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Preface

The 9th International Conference on Intelligent Tutoring Systems (ITS 2008) was
held June 23–27, 2008 in Montreal. This year we celebrated the 20th anniversary
of the conference founded in 1988 in Montreal. We have had biennial conferences
for most of the past 10 years around the world, including in Brazil, Taiwan,
France, Canada, and the USA. These ITS conferences provide a forum for the
interchange of ideas in all areas of computer science and human learning, a
unique environment to exchange ideas and support new developments relevant
for the future. The 2008 conference was a symbolic milestone that enabled us to
look back at what has been achieved and what is currently being done, in order
to face the challenges of tomorrow.

Much has changed in the last 20 years in terms of hardware, software, pro-
grammers, and education stakeholders. Technology is now networked, pervasive,
and available anyplace and anytime. The potential exists to provide customized,
ubiquitous guidance and instruction. However, much has remained the same and
the need is just as great to model the learner, teaching strategies and domain
knowledge. This year we saw an increase in research into student affect (moti-
vation, boredom, and frustration), specifically attempts to detect student affect,
while feedback studies considered which responses to provide given both student
cognition and affect. Studies also looked at the impact on learning of positive
feedback and politeness in feedback. New research was seen in data mining based
on larger studies that use data from real students to diagnose effective learning
and teaching. So much interest has been generated in this area that the first
International Conference on Educational Data Mining was co-located with ITS
2008.

This year we received 207 submissions from six continents and accepted 63 full
papers (30.4 %) and 61 short papers. Presented papers came from 20 countries,
several of which have not been represented in previous ITS conferences. All
accepted papers are published in this proceedings volume long papers are allotted
ten pages and short papers three pages. We also present brief abstracts of the
talks of our five invited speakers: Alan Collins, Julita Vassileva, Kurt VanLehn,
Judy Kay, and Alan Lesgold. The conference also included seven workshops,
interactive events, two tutorials, and a Young Researcher’s Track.

The conference provided opportunities for the cross-fertilization of informa-
tion and ideas from researchers working on interactive and adaptive learning
environments for learners of all ages, for subject matter that spans the school
curriculum (e.g., math, science, language learning), and for professional applica-
tions in industry, military, and medicine. Presented papers offered a rare profes-
sional opportunity for researchers to present cutting-edge research from a wide
range of topics, including the fields of artificial intelligence, computer science,
cognitive and learning sciences, psychology, and educational technology.



VI Preface

This year we instituted a meta-review process in which Senior Program Com-
mittee (PC) members managed three reviewers for each submitted paper and
were able to engage in an e-mail discussion with reviewers for each paper. This
resulted in more detailed reviews and enabled reviewers to consider and explore
more deeply the reactions of other reviewers to each paper.

We thank the many, many people who helped make this conference possible.
We especially thank our energetic PC, with over 100 members, including Senior
PC, PC members and external reviewers who read numerous papers, managed
other reviewers, and generally submitted their reviews on time. We thank the
external reviewers who were recruited by PC members to assist us when we
exhausted our initial cadre of reviewers. We thank the individual committees,
including an Organizing, Program and Conference Committee along with the
Chairs for Tutorial, Young Researchers, Demonstration, Poster, and Workshop
activities. We are grateful to our longstanding International Steering Committee
(14 members) who helped and guided us when decisions were needed. We are
especially grateful to the General Chairs, Claude Frasson and Gilles Gauthier,
who kept us on schedule and provided supportive advice. All these people are
acknowledged in the next few pages and at http://gdac.dinfo.uqam.ca/its2008/.

Finally, we gratefully acknowledge Springer for its continuing support in pub-
lishing the proceedings of ITS 2008 and the generous support of our sponsors
including University of Quebec at Montreal, McGill University, and the Univer-
sity of Montreal.

April 2008 Beverly Park Woolf
Esma Aı̈meur

Roger Nkambou
Susanne Lajoie
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Using an Emotional Intelligent Agent to Reduce Resistance to
Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Ilusca Lima Lopes de Menezes and Claude Frasson

Story Generation to Accelerate Math Problem Authoring for Practice
and Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790

Yue Cui, Rohit Kumar, Carolyn P. Rosé, and Kenneth Koedinger
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All around us people are learning with the aid of new technologies: children are play-
ing complex video games, workers are taking online courses to get an advanced de-
gree, students are taking courses at commercial learning centers to prepare for tests, 
adults are consulting Wikipedia, etc. New technologies create learning opportunities 
that challenge traditional schools and colleges. These new learning niches enable 
people of all ages to pursue learning on their own terms. People around the world are 
taking their education out of school into homes, libraries, Internet cafes, and work-
places, where they can decide what they want to learn, when they want to learn, and 
how they want to learn.  

The emergence of alternative venues for learning threatens the identification of 
learning with school. The tension between new forms of learning and old forms of 
schooling will not be resolved with the victory of one or the other.  Rather, we see the 
seeds of a new education system forming in the rapid growth of new learning alterna-
tives such as home schooling, learning centers, workplace learning, distance educa-
tion, Internet cafes, educational television, computer-based learning environments, 
technical certification, and adult education. This does not mean that public schools are 
going to disappear, but their dominant role in education will diminish considerably.  

The changes we see happening in education are neither all good nor all bad. We 
see many benefits to the kinds of education that technology affords, such as the ability 
of learners to pursue deeply topics of interest to them and to take responsibility for 
their own education. We also see many benefits in the successful history of traditional 
public schooling, which has provided extraordinary access to learning, status, and 
economic success for millions of students over the course of the past two centuries.  
But at the same time the roads to dystopia are also open. In particular, the new tech-
nologies can undermine both Thomas Jefferson’s vision of educating citizens who can 
make sensible public policy decisions, and Horace Mann’s vision of a society where 
everyone can succeed by obtaining a good education. Increasing the ability to person-
alize educational opportunities gives a natural advantage to those who can afford the 
services.  Our fear is that citizenship and equity may be undermined by the fragmenta-
tion and customization afforded by the information revolution.  

The developments described above are changing how people think about educa-
tion. This rethinking will take many years to fully penetrate our understanding of the 
world and the society around us. Eventually when people and politicians become 
worried about what kids are learning or what adults don’t know, their automatic reac-
tion may not be “How can we improve the schools?” Instead they may ask, “How can 
we develop games to teach history?”, “How can we make new technology resources 
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available to more people?” or “ What kinds of tools can support people to seek out 
information on their own?” These are all questions that push the envelop for improv-
ing education out of the schools and into new venues. The link between schooling and 
learning forces our conversation into institutional responses - we don’t yet know how 
to ask wider questions when we think about improving education. To be successful, 
leaders will need to grasp these changes in a deep way and bring the government’s 
resources to bear on the problems raised by the changes that are happening. They will 
have to build their vision of a new education system around these new understand-
ings. 

The rethinking that is necessary applies to many aspects of education and society. 
We are beginning to rethink the nature of learning, motivation, and what is important 
to learn. Further the nature of careers are changing and how people transition back 
and forth between learning and working. These changes demand a new kind of educa-
tional leadership and changing roles for government. New leaders will need to under-
stand the affordances of the new technologies, and have a vision for education that 
will bring the new resources to everyone. 



Life-Long Learning, Learner Models and

Augmented Cognition

Judy Kay

CHAI: Computer human adapted interaction research group
School of Information Technologies
The University of Sydney, Australia

judy@it.usyd.edu.au

Abstract. Our field of Intelligent Tutoring Systems has long been in-
spired by the vision of achieving huge improvements in learning via ex-
pert personalised teaching. As we now see computers become ubiquitous
and pervasive, we can broaden that vision to include new ways to learn
what we need to know, when we need to know it, throughout our lives.
In this 20th anniversary of the ITS conferences, we can see that the fu-
ture will bring an ITS vision that is broadened to include augmented
cognition, where systems provide, not only teaching, but also the means
to augment our memory by facilitating access to information as needed,
be that as mediated contact with other people or access to our own ex-
ternal memory, a collection of the things we want to be able to re-find
or remember as needed.

Central to this vision is the life-long learner model because it bears
the responsibility for modelling relevant aspects of the learner so that
an ITS can help us access the information we need to meet our needs.
This talk draws on the foundations of ITS work to create a view of the
nature of that life-long learner model, the processes of life-long learner
modelling and the ways that an ITS can make use of these. The talk
illustrates the vision in terms of representations of learner models, user
interface and other practical concerns such as privacy.

1 ITS as a Grand Challenge Problem

The ITS research community has been driven by the importance of the human
need to learn and to access information. We now have a long track record of
work towards understanding how to push the limits of technology in support of
improved learning. This draws on both improved understanding of learning and
human cognition and equally, on creating new ways to build software systems
that are effective aids for learning.

More recently, there has been clear recognition of the importance of our vi-
sion and goals as well as the challenges in achieving them. In 2002, the Com-
puting Research Association (CRA) identified five Grand Research Challenges
in Computer Science and Engineering1. One of these, Provide a Teacher for
1 http://www.cra.org/grand.challenges/
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Every Learner, matches the ITS goal of personalised teaching. Subsequently,
the United Kingdom Computing Research Committee (UKCRC) identified nine
Current Grand Challenges for Computing2. One of these GC8, Learning for
Life, recognises the importance of the multidisciplinary research that is already
a strong part of the ITS tradition. Another, GC3, Memories for Life is also
closely aligned ITS research. In the last year, another peak body, the National
Academy of Engineering identified 14 wide-ranging grand challenge problems.
One of these is Advance personalized learning3, which recognises the importance
of research into technology to support instruction that “can be individualized
based on learning styles, speeds, and interests to make learning more reliable”.
This, too, is directly aligned with the goals of the ITS community. This talk will
explore two key aspects that are at the core of a research agenda that tackles
these grand challenge research problems.

2 Life Long Learner Models

Learner models are at the heart of the personalisation of ITSs [1]. For life-long
learning, we need to explore ways to build life-long learner models. These have
the potential to track learning progress over long periods and across the range
of sources of evidence about the learner’s progress.

This talk will explore some of the issues that arise as we move towards such
models. Some of these have already had considerable attention within our com-
munity. Notably, there has been wide recognition of the importance of inter-
operability, where there can be effective communication between ITSs. The talk
will review approaches based on semantics and standardisation efforts and how
these appear to provide some potential foundations for ensuring that a mean-
ingful long term learner model can draw upon information that is harvested by
the range of learning systems, as well as other software, that a person may use
throughout their life. The talk will examine ways we will be able to make use of
both conventional learning tools and environments, such as learner management
systems (LMSs) as well as ITSs, with their especially rich information about the
learners. The talk will explore alternative lines of research that can enable us
to exploit the vast quantities of electronic traces of learner activity within con-
ventional software. Taking the example of an LMS, we can, on the other hand,
explore the challenges on enhancing it with learner models. Alternatively, we
can make post-hoc interpretations of the vast data available from such tools, the
electronic traces that learners leave through their interaction. These have huge
potential to provide invaluable evidence for a rich life-long learner model. An-
other key is the human-in-the-loop approaches, particularly open, transparent
and scrutable learner models. Our research agenda for life-long learner models
must also make meaningful progress on privacy management for these models.

2 http://www.ukcrc.org.uk/grand challenges/current/index.cfm
3 http://www.engineeringchallenges.org/cms/8996/9127.aspx
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3 Life-Long Augmented Memories

The ubiquity and pervasive nature of computers has the potential to have im-
portant impact on the our learning needs and goals because we may be able to
rely on technology to augment our memories. This talk will explore key direc-
tions for research which takes account of this ubiquitous nature of computing:
approaches to just-in-time learning, delegation of remembering to the computer
and ways that electronically mediated collaboration can support remembering
by indirection, aided by other people. Our focus will be on the links between
such augmented cognition and life-long learner models.

Reference

1. Self, J.: The defining characteristics of intelligent tutoring systems research: ITSs
care, precisely. International Journal of Artificial Intelligence in Education 10(3-4),
350–364 (1999)
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I discuss what I learned while developing five generations of intelligent coached 
apprenticeship systems somewhat earlier than hardware, basic software support, 
programmers, or users were ready for them. First, it was essential to remain focused 
on the central instructional principles driving our work.  Second, we learned that the 
social issues in deploying novel systems trump any demonstrations of return on 
investment or efficacy. People only use what they are comfortable using. Third, we 
learned that being as free as possible of specific operating system or software 
commitments was absolutely necessary. Fourth, we learned that the fundamental role 
of coached apprenticeship systems is to efficiently provide the rare moments from 
real life that afford the chance to learn deep and transferable skills and knowledge. 
Fifth, we learned that developing intelligent coached environments affords 
opportunities for learning by teachers/trainers and designers of work processes as well 
as by students/trainees. Finally, we learned that capabilities for which we can have 
complete student models are exactly those destined to be taken over by machines, 
placing a premium on far transfer as the goal for high-end training/teaching systems. 
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Face-to-face tutoring by an expert human tutor is widely thought to be more effective 
than intelligent tutoring systems (ITS), which are in turn thought to be more effective 
than computer-aided instruction (CAI), computer-based training (CBT), etc. The latter 
tutoring systems have students work out complex solutions on paper, then enter their 
answer into the tutor, which gives them feedback and hints on their answer. Thus, 
CAI, CBT, etc. are answer-based tutoring systems. This is a low level of interactivity, 
in that the student may make many inferences between the time they start the problem 
and when they first get feedback on their thinking.  With a typical ITS, such as the 
Andes physics tutoring system, students enter every step of a complex solution into 
the tutor, which gives them feedback and hints, either immediately or when they have 
finished entering all the steps. These systems are step-based tutoring systems, because 
the feedback and hints are directed at steps rather than the final answer. They are 
moderately interactive, because students make a moderate number of inferences per 
step.  When interacting face-to-face with a human tutor, students often talk aloud as 
they reason, and thus allow the tutor to hear and intervene at almost every inference 
made by the student.  Thus, human tutoring is highly interactive.  Natural language 
tutoring systems, such as Why2-Atlas and Cordillera, are engineered to act like hu-
man tutors, so they too are highly interactive.  If we use “natural tutoring” to cover 
both human tutoring and natural language tutoring, then the three types of tutoring can 
be ordered: 

 
answer-based tutoring < step-based tutoring < natural tutoring 

 
This certainly holds for their degree of interactivity, as just argued.  This is also 

thought to be the ordering for their learning effectiveness.  Moreover, it is sometimes 
thought that higher interactivity affords or perhaps even causes higher learning gains.    

This talk will debunk that myth.  In particular, experiments with human and com-
puter tutors usually find that learning gains are ordered this way: 

 
answer-based tutoring < step-based tutoring =natural tutoring 

 
Increasing interactivity beyond the step level appears to neither afford nor cause 

higher learning gains. 
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Abstract. The advance of new social computing technologies (called often Web 
2.0) brings new opportunities and challenges for eLearning. They allow us to 
leverage an endless amount of learning resources, repositories and people – 
learners, tutors, and teachers. By wise selection and combination of these re-
sources, the “holy grail” of AI and Education can potentially be achieved – a 
personalized, adaptive learning environment. Yet there are many challenges 
along the way. To combine functionality offered by various applications, proto-
cols are required (e.g. SOAP) and smooth interface integration (e.g. mash-ups). 
The resources are distributed and decentralized, created by different authors and 
organizations and following different semantic and annotation agreements. Im-
posing hard standards is not going to work, if we want to tap into a wide pool of 
user-contributed resources, which is the key feature of Web 2.0. Combining 
these resources requires shared meaning, even if just on a limited scale and 
time, for the purpose at hand. Community-based semantic agreements (ontolo-
gies) that are constantly evolving are one way to deal with this problem. User 
data is collected by many applications that create their own user models. Shar-
ing this data brings many advantages for personalization, but also creates risks 
related to privacy. Mechanisms for combining user data and taking action need 
to be developed. Trust and reputation mechanisms and decentralized user mod-
eling address this problem. Finding appropriate data and applications/services 
for a given learner at a given time is a big issue. Collaborative filtering is a 
well-established, relatively light-weight technique in areas that do not require 
interpreting complex user input. However, learning applications require com-
plex user input. Complex models of learner knowledge need to be correlated, 
and the cold-start / sparse data problem is a serious hurdle. Finally, the most 
critical problem from my point of view is motivating stakeholders (authors, 
teachers, tutors, learners) to participate. Without their participation, the pool of 
resources and learners (peers and collaborators) to interact with will never reach 
the level of diversity necessary to ensure personalized, adaptive learning envi-
ronments for a large number of learners. Designing incentive mechanisms for 
participation can be viewed as a kind of instructional planning, which can be 
successful in achieving certain levels and quality of participation. The talk pro-
vides an overview of these issues and research that addresses them.    
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Abstract. The relationship between emotions and learning was investigated by 
tracking the affective states that college students experienced while interacting 
with AutoTutor, an intelligent tutoring system with conversational dialogue.  
An emotionally responsive tutor would presumably facilitate learning, but this 
would only occur if learner emotions can be accurately identified. After a learn-
ing session with AutoTutor, the affective states of the learner were classified by 
the learner and two accomplished teachers. The classification of the teachers 
was not very reliable and did not match the learners self reports. This result 
suggests that accomplished teachers may be limited in detecting the affective 
states of learners. This paper discusses the implications of our findings for theo-
ries of expert tutoring and for alternate methodologies for establishing conver-
gent validity of affect measurement. 

1   Introduction 

Researchers in the ITS community have always considered it important to develop a 
model of the learner.  The model parameters can come from different sources, such as 
static trait measures that are extracted form learner self reports and dynamic measures 
that are induced from the stream of behaviors and thoughts of the learner during the 
course of learning.  ITSs are expected to adapt their tutoring strategies to the learners’ 
aptitude, personality, prior-knowledge, goals, progress, and a host of other parameters 
that presumably impact learning. It is also widely acknowledged that the scope of 
learner modeling need not be restricted to cognitive factors alone, because the affec-
tive states (emotions) of learners are inextricably bound to the cognitive states and 
ultimately linked to learning gains [1-4]. A person’s affective response to an ITS can 
change, depending on their goals, preferences, expectations and knowledge state. For 
example, academic risk theory contrasts adventuresome learners who want to be chal-
lenged with difficult tasks, take risks of failure, and manage negative emotions when 
they occur, whereas cautious learners want to tackle easier tasks, take fewer risks, and 
minimize failure and the resulting negative emotions [5]. 

We know that events that arise during a tutoring session with an ITS cause learners 
to experience a variety of possible emotions that depend on the learning challenges, 
the amount of changes they experience, and whether important goals are blocked. 
Negative emotions such as confusion and frustration occur when learners confront 
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contradictions, anomalous events, obstacles to goals, salient contrasts, perturbations, 
surprises, equivalent alternatives, and other stimuli or experiences that fail to match 
expectations [6-7]. Positive emotions (such as engagement, flow, delight, excitement 
and eureka) are experienced when tasks are completed, challenges are conquered, 
insights are unveiled, and major discoveries are made. 

There is some evidence that there are significant relationships between affective 
states and learning gains. Kim [8] conducted a study which demonstrated that the 
interest and self-efficacy of a learner significantly increased when the learner was 
accompanied by a pedagogical agent that served as a virtual learning companion that 
was sensitive to the learner’s affect. Linnenbrink and Pintrich [9] reported that the 
posttest scores of physics understanding decreased as a function of negative affect 
during learning. Graesser and colleagues have demonstrated that the affective state of 
confusion, where learners’ are in a state of cognitive disequilibrium, with more height-
ened physiological arousal and with more intense thought, is positively correlated with 
learning [1], [3]. Of course, it is important to differentiate the state of being produc-
tively confused, which leads to learning and positive emotions, from being hopelessly 
confused, which has no pedagogical value. The affective state of flow, where the 
learner is so absorbed in the material that time and fatigue disappear [10], is positively 
correlated with learning, whereas prolonged experiences of boredom seem to nega-
tively impact learning gains [1]. 

An affect-sensitive tutor would presumably enhance intelligent learning environ-
ments [3], [11-13]. Such an ITS would incorporate assessments of the students’ cog-
nitive, affective, and motivational states into its pedagogical strategies to keep stu-
dents engaged, boost self-confidence, heighten interest, and presumably maximize 
learning. For example, if the learner is frustrated, the tutor would need to generate 
hints to advance the learner in constructing knowledge, and make supportive empa-
thetic comments to enhance motivation. If the learner is bored, the tutor would need 
to present more engaging or challenging problems for the learner to work on. We are 
currently in the process of developing a version of AutoTutor that is sensitive to both 
the cognitive and affective states of learners [11], [6].  AutoTutor is an intelligent 
tutoring system that helps learners construct explanations by interacting with them in 
natural language and helping them use simulation environments [3]. 

At this point in science, we need to answer several questions about the role of emo-
tions in deep learning before we can build a functional affect-sensitive ITS. One im-
portant question needs to be addressed by all theoretical frameworks and pedagogical 
practices that relate emotions and learning:  How are affective states detected and 
classified?.   

A first step is to explore a simple measurement question: How reliably can  
emotions be classified by humans and machines. An emotionally sensitive learning 
environment, whether it be human or computer, requires some degree of accuracy in 
classifying the learners’ affect states.  The emotion classifier need not be perfect, but 
it must have some degree of accuracy. 

We have previously conducted a study that investigated the reliability by which 
emotions can be classified by the learners themselves versus peers and versus trained 
judges [14]. Our results supported a number of conclusions about emotion measure-
ment by humans. First, the interrater reliability between the various pairs of judges 
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(self-peer, self-trained judge 1, self-trained judge2, peer-trained judge 1, peer-trained 
judge 2, trained judge1– trained judge 2) was quite low, with an average kappa of 
0.18. Second, trained judges who are experienced in coding facial actions and tutorial 
dialogue provided affective judgments that were more reliable (κ = .36) and that 
matched the learners’ self reports better than the judgments of untrained peers.  

The overall low kappa scores between the various judges highlight the difficulty in 
measuring a complex construct such as emotion. It is illuminating to point out, how-
ever, that the kappas for the two trained judges in the Graesser et al [14] study are on 
par with data reported by other researchers who have assessed the reliability of emo-
tion detection by [15-18]. Statisticians have sometimes claimed that kappa scores 
ranging from 0.4 – 0.6 are typically considered to be fair, 0.6 – 0.75 are good, and 
scores greater than 0.75 are excellent [19]. Based on this categorization, the kappa 
scores obtained in these studies would range from poor to fair. However, such claims 
of statisticians address the reliability of multiple judges or sensors when the phe-
nomenon is more salient and when the researcher can assert that the decisions are 
clear-cut and decidable.  The present research goal on emotions is very different.  Our 
goal is to use the kappa score as an unbiased metric of the reliability of making affect 
decisions, knowing full well that such judgments are fuzzy, ill-defined, and possibly 
indeterminate.   

Critics might attribute the low kappa scores achieved in previous studies to various 
inadequacies of our methodology. Predominant among these concerns is the lack of 
knowledge about emotions that people have in general, irrespective of whether the 
affect judges are the participants, their peers, the trained judges, and other researchers 
conducting field observations on affect. Perhaps people with heightened emotional 
expertise (i.e., knowledge, intelligence), such as social workers or FBI agents, would 
provide more accurate models of learners’ emotions. 

In this paper, we directly investigated the above criticism by measuring the degree 
to which people with presumably heightened emotion-detection expertise match the 
judgments of the learner. In particular, we assessed the reliability by which middle 
and high school teachers judged the emotions of the learner. The notion of teachers 
having heightened emotion-detection expertise emerges from diverse investigations of 
accomplished teachers and expert tutors. For example, Goleman [2] stated in his 
book, Emotional Intelligence, that expert teachers are able to recognize a student’s 
emotional state and respond in an appropriate manner that has a positive impact on 
the learning process. Lepper and Woolverton [13] have claimed that it takes expertise 
in tutoring before accurate detection of learner emotions can be achieved. This re-
quirement of expertise is apparently quite important because, according to Lepper and 
Woolverton [13], roughly half of expert tutors’ interactions with the student are fo-
cused on affective elements. These important claims would be seriously limited if 
teachers are unable to detect the affective states of the learner. This question moti-
vated the present study. 

The present study tracked the affective states that college students experience while 
interacting with AutoTutor. We investigated the extent to which teachers can accu-
rately identify the affective states of learners who interact with AutoTutor. This im-
mediate objective feeds into the long-term goal of building a version of AutoTutor  
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that identifies and responds adaptively to the affective states of the learner.  AutoTu-
tor will never be able to adapt to the learner’s emotions if it cannot detect the learner’s 
emotions. Peer tutors and expert tutors similarly will be unable to adapt to the 
learner’s emotions if they cannot identify such affective states.   

2   Methods 

The participants were 28 undergraduates at the University of Memphis who partici-
pated for extra course credit. After completing a pretest, participants interacted with 
AutoTutor for 32 minutes on one of three randomly assigned topics in computer liter-
acy: hardware, Internet, or operating systems (see [3] for detailed information about 
AutoTutor). Two videos were recorded during the participant’s interaction with 
AutoTutor. A video of the participant’s face was recorded with a camera and a screen-
capturing software program called Camtasia Studio was used to capture the audio and 
video of the participant’s entire tutoring session. 

Figure 1 depicts the experimental setup for the study. The participant interacted 
with the AutoTutor program on the center monitor, while the left and right monitors 
captured the participants body movements and face respectfully. During the interac-
tion phase, the left and right monitors were turned off. 

 
 

Fig. 1. Learner interacting with AutoTutor 

After the tutorial session, participants completed a posttest on the learning of com-
puter literacy (which is irrelevant data from the standpoint of the present study). Par-
ticipants subsequently participated in a retrospective emotion judgment procedure. 
The videos of the participants’ face and screen were synchronized and displayed to 
the participants (see middle and right monitors in Figure 1). The participants were 
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instructed to make judgments on what affective states were present at 20-second in-
tervals; at each of these points, the video automatically paused (freeze-framed). Par-
ticipants could also pause the videos at any time in between these 20-second points 
and make affective judgments at those points. 

 A list of the affective states and definitions was provided to the participants. The 
states were boredom, confusion, flow, frustration, delight, neutral and surprise, the 
emotions that were most frequently experienced during previous research with Auto-
Tutor [1], [20]. 

In addition to the self judgments that were provided by the participants, two middle 
school teachers judged all of the sessions individually. The teachers were accom-
plished Master teachers in Memphis middle and high schools who were recognized 
for their accomplishments in motivating students and promoting student learning. 
Since affect judgment is a time consuming procedure, both teachers judged either the 
first half or the second half of each participants session. Specifically, for 14 randomly 
assigned participants, both teachers made affective judgments on the first half of the 
participants’ AutoTutor session. Both teachers judged the second half of the remain-
ing 14 sessions. 

3   Results and Discussion 

Interjudge reliability in judging emotions was computed using Cohen’s kappa for the 
three possible pairs of judges (self vs. teacher1, self vs. teacher2, and teacher1 vs. 
teacher2).  The observations included those judgments at the 20-second interval poll-
ing (N = 1459) and those in-between observations in which at least one judge ob-
served an emotion in between two successive pollings (N = 329). Cohen’s kappa 
scores were computed separately for each of the 28 learners.    

We performed a repeated measures ANOVA, with the three judge pairs as within 
subject factors, and the order (first half vs. second half of participants session) as a 
between subject factor.  There were statistically significant differences in kappa 
scores among the three judges, F(2, 52) = 6.783, MSe = .01, p < .01, partial ηP

2
P = .207. 

Bonferroni post-hoc tests indicated that there were no significant differences in the 
kappa scores between the self and the teachers (κ Bself-teacher1 B= .076, κBself-teacher2 B= .027). 
However, kappa score between the self and teacher2 was significantly lower than the 
kappa between the two teachers (κ Bteacher1-teacher2 B= .123). Furthermore, the interaction 
between judge pair and order was not significant BF(2, 52) < 1,  p = .859, indicating 
that kappa scores were the same irrespective of whether the judgments were made on 
the first or the second half of the learners’ AutoTutor session.  

These results support the conclusion that teachers are not particularly good at judg-
ing the learners emotions. Judgments provided by the two teachers were not very 
reliable (i.e. the teachers did not agree with each other) and did not match the learn-
ers’ self reports. Before we accepted this conclusion too cavalierly, we examined 
whether  the different judge types (self vs. teachers) are sensitive to a different set of 
emotions. We answered this question by examining the proportion of emotions re-
ported by each judge. Table 1 presents means and standard deviations for the proportion 
scores that were computed individually for each of the 28 learners and 3 judges.   
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Table 1. Proportion of emotions observed by self and teachers 

Self  Teacher1 Teacher2  Mean Judges Emotion 
Mean Stdev  Mean Stdev Mean Stdev  Mean Stdev 

Boredom 0.155 0.137  0.044 0.078  0.074 0.072 0 0.091 0.057 
Confusion 0.186 0.149  0.065 0.051  0.188 0.119  0.146 0.070 
Delight 0.031 0.048  0.019 0.027  0.009 0.021  0.020 0.011 
Flow 0.192 0.173  0.634 0.107  0.575 0.187  0.467 0.240 
Frustration 0.130 0.122  0.145 0.097  0.032 0.044  0.102 0.061 
Neutral 0.284 0.248  0.074 0.060  0.108 0.107  0.155 0.113 
Surprise 0.022 0.029  0.018 0.027  0.014 0.026  0.018 0.004 

 
We performed a 3×7×2 factor repeated measures ANOVA on the proportions of 

emotions observed by the three judges. The two within subject factors were the affect 
judge with 3 levels (self, teacher1, and teacher2) and the emotion with 7 levels (bore-
dom, confusion, delight, flow, frustration, neutral, surprise). The order (first half vs. 
second half of participants session) was included as a between subject factor. The pro-
portion scores are constrained to add to 1.0 within order and judge, so it is not meaning-
ful to consider the main effects of order and judge.  However, the main effect of emo-
tion and the remaining interactions are not constrained and therefore justifiable.  

The main effect for emotion was statistically significant, F(6, 156) = 118.455, MSe 
= .017, p < .001, ηP

2
P = .820, as was also the interactions between emotion × order, F(6, 

156) = 2.627, MSe = .017, p < .05, partial ηP

2
P = .092, judge × emotion, F(12, 312) = 

32.204, MSe = .012, p < .001, partial ηP

2
P = .553, and the three way interaction of judge 

× emotion × order, F(12, 312) = 1.997, MSe = .012, p < .05, ηP

2
P = .071. Quite clearly, 

most of the variance is explained by the main effect of differences in emotions and by 
the judge × emotion interaction.  Therefore, we performed follow up analyses of sim-
ple main effects between three judges within the seven emotions. 

Bonferroni post-hoc tests indicated that the proportions of boredom, neutral, and 
frustration reported by the two teachers were statistically similar and quantitatively 
lower than the self judgments. Therefore, it appears that teachers have difficulty in 
detecting states such a boredom and neutral that are accompanied by a generally ex-
pressionless face that is devoid of diagnostic facial cues [21]. But what about frustra-
tion? This is arguably a state that is expressed through significant bodily arousal and 
animated facial expressions. We suspect that the difficulty experienced by the teach-
ers in detecting frustration might be explained by the social display rules that people 
adhere to in expressing affect [22]. Social pressures may result in the learner disguis-
ing of negative emotions such as frustration, thus making it difficult for the teachers 
to detect this emotion. 

It appears that the affective state of flow was detected at higher proportions by the 
two teachers than by the self. However, if self reports of affect are considered to be 
the ground-truth measure of affect, a majority of the instances of flow that were ob-
served by the teachers would be considered to be false positives. It appears, that in the 
absence of sufficient facial and contextual cues, the teachers attribute the learners’ 
emotions to the flow experience. This is clearly attributing too much to the learner. 

Confusion, an emotion that is fundamental to deep learning [1], [3] has a facial im-
print of a lowered brow and tightened eyelids [21].  This was detected at similar rates 
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by the self and teacher1, but at lower rates than teacher2.  This pattern is plausible 
because judgments provided by teacher1 matched judgments provided by the partici-
pants at a somewhat higher rate, although not statistically significant, than teacher2. 

Finally, delight and surprise were detected at similar rates by the self and the two 
teachers. Experiences of delight and surprise are rare, however (2% each when aver-
aged across all judges), and are typically accompanied by highly animated facial ac-
tivity [21]. Such salient constraints would explain why they were detected at similar 
rates by all the judges. 

The low kappa scores between the self and the two teachers, coupled with the dif-
ferences in the proportion of emotions experienced by the self and the teachers, sug-
gest that the teachers tend to judge self classified experiences of boredom, confusion, 
frustration, and neutral as similar to the state of flow. This was verified by conducting 
a follow-up analyses that focused on isolating the source of errors in the teachers’ 
judgments. Two confusion matrices were computed, each contrasting the self judg-
ments with judgments by teacher1 and teacher 2. Table 2, presents an average of the 
two matrices. 

An analysis on Table 2 revealed two clear sources of discrepancies between the 
self judgments and the judgments provided by the two teachers. First, the teachers 
appear to annotate several of the emotions as being in the state of flow or heightened 
engagement. For example, the teachers classified 41% of self diagnosed experiences 
of boredom as flow. This miscategorization is heightened for neutral, with 61% self 
reported neutral instances being classified as flow. The second source of classification 
errors occurs at instances where the teacher fails to make an emotion judgment, but 
the self provides a rating (see the None column). This occurs during instances when 
the learner makes a voluntary affect judgment, in between the 20 second stops, and 
the teachers fail to detect those points. 

Table 2. Confusion matrix contrasting self judgments with average of teachers’ judgments 

Teachers Judgments Self  
Judgments Boredom Confusion Delight Flow Frustration Neutral Surprise None 
Boredom 0.13 0.10 0.00 0.41 0.08 0.07 0.01 0.25 
Confusion 0.05 0.14 0.01 0.40 0.05 0.06 0.02 0.31 
Delight 0.02 0.06 0.03 0.38 0.05 0.01 0.02 0.42 
Flow 0.05 0.13 0.01 0.52 0.04 0.09 0.00 0.10 
Frustration 0.03 0.08 0.01 0.46 0.05 0.05 0.01 0.28 
Neutral 0.05 0.09 0.01 0.61 0.05 0.09 0.01 0.10 
Surprise 0.02 0.04 0.05 0.19 0.05 0.05 0.00 0.56 
None 0.02 0.03 0.01 0.07 0.04 0.01 0.01 0.83 

4   General Discussion 

An emotionally sensitive tutor, whether human or artificial, would presumably pro-
mote learning gains, engagement, and self-efficacy in the learner. Such a tutor should 
have different strategies and dialogue moves when the learner is confused or frus-
trated than when the learner is bored. However, both human and automated tutors can 
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be emotionally adaptive only if the emotions of the learner can be detected.  The ac-
curacy of the detection need not be perfect, but it should be approximately on target. 

We have previously documented that trained judges who are experienced in coding 
facial actions and tutorial dialogue provide affective judgments that are more reliable 
and that match the learner’s self reports better than the judgments of untrained peers. 
[14]. The results of this study support a number of additional conclusions about emo-
tion detection by humans. It appears that accomplished teachers do not seem to be 
very adept at detecting the learners’ emotions. Emotion judgments provided by the 
two teachers were not very reliable, i.e. the teachers did not agree with each other, and 
their judgments showed very little correspondence to the learner’s self reports. In fact 
the degree to which the teachers affective judgment matched the self reports of the 
learner were on par with peer judges and were quantitatively lower than the trained 
judges. So untrained peers and accomplished teachers do not seem to be very profi-
cient at judging the emotions of the learner. 

It is possible that the assessments of learner affect provided by peers and teachers 
would be more accurate in naturalistic settings such as tutoring sessions or class-
rooms, where the judgments would occur in real time and the peers and teachers 
would have established a rapport with the students and have vested interests in their 
learning. These conditions are difficult to recreate in a laboratory, as it would be diffi-
cult to envision a scenario where the learner, a peer, trained judges, and teachers 
could simultaneously provide online emotion judgments. Nevertheless, our results 
suggest that, when presented with the identical stimulus (videos of the participants 
face and screen), judgments by the self and trained judges were more reliable than 
judgments by the peers and teachers.  

It appears that each type of affect judge, be it the self, the untrained peer, the 
trained judges, or the accomplished teachers, bring a unique set of perspectives, stan-
dards, and experience to the affect judgment task. For example, it is reasonable to 
presume that participants tap into episodic memories of the interaction in addition to 
the prerecorded facial cues and contextual features when they retrospectively judge 
their own emotions (self judgments).  

Unlike the self, the trained judges are not mindful of the episodic memory traces of 
the participants. However, they have been extensively trained on detecting subtle 
facial expressions with the Facial Action Coding System [22], and are more mindful 
of relevant facial features and transient facial movements. They also have consider-
able experience interacting with AutoTutor. Our results suggest that training on facial 
expressions (diagnostic assessment) coupled with knowledge on AutoTutor dialogue 
(predictive assessment), makes the trained judges robust affect detectors. The trained 
judges exhibit reliability (they agree with each other) as well as convergent validity 
(their judgments match self reports). Therefore, from a methodological perspective, 
retrospective affect judgments by the participant combined with offline ratings by 
trained judges, seems to be valuable protocol to establishing construct validity in 
emotion measurement, at least when compared to untrained observers, peers, and 
even teachers. 

Affect sensitivity is an important requirement for ITSs that aspire to bridge the 
communicative gap between the highly expressive human and the socially challenged 
computer. Therefore, integrating sensing devices and automated affect classifiers is an 
important challenge for next generation ITSs that are attempting to broaden the  
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bandwidth of adaptivity to include the learners’ cognitive, affective, and motivational 
states. Although, a handful of automated affect detection systems operate in an unsu-
pervised fashion, supervised machine learning techniques are at the heart of most of 
the current affect detection systems. Consequently, providing accurate models of 
ground-truth for a complex construct such as emotion is an important requirement for 
such supervised affect classifiers. We hope to have scaffolded the development of 
automated affect-detection systems by providing a methodology to annotate the emo-
tions of a learner in an ecologically valid setting (randomly selected participants 
rather than actors and the emotional expressions occurred naturally instead of being 
induced), and contrasting our methodology of self plus trained judgments with alter-
natives (peers, teachers, observers [1], and emote-aloud protocols [20]. We are cur-
rently developing such an emotion classifier with an eye for integrating it into an 
affect-sensitive version of AutoTutor. Whether an automated affect-sensitive AutoTu-
tor has a positive impact on learning awaits future research and technological devel-
opment. 
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Abstract. Research shows that emotions play an important role in learning. 
Human tutors are capable of identifying and responding to the affective states of 
their students; therefore, for ITSs to be truly affective, they should also be capa-
ble of tracking and appropriately responding to the emotional state of their us-
ers. We report on a project aimed at developing an affect-aware pedagogical 
agent persona for an ITS for teaching database design skills. We use the dimen-
sional approach to affective modeling, and track the users’ affective state along 
the valence dimension as identified from tracking the users’ facial features. We 
describe the facial-feature tracking application we developed, as well as the set 
of rules that control the agent’s behavior. The agent’s response to the student’s 
action depends on the student’s cognitive state (as determined from the session 
history) as well as on the student’s affective state. The experimental study of the 
agent shows the general preference towards the affective agent over the non-
affective agent. 

Keywords: facial feature tracking, affect recognition, emotional intelligence, 
affective pedagogical agents, evaluation. 

1   Affective Gap in Intelligent Tutoring Systems 

Computers have been implicitly designed without awareness of the affective commu-
nication channel. The lack of affective fit between technology and its users is particu-
larly significant in Intelligent Tutoring Systems (ITSs): failing to acknowledge the 
complex interaction between the cognitive and affective processes ubiquitous in hu-
man activities, educational systems might never approach their full potential. Kort and 
Reilly [1] call for a re-engineering of the ITSs’ pedagogy by shifting the focus of re-
search towards expert teachers “who are adept at recognizing the emotional state of 
learners, and, based upon their observations, take some action to scaffold learning in 
a positive manner”. In educational research the difference between learning perform-
ance under the ideal one-to-one tutoring conditions and other methods of instruction 
has been referred as the 2 Sigma problem [2]. It is very likely that the affective gap in 
ITSs can partially explain the 2 Sigma problem in the ITSs’ context. 



20 K. Zakharov, A. Mitrovic, and L. Johnston 

The semantic component of social interaction, most frequently taking the form of 
speech, is often accompanied by the affective interaction component, which is consid-
ered equally or sometimes even more important then the semantic component [3]. Al-
though people in general are not always aware of how exactly their language, posture, 
facial expression and eye gaze convey their emotions, these underpin their interac-
tions and navigation in the social world [4]. Recent research on affect recognition in 
computer-mediated environments opens new perspectives, although very little re-
search has explored the ways in which a computer can be used to address the emo-
tional state of its user in the learning context [5]. However, present-day ITS research 
is facing a wide range of interaction design and technical problems that arise during 
the development of affect-aware ITSs. 

In this paper we present a pedagogical agent capable of active affective support, 
guided by the logic which integrates the learner’s cognitive and affective states. Sec-
tion 1 outlines the supporting research on cognitive and affective processes in the 
learning context. Section 2 presents our approach to affective state detection, while 
Section 3 describes its implementation. Section 4 presents the affective pedagogical 
agent we developed for EER-Tutor, an ITS for relational database design [6]. Section 
5 describes the experiment and its outcomes. Finally, Section 6 concludes the paper 
by discussing our findings. 

2   Affective Processes in the Learning Context 

Prior research suggests a strong interaction between cognitive and affective processes 
in the human mind; in the educational context, stress, anxiety, and frustration experi-
enced by a learner can severely degrade learning outcomes [7]. Researchers have been 
grappling with the question of how to define appropriate behavior within an interac-
tive learning environment. Etiquette is highly context-dependent; consequently what 
may be appropriate in one context may be inappropriate in another. Generic HCI re-
search emphasizes the need to avoid negative affective states such as frustration; fre-
quently mentioned solutions include either (a) trying to determine and fix the problem 
causing the negative feelings, and/or (b) preemptively trying to prevent the problem 
from happening in the first place. However, there are some fundamental differences 
between general HCI etiquette and educational HCI etiquette. Learning from a com-
puter is not just about ease of use; learning can be frustrating and difficult because it 
involves learners’ exposure to errors and gaps in their thinking and knowledge [4]. 

Unfortunately, there is no cookbook defining all the rules for HHI (human-to-
human interaction) that HCI and ITSs developers can simply implement; however, 
one simple rule of thumb suggested in the work of Mishra and Hershey [4] is to apply 
what has been found appropriate in HHI to the design of HCI. However, the feedback 
design in many computer-based educational systems is often based on the simplistic 
and erroneous assumption that praise is assumed to affect behavior positively, irre-
spective of context [4]. Recent studies with AutoTutor explore strategies to address 
boredom, frustration, flow and confusion[8]; AutoTutor detects affective states 
through conversational cues, posture and facial features. 

Kort and Reilly [1] propose a model of constructive cognitive progress that relates 
learning and emotions in an evolving cycle of affective states. The model suggests 
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that this cycle, including its negative states, is natural to the learning process. The 
theory of flow, initially proposed by Csikzentmihalyi in 1990 [9], also attempts to tie 
together cognitive and affective processes. Flow is described as a mental state of op-
eration in which people are fully immersed in what they doing; this state is character-
ized by a feeling of energized focus, full involvement, and success in the process. The 
study of flow has shown that conscious awareness of “flow zone” tends to diminish 
happiness and flow [9]. These findings suggest that conscious awareness of frustra-
tion, feeling of an impasse and other similar negative influences may diminish these 
states. In other words, affective self-awareness, fostered by affective support can as-
sist users in mitigating the detrimental influences of negative affective states on their 
learning. Myers [10] describes two generic varieties of support for emotion regulation 
applicable in HHI: passive and active support. Passive support is used by people to 
manipulate moods, without necessarily addressing the emotions themselves. In con-
trast, active support occurs when people discuss or otherwise address their emotions 
directly as a means of managing them. 

Bringing together the emotional self-regulation, Kort’s theory of emotions in learn-
ing and the theory of flow, Burleson and Picard [11] implement an approach that uses 
affective agents in the role of peer learning companions to help learners develop 
meta-cognitive skills such as affective self-awareness for dealing with failure and 
frustration. In our research we adopt a similar approach by developing an affective 
agent playing the role of a caring tutor capable of offering active affective support. 

If the pedagogical agents are to mimic the human tutors’ affective behavior, the 
agents’ designers need to endow them with social and emotional intelligence. Affec-
tive pedagogical agents should possess the knowledge of how to link the cognitive 
and affective experience of the learner in an attempt to meet the learner’s needs; the 
agents should be able to choose an affective-behavioral strategy suitable for achieving 
the desired effect. Consequently, affective pedagogical agents need to embody a 
higher order of emotional behavior; they have to maintain the history and status of 
their own emotional state and that of the learners, and they have to have the capability 
of self-regulation of emotional state and support for the learner’s emotional state [5]. 

3   Identifying Users’ Affective States 

There are two major theoretical approaches to the study of emotion: dimensional and 
categorical. Theorists who use the categorical approach to emotion attempt to define 
specific categories or types of emotions [12]. Research in this area suggests that there 
are a number of basic emotions (estimates range from three to more than 20) which 
combine to produce all the emotional states which people experience. The dimen-
sional approach conceptualizes emotional space as having two or perhaps three under-
lying dimensions along which the entire range of human emotions can be arranged 
[13]. The most common dimensions are valence (ranging from happy to sad) and 
arousal (ranging from calm to excited). 

In our research, we adopt the dimensional approach: the continuous nature of the 
valence dimension in this approach (versus the discrete states in the categorical ap-
proach) underpins the choices which determine the implementation of modeling of the 
agent’s and user’s emotions. The dimensional approach eliminates the need for  
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classifying the emotional states as belonging to certain categories; potentially, this re-
solves a number difficulties arising in emotion modeling—the label associated with a 
particular emotional display carries a lot less significance then the observed parame-
ters of the emotional state. 

Facial feature tracking techniques are based directly on action units listed in the 
Facial Action Coding System (FACS) [14]. Positive affective valence can be indexed 
through a decrease in the distance between the corner of the mouth on one side of a 
face—action unit #4 (Lip Corner Puller) activated by Zygomaticus major; this action 
results in the upward and outward turning of the mouth into a smile. Negative 
affective valence can be indexed through a decrease of the distance between the inner 
corners of eyebrows—action unit #12 (Brow Lowerer) activated by Corrugator 
supercilii; this results in the furrowed eyebrows look. We developed an algorithm for 
feature tracking which utilizes a combination of common image processing tech-
niques, such as thresholding, integral projections, contour-tracing and Haar object 
classification; many of these operations are available though the OpenCV1 library. 
Throughout the algorithm, the focus of attention is shifted among a number of regions 
of interest, determined on the basis of the anthropomorphic constraints describing 
human face geometry [15]. The algorithm relies on a few session-dependent threshold 
values for processing eye, brow and mouth regions. To accommodate lighting varia-
tions, the threshold values have to be chosen manually during algorithm calibration at 
the start of each tracking session. The feature detection algorithm includes five steps: 
(1) face region extraction; (2) iris detection; (3) outer eye corners detection; (4) mouth 
corners detection and (5) inner brow corners detection. 

                                                           
1 http://www.intel.com/technology/computing/opencv/—Open Source Computer Vision library. 

Fig. 1. The left image shows an example frame with the detected features. The right image
shows the core features tracked by the feature-tracking algorithm. 
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Figure 1 shows facial features labeled according to the corresponding algorithm 
steps. Facial feature detection is the first stage of affect detection—the rest is based on 
the idea of facial animation parameter normalization described in [16]; in this tech-
nique the feature displacement is measured on the basis of a set of facial parameters 
for a neutral expression. At the start of every session, during calibration, the algorithm 
stores three parameters which are ratios of distances ERMR + ELML and BRBL to the 
distance between the pupils, PRPL shown in Figure 1. Real-time analysis of the differ-
ences between the ratios saved during calibration and the ratios calculated for each 
frame is the key to feature displacement. The algorithm does not attempt to determine 
affective state in every frame; rather our algorithm makes its decisions on the basis of 
observed changes throughout the session. Positive affective valence is indexed by the 
reduced distance between the corners of eye and mouth; negative valence is indexed 
by the reduced distance between the inner eyebrow corners. With every consecutive 
update received from the feature tracking code, the affective state is updated, register-
ing transitions between negative, neutral and positive affective states. 

4   Affective Pedagogical Agent for EER-Tutor 

To accommodate the preferences of users, we created two female and two male Hap-
tek2 characters. The agents were designed to appear as young people approximately 
20 to 30 years of age. Haptek’s People Putty SDK allows for fine-grain control over 
the agent’s features and behavior in a way which is consistent with the dimensional 
approach to emotion modeling. People Putty exposes a two-level API for controlling 
its characters’ emotional appearance. On the lower level, the emotional appearance 
can be controlled through a set of parameters associated with the characters’ facial 
features; these parameters define the position and shape of the eyebrows, the corners 
of the mouth, the overall position of the head and so on. We chose a subset of  
parameters to control the characters’ appearance changes along the affective valence 
dimension ranging from sad to happy. Haptek characters use Microsoft Speech API-
compatible Text-to-Speech (TTS) engines to generate verbal narrations along with re-
alistic lip-sync movements. For the experimental studies we acquired two reportedly 
high-quality TTS Cepstral3 voices—one male and one female. 

The agent’s persona is guided by a set of fifteen rules which implicitly encode the 
logic of session history appraisal. The rules assume that continuous lack of cognitive 
progress will be accompanied by a negative affective state, because the user will be 
dissatisfied with the progress of the current task; conversely, a satisfactory progress 
will result in a positive affective state. Each rule corresponds to a pedagogically-
significant session state which requires the agent’s response. For example there are 
rules requiring the agent to greet users when they sign on, submit a solution, ask for a 
new problem and so on. Each rule has a set of equivalent feedback messages deter-
mining the agent’s verbal response; in addition, each rule includes a numeric value 
which triggers a change in the agent’s affective appearance. For example, when the 
user reaches correct solution, along with a congratulatory message the agent responds 
with a cheerful smile. On the other hand, when the user is struggling with the solution 
                                                           
2 http://www.haptek.com/—Haptek People Putty SDK site. 
3 http://www.cepstral.com/—Cepstral Text-to-Speech engires. 
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resulting in multiple submissions with errors, the agent’s verbal response consists of 
the list of errors, along with an affective facial expression—the agent’s face looks sad 
as if the agent is empathizing with the user (Figure 2). The agent’s responses de-
scribed above rely only on the appraisal of the cognitive state. The agent has its own 
affective module, which stores the current affective state; in the course of a session, 
the agent’s affective state may be affected by the session events, but in the absence of 
the affect-triggering changes, the agent’s affective state always gravitates towards the 
neutral state, as it is the case with human emotions. 

The agent’s affective awareness is intended to give the agent the capability of pro-
viding active affective support by addressing the user’s feelings. The affective state 
appraisal is implicitly encoded in a set of rules corresponding to a subset of pedagogi-
cally-significant situations described above. The agent is capable of differentiating be-
tween positive and negative affective states; however, the agent addresses only steady 
negative affective states. The rationale for this approach is based simultaneously on 
the flow theory and on the model of cyclic flow of emotions in learning. The state of 
positive flow may be disrupted by making the subject aware of the flow; thus the 
agent does not need to interfere if there is no negative affect. When the user is happy 
with the state of the session, it is unlikely the agent’s affective feedback will improve 
anything, even if the agent is beaming with happiness and enthusiasm; if anything, 
such an interference may break the mood or unnecessarily distract the user. On the 
other hand, making the subject aware of their negative state may distract them from 
their negative feelings and move them along towards their goal. Apart from  
 

Fig. 2. The state of the agent after a few consecutive incorrect solution submissions 
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responding to user-generated interface events (i.e. solution submission), the agent can 
intervene with affect-oriented messages when the user’s affective state degrades. 

Certainly, the affect-oriented messages triggered by negative affective states run 
the risk of making a bad situation worse, because a user afflicted by negative feelings 
might consider any interruptions irritating. With this in mind, we tried to design our 
agent’s behavior to be as unobtrusive as possible; the agent only provides affect-
oriented content if the subject’s facial feature tracking data indicates the dominance of 
the negative affective state. In our implementation, the interval to be taken into con-
sideration is a configurable parameter; for the evaluation study it was set to two min-
utes. Thus the agent, while responding to interface events, such as solution submis-
sion, may add an affect-oriented message to its feedback only if the negative affect 
has been prevalent during the last two minutes and if the user did not receive affective 
feedback during that time. The same logic is applied to the agent’s affective interjec-
tions in the absence of interface events. The following are examples of feedback mes-
sages used by the agent for affect-oriented feedback both for user-generated events 
and unsolicited affective interventions—these messages are intended to address the 
user’s negative feelings and express empathy in a way suitable in the given context: 

• “I’m sorry if you are feeling frustrated—it’s just that some of the problems de-
mand a lot of work.” 

• “I apologize if you feel negative about this practice session—some of the solu-
tions are quite complex.” 

• “It does not look like you are not enjoying this practice session—but if you keep 
solving these problems, you will be better prepared for future assessment.” 

5   Experiment 

In order to evaluate the affective agent, we performed a study in an introductory data-
base course in March–April 2007. The experimental group had access to the affect-
aware version of the agent, while the control group had the affect-unaware version of 
the agent. This version of the agent was guided by rules without affect-oriented con-
tent so the agent did not generate affective facial or verbal reactions, but always re-
mained neutral. The task-oriented feedback for both conditions was identical. The 
participants were randomly allocated to the control and experimental conditions. All 
users were familiar with EER-Tutor, because the class was introduced to the sans-
agent version of this system a week before the study. 

The study was conducted as a series of individual sessions, one session per partici-
pant. A webcam for facial feature tracking was mounted on top of the monitor and 
aimed at the participant’s face. We used the Logitech Quick-Cam Pro 5000 webcam, 
operating at the frame rate of 15 fps. at a resolution of 640×480px. For improving the 
accuracy of facial feature tracking, we ran the sessions in a controlled lighting envi-
ronment—two 1000W video-studio lights were pointed away from the participant to-
wards a white screen, which worked as a source of diffused white light. Participants 
wore head-phones to hear the agent’s feedback. 

The participants were expected to spend 45-minutes with EER-Tutor, while solv-
ing problems of their choice from EER-Tutor’s curriculum at their own pace. Before 
each session the experiment convener provided a verbal description of the task. At the 
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end of the session, the participants were asked fill out the questionnaire. Finally the 
participant was debriefed on the nature of the experiment and the underlying research. 

A total of 27 participants took part in the experiment—13 participants (11 male, 2 
female) were allocated to the control and 14 (13 male, 1 female) to the experimental 
condition. The average age in the control and experimental conditions was 22 (s = 
6.5) and 24 (s = 7.1) years respectively. We did not expect to observe significant dif-
ference between the conditions in the objective learning performance measures, be-
cause the sessions were short; therefore the between-condition comparison was made 
on the basis of the questionnaires responses. 

There was no significant difference between the groups in reported levels of exper-
tise in database modeling. The main positive outcome of the evaluation was deter-
mined by the responses to questions, which ranked the appropriateness of the agent’s 
behavior and its usefulness: 64% of the experimental groups thought that the agent’s 
behavior was appropriate, compared to only 30% of the control group; furthermore, 
43% of the experimental group rated the agent as a useful addition to EER-Tutor, 
compared to the 15% of the control group. The affect-aware agent’s behavior was 
rated higher than the affect-neutral agent in terms of both its behavior (Mann-Whitney 
U Test, U = 57, NC = 13, NE = 14, p < 0.05) and usefulness (Mann-Whitney U Test, U 
= 56, NC = 13, NE = 14,p < 0.05). There was no significant difference in the users’ 
perception of learning and enjoyment levels with either version of the agent. The 
rankings of the participants’ perceptions of the agents’ emotional expressiveness did 
not reveal significant difference between the two conditions—30% in the control con-
dition noticed the agent’s emotions versus 15% in the experimental condition. This 
result is somewhat unexpected, because the affective facial expressions were gener-
ated only for the experimental condition. 

Free-form questionnaire responses suggest that the participants received the affect-
aware version with interest and approval; for example, one participant commented: “I 
liked when the avatar told me I shouldn’t worry because of feeling uncomfortable 
about the question I was working on.” Three participants, however, stated they felt 
annoyed when the agent misdiagnosed their affective state; one user commented: 
“The avatar kept asking me if I was feeling negative when I wasn’t.” Another com-
ment suggests that we, as interaction designers, were not clear enough about the inten-
tion the agent was to communicate to the user: “I needed encouragement when I 
wasn’t doing very well, but instead got a sad face”—this particular user clearly did 
not find the agent’s empathy encouraging. In this situation, verbal expression of em-
pathy combined with a positive facial expression could have had a better effect. 

Verbalized feedback was enthusiastically welcomed by the participants; even 
though the questionnaire did not elicit comments on verbalized feedback, 33% of par-
ticipants (approximately equal proportions for each condition) stated that verbal feed-
back was a useful addition to EER-Tutor because it helped the users to remain fo-
cused on the workspace and work faster. Only 11% stated that verbalized feedback 
was unnecessary or distracting. The participants were able to silence the agent and 
stop verbal feedback; only 20% used this feature, but all these participants turned the 
verbal feedback back on within one to four minutes. The participants’ interest in  
the verbal feedback can be explained in the work of Nass and Brave [17], who offer 
the evidence that the awareness of non-human origin of speech is not enough for the 
“brain to overcome the historically appropriate activation of social relationships by 
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voice.” These findings have a vast potential for the future development of affective 
pedagogical agents in ITSs. 

It appears that the agent’s presence raised the level of users’ expectations associ-
ated with the EER-Tutor’s ability to guide them and provide hints. This functionality 
is implicit in EER-Tutor, because at any time the list of errors can be obtained by 
submitting an incomplete solution; in the agent’s presence, however, some users 
wanted the agent to take it upon itself to provide context-specific hints. We observed 
in some cases that the agent did not match the users’ expectations in its ability to take 
control of the situation and provide context-specific unsolicited task-oriented hints 
and assistance when the participants were struggling with the task. For example, one 
user commented: “When it was obvious I was lost, the avatar didn’t offer any tips or 
appropriate questions.” Another user commented that without this ability the agent 
was “a helper that was not very helpful.” 

In general, approval of the pedagogical agent’s presence in EER-Tutor dominates 
the questionnaire responses. The agents’ uptake was not unanimous, but the evalua-
tion results advocate the presence of affective pedagogical agents, with the affect-
aware agent demonstrating superiority over its non-affective counterpart. 

6   Conclusions and Discussion 

The active affective support that we attempted to implement theoretically takes the in-
teraction between the agent and learner to a new level—it brings the pedagogical 
agent closer to the learner. This opens a whole new horizon of social and ethical de-
sign issues associated with the human nature traits. The experiment results indicate a 
range of preferences associated with pedagogical agents and affective communica-
tion. Affective interaction is individually driven, and it is reasonable to suggest that in 
task-oriented environments affective communication carries less importance for cer-
tain learners. Also, some learners might not display emotions in front of a computer, 
or some users might display emotions differently; even though people do tend to treat 
computers and other digital media socially, it does not necessarily mean that people’s 
responses in the HHI and HCI contexts are equivalent. On the other hand, some peo-
ple are naturally more private about their feelings; such individuals might respond to 
the invasion of their private emotional space by a perceptive affective agent with a 
range of reactions from withdrawal to fear. Others might resent being reminded about 
their feelings when they are focusing on a cognitive task; in such situations, people 
might unconsciously refuse to acknowledge their feelings all together. Although the 
interplay of affective and cognitive processes always underpins learning outcomes, af-
fective interaction sometimes may need to remain in the background; whatever the 
case, an ITS should let the user decide on the level of affective feedback, if any, thus 
leaving the user in control [18]. 

Affective state in learning environments and in HCI in general is known to be 
negatively influenced by the mismatch between the user’s needs and the available 
functionality; inadequate interface implementations, system limitations, lack of flexi-
bility, occurrences of errors and crashes—all these factors contribute to the affective 
state. In most cases, it is difficult or virtually impossible to filter out the affect gener-
ated by this kind of problems. These considerations add another level of complexity 
to the modeling of such ill-defined domains as the human-like emotional behavior. 
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At the same time, the inevitable and undisputed truth is that humans are affective 
beings, guided by a complex system of emotions, drives and needs. Some aspects of 
affect-recognition in HCI may forever remain ill-defined or hidden, just as in some 
HHI scenarios one can never be completely and utterly sure of the perceived experi-
ence. Affective agents may improve the learner’s experience in a variety of ways, and 
these will be perceived differently by every individual learner; agents may ease frus-
tration and may make the process more adaptive, interesting, intriguing or appealing. 
If affect-recognition and affective agents can attract more learners and improve learn-
ing outcomes, thus taking the ITS research a step closer to bridging the affective gap 
and possibly resolving the 2 Sigma problem, then this step is worth taking. 
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Abstract. We describe technology to dynamically collect information about 
students’ emotional state, including human observation and real-time multi-
modal sensors. Our goal is to identify physical behaviors that are linked to emo-
tional states, and then identify how these emotional states are linked to student 
learning. This involves quantitative field observations in the classroom in which 
researchers record the behavior of students who are using intelligent tutors. We 
study the specific elements of learner’s behavior and expression that could be 
observed by sensors. The long-term goal is to dynamically predict student per-
formance, detect a need for intervention, and determine which interventions are 
most successful for individual students and the learning context (problem and 
emotional state). 

1   Introduction and Previous Work 

The obvious next frontier in computational instruction is to systematically examine 
the relationship(s) between student affective and learning outcome (performance) 
[18]. Human emotion is completely intertwined with cognition in guiding rational 
behavior, including memory and decision-making [18,11,16,5]. Students’ emotion 
towards learning can have a drastic effect on their learning experience [10]. An in-
structor who establishes emotional and social connections with a student in addition 
to cognitive understanding enhances the learning experience. Responding to a 
learner’s emotion, understanding her at a deep level, and recognizing her affect (e.g. 
bored, frustrated or disengaged) are key elements of quality teaching. If computer 
tutors are to interact naturally with humans, they need to recognize affect and express 
social competencies.  This research attempts to understand how students express emo-
tion, detect these emotions, and quantify emotional variables. 

Previous projects have produced computational tutors that recognized and re-
sponded to models of emotion (e.g., self-efficacy and empathy [15]). Projects have 
tackled the sensing and modeling of emotion in learning and educational gaming en-
vironments [14, 17]. A dynamic decision network was used to measure student emo-
tional state based on variables such as heart rate, skin conductance and eyebrow  
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position [7]. Studies have evaluated the impact of affective interface agents on both 
affective and motivational outcomes based factors (e.g., gender, ethnicity). Lack of 
engagement was shown empirically to correlate with a decrease in learning [4]. In this 
study, however the tutor elicited negative feelings from students, in part because it 
blocked those who were presumed to be gaming the system [1]. Most prior work on 
emotion recognition has focused on deliberately expressed emotions within a labora-
tory setting and not in natural situations such as classroom learning. Many of earlier 
systems did not use fully adaptive learning environments and some were games. The 
research described here takes the next step by integrating emotion detection within an 
intelligent tutor as part of learning in a natural classroom setting. 

2   Overall Plan 

The long-term goal of this research is to dynamically collect information about stu-
dents’ emotional state in order to predict performance, detect a need for intervention, 
and determine which interventions are most successful for individual students and 
context (problem, emotional state). To accomplish these tasks, we implement emotion 
detection within an existing tutor in three phases: classroom observations, the use of 
physiologic sensors, and software algorithms (e.g., machine learning).  We triangulate 
among these approaches to resolve toward agreement (with the realization that we 
may be far away from realizing any consensual agreement). This paper describes the 
first two methods for detection of emotion; classroom observations and a sensor plat-
form. 

In the first phase of this research human observation in the classroom approxi-
mated the type of information the sensors would collect, and corroborated what sensor 
information indicates about students’ emotional state. Classroom observations are a 
useful exploratory strategy because human observers can intuitively discern high-
level behaviors and make appropriate judgments on limited information that may be 
difficult to automatically decide from raw sensor data.  

In the second phase we evaluate low-cost portable and readily deployable sensors 
that dynamically detect emotion using the theoretical basis formed from classroom 
observations. Sensors are can collect constant streams of data in parallel, allowing for 
much more consistent observation than a human ever could accomplish. They are also 
increasingly inexpensive and fast at processing/collecting data. Thus, human observa-
tions identify behaviors that are worth observing and then sensors gather this behav-
ioral data in bulk. We will evaluate the effectiveness of sensors in predicting student 
emotional state, and use reinforcement-learning techniques to decide which interven-
tions are most successful for students in certain emotional states. 

3   Classroom Observations  

Our goal in the first phase of this research was to observe student behavior and iden-
tify variables that represented 1) emotions and desirable/undesirable states linked to 
student learning, and 2) physical behaviors linked to emotion states. This involved 
quantitative field observations in the classroom in which researchers recorded the 
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behavior of students using intelligent tutors. Observations by multiple observers, us-
ing this method, have had high inter-rater reliability and report relatively low impact 
on student behavior once students are used to the observer’s presence [4].  Research-
ers observed students using the Wayang Mathematics Tutor, a tutor that prepares 12-
16 year old students for the mathematics section of standardized exams [2]. The tutor, 
which has been used by a thousand of students represents mathematic skills and rec-
ognizes which skills a student has learned. It shows students their progress and offers 
them a choice of problem difficulty. 

3.1   Experimental Design 

The study included thirty four (34) students in a public school in urban Holyoke, MA, 
split into 3 different classes. Students took a pretest survey to evaluate their attitudes 
towards math (self-concept and value) and goal (learning vs. performance) orientation 
[10], as well as a mathematics pretest with multiple problems to evaluate diverse con-
cepts taught within the Wayang Outpost math tutoring software. Students used the 
tutoring software during a period of 3 weeks and were then given a posttest. While 
students used the Wayang software, three researchers coded behavioral variables and 
subjective variables, such as valence of the student’s emotion. Researchers were 
trained during several sessions to code these variables by observing videos of students 
using Wayang. Coders rotated around the classroom, coding one student at a time. 
Observation periods lasted for approximately 15 seconds, with the following 15 sec-
onds to confirm the observation. Because students may have experienced several be-
haviors/emotions during one time period (e.g., the student was seen forward and then 
back on the chair), we coded the first state seen, but the second one was coded and 
taken account later in the analysis. 

Behavioral and Task-Based Variables. Researchers coded physical behavior (chair 
and head posture, movement, face gestures) and looked for expressed affect in spe-
cific facial expressions (smile, frown, nod) and verbal behavior (loud comments, talk 
with others).  They also coded whether a student appeared to be on- or off-task. The 
process of identifying this behavior is obviously somewhat subjective and noisy (i.e. a 
student may look to be on task when they are not). Students were marked as being 
off-task when they were clearly not using the software appropriately.  This includes 
not looking at the screen, using other programs on the computer, staring blankly at the 
screen without taking any action, conversing with peers about other subject matter, 
etc [4]. On-task students might be reading/thinking about the problem, talking to a 
friend about the problem, or writing a solution on paper. Off-task students are not 
concentrated/engaged on learning and this is undesirable for learning.  

Emotional Indicators. Because it is often difficult to distinguish one emotion from 
another, we limited the conventional emotional terms to four categories of emotions 
that result from the combination of two indicators: (i) valence (positive or negative 
nature of the emotion/energy the student seemed to be expressing) and (ii) arousal or 
level of physical activity. These emotion indicators are used to express the four basic 
emotions in Table 1, and are consistent with early research on emotions [20]. How-
ever, our concern was that this emotional state variable might not be correlated to 
learning without also considering on-task or off-task behavior. It is highly desirable 
for a student to experience a state of joy/excitement when she is on-task, but if the  
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Table 1. Desirable State Variables and Possible Emotion Indicators 

Valence Arousa
l 

On/Off 
task 

Example Student Behavior Desirability 
value 

+ + On Aha moment, yes! That’s it! 2 Highly Desirable 
+ -– On Concentrated on problem-solving 2 Highly Desirable 
-– + On Frustrated with tutoring software, 1 Maybe desirable 
-– -– On Yawning, zoned out within software 0 Not desirable 
+ + Off Laughing with friend 0 Not desirable 
+ -– Off Very focused but on other software 0 Not desirable 
-– + Off Angry quarrel with friend 0 Not desirable 
-– -– Off Zoned out, or sleeping 0 Not desirable 

 

student tends to be joyful while off-task, the emotion variable will not correlate 
strongly with optimal learning. Thus, we created another variable, Desirability Value, 
which is both task- and emotion-dependent (on/off-task, valence and arousal), see 
Table 1. The values reflect the fact that being off-task is undesirable, but also that 
being tired/bored (negative valence, negative arousal) while being on-task is also not 
desirable, as the student may give up. Frustration while being on-task is not necessar-
ily negative; learning episodes often have productive moments of frustration. Finally, 
states of positive valence while being on-task are highly desirable, whether accompa-
nied by high arousal or by low levels of arousal where students experience high men-
tal activity without significant observable emotional expression. 

3.2   Results 

We evaluated correlations among the frequency of behaviors, task and emotional state 
variables. Correlations were computed between global emotion indicators and inter-
mediate emotion/task-based state variables. Then we analyzed the correlation between 
these state-based variables and student behaviors. Students were detected to be on-
task 76% of the time, slightly lower than previous findings regarding off/on-task be-
havior with software learning environments [3].  

Table 2 shows the frequencies of different emotional states. Note that negative va-
lence emotions were observed only 8% of the time. This could be largely due to the 
fact that a neutral or indiscernible valence was coded as positive. Table 2 shows that 
73% highly desirable states were observed, 3% medium desirable states, and 24% 
non-desirable states. 

Table 2. Frequency of Emotion Indicators and Desirable Learning States  

Emotion indicators: Valence  & Arousal Frequency Percent 
+ valence & --arousal (concentrated, satisfied) 148 58% 
+ valence & + arousal (excited, joyful, actively engaged) 85 34% 
- valence  & +arousal (frustrated, angry) 16 6% 
- valence & --arousal (bored, tired) 5 2% 
Total 254 100% 
   

Desirable State Frequency Percent 
Highly desirable 181 73% 
Not desirable 61 24% 
Medium Desirable 7 3% 
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Correlations Between Emotion Indicators and Learning/Attitudes. We analyzed 
whether we can use emotional indicators and other state variables to predict learning 
and motivation, the variables we want to optimize. 
Valence. Valence (or student energy) was significantly correlated to pretest math 
score (N=34, R=.499, p=.003). This suggests that students who are good in math to 
begin with, also have substantially more positive emotions while using the software, 
or at least less unpleasant emotions (e.g. boredom, frustration). Valence was also 
positively correlated to posttest learning orientation (N=30, R=.499, p<.01), but not to 
pretest learning orientation, suggesting that having positive valence during the tutor-
ing session may instill higher learning orientation goals at posttest time. A similar 
effect happened for posttest self-concept and valence (R=.48, p<0.01) where students 
who had higher valence emotions had higher posttest self-concept scores. Thus, the 
presence of positive or negative emotions can help predict more general attitudes to-
wards math at posttest time. 
Arousal. Arousal (or student activity) was negatively correlated with pre-tutor learn-
ing orientation (N=30, R=-.373, p<0.05), suggesting that students who are perform-
ance-oriented (characterized by a desire to be positively evaluated by others) are 
more likely to be physically active or ‘aroused’, as opposed to those who are learning 
oriented, who tend to express less physical activity.  
Emotion (Valence + Arousal). Our emotional scale was correlated with pretest self-
concept (R=.385, p<0.05) and posttest learning orientation (R=.463, p<.05), suggest-
ing that the presence of four types of emotions (determined by combinations of va-
lence and arousal) can help predict more general attitudes towards learning math. 
On/Off task. Being on-task is significantly correlated to posttest self-concept in math 
(N=30, R=.442, p=.02), but not to pretest self-concept in math, suggesting that being 
on-task is not a result of an incoming high self-concept in math. However, it indicates 
that being on-task may generate better self-concept after using the tutor. There is a 
significant correlation between math posttest performance and being on-task (R=.640, 
p<.018). Again, being on-task is not correlated with math pretest performance, mean-
ing that prior math knowledge will not predict students’ tendencies towards on or off-
task behavior. Instead, being on-task seems to lead to higher posttest scores, again 
implying that being engaged with the tutoring system is part of the reason for achiev-
ing higher posttest scores. This is consistent with past research results on on/off task 
behavior [3]. If we can encourage students to be on-task, we will foster better atti-
tudes for math and higher posttest scores. 
Desirable Learning State. Similar significant correlations were found for this variable 
as on/off task (i.e., it predicted posttest scores and posttest self-concept in math to a 
similar extent as on/off task behavior). If we can encourage students to be in our de-
sirable learning states (Table 1), we will also foster better attitudes for math and 
higher posttest scores. 

Correlations Between Emotional/Task-Based States and Behavior. Several corre-
lations were discovered among student behavior (chair, head and hand position), emo-
tion indicators (valence and arousal) and the desirability value, see Table 3. Clearly, a 
high positive correlation exists for arousal and chair movement since we defined 
arousal by physical activity. Meanwhile, valence is not linked to chair movement, 
meaning that students do not express their positive or negative emotions with chair 
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movement. A negative correlation exists for desirable state and being on-task,  
meaning that students are in a more desirable learning state (and more on-task) when 
they don’t move so much in the chair.  

Other interesting findings (some not shown) are that students with positive valence 
emotions tend to sit in the middle of the chair, instead of being towards the side, the 
front or the back of the chair. Last, students leaning on their hands correlated nega-
tively with arousal –as leaning is a fairly inactive posture. It is not that obvious 
though that students in a state of positive valence also tend to lean on their hands.  

Table 3. Pearson correlations among student behavior (chair, head and hand position), emotion 
indicators (valence and arousal), the desirability value and student talk 

VALENCE AROUSAL ON TASK? Desirability
Value

TALK

Chair Movement
N =

-.467   (0.46*)
252

 .420 (.000***)
252

-.140   (.027*)
249

-.154   (.015*)
247

-----

CHAIR Middle .148   (.018*) .107       (090) -.002    (.974) -.003    (.967) -----

N = 252 252 249 247

HEAD MOVE -.224 (.000***) .345  (.000***) -.417   (.000***) -.435    (.000***)
249 249 246 244

HEAD SIDE -.195   (.002**) .247  (.000***) -.325   (.000***) -.337    (.000***) -----
254 254 251 249

HEAD MOVE SIDE -.270   (.000***) .230    (.000***) -.422  (.000***) -.443    (.000***) -----
N = 249 249 246 244

HEAD MIDDLE .202    (.000***) -.186    (.000***) .427   (.000***) .436    (.000***) -----

N = 254 254 251 249

HEAD UP -.097      (.123) .062    (.326) -.214   (.001**) -.235   (.000***) -----
N = 254 254 251 249

TALK -.117     (.064) .304  (.000***) -.644   (.000***) -.628  (.000***) -----
N = 251 251 251 249

SOUND -.075      (.248) .370   (.000***) -.388   (.000***) -.379   (.000***) -----

N = 242 242 241 239

SMILE -.086   (.185) .313  (.000***) -.430 (.000***) -.420 (.000***) .485  (.000***)

N = 240 240 237 235 237

NEUTRAL .142   (028*) -.238 (.000***) .395 (.000***) .409 (.000***) -.285 (.000***)
N = 240 240 237 235 237

SOUND -.075 (.248) .370 (.000***) -.388 (.000***) -.379 (.000***) .533 (.000***)
N = 242 242 241 239 241

*** Correlation is significant at the 0.001 level (2-tailed); **  Correlation is significant at the 0.01 level (2-

tailed); *  Correlation is significant at the 0.05 level (2-tailed).  

Head movement was correlated with negative valence, high arousal, off-task be-
havior and non-desirable states. This implies that students move their heads when 
they feel negative emotions, when being off-task and in a non-desirable learning state. 
When students are in such unproductive learning state, and when they are off-task, 
they tend to move their heads to the side. Also, students tend to move their head to the 
side when they have negative feelings. It is possible that students avoid the computer 
screen when they don’t feel good about the software or the learning situation. At the 
same time, having their head in the middle had the opposite effect: it was correlated 
with positive valence, low arousal, on-task behavior, and desirable state for learning. 

Students holding their head up indicates off-task behavior and an undesirable state 
for learning, while holding their head down is not (possibly because many students 



 Viewing Student Affect and Learning through Classroom Observation 35 

tend to work on paper on their desk). Again, head up could be an indication of screen 
avoidance. Talking and environmental sound are both correlated to high arousal and 
positive emotion, although they are associated with off-task behavior and undesirable 
states. This means that students tend to have off-task talk, which seems reasonable for 
a system that does not encourage on-task collaboration with a partner. 

It seems obvious that frowning is related to having a negative valence emotion. 
However, frowning doesn’t appear to be a good predictor of being on-task or being in 
a desirable learning state (not shown). A smile on the face does predict off-task be-
havior (R=-.430 with on-task) and undesirable state for learning (R=-.420), Table 3. 
Surprisingly, smiling was not linked to valence, but it is positively correlated with 
arousal and talk (students probably moved and talked with friends while they smiled). 
The opposite effect happened for a neutral face: it was positively correlated to desir-
able learning state and on-task behavior. A neutral face was linked to positive va-
lence, most likely because we coded seeing a neutral emotion as positive valence. A 
neutral face was an indicator that the student was not moving (negative arousal) and 
not talking. Last, an environmental sound that is louder than background noise was a 
good predictor of talking (R=.533) suggesting that a microphone that senses for odd 
sounds can detect if a student is talking with good accuracy, which in turn was evi-
dence for a non-desirable state for learning within the software, see Table 3. 

4   Sensor Technology   

These human observations in the classroom 
are continuing as a way to understand the 
impact of student emotions on learning. Yet 
these student emotions can be detected auto-
matically by intelligent tutors, which can then 
also respond dynamically with appropriate 
interventions. In order to establish a social 
and emotional connection with students, tu-
tors should recognize students’ affect and 
respond to them at a deep level. Towards this end, our goal in the second phase was to 
automate the observation process using sensors. We have developed a low cost multi-
modal sensor platform that is being integrated into the Wayang Tutor and evaluated in 
classrooms. The platform includes a custom produced Pressure Mouse, a Wireless 
BlueTooth Skin Conductance sensor, a Posture Analysis Seat, and a Facial Expression 
System. This platform expands on an earlier one at an order of magnitude reduction in 
the overall cost. The sensors are developed from an earlier system that had several 
sensors in common with AutoTutor [9]. Pre-production prototypes of each sensor 
have been developed and we are producing thirty sets of these sensor platforms for 
simultaneous use in classrooms. The intent is to provide a better understanding of 
student behavior and affect and to determine the contribution of each sensor to the 
modeling of affect [14]. 

 

Fig. 1. Pressure mouse sensor 
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Pressure mouse. A pressure mouse is used to detect the increasing amounts of pres-
sure users place on their mice related to their increased levels of frustration.  The 
pressure mouse system has six force sensitive resistor sensors and an embedded mi-
croprocessor, Figure 1.  It uses the standard communication channel of a USB mouse 
for pointing and clicking functions and then in parallel uses a second channel, a serial 
communications port, to provide pressure data at 20ms intervals from each of the six 
sensors. Pressure sensors located under the mouse button measure the force of the 
users click in addition to their overall pressure across the surface of the mouse. 

Posture Analysis Seat.  We have developed and are now testing a low-cost/low resolution 
pressure sensitive seat cushion and back pad with an incorporated accelerometer to 
measure elements of a student’s posture and activity, Figure 2.  This system captures 
many student movements relevant to education that were previously captured by the 
TekScan system, that used an extremely expensive Posture Analysis Seat, developed for 
medical and automotive applications [19]. The previous system used pattern recognition 
techniques while watching natural behaviors to learn which behaviors tended to accom-
pany states such as interest and boredom.  We are now developing similar algorithms 
based on the new low-cost 
posture analysis chair. 

Wireless skin conduc-
tance. A wireless version 
of a earlier glove that 
sensed conductance was 
developed by Carson 
Reynolds and Marc 
Strauss at the MIT Media 
Lab, in collaboration with 
Gary McDarby, at Media 
Lab Europe, see Figure 3. 
While the skin conduc-
tance signal is not valenced (i.e. does not describe how positive or negative the affec-
tive state is) it is strongly correlated with arousal.  High levels of arousal tend to ac-
company significant and attention-getting events [6].  

Facial Expression Camera. A person's mental state is not directly available to an ob-
server; instead it is inferred from a range of non-
verbal cues including facial expressions. We are 
using a facial expression recognition system that 
incorporates a computational model of mind reading 
as a framework for machine perception and mental 
state recognition [12]. This facial action analysis is 
based on a combination of bottom-up vision-based 
processing of the face (e.g. head nod or smile) with 
top-down predictions of mental state models (e.g. 
interest and confusion) to interpret the meaning un-
derlying head and facial signals over time [12]. A 
multilevel, probabilistic architecture (using dynamic 
Bayesian networks) mimics the hierarchical manner 

 

Fig. 3. Wireless Skin Conduc-
tance Sensor 

 

Fig. 2. Posture State Chair Sensor. The previous sensor 
resulted in posture recognition (89-97% accurate). And 
classification of high/low interest and break taking (69-
83% accurate) [14]. 
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with which people perceive facial and other human behavior [21] and handles the uncer-
tainty inherent in the process of attributing mental states to others. The output probabili-
ties represent a rich modality that technology can use to represent a person’s state and 
respond accordingly. The resulting visual system infers mental states of people from head 
gestures and facial expressions in a video stream in real-time. At 30 fps, the inference 
system locates and tracks 24 feature points on the face and uses motion, shape and color 
deformations of these features to identify 20 facial and head movements (e.g., head pitch, 
lip corner pull) and 11 communicative gestures (e.g., head nod, smile, eyebrow flash) 
[21]. Dynamic Bayesian networks model these head and facial movements over time, 
and infer the student’s “hidden” affective-cognitive state. 

5   Discussion and Future Work 

This paper described the use of human observations and wireless sensors to detect 
student emotions, learning, and attitudes towards learning. We identified emotion 
indicators (valence and arousal) that combined with on and off-task variables to rep-
resent desirable/undesirable states linked with student learning, as well as physical 
behaviors linked to emotional states. This was achieved through quantitative field 
observations in the classroom in which researchers recorded the behaviour of students 
using intelligent tutors. We described correlations between low-level observations 
(i.e. chair movement) and higher-level observations (valence, arousal, on-off task 
behavior) and then between these higher-level observations and student learning and 
attitudes. Through these links, we propose that low-level sensor information can tell 
us about emotion indicators and other state-variables linked to learning. Sensors can 
provide information about how students perform and information about when students 
are in non-productive states so that the tutor can provide appropriate interventions. In 
turn, sensors can also inform us whether the given interventions are working or not.  
With this goal in mind, low cost portable sensors are being used in natural classroom 
settings. Thus, once we know which variables are useful predictors of learning and 
affective outcomes, these sensors can replace the human observers and predict stu-
dents’ emotional states related to learning. 

Table 4. Guide to interpreting sensor data and predicting learning 

⇐⇐  Predict student learning and attitude  ⇐⇐ 
Desirable Learn-

ing States 
Emotion/task 

indicators 
Biologic indicators Sensors to use 

Most desirable 
(Joy, Aha moment,  
Concentrated Ac-
tively engaged) 

+    Valence 
AND 

On-task 

Lean on hand; Little 
chair/head movement; Sit 
in middle of chair; Head in 
middle; Neutral face; 

Chair sensors 
Camera 

Medium desirable 
(Frustrated, angry) 

-- Valence 
+  Arousal 

Head movement; Chair 
movement; Squeezing of 
mouse 

Camera, Pressure 
mouse; 
Chair Sensors 

Least desirable 
(Bored, tired) 

Off-task 
OR 

-- Valence 
--  Arousal 

Talking; Large chair 
movement; Head move-
ment; Head to side or 
head up; Smile  

Skin conductance; 
Camera; 
Chair sensors; 
Microphone  

⇒⇒ Detect strong and weak student learning behavior ⇒⇒ 
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This paper unveiled several interesting findings: 1) observed fluctuating states of 
emotion and on/off task behavior help predict posttest performance and atti-
tudes/motivation; 2) student states are expressed with specific behaviors that can be 
automatically detected with sensors; and 3) a mechanism for strong/weak learning 
behavior detection was identified.  As a result of these findings we identify how sen-
sors can predict and reflect student learning, see Table 4. Moving from right to left 
sensor readings and emotion/biologic indicators are used to predict student learning 
and other motivational variables; moving from left to right indicates how strong/weak 
learning and attitudes are expressed and detected by sensors. 

Future work consists of using these behaviors to predict emotions and desir-
able/undesirable learning states that would in turn help us predict learning and atti-
tudes towards learning mathematics. The long-term goal is to dynamically collect 
information about students’ emotional state and predict student states, and in turn 
predict posttest performance in real time. Moreover, because certain states such as 
negative valence and high levels of arousal are unproductive for post-tutor assess-
ments of learning/attitudes, such states will lead to the selection of an intervention. At 
that point we must also decide which interventions are most successful for individual 
students and context (e.g. topic, emotional state). Finally, we intend to resolve the 
nature of data from different sensors. The camera provides very high-level judgments 
as it uses its own inference engine to decide emotional states, whereas all other sen-
sors provide relatively raw data.  We are engaged in the development of machine 
learning algorithms that relate these data sets to learners’ diverse emotional states. 
Using all of these techniques, we plan to recognize and help students cope with states 
of negative valence and support their return to on-task behavior.  
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Abstract. We compare the affect associated with an intelligent tutoring envi-
ronment, Aplusix, and a simulations problem solving game, The Incredible Ma-
chine, to determine whether students experience significantly better affect in an 
educational game than in an ITS.  We find that affect was, on the whole, better 
in Aplusix than it was in The Incredible Machine. Students experienced signifi-
cantly less boredom and frustration and more flow while using Aplusix. This 
implies that, while aspects unique to games (e.g. fantasy and competition) may 
make games more fun, the interactivity and challenge common to both games 
and ITSs may play a larger role in making both types of systems affectively 
positive learning environments. 

1   Introduction 

Games are fun. The same adolescents who are often reluctant to put significant time 
into their studies are often enthusiastically willing to put dozens of hours into playing 
modern computer games [6]. In recent years, researchers have suggested that embed-
ding games into education can be a way to improve students’ affect, interest, and 
motivation towards education, and in turn improve their learning. Some educational 
games have successfully built upon competition, curiosity, challenge, and fantasy to 
make learning more enjoyable, increase students’ desire to learn, and complete more 
difficult work than with traditional educational materials [1,8,16]. However, there is 
also evidence that educational games may not have entirely positive effects on learn-
ers’ affect and motivation.  Bragg [5] found that students exhibited negative attitudes 
towards the use of games as the main instructional method for learning mathematics.  
Similarly, Vogel [24] argues that games and simulations that fail to make seamless 
connections between the subject matter and the game play will also inhibit learners’ 
engagement and motivation. 

While it is commonly believed that educational games will lead to better affect than 
non-gamelike learning environments, the evidence supporting this belief is not yet 
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conclusive. In many cases, educational games have been studied in relation to rela-
tively weak comparison conditions, such as paper worksheets with no feedback [16] 
and games with game features ablated [8]. Furthermore, it has been found that intelli-
gent tutoring systems lead to significantly improved affect and motivation as com-
pared to traditional, non-computerized learning contexts [22], though not necessarily 
to expert human tutors. Intelligent tutors generally lack game-like features like  
competition and fantasy, but share in common with games features such as instant 
feedback, and measures of continual progress. It is possible that the additional motiva-
tional features of educational games lead to more positive affect than intelligent tutors 
(i.e. more delight and engagement, and less frustration and boredom), but it is also 
possible that the largest motivational benefits come from the interactivity that both 
games and intelligent tutors share.  

The differences among effects of educational games and intelligent tutoring sys-
tems on students’ usage choices are also not yet fully studied. Consider hint abuse and 
systematic guessing, behaviors categorized as gaming the system, i.e. “attempting to 
succeed in an educational environment by exploiting properties of the system rather 
than by learning the material and trying to use that knowledge to answer correctly” 
[3]. As Rodrigo et al [20] discussed, students generally know that gaming behavior is 
undesirable in intelligent tutoring systems, as the primary goal is to learn the domain 
content – and students demonstrate this belief by hiding this behavior from their 
teachers. By contrast, there may be a perception that since games are primarily for 
fun, it is acceptable to use them in any fashion; hence, students may game the system 
more often in educational games than in intelligent tutoring systems. 

In this paper, we compare the affect associated with an intelligent tutoring envi-
ronment, Aplusix II: Algebra Learning Assistant [17,18] (http://aplusix.imag.fr/), and 
a simulation problem solving game, The Incredible Machine: Even More Contrap-
tions [20]. Earlier studies [4,20] collected affect and usage data on students’ affective 
states when using The Incredible Machine. We collect similar data for Aplusix, within 
similar populations and following virtually identical data collection and analysis pro-
cedures. By comparing these two data sets, we can determine whether students ex-
perience significantly better affect in an educational game than in an intelligent tutor, 
and in turn study which aspects of educational games explain their positive effects on 
student affect. 

1.1   Descriptions of the Learning Environments 

As mentioned in the introduction, affect and usage data were gathered from partici-
pants using two different interactive learning environments: the Incredible Machine 
and Aplusix. 

The Incredible Machine [21], called TIM for short, is a simulation game where stu-
dents complete a series of logical “Rube Goldberg” puzzles. In each puzzle, the stu-
dent is given a limited set of objects, including mechanical tools like gears, pulleys, 
and scissors; more active objects like electrical generators and vacuums; and even 
animals. The student must combine these objects in a creative fashion to accomplish 
each puzzle’s goal. Objectives range from relatively straightforward goals, such as 
lighting a candle, to more complex goals such as making a mouse run. If a student is 
stuck, he or she can ask for a hint; hint messages display where items should be  
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located in a correct solution to the current problem (without displaying which items 
should be placed in each location). TIM is thought to be highly entertaining, having 
won multiple awards for its innovative gameplay, most recently including an award 
for best casual mobile game at the 5th Annual Spike TV Video Game Awards in 2007. 
Hence, if an intelligent tutor can produce comparable levels of affect as those pro-
duced by this game, the ITS can be considered highly motivating. A screenshot from 
TIM is shown in Figure 1. 

 

Fig. 1. A screen shot from The Incredible Machine: Even More Contraptions (TIM) 

Aplusix [18,19] (http://aplusix.imag.fr/) is an intelligent tutoring system for 
mathematics.  Topics are grouped into six categories (numerical calculation, expan-
sion and simplification, factorization, solving equations, solving inequations, and 
solving systems), with four to nine levels of difficulty each. Aplusix presents the 
student with an arithmetic or algebraic problem from a problem set chosen by the 
student and allows the student to solve the problem one step at a time, as he or she 
would using a paper and pen.  At each step, Aplusix displays equivalence feedback: 
two black parallel bars mean that the current step is equivalent to the previous step, 
two red parallel bars with an X mean that the current step is not equivalent to the 
previous step (see Figure 2).  This informs the student about the state of the problem 
in order to guide him or her towards the final solution.  Students can end the exercise 
when they believe they are done.  Aplusix then tells the student whether errors still 
exist along the solution path or whether the solution is not in its simplest form yet.  
The student has the option of looking at the solution, a “bottom out” hint with the 
final answer. Hence, Aplusix both reifies student thinking and gives instant feedback, 
two key characteristics of modern intelligent tutoring systems [cf. 2]. However, Aplu-
six lacks one game-like feature found in many intelligent tutoring systems – indica-
tions of the probability that students have learned relevant skills, in the form of “skill 
bars”. It has been suggested that students view skill bars as being like points in games, 
and that skill bars give students the perception of progress and encourage competition 
between students [22], although, in a lab study, Jackson & Graesser [14] did not find 
evidence that progress-only skill bars improve motivation. 
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Fig. 2. A screen shot from Aplusix: Algebra Learning Assistant 

These two systems provide a strong comparison between intelligent tutoring sys-
tems and games. TIM has won awards for its enjoyable gameplay; Aplusix can be 
considered a fairly traditional intelligent tutoring system, as it includes the continual 
feedback and reification of student thinking that is characteristic of most intelligent 
tutoring systems, but lacks skill bars, which some researchers think lend intelligent 
tutors a game-like feel. Hence, the two systems are good representatives of their re-
spective classes, and similarities or differences in learner affect between the two sys-
tems will be representative of similarities or differences in affect between games and 
ITSs in general. It is worth noting that the two systems do not cover the same educa-
tional material, as TIM covers general problem-solving skill while Aplusix covers 
algebra; this possible confound will be considered in the discussion section. 

2   Methods 

The data gathering procedures for the two environments was very similar.  The subse-
quent section discusses the profile of the participants, the observers, the coding proce-
dures, and the inter-rater reliability of the observations. 

The participants for the TIM study were students in a private high school in Quezon 
City (Metro Manila), the Philippines. Student ages ranged from 14 to 19, with an 
average and modal age of 16. Thirty-six students participated in this study (17 female, 
19 male). The participants in the Aplusix study were first and second year high school 
students from four schools within Metro Manila and one school in Cavite, a province 
south of Manila.  Students’ age ranged from 12 to 15 with an average age of 13.5 and 
a modal age of 14 (high school begins earlier in the Philippines than in many other 
industrialized nations).  One hundred and forty students participated in the Aplusix 
study (83 female, 57 male). The participants in both studies were computer-literate.  
However, none of them had previously used either TIM or Aplusix. The sample of 
participants did not overlap between studies. 
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Each student used TIM for ten minutes, and each student used Aplusix for 45 min-
utes. The different time spent in each system is a potential confound. In specific, this 
difference might lead to greater boredom or frustration within the Aplusix system 
(because students may experience more boredom or frustration later in a learning 
session) – if either of these effects is found, it may be due to differences between the 
studies rather than differences between the systems.  Students used the software in 
small groups (9 for The Incredible Machine, 10 for Aplusix), one student per com-
puter, during their class time. Each student’s affect was observed several times as he 
or she used the learning software. 

The observations were carried out by a team of six observers, working in pairs. The 
observers were Masters students in Education or Computer Science, and all but one 
had prior teaching experience.  The set of observers was overlapping but not identical 
between systems. TIM was studied in 2006 [20] Aplusix was studied in 2007. Each 
observation lasted twenty seconds, and was conducted using peripheral vision, i.e. 
observers stood diagonally behind or in front of the student being observed and 
avoided looking at the student directly [cf. 3], in order to make it less clear when an 
observation was occurring. If two distinct affective states were seen during an obser-
vation, only the first affective state observed was coded; similarly, if two distinct 
behaviors were seen during an observation, only the first behavior observed was 
coded. Any behavior by a student other than the student currently being observed was 
not coded. Each pair of observers was assigned to a small number of students and 
alternated between them – more observers participated in the TIM study than the 
Aplusix study, thus a greater amount of time passed between observations in Aplusix 
(180 seconds) than The Incredible Machine (40 seconds). 

In the studies, both affect and behavior were coded. The observers trained for the 
task through a series of pre-observation discussions on the meaning of the affective 
and behavior categories.  Observations were conducted according to a guide that gave 
examples of actions, utterances, facial expressions, or body language that would im-
ply an affective state, and observers practiced the coding categories during a pilot 
observation period prior to the studies. The guide was based on earlier work by [3,11], 
and is discussed in detail in [20]. The affective categories coded were boredom, con-
fusion, delight, surprise, frustration, flow, and neutral, in line with earlier research by 
D’Mello et al [11] suggesting that these states are most relevant to students’ affective 
experiences within an Intelligent Tutoring System. “Flow” refers to full immersion in 
an activity; the participant is focused on a task to the point that he or she is unaware of 
the passage of time [cf. 10]. The behavior categories coded were on-task, on-task 
conversation, off-task conversation, off-task solitary behavior, inactivity, and gaming 
the system; in both systems, gaming behavior consisted of systematic guessing – such 
as trying an object in every possible place in TIM – and use of help features to arrive 
at a solution without engaging in problem-solving.   

706 observations were collected in TIM, for an average of 19.6 observations per 
student. Inter-rater reliability was acceptably high across all observations — Cohen’s 
[7] κ=0.71 for usage observations, κ=0.63 for observations of affective state. Thirteen 
pairs of observations were collected per student in Aplusix, totaling 3,640 observa-
tions in all.  Inter-rater reliability was again acceptably high: Cohen’s κ=0.78 for 
usage observations, κ=0.63 for observations of affective state. 
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3   Results 

3.1   Prevalence of Affective States 

The most common affective state in both Aplusix and TIM was flow, occurring 62% 
of the time in TIM and 68% of the time in Aplusix. The difference in the prevalence 
of flow between environments was marginally statistically significant, t(174)= -1.66, 
two-tailed p=0.10, for a two-tailed, two-sample t-test with pooled variance. 

The second most common affective state in both environments was confusion, oc-
curring 11% of the time in TIM and 13% of the time in Aplusix. The difference in the 
prevalence of confusion between environments was also not statistically significant, 
t(174)= 0.73, two-tailed p=0.46. Delight was also not significantly different between 
environments, t(174) = 0.55, two-tailed p=0.58. 

However, the frequency of two negative affective states was significantly different 
between systems. Frustration was more common in TIM (6%) than Aplusix (2%), 
t(174)=3.25, two-tailed p=0.001. Boredom was also more common in TIM (7%) than 
Aplusix (3%), t(174)=2.27, two-tailed p=0.02. 

The overall pattern of results (shown in Figure 3) is that the affective experiences 
were, on the whole, more positive within Aplusix than TIM, with the effect more 
pronounced among negative affective states than positive affective states. 

3.2   Prevalence of Negative Usage Behaviors 

Gaming the system occurred in both Aplusix and The Incredible Machine. The aver-
age student gamed the system 1.4% of the time in Aplusix, about half of the preva-
lence in previous observations of gaming behavior in Cognitive Tutors [cf. 3]; the 
average student gamed the system 7.5% of the time in The Incredible Machine, about 
double the prevalence in previous observations of gaming behavior in Cognitive Tu-
tors. The difference between the prevalence of gaming in the two environments was 
statistically significant, t(174)=4.72, p<0.0001, for a two-tailed two-sample t-test with 
pooled variance. 

 

Fig. 3. Affective categories’ prevalence of occurrence (standard error bars shown) 
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Fig. 4. Usage categories’ prevalence of occurrence (standard error bars shown) 

There was the appearance of a difference in the prevalence of off-task behavior be-
tween the two environments, with students being off-task 2.2% of the time in TIM 
and 1.3% of the time in Aplusix, but this difference was not statistically significant, 
t(174)= 1.25, two-tailed p=0.21. 

The time spent on-task, working with the system, within the two environments, 
was almost identical: 80.9% on-task in TIM, 79.9% on-task in Aplusix, t(174)=0.33, 
two-tailed p=0.74. However, the time spent on-task, talking to another student or the 
teacher, was significantly higher in Aplusix (17.3%) than TIM (9.4%), t(174)= -3.14, 
two-tailed p=0.001.  Hence, the overall pattern of results (shown in Figure 4) is that 
students spent significantly more time gaming the system in TIM, and significantly 
more time in on-task conversation in Aplusix. 

4   Discussion and Conclusions 

In this paper we have asked: are educational games associated with better affect be-
cause they are games, or simply because they are highly interactive learning environ-
ments? We investigated that question by comparing the incidence of positive and 
negative affective states and usage behaviors in an intelligent tutoring system, Aplu-
six, and a simulation problem solving game, The Incredible Machine. 

Considering the high popularity of The Incredible Machine as a game, it would be 
reasonable to expect students using that environment to experience more positive 
affect, and less negative affect than students using an intelligent tutoring system such 
as Aplusix. At the same time, it might be reasonable to expect more students to game 
the system when playing The Incredible Machine than Aplusix, since by its very na-
ture a game may encourage gaming the system relative to an intelligent tutor. 

The evidence from our research partially aligns with these expectations. There is 
indeed more gaming the system in TIM than Aplusix; however, surprisingly, affect 
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was on the whole better within Aplusix than TIM – there was significantly more 
boredom and frustration in TIM, and a less flow. 

This suggests that a well-designed intelligent tutoring system can lead to equally 
positive – or even more positive – affect than an educational game. In turn, this sug-
gests that while factors such as fantasy may make games more fun [cf. 8], the interac-
tivity and challenge common to both games and intelligent tutors may play a larger 
role in making games affectively positive learning environments. 

The results in this paper are not fully definitive, however, for four reasons. First, 
there are a number of differences between the two studies. Although the two studies 
were conducted by the same research group with a single methodology, TIM and 
Aplusix cover different subject matter and the studies were conducted with samples 
recruited in different years (and differing subtly, demographically) rather than with 
random assignment within a single population. This is not a fatal flaw for the study 
presented here, but does suggest that its result should be replicated before being 
treated as proven truth (as, in fact, all research results should be). Second, TIM and 
Aplusix differ pedagogically from each other in a number of ways. In comparing an 
intelligent tutor to an educational game, multiple substantial differences between 
environments are unavoidable; games have several characteristics that distinguish 
them from other types of interactive environments [19], as do intelligent tutoring 
systems [23]. A comparison that varied on only one factor would not fairly represent 
one type of environment or the other; however, determining which factors lead to the 
largest positive improvements on student affect and behavioral choice will be key. 
Third, TIM and Aplusix differed substantially in terms of curricular relevance.  While 
TIM fostered problem solving skills in general, Aplusix focused specifically on Alge-
bra, a subject that the participants were studying at the time.  Participants may have 
perceived Aplusix as relevant to the larger goal of getting good grades in mathemat-
ics, motivating them to invest more effort and attention when using the software [cf. 
15].  Finally, affect’s impact on learning can be counterintuitive.  Positive affect in 
some cases appears to reduce perseverance and increase distraction [12].  On the other 
hand, the affective state of confusion, sometimes considered negative, has been shown 
to promote deep thinking [9]. 

In recent years, there has been rapidly increasing interest in educational games. 
Some of this interest has been based on the hypothesis that games will lead to better 
affect than existing learning environments [cf. 8,13]. However, in the research re-
ported here, we have found that a traditional intelligent tutoring system can produce 
equally good – or better – affect as an award-winning educational game. The key 
question, therefore, appears not to be which type of learning environment is better, but 
how we can leverage the best practices developed by each of these design communi-
ties in order to develop a new generation of engaging and educationally effective 
learning environments. 
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Abstract. One-to-one tutoring is an extremely effective method for producing 
learning gains in students and for contributing to greater understanding and 
positive attitudes towards learning. However, learning inevitably involves fail-
ure and a host of positive and negative affective states. In an attempt to explore 
the link between emotions and learning this research has collected data on  
student affective states and engagement levels during high stakes learning in 
one-to-one expert tutoring sessions. Our results indicate that only the affective 
states of confusion, happiness, anxious, and frustration occurred at significant 
levels. We also investigated the extent to which expert tutors adapt their peda-
gogical and motivational strategies in response to learners’ affective and cogni-
tive states. 

1   Introduction 

It is widely acknowledged that one-to-one human tutoring is a powerful method for 
promoting active knowledge construction, increased conceptual understanding, aug-
mented self-efficacy, and a more positive learning attitude – all factors that foster 
engagement and ultimately impact learning gains [1, 2]. Furthermore, it is also docu-
mented that accomplished (or expert human tutors) have a higher impact on learning 
than unaccomplished tutors (novices), and Intelligent Tutoring Systems (ITSs) [1, 2, 
3]. However, while it is not feasible for every student to have access to an expert hu-
man tutor, ITSs are available to anyone with a computer. Therefore, one plausible 
solution is to model ITSs after expert human tutors, a task that requires a detailed un-
derstanding of expert tutoring strategies. So what do expert human tutors do? Lepper 
and Woolverton [4] have claimed that individualization, immediacy, and interactivity 
are the three major factors that enable expert tutors to be more effective than tradi-
tional learning in the classroom. Through modeling and monitoring student knowl-
edge, tutors have the ability to adapt to the specific needs of individual students [5]. In 
addition to cognitive scaffolds, it has been claimed that expert tutors also provide mo-
tivational and emotional support for students in social, affective, and emotional  
ways [6].  
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However, the story of expert tutoring is not restricted to pedagogical and motiva-
tional strategies; emotions (or affective states) play an important role in positive learn-
ing outcomes [7, 8, 9]. While certain emotional states such as the flow experience, [7] 
where the student is completely absorbed in the learning process, or confusion, where 
the learner experiences cognitive disequilibrium and is forced to think, are positively 
correlated with learning [10], other states such as frustration, boredom, anxiety, and 
despair can negatively impact learning [8]. For example, learners who are unsure of 
their ability often avoid tasks or give up when they encounter difficulties [11]. Thus, 
emotional states that are associated with low self-efficacy, such as feelings of anxiety, 
interfere with learning because the student is no longer fully motivated or engaged 
with the material.  

Research on the cognitive and motivational strategies of tutors is quite extensive 
[5, 12, 13, 14, 15, 16], whereas empirical research on the affective dimension in tutor-
ing is considerably more sparse and scattered. Furthermore, it is unclear whether  
expert human tutors divert more attention to respond to students’ cognitive states or 
motivational and affective states. For example, Cromley and Azevedo [17] studied the 
practices of more and less experienced reading tutors to determine if there was a pri-
ority placed on cognitive or motivational scaffolding. More experienced tutors were 
found to use significantly less forms of motivational scaffolding and significantly 
more forms of cognitive scaffolding than less experienced tutors.  

A very different depiction of expert tutoring emerges from the INSPIRE model 
proposed by Lepper and Woolverton [4]. According to this model the most effective 
tutors are highly knowledgeable about their domain and pedagogical strategies, de-
velop a rapport with their students, utilize a Socratic method, plan for effective use of 
time, are indirect in their feedback, encourage articulation of acquired knowledge, and 
use a variety of techniques to maintain student engagement (p. 145-150). By utilizing 
a Socratic Method tutors are allowing students to construct their own knowledge 
within a highly organized framework for the progression of the session. Tutors are 
also creating a learning environment in which students feel comfortable and can de-
velop greater confidence and self-efficacy. These highly effective tutors are very at-
tentive to all of the student’s needs and respond in ways to support both learning gains 
and affective experiences. 

Our interest in the affective dimension of expert tutoring comes from a desire to 
build ITSs that are based on the pedagogical, motivational, and affective strategies of 
expert tutors. In particular, we seek answers to the following questions. What are the 
student emotions that occur during expert tutoring sessions? How do expert tutors 
adapt their pedagogical and motivational strategies to incorporate students’ affective 
states? In this paper we describe a study that collected data on student affective states 
during 40 one-to-one expert tutoring sessions. We focused on a list of affective states 
that was obtained by investigating current theories of emotion [18, 19, 20], research 
on learning [7, 8, 21], and empirical research [10, 22, 23, 24]. The affective states 
were confusion, frustration, anxious, anger, fear, sadness, disgust, contempt, surprise, 
happiness, eureka, and curiosity. In addition to student affect, student engagement 
was also investigated as a separate construct with four levels: disengagement, socially 
attending, actively attending, and full engagement.  
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2   Method 

Participants  
Our participants consisted of eight expert tutors and 29 students. Tutors and students 
had been working together prior to the start of this study. Expert status for a tutor was 
defined as licensed to teach at the secondary level, having five or more years of tutoring 
experience, being recommended by local school administrators, and working for a pro-
fessional tutoring agency. Some students had two sessions with the same expert tutor. 
The unit of analysis in this study was the tutor-student dyad. The subjects studied were 
algebra, geometry, physics, chemistry, basic math, and standardized test preparation.   

Procedure  
Tutors and students were given an informed consent form to read and sign. The ses-
sion lasted approximately one hour. All sessions were videotaped with a camera that 
was positioned at a great enough distance to not disturb the tutoring session but still 
close enough to record sound and visual data. The researcher left the room during the 
tutoring session.   

Data Treatment 
The videos were digitized and then transcribed. They were then coded with respect to 
student cognitive states, tutor pedagogical and motivational strategies, and student 
affective states and engagement levels. 

Coding Student Affective States and Engagement Levels – Student affective states for 
each one hour session were coded along two dimensions: Ekman’s six “basic” emotions 
[18] and a set of learning-centered affective states [8, 23, 25, 22, 24]. The list of affective 
states with definitions appears in Table 1. Affective events were considered to be specific 
instances of the tutoring session where emotions could be detected through facial move-
ments, perceivable paralinguistic cues of speech, and gross body movements. When an 
affective state was perceived, the engagement level of the student was also recorded with 
respect to four engagement levels as illustrated in Table 1. Engagement Levels were con-
sidered to be the degree to which a student has invested mental resources to the topic 
during perceivable affective states. We computed reliabilities using Cohen’s Kappa for 
the affective states that occurred at a significant level in each analysis. Kappas for the 
five affective states that occurred consistently were: happiness (.80), confusion (.65), 
frustration (.72), anxious (.68), and contempt (.66). Sessions were divided evenly be-
tween two coders after sufficient levels of reliability were achieved, such that each coder 
was responsible for individually coding half of the expert tutoring sessions.  

