 4 and 7). Strangely, the students who found the feedback
misleading learned more (question 6). A possible explanation may be that those
students were more careful and exercised more critical thinking, thus getting
more out of their interaction with the system.

Interestingly, students declared that they read the feedback provided by the
system, but our evidence points to the opposite conclusion. From the log of the
system, we estimated that students read feedback messages for 3.56 seconds on
average (stdev = 2.66 seconds), resulting in a reading rate of 532 words/minute
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(stdev = 224 words/minute). According to Carver’s taxonomy [30], such speed
corresponds to the process of quickly skimming a text. According to the same
taxonomy, the activity of reading to learn would require a much lower rate, in
the order of 200 words/minute. Possibly, the repetitiveness of feedback messages
could have made the students ignore them [31].

The last item in the questionnaire was an open response question, asking the
students for any comments on the program. The detailed comments provided
by the students and the instructor of the class will be helpful in guiding further
improvements of the system.

Finally, linear regression revealed a positive correlation of the learning gain
obtained with iList with the students’ final grade in the data structure class
in which they used iList (Table Bl). There is then a chance that the little bit of
knowledge that students acquired interacting with iList carried over to their final
exam, and hopefully will help them in their future career in Computer Science.

5 Future Work

We plan to significantly extend the functionalities of iList. We will design and
implement a student model, to keep track of students’ history and estimate
their state of knowledge exploiting the modeling power of the constraint-based
knowledge representation. Pedagogical strategies will be implemented, following
the results of our data analysis and those already published in the literature.

One of the research issues we are mostly interested in is the delivery of ef-
fective feedback to students. We plan to build a more sophisticated feedback
module, grounding its behavior in the outcome of the analysis of our tutorial
data, as well as in our past experience with the development of natural language
interfaces for ITSs [21I22]. A preliminary analysis of our human tutorial dataset
suggested that positive feedback, i.e., reaction to correct student actions, may
play an important role in tutoring [23]. We are planning on investigating the
conditions and the modalities in which positive feedback is delivered by human
tutors, and build a computational model of positive feedback that will be imple-
mented and evaluated in iList. Providing meaningful positive feedback in ITSs,
in particular in constraint-based ITSs, is still an open problem, and a system
like iList will be a useful testbed for researching that problem.
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Abstract. Diagrams appear to be a convenient vehicle for teaching argumenta-
tion skills in ill-defined domains, but can an ITS provide useful feedback on
students’ argument diagrams without assuming a well-defined procedure for
objectively evaluating argument? LARGO is an ITS for legal argumentation
that supports students as they diagram transcripts of US Supreme Court oral ar-
gument. It provides on-demand advice by identifying small, interesting or in-
complete patterns within students’ graphs. We conducted a study in which
LARGO was used as mandatory part of a first-year law school class. In contrast
to prior findings in lab studies with voluntary participants, the use of LARGO
did not lead to superior learning as compared to a text-based note-taking tool.
These results can be partially attributed to low use of the graphical tools and
advice by the students as well as (and possibly due to) a different motivational
focus. Some evidence was found that higher engagement with the system led to
better learning, leaving open the tantalizing possibility of helping especially
lower-aptitude students through use of LARGO.

Keywords: Ill-defined Domains, Legal Argumentation, Diagram Representa-
tions, ITS Evaluation.

1 Introduction

In a variety of domains, a central goal of education is training students to produce
robust arguments that not only address the current problem but survive the test of
other examples and cases that have been encountered in the past or that may arise in
the future. When a student proposes a rule for defining a class of mathematical ob-
jects, a theory for explaining scientific data, or a rule justifying a legal decision, one
expects other students or the teacher to respond, “But what if....” That is, they test the
proposal by posing hypothetical examples or cases that may occur and that highlight
potential problems with the proposed rule or theory.

Law students are taught to make arguments through Socratic classroom dialogue,
participation in moot court sessions and the analysis of examples, notably important
precedents. These activities imitate court room arguments. Advocates before the court
make their arguments by proposing tests or legal rules which, if adopted and used to
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decide the case at hand, would achieve their goals. To challenge these proposed deci-
sion rules, an opponent or judge may pose hypothetical cases that may occur, are
relevant to the issues of the argument, and illustrate situations that the rule should
cover but does not or decides wrongly given the underlying principles and policies of
the law. The advocates can then respond by modifying their tests as needed to cover
or avoid the hypothetical case, or by distinguishing the hypothetical situation from the
facts of the case [12].

Interestingly, in legal education, teachers instruct students by engaging them in
practice making and responding to such arguments, but seldom make explicit the
process itself. If a student’s argument has a flaw, the teacher does not explain the
flaw; instead, the teacher typically will respond to the argument with a counterargu-
ment that exploits the flaw, thus leaving to the student the responsibility of later re-
flecting on why his argument was weak. It is not always clear why this approach is
taken. It raises the possibility that students might learn better if their self-reflections
about the process were explicitly guided. ITS systems such as CATO [1] and Argu-
Med [16] could help as tools both to give students practice in making arguments and
to make explicit the process of argumentation.

Graphical representations of argument and argument diagramming have gained
currency in recent years [4,13]. Proponents of argument diagrams argue that they can
make the essential logical relations explicit while retaining formal validity. Work by
Carr [5] in the legal domain indicated that the production of argument diagrams can
improve students’ ability to produce high-quality arguments, and Schank [14] showed
that the production of diagrams can improve students' argument coherence. Recent
work by Harrell [7] and Easterday et al. [6] has substantiated that argument diagrams
can be useful learning tools. In summary, the current state of research suggests that
diagrams are a useful educational tool, but controlled empirical studies are still rare.

The LARGO Intelligent Tutoring System [3,10,11] for legal argumentation sup-
ports students in the process of analyzing oral argument transcripts (taken from the
U.S. Supreme Court). These are complex, real-world examples of the kind of Socratic
arguing with tests and hypotheticals in which professors seek to engage students in
class. However, they are written rather than purely oral as in the classroom, and thus
may be good examples to use in reflecting upon the process of argument. Since these
transcripts tend to be more complicated than classroom arguments, students probably
need support in order to understand and reflect on them. LARGO provides that sup-
port by capitalizing on the pedagogical value of argument diagrams. While using the
system, students read through the transcript and produce a graphical markup of it,
identifying the key tests, hypotheticals, responses, and facts as well as the relation-
ships between them. LARGO helps students by giving feedback in the form of self-
explanation prompts.

In the fall of 2006, we conducted a study of LARGO with paid volunteers from the
first year Legal Process course at the University of Pittsburgh’s School of Law. The
subjects analyzed a pair of cases using either LARGO or a text-based note-taking
tool. We found no overriding differences between the two conditions. However, lower
aptitude students, as measured by their Law School Admission Test (LSAT) score (a
frequently-used predictor for success at law schools), showed higher learning gains
using LARGO than using the note-taking tool. Also, the use of LARGO’s on-demand



92 N. Pinkwart et al.

help features was strongly correlated with learning [11]. Further analysis indicated
that familiarity with the system led students to engage in better note taking [9].

Since participation in the study was voluntary, the students were self-selected
(from among those enrolled in the course) for their interest in the curriculum, the ITS,
and the pay. Many expressed an interest in the system, making it apparent that they
were among the more inquisitive members of their class. We therefore concluded that
a second study was necessary to further examine and substantiate the findings with
non-voluntary participants. We sought out an opportunity where LARGO would be
required in a course setting, so that we would have a sample of students that is more
directly representative of the LARGO target population, and that (compared to our
earlier study) may include a larger proportion of lower-LSAT students, for whom
LARGO was most effective in that earlier study.

Based on our prior results, the two hypotheses for the new study are: a) Lower-
aptitude students will derive more benefits from LARGO than their higher-aptitude
peers, and b) additional experience with the system will improve students’ use and
benefit of it (i.e., we hypothesized stronger effects than in our previous study, if we
include more study sessions). The following sections of this paper describe the type of
argumentation LARGO teaches, and the design and results of the study.

2 Arguing with Tests and Hypotheticals

An example taken from the case Asahi Metal Industry Co. v. Superior Court, (480
U.S. 102 (1987)), illustrates both the process taught, legal reasoning with test and
hypotheticals, and the way in which LARGO’s argument diagrams support learning.
Law students encounter the Asahi case in their first semester “Legal Process” course.
It deals with an important legal concept: personal jurisdiction, a court’s power to require
that a person appear in court and defend against a lawsuit.

Cases like Asahi involve a court in one state attempting to assert power over a non-
resident of that state. In such cases, the principle that a state’s courts may redress in-state
harm conflicts with the U.S. Constitutional guarantee of “Due Process” requiring safe-
guards against the arbitrary exercise of government power. In Asahi, a motorcycle acci-
dent injured the driver and killed his wife. The driver filed a product liability claim
against Cheng Shin, the Taiwanese maker of the tire in a California state court, alleg-
ing that a defect caused the accident. Shin in turn filed a claim against Asahi, the
Japanese manufacturer of the tire’s valve assembly, alleging that a defective valve
caused the accident. Asahi moved to dismiss for lack of personal jurisdiction. The
case made its way to the U.S. Supreme Court.

A typical Legal Process course book would include the Supreme Court’s opinion in
Asahi along with the facts of the case and its reasons. A law professor likely would
engage the class in a Socratic discussion of the meaning and limitations of the Court’s
rule and alternate rules it might have adopted. If a student argued that Asahi should be
subject to jurisdiction in California as its valves ended up there (i.e., proposed a test),
the professor might ask: “How far up the stream of supply does it go? Does California
have jurisdiction over the steel maker whose steel is in the valve?” (i.e., poses a hypo-
thetical). Students learn to respond to such questions by analogizing the hypothetical
to or distinguishing it from the case facts and defending the proposed rule, modifying
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the rule to accommodate it, or abandoning the rule in favor of another. In this way, the
professor introduces students to the legal rules of personal jurisdiction, and to the na-
ture of legal rules, the fact that they are defeasible, have an open texture, and may be
applied differently in different circumstances.

At the U.S. Supreme Court, advocates often propose tests that decide the case at
hand in their favor. The Justices often evaluate the tests by posing hypothetical cases
like the one above to probe the test’s meaning, its limits and consistency with prece-
dents, principles, and policies. Thus, oral arguments at the U.S. Supreme Court pro-
vide complex examples of the kind of reasoning employed in the classroom, and
therefore have a pedagogical value. Traditionally, however, oral arguments have not
been employed in law school classes due to their complexity and lack of availability.
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Fig. 1. A student diagram for the Asahi argument

Figure 1 shows a student’s actual LARGO diagram for a portion of the Asahi ar-
gument. The argument transcript is shown on the left, together with two buttons for
advice and a palette from which the student can select the main graph elements. The
student has identified two tests in the argument transcript, one a modification of the
other, three hypotheticals posed, and a number of relations among them that (in this
student’s diagram somewhat imperfectly) reflect the role the hypotheticals play in
evaluating the tests. LARGO helps students to find, diagram and relate the important

elements of the text by providing hints based on small specific argument patterns
[10].
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3 Study Description

We carried out a study to evaluate LARGO within one section of the 2007 first-year
Legal Process course at the University of Pittsburgh School of Law. All 85 subjects in
the section were required to complete the activities in the study. The students were not
paid but were given coffee gift cards as a token of appreciation. Since students are
assigned randomly to one of three course sections, we have every reason to believe
that the section that participated in the experiment is representative of their peers. The
LARGO curriculum (which consisted of three personal jurisdiction cases) was inte-
grated into the class as preparation for a graded writing assignment on personal juris-
diction, counting for 10% of their grade.

The students were assigned to two study conditions, balanced by LSAT scores, but
otherwise assignment was random. The experimental group used a graphical version
of LARGO that supported diagram creation and gave advice [11], as described above.
The control group made use of a text version that offered no feedback. The curricu-
lum consisted of six weekly two-hour sessions. In the first week, the students took a
multiple-choice pre-test. During the second week they read background material on
Asahi and annotated the transcript in LARGO or the text tool. They then answered
two written questions about it without their diagrams or notes. Over the next two
weeks they completed two more cases in the same way. During week five they took a
post-test consisting of multiple-choice and free answer questions. Finally, we offered
a debriefing session to show students in each condition the version that had been used
by the other condition, in order to compensate for any differences in learning between
conditions prior to the course exam.

We classified the test items by type. Both the pre-test and post-test contained mul-
tiple-choice questions about: a) everyday reasoning with hypotheticals; b) generic
aspects of tests and hypotheticals in legal argument; c) the domain of personal juris-
diction; and d) generic argument questions drawn from the LSAT. The post-test also
contained: e) factual recall questions related to the specific transcripts studied during
training; f) interpretation questions regarding these transcripts; and g) analysis and
free-text questions regarding a novel case. We also grouped the items with respect to
the aspect of the argument model to which they were most related (hypothetical, test,
legal issues, legal policies, relation between test and hypothetical, response to hypo-
thetical). The design of the study and the materials used were the same as in the 2006
study [11], except that one extra training session was added.

4 Results

All 85 students completed the study. While they had a maximum of two hours time to
work on each of the training cases, their average time per case was 55.8 minutes
(sd=13.3). There was no significant training time difference between the conditions.
We excluded a total of 15 students from the analysis. Four candidly told us that
they were not working and deliberately entered off-topic responses in the post-test.
Two others completed the post-test in less than 30 minutes, less time than is needed
merely to read the materials (approx. 50 minutes). The remaining 9 spent less than 30
minutes on one or more of the training cases, less time than it takes an expert to work
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through the material (approx 45 minutes). It is therefore highly unlikely that they put
considerable effort into their task. The analyses below are based upon the remaining
70 students (36 Control, 34 LARGO).

Table 1 contains the mean scores and standard deviations of the case-specific post-
test questions (i.e., the post-test only items). Table 2 shows the pre-post gains for
counterbalanced items shared between the tests. All scores are given on a [0,1] scale.
Both tables show the results for all 70 students as well as the sub-results for the 27
low-LSAT students whose LSAT scores are below the median of 159. For this group,
our previous study showed a positive effect of LARGO as compared to the text tool.

Table 1. Study results for post-test only items

mean (sd) of post-test score All students (N=70) Low-LSAT students (N=27)

Control LARGO Control LARGO
All items .63 (.09) .64 (.09) .64 (.08) .61 (.11)
Case Interpretation 46 (.11) 48 (.10) 45 (.10) 49 (.11)
Case Recall 71 (.10) 73 (.12) .73 (.09) .67 (.14)
Hypotheticals 71 (.12) 71 (.14) 72 (.13) .64 (.14)
Legal issues .39 (49) .35 (.48) .50 (.52) .38 (51)
Legal policies .36 (.49) .29 (.46) .50 (.52) 23 (44)
Relations tests/ hypotheticals A48 (.11) 50 (L11) 49 (.11) 48 (.16)
Responses to hypotheticals 44 (.23) 45 (.24) .40 (.32) .49 (.28)
Tests 75 (.18) 79 (.15) 75 (.17) .76 (21)

Table 2. Study results for counterbalanced between tests

mean (sd) of gain score All students (N=70) Low-LSAT students (N=27)
Control LARGO Control LARGO
All items -0.01 (.16) -0.04 (.18) -0.01 (.13) -0.08 (.19)
Everyday argumentation * 0.01 (.34) -0.05 (.36) 0.09 (32) -0.19 (.38)
Generic items -0.01 (.31) -0.01 (.27) -0.02 (.28) -0.03 (.25)
LSAT questions -0.03 (.23) -0.02 (.24) -0.02 (.20) -0.06 (.25)
Personal jurisdiction * 0.07 (.40) -0.13 (42) 0.00 (.35) -0.21 (.32)
Hypotheticals 0.08 (.53) 0.00 (.49) 0.21 (.42) 0.00 (.41)
Relations tests/ hypotheticals -0.01 (.22) 0.01 (.30) -0.03 (.24) -0.07 (.40)
Responses to hypotheticals 0.06 (.39) 0.01 (.34) 0.14 (.36) -0.12 (.36)
Tests -0.17 (.65) -0.18 (.52) -0.36 (.63) -0.15 (.55)

There were no significant differences between the two conditions with respect to
post-test only test items — neither overall nor for the lower LSAT subjects.

For the question types that were shared between pre-test and post-test (in a coun-
terbalanced manner), the Control group gained significantly more than the LARGO
group on the personal jurisdiction items (F(1,68) = 4.250; p<.05). For the low LSAT
students, the Control group gained significantly more than the LARGO group on the
“everyday hypothetical argumentation with hypotheticals” questions (F(1,25) = 4.313;
p<.05). No other significant differences were found. A repeated measures analysis
reveals that the only significant difference between pre-test and post-test scores is a
drop for the low-LSAT LARGO students (F(1,10)= 5.333; p<.05) on the “personal
jurisdiction” domain questions.
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These results seemingly contradict our 2006 results where the low-LSAT LARGO
students outperformed their Control peers on several important question types. When
we analyzed the log files from the study sessions and the LARGO diagrams, we found
that the 2006 students made far greater use of LARGO’s advice functions than the
students in the current study (see Table 3). Moreover, in the current study, the advice
usage dropped over time unlike in 2006: during the last session, on average only 0.6
advice requests were made per case (1.6 during the first case). The diagrams created
in the current study contained fewer elements and relations than those from the 2006
study, and students in the current study did not link their diagram elements to the
transcript as often (31% vs. 87%).

Table 3. Advice usage and diagram complexity

mean (sd) 2006 study (N=15) 2007 study (N=34)
Clicks on Advice button (shows 3 hints) per case 10.1 (10.8) 1.8 (3.9)
Selection of one of the 3 shown hints per case 7.6 (8.2) 1.2 (2.2)
Advice usage by case over time increasing decreasing:
from 7.1 to 8.1 1.6, then 1.3, then 0.6

Number of elements in student graphs 9.6 (2.7) 7.52.3)
Number of relations in student graphs 7.9 (2.3) 522.9)

Rate of elements that are linked to the transcript .87 (23) 31 (31)

Table 4. Correlations between advice requests in LARGO and test scores

Pearson correlations All students (N=34) Low-LSAT students (N=13)
Pre-test | Post-test Gain Pre-test | Post-test Gain
Case Interpretation - .03 - - 15 -
Case Recall - -.05 - - .02 -
Everyday argumentation -.06 34 * 33 .07 46 .29
Generic items -.06 -.19 -.18 .06 -.14 -21
LSAT questions -.07 .02 .06 -.11 .30 24
Personal jurisdiction -.09 21 .16 .04 46 .30
Hypotheticals -.02 -.19 -.04 .24 -.18 -.28
Relations tests / hypotheticals -.09 -.20 -.17 .28 -.29 -.37
Responses to hypotheticals -.15 .29 .33 -.16 .54 .61 *
Tests .05 .06 -.03 -.07 .11 .16

*: significant correlations (p<.05).

Together, these results seem to indicate that LARGO’s advice was a key factor in
the positive effects that we observed in 2006, and that the graphical representation
alone is not sufficient. We therefore analyzed if, within the current study, a higher
number of advice requests correlates with higher post-test or gain scores.

The pre-test scores are not correlated with advice usage: students with higher pre-
test scores did not use help more or less often than students with lower pre-test scores.
However, advice usage is positively correlated with the post-test score for everyday
argumentation items for all subjects. For low-LSAT students, the advice usage is also
highly positively correlated to pre/post gains on items about responses to hypotheti-
cals. The advice given by the system, apparently, helped these students to better un-
derstand how one can respond to a hypothetical during (legal or everyday) argument.
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These strategies are mentioned in the feedback messages LARGO provides, which
supports this hypothesis. Due to the relatively small number of low-LSAT LARGO
students (N=13), additional correlations (e.g., for everyday argumentation or for per-
sonal jurisdiction) did not reach the level of statistical significance at the .05 level.
However, the general trend is that advice seems to have a positive effect on the per-
formance of the lower LSAT students.

5 Discussion

The study results did not confirm our initial hypotheses: the use of LARGO as a man-
datory (though non-graded) part of a legal process course did not lead to learning
gains when compared to a simple note-taking tool. Further, students in both condi-
tions did not improve from pre-test to post-test in any of the tested categories even
though they studied the materials for approximately 6 hours. These results are not in
line with our 2006 findings with paid volunteers, even though the experiment was
similar in all respects. We see three possible ways of accounting for these differences:
student motivation, engagement with the system, and post-test design.