Coding Tutor Pedagogical and Motivational Moves – The coding scheme developed 
by Person et al. [26] was used to code 14 pedagogical and 10 motivational tutor 
moves. The pedagogical moves were developed from past research on the ways in 
which tutors aid students in problem solving and knowledge construction [5, 17, 27, 
28, 29, 13, 30]. Some of these dialogue moves include direct instruction, simplified 
problem, hint, and comprehension gauging question. From research on the practices 
of expert tutors, the motivational strategies that have been used by expert tutors in-
clude such dialogue moves as positive feedback, negative feedback, humor, and soli-
darity statement [4]. 
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Table 1. Definitions of Affective States and Engagement Levels  

State Definition 
Learning-Centered
Confusion poor comprehension of material, attempts to resolve erroneous belief 
Frustration difficulty with the material and an inability to fully grasp the material 
Anxious nervousness, anxiety, negative self-efficacy, embarrassment 
Contempt annoyance and/or irritation with another person  
Eureka sudden realization about the material, a ha! moment 
Curiosity desire to acquire more knowledge or learn the material more deeply 
  
Basic-Emotions 
Anger negative affect toward material or person to an extreme degree 
Fear feelings of panic and/or extreme feelings of worry 
Sadness feelings of melancholy, beyond negative self-efficacy 
Disgust annoyance and/or irritation with the material and/or their abilities 
Surprise genuinely does not expect an outcomes or  feedback 
Happiness satisfaction with performance, feelings of pleasure about the material 

Engagement Level  
Disengagement bored, uninterested in the topic being discussed 
Socially Attending attends to conversational conventions, only acknowledges tutor speech 
Actively Attending attends to content of the conversation, content-driven responses  
Full Engagement every mental resource is invested in the current topic, in a flow state    

3   Results and Discussion 

Proportion of Affective States that Occurred During Tutoring 
We examined the proportion of occurrences of each of the affective states and engage-
ment levels (see Table 2). A Repeated Measures ANOVA indicated that there was a sig-
nificant difference in the various affective states experienced by the students, F(11,308) = 
51.11, Mse = .01, p < .001, (partial eta-square) = .646. Bonferroni posthoc tests con-
firmed that confusion, anxious, and happiness were the common emotions that learners 
experienced during an expert tutoring session. Incidences of contempt, eureka, and curi-
osity were rare, and with the exception of happiness, all of the “basic” emotions almost 
never occurred. Incidences of frustration were less than confusion, anxious, and happi-
ness but greater than the other emotions. 

The affective profiles of the students during expert tutoring sessions is quite con-
sistent with previous research on student emotions while they interacted with AutoTu-
tor, a dialogue based ITS. D’Mello, Graesser, and colleagues have previously reported 
that confusion reigns supreme during deep learning activities of complex science top-
ics, while incidences of contempt, eureka, curiosity, anger, and surprise are rare [22, 
23, 24]. Confusion has been found to be a facilitator of learning [10, 24], where stu-
dents are forced to think. Therefore, the recurrent appearances of confusion during the 
tutoring session demonstrate a high potential for students to learn. The high incidence 
of anxiety may be traced to students struggling with academic material who are seek-
ing the help of a tutor in a high stakes learning situation. Anxiety includes negative 
feelings of self-efficacy, embarrassment, and being overwhelmed – states that reso-
nate with difficulty in the subject matter. Students may enter the tutoring session with  
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Table 2. Descriptives of Student Affective States & Engagement Levels 

  
Affective States 

Non-Basic Emotions Mean Stdev  Basic Emotions Mean Stdev 
Confusion 0.38 0.19  Anger 0.00 0.01 
Frustration 0.05 0.04  Fear 0.00 0.00 
Anxious 0.20 0.12  Sadness 0.00 0.00 
Contempt 0.02 0.04  Disgust 0.01 0.04 
Eureka 0.01 0.03  Happiness 0.29 0.22 
Curiosity 0.01 0.02  Surprise 0.02 0.03 

Sum 0.67   Sum 0.32  
       

Engagement Levels 
Engagement Mean Stdev     

Disengagement 0.00 0.01     
Socially Attending 0.23 0.18     
Actively Attending 0.77 0.18     
Full Engagement 0.00 0.00      

low self-efficacy from past experiences of failure with the material and may have 
feelings of embarrassment from having to seek out the help of a tutor. 

Incidences of frustration were lower than what was expected from students in need 
of help from a tutor. The rate of occurrence of frustration documented in this study 
with expert tutors was consistent with earlier findings [22, 23, 24]. We suspect that 
the reduced rates of frustration may lie in the social display rules that people adhere to 
in expressive affect [31]. Social pressures may result in the disguising of negative 
emotions such as frustration, thus making it difficult for judges to detect this emotion. 
The perceived status difference between the student and the expert tutor, coupled with 
their lack of knowledge and heightened anxiety may supplement the desire to disguise 
frustration. Another important finding is that happiness was the only “basic” Ekman 
[18] emotion that reliably occurred. A paired sample t-test confirmed that the basic 
emotions occurred at a significantly lower rate than the other emotions, t(28) = 4.305, 
p < .001. This is yet another finding that challenges the significance of these “basic” 
emotions to learning and raises concern of the adequacy of basing an entire theory of 
emotions on the six “basic” emotions [18]. 

 

Levels of Student Engagement 
An examination of student engagement levels indicated that learners were socially 
and actively attending for the majority of the tutoring session, F(3, 84) = 167.405, 
Mse = .023, p < .001, (partial eta-square) = .857. Experiences of complete disen-
gagement (boredom) or full engagement (flow state) were rare, as could be expected 
due to the interactive nature of these tutoring sessions. The finding that students were 
actively attending for 77% of the tutoring session, while the remaining 23% of the 
time involved social attending, can be readily explained by considering the anatomy 
of a typical tutoring session. Social attending occurs when students cannot provide 
content-rich answers and only contribute by maintaining social conventions. Thus 
socially attending to the session is likely to occur for at least a portion of the session. 
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Given the nature of a human one-to-one tutoring session, actively attending appears to 
be the highest level of engagement that a student can achieve when interacting with 
both the tutor and the material. This bodes well for potential learning gains since stu-
dents are focusing on the material and displaying their knowledge and misconceptions 
to the tutor.  

 

Exploring Tutor Responses to Student Affective States 
We investigated the extent to which expert tutors adapted their pedagogical and moti-
vational strategies in response to the affective states of the students. In particular, if 
student experienced emotion E at turn t, we computed the probability that the tutor 
deployed dialogue move M at turn t+1, which is functionally equivalent to the condi-
tional probability Pr{M t+1|Et}. Our analyses focused on the most common tutor dia-
logue moves which were conversational okay, positive feedback, off-topic conversa-
tion, prompt, simplified problem, direct instruction, and comprehension gauging ques-
tion [26]. For each frequent dialogue move, repeated measures ANOVAs were con-
ducted to determine whether there were significant differences in deployment when 
considering student affective state. 

The ANOVAs indicated that there were significant differences in the deployment 
of positive feedback (F(1, 7) = 75.384, Mse = .691, p < .001), off-topic conversation 
(F(1,7) = 52.727, Mse = 1.312, p < .001), direct instructions (F(1,7) = 149.053, Mse = 
2.945, p < .001), and  simplified problems (F(1,7) = 37.115, Mse = .191, p < .001) in 
response to the students’ affect. However, prompting, conversational OK’s and com-
prehension gauging questions were deployed independent of learners’ affective states.  

Table 3. Descriptives of Tutor Dialogue Move Given Student Affective State 

Student Affective State at turn t 
Confusion Frustration Anxious Happiness 

Tutor Move at 
turn t+1 

M SD M SD M SD M SD 

Ok 0.149 0.099 0.187 0.156 0.17 0.129 0.104 0.123 

Positive Feedback 0.225 0.082 0.051 0.06 0.2 0.136 0.112 0.106 

Off-Topic 0.133 0.062 0.087 0.072 0.243 0.164 0.347 0.189 

Prompt 0.051 0.057 0.006 0.017 0.037 0.035 0.001 0.002 

Simplified 
Problem 

0.153 0.081 0.048 0.063 0.051 0.048 0.057 0.042 

Direct Instruction 0.383 0.112 0.213 0.107 0.3 0.138 0.316 0.111 

Comprehension 
Gauging Question 

0.029 0.018 0.026 0.059 0.063 0.061 0.059 0.044 
 

Post-hoc tests on for the significant ANOVA’s revealed the following patterns in 
the data. In the interest of brevity, we report the major findings only. It appears that 
expert tutors were more likely to provide positive feedback when students were con-
fused than when frustrated. This finding is consistent with predictions by theories on 
impasse-driven learning [32]. These theories postulate that opportunities for learning 
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occur when students experience an impasse, defined as “when a student realizes that 
he or she lacks a complete understanding of a specific piece of knowledge” (p. 220). 
This is consistent with the affective state of confusion and explains why tutors pro-
vide more positive feedback to encourage students during this critical moment in 
learning. By scaffolding both the cognitive and affective state of the student, the tutor 
allows the impasse to occur but circumvents the shift to an unproductive affective 
state by maintaining a positive milieu.  

While off-topic conversation during a tutoring session may seem to impede the ef-
fective construction of knowledge, it has been found to be an effective strategy and 
viewed as important by students [33, 34]. We found tutors to be more likely to utilize 
off-topic conversation when students were happy or anxious, which suggests that this 
dialogue move is being strategically deployed for two different purposes. Catt, Miller, 
and Schallenkamp [35] investigated the importance of instructor-student rapport and 
found it to be vital in maintaining good communication and producing greater learn-
ing gains. When students are happy tutors may take advantage of that situation and 
build a sense of trust and solidarity through conversation about day-to-day events. 
During states of anxiety, the tutor may use a temporary change in topic to relieve 
those negative feelings.  

Expert tutors were found to provide students with a simplified problem more  
frequently when students were confused than during frustration or happiness. This 
finding is intuitively plausible and suggests that positive feedback coupled with a 
simplified problem seem to be the motivational and pedagogical strategies that expert 
tutors deploy in response to student confusion. Expert tutors are more likely to give 
direct instruction when students are anxious than if they are frustrated. The affective 
state of anxious includes several different feelings such as anxiety, nervousness, nega-
tive self-efficacy, worry, and being overwhelmed, and tutors may attribute these feel-
ings to a lack of knowledge. Tutors might use direct instruction as a strategy to fill in 
these knowledge deficits in an attempt to alleviate such negative feelings instead of 
calling direct attention to the student’s uncertainties.  

4   Conclusion 

The last decade has witnessed a surge in research that investigates the role of emo-
tions in complex learning. We hope to have expanded this body of knowledge by 
identifying the affective states which students experience during expert tutoring ses-
sions and the ways in which expert human tutors strategically respond to these states. 
Our findings suggest that with the exception of happiness, it is not the “basic” emo-
tions that are prominent during learning but the affective states of confusion, frustra-
tion, and anxiety. Furthermore, we suspect that most of the experiences of happiness 
might in fact be states of contentness. Experiences of absolute happiness might be 
rarer than our data suggests. However, further research would be required to test this 
hypothesis. 

The analysis of student engagement levels indicated that learners were socially at-
tending and actively attending, but were rarely bored or in a state of flow; whereas 
learners experience both of these states while learning with ITSs [10, 25, 23, 24]. 
Taken together, these results highlight both the positive and negative aspects of  
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human and artificial tutoring sessions, because while it is beneficial to avoid boredom, 
flow is a state that is highly correlated with learning [10]. Of the pedagogical and mo-
tivational tutor dialogue moves that occur frequently [26], tutors only strategically 
deployed positive feedback, off-topic conversation, simplified problem, and direct 
instruction when responding to those affective states that occurred at significant lev-
els. However, these results should be interpreted with a modicum of caution since the 
learners’ affective states were not coded by the tutors themselves. 

The next step is to use the findings from the present study to scaffold the develop-
ment of ITSs that are capable of sensing and responding to student affect. Success in 
this endeavor depends upon adequately addressing three major issues: (1) what are the 
student affective states that occur during learning, (2) how can ITSs automatically 
detect these states, and (3) how should assessments of learner’s affect influence peda-
gogical and motivational strategies of ITSs. The next step in this line of research is to 
begin constructing affect sensitive ITSs that are informed by the strategies of expert 
human tutors. Given the inextricable link between cognition and emotion, it is our 
position that modeling ITSs after human tutors will prove especially effective if emo-
tions are taken into consideration. By implementing tutor pedagogical and motiva-
tional strategies in conjunction with affect sensitivity, ITSs will be able to produce 
heightened engagement, lower attrition, and increased self-efficacy, all factors that 
lead to positive learning gains. 
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Abstract. This paper evaluates dialogue-based student performance in
a controlled experiment using versions of a tutoring system with and
without automatic adaptation to the student affective state of uncer-
tainty. Our performance metrics include correctness, uncertainty, and
learning impasse severities, which are measured in a “test” dialogue af-
ter the tutoring treatment. Although these metrics did not significantly
differ across conditions when considering all student answers in our test
dialogue, we found significant differences in specific types of student an-
swers, and these differences suggest that our uncertainty adaptation does
have a positive benefit on student performance.

1 Introduction

In recent years, tutoring researchers have shown increasing interest in the in-
terplay between student affect and learning (e.g. [1,2,3]). Numerous tutoring
dialogue system researchers are investigating the hypothesis that student per-
formance can be improved by automatically detecting and adapting to affective
states (e.g., [4,5,6,7]). Student uncertainty is one state of primary interest due to
its theorized relationship to correctness and learning. Researchers hypothesize
that uncertainty can signal to the tutor that there is an opportunity for learning
to occur, and that experiencing uncertainty can motivate a student to engage in
learning (e.g. [6,8,9]). Moreover, correlational studies have shown a link between
uncertainty and learning (e.g. [6]). However, few controlled experiments have
investigated the performance impact of uncertainty adaptations in computer
tutoring; most computer tutors respond based only on student correctness.

Based on this prior research, we hypothesized that responding to uncertainty
- in addition to correctness - should improve student performance. We tested this
hypothesis in a controlled experiment using adaptive and non-adaptive versions
of a spoken dialogue tutoring system. Uncertainty and correctness were manually
annotated in real-time by a human “Wizard”. The experiment had three condi-
tions. In the experimental condition, the system provided additional knowledge
at places of uncertainty. In one control condition, the system did not provide this
knowledge after uncertainty; in a second control condition the system provided
this knowledge randomly.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 60–69, 2008.
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Section 2 of this paper describes the experiment.1 Section 3 presents a com-
parison of student performance metrics across condition. Section 4 discusses the
implications of these results. Section 5 explains how we used these results to
improve the design of a larger version of this experiment that is now underway.

2 The Experiment

In prior work we developed ITSPOKE (Intelligent Tutoring SPOKEn dialogue
system) [11], a spoken dialogue tutor that is built on top of the Why2-Atlas
text-based tutor [12] and tutors 5 qualitative physics problems. The spoken
dialogues have a Question - Answer - Response format, implemented with a
finite state dialogue manager. ITSPOKE responses (states) depend only on the
correctness of the student answer (transitions between states). If the answer
is correct, ITSPOKE moves on to the next question. ITSPOKE responses to
incorrect answers take two forms: 1) For incorrect answers to easier questions,
ITSPOKE provides the correct answer with a brief statement of reasoning. 2)
For incorrect answers to harder questions, ITSPOKE engages the student in a
remediation subdialogue, containing questions that walk the student through
the more complex line of reasoning required for the correct answer.

2.1 Adaptive Wizard-of-Oz Spoken Dialogue Tutoring System

We’ve begun enhancing ITSPOKE to automatically respond to student affect2

over and above correctness. For two reasons, we have initially targeted uncer-
tainty. First, uncertainty occurred more than other affective states in our prior
ITSPOKE dialogues [14]. Second, uncertainty is of primary interest to tutoring
researchers due to its theorized relationship to learning (e.g. [6,8,9]). In [8], Van-
Lehn et al. view uncertainty and incorrectness as signalling “learning impasses”:
opportunities for the student to learn the material about which s/he is uncertain
or incorrect. From this view we derived a specific uncertainty adaptation hypoth-
esis to test in a controlled experiment: Responding to uncertainty in the same
way as incorrectness will improve student performance, by providing students
with the knowledge needed to resolve their uncertainty impasses.

Implementing this adaptation involved changing the next state transitions in
the finite state dialogue manager; instead of transitioning based only on the
correctness of the answer, the transition is based on the answer’s combined
correctness and uncertainty value. More specifically, our uncertainty adaptation
consisted of treating all uncertain+correct answers as if they were incorrect (note
that uncertain+incorrect answers are already treated as incorrect).

1 [10] describes the resulting publicly available Uncertainty Corpus in detail.
2 We use “affect” to cover emotions and attitudes. Some argue for separating them, but

some speech researchers find the narrow sense of “emotion” too restrictive since it
excludes speech where emotion is not full-blown, including arousal and attitude [13].
Some tutoring researchers also combine emotion and attitude (e.g. [5,7]).
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For an initial investigation into the impact of this adaptation on student
performance, we implemented it in a Wizard of Oz (WOZ) version of ITSPOKE
that tutors only one physics problem (as opposed to five). In this WOZ, a few
system components are replaced by a human “wizard”: The wizard performs
speech recognition, correctness annotation, and uncertainty annotation, for each
student answer. In this way, we tested the adaptation hypothesis without any
potentially negative impact of automated versions of these tasks. Upon hearing
each student answer, the Wizard annotates if it is correct or uncertain. These
distinctions are binary: a “correct” answer may be partially or fully correct, and
a “nonuncertain” answer may be certain or neutral for certainty.3

2.2 Experimental Design

The experiment had 3 conditions, designed to test whether our uncertainty adap-
tation improved student performance. For use in these 3 conditions, the dialogue
manager was parameterized, so that it could adapt contingently on the student
state of uncertain+correct as discussed above, or randomly, or not at all.

In the experimental condition, the dialogue manager adapted to uncer-
tainty by treating all uncertain+correct student answers as incorrect.

In the normal control condition, the dialogue manager did not adapt to
uncertainty (it was merely logged); it treated only incorrect answers as incorrect.
In other words, this condition corresponds to the original system.

In the random control condition, the dialogue manager did not respond
to uncertainty (it was merely logged), but it did treat a percentage of random
correct answers as incorrect. This condition was included to control for the ad-
ditional tutoring dialogue given to students in the experimental condition. The
percentage was toggled to be statistically the same as the percentage of answers
adapted to in the experimental condition (approximately 20%).

Note that the uncertainty adaptation for uncertain+correct answers was al-
ways preceded by the correctness feedback “Okay”; all other answers received
the regular ITSPOKE correctness feedback. “Okay” was intended to mirror this
feedback behavior. In particular, ITSPOKE is fully automated and uses some-
what vague correctness feedback (e.g. “Fine” and “Well...” for recognized correct
and incorrect answers, respectively) because it may misrecognize an answer.

Figures 1-2 illustrate how system responses differ across conditions. In both
figures, STUDENT1 is uncertain+correct. In Figure 1 (experimental),
TUTOR2 says “Okay”, then asks an additional remediation question to re-
mediate the student’s uncertainty. In Figure 2 (normal control),TUTOR2 says
“Good” and the remediation question is not asked. Section 3 discusses the tutor
turn labels.

The experimental procedure was as follows. Each subject: 1) Read a small
document of background physics material; 2) took a pretest of 7 fill in the blank

3 In prior ITSPOKE corpora, this wizard displayed interannotator agreement of 0.85
Kappa on labeling binary correctness, and 0.62 Kappa on binary uncertainty [14].
Other possible approaches to labeling student affect include self-report (e.g. [4]).



Responding to Student Uncertainty During Computer Tutoring 63

TUTOR1: What will the velocity of the object be a second after that (where the
initial velocity is 9.8m/s and the acceleration is 9.8m/s2)? [Depth 1]

STUDENT1: Uh. 19.6 m/s? [uncertain+correct]

TUTOR2: Okay. As we have seen, if a falling object has an acceleration of
9.8m/s2, that means that its velocity changes by 9.8m/s every second. So if a
second after it began falling the object’s velocity is 9.8m/s, a second later its
velocity will be 9.8m/s+9.8m/s=19.6m/s. So what will its velocity be a second
after it is 19.6m/s? [Depth 2+]

STUDENT2: Um. I’m thinking. 29.4 m/s. [nonuncertain+correct]

TUTOR3: Right. So at every point in time during the fall of the man and his keys,
how do their velocities compare with each other? [Depth 1]

Fig. 1. Corpus Excerpt: Experimental Condition

TUTOR1: What will the velocity of the object be a second after that (where the
initial velocity is 9.8m/s and the acceleration is 9.8m/s2)? [Depth 1]

STUDENT1: 19.6 m/s? [uncertain+correct]

TUTOR2: Good. So at every point in time during the fall of the man and his keys,
how do their velocities compare with each other? [Depth 1]

Fig. 2. Corresponding Corpus Excerpt: Normal Control Condition

questions; 3) used a web/voice interface to work through one physics training
problem with a version of the WOZ (depending on condition); 4) took a posttest
isomorphic to the pretest; 5) worked through a test problem isomorphic to the
training problem with the non-adaptive WOZ (from the normal condition). Note
that unlike the posttest, completing the test problem yielded a new dialogue.

Subjects were native English speakers who had not taken college physics. 60
subjects were randomly assigned to the 3 conditions (20 per condition), except
conditions were gender-balanced. After the experiment, we found that 3 subjects
in the experimental condition had no correct+uncertain answers and so never
received the adaptation; 2 subjects in the random condition had no correct
answers randomly selected for adaptation. These subjects were reclassified into
the normal condition for our performance analysis.

3 Comparing Dialogue-Based Performance Metrics

We hypothesized that the training problem might be too short to yield sig-
nificant differences between conditions in learning as measured by our pretest
and posttest. This expectation was borne out; a two-way ANOVA with condi-
tion by repeated test measures design showed a significant main effect for test
phase, (F(1,57) = 33.919, p = 0.000, MSe = 0.032), indicating students learned
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overall, but there was no significant interaction effect between condition and test
phase, indicating that amount of learning was not dependent on condition. One-
way ANOVAs with post-hoc Tukey indicated no significant difference between
conditions in raw (post-pre) or normalized ((post-pre)/(1-pre)) learning gain.

Thus, we used the test problem as an additional test of how the uncertainty
adaptation in the training problem impacted student answers to the isomorphic
questions in the test problem (where all students used the non-adaptive system,
thereby receiving the same “test”). Below we analyze differences between con-
ditions in dialogue-based performance metrics extracted from the test problem.

3.1 Comparing Impasse State Severities

In order to resolve a learning impasse, the student must first perceive that an
impasse exists. Incorrectness and uncertainty differ in terms of this perception.
Incorrectness simply indicates that the student has reached an impasse, while
uncertainty - in a correct or incorrect answer - indicates that the student per-
ceives s/he has reached an impasse. Based on this distinction, we associated each
of our four answer combinations of uncertainty (U, nonU) and correctness (I,
C) in the test problem with a scalar value from 3 to 0, as shown in Figure 3.

We hypothesized that these scalar values correspond to the severity of the
student’s current learning impasse state with respect to the test question, after
receiving tutoring about the question in the training problem. Thus, 0 is a state
in which the student is not experiencing an impasse, because s/he is correct and
not uncertain about it. 3 is a state in which the student is experiencing the most
severe type of impasse, because s/he is incorrect and not aware of it. 2 and 1 are
states of lesser severity: the student is incorrect but aware that s/he might be,
and the student is correct but uncertain about it, respectively.

Nominal State: InonU IU CU CnonU
Scalar State: 3 2 1 0
Severity Ranking: most less least none

Fig. 3. Different Impasse State Severities

After assigning a scalar state to each answer in the test problem, we computed
a total and average impasse state severity per student. For example, suppose Fig-
ure 1 constituted our dataset for one student. The two student turns are labeled
uncertain+correct and nonuncertain+correct, corresponding to scalar values 1
and 0, respectively. Thus the total = 1 (1+0), and the average = 0.5 (1/2).

We hypothesized that the experimental condition would show significantly
lower total and average impasse severity in the test problem, because the uncer-
tainty adaptation helped resolve more impasses during training. The “Means”
columns in Table 1 show the means per condition. As expected, the experimental
condition had lower total and average severity than the random condition, and
random was lower than the normal condition. However, a one-way ANOVA with
post-hoc Tukey showed no significant differences or trends (p > 0.10).
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Table 1. Means and Correlations for Total and Average Impasse Severity

Metric Means Correlation (60)

Expmntl (17) NormCtrl (25) RandCtrl (18) R p

Tot. Impasse Severity 6.76 7.36 7.28 -0.38 0.003

Ave. Impasse Severity 0.38 0.42 0.41 -0.41 0.001

Despite this, we still hypothesized that lower impasse severities in the test
problem are better, from a learning perspective. To support this, we computed a
partial Pearson’s correlation over all 60 students between both total and average
impasse severity and posttest score, controlled for pretest score (pretest and
posttest are significantly correlated in our data). The last two columns in Table 1
show the results. As shown, both total and average severity are significantly
negatively correlated with learning, suggesting that lower impasse severities in
the test problem are related to increased learning. We thus continue to use this
hypothesis in our interpretation of results in the next sections.

3.2 Comparing Questions Originally Answered Correct+Uncertain

To further examine the impact of the uncertainty adaptation, we investigated
student answers to those tutor questions that were asked in the training prob-
lem, answered as correct+uncertain, and then repeated in the test problem. In
other words, we investigated student performance on the intended target of the
uncertainty adaptation: the correct+uncertain (CU) answers. Note that these
answers were all adapted to in the experimental condition, some were adapted
to in the random condition, and none were adapted to in the normal condition.

The goal of our uncertainty adaptation was to increase correctness and de-
crease uncertainty in the test problem. In terms of these two dimensions com-
bined, the goal was to decrease the frequency of the more severe nominal impasse
states in Figure 3. Thus for each student’s answers, we computed a total and
percent of answers labeled with each (nominal) impasse severity (InonU, IU,
CU, CnonU), as well as of correct (C) and nonuncertain (nonU) answers. For
example, suppose both tutor questions in Figure 1 were originally answered CU
in the training problem and are now repeated in the test problem. The totals
then are: C=2, nonU=1, InonU=0, IU=0, CU=1, CnonU=1. The percents are:
C=100%, nonU=50%, InonU=0%, IU=0%, CU=50%, CnonU=50%.

We hypothesized that the totals and percents in the experimental condition
would be lower for InonU and IU, and higher for C, nonU, CU, and CnonU,
because the uncertainty adaptation would have helped resolve impasses about
these questions (or would have helped increase correctness and decrease uncer-
tainty independently of each other). To test this hypothesis we ran a one-way
ANOVA with post-hoc Tukey for each of the 12 metrics. Table 2 only shows
metrics yielding significant differences or trends (p<0.1). The first column indi-
cates these are answers to repeated questions originally answered CU (CU → ...).
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Table 2. Means and Differences for Answers to Questions Originally Answered CU

Metric Condition Mean Diff p

Expmntl 4.53 > NormCtrl 0.07
Tot. CU → C NormCtrl 2.64

RandCtrl 5.11 > NormCtrl 0.01

Expmntl 96.20% > NormCtrl 0.09
Pct. CU → C NormCtrl 76.50%

RandCtrl 91.06%

Expmntl 3.47
Tot. CU → nonU NormCtrl 2.32

RandCtrl 4.00 > NormCtrl 0.03

Expmntl 3.35
Tot. CU → CnonU NormCtrl 2.20

RandCtrl 3.89 > NormCtrl 0.02

The remaining columns list the condition, its mean, the condition with which a
difference is found, the direction of this difference (> or <), and its significance.

The first two results suggest that (significantly or as a trend) CU answers are
more likely to stay correct in the test problem if they receive the uncertainty
adaptation in the training problem. Put another way, CU answers are more likely
to become incorrect during testing if the uncertainty adaptation is not received
during training. The last two results suggest that the uncertainty adaptation
reduces uncertainty in both the experimental and random conditions; however,
only in the random condition do these results reach significance.

3.3 Comparing Answers at Different Dialogue Depths

We next tested whether the differences observed for answers to repeated ques-
tions generalized to all student answers in the test problem. However, one-way
ANOVAs with post-hoc Tukey indicated no differences between conditions (p >
0.10) for any of the metrics (totals and percents for each nominal impasse state
severity, for correct answers, and for uncertain answers).

We hypothesized that this lack of generalization might be due to the fact that
student answers in remediation subdialogues can behave differently than those
in the top-level dialogue, as we’ve shown in prior work [11]. As discussed in
Section 2, the top-level dialogue is driven by correct answers to questions about
the main problem topics, while a remediation subdialogue about a main topic is
initiated by an incorrect answer to a top-level question. Thus as a final analysis,
we distinguished these two answer types, which we refer to as “Depth 1” and
“Depth 2+” answers. We computed the same metrics as above for each answer
type and ran a one-way ANOVA with post-hoc Tukey for each metric. We found
a trend for more Depth2+ answers to be CU in the experimental condition,
as compared to the normal condition. More generally, the means for total and
percent CU at Depth2+ were highest in the experimental condition, and lowest
in the normal control condition. These results thus suggest that the uncertainty



Responding to Student Uncertainty During Computer Tutoring 67

adaptation helped increase correctness, but did not help decrease uncertainty,
specifically regarding remediation questions. We hope to find firmer evidence of
this when we repeat this type of analysis using data from the ongoing study
discussed in Section 5.

4 Discussion and Related Work

Overall, our results in this paper are encouraging but inconclusive as to the
benefit of our uncertainty adaptation on student performance. We hypothesize
that two experimental design issues may have prevented larger differences be-
tween conditions. First, the training problem was likely too short. On average, it
lasted 15 minutes, contained 20 student turns, and only 4 student turns on aver-
age received the adaptation in the experimental and random conditions. Second,
the correctness feedback, “Okay”, which preceded the uncertainty adaptation,
was likely too vague. During the experiment, the wizard observed that uncer-
tain+correct students were often confused by this feedback. We believe that
the vagueness of “Okay” may have left these uncertain students ignorant as to
whether their answer was correct. This vagueness may have been less noticeable
to the random students, because roughly half of the time they were not uncertain
when receiving the adaptation. This may explain why our analyses show little
reduction in uncertainty in the experimental condition. Although resolving these
issues should yield larger performance increases in the experimental condition,
it still may not tease apart differences with the random condition. For one thing,
some CU answers in the random condition receive the adaptation. A solution
might be to only adapt to CnonU answers randomly; however, this too might
benefit performance, by increasing the certainty of those answers (i.e., a CnonU
answer may be neutral or certain). We assume it would not benefit performance
to adapt to every correct answer, as this gives an identical response to incorrect
and correct answers (except for correctness feedback).

Another complication is that it is not clear what is the best way to handle the
fact that not all subjects in the two adaptive conditions actually received the
adaptation. Although we moved into the normal condition the 5 subjects who
didn’t receive the adaptation, this is not necessarily the best solution because
it can introduce sample bias; however, note that both before and after moving
the subjects, the conditions had no significant difference in the total number
or percent of correct answers in the test problem. Alternative approaches are
also problematic. Removing the 5 subjects, as in [10], can also bias the samples.
Retaining the subjects can yield ambiguous performance metrics. For example,
for these 5 subjects, the metric %CU → CnonU would have to be set to 0 or left
undefined because the denominator is 0 (# training CU), but if set to 0, then
the value has another interpretation where this denominator is nonzero but the
numerator is 0 (# training CU → testing CnonU). Note finally that if we use the
Bonferroni correction, then the p-value required for a trend in Table 2 is 0.1/12
= 0.01. While this corrects for spurious results due to chance (type I errors), it
can allow actual results to be overlooked (type II errors). We thus emphasize
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that our results are exploratory and suggest specific hypotheses to be tested in
our performance analysis of a larger experiment now underway (Section 5).

Determining when to adapt based on uncertainty is still an open question.
To our knowledge only one other controlled experiment has tested uncertainty
adaptations in spoken dialogue tutoring. In [5], Pon-Barry et al. implemented
and evaluated two human tutor responses to uncertain answers (correct and in-
correct) in the SCoT-DC tutor. In their “random” condition, the adaptations
were used after all answers. They found significantly increased learning in this
random condition as compared to a normal condition, but not in the experimen-
tal condition, where the adaptations were used only after uncertainty. Although
most other work targeting uncertainty in the tutoring system community has
involved correlational studies (e.g. [6]), there are other examples of adaptive tu-
toring systems developed or in development, which recognize affect and respond
with various forms of empathy or politeness (e.g. [2,3,15]).

5 Conclusion and Current Directions

We presented one of the first experimental evaluations of student performance
in a dialogue-based tutoring system that automatically adapts to student uncer-
tainty. Our performance metrics include correctness, uncertainty, and learning
impasse severity, which is a novel metric combining these two dimensions. These
were measured in a test problem dialogue after the training dialogue. Though
not conclusive, our results suggest that the uncertainty adaptation does have
a positive benefit on student performance. In particular, correct+uncertain an-
swers are more likely to become incorrect in the test problem if the uncertainty
adaptation is not received during training, but only in the random condition are
these answers also more likely to become nonuncertain. While learning impasse
severity didn’t differ significantly across conditions, it did significantly negatively
correlate with student learning.

We hypothesized that two experimental design issues may have prevented
more performance benefits of the uncertainty adaptation: short tutoring treat-
ment and vague correctness feedback. We are now conducting a larger version
of this experiment that resolves these issues. For this new experiment, we have
implemented the uncertainty adaptation for all five ITSPOKE physics problems
(rather than one); students are tutored for approximately an hour before taking
the posttest, and thus are more likely to benefit from the uncertainty adaptation.
In addition, we have replaced the vague “Okay” feedback with phrases that are
clearly indicative of correctness (e.g. “That’s correct”).
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Abstract. We present an intelligent learning environment, T-algebra, for step-
by-step solving of algebra problems using a novel design of step dialogue, 
which combines two known approaches: conversion by rules and entering the 
result. Each solution step in T-algebra consists of three stages: selection of  
the transformation rule, marking the parts of expression, entering the result of 
the operation. The designed dialogue enables the student to make the same mis-
takes as on paper and to receive understandable feedback about mistakes. The 
evaluation demonstrated that even a brief use of T-algebra affects the results of 
learning. The students who used T-algebra did better on consecutive paper test 
than the students who did not use T-algebra. Furthermore, T-algebra tends to af-
fect specific error types, i.e., after using T-algebra the students make fewer mis-
takes of certain type on paper as well. 

1   Introduction 

Learning environments for step-by-step solving of expression manipulation problems 
(inc. linear equations) have been designed for a long time. Even the earlier environ-
ments could be divided into two groups according to the type of dialogue they use: rule-
based or command-based environments (EXPRESSIONS [21], ALGREBRALAND [4], 
DISSOLVE [14]) and input-based environments (BUGGY/DEBUGGY system [5, 6], 
LMS [19], EMMA [16], Algebra tutor [2]). This division is still applicable today. 

Rule-based environments (such as MathXpert [3], AlgeBrain [1], Cognitive alge-
bra tutor [7], E-tutor: An Equation Solving Tutor [17]) are based on the principle that 
the student selects the transformation rule and in some cases a part of the expression; 
the transformation itself is made by the computer. In such environments, the student 
learns and practices the solution algorithm, but the learning of performing algorithm 
steps is passive, because the computer performs more work than the user. In addition, 
the student is not given the possibility to make certain mistakes; many typical mis-
takes are simply impossible. 

Input-based environments (like Aplusix [13], Treefrog [20]) use paper-and-pencil-
like dialogue design where a transformation step consists mainly of entering the next 
line. The student has the possibility to perform whatever steps and as much as he/she 
wants in one step and to make arbitrary mistakes. Yet such programs usually do not 
handle the solution algorithms of different types of problems and do not provide a 
precise diagnosis of the errors made. 



 How Does an Intelligent Learning Environment 71 

 

This article presents the intelligent learning environment T-algebra with a novel 
design of step dialogue [12, 15]. The design is novel, because it combines two known 
approaches: rule-based and input-based environments (conversion by rules is supple-
mented by entering the result). By choosing the rule, the appropriate parts of the ex-
pression and entering the result of the operation, the student can learn the algorithms 
and their steps and make mistakes in the same way as on paper. The proposed dia-
logue enables the program to check the knowledge and skills of the student, to diag-
nose errors and to offer feedback. 

Before distribution of T-algebra to all Estonian schools, we organized an experiment 
to clarify how the program affects the learning results. 126 students of 7th grade (about 
13 years old) from four different Estonian schools participated in the experiment. Pre-
test-posttest control-group design [8] was used in research. Pre-test and post-test were 
solved on paper in both (experimental and control) groups. Between these tests the con-
trol group received traditional instruction using paper and pencil, while the experimental 
group received experimental instruction using T-algebra. This experiment compared 
T-algebra with the paper-and-pencil method, not with other learning environments. 

The second part of this article presents an overview of the T-algebra environment 
and error diagnosis principles in T-algebra. The third section describes the conditions 
of the experiment. The fourth part summarizes the pre-test and post-test results of the 
experimental and control groups, compares them, presents interesting findings of this 
comparison and answers the question: How does an interactive learning environment 
with novel design affect the students’ learning results? The article also examines the 
types of errors in post-test in experimental and control groups. 

2   Description of T-algebra Environment 

T-algebra is an interactive learning environment for step-by-step solving of school al-
gebra problems, including linear equations. Each solution step in T-algebra consists of  
 

 

Fig. 1. The problem-solution window of the T-algebra program 
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three stages: selection of the transformation rule, marking the parts of expression, en-
tering the result of the operation. The presented scheme improves the ability of the 
program to check the student’s solutions, respond to the errors made by the student 
and give advice when the student is at loss. The program monitors whether the student 
works according to the algorithm, and supports it with the respective dialogue, diag-
noses transformation errors, offers advice and, if necessary, performs the next stage of 
the step by itself. 

The problem solution window of T-algebra is shown on Figure 1. The main part of 
the window contains solution steps and a virtual keyboard that can be used for active 
input. On the right side is the menu of possible actions. The lower part includes in-
structions for the student in this particular situation. 

Figure 2 demonstrates performance of one step in the program (applying the rule 
Move terms to other side). 

 

Fig. 2. Example of one step in T-algebra 

In T-algebra, the student is left the possibility to make mistakes at all three stages 
of the step. If a mistake can be made then T-algebra can respond to it as well. First, 
the student could err in choosing the rule. If the application of the selected rule is im-
possible, the program does not immediately inform the student about the error, be-
cause the student will not find suitable objects for applying this rule or will make an 
error by choosing unsuitable objects. This gives the student a chance to correct the er-
ror without assistance. 

Second, the student can make mistakes in marking the parts of expression. The 
program performs a number of different checks, like syntactical correctness, compati-
bility, position, etc. When wrong parts have been selected, the program does not per-
mit to continue. 

The input stage has the largest selection of potential mistakes, because the student 
must apply the rule for the marked parts and enter the result. The program tries to de-
termine whether the student has made a standard error, which occurs often in student so-
lutions (for example, not changing the sign of a moved term is a common mistake made 
by Estonian students). If the mistake is in the set of standard mistakes (some studies 
have been conducted to collect the students’ mistakes made on paper [9, 11, 18]) then  
T-algebra is able to diagnose it and offer an appropriate error message (Fig. 3). Besides 
standard mistakes, T-algebra can also check the non-equivalence of equations. 
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Fig. 3. Error message displayed when entering the result 

3   Description of Experiment 

The study was carried out in the winter 2007. Seven classes (126 students) of 7th 
grade (13 years old) from four different Estonian schools participated in the experi-
ment. Classes from two schools, where there was more than one 7th grade class, were 
divided into experimental classes and control classes. The remaining two schools par-
ticipated as experimental classes. After the division, we had 2 control classes and 5 
experimental classes. Classes from the schools with more than one 7th grade class 
were taught by the same teacher. 

The topic of linear equations was chosen for the experiment and the experiment 
began when the topic had been explained and practiced in the schools. The experi-
ment consisted of four 45-minute sessions. In the first session, the students solved a 
pre-test on paper. In the next two sessions, the students practiced solving the problems 
of the same topic (linear equations). The experimental group practiced solving these 
problems with T-algebra, while the control group practiced solving exactly the same 
problems using traditional instruction technology – paper and pencil. In the last ses-
sion, the students solved a post-test on paper. Teachers had exact instructions what, 
when and how to do and the same materials (pre-test, problems for practicing and 
post-test) were prepared for all teachers. 

The pre-test was solved in both groups using paper and pencil. During the pre-test, 
the students could not use any assistance materials. The test contained 17 problems (6 
types of problems) and it was possible to earn 39 points in total. Several examples of 
the problems (with maximum points) are listed below: 

• Check if number 5 is solution of equation )1(72)13(210 −−=−− yyy  (3 p.); 

• Reverse equation sides: 7324 += y  (1 p.); 

• Divide equation sides by variable coefficient: 9,33,1 −=n  (1 p.); 

• Multiply both sides of the equation by common denominator: 

6

5

4

52

12

13

9

3 −++=+−+ xxxx  (2 p.); 

• Move all variable terms to the left side and all constant terms to the right side and 
then combine like terms: 1193475 ++−=−+− xxxx  (2 p.); 

• Solve an equation: yyy 47)43(25 −=+−  (5 p.). 
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The students were graded according to the following scale: 

5: 35.5 – 39 points (91 - 100 %) 
4: 27.5 – 35 points (71 - 90 %) 
3: 19.5 – 27 points (51 - 70 %) 
2: 11.5 – 19 points (31 - 50 %) 
1:   0.0 – 11 points (0 - 30 %) 

During the next two sessions (mathematics lessons), the experimental group prac-
ticed solving similar problems using T-algebra in computer class. The practice took 
place immediately after the pre-test in the next mathematics lesson and linear equa-
tions were not taught in the ordinary class between pre- and post-tests. The students 
had seen and tried T-algebra before when learning other topics, so the teachers did not 
have to explain the environment to the students. After the second lesson the students 
saved their solutions, the teachers collected them and sent to us for examination. 

While the experimental group practiced solving in T-algebra, the control group sol-
ved exactly the same problems using paper and pencil. During the sessions the students 
solved the problems in their notebook and one of them wrote the solution on the black-
board. The teacher highlighted and corrected mistakes in the solutions on the black-
board, but did not explain anything new and did not correct solutions in the notebooks. 

During the fourth consecutive session, both groups solved a post-test using paper 
and pencil. The arrangement of the post-test was the same as in pre-test and similar 
types of problems were used. Again, the students could not use any assistance materi-
als, least of all the corrected pre-test. 

After the experiment we collected the papers of the pre- and post-tests and the files 
with solutions in T-algebra for analysis. 

4   Results of Experiment 

After an analysis of papers and files, the students who had missed at least one session 
were excluded and the work of 115 students remained. The tests were analyzed fur-
ther and the students whose pre-test result was less than 11 points were excluded, be-
cause in the preconditions of the experiment we assumed that the topic had been 
taught to the students, i.e., the students should be able to score at least 30 % of the 
points. We wanted to evaluate how T-algebra affects practicing after the topic has 
been explained by the teacher, not how it influences learning new material. While all 
other students had some basic knowledge about linear equations, these students (who 
scored under 30 %) did not. The work of 106 students remained after this step; 76 of 
them had participated in the experimental group and 30 in the control. Table 1 shows 
the results (average number of points) of pre- and post-test in both (experimental and 
control) groups. As we can see, the average number of points in pre-test is almost 
equal in experimental and control groups. The difference is not statistically significant 
(unpaired t-test t = 0.0368, p = 0.97) and the groups can be considered as equal. 

Table 1. Results (average number of points) of the tests 

 Experimental Control 
Pre-test 29.4 29.3 
Post-test 31.3 29.9 
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Table 1 indicates that the knowledge of students from experimental group is statis-
tically significantly improved (paired t-test t = 3.571, p < 0.01), but no statistically 
significant difference (improvement) can be found in the points earned by the control 
group (paired t-test t = 1.2024, p > 0.05). Effect size (using Cohen’s d) is 0.179. This 
implies that even a brief use (2 lessons) of T-algebra affects the results of learning. 

Table 2 shows the percentages of students from the experimental group with dif-
ferent grades in pre- and post-tests. As we can see, the percentage of students with the 
highest grade has grown. The percentage of students with grade 4 remained the same 
while the percentage of students with low grades (3 and 2) has decreased. 

Table 2. Division of students (from the experimental group) by pre- and post-test grades 

 Students with  
grade 5 

Students with 
grade 4 

Students with 
grade 3 

Students with 
grade 2 

Pre-test 25 % 38 % 24 % 13 % 
Post-test 39.5 % 38 % 14.5 % 8 % 

Checking the post-test of the experimental group, we noticed that one experimental 
student emulated the writing style of T-algebra. The operation Multiply/Divide both 
sides has a slightly different appearance in Estonian textbooks and in students note-
books from that used in T-algebra. On paper, the students perform this operation in 
two rows and the result is a solution like the one on the left on Figure 4. However, the 
application of this rule in T-algebra is written in three rows (Fig. 1). The mentioned 
student was not able to solve problems of the type Multiply both sides in the pre-test. 
In the post-test he solved all five problems of this type successfully, but he always 
wrote the solution in three rows as illustrated on the right side on Figure 4. 

 

Fig. 4. Multiplication of both sides of equation in two rows (in textbooks, on paper) (left) and 
in three rows (emulating T-algebra) (right) 

This picture was very unusual on paper, so we drew the conclusion that even two 
hours with T-algebra could affect the students’ writing style. Naturally, this assump-
tion still needs to be confirmed or refuted through future experiments. 

Now we could look in more detail at the mistakes made in pre- and post-tests in the 
experimental and control groups. Table 3 shows the percentage of students in each 
group who made a specific mistake in the pre-test or in the post-test while the last 
columns show the percentage of the students who repeated the mistake they had made 
in the pre-test in the post-test as well. Many different kinds of mistakes were made, 
but Table 3 presents only the mistakes that were made in the pre-test by more than ten 
percent of the students in both groups (experimental and control). This restriction was 
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introduced to enable comparison of mistakes in pre- and post-tests (it would be very 
hard to distinguish the influence of T-algebra in case of mistakes made only by a few 
students in one or another group). Table 3 does not reflect whether the student made 
this mistake more than once in one test. 

Table 3. Mistakes made in pre- and post-tests in experimental and control groups 

Pre-test Post-test Recur-
rence in 
post-test 

No Nature of mis-
take 

Example of mistake 

experi-
mental 

con-
trol 

experi-
mental

control experi-
mental 

control 

1 Minus sign be-
fore fraction is 
taken into ac-
count only at 
first term 

5 3 14 2 3 4
| 15

3 5 15
20 6 9 4

y y

y y

+− = ⋅

− + =

55 56 29 46 52 82 

2 Arithmetic mis-
take in combin-
ing and in 
evaluating 

242

12297

−=−
−=−

s

ss  46 50 21 33 45 67 

3 In the problem Check if number is a solution 
the equation is solved 

40 30 19 10 48 33 

4 In the problem Reverse sides all variable 
terms are moved to the left side and all con-
stant terms to the right side 

32 23 8 10 24 43 

5 Minus sign be-
fore parenthe-
ses is taken into 
account only at 
first term 

yy

yy

23269

23)13(29

−=−−
−=−−  22 46 10 40 47 85 

6 Mistake in sign 
in dividing 2

)4(|:84

−=
−−=−

y

y  21 20 7 7 31 33 

7 Arithmetic mis-
take in dividing 4.0

)3.0(|:2.13.0

=
−−=−

y

y  17 14 9 7 53 50 

8 Sign is not 
changed when 
moving to other 
side 

615458

641558

+=−−
+=+−

uuu

uuu  16 20 8 10 50 50 

9 Whole number 
is not multi-
plied 732

10|
10

7
3

5

1|2|

=+

⋅=+

x

x  15 23 3 10 18 43 

As we assumed, T-algebra affects some error types. We can see that the students 
from the experimental group made fewer mistakes in the sign of second term (mis-
takes number 1 and 5) in the post-test. The same was observed in the earlier experi-
ments [10] and we believe that showing the error message immediately and directing 
attention to the mistake and its location (box) is the cause of that. However, T-algebra 
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does not affect mistakes in sign, which are not connected to the second term, such as 
mistakes in sign in dividing and moving to other side (mistakes 6 and 8). 

A decrease in the number of students from the experimental group who made the 
mistake number 9 was also predictable. The same was noticed in the earlier experi-
ment [10]. The students working on paper often forget to multiply a number, which is 
not fraction, but T-algebra does not allow proceeding with such solution and notifies 
that all terms should be multiplied. This causes the reduction of this mistake in the 
post-test. 

T-algebra can also affect learning of algorithms. The students from the experimen-
tal group made the mistake number 4 (in the problem Reverse sides) less frequently 
than the students from the control group. Experimental students made the mistake 
number 3 (in the problem Check if number is a solution) in the post-test more often 
than the control students, because teachers request checking the solution of linear 
equations when solving on paper (sixth type of problems – solve an equation). There-
fore, the students solving equation on paper also practice checking the solution. This 
checking stage is omitted in T-algebra, because the program does not permit incorrect 
solutions. Consequently, the percentage of the students from the control group who 
made this mistake decreased, because they had more practice with this type than the 
experimental students. 

It is hard to say whether T-algebra affects arithmetic mistakes or not. The students 
from the experimental group made the mistake number 2 less frequently than the stu-
dents from the control group, but the frequency of the mistake number 7 was equal 
(and even slightly higher in the experimental group). We assumed that T-algebra does 
not affect arithmetic mistakes and we hope future experiments will explain the de-
crease in the frequency of the mistake number 2. 

5   Conclusions 

We have combined two known approaches for step-by-step solving of algebra prob-
lems and have designed a three-stage dialogue in T-algebra intelligent learning envi-
ronment. We have succeeded in creating such rule dialogue in T-algebra that gives the 
student the possibility to learn both the solution algorithms and their steps, to make 
the same mistakes as on paper, and enables the program to check the knowledge and 
skills of the student, understand the student’s mistakes, offer feedback and give ad-
vice. We have conducted the experiment to answer the question: How do T-algebra 
environment and its novel design affect the students’ learning results? The experiment 
comprised pre- and post-tests on paper and practice with or without T-algebra. 

As we saw in the post-test, the students from the experimental group did better 
than the students from the control group (the average pre-test score was almost equal 
in experimental and control groups). This shows that even a brief use (2 lessons) of 
T-algebra affects the results of learning. We also saw a progress of the students from 
the experimental group to a higher score in the post-test. 

The experiment showed that even two hours with T-algebra could affect the stu-
dents’ writing style on paper. However, this observation needs further experiments for 
confirmation or refutation. 
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Finally, we saw that T-algebra could affect some error types, i.e., the students from 
experimental group made fewer mistakes of certain types (like mistakes in the sign of 
second term). However, this short period of use of T-algebra gave strange results for 
arithmetic mistakes; we hope to find an explanation for the change in these mistakes 
from a long-term experiment. 

Obviously our decisions and ideas need some years of practical classroom trials be-
fore they can be finally confirmed. Starting from the school year 2006-2007, tens of 
teachers in Estonian schools use T-algebra for practice. The results of the school trials 
and teacher experiences will contribute to and support further development of 
T-algebra. 

The conducted experiment examined the influence of the T-algebra environment 
on students and did not compare T-algebra with other environments. It would be very 
interesting to organize an experiment to compare whether the novel design of 
T-algebra produces better results than, for example, Aplusix [13] or MathXpert [3] 
environment. 
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Abstract. This paper presents the first experiments with an Intelligent
Tutoring System in the domain of linked lists, a fundamental topic in
Computer Science. The system has been deployed in an introductory
college-level Computer Science class, and engendered significant learning
gains. A constraint-based approach has been adopted in the design and
implementation of the system. We describe the system architecture, its
current functionalities, and the future directions of its development.

1 Introduction

In this paper, we present the first version of iList, an Intelligent Tutoring System
(ITS) in the domain of basic data structures and algorithms in Computer Science
(CS), and its evaluation. Among the innovative features of our work are: the
domain itself, and specifically, our focus on linked lists, due to pedagogical tenets
for CS; the choice of constraint-based modeling as the basis for our ITS; and the
structure of our graphical interface, itself partly due to the pedagogy of CS. This
work is situated within our larger research program, whose main goal is, similarly
to others [1,2,3,4], to better understand why human tutoring is effective, and to
discover computational models of effective tutoring that can be implemented in
ITSs. We are developing a second version of the ITS we present here, based on
our data collection and analysis in this CS domain.

Computer Science as a Domain. In recent years, interest in CS among col-
lege students in the US has dropped dramatically. However, CS and Information
Technology are of enormous strategic interest, and are projected to foster vast
job growth in the next few years [5]. We believe that by supporting CS education
in its core we can have the largest impact on reversing the trend of students’
disinterest, and on attracting women and minorities. Our belief is grounded
in the observation that the rate of attrition is highest at the earliest phases
of undergraduate CS curricula. This is due in part to students’ difficulty with
mastering basic concepts [6], which require a deep understanding of static struc-
tures and the dynamic procedures used to manipulate them [7]. These concepts

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 80–89, 2008.
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require a high level of abstraction, and the ability to move seamlessly among
multiple representations, such as text, pictures, pseudo-code, and real code in
a specific programming language. Thus, we believe that the availability of an
ITS for basic CS would be of great benefit to both teachers and students. Such
an ITS does not exist yet. This is surprising, since CS education is an area of
active research, and ITSs are obviously software systems. Although ITSs on CS
topics do exist, to our knowledge, only two of them tutor on the foundations.
ADIS [8] tutors on basic data structures, but its emphasis is on visualization,
and it appears to have been more of a proof of concept than a working system.
ProPL [9] helps novices design their programs, by stressing problem solving and
design skills. The other ITSs for CS focus on a diverse range of topics, from
basic literacy as in AutoTutor [10], to teaching programming languages such as
Lisp [11], C++ [12], and Java [13], to topics such as search algorithms used in
Artificial Intelligence [14]. Of particular interest to us is the database suite of tu-
tors composed by SQL-Tutor, NORMIT, KERMIT, and EER-Tutor [15]. These
ITSs are built via constraint-based modeling, the same paradigm we chose for
the development of our system.

Constraint-Based Modeling. Our system is based on a design paradigm
known as constraint-based modeling. Originally developed from a cognitive the-
ory of how people might learn from performance errors [16,17], constraint-based
modeling has grown into a methodology used to build full-fledged ITSs, and an
alternative to the model tracing approach adopted by many ITSs. In a constraint-
based system, domain knowledge is modeled with a set of constraints, logic units
composed of a relevance condition and a satisfaction condition. A constraint is
irrelevant when the relevance condition is not satisfied; it is satisfied when both
relevance and satisfaction conditions are satisfied; it is violated when the rele-
vance condition is satisfied but the satisfaction condition is not.

In the context of tutoring, constraints are matched against student solu-
tions. Satisfied constraints correspond to knowledge that students have acquired,
whereas violated constraints correspond to gaps or incorrect knowledge. An im-
portant feature is that there is no need for an explicit model of students’ mistakes,
as opposed to buggy rules in model tracing. Errors are implicitly specified as the
possible ways in which constraints can be violated. This property simplifies the
difficult and time consuming task of knowledge modeling in an ITS.

There is currently a heated debate on whether constraint-based modeling is
more or less appropriate than model tracing for building ITSs [18,19,20]. The
application of the constraint-based paradigm to a new domain can contribute to
a better understanding of this issue.

Empirical Grounding. Our goal is not just to develop an ITS for CS, but to
endow it with a dialogue interface that can provide more sophisticated feedback,
that can help improve students’ learning [21,22]. To accomplish this goal, we are
conducting an extensive tutoring dialogue collection in the data structures do-
main. We already collected 54 tutoring sessions, transcribed the video-recordings,
and started annotating them. More details on our data collection and prelimi-
nary analysis can be found in [23,24]. The findings of future data analysis will
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guide further development of our system. The ITS we describe in this paper is in
fact a baseline to which we will compare the more sophisticated and empirically
grounded versions that will follow. We now describe the specific sub-domain of
our research, the basic ITS we have developed so far, and its first evaluation.

2 Linked Lists

A linked list is a data structure used to store information sequentially. It is
composed of a set of nodes. Each node contains two pieces of information: a value,
representing the data we are interested in storing, and a link to the following
node of the list. Links between nodes are realized using pointers, that are explicit
references to the memory locations where the nodes are stored. A graphical
representation of a linked list can be seen in Figure 1.

Among numerous different data structures, linked lists play a very important
role in the pedagogy of basic Computer Science, making them a particularly
good topic for our research. Linked lists are usually presented early in Computer
Science curricula; as such, more students see this topic. According to our expe-
rience on teaching data structures in classroom, students struggle with linked
lists more than with other —sometimes more complex— data structures, such as
stacks and binary search trees. The fundamental concepts of linked structures,
pointer manipulations, object allocation, and traversals, which students learn in
the context of linked lists, are all necessary for more complicated data struc-
tures, such as trees. Linked lists are important because students can learn these
concepts in a relatively simple context, and they should not cause additional
cognitive overhead when students are trying to understand more complicated
structures. Part of what students learn while they struggle with linked lists is
to think about an abstract visual model of their data, and to think of steps in
a program/algorithm as making changes to that model. Mastering that way of
thinking is a huge step for students, and one that they need to make to continue
successfully in Computer Science.

In the linked list domain, there are several structural properties that a solution
should have in order to be correct. For example, a list should contain the correct
values, as specified in the description of each problem; lists should be free of
cycles; lists should not terminate with undefined or incorrect pointers; no nodes
should be made unreachable from any of the variables, i.e., lost in the heap space;
nodes should be correctly deleted when necessary (this applies specifically to
non-garbage collected languages, like C++). Having these properties in form of
constraints allows our system to catch many common mistakes students make.

3 The iList System

The iList system works by providing a student with a simulated environment
where linked lists can be seen and manipulated. Lists are represented graphi-
cally, and can be manipulated with programming language commands. Students
are then asked by the system to solve problems in this environment, such as
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insert new nodes in a given linked list, remove nodes, or perform other more
complicated operations. As a student is working towards a solution, the system
can provide feedback to help the student make progress.

A key difficulty about linked lists, as well as with other more sophisticated
data structures, is that to really understand and use them effectively, students
must think in pictures but act in code. The issue of multiple representations
is subject of active research in science education [25,26,27]. In traditional data
structures books, linked lists are illustrated with pictures, and it is sometimes
difficult to connect that static representation with the dynamic procedures nec-
essary to manipulate the structure itself. That is in fact what iList addresses.
It makes the pictorial representation concrete. In a certain sense, the system
reifies that conceptual image and makes it more accessible to the students. The
central idea is that iList’s interface is not just a box for entering input, but a dy-
namic visual environment that connects code actions to their effects on machine
state.

Problem Types. The iList system supports two types of problems. The first
kind of problems can be solved interactively, step-by-step. Students can enter
a command into the system, and the system simulates the effect of that com-
mand, showing the effect of the action immediately on the simulated scenario.
The second type of problems require writing a complete snippet of code, possi-
bly involving structured conditional constructs like loops. Problems of this type
usually introduce more than one initial scenario, and ask the student to write
code that should work correctly in all the given scenarios. This setting forces
the student to abstract away the specific details of a scenario, and think about
more general algorithms for solving the problem on a wider range of situations.

The curriculum included in iList is currently composed of 7 problems, 5 of
them of the first type, 2 of them of the second type. These problems have been
carefully crafted based on some of the authors’ experience as computer science
educators, and on published CS curricula, such as ACM [7]. The goal is to
challenge the students with the most common difficulties in manipulating linked
lists. The problems are defined in the system using a human-readable XML
format, making it easy to add new problems as needed.

Architecture. The architecture of iList is currently composed of four important
modules: problem model, constraint evaluator, feedback manager, and graphical
user interface. A student model and a pedagogical module, important components
of a complete ITS [28], have not been implemented yet. Thus, the current version of
iList is better defined as an interactive learning environment, rather than an ITS.

The problem model includes the representation of the problems presented to
the student. A problem is given to the student in the form of a textual description
and an initial scenario, which includes a configuration of variables and nodes
(state space). The student is asked to progressively modify the state space by
interactively providing a sequence of operations, until the desired configuration
of the data structure has been reached.

When the student believes he/she is done with the current problem, the cur-
rent state space is submitted to the constraint evaluator, that checks the given
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solution. According to the constraint-based modeling paradigm, a solution is
correct if it does not violate any constraint. Computationally, the evaluation of
constraints is fairly simple. Each constraint is implemented as a computational
unit with three fundamental functions: a boolean function checking the rele-
vance of the constraint with respect to the solution, a boolean function checking
the satisfaction of the constraint, and a feedback function responsible to return
relevant information used to generate feedback for the student. A constraint is
violated if the logic implication isRelevant ⇒ isSatisfied is false for that particu-
lar state space. Constraints have access to two sources of information: the current
student solution, and a correct solution provided with the problem definition.
The specification of the correct solution needs only to include the minimum in-
formation necessary to evaluate a student solution, like the expected values of
final lists. This is indeed one of the advantages of the constraint-based approach:
the whole path towards a correct solution needs not to be specified in advance.
This simplifies problem authoring, and most importantly, it allows alternative
correct student solutions to be accepted by the system.

The feedback manager collects information from the individual constraints
and builds a message directed to the student. Currently, this module simply
relays messages provided by violated constraints, with minimum processing.

The graphical user interface is responsible for the main interaction with the
student (Figure 1). The interface allows the student to interactively manipulate
a data structure using C++ or Java commands. The command interpreter is
quite flexible, allowing the student to focus more on the semantics of statements
rather than language-dependent syntax details.

The system has been entirely implemented using the Java programming lan-
guage. An early version of the system was interfaced to the WETAS system
[29] for constraint evaluation. In subsequent versions, the constraint evaluator
was re-implemented internally. To the user, the system appears as an applet
integrated into a web page.

4 System Evaluation

A first version of the system has been deployed in a Computer Science class of
a partner institution. 33 students took a pre-test before using the system, and a
post-test immediately afterwards. After the post-test, the students also filled in a
questionnaire about their subjective impressions on the system. The interaction
of the students with the system was logged.

T-test on test scores revealed that students did learn during the interaction
with iList (Table 1). We compared students’ learning gain, defined as the differ-
ence between post-test score and pre-test score, with that of two other compa-
rable groups of students. A group of 54 students interacted with a human tutor
between the pre and post tests. The other group (control group, 53 students)
attended a lecture about a totally unrelated topic between the two tests. The tu-
tored group achieved statistically significant learning, whereas the control group
did not (Table 1).
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Fig. 1. A screenshot of iList

Table 1. Test scores. Range: 0 to 1.

Tutor
Pre-test score Post-test score Gain T-test
Mean Std dev Mean St dev Mean St dev t df P

None .34 .22 .35 .23 .01 .15 -0.56 52 ns

iList .39 .23 .48 .27 .09 .17 -3.04 32 < .01

Human .40 .26 .54 .26 .14 .25 -4.24 53 < .01

The learning gain of the iList group is somewhere in between the one observed
in the control condition and the one of the tutored condition. ANOVA revealed
overall differences between the three groups (F (2, 137) = 5.96, P < 0.05). Post
hoc Tukey test indicated no significant difference between the control group and
the iList group, nor between the iList group and the tutored group, whereas the
difference between control and tutored groups is significant (P < 0.01).

The percentage of students who successfully solved each problem decreases
with the problem number, as can be seen in Table 2. Problems were of increasing
difficulty. Linear regression of individual problem success on learning gain showed
a positive correlation between the number of problems successfully solved and
learning. Also, we found significant positive correlation between solving the most
difficult problems (number 5, 6, and 7) and learning (Table 3).

The first part of the questionnaire (Table 4) revealed that students felt that
iList helped them learn linked lists to a moderate degree, and working with iList
was interesting to them. The students found the feedback provided by the sys-
tem somewhat repetitive, which is not surprising given the simple template-based
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Table 2. Attempt and success rates on individual problems

Problem 1 2 3 4 5 6 7

Attempt rate 100% 100% 94% 91% 77% 74% 80%

Success rate 91% 80% 74% 66% 57% 46% 31%

Table 3. Linear regression. Each line represents an independent model.

Predictor Dependent variable R2 β df F t P

Number of problems solved Learning gain .17 .41 1, 32 6.31 2.51 < .05

Problem 5 solved (yes/no) Learning gain .12 .35 1, 32 4.25 2.06 < .05

Problem 6 solved (yes/no) Learning gain .16 .40 1, 32 5.80 2.41 < .05

Problem 7 solved (yes/no) Learning gain .13 .36 1, 32 4.63 2.15 < .05

Questionnaire question 1 Learning gain .22 .47 1, 31 8.33 2.89 < .01

Questionnaire question 4 Learning gain .16 -.40 1, 31 5.83 -2.42 < .05

Questionnaire question 5 Learning gain .37 .61 1, 31 17.72 4.21 < .01

Questionnaire question 6 Learning gain .12 .36 1, 31 4.32 2.08 < .05

Questionnaire question 7 Learning gain .35 -.59 1, 31 16.09 -4.01 < .01

Learning gain Final class grade .12 .36 1, 31 4.35 2.09 < .05

Table 4. Questionnaire: scaled questions

Question (Scaled response: 1=No to 5=Yes) Mean Std dev

1. Do you feel that iList helped you learn about linked lists? 2.9 1.2

2. Do you feel that working with iList was interesting? 4.0 1.3

3. Did you read the verbal feedback the system provided? 4.3 1.0

4. Did you have any difficulty understanding the feedback? 3.0 1.5

5. Did you find the feedback useful? 2.3 1.2

6. Did you ever find the feedback misleading? 2.2 1.2

7. Did you find the feedback repetitive? 3.9 1.2

generation mechanism. Also, the feedback was considered not very useful, but
at least not too misleading.

Linear regression of questionnaire answers on learning gain revealed some
significant correlations between students’ feelings about the system and their
learning (Table 3). The students who felt that iList helped them the most or
found the feedback useful did indeed learn the most (questions 1 and 5). Those
who had trouble understanding the feedback or found the feedback repetitive
learned less (questions 4 and 7). Strangely, the students who found the feedback
misleading learned more (question 6). A possible explanation may be that those
students were more careful and exercised more critical thinking, thus getting
more out of their interaction with the system.

Interestingly, students declared that they read the feedback provided by the
system, but our evidence points to the opposite conclusion. From the log of the
system, we estimated that students read feedback messages for 3.56 seconds on
average (stdev = 2.66 seconds), resulting in a reading rate of 532 words/minute
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(stdev = 224 words/minute). According to Carver’s taxonomy [30], such speed
corresponds to the process of quickly skimming a text. According to the same
taxonomy, the activity of reading to learn would require a much lower rate, in
the order of 200 words/minute. Possibly, the repetitiveness of feedback messages
could have made the students ignore them [31].

The last item in the questionnaire was an open response question, asking the
students for any comments on the program. The detailed comments provided
by the students and the instructor of the class will be helpful in guiding further
improvements of the system.

Finally, linear regression revealed a positive correlation of the learning gain
obtained with iList with the students’ final grade in the data structure class
in which they used iList (Table 3). There is then a chance that the little bit of
knowledge that students acquired interacting with iList carried over to their final
exam, and hopefully will help them in their future career in Computer Science.

5 Future Work

We plan to significantly extend the functionalities of iList. We will design and
implement a student model, to keep track of students’ history and estimate
their state of knowledge exploiting the modeling power of the constraint-based
knowledge representation. Pedagogical strategies will be implemented, following
the results of our data analysis and those already published in the literature.

One of the research issues we are mostly interested in is the delivery of ef-
fective feedback to students. We plan to build a more sophisticated feedback
module, grounding its behavior in the outcome of the analysis of our tutorial
data, as well as in our past experience with the development of natural language
interfaces for ITSs [21,22]. A preliminary analysis of our human tutorial dataset
suggested that positive feedback, i.e., reaction to correct student actions, may
play an important role in tutoring [23]. We are planning on investigating the
conditions and the modalities in which positive feedback is delivered by human
tutors, and build a computational model of positive feedback that will be imple-
mented and evaluated in iList. Providing meaningful positive feedback in ITSs,
in particular in constraint-based ITSs, is still an open problem, and a system
like iList will be a useful testbed for researching that problem.

Acknowledgments. This work is supported by award N00014-07-1-0040 from
the Office of Naval Research, and additionally by awards ALT-0536968 and IIS-
0133123 from the National Science Foundation.
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Abstract. Diagrams appear to be a convenient vehicle for teaching argumenta-
tion skills in ill-defined domains, but can an ITS provide useful feedback on 
students’ argument diagrams without assuming a well-defined procedure for 
objectively evaluating argument? LARGO is an ITS for legal argumentation 
that supports students as they diagram transcripts of US Supreme Court oral ar-
gument. It provides on-demand advice by identifying small, interesting or in-
complete patterns within students’ graphs. We conducted a study in which 
LARGO was used as mandatory part of a first-year law school class. In contrast 
to prior findings in lab studies with voluntary participants, the use of LARGO 
did not lead to superior learning as compared to a text-based note-taking tool. 
These results can be partially attributed to low use of the graphical tools and 
advice by the students as well as (and possibly due to) a different motivational 
focus. Some evidence was found that higher engagement with the system led to 
better learning, leaving open the tantalizing possibility of helping especially 
lower-aptitude students through use of LARGO. 

Keywords: Ill-defined Domains, Legal Argumentation, Diagram Representa-
tions, ITS Evaluation. 

1   Introduction  

In a variety of domains, a central goal of education is training students to produce 
robust arguments that not only address the current problem but survive the test of 
other examples and cases that have been encountered in the past or that may arise in 
the future. When a student proposes a rule for defining a class of mathematical ob-
jects, a theory for explaining scientific data, or a rule justifying a legal decision, one 
expects other students or the teacher to respond, “But what if….” That is, they test the 
proposal by posing hypothetical examples or cases that may occur and that highlight 
potential problems with the proposed rule or theory.  

Law students are taught to make arguments through Socratic classroom dialogue, 
participation in moot court sessions and the analysis of examples, notably important 
precedents. These activities imitate court room arguments. Advocates before the court 
make their arguments by proposing tests or legal rules which, if adopted and used to 
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decide the case at hand, would achieve their goals. To challenge these proposed deci-
sion rules, an opponent or judge may pose hypothetical cases that may occur, are 
relevant to the issues of the argument, and illustrate situations that the rule should 
cover but does not or decides wrongly given the underlying principles and policies of 
the law. The advocates can then respond by modifying their tests as needed to cover 
or avoid the hypothetical case, or by distinguishing the hypothetical situation from the 
facts of the case [12].  

Interestingly, in legal education, teachers instruct students by engaging them in 
practice making and responding to such arguments, but seldom make explicit the 
process itself. If a student’s argument has a flaw, the teacher does not explain the 
flaw; instead, the teacher typically will respond to the argument with a counterargu-
ment that exploits the flaw, thus leaving to the student the responsibility of later re-
flecting on why his argument was weak. It is not always clear why this approach is 
taken. It raises the possibility that students might learn better if their self-reflections 
about the process were explicitly guided. ITS systems such as CATO [1] and Argu-
Med [16] could help as tools both to give students practice in making arguments and 
to make explicit the process of argumentation.  

Graphical representations of argument and argument diagramming have gained 
currency in recent years [4,13]. Proponents of argument diagrams argue that they can 
make the essential logical relations explicit while retaining formal validity. Work by 
Carr [5] in the legal domain indicated that the production of argument diagrams can 
improve students’ ability to produce high-quality arguments, and Schank [14] showed 
that the production of diagrams can improve students' argument coherence. Recent 
work by Harrell [7] and Easterday et al. [6] has substantiated that argument diagrams 
can be useful learning tools. In summary, the current state of research suggests that 
diagrams are a useful educational tool, but controlled empirical studies are still rare. 

The LARGO Intelligent Tutoring System [3,10,11] for legal argumentation sup-
ports students in the process of analyzing oral argument transcripts (taken from the 
U.S. Supreme Court). These are complex, real-world examples of the kind of Socratic 
arguing with tests and hypotheticals in which professors seek to engage students in 
class. However, they are written rather than purely oral as in the classroom, and thus 
may be good examples to use in reflecting upon the process of argument. Since these 
transcripts tend to be more complicated than classroom arguments, students probably 
need support in order to understand and reflect on them. LARGO provides that sup-
port by capitalizing on the pedagogical value of argument diagrams. While using the 
system, students read through the transcript and produce a graphical markup of it, 
identifying the key tests, hypotheticals, responses, and facts as well as the relation-
ships between them. LARGO helps students by giving feedback in the form of self-
explanation prompts. 

In the fall of 2006, we conducted a study of LARGO with paid volunteers from the 
first year Legal Process course at the University of Pittsburgh’s School of Law. The 
subjects analyzed a pair of cases using either LARGO or a text-based note-taking 
tool. We found no overriding differences between the two conditions. However, lower 
aptitude students, as measured by their Law School Admission Test (LSAT) score (a 
frequently-used predictor for success at law schools), showed higher learning gains 
using LARGO than using the note-taking tool. Also, the use of LARGO’s on-demand 
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help features was strongly correlated with learning [11]. Further analysis indicated 
that familiarity with the system led students to engage in better note taking [9].  

Since participation in the study was voluntary, the students were self-selected 
(from among those enrolled in the course) for their interest in the curriculum, the ITS, 
and the pay. Many expressed an interest in the system, making it apparent that they 
were among the more inquisitive members of their class. We therefore concluded that 
a second study was necessary to further examine and substantiate the findings with 
non-voluntary participants. We sought out an opportunity where LARGO would be 
required in a course setting, so that we would have a sample of students that is more 
directly representative of the LARGO target population, and that (compared to our 
earlier study) may include a larger proportion of lower-LSAT students, for whom 
LARGO was most effective in that earlier study. 

Based on our prior results, the two hypotheses for the new study are: a) Lower-
aptitude students will derive more benefits from LARGO than their higher-aptitude 
peers, and b) additional experience with the system will improve students’ use and 
benefit of it (i.e., we hypothesized stronger effects than in our previous study,  if we 
include more study sessions). The following sections of this paper describe the type of 
argumentation LARGO teaches, and the design and results of the study.  

2   Arguing with Tests and Hypotheticals 

An example taken from the case Asahi Metal Industry Co. v. Superior Court, (480 
U.S. 102 (1987)), illustrates both the process taught, legal reasoning with test and 
hypotheticals, and the way in which LARGO’s argument diagrams support learning. 
Law students encounter the Asahi case in their first semester “Legal Process” course. 
It deals with an important legal concept: personal jurisdiction, a court’s power to require 
that a person appear in court and defend against a lawsuit.  

Cases like Asahi involve a court in one state attempting to assert power over a non-
resident of that state. In such cases, the principle that a state’s courts may redress in-state 
harm conflicts with the U.S. Constitutional guarantee of “Due Process” requiring safe-
guards against the arbitrary exercise of government power. In Asahi, a motorcycle acci-
dent injured the driver and killed his wife. The driver filed a product liability claim 
against Cheng Shin, the Taiwanese maker of the tire in a California state court, alleg-
ing that a defect caused the accident. Shin in turn filed a claim against Asahi, the 
Japanese manufacturer of the tire’s valve assembly, alleging that a defective valve 
caused the accident. Asahi moved to dismiss for lack of personal jurisdiction. The 
case made its way to the U.S. Supreme Court. 

A typical Legal Process course book would include the Supreme Court’s opinion in 
Asahi along with the facts of the case and its reasons. A law professor likely would 
engage the class in a Socratic discussion of the meaning and limitations of the Court’s 
rule and alternate rules it might have adopted. If a student argued that Asahi should be 
subject to jurisdiction in California as its valves ended up there (i.e., proposed a test), 
the professor might ask: “How far up the stream of supply does it go? Does California 
have jurisdiction over the steel maker whose steel is in the valve?” (i.e., poses a hypo-
thetical). Students learn to respond to such questions by analogizing the hypothetical 
to or distinguishing it from the case facts and defending the proposed rule, modifying 



 Re-evaluating LARGO in the Classroom 93 

the rule to accommodate it, or abandoning the rule in favor of another. In this way, the 
professor introduces students to the legal rules of personal jurisdiction, and to the na-
ture of legal rules, the fact that they are defeasible, have an open texture, and may be 
applied differently in different circumstances. 

At the U.S. Supreme Court, advocates often propose tests that decide the case at 
hand in their favor. The Justices often evaluate the tests by posing hypothetical cases 
like the one above to probe the test’s meaning, its limits and consistency with prece-
dents, principles, and policies. Thus, oral arguments at the U.S. Supreme Court pro-
vide complex examples of the kind of reasoning employed in the classroom, and 
therefore have a pedagogical value. Traditionally, however, oral arguments have not 
been employed in law school classes due to their complexity and lack of availability. 

 

Fig. 1. A student diagram for the Asahi argument 

Figure 1 shows a student’s actual LARGO diagram for a portion of the Asahi ar-
gument. The argument transcript is shown on the left, together with two buttons for 
advice and a palette from which the student can select the main graph elements. The 
student has identified two tests in the argument transcript, one a modification of the 
other, three hypotheticals posed, and a number of relations among them that (in this 
student’s diagram somewhat imperfectly) reflect the role the hypotheticals play in 
evaluating the tests. LARGO helps students to find, diagram and relate the important 
elements of the text by providing hints based on small specific argument patterns 
[10].  
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3   Study Description 

We carried out a study to evaluate LARGO within one section of the 2007 first-year 
Legal Process course at the University of Pittsburgh School of Law. All 85 subjects in 
the section were required to complete the activities in the study. The students were not 
paid but were given coffee gift cards as a token of appreciation. Since students are 
assigned randomly to one of three course sections, we have every reason to believe 
that the section that participated in the experiment is representative of their peers. The 
LARGO curriculum (which consisted of three personal jurisdiction cases) was inte-
grated into the class as preparation for a graded writing assignment on personal juris-
diction, counting for 10% of their grade.  

The students were assigned to two study conditions, balanced by LSAT scores, but 
otherwise assignment was random. The experimental group used a graphical version 
of LARGO that supported diagram creation and gave advice [11], as described above. 
The control group made use of a text version that offered no feedback. The curricu-
lum consisted of six weekly two-hour sessions. In the first week, the students took a 
multiple-choice pre-test. During the second week they read background material on 
Asahi and annotated the transcript in LARGO or the text tool. They then answered 
two written questions about it without their diagrams or notes. Over the next two 
weeks they completed two more cases in the same way. During week five they took a 
post-test consisting of multiple-choice and free answer questions. Finally, we offered 
a debriefing session to show students in each condition the version that had been used 
by the other condition, in order to compensate for any differences in learning between 
conditions prior to the course exam.  

We classified the test items by type. Both the pre-test and post-test contained mul-
tiple-choice questions about: a) everyday reasoning with hypotheticals; b) generic 
aspects of tests and hypotheticals in legal argument; c) the domain of personal juris-
diction; and d) generic argument questions drawn from the LSAT. The post-test also 
contained: e) factual recall questions related to the specific transcripts studied during 
training; f) interpretation questions regarding these transcripts; and g) analysis and 
free-text questions regarding a novel case. We also grouped the items with respect to 
the aspect of the argument model to which they were most related (hypothetical, test, 
legal issues, legal policies, relation between test and hypothetical, response to hypo-
thetical). The design of the study and the materials used were the same as in the 2006 
study [11], except that one extra training session was added. 

4   Results  

All 85 students completed the study. While they had a maximum of two hours time to 
work on each of the training cases, their average time per case was 55.8 minutes 
(sd=13.3). There was no significant training time difference between the conditions. 

 We excluded a total of 15 students from the analysis. Four candidly told us that 
they were not working and deliberately entered off-topic responses in the post-test. 
Two others completed the post-test in less than 30 minutes, less time than is needed 
merely to read the materials (approx. 50 minutes). The remaining 9 spent less than 30 
minutes on one or more of the training cases, less time than it takes an expert to work 
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through the material (approx 45 minutes). It is therefore highly unlikely that they put 
considerable effort into their task. The analyses below are based upon the remaining 
70 students (36 Control, 34 LARGO). 

Table 1 contains the mean scores and standard deviations of the case-specific post-
test questions (i.e., the post-test only items). Table 2 shows the pre-post gains for 
counterbalanced items shared between the tests. All scores are given on a [0,1] scale. 
Both tables show the results for all 70 students as well as the sub-results for the 27 
low-LSAT students whose LSAT scores are below the median of 159. For this group, 
our previous study showed a positive effect of LARGO as compared to the text tool. 

Table 1. Study results for post-test only items 

All students (N=70) Low-LSAT students (N=27) mean (sd) of post-test score 
Control LARGO Control LARGO 

All items .63 (.09) .64 (.09) .64 (.08) .61 (.11) 
Case Interpretation .46 (.11) .48 (.10) .45 (.10) .49 (.11) 
Case Recall .71 (.10) .73 (.12) .73 (.09) .67 (.14) 
Hypotheticals .71 (.12) .71 (.14) .72 (.13) .64 (.14) 
Legal issues .39 (.49) .35 (.48) .50 (.52) .38 (.51) 
Legal policies .36 (.49) .29 (.46) .50 (.52) .23 (.44) 
Relations tests / hypotheticals .48 (.11) .50 (.11) .49 (.11) .48 (.16) 
Responses to hypotheticals .44 (.23) .45 (.24) .40 (.32) .49 (.28) 
Tests .75 (.18) .79 (.15) .75 (.17) .76 (.21) 

Table 2. Study results for counterbalanced between tests 

All students (N=70) Low-LSAT students (N=27) mean (sd) of gain score 
Control LARGO Control LARGO 

All items -0.01 (.16) -0.04 (.18) -0.01 (.13) -0.08 (.19) 
Everyday argumentation * 0.01 (.34) -0.05 (.36) 0.09 (32) -0.19 (.38) 
Generic items -0.01 (.31) -0.01 (.27) -0.02 (.28) -0.03 (.25) 
LSAT questions -0.03 (.23) -0.02 (.24) -0.02 (.20) -0.06 (.25) 
Personal jurisdiction * 0.07 (.40) -0.13 (.42) 0.00 (.35) -0.21 (.32) 
Hypotheticals 0.08 (.53) 0.00 (.49) 0.21 (.42) 0.00 (.41) 
Relations tests / hypotheticals -0.01 (.22) 0.01 (.30) -0.03 (.24) -0.07 (.40) 
Responses to hypotheticals 0.06 (.39) 0.01 (.34) 0.14 (.36) -0.12 (.36) 
Tests -0.17 (.65) -0.18 (.52) -0.36 (.63) -0.15 (.55) 

 
There were no significant differences between the two conditions with respect to 

post-test only test items – neither overall nor for the lower LSAT subjects.  
For the question types that were shared between pre-test and post-test (in a coun-

terbalanced manner), the Control group gained significantly more than the LARGO 
group on the personal jurisdiction items (F(1,68) = 4.250; p<.05). For the low LSAT 
students, the Control group gained significantly more than the LARGO group on the 
“everyday hypothetical argumentation with hypotheticals” questions (F(1,25) = 4.313; 
p<.05). No other significant differences were found. A repeated measures analysis 
reveals that the only significant difference between pre-test and post-test scores is a 
drop for the low-LSAT LARGO students (F(1,10)= 5.333; p<.05) on the “personal 
jurisdiction” domain questions. 
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These results seemingly contradict our 2006 results where the low-LSAT LARGO 
students outperformed their Control peers on several important question types. When 
we analyzed the log files from the study sessions and the LARGO diagrams, we found 
that the 2006 students made far greater use of LARGO’s advice functions than the 
students in the current study (see Table 3). Moreover, in the current study, the advice 
usage dropped over time unlike in 2006: during the last session, on average only 0.6 
advice requests were made per case (1.6 during the first case). The diagrams created 
in the current study contained fewer elements and relations than those from the 2006 
study, and students in the current study did not link their diagram elements to the 
transcript as often (31% vs. 87%). 

Table 3. Advice usage and diagram complexity 

mean (sd) 2006 study (N=15) 2007 study (N=34) 
Clicks on Advice button (shows 3 hints) per case  10.1 (10.8) 1.8 (3.9) 
Selection of one of the 3 shown hints per case  7.6 (8.2) 1.2 (2.2) 
Advice usage by case over time increasing  

from 7.1 to 8.1 
decreasing:  

1.6, then 1.3, then 0.6 
Number of elements in student graphs 9.6 (2.7) 7.5 (2.3) 
Number of relations in student graphs 7.9 (2.3) 5.2 (2.9) 
Rate of elements that are linked to the transcript .87 (.23) .31 (.31) 

Table 4. Correlations between advice requests in LARGO and test scores 

All students (N=34) Low-LSAT students (N=13) Pearson correlations 

Pre-test  Post-test Gain  Pre-test  Post-test  Gain  
Case Interpretation - .03 - - .15 - 
Case Recall - -.05 - - .02 - 
Everyday argumentation -.06 .34 * .33 .07 .46 .29 
Generic items -.06 -.19 -.18 .06 -.14 -.21 
LSAT questions -.07 .02 .06 -.11 .30 .24 
Personal jurisdiction -.09 .21 .16 .04 .46 .30 
Hypotheticals -.02 -.19 -.04 .24 -.18 -.28 
Relations tests / hypotheticals -.09 -.20 -.17 .28 -.29 -.37 
Responses to hypotheticals -.15 .29 .33 -.16 .54 .61 * 
Tests .05 .06 -.03 -.07 .11 .16 

*: significant correlations (p<.05). 

 
Together, these results seem to indicate that LARGO’s advice was a key factor in 

the positive effects that we observed in 2006, and that the graphical representation 
alone is not sufficient. We therefore analyzed if, within the current study, a higher 
number of advice requests correlates with higher post-test or gain scores.  

The pre-test scores are not correlated with advice usage: students with higher pre-
test scores did not use help more or less often than students with lower pre-test scores. 
However, advice usage is positively correlated with the post-test score for everyday 
argumentation items for all subjects. For low-LSAT students, the advice usage is also 
highly positively correlated to pre/post gains on items about responses to hypotheti-
cals. The advice given by the system, apparently, helped these students to better un-
derstand how one can respond to a hypothetical during (legal or everyday) argument. 
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These strategies are mentioned in the feedback messages LARGO provides, which 
supports this hypothesis. Due to the relatively small number of low-LSAT LARGO 
students (N=13), additional correlations (e.g., for everyday argumentation or for per-
sonal jurisdiction) did not reach the level of statistical significance at the .05 level. 
However, the general trend is that advice seems to have a positive effect on the per-
formance of the lower LSAT students. 

5   Discussion  

The study results did not confirm our initial hypotheses: the use of LARGO as a man-
datory (though non-graded) part of a legal process course did not lead to learning 
gains when compared to a simple note-taking tool. Further, students in both condi-
tions did not improve from pre-test to post-test in any of the tested categories even 
though they studied the materials for approximately 6 hours. These results are not in 
line with our 2006 findings with paid volunteers, even though the experiment was 
similar in all respects. We see three possible ways of accounting for these differences: 
student motivation, engagement with the system, and post-test design. 

5.1   Motivational Issues 

The extent to which users engage with a system depends on their specific goals. In 
2006 the users were volunteers paid for their participation. As such they appear to 
have been more motivated to explore the system, to exercise key features such as 
graphical relations, links between diagram and transcript, and on-demand advice, and 
to take their time. Our present population comprised unpaid “conscripts” who had to 
use the system as a part of their course. They were inclined to use the system in the 
most convenient manner possible and tended to underutilize its key features. In many 
ways they used the system as a note-taking tool with movable text boxes. 

Yet, the success or failure of an ITS, and particularly of one that offers its impor-
tant features on demand as LARGO does, depends on the extent to which users actu-
ally use these features. In our prior study, the low-LSAT students chose to make use 
of LARGO’s key features and showed performance gains. In the present study, nei-
ther the high- nor the low-LSAT students did so consistently. Thus, the LARGO 
group derived fewer benefits from the system and performed no better than the Con-
trol group. To get students to engage with the beneficial features outside of the lab it 
seems necessary to better integrate the tool into the classroom. In the current study, 
use of LARGO was aligned with the course goals but not a core part of the course. 
Students were required to participate in the LARGO sessions, but were not graded on 
these activities. The payoff for the students lay in the preparation that the activities 
gave them for their future work. If we want the students to use the on-demand system 
functions, future studies of LARGO (and probably this result is valid also for other 
ITSs) should pay more nuanced attention to the specific motivation of the students, 
especially in real classroom situations. This can probably be done by assigning grades 
to the graphs that students create with LARGO and through in-class support (e.g., 
discussion of the benefits of LARGO for the learning goals).  
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5.2   Engagement with the System 

Our analysis of the study data suggests that low use of the LARGO advice functions 
at least partially accounts for the lack of difference between the study conditions: the 
LARGO students who used the advice more frequently did better at some centrally 
important post-test questions. The low usage of important system features may be 
connected to motivational issues (cf. 5.1). Consequently, we may need to modify 
LARGO in order to increase the student’s engagement with the system even if their 
motivation to do so may be low. The current version of LARGO leaves many things 
to the users –the way they create the diagrams, how and if they link elements in the 
diagram to specific passages in the transcript being studied, and how often (if at all) 
they receive comments and feedback on their work. As previous research shows, this 
strategy may be problematic not only due to motivational aspects, but also because 
students often do not ask for help even though they could benefit from it [2]. The dia-
grams the students created in the current study support this position. A large number 
of students’ graphs had errors of a type that would be noted and commented on by 
LARGO if the student requested its advice. But since students did not do so very fre-
quently, they were often not informed of their misconceptions.  

How could LARGO be redesigned to avoid this problem? Presenting corrective 
feedback immediately after they make a mistake (as done by many successful ITS 
systems) would be problematic in the ill-defined domain of legal argumentation. As 
described in [10], LARGO’s on-demand feedback avoids false error messages that are 
likely to occur in this domain, where it is often not clear whether a diagram correctly 
reflects an argument or not. False or inappropriate feedback would be very problem-
atic also because the feedback LARGO gives is cognitively demanding (self-
explanation prompts).  

A reasonable alternative and a compromise between the two extremes, to be tested 
in further studies, could be to highlight diagram regions on which LARGO could give 
feedback (similar to the feedback in Andes [15]). Thus, students would be aware that 
feedback is available, but would not be forced to attend to it immediately (or at all). 
Another design option would be to structure the interaction with LARGO so that the 
students have “diagram creation” phases and also phases where they are explicitly 
asked to reflect on their diagrams, assisted by advice from LARGO.  

Perhaps students could also be made to engage more with LARGO by requiring a 
clear and tangible “result” of their analysis (e.g., a “final test”) that could be checked 
against what actually happened in court. Also, it may be interesting to give feedback 
to students indicating whether they did better or worse than the attorney in the actual 
case, or than peer students, and how their result relates to the final opinion of the 
court. Also, a future version of LARGO could present additional material not con-
tained in the transcript, and engage students more in actually making arguments in 
addition to analyzing them.  

5.3   Post-Test Design 

Many researchers argue that even without feedback, diagrams are better than texts for 
learning argument skills. In that light, one would have expected a benefit of LARGO 
in this study even though the advice usage was low. However, this was not the case. 
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Could it be that the post-test somehow did not fully measure what was taught? At the 
content level, that notion can be rejected. The post-test items were well aligned with 
the tasks students had to solve in the training session. Yet, there was a subtle (and 
necessary) difference between what we tested and what was taught with LARGO. 
During training, the LARGO students created graphs, whereas the post-test employed 
a textual notation only, since this is the standard format in which legal argument and 
legal reasoning tasks are presented to students. However, the effectiveness of graphi-
cal tools generally strongly depends on the amount and type of usage of these tools 
[8], and our chosen format may have favored the students in the text condition The 
graphs created by the students could have been used for some of the questions on the 
posttests (and a few students asked for them for exactly that purpose), and would 
surely have helped, but we did not provide them. Thus, we tested whether training 
with graphs transfers to textual questions better than training with texts, not whether 
students were able to use the representations they created effectively in a post-test. As 
mentioned, we deemed a textual post-test to have higher ecological validity. 

6   Summary and Conclusion  

In this study we tested the LARGO ITS as a mandatory part of a first-semester law 
school course. Prior research on graphical argument representations has suggested 
that the graphical format of LARGO and the on-demand help it provides would be 
beneficial. However, our results showed no evidence that the LARGO condition was 
better than the Control condition. The post-test was well-aligned with the instruction 
and we had sufficient statistical power. Our hypothesis that graphs are better then text 
for learning complex argumentation skills was not confirmed. The students who used 
graphs were also no worse than the text users - since many ITSs for argumentation 
rely on the graph structure as a central component to enable the system feedback, this 
is still an important result for ITS designers. Yet, it contradicts our prior positive re-
sults with LARGO in lab studies [10]. 

Although we did not find a difference between the two conditions, the study pro-
vides some evidence that those students who engaged more with the graphs as evi-
denced by more frequent use of LARGO’s advice function, especially the low-LSAT 
students, did better than the text condition. This finding is consistent with our 2006 
study [10] in which the paid volunteers used more of the LARGO features and bene-
fited from them.  

One tentative conclusion to take away from this study is that graphs may still be 
better than text, but that engagement is essential. One way to support engagement 
could be to change the feedback mechanism. The current on-demand feedback is well 
suited for ill-defined domains since it avoids false error messages, but it remains to be 
explored whether prompting the student with messages (at the risk of giving inappro-
priate or suboptimal advice) or at least highlighting “weak regions” in diagrams will 
engage the students and not confuse them. Another take-home message of the study is 
that the subject’s motivation is a decisive factor, especially when “leaving the lab” 
and entering the classroom with ITS technology. Apparently, and somewhat to our 
surprise, it can make a difference whether participation is voluntary or mandatory – 
and if it is mandatory, whether the students are motivated to participate in a manner 
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so that the key ITS features are used, especially if their usage is on-demand. Future 
studies with LARGO – on its way toward regular classroom usage – will have to take 
these factors into account.  
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Abstract. This paper deals with authoring assessments of complex competence 
involving open-ended questions. We present, PépiGen, a multi-criteria auto-
matic assessor for school algebra, via a walkthrough of an example. PépiGen is 
based on our previous work on Pépite, an automatic cognitive diagnosis tool 
that capitalizes on educational research results. From that prototype, we derived 
patterns of diagnosis tasks. A pattern models (i) a class of exercises, (ii) the dif-
ferent students’ points of view on the solutions reported in the literature or ob-
served in a corpus, (iii) and a multidimensional assessment for each solution 
approach. To adapt an assessment to a specific classroom context (e.g. level of 
difficulty, time, learning objectives) an interface allows an IT non expert (e.g. a 
teacher) to generate new instances of exercises by filling the pattern parameters. 
The originality of our research lies in the fact that our system generates the 
automatic analysis of students’ simple or complex answers, such as algebraic 
reasoning. This is an ongoing work but preliminary evaluation shows that Pé-
piGen is already successful in generating and analyzing most answers on sev-
eral classes of problems.  

1   Introduction 

The work reported here is part of an ongoing project, the Lingot project. Its objective 
is to design an intelligent aid that supports math teachers when they have to monitor 
learning in a classroom context, taking into account their students’ cognitive diversity. 
This paper focuses on diagnosing students’ cognitive profiles in algebra. It presents 
PépiGen, a system that generates Automatic Multi-criteria Assessments of students’ 
competence in school algebra. 

We first present the background, the objectives and the methodology we adopted to 
elicit patterns from the first Pépite assessment system used as a prototype. Then, we 
illustrate the modelling language we defined by describing an example of pattern of 
diagnosis tasks involving open-ended questions. The next section describes PépiGen, 
the system that allows a user to generate diagnostic tasks that instantiate patterns. We 
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end with a discussion of our work in comparison with related works and with a sum-
mary of contribution and plans for future research. 

2   Background  

The key point of our assessment approach is that students’ answers to problems are 
not simply interpreted as errors or as lack of skills but as indicators of incomplete, 
naive and often inaccurate conceptions that the students themselves have built. A fine 
analysis of the students’ work is required to understand the coherence of the personal 
conceptions, to develop or to strengthen right conceptions, and to question wrong or 
unsuitable ones that interfere with, and sometimes prevent learning [1]. Detecting 
these conceptions is a very complex task that requires special training and a lot of 
time. ITSs can be a very helpful aid for teachers to reveal implicit conceptions which 
are very difficult to access without automatic reasoning on students’ performance. 
Designing such systems is not trivial; especially when the student’s input is not very 
constrained.  

We developed such a cognitive diagnosing tool, derived from Educational Re-
search [6], called Pépite, and we tested it in real settings [3]. This previous work 
aimed to prove that it was possible to automatically build a rich student cognitive 
profile from data collected after the student solved a set of tasks especially designed 
for that purpose. These tasks involved preformatted answers and open-ended answers. 
Like in other systems [5], in Pépite, the diagnosis is a three stage process. First, a 
local diagnosis provides, for each student’s answer, a set of codes referring to the 
different criteria involved in the question. A code gives an interpretation of the stu-
dent’s answer according to a set of 36 criteria on six assessment dimensions (see 
section 4 for an example). Second, Pépite builds a detailed report of the student’s an-
swers by collecting the same criteria across the different exercises to have a higher-level 
view on the student’s activity. At this stage, the diagnosis is expressed by success rates 
on three components of the algebraic competence (usage of algebra, translation from one 
representation to another, algebraic calculation) and by the student’s strong points and 
weak points on these three dimensions. This level is called personal features of the stu-
dent’s cognitive profile. Third, Pépite evaluates a level of competence in each component 
with the objective to group of students with “equivalent” cognitive profiles. This level is 
called the stereotype part of students’ profiles. Stereotypes were introduced to support the 
personalization in the context of whole class management and to facilitate the creation of 
working groups [4]. 

3   The PépiGen Project 

In the present stage of the project, the aim is to offer an authoring tool, called Pépi-
Gen, to generate different Pépite-like diagnosis tools adapted to different school con-
texts and teachers’ objectives. We had a lot of feedback from teachers who used the 
previous Pépite tools [3]. One of their points was that Pépite was interesting for a 
given school level. But teachers would need a database of diagnosis exercises to use 
Pépite-like tools at other school levels. Most teachers asked for off-the-shelf diagnosis 
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material, arguing that their job was to monitor learning, not to author materials. Some 
asked for assessments that can be tuned to specific contexts. Very few asked to define 
their own exercises but they asked to do so with no programming at all. These obser-
vations are confirmed by [16] in a state of art review of ITS authoring tools.  

Thus, the work reported here describes how to build banks of exercises supporting 
the diagnosis. We focussed on the following design scenario: a teacher chooses a 
prototypic exercise in the bank and, if need be, asks for another equivalent one re-
trieved from the bank, or adapts the statement of the exercises by filling in forms (Cf. 
6.1). In order to achieve this objective, in this paper, we investigate two research 
questions: 

1. How to derive patterns of diagnostic tasks from the first Pépite prototype? 
2. How to generate the procedure to analyze open-ended questions when (most) 

current technology restricts to preformatted answers? 

From a computational point of view, the most difficult problem to be solved was to 
design and implement a system that assesses open-ended answers, both generic 
enough to apply to many classes of algebraic problems, and specific enough to detect 
students’ personal conceptions. With open-ended questions, it is impossible to predict 
every student’s answers. Thus the main points in our design are (i) to anticipate most 
current students’ solution approach to one type of question by detailed and accurate 
epistemological and empirical studies, and (ii) to generate a set of answers represent-
ing each solution approach.  

Our research approach is a bottom-up approach informed by educational theory 
and field studies. In previous work, we started from a paper and pencil diagnosis tool 
grounded in mathematical educational research and empirical studies [1, 6]. Then we 
automated it in a prototype called Pépite and tested it with dozens of teachers and 
hundreds of students in different school settings [3]. In the present research, we gen-
eralize this first design to create a framework for authoring similar diagnosis tools 
offering configurable parameters and options.  

4   An Example of Diagnosis Task Pattern 

Let us take a prototypic exercise from the original Pépite involving an open-ended 
question (Fig. 1). The objective of this exercise is to have deep insight in the student’s 
algebraic thinking and to assess her/his skills and conceptions in the six dimensions of 
algebraic competence: (i) Validity, (ii) Meaning of Letters, (iii) Algebraic Writing, (iv) 
Translation (ability to switch between various representations: graphical, geometrical, 
algebraic, natural language), (v) Type of Justifications (“proof” by example, proof by 
algebra, proof by explanation, “proof” by incorrect rule), (vi) Numerical Writing. 

Table 1 shows four examples of students’ answers and their coding in Pépite. In 
those examples we can notice that no students’ solutions are fully correct, but we can 
suspect very different levels of development in their algebraic thinking. Of course, 
building a cognitive profile from one answer is not reliable, but we can hypothesize 
that these students will benefit from different learning activities [4]. 
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Fig. 1. A Pépite prototypic exercise of the “Proof and calculation process” pattern 

To clone this exercise for a lower school level, we considered the following design 
scenario. An author is presented with the prototypical exercise and changes the italic 
sentence in the statement by the following one (statement 2): Think of a number. Add 
6 to this number multiply the result by 3, subtract three times your number to the 
result. You find 18. This statement is a parameter of the pattern. 

The system generates the algebraic expression, here (x+6)*3-3*x. The difficulty is 
to generate the anticipated solutions and their coding. In this type of task, [6] distin-
guished mainly four approaches for students to justify their answer:  

1. An algebraic approach involving several processing types 
a. A correct translation in algebra by a global expression with correct/ incorrect 

use of parenthesis and an optimal-correct/non optimal correct/incorrect reduc-
tion to a number (7 or 18 in the examples); 

b. A partially correct translation to algebra using a step-by-step translation with 
correct/incorrect reduction to a number; 

c. An incorrect translation where the equal sign is not an equivalence sign be-
tween numbers. 

2. A numerical approach where the student takes one or several examples involving 
the same types of processing as in the algebraic one; 

3. A combination of both approaches where the student tries an algebraic proof but 
does not succeed and falls back on numerical examples to justify; 

4. A justification in natural language. 

In Table 1, Laurent’s and Karine’s solutions are examples of the first approach, 
while Khemarac’s and Nicolas’s are examples of the second one. For each solution 
approach and processing type, PépiGen, generates a corresponding set of algebraic  
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Table 1. Types of students’ answers and their multidimensional coding in Pépite (age 15 or 16) 

Khemarak Nicolas Karine Laurent 
Soit 5 un nombre 
((5+8)×3-4+5)/4+2-5=7 ? 
((13)×3-4+5)/4+2-5=7 ? 
(39-4+5)/4+2-5=7?  
10+2-5=7 ? 
  
10-3=7 ?   
7=7 ?  
Oui donc cela marche 
(Yes thus it works) 

3 + 8 = 11
  
11 × 3 = 33 
33 - 4 = 29
  
29 + 3 = 32 
32/4 = 8  
8 + 2 = 10 
10 - 3 = 7 

x + 8 = 8x 
8x 
3 × 8x = 24+3x= 27x 
27x-4 = 23x 
23x+x=24x 
24x/4=6x 
6x+2=8x 
8x-x=7 

=[(x+8)×3-4+x]/4+2-x 
=(3x+24-4+x)/4+2-x 
=4x+20/4 + 2-x  
=x+5  +2-x  
=7 
 

Justification by example 
(J2) 

Justification by 
example (J2) 

Justification by 
school authority (J4) 

Justification by algebra 
(J1) 

Valid translation in 
algebra (T1). 
Global expression with 
parenthesis, expressions 
are seen as a whole 

Partially valid 
translation(T2). 
Step- by-step 
translation, 
expressions are 
seen as a process

Algebra is use to 
abbreviate (T4). 
The = sign an-
nounces a result, not 
an equivalence  
 

Valid translation in 
algebra (T1). 
Global expression with 
parenthesis, expres-
sions are seen as a 
whole 

Correct numeric writing 
rules (NWR1 ) 

Correct numeric 
writing rules 
(NWR1) 

Incorrect identifica-
tion of operation 
(AWR4); incorrect 
algebraic  rules : 
x + a → x a  
a x ± b → (a ± b)  
a x - x → a – 1 

Incorrect use of paren-
thesis with memory of 
the meaning (AWR31) 

No use of letters (L5) No use of letters 
(L5) 

Use of letters to 
calculate with incor-
rect rules (L3) 

Correct use of letters 
(L1) 

Invalid answer (V3) Invalid an-
swer(V3) 

Invalid answer (V3) Invalid answer (V3) 

 
expressions. It associates a set of codes that characterizes the algebraic processing 
type from a diagnosis point of view. 

One pattern describes the original exercise and the exercise generated by statement 
2. The pattern name is: “Proof and calculation process”. The two exercises are “simi-
lar” because the interface, the set of words to express the statement (see the “palette” 
Fig. 2), the diagnosis objective, the anticipated solving approaches, and the set of 
possible codes involved are all the same.  

The differences between a clone and the prototypic exercise are the statement, the 
algebraic expression that translates the statement in algebra, and the complexity of 
this algebraic expression (level of parenthesis, number of operators, and number of 
division). The statement and the algebraic expression are parameters of the patterns 
and the three indicators for the complexity are parameter characteristics. These char-
acteristics will be used to query the database and to tune a test to a school level. The 
parameters may be constrained. In the example, there is one constraint: the algebraic 
expression is reduced in a constant or a linear function; otherwise the diagnosis task  
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Fig. 2. Parameters setting for the “Proof and calculation process” patterns of diagnostic task 

would change. The differences in the diagnosis part of the exercises are expressions 
representing optimal correct solutions, non optimal correct solutions, partially cor-
rect solutions, incorrect solutions. Each solution is characterized by a comment, a 
code, one or several expressions and correct or incorrect rules.  

5   How to Generate a Diagnostic Task from a Pattern? 

PépiGen is implemented in Java. It creates, initializes and saves, in an XML database, 
instances of the different classes representing the dynamic part of a pattern of diag-
nostic tasks. The static part is described by an XML schema. A diagnostic task con-
sists of an exercise (problem statement and questions), a set of correct or incorrect 
anticipated solutions, and a set of codes that characterizes each solution from a cogni-
tive diagnosis point of view. It is generated by PépiGen once the parameters of a 
pattern are set. Thus generating a diagnostic task is a two stage process: setting the 
parameters and generating the solutions tree and the coding for each branch. Data 
generated are stored in XML files and retrieved at run time to generate the student 
interface and to assess the student’s answer. 

When very constrained, the parameters are automatically generated by PépiGen 
(e.g. a formula to be instantiated with integer values between 1 and 20). This mode is 
called automatic parameter setting. But, for more complex patterns, the parameters 
are set by a human author (a teacher, a teacher trainer or a researcher). This mode is 
called aided parameter setting (e.g. Fig. 2). 
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When human authoring is required to set the parameters, PépiGen provides a 
Graphical Interface to enter the parameters. The author enters one parameter, the 
statement in natural language using the palette on the right side of the screen, and 
PépiGen generates the other parameters (the corresponding global algebraic expres-
sion and its reduced form), and displays them on the left of the screen. A software 
component based on a grammar and a finite state machine is used to interpret users’ 
input in a constrained natural language and to translate it into algebra. This compo-
nent is also used for analysis of students’ input in other diagnosis tasks. 

When parameters are set, a procedure specific to the pattern is called by PépiGen, 
to automatically generate all the information necessary to diagnose the students’ an-
swers to the exercise. This procedure is simple when answers are preformatted. In 
case of open-ended questions involving the dimensions “Algebraic calculation” or 
“Numerical calculation” in the pattern description, a software component, called Pé-
pinière, builds a tree representing all anticipated solutions to the exercise and codes 
each solution on several dimensions.  

 

Fig. 3. Anticipated algebraic solutions for the clone example 

Pépinière is a specific Computer Algebra System (CAS) dedicated to interpreting 
and generating students’ algebraic input according to an epistemological and didacti-
cal analysis. It is independent of the different patterns. It relies only on mathematical 
foundations (mainly parsing of mathematical expressions, unification theory, alge-
braic rewriting rules), and on the multidimensional model of algebraic competence 
that grounded the Pépite project (i.e. on a set of multidimensional criteria represented 
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by a code, an extensible structured set of rewriting rules and a set of heuristics to 
prevent infinite loops). [14] presents a detailed description of Pépinière. In the present 
section, we just describe our general approach to automatic generation of the diagno-
sis by illustrating it with one example of pattern instantiation. In this example, the 
procedure to generate the coding instructions file is a two step process. 

First, Pépinière builds a tree with every anticipated solution. It applies correct and 
incorrect reduction and developing rules. Heuristics are used to tackle the difficult 
problems of combinatorial explosion and infinite loops [14]. Fig. 3 shows the tree 
generated from the algebraic expression parameter that characterizes the clone 
(x+6)*3-3*x.  

Second, the tree is walked in a way specified by the type of approach (alge-
braic/numeric). Each node (expression and rule applied) is saved along with the cod-
ing. For instance, correct solutions are generated by saving the nodes in walking 
through the tree considering only the correct rules. Incorrect solutions with an alge-
braic approach and a correct translation to algebra are generated by saving the nodes 
with incorrect rules. For incorrect solutions with a step-by-step translation Pépinière 
is called recursively with expressions generated by the preceding step. Incorrect solu-
tions with a numerical approach are generated in the same way.  

After students passed the test, the diagnosis system asks Pépinière to compare one 
expression in the student’s answer to the expressions in the coding prescription file. To 
this end, Pépinière builds trees representing the expressions and tests the equivalence of 
the expressions regarding the commutability and associability of the operators. 

6   Tests 

Since PépiGen is still in the development phase it is difficult to have usability tests in 
real settings with teachers. Thus, we describe here a primary evaluation round. First 
we tested PépiDiag on a corpus of answers collected with the prototypic exercise 
(N=353) and its clone (N=39) presented in section 5. The system coding was vali-
dated by two educational researchers (the third and fourth authors). They agreed 
100%. This means that PépiGen implementation is conform to the educational re-
search model PépiGen is based on. Then, we asked three mathematics teachers to 
generate clones with PépiGen. They understood the potential of the system and found 
it easy to create exercises. They were satisfied with the solutions generated. We also 
tested Pépinière to generate solutions for other patterns involving simpler algebraic 
reasoning [17]. 

7   Related Work 

Assessment and student modeling is a hot research topic in ITS and the e-learning 
community. We are especially interested in assessment modeling approaches and 
particularly in assessment of mathematical skills involving open-ended questions. 

The leading specification for assessment is QTI, developed by IMS Global Learn-
ing Consortium [8]. The primary goal of this specification is interoperability between 
Learning Management Systems but it is limited to multiple-choice items and their 
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variations. [9] provide a broader conceptual model for assessment allowing the use of 
several assessment instruments (e.g. portfolio assessment or peer-assessment) and 
several types of assessment (e.g. multi-dimensional assessment). It is a first step to 
integrate QTI and IMS-LD specification. A perspective of our work could be to test 
their model by translating to their Item Construction Model, our conceptual model of 
diagnostic task patterns exemplified in section 5. But, so far it is unclear for us, if 
their model can represent both correct and incorrect conceptions. Moreover, as far as 
we know, it is a descriptive model and there is no implementation. In section 6, we 
presented through a worked example, a domain specific implementation correspond-
ing to the “response rating part” of their model.  

Many ITS or e-learning systems focus on math education and implement student’s 
modeling or assessment authoring tools. Some of them analyse open answers when 
they are numerical or reduced to a single algebraic expression (Algebra Tutor [10], 
Assistment [2], LeActiveMath [11]). Very few analyse a whole reasoning. From this 
point of view, closely related to our work are Diane [7], Andes [15], and Aplusix [12]. 

Diane is a diagnosis system to detect adequate or inadequate problem solving 
strategies for some arithmetic classes of problem at elementary school level. Like 
Pépite, it is based on a very precise cognitive analysis. For each isomorphic class of 
problems, Diane analyses open-ended numerical calculation according to several 
criteria. It is very efficient compared to human assessment by experts. However, for 
more complex domains such as Physics or Algebra, researchers had to use a standard 
CAS or to develop one, specific to the type of students’ inputs and to the type of di-
agnosis needed in the project.  

For instance, Aplusix is a micro-world devoted to algebra learning in secondary 
schools, widely used in actual classrooms in France and in other countries. A teacher 
generates problems from different patterns of algebraic expressions for several tasks 
(e.g. factorisation, equation). Aplusix provides a very fined grained analysis of  
students’ use of algebraic rewriting rules. PépiGen diagnosis is not so deep in the 
algebraic writing dimension but assesses a broader panel of skills on five other di-
mensions because the objective is to link formal processing with other students’ con-
ceptions like meaning of letters or meaning of algebra. Thus, in the Lingot project, 
there are very different diagnosis tasks involving algebraic expressions but also geo-
metric figures and calculation programs. 

8   Conclusion 

In this paper we presented an approach to design and implement Automatic Multi-
criteria Assessment of open-ended questions in early algebra. Our approach balances 
between very specific and rigid off-the-shelf tools and heavy generic authoring tools 
[16]. We benefited from empirical and theoretical educational studies to model pat-
terns of diagnostic tasks. We designed and partially implemented the PépiGen system 
that automatically generates the diagnosis tasks after the parameters have been set. A 
specific CAS, Pépinière, generates all the students’ reasoning usually observed in 
math class and assesses them with multi-dimensional criteria. PépiGen is a significant 
step toward an interactive assessment authoring tool in Algebra to support teachers in 
addressing their students’ difficulties more effectively. Although the first PépiGen 
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testings are encouraging, there is still much work to be done. We are currently com-
pleting the system development by implementing automatic diagnosis on reasoning 
on other classes of algebraic problems (e.g. equation solving). We are also investigat-
ing with educational researchers how learners themselves can benefit from the Pépite 
diagnosis. 

The software component we implemented to analyze answers to open-ended ques-
tions is inevitably domain dependant, but we propose a model to describe pattern of 
diagnosis tasks derived from educational research that could apply to many problem 
solving assessments using explicit criteria on several dimensions of evaluation.  
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Abstract. Is learning by solving problems better than learning from worked-out 
examples? Using a machine-learning program that learns cognitive skills from 
examples, we have conducted a study to compare three learning strategies: 
learning by solving problems with feedback and hints from a tutor, learning by 
generalizing worked-out examples exhaustively, and learning by generalizing 
worked-out examples only for the skills that need to be generalized. The results 
showed that learning by tutored problem solving outperformed other learning 
strategies. The advantage of tutored problem solving was mostly due to the er-
ror detection and correction that was available only when skills were applied 
incorrectly. The current study also suggested that learning certain kinds of con-
ditions to apply rules only for appropriate situations is quite difficult.  

Keywords: Intelligent Authoring System, Simulated Student, Programming by 
Demonstration, Machine Learning, Cognitive Tutor. 

1   Introduction 

SimStudent is a machine-learning agent that learns cognitive skills by generalizing 
solutions demonstrated [1] and also by being tutored as we describe in this paper. Our 
original motivation to develop SimStudent was to automate cognitive modeling to 
author a Cognitive Tutor that deploys model tracing to provide individualized feed-
back and contextualized help [2]. To perform model tracing, the Cognitive Tutor 
needs a cognitive model that represents domain principles. However, cognitive model-
ing is a labor-intensive task that requires significant knowledge and experience in 
cognitive task analysis and AI-programming. Embedded into Cognitive Tutor Author-
ing Tools (CTAT [3]), SimStudent acts as an intelligent building block that allows 
authors to perform authoring by demonstration, where authors merely demonstrate 
                                                           
* The research presented in this paper is supported by the National Science Foundation Award 

No. REC-0537198. This work was also supported in part by the Pittsburgh Science of Learn-
ing Center, which is funded by the National Science Foundation Award No. SBE-0354420. 
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how to solve problems (correctly and incorrectly) instead of writing a cognitive model 
by hand. SimStudent generalizes demonstrations and create a set of production rules 
that reproduce the problem-solving steps demonstrated.  

A critical research question addressed in this paper is about the efficiency of 
SimStudent: How can SimStudent be taught most effectively?  

Originally, SimStudent was a “passive” learner in the sense that SimStudent at-
tempted to generalize every problem-solving step demonstrated, but did not attempt to 
perform problem-solving steps on its own. SimStudent could reduce the learning load 
by selectively choosing certain steps to generalize; for instance, generalizing a step only 
when SimStudent does not have a production rule that reproduces the step demon-
strated. Assuming that applying an existing skill is easier than learning a new skill, this 
learning strategy might require a relatively shorter learning time to achieve the same 
quality of cognitive model. A third possibility is that SimStudent could actively solve 
problems, rather than explaining demonstrations, and get feedback. Since the author will 
see SimStudent performing actions, which provides a chance to explicitly correct errors, 
this tutoring strategy might outperform passive or the selective learning strategies. 

In this paper, we compare three learning strategies to answer the following re-
search question: Which learning strategy is better in terms of efficiency of training 
and quality of resulting cognitive models? Answering this question is not only impor-
tant for authoring purposes, but it may also provide us theoretical insights into under-
standing human learning by inspecting SimStudent’s learning processes and learning 
outcomes, which are not easily attainable in human subjects.  

2   SimStudent: A Machine-Learning Agent You Can Teach 

An actual image of the Cognitive Tutor used in the current study is shown in Fig. 1. 
Suppose that an author is trying to build a Cognitive Tutor for Algebra equation solv-
ing. The author has just built the Tutor interface shown in Fig. 1 by using CTAT. 
Now, the author launched SimStudent to create a cognitive model for equation solv-
ing by using the Tutor interface and solves a few problems.  

2.1   An Example Cognitive Tutor: Algebra Equation Tutor  

In this tutor, equations are represented with a mathematical operation to transform a 
given equation to another form. To transform an equation, an operation must be speci-
fied first, followed by the left-hand and right-hand sides of the resultant equation 
being entered in the adjacent row. Fig. 1 shows that the author has decided to “add -1” 
to both sides, and the left-hand side has just been entered. In sum, a single equation-
solving step (e.g., transforming “3x+1=x+4” into “3x=x+3”) is modeled as three 
steps – (1) selecting an operation for transformation, (2) entering an expression for the 
left-hand side, and (3) for the right-hand side. The first step is called transformation 
step, and the last two steps are called type-in steps. In this paper, the word “step” 
means one of these three steps. An operation for transformation must be specified 
prior to entering any expressions. The order of entering sides can be arbitrary, but 
both sides must be entered before selecting the next operation. The skills to select an 
appropriate operation are called transformation skills, and the skills to enter left- and 
right-hand sides are called type-in skills.  
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Fig. 1. The Tutor Interface for the Algebra I CTAT Tutor. Students are supposed to enter an 
operation for transformation first in the column labeled as “Skill Operand.” Then corresponding 
expressions for the left- and right-hand sides must be entered. 

2.2   Learning Production Rules by Demonstration 

Each of the production rules represents an individual skill to perform a particular step. 
Performing a step is modeled as generating a tuple that consists of an action taken 
(e.g., “entering some text”), a place that was selected to take the action (e.g., “the 
second cell in the first column”), and the value that was input as a result of taking the 
action (e.g., the string “3x”). Those are called action, selection, and input. A tuple of 
<selection, action, input> is called an SAI tuple.  

A production rule models a particular skill in terms of what, when, and how to gen-
erate a particular SAI tuple. In other words, a production rule shows that “To perform 
a step, first look at X and see if a condition Y holds. If so then do Z.” The part of the 
production rule representing X (what) is called the focus of attention that specifies 
particular elements with certain constraints like “the cell in the table” shown in the 
Tutor interface. The part of the production rule representing Y (when) is called the 
feature tests. The feature tests represent a set of conditions that must hold about the 
focus of attention – e.g., the two cells must be in the same row, the expression in the 
cell must be polynomial, etc. Together, the focus of attention and the feature tests 
compose the left-hand side (i.e., the condition part) of a production rule. The right-
hand side (i.e., the action part) of a production rule contains a sequence of operations 
that generates the value of the input in the SAI tuple.  

Prior to learning, SimStudent is given a hierarchical structure of the elements in the 
Tutor interface with which to express the constraints among the focus of attention, a 
set of feature predicates with which to express feature tests, and a set of operators 
with which to compose a sequence of operations. SimStudent has a library of feature 
predicates and operators that are general for arithmetic and algebra, but the authors 
might need to write domain-specific background knowledge to use SimStudent for 
other domains.  

When demonstrating a step, the author first needs to specify the focus of attention 
by double-clicking the elements on the Tutor interface. Then he/she performs a step, 
namely, takes an “action” upon a “selection” with an appropriate “input” value. Fi-
nally, the author needs to label the demonstrated step. This label is called the skill 
name. 

When a step is demonstrated for a particular skill K with a focus of attention F and 
an SAI tuple T, the pair <F, T> becomes a positive example of the skill K. The pair 
<F, T> also becomes a negative example for all other skills. This indicates to “apply 
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skill K to carry out the SAI tuple T when you see the focus of attention F, but do not 
apply any skills other than K when you see F.” We call this kind of negative examples 
the implicit negative examples as opposed to the explicit negative examples used for 
tutored problem solving, which is described in the next section. Once a positive ex-
ample is acquired, it stays as positive throughout a learning session. On the other 
hand, an implicit negative example for a skill would later become a positive example 
if the same focus of attention is eventually used to demonstrate that skill.  

When a new positive or negative example is added for a particular skill, SimStu-
dent learns the skill by generalizing and/or specializing the production rule for the 
skill so that it applies to all positive examples and does not apply to any negative 
examples. The focus of attention is generalized so that they are consistent with all 
instances of the focus of attention appearing in the positive examples. An example 
generalization is to shift from “first column” to “any column.” Feature tests are gen-
eralized and/or specialized so that they cover all positive examples and no negative 
examples that is done by Inductive Logic Programming [4] in the form of Foil [5]. 
The operator sequence is generalized so that it generates “input” values from the fo-
cus of attention for all SAI tuples in the positive examples.  

2.3   Learning Strategies 

The original version of SimStudent always learns skills whenever a step is demon-
strated by generalizing existing skills or introducing a new skill. This can be seen as a 
model of human students diligently learning skills from worked-out examples, regard-
less of what they already can do (although it sounds too idealistic).  

As an interesting twist (and a step towards a more realistic model), the author can 
also have SimStudent try to “explain” the step demonstrated, by identifying a previ-
ously learned skill that replicates the step demonstrated, and having SimStudent learn 
skills only when it fails to explain the step. This is analogous to human students learn-
ing from worked-out examples while self-explaining the solutions.  

Furthermore, the author can instead tutor SimStudent on how to solve problems. 
The author provides problems to SimStudent, lets SimStudent solve them, and pro-
vides feedback on each of the attempts made. When SimStudent makes an error, the 
author can provide negative feedback, which will motivate SimStudent to accumulate 
an explicit negative example– i.e, it will learn when not to apply a skill because it 
produces an incorrect output. When SimStudent has no rules indicating how to per-
form a step, the author provides a “hint” on what to do next; this hint is just a demon-
stration of how to perform the step. This is a model of learning by tutored problem 
solving.  

In summary, we implemented these three learning strategies for SimStudent:  
Diligent Learning – provides demonstrations on every step and SimStudent learns 

skills each time a step is demonstrated.  
Example Study – provides demonstrations on every step and SimStudent attempts 

to identify a production rule that reproduces the step demonstrated. Only when 
the attempt fails, does SimStudent learn skills.  

Tutored Problem Solving – provides SimStudent with problems to solve. For each 
step, SimStudent is asked to show all rule applications that can be done. For 
each of the rule applications, SimStudent gets flagged feedback from an oracle, 
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which merely tells the correctness of the rule application. Correct rule applica-
tions become positive examples and incorrect ones become negative examples. 
When there is no correct rule application for a step, SimStudent asks a what-to-
do-next hint to the oracle. The oracle then demonstrates to SimStudent how to 
perform the step.  

The oracle for the Tutored Problem Solving can be either a human or another com-
puter program. In the current study, we used the commercially available Cognitive 
Tutor, Carnegie Learning Algebra I Tutor, as the oracle. The details follow.  

3   Learning Strategy Study 

This section describes a study conducted to evaluate the efficiency of each of the 
three learning strategies described in section 2.3.  

3.1   Method 

Three versions of SimStudent were implemented – one for each of the three learning 
strategies. Each SimStudent was trained with 20 problems and tested with ten prob-
lems. Since hundreds of steps must be demonstrated and tested to complete the study, 
it was not realistic to ask human authors to be involved in the study. Instead, we used 
pre-recorded and machine-generated demonstrations as described below. 

The pre-recorded demonstrations were collected from a previous classroom study 
conducted in the PSLC LearnLab.1 In the LearnLab study, the Carnegie Learning 
Algebra I Tutor was used in an urban high-school algebra class. The high-school 
students were asked to use the Algebra I Tutor individually. The students’ activities 
were logged and stored into a large database, called DataShop.2 We then extracted 
problems and human students’ correct steps from DataShop for the current study. An 
entire (correct) solution for a particular problem made by a particular student became 
a single training problem for the Example Study condition and the Diligent Learning 
condition. The problems were randomly selected from the DataShop data. 

For the Tutored Problem Solving condition, SimStudent was tutored by the Carne-
gie Learning Algebra I tutor. That is, when SimStudent got stuck, SimStudent asked a 
what-to-do-next hint to the Carnegie Learning Algebra I tutor, and the Carnegie 
Learning Tutor provided a precise instruction for what to do in the form of the bot-
tom-out hint, which provides the same information as the SAI tuple. Whenever 
SimStudent performed a step, each of the rule applications was sent to the Carnegie 
Learning Algebra I Tutor to get a flagged feedback. 

There were five disjoint sets of training problems (i.e., the total of 100 training 
problems). Thus, there was a total of 15 experimental sessions (five training sets for 
each of the three learning-strategy conditions). 

Each time SimStudent was trained on a new training problem, the production rules 
learned were tested with the ten test problems. The same set of test problems was 
used for all of the 15 experimental sessions. The test problems were also randomly 
collected from the LearnLab study. For each of the steps in a test problem, we asked 
                                                           
1 www.learnlab.org 
2 www.learnlab.org/technologies/datashop 
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SimStudent which production rules can be fired. Since we wanted to know how 
poorly SimStudent solves problems in addition to how well, we recorded all possible 
rule applications for each step. More precisely speaking, for each step, we enumerated 
all production rules whose left-hand conditions hold. The correctness of a rule appli-
cation was evaluated by the Carnegie Learning Algebra I Tutor. The steps performed 
by SimStudent were coded as correct if there was at least one correct rule application 
attempted. Otherwise, the steps were coded as missed.  

3.2   Evaluation Metrics 

We define a dependent variable, called the Step score, that represents how well the 
production rules learned were applied on individual steps in the test problems. A step 
is scored as zero if it was missed (i.e., no correct rule application was made – see the 
definition above). Otherwise, a step was scored as a ratio of the number of correct rule 
applications to the total number of rule applications applicable to that particular step. 
For example, if there were 2 correct and 6 incorrect rule applications for the step, then 
the Step score for that step is 0.25. The step score ranges from 0 (no correct rules 
applicable) to 1 (no incorrect rules applicable, and at least one correct rule applies). 
We define the Problem score as the average Step score for all steps in a test problem. 

In general, there are several correct and incorrect rule applications available for 
each step. Since SimStudent does not have any strategy to select a single rule among 
these conflicting rule applications, the Step score can be seen as a probability that the 
step is performed correctly at the first attempt. 

4   Results 

4.1   Overall Learning Performance 

Fig. 2 shows average Problem Score for each learning-strategy condition. The X-axis 
shows the number of training problems learned. The Problem score was aggregated 
across the ten test problems and the five training sets (i.e., average of the 50 Problem 
scores for each condition). All three conditions showed an overall improvement on 
the Problem score when more training problems were learned.  

The three learning conditions improved equally on the first 8 problems. After that, 
the Tutored Problem Solving condition outperformed other conditions. There was a 
point, for all three conditions, where the improvement of the performance on the test 
problems diminished to almost nothing. After training on all 20 problems, the average 
Problem score was 0.78 for the Tutored Problem Solving, 0.72 for the Diligent Learn-
ing, and 0.66 for the Example Study. ANOVA revealed a main effect of the learning 
strategy; F=7.68, p<0.001. The paired t-tests showed that all three learning-strategy 
conditions are significantly different from each other. The Tutored Problems-Solving 
condition outperformed the other two conditions on the Problem score. The Example 
Study was the least efficient learning strategy in terms of the Problem score. 

To further investigate why the Tutored Problem Solving condition led to better 
learning, we broke down the Step score (the basis of the Problem score) into two 
scores: (1) the Precision score showing the ratio of the number of correct to incorrect 
rule applications for a step, and (2) the Recall score showing the ratio of the number 
of steps that were performed correctly to the total number of steps in a test problem.  
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Fig. 2. Overall improvement of the Problem scores. The X-axis shows the number of training 
problems. The Y-axis shows the average Problem scores on the ten test problems, aggregated 
across five training sets. 

 

Fig. 3. Average Precision scores. The X-axis shows the number of training problems learned by 
the time the Precision score was measured. 

Fig. 3 shows the average Precision score for the ten test problems aggregated across 
the training sets. On the 20th training problem, there was a main effect of the learning 
strategy; F=24.49, p<0.001. The paired t-tests confirmed that all three conditions are 
significantly different from each other. The Tutored Problem Solving condition outper-
formed other conditions on the Precision score. This means that the production rules 
learned by Tutored Problem Solving were more likely to produce correct rule applica-
tions than the rules learned by other learning strategies.  

Fig. 4 shows the average Recall score. ANOVA showed a main effect of the learn-
ing condition; F=7.68, p<0.001. The paired t-tests showed that the Tutored Problem 
Solving was significantly inferior to the other two conditions (both t=2.01, p<0.001), 
but the difference between Example Study and Diligent Learning was not significant. 
The Tutored Problem Solving condition was significantly inferior to other two  
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Fig. 4. Average Recall score. The X-axis shows the number of training problems. 

conditions, meaning the Tutored Problem Solving condition did not learn as many 
production rules necessary to solve test problems as other conditions did. On average, 
the Tutored Problem Solving condition learned the fewest production rules (11.6), and 
the Diligent Learning condition learned the most (21.0). The Example Study condi-
tion learned 16.0 production rules on average. 

4.2   Types of Errors 

To see if there were any differences in the kinds of errors made by each learning con-
dition, we categorized the errors appeared on the test problems. Regardless of the 
learning strategy, once the learning was saturated (i.e., after learning ten problems for 
Diligent Learning and Example Study, and 13 problems for Tutored Problem Solv-
ing), there were only two types of errors: (1) Step-Skipping error – attempting to apply 
a transformation skill without completing previous type-in steps, (2) No-Progress 
error – applying a transformation skill that does not make the transformed equation 
any closer to a solution (see section 0 for the definition of steps and skills).  

An example of a Step-Skipping error is to apply another transformation skill to the 
situation shown in Fig. 1, and enter, say, “divide 3” into the rightmost cell on the sec-
ond row when the middle cell (right-hand side of the equation) is left blank.  

An example of a No-Progress error is to “subtract 2x” from 2x+3=5.  This is a 
mathematically valid step, but it does not make the resultant equation any closer to a 
solution.  

Both Step-Skipping and No-Progress steps are considered as a wrong step by the 
Carnegie Learning Algebra I Tutor. Thus, SimStudent received negative feedback on 
both of these erroneous steps during tutored problem-solving.  

No-Progress errors appeared in all three conditions. Quite interestingly, there were 
no Step-Skipping errors observed for the Tutored Problem Solving condition. Why? 
We hypothesized that only Tutored Problem Solving had a chance to revise incorrect 
skills during training, by making a Step-Skipping error and receiving negative feed-
back, which allowed SimStudent to accumulate negative examples to correctly learn 
LHS conditions. Namely, making an explicit error and getting a flagged feedback on 
it (which, by definition, merely tells the correctness of the step) should have positively 
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contributed to learning. To test this hypothesis, we controlled the creation of negative 
examples for the Tutored Problem Solving condition, which is described in the next 
section.  

4.3   Control Experiment with No Explicit Negative Feedback 

We have modified the Tutored Problem Solving condition, so that it does not generate 
negative examples for incorrect rule applications. SimStudent still received negative 
feedback for incorrect rule applications, thus another attempt was made to perform a 
step. This means that the modified version of Tutored Problem Solving still had the 
same amount of positive examples during training as the original version.  

With this modification, the Tutored Problem Solving condition made the same 
Step-Skipping errors as the other conditions. Thus, it was the explicit negative exam-
ples obtained by incorrect rule applications that caused the high Precision score for 
the Tutored Problem Solving condition.  

This modification did not affect the appearance of the No-Progress errors – having 
more negative examples did not prevent skills from being incorrectly generalized and 
making No-Progress errors.  

5   Discussion 

5.1   The Impact of Negative Feedback on Learning 

The most important finding in the current study is that the most effective way to train 
SimStudent is Tutored Problem Solving. It is crucial for successful learning to allow 
SimStudent to commit itself to apply its own skills to solve problems – this is a natu-
ral way to give SimStudent negative feedback explicitly for the incorrect skill applica-
tions so that incorrect skills are appropriately generalized.  

It is interesting to see that Example Study and Diligent Learning are superior  
to Tutored Problem Solving at some point on the fifth and sixth training problems 
(Fig. 2). This was mostly due to the high Recall scores – Example Study and Diligent 
Learning tend to learn more rules that correctly perform steps. However, at the same 
time, they also have a tendency to learn incorrect rules as well. Those incorrect rules 
can only be eliminated through explicit negative feedback.  

Despite the importance of the negative examples, programming by demonstration 
in most cases only produces positive examples. Kosbie and Myers [6] emphasized the 
issue of program execution in the shared common structure of programming by dem-
onstration. We further emphasize the importance of feedback about incorrect program 
execution in providing explicit negative examples. Interactive Machine Learning [7] 
is a good example of successful application of programming by demonstration where 
the learning agent can acquire negative examples explicitly through program execu-
tion. 

5.2   Difficulty in Rule Induction 

Another important lesson learned is the difficulty of inductive learning. It turned out 
that learning appropriately generalized rules that do not generate No-Progress errors is 
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challenging in this particular domain. Despite having explicit negative feedback on 
the No-Progress errors during training, the Tutored Problem Solving condition still 
made the No-Progress errors on the test problems.  

Since No-Progress errors always generate mathematically valid steps (meaning, the 
RHS operator sequence is correct), the challenge is in learning LHS conditions – 
learning when to apply a particular rule is more difficult than learning how to per-
form a step. Since it is beyond the scope of the current paper, we do not further dis-
cuss this issue, but now we have narrowed down the difficulty of inductive learning to 
learning conditions for when to apply rules. This must be addressed further in future 
studies. 

6   Conclusion 

The empirical study showed that tutored problem-solving results in learning produc-
tion rules more accurately than learning from examples for SimStudent’s learning. 
Thus, for authoring purposes, tutoring SimStudent instead of demonstrating solutions 
may be a better form of using SimStudent as an aid to author Cognitive Tutors, as-
suming that providing feedback does not cost too much for the authors. In the 20 
training problems, each skill was demonstrated 13.5 times on average for Diligent 
Learning and Example Learning, and 2.8 times for Tutored Problem Solving. For the 
Tutored Problem Solving, the tutor provided positive feedback 14.1 times and nega-
tive feedback 3.5 times on average throughout the 20 training problems. Future stud-
ies on the authoring cost analysis are necessary. 

That tutored problem solving is significantly inferior to other learning conditions 
on the Recall score must be studied further. What about starting from the example 
study first and shifting to tutored problem solving later? This is a well-known learning 
strategy that is effective for human students [8]. All three conditions tied on the Step 
score for the first few training problems, and still the example study conditions were 
better on the Recall score on those steps. Thus, starting from an example study would 
allow SimStudent to acquire production rules more quickly, and switching to tutored 
problem-solving would provide good opportunities to correct these rules.  

The current study also provides insight into future studies on inductive learning. 
Although, SimStudent has characteristics that are essentially different from human 
learning, finding out why some features are more difficult to learn than others would 
open the door for future studies on human and machine learning.  
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Abstract. Researchers have used various methods to evaluate the fine-grained 
interactions of intelligent tutors with their students.  We present a case study 
comparing three such methods on the same data set, logged by Project 
LISTEN’s Reading Tutor from usage by 174 children in grades 2-4 (typically 7-
10 years) over the course of the 2005-2006 school year.  The Reading Tutor 
chooses randomly between two different types of reading practice.  In assisted 
oral reading, the child reads aloud and the tutor helps. In “Word Swap,” the tu-
tor reads aloud and the child identifies misread words. One method we use here 
to evaluate reading practice is conventional analysis of randomized controlled 
trials (RCTs), where the outcome is performance on the same words when  
encountered again later. The second method is learning decomposition, which 
estimates the impact of each practice type as a parameter in an exponential 
learning curve. The third method is knowledge tracing, which estimates the im-
pact of practice as a probability in a dynamic Bayes net.  The comparison shows 
qualitative agreement among the three methods, which is evidence for their va-
lidity.  

Keywords: educational data mining, randomized controlled trials, learning de-
composition, knowledge tracing, evaluating tutor strategies. 

1   Introduction 

The behavior of an intelligent tutor affects its efficacy, so it is important to evaluate.  
One reason is to improve the tutor as part of data-driven iterative refinement.  Another 
reason is to draw lessons for what behaviors to embrace or avoid in designing other 
tutors.  The obvious way to evaluate alternative tutorial behaviors is to perform a con-
trolled between-subjects comparison of different versions of the tutor, with each ver-
sion employing a different behavior.  However, such experiments may require many 
students and considerable time to achieve statistically reliable results.  Is there a better 
way? 

Fortunately, intelligent tutors can log detailed, longitudinal interactions, and ex-
perimentally vary the behaviors that affect those interactions.  Analyzing the resulting 
data lets us evaluate tutorial behaviors.  Such evaluation can test whether a behavior 
works, gauge how well it works, and compare alternatives. 

Previous research has employed various methods to perform such analyses, but we are 
not aware of any studies whose express purpose was to compare alternative methods for 
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evaluating tutor behavior.  To help fill this gap, we present a case study that applies three 
analysis methods to the same data set, described in Section 2.  Sections 3, 4, and 5 re-
spectively describe each method as applied to the data.  Finally, Section 6 summarizes 
results, conclusions, and contributions. 

2   Case Study: Evaluate Two Modes of Practice in a Reading 
Tutor 

We carried out our case study on data from Project LISTEN’s Reading Tutor, which 
helps children learn how to read [1]. The Reading Tutor and the student take turns to 
pick a story, which is then displayed line by line on a computer screen. The Reading 
Tutor listens to the student read the story aloud, and uses automatic speech recogni-
tion (ASR) to track the student’s position in the text, detect (some) mistakes, and 
measure the time to read each word. The Reading Tutor also provides various forms 
of assistance when the student gets stuck, or clicks for help. It logs its interactions and 
speech recognizer output into a database. 

The analysis problem in our case study is to compare two modes of practice for 
children who are still learning the letter-sound mappings of English.  The Reading 
Tutor uses an instructional activity adapted from published interventions [2-5] to 
teach these mappings in the context of isolated words.  To exercise taught mappings 
in the context of connected reading, the Reading Tutor then presents practice text in 
one of two modes – choosing randomly between them each time, but using the same 
text either way. 

One mode of practice is assisted oral reading.  In this mode, the Reading Tutor dis-
plays each successive story sentence, e.g., Sam sat on the mat, and listens to the child 
read it aloud, giving help as necessary. 

In the other mode, called Word Swap, the Reading Tutor reads aloud, and the child 
provides feedback.  Word Swap is based on an activity used by a human expert to 
teach children to attend to the correspondence between print and sound.  First the 
Reading Tutor explains the task: 

Good, careful readers make sure that what they say matches what 
they see. Let’s play a game called Word Swap. The Reading Tutor 
will read the story to you, but it might read some words wrong. 
Click on the words that do not match what you hear! 

In Word Swap, the Reading Tutor picks a word at random from each sentence, e.g., 
sat, and replaces it with some other random word from the story, e.g., am.  It displays 
the modified sentence, e.g. Sam am on the mat, but plays the narration of the original 
sentence, so as to deliberately “misread” the replaced word.  (The Reading Tutor uses 
recorded human speech, so it is easier to modify the displayed text of the sentence 
than its spoken narration.)  The student’s task is to click on the “misread” word.  
When the student clicks on the “misread” word am, the Reading Tutor replaces it with 
the correct word sat and says Right! This says am, not sat. If the student clicks on a 
correctly read word, the Reading Tutor says, no, the Tutor read that word right! 

Which is more effective – assisted reading or Word Swap?  To study this question, 
we define “effective” in terms of how well students do on the words in the story when 
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they read them again later.  We measure performance in reading an individual word 
(in context) based on how long the student takes to read the word, whether the student 
clicks on the word for help, and whether the speech recognizer accepts the word as 
read correctly.  We compute this information from the Reading Tutor’s log data. Ide-
ally we would also measure how well the child attends to spelling-sound correspon-
dence when reading the word – the goal of Word Swap.  However, we have not  
defined or automated such a measure, in part because the very signs that may indicate 
such attention (slow reading and frequent self-corrections) may merely indicate poor 
reading. 

The 2005-2006 Reading Tutor logged 2669 encounters of letter-sound practice 
passages by 174 students in grades 2-4.  The 1311 encounters in assisted reading 
mode comprised 76,326 words.  The 1358 instances of Word Swap totaled 83,421 
words.  To avoid ceiling effects, we exclude the most common 200 English words 
from the dataset, leaving 31,216 word encounters under assisted reading conditions, 
and 37,028 under Word Swap conditions, respectively.   We now discuss the three 
methods we used to evaluate the effects of these encounters. 

3   RCT Analysis 

Randomized controlled trials (RCTs) manipulate experimental variables to test their 
effects on outcomes.  Randomizing assignment to treatment ensures that statistically 
reliable effects are truly causal.  Intelligent tutors can randomize tutorial decisions 
such as what type of practice, assistance, or feedback to provide, and log large num-
bers of randomized trials, as illustrated by experiments in the Reading Tutor [1] as 
well as other tutors [6].  Each trial has a context in which it occurred, the decision 
made, and its outcome [7].  Aggregating over many trials by many students lets us 
analyze how the decision affects the outcome.  

The context of the RCTs analyzed in this paper is the point at which the Reading 
Tutor has just taught some letter sounds and the student encounters a word in a prac-
tice text.  The decision is which mode of practice to give – namely, assisted reading or 
Word Swap.  The Reading Tutor randomizes this decision within-subject and within-
text.  That is, each time the Reading Tutor finishes a letter-sound lesson, it makes this 
decision anew.  Randomizing within-subject – that is, giving each student both types 
of practice – controls for individual differences among students.  Likewise, randomiz-
ing within-text – that is, using the same set of texts for both modes of practice – con-
trols for differences among texts.  However, the Reading Tutor chooses the mode of 
practice for an entire text at a time, rather than for each individual word.  We can treat 
the practiced words as separate trials, but they are not independent. 

How to define outcome? To analyze which mode of practice results in better word 
learning, we define the outcome of each trial as the student’s performance on a later en-
counter of the same word. (Practice on a word affects performance on that word much 
more than on other words [8].) If this encounter occurs in a story the student has read 
before, the student’s performance may reflect remembering the story rather than reading 
the word. If the encounter occurs too soon, the student’s performance may just reflect 
how recently the student or tutor has read the word. On the other hand, as time elapses, 
the trial’s effect diminishes relative to other influences, such as classroom instruction.  



 A Case Study Empirical Comparison of Three Methods 125 

Therefore we define its outcome as performance on the student’s first encounter of the 
word 1-3 days after the randomized trial, provided it occurs in a new context. 

As Section 1 explained, we measure performance on a word based on how long the 
student takes to read it, whether the student clicks on it for help, and whether the 
speech recognizer accepts it as read correctly. Table 1 defines the measures we use for 
RCT analysis.  We represent undefined outcomes as null values. 

Table 1. Outcome measures used in RCT analysis 

Measure Definition 
Accepted The speech recognizer (ASR) recognized the word as read correctly 
Asked help The student clicked on the word for help in reading it 
Credited True if the ASR accepted the word without the student receiving help; false 

if the ASR rejected the word or the student requested help; undefined (and 
excluded from RCT analysis) if the ASR accepted the word after tutor-
initiated help that masked whether the student knew the word 

Latency [9] The delay from the end of reading the previous word until starting to say the 
current word 

Reading time Latency plus the time to say the word, with this sum capped at 3 seconds to 
deal with outliers 

Adjusted 
time [10] 

Reading time for credited word; 3 seconds for uncredited word; undefined if 
credit is undefined  

Sources of variance in word reading performance include student, word, story, and 
practice mode. Since words differ more than students (C. Perfetti, personal communi-
cation), we compare practice modes paired by story and word. That is, for a story 
word encountered in both assisted reading and Word Swap (generally by different 
students), we compare performance on each word after one mode of practice versus 
after the other, averaged across students.  We compute the difference in a perform-
ance measure M as M(Word Swap) – M(assisted reading).  We use a t-test, paired by 
story and word, to test whether performance differs significantly by practice mode, so 
the degrees of freedom (253) are one fewer than the number of such words. 

As Table 2 shows, this difference is significantly greater than 0 for latency, reading 
time, and adjusted time. The positive difference means that students read words sig-
nificantly slower after Word Swap than after assisted reading practice.  Whether this 
is good news or bad news for Word Swap depends on why they read slower:  are they 
paying better attention? or did they just learn the words less well?  We can’t tell. 

Because this comparison does not control for student identity, one possible con-
founding factor is the difference between students who get one type of practice and 
students who get the other. However, since treatment assignment is randomized anew 
for each passage for each student, and for each word is based on different randomized 
subsets of students across stories, we assume we can ignore differences between these 
subsets. To test this assumption, we verified that reading proficiency (measured by a 
paper pretest) and reading level (estimated by the Reading Tutor) did not differ sig-
nificantly between treatment conditions. 
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Besides pairing by word, we also tried pairing by student and averaging perform-
ance after each mode across the words the student practiced in that mode, but none of 
the differences were statistically reliable.  This approach is more conservative because 
it controls for individual differences among students, and because each student’s per-
formance is independent of other students’ performance.  However, it is less powerful 
statistically because there were fewer students than words, and because it does not 
control for differences between the words practiced in different modes. 

Table 2. Differences in word reading performance after assisted reading versus after Word 
Swap, paired by story and word and averaged over the students who practiced that story word 
in that condition 

Outcome differences  
(Word Swap – assisted reading) 

Paired 
t-test 

95% Confidence Interval of 
the Difference 

Outcome 
measure 

Mean 
Std.  
Dev. 

Lower Upper 

Sig. 
(2-tailed) 

% accepted 0.000 0.175 -0.021 0.022 0.965 
% asked help 0.015 0.171 -0.006 0.036 0.168 
% credited -0.007 0.203 -0.032 0.018 0.592 
Latency 0.039 0.244 0.009 0.069 0.011 
Reading  time 0.060 0.347 0.017 0.103 0.006 
Adjusted time 0.074 0.537 0.008 0.150 0.028 

4   Learning Decomposition 

Learning decomposition generalizes classic exponential learning curve analysis to 
estimate the relative benefit of different types of practice [10], and has now been used 
in several such analyses.  In brief, it models each student’s item performance data (in 
this case word reading times) as an exponential function of previous practice on the 
item.  The model disaggregates practice into the number of encounters of each prac-
tice type (e.g., Word Swap or assisted reading), each weighted by a free parameter 
coefficient.  Fitting the model to the data (e.g. in SPSS) yields parameter estimates 
that represent the relative value of each type of practice for that student.  Averaging 
and bootstrapping the parameter estimates across students gives confidence intervals 
on the means and tells which differences between practice types are reliable. 

We follow earlier work [10] in three respects.  First, we measure performance us-
ing the adjusted time measure defined in Table 1 of Section 3, and exclude encounters 
where its value is undefined.  Second, to exclude recency and story memorization 
effects as mentioned in Section 3, we measure performance only on a student’s first 
encounter of a word each day, and only in a story that he or she has not read before.  
Third, we adopt the same general model form, including an additive term to represent 
the effect of word length.  However, we use different practice types, namely assisted 
reading and Word Swap.  Equation 1 shows the resulting model: 

(# # )  _ b Reading Swapadjusted reading time L word length A e β− ∗ + ∗= ∗ + ∗  (1) 
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Our four model parameters mean roughly this: 
•  L:  the increase in predicted word reading time for each additional letter in 

the word 
•  A:  the predicted time to read a word with no prior practice in either condi-

tion 
•  b:  learning rate 
•  β:  the impact of a Word Swap encounter compared to an assisted reading 

encounter, whose impact we define to be 1  
 

The input variables #Reading and #Swap count the number of prior encounters of 
the same word in assisted reading and Word Swap, respectively.  These practice vari-
ables include all encounters of the word, not just the first encounter on each day or in 
each story.   

Using Equation 1, we build a model for each individual student.  After excluding 
models for which the fitting procedure fails due to sparse data, we take medians of the 
remaining 140 models as the overall parameter estimates. We use medians instead of 
means in order to deemphasize outliers in the noisy individual estimates. We also 
derive the 95% confidence interval for each parameter using non-parametric boot-
strapping [11].  Table 3 shows the result. 

Table 3. Overall parameter estimates (± 95% confidence interval) 

Parameter L A b β 

Estimate 
0.0615  
± 0.022 

0.7035  
± 0.0775 

-0.0515  
± 0.015 

0.125  
± 0.1147 

The confidence interval for β shows that it is significantly less than 1, which im-
plies that Word Swap has significantly less impact than assisted reading in reducing 
(adjusted) word reading time.  However, β is also reliably (though just barely) greater 
than 0, implying that Word Swap also reduces word reading time. 

5   Knowledge Tracing 

Knowledge tracing [12] infers a student’s knowledge of a skill from observations of 
the student’s performance on that skill.  Knowledge tracing incrementally updates the 
probability Kn that the student knows a given skill at time step n, according to a dy-
namic Bayes net model with the following parameters: 

• knew:  Probability K0 that the student already knew the skill prior to instruction  
• learn:  Probability of acquiring the skill from a single practice  
• forget:  Probability of losing a known skill 
• guess:  Probability of answering correctly without knowing the skill 
• slip:  Probability of answering incorrectly despite knowing the skill. 
 

To investigate how different modes of practice influence student knowledge, we 
introduce another node Practice Mode (PM) into the basic knowledge tracing model, 
as Figure 1 shows. 
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Fig. 1. Knowledge tracing model extended with a binary-valued “Practice Mode” node 

This model assumes that the probability of a student’s learning a skill depends on 
practice mode. To measure student performance in assisted word reading, we use 
credited (see section 3 for definition). For Word Swap steps, however, since we do 
not have observations of a student’s reading the word, credited is unobservable.  The 
extended model has more parameters: is_reading is the probability that the practice 
mode is assisted reading; K0_swap and K0_reading are the probability that the student 
already knew the word prior to any practice, conditioned on whether the first practice 
was Word Swap or assisted reading; learn_swap and  learn_reading are the respec-
tive probabilities of acquiring the skill from a Word Swap or assisted reading practice 
opportunity; and finally, forget_swap and forget_reading  are the respective probabili-
ties of losing a skill after a Word Swap or assisted reading practice opportunity. The 
parameters guess and slip remain the same as in the basic knowledge tracing model.  

One problem with fitting the data to a knowledge tracing model, however, is that 
the observed student performance can correspond to an infinite family of possible 
model parameter estimates [13].  Following [14], we address this problem by speci-
fiying a plausible initial value for each parameter, and encoding domain knowledge as 
Dirichlet priors on the parameters to bias the model fitting procedure. We specify an 
order-2 Dirichlet distribution as two positive numbers α1 and α2, which correspond 
roughly to the number of positive and negative examples seen.  For example, we use 
α1=9 and α2 = 6 for K0_swap.  These values mean roughly that the Dirichlet prior for 
K0_swap is generated from 9 cases of the student already knowing a skill, and 6 cases 
of the student not knowing it, when the first practice is Word Swap.  The expected 
value of K0_swap is 9/(9+6) = 0.6. 

We set the initial parameters, as well as α1 and α2, by examining histograms from 
previous knowledge tracing experiments, getting similar values to those in [14]. The 
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first three columns in Table 4 show the name and initial value of each parameter, as 
well as the α1 and α2 values of the Dirichlet priors. Notice that they avoid any bias 
toward either Word Swap or assisted reading.  We refrain from specifying Dirichlet 
priors for the learn and forget parameters, so as not to prejudice the search through 
the model space. 

Table 4. Initial values, Dirichlet priors, and aggregated estimates of the parameters in the 
knowledge tracing model 

Parameter  Initial 
Value 

Dirichlet 
(α1, α2) 

Mean Std. Dev. 

is_reading 0.5 N/A 0.683 0.237 
K0_swap 0.66 (9,6) 0.599 0.019 

K0_reading 0.66 (9,6) 0.655 0.061 
Guess 0.64 (17,9) 0.670 0.041 
Slip 0.07 (1,15) 0.028 0.020 
learn_swap 0.14 N/A 0.258 0.187 
learn_reading 0.14 N/A 0.566 0.360 
forget_swap 0.0014 N/A 0.014 0.086 
forget_reading 0.0014 N/A 0.011 0.087 

To investigate which practice mode helps more to learn a word, we treat the ability 
to read each word as a distinct skill. Then we build a model for each word using ob-
servations of many students’ encounters of that word, using Bayes Net Toolkit for 
Student Models (BNT-SM) [15]. After excluding the cases where model construction 
fails due to sparse data (e.g. the word was encountered very few times, or in only one 
treatment condition), we get 259 word-specific models, across which we average the 
parameter estimates. The last two columns of Table 4 show the mean and standard 
deviation for each parameter. 

A t-test, paired by word, shows no significant difference between forget_swap and 
forget_reading. In contrast, learn_reading is significantly larger than learn_swap 
(p<0.01).  That is, students are likelier to acquire a word from assisted reading prac-
tice than from Word Swap practice. 

6   Conclusion 

This paper explored three methods to evaluate tutorial behaviors:  RCT analysis, 
learning decomposition, and knowledge tracing.  It reports a case study in the context 
of Project LISTEN’s Reading Tutor, to test whether assisted reading and Word Swap 
practice differ in how well they help students learn words. 

One result of this endeavor is to confirm that knowledge tracing can usefully be 
adapted to evaluate the impact of different tutor behaviors.  Previous work [16, 17] 
used this approach to evaluate the same mode of practice with versus without tutor 
help.  Here we evaluate two different modes of practice, each with a different task for 
the student, and consequently different types of performance to observe. 
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In comparing evaluation methods, we have two basic questions.  First, did their re-
sults agree?  Yes, all three methods indicate that assisted reading beat Word Swap on 
one or more of our measures.  Though the three methods differ in input, output, and 
model form, the qualitative consistency of their results provides some empirical evi-
dence for the validity of the results and the methods. 

Second, were some methods more sensitive than others?  If methods A and B 
agree, and A is more sensitive than B, we expect A to achieve statistical significance 
on more comparisons than B does.  We see no such pattern.  The methods agree quali-
tatively, but not on which measures show statistically significant differences between 
the two modes of practice.  Clarifying the empirical behavior and relative utility of 
these methods will require comparing them on additional data sets from diverse do-
mains. 

The results imply that assisted reading is more effective than Word Swap at help-
ing students learn to read words quickly, accurately, and independently.  They do not 
necessarily imply that Word Swap is inferior for its intended purpose of teaching 
children to attend to the correspondence between print and speech.  Indeed, conceiva-
bly children read words more slowly after Word Swap than after assisted reading be-
cause it actually succeeded.  One challenging direction for future work is to develop 
an automated measure of such attention. 
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Abstract. The Learner Model of an Intelligent Tutoring System (ITS) may be 
made visible (opened) to its users. An Open Learner Model (OLM) may also 
become a learning resource in its own right, independently of an ITS. OLMs of-
fer potential for learner reflection and support to metacognitive skills such as 
self-assessment, in addition to improving learner model accuracy. This paper 
describes an evaluation of an inspectable and a negotiated OLM (one that can 
be jointly maintained through student-system discussion) in terms of facilitating 
self-assessment accuracy and modification of model contents. Both inspectable 
and negotiated models offered significant support to users in increasing the ac-
curacy of self-assessments, and reducing the number and magnitude of discrep-
ancies between system and user beliefs about the user’s knowledge. Negotiation 
of the model demonstrated further significant improvements. 

1   Introduction 

Intelligent Tutoring Systems (ITS) routinely employ a learner model in order to pro-
vide tutoring and interaction tailored to the needs of the individual student. Conven-
tionally this model has only been for the use of the system, and hidden from the 
learner. Open Learner Modelling argues that making the contents of the model visible 
for inspection by the student may bring opportunities for developing skills in reflec-
tion, metacognition and deep learning, e.g. [1], [2], [3], [4], [5]. Open Learner Models 
(OLM) may also allow the student and system to engage in a process of negotiation 
about the contents of the model, potentially enhancing learner reflection and model 
accuracy. Such negotiated learner models (e.g. [1], [2]) involve a collaborative con-
struction and maintenance of the learner model. By requiring learners to discuss their 
beliefs about their knowledge with the system, argue against the system’s assessment 
where they disagree or provide evidence for their own beliefs, it is suggested that 
learner reflection may be increased [1], [2]. This negotiation may also improve the 
accuracy of the learner model, leading in turn to improved adaptation by the ITS. 
OLMs may also be used as learning resources independent of an ITS, to prompt learners 
to reflect on their knowledge (or lack of it), to facilitate planning future learning, and to 
encourage users to take more responsibility for their learning [6]. Other researchers have 
argued that it is necessary for educational systems to model the student’s meta-
knowledge in addition to their domain knowledge [7]. It is this approach of modelling 
the student’s own beliefs about their knowledge that is discussed in this paper. 
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Educational theorists have long emphasised the importance of learner reflection [8], 
[9], [10]. This is now being supported in the school classroom by Assessment for Learn-
ing, a UK education strategy that highlights the importance of supporting the develop-
ment of metacognitive skills. Promoting pupil self-assessment is regarded as an essential 
component of this [11]. However, it is recognised that while the most effective learners 
are self-regulating [12] the effectiveness of this self-regulation is reliant on accurate self-
assessment of what is known [13]. It has been shown, perhaps unsurprisingly, that not all 
(adult) students are good at evaluating their knowledge [14], and it was suggested that al-
lowing the student to visualize the learner model may improve self-evaluation [15]. We 
propose to investigate this potential for learner model visualization in improving self-
evaluation in younger (primary school) learners.  

This paper describes an evaluation using two versions of CALMsystem – an Open 
Learner Model with an integrated Conversational Agent for Learner Modelling – in-
dependent of an ITS. The inspectable version of the system offers a learner the oppor-
tunity to inspect their learner model, to view the beliefs they and the system hold 
about their knowledge, and to make changes to their own beliefs about their knowl-
edge as appropriate. The negotiated version adds a conversational agent to allow 
learners to discuss the learner model using a natural language interface and to negoti-
ate changes. We consider these inspectable and negotiated versions of CALMsystem 
in terms of facilitating self-assessment accuracy and modification of model contents.  

2   CALMsystem 

CALMsystem opens the learner model to students, allowing them to see the represen-
tations of their current knowledge level as assessed by the system, and their self-
assessment for each of the topics in the subject domain. The negotiated version also 
offers learners an opportunity to discuss and develop their learner model. Both in-
spectable and negotiated versions have potential to promote metacognitive skills and 
improve the model’s accuracy. 

The CALMsystem environment is browser based, operating independently of an 
ITS, and allows easy access to users from a variety of platforms. It allows users to 
view pages that show only their own confidence in their knowledge, only the system’s 
assessments of their knowledge, or compare these in parallel. It also allows them to 
answer further questions on a topic of their choice, or one selected by the system, 
thereby allowing both user and system to initiate further interaction to update the 
learner model in the usual manner. Fig. 1 shows the browser interface (common to 
both versions of the system) and the conversational agent used to provide negotiation.  

The system tracks the student's confidence and the system’s assessment of the stu-
dent's knowledge in each topic using two numerical scores. These two belief sets 
(learner’s and system’s) which form the learner model are stored independently, as is 
necessary for comparison and negotiation of the different beliefs (as in [1]). The user's 
confidence in each topic is maintained by the system as a continuous value between 0 
and 1. For the purpose of display to the user, this value is converted into "low", "mod-
erate", "good" or "high" levels, based on the ranges 0 - 0.25, 0.25 - 0.5, 0.5 - 0.75 and 
0.75 - 1 respectively.  These four levels offer an age-appropriate model for the 10-11 
year old users in this study, who are familiar with self-evaluation scales of this granu-
larity. 
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Fig. 1. System and learner assessments on six topics, and the conversational agent1 

When a student first uses CALMsystem, they are required to assess their confi-
dence in each topic by selecting the appropriate level ("low", "moderate", "good" or 
"high" confidence) and the initial numerical value is set as appropriate.  Each time a 
student answers one of the multiple choice questions in CALMsystem (using the An-
swer Questions menu link) they are required to state the level that best matches their 
confidence in the topic. The system does not immediately change the numerical con-
fidence value to match the user's new assessment, but uses an exponential filter2 that 
weights most recent user assessments more strongly (so older results have a progres-
sively lesser effect), allowing users to keep their model current.  

The system's assessment of the student's knowledge is also maintained as a con-
tinuous value between 0 and 1, and uses an identical exponential filter, ensuring that 
the assessment represents the current knowledge level. This score for each topic is 
also recalculated every time the user answers a question (once past a threshold of 
‘sufficient evidence’). The score is increased each time a student answers a question 
correctly, and is reduced when a wrong answer is given. A student consistently an-
swering questions correctly will attain a score approaching 1, and if most questions 
are answered incorrectly, the score will approach 0. For display, this knowledge value 
is also converted to four levels ("low", "moderate", "good" or "high") using the same 
                                                           
1 Text reads “I believe that you have a high knowledge level for the Evaporation of a Solution 

topic. You have said that you have a low confidence level in your ability for this topic. We 
still need to resolve this difference. Would you like to: 1: change your belief so that you agree 
with me (The recommendation is high knowledge level) OR 2: see why I hold my views 
(have me explain) OR 3: view your and my beliefs about your knowledge OR 4: answer some 
questions to show me how much you know?” 

2 yt = (1-α)·yt-1 + α·xt where yt is the output of the filter (new score) at time moment t; yt-1 is the 
output of the filter after previous question (user’s old score; t-1); xt is the input of the filter (1 
or 0 indicating correct or incorrect answer); 0 ≤ α ≤ 1.0 is the weighting parameter. The out-
put yt is the weighted sum of previous output and current input values. The smaller the pa-
rameter α, the longer the ‘memory’ of the filter and the greater the degree of smoothing. 
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numerical ranges as in user confidence. Both system and user beliefs are also  
illustrated with smiley faces (see Fig. 1) to allow easy comparison by the target users 
(aged 10-11) in this investigation. 

2.1   Negotiation of the Learner Model 

In the negotiated version of CALMsystem, inspection of the model is as described 
above, with negotiation of the learner model contents provided by a chatbot. It allows 
learners to use natural language to (i) query the model contents, (ii) ask for explana-
tion or justification of the system’s beliefs, (iii) offer justification of their own beliefs, 
(iv) change their beliefs as they refine their self-assessments, (v) modify their belief to 
match that of the system where they have been convinced by the model evidence, (vi) 
try to compromise with the system, or (vii) receive further test questions. These 
strategies were developed in [1] and explored in natural language in [16]. Discussion 
may be initiated by either the chatbot or the user.  

The aim of this process of negotiation or discussion is to allow the student and sys-
tem to refine their beliefs about the user’s knowledge, and that this will lead to a re-
duction in areas of discrepancy between the learner and system beliefs. We suggest 
that a model refined in this way may be considered more accurate for use in driving 
an ITS’s adaptation and may prompt further user reflection and self-assessment.  

The chatbot does not attempt to be a tutor. The largest part of the chatbot’s knowl-
edge base relates to discussion of the learner model. Users may give inputs such as 
“why do we think differently?”, “what am I good at?”, “what’s your belief?”, “I have 
difficulty with [topic]”, “change my belief”, “what should I do next?”, “why do you 
think I have a low level for [topic]?” or “let’s talk about [topic]”. They may request 
that the chatbot tell them the beliefs that are held, or just give the name of a topic to 
focus on. The learner can also ask the chatbot to give them test questions on a stated 
or unspecified topic. To handle many of these inputs the chatbot must connect to the 
database holding the learner model data, and construct its responses appropriately (see 
[16] for architectural details). For delivering tests it can select unanswered questions, 
ask the question, check the user’s answer for correctness, and tell the user about the 
system’s belief modifications made as a result. In this way it maintains focus on self-
assessment and reflection on the contents of the OLM, an important benefit of inde-
pendent OLMs [6]. However, the chatbot could be integrated into an ITS and provide 
tutoring as an extension of the system. 

A short extract from a user interaction is shown below, showing the user modifying 
their belief after seeing the evidence from further test questions. 

 

Chatbot: I believe that you have a low knowledge level for the Evaporation topic. 
You have said that you have a moderate confidence level in your ability 
for this topic. Would you like to: … [see footnote 1 for options offered] 

User:  2 
Chatbot:  You’ve answered 4 questions and got 3 wrong for this topic. Therefore I 

believe you have a low knowledge level. 
User:  ask me quistions [sic] [OLMBot asks 2 questions; user answers correctly] 
Chatbot: From your responses, I now believe you have a good knowledge level. 

Your own belief is that you have a moderate confidence level for the 
Evaporation topic. We will have to discuss this difference some more, or 
you might consider changing your belief for this topic. 
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User:  i want to change my belif [sic] 
Chatbot:  What would you like to change your confidence level for Evaporation to? 

(Remember, this is your belief about your ability – not CALMsystem’s as-
sessment). You may change your beliefs to: 1: low confidence, 2: moder-
ate confidence, 3: good confidence, 4: high confidence. 

User:  good 
Chatbot:  OK, I’ve updated your beliefs to show that you have good confidence in 

your abilities for the Evaporation topic.  
 

The chatbot also has strategies and content to support ‘smalltalk’ (inputs not directly re-
lated to discussion of the learner model, but which have been found to be valuable in 
building rapport with users [17]) and to deal with unexpected user inputs. The intention 
is always to lead the user back into discussion of their learning as quickly as possible. 

3   Experimental Evaluation 

The aim of this study is to compare the effects of an inspectable and a negotiated 
learner model on self-assessment accuracy. As a proxy for self-assessment accuracy 
we compared the discrepancy between the system's assessment of the user’s knowl-
edge, and the user's assessment of their own capability. Inaccuracies in the system’s 
modelling due to the user’s accidental errors in answering questions are minimised by 
the use of the four broad knowledge levels, and the smoothing function of the expo-
nential filter. It was hypothesised that using the inspectable version of CALMsystem 
would reduce this discrepancy, and that the discrepancy would be reduced further for 
participants who negotiated the learner model with the chatbot. 

3.1   Measures of Self-assessment Accuracy 

Three measures of the discrepancy between the student’s confidence and system’s as-
sessments (and hence self assessment accuracy) were calculated for each user: 

• Numerical Measure of Discrepancy:  This measure sums the difference be-
tween the maintained numerical values for user confidence and system-
assessed knowledge across all topics. 

• Number of Topics: Where there is disagreement: This measure represents 
the number of topics that are not in agreement for a particular student.  Top-
ics are considered to be in agreement when the confidence and knowledge 
beliefs relate to the same level ("low", "moderate", "good" or "high"). 

• Level Discrepancy:  This measure is a refinement of the Number of Topics 
measure outlined above, but takes into account the fact that a "low" to "high" 
discrepancy is more significant than, say, a "low" to "moderate" discrep-
ancy.  Adjacent levels (e.g. "moderate" and "good") are allocated a discrep-
ancy distance of 1, those two levels apart (e.g. "low" and "good") a distance 
of 2 and those three levels apart (i.e. "low" and "high") are allocated 3. These 
distances are summed across all topics to give a measure of level discrepancy 
for each user (a theoretical maximum of 18).  This discrepancy measure is 
considered to be of particular relevance, as it mirrors the typical view of a 
learner as to how far their own assessment differs from that of the system. 
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3.2   Participants, Materials and Methods 

The study involved 25 UK Primary school children aged 10-11. CALMsystem was 
populated with questions on six science topics from their current study unit.  

A between-subjects design was used, with the participants divided into two 
matched mixed-ability groups based on the results of a diagnostic test on the topics. 
One group was allocated to an inspectable learner model (LM) condition, and the 
other to a negotiated LM condition. All participants were shown how to use the sys-
tem, its purpose and how it might be useful to them. Participants used the system for 
two sessions, three weeks apart, totalling 120 minutes. All users interacted with the 
system to make initial self-assessments, answer multiple choice questions, view their 
confidence ratings and the system’s assessments, and modify their confidence records 
where they desired. Those in the negotiated LM condition also interacted with the 
chatbot to discuss their model.  

As both users’ confidence ratings and the system’s assessments are recalculated af-
ter every question that is answered, the current values are always known and dis-
played by CALMsystem. The data used in this analysis was extracted from the learner 
model logs. The initial (‘before-use’) values are the beliefs held at the point where the 
system first had sufficient data about the user’s knowledge of a topic to model the 
user. The final state of the learner model after both sessions gives the ‘after-use’ state.  

3.3   Results 

3.3.1   Improvement in Self-assessment Accuracy (Numerical Measure) 
Before using CALMsystem, the mean self-assessment error for all 25 participants across 
all six topics was 1.74 (median 1.56, range 0.69-4.31). After final use of the system this 
mean error was reduced to 0.82 (median 0.66, range 0.29-2.43) for all users in the in-
spectable or negotiated conditions. The improvement by inspectable LM users (mean 
reduction 0.45, median 0.55, range -0.99-1.64) was significant (t=1.83, p<0.05). Negoti-
ated LM users made highly significant (t=4.72, p<0.0005) improvements, (mean reduc-
tion in error 1.35, median 0.93, range 0.16-3.99). Notably, this improvement was  
significantly greater (t=2.38, p<0.025) than that for inspectable LM users (see Fig. 2). 
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Fig. 2. Improvement in Self-Assessment (Reduction in Numerical Discrepancy) 
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3.3.2   Reduction in Number of Topics  
The number of topics in which there was disagreement between the user and system 
as to the user’s ability was counted. Before using the system, the mean number of top-
ics with discrepancy was 3.88 (median 4, range 1-6). After final use of CALMsystem 
this average was reduced to 1.52 (median 1, range 0-6), an average reduction of 2.36. 
Inspection of the LM reduced the number of discrepancies significantly (mean reduc-
tion 1.5, median 2, range -3-5, (t=1.95, p<0.05)). The reducution was significantly 
greater (t=2.08, p<0.025) for participants in the negotiated LM condition (mean re-
duction 3.15, median 3, range 1-6, (t=8.01, p<0.0005)) than for those in the inspect-
able LM condition (see Fig. 3).  
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Fig. 3. Improvement in Self-Assessment (Reduction in Number of Topic Discrepancies) 

Reduction in Level Discrepancy

0

1

2

3

4

5

6

With negotiation Inspectable-only

Condition

A
ve

ra
ge

 L
ev

el
 D

is
cr

ep
an

cy
_

Initial belief

After session 1

After session 2

 

Fig. 4. Improvement in Self-Assessment (Reduction in Level Discrepancy)  

3.3.3   Reduction in Level Discrepancy  
The Level Discrepancy measure gives a value representing the disparity between levels 
("low", "moderate", "good", "high") held by the student and system. Before using the 
system the mean level discrepancy was 5.44 (median 6, range 1-11). After final use  
of CALMsystem this average was reduced to 1.96 (median 1, range 0-9), an average  



 Children’s Interactions with Inspectable and Negotiated Learner Models 139 

reduction of 3.48. Users in the inspectable LM condition reduced the Level Discrepancy 
significantly (mean reduction 2.08, median 3, range -4-7, (t=1.84, p<0.05)). Again it was 
found that the reduction in the Level Discrepancy was significantly greater (t=2.31, 
p<0.025) for participants in the negotiated LM condition (mean reduction 4.77, median 4, 
range 1-10, (t=7.12, p<0.0005)) (see Fig. 4).  

3.3.4   Questions Answered 
Users of the negotiated LM answered an average of 35.15 questions (median 35, 
range 22-61). Users in the inspectable condition answered an average of 51.08 ques-
tions (median 49, range 34-79), a highly significant difference (t=3.19, p<0.005).  

4   Discussion 

The results show that after using the CALMsystem open learner model all participants 
(in both conditions) significantly reduced the mean error in their self assessments. Us-
ers who engaged in negotiation with the chatbot demonstrated a significantly greater 
improvement in their self-assessment accuracy. These results suggest that inspection 
of the learner model can help prompt students to re-assess their knowledge, and that 
the chatbot negotiation element offers further benefit. Use of the system also reduced 
the number of discrepancies in learner/system beliefs. There was a substantial reduc-
tion in discrepancies for all participants; again this was significantly greater for nego-
tiation users than for inspectable LM users. This reduction in the number of topics 
where user and system disagree results in a model where both parties hold more simi-
lar beliefs, allowing users to help direct potential ITS adaptations which they may 
consider of more value. The improvement in self-assessment accuracy should allow 
users to better target future learning and develop greater learner autonomy.  

Interestingly, the discrepancy measures reduce rapidly across the trial for negoti-
ated LM users, but markedly less so for inspectable users.  This suggests that expo-
sure to the OLM alone was lesser of an incentive for children to substantially change 
their self-assessments of confidence in a topic.  The more proactive chatbot element, 
which persuades the users to challenge their belief where there are discrepancies ap-
pears to be more effective in making them consider their ability and make changes to 
their self-assessments. As shown in Figures 2, 3 and 4, the interaction continued to 
reduce discrepancies after a second session, suggesting that there was some lasting ef-
fect over the period between sessions (three weeks). Further study would be required 
to ascertain whether the extended use of a negotiated learner model would improve 
general self-assessment and metacognitive skills, and whether the improvements in 
self-assessment would be maintained over time.  

Users in the inspectable LM condition answered far more questions in the interac-
tion; this was the main activity available to them. This will have given them greater 
opportunity to view the representations of the beliefs held. However, despite this op-
portunity to consider the different beliefs more often, these users’ beliefs did not 
change as significantly as those of the users with chatbot negotiation. Answering 
questions, re-stating confidence, and seeing the resultant model alone appears benefi-
cial, but a lesser prompt to reflect on the learner model than offered by negotiation.  
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Users of both the inspectable and negotiated systems demonstrated significant im-
provements in self-assessment accuracy and in reducing the number and magnitude of 
discrepancies. The further improvements demonstrated by the negotiated LM suggest 
that where negotiation can be included this would provide additional benefits. The 
chatbot may persuade or help users to engage with their learning by exposing them to 
a proactive tool that they are willing to work with. This may be an effect of the nov-
elty, naturalness or accessibility of a chatbot, or may be due to the content it offers.  

Further work is necessary to explore whether the improvements in self-assessment 
transfer back to normal classroom scenarios (i.e. without computer), and whether be-
lief changes persist beyond use of the system. It will also be interesting to explore if it 
is the chatbot’s dialogue content that is effective, or whether the presence of the chat-
bot is a motivational factor which keeps young users engaged with the process.  

5   Summary 

We have presented an evaluation of two versions of an Open Learner Model. One 
version offers inspection of the learner model, while the other is supported by a chat-
bot to provide discussion and negotiation of the learner model contents. This negotia-
tion allows the user and system to collaboratively construct and maintain the learner 
model, providing further opportunities for the learner to reflect on their knowledge 
and to refine their self-assessments than was seen in users of the inspectable-only 
model. Improvements were seen in both conditions. The study showed that users who 
engaged in negotiation reduced inaccuracies in their self-assessments significantly 
more than those users who used the system without negotiation support.  
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Abstract. The L4All system provides an environment for the lifelong
learner to access information about courses, personal development plans,
recommendation of learning pathways, personalised support for planning
of learning, and reflecting on learning. Designed as a web-based appli-
cation, it offers lifelong learners the possibility to define and share their
own timeline (a chronological record of their relevant life episodes) in or-
der to foster collaborative elaboration of future goals and aspirations. A
keystone for delivering such functionalities is the possibility for learner to
search for ‘people like me’. Addressing the fact that such a definition of
‘people like me’ is ambiguous and subjective, this paper explores the use
of similarity metrics as a flexible mechanism for comparing and ranking
lifelong learners’ timelines.

1 Introduction

Supporting the demands of lifelong learners is increasingly considered at the
core of the learning and teaching strategy of HE and FE institutions and poses
new challenges, such as enabling better support for lifelong learners and facilities
for accessing cross-institutional resources. To address these challenges, it is im-
portant to exploit further the advantages of Information and Communications
Technology networks to enable better support for planning lifelong learning and
ubiquitous access to lifelong learning facilities from home, the workplace and edu-
cational organisations. This new trend to educational services has led to research
and development that involves the provision of new learner-centred models of
organising and delivering educational resources (see for example the integrated
framework proposed in [1,2]).

The L4All system [3,4] provides an environment for the lifelong learner to ac-
cess information about courses, personal development plans, recommendation of
learning pathways, personalised support for planning of learning, and reflecting
on learning. The MyPlan project follows on from the initial L4All pilot project
and aims to develop, deploy and evaluate personalised functionalities for the cre-
ation, searching and recommendation of learning pathways. This will enhance
individual learners’ engagement with the lifelong learning process by offering

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 142–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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personalised levels of learner control over their learning pathways, personalised
support in the reflection of where their learning activities may take them, and
management of their personal record of progress and attainment. It will also
support building communities of learners with similar interests, and information
sharing with other members of the community, other users of the L4All system,
and HE/FE institutions. Figure 1 shows the main page of the L4All system.

At the core of L4All is the specification of a User Model that addresses the
specificities of lifelong learners and is based on the notion of learning ‘trails’ [5].
In the context of L4All, a ‘trail’ is a timeline-based representation of learners’
work, learning and other life experiences that provides a holistic approach and
continuity between their learning episodes and work experiences.

Fig. 1. The main page of L4All with the user’s timeline (centre), access to the various
functionalities (left) and a bookmarks section for networking (right)

One requirement for offering such personalised services is to provide learners
with the possibility to search for ‘people like me’, i.e. to exploit the full structure
and content of their profiles and timelines in order to find similar matches that
will foster collaborative elaboration of future goals and aspirations. This poses
some interesting challenges that this paper addresses. First, the structure of the
timeline, as a sequence of temporal records, is potentially of such complexity that
it does not immediately suggest a natural way of enabling comparisons between
timelines. Second the notion of similarity of timelines is vague and subjective,
and it is not clear which aspects of that complex structure should be considered
and how they should be compared. Third, assuming that a personalised search
and similarity-ranking of timelines can be designed and developed, supporting
learners in exploiting such functionalities is an open problem.
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This paper presents an investigation of these challenges and is organised as fol-
lows. First, we review the User Model underlying the L4All system, in particular
the way timelines are represented. Second, a flexible mechanism for encoding the
timeline in a form suitable for similarity matching is presented. Third, several
algorithms for similarity measures of timelines are compared and analysed from
the point of view of their behaviour in identifying key aspects of timeline com-
parisons. Fourth, we describe the user interface for the personalised construction
of a new ‘people like me’ search, and for the visualisation and exploration of the
timelines returned. The paper concludes by addressing some of the issues arising
from our work and proposes some future developments.

2 User Model and Timelines

The L4All User Model [6] is comprised of three parts:

1. The User Profile contains personal information about learners such as their
name, gender, year of birth, email, login name and password.

2. The Learning Profile contains information about the educational and profes-
sional backgroundof learners (such as current occupation, highest qualification
and skills) and information about their learning needs (such as willingness to
travel, current learning goal, preferred mode of learning – part-time, full-time
– and preferred learning methods – in groups, alone, online).

3. The Timeline is the novel part of the User Model, specifically addressing
the particularities of lifelong learners. It represents the learning – and, more
generally, life – pathway of the learners to date and contains a chronologi-
cal record of those episodes of their life that they deem significant to their
personal development.

Episodes in a timeline are identified by their category, selected from 20+ cat-
egories currently supported by the system. They include personal episodes, e.g.
relocation, travel abroad, illness, marriage, death in family, etc., occupational
episodes, e.g. started work, set up business, retired, did voluntary work, etc.
and educational episodes, e.g. attended college, university or school, attended
courses, etc. Each episode is specified by a start date and a duration (if appli-
cable), title, description, keywords and an optional URL.

In order to extend the descriptive power of the timeline, some of the most
significant episodes are also further elaborated by one or two further attributes,
referred to as primary and secondary classifications: educational episodes by a
subject and a qualification level; work episodes by an industry sector and a po-
sition; and business episodes by an industry sector. These additional attributes
are populated by a specific tree-like taxonomy of values selected form relevant
British standards1. The structure and identifiers of these taxonomies have been
1 The Standard Industrial Classification (SIC), the Standard Occupational Clas-

sification (SOC), the National Qualification Framework (NQF) and the Labour
Force Survey’s Subject of Degree (SBJ). See the Labour Force Survey User Guide
http://www.statistics.gov.uk/downloads/theme labour/Vol5.pdf.
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maintained but, for usability purposes, their depth is limited to four levels. El-
ements in each taxonomy can therefore be represented by four-digit identifier,
each digit uniquely identifying its precise position in the tree.

3 Similarity Measures of Timelines

The initial prototype of the L4All system supported several search function-
alities over users and their timelines. Two limitations of this approach were
identified during the first piloting phase [4]. First, all the search functionalities
were keyword-based, targeting the various fields of the User Profile, Learning
Profile and Timelines, and therefore limited in their scope. In particular, search-
ing on timelines returns matches based solely on the occurrence of the keywords
present in one or several episodes but cannot exploit the overall structure of the
timeline. Second, the results of any search were not personalised according to
the particular user performing the search. An alternative approach was needed,
that could take into account both these issues: in other words, some form of
comparison or similarity measure between a user’s timeline and the rest of the
timelines in the L4All repository.

String metrics offer such a possibility. String metrics (also referred to as sim-
ilarity metrics) have been widely used in information integration and in several
fields of applied computer science [7,8]. In the context of Intelligent Tutoring
Systems, similarity metrics have been used in the REDEEM system [9] to com-
pare alternative sequences of instructional activities as produced by authors. In
the context for the L4All timelines, the main requirement for using similarity
metrics is to encode a time-based sequence of records into a token-based string.
For this purpose, we have made four simplifying assumptions at the outset (the
implications of these assumptions for users will be explored in our forthcoming
evaluation activities):

The precise duration and dates of an episode have no particular significance.
This may seem strange for a time-dependent data structure but the relevance
and usage of such information for searching for ‘people like me’ is ambiguous.
Should we consider two learners having done the same university degree but at
different dates similar or not? Should we consider them more different if one of
them has taken twice as long as the other (being part-time for example)? Or is
it enough, at some level, to consider them similar since both of them have done
this particular degree? In the absence of evidence supporting one point of view
against the other, we decided, initially, to ignore this information. Only each
episode’s relative time-stamp (i.e. its position in time compared to the other
episodes in the timeline) is used in order to ‘linearise’ the timeline by ordering
the episodes in chronological order.

Gaps between episodes have no particular significance unless explicitly ex-
pressed as an episode. The problem posed by gaps in timelines is the lack of
explicit explanation for their occurrence and therefore for their significance for
the timeline. Again, in the absence of such information, they are ignored.
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Some categories of episode may have no role to play in defining ‘people like
me’. The purpose of a timeline is for learners to record every episode of their
background that may have an impact on their learning pathways. For example,
personal episodes such as marriage, illness, relocation, etc. are important as they
may have a clear influence on the decisions made for personal development (e.g.
a course at a particular learning institution may have been followed because
of a relocation to a particular city). However, this does not necessarily mean
that such episodes are a prerequisite or a necessary condition for reaching a
particular stage in someone else’s development. Their importance while searching
for role models, inspiration, or ‘people like me’ are therefore ambiguous and
subjective. Therefore, whether to include or not particular categories of episode
in the similarity matching should be left to the user to specify.

The exact classification of an episode may not be significant in defining ‘peo-
ple like me’. As described earlier, some of the most important episodes in the
timeline (educational and work-related episodes) use specific attributes to pre-
cisely describe their instance, e.g. working as a researcher in computer science.
However, taking such a fine-grained description of episode may not be useful
in searching for ‘people like me’, as it may make more sense to consider that a
researcher (without a precise field) is someone to consider ‘like me’. Therefore
the level of specialisation of episodes should also be left to the user to specify.

Using these assumptions, it is now relatively straightforward to generate a
token-based string representing the timeline. Each episode of the timeline is en-
coded as a string token composed of a two-letter unique identifier of the category
of the episode (e.g. Cl for a College episode, Wk for a Work episode) and two
four-digit codes classifying the exact instance of this episode (as described in
the previous section). Note that, in order to maintain a consistent pattern for
the token’s encoding, nonexistent or unspecified classifications are encoded as
0.0.0.0.

Combining the two first assumptions above means that no time information
is used to encode episodes, only their relative position matters2. Filters are
then applied to the string of tokens to remove the episodes that should not
be considered in the current similarity search, as well as for limiting the depth
of their classification. In the latter case, the use of the coding system for the
classification facilitates the process: digits below the specified depth are replaced
by 0, replacing the specific classification by a more general parent.

4 Comparison of Similarity Measures

The metrics used in this study are part of the SimMetrics3 JAVA package,
an open source extensible library of metrics that provides real number-based
similarity measures between strings, allowing both normalised and un-normalised
output. The SimMetrics package contains about 20 different metrics, some of
them customisable by using user-defined cost functions and tokenisers. Not all
2 With an arbitrary decision as to their ordering if multiple episodes coincide in time.
3 SimMetrics, see http://www.dcs.shef.ac.uk/∼sam/stringmetrics.html.

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
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Table 1. List of encoded timelines used for the metrics comparison

Ref. Description Encoding

Source Timeline used as the source for the similarity measure Cl00 Un00 Mv00 Wk00

ID Timeline identical to Source. Cl00 Un00 Mv00 Wk00

RE Timeline containing the same episodes as Source but in
a totally different order.

Un00 Wk00 Cl00 Mv00

ADw New episode (similar to an existing one) added to Source. Cl00 Un00 Mv00 Wk00
Wk00

ADe New episode (different from all existing) added to
Source.

Cl00 Un00 Mv00 Wk00
Bs00

RMw Last episode removed from Source. Cl00 Un00 Mv00

RMu One episode removed from Source. Cl00 Mv00 Wk00

SBe One episode of Source substituted by a new one (different
from all existing ones).

Cl00 Un00 Mv00 Bs00

SBu One episode of Source substituted by an existing episode. Cl00 Un00 Mv00 Un00

SBw One episode of Source substituted by a variant of an
existing episode (a different classification).

Cl00 Un00 Mv00 Wk10

metrics can be used in our context, since some are tailored for working on a
particular application domain (linguistic for example) and require strings that
are incompatible with our encoding of timelines. We refer the reader to the
package documentation for descriptions of each metric.

Table 1 shows a set of synthetic timelines used in our comparison study. They
are deliberately simplistic in their structure, as the purpose of this comparison
is to identify general trends arising from the various similarity metrics, rather
than evaluating their intrinsic power of discrimination.

The Source timeline is a string of four episodes of different type: college
(Cl00), university (Un00), move (Mv00) and work (Wk00). Each episode has been
encoded as a token, using the scheme described in the previous section. For the
sake of clarity, and since this comparison does not rely on the full power of
discrimination of the scheme, the episode classifications have been reduced to a
single digit each (i.e. representing 0.0.0.0 as 0).

The target timelines represent a variety of alterations of the Source timeline
that could occur in real-life situations: a totally similar timeline (i.e. the same
sequence of episodes), a reordered timeline (i.e. the same episodes but totally
reordered), adding an extra episode, removing an existing episode, substituting
an episode by another one. Note that the set of target timelines listed in the
table only represent the most representative of each group. In order to test the
behaviour and consistency of the metrics, all possible combinations were gener-
ated for each group (e.g. timelines representing the addition of a new episode
were generated considering every possible position in the Source timeline).

Table 2 summarises the results of the different similarity measures applied to
every target timeline. The values shown in the table do not represent the distance
between the two strings but their normalised similarity, i.e. the ratio between
the calculated distance and the maximum distance. As mentioned earlier, the
main aim of this comparison is not to focus on individual measures for assessing
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Table 2. Normalised similarity between the source and the target timelines

ID RE ADw ADe RMw RMu SBe SBu SBw

Levenshtein 1 0 0.8 0.8 0.75 0.75 0.75 0.75 0.75
Needleman - Wunsch 1 0 0.8 0.8 0.75 0.75 0.75 0.75 0.88
Jaro 1 0.72 0.93 0.93 0.92 0.92 0.83 0.83 0.83

Matching Coefficient 1 1 0.8 0.8 0.75 0.75 0.75 0.75 0.75
Euclidean Distance 1 1 0.84 0.84 0.8 0.8 0.75 0.75 0.75
Block Distance 1 1 0.89 0.89 0.86 0.86 0.75 0.75 0.75

Jaccard Similarity 1 1 1 0.8 0.75 0.75 0.6 0.75 0.6
Cosine Similarity 1 1 1 0.89 0.87 0.87 0.75 0.87 0.75
Dice Similarity 1 1 1 0.89 0.86 0.86 0.75 0.86 0.75
Overlap Coefficient 1 1 1 1 1 1 0.75 1 0.75

their accuracy but to extract general conclusions regarding their behaviour when
confronted with particular configurations. From these results, several conclusion
can be drawn. First, all the similarity measures are indeed able to recognise
complete similarity between timelines (as indicated by all 1 in the ID column).
More interestingly, three groups of metrics emerge, as listed in Table 2.

The first group includes transformation-based metrics like Levenshtein, Jaro
and Needleman-Wunsch that are able to discriminate between the basic opera-
tions of string manipulation (copy, substitution, addition, deletion). The
non-zero result for the Jaro distance in the RE column can be explained by
a threshold used for determining matching tokens (see the documentation of
this metric); our test strings are not long enough (only four tokens) to allow
proper discrimination. All these metrics do not take into consideration the po-
sition of the token involved in one of the string manipulations (whatever the
location of the added or substituted episode, the scores are the same). The only
exception is the Needleman - Wunsch distance, which gives a different score when
a variant of the initial episode (i.e. same category but different classification) is
substituted (score of 0.88 in SBw, instead of 0.75 in SBe and SBu). This is due
to the use of specific gap cost and distance functions that can be tailored to the
particular nature of the data involved in the similarity measure and therefore
could be adjusted for our particular use of the timelines (see Section 6).

The second group of metrics includes vector-based metrics such as Block Dis-
tance, Euclidean Distance and Matching Coefficient that are not able to discrim-
inate between re-ordered strings, as indicated by 1 in the RE column. Whatever
the order of the tokens in the string, both source and target are considered to
be identical since they contain the same set of tokens. As with the metrics in
the previous group, the results for addition, substitution and removal of tokens
are position-independent.

The third group of metrics includes the rest of the vector-based metrics (Jac-
card, Cosine, Dice Similarities and Overlap Coefficient) which, as with the pre-
vious group, do not discriminate between reordering of tokens. Moreover, this
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group also fails to take into account the duplication of tokens in the string, as
exemplified by the scores of 1 in the ADw column (i.e. adding an episode that is
already existing in the timeline) or the different scores for the SBu column (i.e.
substituting an episode with one that is already existing, resulting in fact in the
deletion of this episode). Once again, this is because of the set-based algorithms
used for these metrics, in particular the use of intersection/union procedures
rather than summation as in the previous group. This is also reflected by the
fact that substitution also depends on the nature of the episode substituted (the
SBu column give scores different from the other substitutions). In this group,
the Overlap Coefficient is an extreme case, as it basically measures whether the
source string is a subset of the target one (or the converse).

5 Searching for ‘People Like Me’

What the comparison above shows is that different similarity metrics offer dif-
ferent degrees of support for the basic operations of string manipulation: copy,
substitution, addition or deletion of a token. The important point here is that
the comparison does not highlight one particular metric as being more use-
ful or accurate for our purpose, precisely because our purpose (or, rather, the
user’s) is unknown. The assumptions made in Section 3 encompass a wide
range of users’ behaviour regarding the way they understand a ‘people like me’
functionality.

In order to validate these assumptions, a dedicated interface for such searches
was therefore designed and implemented. It provides users with a three-step
process for specifying their own definition of ‘people like me’. The first step of a
user’s query specifies those attributes of the user’s profile that should be matched
with other users’ profiles (age, qualification, location, etc.) and act as a filtering
of the possible candidates before application of the similarity comparison on the
timelines. The second step of the query specifies which part(s) of the timeline
should be taken into account for the similarity comparison (currently by selecting
the appropriate categories of episode). The final step specifies the nature of the
similarity measure to be used (i.e depth of episode classification and metric).
Once a definition of ‘people like me’ has been specified by the user, the search
returns a list of all candidate timelines, ranked by relevance (i.e. their normalised
similarity measure). The user now have the possibility to access any returned
timelines and explore them.

This first approach to offering a ‘people like me’ functionality has given us
the possibility to accumulate information about usage and expectations from
users. It has offered us some insight into the context and relevance of particular
configurations and how specific aims – such as looking for aspirational timelines
or learning recommendations – could be supported. These issues and propos-
als for personalised support for the variety of activities they highlight will be
investigated further in future work.
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6 Discussion and Future Work

Lifelong learning requires technology to be used effectively to support learners
in becoming more aware of their own learning and help them with planning of
their learning throughout life under varying circumstance and settings. In this
context, it is important to support user engagement and participation in life-
long learning and facilitate collaboration among lifelong learners for community
building. In this paper we have discussed how string similarity measures could
be used to encode and compare the timelines of lifelong learners. We have shown
that existing metrics behave differently in identifying key aspects of timeline
comparison, such as addition, substitution or deletion of episodes. Since the pre-
cise definition of what is a similar timeline is ambiguous and subjective, we have
designed a new user interface for L4All such that learners can specify their own
definition of ‘people like me’, offering them the possibility to decide which as-
pects of a timeline need to be considered or not for the matching. Evaluating the
soundness and acceptability of this approach for users – as well as the usability
of our user interface – are currently under evaluation. In the first evaluation
phase – underway at the time of writing – we will be asking learner participants
from three different learning institutions to explore the definition and the results
of applying different similarity definitions on a predefined database of synthetic
timelines. In the long term, several issues arising from our work will also be
explored.

The encoding of timelines and episodes for similarity computation may need
to be improved, in particular in determining by how much two episodes are sim-
ilar. One way of dealing with this issue is by using the depth-adjusting encoding
of episodes, where specific classification identifiers can be relaxed to one of their
more general parents in the hierarchy, thus increasing the chance for two episodes
to be compared as identical. But by doing so we are not only losing the descrip-
tive power of episodes but also uniformly applying the filtering on all episodes
in the timeline. An alternative, unfortunately only supported by distance met-
rics such as Levenshtein or Needleman-Wunsch, is to incorporate user-defined
distance and gap cost functions, i.e. specifying a fine-grained analysis of the dis-
tance between two given tokens and of the cost of adding or removing a token in
a string. Instead of the current binary comparison of episodes (i.e. their encod-
ings are syntactically equal or not), we could adjust the distance between two
similar episodes by the distance between their classifications (i.e. the sum of the
distances to the closest common ancestor of each classification’s element).

Similarly, our first two assumptions in Section 3 are clearly the most critical.
The ongoing piloting of our techniques will certainly provide us with insights
about the importance or not of taking temporal information into account. Ex-
tensions of our token-based encoding of timelines or even a specific similarity
mechanism that maintains temporal tags will have to be considered.

Finally, a further important issue we still need to address is the question of
providing lifelong learners with support for exploiting the results of a similarity
search. Currently, we are relying on a pure visualisation approach, by displaying
both the learner’s own timeline and similar timelines returned by the search.
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A specifically designed dynamic widget is used to allow the learner to scroll
back and forward across each timeline, to access individual episodes, etc. Such
an interactive visualisation of timelines is certainly helping learners to explore
alternative timelines and is supporting them in elaborating future goals and
aspirations, but more proactive supports will also be investigated. To enable the
provision of feedback and on-demand support necessitates the ability to identify
the reasons for a search considering two timelines as being similar. Again, metrics
such as Needleman-Wunsch offer the possibility for such an identification by
enabling backtracking of the distance computation and determining potential
sequence alignments, i.e. the ability to identify alignment between pairs of tokens
in matching strings.
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Abstract. Most of intelligent tutoring systems (ITSs) were used to be developed 
by researchers or professionals with knowledge engineering background, due to 
knowledge model development. As a result, most of teachers, who are the best 
candidates of ITS developers in terms of their knowledge and motivation, are 
hindered from developing relevant systems. This study aims to explore a general 
approach for teachers to developing a computer-supported tutoring interaction 
component. Interaction data reuse (IDR) is proposed as the key concept for the 
design of the development approach. 

Keywords: Interaction data reuse, knowledge model development, ITS devel-
opment problem. 

1   Introduction 

ITS development is known for long to be both difficult and labor-intensive [1, 2, 3]. The 
causes of the ITS development problem are cognitive task analysis and artificial intelli-
gence programming [2, 3], both of which are pertinent to knowledge model development. 
Generally, teachers are incapable of developing knowledge models, but in terms of their 
job nature and the potential of ITS in sharing their teaching load, teachers are best candi-
dates for ITS development. Therefore, the workload on knowledge model development 
required by a particular ITS development approach is an indicator of the suitability of that 
approach for teacher use. Although there exist other factors than ITS development ap-
proaches that may influence the ITS development workload on knowledge model devel-
opment, factors such as development decisions, tool support, and subject domains, the 
spectrum of ITS development approaches illustrated in Fig. 1 provides us an approximate 
overall understanding of some ITS development approaches. 

Early ITS development heavily focused on knowledge model development, in-
cluding representation of domain knowledge, student modeling knowledge, and tu-
toring knowledge. Even most ITS authoring tools focused on saving workload on ITS 
development; avoidance of knowledge model development was usually a second 
thought. Only ITS authoring tools for some special domains allow producing ITSs 
simply by configuration [1]. Knowledge engineering tools, such as DNA [4], have 
varied potential in reducing the complexity and workload of knowledge model de-
velopment, but they can not completely avoid knowledge model development. 
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Fig. 1. A spectrum of ITS development approaches 

Until recently, a data reuse approach, the development of Example-Tracing Tutor, is 
proposed for ITS development [2]. Model tracing is performed by reuse of existent 
student action data instead of production rules. By demonstrating potential student 
steps, Example-Tracing Tutor is successful in avoiding complex knowledge model 
development and allows teachers to develop Example-Tracing Tutors by their own. To 
improve Example-Tracing Tutor development, an approach called bootstrapping nov-
ice data was proposed to handle the problem of expert blind spots [5]; the technique of 
“programming by demonstration” was adopted to turn existent data into production 
rules to reduce the workload on demonstrating student steps [6]. Since the bootstrap-
ping novice data approach requires two tools, one for data accumulation and the other 
for actual use, and thus two phases of system deployment, it still deserves more inves-
tigation into making data reuse and system development more intuitive and fluent. 

It was confirmed that effective computer tutors capture some crucial aspects of the 
behavior of effective human tutors [7]; a general description on the behavior of most 
effective ITSs was recently proposed [8]. These works remind us to differentiate the 
goals from the means and signify the significance of alternative ITS development 
approaches that do not involve direct knowledge model development. In this study, we 
investigate such an alternative with interaction data reuse. 

2   Interaction Data Reuse 

The design of our interaction data reuse (IDR) approach was triggered by the work of 
Active Documents [9], which are aimed to design documents capable of answering 
reader queries. The key idea of Active Documents is to accumulate human ques-
tion-answer pairs so as to reuse them in answering subsequent reader queries. If no 
reusable question-answer pair is found, the answer is delayed until some human expert 
provides one. Three components are identified in an IDR application. In order to be 
reused, interaction data must be accumulated. The collection of interaction data to be 
used in IDR applications is termed interaction data collection (IDC) hereinafter. Be-
sides IDC accumulation, a data retrieval mechanism must also be introduced to locate 
potentially reusable data for a given situation in the IDC. Since the IDC in an IDR 
application is unlikely to contain reusable data for all given situations, a mechanism to 
expand existing IDC is also required when reusable data is missing. Therefore, the 
three major components of an IDR application are: IDC accumulation, IDC retrieval, 
and IDC expansion components. Table 1 lists some IDR applications as well as the 
implementations of each component. 
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Table 1. IDR applications and implementation of their components 

IDR Applica-
tions IDC accumulation  IDC retrieval IDC expansion 

Usenet FAQ Authoring FAQ files 
Reading FAQ 

files 
Editing FAQ files 

FAQFinder Authoring FAQ files 
Automated 

answer retrieval 
Editing FAQ files 

Active Docu-
ments 

Automated accumulation 
of question-answer pairs 

Automated 
answer retrieval 

Delayed expert an-
swers 

 
Owing to the need for increased interaction efficiency, an early IDR application was 

developed by Usenet users, the users of newsgroups, in order to reduce resources spent 
in providing answers to repeated queries. When new users, called newbies, joined a 
newsgroup, they were likely to post the same set of questions collectively called fre-
quently asked questions (FAQs). In order to avoid repeated efforts, most newsgroups 
create FAQ files for newbies to read before posting their questions. The maintainers of 
the FAQ files of a newsgroup update their FAQ files to reflect the changes in the in-
terests of the newsgroup from time to time. In the perspective of IDR, the FAQ files are 
partial records of the user interaction, or the IDC. The FAQ files (IDC) are created by 
authoring. The FAQ files are “reused” to “answer” newbie queries when the newbies 
read them. Thus, the Usenet FAQ is a pure manual IDR application without the support 
of any IDR automation mechanism.  

As the number of newsgroups increased and so did the sizes of the FAQ files, even 
selecting the right FAQ file for finding the desired answer was no longer simple for 
ordinary Usenet users. Spotting this information need, the FAQFinder project was 
launched to automate this answer retrieval task. Users can get their answers simply by 
input their questions into FAQFinder. FAQFinder retrieves potential answers to a 
natural language user question simultaneously from many FAQ files using techniques 
involving statistical information retrieval, syntactic parsing, and semantic concept 
matching [10]. In the perspective of IDR, FAQFinder simply improves the answer 
retrieve component of Usenet FAQ files without improving the IDC accumulation and 
IDC expansion components. If the retrieved answer was unsatisfactory or no answer 
was retrieved, the user had to turn to other resources. There is no automatic mechanism 
for expanding the FAQ files that FAQFinder uses. FAQFinder relies on the original 
authors to expand these FAQ files. In terms of an question-answering application, 
Active Documents is an improved version of FAQFinder with an mechanism of 
automatic “FAQ files” generation, in the form of a set of question-answer pairs, and a 
mechanism for expanding the set of question-answer pairs. 

In order to apply the IDR concept to ITS development, a data model other than 
question-answer pairs must be proposed. Besides, a retrieval component that is capable 
of dealing with this new data model is also required. However, the assumptions of IDR 
applications are similar: (1) the same learning obstacles occur repeatedly; (2) The same 
learning materials are used repeatedly; (3) Missing interaction data become sparse as 
the IDC size increases above a certain threshold. 
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3   Tutoring Interaction Data Model 

In certain perspective, one-to-one tutoring interactions can be seen as a sequence of 
student and tutor actions. In such a sequence of actions, the smallest unit is a single 
student action or a single tutor action. Generally, the number of student actions is 
greater than the number of tutor actions because eventually the student has to work on 
the problem sometimes without receiving any feedbacks from the tutor. On the other 
hand, tutor actions can typically be considered as responses to student actions because 
during tutoring, each student action generates a different situation to be handled by the 
tutor. Thus, tutor-initiated actions can also be considered as responses to student ac-
tions that are seen as opportunities to promote learning of the student. A tutor action 
paired with the student action that it responds to is called an interaction episode or 
simply an episode. In terms of an episode, the student action decides the situation to be 
handled by the tutor and the tutor action denotes the response of the tutor to the situa-
tion. Examples of student actions include an incorrect student step to problem solving, 
a request for hints on the next step, and a student query, and the correspondent tutor 
actions might be error-specific messages for incorrect student steps, hints on the next 
step, and answers for student queries. Thus, an episode is consisted of the situational 
information and the response information, which denotes the student action data and 
the tutor action data of the episode, respectively. 

All contiguous episodes form an interaction session, which denotes a session of 
tutor-student interaction. The interactions that occur during different learning activities 
belong to different interaction sessions. All the data of interaction sessions comprise 
the IDC. Thus, interaction sessions, episodes, situational information and response 
information consist of a hierarchical data model of tutoring interaction. When each 
interaction session is only consisted of an episode and each episode is consisted of a 
question and an answer, the data model represents the application to ques-
tion-answering. Thus, the interaction in question answering is considered a special case 
of the interaction of problem-solving tutoring. 

3.1   The Context of Episodes and Similar Episodes 

For the case of question answering, each question is considered unrelated with the 
others and is generally answered without interference from previously questions. Thus, 
the data reuse mechanism for question answering is not applicable for tutoring. The 
context of episodes must be considered. The information used for deciding the context 
of an episode is termed the contextual information of that episode. In terms of available 
information for the system, it is reasonable to assume that the maximal amount of 
contextual information of an episode is all the preceding episodes of that episode. If 
some other contextual information, such as examination results of the student, were 
used in the generation of a tutor action but that information was unavailable to the 
system, then it is unreasonable to expect that the system will be able to identify such 
differences in the context of episodes. Therefore, all contextual information must be 
available for the system. Currently, the maximal amount of contextual information of 
an episode is assumed to be all the preceding episodes of that episode. One way to 
determine whether two episodes are under similar context is to calculate the similarity 
of their contextual information. 
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For the purpose of generality, two categories of similarity measures are proposed in 
this study: one is literal string matching and the other is the document similarity 
measures that are used in the field of information retrieval, such as the inner products of 
the two vectors that represent the two texts to be matched in terms of words used in 
each text. The literal string matching mechanism works well for matching student 
problem-solving actions of equation solving, while the document similarity measures 
work well for question answering, as illustrated in the work of FAQFinder. The use of 
general similarity measures allows the design of general tools so that teachers can use 
them simply by configuring the tools. 

Besides the choice of similarity measure, the choice of amount of contextual in-
formation is also influential in distinguishing the context of episodes. Some choices of 
contextual information are listed in the following: 

 

(1) Perfect matching: all the situational information and response information of 
preceding episodes are used as the contextual information. This choice of 
contextual information is made when the context of episodes are highly sen-
sitive. 

(2) Problem-solving path matching: all preceding problem-solving actions are 
used as the contextual information. This choice is useful for delivering 
messages like hints on the next steps and error-specific messages for incor-
rect student steps. 

(3) Current situation matching: no information of preceding episodes is used. 
Instead, the situational information of the episode in question is used as the 
contextual information. This choice is an approximated version of the pre-
vious choice when the problem-solving actions of a student are unlikely to 
overlap. This choice is typically made to increase the reusability of existent 
data. 

 

Episodes that are under similar context and share similar situational information are 
called similar episodes. However, similar episodes do not necessarily have the similar 
response information. The similarity measure of contextual information introduced in last 
section is also applicable to situational information matching. When similar episodes are 
retrieved, their response information is used as the system responses. If multiple similar 
episodes with different response information are retrieved, this means a tutor has several 
options to respond to the student in that situation under the given context.  

4   Generation of Tutoring Actions with IDR 

A computer-mediated environment for tutoring is assumed if tutoring support is to be 
provided by reusing existent interaction data with computers. A consistent com-
puter-mediated environment for data accumulation and data reuse is essential to the 
success of IDR applications, as different environments may render the meanings of the 
same tutoring messages different. A consistent computer-mediated environment also 
allows simultaneous occurrence of data accumulation and data reuse during system 
deployment. Fig. 2 gives an overview of our proposed approach to applying the IDR 
concept to provide tutoring support in such a computer-mediated environment, which is 
consisted of a student interface, a teacher interface, and a backend server. 
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Fig. 2. IDR application overview 

The student interface is for the student to work on given problems, to seek for helps, 
and to receive tutoring support provided by the teacher or the server. The teacher in-
terface is for the teacher to provide tutoring support to the student either spontaneously 
or upon requests. The backend server receives both student action data and teacher 
action data from relevant interfaces, and executes the functions of the three components 
of an IDR application: IDC accumulation, IDC retrieval, and IDC expansion. Imple-
mentation of the three components is usually completed before commencing the  
tutoring application, though it is also possible to defer the implementation of IDC 
retrieval and IDC expansion components after data accumulation. Implementation of 
the three components is discussed in the next section. 

The backend server carries out the dual roles of a provider of tutoring support and of 
a broker of the tutoring support provided by the teacher, and this characteristic of the 
backend server makes the integration of the two sources of tutoring support seamless. 
In an ideal scenario, the backend server can interact with the student without the in-
volvement of the human teacher when sufficient amount of data has been accumulated, 
as shown in the shaded area of Fig. 2. 

In order to be more general, the procedures are described more formally: 

Definition: Given c, the content to be learned, let a be an action taken by agent p to 
attain the learning goal, f, the feedback given by agent q to assist p in attaining the goal; 
and h, the course of interaction between p and q before action a occurs. Define a 
situation of providing feedback as a pair (h, (a, p)) and an episode of interaction be-
tween p and q as a triplet (h, (a, p), (f, q)) with respect to c. 
 

1. Collect and index episode (h, (a, p), (f, q)) in IDC M. Let s denote the situ-
ational part of an episode e, or (h, (a, p)), r denote the feedback part of e, or (f, 
q), and (s, r) also denote e. Therefore, M = {(s1, r1), (s2, r2), …, (sn, rn)}, S = {s 
| (s, r) ∈ M} denotes all the situations in M. 

2. Select a difference metric Δ, a threshold δ, and a mapping g such that for a 
situation z:g(z) = rk if Δ(z, sk) = min({ Δ(z, s) | s ∈ S}) < δ, and g(z) is undefined 
in other cases. 

3. Given a situation s, the output is g(s). If g(s) is undefined or unsatisfactory, 
then query q for f, M = M ∪ {(s, (f, q))} 

4. Repeat step 3. 
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5   Tutoring Support Simulation 

A quiz with three equation-solving problems was conducted to a class of 51 mid-
dle-school students, who had learned to solve such equations for three weeks prior to 
the quiz. The three equations are: 1243 −=− xx , 37]1)52(3[2 +=−− xx , and 

1)
2

1
(3

4

52 =−−+
x

x
. 

Each student answer is consisted of several student steps. The data repetition rate of 
the student answers is high but tends to drop as problem complexity increases. Most 
correct student steps are repeated and the repetition rate of both correct and incorrect 
student steps tends to increase as their number increases. However, the amount of data 
in this quiz is still small. Further investigation is needed before drawing a conclusion. 

In similar quizzes, the teacher of the class will provide feedbacks to incorrect student 
steps as a kind of remediation during marking the test papers. To acquire such marking 
information as a source for simulation of tutoring support, a system was developed in 
accordance with the IDR approach to assist the teachers in marking test papers by 
providing suggestions by reusing previous marking information. To simulate the pro-
vision of tutoring support to students, the collected interaction data are separated into 
two sets: one as the set of interaction data to be reused, called the original set, and the 
other as incoming student actions, called the new set. For each student action from the 
new set, the original set is searched for responses to this student action. If there is an 
available response, this reused response is compared with the response contained in the 
new set given by the teacher. Thus, we can calculate the percentage of matched re-
sponses in this simulation. There are two kinds of responses to each student action. One 
is the correctness annotation of each student step, and the other is the comments on each 
student step. The comments on student steps are mainly error-specific messages. If the 
reused teacher responses match with the true teacher responses, it indicates that the 
reused teacher responses are appropriate. Although the reused teacher responses may 
be appropriate even if they do not match with true teacher responses, these cases are 
temporarily ignored. Therefore, the percentage of matched responses is an indicator of 
the appropriateness of the reused responses. 

Table 2. Percentage of matched comments 

Data size Problem 1 Problem 2 Problem 3 
5 100.00% 100.00% 95.80% 

15 100.00% 100.00% 96.50% 
25 100.00% 100.00% 87.50% 
35 100.00% 100.00% 87.00% 
45 100.00% 100.00% 83.90% 

 
The simulation results show that correctness annotations on student steps are 100% 

match for all data sizes. However, with the choice of simple contextual information, the 
comments on student steps might be inappropriate, as shown in Table 2. However, the 
percentages of matched comments are still high. 
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6   Concluding Remarks 

The IDR approach is a potential alternative approach to ITS development, though there 
are still several issues to be investigated. This study lays down a theoretical foundation 
for the IDR approach to helping teachers in providing tutoring supports with computers 
to students who are learning problem-solving skills. Specifically, we identify the main 
components of an IDR application and propose a data model of tutoring interaction data 
and a set of general procedures for producing tutoring actions. In addition, tutoring 
support simulation was performed. Comparison between the IDR approach and the 
common knowledge model development approaches is given in Table 3. 

Table 3. Comparison of IDR and knowledge model development approaches 

Knowledge model development  IDR 

 noititeper ataD ytilareneg ledoM elanoitaR

Key implementation issue Mechanisms for knowledge modeling 
(difficult and labor-intensive) 

Mechanisms for data 
accumulation and matching 

Response quality Appropriate responses No guarantee in response 
appropriateness 

Required teacher 
participation Development phase Development and early 

deployment phases 

Accumulate new data 
during deployment  seY oN

Applicability to multiple 
learning tasks  oN seY

 

The common rationale of developing knowledge models to provide tutoring support 
is that knowledge models are capable of capturing various knowledge application 
instances. The goal of knowledge model development is to develop knowledge models 
that are general enough in capturing desired knowledge application instances. On the 
contrary, the rationale of the IDR approach is that most of knowledge application in-
stances are likely to be repeated and knowledge application data can be accumulated 
and reused for repeated instances. Thus, the mechanism to provide tutoring support is 
through data matching and the key implementation issue is the choice and implemen-
tation of data accumulation and data matching mechanisms. Implementation of data 
accumulation and data matching mechanisms are relatively easier than knowledge 
model development. This implementation benefit comes at the cost of appropriateness 
of system responses. If data matching mechanism is not good enough in distinguishing 
one knowledge application case from another or is compromised to obtain better data 
reusability, inappropriate data may be delivered as the system responses. 

The differences in the rationales and the key implementation issues of the ap-
proaches are the sources of other differences. For example, to develop knowledge 
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models or to maintain knowledge models in order to include newly discovered student 
mistakes, teacher participation is required in this model development phase. Typically, 
this occurs when desired knowledge application instances are acquired. Before the 
completion of knowledge model development, desired tutoring support is unavailable. 
Once knowledge model development is completed, an additional benefit is that the 
knowledge models are typically applicable to multiple learning tasks. Therefore, when 
a lot of learning tasks are required, this benefit of knowledge model development might 
compensate for its price. Contrarily, early system deployment is an opportunity to 
accumulate and reuse data for the IDR approach and thus teacher participation is also 
required during this phase in addition to the development phase. However, the IDR 
approach is capable of providing tutoring support to the student by the system while 
accumulating interaction data between the human teacher and the student. This is 
beneficial because this is a convenient way to accumulate alternative student solutions, 
student mistakes, and relevant tutoring supports. 

Table 4. Comparison of IDR tutor and example-tracing tutor development 

 rotut gnicart-elpmaxE rotut RDI 

Generality General case of example-tracing 
tutor Special case of IDR tutor 

Data accumulation Teacher-student interaction 
Demonstration 

Bootstrapping novice data 
Authoring 

Data expansion Teacher-student interaction Demonstration 
Authoring 

 depoleved eb oT troppus looT Cognitive Tutor Authoring Tools 
 

Example-tracing tutors are considered as a special case of IDR tutors, as shown in 
Table 4. The general architecture of IDR tutors may provide clues for new ways to tutor 
development. For example, it might be interesting to investigate whether there is any 
data expansion mechanism that can respond to the student without delay. The differ-
ences in the data accumulation and data matching mechanisms are also significant. 
Demonstrating student solutions and authoring relevant feedbacks is less straightfor-
ward than directly interacting with students while the students are solving the given 
problem. Additionally, teachers are unlikely to remember all the cases of student so-
lutions. After deployment, if new student solutions are discovered, there still lacks of a 
mechanism to directly use the opportunity for data expansion. Instead, data expansion 
is performed after the deployment phase and is conducted in subsequent modifications. 
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Abstract. This paper addresses the problem of inferring students’ strate-
gies when they interact with data-modeling software used for pedagogical
purposes. The software enables students to learn about statistical data by
building and analyzing their own models. Automatic recognition of stu-
dents’ activities when interacting with pedagogical software is challenging.
Students can pursue several plans in parallel and interleave the execution of
these plans. The algorithm presented in this paper decomposes students’
complete interaction histories with the software into hierarchies of inter-
dependent tasks that may be subsequently compared with ideal solutions.
This algorithm is evaluated empirically using commercial software that is
used in many schools. Results indicate that the algorithm is able to (1)
identify the plans students use when solving problems using the software;
(2) distinguish between those actions in students’ plans that play a salient
part in their problem-solving and those representing exploratory actions
and mistakes; and (3) capture students’ interleaving and free-order action
sequences.

1 Introduction

We report on the development of algorithms for recognizing students’ plans
when interacting with pedagogical systems for data-generation and analysis.
This work is a first step towards building a collaborative pedagogic agent that
will support students in their problem-solving and teachers in their analysis
of students’ modeling and understanding of statistical data. TinkerPlots, the
system we use in this paper, gives students great flexibility in representing and
analyzing statistical data. It is in essence a data-analysis “construction kit” that
allows students to create and analyze a large number of statistical models [8].
While this makes for a rich educational environment, it does pose significant
problems for teachers. When an entire classroom of students is using TinkerPlots
at the same time, there is no way for a teacher to keep track of what each child
is doing, especially since they may be following divergent paths in solving the
problem. Without some sort of support, teachers are left with the end-result
of students’ work on the computer screen, or looking over the shoulder of each
student for at most a minute or two.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 162–172, 2008.
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Automatic plan recognition is an open problem in AI, and the task of recog-
nizing users’ plans when interacting with software systems is particularly chal-
lenging. Ideally designed systems are flexible, allowing users the convenience of
choosing among multiple action sequences for performing the same function, and
the ability to perform these action sequences in relatively free order. Traditional
algorithms for plan recognition assume a goal-oriented agent whose activities
are consistent with its knowledge base and who forms a single encompassing
plan [9]. In contrast, one of the objectives of flexible pedagogical software is
to allow students to explore and experiment during their interaction process.
In these settings, students may interchangeably pursue multiple, interleaving
plans; they may be confused about which appropriate plan to take, and they
may make mistakes. Recognizing students’ actions by exhaustively considering
every possible way in which a student can use these systems is infeasible.