5.1 Motivational Issues

The extent to which users engage with a system depends on their specific goals. In
2006 the users were volunteers paid for their participation. As such they appear to
have been more motivated to explore the system, to exercise key features such as
graphical relations, links between diagram and transcript, and on-demand advice, and
to take their time. Our present population comprised unpaid “conscripts” who had to
use the system as a part of their course. They were inclined to use the system in the
most convenient manner possible and tended to underutilize its key features. In many
ways they used the system as a note-taking tool with movable text boxes.

Yet, the success or failure of an ITS, and particularly of one that offers its impor-
tant features on demand as LARGO does, depends on the extent to which users actu-
ally use these features. In our prior study, the low-LSAT students chose to make use
of LARGO’s key features and showed performance gains. In the present study, nei-
ther the high- nor the low-LSAT students did so consistently. Thus, the LARGO
group derived fewer benefits from the system and performed no better than the Con-
trol group. To get students to engage with the beneficial features outside of the lab it
seems necessary to better integrate the tool into the classroom. In the current study,
use of LARGO was aligned with the course goals but not a core part of the course.
Students were required to participate in the LARGO sessions, but were not graded on
these activities. The payoff for the students lay in the preparation that the activities
gave them for their future work. If we want the students to use the on-demand system
functions, future studies of LARGO (and probably this result is valid also for other
ITSs) should pay more nuanced attention to the specific motivation of the students,
especially in real classroom situations. This can probably be done by assigning grades
to the graphs that students create with LARGO and through in-class support (e.g.,
discussion of the benefits of LARGO for the learning goals).
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5.2 Engagement with the System

Our analysis of the study data suggests that low use of the LARGO advice functions
at least partially accounts for the lack of difference between the study conditions: the
LARGO students who used the advice more frequently did better at some centrally
important post-test questions. The low usage of important system features may be
connected to motivational issues (cf. 5.1). Consequently, we may need to modify
LARGO in order to increase the student’s engagement with the system even if their
motivation to do so may be low. The current version of LARGO leaves many things
to the users —the way they create the diagrams, how and if they link elements in the
diagram to specific passages in the transcript being studied, and how often (if at all)
they receive comments and feedback on their work. As previous research shows, this
strategy may be problematic not only due to motivational aspects, but also because
students often do not ask for help even though they could benefit from it [2]. The dia-
grams the students created in the current study support this position. A large number
of students’ graphs had errors of a type that would be noted and commented on by
LARGO if the student requested its advice. But since students did not do so very fre-
quently, they were often not informed of their misconceptions.

How could LARGO be redesigned to avoid this problem? Presenting corrective
feedback immediately after they make a mistake (as done by many successful ITS
systems) would be problematic in the ill-defined domain of legal argumentation. As
described in [10], LARGO’s on-demand feedback avoids false error messages that are
likely to occur in this domain, where it is often not clear whether a diagram correctly
reflects an argument or not. False or inappropriate feedback would be very problem-
atic also because the feedback LARGO gives is cognitively demanding (self-
explanation prompts).

A reasonable alternative and a compromise between the two extremes, to be tested
in further studies, could be to highlight diagram regions on which LARGO could give
feedback (similar to the feedback in Andes [15]). Thus, students would be aware that
feedback is available, but would not be forced to attend to it immediately (or at all).
Another design option would be to structure the interaction with LARGO so that the
students have “diagram creation” phases and also phases where they are explicitly
asked to reflect on their diagrams, assisted by advice from LARGO.

Perhaps students could also be made to engage more with LARGO by requiring a
clear and tangible “result” of their analysis (e.g., a “final test”) that could be checked
against what actually happened in court. Also, it may be interesting to give feedback
to students indicating whether they did better or worse than the attorney in the actual
case, or than peer students, and how their result relates to the final opinion of the
court. Also, a future version of LARGO could present additional material not con-
tained in the transcript, and engage students more in actually making arguments in
addition to analyzing them.

5.3 Post-Test Design

Many researchers argue that even without feedback, diagrams are better than texts for
learning argument skills. In that light, one would have expected a benefit of LARGO
in this study even though the advice usage was low. However, this was not the case.
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Could it be that the post-test somehow did not fully measure what was taught? At the
content level, that notion can be rejected. The post-test items were well aligned with
the tasks students had to solve in the training session. Yet, there was a subtle (and
necessary) difference between what we tested and what was taught with LARGO.
During training, the LARGO students created graphs, whereas the post-test employed
a textual notation only, since this is the standard format in which legal argument and
legal reasoning tasks are presented to students. However, the effectiveness of graphi-
cal tools generally strongly depends on the amount and type of usage of these tools
[8], and our chosen format may have favored the students in the text condition The
graphs created by the students could have been used for some of the questions on the
posttests (and a few students asked for them for exactly that purpose), and would
surely have helped, but we did not provide them. Thus, we tested whether training
with graphs transfers to textual questions better than training with texts, not whether
students were able to use the representations they created effectively in a post-test. As
mentioned, we deemed a textual post-test to have higher ecological validity.

6 Summary and Conclusion

In this study we tested the LARGO ITS as a mandatory part of a first-semester law
school course. Prior research on graphical argument representations has suggested
that the graphical format of LARGO and the on-demand help it provides would be
beneficial. However, our results showed no evidence that the LARGO condition was
better than the Control condition. The post-test was well-aligned with the instruction
and we had sufficient statistical power. Our hypothesis that graphs are better then text
for learning complex argumentation skills was not confirmed. The students who used
graphs were also no worse than the text users - since many ITSs for argumentation
rely on the graph structure as a central component to enable the system feedback, this
is still an important result for ITS designers. Yet, it contradicts our prior positive re-
sults with LARGO in lab studies [10].

Although we did not find a difference between the two conditions, the study pro-
vides some evidence that those students who engaged more with the graphs as evi-
denced by more frequent use of LARGO’s advice function, especially the low-LSAT
students, did better than the text condition. This finding is consistent with our 2006
study [10] in which the paid volunteers used more of the LARGO features and bene-
fited from them.

One tentative conclusion to take away from this study is that graphs may still be
better than text, but that engagement is essential. One way to support engagement
could be to change the feedback mechanism. The current on-demand feedback is well
suited for ill-defined domains since it avoids false error messages, but it remains to be
explored whether prompting the student with messages (at the risk of giving inappro-
priate or suboptimal advice) or at least highlighting “weak regions” in diagrams will
engage the students and not confuse them. Another take-home message of the study is
that the subject’s motivation is a decisive factor, especially when “leaving the lab”
and entering the classroom with ITS technology. Apparently, and somewhat to our
surprise, it can make a difference whether participation is voluntary or mandatory —
and if it is mandatory, whether the students are motivated to participate in a manner
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so that the key ITS features are used, especially if their usage is on-demand. Future
studies with LARGO - on its way toward regular classroom usage — will have to take
these factors into account.
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Abstract. This paper deals with authoring assessments of complex competence
involving open-ended questions. We present, PépiGen, a multi-criteria auto-
matic assessor for school algebra, via a walkthrough of an example. PépiGen is
based on our previous work on Pépite, an automatic cognitive diagnosis tool
that capitalizes on educational research results. From that prototype, we derived
patterns of diagnosis tasks. A pattern models (i) a class of exercises, (ii) the dif-
ferent students’ points of view on the solutions reported in the literature or ob-
served in a corpus, (iii) and a multidimensional assessment for each solution
approach. To adapt an assessment to a specific classroom context (e.g. level of
difficulty, time, learning objectives) an interface allows an IT non expert (e.g. a
teacher) to generate new instances of exercises by filling the pattern parameters.
The originality of our research lies in the fact that our system generates the
automatic analysis of students’ simple or complex answers, such as algebraic
reasoning. This is an ongoing work but preliminary evaluation shows that Pé-
piGen is already successful in generating and analyzing most answers on sev-
eral classes of problems.

1 Introduction

The work reported here is part of an ongoing project, the Lingot project. Its objective
is to design an intelligent aid that supports math teachers when they have to monitor
learning in a classroom context, taking into account their students’ cognitive diversity.
This paper focuses on diagnosing students’ cognitive profiles in algebra. It presents
PépiGen, a system that generates Automatic Multi-criteria Assessments of students’
competence in school algebra.

We first present the background, the objectives and the methodology we adopted to
elicit patterns from the first Pépite assessment system used as a prototype. Then, we
illustrate the modelling language we defined by describing an example of pattern of
diagnosis tasks involving open-ended questions. The next section describes PépiGen,
the system that allows a user to generate diagnostic tasks that instantiate patterns. We
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end with a discussion of our work in comparison with related works and with a sum-
mary of contribution and plans for future research.

2 Background

The key point of our assessment approach is that students’ answers to problems are
not simply interpreted as errors or as lack of skills but as indicators of incomplete,
naive and often inaccurate conceptions that the students themselves have built. A fine
analysis of the students’ work is required to understand the coherence of the personal
conceptions, to develop or to strengthen right conceptions, and to question wrong or
unsuitable ones that interfere with, and sometimes prevent learning [1]. Detecting
these conceptions is a very complex task that requires special training and a lot of
time. ITSs can be a very helpful aid for teachers to reveal implicit conceptions which
are very difficult to access without automatic reasoning on students’ performance.
Designing such systems is not trivial; especially when the student’s input is not very
constrained.

We developed such a cognitive diagnosing tool, derived from Educational Re-
search [6], called Pépite, and we tested it in real settings [3]. This previous work
aimed to prove that it was possible to automatically build a rich student cognitive
profile from data collected after the student solved a set of tasks especially designed
for that purpose. These tasks involved preformatted answers and open-ended answers.
Like in other systems [5], in Pépite, the diagnosis is a three stage process. First, a
local diagnosis provides, for each student’s answer, a set of codes referring to the
different criteria involved in the question. A code gives an interpretation of the stu-
dent’s answer according to a set of 36 criteria on six assessment dimensions (see
section 4 for an example). Second, Pépite builds a detailed report of the student’s an-
swers by collecting the same criteria across the different exercises to have a higher-level
view on the student’s activity. At this stage, the diagnosis is expressed by success rates
on three components of the algebraic competence (usage of algebra, translation from one
representation to another, algebraic calculation) and by the student’s strong points and
weak points on these three dimensions. This level is called personal features of the stu-
dent’s cognitive profile. Third, Pépite evaluates a level of competence in each component
with the objective to group of students with “equivalent” cognitive profiles. This level is
called the stereotype part of students’ profiles. Stereotypes were introduced to support the
personalization in the context of whole class management and to facilitate the creation of
working groups [4].

3 The PépiGen Project

In the present stage of the project, the aim is to offer an authoring tool, called Pépi-
Gen, to generate different Pépite-like diagnosis tools adapted to different school con-
texts and teachers’ objectives. We had a lot of feedback from teachers who used the
previous Pépite tools [3]. One of their points was that Pépite was interesting for a
given school level. But teachers would need a database of diagnosis exercises to use
Pépite-like tools at other school levels. Most teachers asked for off-the-shelf diagnosis
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material, arguing that their job was to monitor learning, not to author materials. Some
asked for assessments that can be tuned to specific contexts. Very few asked to define
their own exercises but they asked to do so with no programming at all. These obser-
vations are confirmed by [16] in a state of art review of ITS authoring tools.

Thus, the work reported here describes how to build banks of exercises supporting
the diagnosis. We focussed on the following design scenario: a teacher chooses a
prototypic exercise in the bank and, if need be, asks for another equivalent one re-
trieved from the bank, or adapts the statement of the exercises by filling in forms (Cf.
6.1). In order to achieve this objective, in this paper, we investigate two research
questions:

1. How to derive patterns of diagnostic tasks from the first Pépite prototype?
2. How to generate the procedure to analyze open-ended questions when (most)
current technology restricts to preformatted answers?

From a computational point of view, the most difficult problem to be solved was to
design and implement a system that assesses open-ended answers, both generic
enough to apply to many classes of algebraic problems, and specific enough to detect
students’ personal conceptions. With open-ended questions, it is impossible to predict
every student’s answers. Thus the main points in our design are (i) to anticipate most
current students’ solution approach to one type of question by detailed and accurate
epistemological and empirical studies, and (ii) to generate a set of answers represent-
ing each solution approach.

Our research approach is a bottom-up approach informed by educational theory
and field studies. In previous work, we started from a paper and pencil diagnosis tool
grounded in mathematical educational research and empirical studies [1, 6]. Then we
automated it in a prototype called Pépite and tested it with dozens of teachers and
hundreds of students in different school settings [3]. In the present research, we gen-
eralize this first design to create a framework for authoring similar diagnosis tools
offering configurable parameters and options.

4 An Example of Diagnosis Task Pattern

Let us take a prototypic exercise from the original Pépite involving an open-ended
question (Fig. 1). The objective of this exercise is to have deep insight in the student’s
algebraic thinking and to assess her/his skills and conceptions in the six dimensions of
algebraic competence: (i) Validity, (ii) Meaning of Letters, (iii) Algebraic Writing, (iv)
Translation (ability to switch between various representations: graphical, geometrical,
algebraic, natural language), (v) Type of Justifications (“proof” by example, proof by
algebra, proof by explanation, “proof” by incorrect rule), (vi) Numerical Writing.

Table 1 shows four examples of students’ answers and their coding in Pépite. In
those examples we can notice that no students’ solutions are fully correct, but we can
suspect very different levels of development in their algebraic thinking. Of course,
building a cognitive profile from one answer is not reliable, but we can hypothesize
that these students will benefit from different learning activities [4].
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Fig. 1. A Pépite prototypic exercise of the “Proof and calculation process” pattern

To clone this exercise for a lower school level, we considered the following design
scenario. An author is presented with the prototypical exercise and changes the italic
sentence in the statement by the following one (statement 2): Think of a number. Add
6 to this number multiply the result by 3, subtract three times your number to the
result. You find 18. This statement is a parameter of the pattern.

The system generates the algebraic expression, here (x+6)*3-3*x. The difficulty is
to generate the anticipated solutions and their coding. In this type of task, [6] distin-
guished mainly four approaches for students to justify their answer:

1. An algebraic approach involving several processing types
a. A correct translation in algebra by a global expression with correct/ incorrect
use of parenthesis and an optimal-correct/non optimal correct/incorrect reduc-
tion to a number (7 or 18 in the examples);
b. A partially correct translation to algebra using a step-by-step translation with
correct/incorrect reduction to a number;
c. An incorrect translation where the equal sign is not an equivalence sign be-
tween numbers.
2. A numerical approach where the student takes one or several examples involving
the same types of processing as in the algebraic one;
3. A combination of both approaches where the student tries an algebraic proof but
does not succeed and falls back on numerical examples to justify;
4. A justification in natural language.

In Table 1, Laurent’s and Karine’s solutions are examples of the first approach,
while Khemarac’s and Nicolas’s are examples of the second one. For each solution
approach and processing type, PépiGen, generates a corresponding set of algebraic
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Table 1. Types of students’ answers and their multidimensional coding in Pépite (age 15 or 16)

Khemarak Nicolas Karine Laurent
Soit 5 un nombre 3 + 8 = 11[x+8=8x =[(x+8)x3-4+x]/4+2-x
((5+8)x3-4+5)/4+2-5=7 ? 8x =(3x+24-4+x)/4+2-x
((13)x3-4+5)/4+2-5=77 |11 x3=33 3 x 8x = 24+3x=27x | =4x+20/4 + 2-x
(39-4+5)/4+2-5=7? 33 - 4 = 29|27x-4=23x =x+5 +2-x
10+2-5=7 7 23x+x=24x =7
29 +3=32 24x/4=6x
10-3=7? 32/4=8 6x+2=8x
7=77 8+2=10 8x-x=7
Oui donc cela marche 10-3=7
(Yes thus it works)
Justification by example | Justification by | Justification by Justification by algebra
J2) example (J2) school authority (J4) | J1)
Valid translation in Partially valid Algebra is use to Valid translation in
algebra (T1). translation(T2). | abbreviate (T4). algebra (T1).
Global expression with Step- by-step The = sign an- Global expression with
parenthesis, expressions | translation, nounces a result, not | parenthesis, expres-
are seen as a whole expressions are | an equivalence sions are seen as a
seen as a process whole
Correct numeric writing | Correct numeric | Incorrect identifica- | Incorrect use of paren-
rules (NWR1 ) writing rules tion of operation thesis with memory of
(NWR1) (AWR4); incorrect the meaning (AWR31)
algebraic rules :
X+a—>xa
axtb—(atb)
ax-x—a-1
No use of letters (L5) No use of letters | Use of letters to Correct use of letters
(L5) calculate with incor- | (L1)
rect rules (L3)
Invalid answer (V3) Invalid an- Invalid answer (V3) | Invalid answer (V3)
swer(V3)

expressions. It associates a set of codes that characterizes the algebraic processing
type from a diagnosis point of view.

One pattern describes the original exercise and the exercise generated by statement
2. The pattern name is: “Proof and calculation process”. The two exercises are “simi-
lar” because the interface, the set of words to express the statement (see the “palette”
Fig. 2), the diagnosis objective, the anticipated solving approaches, and the set of
possible codes involved are all the same.

The differences between a clone and the prototypic exercise are the statement, the
algebraic expression that translates the statement in algebra, and the complexity of
this algebraic expression (level of parenthesis, number of operators, and number of
division). The statement and the algebraic expression are parameters of the patterns
and the three indicators for the complexity are parameter characteristics. These char-
acteristics will be used to query the database and to tune a test to a school level. The
parameters may be constrained. In the example, there is one constraint: the algebraic
expression is reduced in a constant or a linear function; otherwise the diagnosis task
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Fig. 2. Parameters setting for the “Proof and calculation process” patterns of diagnostic task

would change. The differences in the diagnosis part of the exercises are expressions
representing optimal correct solutions, non optimal correct solutions, partially cor-
rect solutions, incorrect solutions. Each solution is characterized by a comment, a
code, one or several expressions and correct or incorrect rules.

5 How to Generate a Diagnostic Task from a Pattern?

PépiGen is implemented in Java. It creates, initializes and saves, in an XML database,
instances of the different classes representing the dynamic part of a pattern of diag-
nostic tasks. The static part is described by an XML schema. A diagnostic task con-
sists of an exercise (problem statement and questions), a set of correct or incorrect
anticipated solutions, and a set of codes that characterizes each solution from a cogni-
tive diagnosis point of view. It is generated by PépiGen once the parameters of a
pattern are set. Thus generating a diagnostic task is a two stage process: setting the
parameters and generating the solutions tree and the coding for each branch. Data
generated are stored in XML files and retrieved at run time to generate the student
interface and to assess the student’s answer.

When very constrained, the parameters are automatically generated by PépiGen
(e.g. a formula to be instantiated with integer values between 1 and 20). This mode is
called automatic parameter setting. But, for more complex patterns, the parameters
are set by a human author (a teacher, a teacher trainer or a researcher). This mode is
called aided parameter setting (e.g. Fig. 2).
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When human authoring is required to set the parameters, PépiGen provides a
Graphical Interface to enter the parameters. The author enters one parameter, the
statement in natural language using the palette on the right side of the screen, and
PépiGen generates the other parameters (the corresponding global algebraic expres-
sion and its reduced form), and displays them on the left of the screen. A software
component based on a grammar and a finite state machine is used to interpret users’
input in a constrained natural language and to translate it into algebra. This compo-
nent is also used for analysis of students’ input in other diagnosis tasks.

When parameters are set, a procedure specific to the pattern is called by PépiGen,
to automatically generate all the information necessary to diagnose the students’ an-
swers to the exercise. This procedure is simple when answers are preformatted. In
case of open-ended questions involving the dimensions “Algebraic calculation” or
“Numerical calculation” in the pattern description, a software component, called Pé-
piniere, builds a tree representing all anticipated solutions to the exercise and codes
each solution on several dimensions.