This paper describes a computationally tractable algorithm for intelligently
recognizing students’ problem-solving strategies based on their complete interac-
tion history with the system. The algorithm composes the action sequences from
a user’s interaction into a series of interdependent plans. It infers the plan that
the user was using to complete each activity, and compares this plan with an
ideal solution that was designed by domain experts. At the end of this process,
the algorithm outputs a hierarchy of the plans that students used during the
session and the extent to which they differed from the ideal solutions.

The algorithm was tested using the commercial system TinkerPlots, used
world-wide to teach students in grades 4-8 about statistics and mathematics [5].
In TinkerPlots, students actively model stochastic events and construct mod-
els that generate data. TinkerPlots is highly flexible, allowing for data to be
modeled, generated, and analyzed in many different ways using an open-ended
interface. Our empirical studies focused on two different problems in which stu-
dents used TinkerPlots to model and analyze stochastic data.

In AI, plan recognition has been used in a range of applications, such as
modeling discourse structure from speech and inferring transportation routines
from GPS data [11,10]. Past work in the intelligent tutoring domain has focused
on inferring students’ activities for the purpose of providing feedback by the
tutor. These models have been used for modeling how students solve math [6,3]
and physics problems [4,14], their help requests from pedagogical software or
their misuse of it [13,2]. Many of these works construct a probabilistic model
of students’ problem-solving strategies that is subsequently used to update the
tutor’s beliefs about students’ likely future actions given their behavior. In these
cases, the tutor is an active participant in the student’s learning process and
ambiguities or uncertainties about the students’ plan of action are resolved by
querying the student [1].

In contrast, the work reported in this paper addresses the problem of recog-
nizing students’ actions given their complete interaction histories. The system
does not intervene with the student’s activities during the course of interaction.
Straightforward adaptation of probabilistic techniques for this purpose is diffi-
cult, because the size of probabilistic models is typically exponential in the length



164 Y. Gal et al.

of the history they consider, and students’ complete interaction histories often
span hundreds of actions. In addition, the model parameters must be trained
from data or stipulated by a domain expert. Both of these techniques require
considerable effort in the domain we consider.

1.1 Example Scenario: The Two-Dice Problem

To illustrate the algorithm we will use the following example, drawn from a
set of problems posed to seventh grade students using TinkerPlots. “We rolled
two dice over and over a huge number of times and kept track of their sums.
For example, when the first die came up 5 and the second die came up 6, we
recorded their sum of 11. Using TinkerPlots, build a model that you can use to
roll two dice 1,000 times and see whether 11 came up more often than 12.”

The purposes behind this exercise are for children to learn about the joint dis-
tribution of non-ordered random events and to explore how sample distributions
vary, even if they are drawn from the same population. Each roll of two dice
generates a pair of values, one for each die. There are two events that make up
the sum 11, namely (5,6) and (6,5), while there is only one event that makes up
the sum 12, namely (6,6). Since each of these events is equally likely, in theory
the sum 11 will occur more often than the sum 12. (Of course, as students run
their models, they will discover that, while this is generally true, there will be
samples in which there are more 12s than 11s, especially if the sample size is
small.)

One of the possible approaches towards modeling this situation using Tin-
kerPlots is shown in Figure 1. The model includes a sampler device comprising
two spinners, shown in Figure 1(a), each of which is a model of one die. The
sampler will randomly select a value for each of its spinners every time it is run.
Each spinner has six possible values. The surface area specified for each value
determines its weight in the sample. Effectively, this sampler models a joint
probability distribution over two independent random variables with six values
distributed uniformly. The value of “Repetitions”, set to 1,000 in this example,
determines the number of times the sampler is run. The value of “Spins”, set to
“1” in this example, determines the number of rolls of the two dice at each run.

Figure 1(b) shows some of the data generated by the sampler once it has run.
Each pair in the table represents a roll of two dice. This pair has been separated,
by instigating a “Separate Individual Draws” function in the sampler. To the
right is a graphical representation of all of the sums in the form of a histogram.
Figure 1(a) shows an additional way to model this problem. Here, a single die is
used that is thrown twice at each repetition, hence the value of “spins” is set to
“2”. There are many other ways to use TinkerPlots to solve this problem.

2 Recipes, Planning and Plan Recognition

Students interact with TinkerPlots through a series of rudimentary operations
that create, modify or delete objects such as spinners, plots, and outcomes. We
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(a) Two Possible Sampler Models

(b) Displaying Sampler Data as a Histogram

Fig. 1. TinkerPlots Sessions Snapshot

will use the term basic actions to refer to these operations, which can often be
carried out by a single keystroke or mouse action. TinkerPlots interactions are
recorded as a linear sequence of basic actions in order of their occurrence. Each
basic action uses a unique tag to refer to an object, which is transparent to the
user. A subset of such an interaction sequence is shown in the leaves of the trees
in Figure 3. For example, the basic action New(Spinner(S1)) adds a new spinner
with ID S1. These actions are serially labeled in order of occurrence. (Due to
layout constraints, the leaves in this figure are not aligned on the same plane.)

We model students’ reasoning about problems using abstract entities, called
complex actions, which capture higher-level, more abstract TinkerPlots activi-
ties, such as adding two dice to a sampler, computing the sum of a roll of two
dice, or fitting sampler data to plot. Complex actions can be decomposed into
sub-actions [7]. A sub-action can be a basic TinkerPlots action or it can be a
complex action itself. A useful distinction between complex and basic actions is
that students can “see” both basic and complex actions, while the TinkerPlots
system can only “see” and register basic actions.

A recipe for a complex action is an ideal sequence of operations for fulfilling
the complex action. Formally, a recipe is a set of sub-actions and constraints such
that performing those sub-actions under those constraints constitutes completing
the action [12]. These sub-actions are referred to as the recipe’s constituents.
Figure 2 presents recipes for solving the two-dice problem and its constituent
sub-actions. Each recipe for a complex action is represented as a tree of depth
two, in which the leaves correspond to the recipe’s constituent actions (whether
basic or complex), and the root corresponds to the complex action. Basic actions
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Solve the Two Dice Problem

New(Sampler(s)) New(Plot(p)) Add Two Dice
(s)

s.SetRepeats(1,000) s.Run Plot Identical Sums
(Sampler s, Plot p)

Add two Dice
(Sampler s)

Add One Die
(Sampler s)

Add One Die
(Sampler s)

s.SetSpins(1)

Add Two Dice
(Sampler s)

Add One Die
(Sampler s)

s.SetSpins(2)

Add One Die
(Sampler s)

New(s.Spinner(c)) Create Cases 1, . . . , 6
(Spinner c)

Set Uniform Distribution
(Spinner c)

Plot Identical Sums
(Sampler s, Plot p)

p.add(s.Outcome) Combine Outcomes
(5,6),(6,5)

Rename Outcome
(5,6)(6,5) to 11

Rename Outcome
(6,6) to 12

Plot Identical Sums
(Sampler s, Plot p)

s.individualDraws s.Sum(individualDraws) Drag(s.Outcome, p)

Create Six Cases
(Spinner c)

New(s.c.Case(v1)) s.c.SetValue(v1 , 1)) New(s.c.Case(v6)) s.c.SetValue(v6 , 6))

Fig. 2. Recipes for Solving the Two-Dice Problem. Dashed edges represent temporal
constraints between actions.

are outlined in plain boxes, while complex actions are outlined in shadowed
boxes. TinkerPlots objects are identified by a unique tag, and recipe actions use
parameters to refer to the TinkerPlots objects they modify. For example the
recipe for the complex action AddTwoDice (s) modifies the sampler object that
is bound to the parameter s.

The order in which actions are performed in a recipe can be constrained by
including temporal constraints between actions, represented as a dotted edge.
Actions within the same recipe can occur in any order as long as they meet
the specified temporal constraints. For example, in the recipe for the action
SolveTheTwoDiceProblem, both actions AddTwoDice (s) and s.SetRepeats(1,000)
can come in any order as long as they both occur before the basic action s.Run.

In addition to the constraints embedded in the recipes, some action combina-
tions are disallowed by the TinkerPlots system itself. For example, it is impossible
to add a spinner to a sampler until the sampler has been created. For expository
convenience, we do not show these constraints in the recipes.

Recipes may be ambiguous, in the sense that there may be several recipes for
completing the same complex action. For example, Figure 2 shows two possible
recipes for completing the complex action AddTwoDice (s). One possible recipe
uses a single die that is rolled twice. It includes the sub-actions AddOneDie (s)
and s.SetSpins(1). The other recipe uses two dice that are rolled once. It includes
two sub-actions AddOneDie (s) and the sub-action s.SetSpins(1). In addition, the
same action may be a constituent of several different recipes. For example, the
complex action AddOneDie (s) appears in both recipes for the complex action
AddTwoDice (s).
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Solve the Two Dice Problem

new(Sampler(S1))

- 1 -

new(Plot(P1))

- 9 -

S1.setRepetitions
(100)

- 10 -

S1.run

- 11 -

S1.setRepetitions
(1000)

- 12 -

S1.run

- 13 -

Plot Identical Sums
( S1, P1)

.. .. ..

Add Two Dice
(S1)

Add One Die
(S1)

new(S1.Spinner(D1))

- 2 -

new(S1.Spinner(D2))

- 3 -

Add One Die
(S1)

Add Six Cases
(D1)

New(S1.D1.Case(V1))

-4 -

New(S1.D2.Case(V1))

- 5 -

Add Six Cases
(D2)

S1.D1.SetValue(V1 , 1)

- 6 -

S1.D2.SetValue(V1 , 1)

- 7 -

S1.setSpins(1)

- 8 -

Fig. 3. A Sample Plan

2.1 Planning

Planning is the process by which students use recipes to compose basic and
complex actions towards completing tasks using TinkerPlots. We say that a
recipe for a complex action is fulfilled by a set of temporally-ordered sub-actions
if (1) there is a one-to-one correspondence from each of the sub-actions to one of
the recipe’s constituents; (2) all of the sub-actions agree on the identification tags
for the TinkerPlots objects that are modified by the recipe; and, (3) the order
between sub-actions is consistent with the temporal constraints that are defined
between recipe constituents. Formally, a plan is an ordered set of basic and
complex actions, such that each complex action is decomposed into sub-actions
that fulfill a recipe for some task. Each time a recipe for a complex action is
fulfilled in a plan, there is an edge from the complex action to its sub-actions,
representing the recipe constituents. For example, in Figure 3, the recipe for the
complex action AddTwoDice(S1) is fulfilled by the two AddOneDie(S1) actions
and the action S1.SetSpins(1).

Each tree in Figure 3 represents a plan that was carried out by the student. The
leaves of the trees represent the basic actions corresponding to the user’s interac-
tion history. (For expository convenience, we have only included a subset of this
interaction history.) The plan that emanates from the complex action SolveTheT-
woDiceProblem shows that the student was able to complete the two-dice problem.

In a plan, the constituent sub-actions of complex actions may interleave with
other actions. In this way, the plan combines the free-order nature of TinkerPlots
recipes with the exploratory nature of students’ learning strategies. Formally, we
say that two ordered complex actions interleave if at least one of the sub-actions
of the first action occurs after some sub-action of the second action.

An example of interleaving actions in this plan are the two complex actions
AddOneDie (S1) We can see this because a constituent of the recipe for the
first AddOneDie (S1) (the action AddSixCases (D2))) occurs after a constituent
of the recipe for the second AddOneDie (S1) (the action AddSixCases(D1)). In
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Figure 3, there are crossing edges between the constituent sub-actions of any
two interleaving actions.

Also shown in Figure 3 are two basic actions outlined in dashed boxes
(S1.SetRepeats(100) and S1.run) that were not necessary for solving the two-
dice problem. This happened because the user first ran the sampler for 100
repetitions, before running the sampler for 1,000 repetitions, as required by the
problem formulation. These could represent a student’s exploration or a mistake.

3 Plan Recognition

The task of plan recognition in the TinkerPlots domain is to infer students’ plans
based on their interaction history and a set of recipes. A naive approach would
search through the space of all possible plans that are consistent with a user’s
interaction, the recipes, and their constraints. This approach is not feasible. For
each possible action in the plan, we would need to consider all possible expansions
of basic and complex sub-actions as long as their order is permitted by the recipe
constraints. In the worst case, the number of possible plans to consider will be
factorial in the number of basic actions in an interaction sequence.

However, certain qualities of the TinkerPlots domain serve to constrain the
search process. First, it is not possible to generate an infinite plan using Tinker-
Plots recipes. Therefore, we can choose the recipes to be fulfilled in an incremen-
tal fashion, ordered by depth. We define the “depth” of a recipe for a complex
action as the maximum depth of the tree for any plan to complete the complex
action1. Second, the sub-actions of a complex action will always agree on the
identification tags of those TinkerPlots objects that are modified by the complex
action. Therefore, we do not need to consider any action combination that dis-
agree on the ID tags. We can also ignore those action combinations disallowed
by the TinkerPlots system.

As a result, we can construct the following algorithm that incrementally builds
a sequence of plans to explain a user’s interaction history from the leaves upwards.
Each step t of the algorithm maintains an ordered set of actions, denoted Pt. Each
of these actions is a root of a tree that is a partial plan that explains some subset
of the user’s interaction history. P0 is initialized to include all of the basic actions
in the interaction history. Let G be the set of recipes, and let the recipe in G for a
complex action C be denoted as RC . The algorithm proceeds as follows:

For each RC in G, sorted by depth
Initialize Pt+1 with Pt

For any sequence St+1 of actions in Pt+1 that fulfill RC :
Add a new action C in Pt+1, positioned after the first action in St+1
Let St be the set of actions in Pt corresponding to St+1
Add edges from C in Pt+1 to all actions in St

Remove all actions in St+1 from Pt+1

1 For example, the depth of the recipe for solving the two-dice problem is three, because
there is no possible plan for this task whose depth is greater than three.
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A key step in this algorithm is the selection of actions in Pt+1 to fulfill the recipe
for RC . We select these actions in any order that is allowed by the temporal con-
straints of the recipe for RC . In particular, the actions in Pt+1 may be non-
contiguous; this allows the algorithm to capture interleaving plans. This step is
greedy, because once a complex action is chosen to fulfill RC , it is removed from
Pt+1 and will not be considered again. Therefore, there may be instances where the
algorithm fails because it picked the wrong actions to fulfill a recipe in earlier steps.
An interesting consequence is that the order inwhichwe traverse the actions inPt+1
can affect the way in which the algorithm fulfills recipe, and thus, its output. We
currently do so by traversing Pt+1 sequentially, from the last action to the first. A
different order may fulfill different recipes, and produce a different plan.

The complexity of this approach can be computed as follows. Let n be the length
of a student’s interaction sequence. The number of times a recipe can be fulfilled
is bounded by n. In the worst case, it will take a complete pass over the actions in
Pt to fulfill the recipe. The number of actions in Pt is bounded by n. Therefore, it
will take at most n2 steps to exhaust all of the possible applications of RC . In fact,
a slightly more sophisticated implementation complete this process in linear time.
Given that the size of the recipes is constant, we conclude that the complexity of
the algorithm is quadratic in the length of the interaction history.

We demonstrate part of this process in Figure 4. We show the complete in-
teraction history of the user in Figure 4(a), outlined in bold. (This is the same
interaction history of the plan in Figure 3). These actions are presented top-to-
bottom in order of their occurrence. Each sub-figure in Figure 4 shows the partial
plans that the algorithm maintains for recipes of a given depth. When fulfilling a
recipe for a complex action, we draw directed edges from the sub-actions to the
complex action. For instance, in the step shown in Figure 4 (b), the algorithm
fulfills two separate instances of the recipe AddSixCases (d), one for spinner ID
D1 and one for spinner ID D2. These complex actions interleave, as can be seen
from the crossing edges.

In the step shown in Figure 4(d), the algorithm chooses to fulfill one of two
possible recipes for completing the complex action AddTwoDice (s). This choice is
possible because of the basic action S1.SetSpins(1), which is a unique constituent
action for one of the recipes for CreateTwoDice (s) but not for the other. In
the step shown in Figure 4(e), the algorithm succeeds in collapsing the complex
action Solve Two-Dice Problem, and terminates, because it cannot fulfill any more
recipes. As shown in the final step in Figure 4(f), the algorithm has determined
that two actions (S1.SetRepeats (100) and S1.Run) were redundant.

3.1 Evaluation

We collected eight TinkerPlots interaction histories of six people using Tinker-
Plots to solve the two-dice problem, and two people using TinkerPlots to solve
another problem involving the modeling of ordered stochastic events. Two of
these people were middle school students in an after-school TinkerPlots club.
Three were adults who had experience with using technology in education, but
not with TinkerPlots. One was an adult who was very familiar with TinkerPlots.
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Fig. 4. The execution of the algorithm on a user’s interaction history. Crossing edges
represent interleaving actions.

The middle school students had been using TinkerPlots for several months and
did the two-dice problem as part of their regular after-school work. The three
adults who were not familiar with TinkerPlots watched a 5-minute introductory
video, saw a brief demonstration of the Sampler functions, then did the problem.
In all cases, an experimenter tracked the activities of each participant (e.g., what
samplers were created, when actions were interleaved, etc.).

We considered the plan constructed by an algorithm to be “correct”, if the
actions in the plan corresponded to the students’ actual activities using the
software, including the interleaving of action sequences. The algorithm was able
to recognize the strategies for all of these interaction histories but one. In this
instance, a student solved the two dice problem twice, using the same sampler in
both solutions. The algorithm recognized one solution, but not the other. This
is because the plan recognition algorithm grows a sequence of trees, so the same
action cannot simultaneously fulfill several recipes.

One approach to be able to consider all ways of fulfilling a recipe, is to build
possible partial plans in parallel, rather than greedily. Once the current par-
tial plan reaches a dead-end, the algorithm backtracks. Because partial plans
in TinkerPlots may interleave, there is no straightforward way to accomplish
this without having to construct a separate partial plan for each possible way
a recipe can be fulfilled. This naive approach is exponential in the length of
interaction, hence computationally intractable. We intend to see whether dy-
namic programming can be used to make this process more efficient.
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Lastly, it is important to note that even a partial account of students’ inter-
actions can still convey information about the techniques they used and their
approach that is useful to teachers. For example, the greedy algorithm was still
able to recognize all of the constituent actions for the second application of the
recipe for the two-dice problem.

4 Conclusion and Future Work

This work presented a simple and computationally efficient algorithm for rec-
ognizing students’ interactions with data-modeling software. The algorithm is
able to capture the nature of interaction of users with flexible computer soft-
ware, which allow users to interleave their activities in relatively free order. We
showed that the algorithm was successfully able to recognize students’ plans
when solving two separate problems using a commercially available application.

This work is a first step towards a pedagogical agent that is truly collaborative,
in the sense that it provides the right machine-generated support for its users.
For teachers, this support consists of notification of students’ performance both
after and during class. For students, this support will guide their problem-solving
in a way that maximizes their learning experience while minimizing interruption.

To this end, we are currently pursuing work in several directions. First, we are
constructing vivid, coherent representations of students’ plans to show teachers.
These presentations need to support a “birds’ eye view” of class performance
during a session, as well as the ability to focus on the behavior of individual stu-
dents. We will develop algorithms that enable teachers to access the state of the
system at critical points in students’ work. The system state conveys different
information from a plan, in that it provides a snapshot of the TinkerPlots ob-
jects a user is using at a given point in time, rather than a post-session analysis
of students’ interaction. Our future research will include developing algorithms
for keeping track of the state of the system and experimenting with present-
ing teachers with some combination of plan information and state information.
Lastly, we are pursuing a machine-learning approach towards learning recipes
from data by observing students’ interaction.
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Abstract. This paper presents a process for automatically extracting a fine-
grained semantic representation of a learner’s response to a tutor’s question. 
The representation can be extracted using available natural language processing 
technologies and it allows a detailed assessment of the learner’s understanding 
and consequently will support the evaluation of tutoring pedagogy that is de-
pendent on such a fine-grained assessment.  We describe a system to assess stu-
dent answers at this fine-grained level that utilizes features extracted from the 
automatically generated representations.  The system classifies answers to indi-
cate the student’s apparent understanding of each of the low-level facets of a 
known reference answer.  It achieves an accuracy on these fine-grained deci-
sions of 76% on within-domain assessment and 69% out of domain. 

1   Introduction 

This paper presents a new representation for learner responses that captures their fine-
grained semantics and can be automatically extracted from the discourse.  The intent 
of the fine-grained representation is to facilitate more detailed assessment and conse-
quently more specific and effective intelligent tutoring system (ITS) feedback (c.f. 
[7]). Two of the most significant reasons for automatic extraction of the representa-
tion are to support an ITS that can provide domain-independent tutoring in the long-
term and to facilitate easier domain adaptation in the short-term.   

Current automated tutors assess learner responses at a fairly coarse-grained level, 
often only classifying the response as having expressed the desired information or not.  
There are other researchers who are striving to provide more detailed feedback (c.f., 
[6], [7], [19], [22], [25]), but this work is all very domain-dependent, often requiring 
hand-generated knowledge representation ontologies, logic representations, extraction 
frames, and parsers, or requiring the collection of 100 or more student answers for 
each new question in order to train new machine learning classifiers. Similarly, work 
in the area of large-scale assessment requires significant tuning of information extrac-
tion patterns and knowledge representations or the retraining of classifiers, in each 
case necessitating the collection of 100 or more learner responses for each new ques-
tion (e.g., [2], [11], [13], [20]).   

The goal of the representation described here is to facilitate domain-independent 
assessment of student responses to questions in the context of a known reference 
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answer and to perform this assessment at a level of detail that will enable more effec-
tive ITS dialog.  We have two key criteria for such a representation: 1) it must provide 
a level of detail that facilitates a more fine-grained assessment of the learner’s under-
standing, indicating exactly where and in what manner the answer did not meet  
expectations and 2) the representation and assessment must be learnable by a system 
– they should not require the handcrafting of domain-specific representations. 

In the following section, we describe the corpus of student answers we utilize to 
evaluate automatic answer assessment according to our representation and the level at 
which this assessment is performed. In section 0, the focus of this paper, we detail the 
process of automatically generating our fine-grained semantic representation from 
answers given in natural language. In section 0, we discuss automated assessment 
experiments providing evidence for the reasonableness of our representation. We 
close with a discussion of future work and a summary of the contributions of the 
present work. 

2   Creating a Test Corpus 

We acquired data from 3rd-6th grade students utilizing the Full Option Science Sys-
tem (FOSS), a proven research-based system that has been in use across the country 
for over a decade. The data was gathered by the Assessing Science Knowledge (ASK) 
project [10]. FOSS includes sixteen diverse science teaching and learning modules 
covering life science, physical science, earth and space science, scientific reasoning, 
and technology.  For each module, the FOSS research team designed a set of summa-
tive assessment questions with reference answers, from which we selected 287 con-
structed response questions in line with our goals. These questions had expected  
responses ranging in length from moderately short verb phrases to several sentences 
(not fill-in-the-blank or subjective). We generated a corpus by transcribing a random 
sample of the students’ handwritten responses.  In total, approximately 16,000 student 
responses were transcribed.  While these answers were not taken from a tutoring 
session, the questions are representative of our target ITS.  We are currently gathering 
data from live tutoring sessions to further evaluate our representation and assessment 
approach. 

2.1   Reference Answer Representation 

The ASK assessments included a reference answer for each of their constructed re-
sponse questions. We decomposed these reference answers into low-level facets, 
roughly extracted from the relations in a syntactic dependency parse and a shallow 
semantic parse. The decomposition is based closely on these well-established frame-
works, since these representations have been shown to be learnable by automatic 
systems (c.f., [4], [16]). These facets are the basis for assessing learner answers. The 
focus of this paper is on the automatic generation of a similar representation for both 
the reference answers and learner answers.  Section 0 details the representation that is 
generated automatically, along with a description of the process for generating this 
representation. Here we simply sketch the makeup of the final assessed reference 
answer facets – the process of extracting these facets is detailed in [14].   
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Example 1 presents a reference answer from the Magnetism and Electricity module 
and illustrates the facets derived from its dependency parse, along with their glosses.  
These facets represent the fine-grained knowledge that the student is expected to 
address in their response.   

(1) The brass ring would not stick to the nail because the ring is not iron. 
(1a)  NMod(ring, brass)  
(1a’) The ring is brass. 
(1b)  Theme_not(stick, ring) 
(1b’) The ring does not stick. 
(1c)  Destination_to_not(stick, nail) 
(1c’) Something does not stick to the nail. 
(1d)  Be_not(ring, iron) 
(1d’) The ring is not iron. 
(1e)  Cause_because(1b-c, 1d) 
(1e’) 1b and 1c are caused by 1d. 

We refer to facets that express relations between higher-level propositions as inter-
propositional facets. An example of such a facet is (1e) above, connecting the propo-
sition the brass ring did not stick to the nail to the proposition the ring is not iron. In 
addition to specifying the headwords of inter-propositional facets (stick and is, in 1e), 
we also note up to two key facets from each of the propositions that the relation is 
connecting (b, c, and d in example 1). Reference answer facets that are assumed to be 
understood by the learner a priori, (generally because they are part of the information 
given in the question), are also annotated to indicate this. 

There were a total of 2878 reference answer facets, with a mean of 10 facets per 
question (median of 8). Facets that were assumed to be understood a priori by stu-
dents accounted for 33% of all facets and inter-propositional facets accounted for 
11%. The experiments in automated annotation of student answers (section 0) focus 
on the facets that are not assumed to be understood a priori (67% of all facets); of 
these, 12% are inter-propositional. 

A total of 36 different facet relation types were utilized. The majority, 21, utilize 
VerbNet thematic roles [8], (e.g., Agent, Patient and Instrument). Direction, Manner, 
and Purpose were added from PropBank adjunctive argument labels [18]. Quantifier, 
Means, and Cause-to-Know were added based on an analysis of the corpus.  Addi-
tionally, copulas and similar verbs (e.g., be, become, do, and have) were themselves 
considered to be facet relation types connecting their arguments.  Finally, anything 
that did not fit into the above categories retained its dependency parse type: VMod 
(Verb Modifier), NMod (Noun Modifier), AMod (Adjective or Adverb Modifier), and 
Root (Root was used when a single word in the answer, typically yes, no, agree, dis-
agree, A-D, or a number, stood alone without a significant relation to the remainder of 
the reference answer; this occurred only 23 times, accounting for fewer than 1% of 
the reference answer facets).  The seven highest frequency relations are NMod, 
Theme, Cause, Be, Patient, AMod, and Location, which together account for 70% of 
the reference answer facet relations. 
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2.2   Annotating a Corpus of Student Answers 

After generating the reference answer facets, we annotated each student answer to 
indicate whether and how the student addressed each of the corresponding facets.  
After analyzing much of the data in the first science module, Physics of Sound, we 
settled on the five tutor-level annotation labels, Tutor-Labels, noted in Table 1. See 
[15] for a description and discussion of all of the labels utilized.  The experiments in 
automatic assessment discussed later are all based on this level of classification. 

Table 1. Facet Annotation Labels 

Understood: Facets directly expressed or whose understanding is inferred 
Contradiction: Facets contradicted by negation, antonyms, pragmatics, etc. 
Self-Contra: Facets that are both contradicted and implied – self contradictions 
Diff-Arg: The core relation is expressed, but it has a different modifier or argument 
(e.g., the pitch is loud instead of the reference answer facet the pitch is high) 
Unaddressed: Facets that are not addressed at all by the student’s answer 

3   Generating a Fine-Grain Representation of Answer Semantics 

This section, which is the emphasis of this paper, describes a process for automatically 
generating a fine-grained representation of the semantics of the reference answer and the 
student’s answer. Before generating this representation, the answers go through a series 
of linguistic preprocessing steps. First, the answers are segmented into their distinct 
sentences. Then the text of sentences is tokenized, breaking it into the discrete linguistic 
units (e.g., words, numbers, punctuation) required by the subsequent processes. Next, the 
tokenized sentences are processed by a part-of-speech (POS) tagger.  Finally, the POS-
tagged sentences are provided as features to MaltParser [17] to generate dependency 
parses, representing the syntactic relations between the tokens in each sentence.  The goal 
of most English dependency parsers is to produce a tree structure, where each node in the 
tree represents a word in the sentence, each link represents a functional category relation, 
usually labeled (e.g., subject, object...), between a governor (head) and a subordinate 
(modifier), each node has a single governor, and the tree is projective – the links do not 
cross (c.f., [16]). Finally, this dependency parse tree is the basis for building the 
representation of answer semantics described below. Fig. 1 illustrates one answer’s 
dependency parse.   

This dependency parse was then automatically modified in several ways. The ra-
tionale for the modifications, which we demonstrate in the descriptions below, is to 
 

The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
vc

sub vmod pmod
vmod sbar prd

sub vmoddet det

The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
vc

sub vmod pmod
vmod sbar prd

sub vmoddet det

 

Fig. 1. Dependency parse of an example answer 
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increase the semantic content of the low-level components of the representation.  
First, we remove determiners, as they add little value to the semantics.  Second, auxil-
iary verbs and their modifiers are reattached to the associated main verbs. In the ex-
ample in Fig. 1, this involves reattaching the modal would, its subject ring, and the 
verb modifier not to the main verb stick, making it the new root of the dependency 
tree (see Fig. 2). The reason for this transformation is that modals generally carry very 
little semantic value.  In our example, we have effectively replaced the dependency 
the ring would, Sub(would, ring), with the dependency the ring sticks, Sub(stick, 
ring), which provides far more information about the concepts involved in the answer. 

The brass ring would not stick to the nail because the ring   is  not iron.

vmodnmod
sub

vmod pmod
vmod sbar prd

sub vmodaux

The brass ring would not stick to the nail because the ring   is  not iron.

vmodnmod
sub

vmod pmod
vmod sbar prd

sub vmodaux

 

Fig. 2. Representation after removing determiners and demoting auxiliary verbs 

Next, prepositions are incorporated into the dependency relation labels following 
[12]. In our example, this results in nail being reconnected to stick and setting its 
relation type to VMod_to, the conjunction of the preposition’s relation type, VMod, 
and the preposition itself, to (see Fig. 3).  Hence, the two dependencies VMod(stick, 
to) and PMod(to, nail), each of which carries little semantic value over its key lexical 
item, stick and nail, are combined into the single, more expressive dependency 
VMod_to(stick, nail). Likewise, the copula is in the subordinate clause is also reat-
tached to stick and is given the relation type VMod_because.   

The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
sub

vmod_to
vmod_because prd

sub vmodaux

The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
sub

vmod_to
vmod_because prd

sub vmodaux

 

Fig. 3. Representation after incorporating prepositions into the dependency labels 

Then copulas are incorporated into the dependency relations. The non-subject 
modifiers of the copulas are reattached to the subject and the relation type between 
the predicate and subject is updated to incorporate the copula. In the example, this 
means iron and the second instance of not are both reattached to the second instance 
of ring (see Fig. 4). The relation type connecting iron to ring is set to be_prd, reflect-
ing its original predicate role and the incorporation of the copula is. This modification 
results in replacing the semantically impoverished dependencies Sub(is, ring) and 
Prd(is, iron) with the more meaningful dependency Be_Prd(ring, iron).  We similarly 
integrate the verbs do and have. 
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The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
sub

vmod_to
vmod_because be_prd

vmodaux

The brass ring would not stick to the nail because the ring   is not iron.

vmodnmod
sub

vmod_to
vmod_because be_prd

vmodaux

 

Fig. 4. Representation after incorporating copulas into the dependency relations 

In an analogous modification, negation terms are appended onto the relevant de-
pendency relations. In the example, both instances of not are appended to the depend-
ency labels of each of their siblings (see Fig. 5). This provides an indication that the 
semantics associated with those dependencies have negative polarity. 

The brass ring would not stick to the nail because the ring   is not iron.

nmod
sub_not

vmod_to_not be_prd_not
vmod_because_not

aux

The brass ring would not stick to the nail because the ring   is not iron.

nmod
sub_not

vmod_to_not be_prd_not
vmod_because_not

aux

 

Fig. 5. Final representation after incorporating terms of negation 

All of these modifications are made automatically. The intent of the revisions is to 
increase the likelihood that terms carrying significant semantic content are joined by 
dependencies that will be the focus of feature extraction. Specifically, comparing a 
dependency such as Sub(would, ring) from a reference answer to a learner’s utterance 
provides little additional value over a purely lexical comparison involving ring.  
Whereas, the dependency Sub_not(stick, ring) carries far more semantic value.   

This representation is generated for the question, the reference answer and the 
learner response. In section 0, we discussed the reference answer facet representation 
that is currently the basis for assessing the learner response – learners must express an 
understanding of those facets. The automatically generated representation of the ref-
erence answer described in this section is utilized to extract features for the machine 
learning classifier that are based on a representation that is more consistent with that 
of the learner answer. The long-term plan is to have a single automatically generated 
representation used for the assessment and feature extraction, but the current manual 
facet extraction in section 0 ensures that we are evaluating our assessment algorithms 
relative to a more accurate judgment regarding the significant aspects of the reference 
answer.  A notable difference between the assessed reference answer facets and the 
representation generated automatically is that the latter does not utilize thematic role 
labels since we have not yet adapted our shallow semantic parser to appropriately 
handle children’s utterances. 

4   Automatic Assessment of Learner Responses 

A high level description of the system classification procedure follows. We start with 
hand generated reference answer facets. We generate automatic parses for the refer-
ence answers and the student answers and automatically modify these parses per our 
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desired representation. From this data, we automatically extract features indicative of 
the student’s understanding for each reference answer facet. Finally, we train a ma-
chine learning classifier on our training data and use it to classify the unseen exam-
ples in the test set. The system performs a separate classification based on the Table 1 
labels to indicate the student’s understanding of each facet of the associated reference 
answer. 

Table 2. Machine Learning Feature Set 

Lexical Features 
Gov/Mod_MLE: The lexical entailment probabilities for the reference answer 
facet governor (Gov) and modifier (Mod) following [5] [24]. 
Gov/Mod_Match: True if the Gov (Mod) stem has an exact match in the learner 
answer. 
Subordinate_MLEs: The lexical entailment probabilities for the primary constitu-
ent facets’ Govs and Mods when the facet represents a relation between higher-
level propositions. 
Syntactic Features 
Gov/Mod_POS: Part of speech tags for the facet Gov & Mod 
Facet/AlignedDep_Reltn: The labels of the facet and aligned learner answer de-
pendency – alignments were based on co-occurrence MLEs as with words, i.e., 
they estimate the likelihood of seeing the reference answer dependency in a docu-
ment given it contains the learner answer dependency. 
Dep_Path_Edit_Dist: The edit distance between the dependency path connecting 
the facet’s Gov and Mod (not necessarily a single step due to parser errors) and the 
path connecting the aligned terms in the learner answer. Paths include the depend-
ency relations generated in our modified parse with their attached prepositions, 
negations, etc, the direction of each dependency, and the POS tags of the terms on 
the path. The calculation applied heuristics to judge the similarity of each part of 
the path (e.g., dropping a subject had a much higher cost than dropping an adjec-
tive).  Alignment for this feature was made based on which set of terms in an N-
best list (N=5 in the present experiments) for the Gov and Mod resulted in the 
smallest edit distance.  The N-best list was generated based on the lexical entail-
ment probabilities (see Gov/Mod_MLE). 
Other Features 
Consistent_Negation: True if the facet and aligned student dependency path had 
the same number of negations. 
RA_CW_cnt: The number of content words in the reference answer. 

4.1   Features 

Many of the features utilized by the machine learning algorithm here are based on 
document co-occurrence counts. We used three publicly available corpora (English 
Gigaword, The Reuters corpus, and Tipster) totaling 7.4M articles and 2.6B terms.  
These corpora are all drawn from the news domain, making them less than ideal for 
assessing student’s answers to science questions. The corpora were indexed and 
searched using Lucene, a publicly available Information Retrieval tool. 
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We investigated a variety of linguistic features and chose to utilize the features 
summarized in Table 2, informed by training set cross validation results from a deci-
sion table [9]. The features assess the facets’ lexical similarity via lexical entailment 
probabilities following [5], part of speech (POS) tags, and lexical stem matches.  
They include information extracted from the modified dependency parses such as 
relevant relation types and path edit distances. Remaining features include informa-
tion about polarity among other things (see Table 2). The revised dependency parses 
described earlier are used to align the terms and facet-level information for feature 
extraction, as indicated in the feature descriptions. Further details regarding these 
features can be found in [14]. 

4.2   Experimental Setup 

The data was split into a training set and three test sets. The first test set, Unseen Mod-
ules, consists of all the data from three of the 16 science modules, providing a domain-
independent test set. The second, Unseen Questions, consists of all the student answers 
associated with 22 randomly selected questions from the 233 questions in the remaining 
13 modules, providing a question-independent test set. The third, Unseen Answers, was 
created by randomly assigning all of the facets from approximately 6% of the remaining 
learner answers to a test set with the remainder comprising the training set.  All of the 
data in the Unseen Modules test set had been adjudicated; whereas, about half of the 
remaining data (training data, Unseen Questions and Unseen Answers) had not.  We used 
the most recent annotation of the unadjudicated data during the experiments presented 
here. In the present work, we utilize only the facets that were not assumed to be under-
stood a priori. This selection resulted in a total of 54,967 training examples, 30,514 ex-
amples in the Unseen Modules test set, 6,699 in the Unseen Questions test set and 3,159 
examples in the Unseen Answers test set. 

We evaluated several machine learning algorithms and C4.5 [21] achieved the best 
results in cross validation on the training data. Therefore, we used it to obtain results 
for assessing student answers according to the new representation described here.  
The effect of classifier choice will be analyzed in future work.   

4.3   Results 

Table 3 shows the classifier’s accuracy in cross validation on the training set and each 
of our test sets. The columns first show two simpler baselines, the accuracy of a clas-
sifier that always chooses the most frequent label in the training set – Unaddressed, 
and the accuracy based on a lexical decision that chooses Understood if both the gov-
erning term and the modifier are present in the learner’s answer and outputs Unad-
dressed otherwise, (we also tried placing a threshold on the product of their lexical 
entailment probabilities following [5], who achieved the best results in the first Rec-
ognizing Textual Entailment challenge, but this gave virtually the same results as the 
word matching baseline). The column labeled Table 2 Features presents the results  
of our classifier. (Reduced Training is described in the Discussion section which 
follows.) 
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Table 3. Classifier Accuracy 

 Majority 
Label 

Lexical 
Baseline 

Table 2 
Features 

Reduced 
Training 

Training Set CV 54.6 59.7 77.1  
Unseen Answers 51.1 56.1 75.5  
Unseen Questions 58.4 63.4 61.7 66.5 
Unseen Modules 53.4 62.9 61.4 68.8 

4.4   System Results Discussion 

The accuracy achieved, assessing learner answers within this new representation 
framework, represent an improvement of 24.4%, 3.3%, and 8.0% over the majority 
class baseline for Unseen Answers, Questions, and Modules respectively. Accuracy 
on Unseen Answers is also 19.4% better than the lexical baseline. However, this sim-
ple baseline outperformed the classifier on the other two test sets.  It seemed probable 
that the decision tree over fit the data due to bias in the data itself; specifically, since 
many of the students’ answers are very similar, there are likely to be large clusters of 
identical feature-class pairings, which could result in classifier decisions that do not 
generalize as well to other questions or domains. This bias is not problematic when 
the test data is very similar to the training data, as is the case for our Unseen Answers 
test set, but would negatively affect performance on less similar data, such as Unseen 
Questions and Modules. 

To test this hypothesis, we reduced the size of our training set to about 8,000 ran-
domly selected examples, which would result in fewer of these dense clusters, and 
retrained the classifier. The result for Unseen Questions, shown in the Reduced Train-
ing column, was an improvement of 4.8%. Given this promising improvement, we 
attempted to find the optimal training set size through cross-validation on the training 
data. Specifically, we iterated over the science modules holding a different module 
out for evaluation on each iteration and training on the other 12. For each training set 
module, we analyzed the learning curve varying the number of randomly selected 
examples per facet. We estimated the optimal accuracy for training set cross-
validation by averaging the results over each module.  We then trained a classifier on 
that number (8) of random examples per facet utilizing the full training set and tested 
on the Unseen Modules test set. The result was an increase in accuracy of 7.4% over 
training on the full training set. We are currently investigating other techniques to 
avoid this over-fitting. 

5   Discussion and Future Work 

We presented a novel low-level semantic representation that is largely derivable 
automatically using existing natural language technology and evaluated it in the con-
text of assessing learner responses to questions similar to what we envision in the ITS 
we are constructing. A significant contribution of this representation is that it will 
facilitate more precise tutor feedback, targeted to a specific facet of the reference 
answer and pertaining to the specific level of understanding expressed by the student.   
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The representation’s validity is partially demonstrated in the ability of annotators 
to reliably annotate inferences at this facet level, achieving substantial agreement 
(86% on the labels in Table 1, Kappa= 0.72 [3]).  It was further demonstrated by the 
promising results on automatic assessment of student answers at this facet level. The 
classifier results for the Unseen Answers test set are 19% over the lexical baseline and 
the out-of-domain results are 15% and 6% over the most frequent class and lexical 
baselines respectively. Additionally, this is the first work to demonstrate success in 
assessing roughly sentence length constructed responses from elementary school 
children. 

Utilizing a dependency parse to improve the accuracy of assessments has been 
successfully implemented by others [23]. However, this is the first work that decomposes 
reference answers into fine-grained facets based on dependency parses and performs 
automatic assessment at this fine-grained level. It is also the first work to use related 
information to extract features that are indicative of student understanding independent of 
a specific subject matter domain. 

As is, the technique presented here does not require the collection of any example stu-
dent answers to handle a new question or even domain. However, the assessed reference 
answer facets are generated manually. This will be addressed to facilitate quick migration 
to new topics, and in the long term, to enable the ITS to process self-generated questions. 
Other key areas of future research involve improving the current system accuracy and 
integrating the assessment system into an ITS. One area of particular interest is 
evaluating the impact of the representation detailed in this paper. 

The corpus of learner answers described here will be made publicly available for other 
researchers to utilize in improving their tutoring and educational assessment technolo-
gies. This database of annotated answers provides a shared resource and a standardized 
annotation scheme allowing researchers to compare work and should stimulate further 
research in these areas. 

Prior work on intelligent tutoring systems has largely focused on question-specific 
assessment of answers and even then the understanding of learner responses has gen-
erally been restricted to a judgment regarding their correctness or in a small number 
of cases a classification that specifies which of a predefined set of misconceptions the 
learner might be exhibiting. The domain-independent approach described here en-
ables systems that can easily scale up to new content and learning environments, 
avoiding the need for lesson planners or technologists to create extensive new rules or 
classifiers for each new question the system must handle. This is an obligatory first 
step toward the long-term goal of creating intelligent tutoring systems that can truly 
engage children in natural unrestricted dialog, such as is required to perform high 
quality student directed Socratic tutoring. 
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Abstract. Machine learning techniques have been applied to the task of student 
modeling, more so in building tutors for acquiring programming skill. These 
were developed for various languages (Pascal, Prolog, Lisp, C++) and pro-
gramming paradigms (procedural and declarative) but never for object-oriented 
programming in Java. JavaBugs builds a bug library automatically using dis-
crepancies between a student and correct program. While other works analyze 
code snippets or UML diagrams to infer student knowledge of object-oriented 
design and programming, JavaBugs examines a complete Java program and 
identifies the most similar correct program to the student’s solution among a 
collection of correct solutions and builds trees of misconceptions using similar-
ity measures and background knowledge. Experiments show that JavaBugs can 
detect the most similar correct program 97% of the time, and discover and de-
tect 61.4% of student misconceptions identified by the expert.  

Keywords: automatic bug library construction, Java errors, object-oriented 
programming, multistrategy learning. 

1   Introduction 

Artificial Intelligence in Education (AIED) as an area of research has matured 
through the years. It has produced significant, realistic approaches to solving issues in 
the development of intelligent software for educational support. Of the many topics 
under the area, it appears that the complexity of the student modeling problem has left 
researchers disinterested [10]. However, advancements in artificial intelligence tech-
niques, particularly machine learning have led to the development of self-improving 
student models ([1], [3], [4], [11]), i.e., a student model that can automatically update 
its knowledge based on observed student behavior. 

There are several approaches to building a student model. The focus of this work is 
the construction of a bug library for novice Java programmer errors. A bug library is 
a collection of commonly occurring errors and misconceptions. The main issues in 
bug library construction are complexity and cost. ASSERT [3] and MEDD [11] re-
solved these concerns by building self-improving bug libraries. These used machine 
learning approaches to automatically build and extend the bug library.   
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In the age of object-oriented programming, it is noted that only few ITSs (thus, stu-
dent modelers) have been developed. This may be due to the fact that the complex 
process of object-oriented programming compounds the already difficult problem of 
student modeling for programming. While studies of Java programming errors exist 
([5], [6], [12]), these focus mainly on commonly occurring syntax errors and compila-
tion behavior, not necessarily on learning object-oriented concepts and programming.  

There is a need to move beyond analyzing student syntax errors in studying object-
oriented programming. To achieve this, programming solutions must be analyzed 
based on the student’s intention [7]. An intention is the student’s attempted strategy to 
solve any programming problem. Intention-based diagnosis also singles out one cor-
rect solution to compare the student’s solution to. This is important in evaluating pro-
gramming solutions because there are many correct ones. This approach is employed 
in ([11] and [9]). The latter, in particular, evaluates student solutions to object-
oriented programming in Eiffel. It extracts differences between an intention and the 
student’s solution. The human expert then interprets the meaning of these differences.  

This paper presents JavaBugs. It constructs a bug library of Java novice program-
mer errors in object-oriented programming automatically using the multistrategy ap-
proach used in MEDD. By automatic we mean that it does not require the aid of a 
human expert to organize the bug library. It is organized as follows: Section 2 pre-
sents its input and output, followed by a discussion of the algorithms for intention-
detection and discrepancy extraction, and misconception detection and discovery in 
Section 3. Test results and its analysis are presented in Section 4. The paper ends with 
a presentation of the conclusion and future direction of the work.  

2   JavaBugs 

Student modeling is the process of approximating student’s knowledge of a lesson in 
an intelligent tutoring system. To “approximate” requires understanding of student’s 
behavior in the software environment. It takes a student’s final solution to a pro-
gramming exercise and infers the student’s knowledge by comparing it to its library 
of common errors and misconceptions (bug library). 

The task of automatic bug library construction entails detecting the most similar 
correct program (intention expressed as reference programs), extracting the superfi-
cial differences (discrepancies) between the student’s and the correct program and 
forming misconception definitions (error hierarchies) described by discrepancies 
based on similarity and causality heuristics. 

2.1   Input 

Inputs to JavaBugs include a student’s program (in .java format), a knowledge base 
composed of the bug library, a set of correct programs called reference programs, and 
causality heuristics.  

The bug library contains common errors students committed while learning object-
oriented programming in Java. Causality heuristics are domain knowledge used by 
JavaBugs to sever nodes in the error hierarchy. For instance, discrepancies occurring 
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between two classes related by either inheritance or aggregation possess causal rela-
tionship, as shown in nodes A and B in Figure 2. If a child node does not have any 
causal relationship with its parent, then it is removed from its parent and re-clustered, 
causing a re-organization of the tree.  

All Java programs, whether student or reference programs, are stored not as text 
files, but as a quadruple (C, S, M, mE), extracting only the relevant features of a Java 
program. C, S and M are tables expressing the relevant features of a Java class, attrib-
utes and methods. mE is a set of extended control flow graphs [2] that represents 
various ways to define a method body correctly. A sample Java program and its 
equivalent representation are shown in Figure 1. The first row in the class table shows 
the relevant features of class Doctor: it was defined as a public class and inherits from 
another class, Person. It is used by two classes, class Clinic and the Driver class. The 
other two classes used in the solution are classes Clinic and Driver. The relevant fea-
tures of the symbol table include the modifier, data type, and used-by. The relevant 
features for the methods table include its modifier, return type and arguments. 

 
   Class table, C  

Id modifier extends class implements interface used by 
Doctor public yes Person null null Clinic, Driver 
Clinic public none null null null Driver 
Driver public none null null null null 

 
    Modified ECFG                                

 

Fig. 1. Sample representation of a Java program 

mE is the modified ECFG. It represents not only control flow dependencies as in 
[2], but data flow dependencies, too. Each node represents a Java statement in a 
method body, and the straight lines express control flow dependencies, while dashed 
lines express control flow dependencies. Multiple graphs in mE express the multiple 
correct solutions to a method body.  

2.2   Output 

The output of JavaBugs are the student’s intention and his misconception(s) i.e., which 
cluster(s) it was added to. In the process of clustering, the bug library is updated. If the 
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misconceptions exhibited by a student solution were previously seen, it is classified in the 
error hierarchy without any structural modifications. In this case we say that the miscon-
ception was classified. In case a novel misconception is seen, then the error hierarchy 
will be updated, the hierarchy may grow in depth and/or breadth. In this case we say that 
a misconception has been discovered.  

 

Fig. 2. Sample Error Hierarchy for a programming exercise  

Figure 2 presents a sample error hierarchy. There is one error hierarchy for each 
reference program associated with a programming exercise. Therefore, there are n er-
ror hierarchies for n reference programs. The path from the root to node B describes a 
misconception on the concept of abstraction and information hiding, i.e. the student 
failed to define getters and setters for Clinic and Doctor class’ setters because possi-
bly he accesses these class members directly. Node C, on the other hand, reflects a 
slip, i.e. an error that may be due to fatigue, exhaustion or carelessness. The student 
possibly copied and pasted getters and failed to change attribute sAdmin to attribute 
sAddress as the value to be returned.   

3   Automatic Bug Library Construction  

The task of automatic bug library construction has two phases: (i) intention detection 
and discrepancy extraction, and (ii) misconception discovery and generalization. The 
first phase identifies the reference program and extracts differences between them. 
JavaBugs uses beam search to compare the student’s solution to a set of reference 
programs1 by comparing an entry in the class table one at a time. Tversky’s Ratio 
Model ([13]) is used to compare class, symbol and method tables. After a correct 
match in a row is found, JavaBugs proceeds to compare the symbol table and methods 
table of the matched classes.  

After the intention has been identified, the differences between the two programs 
are extracted and expressed in terms of first-order logic with the following predicates: 
add, delete and replace. The add predicate means that a Java program component was 
added, for instance, an attribute was added by the student, while the delete predicate 
 
                                                           
1 A programming exercise always has more than one correct solution, thus there is a need to 

search for the student’s intention.  



188 M. Suarez and R. Sison 

expresses the student’s removal of a Java program component, i.e. deleting an attrib-
ute. The replace predicate is used when a program component was used in place of 
another, i.e. instead of integer a double data type was used. Note that the replace 
predicate is used sparingly. In Figure 2, node B has two discrepancies: de-
lete(setVisitFee(double), Doctor) and delete(setSpecialty(String), Doctor) This means 
that the setters setVisitFee with parameter of data type double and setSpecialty with 
parameter of data type String were not defined in class Doctor.  

Phase 2 requires that misconception definitions be learned based on the objects it 
sees. In this case, an object is the discrepancy set from Phase 1. JavaBugs used 
MEDD’s approach to form meaningful partitions over observed objects, thus creating 
an error hierarchy. It uses Tversky’s Contrast Model ([13]) to measure similarity be-
tween two objects.  

Suppose an object with the following discrepancies will be added to the tree in 
Figure 2: {delete(setAddress(String),Clinic), delete(getAddress(String),Clinic), de-
lete(setAdmin (String), Clinic), delete(getAdmin (String), Clinic)), add(getName(), 
Doctor), add(setName(), Doctor)}. JavaBugs uses the Tversky formula to decide 
which between nodes A and C are most similar to the object to be added. It decides 
that A is the most similar, therefore the left subtree is traversed. At the next level, it 
decides whether the unmatched discrepancies {add(getName(), Doctor), 
add(setName(), Doctor)} match node B. Because it does not, a new node is created as 
a child of node A (node D). The resulting tree is shown in Figure 3.  

 

Fig. 3. Inserting a new object in the tree in Figure 2 results to a new node D created as a child 
of node A 

 

JavaBugs severs a node from its parent, effectively re-classifying an object that is 
incorrectly classified. This is important because a student solution may possibly con-
tain more than one unrelated misconception, and should therefore be found in a dif-
ferent location in the error hierarchy.   

After node D is created as a child of node A, JavaBugs checks if D has a causal re-
lationship with node A. There is no relationship between them as indicated by the dis-
crepancies in A and D. The discrepancies in node D relate to adding a getter and setter 
for the attribute name, while discrepancies in node A relate to deleting getters and set-
ters for attributes in Clinic.  Because of this, node D is removed as a child of A and is 
re-classified into the tree from the root a second time. This re-classification compares 
node D with nodes A and C. Because they are not similar, node D becomes a child of 
the root. The final tree is shown in Figure 4.  
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Fig. 4. Final tree produced by JavaBugs after inserting a new object into the tree in Figure 2 

4   Test Results and Analysis 

To test JavaBugs, a collection of student solutions in Java was collected from students 
enrolled in an introductory course on object-oriented programming in Java. While 
there were 149 students enrolled in 4 sections, only 111 students submitted their solu-
tions to the exercises. Two exercises were given to the students, the Person-Employee 
and the Person-Doctor-Clinic exercises2. These students answered the exercises indi-
vidually and submitted their solutions in electronic form. All solutions were assumed 
to be syntactically correct.  

4.1   Intention Detection and Discrepancy Extraction  

Table 1 presents the weights used by the Tversky Ratio Model for phase 1. These val-
ues were determined via experimentation.  

Table 1 presents the accuracy of JavaBugs in identifying the student’s intention for 
exercise 1 and 2. For exercise 1 (simple exercise), JavaBugs was able to correctly 
identify the student’s intention all of the time (i.e., 100%), while it performed 94.11% 
for the more difficult exercise, exercise 2. It made mistakes on 5 programs because of 
the discrepancy language used.  

Figure 5 presents a student program A which is a sample solution for Exercise 2. It 
shows a class definition for class Clinic. It has 4 attributes, sAddress, sAdmin, doctors 
 

Table 1. JavaBugs’ accuracy score in identifying the student’s intention 

Exercise 1 Frequency Accuracy (%) 
Correct 101  100 

Incorrect 0  0 
Exercise 2 Frequency Accuracy (%) 

Correct  80  94.11 
Incorrect  5  5.88 

 

                                                           
2 For both exercises, the Person class is given. Person-Employee tests the inheritance concept, 

i.e., requires that the student inherit class Doctor from class Person. Person-Doctor-Clinic 
tests inheritance and aggregation, i.e. Doctor should inherit from Person and there is a list of 
Doctors in class Clinic.  
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and nIndex. When JavaBugs compared it to reference program 13, four (4) discrepan-
cies were found: {delete(private, doctors, Clinic), add(public, doctors, Clinic), de-
lete(private, nIndex, Clinic), add(public, nIndex, Clinic)}. Comparing it to reference 
program 2, however, yielded only three (3) discrepancies: {delete(private, doctors, 
Clinic), add(public, doctors, Clinic), delete(nIndex, Clinic)}. While student program 
A should be matched to reference program 1, this did not happen because JavaBugs 
chose the most similar reference program, i.e. that with the least number of discrepan-
cies ([7], [11]). In this case, it is reference program 2. The same is true for the rest of 
the programs it failed to classify (6%).  

 
 

 
 
 

Fig. 5. Student Program A’s attributes for class Clinic shows public was used instead of the 
private modifier 

Because add and delete predicates were used to express differences in modifiers, a re-
placed modifier automatically counted for two (2) discrepancies while a removed attrib-
ute was represented using the delete predicate, yielding only one (1) discrepancy. 

4.2   Misconception Discovery and Generalization 

Aside from being evaluated on its capability to detect student intention, JavaBugs was 
also evaluated based on its capability to accurately discover classes of misconceptions 
based on discrepancies between a reference program and a student’s solution as de-
termined by human experts as in [11]. 

The Tversky Contrast Model required the use of three weights: α, β, ω. The values 
of the weights are as follows: α =1, β = 0.1, ω = 0.1. α  is the weight of the com-
monalities between the object and the node. β  and ω are the weights assigned to the 
number of differences between the object to be inserted and the node. While other 
values for the weights were tried, these weights yielded meaningful clusters. Different 
values for the threshold were also tested.  

To compute for the accuracy score, a discovered misconception is given a score of 
1, and a partial discovery yields a score based on the number of discrepancies 
found/total number of discrepancies ([11]).  

Table 2. JavaBugs’ percentage accuracy in detecting misconceptions for exercise 1 and 2 

Exercise 1 NO SEVER (t = -6) SEVER (t = -6) %  Increase 
LEH 58.00 65.00 7.00 
Exercise 2 NO SEVER (t = -6) SEVER (t = -6) % Increase 
LEH 43.66 57.80 14.14 

                                                           
3 Reference program 1 has 4 attributes, namely the address, admin, list of doctors and index, 

while reference program 2 has 3 attributes, namely the address, admin and the list of doctors.  

public class Clinic { 
 private String sAddress; 
 private String sAdmin; 

 public Doctor[] doctors; 
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This test is performed using the best threshold (-6) resulting from experimentation.  
Table 3 shows the performance of JavaBugs in discovering and detecting misconcep-
tions of Person-Employee (Exercise 1) and Person-Doctor-Clinic Exercises (Exercise 
2). For Exercise 1, the results are as follows: using the tree created without sever to 
classify errors resulted in an accuracy score of 58%. When sever was used, the tree 
was able to classify 65% of objects, an increase of 7%.   

The results for Exercise 2 are more telling. An increase of 14.14% was earned by 
JavaBugs from a local error hierarchy with no sever to an LEH with sever (43.66% 
vs. 57.80%). 

From these results, it appears that there is a small increase in performance for Ex-
ercise 1. This is brought about by the fact that a majority of discrepancies in the Per-
son-Employee exercise are all related because only one class was defined, i.e. class 
Employee. This means that the only errors a student may commit is on this class, or in 
the driver class that manipulates this class. This means that there is less need to dis-
ambiguate errors because there is a good chance that errors are related.  

The contrary is true for Exercise 2. Because two classes are defined and a complex 
data type was used for one of the attributes (array data type for list of Doctors), there 
are more errors to untangle. This means that sever is needed to build better partitions 
in this case. This is supported by the increase in performance when sever was used, 
where the accuracy score increased by 14.14%, almost doubling the increase for Ex-
ercise 1 at 7%.  

Here we observe that more complex discrepancy sets rely heavily on the sever op-
erator. Essentially, the sever operator allows JavaBugs to use knowledge in forming 
its partitions. The sever operator allows re-classification of objects. This means that it 
has the capability to divide an object into several sub-objects based on relationship of 
discrepancies that describe it.  

This test illustrates how the sever operator was able to (a) form meaningful parti-
tions by removing the parent-child relationship between nodes if these are not caus-
ally related, (b) allow multi-classification of an object into the tree, (c) disambiguate 
common, co-occurring unrelated misconceptions of an object [8].  

5   Conclusion and Future Directions 

The objective of this research project is to automatically build a bug library for learn-
ing object-oriented programming in Java so as to provide software tutors the capabil-
ity to (a) model student knowledge, and (b) remediate effectively given (a). The  
approach should be automatic because of the inherent difficulty of having to build a 
bug library manually.  

JavaBugs performs intention detection at two-levels to determine the most similar 
program. It detects the intention at the design-level, matching classes, attributes and 
methods. Then it performs intention detection again at the mE level, determining the 
most similar approach to implementing the methods. Beam search was used to limit 
the number of candidate reference programs. Comparison was done across all classes, 
attributes and methods, rather than focusing on the analysis of a single class’ attrib-
utes and methods. JavaBugs was able to correctly detect the intention of 97% of stu-
dent programs. Its performance was affected by the discrepancy language that was 
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used. Essentially, it was affected by the fact that add and remove predicates were of-
tentimes used in place of the replace predicate. 

JavaBugs built error hierarchies using both data and knowledge to ensure the qual-
ity of the error hierarchies. On the average, it was able to discover and detect 61.4% 
of all misconceptions identified by the expert. The sever operator complemented to 
improve the performance of JavaBugs.  

This approach to Java program analysis and bug library construction, while prom-
ising, needs further study. For instance, the language representation for the discrepan-
cies should be improved to provide more predicates, such as replace. In the current 
language, the replace predicate is used sparingly. In general, it is mimicked by using 
delete and add predicates used together. Because the basis for deciding on the most 
similar program is based on the number of discrepancies, using replace predicates will 
yield a higher accuracy rate in identifying similar programs.  

Method body statements, instead of analyzing line per line, can be broken down to 
tokens and analyzed at a more detailed level. This will allow more accurate discrep-
ancies at the mEFG level.   
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Abstract. Authoring ITS domain models is a difficult task requiring many 
skills. Tools such as ASPIRE that model domains using ontology reduce the 
problem by allowing the author to work at a higher level of abstraction (and 
thus avoid low-level code writing), but such tools tend to be complex and the 
task is not intuitive for many people. To overcome this problem we have devel-
oped a framework for domain schema: high-level abstractions that describe the 
semantics of the domain model for a class of domains. Using domain schema 
reduces the authoring effort to one of describing only those aspects that are 
unique to this particular domain; the schema provides the rest of the model. We 
describe the framework we have implemented and give some examples of do-
main types for which schema have been built. 

1   Introduction 

Intelligent Tutoring Systems increasingly show promise as a technology that will ex-
pand the horizons of education from those able to attend a bricks-and-mortar institu-
tion to anyone with an Internet connection. Acting as an enhancement to traditional 
distance learning offerings, they promise to augment laboratories and tutorials by al-
lowing students to practice the skills they are learning from home. In recent years tu-
tors such as the Geometry and Algebra tutors, and the Addison-Wesley database place 
suite (SQL-Tutor, ER-Tutor and NORMIT) have made it out of the lab and into the 
classroom [1], [2]. 

Constraint-Based Modeling (CBM) [3] is an effective approach for building Intel-
ligent Tutoring Systems (ITS) that supports the building of domain and student mod-
els. Constraint-based tutors are effective: for example, students using our database  
design tutor have shown significant gains in learning after as little as one hour of ex-
posure to this system [4]. Also, CBM seeks to minimize the authoring effort by re-
quiring the author model only states, rather than solution paths [5]. Nevertheless, the 
task of building an ITS is still large. To reduce the authoring effort we have devel-
oped a number of tools, including WETAS [6] and ASPIRE, an authoring system that 
allows the complete development of an ITS without ever writing a line of code [7].  

ASPIRE makes it feasible for teachers with no prior knowledge to develop ITS, by 
automating most tasks or providing GUI interfaces allowing the author to easily de-
fine the elements of the final system, such as the general domain parameters (proce-
dural versus non-procedural etc) and the structure of solutions that will be submitted 
by the student. The most complex part of the authoring task, that of modeling the  
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domain, is achieved by creating an ontology of the domain concepts using a custom 
graphical tool. ASPIRE was developed to support constraint-based modeling. The 
domain model used by the final system (i.e. the set of constraints) is generated auto-
matically from the ontology. ASPIRE’s approach dramatically reduces the effort  
required to build an ITS, but nonetheless it is still a formidable task. In particular, de-
veloping domain ontology is a process that does not come naturally to all authors. For 
example, from a group of 12 students at the 2006 e-learning summer school at the 
University of Dublin, only half produced usable domain models for a simple hypo-
thetical search engine language, of which only one was completely correct; the other 
half had considerable difficulty grasping the complexity of the modeling task, while 
nearly all participants were unable to model the recursive nature of the domain [8]. 
Also some authors have developed domains in ASPIRE entirely independently, but 
others have required help. This is a common problem in ITS authoring: the more gen-
eral the tool, the harder it is to use. Many authoring systems overcome this problem 
by being limited to a particular type of domain. For example, Demonstr8 [9] is tai-
lored for arithmetic. 

Our goal for ASPIRE is that it be a tool for authoring ITS for any domain. To do 
this it must be easily extensible. Since different authors will have differing semantic 
requirements it must be possible for new domain types to be supported without 
changes to the core ASPIRE system. To facilitate this we have developed an addi-
tional abstraction layer, domain schema. Domain schema define the behavior of 
ASPIRE for a subset of domains that share a common structure and task type. New 
schema can be added to ASPIRE at any time by creating the appropriate XML docu-
ments and uploading them. The schema automates the authoring process still further 
by performing those tasks that are consistent across all domains of this type, such as 
providing the main structure of the domain ontology. Authors then work with the ap-
propriate schema, rather than ASPIRE directly.  

The next section briefly introduces constraint-based modeling (CBM), and de-
scribes two CBM authoring systems. Section three outlines how domain schema 
work, with an implemented example in the area of critiquing images. In section four 
we show how the approach can be generalized to other domain types. We conclude in 
Section five and discuss our long-term goals; to created distributed ITS via the seman-
tic web, and to disconnect the domain model from the modeling and reasoning ap-
proaches.  

2   Constraint-Based Modeling, WETAS and ASPIRE 

CBM is based on the theory of learning from performance errors [10]. It models the 
domain as a set of state constraints, where each constraint represents a declarative 
concept that must be learned and internalized before the student can achieve mastery. 
Constraints represent restrictions on solution states, and take the form: 
 

If  <relevance condition> is true for the student’s solution,  
THEN  <satisfaction condition> must also be true 

The relevance condition of each constraint checks whether the student’s solution is  
in a pedagogically significant state. If so, the satisfaction condition is checked. If it 
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succeeds, no action is taken; otherwise the student has made a mistake and appropri-
ate feedback is given. Syntactic constraints check that the solution is syntactically cor-
rect. Conversely, semantic constraints check whether the student’s solution has solved 
the problem, usually by comparing it to an “ideal” solution supplied by the teacher. 
The constraints implicitly encode semantics by testing for all of the different possible 
encodings of the semantic concept they are attempting to test. The student is thus per-
mitted to use a different problem-solving strategy to the author, or even to mix strate-
gies, provided no fundamental domain concepts are violated. 

WETAS is a constraint-based web-enabled tutoring engine that provides all of the 
domain-independent functions for text-based ITS. It is implemented as a web server, 
written in Allegro Common Lisp, and using the AllegroServe Web server [11]. 
WETAS performs as much of the implementation as possible in a generic fashion. In 
particular, it provides the following functions: problem selection, answer evaluation, 
student modeling, feedback, and the user interface. The author need only provide the 
domain-dependent components, namely the structure of the domain (e.g. any curricu-
lum subsets), the domain model (in the form of constraints), the problem/solution set, 
the scaffolding information (if any), and possibly an input parser, if any specific pre-
processing of the input is required. WETAS has been used to build several tutors, in-
cluding EER-Tutor [2] and Collect-UML [12]. It has also been used for four years by 
a graduate University class in Intelligent Tutoring Systems at the University of Can-
terbury.  

ASPIRE is a high-level authoring tool that automates the encoding of constraints 
based on an ontology that the author provides via a graphical ontology editing tool. 
Unlike WETAS, at all stages in ASPIRE the author interacts with a GUI tool when au-
thoring the domain; no additional files are required. ASPIRE is a general tool that has 
been used to build tutors across a variety of domains, such as basic accounting, ther-
modynamics and solid mechanics. However, the ASPIRE approach can still be im-
proved in at least two ways. First, the author has little control over the interface; any 
non-standard user-interaction must be provided via bespoke applets which are up-
loaded into ASPIRE. Second, authoring in ASPIRE is still far from a trivial exercise. 
In particular, the task of ontology authoring is specialized and difficult. We hypothe-
sized that we could make it easier to build ontologies by providing an ontology 
schema that reduces the ontology vocabulary to only concepts required for a particu-
lar subset of domains, thus making the author’s job much more straightforward. We 
combined this with the ability to specialize ASPIRE’s student interface for such  
domains. Finally, we further hypothesized that the semantic interpretation of the on-
tology for all domains of a given subset would also be the same. The combination of 
ontology schema, interface and ontology semantics is a domain schema.  

3   Domain Schema 

A domain schema is a collection of documents that describe parts of the domain 
model that will be common to all domains of the same general type, such as critiquing 
a set of images. The documents tell ASPIRE how to perform many parts of the author-
ing process that would be otherwise performed manually. The documents are: 
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Fig. 1. Example tutor for critiquing x-ray images 

• Ontology schema (XML) and ontology generation rules (XSLT) 
• Constraint generation rules (XSLT) 
• Solution structure generation rules (XSLT) 
• Student interface (HTML, with optional Java applets) 

In the following sections we will use an example domain type to illustrate how  
domain schemas work: for this domain type the student is shown a set of two or more 
images and is asked to choose the one with a particular characteristic and to identify fea-
tures in the image that support their choice. This domain type could apply to many differ-
ent subject areas (domains), such as: which of two buildings is Ionian; which x-ray image 
is better quality; which forest is the most damaged by acid rain; which painting is by Van 
Gogh; which x-ray shows an intestinal stricture. The interface consists of an applet for 
displaying, panning and zooming images, a control for selecting one of the images and a 
list of features that may or may not contribute to the decision; for each feature the student 
will select an appropriate feature value. Figure 1 shows this interface in action for an ex-
ample of this domain type: x-ray power. 

For each domain type the ontology will have the same basic form. The ontology 
schema defines this form by specifying concepts common to all domains of this type 
(typically the top of the ontology hierarchy), and describing the types of other con-
cepts that the author can create and the relationship between these and the common 
concepts. Figure 2 shows part of the ontology for an ITS of the domain type “critique 
images”, in this case the x-ray power domain, viewed using ASPIRE’s ontology edi-
tor. All ontologies for this domain type contain the “feature”, “image” and “selection” 
concepts. The “feature” concept is then specialized for the actual features that the stu-
dent will look for in this domain. The author can also specify abstract features if they 
wish; these are used for adding information that is common to more than one of the 
actual features. In figure 2 the actual features are “anatomical detail”, “background” 
and “soft tissue”; abstract features are “contrast technique” and “brightness tech-
nique”. Each feature is then further specialized into feature values, which are the val-
ues the student can choose between, such as “more anatomical detail” and “lighter 
soft tissue”. The “image” concept is used to describe the images being shown to the 
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Fig. 2. Ontology for x-ray power 

student, in terms of the features present in this image (whether or not they contribute 
to the correct answer). Finally, the “selection” concept represents the choice the stu-
dent must make between images.  

The ontology schema is shown in Figure 3. The second part of this ontology 
schema describes the two concept types the author can create (feature and feature 
value). For each it also describes the attributes of that concept the author will be re-
quired to provide; in this case a feature can have two feedback messages (one—
hint—to use when the student has overlooked this feature, and the other—wrong—for 
when the feature has been erroneously used). Similarly, a feature value has a sum-
mary and detailed feedback message, and another (positive) to be displayed as rein-
forcement when the student has correctly answered the question. Finally, the author 
can specify that one concept is an example of another; in figure 2 “more anatomical 
detail” is an example of “low contrast technique”. Once the author has filled in the de-
tails for the features and feature values, the information is saved as an XML document 
and converted to a standard ASPIRE ontology using XSLT. 

The ontology is then converted to constraints using an XML transform. This XSLT 
encodes the semantic interpretation of the ontology, by specifying how each concept 
should be turned into one or more constraints. For the domain type under discussion 
the constraint generation rules are as follows: 

1. Correct selection: for each “selection” concept check the student has supplied 
the correct selection value 

2. All features specified: For each feature, if a value is specified in the ideal solu-
tion, the student must also have specified a value 

3. No extraneous features: for each feature, if the student has specified a value, the 
ideal solution must also specify a value 

4. Correct feature value: If the student has specified a feature value, and one was 
required, is it the same as that in the ideal solution 

5. Feature value supports selection: if the student has selected a feature value that 
is present in their chosen selection, check that the selection is correct. 
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For each constraint the hint and feedback messages (for the concept from which it is 
generated) are incorporated into boilerplate text to give the actual messages the user 
will see when the constraint is violated. For this domain type the semantics are very 
straightforward; other domain types are more complex (see Section 4). 

The domain schema also defines how to generate from the ontology the solution 
structure (i.e. what the student must submit) and the default interface, again using 
XSLT. By default the solution structure consists of all non-abstract concepts. In the 
case of the domain type under discussion, each concept of type “feature” becomes a 
field in the student solution. The feature values are used to create the appropriate in-
terface widget (e.g. a set of radio buttons) that the student will use to select values.  
The default interface displays controls for the entire solution structure. The author 
may then specialize the interface by specifying which parts of the solution structure 
are to be used for a given type of question in this domain, and they may override how 
it will be displayed. For example, in this domain type the author can specify that for 
 

<!-- Default ontology, inserted directly -->
<baseOntology> 
  <concept id='1' label='selection' name='selection' abstract='false'> 
    <property  name='value' id='value' type='Any' unique='false'  

max-cardinality='1' min-cardinality='1'/>
  </concept> 

  <concept label='feature' name='feature' abstract='true'></concept> 

  <concept id='2' label='image' name='image' abstract='false'> 
    <attribute name="input" value="author"/> 
    <property  name='name' id='name' type='Any' unique='false' /> 
    <property  name='URL' id='URL' type='Any' unique='false' /> 
  </concept> 
</baseOntology> 

<!-- concept types that the author can create --> 
<conceptType name="feature" label="Feature" input="true"  

propertyOf="image"> 
  <attribute name="name" label="Name" type ="text"/> 
  <attribute name="abstract" label="Abstract?" type="boolean"/> 
  <attribute name="negativeHint" label="Hint" type="text"> 
  <attribute name="negativeWrong" label="Wrong" type="text"/> 
  <relationship name="exampleOf" label="Example Of"  

type="specialisation" range="feature"> 

  <conceptType name="featureValue" label="Feature value"> 
    <attribute name="name" label="Name" type ="text"/> 
    <attribute name="summary" label="Summary feedback" type="text"/> 
    <attribute name="detail" label="Detailed feedback" type="text"/> 
    <attribute name="positive" label="Positive feedback" type="text"/> 
    <relationship name="exampleOf" label = "Example of"  

type="specialisation" range="featureValue"/> 
  </conceptType> 
</conceptType>

 

Fig. 3. Ontology Schema for “critique images” (in XML) 
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certain questions only the “soft tissue” and “anatomical detail” features will be pre-
sented to the student, and that they will be represented using combo boxes. This al-
lows the same domain model to be used for a variety of (related) tutoring tasks.  

4   Other Domain Types 

We are using domain schema to develop VIPER (Virtual Instructional and Practice 
Educational Resource) in conjunction with the Christchurch Polytechnic Institute of 
Technology (CPIT). For this project there are five domain types, all of which are vis-
ual: critique images; label an image; identify a feature in the image (i.e. point to it); 
perform measurements on an image; experiment with the parameters of an image. In 
all cases the domain model is feature-based, and as a result the semantics are straight-
forward. Another domain type we are developing is programming languages. In this type 
of tutor the student is given a task to perform where they must write a snippet of code in 
free text form. The ontology for this type of ITS describes the grammar of the language 
being used. For example, consider the domain of writing logical expressions. In this do-
main each concept represents some part of the language (e.g. “conjunct”); concept prop-
erties represent the “part-of” relationship between a concept and the language constructs 
that make up that concept; for example a conjunct consists of an expression, followed by 
“and” followed by a second expression). The constraint generation rules for checking 
semantics of this domain type are as follows: 

1. Concept necessary: for each concept, if it appears at least once in the ideal so-
lution, it must also appear in the student solution; 

2. Concept superfluous: for each concept, if it appears at least once in the student 
solution, it must also appear in the ideal solution; 

3. All concept instances present: for each instance of each concept in the ideal 
solution where the student solution contains at least one instance of this concept, 
there must exist an equivalent instance in the student solution; 

4. No concept instances superfluous: for each instance of each concept in the 
student solution where the ideal solution contains at least one instance of this 
concept, there must exist an equivalent instance in the ideal solution; 

5. Correct components: for each concept instance in the student solution, if all 
but one component is equivalent to an instance in the ideal solution, the remain-
ing component must also be equivalent. 

 
For the logical expressions domain the author describes each of the concepts in the 

same way as they would describe a grammar in BNF. However, this is not sufficient 
because they also need to define equivalence. For example, “dog and cat” is equiva-
lent to “cat and dog”. They do this by defining additional concepts. In the previous 
example, conjunction is defined twice, with one definition being the exact reverse  
of the other. Each concept can then specify an “is equivalent to” relationship with  
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another. In some cases the concept will be one that does not already appear in the 
grammar. For example, for logical expressions we can define de Morgan’s law: 

BABA ∨≡∧ )(     (1) 
 

We specify this law by defining both de Morgan forms and indicating they are 
equivalent. The constraint generation rules then use this information as follows. First, 
whenever a concept detected in one solution (e.g. the ideal solution) is being looked 
for in the other solution (i.e. the student solution), the default logic is to look for the 
exact same concept instance in both solutions. However, if the concept instance is an 
example of a concept for which an equivalent form exists, the constraint will instead 
check that either the same concept instance exists in the other solution or an equiva-
lent concept instance exists. Second, when checking for a particular concept instance, 
the constraint will also check whether it forms part of another concept that takes part 
in an equivalence relationship, and the alternate form exists in the other solution. If 
so, the check is dropped. For example, when checking for all “and”s, if the “and” in 
question is part of a De Morgan form and the student used the alternate form, the 
check for “and” will be dropped. We are currently evaluating this domain type in the 
areas of logical expressions, Java and SQL. This approach is also potentially useful 
for natural languages, provided the domain is sufficiently constrained. We are also 
exploring this possibility. 

Another example of a completely different domain type is arithmetic procedural 
domains, such as multi-column addition. These can be catered for by extending the 
framework described as follows. First, for such domains the properties of a concept 
must be able to be collections. For example, an addition problem is made up of a col-
lection of columns; each column contains a carry, a collection of addends and a sum. 
Second, the author must be able to specify arithmetic value restrictions for properties. 
For example (again from multi-column addition): 

 

[ ] 10))(()()( MODnaddendsSUMncarrynsum +=   (2) 

[ ] 10))1(()1()( DIVnaddendsSUMncarryncarry +++=  (3) 

Note that n is the column number (more generally, n is the instance number). SUM 
and DIV are built-in primitives. As well as giving the formula for the restriction, the 
author also specifies two associated feedback messages: one that describes what the 
restriction means in words (used to correct the student when they violate the restric-
tion) and one that describes the dependencies implied by the RHS of the restriction 
(used to indicate why the student should not be specifying this value yet, because the 
restriction cannot be tested). The constraints are now generated from both the con-
cepts in the ontology plus the restrictions, as follows: 

1. All values specified: For each concept instance, check whether this instance 
has been completed, e.g. “You have not filled in the sum for column 3.” Note 
that the restrictions imply dependencies between concept instances, which 
also need to be checked. If the dependent concept instances are not complete 
yet this constraint will not be relevant.  

2. Ordering: For each concept that is on the LHS of a restriction, if the student 
has supplied an instance of this concept, check that the necessary parts in the 
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RHS have been specified and give the “dependency” error if not, e.g. “You 
cannot compute the carry for a column until you have completed the column 
to the right.” 

3. Correct value: For each concept that is on the LHS of a restriction, test its 
value, and give an error if wrong, e.g. “Check your sum in column 3. The 
sum should add up to the sum of addends in this column, plus the carry, if 
any”, or “Check the value of the carry in column 2. The carry should be 1 if 
the addends and carry in the next column to the right add up to 10 or more.” 

 

This logic is sufficiently general to apply to other arithmetic domains, such as fraction 
addition. 

6   Conclusions and Future Work 

ITS authoring is a difficult task. Whilst generic authoring tools such as ASPIRE dra-
matically reduce the authoring effort required, domain authoring nevertheless remains 
a specialized task. We have introduced a framework, called domain schema, that al-
lows a generic ITS authoring tool to be tailored to specific domain types to ease the 
authoring process, but which is still general in the sense that it can be readily  
extended to support new domain types. We are using this framework in the VIPER 
project to create an authoring environment suited to domains where the student tasks 
involve interacting with images. We have also shown how the approach is suited to 
other very different domain types such as programming languages and arithmetic. 
VIPER will be trialed by teachers at CPIT in mid 2008. 

Most (if not all) existing ITS tools are monolithic: the student logs into the ITS 
system, which then serves them content. This is in direct contrast with other web-
based educational content delivery approaches, which are content-oriented. In con-
tent-oriented systems, learners seek out appropriate educational content from any 
source that their client software supports (e.g. SCORM). In the ITS equivalent teach-
ers would develop exercises for their students, who complete them and submit their 
answer to an appropriate reasoning engine for evaluation. The reasoning engine 
would be a lightweight expert system that can run rules written in some standard lan-
guage (e.g. ruleML [13]). Each page of content contains links to domain content in a 
form similar to what we have just described: the domain is represented by an ontology 
plus additional information indicating how the ontology should be used to generate 
evaluation rules. This would allow re-use of the same ontology for different types of 
evaluation. For example, the domain information for multi-column addition described 
in section four is sufficient to generate production rules for a model-tracing tutor [14]. 
Further, ontology could be cobbled together from existing ones, or customized by 
overriding some parts. The framework we have described is a step towards this be-
cause it separates the reasoning rules, ontology and reasoning engine. 

Intelligent tutoring systems are a promising tool for delivering education remotely. 
To date a key problem has been the effort required to build such systems, even when 
sophisticated authoring tools are used. Domain schema is a promising step towards 
making ITS a realistic option for education practitioners everywhere. 
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Abstract. We have been creating an authoring tool, the Cognitive Model SDK, 
which allows non-cognitive scientists and non-programmers to produce a cogni-
tive model for model-tracing tutors [1, 2]. The SDK is in use by developers at 
Carnegie Learning to produce their commercial Cognitive Tutors for math. 
However, it has never been evaluated with regards to the strong claim that non-
cognitive scientists and non-programmers could, without much effort, produce 
useful cognitive models with it. The research presented here shows that this can 
be done, using a task that past researchers have used [3]. The models are evalu-
ated across several metrics to see what characteristics of either them or their 
creators may distinguish better models from worse models. The goal of this 
work is to establish a baseline for future work examining how cognitive model-
ing can be opened up to a wider class of people.  

1   Introduction 

Model-tracing tutors have shown themselves to be one of the more effective types of 
Intelligent Tutoring Systems (ITSs) in terms of student learning gains [4, 5, 6]. However, 
they are very labor intensive to create, typically requiring a highly-qualified team of peo-
ple to produce the end product. The experts needed on this team include cognitive scien-
tists, programmers, and pedagogy and content experts. Estimates of how long it takes to 
create such a tutor range as high as over 100 hours of development time for 1 hour of 
instruction [7, 8]. For these tutors to see widespread use, this ratio needs to be greatly 
decreased. We see two ways of doing this: provide authoring tools that are 1) not only 
easier to use, but 2) also do not require high levels of expertise. The work presented here 
describes an evaluation of such a tool, the Cognitive Model Software Development Kit 
(SDK). While perhaps no authoring tool will obviate the need for a team of people from 
different disciplines to collaborate on building an ITS, the results from our evaluation 
indicate that non-cognitive scientists, historically the class of people who created the 
cognitive model, can produce a basic cognitive model. 

1.1   The Cognitive Model SDK 

The Cognitive Model SDK assists in the development of the cognitive model that 
forms the backbone of a Cognitive Tutor, a model-tracing tutor that is based on the 
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ACT Theory of cognition [9]. Carnegie Learning is a commercial company that pro-
duces Cognitive Tutors, primarily for topics in high school math. They have had great 
success in this endeavor, both commercially and in terms of student learning gains. 
The company currently uses the SDK to develop their Cognitive Tutors. To date six 
large-scale cognitive models have been built within the SDK, providing tutoring on 
over 5500 problems. However, no formal evaluation of this tool had been conducted 
until the present study. 

 

Fig. 1. Screenshot of Cognitive Model SDK 

A full description of the Cognitive Model SDK is beyond the scope of the current pa-
per, but can be found elsewhere [1, 2]. In short, there are three main pieces to the SDK 
and to creating a cognitive model. First, the type hierarchy used by the tutor must be de-
fined. In ACT Theory terminology, this is the declarative knowledge of the model, con-
taining the objects and properties that the student needs to be aware of in order to solve 
problems. For instance, in a domain like fraction arithmetic, the type hierarchy would 
contain information about what fractions are, their numerators and denominators, and 
other aspects of the task. “Goalnodes” are one important piece of this hierarchy. They 
represent the subgoals within the problem. There is typically an interface element (e.g., 
an entry box) that will allow the problem solver to complete a goalnode. The second 
SDK piece is the Rule Predicate Editor, where the rules of the task are defined (the pro-
cedural knowledge, in ACT parlance). This is where one can discriminate between dif-
ferent problem types in the domain (e.g., adding fractions where the denominators are 
already the same versus adding fraction that have different denominators). The help and 
just-in-time messages that are common to model-tracing tutors are stored here. The last 



206 S.B. Blessing and S. Gilbert 

piece of the SDK is the instance editor, where a cognitive modeler can define problem 
instances. The SDK contains a simple testing interface by which the cognitive modeler 
can ascertain if the cognitive model is producing the correct behaviors, without attaching 
the cognitive model to the interface. Figure 1 contains a screenshot of the SDK, where 
the cognitive modeler is currently working on part of the predicate tree. Windows for the 
Type Hierarchy and instance editor can be seen in the background.  

1.2   Past Evaluations of Authoring Systems 

Evaluations of tutors built using authoring systems have been conducted in the past 
(e.g., [7, 10]), but evaluations of the authoring systems themselves are much more 
rare. Henry Halff and his colleagues conducted an early set of studies on the XAIDA 
authoring system [11]. While XAIDA did not produce model-tracing tutors, the stud-
ies that examined how authors used the system serve as a good model and can inform 
for future research in terms of the qualitative and quantitative data they collected. 
These studies showed very promising results, with findings like 30 hours of develop-
ment time for 1 hour of instruction. Other authoring systems have also been evaluated 
in a similar manner (e.g., [7,12]).  

We were motivated by two recent studies. First, Suraweera and his colleagues [3] 
performed a study looking at their Constraint Authoring System (CAS), a tool for 
developing a constraint-based tutor. In the context of a graduate student ITS class, 12 
of 13 students were able to produce a constraint-based tutor for fraction arithmetic in 
an average of 31.3 hr. That almost all of the students could create an ITS, when creat-
ing ITSs may or may not have been the focus of their graduate studies, shows that the 
tool lowered the bar with regards to the expertise needed to create an ITS. We used 
the procedure outlined in this study to model the design of our own.  

Second, researchers at Carnegie Mellon University are also developing an author-
ing tool for Cognitive Tutors. This tool, the Cognitive Tutor Authoring Tools 
(CTAT), approaches the task of developing a cognitive model from a different angle 
than ours [13]. Whereas a focus of their tool is to make it easy to create focused, more 
specialized tutors that center on a particular problem, what they term Example-
Tracing Tutors, our authoring tool focuses on creating cognitive models that are more 
generalizable in nature. In a sense, our two different approaches are complementary in 
nature, perhaps with the long-term goal of finding that middle spot that exists between 
generality and ease-of-use.  

1.3   This Evaluation 

What follows is a description of an initial evaluation we did of the Cognitive Model 
SDK. We had conducted a study that examined whether or not the representations 
used in the SDK (e.g., the object/property view when working with types) were us-
able by undergraduates [1]. We found that they were. Participants in that study, how-
ever, did not create any working cognitive models. Furthermore, we have anecdotal 
evidence that non-cognitive scientists at Carnegie Learning and Clearsighted could 
create working cognitive models in a fraction of time that previous cognitive models 
were constructed [2]. This current study is the first controlled evaluation of the Cogni-
tive Model SDK. Given that, it will serve mostly as a baseline for future evaluations. 
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Our main interest is to determine if non-cognitive scientists/non-programmers can 
create usable cognitive models with the tool. 

2   Method 

2.1   Participants 

Seventeen graduate students from Iowa State University participated in this study. Six 
of these participants were students in the first-year HCI course at Iowa State Univer-
sity who chose to do this assignment for course credit. The other eleven participants 
were recruited from among the HCI and instructional design graduate students at 
Iowa State University. These students were paid $150 for their participation. 

None of these participants had cognitive psychology or cognitive science as their 
home department, nor had any done cognitive modeling before. Some had program-
ming experience, and this will be highlighted in the results. 

2.2   Materials 

An assignment similar to the one used by [3] was used. In this assignment, partici-
pants were asked to create a cognitive model, consisting of the needed goalnodes, 
properties, hints, and just-in-time messages, of a fraction arithmetic task. For our ver-
sion of the assignment, participants were told that their model had to provide distinct 
and specific hints for three types of problems: 1) ones in which the two fractions 
started with the same denominators (e.g., 1/5 + 2/5); 2) ones where one denominator 
is a multiple of the other (e.g., 1/5 + 1/10); and 3) ones in which the least common 
denominator is neither of the two given fractions (e.g., 1/5 + 1/7). 

Participants were shown a picture of an interface (see Figure 2) in which students 
would be given two fractions to add. The students would need to write both fractions 
in terms of a common denominator and would then need to compute the final, but 
unreduced, answer. Note that the participants did not actually have access to this in-
terface, but had to use the more rudimentary interface that is constructed automati-
cally by the SDK itself in its Goalnode Testing Tutor (GNTT) interface. For this par-
ticular task, the two differ only by the placement of the boxes. The GNTT provides 
just a linear list of the goalnodes, represented by entry boxes, defined by the cognitive 
model and the current problem instance. 

 

Fig. 2. Example interface shown to participants for the fraction addition task 
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Four pieces of background information were provided to the participants. First, 
some general information concerning Cognitive Tutors was given. For the students in 
the HCI class, this was a short in-class demonstration of the Carnegie Learning Alge-
bra I Cognitive Tutor. For the other participants, this was a similar demo done via a 
screen capture movie (8.30 min in length) of the same demonstration. Second, partici-
pants were given a four-page document that introduced the vocabulary and basic  
concepts of cognitive modeling. It explained the difference between hints and JIT 
messages, introduced the concepts of hierarchical types, predicates, instances, and 
goalnodes 

The other two pieces of information amounted to worked examples of cognitive 
models constructed using the SDK. The first worked example was a completed cogni-
tive model of multi-column addition. The model could add two multi-digit numbers 
together, including problems involving a carry. A screen capture movie (25.97 min) 
was created that walked the viewer through creating all parts of the model using the 
SDK: the type hierarchy, the rules, and an instance. An additional problem instance 
was provided to participants, as well as the movie’s transcript. The purpose of this 
information was to provide students a reasonably real-world example of a cognitive 
model within the SDK. While both this model and the model that the participants 
were asked to create both involved addition, the participants could not simply take 
this model, make a few simple modifications, and have a fraction addition model. The 
creation of the fraction addition model required the student to start from the begin-
ning, constructing all new goalnodes, hint messages, and instances. This model served 
as inspiration and reference to show what is possible to do within the SDK at an ap-
propriate level. 

The last piece of information was another screen movie (10.70 min) and its tran-
script that stepped participants through the creation of a very simple tutor. The tutor in 
this movie asked students to indicate if the presented number is even or odd. This 
gave the participants an example of how to construct the bare minimum framework 
for a tutor from the start. That is, this example had one goalnode, one defined prop-
erty, and one hint, plus enough glue to test the tutor within the GNTT. 

The version of the SDK used by the participants was the full version of the SDK 
used by Carnegie Learning. In addition, it also logged how long they spent perform-
ing each action. In this way we were able to determine not only how much total time 
it took to complete the model, but also how long each participant spent doing the in-
dividual components of authoring a cognitive model, such as creating properties on 
goalnodes or writing hint messages. Participants were also given an exit questionnaire 
concerning their experiences, and also asked for certain demographic information 
such as previous programming experience. 

2.3   Procedure 

Participants were first given the demo of the Algebra I Cognitive Tutor. They were 
then given the assignment and the two worked examples as described above and 
asked to complete a cognitive model of fraction addition using the SDK. They could 
choose to do with these examples as they willed. In all, they were given about 45 min 
worth of instruction, and as much time as they desired to complete the assignment, 
though we suggested they plan between 8-12 hours for the assignment. 
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3   Results 

The results are divided into three parts: 1) quantitative and qualitative measurements 
of the cognitive models; 2) timing data concerning cognitive model creation; and 3) 
exit questionnaire data. 

3.1   Cognitive Model Measurements 

Of the 17 participants, 13 of them completed a runnable cognitive model. One per-
son’s rule file became corrupted and so could not be scored, and three people did not 
complete the assignment, all of which were paid participants. 

The first author scored the 13 completed cognitive models on a 5-point scale. The 
criteria used and the number of models within each criterion is in Table 1. We rated 
models on behavioral characteristics, not on implementational aspects. The average 
score is 3.31, indicating that the average model at least met expectations. The mean 
time to complete the assignment was 7.68 hr. 

We split models based on model quality. There were 6 “better” cognitive models 
that scored either a ‘4’ or a ‘5.’ Seven “poorer” models scored a ‘3’ or below.  These 
categories will be used in later analyses. Three models each came from the class and 
paid participants. 

Table 1. How the cognitive models were scored 

 
Score 

 
Description 

Models 
Meeting  
Criterion 

5 A model that produces behaviors close to an ideal 
model for fraction arithmetic, in terms of hints and 
just-in-time messages 

4 

4 A very good model that is beyond just being sufficient 2 
3 A sufficient model, one that provides distinct and spe-

cific hints 
3 

2 An adequate model, but lacking in one or two ways 
(e.g., hints for only 2 of the 3 problem types) 

2 

1 Lacking in multiple ways; while it produces hints, it 
does not meet the specifications of the assignment 
(e.g., hints largely static) 

2 

 
Participants had to write a model that provided hints on 6 different entry boxes (see 

Figure 2). A cognitive modeler could use a single goalnode type to provide all hints, 
creating properties to distinguish them, or the modeler could use up to 6 goalnode 
types. Participants in our study used all possible numbers of goalnodes, with an aver-
age of 2.93. There were no statistically significant differences between the better and 
poorer cognitive models (2.50 v. 3.00, t < 1). All participants produced a flat object 
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model, meaning all defined goalnode types hung directly from the main default goal-
node type. Participants defined 6.27 properties per goalnode type on average (the bet-
ter and poorer cognitive models did not differ on this measure, 6.83 v. 6.22, t < 1). 

We also examined participant’s rule trees. The tree contains the hints that students 
will receive, as well as the just-in-time messages. Each node of the rule tree contains a 
predicate that tests aspects of the current problem’s object instantiation and state. On 
average, the trees contained 13.12 nodes and were 2.08 nodes deep. The better and 
poorer cognitive models did not differ on either of these measures (for number of 
nodes, 13.17 v. 13.14, and for depth, 2.17 v. 2.00). The better and poorer cognitive 
models did differ somewhat on the number of just-in-time message defined (4.50 v. 
0.86, t(11) = 1.73, p = . 1), but it was the case that to be considered a better cognitive 
model it had to have at least one just-in-time message. 

 It is hard to be evaluative as to whether better models should be deeper on either 
the object model or rule tree. We have debated with other modelers whether “bushes” 
(flat models with more properties) or “trees” (deeper models with more object types) 
are better with regards to the object model, which has consequences for the predicated 
tree. Among our colleagues, there are a variety of opinions, so perhaps it is not sur-
prising there is little difference on these measures. 

3.2   Timing Data Concerning Cognitive Model Creation 

As stated above, the average time to complete a cognitive model was 7.68 hr. The 
participants who produced the better cognitive models spent on average almost the 
same amount of time (7.67 hr, with a range of 4.98 hr to 13.08 hr) than the partici-
pants who produced the poorer models (7.68 hr, with a range of 3.42 hr to 13.82 hr).  

The logging produced by the SDK provided much more detail than this. Each ac-
tion that the participant performed within the tool’s interface was time stamped with 
millisecond precision. Table 2 shows how much time the participants spent perform-
ing the component actions of creating a cognitive model, time spent on 1) the objects 
(creating objects and defining properties); 2) the rules (predicates, hints, and just-in-
time messages); 3) defining instances; and 4) testing the model. One sees no differ-
ences on these measures between the better and poorer participants. 

Table 2. Average time spent on various aspects of cognitive model construction (n = 13) 

Category Time (hr) Percentage 
Objects 2.45 31.8% 
Rules 3.07 39.9% 

Instances 1.65 21.4% 
Testing 0.52 6.8% 
Total 7.68 100% 

A further analysis was performed that examined what actions the participants were 
performing during the time course of creating the cognitive model. Did most partici-
pants create their object model at the very beginning, and then turn to rule writing? 
Or, was there more give-and-take between working on the object model and the rules? 
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We created graphs for each participant that divided their progress in writing the model 
into deciles. Within each decile we calculated what percentage of the time was spent 
on object actions, rule actions, instances, and testing.  Figure 3 shows two of these 
graphs, the one on top illustrating one of the participants who produced a better cogni-
tive model, and the one on the bottom showing a poorer cognitive modeler. 

The average participant produced 1156 actions (e.g., working on a hint, defining a 
property) as they worked on their cognitive model. These include edits and re-edits to 
the same entity. Again, there are no differences between the better and poorer partici-
pants on this measure (1181 v. 1205).  

We examined the quantitative and qualitative aspects of these graphs for each par-
ticipant. One difference that stands out, and can be seen in Figure 3, is the proportion 
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Fig. 3. Activity graphs of two participants 
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of time spent on the object model during the first half of the participant’s time on task 
versus the second half. Some participants spent relatively less time on this task during 
the last half of their time than during the first half. That is, these participants appeared 
to have gotten the object model mostly right up front, and then did not modify it much 
after that. To quantify this observation, we counted as an “up-fronter” any participant 
who did not spend 30% of their time for more than one decile working on the object 
model during the last half of their editing. Under this definition, all of the better cog-
nitive modelers were “up-fronters,” whereas only 3 of the 7 poorer cognitive modelers 
were. This is a marginally significant difference by a chi-square test, χ2(1, n = 13) = 
2.86, p < .1. Getting the model “right” (there are many potential “right” models) early 
appears important in creating a successful cognitive model. We investigated the pos-
sibility that some attribute associated with the cognitive modeler correlated with the 
ability to produce a “right” model early. 

3.3   Exit Questionnaire Data 

Participants completed an exit questionnaire. We asked demographic information 
such as undergraduate major, current department, and number of programming 
courses. Examining undergraduate majors, there was 1 communication major, 1 jour-
nalism major, and 2 who did not specify a major. The rest had majors associated with 
technology (5 computer scientists, 2 engineers, and 2 information technologists). 
Their graduate degree programs reflect a similar trend (5 HCI, 2 engineers, 1 CS, 1 
economics, 1 journalist, 1 information systems, 1 instructional technology, and 1 did 
not specify). There were no psychologists or cognitive scientists in the group. In look-
ing across who created the better versus the poorer cognitive models, there is no clear 
trend. There were roughly equal numbers of computer scientists and engineers who 
created better models than who created poorer models. And, one could find the “non-
technology” majors represented in both groups. 

Participants had taken an average of 4.36 programming classes prior to working on 
the cognitive model. Examining this measure with regards to the better versus poorer 
cognitive modelers does yield a significant difference, with the better cognitive mod-
elers having taken more programming classes, 6.83 v. 1.57, t(11) = 3.37, p < .01.  

Participants were also asked free response questions, where they reflected on their 
experiences doing the activity. In particular, they were asked to consider the chal-
lenges they encountered in creating the cognitive model, as well as the benefit in the 
approach. Almost all participants saw both positive and negative features of these 
kinds of cognitive models in general, and using this tool specifically. The software is 
still somewhat of a beta quality, and the documentation is not complete. Indeed, the 
screen capture movies and example models were created specifically for this assign-
ment in order to obviate the need for more complete documentation. Furthermore, the 
means by which properties are referred to in predicates and hint messages, tutorscript 
(in Figure 1, one can see a couple examples of tutorscript inside curly braces), is not 
well defined. In all, 10 of the 13 participants mentioned either insufficient documenta-
tion or bugs in their response, with 5 specifically mentioning tutorscript. However, 
despite some issues with this particular tool, 11 of the 13 participants mentioned the 
generality of the tool; that is, it could be used to create tutors in a variety of different 
domains. Most (8) qualified their answer to include only domains with specific, finite 
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answers, such as chemistry, physics, and math. In actuality, this tool can be used to 
create any tutor appropriate for a model-tracing tutor. Lastly, a number of participants 
mentioned that in order to create a cognitive model, one needed to be very explicit 
about the steps the students should and can take, and that the steps needed to be com-
plete in order to have a useful cognitive model. This is an accurate statement regard-
ing these kinds of cognitive models, and we believe can be taken as both a strength 
and a weakness. Interestingly, it was 4 of the 6 better cognitive modelers who made 
such an observation, none of the poorer cognitive modelers made such a statement. A 
quote from one of the better cognitive modelers sums up many of our participants’ 
reactions, “I was skeptical at first. It seemed like it took much more time to think 
through the model than just design a more direct system that would provide feedback 
to the user for each empty box…. However, my opinion changed when I got to the 
phase of the project where I could create instances of the problems. It went much 
faster than I expected, and I began to see that this system is much more flexible than I 
gave it credit for.” 

4   Discussion 

We would like to highlight three main results from this study. First, the fact that the 
majority of participants (13 of 17, 77%) created a usable cognitive model with mini-
mal instruction (less than 1 hr) is remarkable. Of the four who did not create a model, 
one experienced computer issues resulting in file loss and two had partial models. 
Historically, creating a cognitive model of this type required a Masters or Ph.D. level 
cognitive scientist with much training in ITSs and in the particular ITS tool. Indeed, 
the tool used to create the cognitive model was often directly within a programming 
language or within rudimentary tools built on top of a programming environment, 
requiring much programming knowledge. None of our participants were psycholo-
gists or cognitive scientists, and none were in their graduate training to produce ITSs. 
They created their models quickly, in under 8 hr on average. Accounting for watching 
demos and other instructional activities, these participants went from ITS neophytes 
to having a model in about 10 hr. A proper interface, more problems, and refinements 
to even the best model would still have to be made (in general, the “better” cognitive 
models would require little work to be usable by a student, but the “poorer” ones 
would have needed much additional help), so it is unclear how to gauge this effort 
with regards to hours of development per hour of instruction. However, it would be 
closer to 10:1 than it would 100:1. While the tools and methodology are different, it is 
somewhat interesting to compare these results to those of [3]. In their study, 12 of 13 
graduate students (92%) taking a class specific to ITSs completed constraint-based 
tutor for a similar fraction addition task. It took them on average 31.3 hr to do so, but 
that included much time to manually transfer pseudo-code into a runnable system. To 
do the initial constraints, it took them 6.5 hr. However, that time does not include 
writing hints and the just-in-time messages that our participants wrote, in addition to 
the predicates. On par then it seems like these are at least somewhat similar results. 

The second notable observation is how similar the better and poorer cognitive 
models were across a number of measures. In terms of time to construct the model, 
including an examination of working on certain subcomponents, along with certain 



214 S.B. Blessing and S. Gilbert 

quantitative aspects of the model (number of objects and predicates, for example), 
there were no differences between the better and poorer models. This would make it 
difficult to look for certain markers (such as average depth of the predicate tree) or 
time measures and quickly determine if the model appears to be a quality model, if 
this observation holds true in future studies. 

Perhaps the main difference we found between the better and poorer cognitive 
models is the third observation. The creators of the better cognitive models had taken 
more programming courses prior to the experiment. Given the correlational nature of 
this observation, it is hard to know the causal influences; did having more program-
ming courses help them create better cognitive models, or did the fact that they might 
be better cognitive modelers to begin with attract them to programming courses? It 
seems reasonable to assume that programmers, either by their nature or because of 
their training, are better equipped to think about tasks that are conducive to putting 
them into a cognitive model. Specifically, we can think of at least two reasons why 
this might be so. First, much programming now is object-oriented in nature, and this 
is the representation used by the SDK. If a person is used to thinking about objects, 
properties, and inheritance, then being able to represent a task in the SDK should be 
easier. Second, although the rules are also represented in a hierarchy, they still have 
the “if-then” quality of production rules. Again, this kind of thinking is probably more 
natural to programmers.  

Given the nature of the Cognitive Model SDK, particularly in relation to CTAT 
and its goal of addressing more specifically non-programmers [13], the association 
between programming and producing better cognitive models using the SDK is not 
surprising. Future lines of research should investigate this relationship in more depth, 
to examine which pieces of programming knowledge most helps in creating a cogni-
tive model. In such a way we can move towards more people being able to make 
higher quality cognitive models. 
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Abstract. Open collaborative authoring systems such as Wikipedia are
growing in use and impact. How well does this model work for the devel-
opment of educational resources? In particular, can volunteers contribute
materials of sufficient quality? Could they create resources that meet stu-
dents’ specific learning needs and engage their personal characteristics?
Our experiment explored these questions using a novel web-based tool
for authoring worked examples. Participants were professional teachers
(math and non-math) and amateurs. Participants were randomly as-
signed to the basic tool, or to an enhanced version that prompted authors
to create materials for a specific (fictitious) student. We find that while
there are differences by teaching status, all three groups make contribu-
tions of worth and that targeting a specific student leads contributors to
author materials with greater potential to engage students. The exper-
iment suggests that community authoring of educational resources is a
feasible model of development and can enable new levels of personaliza-
tion.

1 Introduction

Traditionally in the development of educational resources, one person or cohesive
group produces each artifact, be it paper textbook or computer tutor. This model
can require great resources from one group, particularly for tutoring systems and
even more so for individualized tutoring. Traditional model-based tutors cost 100-
1000 hours of time from skilled experts [1,2]. Newer approaches [3] such as CTAT
[4], REDEEM [5] and ASSISTment [6] lower the expertise necessary to create a
tutor, but still require coordination of a group to create useful tutors. Like most
tutors, they are also limited in the dimensions by which they can personalize to the
student. In this paper we describe and study a prototype tutor authoring system
that uses community volunteers to create personalized instruction.

Over the last decade we have seen new development models that take ad-
vantage of the openness of the World Wide Web. Encyclopedias, web browsers,
computer operating systems, and other complex artifacts have been created by
loose networks of volunteers building on each other’s contributions. These openly
developed products often meet and sometimes exceed the quality of more cohe-
sive sources and in general lower their costs. In education, there are a number of
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open access initiatives such as MIT’s OpenCourseWare or CMU’s Open Learn-
ing Initiative. These systems are open in that they are free to use, but not in
the sense of open to contributions. Wikipedia is an example of a system open
to all (even anonymous) contributors and is excellent for sharing about some-
thing, though it disallows instructional information. Connexions [7] has been
successful in supporting collaborative development of textbooks and newer site
like Curriki, Wikibooks and Wikiversity are trying to adapt existing wiki soft-
ware to the development of educational materials. However, these systems are all
focused on traditional inert learning resources and are limited by available wiki
software. Community authored intelligent tutoring systems will need semantic
content structures and affordances for personalized instruction.

We propose a four phase cycle of a new system for open resource development:
Generation, Evaluation, Use, and Improvement. This study is an exploration into
the Generation phase. Will volunteers produce materials of sufficiently high qual-
ity that they can be put in the hands of students with little or no editorial over-
sight? We report results obtained with a simple web-based authoring interface for
worked example problems, a tutoring resource that is very intuitive and hence can
be authored by lay volunteers. Worked example problems are versatile for com-
puter tutoring systems. They can be presented to a student as a full problem and
solution, as a problem with a partial solution, or as simply a problem, as on a
homework sheet. In more intelligent tutoring systems, scaffolds contained within
the problem can be faded as the student masters each skill. Because worked ex-
ample problems enhance problem solving in intelligent tutoring systems, they also
complement what already exists [8,9]. Pedagogically, worked-examples both in-
struct and help to foster self-explanation [10]. Thus they are a useful educational
resource, although we do not test their usefulness in this paper.

To explore the impact of open development and diverse levels of expertise, our
study was open to all comers. Reasonably this would lead to a volume of content
without much value and this motivated our first hypothesis. H1: Identifying the
good from the bad contributions is easy. We expect that all contributions are good,
easily fixed, or easily filtered. To assess the impact of expertise, we asked each
participant whether they were math teachers, other teachers, or not teachers at
all. We used this data to assess H2: Math teachers submit the best contributions.
While math enthusiast amateurs may have the appropriate content knowledge
and non-math teachers may have the appropriate pedagogical knowledge, neither
will have much pedagogical content knowledge (as defined by Shulman [11]).

A goal of the system is to facilitate personalized instruction. Personalization
has already been shown to improve both student engagement and test scores.
Fourth grade math students make better pretest-to-posttest gains with person-
alized instruction and also perform significantly better on both the pretest and
posttest problems[12]. Similar effects have been found with 5thth and 6thth grade
students [13]. Personalized instruction has also been demonstrated to increase
the engagement and learning outcomes of minority groups [14, e.g. Hispanic]. To
facilitate personalization, we created a feature in the tool in which authors are
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prompted to target their instruction to a specific student, described through a
student profile. Thus, H3: Student profiles lead to tailored contributions.

Because being showna specific individual to help is likely to drawoutmore altru-
istic behavior, we believed that the profiles may motivate authors to make better
contributions [15], leading to two further hypotheses. H4: Student profiles increase
the effort of authors. H5: Student profiles lead to higher quality contributions.