(x+6)*3 - 3*x
R1 |
Ix+6%3-3x
3x+18-3x
|
R2 R3i(1) R3(2)
|
18 Ix+l5x 21x-3x
18x 18x
V1. AWl V3. AW42 V3IAWA42
Applied rules
Correct rules Rl : (A+B)C — AC+BC R2 : AC+BC— (A+B)C
Incorrect rules R3:A+BC— (A+B)*C  Appledto: (1) 18-3x (2) 3x+18
Codes
Validity V1 : correct l\"i : incorrect
Algebraic Writing AWT1 : Correct use of rewriting rules
AW42 : The student gathers the terms 1n an algebraic sum.

Fig. 3. Anticipated algebraic solutions for the clone example

Pépiniere is a specific Computer Algebra System (CAS) dedicated to interpreting
and generating students’ algebraic input according to an epistemological and didacti-
cal analysis. It is independent of the different patterns. It relies only on mathematical
foundations (mainly parsing of mathematical expressions, unification theory, alge-
braic rewriting rules), and on the multidimensional model of algebraic competence
that grounded the Pépite project (i.e. on a set of multidimensional criteria represented
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by a code, an extensible structured set of rewriting rules and a set of heuristics to
prevent infinite loops). [14] presents a detailed description of Pépiniere. In the present
section, we just describe our general approach to automatic generation of the diagno-
sis by illustrating it with one example of pattern instantiation. In this example, the
procedure to generate the coding instructions file is a two step process.

First, Pépiniere builds a tree with every anticipated solution. It applies correct and
incorrect reduction and developing rules. Heuristics are used to tackle the difficult
problems of combinatorial explosion and infinite loops [14]. Fig. 3 shows the tree
generated from the algebraic expression parameter that characterizes the clone
(x+6)*3-3*x.

Second, the tree is walked in a way specified by the type of approach (alge-
braic/numeric). Each node (expression and rule applied) is saved along with the cod-
ing. For instance, correct solutions are generated by saving the nodes in walking
through the tree considering only the correct rules. Incorrect solutions with an alge-
braic approach and a correct translation to algebra are generated by saving the nodes
with incorrect rules. For incorrect solutions with a step-by-step translation Pépiniere
is called recursively with expressions generated by the preceding step. Incorrect solu-
tions with a numerical approach are generated in the same way.

After students passed the test, the diagnosis system asks Pépinieére to compare one
expression in the student’s answer to the expressions in the coding prescription file. To
this end, Pépiniére builds trees representing the expressions and tests the equivalence of
the expressions regarding the commutability and associability of the operators.

6 Tests

Since PépiGen is still in the development phase it is difficult to have usability tests in
real settings with teachers. Thus, we describe here a primary evaluation round. First
we tested PépiDiag on a corpus of answers collected with the prototypic exercise
(N=353) and its clone (N=39) presented in section 5. The system coding was vali-
dated by two educational researchers (the third and fourth authors). They agreed
100%. This means that PépiGen implementation is conform to the educational re-
search model PépiGen is based on. Then, we asked three mathematics teachers to
generate clones with PépiGen. They understood the potential of the system and found
it easy to create exercises. They were satisfied with the solutions generated. We also
tested Pépiniere to generate solutions for other patterns involving simpler algebraic
reasoning [17].

7 Related Work

Assessment and student modeling is a hot research topic in ITS and the e-learning
community. We are especially interested in assessment modeling approaches and
particularly in assessment of mathematical skills involving open-ended questions.

The leading specification for assessment is QTI, developed by IMS Global Learn-
ing Consortium [8]. The primary goal of this specification is interoperability between
Learning Management Systems but it is limited to multiple-choice items and their
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variations. [9] provide a broader conceptual model for assessment allowing the use of
several assessment instruments (e.g. portfolio assessment or peer-assessment) and
several types of assessment (e.g. multi-dimensional assessment). It is a first step to
integrate QTT and IMS-LD specification. A perspective of our work could be to test
their model by translating to their Item Construction Model, our conceptual model of
diagnostic task patterns exemplified in section 5. But, so far it is unclear for us, if
their model can represent both correct and incorrect conceptions. Moreover, as far as
we know, it is a descriptive model and there is no implementation. In section 6, we
presented through a worked example, a domain specific implementation correspond-
ing to the “response rating part” of their model.

Many ITS or e-learning systems focus on math education and implement student’s
modeling or assessment authoring tools. Some of them analyse open answers when
they are numerical or reduced to a single algebraic expression (Algebra Tutor [10],
Assistment [2], LeActiveMath [11]). Very few analyse a whole reasoning. From this
point of view, closely related to our work are Diane [7], Andes [15], and Aplusix [12].

Diane is a diagnosis system to detect adequate or inadequate problem solving
strategies for some arithmetic classes of problem at elementary school level. Like
Pépite, it is based on a very precise cognitive analysis. For each isomorphic class of
problems, Diane analyses open-ended numerical calculation according to several
criteria. It is very efficient compared to human assessment by experts. However, for
more complex domains such as Physics or Algebra, researchers had to use a standard
CAS or to develop one, specific to the type of students’ inputs and to the type of di-
agnosis needed in the project.

For instance, Aplusix is a micro-world devoted to algebra learning in secondary
schools, widely used in actual classrooms in France and in other countries. A teacher
generates problems from different patterns of algebraic expressions for several tasks
(e.g. factorisation, equation). Aplusix provides a very fined grained analysis of
students’ use of algebraic rewriting rules. PépiGen diagnosis is not so deep in the
algebraic writing dimension but assesses a broader panel of skills on five other di-
mensions because the objective is to link formal processing with other students’ con-
ceptions like meaning of letters or meaning of algebra. Thus, in the Lingot project,
there are very different diagnosis tasks involving algebraic expressions but also geo-
metric figures and calculation programs.

8 Conclusion

In this paper we presented an approach to design and implement Automatic Multi-
criteria Assessment of open-ended questions in early algebra. Our approach balances
between very specific and rigid off-the-shelf tools and heavy generic authoring tools
[16]. We benefited from empirical and theoretical educational studies to model pat-
terns of diagnostic tasks. We designed and partially implemented the PépiGen system
that automatically generates the diagnosis tasks after the parameters have been set. A
specific CAS, Pépiniere, generates all the students’ reasoning usually observed in
math class and assesses them with multi-dimensional criteria. PépiGen is a significant
step toward an interactive assessment authoring tool in Algebra to support teachers in
addressing their students’ difficulties more effectively. Although the first PépiGen
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testings are encouraging, there is still much work to be done. We are currently com-
pleting the system development by implementing automatic diagnosis on reasoning
on other classes of algebraic problems (e.g. equation solving). We are also investigat-
ing with educational researchers how learners themselves can benefit from the Pépite
diagnosis.

The software component we implemented to analyze answers to open-ended ques-
tions is inevitably domain dependant, but we propose a model to describe pattern of
diagnosis tasks derived from educational research that could apply to many problem
solving assessments using explicit criteria on several dimensions of evaluation.
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Abstract. Is learning by solving problems better than learning from worked-out
examples? Using a machine-learning program that learns cognitive skills from
examples, we have conducted a study to compare three learning strategies:
learning by solving problems with feedback and hints from a tutor, learning by
generalizing worked-out examples exhaustively, and learning by generalizing
worked-out examples only for the skills that need to be generalized. The results
showed that learning by tutored problem solving outperformed other learning
strategies. The advantage of tutored problem solving was mostly due to the er-
ror detection and correction that was available only when skills were applied
incorrectly. The current study also suggested that learning certain kinds of con-
ditions to apply rules only for appropriate situations is quite difficult.

Keywords: Intelligent Authoring System, Simulated Student, Programming by
Demonstration, Machine Learning, Cognitive Tutor.

1 Introduction

SimStudent is a machine-learning agent that learns cognitive skills by generalizing
solutions demonstrated [1] and also by being tutored as we describe in this paper. Our
original motivation to develop SimStudent was to automate cognitive modeling to
author a Cognitive Tutor that deploys model tracing to provide individualized feed-
back and contextualized help [2]. To perform model tracing, the Cognitive Tutor
needs a cognitive model that represents domain principles. However, cognitive model-
ing is a labor-intensive task that requires significant knowledge and experience in
cognitive task analysis and Al-programming. Embedded into Cognitive Tutor Author-
ing Tools (CTAT [3]), SimStudent acts as an intelligent building block that allows
authors to perform authoring by demonstration, where authors merely demonstrate
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how to solve problems (correctly and incorrectly) instead of writing a cognitive model
by hand. SimStudent generalizes demonstrations and create a set of production rules
that reproduce the problem-solving steps demonstrated.

A critical research question addressed in this paper is about the efficiency of
SimStudent: How can SimStudent be taught most effectively?

Originally, SimStudent was a “passive” learner in the sense that SimStudent at-
tempted to generalize every problem-solving step demonstrated, but did not attempt to
perform problem-solving steps on its own. SimStudent could reduce the learning load
by selectively choosing certain steps to generalize; for instance, generalizing a step only
when SimStudent does not have a production rule that reproduces the step demon-
strated. Assuming that applying an existing skill is easier than learning a new skill, this
learning strategy might require a relatively shorter learning time to achieve the same
quality of cognitive model. A third possibility is that SimStudent could actively solve
problems, rather than explaining demonstrations, and get feedback. Since the author will
see SimStudent performing actions, which provides a chance to explicitly correct errors,
this tutoring strategy might outperform passive or the selective learning strategies.

In this paper, we compare three learning strategies to answer the following re-
search question: Which learning strategy is better in terms of efficiency of training
and quality of resulting cognitive models? Answering this question is not only impor-
tant for authoring purposes, but it may also provide us theoretical insights into under-
standing human learning by inspecting SimStudent’s learning processes and learning
outcomes, which are not easily attainable in human subjects.

2 SimStudent: A Machine-Learning Agent You Can Teach

An actual image of the Cognitive Tutor used in the current study is shown in Fig. 1.
Suppose that an author is trying to build a Cognitive Tutor for Algebra equation solv-
ing. The author has just built the Tutor interface shown in Fig. 1 by using CTAT.
Now, the author launched SimStudent to create a cognitive model for equation solv-
ing by using the Tutor interface and solves a few problems.

2.1 An Example Cognitive Tutor: Algebra Equation Tutor

In this tutor, equations are represented with a mathematical operation to transform a
given equation to another form. To transform an equation, an operation must be speci-
fied first, followed by the left-hand and right-hand sides of the resultant equation
being entered in the adjacent row. Fig. 1 shows that the author has decided to “add -1”
to both sides, and the left-hand side has just been entered. In sum, a single equation-
solving step (e.g., transforming “3x+1=x+4" into “3x=x+3") is modeled as three
steps — (1) selecting an operation for transformation, (2) entering an expression for the
left-hand side, and (3) for the right-hand side. The first step is called transformation
step, and the last two steps are called type-in steps. In this paper, the word “step”
means one of these three steps. An operation for transformation must be specified
prior to entering any expressions. The order of entering sides can be arbitrary, but
both sides must be entered before selecting the next operation. The skills to select an
appropriate operation are called transformation skills, and the skills to enter left- and
right-hand sides are called type-in skills.
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CXaXa) Student Interface
Student
Messa:
LHS RHS Skill Operand
| 3x+1 = x+4 add -1
3x =

Fig. 1. The Tutor Interface for the Algebra I CTAT Tutor. Students are supposed to enter an
operation for transformation first in the column labeled as “Skill Operand.” Then corresponding
expressions for the left- and right-hand sides must be entered.

2.2 Learning Production Rules by Demonstration

Each of the production rules represents an individual skill to perform a particular step.
Performing a step is modeled as generating a tuple that consists of an action taken
(e.g., “entering some text”), a place that was selected to take the action (e.g., “the
second cell in the first column”), and the value that was input as a result of taking the
action (e.g., the string “3x”). Those are called action, selection, and input. A tuple of
<selection, action, input> is called an SAI tuple.

A production rule models a particular skill in terms of what, when, and how to gen-
erate a particular SAI tuple. In other words, a production rule shows that “To perform
a step, first look at X and see if a condition Y holds. If so then do Z.” The part of the
production rule representing X (whar) is called the focus of attention that specifies
particular elements with certain constraints like “the cell in the table” shown in the
Tutor interface. The part of the production rule representing Y (when) is called the
feature tests. The feature tests represent a set of conditions that must hold about the
focus of attention — e.g., the two cells must be in the same row, the expression in the
cell must be polynomial, etc. Together, the focus of attention and the feature tests
compose the left-hand side (i.e., the condition part) of a production rule. The right-
hand side (i.e., the action part) of a production rule contains a sequence of operations
that generates the value of the input in the SAI tuple.

Prior to learning, SimStudent is given a hierarchical structure of the elements in the
Tutor interface with which to express the constraints among the focus of attention, a
set of feature predicates with which to express feature tests, and a set of operators
with which to compose a sequence of operations. SimStudent has a library of feature
predicates and operators that are general for arithmetic and algebra, but the authors
might need to write domain-specific background knowledge to use SimStudent for
other domains.

When demonstrating a step, the author first needs to specify the focus of attention
by double-clicking the elements on the Tutor interface. Then he/she performs a step,
namely, takes an “action” upon a “selection” with an appropriate “input” value. Fi-
nally, the author needs to label the demonstrated step. This label is called the skill
name.

When a step is demonstrated for a particular skill K with a focus of attention F and
an SAI tuple T, the pair <F, T> becomes a positive example of the skill K. The pair
<F, T> also becomes a negative example for all other skills. This indicates to “apply
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skill K to carry out the SAI tuple T when you see the focus of attention F, but do not
apply any skills other than K when you see F.” We call this kind of negative examples
the implicit negative examples as opposed to the explicit negative examples used for
tutored problem solving, which is described in the next section. Once a positive ex-
ample is acquired, it stays as positive throughout a learning session. On the other
hand, an implicit negative example for a skill would later become a positive example
if the same focus of attention is eventually used to demonstrate that skill.

When a new positive or negative example is added for a particular skill, SimStu-
dent learns the skill by generalizing and/or specializing the production rule for the
skill so that it applies to all positive examples and does not apply to any negative
examples. The focus of attention is generalized so that they are consistent with all
instances of the focus of attention appearing in the positive examples. An example
generalization is to shift from “first column” to “any column.” Feature tests are gen-
eralized and/or specialized so that they cover all positive examples and no negative
examples that is done by Inductive Logic Programming [4] in the form of Foil [5].
The operator sequence is generalized so that it generates “input” values from the fo-
cus of attention for all SAI tuples in the positive examples.

2.3 Learning Strategies

The original version of SimStudent always learns skills whenever a step is demon-
strated by generalizing existing skills or introducing a new skill. This can be seen as a
model of human students diligently learning skills from worked-out examples, regard-
less of what they already can do (although it sounds too idealistic).

As an interesting twist (and a step towards a more realistic model), the author can
also have SimStudent try to “explain” the step demonstrated, by identifying a previ-
ously learned skill that replicates the step demonstrated, and having SimStudent learn
skills only when it fails to explain the step. This is analogous to human students learn-
ing from worked-out examples while self-explaining the solutions.

Furthermore, the author can instead futor SimStudent on how to solve problems.
The author provides problems to SimStudent, lets SimStudent solve them, and pro-
vides feedback on each of the attempts made. When SimStudent makes an error, the
author can provide negative feedback, which will motivate SimStudent to accumulate
an explicit negative example— i.e, it will learn when not to apply a skill because it
produces an incorrect output. When SimStudent has no rules indicating how to per-
form a step, the author provides a “hint” on what to do next; this hint is just a demon-
stration of how to perform the step. This is a model of learning by tutored problem
solving.

In summary, we implemented these three learning strategies for SimStudent:

Diligent Learning — provides demonstrations on every step and SimStudent learns
skills each time a step is demonstrated.

Example Study — provides demonstrations on every step and SimStudent attempts
to identify a production rule that reproduces the step demonstrated. Only when
the attempt fails, does SimStudent learn skills.

Tutored Problem Solving — provides SimStudent with problems to solve. For each
step, SimStudent is asked to show all rule applications that can be done. For
each of the rule applications, SimStudent gets flagged feedback from an oracle,
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which merely tells the correctness of the rule application. Correct rule applica-
tions become positive examples and incorrect ones become negative examples.
When there is no correct rule application for a step, SimStudent asks a what-to-
do-next hint to the oracle. The oracle then demonstrates to SimStudent how to
perform the step.
The oracle for the Tutored Problem Solving can be either a human or another com-
puter program. In the current study, we used the commercially available Cognitive
Tutor, Carnegie Learning Algebra I Tutor, as the oracle. The details follow.

3 Learning Strategy Study

This section describes a study conducted to evaluate the efficiency of each of the
three learning strategies described in section 2.3.

3.1 Method

Three versions of SimStudent were implemented — one for each of the three learning
strategies. Each SimStudent was trained with 20 problems and tested with ten prob-
lems. Since hundreds of steps must be demonstrated and tested to complete the study,
it was not realistic to ask human authors to be involved in the study. Instead, we used
pre-recorded and machine-generated demonstrations as described below.

The pre-recorded demonstrations were collected from a previous classroom study
conducted in the PSLC LearnLab.' In the LearnLab study, the Carnegie Learning
Algebra I Tutor was used in an urban high-school algebra class. The high-school
students were asked to use the Algebra I Tutor individually. The students’ activities
were logged and stored into a large database, called DataShop.” We then extracted
problems and human students’ correct steps from DataShop for the current study. An
entire (correct) solution for a particular problem made by a particular student became
a single training problem for the Example Study condition and the Diligent Learning
condition. The problems were randomly selected from the DataShop data.

For the Tutored Problem Solving condition, SimStudent was tutored by the Carne-
gie Learning Algebra I tutor. That is, when SimStudent got stuck, SimStudent asked a
what-to-do-next hint to the Carnegie Learning Algebra I tutor, and the Carnegie
Learning Tutor provided a precise instruction for what to do in the form of the bot-
tom-out hint, which provides the same information as the SAI tuple. Whenever
SimStudent performed a step, each of the rule applications was sent to the Carnegie
Learning Algebra I Tutor to get a flagged feedback.

There were five disjoint sets of training problems (i.e., the total of 100 training
problems). Thus, there was a total of 15 experimental sessions (five training sets for
each of the three learning-strategy conditions).

Each time SimStudent was trained on a new training problem, the production rules
learned were tested with the ten test problems. The same set of test problems was
used for all of the 15 experimental sessions. The test problems were also randomly
collected from the LearnLab study. For each of the steps in a test problem, we asked

! www.learnlab.org
2 www.learnlab.org/technologies/datashop
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SimStudent which production rules can be fired. Since we wanted to know how
poorly SimStudent solves problems in addition to how well, we recorded all possible
rule applications for each step. More precisely speaking, for each step, we enumerated
all production rules whose left-hand conditions hold. The correctness of a rule appli-
cation was evaluated by the Carnegie Learning Algebra I Tutor. The steps performed
by SimStudent were coded as correct if there was at least one correct rule application
attempted. Otherwise, the steps were coded as missed.

3.2 Evaluation Metrics

We define a dependent variable, called the Step score, that represents how well the
production rules learned were applied on individual steps in the test problems. A step
is scored as zero if it was missed (i.e., no correct rule application was made — see the
definition above). Otherwise, a step was scored as a ratio of the number of correct rule
applications to the total number of rule applications applicable to that particular step.
For example, if there were 2 correct and 6 incorrect rule applications for the step, then
the Step score for that step is 0.25. The step score ranges from 0 (no correct rules
applicable) to 1 (no incorrect rules applicable, and at least one correct rule applies).
We define the Problem score as the average Step score for all steps in a test problem.

In general, there are several correct and incorrect rule applications available for
each step. Since SimStudent does not have any strategy to select a single rule among
these conflicting rule applications, the Step score can be seen as a probability that the
step is performed correctly at the first attempt.

4 Results

4.1 Overall Learning Performance

Fig. 2 shows average Problem Score for each learning-strategy condition. The X-axis
shows the number of training problems learned. The Problem score was aggregated
across the ten test problems and the five training sets (i.e., average of the 50 Problem
scores for each condition). All three conditions showed an overall improvement on
the Problem score when more training problems were learned.

The three learning conditions improved equally on the first 8 problems. After that,
the Tutored Problem Solving condition outperformed other conditions. There was a
point, for all three conditions, where the improvement of the performance on the test
problems diminished to almost nothing. After training on all 20 problems, the average
Problem score was 0.78 for the Tutored Problem Solving, 0.72 for the Diligent Learn-
ing, and 0.66 for the Example Study. ANOVA revealed a main effect of the learning
strategy; F=7.68, p<0.001. The paired t-tests showed that all three learning-strategy
conditions are significantly different from each other. The Tutored Problems-Solving
condition outperformed the other two conditions on the Problem score. The Example
Study was the least efficient learning strategy in terms of the Problem score.

To further investigate why the Tutored Problem Solving condition led to better
learning, we broke down the Step score (the basis of the Problem score) into two
scores: (1) the Precision score showing the ratio of the number of correct to incorrect
rule applications for a step, and (2) the Recall score showing the ratio of the number
of steps that were performed correctly to the total number of steps in a test problem.
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Fig. 2. Overall improvement of the Problem scores. The X-axis shows the number of training
problems. The Y-axis shows the average Problem scores on the ten test problems, aggregated
across five training sets.
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Fig. 3. Average Precision scores. The X-axis shows the number of training problems learned by
the time the Precision score was measured.

Fig. 3 shows the average Precision score for the ten test problems aggregated across
the training sets. On the 20th training problem, there was a main effect of the learning
strategy; F=24.49, p<0.001. The paired t-tests confirmed that all three conditions are
significantly different from each other. The Tutored Problem Solving condition outper-
formed other conditions on the Precision score. This means that the production rules
learned by Tutored Problem Solving were more likely to produce correct rule applica-
tions than the rules learned by other learning strategies.

Fig. 4 shows the average Recall score. ANOVA showed a main effect of the learn-
ing condition; F=7.68, p<0.001. The paired t-tests showed that the Tutored Problem
Solving was significantly inferior to the other two conditions (both =2.01, p<0.001),
but the difference between Example Study and Diligent Learning was not significant.
The Tutored Problem Solving condition was significantly inferior to other two
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Fig. 4. Average Recall score. The X-axis shows the number of training problems.

conditions, meaning the Tutored Problem Solving condition did not learn as many
production rules necessary to solve test problems as other conditions did. On average,
the Tutored Problem Solving condition learned the fewest production rules (11.6), and
the Diligent Learning condition learned the most (21.0). The Example Study condi-
tion learned 16.0 production rules on average.

4.2 Types of Errors

To see if there were any differences in the kinds of errors made by each learning con-
dition, we categorized the errors appeared on the test problems. Regardless of the
learning strategy, once the learning was saturated (i.e., after learning ten problems for
Diligent Learning and Example Study, and 13 problems for Tutored Problem Solv-
ing), there were only two types of errors: (1) Step-Skipping error — attempting to apply
a transformation skill without completing previous type-in steps, (2) No-Progress
error — applying a transformation skill that does not make the transformed equation
any closer to a solution (see section 0 for the definition of steps and skills).

An example of a Step-Skipping error is to apply another transformation skill to the
situation shown in Fig. 1, and enter, say, “divide 3” into the rightmost cell on the sec-
ond row when the middle cell (right-hand side of the equation) is left blank.

An example of a No-Progress error is to “subtract 2x” from 2x+3=5. This is a
mathematically valid step, but it does not make the resultant equation any closer to a
solution.

Both Step-Skipping and No-Progress steps are considered as a wrong step by the
Carnegie Learning Algebra I Tutor. Thus, SimStudent received negative feedback on
both of these erroneous steps during tutored problem-solving.

No-Progress errors appeared in all three conditions. Quite interestingly, there were
no Step-Skipping errors observed for the Tutored Problem Solving condition. Why?
We hypothesized that only Tutored Problem Solving had a chance to revise incorrect
skills during training, by making a Step-Skipping error and receiving negative feed-
back, which allowed SimStudent to accumulate negative examples to correctly learn
LHS conditions. Namely, making an explicit error and getting a flagged feedback on
it (which, by definition, merely tells the correctness of the step) should have positively
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contributed to learning. To test this hypothesis, we controlled the creation of negative
examples for the Tutored Problem Solving condition, which is described in the next
section.

4.3 Control Experiment with No Explicit Negative Feedback

We have modified the Tutored Problem Solving condition, so that it does not generate
negative examples for incorrect rule applications. SimStudent still received negative
feedback for incorrect rule applications, thus another attempt was made to perform a
step. This means that the modified version of Tutored Problem Solving still had the
same amount of positive examples during training as the original version.

With this modification, the Tutored Problem Solving condition made the same
Step-Skipping errors as the other conditions. Thus, it was the explicit negative exam-
ples obtained by incorrect rule applications that caused the high Precision score for
the Tutored Problem Solving condition.

This modification did not affect the appearance of the No-Progress errors — having
more negative examples did not prevent skills from being incorrectly generalized and
making No-Progress errors.

5 Discussion

5.1 The Impact of Negative Feedback on Learning

The most important finding in the current study is that the most effective way to train
SimStudent is Tutored Problem Solving. It is crucial for successful learning to allow
SimStudent to commit itself to apply its own skills to solve problems — this is a natu-
ral way to give SimStudent negative feedback explicitly for the incorrect skill applica-
tions so that incorrect skills are appropriately generalized.

It is interesting to see that Example Study and Diligent Learning are superior
to Tutored Problem Solving at some point on the fifth and sixth training problems
(Fig. 2). This was mostly due to the high Recall scores — Example Study and Diligent
Learning tend to learn more rules that correctly perform steps. However, at the same
time, they also have a tendency to learn incorrect rules as well. Those incorrect rules
can only be eliminated through explicit negative feedback.

Despite the importance of the negative examples, programming by demonstration
in most cases only produces positive examples. Kosbie and Myers [6] emphasized the
issue of program execution in the shared common structure of programming by dem-
onstration. We further emphasize the importance of feedback about incorrect program
execution in providing explicit negative examples. Interactive Machine Learning [7]
is a good example of successful application of programming by demonstration where
the learning agent can acquire negative examples explicitly through program execu-
tion.

5.2 Difficulty in Rule Induction

Another important lesson learned is the difficulty of inductive learning. It turned out
that learning appropriately generalized rules that do not generate No-Progress errors is
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challenging in this particular domain. Despite having explicit negative feedback on
the No-Progress errors during training, the Tutored Problem Solving condition still
made the No-Progress errors on the test problems.

Since No-Progress errors always generate mathematically valid steps (meaning, the
RHS operator sequence is correct), the challenge is in learning LHS conditions —
learning when to apply a particular rule is more difficult than learning how to per-
form a step. Since it is beyond the scope of the current paper, we do not further dis-
cuss this issue, but now we have narrowed down the difficulty of inductive learning to
learning conditions for when to apply rules. This must be addressed further in future
studies.

6 Conclusion

The empirical study showed that tutored problem-solving results in learning produc-
tion rules more accurately than learning from examples for SimStudent’s learning.
Thus, for authoring purposes, tutoring SimStudent instead of demonstrating solutions
may be a better form of using SimStudent as an aid to author Cognitive Tutors, as-
suming that providing feedback does not cost too much for the authors. In the 20
training problems, each skill was demonstrated 13.5 times on average for Diligent
Learning and Example Learning, and 2.8 times for Tutored Problem Solving. For the
Tutored Problem Solving, the tutor provided positive feedback 14.1 times and nega-
tive feedback 3.5 times on average throughout the 20 training problems. Future stud-
ies on the authoring cost analysis are necessary.

That tutored problem solving is significantly inferior to other learning conditions
on the Recall score must be studied further. What about starting from the example
study first and shifting to tutored problem solving later? This is a well-known learning
strategy that is effective for human students [8]. All three conditions tied on the Step
score for the first few training problems, and still the example study conditions were
better on the Recall score on those steps. Thus, starting from an example study would
allow SimStudent to acquire production rules more quickly, and switching to tutored
problem-solving would provide good opportunities to correct these rules.

The current study also provides insight into future studies on inductive learning.
Although, SimStudent has characteristics that are essentially different from human
learning, finding out why some features are more difficult to learn than others would
open the door for future studies on human and machine learning.
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Abstract. Researchers have used various methods to evaluate the fine-grained
interactions of intelligent tutors with their students. We present a case study
comparing three such methods on the same data set, logged by Project
LISTEN’s Reading Tutor from usage by 174 children in grades 2-4 (typically 7-
10 years) over the course of the 2005-2006 school year. The Reading Tutor
chooses randomly between two different types of reading practice. In assisted
oral reading, the child reads aloud and the tutor helps. In “Word Swap,” the tu-
tor reads aloud and the child identifies misread words. One method we use here
to evaluate reading practice is conventional analysis of randomized controlled
trials (RCTs), where the outcome is performance on the same words when
encountered again later. The second method is learning decomposition, which
estimates the impact of each practice type as a parameter in an exponential
learning curve. The third method is knowledge tracing, which estimates the im-
pact of practice as a probability in a dynamic Bayes net. The comparison shows
qualitative agreement among the three methods, which is evidence for their va-
lidity.

Keywords: educational data mining, randomized controlled trials, learning de-
composition, knowledge tracing, evaluating tutor strategies.

1 Introduction

The behavior of an intelligent tutor affects its efficacy, so it is important to evaluate.
One reason is to improve the tutor as part of data-driven iterative refinement. Another
reason is to draw lessons for what behaviors to embrace or avoid in designing other
tutors. The obvious way to evaluate alternative tutorial behaviors is to perform a con-
trolled between-subjects comparison of different versions of the tutor, with each ver-
sion employing a different behavior. However, such experiments may require many
students and considerable time to achieve statistically reliable results. Is there a better
way?

Fortunately, intelligent tutors can log detailed, longitudinal interactions, and ex-
perimentally vary the behaviors that affect those interactions. Analyzing the resulting
data lets us evaluate tutorial behaviors. Such evaluation can test whether a behavior
works, gauge how well it works, and compare alternatives.

Previous research has employed various methods to perform such analyses, but we are
not aware of any studies whose express purpose was to compare alternative methods for
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evaluating tutor behavior. To help fill this gap, we present a case study that applies three
analysis methods to the same data set, described in Section 2. Sections 3, 4, and 5 re-
spectively describe each method as applied to the data. Finally, Section 6 summarizes
results, conclusions, and contributions.

2 Case Study: Evaluate Two Modes of Practice in a Reading
Tutor

We carried out our case study on data from Project LISTEN’s Reading Tutor, which
helps children learn how to read [1]. The Reading Tutor and the student take turns to
pick a story, which is then displayed line by line on a computer screen. The Reading
Tutor listens to the student read the story aloud, and uses automatic speech recogni-
tion (ASR) to track the student’s position in the text, detect (some) mistakes, and
measure the time to read each word. The Reading Tutor also provides various forms
of assistance when the student gets stuck, or clicks for help. It logs its interactions and
speech recognizer output into a database.

The analysis problem in our case study is to compare two modes of practice for
children who are still learning the letter-sound mappings of English. The Reading
Tutor uses an instructional activity adapted from published interventions [2-5] to
teach these mappings in the context of isolated words. To exercise taught mappings
in the context of connected reading, the Reading Tutor then presents practice text in
one of two modes — choosing randomly between them each time, but using the same
text either way.

One mode of practice is assisted oral reading. In this mode, the Reading Tutor dis-
plays each successive story sentence, e.g., Sam sat on the mat, and listens to the child
read it aloud, giving help as necessary.

In the other mode, called Word Swap, the Reading Tutor reads aloud, and the child
provides feedback. Word Swap is based on an activity used by a human expert to
teach children to attend to the correspondence between print and sound. First the
Reading Tutor explains the task:

Good, careful readers make sure that what they say matches what
they see. Let’s play a game called Word Swap. The Reading Tutor
will read the story to you, but it might read some words wrong.
Click on the words that do not match what you hear!

In Word Swap, the Reading Tutor picks a word at random from each sentence, e.g.,
sat, and replaces it with some other random word from the story, e.g., am. It displays
the modified sentence, e.g. Sam am on the mat, but plays the narration of the original
sentence, so as to deliberately “misread” the replaced word. (The Reading Tutor uses
recorded human speech, so it is easier to modify the displayed text of the sentence
than its spoken narration.) The student’s task is to click on the “misread” word.
When the student clicks on the “misread” word am, the Reading Tutor replaces it with
the correct word sat and says Right! This says am, not sat. If the student clicks on a
correctly read word, the Reading Tutor says, no, the Tutor read that word right!

Which is more effective — assisted reading or Word Swap? To study this question,
we define “effective” in terms of how well students do on the words in the story when
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they read them again later. We measure performance in reading an individual word
(in context) based on how long the student takes to read the word, whether the student
clicks on the word for help, and whether the speech recognizer accepts the word as
read correctly. We compute this information from the Reading Tutor’s log data. Ide-
ally we would also measure how well the child attends to spelling-sound correspon-
dence when reading the word — the goal of Word Swap. However, we have not
defined or automated such a measure, in part because the very signs that may indicate
such attention (slow reading and frequent self-corrections) may merely indicate poor
reading.

The 2005-2006 Reading Tutor logged 2669 encounters of letter-sound practice
passages by 174 students in grades 2-4. The 1311 encounters in assisted reading
mode comprised 76,326 words. The 1358 instances of Word Swap totaled 83,421
words. To avoid ceiling effects, we exclude the most common 200 English words
from the dataset, leaving 31,216 word encounters under assisted reading conditions,
and 37,028 under Word Swap conditions, respectively. We now discuss the three
methods we used to evaluate the effects of these encounters.

3 RCT Analysis

Randomized controlled trials (RCTs) manipulate experimental variables to test their
effects on outcomes. Randomizing assignment to treatment ensures that statistically
reliable effects are truly causal. Intelligent tutors can randomize tutorial decisions
such as what type of practice, assistance, or feedback to provide, and log large num-
bers of randomized trials, as illustrated by experiments in the Reading Tutor [1] as
well as other tutors [6]. Each trial has a context in which it occurred, the decision
made, and its outcome [7]. Aggregating over many trials by many students lets us
analyze how the decision affects the outcome.

The context of the RCTs analyzed in this paper is the point at which the Reading
Tutor has just taught some letter sounds and the student encounters a word in a prac-
tice text. The decision is which mode of practice to give — namely, assisted reading or
Word Swap. The Reading Tutor randomizes this decision within-subject and within-
text. That is, each time the Reading Tutor finishes a letter-sound lesson, it makes this
decision anew. Randomizing within-subject — that is, giving each student both types
of practice — controls for individual differences among students. Likewise, randomiz-
ing within-text — that is, using the same set of texts for both modes of practice — con-
trols for differences among texts. However, the Reading Tutor chooses the mode of
practice for an entire text at a time, rather than for each individual word. We can treat
the practiced words as separate trials, but they are not independent.

How to define outcome? To analyze which mode of practice results in better word
learning, we define the outcome of each trial as the student’s performance on a later en-
counter of the same word. (Practice on a word affects performance on that word much
more than on other words [8].) If this encounter occurs in a story the student has read
before, the student’s performance may reflect remembering the story rather than reading
the word. If the encounter occurs too soon, the student’s performance may just reflect
how recently the student or tutor has read the word. On the other hand, as time elapses,
the trial’s effect diminishes relative to other influences, such as classroom instruction.
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Therefore we define its outcome as performance on the student’s first encounter of the
word 1-3 days after the randomized trial, provided it occurs in a new context.

As Section 1 explained, we measure performance on a word based on how long the
student takes to read it, whether the student clicks on it for help, and whether the
speech recognizer accepts it as read correctly. Table 1 defines the measures we use for
RCT analysis. We represent undefined outcomes as null values.

Table 1. Outcome measures used in RCT analysis

Measure Definition
Accepted The speech recognizer (ASR) recognized the word as read correctly
Asked help The student clicked on the word for help in reading it
Credited True if the ASR accepted the word without the student receiving help; false

if the ASR rejected the word or the student requested help; undefined (and
excluded from RCT analysis) if the ASR accepted the word after tutor-
initiated help that masked whether the student knew the word

Latency [9] The delay from the end of reading the previous word until starting to say the
current word

Reading time | Latency plus the time to say the word, with this sum capped at 3 seconds to
deal with outliers

Adjusted Reading time for credited word; 3 seconds for uncredited word; undefined if
time [10] credit is undefined

Sources of variance in word reading performance include student, word, story, and
practice mode. Since words differ more than students (C. Perfetti, personal communi-
cation), we compare practice modes paired by story and word. That is, for a story
word encountered in both assisted reading and Word Swap (generally by different
students), we compare performance on each word after one mode of practice versus
after the other, averaged across students. We compute the difference in a perform-
ance measure M as M(Word Swap) — M(assisted reading). We use a t-test, paired by
story and word, to test whether performance differs significantly by practice mode, so
the degrees of freedom (253) are one fewer than the number of such words.

As Table 2 shows, this difference is significantly greater than O for latency, reading
time, and adjusted time. The positive difference means that students read words sig-
nificantly slower after Word Swap than after assisted reading practice. Whether this
is good news or bad news for Word Swap depends on why they read slower: are they
paying better attention? or did they just learn the words less well? We can’t tell.

Because this comparison does not control for student identity, one possible con-
founding factor is the difference between students who get one type of practice and
students who get the other. However, since treatment assignment is randomized anew
for each passage for each student, and for each word is based on different randomized
subsets of students across stories, we assume we can ignore differences between these
subsets. To test this assumption, we verified that reading proficiency (measured by a
paper pretest) and reading level (estimated by the Reading Tutor) did not differ sig-
nificantly between treatment conditions.
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Besides pairing by word, we also tried pairing by student and averaging perform-
ance after each mode across the words the student practiced in that mode, but none of
the differences were statistically reliable. This approach is more conservative because
it controls for individual differences among students, and because each student’s per-
formance is independent of other students’ performance. However, it is less powerful
statistically because there were fewer students than words, and because it does not
control for differences between the words practiced in different modes.

Table 2. Differences in word reading performance after assisted reading versus after Word
Swap, paired by story and word and averaged over the students who practiced that story word
in that condition

Outcome differences Paired
(Word Swap — assisted reading) t-test
Outcome
95% Confidence Interval of .
measure Std. . Sig.
Mean the Difference .
Dev. (2-tailed)
Lower Upper
% accepted 0.000 0.175 -0.021 0.022 0.965
% asked help 0.015 0.171 -0.006 0.036 0.168
% credited -0.007 0.203 -0.032 0.018 0.592
Latency 0.039 0.244 0.009 0.069 0.011
Reading time 0.060 0.347 0.017 0.103 0.006
Adjusted time 0.074 0.537 0.008 0.150 0.028

4 Learning Decomposition

Learning decomposition generalizes classic exponential learning curve analysis to
estimate the relative benefit of different types of practice [10], and has now been used
in several such analyses. In brief, it models each student’s item performance data (in
this case word reading times) as an exponential function of previous practice on the
item. The model disaggregates practice into the number of encounters of each prac-
tice type (e.g., Word Swap or assisted reading), each weighted by a free parameter
coefficient. Fitting the model to the data (e.g. in SPSS) yields parameter estimates
that represent the relative value of each type of practice for that student. Averaging
and bootstrapping the parameter estimates across students gives confidence intervals
on the means and tells which differences between practice types are reliable.

We follow earlier work [10] in three respects. First, we measure performance us-
ing the adjusted time measure defined in Table 1 of Section 3, and exclude encounters
where its value is undefined. Second, to exclude recency and story memorization
effects as mentioned in Section 3, we measure performance only on a student’s first
encounter of a word each day, and only in a story that he or she has not read before.
Third, we adopt the same general model form, including an additive term to represent
the effect of word length. However, we use different practice types, namely assisted
reading and Word Swap. Equation 1 shows the resulting model:

adjusted reading time = L*word _length + A ¢~ " #Reading+f# Swap) (1)
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Our four model parameters mean roughly this:

e [: the increase in predicted word reading time for each additional letter in
the word

e A: the predicted time to read a word with no prior practice in either condi-
tion

e b: learning rate

e . the impact of a Word Swap encounter compared to an assisted reading
encounter, whose impact we define to be 1

The input variables #Reading and #Swap count the number of prior encounters of
the same word in assisted reading and Word Swap, respectively. These practice vari-
ables include all encounters of the word, not just the first encounter on each day or in
each story.