The main analysis reported in this paper looks at the contributions targeted
at one specific skill, in order to control for variability among skills. The skill
of understanding and applying the Pythagorean Theorem was chosen for three
reasons. The first is that it is difficult to learn. Data from the ASSISTment
assessment system [16] show it is the most difficult skill for students to acquire.
The second is that because it has a visual component, a variety of problems
are more difficult to generate by machine than with non-visual math skills. The
third is that it affords a variety of real-world scenarios to demonstrate it.

In this paper, we describe the web-based community authoring tools, report
the volunteer contributions that were submitted through the web site, and ana-
lyze the data to see if they support the hypotheses described above. We discuss
the implications for web-based community authoring of instructional materials.

2 Methods

2.1 Apparatus

The experiment took place over the internet through interactions with a newly-
built prototype web application for community-based authoring. Participants
followed a URL to an experiment registration form. This form explained the
goal of producing open educational resources and asked for their consent in the
study. Participants were asked for their age and teacher status (math teacher,
other teacher, or non-teacher / amateur). Those under 18 were directed straight
to a survey without participating in the experiment.

Participants were then presented a page explaining what a worked example
problem is and that their task is to create a worked example problem to teach
the Pythagorean Theorem. They were provided a search box to look up on the
web anything they wanted to learn or refresh themselves on and some simplified
pedagogical principles to remember in creating their worked example. The next
screen was the authoring tool. The tabs at the top guided the user in the task.
The first sentence of the Start tab was specific to the condition within the sub-
experiment. In the student profile experimental condition it read, Please create
a worked-out example to provide practice to the student above in understanding
and applying the Pythagorean Theorem. In the control generic condition, the
words to the student above were stricken. Authors wrote the text of the problem
statement in the large box to the left and drew their diagrams using a simple
pen tool in the box to the right. After developing their problem statement and
diagram, they clicked Add Step to add each step of the solution. The solution
area had three columns, one for the work for the student to perform towards the
solution, one for the explanation of the work in each step.
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In the student profile experimental condition, the top of the authoring tool
showed a floating description of the student to target with the example-to-be-
authored. The instruction to the participant also differed, as described above.
The participants in the experimental condition were presented a student profile
to target. Profiles were randomly selected and participants saw a new one for
each problem authored. Student profiles were designed to vary on six dimensions
that might differentiate the learning patterns of real students. They varied on
three dimensions of skill to increase variation of the submissions on skill-level
appropriateness. These were proficiency in at the Pythagorean Theorem, general
proficiency in math, and verbal skill. They were also varied on cultural attributes
to prompt creativity of the participants and increase the personal relevance
of the examples to students. These were gender, hobbies/interests, and home
environment. Four hobbies were crossed with four home environments to create
16 unique student profiles. Distributed evenly among them were four skill profiles
and the two genders. Additionally, each was assigned a favorite color to round
out the description presented. Figure 1 shows an example profile.

Fig. 1. Sample profile in experimental condition

Participants. The URL to participate was advertised on various web sites both
related to education and not. Participants could earn up to $12 for their contri-
butions, regardless of their quality. During the experiment 1427 people registered
on the site to participate. After seeing the task in detail most did not continue,
but 570 participants did use the system to submit 1130 contributions. Table 1
shows by teacher status the number of registered and contributing participants
during the experiment.

Since completion of the experiment, more participants have contributed to
the site but they are not included in the analysis that follows. At the close of
the experiment, the web site was disabled. At the request of people who still
wanted to participate, two months later it was restored with the compensation
removed. In the four months that have elapsed, 93 people have registered and
submitted 93 contributions, of which 40 pass machine vetting (see below). These
extras have not been further tested for quality.

Machine Coding. The submissions were analyzed by software as a first-pass
filter for minimum quality. The criteria were that the problem description had a
length between 50 and 1000 characters and that at least one step was provided
towards the solution. This machine filtering of the 1130 raw submissions left
551 machine-vetted submissions from 281 participants. Table 1 shows by teacher
status the number of participants whose contributions passed machine vetting.
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Table 1. Count of participants by teacher status and depth of participant

Participation Math teachers Other teachers Amateurs

Registered 131 170 1126

Contributed also 70 72 428

Passed vetting also 26 35 220

Expert Coding. After the automatic filter, the remaining submissions were coded
for quality by human experts. In a production version of the site, human coding
would be drawn from the community. For this analysis, the two coders were a
retired and a beginning math teacher. They coded using a custom web appli-
cation that ensured they were blind to the sources. Submissions were coded on
three criteria: quality of the problem statement (Statement), quality of the work
shown (Work), and quality of the explanation of the solution (Explanation). The
following are the ratings and definitions that they used:

(0) Useless No use in teaching and it would be easier to write a new one
than improve this one.

(1) Easy fix Has some faults, but they are obvious and can be fixed easily, in
under 5 minutes.

(2) Worthy Worthy of being given to a student who matches on the difficulty
and subject matter. Assume that the system knows what’s in the
problem and what is appropriate for each student, based on their
skills and interests.

(3) Excellent Excellent example to provide to some student. Again, assume
that the system knows what’s in the problem and what is ap-
propriate for each student, based on their skills and interests.

For quantitative analyses the categories were assigned the integers 0-3. The
work and explanations were averaged to create a Solution quality and all three
components were averaged to determine a Whole quality. Inter-rater reliability of
the Statement quality was alpha=0.61, for the Solution quality was alpha=0.81,
and for the Whole quality was alpha=0.78.

Ordinal variables were modeled as continuous in order to model the partici-
pant as a random effect. This requirement was due to a limitation in the statistic
software available.

3 Results of Open Authoring

To test H1 we looked at the quality of all problems submitted and the work
needed to classify them. Of 1130 raw submissions, 11% of whole problems (state-
ments with solutions) were classified as Worthy, meaning that they are fit for use
immediately. 39% were at least Fixable, meaning that they would be valuable
with some additional effort. In general the statements were of higher quality than
the solutions. 27% of statements were Worthy and 4% were Excellent as is. Fig-
ure 2 shows counts in each quality classification, plus a fifth column indicating
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Fig. 2. Count of submissions in each quality classification

the 579 that were filtered by the machine vetting process. Classification into the
Filtered category was a trivial computation. Classifying the three contribution
components into the four-rating rubric took experts a median time of 36 seconds
per contribution.

To test H2 we looked at the quality of each contribution as a whole, reveal-
ing no superior quality by teacher status (F(2)=1.53, p=0.22). Further analysis
revealed that the effect on quality of teacher status interacted with the problem
component.

Math teachers were best at writing problems statements. A comparison across
teacher status showed a marginally significant effect (F(2)=2.39, p=0.093). Math
teachers’ contributions rated at M=1.79, followed by amateurs (M=1.45) and
other teachers (M=1.45). A comparison of math teachers with the rest showed
a significant effect (F(1)=4.80, p=0.015, one-tailed).

Contrary to H2, amateurs were best at writing solutions. A comparison across
teacher status showed a marginally significant effect (F(2)=2.73, p=0.067). Am-
ateurs did best (M=0.72) followed by math teachers (M=0.60) and then other
teachers (M=0.48). A comparison of amateurs with the rest showed a significant
effect (F(1)=4.87, p=.028).

4 Discussion on Open Authoring

Through automated methods and software supports for human judges, all the
contributions were rated easily, supporting H1. In a short amount of time about
1500 people registered to contribute to a commons of educational materials.
While not all came with the same intentions, over half walked away after deter-
mining that they did not want to participate fully. Of the raw submissions made,
over half were trivial to filter by simple automated methods. Of the remaining, a
novice and a veteran teacher were able to rate each of them on three attributes in
less than a minute each. About 1/10th were ready to help students learn without
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needing any modification. Many more were rated as fixable, meaning that with
some additional work they would be ready. Statements were the highest quality
components and solutions were the most difficult parts to author well.

Teacher status had an important impact on the quality of the components of
contributions. As predicted in H2, math teachers were best at authoring problem
statements. Surprisingly, amateurs authored the best worked solutions. Perhaps
this is because they are better able to adopt a student’s perspective. Math teach-
ers performed worse than amateurs but better than non-math teachers. Perhaps
this is because their pedagogical content knowledge helps compensate (but not
fully) for their expert blind spots.

Overall, it is clear that, at least for worked examples of the Pythagorean The-
orem, participants of all teaching statuses were likely to make contributions of
value. Math teachers do a better job at some parts of the process, but even lay-
men do fairly well. This is fortunate because there are many more amateurs in
the world than math teachers. In this study each participant made each contri-
bution independently, but the best resources may come from collaboration. For
example, a math teacher writes a problem statement and an amateur writes the
solution. Educational content systems can benefit from opening the channels of
contribution to all comers.

5 Results of Student Profile

Tailoring was analyzed to test H3 and measured as the degree to which various at-
tributes of the contributed problem matched that of a student profile. Matching
took two forms: using words primed by the student profile and matching the diffi-
culty (reading or writing) to the skill levels in the profile. The use of words in the
submission was analyzedusing LIWC, a word counting tool, with its default dictio-
nary [17] plus the word piano in the music category (to go with guitar, instrument,
concert, etc.). Table 2 summarizes the results for the word matching. Mentioning
an attribute drew out significant increases in authoring with that attribute on al-
most every measure, both over the generic condition and other profiles.

To test whether authors tailor their contributions to the verbal skill of the
student, we compared the verbal skill level of the student profile presented to the
author with the reading level of the authored submission. The reading level was
measured using the Flesch-Kincaid Grade Level Formula. [18] This indicates U.S.
school reading grade level, making the problem selection easy in real learning
contexts. The text analyzed is the concatenation of the problem statement and
all the explanation steps. Because readability metrics aren’t calibrated to math
expressions, the work steps were omitted from readability analysis. Outliers were
curtailed by removing the top and bottom 2.5% percentile in the distribution
of Flesch-Kincaid Grade Level (leaving -1.32 to 11.71). An F-test showed the
differences across profile verbal skill levels to be significant (F(2)=2.95, p=0.023,
one-tailed). Table 3 shows the results of pair-wise t-tests. Additionally, it is worth
noting that authors sometimes took the student’s verbal skill level as a cue for
the subject matter of the problem statement, as in the following submission:
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Table 2. Probabilities of authoring matching an attribute

Attribute With With profiles With profiles F-test F-test
generic not mentioning mentioning (G-M) (N-M)

(G) attribute (N) attribute (M)

Female pronoun 5% 4% 16% 9.68* 12.82**

Male pronoun 19% 14% 19% 0.004 1.19

Sports word 9% 9% 24% 18.01** 11.89**

TV word 4% 4% 10% 8.36* 2.63†
Music word 2% 2% 9% 6.92* 8.93**

Home word 14% n/a 20 3.60* n/a

†p<.10 *p<.05 **p<.001

“Shakespeare sat down one day” and had a revolutionary idea. He would write
text diagonally across a page rather than horizontally! He imagined the reader’s
surprise when they turned the page and saw such a change of events! However, he
needed to carefully plan out how much space he had to write in, if he only wanted
to write one line across the diagonal of the book. Unfortunately, Shakespare had
no rules. After all, he thought he would never need one being a writer! Luckily for
him, he remembered that the blank books and pages he ordered were exactly 6
inches wide and 8 inches tall. How much space does Shakespare have to write in?

Table 3. Correspondence of verbal and math skill levels with the authoring interface

Verbal Skill Sign. Mean Reading Std General Sign. Probability of Std
in Profile Diffs Level of Err Math Skill Diffs Using 3-4-5 Err

Contribution in Profile Triangle

High A 3.78 0.24 High A 16% 0.05

Medium A B 3.56 0.32 Medium A B 26% 0.05

Low B 2.93 0.33 Low B 27% 0.04

None (control) B 3.20 0.16 None (control) A B 21% 0.03

Math difficulty was measured more simply because there is no established
metric available. Since all problems were on the Pythagorean Theorem, we chose
to measure math difficulty by whether the problem uses only the 3-4-5 triangle,
the least challenging numerical solution. An F-test showed the differences across
profile general math proficiency levels to be marginally significant (F(1)=2.35,
p=0.063, one-tailed). Table 3 shows the results of pair-wise t-tests.

Effort was analyzed to test H4. It was measured by both the length of each
contribution and the time spent on it by the author. While authors in the generic
control condition wrote an average of 766 characters per contribution, authors in
the student profile condition wrote 847 characters, a marginally significant dif-
ference (F(1)=2.35, p=0.063, one-tailed). Most of that difference is accounted for
by the problem statements, for which the generic condition wrote 204 characters
versus 250 characters with profiles. This 23% increase in length was significant
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(F(1)=8.61, p=0.01). A similar analysis of time spent authoring (normalized)
revealed no significant differences (t(235)=-0.15, p=0.56).

Quality was analyzed to test H5. The quality of the statement, the solution,
and the whole were compared between the experimental and control conditions.
F-tests showed no effects of the student profiles on the quality of submissions.

6 Discussion on Student Profile

All features of the profile display were accounted for in the problems submitted.
Participants were more likely to mention a particular hobby when shown it in the
profile. They were also more likely to make mention of some home environment
(a feature of every profile). Particularly striking is the increase in likelihood
of including a female in the problem statement. Without a profile, males were
used in 19% of problem statements and females in just 5%. (The rest used only
it or no pronouns.) Female student profiles bring female pronoun usage up to
16%, almost on par with males. Male pronoun usage is clearly the default of
most authors since the usage without any profile is just as high as with a male
profile. Furthermore, male pronoun usage was not much suppressed by the female
profiles.

Participants shown the student profiles also tailored the skill level of their
contributions. High and low reading levels differed by almost a grade level. Sub-
missions for profiles with high general math skill level were one third less likely
to make use of simple 3-4-5 triangle problems. Participants shown profiles of
students wrote problem statements that were 25% longer.

It is perhaps odd then that they didn’t spend significantly more time on these
statements. One explanation is that the time typing is negligible compared to the
time required to generate an idea. That the statements in the profile condition
are so much longer suggests that the profile prompts ideas that are more involved.

One hypothesis on the student profiles condition did not bear out: that profiles
would lead to contributions of higher quality on an absolute scale. Instead the
contributions maintained quality. In other words, the tailoring came at no cost
to the generic quality of the contributions.

7 General Discussion and Conclusions

This study looks at the feasibility of an open development model for developing
resources for tutoring systems and a particular design feature to solicit to draw
more and better work from contributors. We found that while over half the
contributions were useless there were some gems. Importantly, it required little
effort to separate the wheat from the chaff, confirming H1. Both professional
educators and amateurs contributed a large portion of useful materials. Contrary
to the prediction H2, contributions from math teachers were not superior to those
from others. This is encouraging because there are many more people who aren’t
math teachers than who are.
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Math teachers did write the best problem statements but amateurs wrote
the best solutions. This suggests a model in which math teachers contribute the
problem statements and amateurs write the solutions. In general, it suggests that
users of different aptitudes and abilities be directed to different tasks within the
collaborative authoring system, a solid design implication.

The student profile feature of the interface successfully drew out personalized
resources (H3). On every attribute the profile increased the likelihood of target-
ing it. The profiles also drew out more effort on the part of participants (H4).
While the profiles didn’t measurably improve the quality of their contributions
(H5), it is important to note that they did not impair them either.

An important limitation of the study is that there are no measures yet of
how these contributions actually aid learning. The expert ratings were taken as
proxies for the utility in real learning contexts, but the true test will be using
the materials to teach real students and measure their gains versus alternative
materials. One potential pitfall is that the personalizing details in the tailored
resources distract students from learning. Of course, the improvements to their
motivation might offset this. A real-world study is necessary to answer these
questions.

Another key limitation of the findings here is the ecological validity of paying
participants for their contributions. The problem is not that participants were
incented to contribute. One can imagine a future system with incentives such
as peer status or competitions with non-monetary awards. (e.g. [19]) Certainly,
volunteers are always motivated by some incentive, external or internal. How
though do contributions differ under more ecologically valid incentives? Because
participants were paid for any contribution, there is good reason to believe that
real world volunteers would be more dedicated and likely to produce higher
quality materials on average.

This study focused on phase one, Generation, of a proposed cycle of devel-
opment. It also touched upon phase two, Evaluation, through the finding that
experts can evaluate each contribution in about half a minute. We will turn next
to the fourth phase, Use, in order to begin answering the above limitations. We
will first develop a personalized homework system that creates homework assign-
ments for students based on their real personal profiles. This will also require
expanding the Generation aspects of the system to facilitate a wider variety in
the skills taught. Farther in the future, we will explore the potential for devel-
oping interactive tutoring around the worked example problem artifact, through
dynamic scaffolding of its subcomponents.

This study has positively, if partially, demonstrated the feasibility of an open
development model for resources for tutoring. Volunteers regardless of profes-
sional expertise are able to make useful contributions and features of the au-
thoring interface can incline contributions to have different features and make
instruction more socially inclusive.

This work was supported in part by Graduate Training Grant awarded to
Carnegie Mellon University by the Department of Education (#R305B040063).
The research reported here was supported by the Institute of Education
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The opinions expressed are those of the authors and do not represent views of
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Abstract. This paper introduces the concept of learning and tutoring agent shell 
as a general and powerful tool for rapid development of a new type of intelli-
gent assistants that can learn complex problem solving expertise directly from 
human experts, can support human experts in problem solving and decision 
making, and can teach their problem solving expertise to non-experts. This shell 
synergistically integrates general problem solving, learning and tutoring engines 
and has been used to build a complex cognitive assistant for intelligence ana-
lysts. This assistant has been successfully used and evaluated in courses at US 
Army War College and George Mason University. The goal of this paper is to 
provide an intuitive overview of the tutoring-related capabilities of this shell 
which rely heavily on its problem solving and learning capabilities. They in-
clude the capability to rapidly acquire the basic abstract problem solving strate-
gies of the application domain, directly from a subject matter expert. They  
allow an instructional designer to rapidly design lessons for teaching these ab-
stract problem solving strategies, without the need of defining examples  
because they are automatically generated by the system from the domain 
knowledge base. They also allow rapid learning of test questions to assess stu-
dents’ problem solving knowledge. The proposed type of cognitive assistant, 
capable of learning, problem solving and tutoring, as well as the learning and 
tutoring agent shell used to build it, represent a very promising and expected 
evolution for the knowledge-based agents for “ill-defined” domains. 

Keywords: ITS-building tool, ITS authoring, agent-based tutoring systems, 
knowledge acquisition, machine learning in ITS, intelligent agents, ill-defined 
domains, intelligence analysis, teaching problem solving expertise, lesson de-
sign and generation, test learning and generation. 
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1   Introduction 

Building intelligent tutoring systems is notoriously hard. It requires teams that typi-
cally include software developers, knowledge engineers, subject matter experts, and 
instructional designers, which are estimated to need between 300 and 1000 hours to 
produce an hour of instructional material [1, 2]. Although impressive successes have 
been demonstrated by many advanced ITS authoring systems, such as CAT [3] or 
RIDES [4], these and the vast majority of the developed systems are for “well-
defined” domains (which allow for a clear distinction between good and bad answers 
or solutions), in spite of the fact that many domains, such as design, law, medical 
diagnosis, history, intelligence analysis, and military planning, are “ill-defined” [5]. 

This paper presents a new approach for building tutoring systems that can teach 
new professionals how experts solve problems in a complex “ill-defined” domain [5]. 
This approach leads to the development of a new type of cognitive assistant that in 
addition to tutoring has powerful capabilities for learning and problem solving. It can: 

• rapidly learn, directly from a subject matter expert, the problem solving exper-
tise which currently takes years to establish, is lost when experts separate from 
service, and is costly to replace; 

• tutor new professionals the problem solving expertise learned from the subject 
matter expert;  

• assist a professional to solve complex problems, through mixed-initiative rea-
soning, allowing a synergistic integration of the professional’s experience and 
creativity with the agent’s knowledge and speed, and facilitating collaboration 
with complementary experts and their agents. 

The developed methods for building such cognitive assistants have been imple-
mented into a new type of tool, called learning and tutoring agent shell. This shell can 
be taught by a subject matter expert, and can then teach students in ways that are 
similar to how it was taught. The shell has been used to build a cognitive assistant for 
intelligence analysts that has been successfully used in courses at the US Army War 
College and George Mason University [6]. Because of the number and complexity of 
the methods integrated into the shell, in this paper we will present only those related 
to its tutoring capabilities, giving only minimal information about the others, which 
are described in [7], [8]. Moreover, even the tutoring capabilities will be presented at 
a very general, conceptual level. Our goal is to provide an as intuitive as possible 
view on this new approach to building systems for tutoring complex problem solving 
expertise in “ill-defined domains”. A detailed description of this approach is pre-
sented in [9]. 

The next section introduces the concept of learning and tutoring agent shell and the 
associated methodology for building cognitive assistants. Section 3 introduces the 
intelligence analysis domain, as well as the problem solving approach implemented in 
the shell, which is pedagogically tuned. Section 4 presents our approach to the ab-
straction of the reasoning trees which facilitates the identification and tutoring of the 
main problem solving strategies of a domain. Section 5 presents the lesson design and 
generation process and Section 6 presents the learning and generation of test ques-
tions. This is followed by a presentation of some experimental results, a summary of 
the main contributions, current limitations and future research directions. 
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2   Learning and Tutoring Agent Shell (LTAS) 

Fig. 1 shows the ove-
rall architecture of an 
LTAS. This is an ex- 
tension of the con-
cept of learning ag-
ent shell [7] which is 
itself an extension of 
the concept of expert 
system shell [10].  

The problem solving engines of our LTAS employ a general, divide-and-conquer, 
approach to problem solving, called problem-reduction/solution-synthesis, which is 
applicable in a wide range of domains [7], [11]. In this approach, which will be illus-
trated in the next section, a complex problem is successively reduced to simpler and 
simpler problems, the solutions of the simplest problems are found, and then these 
solutions are successively composed, from bottom up, until the solution of the initial 
problem is obtained. To exhibit this type of problem solving behavior, the domain 
knowledge base should contain an object ontology (which describes the objects from 
an application domain) and a set of problem reduction or solution synthesis rules 
(expressed with the objects from the ontology). A problem reduction rule expresses 
how and under what conditions a generic problem can be reduced to simpler generic 
problems. A solution synthesis rule expresses how and under what conditions the 
solutions of generic subproblems can be combined into the solution of a generic prob-
lem. The conditions are complex first-order logical expressions [6], [8]. 

The learning engines employ general mixed-initiative, multistrategy methods that 
allow a subject matter expert to teach the agent in a way that is similar to how the 
expert would teach a person [7], [8]. For instance, the expert will show the agent how 
to solve a specific problem, will help it to understand the corresponding reasoning 
process, and will supervise and correct its behavior when the agent attempts to solve 
similar problems. As a result, the agent will learn general reduction and synthesis 
rules and will extend its ontology. Moreover, the acquired knowledge will be peda-
gogically tuned [12] because the agent will solve new problems and will explain its 
reasoning process similarly to how the expert did it. 

The tutoring engines, which will be described in more detail in this paper, allow 
the acquisition of pedagogical knowledge, the design and generation of lessons, and 
the learning and generation of test questions. 

To build a cognitive assistant, the subject matter expert first teaches the agent shell 
(LTAS) and develops its domain knowledge base (consisting of the object ontology, 
the problem reduction rules and the solution synthesis rules). Then the expert teaches 
the agent the elementary abstract reasoning strategies of the application domain, as 
discussed in Section 4. After that, the instructional designer designs the lessons based 
on the abstract reasoning strategies. The instructional designer also teaches the agent 
how to generate test questions, as discussed in Section 5.  

We will provide an intuitive overview of the tutoring-related capabilities based on 
the Disciple-LTA analyst’s cognitive assistant that was developed with the learning 
and tutoring shell for the “ill-structured” domain of intelligence analysis [6], [13]. 
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Fig. 1. Learning and Tutoring Agent Shell 
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3   Disciple-LTA: Analyst’s Cognitive Assistant 

Disciple-LTA solves intelligence analysis problems, such as, “Assess whether Iran is 
pursuing nuclear power for peaceful purposes” or “Assess whether Al Qaeda has nuclear weapons, 
based on partial, uncertain, and even false information from open-source pieces of 
evidence (such as, newspaper articles, web sites, news agency reports, books, etc.).  

As indicated in the previous section, the way the agent solves an intelligence 
analysis problem is similar to how the expert solved such problems when he or she 
taught the agent. It is as if the agent is “thinking aloud”, asking itself questions that 
guide the problem reduction process, as illustrated in Fig. 2 and copied below: 

 

I need to: Assess whether Al Qaeda has nuclear weapons.  
Q: What factors should I consider to determine whether Al Qaeda has nuclear weapons? 
A: Characteristics associated with possession of nuclear weapons and current evidence 

that it has nuclear weapons. 
Therefore I need to solve two subproblems: 

Assess the possibility that Al Qaeda might have nuclear weapons based on the  
     characteristics associated with the possession of nuclear weapons.  
Assess the current evidence that Al Qaeda has nuclear weapons.  

Q: What are the characteristics associated with possession of nuclear weapons? 
A: Reasons, desire, and ability to obtain nuclear weapons. 

Therefore I need to solve three sub-problems: 
Assess whether Al Qaeda has reasons to obtain nuclear weapons. 
Assess whether Al Qaeda has desire to obtain nuclear weapons. 
Assess whether Al Qaeda has the ability to obtain nuclear weapons. 
 

In this way, the initial problem is successively reduced to simpler and simpler prob-
lems which are shown with a blue background in Fig. 2. Then the solutions of the  
 

 

Fig. 2. Hypothesis analysis through problem reduction and solution synthesis 
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simplest problems are found, and these solutions (which are shown with a green 
background) are successively composed, from bottom up, until the solution of the 
initial problem is obtained (i.e. “It is likely that Al Qaeda has nuclear weapons.”). 

The intelligence analysts who have used our system, evaluated this type of reason-
ing as being very appropriate for teaching new analysts because it is very explicit and 
natural. However, the reasoning trees generated by the agent for real-world problems 
are very large. For example, Fig. 2 shows only the top 23 nodes of a tree that has 
1,758 nodes. The question is how to systematically teach new analysts based on such 
complex trees. Our solution is described in the next sections. 

4   Abstraction of Reasoning Trees 

Although the reasoning trees generated by the agent are very large, its parts are re-
peated applications of a few abstract reasoning strategies. This is illustrated in Fig. 3 
where the blue-bordered subtrees from the left-hand side are concrete applications of 
the abstract reduction strategy shown with a red-border in the right-hand side. Indeed, 
each of the blue subtrees represents the following abstract strategy:  
 

In order to assess to what extent a certain piece of evidence (e.g. EVD-Reuters-01-01c, a 
fragment from a Reuters News Agency report) favors a certain hypothesis (e.g. “Al 
Qaeda desires to obtain nuclear weapons.”), one has to solve two subproblems: 1) Assess to 
what extent that piece of evidence favors that hypothesis, assuming that the piece of 
evidence is believable, and 2) Assess the believability of that piece of evidence.  
 

There are other abstract strategies for analyzing the believability of direct testimo-
nial evidence, or the believability of testimonial evidence obtained at second hand, or 
the credibility of tangible evidence, or the competence and credibility of primary or 
intermediary sources of information, etc. [13].  

Abstract 
Tree

Concrete 
Tree

Assess to what 
extent the piece
of evidence favors 
the hypothesis.

Consider the relevance 
and the believability of 
the piece of evidence

Assess to what extent 
the piece of evidence 
favors the hypothesis, 
assuming that the piece 
of evidence is believable

Assess the 
believability 
of the piece 
of evidence

Assess to what extent the piece 
of evidence EVD-Reuters-01-01c 
favors the hypothesis that Al 
Qaeda desires to obtain nuclear 
weapons, assuming that EVD-
Reuters-01-01c is believable.

Assess the 
believability 
of EVD-
Reuters-01-
01c

Assess to what extent the piece of 
evidence EVD-Reuters-01-01c favors 
the hypothesis that Al Qaeda desires 
to obtain nuclear weapons.

Q: What factors determine how a piece   
of evidence favors a hypothesis?

A: Its relevance and believability.

 

Fig. 3. Concrete and abstract reasoning trees 
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Our LTAS includes an abstraction learning module that allows the agent to learn 
abstraction rules from a subject matter expert. In essence, the expert abstracts a con-
crete reasoning subtree CT (such as the one from the bottom left of Fig. 3) into an 
abstract subtree AT (i.e. the one from the bottom right of Fig. 3). From this example 
of abstraction (CT  AT) the system learns a general abstraction rule AR. AR incor-
porates the complex reasoning rule(s) R that generated the concrete subtree CT. The 
abstraction rule AR allows the system to automatically identify concrete applications 
CTi of the abstract reasoning strategy AT in a concrete reasoning tree. In all, there are 
only 22 abstract reduction strategies and 22 abstract synthesis strategies that are re-
peatedly applied to generate the large reasoning tree for solving the problem Assess 
whether Al Qaeda has nuclear weapons. As a consequence there are only 217 abstract nodes 
in the abstract reasoning tree that correspond to 1758 nodes in the concrete tree. 

In conclusion, the abstraction process helps to identify the problem solving strate-
gies based on which complex reasoning trees are generated. Therefore, an approach 
to teach new professionals how to solve problems is to teach them the abstract rea-
soning strategies of their domain, illustrating them with concrete examples, as will be 
discussed in the next section. 

5   Lesson Design and Generation 

Each basic abstract strategy, or a small set of related ones, is the foundation of a les-
son designed with our LTAS. For example, Fig. 4 shows a fragment of the lesson that 
teaches an analyst how to assess the support provided by a piece of evidence to a 
hypothesis. The top part of Fig. 4 teaches the analyst how to solve this problem at the 
abstract level and the bottom part illustrates this abstract reasoning with examples 
generated from the domain knowledge base. The abstract reasoning teaches four basic 
abstract strategies but only the top strategy and one of the three bottom strategies are 
visible in Fig. 3. Each of the three bottom strategies shows an alternative way of as-
sessing the extent to which the information provided by a piece of evidence is believ-
able, depending on the type of evidence (i.e. direct testimonial evidence, testimonial 
evidence obtained at second hand, or testimonial evidence about tangible evidence). 
The tutor fades out the two strategies which are not illustrated by the example from 
the bottom part of Fig. 4 (see the right hand side of Fig. 4). A student can request 
additional examples that illustrate the other strategies, or could directly select them 
from a list. He or she could also click on the blue hyperlinks to receive brief or de-
tailed definitions or even entire presentations on important concepts such as believ-
ability or objectivity [13]. Some lessons may display these descriptions automatically, 
as part of the lesson’s flow, which may also use spoken text.  

Fig. 4 illustrates only the first part of the lesson which teaches the reduction strate-
gies for assessing the support provided by a piece of evidence to a hypothesis. The 
second part of the lesson teaches the corresponding synthesis strategies. 

LTAS allows an instructional designer to create lessons and organize them into a 
curriculum, by using a set of drag and drop operations to specify the basic abstract 
strategies to be included into the lesson, the order in which they will be taught, as well 
as additional explanations and definitions. The result is a lesson script that is executed 
by the lesson generation module to create a lesson like that illustrated in Fig. 4. 
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Notice that the instructional designer does not need to specify the lesson’s exam-
ples because they are automatically generated from the domain knowledge base. This 
significantly speeds up the lesson design process. Moreover, this provides a high level 
of generality to the developed curriculum and offers a solution to the customized 
tutoring of students who have different domain knowledge and interests. Indeed, a 
student may select a specific domain knowledge base of interest (e.g. for drug traf-
ficking or crime investigation, instead of nuclear proliferation), and the tutoring sys-
tem will generate examples from it, without any change in the lessons. 

There are additional ways in which the tutoring is automatically customized. For 
instance, the lessons will only teach the reasoning strategies that can be illustrated in 
the selected domain knowledge base, and the test questions for assessing a student 
will also be generated from that knowledge base, as discussed in the next section.  

 

Fig. 4. The top-left part of a lesson interface 

6   Learning and Generation of Test Questions 

LTAS includes a module that allows the instructional designer to rapidly teach the 
agent how to automatically generate several types of test questions to assess students’ 
problem solving knowledge. An example of generated test question is shown in Fig. 5 
where a red-bordered problem is reduced to two red-bordered subproblems (see bot-
tom of Fig. 5), in the context of a larger reasoning tree. The student is asked whether 
this reasoning is complete (i.e. includes all the necessary subproblems of the reduced 
problem), or incomplete (misses some subproblems but the present ones are correct), 
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or incorrect (includes incorrect subproblems), by clicking on the corresponding an-
swer in the upper right-hand of Fig. 5. The student will receive an appropriate feed-
back confirming the answer or explaining the mistake. He or she may also request a 
hint and, in the case of self-testing mode (as opposed to assessment), may review the 
corresponding lesson by clicking on the “Go To Lesson” button. 

The test question in Fig. 5 is of type omission, because one of the subproblems was 
omitted, and tests the student at the knowledge level [14]. A test of type modification 
(where no subproblems are omitted, but some of them have been modified) tests the 
student at the comprehension level. Finally, a test of type construction (where the 
student selects the correct subproblems of a given problem, from a larger list of poten-
tial subproblems) tests the student at the analysis level. 

To teach the agent how to generate a class of test questions, the instructional de-
signer selects a reduction step from a reasoning tree generated by the agent. This step, 
represented by a problem and its subproblems, is an example E of a previously 
learned problem reduction rule R from the domain knowledge base. Then the instruc-
tional designer changes the reduction step E, either by deleting some subproblems, or 
by modifying them, or by adding additional deliberately incorrect subproblems, to 
create an omission, modification, or construction test example, respectively. The 
instructional designer also provides a specific hint for the test example, as well as 
specific feedback for each of the possible student answers (i.e. correct, incomplete, 
and incorrect). The result is a specific test example TE which is an extension and 
modification of the reduction example E. By performing corresponding extensions 
and modifications of the general rule R (which generated E), the agent learns the 
general test question rule TR. TR can generate a class of test questions similar to TE, 
based on the current domain knowledge base. 

The lesson scripts and the test generation rules are stored in the pedagogical 
knowledge base which also represents the student model. The model stores specific 
information about a particular student, such as the lessons taken and his or her  
 

Fig. 5. Sample test question 
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performance on the test questions. It informs the test generation module to only gen-
erate tests related to the lessons taken by the student, as well as additional tests similar 
with those failed by the student. 

7   Experimentation 

The Disciple-LTA cognitive assistant developed with the LTAS tool has been used 
and evaluated in several courses at the US Army War College and at George Mason 
University [9]. The Army War College students were high ranking military officers 
that were either experienced intelligence analysts or users of intelligence. In contrast, 
George Mason students were computer science graduate students with no significant 
intelligence analysis experience. In both cases the students followed the lessons de-
fined in the system and then were assessed based on the test questions generated by 
the system. As expected, the system was perceived as more useful by the novice ana-
lysts. However, even the expert analysts from the Army War College considered that 
the system was useful in teaching them a rigorous systematic approach for the “ill-
defined” domain of intelligence analysis. Both before and after taking the lessons, the 
students from George Mason University (i.e. the novice analysts) were asked to sub-
jectively assess their knowledge of several topics taught, on a 6-point scale, from 
none to very high. The results showed that the students considered that their post-
lessons knowledge of the application domain was much better than their pre-lessons 
knowledge. Moreover, their self-assessed post-lesson knowledge was confirmed by 
the good results obtained by the students at the tests questions generated by the agent. 

8   Summary of Contributions, Limitations and Future Research 

While significant results have been demonstrated by many ITS authoring systems 
(e.g. [3], [4], which have advanced machine learning and authoring capabilities), most 
of the work has been done in the context of “well-defined” domains, such as physics, 
chemistry or mathematics [1], [3-5]. 

In this paper we have presented an overview of our research on a new approach to 
the development of systems for tutoring expert problem solving knowledge in an “ill-
defined” domain [5]. This approach is based on methods from the areas of expert 
systems, machine learning, and intelligent tutoring systems, which we have developed 
over many years, and have integrated into a new type of tool, called learning and 
tutoring agent shell or LTAS (see Fig. 1). This tool allows rapid development of a 
new type of cognitive assistant that can be taught by subject matter experts and can 
then teach new professionals, as well as support them in problem solving and deci-
sion-making. LTAS is applicable to a wide range of ill-defined domains, due to its use 
of the general problem-reduction/solution-synthesis approach to problem solving. It 
also allows rapid acquisition of an expert’s problem solving knowledge, based on 
powerful mixed-initiative, multistrategy learning methods that integrate learning from 
examples, learning from explanations, learning by analogy, and learning by abstrac-
tion. These capabilities have been used to develop problem solving and learning 
agents for complex problems, such as military course of action critiquing [15], mili-
tary center of gravity analysis [8], and emergency response planning [16].  
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The tutoring capabilities of LTAS, introduced in the previous sections, have been 
only recently developed and rely heavily on its problem solving and learning capabili-
ties. They include the capability to rapidly acquire the basic abstract problem solving 
strategies of the application domain, directly from a subject matter expert. They allow 
an instructional designer to rapidly design lessons for teaching the abstract problem 
solving strategies, without the need of defining examples because they are automati-
cally generated by the system from the domain knowledge base. They also allow 
rapid learning of test questions. These capabilities confer a high degree of generality 
to the tutoring system that can be applied to several related application domains (such 
as, nuclear proliferation, drug trafficking, crime investigation, or law) with no change 
to the lessons.  

REDEEM [2] is an authoring environment that allows classroom teachers to easily 
create a simple ITS by importing a computer-based training course as the domain 
content and by selecting among a wide variety of strategies for teaching it. While also 
focusing on instructional delivery (rather than coached problem solving) the teacher 
customizations allowed by the current version of Disciple-LTA are not as varied and 
as easy to perform, but they involve a much more complex ITS. Also, Disciple-LTA 
allows the students themselves to customize the lessons, by selecting not only the 
lesson’s examples that illustrate the taught problem solving strategies, but even the 
domain knowledge base, to better fit their interests and knowledge.  

Using LTAS we have developed a complex cognitive assistant for intelligence ana-
lysts which has been successfully used in several courses with both expert analysts 
and novice analysts.  

Tutoring problem solving expertise is not only important for teaching new profes-
sionals, but also for teaching any person who desires to use a complex problem solv-
ing and decision-support assistant. Indeed, such an assistant will generate complex 
reasoning trees, as shown in Fig. 2 and Fig. 3, which the user needs to understand, 
browse, modify and extend. This makes tutoring a necessary capability of any com-
plex assistant. On the other hand, as demonstrated by our research, existing problem 
solving and learning capabilities greatly facilitate the development of the tutoring 
capabilities. We therefore consider that the proposed type of cognitive assistant, ca-
pable of learning, problem solving and tutoring, as well as the learning and tutoring 
agent shell used to build it, represent a very promising and expected evolution for the 
knowledge-based agents. 

The developed tutoring-related methods and their implementation in the current 
version of LTAS have several limitations which point to future research directions. 
For example, the lesson design module requires that a lesson should first introduce an 
abstract strategy and then illustrate it with examples. It is easy to extend this module 
to allow an instructional designer to define other types of lesson organizations, such 
as introducing first examples and then their abstraction, as in REDEEM [2].  

The types of test questions currently learned and generated by the system are not 
very complex and diverse, each test question being based on a single problem solving 
rule from the domain knowledge base. It would not be very difficult to learn more 
complex test questions that are based on several related reasoning rules. It is also 
necessary to imagine new and more challenging types of test questions. 

The current student model is quite limited and more research is needed both to de-
velop a more complex model, and to more effectively use it in tutoring. In addition, 
more work is needed to significantly improve the interaction with the student. 
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Abstract. A key challenge in the design of tutorial dialogue systems is identify-
ing tutorial strategies that can effectively balance the tradeoffs between cogni-
tive and affective student outcomes. This balance is problematic because the 
precise nature of the interdependence between cognitive and affective strategies 
is not well understood.  Furthermore, previous studies suggest that some cogni-
tive and motivational goals are at odds with one another because a tutorial strat-
egy designed to maximize one may negatively impact the other. This paper  
reports on a tutorial dialogue study that investigates motivational strategies and 
cognitive feedback. It was found that the choice of corrective tutorial strategy 
makes a significant difference in the outcomes of both student learning gains 
and self-efficacy gains.   

1   Introduction 

Recent years have seen the emergence of a broader view of learning as a complex 
process involving both cognitive and affective states. To empirically explore these 
issues, a number of intelligent tutoring systems (ITSs) (e.g., AutoTutor [1], Betty’s 
Brain [2], ITSpoke [3], M-Ecolab [4], and MORE [5]) are being used as platforms to 
investigate the impact of tutorial interactions on affective and motivational outcomes 
(e.g., self-efficacy) along with purely cognitive measures (i.e., learning gains). A 
central problem in this line of investigation is identifying tutorial strategies (e.g., [6]) 
that can appropriately balance the tradeoffs between cognitive and affective student 
outcomes [7]. While a rich set of cognitive and affective tutorial strategies is emerg-
ing (e.g., [8]), the precise nature of the interdependence between these types of strate-
gies is not well understood. The extent to which each type of strategy, and specific 
instances of it in certain contexts, may be used to enhance tutorial effectiveness is an 
important question to designers of ITSs.   

This paper reports on an empirical study to compare the impact of certain cognitive 
and motivational tutorial strategies on student learning and self-efficacy in human-
human tutoring.  Specifically, we consider the motivational strategies of praise  
and reassurance [7] and the category of informational tutorial utterances termed cog-
nitive feedback [2, 8]. Following the approach of Forbes-Riley and colleagues [3, 9], 
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utterances from a corpus of human-human tutorial dialogues are annotated with dia-
logue acts. Then, adopting the approach proposed by Ohlsson et al. [10], statistical 
modeling techniques are employed to quantify the relative impact of these different 
tutorial strategies on the outcomes of interest (in this case, learning and self-efficacy 
gains). By mining a corpus of human-human tutorial dialogues for naturally-occurring  
corrective strategies (i.e., tutorial moves in response to plausibly incorrect student 
problem-solving actions), we induce tutorial dialogue strategies that embody the regu-
larities of effective tutorial dialogue across multiple tutoring sessions.   

A key finding of the study is that the choice of corrective tutorial strategy has a 
significant impact on both the learning gains and the self-efficacy gains of students.  
The results reinforce related findings (e.g., [2, 7, 11]) that suggest some cognitive and 
motivational goals are at odds with one other because a tutorial strategy designed to 
maximize one set of goals (e.g., cognitive goals) can negatively impact the other.  
However, the study reported here also found that a strategy that provides students 
with positive cognitive feedback as a corrective approach can strike a “delicate bal-
ance” [1] and achieve desirable motivational and cognitive outcomes.   

2   Related Work 

Much of the research on motivation conducted in the ITS community is theoretically 
grounded in frameworks developed in the cognitive science community over the past 
two decades (e.g., [12, 13, 14]). Chief among these results is Keller’s theory that 
student motivation plays a key role in the learning process [12]. This view is seconded 
by Lepper [7], who states that the most effective tutors give equal attention to both the 
motivational and cognitive concerns of students. Lepper et al. [7] refine Keller’s 
model by postulating that motivation is comprised of confidence, challenge, control, 
and curiosity. Lepper [7] further identifies the two strategies of praise and reassur-
ance as direct means of bolstering student confidence. These strategies are a form of 
“verbal persuasion,” also identified by Bandura [15], as one way of increasing self-
efficacy.   

An increasingly active area of investigation is the search for tutorial strategies that 
address the complementary cognitive and affective concerns that shape the tutoring 
process [16]. Porayska-Pomsta and Pain [8] use dialogue analysis to classify cognitive 
and affective feedback1 in terms of the degree to which each addresses a student’s 
need for both autonomy and approval. Forbes-Riley and Litman (e.g., [18]) employ 
bigram analysis at the dialogue act level to extract tutorial strategies for responding to 
student uncertainty. Corpus analysis techniques have also informed work by Marineau 
et al. [9] on the classification of tutorial acts, as well as work by Rosé et al. (e.g., 
[19]) and Ohlsson et al. [10] on modeling the effectiveness of tutorial strategies. 

Developing a clear understanding of the tradeoffs between cognitive and affective 
feedback is an important next step in tutorial dialogue research.  Prior investigations 
 

                                                           
1 We use feedback to refer to “information communicated to the learner that is intended to 

modify the learner’s thinking or behavior for the purpose of improving learning” [17].   
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of tutorial feedback have established a foundational understanding of cognitive feed-
back in terms of how and when it is delivered (e.g., [20]).  Jackson and Graesser [1] 
found the presence of cognitive feedback, as opposed to motivational “progress” 
feedback, was responsible for higher learning gains in experimental versions of 
AutoTutor; on the other hand, the presence of cognitive feedback lowered students’ 
motivational ratings. A consistent finding observed by Tan and Biswas [2] was that 
students working with modified versions of Betty’s Brain were able to learn better 
when given cognitive rather than affective feedback. Kelly and Weibelzahl [21] in-
vestigated a motivational strategy in which a student was progressively shown more 
of a hidden image after each successful step through the learning task. Students in the 
motivational treatment group showed larger increases in confidence levels compared 
with those in the control group, while there was no significant difference in learning 
gain. Finally, Wang et al. [22] found that tutors who gave polite feedback facilitated 
higher student self-efficacy gains, while learning was nearly unaffected.  

Beyond these broadly observable tradeoffs, investigators have also found that tuto-
rial strategies may impact student subgroups (e.g., low ability vs. high ability  
students) in different ways. Rebolledo-Mendez et al. [4] explored the effect of en-
hancing a tutoring system with motivational scaffolding.  In M-Ecolab, initially un-
motivated students were found to perform better with motivational adaptation and 
feedback, while students who were already motivated did not benefit from the motiva-
tional support.  In a study of perceived politeness (a motivational aspect of tutorial 
utterances), Mayer et al. [23] found students who were experienced with computers 
were less bothered by direct commands from a machine, while inexperienced students 
were more apt to appreciate politeness.      

3   Corpus Study 

To determine the effect of specific tutorial strategies on learning and self-efficacy, a 
human-human tutoring corpus study was conducted. With a focus on tutorial strate-
gies for addressing questionable student problem-solving actions, the study investi-
gated student-tutor interactions in the domain of introductory computer science. The 
corpus consists of three types of events: tutor utterances, student utterances, and stu-
dent problem-solving actions (in this case, programming events in which students 
create statements in Java programs).   

3.1   Experimental Design 

Subjects. Forty-three volunteers from a university-level introductory computer pro-
gramming class attended a single tutoring session each. Subjects were not compen-
sated for their participation; the indirect reward was that participants were not  
required to attend their weekly computer science laboratory class because they ful-
filled the attendance requirement through study participation.   

 
Procedure. At the beginning of each tutoring session, subjects completed a question-
naire containing items designed to gauge self-efficacy as it relates to completing the 
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computer science task [24].  Subjects also completed a pre-test that measured concep-
tual knowledge related to the learning task. The tutor and student were in separate 
rooms during the 55-minute tutoring session, working through an extended version of 
a software package developed to facilitate remote collaborative programming [25].  
This software allowed tutors to observe student problem-solving actions in real time 
while carrying on conversations through a textual dialogue interface.  Students were 
not aware of any tutor characteristics (e.g., name, gender).  Upon completion of the 
session, students filled out a post-questionnaire and a post-test containing questions 
that were analogues to the pre-tutoring versions. 

 
Tutors.  Fourteen volunteer tutors were paired blindly with students based solely on 
scheduling availability.  Tutors were in separate rooms from students and were not 
made aware of any student characteristics (e.g., self-efficacy rating, gender, pre-test 
score). All tutors were themselves students in a Department of Computer Science.  
Two were advanced undergraduates, and the remaining twelve were graduate stu-
dents. All fourteen tutors reported experience as a peer tutor, and ten tutors had also 
served as teaching assistants in a university computing course for one or more semes-
ters Of these ten, three had also served as primary instructors in a university-level 
introductory programming course.  Four of the tutors were female.  While these and 
other tutor characteristics may be useful for predicting what tutors will do (and per-
haps even why), this paper begins with what tutors did do and goes on to draw conclu-
sions on the relative effectiveness of various strategies [10].  

3.2   Corpus Characteristics 

The raw corpus contains 4,864 dialogue moves:  1,528 student utterances and 3,336 
tutor utterances. As a chronology of tutorial dialogue interleaved with student prob-
lem-solving (programming) actions that took place during the tutoring sessions, the 
corpus contains 29,996 programming keystrokes and 1,277 periods of scrolling – all 
performed by students. Other problem-solving actions, such as opening and closing 
files or running the program, were sparse and were therefore omitted here. 

Of the 3,336 tutor utterances, 1,243 occur directly after “questionable” student 
problem-solving action. (The notion of “questionable” is defined below.)  This subset 
of tutorial utterances serves as the basis for the tutorial strategy comparison. 

3.3   Problem-Solving Act Tagging 

Student problem-solving actions were logged throughout the tutoring sessions. The 
two actions under consideration for this analysis are: typing in the programming inter-
face and scrolling in the program editor window. To interpret the raw logged student 
problem-solving actions, these events were automatically tagged using a heuristic 
measure for correctness. This heuristic represents just a first step toward automati-
cally classifying student actions in the problem-solving environment: if a program-
ming keystroke (character) survived until the end of the session, this event was tagged 
promising. This heuristic is based on the observation that the subtasks in this learning 
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task were accomplished in a linear fashion, with tutors not allowing students to move 
forward until the previously implemented steps were judged to be correct. Con-
versely, if a programming keystroke (character) did not survive until the end of the 
session, the problem-solving act was tagged questionable. The rationale for this rule 
is that non-surviving characters were subsequently displaced or removed for some 
reason, meaning they were plausibly incorrect to start with.  Finally, periods of con-
secutive scrolling were marked questionable because in this context, scrolling was 
almost uniformly undertaken by a student who was confused and looking for answers 
in irrelevant task scaffolding. 

3.4   Dialogue Act Annotation 

Because utterances communicate through two orthogonal channels, a cognitive chan-
nel and a motivational channel, each utterance was annotated with both a cognitive 
dialogue tag and a motivational dialogue tag.  The dialogue act tag set, which consists 
of sixteen cognitive acts plus six motivational/affective acts, is an extension of the tag 
set presented in [26].  Table 1 displays the subset of this dialogue act tagging scheme 
relevant to the current study. 

The entire corpus was tagged by a single human annotator, with a second tagger 
marking 1,418 of the original 4,864 utterances.  The resulting kappa statistics were 
0.76 in the cognitive channel and 0.64 in the motivational/affect channel.2 

4   Analysis and Results 

Overall, the tutoring sessions were effective: they yielded learning gains (mean 5.9%, 
median 7.9%), which were statistically significant (p=0.038), and they produced self-
efficacy gains (mean 12.1%, median 12.5%), which were also statistically significant 
(p<0.0001). 

Analyses revealed that statistically significant relationships hold between tutorial 
strategy and learning, as well as between tutorial strategy and self-efficacy gains.  
First, the values of learning gain and self-efficacy gain were grouped into binary cate-
gories (“Low”, “High”) based on the median value.  Multiple logistic regression was 
then applied with the gain category as the predicted value and tutorial strategy, in-
coming self-efficacy rating, and pre-test score as predictors.3  Multiple logistic regres-
sion was chosen over multiple linear regression because the learning instruments (10 
items each) yielded few distinct values of learning gain.  Logistic regression computes 
the odds of a particular outcome over another (e.g., “Having high learning gain versus 
low learning gain”) given one value of the predictor variable over another (e.g., “The 
tutorial strategy was positive feedback instead of praise”). 

 

                                                           
2 This kappa was computed on all student and tutor utterances using the full tagging scheme.    
3 To control for the possibility that student outcomes were predicted entirely by incoming stu-

dent characteristics rather than by any tutorial action, pre-test score and incoming self-
efficacy rating were treated as predictors in all models.   
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Table 1. Relevant Tutorial Dialogue Acts 

 

4.1   Presence of Tutorial Encouragement 

We first consider two categories of corrective tutorial utterances: those with and those 
without explicit encouragement (i.e., praise or reassurance). Both these categories 
may, but need not, contain cognitive feedback components. (We restrict the analysis 
to only cognitive feedback in the next subsection, and later omit all such feedback to 
consider standalone tutorial encouragement.)  A logistic regression model quantified 
the significant relationships between tutorial encouragement and learning gain,  
revealing that after accounting for the effects of pre-test score and incoming  
self-efficacy rating (both of which were significant in the model with p<0.001), ob-
servations containing tutorial encouragement were 56%4 less likely to result in high 
learning gain than observations without explicit tutorial encouragement (p=0.001).  
On the other hand, tutorial encouragement was weakly linked to self-efficacy gains, 
with explicit encouragement being 57% more likely to result in high self-efficacy gain 
than tutorial responses that had no explicit praise or reassurance (p=0.054). These 

                                                           
4 This value and its counterparts throughout the paper represent logistic regression point esti-

mates of odds ratio (analogous to the regression coefficient in multiple linear regression).  
The accompanying p-value indicates the level at which the predictor variable was significant 
in the model. 
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models suggest that the presence of tutorial encouragement in response to question-
able student problem-solving action is weakly linked to self-efficacy gain but may 
detract from learning gain. 

4.2   Adding Encouragement to Cognitive Feedback 

We now consider only corrective tutorial acts that were tagged as cognitive feedback 
and compare the relative impact of those with and without explicit tutorial praise or 
reassurance.  Because the co-occurrence of cognitive feedback with reassurance was 
very low (n=2), we omit this strategy from consideration and compare the two strate-
gies of purely cognitive feedback and cognitive feedback plus praise. A logistic re-
gression model built as described above revealed that observations in which the tutor 
used cognitive feedback plus praise were associated with 40% lower likelihood of 
high learning gain than observations in which the tutor used purely cognitive feed-
back.  No impact was observed on self-efficacy gain.  These results suggest that in 
response to questionable student problem-solving action, to achieve learning gains, 
purely cognitive feedback is preferred over cognitive feedback plus praise, while self-
efficacy gain does not appear to be impacted either way. 

4.3   Standalone Tutorial Encouragement 

In this corpus, tutorial encouragement is sometimes encountered with no cognitive feed-
back component; that is, the tutorial utterance is in no way aimed at giving substantive 
task-related feedback, but instead, is aimed at the student’s motivational or affective state 
through explicit praise or reassurance. We now consider this tutorial strategy of stand-
alone motivational acts. Unlike the previous results that had a consistent (or no statisti-
cally significant) impact on student sub-groups and were therefore reported only for the 
general student population, purely motivational statements appear to affect low and high 
self-efficacy students differently. A separate logistic regression was run for the low initial 
self-efficacy and high initial self-efficacy student groups. Among students with low in-
coming self-efficacy, observations in which the tutor employed a standalone motivational 
act were 300% as likely to be in the high self-efficacy gain group as observations in 
which the tutor employed a purely cognitive statement or a cognitive statement combined 
with encouragement (p=0.039). In contrast, among students with high initial self-
efficacy, a purely motivational tactic resulted in 90% lower odds of being in the high 
self-efficacy gain group. Standalone motivational acts showed no statistically different 
impact on learning gain compared to other tutorial acts (p=0.268).  This relationship held 
for both the low self-efficacy (p=0.216) and high self-efficacy subgroups (p=0.441) with 
regard to impact on learning gain. These results suggest that standalone praise or reas-
surance may be useful for increasing self-efficacy gain among low initial self-efficacy 
students, but may decrease self-efficacy gain in high initial self-efficacy students.  In 
addition, standalone praise or reassurance does not appear helpful for learning gains. 

4.4   Superiority of Positive Cognitive Feedback 

We have seen evidence thus far that explicit tutor encouragement in the form of praise 
or reassurance has mixed effects on learning and self-efficacy gains. We now consider 
the class of purely cognitive tutorial moves, i.e., all tutorial acts that have no explicit 
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encouragement attached.  As presented in Section 3.4, the strategies under considera-
tion here are positive, lukewarm, negative, and neutral cognitive feedback plus tuto-
rial questions. Because positive cognitive feedback related similarly to each of the 
other types of cognitive moves, we forego pairwise comparisons and instead contrast 
positive cognitive feedback against the group of all other purely cognitive strategies.  
Chi-square analysis reveals positive cognitive feedback had a significantly different 
impact on self-efficacy than other strategies (p=0.0028). A logistic regression refined 
the relationship, revealing positive feedback resulted in 190% increased odds of high 
student self-efficacy gain compared to the other cognitive strategies (p=0.0057).  
Positive cognitive feedback did not differ significantly from other types of cognitive 
strategies in a Chi-square comparison with respect to learning gains (p=0.390). The 
models thus suggest when dealing with questionable student problem-solving action, 
positive cognitive feedback is preferable to other types of cognitive feedback for elic-
iting self-efficacy gains, but this type of feedback is not found to be better or worse 
than other cognitive feedback for effecting learning gains. 

5   Discussion     

The study found that the presence of direct tutorial praise or encouragement in re-
sponse to questionable student problem-solving action increased the odds that the 
student exhibited high self-efficacy gain, while lowering the odds of high learning 
gain. The study also found that purely cognitive feedback was preferable for learning 
gains compared to cognitive feedback with an explicitly motivational component.  
These empirical findings are consistent with theories of Lepper [7] who observed that 
some cognitive and affective goals in tutoring are “at odds.” The results also echo 
quantitative results from other domains such as qualitative physics [1] and river eco-
systems [2] that, in general, overt motivational feedback contributes to motivation but 
cognitive feedback matters more for learning.   

In this study, standalone motivational utterances in response to questionable prob-
lem-solving action increased the likelihood of high self-efficacy gain among low 
incoming self-efficacy students. This motivational tactic, however, reduced the likeli-
hood of self-efficacy gain in students with initially high self-efficacy. These results 
confirm empirical findings from the domain of ecology [4] in which only unmotivated 
students benefited from extra motivational scaffolding. While it is true that students 
with initially high confidence have less room for self-efficacy gain in the first place, it 
is also likely the case that students with high confidence or high ability may be less 
prone to need or appreciate motivational tactics such as politeness [23].   

Of the tutorial strategies that occurred in the corpus, positive cognitive feedback 
emerged as an attractive approach for responding to plausibly incorrect student prob-
lem-solving actions. Responding positively (e.g., “Right”) to questionable student 
actions is an example of indirect correction, which is recognized as a polite strategy 
(e.g., [8, 22]). As such, the positive feedback approach seems to have an implicit, yet 
perceptible, motivational component while retaining its usefulness as cognitive feed-
back. Qualitative inspection of the corpus indicates positive cognitive feedback in 
response to plausibly incorrect problem-solving actions was usually followed by neu-
tral cognitive feedback that served to more informatively, yet indirectly, point out 
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student errors.  Thus the benefits of positive cognitive feedback may also indicate (by 
proxy) the effectiveness of Lepper’s indirect feedback acts [7].  

6   Conclusions and Future Work 

Balancing cognitive and motivational scaffolding has emerged as a key problem in 
tutorial dialogue. To investigate these issues, a corpus study of naturalistic human-
human tutorial dialogue in the domain of computer science was conducted to deter-
mine the most effective use of motivation in the context of feedback for problematic 
student actions. The results suggest that positive cognitive feedback may prove an 
appropriate strategy for responding to questionable student problem-solving action in 
task-oriented tutorial situations because of its potential for addressing the sometimes 
competing cognitive and affective needs of students.  For low self-efficacy students, 
however, it was found that direct standalone encouragement can be used to bolster 
self-efficacy, but the same standalone encouragement may not be helpful for high 
self-efficacy students. 

In this work we have considered a limited set of motivational dialogue acts, namely 
praise and reassurance.  Important future work will target an expanded set of affective 
dialogue acts to facilitate continued exploration of motivational and affective phe-
nomena in this context.  Also important will be expanding the window of considera-
tion to pairs that include both student and tutor utterances, along with tuples that  
include three acts or more (e.g., problem-solving action, tutor utterance, student utter-
ance) to model the effects of higher-level tutorial strategies.  Finally, the current re-
sults reflect human-human tutoring strategies that proved to be effective; however, it 
remains to be seen whether these same strategies can be successfully employed in 
tutorial dialogue systems.  Continuing to identify and empirically compare the effec-
tiveness of alternative tutorial strategies will build a solid foundation for choosing 
tutorial strategies that balance the cognitive and affective concerns surrounding the 
complex processes of teaching and learning through tutoring. 
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Abstract. Most existing Intelligent Tutoring Systems (ITSs) are built around 
cognitive learning theories, such as Ohlsson's theory of learning from perform-
ance errors and Anderson's ACT theories of skill acquisition, which focus pri-
marily on providing negative feedback, facilitating learning by correcting  
errors. Research into the behavior of expert tutors suggest that experienced tu-
tors use positive feedback quite extensively and successfully. This paper inves-
tigates positive feedback; learning by capturing and responding to correct  
behavior, supported by cognitive learning theories. Our aim is to develop and 
implement a systematic approach to delivering positive feedback in ITSs. We 
report on an evaluation study done in the context of SQL-Tutor, in which the 
control group used the original version of the system giving only negative feed-
back, while the experimental group received both negative and positive feed-
back. Results show that the experimental group students needed significantly 
less time to solve the same number of problems, in fewer attempts compared to 
those in the control group. Students in the experimental group also learn ap-
proximately the same number of concepts as students in the control group, but 
in much less time. This indicates that positive feedback facilitates learning and 
improves the effectiveness of learning in ITSs. 

1   Introduction 

Intelligent Tutoring Systems (ITSs) continue to grow in popularity and application. 
The use of computers to support education and learning has more than doubled be-
tween 1984 (36.2%) and 1997 (84%) [3]. ITSs are at the forefront of these technolo-
gies. There is however still considerable work to be done in making such systems 
more effective. Current ITSs provide one-on-one tutoring at relatively low cost and 
the added flexibility with regard timing, location and amount of the tutoring experi-
ence. Evaluation of a LISP tutor showed that students in the experimental group com-
pleted problems in one third the time of those under control conditions with  
improvement in learning of 1 standard deviation [4]. ANDES, a tutoring system for 
teaching Physics, improves performance by 0.9 standard deviations [5], while SQL-
Tutor improves performance by 0.65 standard deviations in just two hours of interac-
tion with the system [6]. 
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However, more research is still needed in order to develop a theory of tutoring 
which would link the various learning mechanisms to the types of information the 
learner needs and hence what the tutor (ITS) should provide. Current hypotheses 
propose that student learning is correlated with the tutor's use of knowledge-
construction activities e.g. dynamic plan scaffolding, and refection/generalization 
techniques [5, 7]. There is a move to incorporate these techniques into ITSs through 
modeling of tutorial actions and strategies as observed with expert human tutoring [7]. 
Positive feedback is one of the teaching strategies which continue to surface through-
out tutoring protocols. Work being done with tutoring protocols at the University of 
Illinois at Chicago [8] shows extensive and effective use of positive feedback by ex-
perienced human tutors. A logical step for ITSs therefore seems to be extending the 
proposed model of tutoring to incorporate positive feedback. 

In this paper, we describe a study investigating the effect of positive feedback per-
formed in the context of SQL-Tutor. We start by briefly describing this ITS in Section 
2, and then describe our approach to providing positive feedback in Section 3. Section 
4 presents the study and the results obtained, while the conclusions are given in the 
final section. 

2   SQL-Tutor 

SQL-Tutor assists university-level students in acquiring the knowledge and skills 
necessary to create SQL queries. SQL is the dominant database query language, 
which students find hard to learn. SQL-Tutor is a mature ITS, designed as a practice 
environment with the prerequisite that students be previously exposed to the SQL 
concepts in lectures. In the web-enabled version of SQL-Tutor, the architecture of 
which is shown in Figure 1, each student is assigned a unique web session. Students 
submit solutions which are sent to the student modeller for analysis. The student 
modeller identifies any errors or mistakes and updates the student model accordingly 
to reflect student progress within the domain. For more details of SQL-Tutor, please 
see [6]. 

To check the correctness of the student's solution, SQL-Tutor compares it to the 
correct solution, using domain knowledge, represented as a set of 700 constraints. A 
constraint consists of a relevance condition Cr, which checks whether the constraint is 
appropriate for a particular student’s solution, and a satisfaction condition, Cs. A solu-
tion is correct if it satisfies the satisfaction conditions of all relevant constraints.  

Once the student's solution is evaluated, the student model passes information to 
the pedagogical module which generates the appropriate feedback. If any constraints 
are violated, SQL-tutor will provide feedback on them. In the case where the solution 
is correct or the student requires a new problem to work on, the pedagogical module 
uses the information from the student model to select an appropriate problem.  

SQL-Tutor provides feedback on demand only, when the student submits the solu-
tion. The system offers six levels of feedback, differing in the amount of detail pro-
vided to the student. On the first attempt, the system only informs the student whether 
the solution is correct or not. All other feedback levels provide negative feedback, i.e. 
feedback on errors. The second level (Error Flag) points the part of the solution that 
is incorrect. The third level (Hint) provides a description of one error, pointing out 
 



252 D. Barrow et al. 

Web 
server

Session
manager

Student
modeler

Pedagogical
module

student
models

constraints

Logs

databases,
problems,
solutions

Web 
browser

Internet

 

Fig. 1. Architecture of SQL-Tutor 

where exactly the error is, what constitutes the error (performing blame allocation) 
and referring the student to the underlying domain principle that is violated (revising 
student’s knowledge). The hint message comes directly from the violated constraint. 
The automatic progression of feedback levels ends at the hint level; to obtain higher 
levels of feedback, the student needs to explicitly require them. For example, the 
student can ask for the hint message for all violated constraints (All Errors), a partial 
solution (showing the correct version of one part of the solution that is wrong), or a 
complete solution for the problem.  

3   Providing Positive Feedback 

Consider a situation when a student is attempting a problem but is not entirely sure of 
what to do. That student makes a tentative attempt at the next step and surprisingly it 
turns out to be correct. The student is likely to store that piece of 'correct' knowledge 
if they are aware that their action is indeed correct. Therefore there must be some 
feedback mechanism which confirms to the student that their action is correct. Ex-
perienced human tutors support the learning process by providing feedback to confirm 
the correctness of the student’s action. This is only one of the many situations where 
positive feedback is used quite effectively to support student learning. It therefore 
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appears that one of the ways in which positive feedback works is by reducing the 
number of tentative steps made by a student, creating and storing new knowledge 
chunks in cases where the student was lacking, or strengthening in situations where 
there was uncertainty and doubt. 

Many student steps are tentative; the student is guessing, or at least rather uncertain 
as to what to do. In either case, if such a move happens to be correct then providing 
assurance to the student of its accuracy helps to reduce uncertainty and apprehension. 
We hypothesize that positive feedback works by helping to reduce the amount of 
uncertainty associated with student actions and reinforce existing knowledge; in some 
cases creating new knowledge and by so doing reduces both the time taken by stu-
dents to solve problems and the number of errors made. 

We developed a systematic approach to delivering positive feedback. This ap-
proach addresses three main issues: timing, content and presentation of positive feed-
back messages. Regarding timing of positive feedback, we considered two questions: 
when and how often should positive feedback be given. We proposed that positive 
feedback be given when the student submits a solution, as is currently the case with 
negative feedback in SQL-Tutor. However, the system should not give positive feed-
back on each correctly used constraint, as the amount of such feedback would be 
overwhelming. Instead, we identified events which add positive feedback only on 
selected constraints to the other messages given to the student. The positive feedback 
provided to a particular student will depend not only on the submitted solution, but 
also on the student’s knowledge (as captured by the student model) and the state of 
interaction. We developed four general cases when positive feedback should be given: 

 

a) When the student is expressing uncertainty but nevertheless does the right thing. 
This situation occurs when the student has previously made errors in a similar 
situation, but has made a correct attempt at the current problem. In this case, posi-
tive feedback reinforces the newly learnt domain principles. 

b) When the student is too paralyzed to do anything at all. In such situations the 
student is unable to proceed without additional aid. The student can only move 
forward if the tutor provides a direct hint on what the solution should be. This 
hint can be requested by the student, or provided automatically by the system af-
ter a period of inactivity. If the student uses the hint successfully, then positive 
feedback should be given. Based on our hypothesis, positive feedback should in-
crease student confidence, decrease uncertainty over the student's existing knowl-
edge, decrease uncertainty over the knowledge given within the hint statement 
which was once lacking and strengthen the connection between these two pieces 
of knowledge chunks. 

c) When the student has overcome aspects of the domain commonly agreed upon as 
being difficult and challenging. Certain domain principles are difficult and chal-
lenging increasing cognitive load and the amount of active information process-
ing required from the student. We propose giving positive feedback when the 
student correctly and adequately deals with such situations. This requires cogni-
tive task analysis to identify such domain principles. 

d) When the problem or task has been successfully completed and at other major 
goals within the tutoring session. Solving a problem represents a significant 
achievement. If a student gets a very difficult problem correct on the first attempt 
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or satisfies a difficult constraint the first time it is relevant, then it potentially sig-
nifies that the student has mastered those aspects of the domain. In this case we 
give positive feedback to indicate to the student the magnitude of their accom-
plishment and to reinforce that correct response. 

 

Based on these cases, we developed a set of rules for providing positive feedback. 
Rule 1 generates positive feedback for each constraint satisfied for the first time (i.e. 
all previous attempts on that constraint were incorrect). Rule 2 provides positive feed-
back when the student was given a hint on how to solve the problem by SQL-Tutor 
after a period of inactivity, and has managed to apply the hint successfully (i.e. the 
student satisfied the constraint for the first time in its history). In that case, the student 
will be given positive feedback on the newly satisfied constraint. Rule 3 is similar to 
the previous rule, but covers the situation when the student requested a hint, rather 
than being provided with one automatically. Rule 4 provides positive feedback on a 
constraint that a student used correctly earlier in the session, but then kept violating it. 
When the student uses that constraint correctly again, rule 4 would generate reinforc-
ing positive feedback on that constraint. Rule 5 covers a situation when a student was 
given a hint, and has consequently satisfied a constraint which was previously  
violated. Rule 6 covers a similar situation, but differs from rule 5 in the fact that the 

 

 

Fig. 2. Screenshot of SQL-Tutor providing both positive and negative feedback 
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student requested a hint. Rule 7 generates positive feedback in the case of a difficult 
problem being solved correctly, while rule 8 provides positive feedback after satisfy-
ing a difficult constraint. The rules are applied in this order. 

The content of positive feedback is determined by the underlying learning theory 
SQL-Tutor is based on [9]. A positive feedback message is similar to the negative 
one: it points to a part of the solution which is relevant, and explains the domain prin-
ciple involved. A negative feedback message in addition discusses how the student’s 
solution violates the domain principle. Regarding presentation, we decided to provide 
positive and negative feedback simultaneously. If a student’s solution was incorrect, 
but still matched some of the rules presented, positive feedback was presented first, 
followed by negative feedback. Figure 2 illustrates a situation in which the student 
received some positive feedback about join conditions, and then negative feedback, 
on the Error Flag level, pointing the student to a mistake in the FROM clause.  

4   Evaluation Study 

An evaluation study was conducted at the University of Canterbury with students 
enrolled in an introductory database course, from May 9, 2007 to June 6, 2007. The 
participants logged in to SQL-Tutor for the first time during scheduled labs, but could 
use it later at any time before the end of the study. The participants were randomly 
assigned to either the control group or the experimental group. The control group 
students received only negative feedback, while experimental group received both 
negative and positive feedback, as explained in the previous section. Out of 79 stu-
dents enrolled in the course, 55 logged into SQL-Tutor at least once, with 51 complet-
ing the (online) pre-test. The maximum mark on the pre-test was 4. There was no 
significant difference between the mean scores on the pre-test for the two groups. All 
student actions were recorded in the logs. Some students used the system for a very 
short time, and we have eliminated logs of those students who used SQL-Tutor for 
less than 10 minutes, as we assumed that this was insufficient time to produce learn-
ing effects. After eliminating these students, we were left with 41 participants who 
attempted the pre-test. Table 1 shows some statistics from the study. 

The experimental group students attempted and solved almost the same number of 
problems in significantly less time than the students in the control group, and also 
made fewer attempts at problems. The students from both groups also acquired the 
same amount of knowledge, as measured by the number of constraints learned. The 
number of learned constraints is an internal measure based on a very simple heuristic. 
The student model in SQL-Tutor stores the history of usage of each individual con-
straint. To see whether a student knows a constraint at the beginning of the interac-
tion, we take the first five attempts on it. If the student satisfied that constraint more 
than seventy percent (70%) of times when it was relevant, then we assume the student 
knows the constraint. Otherwise, we assume that the student is yet to learn that con-
straint. At the end of the interaction with SQL-Tutor, we observe the last five attempts 
taken and perform the same calculation. If the student did not know the constraint 
initially, but has now satisfied that constraint more than 70% of the time, then the 
constraint has been learned. The measure therefore only applies to newly acquired 
constraints, learned as a result of using the system. 
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Table 1. Summary of students’ interaction with SQL-Tutor 

 Control Experimental p 
Participants 23 18  
Pre-test mean (sd) 1.7 (0.8)  2.1 (1.3)  
Constraints learned 10 (6.1) 9.3 (6.8)  
Time (min) 193.8 (198.7) 92.3 (44.7) 0.012 
Problems Attempted 28 (25) 26 (15)  
Problems Solved 25 (24) 22 (15)  
Total Attempts 119 (99) 98 (66)  
Time per Solved Problem 9.8 (7.9) 5.8 (4.8) 0.024 
Time per Attempted Problem 7.5 (4.5) 4.1 (2.0) 0.002 
Lab-test mean (%) 57 (26.5) 59.3 (24.3)  

We analysed the difference in means for the two groups for each of the measures re-
ported in Table 1 using the t-test. The only significant differences are for the time spent 
with SQL-Tutor, average time per problem solved and the average time per attempted 
problem. The mean time for the experimental group is only half the amount of time used 
by the control group. While students in the experimental group spent on average 101.5 
minutes less than students in the control group, they were able to solve almost the same 
number of problems; an average of 22 solved problems in the experimental group com-
pared to an average of 25 by students in the control group. We also compared students’ 
performance on a lab test, which was an assessment item for the course, performed after 
the SQL-Tutor study. The experimental group's mean performance on the lab-test was 
slightly higher, although the difference is not significant.  

We also performed an ANCOVA analysis with time as the dependent variable, pre-
test score as the co-variate and mode (group membership), number of negative feed-
back messages seen, number of solved problems and total attempts as explanatory 
variables. All factors together accounted for 86% (R2=0.862) of the variability in total 
time and an interaction was noticed between mode and total time spent in the system 
(p=0.005). Also significant was the total number of attempts (p<0.0001). It is worth 
noting that prior knowledge as measured by pre-test was not a significant factor 
(p=0.392). 

To further consider the impact of all factors on learning, we performed two multi-
ple regression analyses. Of particular interest was the students’ prior knowledge as 
reflected in the pre-test score, the total time spent receiving tutoring and the number 
of feedback messages seen. The last factor consisted of the number of negative feed-
back messages seen by control group, while for the experimental group, we used the 
two factors: the number of negative and the number of positive messages. The num-
ber of learned constraints was used as a measure of learning. The results are shown in 
Table 2. The number of participants was low for this kind of analysis; however, we 
plan to repeat the study in 2008 and have a larger data set. Therefore the following 
results should be taken with caution. For the experimental group, the model we ob-
tained including all four predictors accounted for 77% of the variance, with time con-
tributing most. The number of positive feedback messages is the only (marginally) 
significant predictor, and accounts for 6% of the variance. For the control group, the 
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model with three predictors explains 71% of the variance, and the number of negative 
feedback messages is the only significant predictor. 

These results suggest that the students’ prior knowledge did not affect the average 
number of constraints learned and did not explain a significant portion of the variance 
in the learning for any of the groups. We see that the strongest predictor of learning in 
the case of the experimental group is the number of positive feedback messages seen, 
while in the case of the control group, the strongest predictor turns out to be the num-
ber of negative feedback messages seen. It is not surprising that negative feedback is 
the strongest predictor of learning, for this is a rather common finding in educational 
research; however it is interesting that positive feedback turns out to be the strongest 
predictor for the experimental group. It shows that student's learning is influenced 
considerably by positive feedback messages received and that the more positive feed-
back messages a student receives, the more they are likely to learn (β=0.625). This 
evidence supports directly the hypothesis of this research; that positive feedback 
works by reducing uncertainty in student knowledge, decreasing the number of future 
errors by strengthening weak knowledge and in some cases creating new knowledge. 
The high correlation between learnt constraints and time also supports this, r=0.74 for 
the experimental and r=0.68 for the control group. 

Table 2. Multiple regression results for constraints learned 

 R2 change β 
Pre-test 0.015 (ns)  0.083 (ns) 
Time 0.458 (p<0.001) -0.285 (ns)  

Control 
(R2=0.714) 

Negative feedback 0.241 (p=0.001) 1.080 (p=0.001) 
Pre-test 0.000 (ns) -0.036 (ns) 
Time 0.560 (p=0.001) 0.075 (ns)  
Negative feedback 0.143 (p=0.021) 0.203 (ns) 

Experimental 
(R2=0.766) 

Positive feedback 0.063 (p=0.083) 0.625 (p=0.083) 

We also performed a multiple regression of the lab-test scores using the same fac-
tors as a basis for comparison (Table 3). The models (containing all predictors) ob-
tained account for 19% and 76% of the variance for the control and experimental 
group respectively. Unlike our previous findings with learned constraints, we found 
that student prior knowledge marginally significantly predicts lab-test scores for both 
groups. In the case of the control group, prior knowledge accounts for 13% of the 
variance. In the experimental group prior knowledge accounts for 57% of the variance 
but interestingly positive feedback is also marginally significant, accounting for 12% 
of the variance. Given the very low correlation between learned constraints and lab-
test scores, and the findings of the learned constraint multiple regression analysis, 
these findings are not at all surprising. They reveal that students sitting the lab-test are 
influenced strongly by other sources of knowledge outside of that taught by SQL-
Tutor. Despite this however, positive feedback still appeared to be a significant factor 
again supporting our hypothesis that positive feedback increases learning. 
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Table 3. Multiple regression results for lab-test score 

 R2 change β 
Pre-test 0.134 (p=0.094) 0.375 (p=0.096) 
Time 0.002 (ns) -0.402 (ns) 

Control 
(R2=0.185) 

Negative feedback 0.050 (ns) 0.502 (ns) 
Pre-test 0.569 (p<0.001) 0.546 (p=0.096) 
Time 0.052 (ns) 0.394 (ns) 
Negative feedback 0.024 (ns) -1.042 (ns) 

Experimental 
(R2=0.763) 

Positive feedback 0.118 (p=0.031) 0.885 (p=0.096) 

Figure 3 shows the learning curves for both groups. These curves show the error 
rate averaged over all constraints and all students, for each occasion when constraints 
were used. The actual data are well approximated by the power curves. There is no 
significant difference between the learning rates of the two groups, which is consis-
tent with the previous finding about the number of constraints learned. Please note 
that the learning curves show how students learn constraints as a function of the num-
ber of attempts they used the constraints, not as a function of time elapsed between 
attempts. The control group students simply needed more time to learn the same 
amount of knowledge. 

 

Fig. 3. Learning curves for all constraints 

5   Conclusions 

Starting from the observation that expert human tutors use positive feedback often, we 
modified SQL-Tutor, an ITS that teaches SQL querying, to give positive feedback. 
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The modified version of the system provides positive feedback to students in several 
situations: when they are unsure of their actions, after they successfully use a hint 
provided by SQL-Tutor (either requested or provided by the system), after learning 
difficult domain principles or completing problems correctly. We implemented a set 
of rules that take into account the student’s solution, the student model and the current 
state of interaction, and generate positive feedback.  

An evaluation study performed in an introductory database course showed that 
positive feedback does affect learning significantly. Although we have not observed a 
significant difference in the amount of knowledge learned while interacting with 
SQL-Tutor, the students who received positive feedback solved the same number of 
problems and learnt the same amount of knowledge as the students in the control 
group but in half the time of the control group. The difference in time is significant, 
thus proving the importance of positive feedback in ITSs. 
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Abstract. This paper examines the dynamics of college students’ self-
regulatory processes within self-regulated learning (SRL) and externally-
regulated learning (ERL) episodes during hypermedia learning. We re-analyzed 
and extended the results from an original study recently conducted by Azevedo 
and colleagues [1] to address four questions related to adaptivity, based on the 
temporal and dynamic deployment of self-regulatory processes by learners and 
human tutors in fostering complex science learning with hypermedia. Our ques-
tions include: (1) How does access to a human tutor affect the deployment of 
various SRL processes during learning?; (2) Which transitions between self-
regulatory processes are more likely to occur within SRL and ERL?; (3) Which 
transitions between SRL classes are more likely or less likely to occur with SRL 
and ERL learning episodes?; (4) Are there significant correlations between 
learners’ observed likelihood of transitions (between SRL processes) and learn-
ing outcomes? Lastly, we discuss implications for the design of MetaTutor, an 
adaptive hypermedia learning environment.  

Keywords: adaptivity, self-regulated learning, externally-regulated learning, 
human tutoring, dynamic processes, cognition, metacognition, complex science 
learning. 

1   Introduction 

Traditional computer-based learning environments (CBLEs) such as ITSs are effec-
tive to the extent that they can adapt to the needs of individual students by systemati-
cally and dynamically scaffolding key learning processes [2-4]. The ability of these 
environments to provide adaptive, individualized scaffolding is based on an under-
standing of how learner characteristics, system features, and the mediating learning 
processes interact during learning in particular contexts. A critical aspect of providing 
individualized instruction is scaffolding, or instructional support in the form of 
guides, strategies, and tools, which are used during learning to support a level of un-
derstanding that would be impossible to attain if students learned on their own [5,6]. 
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Despite our ability to provide adaptive scaffolding to students learning about well-
structured tasks with traditional CBLEs [e.g., 2], providing adaptive scaffolding to 
students’ learning about conceptually-challenging domains such as the circulatory 
system remains a challenge for hypermedia instruction [3,7-10]. We argue that har-
nessing the full power of hypermedia learning environments will require empirical 
research aimed at understanding what kinds of scaffolds are effective in facilitating 
individualized instruction, and when they are best deployed [8,10-11].  

In this paper we present a re-analysis of a human tutoring study conducted by 
Azevedo, Greene, and Moos [1]. The original study examined the effectiveness of 
self-regulated learning (SRL) and externally regulated learning (ERL) on college 
students’ learning about a science topic with hypermedia during a 40-minute session. 
A total of 82 college students with little knowledge of the topic were randomly as-
signed either to the SRL or ERL condition.  Students in the SRL condition regulated 
their own learning, while students in the ERL condition had access to a human tutor 
facilitating their SRL. The researchers converged product (pretest-posttest declarative 
knowledge and qualitative shifts in participants’ mental models) with process (think-
aloud) data to examine the effectiveness of SRL versus ERL. Analysis of declarative 
knowledge measures showed that the ERL condition group mean was significantly 
higher than the SRL condition group mean on both a labeling (heart components) and 
blood flow diagram task. There were no statistically significant differences between 
groups on a matching (circulatory system components to definitions) task, but both 
groups showed statistically significant increases in performance. Further analyses 
showed that the odds of being in a higher mental model (as measured by an essay 
task; see [1]) posttest group were decreased by 65% for the SRL group as compared 
to the ERL group. In terms of SRL behavior, participants in the SRL condition en-
gaged in more use of selecting new information sources, re-reading, summarizing, 
free searching, and enacting control over the context of their learning. In comparison, 
the ERL participants engaged in more activation of prior knowledge, use of feeling of 
knowing and judgment of learning, monitoring progress toward goals, drawing, hy-
pothesizing, coordination of information sources, and expressing task difficulty.  

While this study contributes to several fields by demonstrating the effectiveness of 
human tutors as effective external regulating agents in facilitating college students’ 
learning about complex and challenging science topics, its process data can be further 
analyzed to examine and predict the types of SRL processes that are used by learners 
while learning alone (SRL condition) and with a human tutor (ERL condition). As 
such, this papers aims to address questions: (1) How does access to a human tutor 
affect the deployment of various SRL processes during learning?; (2) Which transi-
tions between SRL processes are more likely to occur within SRL and ERL? (3) 
Which transitions between SRL classes are more likely or less likely to occur with 
SRL and ERL learning episodes? (4) Are there significant correlations between learn-
ers’ observed likelihood of transitions between SRL processes and learning out-
comes? The foundations for these questions and analyses are based on the following 
theoretical [12-15] and empirically-based [11,14,16-17] assumptions. First, the key to 
understanding individualized instruction is through examining the temporal and dy-
namic deployment of SRL processes during learning both by the learners and human 
tutors [see 5-6,18]. Second, the deployment of SRL processes involves several (a) 
macro-level classes of processes related to planning, monitoring, learning strategies, 
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and methods of handling task difficulties and demands; and that each class can be 
further sub-divided into (b) micro-level processes (e.g., planning involves activating 
prior knowledge, creating and coordinating sub-goals, and recycling goals in working 
memory [WM] [1,7,14,19-20]. This multi-level hierarchical analysis of the temporal 
and dynamic unfolding of SRL processes is key to understanding adaptivity during 
learning. Third, the deployment of these processes can be detected, and traced, mod-
eled using a variety of cognitive on-line trace methodologies (e,.g., think-alouds, 
emote-alouds, log file traces) and subsequently modeled using AI and computational 
linguistics algorithms to build adaptive learning environments capable of scaffolding 
learners’ SRL and complex learning [18,21]. Fourth, both learners and human tutors 
deploy self-regulatory processes that reflect the learning situation and may be driven 
using particular scaffolding methods, tutoring scripts, etc. [7,11].  

2   Method 

2.1   Participants 

Participants were 82 non-biology college majors from a large public mid-Atlantic 
university in the United States who took part in a recent study published study by 
Azevedo and colleagues [1].  The mean age of the participants was 21 years. 

2.2   Paper and Pencil Materials 

Paper and pencil materials for the experiment included a participant informed consent 
form, participant demographic questionnaire, and identical circulatory system pretest 
and posttest.  The pre/posttest were identical to those used by Azevedo and colleagues 
[1] and included a matching task, a labeling task, and a blood flow diagram task.   

2.3   Procedure 

Participants were randomly assigned to either the SRL (n = 45) or ERL condition (n = 
37). Participants were given 20 minutes to complete all of the circulatory system 
pretest measures and then immediately given the learning task by the experimenter, 
which involved learning with a commercially available hypermedia environment to 
learn about the circulatory system for 40 minutes.  Participants in both the SRL group 
and the ERL group received the learning task instruction verbally from the experi-
menter, as well as in writing on a sheet of paper that was available throughout the 
learning session (See [1, p. 75]) 

Participants in the ERL condition, in addition to receiving this instruction, had ac-
cess to a human tutor who scaffolded student’s SRL by prompting participants to: (1) 
activate their prior knowledge (PKA); (2) create plans and goals for their learning and 
to monitor the progress they were making toward the goals; and (3) deploy several 
key SRL strategies, including summarizing, coordination of informational sources, 
hypothesizing, drawing, and using mnemonics.   

A tutoring script was used by the human tutor in the ERL condition to guide deci-
sion making in when prompts should be used and what kind of prompts to implement, 
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given the current learning situation.  This script was created based on previous litera-
ture on human tutoring [5,6,18] and recent empirical findings from studies on SRL 
and hypermedia [7,12]. For more information about the tutoring script, please see [1, 
p. 72]. After the learning task, each participant had 20 minutes to complete the post-
test measures. 

2.4   Coding and Scoring of Product and Process Data 

Pretest and Posttest scoring procedure. The procedure for scoring the matching, 
labeling, and blood flow tasks was identical to that used in [1]. 

Learners’ think-aloud protocols and regulatory behavior. The raw data collected 
from this study consisted of 54.1 hours of audio and video recordings from 82 partici-
pants.  A modified coding scheme from Azevedo and colleagues [8,12] was used to 
code participants’ verbalizations in this study. Several recent theoretical models of 
SRL [13,15,20] informed the coding scheme’s use of the following five classes of 
variables:  planning, monitoring, strategy use, handling task difficulty and demands, 
and interest.  Planning involves creating approaches to learning and setting goals, and 
activating knowledge of the task and contextual conditions.  Monitoring involves 
metacognitive awareness of the dynamic conditions of the task, context, and self.  
Strategy use involves active deployment of learning strategies in pursuit of a learning 
goal.  Handling task difficulty and demands includes efforts to control and regulate 
different aspects of the task and context.  Finally, interest includes statements about 
learner interest in the task or content domain. Descriptions of each SRL variable, the 
class that each variable belongs to, and examples of each variable can be found in [16, 
p. 67-69].  

Azevedo & colleagues’ SRL model was used to segment the think-aloud data for 
coding corresponding SRL variables to each segment.  This resulted in 11,567 seg-
ments (M = 141.1 per participant; SD = .97) to be coded in the next phase.  A research 
assistant trained on Azevedo and colleagues’ coding scheme then assigned a single 
SRL variable to each coded segment. There was agreement on 6,784 out of 6,941 
segments (58% randomly sampled from the 11,567 segments), yielding an inter-rater 
agreement of .98.  Any remaining disagreements were resolved through discussion 
between the two independent coders. 

3   Results and Discussion 

3.1   Question 1. How Does Access to a Human Tutor Affect the Deployment of 
Various SRL Processes During Learning? 

Descriptive statistics for the proportional usage of each SRL process, by condition is 
presented in Table 1. The table only displays the top ten most frequently used SRL 
processes for each learning condition. The SRL group most frequently summarized, 
controlled the learning context by using features of the hypermedia environment to 
enhance reading of text, inspection of the diagrams, and manipulate the embedded 
animations, and took notes. By contrast, those in the ERL group most often expressed 
feelings of knowing (FOK), activated prior knowledge, and sought help from the 
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human regulating agent. It stands to reason that learners in the ERL group would 
demonstrate greater use of help-seeking than those in the SRL group, due to the pres-
ence of the regulating agent. As described earlier, part of the tutoring script the tutor 
adhered to included prompts to activate prior knowledge and monitor their progress 
throughout the learning session, which could explain these learners’ use of feeling of 
knowing and prior knowledge activation to regulate their learning.  

Table 1. Conditional probabilities of the most common SRL processes 

 SRL Group  ERL Group 
SRL Behavior 

 M SD  M SD 
Summarization 0.16 0.11 0.08 0.05 
Take notes 0.13 0.15 0.08 0.07 
Control of context 0.13 0.1 - - 
Feeling of knowing 0.08 0.06 0.16 0.07 
Re-reading 0.08 0.07 0.03 0.04 
Judgment of learning 0.05 0.05 0.09 0.04 
Select new information source 0.05 0.04 - - 
Prior knowledge activation 0.04 0.04 0.14 0.09 
Content evaluation 0.03 0.05 - - 
Subgoal generation 0.03 0.04 - - 
Help seeking behavior - - 0.1 0.07 
Coordination of information sources - - 0.05 0.03 
Read notes - - 0.03 0.04 
Drawing - - 0.03 0.03 

3.2   Question 2. Which Transitions between SRL Processes Are More or Less 
Likely to Occur within SRL and ERL Episodes? 

We utilized the likelihood metric (L) developed by D’Mello, Taylor, and Graesser 
[22] as an analytical measure to compute the probability of any SRL behavior transi-
tioning into another SRL behavior. 

L explicitly accounts for the base rate biases of the destination SRL behavior in as-
sessing the likelihood of a transition from a source SRL behavior to a destination SRL 
behavior. L is computed as: 
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−

−
=  (1) 

A value of 1 means that the transition will always occur; a value of 0 means that the 
transition’s likelihood is exactly what it would be given only the base frequency of 
the destination state. Values above 0 signify that the transition is more likely than it 
could be expected, and values under 0 signify that the transition is less likely. 

For this and subsequent analyses, only transitions between the most frequent SRL 
processes were considered. Using the ten processes most often employed in the SRL 
group and the ten most often used in the ERL group, this resulted in 100 possible 
transitions per group. Analyses were run separately on the SRL data and the ERL data 
to determine which transitions within each group were more (or less) likely to occur 
than base rate of that group only.  

Specifically, for each participant, we computed the likelihood (L) value for each of 
the 100 SRL transitions. A one-sample, two-tailed t-test was then utilized to assess 
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whether the mean L was statistically significantly higher or lower than a hypothesized 
mean of 0 (chance level). To correct for Type I errors, Bonferroni correction was 
used, resulting in a p-value threshold of .0005 (.05/100). This analysis revealed 15 
significant transitional likelihood metrics for the ERL group’s SRL behavior, and four 
significant transitional metrics for the SRL group (See Table 2). For example, within 
the SRL class monitoring, it was significantly more likely that, in the ERL condition, 
feeling of knowing would follow judgment of learning. The remaining positive (or 
more likely) transitions within the ERL condition are all for transitions where the 
participant remains in a given state (e.g. prior knowledge activation → prior knowl-
edge activation). Participants in the ERL condition appear to persist in a certain learn-
ing strategy (or planning process) more than learners in the SRL condition.  

Table 2. Likelihood metrics for each significant transition between SRL codes, by learning 
condition 

SRL Class and Transition 
ERL Likelihood 

Mean(SD) 

SRL Likeli-
hood 

Mean(SD) 

Planning   
Prior Knowledge Activation (PKA) → PKA 0.142(.157) - 
Sub-goal generation → Sub-goal generation - -0.049(.040) 

Monitoring  
Judgment of Learning → Feeling of Knowing 0.132(.206) - 

Learning Strategies  
Coordination of Info→ Sources → Read Notes -0.030(.039) - 
Draw → Read Notes -0.036(.041) - 
Draw → Summarize -0.086(.056) - 
Draw → Take Notes -0.072(.095) - 
Read Notes → Draw -0.044(.039) - 
Read Notes → Help Seeking Behavior -0.083(.078) - 
Read Notes → Read Notes 0.279(.283) - 
Read Notes → Summarize -0.095(.061) - 
Re-read → Read Notes -0.028(.035) - 
Re-read → Sub-goal generation - -0.037(.042) 
Summarize → Prior Knowledge Activation -0.093(.119) - 
Summarize → Summarize 0.139(.193) - 
Take Notes → Prior Knowledge Activation - -0.030(.032) 
Take Notes → Read Notes -0.029(.037) - 
Take Notes → Take Notes 0.173(.236) - 

Handling Task Difficulty & Demands  
Control of Context → Take Notes - -0.079(.127) 

* Empty cells indicate this transition was not significant within this learning condition. 

3.3   Question 3. Which Transitions between SRL Classes Are More or Less 
Likely to Occur within SRL and ERL Episodes? 

For the analyses on transitions of SRL classes (See section 2.5), all possible transi-
tions between the five classes of SRL behavior (planning, monitoring, learning strate-
gies, handling task difficulty and demands, interest) were considered, resulting in a 
total of 25 possible transitions. Analyses were run separately on the SRL data and the 
ERL data to determine which transitions within each group were more (or less) likely 
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to occur than base rate of that group only. Separate one-sample t-tests were run on the 
likelihood metrics (described in the coding and scoring section) to determine which 
transitions had likelihoods which were significantly different from zero. Due to the 
number of tests run in each analysis, the Bonferroni correction was used, resulting in 
a p-value threshold of .002 (.05/25). This analysis revealed five significant transi-
tional likelihood metrics for the ERL group’s SRL behavior, and one significant tran-
sitional metric for the SRL group (See Table 3). As with the SRL codes, the ERL 
participants evidenced more likelihood of remaining in the same SRL class (i.e. Plan-
ning → Planning, Learning strategies → Learning strategies). This indicates that 
access to a human tutor influences participants to continue using a similar SRL proc-
ess (within the same class of SRL), whether through explicit prompts or positive 
feedback from the human tutor, or due to the sheer presence of the tutor.  

Table 3. Likelihood metrics for each significant transition between SRL classes, by learning 
condition 

    ERL SRL 

Class Transition 
Likelihood 
Mean(SD)

Likelihood 
Mean(SD) 

Planning → Planning 0.124(.150) - 
Planning → Learning Strategies -0.196(.240) - 
Monitoring → Learning Strategies -0.107(.184) - 
Learning Strategies → Task Difficulty and Demands - -0.041(.080) 
Learning Strategies → Learning Strategies 0.162(.132) - 
Learning Strategies → Planning -0.080(.076) - 

* Empty cells indicate this transition was not significantly different from zero within this learn-
ing condition. 

3.4   Question 4. Are There Significant Correlations between Participants’ 
Observed Likelihood of Transitions (between SRL Processes) and Learning 
Outcomes? 

This section describes a set of Spearman’s Correlation coefficients which were assessed 
to determine if there was a relationship between the transition likelihood metrics obtained 
from the ERL participants and performance on the three learning measures. We restricted 
the correlational analyses to include only those transitions which were significant in the 
initial testing of the process transitions within the ERL condition (See Table 2). Each 
correlation is between one of the learning measure’s gain score (posttest minus pretest) 
and the likelihood metric of one transition from one SRL process to the next (See section 
2.5). We obtained four significant correlations between performance on learning meas-
ures and likelihood of transitions between SRL processes. First, there was a significant 
negative correlation (ρ = -.40, p = .04) between the likelihood of occurrence of drawing 
→ summarization and performance on the matching task, which entailed matching 13 
circulatory system components with their corresponding definitions. Also, the likelihood 
of reading notes → drawing was significantly negatively correlated with both the label-
ing gain scores (ρ = -.58, p = .01), in which participants labeled 14 parts of the heart on a 
diagram without a word bank, and the blood flow gain scores (ρ = -.54, p = .01), in which 
participants filled in the order of components of the circulatory system in blood flow, 
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using a word bank. Finally, there was a significant negative correlation between the like-
lihood of the occurrence of summarization → prior knowledge activation and the label-
ing gain scores (ρ = -.40, p = .02). 

4   Implications for the Design of MetaTutor: An Adaptive 
Hypermedia Learning Environment for Learning about Science 

MetaTutor is an adaptive hypermedia 
learning environment that is currently 
being developed by Azevedo and his 
research team (Cai, Graesser, Lewis, 
Lintean, McNamara, Rus, Smith, and 
Witherspoon). It focuses on teaching 
students self-regulated learning (SRL) 
processes in the context of learning 
about science topics such as the hu-
man circulatory system. Theoretically, 
it is based on models and frameworks 
of SRL [3,8,12-14,19-20]. The under-
lying assumption of MetaTutor is that 
students should regulate key cognitive, metacognitive, motivational, social, and affec-
tive processes in order to learn about complex and challenging science topics.  

The purpose of MetaTutor (see Figure 1 above) is to examine the effectiveness of 
animated pedagogical agents as external regulatory agents used to detect, trace, 
model, and foster students’ self-regulatory processes during learning about complex 
science topics. The design of MetaTutor is based on Azevedo and colleagues’ exten-
sive empirical results with hundreds of adolescents and college students that show 
that students’ learning about a challenging science topic with hypermedia can be 
facilitated if the students are provided with adaptive human scaffolding that addresses 
both the content of the domain and the processes of SRL. 

The results from these analyses of the dynamics of SRL behavior within SRL and 
ERL indicate that access to a human tutor affects the micro-level deployment of SRL 
processes throughout a learning session. Overall, results indicate that learning strate-
gies are the most commonly used self-regulatory processes used during hypermedia 
learning followed by monitoring processes. In addition, results also show differences 
in the deployment of commonly used self-regulatory processes between conditions. 
Learners in the SRL condition tend to use fewer classes (i.e., strategy and methods of 
handling task difficulties and demands) while those in the ERL condition tended to 
use all five classes of SRL processes. These findings align with SRL frameworks and 
models [e.g., 13,15,20] and augment these models by providing evidence of the exact 
nature and classification of these processes. The transitional analyses indicate that 
learners in the ERL condition tended to remain in a certain state (persist with a certain 
SRL process or class) beyond base rates for these processes, indicating that these 
learners either chose, or were prompted, to continue employing a certain learning 
strategy at various times throughout the learning task. None of the transitions in the 
SRL condition demonstrated higher likelihood of occurrence than base rates. This 
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seems to suggest a certain amount of uncertainty to these learners’ self-regulation. 
Information processing models (i.e. [20]) hypothesize that SRL is a constant inter-
change between monitoring processes and the control processes (related to learning 
strategies). Lack of evidence of a strong likelihood of transition from monitoring to 
learning strategies (or vice versa) within this data set suggests that these learners are 
not following the pattern of SRL which is prescribed within these models. Lastly, the 
negative correlations in this analsis seem to indicate that there are certain learning 
strategies such as drawing, reading notes, and summarization that should not be pre-
ceded by other strategies (summarization, drawing) and the activation of prior knowl-
edge. This emerging evidence suggests that adaptive hypermedia environments 
should detect and trace these specific transitions during learning and offer student 
feedback to select other SRL processes.  

Taking into account the previous findings [1] as well these more in-depth analyses, 
we assert that an adaptive hypermedia learning environment should simulate this 
human tutor as closely as possible. This will involve generating a learner model adap-
tively, tracing learners’ paths within the hypermedia environment, comparing student-
set learning goals (as well as learning goals provided by the system) with the content 
in various sections of the hypermedia environment, and prompting learners to monitor 
cognitive, task, and affective conditions and use effective learning strategies.  
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Abstract. A previous study showed that pedagogical agents that offer feedback 
with appropriate politeness strategies can help students learn better [21]. This 
work studied the Politeness Effect in a foreign language intelligent tutoring sys-
tem, and provided further evidence that tutorial feedback with socially intelli-
gent strategies can influence motivation and learning outcomes. 
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1   Introduction 

Reeves and Nass have proposed the Media Equation hypothesis [20], which states that 
people respond to media, including computer-based media, as they do to other people. 
They argued that designers of computer systems should take this similarity into ac-
count. Researchers in intelligent learning environments have then begun to investigate 
how the Media Equation might apply to educational software. Lester et al. [15] con-
ducted a study in which an animated pedagogical agent named Herman the Bug facili-
tated learning in an intelligent learning environment named Design-a-Plant. They 
posited the Persona Effect, that an animated pedagogical agent with a life-like persona 
and expressed affect could facilitate learning.  

A number of pedagogical agent investigations have been conducted, seeking to un-
derstand the Persona Effect in more detail, and replicate it in a range of learning  
domains [9][18]. The results of these studies have been mixed. André et al. [1] dem-
onstrated that an animated agent could help reduce the perceived difficulty of instruc-
tional material, and Bickmore [3] reported that subjects liked an animated agent that 
responded socially to them. But in neither study the agent yield differences in learning 
gains. Further studies [2][8][16] suggested that it was the voice of the animated agent 
that influenced learning, not the animated persona at all. 

The animated persona itself may not be the primary cause of the learning effects of 
animated agents. Rather, if as Reeves and Nass suggest learners respond to pedagogi-
cal agents as if they were social actors, the agents’ effectiveness should depend upon 
whether or not they behave like social actors.  
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Human tutors make extensive use of social intelligence when they try to satisfy 
learner’s cognitive needs while motivating and supporting learners [14]. Porayska-
Pomsta (2004) observed that expert human tutors use a wide range of strategies to 
phrase criticism so that it can indirectly “get the message through” without “hurting 
learner’s motivation”. She linked the “indirectness” in the feedback to the notion of 
politeness and tried to use the politeness theory [4] to explain the various strategies 
used by the tutor to phrase the tutorial feedback.  

Politeness theory holds that people in all cultures have face wants: a desire for 
positive face (the desire to be approved of by others) and for negative face (the desire 
to be unimpeded by others). Many interactions between people, such as requests or 
instructions, potentially threaten face, and so people employ a range of politeness 
strategies to mitigate face threat and lessen an utterance’s impact on positive or nega-
tive face. A series of studies of how human tutors interact with learners [10][11] 
found that human tutors use a range of tactics to address students’ face. 

Although politeness theory describes tutorial interaction at the tactical level, there 
is much more to tutorial interaction than face threat mitigation. Human tutors phrase 
their feedback comments to avoid negative impact on learner face and actively seek to 
influence learners’ underlying motivational and affective states.  

Researchers in motivation in learning e.g., [13], have identified several factors that 
promote learner motivation, including the so-called 4 Cs: confidence, curiosity, chal-
lenge, and control. Lepper & Woolverton [14] studied highly effective tutors in reme-
dial mathematics education, and found that they employed motivational tactics to 
promote and optimize the 4 Cs. There is a close correspondence between the face 
wants identified by Brown and Levinson and some of these motivational factors. 
Negative face is related to control, so tactics that address learner negative face may 
also influence learner sense of control. Positive face is related to self-confidence; if 
learners have a sense that others approve of their performance, they are more likely to 
be more confident of their own performance. Thus, the politeness tactics that we ob-
served in our studies of human tutors can be viewed as part of the tactical repertoire 
that tutors can employ to promote learner motivation. 

Wang et al [21] applied the media equation hypothesis to the socially intelligent 
behavior of the pedagogical agent, in particular the use of politeness strategies. The 
study showed learners who received polite tutorial feedback achieved better learning 
results than those who received direct feedback. This effect is termed the Politeness 
Effect. Later, McLaren [17] applied the politeness strategies to intelligent tutoring 
systems in real classroom environment and failed to replicate the Politeness Effect.  

In this paper, we present our investigation of the use of politeness in the context of 
a foreign language intelligent learning environment - Tactical Iraqi1 [12]. The main 
question we want to address is: “How does politeness influence learning?” Our hy-
pothesis is that pedagogical agents with proper politeness strategies can improve stu-
dent’s learning result by promoting student’s motivation. 

                                                           
1 Tactical IraqiTM is a registered trademark of Alelo Inc. in the United States and other coun-

tries. 
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2   Tactical Iraqi 

Tactical Iraqi is one of several game-based courses developed by Alelo TLT LLC., 
based on earlier prototypes developed at the Information Science Institute of Univer-
sity of Southern California. It is a training system that supports individualized lan-
guage learning and helps military service members who may have no knowledge of 
foreign language and culture quickly acquire functional communication skills. 

Tactical Iraqi includes three modules: the Skill Builder, the Mission Game and the 
Arcade Game. The Skill Builder consists of interactive lessons and exercises, and 
interactive game experiences. Learners use headset microphones to interact with the 
software, along with a keyboard and mouse. Lessons, exercises, and game experi-
ences all involve speaking in the target language; speech recognition software is used 
to interpret the learner’s speech. 

Learners are introduced to concepts of language and culture in the Skill Builder 
lessons, and practice and apply them in the Arcade Game and Mission Game. The 
current study focuses on Skill Builder only. More information on the Arcade Game 
and Mission Game could be found in [12].  

2.1   Feedback in the Skill Builder 

To study tutor feedback in Tactical Iraqi, we videotaped sessions of human tutoring in 
the context of Tactical Iraqi. Analysis of the videos revealed six different types of 
tutoring feedback:  
 

□ Acknowledgement/Criticize: acknowledge that the learner action is correct or 
incorrect.  

□ Elaborate: explains a language fact relates to learner’s action. 
□ Suggest Action: offers hints to the student for the next step. 
□ Recast: when learner makes a mistake, instead of explicitly criticizing the ac-

tion, tutor simply demonstrates the correct action. 
□ Encourage Effort: feedback aims to elicit more effort from learner. 
□ Consolation: consoles the student by saying his errors are expected. 
 

We decided to implement acknowledgement/criticize, elaborate and suggest action 
in two types of Skill Builder pages: vocabulary pages and exercise pages. We de-
signed recast as part of Suggestion – suggesting learner to listen to tutor speech again. 
Tutor strategies purely for motivational purpose (Encourage Effort and Consolation) 
are not included in the study. 

2.1.2   Feedback on Vocabulary Pages 
User interaction on a pronunciation page consists of listening to the tutor’s phrase, 
recording learner’s own speech, playing back the learner’s speech and receiving feed-
back about the recorded phrase. We designed the feedback on vocabulary pages with 
the following structure: 
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The learner’s speech is first processed by a speech recognizer. The feedback model 
receives the recognized phrase and compares it to tutor’s phrase. If it matches then the 
Judgment of Learner Action is “correct”, otherwise it’s “incorrect”. The second com-
ponent of the feedback – Learner Action – displays the phrase recognized by the 
speech recognizer, e.g. “It sounds like you said ‘as-salaamu 9aleykum (Hello)’.” The 
third component of the feedback offers the learner a suggestion on what to do next: 
practicing the utterance more, listening to the tutor speech or moving on for now. An 
example of the complete feedback could be “Your pronunciation is incorrect. It 
sounds like you said ‘as-salaamu 9aleykum (Hello)’. Try again.” 

2.1.3   Feedback on Exercise Pages 
There are three types of exercise pages: utterance formation pages, multiple-choice 
pages and match-item page. User interaction on an utterance formation page consists 
of recording a response in the foreign language to a question and receiving feedback 
regarding the answer. Multiple-choice page consists of a multiple-choice question. 
Match-item page presents learner with match-item questions. Learner matches a list 
of phrases in Iraqi Arabic to their translations in English. The structure of feedback on 
utterance formation pages is shown below. 

 

 
 

The first and third components are similar to the ones for pronunciation feedback. 
The second component – elaboration – presents analysis of learner’s answer. The 
lesson XML, which defines the pages in the Skill Builder, also includes possible cor-
rect and likely incorrect answers to questions on an exercise Page. The feedback 
model retrieves the analysis from the lesson XML based on the answer recognized. 
An example of the complete feedback would be “Incorrect. ’li sh-sharaf’ is used to 
formally accept an invitation, and not to respond to a new acquaintance. Try again.” 

Feedbacks like the example above can create threats to learner’s face. Judging 
learner action, especially in the case of criticism, can threaten the learner’s positive 
face. Suggesting action, e.g. “Try again” on the other hand, can threaten learner’s 
negative face. To mitigate the face threat, we designed a series of politeness strategies 
for the feedbacks based on Brown & Levinson’s politeness theory, as shown in Table 
1. Examples of these politeness strategies are listed in Table 2. 

Table 1. Politeness strategies in Skill Builder feedback 

Feedback Component Politeness Strategies 

Judgment of Learner Action 
Exaggerate, Common Ground, Conventionally 
Indirect, Be Vague, Understate, Impersonalize 

Learner Action or Elaboration Impersonalize 

Suggestion 
Common Ground, Tautology, Question, Imper-
sonalize 
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Table 2. Examples of politeness strategies 

Politeness Strategy Example 
Exaggerate Great job!  
Common Ground Let’s practice this a little bit more before we move on. 
Be Vague Looks like someone got the right answer! 
Understate This utterance needs a little bit more work. 
Question How about we listen to the tutor’s speech again? 
Tautology Practice makes perfect. 
Impersonalize It might be helpful to listen to the tutor’s speech again. 
Conventionally Indirect This utterance requires more practice. 

 
 

 

Fig. 1. Feedback with appropriate politeness strategies delivered by an avatar 

To apply the politeness strategies, a database containing phrase templates for each 
feedback components using different politeness strategies is created. The feedback 
model queries the database with feedback component type and politeness value. The 
database finds the all matches within a politeness value range, selects one at random 
and returns it to the feedback module. The feedback model combines the query results 
and delivers the feedback to the learner by an avatar (Figure 1). The avatar is not 
animated and no speech synthesized speech is used. The feedback is delivered in text. 
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3   Method 

Sixty-one volunteers (59% women, 41% men) from the greater Los Angeles area 
participated in the study. They were recruited by responding to recruitment posters on 
Craigslist.com and were compensated $40 for three hours of their participation. On 
average, the participants were 38.4 years old (min=21, max=63, std=11.5), with 1.6% 
of them with high school diploma, 21.3% with some college education, 50.8% with 
college degree, 8.2% with some graduate education and 18% with graduate degree.  

3.1   Design 

To investigate the effect of politeness strategies in tutorial feedback, we created two 
types of feedbacks: a polite feedback which is phrased using various politeness strate-
gies and a direct feedback which is phrased without any politeness strategies. An 
example of direct feedback is “No, that means ‘This is a sergeant.’ Try again.” An 
example of polite feedback is “It’s usually hard to get answers to this question right, 
but that means ‘This is a sergeant.’ How about we try it again?” The study was de-
signed as a between-subjects experiment with two conditions: Polite (n=31) and Di-
rect (n=30), to which participants were randomly assigned. 

3.2   Procedure 

Participants first watched a video about the Tactical Iraqi. Then participants filled out 
the pre-questionnaire packet. The experimenter then gave a brief introduction on how 
to use the Skill Builder of Tactical Iraqi. The experimenter informed the subjects to 
take the lessons in the Skill Builder in order and not to take any quizzes. Next, par-
ticipants started training in the Skill Builder in Tactical Iraqi. Participants in Polite 
condition received polite feedback while participants in Direct condition received 
direct feedback. Experimenter turned on the camcorder and left the room. One hour 
later, experimenter returned to the laboratory and ended session 1. 

The next day, participants came back and completed another hour of training. 
They were then asked to write down the name of the lessons they took in Skill 
Builder. Later participants filled out the post-questionnaire packets. Finally, they took 
the quizzes from the lessons they took in Skill Builder. 

3.3   Apparatus 

Two Dell laptop computers installed with Tactical Iraqi were setup in two separate 
rooms. A headset was connected to each laptop computers. A camcorder was setup in 
front of each laptop computers to record participants’ behavior. 

3.4   Measures 

3.4.1   Learning Gains 
Learning Gains were measured using quizzes at the end of each lesson in the Skill 
Builder. The quizzes contain three types of questions. First type of question is Utter-
ance-Formation question, where participants answer the question by recording their 
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own speech. The second type of question is Multiple-Choice question. The third type 
of question is the Match-Item question, where participants match phrases in Iraqi 
Arabic to translations in English. Each correct answer scored 1 point. Participants 
took quizzes from all the lessons that they took during the 2 hour training. 

3.4.2   Motivation 
Two indices of motivation were measured: self-efficacy and perceived autonomy. 
Self-efficacy measured both in the pre-training questionnaire (α=.829) and the post-
training questionnaire (α=.713). The difference between pre-training and post-training 
results will allow interpretation of how self-efficacy increased or decreased due to the 
training. Items from self-efficacy measure include items such as “Compare to others, I 
think I'm pretty good at learning Iraqi Arabic.” Sense of autonomy (α=.885) was 
measured only in the post-training questionnaire. Example items from autonomy 
measure include “I feel the system was deciding what I should do next for me.”  

3.4.3   Individual Difference 
Individual characteristics were measured in an attempt to test their possible interac-
tion with the Politeness Effect. These individual characteristics include extraversion 
[5], openness [7], conscientiousness [5], preference for indirect help (α=.286) and 
attitudes toward language learning [6]. 

4   Results 

Data from seven sessions were excluded. Two sessions were excluded because com-
puter crashes and speech recognizer malfunctions. One session was excluded because 
participant’s hearing and speech impairment. Four other sessions were excluded be-
cause participants “cheated” on the post-test. In Tactical Iraqi Skill Builder, lessons 
and quizzes are always accessible to the user. At the beginning of each experiment 
session, participants were instructed to not to take any quizzes. Immediately before 
the post-test (quizzes), participants were instructed not to review the lessons before or 
during the quizzes. Log data from Tactical Iraqi showed that participants from the 
four excluded sessions either took the quizzes before the post-test, or reviewed  
the lessons during the quizzes. As a result, data from 50 participants was included in 
the analysis, 25 from the polite condition and 25 from the direct condition. Student T-
test was used to compare results from polite and direct group. 

4.1   Learning Results 

Overall, we did not find significant difference between polite and direct group on 
overall quiz scores (p=.626, Mpolite=7.08, SDpolite=4.00, Mdirect=6.56, SDdirect=3.48). We 
then broke down the comparison of learning performance to different types of quiz 
questions. On utterance-formation questions, there is significant difference between 
polite and direct group (p=.037, Mpolite=5.08, SDpolite=2.66, Mdirect=3.64, SDdirect=2.06). 
On other two types of questions, we did not find significant differences: multiple 
choice questions (p=.180, Mpolite=1.92, SDpolite=1.78, Mdirect=2.68, SDdirect=2.15), 
Match-item questions (p=.183, Mpolite=.08, SDpolite=.28, Mdirect=.24, SDdirect=.52). 
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Match-item question scores are extremely low because there were only a couple of 
them in the quizzes. And they only appear in quizzes of later lessons. Few participants 
encountered them in the post-training learning test. 

4.2   Motivation Results 

We compared change of self-efficacy to learn Iraqi Arabic from before two learning 
session. We found significant results on self-efficacy change (p=.045, Mpolite=.848, 
SDpolite=.856, Mdirect=.366, SDdirect=.803). On autonomy, we did not find significant 
differences between two groups. (p=.838, Mpolite=3.04, SDpolite=1.04, Mdirect=3.11, SDdi-

rect=1.45). 

4.3   Individual Differences 

Two-way between groups analysis of variance were conducted to explore the impact 
of individual differences and polite treatment on learning and motivation. Medium 
splits were conducted on the individual differences variables to divide each variable 
into two categories.  

4.3.1   Motivation to Learn Foreign Language 
We found a marginally significant main effect of motivation to learn foreign language 
on change of self-efficacy to learn foreign language (F(1, 46)=3.93, p=.053, 
Mgroup1=.49, SDgroup1=.80, Mgroup2=.84, SDgroup2=.90, η2 =.108). This means that self-
efficacy of participants with higher motivation to learn foreign language increased 
more than those with lower motivation to learn foreign language. The interaction 
effect (F(2, 46)=3.58, p=.065) did not reach statistical significance. The main and 
interaction effects for motivation to learn foreign language on other autonomy and 
learning were not statistically significant. 

4.3.2   Preference for Indirect Help 
The main effect of preference for indirect help on learning outcomes and motivation 
were not statistically significant. The interaction effect of preference for indirect help 
and polite treatment on learning outcomes and motivation were not statistically sig-
nificant. 

4.3.3   Extroversion 
The main effect of extroversion on learning outcomes and motivation were not statis-
tically significant. The interaction effect of extroversion and polite treatment on learn-
ing outcomes and motivation were not statistically significant. 

4.3.4   Intellect 
There was a statistically significant main effect for intellect on the overall quiz score 
(F(1, 46)=11.28, p=.002, η2=.197), Utterance-formation question quiz score (F(1, 
46)=6.11, p=.017, η2=.117) and Multiple-Choice quiz score (F(1, 46)=9.15, p=.004, 
η2=.166). This means that participants with higher self-reported intellect performed 
better on the learning test than participants with lower self-reported intellect. The 
main effects of intellect and self-efficacy and sense of autonomy were not significant. 
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The interaction effects of intellect and polite treatment on any of the quiz score 
measures were not significant. The interaction effects of intellect and polite treatment 
on self-efficacy and sense of autonomy were not significant. 

4.3.5   Education 
The analysis of variance show that the effect of education on overall quiz scores was 
significant (F(1, 46)=5.53, p=.023, Mgroup1=6.17, SDgroup1=3.22, Mgroup2=8.50, 
SDgroup2=4.45) and the effect size was moderate (η2=.107). The interaction between 
education and politeness on overall quiz score was also statistically significant (F(2, 
46)=4.41, p=.041), but the effect size was small (η2=.087). For the participants with 
lower education, those who received polite treatment did not differ those who re-
ceived direct treatment on their overall quiz score (MPolite=5.89, SDPolite=2.87, MDi-

rect=6.47, SDDirect=3.66). For participants with higher education, the difference be-
tween those who received polite treatment and those who received direct treatment 
did not reach statistical significance either (MPolite=10.83, SDPolite=5.00, MDirect=6.75, 
SDDirect=3.29). We did not find any significant effect of education on self-efficacy and 
sense of autonomy. The interactions between education and politeness on self-
efficacy and sense of autonomy were not statistically significant. 

5   Discussion 

This paper has presented an investigation of the Politeness Effect in a foreign lan-
guage tutoring system. Our results showed that on utterance-formation questions in 
the quizzes, those who received polite treatment did significant better than those who 
received direct tutorial feedback. 

In Tactical Iraqi Skill Builder, not all exercises are alike. The exercises in Tactical 
Iraqi are designed to progressively prepare learners to apply their skills in conversa-
tion. The focus of Tactical Iraqi curricula is to develop spoken communication skills. 
It provides learners with a progression of exercises that start with basic recognition 
and recall, and progress toward spoken conversation. The utterance-formation quiz 
questions are the ones that require learner to answer the question by recording their 
own speech. They are much more difficult and complex than multiple-choice and 
match-item questions, and are closer to real-life language use. The results shown here 
are similar to the study on Persona Effect [15] in that the polite agent helped learner 
perform better on only complex problems.  

Our results also show that participants who received polite tutorial feedback in-
creased their self-efficacy more than those who received direct tutorial feedback. This 
is consistent with our hypothesis. However, we did not observe significant difference 
between polite and direct group on self-report of sense of autonomy. This is likely to 
be because the study was carried out in only in the Skill Builder of Tactical Iraqi. The 
Politeness Effect, if it exists, is not likely to apply identically to all learners in all 
learning environments. In the Skill Builder, there is relatively little scope for learners 
to exercise their autonomy. They either speak the language correctly or they do not. 
And they can either move on or continue practicing. Politeness tactics that focus on 
learner autonomy may therefore have limited effect. 
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Several individual differences showed influence on the learning result, although 
very few showed interactions with the polite and direct experiment manipulation. It 
was not surprising that participants with higher motivation to learn foreign language 
showed higher increase of self-efficacy to learn Iraqi Arabic than those who with 
lower motivation. The influences of intellect and education are quite interesting, indi-
cating that participants who consider themselves highly intellectual or received higher 
education learned better. However, there were small to none interaction with the ex-
periment manipulation. Contrary to the findings in [21], we did not find preference for 
indirect help to have much influence on either learning or motivation. This may be 
because the instrument to measure preference for indirect help has low inter-item 
reliability (α=.286).  

There are several limitations to current study. The learning gains were measured 
right after the training. Even though the utterance-formation quizzes are close to real-
life conversations, measures in a role-playing interview maybe a more comprehensive 
measure of communication skills. The version of Tactical Iraqi used in the study was 
in its early development stage. Speech recognizer error could potentially reduce the 
credibility of the feedback. 

In conclusion, designers of educational software should consider carefully how po-
liteness strategies apply to their particular application. In interactive applications that 
provide feedback, there are typically many opportunities to employ politeness tactics. 
Conversely, system developers and content authors who neglect politeness issues may 
unintentionally introduce messages that threaten learner face.  Attention to politeness 
issues may result in improved learner performance, as well as improved learner atti-
tudes and motivation. 
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Abstract. Rapid and widespread development of computerised learning tools 
have proven the need for further exploration of the learners’ personal character-
istics in order to maximise the use of the current technology. In particular, this 
paper looks at the potential of accounting for spatial ability in ERM-Tutor; a 
constraint-based tutor that teaches logical database design. Our evaluation study 
shows no conclusive results to support a difference in effectiveness of the tex-
tual versus multimedia feedback presentation modes with respect to the stu-
dents’ spatial ability. However, we observed a number of trends indicating that 
matching the instruction presentation mode towards the students’ spatial ability 
influences their perception of the system and motivation to use it, more than 
their learning gain. 

1   Introduction 

Intelligent Tutoring Systems (ITSs) are effective learning tools due to the adaptive 
pedagogical assistance they provide. They make decisions about the timing and con-
tent of teaching actions and feedback to each student based on their individual state. 
Students differ in their strategies, approaches, and capabilities for learning and proc-
essing cognitive information. Although it is evident that such personal characteristics 
play a vital role in the learning process, only a small number of studies have investi-
gated the effects of accounting for them in ITSs. For example, Conati et al. [1] use the 
Five Factor personality traits (openness to experience, conscientiousness, extraver-
sion, agreeableness and neuroticism) in representing different personality types and 
goal priority in a Dynamic Bayesian Network. This network is then used to maintain 
an assessment of the student’s current emotional state. In contrast, EDUCE [2] uses 
the Multiple Intelligence learning characteristics (logical/mathematical, ver-
bal/linguistic, visual/spatial and musical/rhythmic) in order to provide a customized 
learning path. 

In this paper, we describe a project which focuses on the spatial ability, a psycho-
metric construct [3] essential to activities related to spatial reasoning, such as the 
ability to manipulate images or spatial patterns into other arrangements [4]. Learners 
with high spatial abilities perform better with graphic or spatially-oriented content 
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than those with low spatial ability. It is worth noting, however, that a low spatial abil-
ity score is not a deficit; there is evidence that it can be improved through training and 
practice [5, 6]. Nevertheless, changing ITSs to accommodate low spatial ability learn-
ers could be more practical and beneficial for the system/domain’s problem-solving 
task. That is, learners with different spatial abilities should receive different types of 
content. 

This paper presents an approach to support learners’ spatial ability in ERM-Tutor 
[7], a constraint-based ITS [8] that teaches logical database design (i.e. the algorithm 
for mapping conceptual to logical database schemas). We start by presenting some 
relevant work in Section 2. Section 3 gives an overview of the tests we used to meas-
ure spatial ability, while the following section presents ERM-Tutor and the modifica-
tions made in this project. We then describe the preliminary study and the results 
obtained in Section 5, followed by conclusions and future work in the final section. 

2   Related Work 

Personal characteristics are a major factor in learning. Many theories exist regarding 
how individuals process and encode information differently, such as Richard Mayer’s 
theory of multimedia learning [9-13]. Mayer defines multimedia as the presentation of 
material using both words and pictures, and proposes that presenting verbal explana-
tions alone in instructional situations is less conducive to learning for some students 
than presenting verbal explanations in conjunction with pictures [9]. Subsequently, he 
defines a multimedia instructional message as communication that makes use of our 
dual learning channel [14, 15] which is intended to foster learning. 

Figure 1 shows a representation of the dual channel theory. One channel is dedi-
cated to processing words, whether printed or spoken, and the other is for processing 
pictorial forms. Based on this assumption, along with the assumptions that each chan-
nel has a limited capacity and require active processing, Mayer defines the Cognitive 
Theory of Multimedia Learning [10]. The theory states that learning occurs when 
learners attend to relevant incoming information (sensory memory), select and organ-
ise important information and integrate it with their prior knowledge (working mem-
ory) into mental representations (long-term memory). Mayer argues that making use 
of both visual and auditory channels when presenting learning instructions aids in 
deep, or meaningful, learning, indicated by good retention and transfer performance. 
His rationale is that when presenting a message combining an image and text, the 
information is effectively being perceived and processed twice (once through each 
channel). Moreover, the words and pictures complement each other, aiding the learner 
to mentally encode and integrate the information. 

It is evident, however, that learners have different cognitive styles and abilities. 
Some people learn better with visual methods of instruction, whereas others learn 
better with verbal methods of instruction. The question that arises is whether present-
ing the same instructional information, based the multimedia theory, is beneficial for 
both groups of people? Or does it overload the mental processing of some people or 
even confuse them? More importantly, if learners process information differently, 
then how can an instructional environment be tailored to better suit their individual 
needs? Is it actually beneficial to customise digital instructional environments? 
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Fig. 1. Information processing via dual learning channels (Figure 3.2 from [9]) 

These are also some of the questions that Mayer considered. As the result, he 
documented a number of principles for designers of instructional environments to 
follow in order to make the maximum use of the learners’ dual channels. For exam-
ple, the coherence principle states that students learn better when extraneous words, 
pictures and sounds are excluded rather than included (i.e., presentations should be as 
clear and concise as possible to minimise mental processing overload). The principle 
that is of most interest to us however, is the individual differences principle, which 
states that “[multimedia] design effects are stronger for low-knowledge learners than 
for high-knowledge learners and for high spatial learners rather than from low spa-
tial learners” (p. 161) [10]. This is because high-knowledge learners are able to use 
their prior knowledge to compensate for the cognitive processing needed to integrate 
the information received by the dual-channel. On the other hand, low-spatial learners 
must devote so much cognitive capacity to mentally integrate the information. There-
fore, it is the combination of the learners’ spatial ability and level of knowledge that 
influences their meaningful/deep learning. 

3   Measuring Spatial Ability 

Spatial ability is important in multimedia learning [10], as the learner needs to encode 
spatial information from sensory memory, maintain an internal representation in 
working memory, and perform spatial transformations in order to integrate the infor-
mation in long term memory. There has been an interest in finding a correlation be-
tween individuals’ spatial ability level and their gender and age. Studies investigating 
such correlation, for example testing spatial memory and spatial navigation through a 
novel environment, showed a male advantage for spatial performance, suggesting that 
spatial ability is one of the most reliable of all cognitive gender differences in humans 
[16], as well as an age related decline in performance [17]. 

The learners’ spatial ability and the type of content representation directly affect 
the learners’ cognitive load, level of concentration and motivation. Steinke et al. [18] 
investigated the usage of 3D models in a hypermedia learning system on plant and 
animal cell biology. They found that participants with high spatial ability levels spent 
more time on task-relevant content, whereas those with low spatial abilities spent 
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more time with the 3D models. Low spatial ability participants experience more diffi-
culties in using 3D models and are easier distracted from task-relevant content. More 
interestingly, high spatial ability participants had a more positive attitude towards 3D 
content, thus confirming that a high subjective involvement results in a positive influ-
ence on the knowledge gain. 

Psychometric tests (such as [19-21]) used for determining spatial ability typically 
consist of paper-and-pencil tasks requiring inspecting, imagining or mentally trans-
forming shapes or objects at the figural scale of space [22]. These tests do not provide 
a discrete value on the spatial ability scale, but rather a relative position within a sam-
ple group that determines high or low classifications. We explored short versions of 
two tests from the battery of cognitive tests developed by Ekstrom, French, and Har-
man [19]: a ten-item Paper Folding Test intended to evaluate a component of spatial 
ability called visualisation, and an eighty-item mental Card Rotation Test which 
evaluates spatial orientation. Each test has a three-minute time limit and is suitable for 
ages 13-18. 

4   ERM-Tutor 

Constraint-based tutors enhance learning in a variety of domains, such as database 
querying (SQL-Tutor [23]), database design (ER-Tutor [24]) and data normalization 
(NORMIT [25]). ERM-Tutor [7] is a tutor in which students practice the algorithm 
for mapping conceptual database schemas (i.e. ER diagrams) into relational schemas. 
Each step in the algorithm maps one ER concept by either creating a new relation or 
altering previously created relations by adding foreign keys and attributes [26]. 

The interface (Figure 2) enables students to view problems, work on their solutions 
and receive feedback. The problem-solving area is the main part of the page, and its 
general layout is the same for all steps. First, there is a short description of the stu-
dent’s task for that step. For example, for step two the task text reads “Map all the 
weak entity types”. This is basically to remind the student what is required in this step, 
rather than be educational material in its own right. The problem is presented to the 
student as an ER diagram, but the student also has an option of seeing a textual de-
scription of the database, by clicking the Problem Text button. Underneath the dia-
gram, brief instructions on what is expected in this step and how to use the input 
boxes to create or alter a table are presented. At any time, the student can view the 
solution developed so far by clicking the Completed Tables button. This pops up a 
window containing all the relations defined by the student. 

The student creates or alters one relation at a time. Each step of the algorithm is 
broken into subtasks. For example, in step one, the student maps one regular entity 
type at a time, and the system checks the resulting relation before moving on to the 
next entity type. Figure 2 illustrates a situation when the student has mapped the 
MEETING weak entity type, and has specified a relation (with the same name) with 
three attributes (timing, id and description). For each attribute, the student can specify 
whether it is a primary and/or foreign key. When the student completes the relation, 
he/she can request the system to check the solution. If there are any mistakes in the 
solution, ERM-Tutor provides feedback. In Figure 2, the system informs the student 
that there are some missing attributes representing foreign keys from the owners of 
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the MEETING weak entity type. If the solution is correct, the student can move on to 
the next entity type, or to the following step of the algorithm. 

The feedback/help area occupies the top right side of the screen. A help page is 
displayed by default when a task page is first displayed. This provides a textual de-
scription of how to use the interface. When the student submits a solution, the help 
page is replaced by the appropriate feedback. Based on the feedback level chosen 
(hint, explanation, list all errors, or full solution), the system informs the student 
whether their solution was correct or not, and provides hints for correcting the errors. 
The help page can be redisplayed any time by clicking on the Help button. 

Influenced by Mayer’s work, we created a new version of the system. The original 
ERM-Tutor only provides text-based feedback. Following the multimedia learning 
theory, we decided to incorporate a pictorial aspect in the messages; for each feed-
back message, we created a graphically annotated version. 

 

Fig. 2. Screenshot of ERM-Tutor 

Being a constraint-based tutor, each feedback message in ERM-Tutor is associated 
with a constraint. In other words, each constraint has a feedback message which is dis-
played when the constraint is violated. Consequently, each message provides a hint  
on how to satisfy its particular constraint. To make the original and the newly created 
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messages comparable, we kept the text identical in both versions. The only difference is 
the addition of a pictorial representation in the new version. Figure 3 shows the multime-
dia (text and picture) version of the second feedback message given in Figure 2. A total 
of 112 images were created, each corresponding to a single feedback message. In addi-
tion, ERM-Tutor was modified to cater for both versions of feedback and prepared for an 
evaluation study described in the following section. 

 

Fig. 3. An example feedback message in the multimedia form 

5   Evaluation Study 

We preformed an evaluation study with students enrolled in an introductory database 
course at the University of Canterbury in March 2007. Our hypothesis is that students 
with a high spatial ability level will benefit more from multimedia feedback than 
students with a low spatial ability, given the same background knowledge. As each 
student’s spatial ability level (either high or low, as opposed to the actual value) is 
determined relatively to the sample group, we conducted a preliminary study in the 
previous year to calculate the students’ spatial ability median score and we made the 
assumption that the students’ samples from both years will be comparable. This score 
was used as the threshold in classifying students as having high/low spatial abilities. 

Each participant was allocated to one of the versions of the system, providing ei-
ther textual or multimedia feedback. The experiment allows for a 2x2 comparison: 
textual messages for high (TH) and low spatial ability students (TL), and multimedia 
messages for high (MH) and low spatial ability students (ML). 

The study was conducted in two sessions of scheduled labs on ER mapping, 
straight after students had attended lectures on the topic. Each participant attended 
one of the sessions, and worked with ERM-Tutor individually, solving problems at 
their own pace. At the start of a session, the students were given an information sheet 
describing the study, a consent form, and a pre-test on paper (with a maximal score of 
eight) consisting of four multichoice questions and a mapping question. To make the 
results of the pre-test and post-test comparable, two tests were used; students in the 
first session used version A as the pre-test and version B as the post-test and students 
in the second session used the reverse. 

When a student logged onto the system, they were presented with a set of instruc-
tions explaining the two spatial ability tests, and a sample problem. Additionally, for 
each test, they were asked to rate own ability on a scale of 1 to 5 before sitting the 
tests. They had three minutes to solve the problems in each test. Once the spatial tests 



 Investigating the Relationship between Spatial Ability and Feedback Style in ITSs 287 

were completed, or their time was up, the students were allocated to the appropriate 
version of the system and were asked to use it, solving as many problems as they 
would like. At the end of the session, students were asked to fill in a post-test and a 
questionnaire about the system. Finally, the students were encouraged to use the sys-
tem at any time until the end of the course. 

A total of 43 students submitted both pre and post tests. The mean score for all stu-
dents on the pre-test was 4.3 (sd=2.2) and post-test was 5.2 (sd=2.2), resulting in a 
significant improvement in their performance (t=3.4, p<0.001). The scores for the 
different groupings of students are given in Table 1. The analysis indicated that there 
was statistically significant difference between the students’ performance in the pre- 
and post- tests by those in the HT (t=−3.4, p<0.005), LM (t=−2.0, p<0.05) and HM 
(t=−1.8, p=0.0553) groups. However, there was no significant difference for the LT 
(t=−0.2, p=0.4365) group. A closer look at the LT group shows that its students have 
a higher pre-test score, with a mean of 5.8 (sd =1.1), and hence they improved the 
least in comparison with the other groups, scoring means of HT: 4.2 (2.4), LM: 3.6 
(2.1) and HM: 4.2 (2.3). Although we hoped for an ideal setting of comparable 
groups, this imbalance in prior knowledge between the four groups was unavoidable. 

Furthermore, ANOVA analyses across the pre and post- tests of the four groups did 
not yield any significant difference, indicating that all groups improved in a similar 
manner regardless of the feedback mode presented or their spatial ability. This sug-
gests that presentation modes have similar influence on performance regardless of the 
spatial ability; that is, all students, whether low or high spatial, improved in perform-
ance regardless of the feedback mode they were given. We suspect however, that 
although ANOVA analysis on the pre-test did not indicate significant difference, the 
higher pre-test in the LT group has an influence on these statistical tests. 

Table 1. Mean (sd) pre-test and post-test scores for all classifications of students 

t-test: Paired Two Sample for Means 
Classification 

No. Pre-test Post-test t-stat P-value 
LT 8 5.8 (1.1) 5.9 (2.5) -0.2 0.4365 
HT 12 4.2 (2.4) 5.7 (1.8) -3.4 0.0029 
LM 12 3.6 (2.1) 4.5 (2.1) -2.0 0.0385 
HM 11 4.2 (2.3) 5.1 (2.5) -1.8 0.0553 
Textual (LT HT) 20 4.8 (2.2) 5.8 (2.0) -2.2 0.0185 
Multimedia (LM HM) 23 3.9 (2.2) 4.9 (2.2) -2.7 0.0070 
Low (LT LM) 20 4.5 (2.1) 5.0 (2.2) -1.4 0.0840 
High (HT HM) 23 4.2 (2.3) 5.4 (2.2) -3.6 0.0008 
Matched (LT HM) 19 4.8 (2.2) 5.4 (2.5) -1.4 0.0954 
Unmatched (LM HT) 23 3.9 (2.2) 5.1 (2.0) -3.8 0.0005 

The tests for the rest of the groupings show either a statistically or marginally sig-
nificant difference in students’ performance between the pre- and post- tests scores. 
The p-values produced show that unmatched groupings scored a higher significant 
confidence than the matched groupings. A closer look at the figures show that the 
matched groupings had a higher pre-test mean score of 4.8 (sd = 2.2) than the  
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unmatched groupings (mean=3.9,sd=2.2). This difference was verified as marginally 
significant using a two-sample assuming unequal variances t-test (t=1.5, p=0.0759). A 
further test within the matched groupings, comparing the pre-test scores between the 
LT and HM groups indicated a significant difference (t =2.0, p<0.05). 

We did find, however, an interesting trend in the data after analysing the students’ 
log files and their interaction with the system. We looked at the total time interacting 
with the system, number of attempted problems, number of solved problems, percent-
age of solved problems and the total number of attempts/student solutions submitted 
(Table 2). We found that the HM group had a consistently higher mean for all these 
types of interactions, followed by the HT group, then the LT group and lastly the LM 
group with the lowest mean. The four groups came out in the same order for all the 
types of interactions we examined. Although the difference in numbers is quite small 
and statistically insignificant, this trend is in line with Mayer’s theory that high spatial 
students will benefit more from multimedia presentation. In other words, the high 
spatial students appreciated and used the system more when they received multimedia 
feedback messages, whereas the low spatial students were less inclined to use the 
system when they received the multimedia feedback messages. 

Table 2. Summary of means (sd) of system interaction results 

 LT HT LM HM 
Total time (min) 62 (27.3) 72.7 (37.3) 57.7 (29.8) 72.2 (31.8) 
Attempted problems 6.9 (6.3) 8.8 (5.0) 4.8 (3.0) 9.1 (5.0) 
Solved problems 4.4 (5.0) 6.5 (4.6) 3.2 (3.8) 7.2 (4.5) 
% solved problems 61.2 (36.8) 69.4 (26.1) 53.4 (43.2) 72.9 (21.3) 
Total attempts 118.4 (97.7) 130.1 (73.2) 69.7 (46.6) 148.5 (90.7) 

 
The same trend is reflected by the students’ perception of the system indicated by 

their subjective results. Table 3 shows the mean responses to the 1 to 5 Likert scale 
questions of the four groups, where 1 represents the most negative response and 5 the 
most positive response. Again although the difference is not statistically significant, it 
seems that the LM group consistently reported the lowest ratings for the system, find-
ing it more difficult and less interesting than the other groups. An interpretation of 
this could be that because the LM group spent more cognitive effort processing the 
feedback messages and hence enjoyed ERM-Tutor the least. 

Table 3. Summary of means (sd) of subjective results for ERM-Tutor 

 LT HT LM HM 
Overall quality 3.8 (0.7) 3.7 (0.7) 3.0 (1.1) 3.7 (0.8) 
Terrible-Wonderful 3.4 (0.9) 3.5 (0.9) 2.9 (0.8) 3.6 (0.7) 
Difficult-Easy 3.3 (1.0) 3.4 (0.8) 2.8 (1.1) 3.0 (0.8) 
Boring-Fun 3.2 (1.0) 3.4 (0.9) 3.3 (0.8) 3.2 (0.8) 
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6   Conclusions 

This paper looks at the potential of incorporating a multimedia representation of 
ERM-Tutor’s feedback messages and evaluating the impact of various styles of feed-
back messages on learning in respect to the students’ spatial ability levels. In the 
evaluation study, we presented students with one of the two feedback presentation 
modes, either textual or multimedia. We analysed the students’ performance with 
respect to their spatial ability level and feedback mode they received. The results 
indicate that all students improved in their domain knowledge after interacting with 
ERM-Tutor. However, we did not find statistically significant difference between the 
pre- and post- tests scores across the four groups (LT, HT, LM and HM). Although 
we allocated similar number of students to each group, we were unable to control for 
the students’ prior existing knowledge that influence their gain scores between their 
pre- and post- tests. 

We observed a number of trends in the collected data. In particular, there was a 
tendency for students with high spatial ability who received multimedia feedback to 
interact the most with the system, and students with low spatial ability to interact the 
least with the system. Moreover, there was no noticeable difference between students 
receiving textual feedback regardless of their spatial ability. These findings indicate 
that, in terms of interactions with the system, the textual feedback had the same effect 
on students, whereas the multimedia messages had a greater effect on the high spatial 
students than on the low spatial students. We also note that students in the matched 
groups enjoyed interacting with the system more and were more motivated than those 
who were not matched. On the other hand, students in the unmatched groups had a 
higher learning gain than those who received matched type of feedback, based on the 
post-test scores. Although our contributions towards accounting for the students’ 
spatial ability lack statistically significant measures, there is evidence that matching 
the presentation of instruction towards the students spatial ability has an influence on 
their perception of the system and motivation to use it, more than their learning gain. 

Our analyses suggest that although students have a range of spatial ability skills, 
their preferences could be different than their ability levels. It is therefore, worth fur-
ther investigating whether students have a differing preference to their capabilities. If 
this is evident, then we suspect that allowing the students to choose their preferred 
feedback presentation mode would increase their motivation and influence a positive 
affective state. 
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Abstract. To approximate more closely effective human tutors, intelligent tu-
toring systems should adapt not only to a student’s knowledge but also her 
learning style. We introduce a pedagogical framework that incorporates the 
Felder-Silverman learning style model and validated instrument for assessing 
individual learning style. The framework provides a feedback infrastructure 
based on the learning style model dimensions (such as visual, verbal, intuitive, 
sensor, etc.). It has been implemented as part of the DesignFirst-ITS, helping 
novices learn how to design a class in UML from a problem description.  The 
system has been evaluated with high-school students and results show that 
learning style based feedback helps students realize higher learning gains. 

Keywords: Learning styles, pedagogical module, feedback, user model, intelli-
gent tutoring system, CS1, unified modeling language.  

1   Introduction 

Though ITSs are quite successful in helping students learn, they still fall short of the 
ability of effective human tutors to consider individual characteristics and preferences 
in order to customize both the tutoring content and process. The individual character-
istics and preferences of the student are dubbed individual learning style. For the ITSs 
to match the success of good human tutors, ITSs need to adapt not only to the knowl-
edge level but also to the learning style of the student to maximize learning. 

Learning style refers to individual skills and preferences that affect how a student 
perceives, gathers, and processes learning materials [14]. People learn more when the 
instruction is matched to their individual learning styles [4, 6]. As a result, a number 
of adaptive educational systems have been developed that are based on learning style 
research: CS383 [3], Arthur [13], iWeaver [30], EDUCE [15]. These systems main-
tain a learning style profile for each student and use this profile to adapt the presenta-
tion and navigation of instructional content to each student.   

Developing e-learning systems that adapt to student learning styles is not a trivial 
task. Design and development challenges include selecting the appropriate learning 
style model and instrument, creating course content consistent with the various learn-
ing styles, and determining the level and degree of adaptation of domain content. It  
is even more challenging to design an ITS that adapts to individual learning style 
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because the ITS focuses more on student modeling and understanding of the domain 
knowledge rather than just the presentation mode and delivery as in adaptive hyper-
media systems. 

This paper presents a pedagogical framework that generates multidimensional 
feedback based not only on the knowledge level of the student but also on the indi-
vidual learning style of the student. The pedagogical framework is based on the 
Felder-Silverman learning style model and is implemented in DesignFirst-ITS (once 
known as CIMEL-ITS), an ITS that helps novices learn object-oriented design by 
creating UML class diagrams. Evaluation with high-school students shows that  
students made significant learning gains after using the ITS. A GUI feedback mainte-
nance tool makes it possible for teachers to add and update feedback in the ITS with-
out any programming or assistance from the ITS developer.  

The rest of this paper is organized as follows: section 2 describes related work; sec-
tion 3 gives a brief overview of the Felder-Silverman learning style model; section 4 
describes the pedagogical framework; section 5 describes DesignFirst-ITS; section 6 
describes evaluation results; and section 7 presents the conclusion and future work. 

2   Related Work 

Learning style research became very active in the 1970’s and has resulted in over 71 
different learning style models and theories. Some of the most cited theories are 
Myers-Briggs Type Indicator [23], Kolb’s learning style theory [17], Gardner’s Mul-
tiple Intelligences Theory [11] and Felder-Silverman Learning Style Theory [7, 8].  
Learning style research has been used in various settings and at different levels. In 
industry, corporations are using learning style research to create supportive work 
environments that foster communication and productivity. In academia, learning style 
research is being used for different purposes: to provide learning support to K-12 
children who are either struggling or are gifted; to help college students maximize 
their learning gain by providing them insight into how they learn; and to help instruc-
tors design courses that appeal to students of various learning styles. 

Learning style has also been integrated in adaptive e-learning environments based 
on learning style research. Adaptive e-learning systems are ideal for creating learning 
style based instructional material as they do not face the same limitations as human 
instructors who are unable to cater to individual students due to lack of resources [14]. 
Some of the adaptive systems that incorporate learning style are CS383 [3], ACE 
[25], AES-CS [27] and Flexi-OLM[18]. 

All these systems are based on different learning style models and use different 
methods to obtain a student’s learning style. One method is to have the user fill out a 
learning style questionnaire. Another method is to infer student preferences from her 
interaction with the system, such as pages the student visits and links that she follows. 
After obtaining the student learning style, these systems use that information to adapt 
the sequence and/or presentation form of the instructional material to the student.  

CS383 [3], an adaptive educational hypermedia system for a computer systems 
course (CS383), modifies content presentation using the Felder-Silverman learning 
style model. Learners fill out the Index of Learning Style questionnaire (ILS) that 
categorizes them as sensor/intuitive, verbal/visual and sequential/global. For example, 
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sensor learners like facts while intuitive learners prefer concepts; visual learners like 
pictures and graphics while verbal learners like written explanations; sequential learn-
ers prefer step by step presentations while global learners like to see the big picture 
first. In CS383, the presentation form of the content matches the student’s learning 
style. For example, visual students are presented information in a graphical form 
while the verbal students receive the information in text form, etc.  

The Flexi-OLM system [18] models a learner’s understanding of basic C pro-
gramming based on her answers to multiple-choice and short-answer questions. The 
system supports an open learner model that enables the learner to view information 
about her skill level, knowledge and misconceptions in a choice of seven formats, 
designed according to the Felder-Silverman learning style model.  

Formal and informal evaluation studies of CS383, ACE and AES-CS suggest that 
students learn more when the system adapts to individual learning style. However, not 
all adaptive systems that incorporate learning style support the hypothesis that learn-
ing style adaptation results in increased gains. For example, evaluation studies of 
EDUCE [15] suggest that students learn more when they receive instruction that is 
mismatched to their learning style. One reason for these inconsistent evaluation re-
sults is that different systems are based on different learning style models and all 
these models have a different perspective of which individual characteristics affect the 
learning process. Another reason is that there are no set guidelines or standards that 
designers can use to create learning style based systems. Lack of standard methodolo-
gies also makes it difficult to determine the effectiveness of these systems. Yet an-
other reason could be that some adaptive hypermedia systems use learner navigation 
data to keep an updated learning style profile of the learner and the learners do not 
necessarily only browse the information format that would be considered the best 
match for their learning style. 

3   Felder-Silverman Learning Style Model 

The Felder-Silverman Learning Style Model [7] categorizes a student’s learning style 
on a sliding scale of four dimensions; sensor-intuitive, visual-verbal, active-reflective 
and sequential-global. Table 1 summarizes learning environment preferences of typi-
cal learners from each of these four dimensions of the Felder-Silverman model.  

The Index of Learning Styles (ILS) instrument supports the Felder-Silverman 
learning style model by categorizing individual learning style preferences along four 
different dimensions of the model [10]. The ILS is a questionnaire containing 44 
questions, 11 questions corresponding to each of the four dimensions of the learning 
style model. Each question is designed to determine if a respondent tends to belong to 
one category or another on that dimension. It does so by asking the respondent to 
choose only one of two options where each option represents a category. Since there 
are 11 questions for each dimension, a respondent is always classifiable along each 
dimension. The range of data for each dimension is from 0 to 11. Since there are four 
dimensions and each dimension has two poles there are 16 possible combinations, i.e. 
types of learner, in this model. However, the learning style dimensions of this model 
are continuous and not discrete categories at each pole. The learner’s preference on a 
given scale does not necessarily belong to only one of the poles and may be strong, 
mild, or almost non-existent.  
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Table 1. Felder-Silverman learning style model dimensions 

Active Tries things out, works within a group, discusses and explains to others 
Reflective  Thinks before doing something, works alone 
Sensor  Learns from and memorizes facts, solves problems by well-established 

methods, patient with details, works slower 
Intuitive Discovers possibilities and relationships, innovative, easily grasps new 

concepts, abstractions and mathematical formulation, works faster 
Visual  Learns from pictures, diagrams, flow charts, time lines, films, 

multimedia content and demonstrations 
Verbal Learns form written and spoken explanations  
Sequential  Learns and thinks in linear/sequential steps 
Global Learns in large leaps, absorbing material almost randomly   

The Felder-Silverman model was chosen for several reasons: ease of use; the Index 
of Learning Styles has been validated and provides a convenient way to assess student 
learning style [10, 19, 31, 28]; the limited number of dimensions of the model make it 
easier to incorporate it into an educational system; it has been used by educators at 
various institutions to improve education [7, 26]; many adaptive educational hyper-
media systems, such as CS383 [3], TANGOW [24], and WHURLE [2], use this 
model to adapt the course presentation and/or sequence to individual learners.  

4   Pedagogical Framework 

Our pedagogical framework is designed to provide feedback that addresses multiple 
dimensions of the Felder-Silverman model. This framework consists of two parts: a feed-
back infrastructure that contains the feedback components and a feedback generation 
process that dynamically chooses these components to create coherent feedback based on 
students’ learning style and students’ erroneous actions. This pedagogical framework 
supports multiple levels of feedback, from a gentle reminder to a detailed explanation of 
the concept. This multiple hint strategy is called “hint sequencing” [12] and it refers to a 
sequence of hint templates that are used to generate feedback. The first hint is usually 
very general. As the student continues to need help about a given concept, the hints keep 
on getting more and more specific. Many of the successful tutors such as PAT [16], an 
algebra tutor, and LISPITS [5], a tutor for LISP, use this strategy. This strategy is also 
used by successful human tutors who offer multiple levels of feedback: they tend to start 
with a general hint and proceed to more specific hints related to students’ erroneous 
actions [21].   

Unlike other systems, our system does not end up providing the solution (since a de-
sign does not have only one solution), but instead offers more help in the form of pop-up 
hints or an extended tutorial. The tutorial mode (http://designfirstui.cse.lehigh.edu:8080/ 
servlets-examples/servlet/GetLoginID) gives a student a detailed explanation of the con-
cept with examples. The tutorial mode can also help students who just want to learn a 
concept before working on their solution.  The student learning style information is ob-
tained using the Index of Learning Style instrument (ILS) [9] which the students fill out 
prior to using the system for the first time.  We now examine each part of our framework 
in more detail. 
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4.1   Feedback Infrastructure 

The feedback architecture consists of the following components that contain informa-
tion in the form that is suitable for different dimensions of the Felder-Silverman learn-
ing style model. 
 

1. Definition – This component verbally introduces definitions of domain concepts. 
This particular component is useful for many learning style dimensions such as 
verbal, sensor, intuitive. An example of this component would be “Attributes are 
characteristics of an object that persist through the life of that object.”  

2. Example – This component illustrates a given concept. It can be used for almost 
any learning style, especially the sensor style which prefers a practical approach 
to concepts. An example of feedback in this component might be “Attributes of a 
car might be its color, model, make, etc.” 

3. Question – This component contains questions that could serve as hints during 
the interactive mode. There are two different types of questions: closed-ended 
questions that require a learner to simply answer yes/no or just provide a factual 
answer, and open-ended questions that require a student to think about her prob-
lem solving behavior.  An example of a closed-ended question in this component 
might be “Is the correct data type to represent money a double?” while an exam-
ple of open-ended question would be “Why did you set the data type for money 
to string?” Open-ended questions encourage the student to reflect about her rea-
soning process. This component is important for a “reflective” type learner as it 
gently nudges her to reflect on her action. It can also be useful for intuitive, 
global, and sequential learners as the open-ended questions can lead them to 
think about the relationships between different steps/things, about the big picture 
and about the steps involved in creating the solution. 

4. Scaffold – This component nudges a learner who might be lost towards a correct 
solution by pointing her in the right direction. Often it is not enough to tell a nov-
ice that her action is incorrect; she needs guidance about where to learn more. For 
example, “Use the tutorial to learn about ‘datatypes.” This component is useful 
for global, intuitive, and sensor learners. 

5. Picture – This component contains images, animation, or video that visually 
explains a concept. For example, when teaching the data type concept, one could 
create an image consisting of transparent containers marked as int, long, double, 
string, etc. These containers could have things such as a dollar sign in the double 
container, age in the int container, name in the string container, etc. Aimed at 
visual learners, this component also helps global learners see the big picture.  

6. Relationships – This component contains information that helps a learner under-
stand how a concept fits into the overall problem solving activity.  Often learners 
understand a concept but have a difficult time understanding how it fits into the 
context of the problem. For example, a student might understand what attributes 
and methods are but might not know the relationship between the two in the con-
text of the problem.  This component is mainly for global learners.  

7. Application – This component contains information about a concept that extends 
beyond the concept definition by showing an application. For example, a student 
might know the definition of a constructor but might not know that a class could 
have multiple constructors. This component is mostly suitable for sensor learners. 
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8. Exercise – This component supports active learning through hands-on activities 
or by applying a concept. It occurs in tutorial mode rather than hint mode, for all 
learning styles. 

 

Each of these components has the following attributes that are used by the assembly 
algorithm to create feedback to be presented to the student. 
 

Concept: unique concept in curriculum associated with the student’s error;  
Related_concept: relationship concept that the student may not understand;  
Level: indicates the feedback level for which the component is designed;  
Type: component feedback type (definition, question, etc.); 
Category: component dimension (visual/verbal, active/ reflective, etc.); 
Content: name of the visual / animation file; 
Text: feedback text string; 
Times_used: how many times this component has been used; 
Status: active / inactive; 
Presentation_mode: textual / graphical. 

4.2   Feedback Generation Process 

The feedback generation process uses the feedback infrastructure, domain knowledge 
and certain inputs to generate learning style based feedback.  Feedback generation first 
selects feedback components based on inputs, then assembles a feedback message from 
the selected components.  Inputs to the selection process include the student feedback 
history, learning style profile, student model information, and current student problem 
solving action packet. The student feedback history contains all the feedback that the 
student has received for each concept in the past and the feedback components that were 
used to generate the feedback. The learning style profile categorizes the preferred learn-
ing style of the student along the dimensions active/reflective, sensor/intuitive, sequen-
tial/global or verbal/visual. The student model specifies probabilistically how well the 
student understands each concept. The current student problem solving action packet 
provides the system with the action that the student performed, the error that was gener-
ated and the concept for which the student needs feedback.    

The selection process uses these inputs to create a selection criterion which is 
then used to select feedback components from the feedback infrastructure. The selec-
tion criterion specifies information such as the concept the student needs help with, 
the presentation style of the feedback, current level of feedback and applicable feed-
back component types. Components whose attributes satisfy the selection criteria are 
chosen and put on a selected list of components. 

The assembly process uses the components from the selected component list to 
create a feedback message. A feedback message first reiterates the action the student 
performed, second tells the student if the action was correct or incorrect, and third 
gives feedback about the given concept. The assembly process applies rules to sub-
select components from selected component list. One of the rules is that only a certain 
number of components can be used for each feedback level. Another assembly rule is 
that only one visual component is allowed in each feedback message, because each 
component explains a given concept in its entirety. After selecting components based 
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on the assembly rules, the assembly process creates a feedback message by putting all 
three parts of the feedback message together. 

Generating learning style based feedback is a complex task, since the feedback 
must address the knowledge gap of the student and it must also be adapted to the 
student’s learning preference.  Besides its content, presentation of feedback also im-
pacts its effectiveness.  

Our pedagogical framework uses various dimensions of the Felder-Silverman 
learning style model to customize different aspects of the feedback. For example, the 
verbal / visual dimension is used to individualize presentation style. Verbal learners 
receive feedback in the form of written words while visual learners receive feedback 
that also emphasizes images, pictures and multimedia. The active / reflective dimen-
sion integrates hands-on activities for active learners and open-ended questions for 
reflective learners. The sequential / global dimension helps to determine if the learner 
should only receive feedback for the given concept itself or other information about 
how this concept relates to other concepts. The intuitive / sensor dimension deter-
mines whether to explain the concept abstractly or with concrete facts. 

The system maintains a cross-reference of dimensions of the Felder-Silverman 
model and components in the feedback infrastructure. The system uses this cross-
reference to choose components to generate learning style based feedback.  

5   DesignFirst-ITS 

DesignFirst-ITS is an intelligent tutoring system that provides one-on-one tutoring to 
help beginners in a CS1 course learn object-oriented analysis and design, using ele-
ments of UML [1]. DesignFirst-ITS is based on a “design-first” curriculum that 
teaches students to design a solution and the objects that comprise it before coding 
[22]. This curriculum enables students to understand and comprehend the problem 
without getting bogged down with programming language syntax. 

The Curriculum Information Network (CIN) consists of domain knowledge which 
is object-oriented design concepts. These concepts are linked together through various 
relationships such as prerequisite and equivalence and are assigned a measure of 
learning difficulty. For example, Prerequisite (class: object) shows that the concept 
“object” is a prerequisite of “class.” In other words, the student must understand what 
an object is before he can create a class.  

The Expert Evaluator (EE) interfaces with a student through the LehighUML plug-
in, created for the Eclipse Integrated Development Environment (IDE). Eclipse IDE is 
a Java development environment that can be extended by integrating plug-ins (soft-
ware modules) to provide additional functionality.  The LehighUML plug-in allows 
the student to create UML class diagrams. (A stand-alone version of LehighUML has 
also been created, for use outside of the complex Eclipse environment.) As the student 
designs a solution for a given problem in the plug-in environment, LehighUML re-
ports each student action in a database on a server.  The EE evaluates each of the 
student’s steps in the background by comparing it with its own solution and generates 
an information packet for a correct student action and an error packet for an incorrect 
action. The Student Model (SM) analyzes these packets to determine the knowledge 
level of the student for each concept and attempts to find reasons for student errors 
[29]. The SM uses this information to update the student profile and passes the  
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original packets along with the reason packet that contains possible reasons for the 
student error to the Pedagogical Advisor (PA).   

The PA is based on the learning style based pedagogical infrastructure described 
above. Taking into account the curriculum information network (CIN), the EE’s 
analysis of the student’s actions and the SM’s analysis of the student’s understanding 
of concepts in the CIN, the PA determines what feedback to provide to the student.  

6   Evaluation Experiment and Results 

DesignFirst-ITS was evaluated with 42 high-school students in the spring and summer 
of 2007 during multiple studies with identical materials. (Over 80% of the subjects 
were from underrepresented minorities and over a third of them were women.) The 
data from these studies were compiled and analyzed to determine if the learning style 
feedback resulted in bigger gains. The students who participated in the studies were 
novices to object-oriented design and programming. The evaluation procedure began 
by setting up three groups: a non-feedback group which did not receive any feedback 
at all; a textual-feedback group which received feedback in the form of plain text; and 
a learning-style-feedback group which received feedback that matched their learning 
style. The students filled out the Index of Learning Style (ILS) questionnaire, which 
the PA of DesignFirst-ITS used. The students were to learn the basic concepts of 
objects and classes and how to manipulate them in the Eclipse environment through a 
multimedia lesson. Then an instructor explained a step-by-step procedure for creating 
an object-oriented design solution for a problem description in English to generate the 
primary class, its attributes, and methods. As an assignment, the students were given a 
problem description of a movie ticket vending machine. The students followed the 
procedure to generate a solution from the problem description and to create a class 
diagram using the LehighUML plug-in and the DesignFirst-ITS.  

Prior to using the system, the students took a pre-test to measure their prior knowledge 
and to give a baseline on which to compare the post-test. The pre-test and post-test con-
sisted of fifteen multiple choice questions pertaining to definition, identification and 
application of object oriented concepts such as class, attribute, method, data type, etc. 
Then the students logged into DesignFirst-ITS and started to input their design in Le-
highUML. The students who belonged to the no-feedback group did not receive any 
feedback as their work was not supervised by the system. The textual-feedback group 
and the learning-style-feedback group both received feedback from the system as their 
designs were analyzed as they input them into the system. After the students had com-
pleted their designs, they were given the post-test.  

The paired t-test suggests that there is no significant difference (p>.05) between the 
pre-test and post-test for the no-feedback group and the textual-feedback groups. How-
ever, the t-test shows a significant difference (p<.001) between the pre-test and the post-
test for the learning-style-feedback group. The fact that there is no significant difference 
in pre-test and post-test for the no-feedback group makes sense because this group did 
not receive any help between the tests. On the other hand, the textual-feedback group 
could have shown some improvement between their test scores but  interestingly did not. 
Many factors could have contributed to this lack of improvement: small sample size, 
students did not read the feedback, students did not understand the feedback, etc. One of 
the most likely reasons is that, in general, high school students do not like to read, and the 
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students in the evaluation study did confirm that by voicing their dislike about reading 
when they were asked to read the handouts and feedback carefully. For the learning-
style-feedback group, the evaluation data shows that students who received the learning 
style feedback did realize learning gains after using the system. This result suggests that 
providing feedback in a student’s preferred learning style is certainly worth the effort it 
takes to create it.  It is also likely that students paid more attention to feedback in their 
preferred learning style. 

In addition to the pre-test and post-test, the students who received  any type of 
feedback were also given a Pedagogical Advisor evaluation questionnaire asking 
them specific questions about the feedback that they received from the ITS. The pur-
pose of this questionnaire was to determine if the students found the feedback helpful 
in identifying their errors and in fixing these errors. Other reasons were to determine 
if the students liked the visual feedback and actually understood the information con-
veyed in the images / diagrams. The results of the survey showed that 90% of students 
read the advice, 72% found it helpful in identifying the error in their design, 71% 
found it helpful in correcting their errors, 65% liked the visual images and 69% un-
derstood the information conveyed in these images. Overall, 70% students liked the 
Pedagogical Advisor feedback. 

7   Conclusions and Future Work 

We have described a general framework to provide pedagogical advice tailored to an 
individual learning style, determined with a well-established learning style model and 
a validated instrument.  We specified the overall architecture and feedback selection 
and assembly algorithm for a pedagogical advisor, which provides both popup hints 
and extended multimedia lessons. Evaluation results with high school students indi-
cate that learning style based feedback helps students realize learning gains.  

Given this general learning style framework, we develop a feedback maintenance 
tool that lets instructors add/delete feedback to this framework without programming 
or developer hand-holding (http://designfirstui.cse.lehigh.edu:8080/servlets-examples/ 
servlet/GetAdminID). Two computer science instructors have used this tool success-
fully, validating its effectiveness.   

Our most obvious future work is to demonstrate further the generality of the learn-
ing style framework and maintenance tool by applying them to other ITS domains.  
With more data, it may be also useful to determine which learning style dimension 
has the largest impact on student learning gains and to adapt feedback accordingly.  It 
might also be useful to inform a student of her learning style to see if she appreciates 
the feedback or wishes to adapt the feedback so that she can learn along alternative 
learning style dimensions. 

Acknowledgments 

This material is based upon work supported by the National Science Foundation  
under Grants No. EIA-0087977 and 0231768 and the Pennsylvania Infrastructure 
Technology Association (PITA). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily 
reflect the views of the National Science Foundation.   



300 S.M. Parvez and G.D. Blank 

References 

1. Blank, G., Parvez, S., Wei, F., Moritz, S.: A Web-based ITS for OO Design. In: Proc. 12th 
International Conference on Artificial Intelligence in Education, Amsterdam (2005) 

2. Brown, E.J., Brailsford, T.: Integration of learning style theory in an adaptive educational 
hypermedia (AEH) system. In: 11th International Conference of the Association for Learn-
ing Technology (ALT-C), Exeter, pp. 14–16 (2004) 

3. Carver, C.A., Howard, R.A., Lane, W.D.: Enhancing Student Learning through Hyperme-
dia Courseware and Incorporation of Learning Styles. IEEE Transactions on Educa-
tion 42(1), 22–38 (1999) 

4. Claxton, D.S., Murrell, P.: Learning styles: Implications for improving educational prac-
tices. ASHE-ERIC Higher Education Report No. 4. Washington: Association for the Study 
of Higher Education (1987) 

5. Corbett, A., Koedinger, K., Anderson, J.: LISP Intelligent Tutoring System: Research in 
Skill Acquistion. In: Larkin, J.H., Chabay, R.W. (eds.) Computer-assisted Instruction and 
Intelligent Tutoring Systems: Shared Goals and Complementary Approaches, pp. 73–109. 
Erlbaum, Hillsdale (1992) 

6. Dunn, R., Dunn, K.: Teaching students through their individual learning styles: A practical 
approach. Reston Publishing, Reston (1978) 

7. Felder, R.M., Silverman, L.K.: Learning and Teaching Styles. Engineering Education, 
674–681 (1988) 

8. Felder, R.M.: Matters of Style. American Society of Engineering Education (ASEE) Prism 
 6(4), 18–23 (1996) 

9. Felder, R.M., Solomon, B.A.: Learning styles and strategies (2001), 
http://www.ncsu.edu/effective_teaching/ILSdir/styles.htm 

10. Felder, R.M., Spurlin, J.E.: Applications, Reliability, and Validity of the Index of Learning 
Styles. Intl. J. Engr. Education 21(1), 103–112 (2005) 

11. Gardner, H.: Frames of Mind. Basic Books, New York (1983) 
12. Gertner, A., VanLehn, K.: Andes: A Coached Problem Solving Environment for Physics. 

In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 133–
142. Springer, Heidelberg (2000) 

13. Gilbert, J.E., Han, C.Y.: Adapting Instruction in search of ‘a significant difference’. J. 
Network and Computer Applications 22(3), 149–160 (1999) 

14. Jonassen, D.H., Grabowski, B.L.: Handbook of Individual Differences, Learning and In-
struction. Lawrence Erlbaum Associates, Hillsdale (1993) 

15. Kelly, D., Tangney, B.: Incorporating Learning Characteristics into an Intelligent Tutor. 
In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 729–
738. Springer, Heidelberg (2002) 

16. Koedinger, K.: Cognitive Tutors as Modeling Tools and Instructional Models. In: Forbus, 
K., Feltovich, P. (eds.) Smart Machines in Education, pp. 145–167. AAAI Press/MIT 
Press, Cambridge (2001) 

17. Kolb, D.A.: Experiential learning: Experience as the source of learning and development. 
Prentice-Hall, Englewood Cliffs (1984) 

18. Kyparisia, A., Papanikolaou, A.M., Bull, S., Grigoriadou, M.: Designing learner-controlled 
educational interactions based on learning/cognitive style and learner behaviour. Interact-
ing with Computers 18(3), 356–384 (2006) 

19. Litzinger, T.A., Lee, S.H., Wise, J.C., Felder, R.M.: A Study of the Reliability and Valid-
ity of the Felder-Soloman Index of Learning Styles. In: Proc. ASEE Annual Conference 
(2005) 



 Individualizing Tutoring with Learning Style Based Feedback 301 

20. Livesay, G., Dee, K., Felder, R.M., Hites, L., Nauman, E., O’Neal, E.: Statistical evalua-
tion of the index of learning styles. In: Proc. ASEE Annual Conference (2002) 

21. Merrill, D.C., Reiser, B.J., Ranney, M., Trafton, J.G.: Effective tutoring techniques: A 
comparison of human tutors and intelligent tutoring systems. Journal of the Learning Sci-
ences 3(2), 277–305 (1992) 

22. Moritz, S., Blank, G.: A Design-First Curriculum for Teaching Java in a CS1 Course, 
SIGCSE Bulletin (inroads), pp.89–93 (June 2005)  

23. Myers, I.B.: Introduction to Type. Gainsville, Fla. Center for the Application of Psycho-
logical Type (1976) 

24. Paredes, P., Rodriguez, P.: Considering Learning Styles in Adaptive Web-based Educa-
tion. In: Proc. 6th World Multiconference on Systemics, Cybernetics and Informatics, Or-
lando, Florida, pp. 481–485 (2002) 

25. Specht, M., Oppermann, R.: ACE: Adaptive CourseWare Environment. New Review of 
HyperMedia and MultiMedia 4, 141–161 (1998) 

26. Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E.: Learning styles and performance in 
the introductory programming sequence. In: Proc. 33rd SIGCSE Technical Symposium on 
Computer Science Education, pp. 33–37. ACM Press, Cincinnati (2002) 

27. Triantafillou, E., Pomportsis, A., Demetriadis, S.: The design and the formative evaluation 
of an adaptive educational system based on cognitive styles. Computers and Education 41, 
87–103 (2003) 

28. Van Zwanenberg, N., Wilkinson, L., Anderson, A.: Felder and Silverman’s Index of 
Learning Styles and Honey and Mumford’s Learning Styles Questionnaire: How do they 
compare and do they predict academic performance? Educational Psychology 20(3), 365–
381 (2000) 

29. Wei, F., Blank, G.: Student Modeling with Atomic Bayesian Networks. In: Proc. 8th Inter-
national Conference on Intelligent Tutoring Systems, Taiwan, pp. 491–502 (2006) 

30. Wolf, C.: iWeaver: Towards ’Learning Style’-based e-Learning in Computer Science Edu-
cation. In: Australasian Computing Education Conference (ACE 2003), Research and 
Practice in Information Technology, vol. 20, pp. 273–279 (2003) 

31. Zywno, M.S.: A Contribution of Validation of Score Meaning for Felder-Soloman’s Index 
of Learning Styles. In: Proc. Annual ASEE Conference (2003) 

 



B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 302–311, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Use of Agent Prompts to Support Reflective Interaction 
in a Learning-by-Teaching Environment 

Longkai Wu and Chee-Kit Looi 

National Institute of Education 
Nanyang Technological University, Singapore 

longkai.wu@gmail.com, cheekit.looi@nie.edu.sg 

Abstract. A learning-by-teaching environment (Biswas, Schwarz, Bransford et al., 
2001), can be used to create a context in which student can play the role of tutor 
through teaching the agent tutee. Without meaningful feedback from the agent, 
there is no reason to expect student’s engagement with the teaching interaction and 
growth in learning. This study tries to investigate the design of student-agent reflec-
tive interaction triggered by the agent prompts in a learning-by-teaching agent  
environment, Betty’s Brain. A pilot study in using the prompts within the agent en-
vironment is undertaken. The result gives us some preliminary evidence that the 
agent prompt support on reflective interaction can be positive in enhancing stu-
dent’s learning when pursuing learning-by-teaching activities.  

Keywords: Reflective Learning, Learning by Teaching, Teachable Agent. 

1   Introduction 

Recent research has shown the evidence of learning benefits to tutors from tutee’s ques-
tion prompts in the context of peer tutoring. Cohen, Kulik and Kulik (1982) demonstrated 
empirical evidence of learning gains for tutors compared to nontutors in the context of 
peer tutoring. King, Staffieri and Adelgais (1998) specially studied the tutor’s explana-
tions and questioning in the tutoring process as the sources for tutor’s learning based on 
high-level question stems (i.e. questions prompting for comparisons, justifications, 
causes-and-effects, evaluations, etc.). Graesser, Person and Magliano (1994) showed that 
the tutee’s occasional “deep” questions out of major “shallow” questions can stimulate 
the tutor’s deeper response.  Coleman, Brown and Rivkin (1997) demonstrated very 
similar findings in collaborative learning settings with students using high-level explana-
tion prompts. Roscoe and Chi (2004) found that in a non-reciprocal and naturalistic (i.e. 
little or no training) tutoring context, the tutee’s questions can motivate tutor explanations 
and meta-cognition, and thus have a significant and positive influence on the tutor’s 
learning activities and opportunities.  

Derived from the practice of peer tutoring, a computer-based learning-by-teaching 
environment (Biswas, Schwarz, Bransford et al., 2001), called Teachable Agent, is 
designed to offer specific advantages for research on cognitive effects of tutoring to 
tutors. In a learning-by-teaching environment, the student plays the role of a more 
capable tutor to teach a less knowledgeable computerized agent tutee by explicitly 
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instructing (e.g. modeling) and observing the agent’s independent problem solving 
activities to repair its mistakes. Biswas et al. (2005) found that students who taught 
the agent developed more integrated knowledge than those who did not. Roscoe and 
Chi (in press) remarked that, though it is not peer tutoring, the teachable agent envi-
ronment is still impressive in increasing the student’s learning gain by adding a peer-
tutoring-like format to the intelligent tutoring system. The introduction of an agent 
tutee instead of human tutee allows researchers to concentrate on the tutor’s learning 
opportunities inherent in the tutoring process. Some potential confounds, like sponta-
neous tutoring behaviors, can be obscured.   

One of the major impediments in pursuing learning-by-teaching activities, espe-
cially for middle school students, is that they are likely to be novices in their disci-
plines and lack the autonomy to generate constructive schemes to fulfill their teaching 
tasks. Therefore, they need more guidance from the environment to facilitate their 
practice (Schwarz et al., 2005). Wagster, Tan, Biswas and Schwarz (2007) proposed 
the positive effects of metacognitive feedback in affecting learner’s behavior in learn-
ing and transfer. Still few studies have examined the role of agent prompts, which can 
initiate learners’ response and self-explanation in learning and teaching. In this paper, 
we focus on the design of generating agent prompts in a learning-by-teaching envi-
ronment to initiate a reflective interaction between student and agent. We use this 
system to help students learn to monitor and improve their own learning behaviors, 
which involves student’s responses to agent prompts and self-explanations. 

The remainder of the paper is organized as follows. First, we present an overview 
of the research literature of reflective interaction between humans. Second, design 
issues of an agent prompts production schema are discussed. Third, a pilot study on 
how well these agent prompts deliver their proposed benefits to middle school stu-
dents in learning-by-teaching environment is provided. Lastly, future directions for 
this work are described. 

2   Reflective Human-Human Interaction 

The reflective human-human interaction involves tutor’s explanations and responses 
to tutee’s questions. It is a crucial element of the tutoring process (Roscoe and Chi, in 
press). Graesser and McMahen (1993) found that the tutee’s questions, which make 
the tutor notice his/her own contradiction or lack of knowledge, can promote confu-
sion or curiosity in the tutor. Schwarz, Blair et al. (2005) further proposed that people 
learn best when an interaction co-mingles with ideas, which help them see their ideas 
reflected back to them as shaped by another person’s thoughts, and this facilitates 
their ability to learn. 

Grasser, Person et al. (1995) discussed the kinds of tutee questions that occur dur-
ing tutoring, which can be divided into shallow and deeper questions. Shallow factual 
questions (“what” questions) ask definitions or simple calculations while deeper ques-
tions (“how” and “why” questions) ask causal relationships and underlying principles, 
requiring elaboration, inference and logical reasoning. Peverly and Wood (2001) 
indicated that deeper questions support learning more efficiently than shallow ques-
tions.  
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Davis (1998) proposed two types of reflection prompts, generic and directed 
prompts, which are “review” and “thinking” questions to guide the student in self 
monitoring, principle-based explanation and knowledge integration in middle school 
classroom. The students confronted to the reflection prompts were reported to learn 
more efficiently than unprompted ones.  

In summary, the literature of human-human peer tutoring suggests that the deeper 
questions the tutee asks for elaboration and integration, the more productive explana-
tions tutor responds with leading to critical thinking (Chi et al., 2001). However, no 
study has been undertaken on this relationship or has directly considered how differ-
ent questions may facilitate human-agent reflective interaction.  

3   Design of Agent Prompts Generation System 

3.1   Overview 

Our work is focusing on the generation and incorporation of meaningful agent prompts, 
which can arouse student-agent reflective interaction, in a learning-by-teaching environ-
ment. We build our work on an existing system, Betty’s Brain (as shown Fig 1.), a learn-
ing-by-teaching environment originated from the Teachable Agent Group in Vanderbilt 
University. With the ability to learn what the students have taught by concept mapping, 
Betty’s Brain is used to play the role of agent tutee in our research.  

 

Fig. 1. A Learning-by-Teaching Environment: Betty’s Brain ((Biswas, Schwarz, Bransford et 
al., 2001) 

Within the agent environment, we create a built-in agent prompt generation system 
which can analyze, as well as compare student map with expert map tailored in the 
domain of basic economics. Our goal to adapt the current version of Betty’s Brain is 
to let the agent tutee to raise meaningful question prompts, encourage student’s re-
sponses and explanation to foster reflective interaction for better learning outcomes. 

3.2   Design of Agent Prompt Generation System 

In Figure 2, the architecture of Agent Prompts Generation System is depicted with 
four major components involved, namely the Agent Prompts Generator, Map Com-
parator and Map Analyzer and the Stage Detector.  
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The Agent Prompts Generator monitors the student’s concept mapping activities 
(the student teaches Betty by producing a concept map in the agent environment) and 
plays the role of coordinator in the system. It mainly receives the results from the 
Map Analyzer and Map Comparator, selects proper prompts from the repository via 
Stage Detector and sends them to the Reflective Dialogue for students to respond to. 
Students tutor receives these prompts in an Reflective Dialogue and tries to respond 
while teaching the agent by modeling in a Concept Map Editor. 

Concept Map Editor

Reflective Dialogue

Agent Prompts 
Generator Map Analyzer

Map Comparator

Stage Detector

Student Map Expert Map

Learning Strategies

Repository 
of Agent Prompts

Student
Tutor

Agent Tutee Environment  

Fig. 2. Architecture of Agent Prompts Generation System 

Map Comparator 

Inspired by the work of Leelawong and et al. (2003), the map comparator can look for 
the following patterns: missing expert concepts, missing expert links, and incorrect 
expert links. Once a pattern is confirmed, the map comparator sends the message to 
the agent prompts generator and produces corresponding question prompts in the 
reflective dialogue component.  

We adopt a new fuzzy integration and matching algorithm (Chen, Lin and Chang, 
2001) to compare a student map ( 'M ) with the expert map ( M ). The fuzzy integra-
tion part allows one single expert map be integrated from works of several subject 
experts instead of only one, while the fuzzy matching part can take advantage of both 
propositional form and hierarchical structure in concept maps. It also has the potential 
to be better applied to students with higher performance and subjects with harder 
materials. Using this algorithm, the concept map is extended with attribute values 
which are associated with both nodes and links. The attribute values are used to re-
flect the relative significance of these concepts and relationships representing  knowl-
edge. A metric function is then applied to measure in terms of these attribute values to 
overlay parts of M and 'M  
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where ia  and 'ia  are the attribute values of corresponding nodes in  and 'in  belong-

ing to M  and 'M , respectively jb  and 'jb  are the attribute values of the corre-

sponding links jl and 'jl  in the respective maps.  
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Map Analyzer 

We propose and design a Map Analyzer to analyze the insufficiency of student map 
and then generate some question prompts for student to reflect upon. Based on previ-
ous study on students’ maps in our classroom experiments, the map analyzer, as a 
map structural information analyzing subsystem, synchronously traverses the seman-
tic structure, collects the structural information, detects the common defects, and 
checks the repository for corresponding prompts and gives the real-time prompts. For 
example, the map analyzer can analyze limited or isolated nodes, wrong directional 
links, conflict routes of pair nodes (as shown in Figure 3) and monotonous structures 
(detecting limited link types). 

 

Fig. 3. Pattern of Conflict in the Learning-by-Teaching Agent Environment 

For example, as shown in Figure 3, there is a conflict in the concept map, which 
means the reasoning following different paths engender different and inconsistent 
results. In this case, the increase of climate change will cause the price to increase 
following one path, while causing the price to decrease following the other path. Then 
the Pattern_Conflict pattern will be matched and triggers a corresponding question 
prompts asking the student to respond to the gap from the agent tutee.  

Repository of Agent Prompts and Stage Detector 

All the agent prompts are stored in a repository file in our system. Our current study 
seeks to compare two modalities of agent prompts, namely self-reflection prompts 
and agent tutee’s question prompts, in the learning-by-teaching agent environment.  

The self-reflection prompts are a series of metacognitive questions guiding student to 
reflect on learning and teaching, such as “Why should you teach?”, “How can you use 
the tools to help your student understand what you teach?”, “What do you learn from 
your student?”, and et al. These prompts are context-independent and intended to remind 
student to assume the responsibility as teacher and teach the software better.  
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We also introduce another modality of prompts, the agent tutee’s question 
prompts, in the learning-by-teaching environment, by trying to formulate reflective 
interaction between the student tutor and agent tutee. These question prompts, de-
signed from the perspective of a tutee, are intended to make the agent behave in an 
inquisitive way and stimulate the student tutor in the process of understanding, moni-
toring, misunderstanding repairing and self-explanation when dealing with the com-
plex and unfamiliar domains, 

We employed a Stage Detector working with the repository to detect the student’s 
tutoring stage, which includes before tutoring, during tutoring and after tutoring. It 
will trigger student in different cognitive and meta-cognitive aspects of when interact-
ing with the agent tutee. Sample agent tutee’s questions prompts adapted to three 
stages are as follows: 
 

• Question Prompts Triggering General Thinking before Tutoring 
o [Introduction of the background story], you are my tutor now, Can you teach me?  
o Do you feel you are prepared to teach me now?  
o What is the expectation of you for me?  
o How do you plan to teach me? 

• Question Prompts Triggering Domain Knowledge Thinking during Tutoring 
o Can you explain some concepts you taught me just now?  
o Can you check is there any error concept/link in the map you teach me? 
o Can you check if there is any conflict link in the map you teach me? 
o I need more knowledge to finish my quiz task. Teach me more, please, my tutor. 

• Question Prompts Triggering Task-Specific Thinking during Tutoring  
o Can you ask some questions related to the online resources? I am interested. 
o I haven’t been asked quiz questions. Can you ask me those? 
o I have learned a lot from you. Can you send me to take a quiz? 

• Question Prompts Triggering Reflection Assessment after Tutoring 
o Did I really learn from you? How will you evaluate your teaching work? 
o What is the most important thing you have taught to me? 
o Did you also learn something from me after you teach me? 

4   Pilot Study 

4.1   Participants and Procedure 

To assess the potential effectiveness and implications for designing agent prompts in 
a learning by teaching environment, we conducted a pilot study on 13 female students 
(five 12-year-old, three 13-year-old, four 14-year-old, and one 15-year-old) from a 
local secondary school. We chose the supply and demand in basic economics as the 
domain for students to pursue learning-by-teaching activities with Betty’s Brain.  

The 2-hour classroom pilot study was divided in 3 sessions. At the beginning of 
session 1, the students were told a background story, which requires students to help 
the Betty to pass economics exams to be prepared for assistance to her father in finan-
cial crisis. They were also introduced to basic features of the software. Then, the stu-
dents prepared themselves to teach Betty by independently reading the available  
reference materials in basic economics.  
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In session 2, the 13 students were randomly divided into three groups: teach group, 
interaction group and reflection group. Each group was asked to teach different ver-
sion of Betty’s Brain. Teach group (3 members) used the version with no prompts. 
Interaction group (5 members) used the version with agent tutees’s question prompts. 
Reflection group (5 members) used the version with self-reflection prompts. All 
members were told to teach their own agents by modeling while responding to the 
questions from the agent. They were encouraged to work independently without much 
communication among them.  

In session 3, all students were asked to write down on an interview sheet their 
thoughts on their first learning-by-teaching experience. 

4.2   Results and Discussions 

The table below presents the mean number of valid causal links and concepts in the 
student maps, as well the standard deviation, together with the density ratio of valid 
concepts by valid causal links, in each group.  

Table 1. Results of Average Valid Concepts and Links in Student’s Map 

Student map  Teach Group Interaction Group Reflection Group 
Valid Concepts 13.3 (5.5) 7 (2.6) 13.4 (7.5) 
Valid Causal Links 17 (6.1) 11 (6.9) 14.6 (7.7) 
Density Ratio of 
Valid Concepts by 
Valid Causal Links 

0.78 0.64 0.92 

 
The analysis of the maps from the 3 groups in this study indicated that the maps of 

the teach group and reflection group tend to have richer and more complete structures 
than that of the “interaction” students. Excerpts of the interactive dialogue between 
student and agent from the interaction group are as follows.  

 

   [Before Tutoring] 
○1 [Agent] Hi, nice to meet you, my tutor. I can’t understand the relevant materials well. 

Please help to read them and teach me the way I can understand. How will you com-
ment on the materials at the beginning? 
[Your Response] Okay, please pay attention and don’t be afraid to ask relevant ques-
tions.  

[During Tutoring] 
○2 [Agent when it detects that the several nodes are recently appended] It seems there 

are several concepts you have taught me. Can you choose some to explain to me? 
[Your Response] Supply is the factor of time. This is because supply relies on how 
long a trend last and how long/much the supply. Supply and demand are a factor of 
disequilibrium. When supply and demand are not equal to each other, they contribute 
to disequilibrium.  
…. 

○3 [Agent when it detects that its answering behavior is just fulfilled] I just answered 
your questions. How will you evaluate my answer? 
[Your Response] Poor. Try to paraphrase your answers 
…. 
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[Agent when it detects a conflict in the map] Is there something wrong you just teach 
me? My tutor. You seem confusing this time? 
[Your Response] NIL 
[Agent when it detects no response to previous prompt] Could you still check if there 
is any further conflict relationship in the map? 
[Your Response] No, but it is a bit confusing.  
…. 
[Agent when it detects the insufficiency of nodes/links in the map] I am always hun-
gering for knowledge. Try to teach me more, please, my tutor.  
[Your Response] Read the note. 

[After Tutoring] 
○4 [Agent] Did I understand your meaning? How will you evaluate your teaching work? 

[Your Response] My teacher and my past experience.  
[Agent] How will you evaluate your teaching work? 
[Your Response] I think not entirely. Maybe a little bit. It is my first time teaching. I 
will explore it in future.  
[Agent] What was the most important thing you tried to teach me? 
[Your Response] To let you understand what I mean 
[Agent] Did you learn something for me? 
[Your Response] Yes, you are inquisitive and ask questions when you are unsure of.  

 

Comparatively, the following are other excerpts of the interaction between a stu-
dent in the reflection group and self-reflection agent prompts.  

 

[Before Tutoring] 
○1 [Agent] What is teaching and who is it for? 

[Your Response] Teaching is a “Transference of knowledge” two way. It is for eve-
ryone.  
[Agent] Who am I teaching? 
[Your Response] Betty 
[Agent] What should we be teaching? 
[Your Response] Economics 
[Agent] Why teach? 
[Your Response] help Betty earn money 
[Agent] Who teaches? 
[Your Response] Anyone 

[During Tutoring] 
○2 [Agent] How do you want students to interact with me? 

[Your Response] Asking them questions. Getting them to explain topics 
[Agent] What resources should be found to help me teach my student 
[Your Response] websites, books, etc.  
[Agent] How can you use the tools to help my student understand what you taught? 
[Your Response] Concept maps are easy to “read” as it is something visual.  
[Agent] Do I really understand your meaning? 
[Your Response] No, you just follow the concept map as you don’t explain the rela-
tionship.  

○3 [Agent] Can you give more elaboration on the concept I just taught to my students? 
[Your Response] Yes, but I did not know how to give examples.  
[Agent] Can you give some reasons on teaching the relationship between the concepts 
just you taught me? 
[Your Response] No, I can’t. 
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[After Tutoring] 
○4 [Agent] What was the most important thing you tried to teach me? 

[Your Response] The relationships between demand, supply and price.  
[Agent] What is/are the most important thing(s) my you will learn from me? 
[Your Response] 1. How to teach using concept maps? 2. Basic concepts of demand 
or/and supply.  
[Agent] What did you learn from me? 
[Your Response] How to present my facts in a concept map? 
[Agent] What was your thinking? 
[Your Response] Focus on my goal to teach my student.  
 

The students’ self-explanations, from the reflective dialogues, give us some hints 
that a better student-agent interaction might be achieved by allowing the agent to pose 
questions to the student. These self-explanations also suggest that our designed agent 
prompts could be positive in enhancing their learning. Students are led to reflect on 
the knowledge in supply and demand, teaching tasks they are working on, past learn-
ing experiences and future learning plans.  

On the interview sheet, one student chose “Feedback from someone who is less  
capable that challenge you” as the feedback that makes her most involved in the 
learning-by-teaching environment. She also commented that “If I am not sure about 
something, Betty can help me by setting me on the right track to find the answer by 
myself”, but “there are some things that are hard to explain just by using the idea of 
increasing and decreasing.”. She also appealed that “It would be more helpful if Betty 
could provide explanations in greater details”. These feedbacks indicate that some 
more work can be done in extending the propositional representation scheme in 
Betty’s Brain, such as accommodating more types of nodes and associating links.  

5   Conclusion 

From this pilot study, it is suggested that the support of agent prompts in a learning-
by-teaching environment has the potential to engage students in a reflective interac-
tion with the agent and help them promote reflection. Students require additional 
support, like agent prompts, from the context, in efficiently understanding the general 
metacognitive skills, task-specific skills and domain knowledge system for imple-
menting learning. Feedback from the exploratory study in the secondary school class 
indicate that the idea of prompts could be successful in motivating student’s thinking 
and getting them to thinking in depth when learning on complex and unfamiliar do-
mains. More extensive studies will be conducted with a focus on how different mo-
dalities of question prompts can motivate students’ learning in the environment.  
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Abstract. This paper presents a new method to combine in the ASTUS frame-
work the advantages of generic ITSs and their standards with the usability of 
their domain-specific counterparts when faced with the problem of user inter-
face design. This method involves coupling the taught domain’s semantics with 
the interface, defining scripts to explicit problem-solving step recognition and 
specifying how relevant data is gathered from that interface. The method is ap-
plied to a classic problem solving domain to highlight its potential. 

Keywords: generic ITS, user interface, interface design, feedback, learning en-
vironments. 

1   Introduction 

From the perspective of the user interface designer, two forms of intelligent tutoring 
systems (ITS) can be distinguished.  The first focuses on offering means to model 
new learning domains and their corresponding interfaces for use within a generic ITS 
at the cost of somewhat limited usability and sophistication.  The second offer rich, 
usable interfaces but are domain-specific. Thus, providing generic ITSs with highly 
usable interfaces is a desirable end. This paper presents work aiming to achieve this 
through a new method. It is organized as follows. First, an overview of human-
computer interaction in existing ITSs is presented, followed by a presentation of our 
framework. Next, we highlight issues related to interface design and introduce our 
method. We conclude by mentioning possible improvements. 

2   Human-Computer Interaction and ITS 

When studied in the context of intelligent tutoring systems (ITS), human-machine 
interaction has to deal with the important issue of semantics. A user interface de-
signed for an ITS is the world in which the student’s problem-solving will take place 
[1]. This means that there is a strong link between the user interface design and the 
semantics of the problem-solving environment around which an ITS is built. This 
issue is at the core of the ITS design process, because the interface through which the 
semantic knowledge is represented and the procedural knowledge is practiced deter-
mines the nature of the skills the student will acquire and their correlation with the 



 A Standard Method of Developing User Interfaces for a Generic ITS Framework 313 

domain that is being taught [1].  With an adequate representation of the domain and a 
well-designed interface, the tutor may then interpret the student’s actions, evaluate 
them against a model of the solution and provide feedback in various forms when 
deemed necessary.  The realization of these services, often called the inner loop [4], 
depends heavily on the information that is fed to it: correctly identified problem- 
solving steps. 

At the threshold of the inner loop’s implementation lies the significant problem of 
inferring meaningful steps from user actions on the interface.  To accomplish that, the 
system must first detect that a step was completed, and then, gather information from 
the interface to associate parameters to that step. This process gives semantic value to 
user interactions, transforming them into steps that can be used by the tutor to assess 
the student’s progress. Some existing ITS enforce a one-to-one relationship between 
user interactions and steps. One of them is the Cognitive Tutor Authoring Tools 
(CTAT), a generic framework that provides an interface builder enriched with « tutor-
able » widgets [3]. Interacting with such a widget produces a selection-action-input 
triple, which is then tested against a set of constraints so it can be identified as the 
application of a rule prescribed by the model of the solution.1 Other systems, not 
concerned with this constraint, have dedicated interfaces. An example is the Andes 
Physics Tutoring System, in which one specific user interaction is considered an indi-
cation that a step is completed (closing a dialog box, writing in a text field, etc) [2].  
Information relevant to the step is then gathered from multiple widgets, and processed 
to produce the step’s parameters.  This process cannot be generalized easily, and it 
must be implemented for each distinct step. 

CTAT provides reusable components and an easy coupling between user interac-
tions and problem-solving steps. However, it does not allow a more coarse-grained 
step as is the case with Andes, in which many user interactions may be required to 
prepare the information relevant to the step. When building a framework for ITS 
design aiming to support any well-defined domain, this coupling needs to be standard-
ized. Borrowing CTAT’s solution to this problem would place a strong constraint on 
interface design: a one-to-one relationship between user interactions and steps.  This 
constraint restricts the granularity of the user interface or the knowledge representa-
tion.  A wrong grain size might yield a system with a user interface that is quite unlike 
the ones occurring naturally for the domain, or an imprecise knowledge representation 
that would be a gross approximation of what the student is inferring.2  In order to 
correctly implement an ITS for a specific domain, it is crucial that the step size be 
determined by the knowledge that will be taught by the system, not by restrictions 
intrinsic to the framework.  Lifting this constraint would also imply that some seman-
tic knowledge must be associated with the interface. Hence, a standard method to 
specify how information can be extracted from it and transformed into parameters for 
a step may be developed. 

Without a more flexible solution to step recognition than one user interaction for 
each step, or without any semantics explicitly attached to the interface, it would be 
difficult to implement an ITS with an interface as usable as Andes’ without making 
some tradeoffs in the knowledge representation. 
                                                           
1 http://ctat.pact.cs.cmu.edu/pubs/TDKTutorialSlides.ppt 
2 See VanLehn, K., & Niu, Z. (2001), p. 181 [5]. 
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3   The ASTUS Framework and Its Interfacing Agent 

Linking the user interface to the knowledge representation manipulated by the tutor is 
the main task of one of its modules, the interfacing agent (IA). Our assumption is that 
providing a semantically rich coupling with the interface will allow better assessment 
of what the student does and help the tutor implement various forms of feedback on 
the interface.  This section explains the role of the IA within the ASTUS framework. 

3.1   Knowledge Representation  

The ASTUS framework makes a distinction between semantic, procedural and epi-
sodic knowledge and behaves like a model-tracing tutor.  Semantic and procedural 
knowledge is used to define a problem-solving model with correct and erroneous 
paths.  This model of the solution is the template used to instantiate solution graphs.  
Procedural knowledge is represented by goals and procedures.  Each goal may be 
satisfied by many procedures, and each procedure can be either a script of subgoals (a 
complex procedure) or an atomic action that can be detected by the interface as an 
elementary step towards the solution (a primitive procedure).  Goals and procedures 
are organized in a hierarchical graph, its root being the intention to solve the problem 
and its leaves being primitive procedures [6]. Each goal and procedure has a set of 
parameters, represented by semantic knowledge. Such knowledge is represented by 
concepts, which are constructs combining attributes containing either raw data or 
links to other concept instances. 

3.2   The Interfacing Agent  

The tutor in ASTUS is a set of four interlinked processes (see figure 1).  These proc-
esses, or agents, represent the usual modules as seen in many ITS [7]. The tutor is  
 

 

Fig. 1. The ASTUS framework 
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designed to work with different labs which are domain packages. These packages 
encompass information that is specific to a domain such as its knowledge representa-
tion and its interface. 

The expert agent’s (EA) services are all related to the interpretation of the proce-
dural knowledge graph associated with the domain. The learner model agent’s (LA) 
services are dedicated to the evaluation of the learner’s experience. The pedagogical 
agent (PA) uses information from the learner and expert agents to decide what feed-
back to provide to the learner.  The various forms of feedback are then carried out by 
the interfacing agent (IA), which also interprets the learner’s actions on the interface 

The interfacing agent handles the main aspects of communication with the inter-
face as seen with many ITS: (1) translate actions on the interface into steps recog-
nized by the model, (2) provide the tutor with means to produce interface actions, and 
(3) maintain a representation of the interface [1]. This last aspect is managed by asso-
ciating semantics to the interface’s parts in order to make the tutor aware of their 
state.  In our framework, the interface provides problem-solving tools that have a 
semantic representation in the tutor’s working memory. Furthermore, widgets that 
will change the state of the interface send signals that the tutor may interpret and 
combine to determine if a step has been achieved.  Finally, having a conceptual repre-
sentation of the interface along with detailed scripts for every problem-solving step 
allows the tutor to modify the interface in a meaningful way and reproduce the inter-
face actions the learner has to perform to achieve a step. 

4   Key Issues of Interface Design in ASTUS 

There are three important issues that must be resolved for an interface to be properly 
designed using the ASTUS framework.  This section explains the method that was 
developed to resolve these issues, and how it determines the design of an ITS’ inter-
face. 

The first issue concerns the representation of semantic knowledge on the interface.  
Once properly handled, this aspect of the design will allow the tutor to have a repre-
sentation of the interface in its working memory. That way, it can remain aware of the 
state of the system as a whole, including the interface.  We resolve this issue by defin-
ing a view (see section 4.1) for each concept that will be reified on screen. 

The second issue is the need to define how each primitive procedure is detected as 
completed on the interface.  In order to resolve this in a generic ITS framework and 
lift the one action per step constraint, we associate a script (see section 4.2) of user 
interactions to each primitive procedure. 

The last issue is the transformation of data scattered on the interface into a primi-
tive procedure’s parameters.  Since we aim to let the designers of an ITS build a natu-
ral, usable interface, the many parts that constitute that interface will contain data in a 
form that is not always easily associated with a procedure’s parameters. To solve this 
problem, we propose a standard method to collect information from the interface, 
through the use of extractors (see section 4.3). 
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4.1   Views: Linking Working Memory with the Interface 

The tools that a student will use to solve a problem have semantic value within the 
ASTUS framework.  These semantics only define a conceptual interface through the 
roles that the tools will play in the problem’s resolution.  The real interface, in terms 
of a layout of components or widgets, is implemented through a careful combination 
of normal GUI programming and definition of the views associated with some of the 
concepts from the domain’s knowledge representation. When a concept is destined to 
be seen or manipulated by the student on the interface, its view must be designed.  A 
view is a construct that organizes the coupling between a concept and its representa-
tion on screen.  Having such an aspect to a concept allows the tutor to understand 
when the student is manipulating it, and facilitates the integration of feedback with 
the parts of the interface that are relevant to the situation. 

The reification of a concept is typically built by using original components from 
the chosen library (our examples were made with Java’s Swing) or customized com-
ponents.  Once a part of the interface that represents a concept is designed in this way, 
it is associated to a view, whose job is to manage its semantic aspects.  The view 
contains the set of all interface parts that are used to reify a concept properly on 
screen, along with event handlers that are used to detect meaningful interactions.  
Some of these parts are only used to show a portion of the concept, while others are 
also used to collect information when the learner manipulates them.  The composition 
of a view in terms of parts of the interface is often similar to the composition of the 
concept it reifies:  its attributes are either reified by views when they contain links to 
other concept instances or by a set of widgets if they contain raw data. 

A hexadecimal subtraction lab may have an interface that looks like figure 2. The 
learner may specify his answer in the bottom row and realize borrowing and conver-
sion operations by clicking on the relevant digit. In that example, three important 
concepts are reified in the interface: columns, operands and digits. The first concept 
represents a subtraction problem for one column, and has a top Operand (its  
 
 

  

Fig. 2. The interface of an hexadecimal subtraction lab and some of its views. a) View of the 
Subtraction. b) View of a Column. c) Views of some Digits. d) View of an Operand. 
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minuend),a bottom Operand (its subtrahend) and an answer field (its difference).  
Each of these parts is a relation to an Operand.  The view of an Operand contains 
tools used to apply borrowing and conversion operations to it, and the view of its 
current Digit.  Those are defined as having a value attribute, a corresponding base-16 
symbol.  A Digit’s view is simply a panel containing a label with the value written on 
it. Another concept in this lab is the subtraction itself, defined as a set of columns.  Its 
view is then defined as a set of column views.   

The composition defined in the views does not always directly translate to a simple 
nesting of the components in the interface. In order to produce the layout shown on figure 
2, the view of a column cannot be contained in one interface component (a panel with the 
top and bottom digits as well as the answer), because of restrictions stemming from the 
Swing toolkit.  It is easier to regroup the numbers by row in order to produce an adequate 
layout. Here, the view of the subtraction concept should define how the parts of the col-
umn concept will be laid out in the interface.  To achieve a flexible design, the parts that 
constitute the view of a concept do not need to be organized in a convenient, encapsu-
lated space on screen.  A view might be a collection of parts scattered across the inter-
face.  The semantic aspects of the interface implemented by views do not dictate how the 
interface will be laid out, only what the interface means. 

A view also defines the aspect and the behavior of every instance of a concept in 
the interface. While most instances of concepts have one view object associated with 
them, it is possible for an instance to be viewed many times on the interface. In the 
example above, every hexadecimal digit is only instantiated once in the tutor’s work-
ing memory; they are constants that are used throughout the problem. However, every 
digit may be viewed many times on screen. The definition of a concept and its view 
do not place any restrictions on the number places where an instance of a concept may 
be reified in the interface. 

In order for this lab to work, the effect of picking a digit in an answer field must be 
defined. The only primitive procedure in the example involves specifying a digit for 
an operand. The interpretation of the signals from a widget like this example’s buttons 
and text field to determine if the student has completed a primitive procedure is the 
subject of the next section. The last section explains how we may infer the parameters 
associated with the procedure, like the column and the digit from the example, from 
these signals. 

4.2   Interactions, User Actions and Scripts: Determining How Steps Are 
Realized 

The interfacing agent implements a generic method to identify completed primitive 
procedures without enforcing the constraint that one signal from the user interface has 
to be interpreted by the tutor as one completed procedure.  This is achieved by identi-
fying possible user actions on the interface and then associating a script that pre-
scribes a sequence of those actions to each primitive procedure.   

Before a click from the student on a widget can be interpreted by the tutor, it needs 
to be considered in the broader context of what the student might be trying to achieve.  
Every basic action on the interface is called an interaction.  These are directly detect-
able with the toolkit’s resources (property changes or mouse actions on widgets, etc) 
and usually don’t carry any meaning on their own, except the fact that they have been 
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detected by a specific view’s event handlers.  An interaction object contains the in-
formation on such an event: what has been clicked, modified, entered, etc. 

When designing the interface for an ITS, the role each interaction will play and how 
it is associated with what the student is doing must be defined.  While implementing 
ASTUS’ generic interfacing agent, we have determined that the user’s actions belong to 
one of the following categories: selections, inputs, required interactions, and noise. 
Some of these actions are complex sequences of basic interactions, with their own asso-
ciated script. Inputs, selections and required interactions are all meaningful actions that 
make up the parts of a script associated to a primitive procedure. 

Selections are interactions or groups of interactions that the student does to indicate 
a choice among a number of existing instances.  The subtraction lab from the previous 
section has an example of a selection: the only possible answers are between 0 and F, 
and the interface will not allow the user to specify any other answer.  Thus, entering a 
symbol in the answer field’s text box is the selection of one of the instances of the 
Digit concept that are already present in the tutor’s working memory. 

Inputs occur when the learner uses the interface to specify a concept instance that 
is not part of a predetermined set. In many cases, inputs are realized with only one 
interaction, but they may also be carried out by a set of interactions (using a set of 
widgets to specify the many parts of a complex concept, for instance). An input al-
ways results in the creation of an instance of a concept that is a representation of what 
the student has inferred. 

Required interactions are simple manipulations that have no semantic value of their 
own but are required for the user to complete a set of interactions that has a higher 
purpose. For example, an interface might require the user to enter a value in a text 
field, and then press a button to confirm that the value is right.  In order for this input 
event to be completed, the button must be pressed.  The meaning of that interaction is 
only seen when it is done in conjunction with another interaction.  No information 
other than the fact that the button was pressed may be extracted from that interaction.  
It is only required that this event be detected in order for the input to be completed.  

Noise is the set of all interactions that cannot be interpreted as parts of complete 
and significant actions.  For instance, if an input is realized by entering a value in a 
text field and then clicking a button to confirm the value, multiple clicks on the button 
without entering a value in the text field are considered noise.  Such interactions may 
represent mishandling of the interface’s controls, slips on the part of the student, or 
incoherent behavior.   

Once the behavior of the user is categorized, it must be placed in the context of the 
realization of a primitive procedure. To specify how a primitive procedure is realized, 
we define a script. It prescribes the set of user actions that must be carried out in order 
for a procedure to be considered completed.  When individual user actions are de-
tected by the interface, the interfacing agent determines if the actions carried out so 
far may be generated by one of the scripts.  The algorithm that is used to determine if 
there is a match and the language used to define scripts determine the level of free-
dom the learner may have while using the interface.  Matching sets of actions that 
may contain noise to sets of actions prescribed by a script is a complex issue. It may 
be solved by a simple matching algorithm and rudimentary scripting language in 
some cases, but in interfaces with rich content and a high level of interactivity, these 
tools need to be quite powerful. 
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Fig. 3. User interactions involved in the borrowing operation. a) Press on a Digit. b) Drag over 
the borrowing symbol. c) Release on the borrowing symbol. d) Enter a number in the text field. 

Figure 3 illustrates the sequence of interactions that is involved with the conversion 
of a number in the subtraction lab (presented in section 4.1). This is an example of a 
situation in which scripts are used and it demonstrates the role that some types of user 
actions play in the implementation of an interface. 

The interactions the learner should do are the following: press on the Operand he 
wishes to borrow from (figure 3 a), drag the mouse to the hand symbol (figure 3 b), 
release over the hand symbol to activate borrowing (figure 3 c), enter the result of the 
borrowing operation in the text field (figure 3 d). The first three interactions are used 
to select which Operand we wish to borrow from.  The last interaction is used to spec-
ify the result of the operation.  However, the text field does not allow the learner to 
enter anything else than a hexadecimal digit, which are all known to the tutor.  This 
means that the learner selects one of the existing digits rather than input a new value.  

The primitive procedure that the student accomplishes through these actions is to 
indicate the result of a borrowing operation on a particular operand of the subtraction.  
Its script can then be defined like this: 
 

1-Select an Operand to borrow from (a selection) 
2-Select the Digit resulting from the borrowing operation (a selection) 
 

If both these actions are accomplished, the interfacing agent can determine that the 
primitive procedure has been completed and then extract its parameters from the in-
terface.  The first selection is a complex action that also has its associated script.  It 
involves three simple interactions: 
 

1-Press on the desired Operand (a required interaction) 
2-Drag the pointer to the borrowing button (a required interaction) 
3-Release over the borrowing button (a required interaction) 
 

This script is a sequence of three required interactions.  Once they have been de-
tected in the correct order, the interfacing agent can determine that the selection of an 
Operand has occurred. An interface with such detailed manipulations makes it harder 
for a tutor to demonstrate a part of the solution to the student. With our implementa-
tion, however, the interfacing agent is aware of enough signals to reproduce detailed 
interaction on the interface and thus better integrate its feedback to the learning  
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environment. Moreover, changing the way borrowing is done on the interface does 
not have any effect on the meaning of the procedure for the tutor and its place in the 
knowledge representation.   

4.3   Extractors: Bridging the Gap between Semantics and Interface Data 

Parts of the interface are associated with semantic knowledge through the implemen-
tation of views. Sequences of meaningful actions are associated with procedural 
knowledge with the definition of scripts.  However, some semantic knowledge is not 
represented by those means: the parameters of a primitive procedure.   

Each primitive procedure has a set of parameters, which will be instances of the 
concepts defined in the semantic knowledge.  When a student interacts with the inter-
face and produces a set of actions that matches a procedure’s script, she specifies all 
of the procedure’s parameters along the way.  The actions the student has done must 
carry enough information for the tutor to infer which instances may become the val-
ues of the parameters. Such information may be gathered from any interface compo-
nent and can bear any meaning.  This association of a particular semantic meaning to 
data gathered from the interface is done through routines implemented by extractors. 

There are two levels of extraction to consider in our framework. The first, lower 
level involves the transformation of data from the interface’s widgets into concept 
instances or attribute values of such instances. This type of extraction is only used to 
define inputs and selections.  The second, higher level involves associating instances 
already identified or built by inputs, selections or required interactions to the parame-
ters of a procedure. This type of extraction is used to determine how the user’s actions 
are semantically linked to the parameters of a procedure.  High-level extractors are 
usually simple and integrated with the language used to specify scripts. Low-level 
extractors, however, may be specific to a given domain.  If the designers of the inter-
face are free to integrate semantic knowledge to their interface in any way they wish, 
then situations that are unique to one domain and its interface will arise. Fortunately, 
most cases can be resolved with the use of a standard library of low-level extractors. 

In order to allow high-level extraction to take place, the actions that may appear in 
a primitive procedure’s script must already identify one or many instances that they 
are related to. Thus, selections, inputs and required interactions all have instances 
associated with them.  In all three cases, the actions have an owner, which is the con-
cept instance whose view detected the action. Additionally, inputs specify what in-
stance was built, while selections specify what instance was selected.  

The primitive procedure studied in section 4.2 is named Borrow.  The script asso-
ciated to this procedure has two elements: the selection of an Operand in a Column, 
and the selection of a Digit in an Operand.  A declarative representation of the script 
associated with the procedure would have this form: 

 
Procedure Borrow (Column c, Operand o, Digit d) 
 
Script: 
  
 1-Selection where 
     owner is a Column 
      selected is an Operand 
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 2-Selection where 
  owner is an Operand 
  selected is a Digit 
 
 

Extraction:  
 
 1-Parameter c is the first element’s owner. 
 2-Parameter o is the first element’s selected. 

3-Parameter d is the second element’s selected. 
 

This represents how high-level extraction takes place.  Each parameter is associ-
ated with an instance manipulated by one of the script’s elements.  Complex scripts 
that are defined by multiple actions do not pose a serious extraction problem: parame-
ters are simply gathered from any of the instances that were manipulated by the ac-
tions.  Low-level extraction, on the other hand, is found with the definition of the 
second selection action:  
 

Selection of a Digit in an Operand 
 
Script: 

1- A text modification event from the text field at 
the top of an Operand, trapped by its view’s 
event handler. 

 
Extraction: 

1-owner is the Operand associated with the view. 
   2-Selected is a Digit found by applying the method  

ExtractDigitFromTextField. 
 

In this case, a specialized function must be used to determine how the symbol en-
tered in the text field translates to an instance of the Digit concept. This low level 
extractor could be implemented in a number of ways, depending on how a character 
from the text field relates to its corresponding Digit instance.   

Scripts and extractors establish a very explicit connection between the data that is 
kept in the low levels of the interface’s model and the semantically rich data that is 
kept in the tutor’s working memory.  This connection enables the tutor to use a script 
and its extractors to generate a set of actions from a primitive procedure and its pa-
rameters and execute them on the interface.  It also allows the detection of actions that 
undo a step, so the tutor knows when the student has backtracked along his solution 
path.  The tutor may additionally carry out undo actions on the interface if it considers 
that the student has progressed too far on an erroneous solution path. 

5   Conclusion 

The presented examples showed that offering rich and usable interfaces to a generic 
ITS framework is possible, with the subsequent advantages. However, the design 
standards are more elaborate, forcing interface designers to take into consideration the 
semantics of the domain to be taught, from the early stages. Future improvements will 
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focus on a powerful scripting language to deal with noisy behavior and complex step 
recognition. Additionally, our method will facilitate the implementation of many 
forms of feedback involving precise interface manipulation by the tutor, such as  
redlining.  
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Abstract. E-discussion tools provide students with the opportunity not only to 
learn about the topic under discussion but to acquire argumentation and collabo-
ration skills and to engage in analytic thinking. However, too often, e-
discussions are not fruitful and moderation is needed. We describe our ap-
proach, which employs intelligent data analysis techniques, to support teachers 
as they moderate multiple simultaneous discussions. We have generated six 
machine-learned classifiers for detecting potentially important discussion char-
acteristics, such as a “reasoned claim” and an “argument-counterargument” se-
quence.  All of our classifiers have achieved satisfactory Kappa values and are 
integrated in an online classification system. We hypothesize how a teacher 
might use this information by means of two authentic e-discussion examples. 
Finally, we discuss ways to bootstrap from these fine-grained classifications to 
the analysis of more complex patterns of interaction. 

Keywords: Educational data mining, Natural Language and Discourse, Archi-
tectures, Machine Learning in ITS. 

1   Introduction 

E-discussion tools provide students with the opportunity not only to learn about the 
topic under discussion but to acquire argumentation and collaboration skills and to 
engage in analytic thinking. Tools such as Digalo1 and Free Styler2 [1] allow students 
to use a shared workspace to present ideas, debate and argue with one another, and 
ask questions. Visual languages consisting of typed text boxes and links provide addi-
tional scaffolds that help students structure the way they think about and discuss a 
topic. Nevertheless, too often discussions are unfruitful: students misuse the tools for 
private conversation instead of staying on topic, contributions lack critical reasoning, 
arguments and questions of other participants are ignored and some students don’t 
participate at all, while others dominate discussions. Thus, there is a need for active 
help and guidance, be it from a machine tutor or a human teacher / moderator. 

Our focus is on helping a teacher moderate a classroom of students using e-
discussion tools in which the students comprise multiple discussion groups. The 
teacher can bring to bear his or her experience and moderation expertise to steer the 
                                                           
1 http://dito.ais.fraunhofer.de/digalo/ 
2 http://www.collide.info/software 
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discussions when problems occur and provide encouragement when discussions are 
productive. However when multiple e-discussions occur simultaneously, a single 
teacher may struggle to follow all of the discussions. To direct the teacher’s attention 
to the ‘hot spots,’ software tools that pre-process, aggregate, and summarize the in-
coming flood of data could be extremely valuable. In this respect, the task is reminis-
cent of that faced by systems that monitor power plants and medical patients where 
vast amounts of raw data are analyzed, filtered and/or condensed to support human 
decision making. 

The ARGUNAUT project follows this approach with the ultimate aim of support-
ing teachers as they guide multiple, simultaneous e-discussions. Two analytical proc-
esses are particularly prominent in ARGUNAUT’s analysis of e-discussions: (1) the 
“Shallow Loop” focuses on surface features that can be computed in a straightforward 
way (e.g. the total number of contributions per student) and (2) the “Deep Loop” 
evaluates situations requiring more complex analysis, combining textual, sequential 
and structural information to classify more abstract aspects of discussion (e.g. on-
topicness, reasoned claim). The Deep Loop inference mechanism is based on ma-
chine-learned classifiers, developed from our corpus of annotated discussions, and is 
the focus of this paper. Our long-term goal is to use the classifiers also to automate 
support and feedback for collaborating students in typical intelligent tutoring fashion. 

In this paper, we provide an overview of the ARGUNAUT project and an in-depth 
treatment of the Deep Loop Classification system. We describe the approach we have 
employed to develop the Deep Loop classifiers and present the quantitative results 
we’ve achieved, particularly emphasizing progress made since the work reported in 
[2]. Finally, we provide specific examples and discuss how a teacher might use the 
Deep Loop classifiers to identify good and bad discussion situations.  

2   Related Work 

The most relevant work to ours is by Rosé and colleagues, who have developed the 
text analysis tool TagHelper [3], also used in our work. Originally, they aimed at free-
ing corpus analysts from the tedious task of manually coding large amounts of data, 
rather than analyzing online discussions, which is our goal. In one application [4] they 
analyzed a corpus of 1,250 coded text segments along multiple dimensions of argu-
mentation in order to derive machine-learned classifiers. Some of the phenomena of 
interest in their work, like argument-counterargument chains and grounded claims, 
are quite similar to the categories we are interested in. They achieved acceptable 
Kappa values of 0.7 or higher for six of seven dimensions. More recently, they devel-
oped an approach to providing dynamic support to dyads collaborating on a problem-
solving task [5]. Similar to our approach, they perform online analysis of textual 
communication data, in their case, chat data. In contrast to our approach, their analy-
sis results are not displayed to human teachers but are instead used to trigger auto-
matic interventions in the students’ activities. An empirical study showed significant 
learning benefits in terms of analytical knowledge and conceptual understanding. 
when dynamic support is provided 
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Goodman et al. [6] also have developed a machine-learning approach to support 
collaborative problem solving. Peer groups work together on a problem in the domain 
of object modelling techniques (OMT). Their collaboration takes place within a 
shared whiteboard (similar to the shared workspaces in ARGUNAUT) in which dia-
grams (e.g. class diagrams) have to be constructed. Peers communicate via a text chat 
with a sentence opener interface; task management is supported by an agenda tool. 
The system evaluates aspects concerning domain (e.g., domain knowledge of peers), 
task (e.g., progress in solving the task) and, similar to our objectives, possible prob-
lems in the collaboration process (e.g. unanswered questions). The sentence opener 
interface plays a critical role; it is used to automatically assign a dialogue act classifi-
cation to each chat contribution. These dialogue acts are used as a meta-level descrip-
tion of the discourse and serve as features for machine-learning analyses, bypassing 
the complicated task of natural language processing. The provided support is two-
fold: Some of the results are displayed immediately to the peers via meters, while di-
rect support is provided by means of an artificial peer agent that verbally interacts 
with the participants. 