Using Equation 1, we build a model for each individual student. After excluding
models for which the fitting procedure fails due to sparse data, we take medians of the
remaining 140 models as the overall parameter estimates. We use medians instead of
means in order to deemphasize outliers in the noisy individual estimates. We also
derive the 95% confidence interval for each parameter using non-parametric boot-
strapping [11]. Table 3 shows the result.

Table 3. Overall parameter estimates (+ 95% confidence interval)

Parameter L A b S
Estimat 0.0615 0.7035 20.0515 0.125
stimate +0.022 +0.0775 +0.015 +0.1147

The confidence interval for f shows that it is significantly less than 1, which im-
plies that Word Swap has significantly less impact than assisted reading in reducing
(adjusted) word reading time. However, £ is also reliably (though just barely) greater
than 0, implying that Word Swap also reduces word reading time.

5 Knowledge Tracing

Knowledge tracing [12] infers a student’s knowledge of a skill from observations of
the student’s performance on that skill. Knowledge tracing incrementally updates the
probability K, that the student knows a given skill at time step n, according to a dy-
namic Bayes net model with the following parameters:

* knew: Probability K that the student already knew the skill prior to instruction
e learn: Probability of acquiring the skill from a single practice

* forget: Probability of losing a known skill

* guess: Probability of answering correctly without knowing the skill

* slip: Probability of answering incorrectly despite knowing the skill.

To investigate how different modes of practice influence student knowledge, we
introduce another node Practice Mode (PM) into the basic knowledge tracing model,
as Figure 1 shows.
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Student
———————— +  Knowledge |————> Kis1 P
(K3)
Practice Mode Practice Mode
(PM) (PM;.q)
SwaP \ Y
el Credited (C)) B
Binary: 0/1

Fig. 1. Knowledge tracing model extended with a binary-valued “Practice Mode” node

This model assumes that the probability of a student’s learning a skill depends on
practice mode. To measure student performance in assisted word reading, we use
credited (see section 3 for definition). For Word Swap steps, however, since we do
not have observations of a student’s reading the word, credited is unobservable. The
extended model has more parameters: is_reading is the probability that the practice
mode is assisted reading; K,_swap and K,_reading are the probability that the student
already knew the word prior to any practice, conditioned on whether the first practice
was Word Swap or assisted reading; learn_swap and learn_reading are the respec-
tive probabilities of acquiring the skill from a Word Swap or assisted reading practice
opportunity; and finally, forget_swap and forget_reading are the respective probabili-
ties of losing a skill after a Word Swap or assisted reading practice opportunity. The
parameters guess and slip remain the same as in the basic knowledge tracing model.

One problem with fitting the data to a knowledge tracing model, however, is that
the observed student performance can correspond to an infinite family of possible
model parameter estimates [13]. Following [14], we address this problem by speci-
fiying a plausible initial value for each parameter, and encoding domain knowledge as
Dirichlet priors on the parameters to bias the model fitting procedure. We specify an
order-2 Dirichlet distribution as two positive numbers ol and a2, which correspond
roughly to the number of positive and negative examples seen. For example, we use
a1=9 and 02 = 6 for K,_swap. These values mean roughly that the Dirichlet prior for
Ky_swap is generated from 9 cases of the student already knowing a skill, and 6 cases
of the student not knowing it, when the first practice is Word Swap. The expected
value of K,_swap is 9/(9+6) = 0.6.

We set the initial parameters, as well as al and a2, by examining histograms from
previous knowledge tracing experiments, getting similar values to those in [14]. The
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first three columns in Table 4 show the name and initial value of each parameter, as
well as the al and o2 values of the Dirichlet priors. Notice that they avoid any bias
toward either Word Swap or assisted reading. We refrain from specifying Dirichlet
priors for the learn and forget parameters, so as not to prejudice the search through
the model space.

Table 4. Initial values, Dirichlet priors, and aggregated estimates of the parameters in the
knowledge tracing model

Parameter Initial Dirichlet Mean Std. Dev.
Value (a1, 02)
is_reading 0.5 N/A 0.683 0.237
Ko_swap 0.66 (9,6) 0.599 0.019
Ko_reading 0.66 (9,6) 0.655 0.061
Guess 0.64 (17,9) 0.670 0.041
Slip 0.07 (1,15) 0.028 0.020
learn_swap 0.14 N/A 0.258 0.187
learn_reading 0.14 N/A 0.566 0.360
forget_swap 0.0014 N/A 0.014 0.086
forget_reading 0.0014 N/A 0.011 0.087

To investigate which practice mode helps more to learn a word, we treat the ability
to read each word as a distinct skill. Then we build a model for each word using ob-
servations of many students’ encounters of that word, using Bayes Net Toolkit for
Student Models (BNT-SM) [15]. After excluding the cases where model construction
fails due to sparse data (e.g. the word was encountered very few times, or in only one
treatment condition), we get 259 word-specific models, across which we average the
parameter estimates. The last two columns of Table 4 show the mean and standard
deviation for each parameter.

A t-test, paired by word, shows no significant difference between forget_swap and
forget_reading. In contrast, learn_reading is significantly larger than learn_swap
(p<0.01). That is, students are likelier to acquire a word from assisted reading prac-
tice than from Word Swap practice.

6 Conclusion

This paper explored three methods to evaluate tutorial behaviors: RCT analysis,
learning decomposition, and knowledge tracing. It reports a case study in the context
of Project LISTEN’s Reading Tutor, to test whether assisted reading and Word Swap
practice differ in how well they help students learn words.

One result of this endeavor is to confirm that knowledge tracing can usefully be
adapted to evaluate the impact of different tutor behaviors. Previous work [16, 17]
used this approach to evaluate the same mode of practice with versus without tutor
help. Here we evaluate two different modes of practice, each with a different task for
the student, and consequently different types of performance to observe.
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In comparing evaluation methods, we have two basic questions. First, did their re-
sults agree? Yes, all three methods indicate that assisted reading beat Word Swap on
one or more of our measures. Though the three methods differ in input, output, and
model form, the qualitative consistency of their results provides some empirical evi-
dence for the validity of the results and the methods.

Second, were some methods more sensitive than others? If methods A and B
agree, and A is more sensitive than B, we expect A to achieve statistical significance
on more comparisons than B does. We see no such pattern. The methods agree quali-
tatively, but not on which measures show statistically significant differences between
the two modes of practice. Clarifying the empirical behavior and relative utility of
these methods will require comparing them on additional data sets from diverse do-
mains.

The results imply that assisted reading is more effective than Word Swap at help-
ing students learn to read words quickly, accurately, and independently. They do not
necessarily imply that Word Swap is inferior for its intended purpose of teaching
children to attend to the correspondence between print and speech. Indeed, conceiva-
bly children read words more slowly after Word Swap than after assisted reading be-
cause it actually succeeded. One challenging direction for future work is to develop
an automated measure of such attention.
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Abstract. The Learner Model of an Intelligent Tutoring System (ITS) may be
made visible (opened) to its users. An Open Learner Model (OLM) may also
become a learning resource in its own right, independently of an ITS. OLMs of-
fer potential for learner reflection and support to metacognitive skills such as
self-assessment, in addition to improving learner model accuracy. This paper
describes an evaluation of an inspectable and a negotiated OLM (one that can
be jointly maintained through student-system discussion) in terms of facilitating
self-assessment accuracy and modification of model contents. Both inspectable
and negotiated models offered significant support to users in increasing the ac-
curacy of self-assessments, and reducing the number and magnitude of discrep-
ancies between system and user beliefs about the user’s knowledge. Negotiation
of the model demonstrated further significant improvements.

1 Introduction

Intelligent Tutoring Systems (ITS) routinely employ a learner model in order to pro-
vide tutoring and interaction tailored to the needs of the individual student. Conven-
tionally this model has only been for the use of the system, and hidden from the
learner. Open Learner Modelling argues that making the contents of the model visible
for inspection by the student may bring opportunities for developing skills in reflec-
tion, metacognition and deep learning, e.g. [1], [2], [3], [4], [5]. Open Learner Models
(OLM) may also allow the student and system to engage in a process of negotiation
about the contents of the model, potentially enhancing learner reflection and model
accuracy. Such negotiated learner models (e.g. [1], [2]) involve a collaborative con-
struction and maintenance of the learner model. By requiring learners to discuss their
beliefs about their knowledge with the system, argue against the system’s assessment
where they disagree or provide evidence for their own beliefs, it is suggested that
learner reflection may be increased [1], [2]. This negotiation may also improve the
accuracy of the learner model, leading in turn to improved adaptation by the ITS.
OLMs may also be used as learning resources independent of an ITS, to prompt learners
to reflect on their knowledge (or lack of it), to facilitate planning future learning, and to
encourage users to take more responsibility for their learning [6]. Other researchers have
argued that it is necessary for educational systems to model the student’s meta-
knowledge in addition to their domain knowledge [7]. It is this approach of modelling
the student’s own beliefs about their knowledge that is discussed in this paper.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 132 2008.
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Educational theorists have long emphasised the importance of learner reflection [8],
[9], [10]. This is now being supported in the school classroom by Assessment for Learn-
ing, a UK education strategy that highlights the importance of supporting the develop-
ment of metacognitive skills. Promoting pupil self-assessment is regarded as an essential
component of this [11]. However, it is recognised that while the most effective learners
are self-regulating [12] the effectiveness of this self-regulation is reliant on accurate self-
assessment of what is known [13]. It has been shown, perhaps unsurprisingly, that not all
(adult) students are good at evaluating their knowledge [14], and it was suggested that al-
lowing the student to visualize the learner model may improve self-evaluation [15]. We
propose to investigate this potential for learner model visualization in improving self-
evaluation in younger (primary school) learners.

This paper describes an evaluation using two versions of CALMsystem — an Open
Learner Model with an integrated Conversational Agent for Learner Modelling — in-
dependent of an ITS. The inspectable version of the system offers a learner the oppor-
tunity to inspect their learner model, to view the beliefs they and the system hold
about their knowledge, and to make changes to their own beliefs about their knowl-
edge as appropriate. The negotiated version adds a conversational agent to allow
learners to discuss the learner model using a natural language interface and to negoti-
ate changes. We consider these inspectable and negotiated versions of CALMsystem
in terms of facilitating self-assessment accuracy and modification of model contents.

2 CALMsystem

CALMsystem opens the learner model to students, allowing them to see the represen-
tations of their current knowledge level as assessed by the system, and their self-
assessment for each of the topics in the subject domain. The negotiated version also
offers learners an opportunity to discuss and develop their learner model. Both in-
spectable and negotiated versions have potential to promote metacognitive skills and
improve the model’s accuracy.

The CALMsystem environment is browser based, operating independently of an
ITS, and allows easy access to users from a variety of platforms. It allows users to
view pages that show only their own confidence in their knowledge, only the system’s
assessments of their knowledge, or compare these in parallel. It also allows them to
answer further questions on a topic of their choice, or one selected by the system,
thereby allowing both user and system to initiate further interaction to update the
learner model in the usual manner. Fig. 1 shows the browser interface (common to
both versions of the system) and the conversational agent used to provide negotiation.

The system tracks the student's confidence and the system’s assessment of the stu-
dent's knowledge in each topic using two numerical scores. These two belief sets
(learner’s and system’s) which form the learner model are stored independently, as is
necessary for comparison and negotiation of the different beliefs (as in [1]). The user's
confidence in each topic is maintained by the system as a continuous value between 0
and 1. For the purpose of display to the user, this value is converted into "low", "mod-
erate”, "good" or "high" levels, based on the ranges 0 - 0.25, 0.25 - 0.5, 0.5 - 0.75 and
0.75 - 1 respectively. These four levels offer an age-appropriate model for the 10-11
year old users in this study, who are familiar with self-evaluation scales of this granu-
larity.
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Fig. 1. System and learner assessments on six topics, and the conversational ::1gentI

When a student first uses CALMsystem, they are required to assess their confi-
dence in each topic by selecting the appropriate level ("low", "moderate”, "good" or
"high" confidence) and the initial numerical value is set as appropriate. Each time a
student answers one of the multiple choice questions in CALMsystem (using the An-
swer Questions menu link) they are required to state the level that best matches their
confidence in the topic. The system does not immediately change the numerical con-
fidence value to match the user's new assessment, but uses an exponential filter? that
weights most recent user assessments more strongly (so older results have a progres-
sively lesser effect), allowing users to keep their model current.

The system's assessment of the student's knowledge is also maintained as a con-
tinuous value between 0 and 1, and uses an identical exponential filter, ensuring that
the assessment represents the current knowledge level. This score for each topic is
also recalculated every time the user answers a question (once past a threshold of
‘sufficient evidence’). The score is increased each time a student answers a question
correctly, and is reduced when a wrong answer is given. A student consistently an-
swering questions correctly will attain a score approaching 1, and if most questions
are answered incorrectly, the score will approach 0. For display, this knowledge value
is also converted to four levels ("low", "moderate”, "good" or "high") using the same

! Text reads “I believe that you have a high knowledge level for the Evaporation of a Solution
topic. You have said that you have a low confidence level in your ability for this topic. We
still need to resolve this difference. Would you like to: 1: change your belief so that you agree
with me (The recommendation is high knowledge level) OR 2: see why I hold my views
(have me explain) OR 3: view your and my beliefs about your knowledge OR 4: answer some
questions to show me how much you know?”

v = (1-0)y,.; + a-x, where y, is the output of the filter (new score) at time moment ¢; y, is the
output of the filter after previous question (user’s old score; #-1); x; is the input of the filter (1
or 0 indicating correct or incorrect answer); 0 < o < 1.0 is the weighting parameter. The out-
put y, is the weighted sum of previous output and current input values. The smaller the pa-
rameter a, the longer the ‘memory’ of the filter and the greater the degree of smoothing.

S
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numerical ranges as in user confidence. Both system and user beliefs are also
illustrated with smiley faces (see Fig. 1) to allow easy comparison by the target users
(aged 10-11) in this investigation.

2.1 Negotiation of the Learner Model

In the negotiated version of CALMsystem, inspection of the model is as described
above, with negotiation of the learner model contents provided by a chatbot. It allows
learners to use natural language to (i) query the model contents, (ii) ask for explana-
tion or justification of the system’s beliefs, (iii) offer justification of their own beliefs,
(iv) change their beliefs as they refine their self-assessments, (v) modify their belief to
match that of the system where they have been convinced by the model evidence, (vi)
try to compromise with the system, or (vii) receive further test questions. These
strategies were developed in [1] and explored in natural language in [16]. Discussion
may be initiated by either the chatbot or the user.

The aim of this process of negotiation or discussion is to allow the student and sys-
tem to refine their beliefs about the user’s knowledge, and that this will lead to a re-
duction in areas of discrepancy between the learner and system beliefs. We suggest
that a model refined in this way may be considered more accurate for use in driving
an ITS’s adaptation and may prompt further user reflection and self-assessment.

The chatbot does not attempt to be a tutor. The largest part of the chatbot’s knowl-
edge base relates to discussion of the learner model. Users may give inputs such as
“why do we think differently?”, “what am I good at?”, “what’s your belief?”, “I have
difficulty with [topic]”, “change my belief”’, “what should I do next?”, “why do you
think I have a low level for [topic]?” or “let’s talk about [topic]”. They may request
that the chatbot tell them the beliefs that are held, or just give the name of a topic to
focus on. The learner can also ask the chatbot to give them test questions on a stated
or unspecified topic. To handle many of these inputs the chatbot must connect to the
database holding the learner model data, and construct its responses appropriately (see
[16] for architectural details). For delivering tests it can select unanswered questions,
ask the question, check the user’s answer for correctness, and tell the user about the
system’s belief modifications made as a result. In this way it maintains focus on self-
assessment and reflection on the contents of the OLM, an important benefit of inde-
pendent OLMs [6]. However, the chatbot could be integrated into an ITS and provide
tutoring as an extension of the system.

A short extract from a user interaction is shown below, showing the user modifying
their belief after seeing the evidence from further test questions.

Chatbot: 1 believe that you have a low knowledge level for the Evaporation topic.
You have said that you have a moderate confidence level in your ability
for this topic. Would you like to: ... [see footnote 1 for options offered]

User: 2

Chatbot: You’ve answered 4 questions and got 3 wrong for this topic. Therefore I
believe you have a low knowledge level.

User: ask me quistions [sic] [OLMBot asks 2 questions; user answers correctly]

Chatbot: From your responses, I now believe you have a good knowledge level.
Your own belief is that you have a moderate confidence level for the
Evaporation topic. We will have to discuss this difference some more, or
you might consider changing your belief for this topic.
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User: i want to change my belif [sic]

Chatbot: 'What would you like to change your confidence level for Evaporation to?
(Remember, this is your belief about your ability — not CALMsystem’s as-
sessment). You may change your beliefs to: 1: low confidence, 2: moder-
ate confidence, 3: good confidence, 4: high confidence.

User: good

Chatbot: OK, I’ve updated your beliefs to show that you have good confidence in
your abilities for the Evaporation topic.

The chatbot also has strategies and content to support ‘smalltalk’ (inputs not directly re-
lated to discussion of the learner model, but which have been found to be valuable in
building rapport with users [17]) and to deal with unexpected user inputs. The intention
is always to lead the user back into discussion of their learning as quickly as possible.

3 Experimental Evaluation

The aim of this study is to compare the effects of an inspectable and a negotiated
learner model on self-assessment accuracy. As a proxy for self-assessment accuracy
we compared the discrepancy between the system's assessment of the user’s knowl-
edge, and the user's assessment of their own capability. Inaccuracies in the system’s
modelling due to the user’s accidental errors in answering questions are minimised by
the use of the four broad knowledge levels, and the smoothing function of the expo-
nential filter. It was hypothesised that using the inspectable version of CALMsystem
would reduce this discrepancy, and that the discrepancy would be reduced further for
participants who negotiated the learner model with the chatbot.

3.1 Measures of Self-assessment Accuracy

Three measures of the discrepancy between the student’s confidence and system’s as-
sessments (and hence self assessment accuracy) were calculated for each user:

e Numerical Measure of Discrepancy: This measure sums the difference be-
tween the maintained numerical values for user confidence and system-
assessed knowledge across all topics.

e Number of Topics: Where there is disagreement: This measure represents
the number of topics that are not in agreement for a particular student. Top-
ics are considered to be in agreement when the confidence and knowledge
beliefs relate to the same level ("low", "moderate", "good" or "high").

e Level Discrepancy: This measure is a refinement of the Number of Topics
measure outlined above, but takes into account the fact that a "low" to "high"
discrepancy is more significant than, say, a "low" to "moderate” discrep-
ancy. Adjacent levels (e.g. "moderate” and "good") are allocated a discrep-
ancy distance of 1, those two levels apart (e.g. "low" and "good") a distance
of 2 and those three levels apart (i.e. "low" and "high") are allocated 3. These
distances are summed across all topics to give a measure of level discrepancy
for each user (a theoretical maximum of 18). This discrepancy measure is
considered to be of particular relevance, as it mirrors the typical view of a
learner as to how far their own assessment differs from that of the system.



Children’s Interactions with Inspectable and Negotiated Learner Models 137

3.2 Participants, Materials and Methods

The study involved 25 UK Primary school children aged 10-11. CALMsystem was
populated with questions on six science topics from their current study unit.

A between-subjects design was used, with the participants divided into two
matched mixed-ability groups based on the results of a diagnostic test on the topics.
One group was allocated to an inspectable learner model (LM) condition, and the
other to a negotiated LM condition. All participants were shown how to use the sys-
tem, its purpose and how it might be useful to them. Participants used the system for
two sessions, three weeks apart, totalling 120 minutes. All users interacted with the
system to make initial self-assessments, answer multiple choice questions, view their
confidence ratings and the system’s assessments, and modify their confidence records
where they desired. Those in the negotiated LM condition also interacted with the
chatbot to discuss their model.

As both users’ confidence ratings and the system’s assessments are recalculated af-
ter every question that is answered, the current values are always known and dis-
played by CALMsystem. The data used in this analysis was extracted from the learner
model logs. The initial (‘before-use’) values are the beliefs held at the point where the
system first had sufficient data about the user’s knowledge of a topic to model the
user. The final state of the learner model after both sessions gives the ‘after-use’ state.

3.3 Results

3.3.1 Improvement in Self-assessment Accuracy (Numerical Measure)

Before using CALMsystem, the mean self-assessment error for all 25 participants across
all six topics was 1.74 (median 1.56, range 0.69-4.31). After final use of the system this
mean error was reduced to 0.82 (median 0.66, range 0.29-2.43) for all users in the in-
spectable or negotiated conditions. The improvement by inspectable LM users (mean
reduction 0.45, median 0.55, range -0.99-1.64) was significant (t=1.83, p<0.05). Negoti-
ated LM users made highly significant (t=4.72, p<0.0005) improvements, (mean reduc-
tion in error 1.35, median 0.93, range 0.16-3.99). Notably, this improvement was
significantly greater (t=2.38, p<0.025) than that for inspectable LM users (see Fig. 2).
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Fig. 2. Improvement in Self-Assessment (Reduction in Numerical Discrepancy)
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3.3.2 Reduction in Number of Topics

The number of topics in which there was disagreement between the user and system
as to the user’s ability was counted. Before using the system, the mean number of top-
ics with discrepancy was 3.88 (median 4, range 1-6). After final use of CALMsystem
this average was reduced to 1.52 (median 1, range 0-6), an average reduction of 2.36.
Inspection of the LM reduced the number of discrepancies significantly (mean reduc-
tion 1.5, median 2, range -3-5, (t=1.95, p<0.05)). The reducution was significantly
greater (t=2.08, p<0.025) for participants in the negotiated LM condition (mean re-
duction 3.15, median 3, range 1-6, (t=8.01, p<0.0005)) than for those in the inspect-
able LM condition (see Fig. 3).
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3.3.3 Reduction in Level Discrepancy

The Level Discrepancy measure gives a value representing the disparity between levels
("low", "moderate", "good", "high") held by the student and system. Before using the
system the mean level discrepancy was 5.44 (median 6, range 1-11). After final use
of CALMsystem this average was reduced to 1.96 (median 1, range 0-9), an average
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reduction of 3.48. Users in the inspectable LM condition reduced the Level Discrepancy
significantly (mean reduction 2.08, median 3, range -4-7, (t=1.84, p<0.05)). Again it was
found that the reduction in the Level Discrepancy was significantly greater (t=2.31,
p<0.025) for participants in the negotiated LM condition (mean reduction 4.77, median 4,
range 1-10, (t=7.12, p<0.0005)) (see Fig. 4).

3.3.4 Questions Answered

Users of the negotiated LM answered an average of 35.15 questions (median 35,
range 22-61). Users in the inspectable condition answered an average of 51.08 ques-
tions (median 49, range 34-79), a highly significant difference (t=3.19, p<0.005).

4 Discussion

The results show that after using the CALMsystem open learner model all participants
(in both conditions) significantly reduced the mean error in their self assessments. Us-
ers who engaged in negotiation with the chatbot demonstrated a significantly greater
improvement in their self-assessment accuracy. These results suggest that inspection
of the learner model can help prompt students to re-assess their knowledge, and that
the chatbot negotiation element offers further benefit. Use of the system also reduced
the number of discrepancies in learner/system beliefs. There was a substantial reduc-
tion in discrepancies for all participants; again this was significantly greater for nego-
tiation users than for inspectable LM users. This reduction in the number of topics
where user and system disagree results in a model where both parties hold more simi-
lar beliefs, allowing users to help direct potential ITS adaptations which they may
consider of more value. The improvement in self-assessment accuracy should allow
users to better target future learning and develop greater learner autonomy.

Interestingly, the discrepancy measures reduce rapidly across the trial for negoti-
ated LM users, but markedly less so for inspectable users. This suggests that expo-
sure to the OLM alone was lesser of an incentive for children to substantially change
their self-assessments of confidence in a topic. The more proactive chatbot element,
which persuades the users to challenge their belief where there are discrepancies ap-
pears to be more effective in making them consider their ability and make changes to
their self-assessments. As shown in Figures 2, 3 and 4, the interaction continued to
reduce discrepancies after a second session, suggesting that there was some lasting ef-
fect over the period between sessions (three weeks). Further study would be required
to ascertain whether the extended use of a negotiated learner model would improve
general self-assessment and metacognitive skills, and whether the improvements in
self-assessment would be maintained over time.

Users in the inspectable LM condition answered far more questions in the interac-
tion; this was the main activity available to them. This will have given them greater
opportunity to view the representations of the beliefs held. However, despite this op-
portunity to consider the different beliefs more often, these users’ beliefs did not
change as significantly as those of the users with chatbot negotiation. Answering
questions, re-stating confidence, and seeing the resultant model alone appears benefi-
cial, but a lesser prompt to reflect on the learner model than offered by negotiation.
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Users of both the inspectable and negotiated systems demonstrated significant im-
provements in self-assessment accuracy and in reducing the number and magnitude of
discrepancies. The further improvements demonstrated by the negotiated LM suggest
that where negotiation can be included this would provide additional benefits. The
chatbot may persuade or help users to engage with their learning by exposing them to
a proactive tool that they are willing to work with. This may be an effect of the nov-
elty, naturalness or accessibility of a chatbot, or may be due to the content it offers.

Further work is necessary to explore whether the improvements in self-assessment
transfer back to normal classroom scenarios (i.e. without computer), and whether be-
lief changes persist beyond use of the system. It will also be interesting to explore if it
is the chatbot’s dialogue content that is effective, or whether the presence of the chat-
bot is a motivational factor which keeps young users engaged with the process.

5 Summary

We have presented an evaluation of two versions of an Open Learner Model. One
version offers inspection of the learner model, while the other is supported by a chat-
bot to provide discussion and negotiation of the learner model contents. This negotia-
tion allows the user and system to collaboratively construct and maintain the learner
model, providing further opportunities for the learner to reflect on their knowledge
and to refine their self-assessments than was seen in users of the inspectable-only
model. Improvements were seen in both conditions. The study showed that users who
engaged in negotiation reduced inaccuracies in their self-assessments significantly
more than those users who used the system without negotiation support.
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Abstract. The L4All system provides an environment for the lifelong
learner to access information about courses, personal development plans,
recommendation of learning pathways, personalised support for planning
of learning, and reflecting on learning. Designed as a web-based appli-
cation, it offers lifelong learners the possibility to define and share their
own timeline (a chronological record of their relevant life episodes) in or-
der to foster collaborative elaboration of future goals and aspirations. A
keystone for delivering such functionalities is the possibility for learner to
search for ‘people like me’. Addressing the fact that such a definition of
‘people like me’ is ambiguous and subjective, this paper explores the use
of similarity metrics as a flexible mechanism for comparing and ranking
lifelong learners’ timelines.

1 Introduction

Supporting the demands of lifelong learners is increasingly considered at the
core of the learning and teaching strategy of HE and FE institutions and poses
new challenges, such as enabling better support for lifelong learners and facilities
for accessing cross-institutional resources. To address these challenges, it is im-
portant to exploit further the advantages of Information and Communications
Technology networks to enable better support for planning lifelong learning and
ubiquitous access to lifelong learning facilities from home, the workplace and edu-
cational organisations. This new trend to educational services has led to research
and development that involves the provision of new learner-centred models of
organising and delivering educational resources (see for example the integrated
framework proposed in [TI2]).

The L4All system [3/4] provides an environment for the lifelong learner to ac-
cess information about courses, personal development plans, recommendation of
learning pathways, personalised support for planning of learning, and reflecting
on learning. The MyPlan project follows on from the initial L4All pilot project
and aims to develop, deploy and evaluate personalised functionalities for the cre-
ation, searching and recommendation of learning pathways. This will enhance
individual learners’ engagement with the lifelong learning process by offering

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 142 2008.
© Springer-Verlag Berlin Heidelberg 2008
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personalised levels of learner control over their learning pathways, personalised
support in the reflection of where their learning activities may take them, and
management of their personal record of progress and attainment. It will also
support building communities of learners with similar interests, and information
sharing with other members of the community, other users of the L4All system,
and HE/FE institutions. Figure [[] shows the main page of the L4All system.

At the core of L4All is the specification of a User Model that addresses the
specificities of lifelong learners and is based on the notion of learning ‘trails’ [5].
In the context of L4All, a ‘trail’ is a timeline-based representation of learners’
work, learning and other life experiences that provides a holistic approach and
continuity between their learning episodes and work experiences.

) L4ALL - Timeline - Mozilla Firefox
Fle Edt Yew Hstory Bookmarks Took Help

colas
public i1
Modify Add Episode e Hide
My details T : —_1 Bookmarks
My preferences nicolas 1
Wy tirneline B
2000
Searchifor Elcollege cmmoved
Similar Timelines
anvk ‘
; %
- m
description
L4Al Sunday Sept
X 2006 X
L4ALL © Birkbeck Coliege - 2007
Dane Q

Fig. 1. The main page of L4All with the user’s timeline (centre), access to the various
functionalities (left) and a bookmarks section for networking (right)

One requirement for offering such personalised services is to provide learners
with the possibility to search for ‘people like me’, i.e. to exploit the full structure
and content of their profiles and timelines in order to find similar matches that
will foster collaborative elaboration of future goals and aspirations. This poses
some interesting challenges that this paper addresses. First, the structure of the
timeline, as a sequence of temporal records, is potentially of such complexity that
it does not immediately suggest a natural way of enabling comparisons between
timelines. Second the notion of similarity of timelines is vague and subjective,
and it is not clear which aspects of that complex structure should be considered
and how they should be compared. Third, assuming that a personalised search
and similarity-ranking of timelines can be designed and developed, supporting
learners in exploiting such functionalities is an open problem.
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This paper presents an investigation of these challenges and is organised as fol-
lows. First, we review the User Model underlying the L4All system, in particular
the way timelines are represented. Second, a flexible mechanism for encoding the
timeline in a form suitable for similarity matching is presented. Third, several
algorithms for similarity measures of timelines are compared and analysed from
the point of view of their behaviour in identifying key aspects of timeline com-
parisons. Fourth, we describe the user interface for the personalised construction
of a new ‘people like me’ search, and for the visualisation and exploration of the
timelines returned. The paper concludes by addressing some of the issues arising
from our work and proposes some future developments.

2 User Model and Timelines

The L4All User Model [6] is comprised of three parts:

1. The User Profile contains personal information about learners such as their
name, gender, year of birth, email, login name and password.

2. The Learning Profile contains information about the educational and profes-
sional background of learners (such as current occupation, highest qualification
and skills) and information about their learning needs (such as willingness to
travel, current learning goal, preferred mode of learning — part-time, full-time
— and preferred learning methods — in groups, alone, online).

3. The Timeline is the novel part of the User Model, specifically addressing
the particularities of lifelong learners. It represents the learning — and, more
generally, life — pathway of the learners to date and contains a chronologi-
cal record of those episodes of their life that they deem significant to their
personal development.

Episodes in a timeline are identified by their category, selected from 20+ cat-
egories currently supported by the system. They include personal episodes, e.g.
relocation, travel abroad, illness, marriage, death in family, etc., occupational
episodes, e.g. started work, set up business, retired, did voluntary work, etc.
and educational episodes, e.g. attended college, university or school, attended
courses, etc. Each episode is specified by a start date and a duration (if appli-
cable), title, description, keywords and an optional URL.

In order to extend the descriptive power of the timeline, some of the most
significant episodes are also further elaborated by one or two further attributes,
referred to as primary and secondary classifications: educational episodes by a
subject and a qualification level; work episodes by an industry sector and a po-
sition; and business episodes by an industry sector. These additional attributes
are populated by a specific tree-like taxonomy of values selected form relevant
British standardd]. The structure and identifiers of these taxonomies have been

! The Standard Industrial Classification (SIC), the Standard Occupational Clas-
sification (SOC), the National Qualification Framework (NQF) and the Labour
Force Survey’s Subject of Degree (SBJ). See the Labour Force Survey User Guide
http://www.statistics.gov.uk/downloads/theme labour/Vol5.pdf.
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maintained but, for usability purposes, their depth is limited to four levels. El-
ements in each taxonomy can therefore be represented by four-digit identifier,
each digit uniquely identifying its precise position in the tree.

3 Similarity Measures of Timelines

The initial prototype of the L4All system supported several search function-
alities over users and their timelines. Two limitations of this approach were
identified during the first piloting phase [4]. First, all the search functionalities
were keyword-based, targeting the various fields of the User Profile, Learning
Profile and Timelines, and therefore limited in their scope. In particular, search-
ing on timelines returns matches based solely on the occurrence of the keywords
present in one or several episodes but cannot exploit the overall structure of the
timeline. Second, the results of any search were not personalised according to
the particular user performing the search. An alternative approach was needed,
that could take into account both these issues: in other words, some form of
comparison or similarity measure between a user’s timeline and the rest of the
timelines in the L4All repository.

String metrics offer such a possibility. String metrics (also referred to as sim-
ilarity metrics) have been widely used in information integration and in several
fields of applied computer science [7U8]. In the context of Intelligent Tutoring
Systems, similarity metrics have been used in the REDEEM system [9] to com-
pare alternative sequences of instructional activities as produced by authors. In
the context for the L4All timelines, the main requirement for using similarity
metrics is to encode a time-based sequence of records into a token-based string.
For this purpose, we have made four simplifying assumptions at the outset (the
implications of these assumptions for users will be explored in our forthcoming
evaluation activities):

The precise duration and dates of an episode have no particular significance.
This may seem strange for a time-dependent data structure but the relevance
and usage of such information for searching for ‘people like me’ is ambiguous.
Should we consider two learners having done the same university degree but at
different dates similar or not? Should we consider them more different if one of
them has taken twice as long as the other (being part-time for example)? Or is
it enough, at some level, to consider them similar since both of them have done
this particular degree? In the absence of evidence supporting one point of view
against the other, we decided, initially, to ignore this information. Only each
episode’s relative time-stamp (i.e. its position in time compared to the other
episodes in the timeline) is used in order to ‘linearise’ the timeline by ordering
the episodes in chronological order.

Gaps between episodes have no particular significance unless explicitly ex-
pressed as an episode. The problem posed by gaps in timelines is the lack of
explicit explanation for their occurrence and therefore for their significance for
the timeline. Again, in the absence of such information, they are ignored.
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Some categories of episode may have no role to play in defining ‘people like
me’. The purpose of a timeline is for learners to record every episode of their
background that may have an impact on their learning pathways. For example,
personal episodes such as marriage, illness, relocation, etc. are important as they
may have a clear influence on the decisions made for personal development (e.g.
a course at a particular learning institution may have been followed because
of a relocation to a particular city). However, this does not necessarily mean
that such episodes are a prerequisite or a necessary condition for reaching a
particular stage in someone else’s development. Their importance while searching
for role models, inspiration, or ‘people like me’ are therefore ambiguous and
subjective. Therefore, whether to include or not particular categories of episode
in the similarity matching should be left to the user to specify.

The exact classification of an episode may not be significant in defining ‘peo-
ple like me’. As described earlier, some of the most important episodes in the
timeline (educational and work-related episodes) use specific attributes to pre-
cisely describe their instance, e.g. working as a researcher in computer science.
However, taking such a fine-grained description of episode may not be useful
in searching for ‘people like me’; as it may make more sense to consider that a
researcher (without a precise field) is someone to consider ‘like me’. Therefore
the level of specialisation of episodes should also be left to the user to specify.

Using these assumptions, it is now relatively straightforward to generate a
token-based string representing the timeline. Each episode of the timeline is en-
coded as a string token composed of a two-letter unique identifier of the category
of the episode (e.g. C1 for a College episode, Wk for a Work episode) and two
four-digit codes classifying the exact instance of this episode (as described in
the previous section). Note that, in order to maintain a consistent pattern for
the token’s encoding, nonexistent or unspecified classifications are encoded as
0.0.0.0.

Combining the two first assumptions above means that no time information
is used to encode episodes, only their relative position matterdd. Filters are
then applied to the string of tokens to remove the episodes that should not
be considered in the current similarity search, as well as for limiting the depth
of their classification. In the latter case, the use of the coding system for the
classification facilitates the process: digits below the specified depth are replaced
by 0, replacing the specific classification by a more general parent.

4 Comparison of Similarity Measures

The metrics used in this study are part of the SimMetrics] JAVA package,
an open source extensible library of metrics that provides real number-based
similarity measures between strings, allowing both normalised and un-normalised
output. The SimMetrics package contains about 20 different metrics, some of
them customisable by using user-defined cost functions and tokenisers. Not all

2 With an arbitrary decision as to their ordering if multiple episodes coincide in time.
3 SimMetrics, see http://www.dcs.shef.ac.uk/~ sam/stringmetrics.htmll
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Table 1. List of encoded timelines used for the metrics comparison

Ref. Description Encoding

Source Timeline used as the source for the similarity measure  C100 Un00 Mv00 Wk00

1D Timeline identical to Source. C100 Un00 Mv00 Wk0O

RE Timeline containing the same episodes as Source but in Un00 Wk00 C100 Mv00
a totally different order.

AD,, New episode (similar to an existing one) added to Source. C100 Un00 Mv00 Wk00

WkO00
AD. New episode (different from all existing) added to Cl00 Un00 Mv00 Wk0O
Source. Bs00
RM,, Last episode removed from Source. Cl100 Un00 Mv00
RM, One episode removed from Source. C100 Mv00 WkO0O

SB.  One episode of Source substituted by a new one (different C100 Un00 Mv00 Bs00
from all existing ones).

SB,  One episode of Source substituted by an existing episode. C100 Un00 Mv00 Un00

SB.,  One episode of Source substituted by a variant of an C100 Un00 Mv00 Wk10
existing episode (a different classification).

metrics can be used in our context, since some are tailored for working on a
particular application domain (linguistic for example) and require strings that
are incompatible with our encoding of timelines. We refer the reader to the
package documentation for descriptions of each metric.

Table[M shows a set of synthetic timelines used in our comparison study. They
are deliberately simplistic in their structure, as the purpose of this comparison
is to identify general trends arising from the various similarity metrics, rather
than evaluating their intrinsic power of discrimination.

The Source timeline is a string of four episodes of different type: college
(C100), university (Un00), move (Mv00) and work (Wk00). Each episode has been
encoded as a token, using the scheme described in the previous section. For the
sake of clarity, and since this comparison does not rely on the full power of
discrimination of the scheme, the episode classifications have been reduced to a
single digit each (i.e. representing 0.0.0.0 as 0).

The target timelines represent a variety of alterations of the Source timeline
that could occur in real-life situations: a totally similar timeline (i.e. the same
sequence of episodes), a reordered timeline (i.e. the same episodes but totally
reordered), adding an extra episode, removing an existing episode, substituting
an episode by another one. Note that the set of target timelines listed in the
table only represent the most representative of each group. In order to test the
behaviour and consistency of the metrics, all possible combinations were gener-
ated for each group (e.g. timelines representing the addition of a new episode
were generated considering every possible position in the Source timeline).

Table Bl summarises the results of the different similarity measures applied to
every target timeline. The values shown in the table do not represent the distance
between the two strings but their normalised similarity, i.e. the ratio between
the calculated distance and the maximum distance. As mentioned earlier, the
main aim of this comparison is not to focus on individual measures for assessing
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Table 2. Normalised similarity between the source and the target timelines

1D RE AD, AD. RM, RM, SB. SB, SBuw
Levenshtein 1 0 0.8 0.8 0.75 0.75 075 0.75 0.75
Needleman - Wunsch 1 0 0.8 0.8 0.75 0.75 0.75 0.75 0.88
Jaro 1 0.72 093 093 092 092 0.83 0.83 0.83
Matching Coefficient 1 1 0.8 0.8 0.75 0.75 0.75 0.75 0.75
Euclidean Distance 1 1 0.84 0.84 0.8 0.8 0.75 0.75 0.75
Block Distance 1 1 0.89 0.89 086 086 0.75 0.75 0.75
Jaccard Similarity 1 1 1 0.8 0.75 0.75 0.6 0.75 0.6
Cosine Similarity 1 1 1 0.89 087 087 0.75 0.87 0.75
Dice Similarity 1 1 1 0.89 086 0.8 0.75 0.86 0.75
Overlap Coefficient 1 1 1 1 1 1 075 1 0.75

their accuracy but to extract general conclusions regarding their behaviour when
confronted with particular configurations. From these results, several conclusion
can be drawn. First, all the similarity measures are indeed able to recognise
complete similarity between timelines (as indicated by all 1 in the ID column).
More interestingly, three groups of metrics emerge, as listed in Table

The first group includes transformation-based metrics like Levenshtein, Jaro
and Needleman-Wunsch that are able to discriminate between the basic opera-
tions of string manipulation (copy, substitution, addition, deletion). The
non-zero result for the Jaro distance in the RE column can be explained by
a threshold used for determining matching tokens (see the documentation of
this metric); our test strings are not long enough (only four tokens) to allow
proper discrimination. All these metrics do not take into consideration the po-
sition of the token involved in one of the string manipulations (whatever the
location of the added or substituted episode, the scores are the same). The only
exception is the Needleman - Wunsch distance, which gives a different score when
a variant of the initial episode (i.e. same category but different classification) is
substituted (score of 0.88 in SB,,, instead of 0.75 in SB, and SB,,). This is due
to the use of specific gap cost and distance functions that can be tailored to the
particular nature of the data involved in the similarity measure and therefore
could be adjusted for our particular use of the timelines (see Section [d]).