3   The ARGUNAUT Approach 

In ARGUNAUT students discuss and debate questions within a shared workspace on 
different networked computers in synchronous fashion [7, 8]. A discussion starts with 
a shape containing the question to be discussed. Usually, controversial topics are cho-
sen (like experiments on animals, abortion) to allow students to take different posi-
tions and to promote a lively exchange of arguments. Students contribute by adding 
shapes, entering text into the shapes and connecting the shapes by links. Shapes and 
links are not just simple text boxes and connectors; they have types and comprise a 
visual language: There are shape types to express claims, arguments, questions, etc, 
and link types to establish supporting and opposing relations.  

A teacher can monitor multiple ongoing discussions in parallel using a tool called 
the “Moderator’s Interface”. Here, important aspects of the discussion are displayed 
in the form of “Awareness Indicators”. As discussed above, “shallow indicators” can 
be computed in a straightforward fashion (e.g. the number of contributions per user); 
“deep indicators” result from a more sophisticated machine learning-based analysis. 
Currently, two types of deep indicators are computed: Shape-level indicators reflect 
characteristics of a single contribution (e.g. whether this contribution contains a rea-
soned claim); paired-shape indicators reflect characteristics of two linked contribu-
tions (e.g., whether two shapes constitute a contribution-counterargument pair). Six 
classifiers for deep indicators are currently available: “Reasoned Claim”3 and “Topic 
Focus” at the shape level, “Question-Answer”, “Contribution followed by Question”, 
“Contribution followed by Counterargument” and “Contribution followed by Sup-
porting Argument” at the paired-shape-level.  (Note that this is four more classifiers 
than were available in an earlier reporting of our work [2].) 

Although the Moderator’s Interface has not yet been used in a real classroom, we 
anticipate that the combination of shallow and deep indicators will enable teachers to 
more effectively and efficiently moderate multiple, simultaneous discussions. 
                                                           
3 Note that in previous work, this category was referred to as “Critical Reasoning”. 
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4   Deep Loop Classifiers 

The classifiers were developed using a three-stage process: First, a coding scheme 
was developed for categories of interest and the data was coded accordingly. Second, 
the data was translated into a format amenable to standard machine-learning algo-
rithms. Third, experiments with a multitude of machine-learning techniques were car-
ried out in order to derive the most effective classifiers. The resulting classifiers have 
been integrated into the Classification Web Service to enable a teacher to run classifi-
cations online. 

Originally, we were interested in twelve discussion categories but after initial ex-
periments we focused our efforts on the six categories described below. There are 
several reasons why we limited our scope: One category did not have sufficient inter-
coder agreement. Other categories were shown to be less promising after some initial 
machine-learning experiments, partly because of an unbalanced class distribution and 
too few examples for one class, two problems that are well known for their detrimen-
tal effects on machine learning [9, 10].  

4.1   Data Description 

The first step in building an example corpus was to collect data and code this data 
with the categories of interest (Deep Loop indicators). The data was collected during 
real classroom sessions in Israel and the U.K. Because the discussion language in Is-
rael is Hebrew, it was necessary to translate these discussions into English before cod-
ing.  This was done for experimental purposes only; in the longer term our intention is 
to use customized versions of TagHelper applied to the language of interest.  

After the pedagogical experts on our team agreed on a set of categories, coding in-
structions were developed, consisting of detailed explanations of when a code applies 
and additional illustrative examples for further clarification. The final corpus pre-
sented here is the product of several coding iterations carried out by our pedagogical 
experts in Israel and the U.K. To determine the reliability of the coding procedure, in-
ter-rater reliability was computed by means of the Kappa statistic, yielding acceptable 
values (near or above .70) for all but one category. More details concerning the cod-
ing procedure can be found in [2]. 

The final corpus comprised data of 72 discussions covering ethical questions 
(‘Should we clone humans?’) as well as questions of opinion and fact (‘How does the 
use of ICT affect learning experiences?’). In the end, we had 1,260 annotated shapes 
and approximately 1,000 annotated shape pairs. All but one category (Reasoned 
Claim) show a clear majority of one class, with proportions ranging between 75 % 
and 85 % of all instances. 

4.2   Machine Learning Experimentation and Results 

As a first step, the data was cast in a form suitable for machine learning. We used a 
data-centric approach by encoding as much information as possible in feature-value 
form, without considering the specific categories of interest, in hopes that the infer-
ence mechanism itself would choose the relevant pieces of information. Shapes and 
paired shapes were analyzed in terms of structural properties (shape and link types, 
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incoming and outgoing links), sequential properties (chronological sequence of 
shapes) and textual properties (textual content of shapes). The textual analysis was 
done using TagHelper, discussed earlier [3]. We pre-processed the data by reducing 
terms to their word stems and removing stop words. We extracted unigrams (single 
terms), bigrams (pairs of consecutive terms), part-of-speech bigrams (two consecutive 
part-of-speech classes), punctuation marks and text lengths. 

The experiments were conducted with RapidMiner (formerly known as “Yale”), a 
machine learning toolkit offering a wide range of methods for data pre-processing, 
machine learning and validation [11]. We experimented with a variety of learning al-
gorithms using different feature combinations, estimating the reliability of our classi-
fiers by cross-validating data from one discussion (test set) against the data from the 
remaining discussions (training set). Because data from one discussion was never in 
the training and test set at the same time we avoided intra-discussion dependencies 
and bias. We measured the reliability using Cohen’s Kappa [12] (a criterion more ap-
propriate than the widely used error rate and accuracy measures which are both vul-
nerable to unbalanced class distributions). A Kappa value of 1.0 signifies a perfect 
classifier, a Kappa value of 0 means a classifier performing equally well as a trivial 
classifier that always chooses the majority class and Kappa below 0 means a classifier 
even worse than the trivial majority voter. 

Support Vector Machines (SVM), Boosted Decision Trees and Decision Lists 
proved to be the most effective machine-learning algorithms. We achieved Kappa 
values ranging from .60 to .71, which can be interpreted, according to [13], as moder-
ate (1 category) to substantial agreements (5 categories) between the human annota-
tions and machine-learned model4. Because these six classifiers performed reasonably 
well, we integrated them into the classification web service. 

5   How the Deep Loop Classifiers Could Help Teachers 

In this section, we turn to the practical application of the Deep Loop. As discussed ear-
lier, we have taken the approach of first having pedagogical experts on our project team 
identify discussion categories of interest, annotate instances of those categories, and 
then apply machine-learning techniques to create classifiers for those categories. How-
ever, at this stage of our project we have received only minimal feedback from teachers 
on the pedagogical value of the classifiers.  The following question then arises: what 
could a teacher do with the results of the six classifiers described above?  We address 
this question by showing and discussing the Deep Loop classifiers applied in two au-
thentic discussions. We hypothesize how a teacher might interpret actual Deep Loop re-
sults to recognize one discussion situation as fruitful and another as requiring support. 

In general, we expect a fruitful discussion to be lively, with (close to) equal contri-
butions by all participants. Questions should be answered and claims should be 
                                                           
4 There is no universal threshold for an acceptable Kappa value, the decision regarding what is 

acceptable and what is not depends on domain and application. A more rigorous threshold is 
given by Krippendorff [14] who recommends a value of .67 as the minimal acceptable inter-
rater agreement for content analyses. Given that a teacher who is aware of uncertainties and 
possible misclassifications will ultimately interpret the provided Deep Loop results, we con-
sider the slightly more generous interpretation as sufficient. 
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backed by supporting arguments. Contrary positions should be acknowledged and an-
swered with counterarguments. Participants should always be open to persuasion 
when more compelling arguments than their own are raised. Such quality criteria are 
supported by the CSCL literature, see for instance [15] for a more detailed account of 
criteria for assessing the quality of collaboration. 

Figure 1 shows a situation that matches much of this description (CASE 1). The 
question raised in this discussion was whether abortion is ethical when it is known 
that the child will be born with a serious handicap. The question is introduced through 
a fictional story that has been read by the students prior to the discussion. The original 
question posed by the teacher is marked by a double-framed box.  The figure shows 
two students involved in a dialogue where student 1 (solid boxes) takes a position 
against and student 2 (dashed boxes) in favor of abortion. Student 1 starts by stating 
his opinion (contra abortion) and backs his position by pointing to the human right to 
life. Student 2 counters that both parents and child will suffer, that a lot of money will 
have to be spent, etc. Student 1 gives as a counterargument that, provided enough 
money for treatments is available, the family can nevertheless live a good life. Student 
2 objects that possibly the family does not have enough money. Finally, student 1 
closes the thread by integrating both views: An abortion might be acceptable if the 
family does not have enough money, otherwise not. Regardless of one’s personal po-
sition on abortion, this thread exhibits positive discourse characteristics, including:  

(1) both students react to the position of their counterpart resulting in an argu-
ment-counterargument chain (3 CCA paired-shape classifications),  

(2) the chain contains a considerable amount of reasoned claims (3 RC shape 
classifications),  

(3) all student contributions are on-topic (5 TF shape classifications),  
(4) a posed question was answered (1 QA paired-shape classification), and  
(5) the thread ends with an integration of both views.  

Figure 2 shows a discussion in which a teacher’s intervention might be helpful 
(CASE 2). This discussion addresses the same topic as example 1, namely abortion 
under special circumstances. To the left of the teachers’ assignment (double-framed 
box) there are contributions in favor of abortion in this situation. In summary, the  
 

 

 

Fig. 1. Positive discussion situation (CASE 1) 
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main arguments here are that both child and parents will suffer, and that it will be eas-
ier for the parents to abort a still unborn fetus than seeing their child die later on. On 
the right-hand side we see contra-abortion contributions. The main arguments here are 
based on a human’s right to life and religious convictions. Although here, too, almost 
all of the contributions are on-topic and the arguments are valid, the discussion suffers 
from a lack of interaction between participants. The arguments are made in isolation, 
almost exclusively linked to the original question. Only the three shapes at the lower 
right show some rudimentary interaction between the participants. Consequently, our 
classifiers detect only one contribution-counterargument pair in the entire discussion, 
in contrast to the three contribution-counterargument pairs in CASE 1 (and there we 
only show a fraction of the entire discussion graph). At this point, a teacher might find 
it valuable to intervene, encouraging the students to react to one another’s positions 
and perhaps come to an integration/synthesis of multiple views. 

 

Fig. 2. Discussion situation in which a teacher might want to intervene (CASE 2) 

With the current classifiers, a teacher might be able to use the information of Fig-
ures 1 and 2 in both a quantitative and a qualitative manner. Quantitative usage is 
supported in the Moderator’s Interface through display within each ongoing discus-
sion the number of occurrences of each classification type. In this way, a teacher can 
easily detect that CASE 1 contains a high proportion of counterarguments, whereas 
CASE 2 has a noticeable lack of this discussion element (there are 12 shapes and only 
1 CCA relation), indicating that intervention may be helpful. Qualitative evaluation 
might also be helpful, as a purely quantitative analysis might point to critical situa-
tions but can also be deceiving because dynamic aspects of the discussion are no 
longer visible. For instance, discussions might be in need of intervention, even with 
the presence of many ‘reasoned claims’, as exemplified in CASE 2. Inspecting this 
situation on the level of individual classifications reveals that virtually all of the con-
tributions refer to the original question shape and not to the shapes created by the par-
ticipants. The students here are only enumerating supportive and opposing arguments 
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but do not deepen their understanding of the space of debate by arguing on arguments 
and negotiating the meaning of underlying concepts [16].  

Furthermore, a qualitative examination – or visual impression – might provide an 
idea of what is going on without reading the contents. There might be controversial 
discussion with lots of reasoned claims and argument-counterargument pairs, situa-
tions in which students don’t critically evaluate their peers’ opinions, manifested 
through a lack of both supportive and opposing arguments, and places in which an ac-
cumulation of off-topic contributions suggests a drifting from the discussion. Once 
such regions are identified, a teacher can read the contributions in more detail and in-
tervene as required.  

Our approach enables a teacher to look at a discussion on different levels of detail: 
at the highest level information is summarized (and maybe also distorted), at the mid-
dle level the structure of interaction patterns is preserved but still abstracted from spe-
cific content, and at the lowest level the full information is offered without loss of  
veracity but at the possible cost of detail ”overload.”  

6   Discussion, Conclusions, and Future Work 

As we have seen, machine-learned classifiers can compute useful aspects of e-
discussions even without an in-depth (i.e., semantic) analysis of natural language. We 
succeeded in deriving six classifiers that analyze discussion situations in terms of struc-
tural, chronological and shallow text characteristics and assign categories like “reasoned 
claim” and “contribution-counterargument” to the analysis units. The classifiers are in-
tegrated within the ARGUNAUT system and allow teachers to analyze simultaneous 
discussions online. We discussed how a teacher might use the system with two authentic 
examples. Our initial results are quite encouraging, but there are still open questions. 

One crucial question is how far our classifiers generalize beyond the training corpus. 
Clearly, we cannot claim that our data sample has been drawn randomly from the popu-
lation of all possible discussions. Although we have collected a considerable amount of 
discussion data, the number of covered topics is still somewhat restricted. Especially our 
‘topic focus’ classifier might incorporate idiosyncrasies from the topics being covered in 
the training corpus and suffer when applied to different topics. Other categories, like 
“reasoned claim”, “question-answer” and “contribution-counterargument”, are largely 
topic-independent and may not be vulnerable to such dangers. 

The real measure of success for any computer program is successful use by its in-
tended audience working on tasks for which the program is intended for. Conse-
quently, the logical next step is to test the Deep Loop classifiers ‘in the wild’ and to 
collect feedback from teachers charged with monitoring multiple discussions simulta-
neously. This will help us find answers to the question of which categories help (and 
which do not), which additional (missing) categories may be of interest, whether the 
visualization of the classifications is appropriate, and whether the reliability threshold 
we’ve adopted (Kappa > 0.6) is strict enough for this specific domain of application. 
Such feedback will help us to move towards a real usable system. 

Currently, as demonstrated by the two examples above, the classifications might help 
a teacher find patterns of good and bad discussion situations (e.g. commission and omis-
sion of argument-counterargument chains). An alternative to such qualitative analyses is 
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for the classifications to be used in a quantitative way to summarize discussions along 
categories of interest. A first step in this direction has already been done: the total num-
ber of positive classifications is displayed to the teacher. We envision going much fur-
ther by providing comparative statistics, in the form of appropriate visualizations (like 
bar charts or pie charts), showing, for instance, that 40 % of all links in discussion X 
represent an argument-counterargument relation whereas only 20 % a argument-
supporting argument relation. A final step might be to infer automatically qualities of 
the whole discussion by analyzing its profile in terms of shape and paired-shape classi-
fications. One could define a model using rules such as “If more than 30 % of all links 
define an argument-counterargument relation then the discussion qualifies as controver-
sial”. But of course, hand-crafting such a model requires superior human judgment and 
expertise. Alternatively, one could use inductive inference. Labels would be assigned to 
complete discussions and a machine-learned model computed that infers discussion-
level classifications from shape and paired-shape classifications. One problem with such 
an approach is to obtain sufficient data: It is questionable whether the 72 discussions we 
currently have are sufficient. Another difficulty lies in the propagation of errors in a 
two-stage classification process: Erroneous classifications on the shape and paired-
shape level might cause additional noise in the input for the discussion-level classifier 
and hence, might have a harmful effect on performance. 

Given the uncertainties regarding whether it is possible to define or learn a reliable 
classification model for discussion characteristics, we see potential in another way of 
bootstrapping from our shape and paired-shape results: Mikšátko and McLaren [17] 
have developed a graph-matching algorithm, DOCE, that enables teachers to define 
and find pedagogically interesting clusters, i.e. arbitrary large patterns, in on-going 
discussions. Clusters are defined in terms of examples (e.g. an example for “Deepen-
ing discussion with multiple opinions”) that can be used to find similar clusters in 
other discussions. We expect these example patterns will prove more useful to a 
teacher than shape and paired-shape indicators in isolation, which might be structur-
ally too limited and fine grained to capture significant interactions between students. 
Initial evidence discussed in [17] shows that the use of shape- and paired-shape indi-
cators as cluster features play an important role in the graph-matching process. 
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Abstract. Students in classrooms are starting to use visual argumentation tools 
for e-discussions – a form of debate in which contributions are written into 
graphical shapes and linked to one another according to whether they, for in-
stance, support or oppose one another. In order to moderate several simultane-
ous e-discussions effectively, teachers must be alerted regarding events of inter-
est. We focused on the identification of clusters of contributions representing 
interaction patterns that are of pedagogical interest (e.g., a student clarifies his 
or her opinion and then gets feedback from other students). We designed an al-
gorithm that takes an example cluster as input and uses inexact graph matching, 
text analysis, and machine learning classifiers to search for similar patterns in a 
given corpus. The method was evaluated on an annotated dataset of real e-
discussions and was able to detect almost 80% of the annotated clusters while 
providing acceptable precision performance. 

Keywords: Educational Data mining, Machine Learning in ITS, Collaborative 
Learning, Natural Language and Discourse. 

1   Introduction 

One of the important trends in Computer-Supported Collaborative Learning (CSCL) 
is the development and use of networked visual argumentation tools that allow stu-
dents to work on separate computers and express their ideas, questions, and argu-
ments in visual fashion. Students make contributions to the online discussion by drag-
ging and dropping shapes with different meanings (e.g. “claim” or “question”), filling 
them with text containing their contributions to the discussion, and linking the shapes 
to other relevant shapes with labeled links, such as “opposes” or “supports.” An ex-
ample of such an e-discussion in the Digalo collaboration software is shown in Fig. 1 
(text in the shapes shows only the title of the contribution). 

Although computer-based tools for collaboration, argumentation, and discussion 
are becoming relatively commonplace in schools [1,2], there is a critical need for 
software that can help teachers observe, guide, and moderate such e-discussions. For 
instance, suppose a classroom of students, organized in small discussion groups of 4 
to 6 students, is tasked with discussing and debating a social sciences topic such as “Is 
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it ethical to perform experiments on animals?” using a visual collaboration tool. The 
teacher in such a classroom obviously cannot monitor and moderate all of these dis-
cussions simultaneously without some automated system support. Furthermore, past 
research suggests that discussion and collaboration tools used by students on their 
own with no support does not typically lead to fruitful collaboration [3].  

In our work on the ARGUNAUT project [4], the Moderator’s Interface (MI) – a 
software tool that displays multiple simultaneous e-discussions taking place in the 
classroom – provides the teacher with such support by pointing her to events requiring 
human intervention. 

 

Fig. 1. A well-structured discussion in Digalo software with three simple clusters 
1 

In the present work, we are trying to address the problem of identifying complex 
interaction patterns in the e-discussions. Such patterns, called clusters in the remain-
der of the paper, are multiple contributions, typically (but not exclusively) made by 
different students, that capture interesting interactions in the e-discussion. Fig. 1 
shows an example of a few such clusters. For instance, “Clarification of opinion fol-
lowing feedback” involves a student clarifying his or her opinion and then getting 
feedback from other students. Types of clusters representing interesting interactions 
are specified and annotated by the pedagogical researchers on the ARGUNAUT pro-
ject, with an eye toward moderating e-discussions. Our primary aim is to provide 
teachers, the users of the MI, with a tool that can point them to interesting conversa-
tional moves and clusters in the discussions [5]. A secondary goal is to support the 
pedagogical researchers in searching off-line for interesting patterns, as they evaluate 
and data mine past discussions. 
                                                           
1 The names of students in this discussion have been anonymized to protect their identities. 
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Our task is a daunting one because  

(1) we are dealing with highly complex data (i.e., a combination of graph structure 
and text),  

(2) discussion “maps” (as they will be called henceforth) typically have quite a bit 
of noisy data,  

(3) cluster types are difficult to precisely specify, and  
(4) we have a limited source of annotated data, since annotating clusters in real 

discussions is extremely time-consuming and difficult. 

We explored several approaches but ultimately designed and developed one ap-
proach that seemed to best fit the problem characteristics above: DOCE (Detection of 
Clusters by Example). DOCE is based on the idea of using cluster examples to find 
similar clusters in other discussions and has demonstrated very promising preliminary 
results on an initial set of annotated maps. The main advantages of the DOCE algo-
rithm can be summarized as follows:  

• The algorithm does not require precisely defined clusters; instead, it employs 
an intuitive approach in which cluster examples are provided. 

• Only a few annotations are required, as examples for queries, contrary to the 
large number of examples required by supervised methods. Furthermore, it 
provides a tool for collecting the annotations.  

• It can detect clusters based on their structural and content features, important 
to the goals of the ARGUNAUT project. 

• It is noise tolerant, as it looks for similar, not exactly the same, clusters. 
 

In this paper we describe the DOCE algorithm and present our initial, encouraging 
results. 

2   Related Work 

Analyzing student contributions and assigning labels is common practice in designing 
and experimenting with intelligent educational technology. For instance, the research-
ers in [6] investigated machine-learning approaches by training classifiers on the lan-
guage of a large corpus of labeled data and classifying single contributions into cate-
gories. These results led to the development of TagHelper – a tool for text 
classification that is also utilized in our work. 

In addition to the text classification capability of TagHelper, our work with DOCE 
also incorporates the structure of the discussion by using machine-learned classifica-
tions of single contributions (e.g. Topic Focus, Reasoned Claim) and paired contribu-
tions (e.g. Contribution-Supporting Argument) [5,7]. Contributions are characterized 
by a combination of text features extracted by TagHelper and structural attributes 
relevant to the e-discussions, such as shape type and number of in- and out- links. 
Several highly reliable classifiers (with Kappa >0.6) have been trained and integrated 
in the Moderator’s Interface as “Awareness Indicators”, as discussed in [5,7]. 

However, such supervised learning approaches do not scale well to clusters of arbi-
trary size. Clusters not only need to be classified, as in standard machine learning ap-
proaches, but also recognized in the discussion. In addition, obtaining a sufficient 
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number of annotations for training at the cluster level is a very time consuming and 
difficult task – much more difficult than annotating single and paired contributions. 

A related unsupervised method, detection of frequently reoccurring patterns, was 
applied in [8] for identifying common interaction patterns during student software de-
velopment projects on data from source repository logs or Wiki pages. However, the 
clusters defined by our expert annotaters do not necessarily occur as frequently in our 
domain as in theirs. A similar approach was evaluated on the ARGUNAUT project in 
[9]. A tool was designed for mining sequences of actions in the discussions, such as 
“create shape”/“add link”/“modify text.” The tool was able to detect some commonly 
occurring patterns. However, their exact-matching algorithm was unable to detect all 
of the patterns of given cluster types, especially when clusters differed in subtle and 
imprecise ways from one another.  Our goal was to address these issues with DOCE. 

3   Detection of Clusters by Example (DOCE) 

The DOCE algorithm is based on the Query By Example (QBE) technique that has 
been applied to databases as a query method. The idea is to search for similar files or 
documents based on an input example: a text string, a document, or visual table ex-
ample [10]. The AI subfield of case-based reasoning [11] is another research area in 
which examples (i.e., cases) are used to search for similar instances in a repository of 
data (i.e., a “case base”). A teacher or researcher selects a cluster (e.g. connected indi-
vidual contributions) in an existing discussion that exemplifies an interesting pattern. 
The example cluster (also called a “model graph” in the following text) is then used as 
a search query for similar clusters across other discussion maps (called “input 
graphs”). The output of the algorithm is a list of matching clusters in the discussion 
map(s), sorted according to a similarity rating. DOCE can be used as a “live” classi-
fier of clusters – characteristic example(s) representing a cluster of a particular type 
are stored in the database and used later as queries for automated cluster detection. 
Or, it can be used as a research tool for obtaining clusters and annotating them in the 
first place.  

The DOCE algorithm is sketched in Fig. 2. First, the example cluster and the discus-
sion map are parsed from an XML file format that is used by the Moderator’s Interface 
for representing a snapshot of the discussion. Both graphs are preprocessed as follows: 
(1) an adjacency matrix representing the structure of the graph is constructed; (2) each 
contribution and link in the discussion graph is characterized by a feature vector that is 
extracted from the attributes associated with the discussion vertex and edge such as 
shape/link type, text length, link direction and whether the same user created two linked 
shapes. TagHelper [6] further enriches the feature vectors with additional information 
from the text analysis of contributions. It performs text processing (e.g. stemming) and 
extracts textual attributes such as unigrams and bigrams (single words and pairs of words 
occurring in the text), punctuation (indicator of question or mood of the author) and con-
tains non-stop words (a value predicting if the text is meaningful or not). Additionally, 
we extend the feature vectors of shapes (links) with the high-accuracy output of shape 
(pair-shape) classifiers that assign contributions (pairs of contributions, respectively) into 
categories [5,7]. In the next step, DOCE compares the feature vectors of vertices/edges  
in the model and input graphs by calculating their distance in a manner similar to 
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Fig. 2. The DOCE algorithm 

unsupervised learning algorithms. The proximity is pre-computed for each pair of 
model/input objects and stored in the similarity matrices. 

Finally, an inexact graph matching method based on a customized version of the 
edit distance algorithm [12,13] is employed to find clusters with the highest structural 
and content similarity to the model graph. Similar algorithms have been used for vari-
ous purposes, such as computer vision [16], pattern recognition [14], and retrieving 
relevant principles from ethics cases [15]. For instance, in [15] engineering ethics 
cases and principles were represented in a stylized, graphical language. An undecided 
case was then matched against past cases and a human was provided with suggestions 
in deciding the current case. 

The matching works as follows. An A* search algorithm explores all possible ver-
tex-to-vertex mappings between the model and input graph. In each step, a partial 
mapping of vertices is extended by adding a new vertex-to-vertex assignment that has 
the maximum content similarity (pre-computed in the similarity matrices) and the 
minimum structural difference, as measured by edit distance. The edit distance be-
tween partially matched graphs is calculated as a minimal sequence of primitive graph 
operations (such as “add an edge”, “delete an edge”, “delete a vertex”) that are re-
quired in order to make the graphs isomorphic. The final matching cost is the sum of 
all vertex/edge similarities and penalties for the edit operations. The first n complete 
mappings (i.e. mappings that cover all model vertices) are returned as resulting clus-
ters and sorted in ascending matching-cost order. 

Thus, the algorithm matches similar clusters on generic graph structures in an in-
exact manner (e.g., some of our cluster examples are unconnected as well as shapes in 
the discussion may be unlinked). The matching is driven by both the graph structure 
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and content of contributions, for example, the text of the contribution, the users in-
volved in the cluster, and shape type. Note that the detection of all subgraphs is an 
NP-Complete problem but only in theoretical, not practical, terms. The search space is 
significantly reduced by applying heuristics similar to [13,16] and the method per-
forms well on graphs of moderate size (dozens of vertices). The graphs in our particu-
lar domain are certainly within this range. 

The DOCE algorithm is described in further detail in [17]. 

4   Evaluation 

We designed an evaluation methodology in which the pedagogical specialists ana-
lyzed 27 discussion maps and annotated cluster examples (referred to as “annotations” 
henceforth) for the three most important types of clusters (as suggested by pedagogi-
cal specialists): Clarification of opinion following feedback, Chain of opposition, Ar-
gument + evaluation.  There were a total of 74 annotations. We used the annotations 
in each map as input to the DOCE algorithm to evaluate how well the algorithm could 
find the cluster examples in the other 26 annotated maps. The clusters detected by 
DOCE were then compared to the annotations in the maps. We compared the per-
formance of DOCE using different feature sets of the algorithm and also compared it 
to a random algorithm, as there is no other comparable “gold standard” algorithm, at 
least not for the particular type of problem we are tackling in this work. 

Our methodology is similar to Information Retrieval (IR) evaluations – the 
“Top10” results are considered in the evaluation and the relevancy of results is de-
fined based on user feedback [18]. As already explained, DOCE does not always 
match clusters in an exact manner. Thus a matching cluster was considered “relevant” 
if the overlap of vertices between the matching cluster and an annotation is at least 70 
% (rounded) of the annotation size (e.g. if an annotated cluster is {1,2,3,4}, then a 
“matched” cluster {2,3,4,5} is relevant). The pedagogical experts verified the accept-
ability of this definition of relevance, which is based on the idea that even a non-exact 
match can be valuable since the ultimate objective of DOCE is to draw a teacher’s at-
tention to interesting behavior in a discussion map, not perfectly match that behavior. 

We used several metrics in our evaluation: 

• Recall represents the number of relevant matches in the Top10 divided by the 
count of annotations in the searched map. 

• Precision is the number of relevant matches in the Top10 divided by 10.  
• Ranking Quality, known as Average Precision in IR, measures the quality of the 

ordering of the results. A higher value means better ordering of the matching 
clusters, with the best value being 1.0 (all matches are on at the top of the list). 

• Stability is used to evaluate the consistency of the DOCE algorithm with differ-
ent input models of the same cluster type against the same map. It is calculated 
as the average intersection size (ranging from 0 to 10) of all pair wise result sets.  

 

We consider Recall to be the most important metric, as it is highly critical to find 
all of the interesting clusters in a given discussion. We believe the number of relevant 
matches (i.e. Precision) has somewhat lower importance since humans are typically 
clever enough to filter out irrelevant matches. 
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5   Results 

Our overall results, averaged across all models and maps, are presented in Table 1 
along with a comparison of different configurations of the algorithm and the Random 
Matcher. The DOCE Baseline feature set includes only attributes directly available 
from the structure of the discussion map (e.g. shape type, link direction, users in-
volved in the cluster), with no text considered. The Text configuration includes anno-
tations from the shape/pair-shape level analysis [5,7] and attributes obtained from the 
TagHelper linguistic analysis [6]. The weights are set to prefer the text attributes. The 
Text configuration was experimentally chosen as the best combination of features and 
attribute weights. The parameter π (ranging from 0 to 100) influences the ordering 
and balance of the content similarity and edit operations – high (low) values prefer 
matches with few (many) edit operations at the top positions in the result list, respec-
tively. We present the results with a “neutral” π value (π=50) in order to avoid bias 
from parameter choice, and the manually tuned value (π=100). 

Table 1. Overall results and comparison of DOCE algorithm to the Random Matcher 

Configuration Recall Precision
Ranking 
Quality

Stability

Random Matcher 21,3% 6,6% 0,32 0,5

DOCE (Base, π=50) 62,7% 28,6% 0,51 4,3

DOCE (Text, π=50) 73,0% 35,8% 0,57 5,3

DOCE (Text, π=100) 79,0% 37,3% 0,57 6,2
 

 
The DOCE algorithm performs significantly better than the Random Matcher 

across all measures and configurations as confirmed by t-tests (p<0.000001 in all 
cases). DOCE can match more than 60% more annotations than the random method. 
Furthermore, from the overall results the following conclusions can be drawn: 

• The algorithm was able to detect almost 80% of cluster examples annotated by 
pedagogical experts (for the best configuration).  

• The Precision result can be interpreted as meaning that only every third match-
ing cluster is relevant. While this value is low, it is worth noting that the input 
maps contain 3.3 annotations on average; thus, fixing DOCE to always return 
the top 10, as we have done, will always produce relatively low Precision values.   

• The Stability of the DOCE algorithm with respect to different models is relatively 
high. On average 6 clusters (for the best configuration) are in common when com-
paring two results sets produced by two different models against the same map, 
despite the fact that the models are often from discussions with different topics.  

• A more fine-grained analysis of the results showed that, on average, more than 
60% of relevant clusters are exact matches (in comparison to 11% for the ran-
dom matcher). 
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Fig. 3. Recall per cluster type 

Finally, Fig. 3 shows the number of detected annotations in each map per cluster 
type. As can be seen, the algorithm delivered a relatively high Recall value for all 
three cluster types, significantly better than random, regardless of the π value. 

6   Discussion and Further Work 

Although the initial results are quite promising, the algorithm was evaluated on a rela-
tively small dataset. We had hoped the pedagogical experts on our project would be 
able to provide a much larger set of annotated maps, say hundreds, that could also be 
evaluated for inter-rater reliability. In fact, a single annotator provided all of the 74 
annotations used in our evaluation. Despite this shortcoming, we argue that the data-
set and annotations are sound and the evaluation meaningful because DOCE detects 
clusters that are similar to the provided models – in other words, the algorithm adapts 
to the “style” of the annotator.  In practical terms, it seems unlikely that we will ob-
tain a high level of inter-rater reliability for such an arduous and inexact task as iden-
tifying “meaningful” clusters, at least not without detailed specifications and exten-
sive training of coders. On the other hand, note that many annotations were marked as 
borderline examples and could have negatively influenced the results of our experi-
ments, yet we kept and used all of the annotations.  

Currently, the pedagogical specialists are annotating additional maps and cluster 
types, and we plan further evaluation of the algorithm on a larger dataset. Addition-
ally, we are working on integrating the algorithm into the Moderator’s Interface in or-
der to provide researchers with a tool for searching for more annotations. Another 
planned step is to experiment with using a set of models against one discussion map 
and then merging the results. Such an approach might improve DOCE’s search accu-
racy. We will also tap our pedagogical experts’ knowledge and perform experiments 
to customize the parameters of the algorithm.  

Our long-term goal is to obtain enough annotations to better understand the cluster 
types and develop an extended approach that can leverage domain knowledge. For 
example, an ML classifier may be used for filtering results produced by the DOCE  
algorithm.  
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7   Conclusion 

Students in different classrooms around the world are using visual argumentation 
tools for e-discussions. In order to effectively moderate multiple, simultaneous dis-
cussions, a tool providing feedback to the teacher is required. The ARGUNAUT sys-
tem is designed to help a teacher monitor the progress of multiple conversations 
through “Awareness Indicators” that display interesting events in the discussion.  

In this work, we focused on analysis of segments of the discussion maps represent-
ing interaction patterns that are of pedagogical interest. Detection of such “clusters” 
of contributions is a complex task because the graph and text structure must be ac-
counted for, the cluster types are imprecisely defined, and annotations are scarce. 

We designed the DOCE algorithm to accept an example cluster and find similar 
clusters across different discussion maps. The method is an extension of the edit dis-
tance inexact graph matching algorithm and looks for subgraphs in the discussion 
maps that have the highest content similarity and lowest structural difference from an 
input model. The content similarity function accounts for discussion attributes, the 
text analysis performed by the TagHelper tool, and machine-learned classifications 
from the shape/pair-shape level.  

We evaluated the algorithm on 27 actual discussion maps with 74 of the three most 
important clusters annotated by pedagogical experts. DOCE was able to detect almost 
80% of the annotated clusters. We used all models in our evaluation, including ones 
from discussions with different topics and ones that were characterized as “border-
line” examples. Furthermore, we compared the results with a random matcher, as 
there was no other “gold standard” algorithm available, and DOCE significantly out-
performed this approach. 

In sum, the experiments, although preliminary and on a limited dataset, have 
shown very promising results. However, deeper investigation and more extensive 
evaluation are planned. We intend to analyze the algorithm on a larger dataset and 
with more complicated clusters. We will also integrate the DOCE algorithm into the 
Moderator’s Interface so it can help pedagogical experts define more annotations. 
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Abstract. PedaBot is a new discussion scaffolding application designed to aid 
student knowledge acquisition, promote reflection about course topics and en-
courage student participation in discussions. It dynamically processes student 
discussions and presents related discussions from a knowledge base of past dis-
cussions. This paper describes the system and presents a comparative analysis 
of the information retrieval techniques used to respond to free-form student dis-
cussions, a combination of topic profiling, term frequency-inverse document 
frequency, and latent semantic analysis. Responses are presented as annotated 
links that students can follow and rate. We report a pilot study of PedaBot based 
on student viewings, student ratings, and a small survey. Initial results indicate 
that there is a high level of student interest in the feature and that its responses 
are moderately relevant to student discussions. 

Keywords: threaded discussion, discussion scaffolding, information retrieval, 
on-line learning environment. 

1   Introduction 

On-line discussion boards have been found to be an effective medium for collabora-
tive problem solving and discovery-oriented learning [1;2]. However, some research 
indicates that existing systems for on-line discussion may not always be fully effec-
tive in promoting collaborative problem solving and learning as expected. Student 
participation may be low or weak, even when students are encouraged to participate 
[3;4]. And when instructors and teaching assistants are not available to fully guide 
interactions, or alternatively, when instructors provide too many answers, participa-
tion between students may decrease [4;5].  

In this paper, we present PedaBot, a novel application for scaffolding student dis-
cussions with information from past student discussions, from the same or related 
courses. The system dynamically processes student messages or message threads, 
mines a corpus of relevant past discussions using information retrieval techniques, 
and displays the retrieved information.  PedaBot was designed to aid student knowl-
edge acquisition, promote reflection about course topics and encourage student par-
ticipation in discussions. It scaffolds discussions in the sense that it provides different 
perspectives on the current discussion topic.  
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Prior analyses indicate that existing information retrieval techniques alone are not 
fully effective [6] for processing the noisy and incoherent text that is characteristic of 
student messages [7]. To assist in modeling these messages, we focus on domain 
terms that are semi-automatically extracted from textbooks. To organize and retrieve 
information according to the topics in the course syllabus and facilitate efficient re-
trieval, we classify messages with a topic profiler that is induced from the textbook. 
We then apply Latent Semantic Analysis (LSA) [8] and term frequency and inverse 
document frequency (TF*IDF) techniques [9] for retrieval. 

PedaBot was piloted in the Fall of 2007 in a computer science course. It mines text 
from a corpus comprised of seven semester’s of discussions from the same under-
graduate course, two semester’s of discussions from a related graduate course, and 
segments of text from related course documents. Preliminary results indicate that 
PedaBot has begun to meet our requirements for scaffolding on-line student discus-
sions. Although many students were not fully aware of the new feature and its usage 
frequency was not so high, students rated the feature highly interesting and rated its 
responses as moderately relevant to their discussions.  

2   Student Interaction with PedaBot 

PedaBot was integrated into a modified version of phpBB (www.phpbb.com). Stu-
dents in the undergraduate Operating Systems course that we are currently focusing  
 

 

Fig. 1. Relevant messages from past discussions are displayed to left 
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Fig. 2. The “View whole discussion” link displays the relevant message’s thread  

have used the board for the last eight semesters. It is typically used as a question and 
answer forum in which the instructor participates frequently. 

In Figure 1, there is a screenshot of a discussion thread about terminating a func-
tion from the Fall 2007 study. Student names are blocked for privacy. PedaBot filters 
and submits the first message to the retrieval pipeline when it is posted and responds 
by displaying portions of the three messages that best match the student’s question in 
the left frame. Messages from the instructor are highlighted as “Instructor Post”. The 
number of responses was limited to avoid overwhelming the student. Although la-
tency is not a critical issue, the results are displayed within 1 or 2 minutes. 

The resulting messages are usually part of a longer discussion thread that can be 
viewed by following the ‘View whole discussion’ link. The results can also originate 
from a document; in this case, a portion, or tile, of the matching document is dis-
played and the link is labeled ‘View document’. The discussion or document is dis-
played in a new, instrumented, window, shown in Figure 2, where matching domain 
terms are highlighted. Students can rate the relevancy of the resulting discussion to 
the current discussion. They can also view peer rating statistics. The “See your Ped-
aBot Ratio” link displays a table of user ratings. We are adding more ‘social’ incen-
tives, such as displaying the ratings as stars, to encourage students to browse and rate 
relevant discussions. The ratings will be used to guide the text retrieval in the future.  

 
 

. . . 
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3   Mining Relevant Information from Past Student Discussions 

This section describes the text retrieval pipeline shown in Figure 3. Section numbers 
correspond to the numbers in the figure. 

Steps 1-3: Modeling Messages with Technical Terms 
We use discussion corpora from two Operating Systems courses: an undergraduate level 
course and a graduate level course. Messages from administrative forums that contain 
non-technical discussions are excluded. The total number of messages in the current 
corpus is 6,622. TextTiling [10] is used to divide individual messages and documents 
into semantically related segments called tiles. The system also applies typical docu-
ment processing steps including stemming and cleaning [7].  

 

Fig. 3. Steps involved in retrieving relevant messages 

Discussion data from undergraduate students is incoherent with respect to gram-
matical structure, and noisy with respect to individual words, phrases and punctua-
tion. To help us model the messages, we use technical domain terms and terms related 
to student tasks within the course such as ‘assignment’ and ‘project’.   

The technical terms were extracted from the glossaries of the undergraduate and 
graduate text books, which were automatically scanned and processed, and stored in a 
‘TECH_TERMS’ table in the database. Two text books produced 2,233 technical 
terms. In addition to the terms extracted from the textbook, we manually selected an 
additional 1,587 terms that relate to student tasks that were frequently used in discus-
sions. These were stored in the ‘TASK_TERMS’ table. These correspond to step 1 
and 2 in Figure 3. Individual messages are then modeled with a term vector of the 
following form (Step 3 in Figure 3):  

>=< iNiii TTTM ,...,, 21 , 

where N is the total number of TECH_TERMS and TASK_TERMS in the domain 
and 0=ijT if a term is missing in that message.   
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Steps 4-5: Filtering Messages with the Topic Profiler (TP) 
The technical terms described above are also used to induce a topic profiler from the 
textbook.  The system maps the main topic categories (chapters and sections) in the 
“table of contents” to the technical terms. That is, in creating the topic vector for indi-
vidual sections, the system relates the pages covered by the section and the technical 
terms that appear in the pages.  The system produces a term weight vector for indi-
vidual topics categories based on TF*IDF (term frequency * inverse document fre-
quency) transformations [9]. Each topic vector for a topic category c takes a form of a 
term-weight vector, 

>=< cNcc WWWTPc ,...,, 21 . 

Each message is classified by calculating the similarity score between the topic 
vectors and the message vector described above. The details of the topic vector induc-
tion and classification are described in [6]. All of the messages in the corpus are pre-
classified with the topic profiler, and tagged with the top three topics.   

When a new message is submitted to the retrieval pipeline, the system classifies the 
message with the topic profiler. The messages that do not share the topics with the 
new message are removed from the candidate set. 

Step 6: Computing Term Weights with TF*IDF and LSA 
Term weights are used in calculating similarity scores between messages, such as 
similarity of a new message and a message in a past corpus. In computing term 
weights, we use TF*IDF, which is one of the most common ways to model term 
weights [9]. Messages with same technical terms are more likely to be semantically 
related. TF (term frequency) weights the commonly occurring terms more and give 
low weights to rare technical terms. IDF (inverse document frequency) introduces the 
general importance of the term to the weights. The term vector for each message is 
converted into a corresponding term-weight vector. Individual TF*IDF weight values 
for each term are computed as 

 
 
 

LSA (Latent Semantic Analysis) transforms the occurrence matrix into a relation 
between the terms and some concepts, and a relation between those concepts and the 
messages. Thus the terms and messages/documents are now indirectly related through 
the concepts [8].  LSA has been used in various educational applications including 
dialogue support for intelligent tutoring systems and essay grading.  

The system first constructs a term frequency matrix from the term vector model 
constructed above (in the Modeling Messages section). A statistical technique called 
Singular Value Decomposition (SVD) is then applied to represent the messages and 
terms as vectors in a high dimensional abstract space [8]. We explored several differ-
ent dimensions and used two separate dimension settings, (k=300 and k=75), which 
are commonly used in LSA applications. 

Steps 7-8: Combining TP, TF*IDF, and LSA to Present Relevant Messages 
We use cosine similarity to determine the relevance between the new message C and 
a message Di in the corpus using 

Wik = TFik * log( N / nk ). 
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This measures the cosine of the angle between the two term-weight vectors represent-
ing the two messages. Messages are ranked by their scores in order to find the most 
relevant messages. 

Similarly, for LSA, we calculate the cosine similarity of the vector with each 
document's "concept" vector that was generated by LSA (Step 7 in Figure 3).  Once all 
the similarity scores are computed, the messages are ranked by the similarity scores.    

We combine the above results from TF*IDF and LSA options (k=75 and k=300) 
based on average rankings of the retrieved messages. We take the top three results from 
each set and combine the rankings.  

4   Preliminary Analysis of PedaBot Responses 

Since a previous analysis with a smaller set of data showed that LSA alone did not pro-
duce better results, we explored three alternatives: TF*IDF only, TF*IDF with the topic 
profiler and a combination of TF*IDF and LSA with the topic profiler.  Our analysis 
focused on the degree of relevance to a given student message. For the analysis, we 
created a new message corpus with the discussion data from Fall 2006. We extracted 
the first messages from all threads in the new corpus and then randomly selected 30 of 
the messages and processed them, using the steps described above, against a larger 
discussion corpus. Two human evaluators rated the retrieved messages using a Likert 
scale from 1 to 4 corresponding to ‘not relevant’, ‘low relevance’, ‘medium rele-
vance’ and ‘high relevance’, respectively. The agreement ratio between the evaluators 
for the best messages was 76.7%.  

Table 1. Average relevancy ratings and MRR for retrieved messages 

 
Table 1 shows the average relevancy of top three responses retrieved by PedaBot. We 

assigned numbers between 0 and 1 (0, 1/3, 2/3, 1) for each of the four degrees of rele-
vance. The preliminary results indicate that the tool can retrieve moderately relevant 
information (close to “medium relevance”) from past discussions.  Among the three 
combinations, TF*IDF with topic profiler provide slightly better results than TF*IDF for 
average relevance. Current LSA options did not effectively exploit concept relevancy, 

 TF*IDF 
TF*IDF + 

Topic Profiler 
TF*IDF + LSA (k=75) +  

LSA (k=300) + Topic Profiler 

With 6,622 messages from 9 courses 

Rank 1 msg. 0.59 0.60 0.37 
Rank 2 msg. 0.51 0.51 0.49 
Rank 3 msg. 0.54 0.55 0.43 

Overall Avg. Rating 0.55 0.55 0.43 
MRR for best message 0.65 0.64 0.57 
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especially among domain terms. The high degree of variance in student discussion 
data may have also affected the result. Table 1 also shows MRR (mean reciprocal rank) 
for the best message selected by the evaluators. The current results show that TF*IDF 
rates the best message slightly higher than other combinations. Based on these results, we 
are currently using TF*IDF in retrieving relevant messages. 

∑=
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5   Pilot User Study, Fall 2007 

PedaBot was integrated into a live student discussion board during the Fall of 2007, 
for an upper-level undergraduate Operating Systems course offered by the Computer 
Science department at the University of Southern California As indicated in Table 2, 
student gender is predominantly male. The Pedabot feature was introduced during the 
fourth week into the 15-week semester. Initially, results were shown for only every 
other topic/thread, as part of a study was to determine their impact on discussion. But 
usage of the feature was low – students did not appear to notice the results – so the 
every-other-topic constraint was removed to familiarize more students with the new 
feature. PedaBot was active for 127 threads out of 301 total discussion threads. (Lec-
ture and project threads only; administrative and humor forums were excluded.) 

Usage Results 
The usage results are shown in Table 2. The numbers are situated in the PedaBot 
study context, that is, the forums in which and the time periods during which PedaBot 
 

Table 2. Discussion board and PedaBot usage 

Number of students who… Male Female Combined 

Registered on discussion board  104 15 119 

Participated in discussions (discussants) 82 9 91 

Initiated discussion threads 70 8 78 

Viewed entire discussion context of 
PedaBot retrieved messages 

55 
(55/82 = 67%) 

7 
(7/9 = 78%) 

62 

Rated PedaBot retrieved messages  15 0 15 

Average number of … Male Female Combined 

Messages posted  
(#messages / #discussants) 

582/82 = 7.09 18/9 = 2.0 600/91 = 6.59 

Threads participated in 
(#threads / #discussants) 

293/82 = 3.57  18/9 = 2.0 311/91 = 3.42 

Average number of Pedabot ... Male Female Combined 

Discussion details viewed 
(#viewings / #viewers) 

348/55 = 6.33 23/7 = 3.29 371/62 = 5.98 

Results rated (#ratings / #raters) 39/15 = 2.6 0 39/15 = 2.6 
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was active. Female student discussion participation is lower than male student partici-
pation. However, among the discussion participants, more female students viewed the 
discussion thread details retrieved by PedaBot (78% vs. 67%).  

Table 2 indicates that the frequency of female student usage is lower in terms of 
the average number of thread viewings and the average number of ratings provided.  
The seven female students who used PedaBot viewed the thread details for only about 
three times. We plan to investigate strategies for promoting more frequent use of 
PedaBot for the female students who access PedaBot.  The average rating (2.46) on a 
scale of 4-1 (highly, somewhat, minimally, or not at all) is consistent with our prior 
analysis that PedaBot retrieves moderately relevant messages. 

We hoped that having previous results appear would encourage discussion and in-
crease the length of the discussion. In Table 3, we analyze PedaBot’s effect on the 
average number of messages in a thread. The number of messages per thread seems a 
little higher with PedaBot, especially for female students.  

Survey Results 
A plain-text questionnaire was emailed to students at the end of the semester. Only 
nine students responded, one of whom did not use the feature at all. Students who 
used the feature were asked to rate the results on a scale of 4-1 (highly, somewhat,  
 

Table 3.  Difference in thread length with and without PedaBot 

Fall 2007 with PedaBot without PedaBot 

Male 426/124= 3.43 533/169 = 3.15 
Female 65/12 = 5.41 12/6 = 2.0 

Average number of 
messages per thread 

Combined 431/127 = 3.39 543/174 = 3.12 

Table 4. Survey answers 

Survey question (n=7) Avg. rating  
How interesting the feature was for you? 3.42/4 

How useful the feature was for you? 2.83/4 

How relevant the resulting discussion or document was to your dis-
cussion? 

3.14/4 

 Student Comments: Answers to ‘What did you like and/or dislike about the new feature?” 
I didn't always use the feature. But I found it to be useful when I did use it. 

Good way to find all the relevant questions at one place. Results of past discussions were useful 
for my project work. 

All-around, it was a great feature. Would like to see more relevance and the bot actually checking 
for phrases instead of just specific terms. 

It is very hard to follow most of the 'Whole Discussions' because none of the names are attached to 
the messages.  At first you couldn't even tell when it was the instructor posting (I know this was 
fixed during the semester) but I think it is still important. 

I liked that the system tried to provide me with relevant posts (even though most of the results 
were not relevant).  This new feature saved me the trouble of typing in a search keyword to explic-
itly fetch related topics or posts. 
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minimally, or not at all) with respect to their interest, usefulness and relevancy to the 
student.  All students rated their interest in the feature positively and most also found 
the feature relevant. Students found the feature moderately useful. Student comments 
in Table 4 support the high interest ratings. 

6   Related Work 

In the area of on-line learning, much attention has been paid to the analysis of student 
learning behaviors in on-line communications. Various frameworks have been pro-
posed for characterizing and analyzing computer mediated communication in the 
context of collaborative discussions [11], knowledge sharing [12] and general argu-
mentation or dialogue [13;5]. In particular, the work in [14] classifies student on-line 
discussions for collaborative learning support. We provide a complementary approach 
for facilitating scaffolding in threaded discussions by extracting useful information 
from past discussions. 

There are many approaches to assessing and extracting knowledge from collabora-
tive activities generally and from computer supported collaborative argumentation 
specifically [15]. Machine learning techniques have been applied to train software to 
recognize when participants have trouble sharing knowledge in collaborative interac-
tions [12]. Analyzing and utilizing discourse information at the paragraph level still 
remains a challenge to the natural language community.  

Developing automatic natural language-based question answering systems has been a 
field of research for many years [16], but question-answering in an open domain is still 
an unsolved problem. Most existing question-answering systems assume that queries are 
concise, coherent and of a particular form (e.g., a factoid question), and can be answered 
with short phrases. Queries posted to a discussion board often span multiple sentences, 
are incoherent and include extra (informal) content and lengthy descriptions, especially 
in technical discussions. Our current work focuses on finding ‘relevant or interesting’ 
messages for student discussions rather than retrieving answers.  

7   Summary and Discussion  

We have presented a new type of “tutor” that helps the participants of on-line course 
discussions acquire knowledge in a compelling new way: by sending related discus-
sions. The results of a Fall 2007 pilot study indicate that PedaBot were encouraging. 
Although students showed interest in PedaBot, some students were unaware of the 
feature and the usage frequency was not very high.  We plan to ensure that students 
are informed of the feature. 

In the immediate future, we will focus on improving the relevancy of the results, 
encouraging students to view the results and promoting further discussion based on 
the results. For example, we may allow students to share their ratings for retrieved 
message or to collaboratively annotate retrieved course documents.  

Further out, we wish to improve the usefulness of PedaBot by incorporating differ-
ent tutorial scaffolding strategies such as generating questions and comments or invit-
ing participation and clarification. To this end are investigating ways to characterize 
student messages and discussion threads. For example, speech act classifiers can  
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identify whether a message contains questions or answers [7].  This type of informa-
tion can be useful for selecting the information to send the students (e.g. answers 
instead of additional questions). An analysis of student participation over different 
course forums and domain topics could be used to pro-actively invite students with a 
known knowledge or interest to participate in a particular discussion.  
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Abstract. A basic question of instruction is how much students will actually 
learn from it. This paper presents an approach called learning decomposition, 
which determines the relative efficacy of different types of learning opportuni-
ties. This approach is a generalization of learning curve analysis, and uses  
non-linear regression to determine how to weight different types of practice op-
portunities relative to each other. We analyze 346 students reading 6.9 million 
words and show that different types of practice differ reliably in how efficiently 
students acquire the skill of reading words quickly and accurately. Specifically, 
massed practice is generally not effective for helping students learn words, and 
rereading the same stories is not as effective as reading a variety of stories.  
However, we were able to analyze data for individual student’s learning and use 
bottom-up processing to detect small subgroups of students who did benefit 
from rereading (11 students) and from massed practice (5 students).  The exis-
tence of these has two implications: 1) one size fits all instruction is adequate 
for perhaps 95% of the student population using computer tutors, but as a com-
munity we can do better and 2) the ITS community is well poised to study what 
type of instruction is optimal for the individual. 

Keywords: learning decomposition, educational data mining, learning curves, 
bottom-up processing. 

1   Introduction  

The goal of this paper is to investigate how different types of practice affect a stu-
dent’s progress in learning a skill.  Specifically, we utilize an approach, learning de-
composition [1], as a means of leveraging fine-grained interaction data collected by 
computer tutors and present a case study of applying the technique to the domain of 
reading.  The goal is twofold:  1) Be able to make claims that are interesting to do-
main researchers, and 2) Develop a technique for analyzing tutor log data that applies 
to other domains and tutors.  The first goal should not be underestimated; if we make 
discoveries about how students learn a domain that remain limited to those students 
using computer tutors that would be an unfortunate result.  Only a small minority of 
students use computer tutors, so if we wish our research to have broad impact then 
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finding a means of explaining our results to those outside of the ITS community is 
essential. To address these issues we present an approach that uses learning curves to 
measure the relative impact of various types of learning events.    

The two most common types of learning curves are exponential and power curves. 
In this paper we discuss exponential curves as they have been shown to more accu-
rately model individual observations [2] and are simpler analytically. However, the 
approach we present can be trivially adapted to work with power curves. The standard 
form of the exponential learning curve can be seen in Equation 1a. The free parameter 
A represents how well students perform on their first trial performing the skill; e is the 
numerical constant (2.718), the free parameter b represents how quickly students learn 
the skill, and t is the number of practice trials the learner has had at this skill. This 
model can be solved with any non-linear regression package (we use SPSS 11.0).   

Equation 1. (a) Exponential model of practice, (b) Learning decomposition model of 
practice 

By simply using one parameter, t, to represent the number of prior trials, learning 
curves assume that all types of practice are equally valuable.  But what if all types of 
practice are not equally valuable?  For example, we could believe that the subject will 
learn better the first time he practices the skill that day, and rather than simply lump-
ing all of the learning opportunities together as t, we can create two new variables t1 
and t2. The variable t1 represents the number of learning opportunities where it was the 
first time the learner practiced the skill that day; t2 represents the number of practice 
opportunities where the learner has already practiced the skill that day.  This method 
of factoring learning opportunities into various types of practice does not change the 
amount of prior practice to student has had; t= t1+t2 since learning opportunities are 
either the first one of the day or are not.   

The basic idea of learning decomposition is to find how to weight two types of 
learning opportunities to construct a best fitting learning curve.  Equation 1b shows a 
learning curve model designed to find how to weight the two types of practice.  Simi-
lar to standard learning curves, we estimate the A and b parameters.  However, we 
also estimate a new parameter, B, that represents the relative impact of the first learn-
ing opportunity of a day relative to learning opportunities occurring later in the same 
day.  Note that t2 does not receive a weight of its own, as it is assumed to be worth 1.0 
learning opportunities.  That t2 has this implicit weight does not affect the conclusions 
we draw from the model as our goal is only to estimate relative efficacy the two types 
of practice.    

The parameter B is very interpretable: it is how many trials that learning opportuni-
ties of type t1 are worth relative to those of type t2.  If B>1 then learning opportunities 
of type t1 are better for learning than those of type t2. If B<1 then the opposite is true, 
and if B=1 then neither type of learning opportunity is preferable.  Although the ex-
ample presented is about first practice opportunity of the day vs. later ones, it is pos-
sible to split the data in any way that may be interesting.  We could split learning 
opportunities by those that occur on Monday, Wednesday, or Friday vs. those that 
occur on Tuesday and Thursday. For this decomposition we would hopefully get B≈1, 

tbeAeperformanc ** −= )**( 2/1* ttbeAeperformanc +Β−=
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as we have no reason to believe the day of the week matters for learning.  Thus, the 
technique of learning decomposition is broadly applicable. 

The remainder of this paper explores applying learning decomposition to answer 
some questions about how children acquire reading skills.  However, the approach 
itself is applicable to a variety of learning tasks and possible ways to decompose 
learning.   

2   A Case Study: Applying Learning Decomposition to the Domain 
of Reading 

The goal of this case study is to show how to apply learning decomposition to an 
actual data set and draw scientifically useful conclusions.  We are trying to better 
understand how students learn to read by analyzing performance data about individual 
words recorded by the Reading Tutor [3] during the 2003-2004 school year.  Rather 
than have explicit experimental and control groups, our approach is to examine how 
student progress in reading words quickly and accurately varies based on which type 
of practice he has had at the word.  These data include 346 students from the Pitts-
burgh area attempting to read 6.9 million words.  The student readings were scored by 
an automated speech recognizer (ASR).  The ASR is far from perfect, and for that 
year detected approximately 25% of student misreadings and scored 4% of student 
correct readings as incorrect [4].  The ASR also records how long students took to 
read a word.  Our general logging mechanism also records when students request 
help.  Furthermore, all entries are time stamped so we know the relative temporal 
relations between events. Students used the tutor from September 2003 through May 
2004 with a median usage of 5.9 hours. 

We now show how we integrate student help, speed, and correctness into a single 
outcome measure of learning; explain what we believe constitutes a learning opportu-
nity for a word; and finally show how we decomposed the learning opportunities into 
their component parts.   

2.1   Creating an Outcome to Measure Learning 

There are a variety of approaches for representing student performance at reading 
fluency. We choose to model the student’s reading time since it is a continuous vari-
able and best able to track student progress; help requests and accuracy are binary and 
so cannot improve smoothly.  Although it is possible to aggregate help requests and 
accuracy to create a continuous learning curve, we did not perform such aggregations 
as one goal of the research is to use individual observations (rather than aggregate 
descriptions) to construct our learning curves. It is a known potential pitfall that ag-
gregate learning curves may not describe the learning trajectory of actual individual 
learners [5]. Therefore, fitting individual data points can produce a more authentic 
model of student learning 

Although reading time is continuous, it is misleading to use it as an outcome and 
ignore accuracy and help requests. Our approach was to use the student’s reading time 
as an outcome measure. However, when the student either asked for help or skipped 
the word, or the word was scored as incorrect by the ASR, then that word was  
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assigned a reading time of 3.0 seconds.  Also, words whose reading time was greater 
than 3.0 seconds were capped at 3.0 seconds.  The penalty of 3.0 seconds is on the 
high end of reading times as only 0.1% of time exceeded this threshold, but not overly 
so as to be an unfair penalty.  

2.2   What Constitutes a Learning Opportunity? 

Given that help can cause a short-term boost in student performance, a natural ques-
tion is what other types of events can cause a similar effect?  If our goal is to measure 
student learning, we should try to exclude such data from our learning curve con-
struction. One example of such short-term scaffolding is that if a student reads a word 
and then shortly thereafter reads that same word again, we should be skeptical that the 
second reading really demonstrates the student’s knowledge of the word (as opposed 
to just retrieving it from short term memory). Therefore, to model student reading 
development we only consider as an outcome variable his first encounter with a word 
on a particular day.   

However, we do count subsequent encounters later in the day as opportunities to 
learn the word.  Table 1 illustrates our approach.  For the first encounter, the student 
requests help and then reads the word quickly.  Since the student requested help, the 
outcome is set to 3.0 seconds.  For the next learning opportunity, since it is the same 
day, that reading does not count as an outcome.  Similarly, the next learning opportu-
nity’s performance is also ignored.  However, note that column labeled “Overall” in 
the prior encounters field, which tracks the student’s experience with this word, has 
been incremented to account for these two exposures.   

2.3   Learning Components of Fluency Development 

For reading, what types of practice are likely to be more (or less) effective for stu-
dents’ fluency development?  There are many possible ways to think about what are 
ways of factoring apart learning opportunities at learning to read a word.  We start 
with a known psychology principle:  distributed practice is generally superior to 
massed practice for long term retention [6].  This general rule suggests a decomposi-
tion:  we consider a learning opportunity as distributed practice if the student has not 
encountered the word in the preceding 16 hours.  Massed practice would be times 
when the student encountered the word in the prior 16 hours (effectively during the 
same day).  Table 1 shows how we decompose the prior encounters based on massed 
vs. distributed practice.     

The other type of learning decomposition we performed was to examine whether 
reading the same story multiple times provides the same benefits as students reading 
different stories.  This debate of wide- vs. re-reading has been ongoing in the reading 
community.  We therefore decompose prior practice into learning opportunities where 
this student encounters this word while reading new material vs. rereading old stories.  
Since students can memorize a particular story, we only permit as an outcome vari-
able the first time a student reads a particular story.  However, analogous to how we 
handled massed practice learning opportunities, repeated readings of the same story 
count as learning opportunities for learning (in particular, the variable for rereading 
would be increased in each case).   
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To summarize, we only count the first opportunity each day as an outcome vari-
able, and only if the student has not read this story in the past.  However, we count all 
exposures to words as possible learning opportunities. To estimate the learning caused 
by different types of learning opportunities, we created four types:   

1. RM represents rereading-massed learning opportunities.  I.e. cases where the 
student has already read the story in the past and is seeing the word a second 
(or greater) time today.   

2. RD represents rereading-distributed learning opportunities.  I.e. cases where 
the student is rereading the story but has not seen the word earlier today.   

3. NM represents new-massed learning opportunities; cases where students are 
reading a story for the first time and have read the word previously today. 

4. ND represents new-distributed learning opportunities; students have not seen 
this story before and have not read the word previously today.   

Table 1. Decomposing prior learning opportunities as massed and distributed practice 

Prior encounters 
Day Helped? 

Reading time 
(seconds) Overall Distributed Massed 

Outcome 
(seconds) 

1 Yes 0.5 0 0 0 3.0 

1 Yes 1.5 1 1 0 - 

1 No 1.3 2 1 1 - 

2 No 3.8 3 1 2 3.0 

3 No 1.7 4 2 2 1.7 

3 No 1.2 5 2 3 - 
 

Our model of reading development is shown in Equation 2.  The term A, represents 
first trial performance, and b is the rate of learning.  For brevity, the model presented 
omits some terms such one to control for word length (since reading time is correlated 
with word length) and another to control for amount of prior assistance. The remain-
der of the model is a learning decomposition model to simultaneously estimate the 
impact of massed- vs. distributed-practice and wide- vs. re-reading. Note that RM, 
RD, NM, and ND account for all possible trials, and are thus equal to t. The goal is to 
find best-fitting values of the r and m parameters to find the relative impact of reread-
ing and massed practice, respectively, on student reading development.   

)*****(* NDNMmRDrRMmrbeAereadingTim +++−=  

Equation 2. Simplified model for examining effect of practice schedule and type of 
reading 

Again, there are many possible ways to decompose learning opportunities.  We chose 
two that were motivated by existing theories of learning and a current debate in the 
reading literature.     
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3   Results 

To train the model, we had 959,455 learning opportunities (i.e. a student’s first at-
tempt at reading a word on a particular day) and a total of 6.9 million words read.  For 
each of the 346 students in our data set who read at least 20 words in the Reading 
Tutor during the 2003-2004 school year, we fit the model shown in Equation 2 to 
each student’s data (i.e. we had 346 estimates of each parameter—one for each stu-
dent).  Table 2 shows the median parameter estimates for the effects of rereading and 
massed practice.  The column labeled “overall” contains the median for the entire 
population.  The next three columns are estimates by the bottom third (reading pretest 
score below a beginning first grader), middle third, and upper third (reading pretest 
above that of a second grader at mid year) of the student population.   

Main Effects.  We found that rereading had a coefficient of 0.49 for the entire student 
population.  In other words, rereading a story only results in 49% as much learning as 
reading a story for the first time.  So if a student reread a story twice that would result 
in as much learning as reading a new story for the first time (2 * 0.49 = 0.98 ≈ 1.0).  
Therefore, our results suggest that students learn to read words better when they read 
a wide selection of stories rather than read the same story multiple times, and this 
trend holds for all of the levels of student proficiency that we examined.  For massed 
practice, the picture was even more bleak.  Overall, students learned very little from 
multiple opportunities to practice a word on the same day, with high proficiency stu-
dents deriving almost no benefit at all from the exposure.  Seeing the word again is 
almost a complete waste of time for these students.   

Table 2. Median parameter estimates for learning decomposition model 

 
Overall 
(N=346) 

Low proficiency 
(N=118) 

Medium proficiency 
(N=106) 

High proficiency 
(N=122) 

Reread (r) 0.49 0.71 0.42 0.33 

Massed (m) 0.19 0.36 0.28 0.02 

We report median rather than mean scores due to difficulties with accounting for 
outliers. For example, student rereading parameters range from -1754 to 14211. 
Clearly those extreme value are outliers and would bias the mean. However, it is 
difficult to determine exactly what constitutes an outlier. For example, 3.0 is an 
unlikely level of benefit from rereading, should we disallow that?  How about 2.0? 
Rather than inventing an arbitrary cutoff, we instead use the median and treat im-
probably high values as a vote that the true value of the parameter is higher than 1.0. 

For the rereading parameter, 95 students had an r parameter that was reliably less 
than 1.0, while only 7 had a parameter estimate that was reliably greater than 1.0. 
Using a sign test gives p≈10-17, thus the majority of students have less effective learn-
ing as a result of rereading. For massed practice, 177 students had an m parameter that 
was reliably less than 1.0, with only 6 students having an m parameter reliably greater 
than 1.0 (p≈10-35). Thus, the majority of students benefit less from massed practice. 
This result for massed practice is not novel, as there has been ample research in  
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psychology investigating spaced practice effects.  However, it serves as a sanity check 
on our results:  if this aspect our investigation disconfirmed 120 years of psychology 
research we should be hesitant about accepting our other results.   

Which Students Benefit from Rereading and Massed Practice?. One benefit of 
estimating a per-student parameter for the effect of rereading and massed practice is 
that it enables fine-grained detection of student subgroups who benefit. Although 
Table 2 shows that low proficiency students do not benefit from rereading or from 
massed practice, there is a definite trend with weaker readers receiving relatively 
more benefit than more proficient readers.  Perhaps there are subgroups of low profi-
ciency students who are benefiting, but we cannot detect them since they are averaged 
in with a larger group?   

Our approach is to treat the problem as one of classification via logistic regression.  
For our dependent variable, if the student’s r parameter exceeded 1.1, we treated that 
student as benefiting from rereading; if it was below 0.9 the student is considered to 
benefit from wide reading. Values between 0.9 and 1.1 were not considered conclu-
sive evidence either way, and those students were not used for the classification proc-
ess. By compressing the student’s r parameter into a single bit of information, we 
greatly reduce the inaccuracy of poorly estimated per-student parameters, and instead 
focus on the simpler task of finding commonalities between students whose r parame-
ter indicates they would benefit from rereading.  The act of creating a classifier results 
in a smoothing of the noisy data, and any reliable predictors are indicative of a sub-
group that benefits.  (We performed the identical procedure for the m parameter to 
determine if students would benefit from massed practice.)  For the independent vari-
ables, we used the student’s gender, grade, learning support status (yes, no, or not 
known), and words read correctly per minute in a paper-based fluency pretest.  We 
chose these variables as they are easily available to classroom teachers or other class-
room policy makers.     

Of the 235 students for whom we had complete demographic and testing data, the 
rereading classifier found a subgroup of 11 students for whom it thought rereading 
would benefit. The student’s learning support status (p=0.00003) and fluency 
(p=0.04) were both reliable predictors in the model.  Only 24 students were noted as 
having learning support, of those the model felt 4 would benefit from rereading (as 
opposed to predicting benefit for 7 of 122 for students who were known to not be 
receiving learning support).  The students who would benefit from rereading also had 
a sharply lower fluency:  44 words per minute as opposed to 56 words per minute for 
those who would not benefit. There were similar trends for the students who would 
benefit from massed practice. The classifier found a subgroup of just 5 students who 
would benefit from massed practice, with the only reliable differences being the stu-
dent’s grade, with a mean of 2.15 from those who do not benefit vs. 4.6 for those who 
do (p=0.013) and fluency, with a mean reading rate of 55 wpm for those who do not 
benefit vs. 47 for those who do (p=0.04). Although not statistically reliable, it is inter-
esting to note that all 5 of these students were categorized as receiving learning sup-
port.  As a general trend, those who benefited from massed practice and from repeated 
reading were older, less proficient readers who were tagged as requiring learning 
support (but who were still able to operate the Reading Tutor software effectively).  
Gender was not a reliable predictor in either model.  
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4   Limitations and Future Work 

This paper explored two learning decompositions, but there is a large space of possi-
ble ways of splitting the data. Automating the construction and evaluation of possible 
decompositions is a fruitful avenue of research. One crucial problem that must be 
overcome is finding some method for seeding this search space with expert knowl-
edge.  Expert knowledge both reduces the size of the space and biases the results so 
that it better fits with what is known.  The output of educational data mining can cer-
tainly improve computer tutors, but if that is all it does that would be unfortunate.  As 
a field, we have several novel methodological hammers that are unavailable to do-
main researchers who aren’t using these approaches.  We must find ways to transfer 
what we learn to the broader research community.  By hand selecting two major hy-
potheses of learning and reading, we manually biased the search to have output that 
will (hopefully) have high impact.  Can we have automated search that produces re-
sults that are equally shareable?   

Given that we have a set of high-level decompositions to perform, we still need to 
operationalize them.  For our analysis, massed practice was equated with seeing a 
word a 2nd time on the same day.  However, there are many ways to view “massed 
practice.”  Perhaps it means more than 5 practice attempts within 3 minutes?  Maybe 
the first 2 attempts on the same day aren’t massed but subsequent ones are?  There is 
a wide space of possible ways to instantiate the theory.  How do we know which is 
best?  Searching across instantiations of distributed practice is itself a large search 
space.  Can we afford to search both the space of good decompositions and the ways 
to instantiate the decompositions? 

One hybrid approach is to accept that the high-level decompositions should come 
from humans who will (hopefully) use existing theory (e.g. mass vs. distributed prac-
tice) to generate decompositions, and spend computational resources on exploring that 
search space to find a good way to operationalize the decompositions.  Such an ap-
proach would seem to draw on the strengths of humans and computers.  Science is a 
social process and we need results that fit with existing theory (perhaps to disconfirm 
it) for domain researchers to take it seriously [7].  Spending time searching for new 
theory may not be productive if no one understands the results.  However, a specific 
instantiation of an expert generated decomposition should be understandable.  For 
example, if instead our model of reading used the “5 practice attempts within 3 min-
utes” definition of massed practice, the results wouldn’t be any harder or easier for 
others to understand.  Such a hybrid approach seems a promising route forward.     

We would like to make statements of the form “Rereading is less helpful for devel-
oping reading proficiency than wide reading.”  Unfortunately, our data were not gath-
ered from randomized trials, but rather are observational in nature.  However, by 
estimating practice effects per-student, we are able to make stronger claims than 
might be expected.  For example if Chris has a rereading parameter of 0.8, that means 
when rereading he learns 80% as much as Chris would normally learn.  By having the 
student act as his own control, we remove other constant factors that could act as 
confounds for our result. For example, if less proficient students are the ones doing 
more rereading, our result would not be biased by the fact.  In general, by building 
per-student models we control for all trait information about the learner such as lan-
guage aptitude, memory capacity, interest in learning, etc. However, we do not  
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control for transitory state information.  For example, if students only reread when 
they are tired after a poor night’s sleep (and are presumably less able to learn), that is 
a possible confound for our results.   

Finally, our results were based on a set of assumptions about which words (first at-
tempt at reading a word for the day) and which stories (first time the student read the 
story) were most indicative of learning.  These assumptions represent a best-effort on 
the part of the authors.  However, a sensitivity analysis of specific the results are to 
our assumptions would be helpful.  We performed one such analysis and found that, 
qualitatively, the results were similar whether we looked at the first time a word was 
read in a day or the first time in a week.   

5   Contributions and Conclusions 

This paper makes several contributions both methodologically and scientifically. 
From a methodology standpoint, learning decomposition extends learning curve 
analysis to enable estimation of the impact of various types of learning opportunities. 
The learning decomposition approach is broadly applicable to a wide variety of learn-
ing phenomena and is not specific to reading.  Furthermore, it is fast computationally 
and can be applied via a variety of off the shelf software packages.  Finally, the output 
is easy to interpret and share with other researchers.   

From a scientific standpoint, this work may resolve a debate in the reading com-
munity (is wide- or re-reading better and for whom).  If the goal of our work is to 
have impact beyond our own tutors, finding modeling approaches that are easily un-
derstandable by other communities must be a priority.  Our results on what type of 
reading practice helps the most have not yet been fully disseminated to the reading 
community so it is premature to comment on whether this approach will result in 
conclusions understandable to domain researchers.  However, an earlier version of 
this work was presented at the 2005 and 2006 Scientific Studies of Reading Confer-
ences and was well received.   

The closest related research is learning factors analysis (LFA) (e.g. [8]) Both LFA 
and learning decomposition are concerned with better understanding student learning.  
LFA focuses on modifying the domain representation by adding, removing, or com-
bining skills to create better fitting learning curves where the impact of various types 
of practice is assumed to be constant.  Learning decomposition focuses on determin-
ing the impact of various types of practice, and assumes the domain representation is 
constant.  A unified framework that simultaneously allows both the skills and impact 
of practice to vary would be desirable.   

In conclusion, we have shown how learning decomposition can be applied to use 
observational data to estimate the effectiveness of different types of learning opportu-
nities.  Our analyses show that in the domain of reading, different types of practice are 
more effective than others.  Specifically, reading new stories and spacing exposure to 
words is good for long-term learning.  Although our case-study was in the domain of 
reading, there is nothing domain specific about the learning decomposition approach, 
and it is broadly applicable to a variety of ITS.  Furthermore, the massed practice 
result has implications both for sequencing instruction and for student modeling in an 
ITS.  If a student model is not discounting learning opportunities that are temporally 
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near each other, it is probably overestimating student knowledge.   Finally, our bot-
tom-up approach of using classification to detect important student subgroups, rather 
than relying on a priori beliefs about what disaggregation are important, was able to 
detect a subpopulation of students who benefits from an otherwise less effective 
treatment.  If fully realized, this capability to truly adapt an ITS’s instruction to meet 
the needs of learners would be a large step forward an ITS.   
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Abstract. We examined high-level help (HLH) seeking behaviour of
students by data mining in SQL-Tutor. Students who used HLH very
frequently had the lowest learning rate; their learning was also shal-
low. They attempted very difficult problems compared to other groups
but only solved very easy problems, suggesting that they were usually
situated well beyond their Zone of Proximal Development. They also
abandoned a large number of problems without solving them. Manual
inspection of the logs showed erratic problem solving behaviour, sug-
gesting a “guess and copy” strategy.

The group of students who used HLH very infrequently seemed to
contain two distinct sub-groups: students with high expertise, and stu-
dents with very low expertise who still did not use HLH. Learning rates
were highest for students who used moderate HLH. Students with lower
usage of HLH solved the most difficult problems comparatively, without
the use of HLH, and had high learning rates, suggesting the ITS is most
beneficial for this group of students.

Keywords: Help-seeking behaviour, data mining.

1 Introduction

This paper presents the initial results of data mining student models and log
files in SQL-Tutor [1]. The research conducted in this paper is the first in a
series of steps towards a project designed to develop a general framework for
adapting pedagogical strategies in Intelligent Tutoring Systems (ITSs). Part of
the challenge of designing such a framework is to identify the various contexts in
which students find themselves when working in an ITS, and understand their
behaviour when confronted with such a context. As researchers and developers,
we are also interested in the effects of this behaviour on learning. Research is
continuing into various aspects of help seeking behaviour [2], including investi-
gating the misuse of help and feedback in ITSs [3,4]. In this step of the research,
we explore one aspect of help-seeking behaviour in students: the frequency of
high-level help (HLH) sought and its effect on learning.

Help in an ITS usually consists of tutor-specific help and domain-specific
help. Tutor-specific help is help regarding the ITS itself. For example, this type
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of help might show the student steps on how to submit a particular problem, or
how to request a new problem. In contrast, domain-specific help concentrates on
concepts within the domain irrespective of any tutoring system used.

Domain help can be categorised in many ways. One way is to class it into either
problem-dependent or concept-dependent help. Examples of problem-dependent
help are hints or feedback messages provided for a particular problem or step
within that problem. These can either be given before the problem is attempted
(forward hints) or after a solution has been submitted (feedback). Concept de-
pendent help is help on domain concepts and is usually given in the form of
tutorials or feedback during a meta-cognitive dialogue (e.g. during reflection or
self explanation).

Domain help can also be categorised into adaptive or non-adaptive help. Adap-
tive help is customised for the particular student, and is based on the student’s
solution or their student model. An example of non-adaptive help is the full
solution.

For this research, we have also categorised domain help into low-level help
(LLH) and high-level help (HLH). Low and high level refer to the degree of help
given. For example, showing the student a partial or full solution is classed as
high-level help, whereas telling the student that they have made some errors is
classed as low-level help. Sometimes, the process of giving higher degrees of help
till the highest degree is reached is referred to as “bottoming out”. The highest
degree of problem-dependent help is usually the full solution, either for the step
or the entire problem. In this paper, we focus on the use of LLH and HLH to
explore its effect on learning.

2 Problem-Dependent Help in SQL-Tutor

SQL-Tutor is an ITS designed to guide and support students in their deliber-
ate practice in the domain of querying databases in Structured Query Language
(SQL). SQL-Tutor has a long history of high learning rates and evaluation stud-
ies, and is used in tertiary database courses as part of the curricula. Being
a constraint-based modelling tutor, it stores domain knowledge as constraints
(domain principles) and provides the student with multiple levels of domain-help
depending on various factors, such as their current solution, their student model,
and the constraints violated on this submission.

In SQL-Tutor, the problem-dependent, domain help is divided into six num-
bered categories. These categories in order of degree of help are: 1. Simple feed-
back, 2. Error flag, 3. Hint, 4. Partial solution, 5. List all errors, and 6. Full
solution. The help level (also known as feedback level) is controlled on the inter-
face by means of a simple combo box (see Fig. 1). At the start of a new problem,
the tutor defaults to help level 1. On subsequent incorrect submissions, the tu-
tor automatically increments the help level by one, to a maximum of 3 (i.e.
hint). The student can override the help selection at any time by changing the
value of the combo box. Help levels 4, 5, and 6 have to be specifically requested
by the student. For this research, we have classed help levels 1-3 (inclusive) as
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Fig. 1. The SQL-Tutor task environment showing the combo box with the various
levels of problem-dependent help. Here, the student has requested HLH (in this case,
the full solution) for the problem, which is displayed in the feedback pane.

LLH, and help levels 4-6 (inclusive) as HLH. Furthermore, LLH is automatically
incremented, but HLH is requested by the student.

When a student reaches the task workspace (Fig. 1) in SQL-Tutor, they are
presented with the problem in text format. More information regarding the con-
text of the problem, such as information about the schema, is also presented with
each problem. The solution workspace contains text areas in which students can
work on their query. Once the student is content with their solution, they can
submit it and receive feedback. The degree to which this feedback is given is
dependent on the help level selected, as discussed above. It is this help - and
more specifically, the difference between LLH and HLH used by students, that
interests us for this paper.

3 Learning Curves

Learning curves are used to plot students’ learning over time. Learning a skill
generally follows a power law, where the greatest improvement occurs early in
the learning process. The formula for the power law is given in equation 1. More
details about learning curves can be found in [5,6].

E = χnα. (1)

Where: E is the error rate, χ is the performance on the first trial, n is the
opportunity to practice the skill, and α is the learning rate.

Four main points are worth noting. First, the learning rate (α) shows the
speed at which errors are reduced over the number of occurrences of a particular
skill or concept. The slope of the graph at various points depicts the learning rate
at that point. Second, χ describes the students’ performance on the first trial,
and therefore shows how difficult the students found the particular domain or



366 M. Mathews and T. Mitrović

problem set; the higher the number, the more difficult. Therefore, if the domain
or problem set was kept similar and yet the χ values differed between groups
of students, it could be argued that the group with the higher initial error rate
(i.e. the group that performed better on the first trial and therefore found the
domain easier than the other groups) must have had prior domain knowledge or
higher expertise than the other groups. Third, the fit of the graph (R2) illustrates
the variability of the data within that group. The fit shows how well students
used the skill they learned previously i.e. transferability of the skill learned.
The better the fit, the higher the transferability. And finally, learning curves
gradually decrease in slope over time i.e. the learning rate reduces. The value of
the bottom of the curve shows the probability of the student making an error in
subsequent occurrences of the same concept i.e. how well the student has learned
the concept. If the learning rate has decreased to near-zero, and the probability
of making errors is still quite high (the bottom of the curve is high), then the
student’s learning can be considered shallow. The lower the bottom of the curve,
the deeper the learning.

4 The Data and the Methods Used

The main dataset (named dataset A) for this research was taken from an online
version of SQL-Tutor that is available to students from around the world who
were given free access when they bought certain SQL text books. Data for any
student that made less than five attempts was excluded. The remaining data
consisted of 1803 users who made a total of 100,781 attempts and spent just
over 1,959 active hours on the system. Active hours is time spent actively solving
the problem; not just session times. Students in this dataset on average solved
70% of the problems attempted; giving a grand combined total of 19,604 solved
problems.

We extracted the number of submissions for each student from the individual
student logs. Each submission was then categorised as either a valid attempt or
a request for help (RFH).A valid attempt occurs whenever a student submits
a solution that is different to their previous solution. An attempt need not be
correct to be valid. When a student submits either an empty solution or the same
solution twice in a row, this is interpreted as a RFH. Here, the student is hoping
that more hints will be given on each submission. SQL-Tutor automatically
increments the help level to a maximum of 3. Equation 2 shows the relationship
between submissions, attempts, and RFH.

Submissions = Attempts + Requests for help (2)

We further categorised each valid attempt into two categories: high-level help
(HLH) attempts or low-level help (LLH) attempts, and deduced the total number
of HLH attempts for each student. To normalise the HLH attempts value over all
the students, we calculated an HLH ratio; 0 ≤ HLH ≤ 1. (See equation 3). This
ratio categorises students’ HLH seeking behaviour by showing us how frequently
a student uses high-level help; low frequency HLH students are those that used
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Fig. 2. Frequency distribution of users in the various HLH user groups in dataset A

high-level help very infrequently and vice versa. For example, a student with
an HLH ratio of 1 uses HLH on every attempt, whereas a student with HLH
ratio of 0.1 uses HLH once every ten attempts. Students were then ordered
according to their HLH ratio; from low frequency HLH users to high frequency
HLH users.

HLH ratio =
Number of high-level help attempts

Total number of attempts
(3)

A frequency graph of students and their HLH ratio is shown in Fig. 2. We then
divided the population into ten groups (A1-A10) depending on their HLH ratio;
the groups were 0.1 HLH apart. The logs and student models were analysed for
each group, and learning curves were plotted.

Each problem in SQL-Tutor is assigned a difficulty level by the teacher. Dif-
ficulty levels range from 1 (easiest) to 9 (most difficult). For each student, we
mined the difficulty levels of problems attempted and recorded the maximum
difficulty level of problem solved (MDLS). In our initial analysis, we used the
MDLS to see how students from each group were able to learn skills and progress
through to more difficult problems. Manual analysis of the logs showed that for
students in the higher HLH groups, there was a large difference between the
difficulty level of problems attempted and those solved; they attempted much
more difficult problems than they solved. There also seemed to be a high num-
ber of abandoned problems after valid attempts were made. Furthermore, in
many cases the initial (incorrect) solutions were very different to the ideal so-
lution. It was as though the high HLH students were employing a “guess then
copy” method to solving problems. In contrast, the lower HLH students cre-
ated answers that were usually more similar to a correct solution, then with
each attempt submitted closer approximations to a correct solution until the
problem was solved. Due to this, another metric, termed the maximum difficulty
level of problem solved without using HLH (MDLS-WH) was also calculated and
used.

The results are summarised in the next section.
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Fig. 3. The learning curves for the ten HLH user groups (A1-A10)

5 Results and Discussion

5.1 Frequency Distribution of Users According to Their HLH

The frequency distribution graph in Fig. 2 shows the number of users grouped
according to their HLH. This graph has an interesting shape. From HLH > 0.05,
a positive skewed normal curve exists. There is also a peak external to the
normal distribution in the first section of the graph: HLH ≤ 0.05; these are
students that are very low users of HLH. Manual inspections of the logs seem to
indicate the presence of at least two distinct types of students within this first
section (HLH ≤ 0.05): one with higher domain expertise and the other with
low domain expertise. This section of students needs to be analysed further. It
is understandable that the students with high expertise are low users of HLH.
However, the students with low expertise who do not use HLH could be those who
either have low meta-cognitive (help-seeking) skills or, due to social norms, feel
that looking at HLH constitutes a form of “cheating”. For comparison, frequency
graphs were also plotted for two other smaller sets of data, and we found that
the results were very similar. This shows that this trend is persistent across
populations, and requires deeper analysis.

5.2 Learning Curves for Each HLH User Group

Learning curves were calculated and drawn for each of the ten groups (A1-A10).
Fig. 3 shows the learning curves for all the groups plotted on the same graph
for ease of comparison. To avoid clutter, the equations have been excluded from
the graph but are listed in table 1.

Several points can be noted from the learning curves:

1. The curves follow the same approximate order of the HLH use. The higher
the HLH use, the shallower the learning. For example, students in the group
A10 (those with the highest HLH) portray shallow learning; even when their
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Table 1. Power curve equations and fits (R2) for the ten HLH groups (A1-A10)

Group HLH ratio Power curve equation R2 (Fit)

A1 0.0 - 0.1 y = 0.061x−0.30 0.844
A2 0.1 - 0.2 y = 0.084x−0.31 0.956
A3 0.2 - 0.3 y = 0.101x−0.38 0.955
A4 0.3 - 0.4 y = 0.109x−0.37 0.956
A5 0.4 - 0.5 y = 0.110x−0.36 0.965
A6 0.5 - 0.6 y = 0.123x−0.39 0.961
A7 0.6 - 0.7 y = 0.122x−0.36 0.953
A8 0.7 - 0.8 y = 0.115x−0.35 0.953
A9 0.8 - 0.8 y = 0.118x−0.36 0.912
A10 0.9 - 1.0 y = 0.123x−0.22 0.956

learning rate approaches zero, their probability of making errors is still com-
paratively high.

2. The fit for power curve is very high across all groups. The lowest fit for
curve is in A1 (R2 = 0.844). This could be because, as proposed earlier, A1
contains at least two distinct sub-groups of students: the students with high
expertise, and the students with low expertise who persevere with problem
solving without utilising HLH. The transferability of skills could vary within
these sub-groups, reducing the overall fit.

3. Since learning curves A2-A9 are very similar, this leaves us with three distinct
categories of learning curves: A1, A2-A9, and A10. Fig. 4 shows the three
learning curves plotted on a single graph. The middle range of HLH users
displays similar learning (i.e. depth, learning rate, etc.), while the extreme
high and low HLH users display markedly different learning.

4. The χ value increases as HLH use increases. This means that high HLH stu-
dents find the domain more difficult than low HLH students. There is a marked
difference between the χ value ofA1 and the other groups.This could also show
that A1 contains experts (or at least students with prior domain knowledge).

5. Curves A2-A9 report similarly high learning rates. A10, the highest HLH
has the lowest learning rate (0.22). This could be because students that use
HLH extremely frequently do not actively engage in the material, think for
themselves, utilise their meta-cognitive skills (such as reflecting or explain-
ing their actions), or participate in the benefits of deliberate practice (e.g.
learning from errors). This causes much lower learning rates. The group of
users that use HLH the least (i.e. group A1) has the second lowest learning
rate. This could be because both the sub-groups (experts and low expertise
students) in A1 both have low learning rates. The experts in A1 already find
the domain easy, thus starting with low error rates (i.e. χ is low), and there-
fore reach their asymptote of learning very quickly. The novices in A1 who
persevere with problem solving without utilising HLH also have low learn-
ing rates. In this case, the ITS is therefore most beneficial for the majority
of students who are in the middle HLH range, producing relatively similar,
high learning rates.
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Fig. 4. The learning curves for the HLH user groups. In this graph (unlike Fig. 3),
groups A2-A9 are combined. This was done as the curves for A2-A9 were very similar
in nature.

5.3 Maximum Difficulty Level of Problems Solved by Students

The Zone of Proximal Development (ZPD) [7] is the area just beyond the stu-
dent’s ability or more specifically, it is the difference between what a learner can
do without help and what they cannot do without help. In ITS terms, the prob-
lems found within the ZPD are just challenging enough for the student to solve
with some help (i.e. LLH and moderate amounts of HLH) from the tutor. It is
also said to be the area in which the highest rate of learning occurs. Like most
ITSs, SQL-Tutor attempts to keep the student within their ZPD by guiding them
through increasing levels of difficulty, while providing LLH, as their expertise in
the domain increases; the student is also free to use HLH as necessary.

As mentioned earlier, problems in SQL-Tutor range in difficulty level from 1
to 9. Although the range (1-9) seems small, there is quite a difference in difficulty
between levels, such that the difficulty (and type of concepts covered) between
a problem of level 1 and another of level 5, for example, is considerable.

As discussed in the section above, we initially collected the maximum difficulty
level of problems solved (MDLS); this included problems solved irrespective of
the level of help used. Another metric, the maximum difficulty level of problems
solved without HLH (MDLS-WH) was also ascertained for each user from their
logs. We determined that the MDLS-WH would give an indication of how far
the user progressed through the domain on their own, and thus give us a clue,
albeit a vague one, of the student’s expertise in the domain. We also collected the
maximum difficulty level of problems attempted (MDLA) for each student. The
average MDLA, MDLS, and MDLS-WH for each HLH user group was calculated
and plotted, and is shown in Fig. 5.

As shown by the graph, the MDLA is always higher than the maximum dif-
ficulty of solved problems irrespective of any help levels. This is expected. The
MDLS-WH increases steadily as HLH use increases, peaking at the A4 group
(MDLS-WH = 4.32). After this, as HLH use increases, MDLS-WH decreases.
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Fig. 5. The average maximum difficulty of problems attempted (MDLA), solved
(MDLS), and solved without using HLH (MDLS-WH) for students in the HLH groups.
Note the difference between the MDLA and MDLS-WH as HLH use increases.

The high HLH groups had very low MDLS-WH values (e.g. average MDL for
A9 = 1.75) with the lowest MDLS-WH average occurring in the highest HLH
user group (A10). Although the minimum problem difficulty level in SQL-Tutor
is 1, the average MDLS-WH in A10 was 0.77. This was due to a number of
students not solving any problems on their own, without HLH. The lowest HLH
user group (A1) also reported a low MDLS-WH average (2.21). This is similar
to the trend found in the learning curves above.

What is most interesting about this graph is the difference between the MDLA
and MDLS-WH. The higher the HLH use, the greater the difference between the
two graphs.

This shows that students who use low to moderate amounts of HLH, progress
through the problem set, solving more difficult problems on their own compared
to students who are either high or low frequency users of HLH. Students who are
high HLH users attempt increasingly difficult problems, much harder problems
on average than any other group of students. However, these students only solve
very easy problems (either on their own, or using HLH), choosing to abandon
problems after viewing the HLH. It is as if they have a very low expertise level,
but choose to attempt problems far beyond their ZPD.

6 Future Work

Immediate future work for the authors include deeper analysis of certain groups
more thoroughly (for example the composite group A1). In this paper, we divided
the entire sample (evenly by HLH ratio) into ten groups. Another method would
be to divide the sample into two separate groups first before beginning analysis.
This first split would be dependent on the shape of the frequency distribution
graph (Fig. 2), i.e. students who fall in the normal distribution of the graph
(HLH > 0.05), and students outside the normal distribution (the group with
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HLH < 0.05). This could be interesting as this frequency trend is common across
the three separate samples that we analysed. We also would like to attempt to
ascertain if students remain in one group or migrate between groups during the
duration of their learning.

This research forms a part of the larger observational analysis work done on
learning behaviour by various researchers. These types of analysis can then be
used to form a basis to categorise students, as they work on an ITS, into various
groups depending on their help-seeking behaviour. Students in each particular
group can then receive customised pedagogical and intervention strategies, ap-
propriate to the group to which they belong.

One of the challenges in creating systems that attempt to increase the effec-
tiveness of learning is observing and comprehending the behaviour displayed by
various groups of students in particular contexts. This research examines stu-
dents’ behaviour with regards to seeking high-level help. It forms a piece in the
larger set of observations gathered by researchers, which then gives us some basis
for creating customised pedagogical strategies.

References
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Abstract. We have proposed a novel application of Markov decision processes 
(MDPs), a reinforcement learning technique, to automatically generate hints for 
an intelligent tutor that learns. We demonstrate the feasibility of this approach 
by extracting MDPs from four semesters of student solutions in a logic proof tu-
tor, and calculating the probability that we will be able to generate hints at any 
point in a given problem. Our results indicate that extracted MDPs and our pro-
posed hint-generating functions will be able to provide hints over 80% of the 
time.  Our results also indicate that we can provide valuable tradeoffs between 
hint specificity and the amount of data used to create an MDP. 

1   Introduction 

Logic proof construction is an important skill for both computer science and philoso-
phy. However, in our experience, this topic is of particular difficulty for students, 
especially in determining a strategy to derive a conclusion from given premises.  
Once students apply rules that are easy for them, they often become stuck, performing 
unnecessary steps or giving up when the next step is unclear.  In one-on-one tutoring 
sessions, however, suggesting one or more intermediate goal states helps many stu-
dents achieve complete proofs. 

Our long-term goal is to provide real-time, individualized hints to support on-going 
student proof construction efforts. In this paper, we present our system for automati-
cally generating strategic hints using historical data and Markov Decision Processes, 
and the results of two experiments demonstrating the feasibility of automated hint 
generation. The first is something like a cross-validation study, comparing the hints 
we can generate using various semesters of data for MDP creation. The second is a 
simulation of creating MDPs incrementally as students work proofs, and calculating 
the probability of being able to generate hints as new attempts are added to the MDP.   

The Proofs Tutorial is a computer-aided instructional (CAI) tool implemented on 
NovaNET (http://www.pearsondigital.com/novanet/). This program has been used for 
practice and feedback in writing proofs in our university-level discrete mathematics 
courses since 2002. In the tutorial, students type in consecutive lines of a proof, which 
consist of 4 parts: the premise, reference lines, the axiom used, and the substitutions 
which allow the axiom to be applied. After the student enters these 4 parts to a line, 
the premise, reference lines, axiom, and substitutions are verified. If a mistake is 
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Table 1. Sample Proof 1 Solution 

Premise Line Reason
1. a  b   Given
2. c  d Given
3. ¬ (a  d) Given

¬ a v d 3 rule IM (error) 
4. a ^ ¬ d 3 rule IM implication
5. a 4 rule S simplification

b 4 rule MP (error)
6. b 1,5 rule MP modus ponens
7. ¬ d 4 rule S simplification
8. ¬c 2,7 rule MT modus tollens
9. b ^ ¬c 6,8 rule CJ conjunction

 

made, a warning message is shown, and the line is deleted (but saved for later analy-
sis). In this work, we examine student solutions to Proof 1, as in Table 1.  

Our goal in this work is to augment the Proofs Tutorial with goal feedback that 
helps focus student attention on an appropriate next sub-goal.  This type of feedback 
has been shown to improve learning and skill transfer over minimal and condition 
violation feedback [1].  Since the Proofs Tutorial has been used for several years, we 
have a large corpus of data to use in building student models from historical data.  We 
create a student model for each problem, and use it to generate intelligent hints. As a 
new student works a problem, we record his or her sequence of actions as a state. If 
the current state is matched in the model, and the matched state has a successor closer 
to the goal, we enable a Hint Button to give contextual help. From the successor state 
with the highest reward value, we derive a hint sequence: 1) indicate a goal expres-
sion to derive, 2) indicate the rule to apply next, 3) indicate the premises (lines) where 
the rule can be used, and 4) a bottom-out hint combining 1-3. 

Table 2 shows an example hint sequence, generated using the solution in Table 1 
for a student solving proof 1 and requesting a hint after line 3. If a student’s state is 
not found in the model, the Hint Button will be disabled. Such a student will not get 
goal feedback.  However, we can add the student’s action and its correctness to our 
database, and periodically run reinforcement learning to update the reward function 
values.  Before an update is applied, we could test the update by examining new MDP 
states to ensure that unusual solutions have not superseded existing good solutions.  

Table 2. Example hint sequence derived from example student solution 

 
 
 
 
 
  

Hint # Hint Text 
1 Try to derive: a ^ ¬ d  
2 Use line 3, ¬ (a → d)  to derive it 
3  Use the rule: IM, implication  
4 Enter  a ^ ¬ d with ref. line 3 and rule IM implication  
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2   Related Work 

The problem of offering individualized help and feedback is not unique to logic 
proofs. Through individual adaptation, intelligent tutoring systems (ITS) can have 
significant effects on learning, but take considerable time to construct [2]. Constraint-
based tutors, which look for violations of problem constraints, require less time to 
construct and can be used for problems that may not be heavily procedural [3].  How-
ever, constraint-based tutors can only provide condition violation feedback, not goal-
oriented feedback, that has been shown to be more effective [1]. 

Example-based authoring tools such as CTAT use demonstrated examples to learn 
ITS production rules [4]. In these tools, teachers work problems in what they predict 
to be frequent correct and incorrect approaches, and then annotate the learned rules 
with appropriate hints and feedback. This system has also been used with data to build 
initial models for an ITS, in an approach called Bootstrapping Novice Data (BND) 
[5]. However, in both of these approaches, considerable time must still be spent in 
identifying student approaches and creating appropriate hints.   

Machine learning has also been used to improve tutoring systems. In the 
ADVISOR tutor, machine learning was used to build student models that could pre-
dict the amount of time students took to solve arithmetic problems, and to adapt in-
struction to minimize this time while meeting teacher-set instructional goals [6].  In 
the Logic-ITA tutor, student data was mined to create hints that warned students when 
they were likely to make mistakes using their current approach [7]. 

Similar to the goal of BND, we seek to use student data to directly create student 
models for an ITS. However, instead of feeding student behavior data into CTAT to 
build a production rule system, our method generates Markov Decision Processes that 
represent all student approaches to a particular problem, and use these MDPs directly 
to generate hints. In [8], we used visualization tools to explore how to generate hints 
based on MDPs extracted from student data and verified that the rules extracted by 
the MDP conformed with expert-derived rules and generated buggy rules that sur-
prised experts. In [9], we applied the technique to visualize student proof approaches 
to allow teachers to identify problem areas for students.  

Our method of automatic hint generation using previous student data reduces the 
expert knowledge needed to generate intelligent, context-dependent hints and feed-
back.  The system is capable of continued refinement as new data is provided. In this 
work, we demonstrate the feasibility of our hint generation approach through simula-
tion experiments on existing student data.  Although our approach is currently only 
appropriate for generating hints for specific problems with existing prior data, we 
believe that machine learning applied to MDPs may be used to create automated rules 
and hints for new problems in the same domain. 

3   Markov Decision Processes to Create Student Models 

A Markov decision process (MDP) is defined by its state set S, action set A, transition 
probabilities P, and a reward function R [10].  On executing action a in state s the 
probability of transitioning to state s’ is denoted P(s’ | s, a) and the expected reward 
associated with that transition is denoted R(s’| s, a).  For a particular point in a stu-
dent’s proof, our method takes the current premises and the conclusion as the state, 
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and the student’s input as the action.  Therefore, each proof attempt can be seen as a 
graph with a sequence of states (each describing the solution up to the current point), 
connected by actions. Specifically, a state is represented by the list of premises gener-
ated in the student attempt, and actions are the axioms (rules) used at each step. 

We combine all student solution graphs into a single graph, by taking the union of 
all states and actions, and mapping identical states to one another.  Once this graph is 
constructed, it represents all of the paths students have taken in working a proof.  
Typically, at this step reinforcement learning is used to find an optimal solution to the 
MDP.  For the experiments in this work, we set a large reward for the goal state (100) 
and penalties for incorrect states (10) and a cost for taking each action (1). Setting a 
non-zero cost on actions causes the MDP to penalize longer solutions (but we set this 
at 1/10 the cost of taking an incorrect step). We apply the value iteration reinforce-
ment learning technique using a Bellman backup to assign reward values to all states 
in the MDP [10].  The equation for calculating values V(s) for each state s, where 
R(s) is the reward for the state, γ is the discount factor (set to 1), and Pa(s,s’) is the 
probability that action a will take state s to state s’: 

V(s) :=  R(s) +  γ max
a

 Pa (s,s') V(s')
s'

∑   

For value iteration, V is calculated for each state until there is little change in the 
function over the entire state space.  Once this is complete, the optimal solution in the 
MDP corresponds to taking a greedy traversal approach in the MDP [8].  The reward 
values for each state then indicate how close to the goal a state is, while probabilities 
of each transition reveal the frequency of taking a certain action in a certain state. 

4   Method 

We use historical data to estimate the availability of hints using different types of 
state-matching functions and differing datasets for training.  We use data from the 
four fall semesters of 2003-2006 (denoted f3-f6), where an average of 220 students 
take the discrete math course each fall. Students in this course are typically engineer-
ing students in their 2nd or 3rd years, but most have not been exposed to a course in 
logic.  Students attend several lectures on logic and then use the Proofs Tutorial to 
solve 10 proofs. Sixty percent of students used direct proof when solving proof 1. We 
extracted 537 of students’ first attempts at direct solutions to proof 1. 

The data were validated by hand, by extracting all premises generated by students, 
and removing those that 1) were false or unjustifiable, or 2) were of improper format. 
We also remove all student steps using axioms Conjunction, Double Negation, and 
Commutative, since students are allowed to skip these steps in the tutorial. After 
cleaning the data, there were 523 attempts at proof 1.  Of these, 381 (73%) were com-
plete and 142 (27%) were partial proofs, indicating that most students completed the 
proof. The average lengths, including errors, were 13 and 10 steps, respectively, for 
completed and partial proofs.  When excluding errors and removed steps, the average 
number of lines in each student proof is 6.3 steps.  

The validation process took about 2 hours for an experienced instructor, and could 
be automated using the existing truth and syntax-checking program in our tutorial. We 
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realized that on rare occasions, errors are not properly detected in the tutorial (less 
than 10 premises were removed).  We plan to correct this in future work. 

We performed two experiments to explore the capability of our method to generate 
automated hints. In each experiment, we isolated the data into training and test sets, 
where the training set was used to generate the Markov Decision Process (MDP) as 
described above, and the test set was used to explore hint availability.  The process for 
comparing the test set to the MDP consists of several steps. Because of the structure 
of the tutorial, we first removed all error states from the MDP and from student at-
tempts before comparison, since the tutorial provides error messages and deletes the 
corresponding error from the student proof. Then, each attempt in the test set is 
mapped onto a sequence of states.  For each test state, there are two requirements for 
a hint to be available: 1) there must be a “matching” state in the MDP, and 2) the 
“matching” state must have a successor state in the MDP (i.e. it cannot be a dead 
end).  The closer the match between a test state and the corresponding MDP state, the 
more context-specific the hint based on that match will be.   

4.1   Matching Functions 

To maximize the probability that our generated hints are in line with a student’s cur-
rent strategy, we seek to give hints based on states very similar to the current state.  
We considered four matching functions: 1) ordered (exact), 2) unordered, 3) ordered 
minus the latest premise, and 4) unordered minus the latest premise.  An ordered, or 
exact, state match means that another student has taken the same sequence of steps in 
solving the proof. An unordered state match means that there is a state with exactly 
the same premises, but they were not necessarily reached in the same order.  An “or-
dered-1” match looks for an exact match between the student’s previous state and an 
MDP state. An “unordered-1” match looks for an unordered match between the stu-
dent’s previous state and an MDP state. Once a match is made, we generate a hint 
using the optimal successor state from the matching state. The more specific the 
match, the more contextualized the hint.  Hints generated using unordered matches 
will reveal steps taken by other students in the same problem state, but who might be 
using a different approach to problem solving, so these hints may differ from hints 
based on ordered matches. 

To determine hint availability, we calculated two numbers for each match type. 
The first is “move matches”: the percentage of test states, or “moves”, including du-
plicates, with matches in the MDP.  The second is the “unique matches”: the percent-
age of unique test states that have matches in the MDP. Move matches gives us a 
measure of the probability that a hint is available for each move. Unique matches 
reflects the percent overlap in test and training sets, and could indicate if one class is 
particularly different from the training set.  

5   Experiment 1: Comparing Classes 

In this experiment, we explored the ability of our system to provide hints using one, 
two, three, or four semesters of data to build MDPs.  Similar to a cross-validation 
study, each semester is used as a test set while all the remaining semesters are used as 
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training sets for MDPs.  This experiment provides us insight into the number of se-
mesters of data we might need to provide hints a reasonable percentage of the time 
while students are solving proofs.  Table 3 presents the data for each semester.  Se-
mester f5 was unusual: there were a small number of states, but a large number of 
moves, suggesting that students solved this proof in very similar ways.   

Table 3. Semester data, including attempts, moves, and states in the MDP for each semester 

Semester # Attempts MDP states # Moves 

f3 172 206 711 

f4 154 210 622 

f5 123 94 500 

f6 74 133 304 

 
We hypothesized that we could provide hints a majority of the time using just one 

semester as our MDP training data. Table 4 shows the percent ordered matches be-
tween each semester and the remaining combinations of training sets. We were very 
encouraged by these data, suggesting that our system would provide highly contextu-
alized hints over sixty-six percent of the time, in the worst case, after just one semes-
ter of training. In all cases, adding more data increased the probability of providing 
hints, though we do see diminishing returns when comparing the marginal increase 
between 1-2 (6.8%) and 2-3 (2.8%) semesters of data.  

Table 4. Average % move matches across semesters using the ordered test sets and MDPs 

Test set  1-sem. MDPs 2-sem. MDPs 3-sem. MDPs 

f3 68.73% 75.67% 78.62% 

f4 69.77% 77.71% 81.03% 

f5 86.33% 90.80% 92.00% 

f6 66.34% 74.12% 77.63% 

Average 72.79% 79.57% 82.32% 

 
Our experiments using the remaining matching techniques showed consistent in-

creases going from 1-semester MDPs up to 2-semester MDPs, as expected. However, 
the increases between 2- and 3-semester MDPs are decreasing, suggesting consistent 
diminishing returns for adding more data to the MDPs. 

Table 5 lists the average percent matches for each of our experiments using the 
four match functions.  This table gives an indication of the tradeoffs between using 
multiple semesters of data versus multiple techniques for matching.  Here, we see 
that, on average, for 72% of moves, we can provide highly contextualized (ordered) 
hints using just one semester of data.  With two semesters of data, we can provide 
these hints almost 80% of the time, but this only increases to 82% for three semesters 
of data. If we wished to provide hints after collecting just one semester of data, we 
could provide less contextualized hints for those who don’t have ordered matches in 
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the MDP.  There is a nearly identical increase in the match rate, to almost 80%, by 
providing hints using either unordered or ordered-1 searches. We can provide hints an 
additional five percent of the time if we add the unordered-1 match function.  

When analyzing these data, we observed a skew in all statistics because of the un-
usual distribution of states and moves in f5.  We therefore repeated all experiments 
excluding f5, and the results are given in Table 6.  The differences caused by skew in 
f5 had a smaller effect moving from top left to bottom right, suggesting that more data 
or less sensitive matching can mitigate the effect of unusual training data. 