The second group of metrics includes vector-based metrics such as Block Dis-
tance, Euclidean Distance and Matching Coefficient that are not able to discrim-
inate between re-ordered strings, as indicated by 1 in the RE column. Whatever
the order of the tokens in the string, both source and target are considered to
be identical since they contain the same set of tokens. As with the metrics in
the previous group, the results for addition, substitution and removal of tokens
are position-independent.

The third group of metrics includes the rest of the vector-based metrics (Jac-
card, Cosine, Dice Similarities and Overlap Coefficient) which, as with the pre-
vious group, do not discriminate between reordering of tokens. Moreover, this
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group also fails to take into account the duplication of tokens in the string, as
exemplified by the scores of 1 in the AD,, column (i.e. adding an episode that is
already existing in the timeline) or the different scores for the SB, column (i.e.
substituting an episode with one that is already existing, resulting in fact in the
deletion of this episode). Once again, this is because of the set-based algorithms
used for these metrics, in particular the use of intersection/union procedures
rather than summation as in the previous group. This is also reflected by the
fact that substitution also depends on the nature of the episode substituted (the
SB,, column give scores different from the other substitutions). In this group,
the Overlap Coefficient is an extreme case, as it basically measures whether the
source string is a subset of the target one (or the converse).

5 Searching for ‘People Like Me’

What the comparison above shows is that different similarity metrics offer dif-
ferent degrees of support for the basic operations of string manipulation: copy,
substitution, addition or deletion of a token. The important point here is that
the comparison does not highlight one particular metric as being more use-
ful or accurate for our purpose, precisely because our purpose (or, rather, the
user’s) is unknown. The assumptions made in Section Bl encompass a wide
range of users’ behaviour regarding the way they understand a ‘people like me’
functionality.

In order to validate these assumptions, a dedicated interface for such searches
was therefore designed and implemented. It provides users with a three-step
process for specifying their own definition of ‘people like me’. The first step of a
user’s query specifies those attributes of the user’s profile that should be matched
with other users’ profiles (age, qualification, location, etc.) and act as a filtering
of the possible candidates before application of the similarity comparison on the
timelines. The second step of the query specifies which part(s) of the timeline
should be taken into account for the similarity comparison (currently by selecting
the appropriate categories of episode). The final step specifies the nature of the
similarity measure to be used (i.e depth of episode classification and metric).
Once a definition of ‘people like me’ has been specified by the user, the search
returns a list of all candidate timelines, ranked by relevance (i.e. their normalised
similarity measure). The user now have the possibility to access any returned
timelines and explore them.

This first approach to offering a ‘people like me’ functionality has given us
the possibility to accumulate information about usage and expectations from
users. It has offered us some insight into the context and relevance of particular
configurations and how specific aims — such as looking for aspirational timelines
or learning recommendations — could be supported. These issues and propos-
als for personalised support for the variety of activities they highlight will be
investigated further in future work.
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6 Discussion and Future Work

Lifelong learning requires technology to be used effectively to support learners
in becoming more aware of their own learning and help them with planning of
their learning throughout life under varying circumstance and settings. In this
context, it is important to support user engagement and participation in life-
long learning and facilitate collaboration among lifelong learners for community
building. In this paper we have discussed how string similarity measures could
be used to encode and compare the timelines of lifelong learners. We have shown
that existing metrics behave differently in identifying key aspects of timeline
comparison, such as addition, substitution or deletion of episodes. Since the pre-
cise definition of what is a similar timeline is ambiguous and subjective, we have
designed a new user interface for L4All such that learners can specify their own
definition of ‘people like me’, offering them the possibility to decide which as-
pects of a timeline need to be considered or not for the matching. Evaluating the
soundness and acceptability of this approach for users — as well as the usability
of our user interface — are currently under evaluation. In the first evaluation
phase — underway at the time of writing — we will be asking learner participants
from three different learning institutions to explore the definition and the results
of applying different similarity definitions on a predefined database of synthetic
timelines. In the long term, several issues arising from our work will also be
explored.

The encoding of timelines and episodes for similarity computation may need
to be improved, in particular in determining by how much two episodes are sim-
ilar. One way of dealing with this issue is by using the depth-adjusting encoding
of episodes, where specific classification identifiers can be relaxed to one of their
more general parents in the hierarchy, thus increasing the chance for two episodes
to be compared as identical. But by doing so we are not only losing the descrip-
tive power of episodes but also uniformly applying the filtering on all episodes
in the timeline. An alternative, unfortunately only supported by distance met-
rics such as Levenshtein or Needleman-Wunsch, is to incorporate user-defined
distance and gap cost functions, i.e. specifying a fine-grained analysis of the dis-
tance between two given tokens and of the cost of adding or removing a token in
a string. Instead of the current binary comparison of episodes (i.e. their encod-
ings are syntactically equal or not), we could adjust the distance between two
similar episodes by the distance between their classifications (i.e. the sum of the
distances to the closest common ancestor of each classification’s element).

Similarly, our first two assumptions in Section [3 are clearly the most critical.
The ongoing piloting of our techniques will certainly provide us with insights
about the importance or not of taking temporal information into account. Ex-
tensions of our token-based encoding of timelines or even a specific similarity
mechanism that maintains temporal tags will have to be considered.

Finally, a further important issue we still need to address is the question of
providing lifelong learners with support for exploiting the results of a similarity
search. Currently, we are relying on a pure visualisation approach, by displaying
both the learner’s own timeline and similar timelines returned by the search.
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A specifically designed dynamic widget is used to allow the learner to scroll
back and forward across each timeline, to access individual episodes, etc. Such
an interactive visualisation of timelines is certainly helping learners to explore
alternative timelines and is supporting them in elaborating future goals and
aspirations, but more proactive supports will also be investigated. To enable the
provision of feedback and on-demand support necessitates the ability to identify
the reasons for a search considering two timelines as being similar. Again, metrics
such as Needleman-Wunsch offer the possibility for such an identification by
enabling backtracking of the distance computation and determining potential
sequence alignments, i.e. the ability to identify alignment between pairs of tokens
in matching strings.
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Abstract. Most of intelligent tutoring systems (ITSs) were used to be developed
by researchers or professionals with knowledge engineering background, due to
knowledge model development. As a result, most of teachers, who are the best
candidates of ITS developers in terms of their knowledge and motivation, are
hindered from developing relevant systems. This study aims to explore a general
approach for teachers to developing a computer-supported tutoring interaction
component. Interaction data reuse (IDR) is proposed as the key concept for the
design of the development approach.

Keywords: Interaction data reuse, knowledge model development, ITS devel-
opment problem.

1 Introduction

ITS development is known for long to be both difficult and labor-intensive [1, 2, 3]. The
causes of the ITS development problem are cognitive task analysis and artificial intelli-
gence programming [2, 3], both of which are pertinent to knowledge model development.
Generally, teachers are incapable of developing knowledge models, but in terms of their
job nature and the potential of ITS in sharing their teaching load, teachers are best candi-
dates for ITS development. Therefore, the workload on knowledge model development
required by a particular ITS development approach is an indicator of the suitability of that
approach for teacher use. Although there exist other factors than ITS development ap-
proaches that may influence the ITS development workload on knowledge model devel-
opment, factors such as development decisions, tool support, and subject domains, the
spectrum of ITS development approaches illustrated in Fig. 1 provides us an approximate
overall understanding of some ITS development approaches.

Early ITS development heavily focused on knowledge model development, in-
cluding representation of domain knowledge, student modeling knowledge, and tu-
toring knowledge. Even most ITS authoring tools focused on saving workload on ITS
development; avoidance of knowledge model development was usually a second
thought. Only ITS authoring tools for some special domains allow producing ITSs
simply by configuration [1]. Knowledge engineering tools, such as DNA [4], have
varied potential in reducing the complexity and workload of knowledge model de-
velopment, but they can not completely avoid knowledge model development.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 152 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A spectrum of ITS development approaches

Until recently, a data reuse approach, the development of Example-Tracing Tutor, is
proposed for ITS development [2]. Model tracing is performed by reuse of existent
student action data instead of production rules. By demonstrating potential student
steps, Example-Tracing Tutor is successful in avoiding complex knowledge model
development and allows teachers to develop Example-Tracing Tutors by their own. To
improve Example-Tracing Tutor development, an approach called bootstrapping nov-
ice data was proposed to handle the problem of expert blind spots [5]; the technique of
“programming by demonstration” was adopted to turn existent data into production
rules to reduce the workload on demonstrating student steps [6]. Since the bootstrap-
ping novice data approach requires two tools, one for data accumulation and the other
for actual use, and thus two phases of system deployment, it still deserves more inves-
tigation into making data reuse and system development more intuitive and fluent.

It was confirmed that effective computer tutors capture some crucial aspects of the
behavior of effective human tutors [7]; a general description on the behavior of most
effective ITSs was recently proposed [8]. These works remind us to differentiate the
goals from the means and signify the significance of alternative ITS development
approaches that do not involve direct knowledge model development. In this study, we
investigate such an alternative with interaction data reuse.

2 Interaction Data Reuse

The design of our interaction data reuse (IDR) approach was triggered by the work of
Active Documents [9], which are aimed to design documents capable of answering
reader queries. The key idea of Active Documents is to accumulate human ques-
tion-answer pairs so as to reuse them in answering subsequent reader queries. If no
reusable question-answer pair is found, the answer is delayed until some human expert
provides one. Three components are identified in an IDR application. In order to be
reused, interaction data must be accumulated. The collection of interaction data to be
used in IDR applications is termed interaction data collection (IDC) hereinafter. Be-
sides IDC accumulation, a data retrieval mechanism must also be introduced to locate
potentially reusable data for a given situation in the IDC. Since the IDC in an IDR
application is unlikely to contain reusable data for all given situations, a mechanism to
expand existing IDC is also required when reusable data is missing. Therefore, the
three major components of an IDR application are: IDC accumulation, IDC retrieval,
and IDC expansion components. Table 1 lists some IDR applications as well as the
implementations of each component.
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Table 1. IDR applications and implementation of their components

IDR Applica-

tions IDC accumulation IDC retrieval IDC expansion
Usenet FAQ Authoring FAQ files filefead‘“g FAQ Editing FAQ files
. . Automated . .
FAQFinder Authoring FAQ files answer retrieval Editing FAQ files
Active Docu- Automated accumulation Automated Delayed expert an-
ments of question-answer pairs answer retrieval SWers

Owing to the need for increased interaction efficiency, an early IDR application was
developed by Usenet users, the users of newsgroups, in order to reduce resources spent
in providing answers to repeated queries. When new users, called newbies, joined a
newsgroup, they were likely to post the same set of questions collectively called fre-
quently asked questions (FAQs). In order to avoid repeated efforts, most newsgroups
create FAQ files for newbies to read before posting their questions. The maintainers of
the FAQ files of a newsgroup update their FAQ files to reflect the changes in the in-
terests of the newsgroup from time to time. In the perspective of IDR, the FAQ files are
partial records of the user interaction, or the IDC. The FAQ files (IDC) are created by
authoring. The FAQ files are “reused” to “answer” newbie queries when the newbies
read them. Thus, the Usenet FAQ is a pure manual IDR application without the support
of any IDR automation mechanism.

As the number of newsgroups increased and so did the sizes of the FAQ files, even
selecting the right FAQ file for finding the desired answer was no longer simple for
ordinary Usenet users. Spotting this information need, the FAQFinder project was
launched to automate this answer retrieval task. Users can get their answers simply by
input their questions into FAQFinder. FAQFinder retrieves potential answers to a
natural language user question simultaneously from many FAQ files using techniques
involving statistical information retrieval, syntactic parsing, and semantic concept
matching [10]. In the perspective of IDR, FAQFinder simply improves the answer
retrieve component of Usenet FAQ files without improving the IDC accumulation and
IDC expansion components. If the retrieved answer was unsatisfactory or no answer
was retrieved, the user had to turn to other resources. There is no automatic mechanism
for expanding the FAQ files that FAQFinder uses. FAQFinder relies on the original
authors to expand these FAQ files. In terms of an question-answering application,
Active Documents is an improved version of FAQFinder with an mechanism of
automatic “FAQ files” generation, in the form of a set of question-answer pairs, and a
mechanism for expanding the set of question-answer pairs.

In order to apply the IDR concept to ITS development, a data model other than
question-answer pairs must be proposed. Besides, a retrieval component that is capable
of dealing with this new data model is also required. However, the assumptions of IDR
applications are similar: (1) the same learning obstacles occur repeatedly; (2) The same
learning materials are used repeatedly; (3) Missing interaction data become sparse as
the IDC size increases above a certain threshold.
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3 Tutoring Interaction Data Model

In certain perspective, one-to-one tutoring interactions can be seen as a sequence of
student and tutor actions. In such a sequence of actions, the smallest unit is a single
student action or a single tutor action. Generally, the number of student actions is
greater than the number of tutor actions because eventually the student has to work on
the problem sometimes without receiving any feedbacks from the tutor. On the other
hand, tutor actions can typically be considered as responses to student actions because
during tutoring, each student action generates a different situation to be handled by the
tutor. Thus, tutor-initiated actions can also be considered as responses to student ac-
tions that are seen as opportunities to promote learning of the student. A tutor action
paired with the student action that it responds to is called an interaction episode or
simply an episode. In terms of an episode, the student action decides the situation to be
handled by the tutor and the tutor action denotes the response of the tutor to the situa-
tion. Examples of student actions include an incorrect student step to problem solving,
a request for hints on the next step, and a student query, and the correspondent tutor
actions might be error-specific messages for incorrect student steps, hints on the next
step, and answers for student queries. Thus, an episode is consisted of the situational
information and the response information, which denotes the student action data and
the tutor action data of the episode, respectively.

All contiguous episodes form an interaction session, which denotes a session of
tutor-student interaction. The interactions that occur during different learning activities
belong to different interaction sessions. All the data of interaction sessions comprise
the IDC. Thus, interaction sessions, episodes, situational information and response
information consist of a hierarchical data model of tutoring interaction. When each
interaction session is only consisted of an episode and each episode is consisted of a
question and an answer, the data model represents the application to ques-
tion-answering. Thus, the interaction in question answering is considered a special case
of the interaction of problem-solving tutoring.

3.1 The Context of Episodes and Similar Episodes

For the case of question answering, each question is considered unrelated with the
others and is generally answered without interference from previously questions. Thus,
the data reuse mechanism for question answering is not applicable for tutoring. The
context of episodes must be considered. The information used for deciding the context
of an episode is termed the contextual information of that episode. In terms of available
information for the system, it is reasonable to assume that the maximal amount of
contextual information of an episode is all the preceding episodes of that episode. If
some other contextual information, such as examination results of the student, were
used in the generation of a tutor action but that information was unavailable to the
system, then it is unreasonable to expect that the system will be able to identify such
differences in the context of episodes. Therefore, all contextual information must be
available for the system. Currently, the maximal amount of contextual information of
an episode is assumed to be all the preceding episodes of that episode. One way to
determine whether two episodes are under similar context is to calculate the similarity
of their contextual information.
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For the purpose of generality, two categories of similarity measures are proposed in
this study: one is literal string matching and the other is the document similarity
measures that are used in the field of information retrieval, such as the inner products of
the two vectors that represent the two texts to be matched in terms of words used in
each text. The literal string matching mechanism works well for matching student
problem-solving actions of equation solving, while the document similarity measures
work well for question answering, as illustrated in the work of FAQFinder. The use of
general similarity measures allows the design of general tools so that teachers can use
them simply by configuring the tools.

Besides the choice of similarity measure, the choice of amount of contextual in-
formation is also influential in distinguishing the context of episodes. Some choices of
contextual information are listed in the following:

(1) Perfect matching: all the situational information and response information of
preceding episodes are used as the contextual information. This choice of
contextual information is made when the context of episodes are highly sen-
sitive.

(2) Problem-solving path matching: all preceding problem-solving actions are
used as the contextual information. This choice is useful for delivering
messages like hints on the next steps and error-specific messages for incor-
rect student steps.

(3) Current situation matching: no information of preceding episodes is used.
Instead, the situational information of the episode in question is used as the
contextual information. This choice is an approximated version of the pre-
vious choice when the problem-solving actions of a student are unlikely to
overlap. This choice is typically made to increase the reusability of existent
data.

Episodes that are under similar context and share similar situational information are
called similar episodes. However, similar episodes do not necessarily have the similar
response information. The similarity measure of contextual information introduced in last
section is also applicable to situational information matching. When similar episodes are
retrieved, their response information is used as the system responses. If multiple similar
episodes with different response information are retrieved, this means a tutor has several
options to respond to the student in that situation under the given context.

4 Generation of Tutoring Actions with IDR

A computer-mediated environment for tutoring is assumed if tutoring support is to be
provided by reusing existent interaction data with computers. A consistent com-
puter-mediated environment for data accumulation and data reuse is essential to the
success of IDR applications, as different environments may render the meanings of the
same tutoring messages different. A consistent computer-mediated environment also
allows simultaneous occurrence of data accumulation and data reuse during system
deployment. Fig. 2 gives an overview of our proposed approach to applying the IDR
concept to provide tutoring support in such a computer-mediated environment, which is
consisted of a student interface, a teacher interface, and a backend server.
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Student interface Teacher interface

Teacher action
paL Tutoring suppo& Student action Teacher
Help request

i

Backend server

Fig. 2. IDR application overview

The student interface is for the student to work on given problems, to seek for helps,
and to receive tutoring support provided by the teacher or the server. The teacher in-
terface is for the teacher to provide tutoring support to the student either spontaneously
or upon requests. The backend server receives both student action data and teacher
action data from relevant interfaces, and executes the functions of the three components
of an IDR application: IDC accumulation, IDC retrieval, and IDC expansion. Imple-
mentation of the three components is usually completed before commencing the
tutoring application, though it is also possible to defer the implementation of IDC
retrieval and IDC expansion components after data accumulation. Implementation of
the three components is discussed in the next section.

The backend server carries out the dual roles of a provider of tutoring support and of
a broker of the tutoring support provided by the teacher, and this characteristic of the
backend server makes the integration of the two sources of tutoring support seamless.
In an ideal scenario, the backend server can interact with the student without the in-
volvement of the human teacher when sufficient amount of data has been accumulated,
as shown in the shaded area of Fig. 2.

In order to be more general, the procedures are described more formally:

Definition: Given c, the content to be learned, let a be an action taken by agent p to
attain the learning goal, f, the feedback given by agent g to assist p in attaining the goal;
and h, the course of interaction between p and g before action a occurs. Define a
situation of providing feedback as a pair (k, (a, p)) and an episode of interaction be-
tween p and q as a triplet (4, (a, p), (f, g)) with respect to c.

1. Collect and index episode (4, (a, p), (f, g¢)) in IDC M. Let s denote the situ-
ational part of an episode e, or (h, (a, p)), r denote the feedback part of e, or (f,
q), and (s, r) also denote e. Therefore, M = {(s;, r7), (52, 72); -+ (Sps 1)}, S= {5
| (s, r) € M} denotes all the situations in M.

2. Select a difference metric A, a threshold o, and a mapping g such that for a
situation z:g(z) = ry if A(z, sp) = min({ A(z, s) | s € S}) < 6, and g(z) is undefined
in other cases.

3. Given a situation s, the output is g(s). If g(s) is undefined or unsatisfactory,
then query g for f, M =M L {(s, (f, 9))}

4. Repeat step 3.
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5 Tutoring Support Simulation

A quiz with three equation-solving problems was conducted to a class of 51 mid-
dle-school students, who had learned to solve such equations for three weeks prior to
the quiz. The three equations are: 3x—4=2x-1, 2[3(2x—-5)—-1]=7x+3 , and

2x+5

4

Each student answer is consisted of several student steps. The data repetition rate of
the student answers is high but tends to drop as problem complexity increases. Most
correct student steps are repeated and the repetition rate of both correct and incorrect
student steps tends to increase as their number increases. However, the amount of data
in this quiz is still small. Further investigation is needed before drawing a conclusion.

In similar quizzes, the teacher of the class will provide feedbacks to incorrect student
steps as a kind of remediation during marking the test papers. To acquire such marking
information as a source for simulation of tutoring support, a system was developed in
accordance with the IDR approach to assist the teachers in marking test papers by
providing suggestions by reusing previous marking information. To simulate the pro-
vision of tutoring support to students, the collected interaction data are separated into
two sets: one as the set of interaction data to be reused, called the original set, and the
other as incoming student actions, called the new set. For each student action from the
new set, the original set is searched for responses to this student action. If there is an
available response, this reused response is compared with the response contained in the
new set given by the teacher. Thus, we can calculate the percentage of matched re-
sponses in this simulation. There are two kinds of responses to each student action. One
is the correctness annotation of each student step, and the other is the comments on each
student step. The comments on student steps are mainly error-specific messages. If the
reused teacher responses match with the true teacher responses, it indicates that the
reused teacher responses are appropriate. Although the reused teacher responses may
be appropriate even if they do not match with true teacher responses, these cases are
temporarily ignored. Therefore, the percentage of matched responses is an indicator of
the appropriateness of the reused responses.

1
-3(r-)=1.

Table 2. Percentage of matched comments

Data size Problem 1 Problem 2 Problem 3
5 100.00% 100.00% 95.80%
15 100.00% 100.00% 96.50%
25 100.00% 100.00% 87.50%
35 100.00% 100.00% 87.00%
45 100.00% 100.00% 83.90%

The simulation results show that correctness annotations on student steps are 100%
match for all data sizes. However, with the choice of simple contextual information, the
comments on student steps might be inappropriate, as shown in Table 2. However, the
percentages of matched comments are still high.
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6 Concluding Remarks

The IDR approach is a potential alternative approach to ITS development, though there
are still several issues to be investigated. This study lays down a theoretical foundation
for the IDR approach to helping teachers in providing tutoring supports with computers
to students who are learning problem-solving skills. Specifically, we identify the main
components of an IDR application and propose a data model of tutoring interaction data
and a set of general procedures for producing tutoring actions. In addition, tutoring
support simulation was performed. Comparison between the IDR approach and the
common knowledge model development approaches is given in Table 3.

Table 3. Comparison of IDR and knowledge model development approaches

Knowledge model development IDR
Rationale Model generality Data repetition
Key implementation issue Mechanisms for knowledge modeling Mechanisms for data
y mp (difficult and labor-intensive) accumulation and matching

No guarantee in response

Response quality Appropriate responses appropriateness

Required teacher
participation

Development and early

Development phase deployment phases

Accumulate new data

during deployment No Yes

Applicability to multiple

learning tasks Yes No

The common rationale of developing knowledge models to provide tutoring support
is that knowledge models are capable of capturing various knowledge application
instances. The goal of knowledge model development is to develop knowledge models
that are general enough in capturing desired knowledge application instances. On the
contrary, the rationale of the IDR approach is that most of knowledge application in-
stances are likely to be repeated and knowledge application data can be accumulated
and reused for repeated instances. Thus, the mechanism to provide tutoring support is
through data matching and the key implementation issue is the choice and implemen-
tation of data accumulation and data matching mechanisms. Implementation of data
accumulation and data matching mechanisms are relatively easier than knowledge
model development. This implementation benefit comes at the cost of appropriateness
of system responses. If data matching mechanism is not good enough in distinguishing
one knowledge application case from another or is compromised to obtain better data
reusability, inappropriate data may be delivered as the system responses.

The differences in the rationales and the key implementation issues of the ap-
proaches are the sources of other differences. For example, to develop knowledge
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models or to maintain knowledge models in order to include newly discovered student
mistakes, teacher participation is required in this model development phase. Typically,
this occurs when desired knowledge application instances are acquired. Before the
completion of knowledge model development, desired tutoring support is unavailable.
Once knowledge model development is completed, an additional benefit is that the
knowledge models are typically applicable to multiple learning tasks. Therefore, when
a lot of learning tasks are required, this benefit of knowledge model development might
compensate for its price. Contrarily, early system deployment is an opportunity to
accumulate and reuse data for the IDR approach and thus teacher participation is also
required during this phase in addition to the development phase. However, the IDR
approach is capable of providing tutoring support to the student by the system while
accumulating interaction data between the human teacher and the student. This is
beneficial because this is a convenient way to accumulate alternative student solutions,
student mistakes, and relevant tutoring supports.

Table 4. Comparison of IDR tutor and example-tracing tutor development

IDR tutor Example-tracing tutor

General case of example-tracing

Generality Special case of IDR tutor
tutor
Demonstration
Data accumulation Teacher-student interaction Bootstrapping novice data
Authoring
. . . D trati
Data expansion Teacher-student interaction emonstration
Authoring
Tool support To be developed Cognitive Tutor Authoring Tools

Example-tracing tutors are considered as a special case of IDR tutors, as shown in
Table 4. The general architecture of IDR tutors may provide clues for new ways to tutor
development. For example, it might be interesting to investigate whether there is any
data expansion mechanism that can respond to the student without delay. The differ-
ences in the data accumulation and data matching mechanisms are also significant.
Demonstrating student solutions and authoring relevant feedbacks is less straightfor-
ward than directly interacting with students while the students are solving the given
problem. Additionally, teachers are unlikely to remember all the cases of student so-
lutions. After deployment, if new student solutions are discovered, there still lacks of a
mechanism to directly use the opportunity for data expansion. Instead, data expansion
is performed after the deployment phase and is conducted in subsequent modifications.
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Abstract. This paper addresses the problem of inferring students’ strate-
gies when they interact with data-modeling software used for pedagogical
purposes. The software enables students to learn about statistical data by
building and analyzing their own models. Automatic recognition of stu-
dents’ activities when interacting with pedagogical software is challenging.
Students can pursue several plans in parallel and interleave the execution of
these plans. The algorithm presented in this paper decomposes students’
complete interaction histories with the software into hierarchies of inter-
dependent tasks that may be subsequently compared with ideal solutions.
This algorithm is evaluated empirically using commercial software that is
used in many schools. Results indicate that the algorithm is able to (1)
identify the plans students use when solving problems using the software;
(2) distinguish between those actions in students’ plans that play a salient
part in their problem-solving and those representing exploratory actions
and mistakes; and (3) capture students’ interleaving and free-order action
sequences.

1 Introduction

We report on the development of algorithms for recognizing students’ plans
when interacting with pedagogical systems for data-generation and analysis.
This work is a first step towards building a collaborative pedagogic agent that
will support students in their problem-solving and teachers in their analysis
of students’ modeling and understanding of statistical data. TinkerPlots, the
system we use in this paper, gives students great flexibility in representing and
analyzing statistical data. It is in essence a data-analysis “construction kit” that
allows students to create and analyze a large number of statistical models [g].
While this makes for a rich educational environment, it does pose significant
problems for teachers. When an entire classroom of students is using TinkerPlots
at the same time, there is no way for a teacher to keep track of what each child
is doing, especially since they may be following divergent paths in solving the
problem. Without some sort of support, teachers are left with the end-result
of students’ work on the computer screen, or looking over the shoulder of each
student for at most a minute or two.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 162 2008.
© Springer-Verlag Berlin Heidelberg 2008



Towards Collaborative Intelligent Tutors 163

Automatic plan recognition is an open problem in Al, and the task of recog-
nizing users’ plans when interacting with software systems is particularly chal-
lenging. Ideally designed systems are flexible, allowing users the convenience of
choosing among multiple action sequences for performing the same function, and
the ability to perform these action sequences in relatively free order. Traditional
algorithms for plan recognition assume a goal-oriented agent whose activities
are consistent with its knowledge base and who forms a single encompassing
plan [9]. In contrast, one of the objectives of flexible pedagogical software is
to allow students to explore and experiment during their interaction process.
In these settings, students may interchangeably pursue multiple, interleaving
plans; they may be confused about which appropriate plan to take, and they
may make mistakes. Recognizing students’ actions by exhaustively considering
every possible way in which a student can use these systems is infeasible.

This paper describes a computationally tractable algorithm for intelligently
recognizing students’ problem-solving strategies based on their complete interac-
tion history with the system. The algorithm composes the action sequences from
a user’s interaction into a series of interdependent plans. It infers the plan that
the user was using to complete each activity, and compares this plan with an
ideal solution that was designed by domain experts. At the end of this process,
the algorithm outputs a hierarchy of the plans that students used during the
session and the extent to which they differed from the ideal solutions.

The algorithm was tested using the commercial system TinkerPlots, used
world-wide to teach students in grades 4-8 about statistics and mathematics [5].
In TinkerPlots, students actively model stochastic events and construct mod-
els that generate data. TinkerPlots is highly flexible, allowing for data to be
modeled, generated, and analyzed in many different ways using an open-ended
interface. Our empirical studies focused on two different problems in which stu-
dents used TinkerPlots to model and analyze stochastic data.

In AI, plan recognition has been used in a range of applications, such as
modeling discourse structure from speech and inferring transportation routines
from GPS data [ITJI0]. Past work in the intelligent tutoring domain has focused
on inferring students’ activities for the purpose of providing feedback by the
tutor. These models have been used for modeling how students solve math [Gl3]
and physics problems [4/I4], their help requests from pedagogical software or
their misuse of it [I312]. Many of these works construct a probabilistic model
of students’ problem-solving strategies that is subsequently used to update the
tutor’s beliefs about students’ likely future actions given their behavior. In these
cases, the tutor is an active participant in the student’s learning process and
ambiguities or uncertainties about the students’ plan of action are resolved by
querying the student [IJ.

In contrast, the work reported in this paper addresses the problem of recog-
nizing students’ actions given their complete interaction histories. The system
does not intervene with the student’s activities during the course of interaction.
Straightforward adaptation of probabilistic techniques for this purpose is diffi-
cult, because the size of probabilistic models is typically exponential in the length
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of the history they consider, and students’ complete interaction histories often
span hundreds of actions. In addition, the model parameters must be trained
from data or stipulated by a domain expert. Both of these techniques require
considerable effort in the domain we consider.

1.1 Example Scenario: The Two-Dice Problem

To illustrate the algorithm we will use the following example, drawn from a
set of problems posed to seventh grade students using TinkerPlots. “We rolled
two dice over and over a huge number of times and kept track of their sums.
For example, when the first die came up 5 and the second die came up 6, we
recorded their sum of 11. Using TinkerPlots, build a model that you can use to
roll two dice 1,000 times and see whether 11 came up more often than 12.”

The purposes behind this exercise are for children to learn about the joint dis-
tribution of non-ordered random events and to explore how sample distributions
vary, even if they are drawn from the same population. Each roll of two dice
generates a pair of values, one for each die. There are two events that make up
the sum 11, namely (5,6) and (6,5), while there is only one event that makes up
the sum 12, namely (6,6). Since each of these events is equally likely, in theory
the sum 11 will occur more often than the sum 12. (Of course, as students run
their models, they will discover that, while this is generally true, there will be
samples in which there are more 12s than 11s, especially if the sample size is
small.)

One of the possible approaches towards modeling this situation using Tin-
kerPlots is shown in Figure[[l The model includes a sampler device comprising
two spinners, shown in Figure 1(a), each of which is a model of one die. The
sampler will randomly select a value for each of its spinners every time it is run.
Each spinner has six possible values. The surface area specified for each value
determines its weight in the sample. Effectively, this sampler models a joint
probability distribution over two independent random variables with six values
distributed uniformly. The value of “Repetitions”, set to 1,000 in this example,
determines the number of times the sampler is run. The value of “Spins”, set to
“1” in this example, determines the number of rolls of the two dice at each run.

Figure 1(b) shows some of the data generated by the sampler once it has run.
Each pair in the table represents a roll of two dice. This pair has been separated,
by instigating a “Separate Individual Draws” function in the sampler. To the
right is a graphical representation of all of the sums in the form of a histogram.
Figure 1(a) shows an additional way to model this problem. Here, a single die is
used that is thrown twice at each repetition, hence the value of “spins” is set to
“2”. There are many other ways to use TinkerPlots to solve this problem.

2 Recipes, Planning and Plan Recognition

Students interact with TinkerPlots through a series of rudimentary operations
that create, modify or delete objects such as spinners, plots, and outcomes. We
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Fig. 1. TinkerPlots Sessions Snapshot

will use the term basic actions to refer to these operations, which can often be
carried out by a single keystroke or mouse action. TinkerPlots interactions are
recorded as a linear sequence of basic actions in order of their occurrence. Each
basic action uses a unique tag to refer to an object, which is transparent to the
user. A subset of such an interaction sequence is shown in the leaves of the trees
in Figure Bl For example, the basic action New(Spinner(S;)) adds a new spinner
with ID S;. These actions are serially labeled in order of occurrence. (Due to
layout constraints, the leaves in this figure are not aligned on the same plane.)

We model students’ reasoning about problems using abstract entities, called
complez actions, which capture higher-level, more abstract TinkerPlots activi-
ties, such as adding two dice to a sampler, computing the sum of a roll of two
dice, or fitting sampler data to plot. Complex actions can be decomposed into
sub-actions [7]. A sub-action can be a basic TinkerPlots action or it can be a
complex action itself. A useful distinction between complex and basic actions is
that students can “see” both basic and complex actions, while the TinkerPlots
system can only “see” and register basic actions.

A recipe for a complex action is an ideal sequence of operations for fulfilling
the complex action. Formally, a recipe is a set of sub-actions and constraints such
that performing those sub-actions under those constraints constitutes completing
the action [I2]. These sub-actions are referred to as the recipe’s constituents.
Figure [2 presents recipes for solving the two-dice problem and its constituent
sub-actions. Each recipe for a complex action is represented as a tree of depth
two, in which the leaves correspond to the recipe’s constituent actions (whether
basic or complex), and the root corresponds to the complex action. Basic actions
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Fig. 2. Recipes for Solving the Two-Dice Problem. Dashed edges represent temporal
constraints between actions.

are outlined in plain boxes, while complex actions are outlined in shadowed
boxes. TinkerPlots objects are identified by a unique tag, and recipe actions use
parameters to refer to the TinkerPlots objects they modify. For example the
recipe for the complex action AddTwoDice (s) modifies the sampler object that
is bound to the parameter s.

The order in which actions are performed in a recipe can be constrained by
including temporal constraints between actions, represented as a dotted edge.
Actions within the same recipe can occur in any order as long as they meet
the specified temporal constraints. For example, in the recipe for the action
SolveTheTwoDiceProblem, both actions AddTwoDice (s) and s.SetRepeats(1,000)
can come in any order as long as they both occur before the basic action s.Run.

In addition to the constraints embedded in the recipes, some action combina-
tions are disallowed by the TinkerPlots system itself. For example, it is impossible
to add a spinner to a sampler until the sampler has been created. For expository
convenience, we do not show these constraints in the recipes.

Recipes may be ambiguous, in the sense that there may be several recipes for
completing the same complex action. For example, Figure 2] shows two possible
recipes for completing the complex action AddTwoDice (). One possible recipe
uses a single die that is rolled twice. It includes the sub-actions AddOneDie (s)
and s.SetSpins(1). The other recipe uses two dice that are rolled once. It includes
two sub-actions AddOneDie (s) and the sub-action s.SetSpins(1). In addition, the
same action may be a constituent of several different recipes. For example, the
complex action AddOneDie (s) appears in both recipes for the complex action
AddTwoDice (s).
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Solve the Two Dice Problem
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Fig.3. A Sample Plan

2.1 Planning

Planning is the process by which students use recipes to compose basic and
complex actions towards completing tasks using TinkerPlots. We say that a
recipe for a complex action is fulfilled by a set of temporally-ordered sub-actions
if (1) there is a one-to-one correspondence from each of the sub-actions to one of
the recipe’s constituents; (2) all of the sub-actions agree on the identification tags
for the TinkerPlots objects that are modified by the recipe; and, (3) the order
between sub-actions is consistent with the temporal constraints that are defined
between recipe constituents. Formally, a plan is an ordered set of basic and
complex actions, such that each complex action is decomposed into sub-actions
that fulfill a recipe for some task. Each time a recipe for a complex action is
fulfilled in a plan, there is an edge from the complex action to its sub-actions,
representing the recipe constituents. For example, in Figure[3] the recipe for the
complex action AddTwoDice(S;) is fulfilled by the two AddOneDie(S1) actions
and the action S;.SetSpins(1).

Each tree in FigureBlrepresents a plan that was carried out by the student. The
leaves of the trees represent the basic actions corresponding to the user’s interac-
tion history. (For expository convenience, we have only included a subset of this
interaction history.) The plan that emanates from the complex action SolveTheT-
woDiceProblem shows that the student was able to complete the two-dice problem.

In a plan, the constituent sub-actions of complex actions may interleave with
other actions. In this way, the plan combines the free-order nature of TinkerPlots
recipes with the exploratory nature of students’ learning strategies. Formally, we
say that two ordered complex actions interleave if at least one of the sub-actions
of the first action occurs after some sub-action of the second action.

An example of interleaving actions in this plan are the two complex actions
AddOneDie (S1) We can see this because a constituent of the recipe for the
first AddOneDie (S1) (the action AddSixCases (D3))) occurs after a constituent
of the recipe for the second AddOneDie (S7) (the action AddSixCases(D1)). In
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Figure Bl there are crossing edges between the constituent sub-actions of any
two interleaving actions.

Also shown in Figure Bl are two basic actions outlined in dashed boxes
(S1.SetRepeats(100) and Sy.run) that were not necessary for solving the two-
dice problem. This happened because the user first ran the sampler for 100
repetitions, before running the sampler for 1,000 repetitions, as required by the
problem formulation. These could represent a student’s exploration or a mistake.

3 Plan Recognition

The task of plan recognition in the TinkerPlots domain is to infer students’ plans
based on their interaction history and a set of recipes. A naive approach would
search through the space of all possible plans that are consistent with a user’s
interaction, the recipes, and their constraints. This approach is not feasible. For
each possible action in the plan, we would need to consider all possible expansions
of basic and complex sub-actions as long as their order is permitted by the recipe
constraints. In the worst case, the number of possible plans to consider will be
factorial in the number of basic actions in an interaction sequence.

However, certain qualities of the TinkerPlots domain serve to constrain the
search process. First, it is not possible to generate an infinite plan using Tinker-
Plots recipes. Therefore, we can choose the recipes to be fulfilled in an incremen-
tal fashion, ordered by depth. We define the “depth” of a recipe for a complex
action as the maximum depth of the tree for any plan to complete the complex
action]. Second, the sub-actions of a complex action will always agree on the
identification tags of those TinkerPlots objects that are modified by the complex
action. Therefore, we do not need to consider any action combination that dis-
agree on the ID tags. We can also ignore those action combinations disallowed
by the TinkerPlots system.

As a result, we can construct the following algorithm that incrementally builds
a sequence of plans to explain a user’s interaction history from the leaves upwards.
Each step t of the algorithm maintains an ordered set of actions, denoted P;. Each
of these actions is a root of a tree that is a partial plan that explains some subset
of the user’s interaction history. Py is initialized to include all of the basic actions
in the interaction history. Let G be the set of recipes, and let the recipe in G for a
complex action C' be denoted as R¢. The algorithm proceeds as follows:

For each R¢ in G, sorted b