Table 5. Comparison of % move matches across multiple semesters and matching techniques 

Matching 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs 

Ordered 72.79% 79.57% 82.32% 

Unordered 79.62% 85.22% 87.26% 

Ordered-1 79.88% 87.84% 91.57% 

Unordered-1 85.00% 91.50% 93.96% 

Table 6. Comparison of % move matches, excluding f5 from all sets 

Test set  1-sem. MDPs 2-sem. MDPs 
Ordered 70.97% 78.05% 

Unordered 78.69% 83.59% 

Ord-1 79.02% 87.99% 

Unord-1 85.77% 91.86% 

 
Table 7 shows the marginal increase, with ordered as a baseline, of each matching 

technique for each MDP size, to illustrate the tradeoffs between additional data and 
matching technique. When considering matching functions, the easiest technical 
change is from ordered to ordered-1, where one premise is removed from the test state 
before comparison with the MDP states. In all cases, the probability of providing 
these hints is higher than that of providing hints based on unordered matches.  This is 
probably because there is some inherent partial ordering in proofs, so only limited 
benefit is seen from reordering premises.  When an ordered hint cannot be matched, it 
is perhaps more likely that the student has just performed a step that no one else has 
done before, rather than generating a new ordering of steps, so the benefit of ordered-
1 can exceed that of unordered. Providing the unordered search requires us to main-
tain 2 separate MDPs to make the search more efficient, so there are both time and 
space tradeoffs to using unordered matching. However, adding unordered-1 after 
adding unordered provides a very large difference in our capability to provide hints, 
with little investment in time. 

As part of this study we also compared the unique states across semesters, as 
shown in Table 8. This gives us a measure of the percent overlap between MDPs.  
Using 3 semesters of data with ordered matching, or using 1 semester of data with 
unordered-1 matching, both give us over 50% matching of states across MDPs. When 
compared with the much higher move matches, this suggests that although a new  
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Table 7. Marginal increases when comparing matching techniques to ordered 

Technique 1-sem. ordered 2-sem. ordered 3-sem. ordered 
Unordered 6.83% 5.65% 4.94% 

Ordered-1 7.09% 8.27% 9.25% 

Unordered-1 12.21% 11.93% 11.64% 

Table 8. Unique state % matches across semesters and techniques 

Test set  1-sem. MDPs 2-sem. MDPs 3-sem. MDPs 
Ordered 34.55% 45.84% 51.93% 

Unordered 43.62% 55.23% 59.90% 

Ordered-1 48.25% 63.07% 71.39% 

Unordered-1 57.28% 71.98% 77.87% 

 
semester may bring many more different solution steps, the ones actually used for 
complete solutions already exist and are those most often used by students. 

6   Experiment 2: Exploring the “Cold Start” Problem 

One critique of using data to generate hints has been the expected time needed for the 
method to be applied to a new problem, or in other words, the “cold start” issue. Our 
hypothesis was that a relatively low number of attempts would be needed to build an 
MDP that could provide hints to a majority of students. One method for building our 
hint MDP would be to incrementally add MDP states as students solve proofs.  This 
experiment explores how quickly such an MDP is able to provide hints to new stu-
dents, or in other words, how long it takes to solve the cold start problem.  For one 
trial, the method is given in Table 9. 

Table 9. Method for one trial of the cold-start simulation 

 
For this experiment, we used the ordered and unordered matching functions, and 

plotted the resulting average matches over 100,000 trials, as plotted in Figure 1. These 
graphs show a very quick rise in ability to provide hints to students, that can be fit 
using power functions, whether using ordered or unordered MDP states and matching. 
Clearly, the availability to give hints ramps up very quickly. Table 10 lists the number 
of attempts needed in the MDP versus target hint percentages.  For the unordered 

1. Let Test = {all 523 student attempts} 
2. Randomly choose and remove the next attempt a from the Test set.  
3. Add a’s states and recalculate the MDP. 
4. Randomly choose and remove the next attempt b from the Test set. 
5. Compute the number of matches between b and MDP. 
6. If Test is non-empty, then let a:=b and go to step 3.  Otherwise, stop. 
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matching function, the 50% threshold is reached at just 8 student attempts and the 
75% threshold at 49 attempts. For ordered matching, 50% occurs on attempt 11 and 
75% on attempt 88. These data are encouraging, suggesting that instructors using our 
MDP hint generator could seed the data to jump-start new problems. By allowing the 
instructor to enter as few as 8 to 11 example solutions to a problem, the method might 
already be capable of automatically generating hints for 50% of student moves. 

Fig. 1. Percent hints available as attempts are added to the MDP, over 100,000 trials 

Table 10. Number of attempts needed to achieve threshold % hints levels 

50% 55% 60% 65% 70% 75% 80% 85% 90%

Un-Ordered 8 11 14 20 30 46 80 154 360

Ordered 11 15 22 33 55 85 162 362 ?
 

7   Conclusions and Future Work 

We have proposed and explored the feasibility of an approach to mining Markov 
decision processes from student work to automatically generate hints. This approach 
differs from prior work in authoring tutoring systems by mining actual student data, 
rather than relying on teachers to add examples the system can learn from. In addi-
tion, the generated hints are not created by hand as in example-based tutors, but  
created based on past student work. Our novel MDP-based approach enables us to 
automatically provide highly contextual hints, and also allow our knowledge model to 
learn from new student data.  We note that on cold start for a new problem that has no 
student data, the system will still act as a problem-solving environment, but after even 
one semester of data is collected, a significant amount of hints can be generated.  

In our future work, we plan to empirically validate our findings with actual stu-
dents, and to measure the impact of our generated hints on learning.  We will continue 
to explore ways to learn general rules to build intelligent hints, feedback and help 
with greater coverage and robustness. For instance, we plan to group students accord-
ing to their class performance and behavior in solving proofs, and create tailored 
MDPs for each group of students. In [8], we proposed three modified reward  
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functions that may benefit different types of students. The first, used in this experi-
ment, is the “expert” function that rewards solutions with fewer steps and errors. This 
is most related to existing knowledge-based help systems that emphasize efficiency, 
and the steps in expert solutions are probably most understandable to high-performing 
students.  Other students may better understand less efficient approaches that have 
been taken by many students, inspiring our second reward function that suggests steps 
that many students have taken in successful past solutions.  On the other hand, at-risk 
or highly frustrated students may benefit from hints that help them avoid complex or 
error-prone solutions as in our least-error prone reward function.  

We plan to explore machine learning techniques to generalize our models to other 
problems in the same domain.  We also plan to apply our MDP approach to less pro-
cedural domains, where creating goal feedback may be difficult, but providing insight 
into prior student solutions may help current students. 
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Abstract. Most ITS have a means of providing assistance to the student, either 
on student request or when the tutor determines it would be effective. Presuma-
bly, such assistance is included by the ITS designers since they feel it benefits 
the students.  However, whether—and how—help helps students has not been a 
well studied problem in the ITS community. In this paper we present three ap-
proaches for evaluating the efficacy of the Reading Tutor’s help: creating ex-
perimental trials from data, learning decomposition, and Bayesian Evaluation 
and Assessment, an approach that uses dynamic Bayesian networks. We have 
found that experimental trials and learning decomposition both find a negative 
benefit for help--that is, help hurts! However, the Bayesian Evaluation and As-
sessment framework finds that help both promotes student long-term learning 
and provides additional scaffolding on the current problem. We discuss why 
these approaches give divergent results, and suggest that the Bayesian Evalua-
tion and Assessment framework is the strongest of the three. In addition to in-
troducing Bayesian Evaluation and Assessment, a method for simultaneously 
assessing students and evaluating tutorial interventions, this paper describes 
how help can both scaffold the current problem attempt as well as teach the stu-
dent knowledge that will transfer to later problems.   

Keywords: educational data mining, dynamic Bayesian networks, assessment, 
evaluation, Bayesian Evaluation and Assessment. 

1   Introduction 

An important property of an Intelligent Tutoring System (ITS) is its ability to help 
students.  Thus, measuring the effectiveness of tutor help is an important evaluation of 
an ITS.  Does help help? Does one type of help work better than the others [1]? Even 
though the tentative answer is “yes” by most ITS researchers (otherwise, why include 
help at all in the tutor?), answering such questions is surprisingly difficult.  One of the 
difficulties is that the question “does help help?” is ill-defined; what does it mean to 
help students?  Does it mean to assist students in performing correctly on the current 
attempt or does it mean to assist in learning of persistent knowledge that will help on 
future attempts?   

To measure the effectiveness of tutor help, we would ideally set up a controlled 
pre- and post- test experiment. A typical experimental setup works as follows: in the 
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pre-test, we assess student performance before using the ITS. Then, we randomly as-
sign students into two groups. The experimental group uses one version of ITS with 
the tutor help that we’re evaluating, whereas the control group uses another version of 
ITS without the particular tutor help. After students use the ITS for some time, we as-
sess student performance of the two groups again in the post-test. We test the hypothesis 
that the performance improvement in the experimental group is significantly different 
than in the control group. This experimental design is sound and has been extensively 
practiced in the field of psychology. Nonetheless, the experimental design is often im-
practical for evaluating an ITS because a controlled experiment takes a long time to 
conduct and is often too expensive to conduct, although exceptions exist [2]. 

Given that the ideal pre- and post-test experimental studies are often impractical, 
there are several other approaches to measure the effectiveness of tutor help.  For ex-
ample, we may conduct user case studies and directly ask the students whether they 
find the tutor help effective.  Unfortunately, while user case studies provide valuable 
qualitative feedback, they lack the ability to draw conclusive relationships.  Alterna-
tively, we can try to infer tutor help efficacy from data. For instance, one might claim 
that tutor help is effective if student performance improves when they receive help, 
compared to when they do not receive help.  However, this approach raises the ques-
tion of when to assess student performance.  Immediate performance is prone to scaf-
folding effects where tutor help merely provides a short-term performance boost.  For 
example, some help types provide students the answer; if students simply imitate the 
answer we should not count that as learning. 

In this paper, we describe a methodology to model both tutor help and student 
knowledge in one coherent framework.  This configuration allows us to tease apart the 
effect of help into 1) scaffolding immediate performance and 2) teaching persistent 
knowledge that improves long term performance. We evaluate the proposed frame-
work on student performance data from the Reading Tutor, an Intelligent Tutoring 
System that listens to children read aloud [3]. The Reading Tutor uses automated 
speech recognition to listen to children read aloud and tries to score their reading as 
correct or incorrect.  Students can ask for assistance on a challenging word, and the 
Reading Tutor chooses randomly which type of help to give. For example, if the stu-
dent clicks on the word “cat” the tutor could say “Rhymes with…bat”; it could sound 
out the word, break longer words into syllables; or simply speak the word for the stu-
dent.  If the student does not like the help provided, he can click again and receive 
another random selection.   

2   Naïve Approaches to Modeling Help 

There are several approaches one could apply to observational data to estimate the effi-
cacy of the tutor’s help. We first discuss experimental trials and learning decomposition.   

2.1   Experimental Trials 

For experimental trials, two items are needed: what is being compared, and the out-
come measure with which to perform the comparison. Note that all of the scoring in 
this paper is performed by automated speech recognition (ASR), which is not nearly 
as accurate as typed input.  Therefore, interpreting a number in isolation or numbers 
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derived from a small number of observations is suspect. In terms of what is being 
compared, the issue is somewhat problematic. One natural item of interest is student 
performance on words on which he clicked for help. One possible comparison is 
words on which he did not ask for help. 

In terms of an outcome measure, student performance on the word is a natural 
measure to use. Since students are reading stories aloud to the Reading Tutor, we ex-
pect students to periodically encounter words simply in the course of reading, and we 
can use those as our outcome. If we use student performance at reading the word im-
mediately after receiving help, we find that words on which the student receives help 
are read  more accurately than words on which he does not.  However, this outcome is 
contaminated by recency effects.  For example, if tutor read antidisestablishmentari-
anism aloud, and the student immediately mimicked the tutor, we should not necessar-
ily be confident that he actually knows the word.  Perhaps the pronunciation was sim-
ply in his working memory buffer [4]. 

A stronger outcome is one that avoids memory effects by waiting for a later day to 
test the student’s performance. If we change the outcome to only consider cases where 
the student encounters the word on a later day, then we find that words that did not 
receive help were read with 83% accuracy, while words that received help were read 
with 73% accuracy. In other words, help is providing a “benefit” to students of 10% 
worse performance. Although the Reading Tutor’s help could certainly be improved, 
we are skeptical that its assistance is that bad. A more likely explanation is that stu-
dents click for help on words they do not know. If a student doesn’t know a word, the 
help might help him to learn it, but even after receiving the help he probably will not 
understand the word as well as one that he already knew. Therefore, the difference in 
performance on later days is more a function of the student’s starting knowledge than 
a function of receiving the help.       

2.2   Learning Decomposition 

A slightly more sophisticated technique is learning decomposition [5-7].  Learning 
decomposition is a variant of learning curves. Typically learning curves estimate how 
much students learn as a result of a practice opportunity. Learning decomposition 
instead estimates the relative worth of different types of learning opportunities. For 
example, prior work with learning decomposition has shown that students learn ap-
proximately 25% more in stories they choose to read vs. those selected by the tutor 
[8].  It is possible to apply learning decomposition to this analysis by considering two 
types of learning encounters: reading words and receiving help. In this way, we can 
see how valuable help is compared to simply reading the word.     

Unlike the experimental trials approach, it is not necessary to construct a compari-
son set of words. Learning decomposition simply computes the relative impact of help 
compared to reading the word. Similar to the experimental trials approach, it is neces-
sary to decide what the set of allowable outcomes will be. Again, to avoid recency 
effects, we only consider words that students encounter on later days. We fit the 
model shown in Equation 1 to each student’s data.  By doing so, we get an estimate of 
the impact of help for each student, controlling for the fixed traits of the student (this 
control is analogous to that from having the student be a factor in logistic regression). 
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Equation 1. Learning decomposition formula for evaluating the impact of help 

The learning decomposition model finds that reading a word is, by definition, 
worth 1.0 practice opportunities. Relative to this baseline, depending on the exact model 
used, help is worth roughly -1.5 to -4 trials of learning (e.g. the model reported in [5] 
produces a result of -1.91, while the model shown in Equation 1 gives a result of -3.3 
exposures). That is, receiving help caused students to perform worse on later trials com-
pared to words on which they did not receive help. Even after controlling for student 
properties by constructing a per-student model, and comparing the effect of help relative 
to a baseline of simply reading a word, help is still found to be unhelpful.  We suspect a 
similar effect is occurring is with the experimental trials approach:  students request help 
on words on which they have low knowledge. The help thus acts as evidence of a lack 
of knowledge, rather than a direct cause of that lack of knowledge.   

3   New Approach: Bayesian Evaluation and Assessment 

There are two primary failures with the above-mentioned naïve approaches to model-
ing the impact of help. First, controlling for students is not sufficient. Rather, it is neces-
sary to control for the student’s knowledge of the skill (in our case, word) being helped. 
Second, it is necessary to refine exactly what is meant by help helping the student. Al-
though both of the prior analyses ignored the short-term impact of help on performance, 
that may not be the best approach. Students typically request help when they are stuck; 
if help can get them unstuck then it can be said to be at least partially effective. Such a 
temporary boost is of course no substitute for truly effective help, otherwise ITS design-
ers would have help systems that simply told students the answer. However, there 
should at least be some acknowledgement of short term benefits. 

To achieve these goals, we unify two common analysis goals in ITS. The first of 
these is assessing student knowledge.  Most ITS have some form of assessment or stu-
dent modeling. Fig. 1 shows a graphical representation of knowledge tracing [8], a fairly 
common student modeling approach. This relatively simple dynamic Bayesian network 
suffices to completely describe knowledge tracing [9].  The shaded nodes represent 
things the model can directly observe, in this case student performance. The unshaded 
nodes represent unobservable latent parameters, in this case the student’s knowledge.  
Each pair of knowledge and performance represents one practice opportunity for a par-
ticular skill. So in this example there are two practice opportunities represented.     

The arrow from student knowledge to student performance indicates that knowl-
edge influences performance. Performance is assumed to be a noisy reflection of 
knowledge, and is mediated by two parameters. The guess parameter represents that a  
student may sometimes generate a correct response in spite of not knowing the correct 
skill. The slip parameter acknowledges that even students who understand the skill 
can make an occasional careless mistake. The definition of each of the parameters in 
Fig. 1 is shown in Equation 2. The link between student knowledge across time slices 
indicates that students maintain and hopefully increase their knowledge across time 
slices. Although both learning and forgetting can occur in the real world, we follow 
standard practice for knowledge tracing and set the forgetting parameter to be 0.   
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Fig. 1. Diagram of knowledge tracing 
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Equation 2. Equations representing knowledge tracing parameters 

The second common analysis goal in ITS is to evaluate tutorial interventions. Fig. 2 
shows graphically how such evaluations are frequently performed [e.g. 1, 10].  In this 
case, both the student performance and the intervention are observable. The approach 
is to determine how the intervention influences student performance. Since both nodes 
are observable, this task is typically easier than student modeling. Our approach is to 
combine these two methodologies, assessment and evaluation, into a single modeling 
framework, shown in Fig. 3. The Student Knowledge and Student Performance nodes 
are similar to the ones in knowledge tracing. The new node represents a binary vari-
able: did the tutorial intervention we are evaluating occur during this practice oppor-
tunity? This node creates two new arcs in the network. The first one, teach, connects 
the tutorial intervention with student knowledge. It models the impact the tutorial in-
tervention could have on the student’s knowledge. Note that this arc carries forward to 
future time slices, so the impact on the student will persist. The second new arc, scaf-
fold [11], represents the impact the intervention has on the current practice opportu-
nity. This temporary support does not persist across problems, and only serves to aid 
the student on the current problem. 

This approach simultaneously assesses the student, since performance and knowl-
edge are linked, and evaluates the tutorial intervention both in the context of its  
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Fig. 2. Common approach for evaluating tutorial interventions 
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Fig. 3. Bayesian Evaluation and Assessment architecture 

temporary benefit to student performance and its lasting impact on student knowl-
edge. The impact of the tutorial intervention can be determined by examining the pa-
rameters learned by the model. For example P(learn | tutor intervention = false) is the 
baseline probability that a student will acquire a skill simply by practicing it.  P(learn | 
tutor intervention = true) is the probability the student will acquire the skill as a result 
of receiving both the intervention and a chance to practice the skill.  Comparing these 
two parameters permits us to estimate how much learning the intervention causes. 
Similarly, the scaffolding effect on student performance can be estimated by compar-
ing P(correct response | student didn’t know the skill, intervention=false) vs. P(correct 
response | didn’t know the skill, intervention=true). Any difference in performance is 
the scaffolding effect of the intervention.  Equation 3 shows all of the equations for the 
Bayesian Evaluation and Assessment model.   
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Equation 3. Equations for parameters in Bayesian Evaluation and Assessment model 

4   Results 

Our data came from 360 children between six and eight years old who used Project 
LISTEN’s Reading Tutor [3] in the 2002-2003 school year.  On average, students 
used the tutor for 8.5 hours.  Over the course of the school year, these students read 
approximately 1.95 million words (as heard by the automatic speech recognizer).  We 
separated the data into training and testing sets by splitting the students into two 
groups. We sorted the students according to their amount of Reading Tutor usage and 
then alternately assigned students to the two sets.   

During a session with the Reading Tutor, the tutor presented one sentence (or 
fragment) at a time for the student to read aloud.  The student’s speech was segmented 
into utterances delimited by silences.  Each utterance was processed by the Automatic 
Speech Recognizer (ASR) and aligned against the sentence.  This alignment scored 
each word of the sentence as either accepted (classified by the ASR as read correctly) 
or rejected (thought to be misread or omitted).  ASR acceptance is modeled as the 
observed performance (Cn).  The tutorial intervention node is instantiated by whether 
the student received help on a word.  For modeling purposes, this paper treats each 
English word as a separate skill. 

We make use of a generic Bayes net toolkit for student modeling, BNT-SM [12], 
for our experiments. BNT-SM inputs a data set and a compact XML specification of a 
DBN model hypothesized by a researcher to describe causal relationships among stu-
dent knowledge and observed behavior.  It generates and executes the code to train 
and test the model using the Bayes Net Toolbox [13].  BNT-SM allows researchers to 
easily explore different hypotheses on how is knowledge represented in a student 
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model.  We now show how to use BNT-SM to construct a DBN that models the effec-
tiveness of tutor help on student knowledge. 

We used the BNT-SM and Expectation Maximization (EM) algorithm to optimize 
data likelihood (i.e. the probability of observing our student performance data) in or-
der to estimate our model’s parameters.  EM is the standard algorithm used in the 
machine learning community to estimate DBN parameters when the structure is 
known and there exist latent variables (e.g., student knowledge, Kn).  EM is guaran-
teed to converge to a local maximum on the likelihood surface.  We used the junction 
tree procedure for exact inference (estimating the value of the hidden variables).  See  
Jensen [14] for a thorough introduction to Bayes nets and the standard training and 
inference algorithms.   

4.1   Results for Evaluating Help 

To evaluate the effectiveness of tutor help, we first compare the model parameters 
estimated by our Bayesian Evaluation and Assessment model with those obtained by 
estimating a simpler knowledge tracing model.  

Table 1 shows the parameters estimated for the KT model and the Bayesian 
Evaluation and Assessment (Help, for short) model, respectively.  Notice that the KT 
model does not consider the help information, whereas the Help model has the pa-
rameters conditioned on whether or not tutor help is given or not.  As seen in the Help 
model of Table 1, the probability of already know (i.e. does the student know the 
word when first starting to use the tutor) is much higher when there is no help than 
when there is help.  This suggests that tutor help is more likely to be provided for 
words the student is less likely to know– a positive finding.  Also, the probability of 
learning is higher when there is help than when there is no help.  Even though the 
effect of help is only an 8% relative improvement, it is at least in the right direction 
(unlike the two baseline approaches), suggesting that tutor help does have a positive 
effect on long term knowledge acquisition. 

Table 1. Comparing the parameters estimated by the KT model and the Help model 

Help model  KT 
model No Help 

Given 
Help 

Given 
Already know 0.618 0.660 0.278 

Learn 0.077 0.083 0.088 
Guess 0.689 0.655 0.944 
Slip 0.056 0.058 0.009 

Also as seen in Table 1, the probability of guess is higher when there is help than 
when there is no help and the probability of slip is higher when there is no help than 
when there is help.  In other words, even if the student does not know the skill he is 
much more likely to generate a correct response when he receives than when he does 
not:  94% vs. 66% (the guess rate is inflated when applying knowledge tracing to stu-
dent models that use speech recognition for scoring [15]).  This finding suggests that 
tutor help does have a scaffolding effect on assisting immediate performance. Notice 
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that, although we have argued that teaching effect is more beneficial in the long run 
than the scaffolding effect, we cannot ignore the latter.  For instance, if a student is 
stuck when using the tutor, the tutor should still help the student to become unstuck.
 Finally, both the teaching and scaffolding effects are statistically reliable at p<0.05 
(paired samples t-test, done per-skill to avoid intraskill correlation), suggesting that 
tutor help does have an effect on both student knowledge and student performance. 

4.2   Results for Modeling Students 

Although the goal of this paper is to determine whether and how help helps students, 
our model also estimates student knowledge as a side effect.  Therefore, we evaluate 
its performance at doing so.  Since student knowledge is a latent variable that cannot 
be directly observed, we have no gold standard against which to compare.  Instead, 
we used the trained student model to predict whether the ASR would accept or reject 
a student’s next attempt to read the word.  That is, we observe reading item by item 
and predict whether the next word will be read correctly (in not yet seen test data).  
An ROC (Receiver Operating Characteristic) curve measures the performance of a 
binary classifier by plotting the true positive rate against the false positive rate for 
varying decision thresholds.  The area under the ROC curve (AUC) is a reasonable 
performance metric for classifier systems, assuming no knowledge of the true ratio of 
misclassification costs [16]. 

On our training data, the new model had near identical performance to classic 
knowledge tracing:  AUC of 0.654 vs. 0.652.   On the held out test data, performance 
was again a tie:  AUC of 0.612 vs 0.615.  It is disappointing our approach of simulta-
neously assessing students and evaluating the tutor did not yield more accurate as-
sessment.   

5   Contributions 

This paper makes three main contributions to the ITS literature.  First, the Bayesian 
Evaluation and Assessment framework unifies several strands of research.  It is based 
on knowledge tracing [8] for assessing students.  There has also been work on creat-
ing a node to measure the impact of help and connecting it to student knowledge [17].  
However, this work used a simplified version of knowledge tracing, and was never 
evaluated with actual student data.  The third strand is the ANDES system [18], which 
has a link between student knowledge and performance—that is, it assumes that help 
provides a scaffolding effect—but not between help and knowledge.  Furthermore, the 
parameters in the ANDES system were not estimated from data.   

The second contribution this paper makes is the conceptual one of simultaneously 
representing tutor interventions and the student’s knowledge.  Previous approaches 
addressed these problems separately by ignoring one to solve the other [1,3].  Specifi-
cally, KT ignored help, and some other experiments [3] ignored student knowledge, 
or how it changed over time.   

The third contribution this paper makes is on distinguishing between two effects of 
help: scaffolding immediate performance vs. boosting actual learning.  Prior work 
either assumed help has no direct impact on student learning [18] or that help has no 
direct impact on student performance [17].  Moreover, because we model tutor help 
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and student knowledge in one coherent framework, we can estimate the scaffolding 
and teaching effects.  This separation of immediate vs. persistent effect of help allows 
researchers to understand what the tutor intervention is really doing.  For instance, it 
is possible to investigate whether some tutor interventions help persistent learning 
while others mainly help immediate performance.  

6   Future Work 

Currently, due to limitations in BNT-SM, we could only test models with discrete, 
binary variables.  For example, in the Help model, we only answer the question “does 
help help at all?”  A more interesting question to ask is “which type of help helps 
more, and when is it effective?”  Thus, a future study is to extend BNT-SM to handle 
multinomial variables, which allows modeling of different help types. 

One question that we are interested in exploring is how does our dynamic Bayes 
net framework compare to the pre- and post- test experimental design [2].  Do they 
draw similar conclusions, despite the fact that an experimental design is usually more 
expensive to conduct than data fitting with DBNs?  Moreover, what kinds of causal 
relationship can we infer with our Bayesian framework?  That we were able to get a 
positive result with a non-randomized intervention, whether a student receives help, 
suggests the framework should perform well at analyzing actual randomized con-
trolled trials, and may even be a more sensitive measure due to its accounting for stu-
dent knowledge.   

Another issue that we are interested in addressing is to better understand why we 
cannot better model students in our new framework. One possible explanation is there 
are too many parameters. The impact of help is modeled independently for all 3000 
skills (words) in the domain. Some way of simplifying the parameter search by using 
hierarachical models or Dirichlet priors [19] may be a solution.   

Finally, we would like to conclude that our Bayesian Evaluation and Assessment 
architecture is the most accurate of the three approaches proposed in this paper.  On 
balance, given that the other two approaches found that help is harmful, we can tenta-
tively conclude that the new approach is better. However, better clarifying which ap-
proach is most accurate and when would be helpful. This question cannot be answered 
for interventions whose true effectiveness is unknown (i.e. all ITS interventions that 
exist in the real world). Therefore, evaluations with synthetic data [e.g. 17] are a 
promising route forward.  

7   Conclusions 

This paper presents a new approach, Bayesian Evaluation and Assessment, that we 
used to measure the impact of help.  Of the three approaches we considered, our new 
framework gave the only plausible answer to the question “does help help?”  Al-
though the result is equivocal, as we do not know the “real” answer, it is important to 
note that this drawback is fundamental to every method of measuring an interven-
tion’s effectiveness.  Typically when a number is presented purporting to represent 
how well an intervention worked, there is no discussion of alternate methods of doing 
the measuring.  By putting the three numbers forward we acknowledge the problem, 
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and argue that only one of the numbers is plausibly correct.  The Reading Tutor’s on-
demand help is potentially useless, and we would not disregard the possibility, but the 
negative impacts claimed by the other two approaches are simply implausible. 

The reason our new framework is superior is that it controls for student knowledge 
while estimating the intervention’s effectiveness.  Conceptually, this simultaneous 
modeling is similar to item response theory [20], which enables better comparisons of 
students across groups by simultaneously estimating student proficiency and question 
difficulty.   

Finally, we feel it is important to enumerate both impacts of assistance:  short term 
performance boosts (scaffolding) as well as longer term learning gains (teaching). By 
simultaneously addressing all of these aspects of assessment and evaluation, this 
framework represents a step forward in ITS evaluation methodology.   
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Abstract. Domain experts should provide relevant knowledge to a tutoring 
system so that it can guide a learner during problem-solving learning activities. 
However, for ill-defined domains this knowledge is hard to define explicitly. As 
an alternative, this paper presents a framework to learn relevant knowledge 
related to procedural tasks from users’ solutions in an ill-defined procedural 
domain. The proposed framework is based on a combination of sequential 
pattern mining and association rules discovery. The resulting knowledge base 
allows the tutoring system to guide learners in problem-solving situations. 
Preliminary experiments have been conducted in CanadarmTutor. 

1   Introduction 

An ill-structured problem is defined by Simon [15] as one that is complex, with 
indefinite starting points, multiple and arguable solutions, or unclear strategies for 
finding solutions [17]. Domains that include such problems and in which, tutoring 
targets the development of problem-solving skills are said to be ill-defined (within the 
meaning of Ashley et al. [16]). According to Aleven, Ashley, Lynch and Pinkwart [1], 
ill-defined domains present a number of unique challenges for researchers in 
Intelligent Tutoring Systems and Computer Modeling, such as “(1) defining a viable 
computational model for aspects of underspecified or open-ended domains; (2) 
developing feasible strategies for search and inference in such domains; (3) providing 
feedback when the problem-solving model is not definitive; (4) structuring of learning 
experiences in the absence of a clear problem, strategy, and answer; (5) user models 
that accommodate the uncertainty of ill-defined domains; and 6) user interface design 
for ITSs in ill-defined domains where usually the learner needs to be creative in his 
actions, but the system still has to be able to analyze them”.  

The method of cognitive task analysis that aims at producing effective problem 
spaces or task models by observing expert and novice users is a good solution for 
capturing different ways of solving problems. This supports model and knowledge 
tracing, coaching, errors detection, and plan recognition. However, this process is 
very time-consuming [2] and cannot be applied easily for ill-defined domains. 
Constraint based modeling (CBM) was proposed as an alternative [3]. It consists of 
specifying sets of constraints on what is a correct behavior, instead of providing a 
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complete task description. Though this approach was shown to be effective for some 
ill-defined domain, a domain expert has to design and select the constraints carefully.  

Alternatively, our proposal aims at learning a knowledge base that can replace (or 
represent) the problem space, from users’ interactions. It combines two knowledge 
discovery techniques. Sequential patterns mining is used to discover frequent actions 
sequences among the recorded usage of expert, intermediate and novice users. 
Association rules discovery finds associations between these significant actions 
sequences, relating them together. The goal is to use solutions from users as a source 
of knowledge about the ill-defined problem. In this paper, we show how the proposed 
framework is used to discover new domain knowledge that the tutor uses to track 
learners’ actions and provides them with relevant hints. The framework is applied in the 
CanadarmTutor [4], a simulation-based tutoring system that we have developed to teach 
astronauts how to operate a robot manipulator deployed on the International Space 
Station (ISS). During the robot manipulation, operators do not have a direct view of the 
scene of operation on the ISS and must rely on cameras mounted on the manipulator 
and at strategic places in the environment where it operates. Furthermore, for a given 
robot manipulation problem, there are many possibilities for moving the robot to a goal 
position and thus, it is not possible to define a complete and explicit task model. In fact 
there is no simple ‘legal move generator’ for finding all the possibilities at each step. 
Hence, CanadarmTutor operates in an ill-defined-domain [15]. 

The paper is organized as follows. First, we present some related works and their 
limitations. Second, we describe the framework and some techniques that are used. 
We then present a few possible tutoring services based on the framework. Finally, we 
describe an experiment of using the framework in CanadarmTutor and illustrate how 
the results enable CanadarmTutor to provide more realistic tutoring services.  

2   Related Works 

Creating cognitive tutors usually rests on the implicit assumption that one should 
predefine a task model describing correct and incorrect solution paths. CTAT [2] 
offers a set of tools that allows ITS designers to specify the behavioral graph (BG) of 
a task, presenting correct and buggy paths. BGs (sometimes transformed into 
production rules) are used to track student actions. The behavior recorder can 
automate the translation of user actions into a BG. This concept was improved by the 
BND (Bootstrapping Novice Data) approach [5]. BND records the actions of many 
students in a log file which is then used to create a common BG that can be improved 
by designers. However, the BND approach is devoid of learning, reducing the 
approach to a simple way of storing or integrating raw user solutions into a structure, 
as in [6] and [7]. This is very limiting because the system does not try to extract useful 
knowledge from those solutions, which could enrich the problem space. 

In CanadarmTutor, to automatically detect errors of a student learning to operate 
the manipulator and to produce illustrations of correct and incorrect motions in 
training and give feedback to the learner, our first solution was to integrate a special 
path-planner based on probabilistic roadmap approach into the system. The path-
planner we developed ([4]) acts as a domain expert and can calculate the arm's moves 
avoiding obstacles and consistent with the best available cameras views to achieve a 
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given goal. The path-planner enables CanadarmTutor to answer several learners’ 
questions such as: How to..., What if…, What next…, Why… and Why not. However, 
solution paths provided by the path-planner are sometimes too complex and difficult 
to follow by the users. To sustain more effective learning, an effective problem space 
that captures real users’ knowledge is needed. We decided to create a partial effective 
solution using the cognitive tutor approach [8]. We modeled the spatial knowledge for 
the Canadarm manipulation task as semantic knowledge. To achieve this, we 
discretized the 3D space into 3D sub spaces named elementary spaces (ES). Spatial 
knowledge is encoded as relationships such as (1) a camera can see an ES or an ISS 
module, (2) an ES comprise an ISS module, (3) an ES is next to another ES or (4) a 
camera is attached to an ISS module. The procedural knowledge of how to move the 
arm to a goal position is modeled as a loop where the learner must recall a set of 
cameras for viewing the ESs containing the arm, select the cameras, adjust their 
parameters, retrieves a sequence of ESs to go from the current ES to the goal, and 
then move to the next ES. CanadarmTutor detects all the atomic actions like camera 
changes and entering/leaving an ES. It was not possible to go into finer details like 
how to choose the joint(s) to move from an ES to another. As [9] stated, modeling 
complete possible solutions for a given goal is not realistic in ill-defined domain. That 
is exactly the case in CanadarmTutor.  

The CBM approach may represent a good alternative to the cognitive tutor approach [3, 
9]. However, in the CanadarmTutor context, it would be a difficult work for domain 
experts to describe relevance and satisfaction conditions. In fact, there would be too 
many conditions and many possible ideal solutions for each problem; the domain is 
too much complex for this approach.  

Contrary to these approaches, we are proposing a solution to create a more general, 
flexible, albeit sometimes partial, BG-like structure by inferring association rules 
between actions or action sequences, providing meta-knowledge to the ITS. In fact, 
both novice and expert domain users can provide primitive action sequences required 
to achieve typical tasks in the application domain. These sequences, whether good or 
buggy, may then be used to teach procedural knowledge associated with the task, 
thereby continually enhancing the system's intelligence. They can be used for 
supporting valuable tutoring services without the need of a clear and complete 
representation of problem space. We believe that, this approach represents an 
effective and complementary solution for tutoring ill-defined domain. 

 

3   The Framework 

The framework that we propose goes through four processes to learn rules: 1) Given 
log files containing users’ plans, the first step consists in generating frequent sequential 
patterns; 2) Those patterns are used for creating a meta-context where each plan is linked 
with the frequent patterns that appear in it; 3) Using the meta-context, a generic base of 
association rules is produced; it shows how frequent sequential patterns are related; 4) The 
generic base and the set of frequent patterns are transformed into a knowledge base that 
will be used by the tutoring system.  



398 R. Nkambou, E.M. Nguifo, and P. Fournier-Viger 

3.1   Finding Frequent Sequential Patterns Using PrefixSpan 

The problem of mining sequential patterns is stated as follows [10]. Let D be a 
transactional database containing a set of transactions (here also called plans) and a 
set of sequence of items (called actions in our context). An example of D is depicted 
in table 1. Let A = {a1, a2,…, an} be a set of actions. We call a subset X ⊆ A an actionset 
and |X|,  its size. A sequence s = (s1, s2, … , sm) is an ordered list of actionsets, where si ⊆ 
A, i ∈ {1,…,m}, and where m is the the size of s (also noted |s|). A sequence sa = (a1, a2,…, 
an) is contained in another sequence sb = (b1, b2,…, bm) if there exists integers 1 ≤ i1 < i2 < 
… < in ≤ m such that a1 ⊆bi1 , a2 ⊆ bi2 , . . . , an ⊆bin. The relative support of a sequence sa 
is defined as the percentage of sequences s ∈ D that contains sa, and is denoted by 
supD(sa). The problem of mining sequential patterns is to find all the sequences sa such 
that supD(sa) ≥ minsup for a database D, given a support threshold minsup.  

Consider the dataset of table 1.  The size of the plan P2 is 6. Suppose we want to find 
the support of the sequence sa = (1 {9 31}). From Table 1, we know that sa is contained in 
the sequences for plan 1 and plan 3 but is not in the sequence for plan 2. Hence, the 
support of sa is 2 (out of a possible 7), or 0.28. If the user-defined minimum support value 
is less than 0.28, then sa is deemed frequent. 

Table 1. A Data Set of 7 Successful plans 

PlanID Sequences of actions 
P1 1 2 25 46 48 {9 10 11 31} 
P2 1 25 46 54 79 {10 11 25 27}  
P3 1 2 3 {9 10 11 31} 48 
P4 2 3 25 46 11 {14 15 16 48} 74  
P5 2 25 46 47 48 49 {8 9 10} 
P6 1 2 3 4 5 6 7 
P7 25 26 27 28 30 {32 33 34 35 36} 

A subsequence or pattern, P, is closed if there exists no superset of P with the same 
support in the database. A closed pattern induces an equivalence class of pattern sharing 
the same closure, i.e. all the patterns belonging to the equivalence class are verified by 
exactly the same set of plans. Those patterns are partially ordered, e.g. considering the 
inclusion relation. The smallest elements in the equivalence class are called minimal 
generators, and the unique maximal element is called the closed pattern.  

Many algorithms have been proposed to efficiently mine sequential patterns or other 
time-related data [10], [11], [12]. We chose PrefixSpan [12] as it is one of the most 
promising approach for mining large sequence databases having numerous patterns and/or 
long patterns, and also because it can be extended to mine sequential patterns with user-
specified constraints. PrefixSpan is a projection-based, sequential pattern-growth approach 
that recursively projects a sequence database into a set of smaller projected databases. 
Sequential patterns are grown in each projected database by exploring only locally 
frequent fragments. Table 2 shows some sequential patterns extracted by PrefixSpan from 
the data in table 1 using a minimum support of 25%.  
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Table 2. Examples of sequential patterns extracted by PREFIXSPAN  

Sequential patterns Sequence patterns’ labels 
1 25 46 48   S1 
1 25 46 {10 11} S2 
1 {9 10 31} S6 
1 {9 11 31} S7 
1 {9 10 11 31} S8 
1 46 {10 11} S13 

Although a sequential pattern may not allow reaching a tutor goal in a problem-solving 
situation, two or more sequential patterns linked together might do so. Thus the patterns 
found by Prefixspan will be linked by discovering associations between them. Association 
rules is a powerful technique originally applied for market basket analysis that mine 
associations between items from a list of transactions. Since the number of extracted rules 
can be very high and include many redundancies, minimal and non redundant 
representation of association rules called generic base have been proposed such. Among 
previous studies on mining of generic bases, we chose IGB [13] as it efficiently extracts 
more compact generic bases without information loss, i.e. it has a valid and complete 
axiomatic system allowing the derivation of all the association rules.  

3.2   Extracting Generic Rules between Patterns Using IGB 

IGB [13] is a new informative generic base. Its rules are correlations between minimal 
premise and maximal conclusion (in term of items number). It was shown that this kind of 
rules is the most general (i.e., conveying the maximum of information). They are two 
types of generic rules: (1) factual rules having an empty premise; and (2) implicative rules 
having a non empty premise. 

IGB base is generated by a dedicated algorithm which takes as input the meta-context 
of initial plans, the minimum support minsup (as defined in PrefixSpan), and the minimum 
confidence, minconf. The meta-context of initial plans (see example in Table 3) is the set 
of plans rewritten with the frequent sequential patterns obtained with PrefixSpan.  

IGB algorithm checks for each non empty closed pattern P if its support is greater or 
equal to minconf. If it is the case, then the generic rule Ø P is added to IGB base. Else, it 
iterates on all frequent closed actionsets P0 subsumed by P. For those having support at  
 

Table 3. Part of the crisp meta-context of frequent sequences built from dataset in table 1  

PlanID Frequent sequential patterns 
P1 S1 S2 S4 S5 S6 S7 S8 S9 S10 S95 S97 S98 S113 S116 S118 
P2 S1 S5 S6 S7 S9 S98 
P3 S1 S2 S3 S4 S5 S6 S8 S10 S95 S97 S98 S113 S116 S118 
P4 S2 S3 S6 S7 S9 S10 
P5 S2 S4 S5 S7 S9 S10 S95 
P6 S1 S2 S3 
P7 S7 
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least equal to supD (P)/minconf, the algorithm iterates on the list of minimal generators 
associated to P0. During this iteration, we look for the smallest minimal generator gs, such 
that there does not exist a generator g0 subsumed by gs which is already inserted in the list 
L of smallest premises. Then, IGB algorithm iterates on all elements of the list L to 
generate rules of IGB which have the following form: gs  (P – gs).  

By dividing the sub-sequence occurrence by the plans’ occurrence, we obtain the 
relative support associated to the sub-sequence. Let us consider a minsup of 2 (25%), 
meaning that a valid sequence should occur in at least 2 input-plans, we can obtain the 
meta-context which part is shown in table 3. Each sub-sequence can appear in a plan with 
a certain confidence which is its relative support (in table 3, we consider a crisp context 
where dichotomic values (0 or 1) are assigned when a subsequence appears or not in a 
plan). Using this meta-context as input, IGB computes a set of generic meta-rules, part of 
which is shown in table 4. These meta-rules combined with frequent sequential patterns 
will constitute the knowledge that will be used to support tutoring services. 

Table 4. Examples of generic meta-rules extracted by IGB  

Meta-rules Support Confidence Expanded meta-rules 
S10 ===> S9  4  0.8 … 
S9 ===> S7  4  0.8 1 {10 31} ===> 1 {9 11 31} 
S9 ===> S5  4  0.8 … 
S5 ===> S10  4 0.8 … 

4   Supporting Tutoring Services Using Learned Rules 

As mentioned before, tutoring systems should provide useful tutoring services to 
assist the learner, such as coaching, assisting, guiding, helping or tracking the students 
during problem-solving situations. To offer these services, a tutoring system needs 
some knowledge related to the context. The knowledge base namely procedural task 
knowledge (PTK) obtained from the framework serves to that end. The next 
paragraphs present some examples of services that can be supported. 

Assisting the User to Explore Possible Solutions. Domain expert users can explore, 
validate or annotate the PTK. The validation consists of removing all meta-rules with 
a low confidence, meaning that those rules can not significantly contribute to help the 
student. Annotation consists of connecting some useful information to meta-rules 
lattice depicting semantic steps of the problem as well as hints or skills associated to a 
given step. A meta-rule lattice annotated in this way is equivalent to [2]’s BN, except 
that BNs are built from scratch by domain experts. For student users, exploring PTK 
will help them learn about possible ways of solving problem. They can be assisted in 
this exploration using an interactive dialog with the system which can prompt them on 
their goals and helps them go through the rules to achieve these goals. This kind of 
service can be used when the tutoring system wants to prepare students before 
involving them in real problem-solving situation. 
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Tracking the Learner. Plan recognition is very important in tutoring systems. PTK 
is a great resource to this process. Each student’s action can be tracked by searching 
the space defined by meta-rules lattice so that we can see the path being followed by 
detecting patterns that the learner follows.  

Guiding the Learner. When solving a problem, a classic situation is when the student 
asks the tutor what to do next from the actual state. PTK allows the tutor to produce 
the next most probable actions that the student should execute and prompt him on 
that, taking into account uncertainty related to rules’ confidence and other possible 
patterns that match with the current state.  

5   Experiments and Results 

We have set up two scenarios consisting each of moving the load to one of the two 
cubes (figure 1a). A total of 15 users (a mix of novices, intermediates and experts) 
have been invited to execute these scenarios using the CanadarmII robot simulator. A 
total of 155 primitive actions have been identified. Figure 1b shows part of an 
example log file from a user’s execution of the first scenario.  

 

 

Fig. 1. (a): Environment setup for the two plan’s database. (b): An entry of experimental 
scenarios. 

We obtained a database with 45 entries each corresponding to a given usage of the 
system. A value indicating the failure or success of the plan has been manually added 
at the end of each entry. The framework presented in section 3 was applied. A unique 
number was assigned to each action. After coding each entry of the traces database 
using PrefixSpan data representation, we obtained a binary file containing plans’ data 
for the two scenarios. This file was sent as input to the rest of the process. 

After executing PrefixSpan, the first stage of the experiment consisted of finding 
sequential patterns from the input data, we obtained a total of 76 significant patterns 
(with a support greater than .5) for the first scenario, and 82 for the second scenario. 
At the second stage, we created a binary context where each row represents a plan 

… 
EnterCorridor(C1) 
{SelectCamera(Monitor1,CP8), 
SelectCamera(Monitor2,CP10),    
SelectCamera(Monitor3,CP9)} 
SelectJoint(WE) 
bigMove(WE,decrease) 
LeaveCorridor(C1) 
smallMove(WE,decrease) 
SelectJoint(SP) 
bigMove(SP, decrease) 
SelectCamera(Monitor1,CP2) 
smallMove(SP,decrease) 
EnterCorridor(C2) 
mediumMove(SP,decrease)
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data and each column stands for a set of patterns. The goal at this stage was to mine 
association rules between sequential patterns. 

Because all the sequential patterns shared the same first few actions and because 
they are closed patterns, initially the IGB approach did not find any rules. To 
overcome this difficulty, we filtered the patterns to remove the first common actions 
to all plans. Then, we regenerated the sequential patterns using PrefixPan. Using the 
IGB approach with a minimum support of 0.2, we obtained a PTK of 37 meta-rules. 
One such meta-rule (rule #31) connects the two following patterns. The first pattern 
(pattern #25) is to select the CP6 camera, which gives a close view of the arm in its 
initial position, slightly decrease the yaw of the CP6 camera to have a better view, 
select the WE joint and decrease a little bit its rotation value. The second pattern 
(pattern #55) was to select the SP joint and decrease its rotation value. These two 
patterns constituted a possible safe and effective strategy to move the arm toward the 
goal. Moreover, the confidence level of the rule (0.8), its relative support (0.25), and 
its expertise level annotation (“intermediate”) indicated respectively that the second 
pattern is a common follow-up to the first pattern, that the rule is widespread among 
users, and that this rule is usually employed by intermediate users. 

These rules were then coded and integrated in a new version of CanadarmTutor 
that uses this knowledge base to support tutoring services. To recognize a learner’s 
plan, the system proceeds as follows. The first action of the learner is compared with 
the first action of each frequent pattern in the PTK. If the actions do not match for a 
pattern, the system discards the pattern. Each time the learner makes an action, the 
system repeats the same process. It compares the actions done so far by the learner 
with the remaining patterns. When a complete pattern has been identified, the 
software looks for association rules that link the completed pattern to other patterns 
that could follow. Because the generated PTK is partial, it is possible that at any given 
moment a user action does not match with any patterns. If this situation arises, the 
algorithm tries two possibilities, which are ignoring the last user action or ignoring 
the current action to match for each pattern. This heuristic rule makes the plan 
recognizing algorithm more flexible and has shown to improve its effectiveness. 
Furthermore, a marking scheme has been implemented to detect and avoid association 
rules cycles. One utility of the plan recognizing algorithm is to assess the expertise 
level of the learner (novice, intermediate or expert) by looking at the rules and 
patterns s/he applied. 

The plan recognizing algorithm also plays a major role in the CanadarmTutor 
tutoring service for guiding the learner. It allows determining the possible actions 
from the current state according to the PTK. This functionality is triggered when the 
student selects “What should I do next?” in the interface menu. The algorithm returns 
a set of possible actions with the associated pattern(s) or rule(s). The tutoring service 
then selects the action among this set that is associated with the rule or pattern that 
has the highest utility value, and that is the most appropriate for the estimated 
expertise level of the learner. Whereas the utility value of a pattern is the pattern’s 
relative support, the utility of a rule is calculated as the product of the relative support 
and the confidence of the rule. For example, the utility value of rule #31 is 0.2 (0.8 * 
0.25). Utility values and expertise levels ensure that in every case the likely most 
useful action is proposed to the user. In the rare cases where no actions can be 
identified, the system asks the FADPRM path planner to generate a path to go from 
the current configuration to the goal.  
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Figure 2 illustrates a hint message given to a learner upon request during scenario 
1. The guiding tutoring service recognized that the student carried out pattern #25, 
that rule #31 matched with the highest utility value, and that rule #31 correspond with 
the estimated expertise level of the learner. Therefore, the system suggested pattern 
#55, which is selecting the SP joint and decreasing its rotation value. By default, two 
steps are showed to the learners in the hint window depicted in figure 2. However, the 
learner can click on the “More” button (fig. 2) to ask for more steps or click on the 
“another possibility” button to ask for an alternative. The sentences in natural 
language depicted in figure 2 to describe the actions of pattern #55 are an example of 
tutoring resources that can be used to annotate the PTK 

.  

Fig. 2.  A hint generated by the guiding tutoring service 

An empirical test with this version has been conducted with the same users of the 
system’s version relying on FADPRM. We found that the system behavior in terms of 
guiding the user during the two scenarios significantly improved compared to the 
behavior observed in the version relying solely on the path planner. The system can 
now recommend good and easy-to-follow actions sequences. The system can also 
recognize users’ plans and anticipate failures or successes, thus infer user profiles by 
detecting the path they follow. The PTK produced by our framework is sometimes too 
large and contains non useful rules (because of the amount of sequential patterns). 
However, this is not harmful for the tutor behavior but it may slow the performance as 
the system need to go through this huge knowledge base each time the user executes 
an action. We are now working to improve the quality of the PTK. We are also 
looking for a way of managing unsuccessful plans data. We believe that this could 
allow better learning guidance, as the tutor could easily identify sequence patterns that 
lead to failure or success. 

6   Conclusion 

We proposed a knowledge discovery framework to learn procedural knowledge 
associated to a task. We showed how the framework contributes to enhance an 
intelligent tutoring system’s domain knowledge in an ill-defined procedural domain. 
The experiment showed that this enables CanadarmTutor to better help learners.  

Prefixspan and IGB are parameters of our framework proposal, and thus can be 
replaced by other convenient tools. Since these tools and the input and output of the 
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framework are domain independent, the framework can be potentially applied to any 
ill-defined procedural domains where the problem can be stated in the same way. 

For future works, it would be interesting to find some ways of filtering the 
resulting meta-rules and integrating unsuccessful paths. The work of Kum et al. [17] 
provides some suggestions on a model that may help to filter sequential patterns. 
Different proposals have also been made on qualitative measures of association rules. 
We will also carry out further tests to clearly measure the benefit of the approach in 
terms of tutoring assistance services.  

Another important aspect that we will focus on is binding users’ skills with 
discovery sequences. In fact, we found that, it will be interesting to compute a subset 
of skills that characterized a pattern by finding common skills demonstrated by users 
who used that pattern. This will allow a thorough cognitive diagnosis of missing and 
misunderstanding skill for the users who demonstrate part of that pattern and 
therefore, help them to acquire correct skill to be able to solve the goal.  
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Abstract. Modeling students’ knowledge is a fundamental part of intelligent tu-
toring systems. One of the most popular methods for estimating students’ 
knowledge is Corbett and Anderson’s [6] Bayesian Knowledge Tracing model. 
The model uses four parameters per skill, fit using student performance data, to 
relate performance to learning. Beck [1] showed that existing methods for de-
termining these parameters are prone to the Identifiability Problem: the same 
performance data can be fit equally well by different parameters, with different 
implications on system behavior. Beck offered a solution based on Dirichlet 
Priors [1], but, we show this solution is vulnerable to a different problem, 
Model Degeneracy, where parameter values violate the model’s conceptual 
meaning (such as a student being more likely to get a correct answer if he/she 
does not know a skill than if he/she does). We offer a new method for instanti-
ating Bayesian Knowledge Tracing, using machine learning to make contextual 
estimations of the probability that a student has guessed or slipped. This method 
is no more prone to problems with Identifiability than Beck’s solution, has less 
Model Degeneracy than competing approaches, and fits student performance 
data better than prior methods. Thus, it allows for more accurate and reliable 
student modeling in ITSs that use knowledge tracing. 

1   Introduction 

Modeling students’ knowledge is a fundamental part of intelligent tutoring systems. 
Key aspects of modern intelligent tutoring systems, such as deciding which problems 
to give students [cf. 6], are reliant upon accurately estimating each student’s knowl-
edge state at any given time. Giving students appropriate amounts of practice on each 
skill promotes complete and efficient learning [4]; both over-practice and under-
practice can be avoided through having student knowledge models that are as accurate 
and dependable as possible.  

In recent years, Corbett & Anderson’s Bayesian Knowledge Tracing model [6] has 
been used to model student knowledge in a variety of systems, including tutors for 
mathematics [9], computer programming [6], and reading skill [2], and is statistically 
equivalent to the two-node dynamic Bayesian network used in many other learning envi-
ronments [10]. Bayesian Knowledge Tracing keeps a running assessment of the probabil-
ity that a student currently knows each skill, continually updating that estimate based on 
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student behavior. Cognitive Mastery Learning built on top of Bayesian Knowledge Trac-
ing has been shown to significantly improve student learning [6]. 

However, a recent paper by Beck and Chang [2] gives evidence that current meth-
ods for developing Bayesian Knowledge Tracing models for specific skills are vul-
nerable to a statistical problem, the identifiability problem, where models with 
equally good statistical fit to performance data may make very different predictions 
about a student’s knowledge state, and correspondingly may assign very different 
numbers of problems to a student. To address this problem, Beck and Chang [2] pro-
posed constraining model parameters by finding a prior probability across all skills. 
However, as we will show in this paper, Beck and Chang’s solution is vulnerable to a 
different statistical problem, which we term model degeneracy, where it is possible to 
obtain model parameters which lead to paradoxical behavior, such as the probability 
the student knows a skill dropping after three correct answers in a row.  In this paper, 
we propose both theoretical and empirical definitions of this problem. 

These two problems, at their core, arise from how these models handle uncertainty 
– in particular, how these models address the possibility of a student slipping (know-
ing a skill, but giving a wrong answer) or guessing (giving a correct answer, despite 
not knowing the skill). Within this paper, we propose a new way to assess uncertainty 
within knowledge tracing, using machine learning to make contextual estimations of 
the probability that a student has guessed or slipped. We show that this method leads 
to a significantly closer fit between models and student performance than prior meth-
ods, has lower model degeneracy than these approaches, and that there is reason to 
believe that this method will not suffer from the identifiability problem. 

1.1   Bayesian Knowledge Tracing 

Corbett and Anderson’s Bayesian Knowledge Tracing model [6] computes the prob-
ability that a student knows a given skill at a given time, combining data on the stu-
dent’s performance up to that point with four model parameters. In the model’s  
canonical form, each problem step in the tutor is associated with a single cognitive 
skill. The model assumes that at any given opportunity to demonstrate a skill, a stu-
dent either knows the skill or does not know the skill, and may either give a correct or 
incorrect response (help requests are treated as incorrect by the model). A student 
who does not know a skill generally will give an incorrect response, but there is a 
certain probability (called G, the Guess parameter) that the student will give a correct 
response. Correspondingly, a student who does know a skill generally will give a 
correct response, but there is a certain probability (called S, the Slip parameter) that 
the student will give an incorrect response. At the beginning of using the tutor, each 
student has an initial probability (L0) of knowing each skill, and at each opportunity 
to practice a skill the student does not know, the student has a certain probability (T) 
of learning the skill, regardless of whether their answer is correct.  

The system’s estimate that a student knows a skill is continually updated, every 
time the student gives a first response (correct, incorrect, or a help request) to a prob-
lem step.  First, the system re-calculates the probability that the student knew the skill 
before the response, using the evidence from the response (help requests are treated as 
evidence that the student does not know the skill), using the first two equations of 
Figure 1. Then, the system accounts for the possibility that the student learned the 
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skill during the problem step, using the third equation of Figure 1. Within the Cogni-
tive Mastery algorithm used in most Cognitive Tutors [6], the student is assigned 
additional problems on skills that the system does not yet believe that the student has 
learned (e.g. skills that the student has less than 95% probability of knowing).  

ܲሺܮ௡ିଵ|ݐܿ݁ݎݎ݋ܥ௡ሻ ൌ  ܲሺܮ௡ିଵሻ כ ሺ1 െ ܲሺܵሻሻܲሺܮ௡ିଵሻ כ ൫1 െ ܲሺܵሻ൯ ൅  ሺ1 െ ܲሺܮ௡ିଵሻሻ כ ሺܲሺܩሻሻ 

ܲሺܮ௡ିଵ|ݐܿ݁ݎݎ݋ܿ݊ܫ௡ሻ ൌ  ܲሺܮ௡ିଵሻ כ ܲሺܵሻܲሺܮ௡ିଵሻ כ ܲሺܵሻ ൅  ሺ1 െ ܲሺܮ௡ିଵሻሻ כ ሺ1 െ ܲሺܩሻሻ ܲሺܮ௡|݊݋݅ݐܿܣ௡ሻ ൌ  ܲሺܮ௡ିଵ|݊݋݅ݐܿܣ௡ሻ ൅ ൫ሺ1 െ ܲሺܮ௡ିଵ|݊݋݅ݐܿܣ௡ሻ൯ כ ܲሺܶሻሻ  
Fig. 1. The equations used to predict student knowledge from behavior in Bayesian Knowledge 
Tracing 

The four parameters in Bayesian Knowledge Tracing are fit, for each skill, using 
data from students using that skill within an intelligent tutor. The goal during parame-
ter fitting is to figure out which combination of parameters best predicts the pattern of 
correct and incorrect responses in the existing data, and then to use that model to 
make predictions about new students’ knowledge as they use the tutor.   

 

Challenges in Estimating Parameters for Bayesian Knowledge Tracing Models 
 

Recently, Beck and Chang [2] showed that common methods of fitting Bayesian 
Knowledge Tracing models suffer from the identifiability problem; different combi-
nations of the four parameters can fit the same data equivalently well, but yield very 
different estimates of the probability that the student knows the skill at any given 
time. This is of practical importance, as different model parameters may require very 
different amounts of practice before inferring that the student has reached mastery. 

A second challenge for fitting models in Bayesian Knowledge Tracing approach is 
what we term model degeneracy.  The conceptual idea behind using Bayesian 
Knowledge Tracing to model student knowledge in intelligent tutors is that knowing a 
skill generally leads to correct performance, and that correct performance implies that 
a student knows the relevant skill; hence, by looking at whether a student’s perform-
ance is correct, we can infer whether they know the skill. A model deviates from this 
theoretical conception, and thus is theoretically degenerate, when its guess (G) pa-
rameter or slip (S) parameter is greater than 0.5. A slip parameter over 0.5 signifies 
that a student who knows a skill is more likely to get a wrong answer than a correct 
answer; similarly, a guess parameter over 0.5 implies that a student who does not 
know a skill is more likely to get a correct answer than a wrong answer.  

It is also possible to conceive of empirical tests that show that a model violates the 
linkage between knowledge and performance; we term a model that fails such a test 
empirically degenerate. We propose two tests for empirical degeneracy. First, if a 
student’s first N actions in the tutor are correct, the model’s estimated probability that 
the student knows the skill should be higher than before these N actions. Second, if 
the student makes a large number M of correct responses in a row, the model should 
assess that the student has mastered the skill. The exact values of N and M are  
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arbitrary – within this paper, we choose N=3 and M=10 as reasonable cut-off points 
for the two tests. In other words, if a student’s first three actions in the tutor are all 
correct, but the model’s estimated probability that the student knows the skill is lower 
than before these three actions, we say that the model failed the first test of empirical 
degeneracy. If a student gets a skill correct ten times in a row without reaching skill 
mastery, we say that the model failed the second test of empirical degeneracy.  

 

Three Prior Approaches to Model Fitting in Bayesian Knowledge Tracing 
 

The simplest baseline approach to fitting a Bayesian Knowledge Tracing model is to 
allow each of the four parameters to take on any value between 0 and 1. We fit pa-
rameters for this approach using Bayes Net Toolkit-Student Modeling (BNT-SM) [1].  

An alternate approach is to bound the guess and slip parameters (the bounded 
guess and slip approach). Generally, in existing tutors, the guess parameter is 
bounded to be between 0 and 0.3, and the slip parameter is bounded to be between 0 
and 0.1, based on the most common number of candidate actions, and pragmatically, 
in order to err in the direction of requiring less practice for mastery. Though this ap-
proach was not explicitly designed to prevent model degeneracy, it makes theoretical 
degeneracy impossible. We fit parameters for this approach using Microsoft Excel.  

A third way to fit a Bayesian Knowledge Tracing model is the Dirichlet Priors ap-
proach proposed in [1, 2]. A Gaussian probability distribution is found for how often 
different values of each parameter are seen across skills, and then the parameters of 
all skills are constrained by these prior probabilities.  This approach biases all skills 
towards parameters that fit the whole data set well, with skills that have less data 
biased more strongly than skills that have large amounts of data. The prior probabili-
ties lead to a single model always being the best-fitting model among the space of 
potential models, for each skill. We fit parameters for this approach using BNT-SM.   

2   Analyzing Degeneracy in Previous Approaches 

Prior work has already shown that the baseline and the bounded guess-and-slip ap-
proaches are vulnerable to the identifiability problem; the Dirichlet priors approach gives 
a single prediction, offering a response to the identifiability problem [1, 2]. In this sec-
tion, we use data from the Middle School Tutor [9], an intelligent tutor which covers a 
wide span of mathematical topics covered by 6th-8th grade students (approximately 12-14 
years old), to analyze whether these three model-fitting approaches are prone to problems 
with model degeneracy, and examine their accuracy. 232 students used the Middle 
School Tutor during the course of the 2002-2003 school year, making 581,785 transac-
tions (either entering an answer or requesting a hint) on 171,987 problem steps covering 
253 skills in 37 tutor lessons/units. 290,698 additional transactions were not included in 
either these totals or in our analyses, because they were not labeled with skills, informa-
tion needed to apply Bayesian Knowledge Tracing. 

Table 1 shows the level of theoretical and empirical model degeneracy for each of 
the three approaches. 76% of skills in the Dirichlet priors model and 75% of skills in 
the baseline model were theoretically degenerate; as a direct consequence of bounding 
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Table 1. The number (proportion) of degenerate skills in each model 

Modeling 
Approach 

Theoretically 
Degenerate 

Skills 

Skills where a student who 
gets first three actions correct 

has lower P(L) afterwards 
(Empirical degeneracy test 1) 

Skills where a student cannot 
reach mastery with 10 correct 
answers in a row (Empirical  

degeneracy test 2) 
Baseline 189 (75%) 4 (2%) 57 (23%) 
Bounded 

Guess and Slip 
0 (0%) 0 (0%) 12 (5%) 

Dirichlet 
Priors 

192 (76%) 4 (2%) 57 (23%) 

 
guess and slip, 0% of skills in the bounded guess and slip model were theoretically 
degenerate. The difference between the bounded guess and slip model and each of the 
other two models was statistically significant, using the test of the significance of the 
difference between correlated proportions with McNemar’s standard error estimate 
[7], Z=13.86, Z=13.75, two-tailed p<0.0001. The Dirichlet priors and baseline model 
were not significantly different from one another, Z=0.83, two-tailed p=0.41. Across 
models, failures of the first test of empirical degeneracy were rare; only 2% of the 
skills in the Dirichlet priors and baseline models failed this test, and 0% of skills in 
the bounded guess and slip model failed. However, 23% of the skills in the Dirichlet 
priors and baseline models failed the second test of empirical degeneracy. Fewer (5%) 
of the skills in the bounded guess and slip model failed the second test of empirical 
degeneracy, in both cases Z=5.58, two-tailed p<0.0001. 

3   Contextual Estimation of Guess and Slip 

In this section, we will discuss a new approach to Bayesian Knowledge tracing, which 
removes one of the framework’s assumptions, to address these modeling issues. In all 
three prior approaches, each of the four parameters is held constant across contexts, 
for any given skill. (One other prior approach changed parameter values depending on 
whether help was used or not [5], and anticipates our approach, although that ap-
proach’s contextualization was far simpler than what is proposed here).  

In the new approach we propose, we contextually estimate whether each individual 
student response is a guess or a slip, rather than using fixed guess and slip probability 
estimates across all situations. In this section, we describe our method for predicting 
whether individual actions are guesses or slips. We will then discuss how these pre-
dictions are integrated into a new approach to Bayesian Knowledge Tracing. Our 
method is as follows: 

 

• We take a set of correct responses in the log files. For each correct student 
response, we apply a Bayesian analysis to estimate the probability the stu-
dent knew the applicable rule or guessed, based on the student’s performance 
on successive opportunities to apply the rule.  A similar procedure is used to 
assess whether each non-correct response stemmed from the student not 
knowing the skill, or from knowing the skill but slipping. 
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• We use machine learning to identify features of an action that characterize 
whether that action was a guess or a slip. These features do not use any in-
formation from subsequent actions; hence, they can be used to predict 
whether an action is a guess or a slip immediately after it occurs. 

• In modeling student problem-solving, we use the machine learned models to 
dynamically estimate the probability that a response is a guess or a slip. We 
employ these dynamic performance estimates in the Bayesian Knowledge 
Tracing algorithm to update the probability that the student knows the skill. 

 
The first step is to label a set of existing student actions with the probability that 

these actions involve guessing or slipping, to serve as inputs to a machine learning 
algorithm. The set of student actions to be labeled is drawn from the set of first ac-
tions on the 64 skills for which the Dirichlet Priors model is not theoretically degen-
erate. We chose to use skills that are not theoretical degenerate to avoid training our 
models to include model degeneracy, and used Dirichlet Priors in order to avoid creat-
ing an equivalence class of potential models (i.e. the identifiability problem). We then 
use estimates from this model in order to create the contextual guess and slip models.  

We label student actions (N) with the probability that they represented a guess or 
slip, using information about the two actions afterwards (N+1, N+2). Using informa-
tion about future actions gives considerable information about the true probability that 
a student’s action at time N was due to knowing the skill – if actions N, N+1, and 
N+2 are all correct, it is relatively unlikely that N’s correctness was due to guessing.  

The probability that the student guessed or slipped at time N (i.e., the action at time 
N, which we term An) is directly obtainable from the probability that the student knew 
the skill at time N, given knowledge about the action’s correctness: 

 

P(An is guess | An is correct) = 1- P(Ln)  P(An is slip | An is incorrect) = P(Ln) 
 

We can calculate the probability that the student knew the skill at time N, given in-
formation about the actions at time N+1 and N+2 (which we term A+1+2). We do so by 
using Bayes’ Rule to combine 1) the probability of the actions at time N+1 and N+2 
(A+1+2), given the probability that the student knew the skill at time N (Ln); 2) the 
prior probability that the student knew the skill at time N (Ln); and 3) the initial prob-
ability of the actions at time N+1 and N+2 (A+1+2). 

 

In equation form, this gives:  ܲሺܮ௡| ܣାଵାଶሻ ൌ ௉ሺ஺శభశమ| ௅೙ሻכ௉ሺ௅೙ሻ௉ሺ஺శభశమሻ  

The probability of the actions at time N+1 and N+2 is computed as ܲሺܣାଵାଶሻ ൌ  ܲሺܮ௡ሻ כ ܲሺܣାଵାଶ| ܮ௡ሻ ൅  ሺ1 െ ܲሺܮ௡ሻሻ כ  ܲሺܣାଵାଶ| ~ܮ௡ሻ 
 

The probability of the actions at time N+1 and N+2, in the case that the student 
knew the skill at time N (Ln), is a function of the probability that the student guessed 
or slipped at each opportunity to practice the skill. C denotes a correct action; ~C 
denotes an incorrect action (an error or help request). 

 ܲሺܣାଵାଶ ൌ ,ܥ ௡ሻܮ |ܥ ൌ ܲሺ~ܵሻଶ  ܲሺܣାଵାଶ ൌ ,ܥ ௡ሻܮ |ܥ~ ൌ ܲሺܩሻܲሺ~ܵሻ ܲሺܣାଵାଶ ൌ ,ܥ~ ௡ሻܮ |ܥ ൌ  ܲሺܩሻܲሺ~ܵሻ  ܲሺܣାଵାଶ ൌ ,ܥ~ ௡ሻܮ |ܥ~ ൌ ܲሺܩሻଶ 
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The probability of the actions at time N+1 and N+2, in the case that the student did 
not know the skill at time N (Ln), is a function of the probability that the student 
learned the skill between actions N and N+1, the probability that the student learned 
the skill between actions N+1 and N+2, and the probability of a guess or slip. ܲሺܣାଵାଶ ൌ ,ܥ ௡ሻܮ~ |ܥ ൌ ܲሺܶሻܲሺ~ܵሻଶ ൅ ܲሺ~ܶሻܲሺܶሻܲሺܩሻܲሺ~ܵሻ ൅ ܲሺ~ܶሻଶܲሺܩሻଶ ܲሺܣାଵାଶ ൌ ,ܥ ௡ሻܮ~ |ܥ~ ൌ ܲሺܶሻܲሺ~ܵሻܲሺܵሻ ൅ ܲሺ~ܶሻܲሺܶሻܲሺܩሻ൫ܲሺܵሻ൯ ൅ ܲሺ~ܶሻଶܲሺܩሻܲሺ~ܩሻ ܲሺܣାଵାଶ ൌ ,ܥ~ ௡ሻܮ~ |ܥ ൌ ܲሺܶሻܲሺܵሻܲሺ~ܵሻ ൅ ܲሺ~ܶሻܲሺܶሻܲሺ~ܩሻܲሺ~ܵሻ ൅ ܲሺ~ܶሻଶܲሺ~ܩሻܲሺܩሻሻ ܲሺܣାଵାଶ ൌ ,ܥ~ ௡ሻܮ~ |ܥ~ ൌ ܲሺܶሻܲሺܵሻଶ ൅ ܲሺ~ܶሻܲሺܶሻܲሺ~ܩሻܲሺܵሻ ൅ ܲሺ~ܶሻଶܲሺ~ܩሻଶ 
 

Once the actions are labeled with estimates of whether they were guesses or slips, 
we use these labels to create machine-learned models that can accurately predict at 
run-time whether a given action is a guess or slip. The original labels were developed 
using future knowledge, but the machine-learned models predict guessing and slip-
ping using only data about the action itself (no future data).  

For each action, we distilled a set of 23 features describing that action; the features 
used in the final models are shown in Table 2. We then used Linear Regression, 
within Weka [11], to create 2 models predicting the probability of guessing or slip-
ping. Linear Regression gave slightly better performance under 10-fold cross-
validation than a Support Vector Machine or Multilayer Perceptron – r=0.44 within 
the guess model, and r=0.38 within the slip model.  

Then, when we have models that can predict the probability that any action was a 
guess or a slip, we can label the first action of each opportunity to use a skill with 
predictions as to how likely it is to be a guess and slip. Then, parameter values can be 
 

Table 2. The machine learned models of guessing (left) and slipping (right). In the unusual case 
where output values fall outside the range {0,1}, they are bounded to 0 or 1.  

 
 

Feature P(G)= P(S)= 

Action is a help request  + 0.066 
Percent of past opportunities where student has requested help on this skill  - 0.047 
Percent of past opportunities where student has made errors on this skill  - 0.004 
Response is a string + 0.049 - 0.02 
Time taken + 0.002 - 0.0002 
Time taken (SD faster (-) or slower (+) than average across all students) - 0.024 + 0.01 
Time taken in last 5 actions (calculated in SD off average across students) - 0.003 + 0.002 
Total number of times student has gotten this skill wrong on the first try - 0.002 + 0.0002 
Total time taken on this skill so far (across all problems) + 0.001 - 0.001 
Number of last 5 actions which involved same interface element + 0.014 - 0.026 
Number of last 8 actions which involved help request + 0.042 - 0.019 
Number of last 5 actions which were wrong + 0.036 - 0.033 
At least 3 of last 5 actions involved same interface element & were wrong + 0.067 + 0.013 
Number of opportunities student has already had to use current skill + 0.003 - 0.001 
Constant term + 0.066 + 0.442 
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fit for P(T) and P(L0), for each skill, using curve-fitting. At this point, we have a 
model that makes predictions about student knowledge each time they attempt to use 
a skill for the first time on a given problem step. This model also involves considera-
bly fewer parameters than previous models – whereas all three prior models had  
exactly 4 parameters per skill, this model has 2 parameters fit per skill, and 27 pa-
rameters fit across all skills, for an average of 2.11 parameters per skill.  

4   Evaluating the Contextual Guess and Slip Model 

Are models created by the contextual guess and slip method identifiable? The initial 
skill models used to create the labels for the linear regression process were generated 
by the Dirichlet priors method, and thus represent an optimal and unique parameter 
set for that method [2]. Linear Regression itself has a single optimal solution [3]. 
Finally, with only two parameters to fit, the contextual guess and slip model of each 
skill has a unique best solution for each pair of parameters P(T) and P(L0). Hence, 
since each step in the model fitting process has a single optimal solution, the contex-
tual guess and slip method is as identifiable as the Dirichlet Priors method.  

What about model degeneracy? We can test for the two types of empirical model de-
generacy using the student log data. A model fails the first test of empirical model degen-
eracy when a student gets the first three actions correct on a specific skill but then has 
lower P(L) afterwards. There were 2558 cases in the data where a student got the first 
three actions correct on a specific skill; in only 1 of the 2558 cases did the student have a 
lower P(L) afterwards – and, in that case, the student got the skill incorrect on the next 7 
opportunities. The proportion of failure of the first test (1/2558 = 0.0004%) is signifi-
cantly lower than the proportion of failure of this test in the baseline or Dirichlet Priors 
models, in each case t(251)= -2.00, two-tailed p=0.05, for a paired t-test (comparing 
model performance within each skill), but is not significantly higher than the proportion 
of failure of the first test for the bounded model, t(251)= 1.00, two-tailed p=0.32. 

A model fails the second test of empirical degeneracy if a student gets ten actions 
correct in a row but does not reach mastery. There were 758 cases in the data where a 
student got the first ten actions correct on a specific skill; in 13 of the 758 cases the 
student afterwards had a P(L) below mastery (0.95). This proportion (1.7%) is signifi-
cantly lower than the baseline, Dirichlet Priors, and bounded models, respectively, 
t(251)= -8.42, t(251)= -8.42, t(251) = -3.37, in all three cases two-tailed p<0.001. 

Hence, there is evidence for limited degeneracy in the Contextual Guess and Slip 
model, but this model is substantially less degenerate than the baseline or Dirichlet 
Priors models, and appears to be less degenerate than the bounded model as well. 

There are two ways to measure the accuracy of the four knowledge tracing models. 
The first is to compare actions at time N to the models’ predictions of the probability that 
actions at time N will be correct – P(Ln)*P(~S)+ P(~Ln)*P(G). This method accurately 
represents exactly what each model predicts; however, this method biases in favor of the 
Contextual Guess and Slip model, since that model uses information 
associated with the answer being predicted to estimate the probability of guessing and 
slipping. An alternate measure which is appropriate for all four models is to compare 
actions at time N to the models’ predictions of the probability that the student knew the 
skill at time N, before the student answered. This method under-estimates accuracy 
 



414 R.S.J.d. Baker, A.T. Corbett, and V. Aleven 

Table 3. Each model’s accuracy across the 171,989 first actions. Comparisons use model pre-
diction of knowledge state after previous attempt at skill. Standard errors given in parentheses.  

Modeling Approach A' r 
Baseline 0.66 (0.001) 0.29 

Bounded Guess and Slip (Corbett’s method) 0.61 (0.001) 0.25 
Dirichlet Priors (Beck’s method) 0.65 (0.001) 0.26 

Contextual Guess and Slip 0.75 (0.001) 0.43 

for all models (since it does not include the probability of guessing and slipping when 
answering), but is preferable because it does not favor any model. We use A' (the 
probability that the model can distinguish a correct response from an incorrect re-
sponse [8]) and correlation as the measures of model accuracy.  

The full pattern of results is shown in Table 3. The Contextual Guess and Slip method 
achieves the highest value of A', 0.75. The second-best model is the Baseline model, with 
A' of 0.66. The Contextual Guess and Slip model’s A' achieves 27% of the possible im-
provement over the Baseline model, a statistically significant difference in fit, Z=2.86, 
two-tailed p<0.01 (an adjusted standard error is used for A' to control for type II error 
stemming from non-independence). The Contextual Guess and Slip method also achieves 
the highest correlation, 0.43, 48% higher than the second-best model, again the Baseline 
model (r=0.29), t(171984)=69.12, two tailed p<0.0001. (This test is under-conservative, 
as it assumes independence; if we collapse across students, an overly conservative test, 
the result remains significant, t(231)=7.95, two tailed p<0.0001). Hence, for both meas-
ures of model accuracy, Contextual Guess and Slip performs substantially better than 
prior knowledge tracing methods. 

5   Conclusions 

In this paper, we have proposed a new way to contextually estimate the probability 
that a student obtained a correct answer by guessing, or an incorrect answer by slip-
ping, within Bayesian Knowledge Tracing. The method we propose is less vulnerable 
to model degeneracy than previous methods of student knowledge modeling, and is as 
good as the best of previous approaches at dealing with challenges to identifiability. 
In addition, our method leads to substantially higher accuracy than prior methods – 
improving A' by 27% of potential gain, and improving correlation by 48%. Plus, the 
method seems quite generalizable; the machine-learned models of guess and slip was 
trained on only 64 skills, but functioned effectively within all 253 skills it was tested 
on. An interesting area for future research will be studying how widely the guess and 
slip models can be transferred with no re-training at all, and still function effectively. 
Similarly, it will be important to replicate this result in data from another Cognitive 
Tutor, and in other intelligent tutors [cf. 5]. 

Though the contextual estimation of guess and slip has proven more successful 
than earlier student knowledge modeling, we see this paper as just the beginning of a 
new, more contextually sensitive approach to student modeling. First of all, it is 
probably possible to increase the accuracy of the contextual estimates of slip even 
further, by incorporating data about second and subsequent attempts within a given 
opportunity to practice a skill (an error followed very rapidly by the correct answer is 
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probably much more likely to be a slip than an error followed by three more slow 
errors and a help request). Second, it is possible to combine overall estimation of the 
probability of guesses and slips (as used here) with information about individual 
skills, potentially raising accuracy further still. Third, it is possible to estimate the 
probability of learning a skill P(T) at any given time in the same contextual fashion as 
used here. We look forward to new possibilities for substantially more sensitive and 
accurate estimation of student knowledge. And, in the long term, more sensitive and 
accurate estimation of student knowledge will have considerable pay-offs: it will 
enable more accurate assignment of learning materials to students, optimize the 
amount of practice on each skill [cf. 4], and may even enable different types of reme-
diation for different types of errors (such as giving specific remediation for slips). 
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Abstract. Cognitive task analysis has been used in ITSs to predict stu-
dents’ performance, improve curricula and to determine appropriate feed-
back. Typically, the learning factors/knowledge components have been
determined only for the use in one ITS or curriculum and therefore,
general frameworks were not applied. Moreover, the result is sometimes
rather unsystematic and not reusable across domains. However, for mak-
ing learning environments interoperable and comparable and to be able
to reuse learning objects, the competency hierarchies have to be usable
for different learning environments and across domains. In this paper,
we propose an approach to competencies represented as pairs of knowl-
edge and cognitive process whose ontologies extend and revise existing
taxonomies. A goal is to make these competencies a quasi-standard that
enables interoperability and reuse. Moreover, we briefly describe, how
the competency ontology can be employed for different purposes.

1 Introduction

The cognitive analysis of domains and tasks is a common requirement for design-
ing an ITS and/or its content as well as for designing the structure of student
models. The competencies resulting from this analysis (also called learning fac-
tors, knowledge elements, skills, or knowledge components) have been used to
characterize tasks, exercises and exercise steps with the goal to choose appro-
priate exercises, and to improve a curriculum, e.g. in [1, 2, 3]. In pedagogical
psychology, cognitive task analysis plays a role for diagnosing and evaluating
students’ learning progress [4].

As a general framework for such an analysis, Bloom devised his well-known
taxonomy of educational objectives [5]. The cognitive objectives he addressed
are general and domain independent and a relation to domain-specific settings
is missing. More recent work in this field has extended Bloom’s taxonomy [6].

As opposed to Bloom, the learning factor/knowledge component analysis for
ITSs typically focuses on domain knowledge [2] and targets a set of knowledge el-
ements for the usage in one ITS, sometimes even without a hierarchical structure.

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 416–425, 2008.
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1 For instance, the knowledge components integers and addition in exercises of
the ASSISTment system 2 denote elements of a domain ontology without explic-
itly addressing the cognitive or meta-cognitive processes needed in an exercise for
integers or addition. However, for making learning environments interoperable
and comparable and to be able to reuse learning objects and competency anno-
tations, the competency hierarchies have to be usable across different learning
environments and (partially) across domains.

In recent years, the appropriateness of the competencies resulting from the
knowledge component analyses has been questioned wrt. the actual elements
and their granularity [2, 7]. The main goal of the questioning was to improve
the design of curricula and the prediction of students’ performance. Now, we
question the knowledge component/competency representation. The need for
this arises from the aim of sharing content, reuse components, and services for
learning environments and from the use of (standardized) metadata in web-based
learning systems.

In this paper, we propose an approach that extends existing work, fits the
needs of cognitive task analysis in various domains (e.g. fractions and calculus)
and that is implemented in the ActiveMath platform. The main contributions
are an ontology which refines a recent competency hierarchy that pair knowledge
with cognitive processes, (partial) translations of previous taxonomies into the
new ontology, and a demonstration of usages of the resulting competencies.

2 Previous Competency Systems

Learning objects such as exercises as well as their steps can be characterized
(in technical terms: annotated) with the competencies required to solve a prob-
lem/succeed with a step.

For the ASSISTment Project Heffernan et al. have empirically determined so-
called knowledge components (called skills) to characterize exercises and their
steps [7]. These knowledge components include: integers, addition, rounding,
ordering numbers, reduce fractions, equivalence of fractions and decimal per-
cents, equiliteral triangle, evaluating functions, finding percents, statistics, mak-
ing sense of expressions and equations, order of operations, graph shape, reading
graph, divide decimals, . . . and have been defined by subject matter experts and
by analyzing the Massachusetts curriculum. All of these knowledge components
point to knowledge (a concept, rule, or procedure of the domain). Some of these
knowledge components could also be interpreted as pointing to knowledge and
a cognitive process.

Bloom [5] describes a hierarchy of educational goals that include:

– Knowledge: remembering; memorizing; recognizing; recall identification; re-
call of information

1 Typically, the learning factors/knowledge components have been determined empir-
ically by expert judgement for exercises or by analyzing curricula.

2 Personal communication with Neil Heffernan.
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– Comprehension: interpreting; translating from one medium to another; de-
scribing in one’s own words; organization and selection of facts and ideas

– Application: problem solving; applying information to produce some result;
use of facts, rules and principles

– Analysis: subdividing something to show how it is put together; finding the
underlying structure of a communication; identifying motives; separation of
a whole into component parts

– Synthesis: creating a unique, original product that may be in verbal form
or may be a physical object; combination of ideas to form a new whole

– Evaluation: making value decisions about issues; resolving controversies or
differences of opinion; development of opinions, judgments or decisions

Anderson et al. [6] extends Bloom’s taxonomy and pairs cognitive processes with
knowledge to represent competencies. They introduce two different dimensions,
the dimension of cognitive processes and the dimension of knowledge. Pairs of
cognitive processes and knowledge elements form objectives (that constitute the
basic building blocks of curricula). This was motivated by analyzing objectives
listed in curricula, usually consisting of phrases such as “The student will learn
to differentiate between rational numbers and irrational numbers” ([6], p. 5).
They point out that such phrases typically are composed of a verb describing
the intended cognitive process and one or more nouns referring to knowledge the
students are supposed to acquire.

The competencies used for the PISA studies [8] include think, argue,
model, solve, represent, language, tools. These top competencies have
subcompetencies, e.g. model has the subcompetenices decode and encode.

The PISA competencies arise from the international discussion in mathemat-
ics education (with influence from OECD and NCTM). Approximatively, they
represent learning objectives on a higher level. An advantage that is stressed is
their independence of content and independence of students’ age. The compe-
tencies are:

– Think mathematically includes the abilities to understand and handle
mathematical concepts, their scope, and to understand and distinguish be-
tween different kinds of mathematical statements.

– Argue mathematically includes the abilities to develop and assess chains
of arguments, to know what a mathematical proof is, to describe and rea-
son about solutions, to uncover basic ideas in a line of arguments, and to
understand reasoning and proof as fundamental aspects of mathematics.

– Solve problems mathematically includes the abilities to identify, pose and
specify problems, to self-constitute problems, to monitor and reflect on the
process of problem solving, to endue strategies and heuristics, and to solve
different kinds of problems.

– Model mathematically includes the abilities to translate special areas and
contents into mathematical terms, to work in the model, to interpret and
verify results in the situational context, and to identify differences between
the situation and the model.
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– Use mathematical representations includes the abilities to understand
and utilize different representations of mathematical objects, phenomena,
and situations, to find relations between different representations, and to
choose the appropriate representation for the special purpose.

– Language includes the abilities to use parameters, terms, equations and func-
tions to model and interpret, to translate from symbolic and formal language
into natural language and vice versa, and to decode and interpret mathe-
matical language and understand its relations to natural language.

– Communicate includes the abilities to explain solutions, to use a special ter-
minology, to work in groups, e.g. explain at an adequate level and understand
and verify statements of others.

– Use tools and aids includes the abilities to know about the existence of
various tools and aids for mathematical activities, their range and limita-
tions, and to reflectively use them.

3 New Definition of the Competency Taxonomy

We define elementary competencies as pairs of a cognitive process and a knowl-
edge element. We consider it a as a pair c of cognitive process p and a knowledge
element k, c = (p, k). Cognitive processes are defined as in [6] while knowl-
edge elements represent facts, topics, concepts, theorems, rules/procedures and
Grundvorstellungen [12] - i.e., elements of the knowledge dimension as available
in ActiveMath and in the ontology of instructional objects OIO [10].

Composite competencies are defined as a set of multiple elementary compe-
tencies. In comparison to the work of van Assche [11], where a competency is
defined as a tuple c =< v, {t1, . . . , tn} > (ti are topics – our knowledge ele-
ments). Our definition, however, facilitates the representation within the learner
model by reducing dimensionality without loss of expressivity.

3.1 Knowledge Ontologies / Extended Domain Ontologies

Knowledge elements can be related to each other, and therefore, a domain can
be represented by an ontology. The knowledge includes concepts (e.g. fraction,
integer, numerator), rules (e.g. addition of fractions with unlike denominators
or subtraction), and Grundvorstellungen3. Grundvorstellungen in the fraction
domain are part-whole, ratio, operator, quotient, and measure which provide
different interpretations of a fraction in application contexts [13]. Other Grund-
vorstellungen exist for addition, multiplication and division of fractions too. The
Grundvorstellungen have corresponding elements (nodes) in the educational do-
main ontology.

3 We use the German term here since we could not find an appropriate translation for
this term which was coined by German educationalists. A possible translations may
be “interpretation/meaning of a concept”.
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3.2 Ontology of Cognitive Processes

According to Flavell [15], meta-cognition is composed of meta-cognitive knowl-
edge and meta-cognitive experiences or regulation. Meta-cognitive knowledge
includes acquired knowledge about cognitive processes. Flavell divides meta-
cognitive knowledge into three categories: knowledge of person variables, task
variables and strategy variables. Correspondingly, Anderson et al. [6] differ-
entiate between self-knowledge, knowledge about cognitive tasks, and strategic
knowledge, and place these meta-cognitive aspects exclusively into the knowl-
edge dimension.

emOur ontology of cognitive processes modifies and extends [6] by adding
meta-cognitive processes that aim at representing the meta-cognitive regulation
processes.

Although meta-cognitive competencies may be seen as more global/general
proficiencies of a learner, the evidences always occur in a knowledge context
whose influence has still to be investigated empirically. It may be that the abil-
ity to apply meta-cognitive processes varies depending on the proficiency in the
respective domain and possibly even between different knowledge elements. Ad-
hering to our definition of competency as pair of cognitive process and knowledge,
the absence of meta-cognitive processes leads to meta-cognition related compe-
tencies, which can only express a global proficiency regarding meta-cognitive
aspects and does not allow for a differentiation of how well a student is able to
consciously apply meta-cognitive operations to specific knowledge elements or
within a certain domain, e.g. questions such as “how proficient is the student in
detecting errors within problems of the fraction domain?”, cannot be answered.
Therefore, we add meta-cognitive processes to the process dimension.

The first and second columns in Table 1 show the proposed hierarchy of the
cognitive processes. Several cognitive processes are combined into categories:

– Remember: consists of the most basic retrieval operations performed on
knowledge, i.e. the recognition of knowledge and its recall from memory.

– Represent: includes the abilities to interpret knowledge (e.g. “a fraction
consists of two numbers: the numerator divided by the denominator“), to
illustrate - to find an instance of a given concept, to transform from one rep-
resentation to another, and to summarize (generalize) by inferring common
principles or by identifying the main aspects of some information.

– Solve: includes the ability to estimate a result without calculating its exact
value (e.g. estimate whether the addition of two fractions results in more or
less than one), to apply algorithms with all their steps, and to apply tools
appropriately (e.g. a calculator to add fractions).

– Analyze: summarizes abilities needed to break information into parts and to
determine how these parts relate to each other and to the general picture.
This category consists of the abilities to check information for inconsistencies
or problems, to differentiate between important and unimportant informa-
tion, to organize information according to some criteria, and to attribute a
bias, value or intent to some presented material.
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– Model: combines abilities needed to understand and create models in a spe-
cific domain. Included are the capability to decode information presented
and transform it into a mathematical model (e.g. a textual description of
ratios of some persons’ ages, decoding could be putting the ratios into an
equation), to encode a mathematical model into a situational context or its
transformation into another domain. Furthermore, the category includes to
generate hypotheses, and to produce new models by combining hypotheses
to achieve a certain goal.

– Communicate: is concerned with explaining and discussing knowledge. It con-
tains the processes of how to describe one’s own knowledge, to argue about
different aspects of some knowledge, and to prove certain facts.

– Meta-cognition: consists of meta-cognitive processes, i.e. processes that aim
at reflecting and controlling cognitive processes. Such processes include to
reflect upon one’s own knowledge and thinking processes. Furthermore, help
seeking, and to search for information to fill gaps in or extend one’s own
knowledge, to detect errors in one’s own or the work of others, to plan tasks
by dividing them into steps and order them according to their sequence of
execution/implementation, to self-monitor one’s own actions and behavior
(e.g. by analyzing progress and differentiating between more effective learn-
ing strategies and less effective ones, and hence choose an appropriate one),
and finally, to self-explain.

Some of the processes, such as estimate, could be placed into several of the
categories, since they can be applied at different levels. The reason to place
estimate into the Solve category is a specific interpretation, i.e., in the sense
of applying rules of thumb or heuristics in order to get an idea of what the
actual result may be. Alternatively, estimate may be interpreted as the process
of ordering some aspects and inferring certain points.

4 Usage of the Ontologies

From the beginning, knowledge elements from domains have been character-
ized by metadata in ActiveMath. Exercises are annotated with metadata that
specify which concepts they train and what cognitive processes are involved in
attaining the correct solution. Cognitive processes have been present in Active-

Math as metadata for exercises, exercise steps and other learning objects. The
metadata scheme evolved over time:

In the first version of the ActiveMath platform [16], Bloom’s taxonomy
was used. Later, we introduced the PISA-competencies for the LeActiveMath
application of the ActiveMath-platform. The knowledge dimension is implic-
itly defined in the content and its metadata. This revision of competencies was
driven by the influence of the pedagogical partners involved in the LeActive-
Math project. Currently, ActiveMath relies on the competencies described
above.



422 E. Melis et al.

4.1 Student Modeling

ActiveMath’s student model [17] can be parameterized to use different com-
petency taxonomies. The structure of the student model includes nodes ki for
knowledge components. In case of using the proposed taxonomy, it stores pairs
of cognitive processes and (domain) knowledge. This is done by relating each
knowledge (super-)node ki to a cognitive process pj . The knowledge elements
are dynamically extracted from the learning objects included in the content.

The student model derives competency values from evidences: exercises
(whose metadata specify the knowledge and cognitive processes needed) and the
respective performance/action of the student. Exercises-to-concept and concept-
to-concept relations are dynamically extracted from the learning content in order
to derive the competencies that have to be updated. In case of a competency
involving multiple knowledge elements, evidences about proficiencies are equally
attributed to all elementary competencies, as long as no further information is
available to differentiate the attribution to a specific competency.

Evidences can be propagated along prerequisite relations in the student model.
The propagated evidences are regarded as indirect evidences and are overridden
as soon as direct evidence is available. In order to estimate proficiencies at a more
general level, the hierarchical nature of the competency taxonomy is exploited, so
that a more general competency reflects how the subcompetencies are mastered
(and to what degree).

4.2 Selection of Content

Based on the estimations of the student model, the Tutorial Component selects
appropriate learning objects, which serve the improvement of goal competencies
[18]. One of the limitations of adaptively assembling courses is the availability
of learning objects with perfectly matching knowledge and cognitive processes
metadata. However, if no learning object is found that has exactly the metadata
requested by the Tutorial Component, the hierarchical structure of both ontolo-
gies can be used to relax the search for learning objects and select a learning
object that serves the training of a more general (or similar) cognitive process
and knowledge.

Similarly, the two hierarchies (for knowledge and for cognitive processes) can
be employed to facilitate mappings of exercises from different learning object
repositories for course generation [19].

The relaxed search for knowledge and cognitive process metadata can lead to
approximate mappings. Additionally, approximate mappings can be used for the
alignment of different curricula as proposed in [11].

5 Relation to Existing Competency Taxonomies

One of the goals of the proposed competency taxonomy is to subsume and inte-
grate existing competency systems, such as the PISA competency hierarchy and
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the revised Bloom taxonomy. Therefore, we define (partial) mappings between
our cognitive process hierarchy, the revised Bloom taxonomy and the PISA com-
petency hierarchy.

Table 1 relates our process hierarchy to the PISA (mathematics) competencies
and to cognitive processes in [6]. In some cases, finding a corresponding PISA-
competency is rather difficult. One reason for the difficulty is that the PISA-
competencies often include multiple processes in a single competency and some-
times also elements that we would place into the knowledge dimension. Thus,
for the mapping, we compared the aspects of PISA competencies regarding the
actual cognitive processes involved. Elements that are placed into parentheses
capture only part of the scope of a proposed cognitive process.

Table 1. Mappings of the proposed cognitive processes to revised Bloom and PISA

Proposed category Proposed process PISA Revised Bloom
Remember Recognize n/a Recognize

Recall n/a Recall

Represent Interpret Represent/Think Interpreting
Exemplify Represent Exemplifying
Transform Represent Interpreting
Summarize Think Summarizing

Compare Find commonalities Think Comparing
Find differences Think Comparing
Classify Think Classifying
Infer Think Inferring
Order Think Comparing

Solve Estimate Solve Inferring
Apply algorithm Solve Executing
Apply tool Tools n/a

Analyze Check Solve Checking
Differentiate Think/Model Differentiate
Organize n/a Organize
Attribute (Think/Argue) Attribute

Model Decode Model Interpreting
Encode Model Interpreting
Generate Model/Think Generating
Produce n/a Producing

Communicate Describe Communicate Explaining
Explain Communicate Explaining
Critique Argue Critiquing
Prove Argue Inferring

Meta-cognition Reflect (Solve/Model) n/a
Help seeking n/a n/a
Search for information n/a n/a
Detect errors (Solve) Checking
Plan (Solve) Planning
Self-monitor (Solve) Checking
Self-explain (Argue/Communicate) (Explaining)
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Paquette [9] (kindly brought to our attention by a reviewer) presents a top-
level ontology for competencies, and a competency taxonomy pairing generic
skills with ressources, corresponding to cognitive processes and knowledge el-
ements respectively. His taxonomy combines and extends several previous ap-
proaches such as Bloom’s. A mapping to the original approaches is provided.

6 Future Work

Since the proposed competency taxonomy leads to a fine granularity of compe-
tencies, ways to exploit the hierarchy of the taxonomy need to be developed in
order to overcome the problem of sparse data. Therefore, we plan to explore the
influence of the hierarchy on learner model estimations by comparing estimations
with real students’ performance. The additionally inferred data may provide a
means for fine-grained and accurate estimations and, e.g. provide teachers with
detailed information about students’ weaknesses and strengths enabling them to
revise their courses, e.g. to add an extra repetition of a poorly understood topic.

7 Conclusion

Most previous ITS have only used the knowledge dimension for characterizing their
exercises and exercise steps as well as for building a structure for student models.

In order to make ITS-content and its metadata reusable and systems interop-
erable on learning objects, we propose a framework for competencies that can
be used across domains and for many ITSs. This ontology framework includes
two taxonomies, one for (domain) knowledge and one for cognitive processes.
We define a taxonomy for cognitive processes which extends and modifies the
taxonomy of Anderson et al. and we also extend the types of knowledge included
in domain ontologies by Grundvorstellungen which are an important ingredient
for real world problems.

We compare and translate several well-known competency taxonomies with
the new ontological framework and briefly indicate why the hierarchical, two-
dimensional framework is useful.
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Abstract. It is common for math teachers to give students time in class to prac-
tice problem solving skills. Some studies have shown that intelligent tutoring 
systems (ITS) can be superior to traditional classroom instruction. In this study, 
we compare problem solving with little or no feedback in the classroom to 
problem solving using a web-based ITS for homework. The system provides 
students with coached practice that is meant to scaffold “learning by doing” 
while students practice their problem solving skills. We found evidence that us-
ing the web-based ITS to practice problem solving at home was better than the 
classroom problem solving with an effect size of 0.5.  

Keywords: Problem-solving, intelligent tutoring systems, symbolization, web-
based homework, word problems. 

Introduction 

Many studies have shown that learning can be improved by learning technologies 
with varying effect sizes depending on the system and the metrics used to measure 
learning. It has been shown that traditional computer-assisted instructional systems 
(CAI) can lead to better learning when compared to traditional classroom instruction 
[1, 2]. Kulik & Kulik’s [1] studies indicate that CAI systems can lead to about 0.3 to 
0.5 standard deviation effect sizes over classroom instruction and suggests that class-
rooms using CAI systems can learn more and learn faster than classrooms using tradi-
tional classroom instruction alone.  

Evidence of the benefits of newer intelligent tutoring systems (ITS) over classroom 
instruction exists as well [3, 4]. Koedinger et al. [4] compared a commercially avail-
able ITS (Cognitive Tutors) to a classroom control and suggested a 1.0 standard-
deviation effect size for experimenter-designed metrics, while for external metrics 
(The Iowa Algebra Aptitude test and a subset of the Math SAT) the study found an 
effect size of 0.3. This study may suffer from a confound of the effect of the ITS with 
a new textbook prepared to go along with the curriculum. It is unclear how to com-
pare these effect sizes with the Kulik & Kulik [1] effect size of about 0.4 as we don’t 
know if the metrics in the Kulik & Kulik studies are more generally like externally 
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designed measures or experimenter defined measures. In another study, VanLehn et 
al. [5] compared an ITS not to classroom instruction, but to doing homework in a tra-
ditional paper-and-pencil manner. They found results similar to the Cognitive Tutor 
results mentioned above with effect sizes of about 1.0 standard deviation for their 
own measures, and about 0.4 for what they consider analogue to externally designed 
measures. Additionally, other studies have shown that ITS can produce superior learn-
ing results when compared to CAI systems [6, 7, 8].  

It is common for math teachers to give students time in class to practice problem 
solving skills where they receive little or no feedback on their work. We question 
whether it is more effective to instead do web-based intelligent tutoring homework to 
practice problem-solving skills.  In this study, we compare two conditions: problem-
solving practice in the classroom and problem-solving practice for homework using 
an ITS. The ITS, called Ms. Lindquist, was developed by Heffernan & Koedinger [9] 
and is described in the next section.   

We conduct this study in a mathematics classroom while teaching the skill of writ-
ing algebra expressions for word problems, a skill we call symbolization. We report 
on an experiment, with one teacher and a total of 28 students. The study involved ana-
lyzing the amount of learning gains by students as measured by experimenter de-
signed pre- and post-tests the days before and after the treatments.  

Web-Based Homework Assistance 

Web-based systems that allow students to do their homework online such as Black-
board (www.blackboard.com), WebCT (www.webct.com), Homework Service 
(https://hw.utexas.edu/bur/overview.html) and WeBWorK (http://webwork.rochester. 
edu) are becoming widely used at the college level. Use of homework assistance sys-
tems at the K-12 level, such as Study Island (studyisland.com) and PowerSchool 
(powerschool.com), is less common, but they are gaining popularity among teachers.  

Advantages of web-based homework assistance systems are immediate feedback to 
students and automatic grading for instructors. Automatic grading can be helpful to 
teachers by saving time for those who do not have time to grade all of their students’ 
paper-and-pencil homework carefully by hand, which in turn can prompt students to 
take homework more seriously because they know it will be graded and the grade will 
be recorded. Students can get immediate feedback on their answers to problems and 
sometimes hints or intelligent help towards solving problems.  

Although there are benefits to using these web-based homework assistance 
systems, there can be disadvantages, as well. Many of these systems require students 
to enter a single answer for each problem and they do not consider or take note of 
students’ work.   Students may also try to do more math in their heads and do less 
scrap work which can help them to be more organized. Teachers may spend less time 
looking at their students’ work and figuring out exactly where they are having 
difficulties. Because these systems often do not consider student work, it may be 
easier for students to cheat. Additionally, the digital divide, which may be more 
prevalent at the K-12 level than at the college level, could also prevent teachers from 
taking advantage of web-based homework assistance.  
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Research has shown positive results for using intelligent tutors instead of doing 
traditional paper-and-pencil homework. “MasteringPhysics” is a web-based physics 
homework tutor developed at MIT that uses mastery learning to help students reach 
mastery when solving physics homework problems. Students can request hints on 
problems and can receive feedback on common student errors. Warnakulasooriya & 
Pritchard [10] found that twice as many students were able to complete a set of prob-
lems in a given time with the help provided with MasteringPhysics when compared to 
students that worked on the problems without help (administered by MasteringPhys-
ics but without hints or feedback).  

Quantum Tutors (http://www.quantumsimulations.com/) is a web-based system 
that is commercially available for students to do homework in the sciences and math. 
Students can choose topics to work on, enter their own problems and choose from a 
list of questions they may have on particular problems. For instance, students working 
on percents can choose “I need to find the percentage one number is of another” and 
solve problems provided by the system or enter their own values to solve. They can 
also choose from a list of questions such as “Why would I want to convert a percent 
to a fraction?” In a press release, Quantum Tutors describes a week-long study done 
in 2005 (http://www.quantumsimulations.com/news15.html), where students using 
Quantum Tutors for homework in a high school chemistry course outperformed a 
control group that did paper-and-pencil homework on a post-test by just over a full 
letter grade. The difference between groups became larger as the problems increased 
in difficulty.  

The previously mentioned VanLehn work [5], the Andes system, is an intelligent 
tutoring system that provides support for problem-solving for physics homework. 
Andes requires students to complete whole derivations step-by-step and offers feed-
back after each step. Students can also ask for hints on each step to find out the nature 
of their errors (What’s Wrong Help) or to get help on what the next step is (Next Step 
Help). Andes was used and evaluated in introductory physics classes from 1999 – 
2003 at the U.S. Naval Academy. VanLehn et al. [5] presented evidence that students 
who used Andes for homework got significantly higher exam scores than students in 
control groups who did paper-and-pencil homework. Other studies of web-based 
physics homework vs. paper-and-pencil homework did not find significant differences 
between the two [11, 12]. 

Ms. Lindquist. Heffernan and Koedinger [9] developed an ITS, called Ms. Lindquist, 
which uses dialog to help students write algebra expressions by modeling both student 
behavior and tutorial behavior. Ms. Lindquist combines a cognitive model of student 
behavior in the domain of symbolization with a tutorial model of strategies observed 
in a human tutor. The cognitive student model has a set of production rules that mod-
els the problem solving skills needed to write algebraic expressions. The tutorial 
model is based on the observation of an experienced human tutor during an hour-long 
tutoring session and thus captures tutorial strategies that were observed to be effective 
for human tutors. The tutor, a middle school mathematics teacher with four years of 
mathematics teaching experience, had two years of one-on-one tutoring experience as 
well (through both University tutoring centers and private tutoring). This tutor 
charged clients 40 dollars an hour. The tutor worked with a seventh grade student 
whom she had not previously tutored on a list of symbolization problems. The session 
was recorded on video and then transcribed. Strategies that the tutor used often and  
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Table 1. An experienced tutor's transcript and Ms. Lindquist's attempt to model it 

Experienced Human Tutor Exact 
Transcript 

The Ms. Lindquist Tutor Similar 
simulated input. 

240. Student: [reads the "bike-trip" 
problem]  
Cathy took a "m" mile bike ride. She rode 

at a speed of s  miles per hour. She 
stopped for a "b" hour break. Write an 
expression for how long the trip took. 

T1: [The "bike-trip" problem was 
presented.] 
Please write an expression for the total 
time the trip took. 

241. S: um … [Writes "s/m+b"]  S1: s/m+b  

242. Tutor: How do you calculate the 
amount of time it takes you?  

If you're, if you're, if you re riding at 
Let's make it simple. If you are riding at 
20 miles per hour, OK, and you go 100 
miles, how many hours did that take you? 

T2: No. Let me ask you an easier 
question.  
Please compute the time actually on the 
bikes if the speed was 20 miles per 
hour, and the distance ridden was 100 
miles?  

243. S: Um 5  S2: 5  

244. T: 5. And how did you get that 5? 
How did you use the numbers 100 and 

? [trails off]  

T3: Correct. What math did you do to 
get that five?  

245. S: 100 miles divided by miles per 
hour.  

S3: 100/20  

246. T: So you took the miles and divided 
it by  
the [garbled, but probably "speed"]  

T4: Correct. Now write your answer of  
100/20 using the variables given in the 
problem (i.e., put in 'm' and 's')?  

247. S: Miles divided by 's' plus 'b' equals 
time.  
[writes m/s+b]  

S4: b+m/s  

248. T: Right.  T5: Correct.  
 

that were easy to implement were chosen to implement in Ms. Lindquist’s tutorial 
model. Table 1 shows a portion of the human tutor’s transcript and Ms. Lindquist’s 
attempt to model it. 

Ms. Lindquist was the first intelligent tutor that had both a model of student think-
ing and a model of tutorial planning. The system is of the “coached practice” variety 
that is meant to scaffold “learning by doing” while students practice their problem 
solving skills. It is different from typical Cognitive Tutors [4] in that it takes its cues 
more from the dialogs that human tutors have with students and is more flexible in the 
interactions it has with students. For example, it can acknowledge that part of an an-
swer is correct and then engage a student in a “sub dialog” to help him or her to im-
prove the incorrect path. It “breaks” problems down for students by asking questions 
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and re-phrasing questions, but does not give students answers. Whereas Cognitive 
Tutors typically cover a full-year of algebra, Ms. Lindquist deals only with symboli-
zation problems. 

Ms. Lindquist was evaluated in several experiments [13] that showed positive 
learning results for the ITS. For instance, one analysis focused on 76 middle school 
students who used Ms. Lindquist as part of a class assignment. The students in the 
experimental condition received one of Ms. Lindquist’s tutorial strategies when they 
needed help. The students in the control condition were simply told the answer if they 
answered incorrectly and moved on to the next problem. This experiment controlled 
for time. The interaction between condition and learning gain was statistically signifi-
cant with an effect size of 0.56 standard deviations in favor of Ms. Lindquist, even 
though the students in the control group did significantly fewer problems than those in 
the experimental group. 

Fig. 1 shows a screenshot of Ms. Lindquist tutoring a student on a symbolization 
problem. Ms. Lindquist can be found at algebratutor.org where students and educators 
can log in and be tutored on symbolization. Tutoring strategies are randomly chosen 
for each student. 

 
Fig. 1. A screenshot of Ms. Lindquist 
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Method 

Our research question for this experiment is:  

Research Question. For students who have Internet connections at home, does 30 
minutes of classroom problem-solving do better or worse, in terms of student learning 
gains than ~30 minutes of homework problem solving using web-based homework 
assistance. 

Measures of interest included student learning gains measured in school, gains with 
the computer system itself, time on task, and student reported satisfaction with the 
computer system.  

Setting and Participants. The setting for this study was two regular algebra classrooms 
in a high school in West Virginia, and students’ home computers. Students in both 
classes were offered extra credit to do the experimental condition as a homework as-
signment. Obviously, only students with Internet access could participate in the study.1  

Fourteen students from each class agreed to participate in the experimental condi-
tion which meant they agreed to work at home, for at least thirty minutes, on the web-
based system. Thus, the participants for this study were twenty-eight students (20 
female, 8 male, ages 14-16 years) out of a possible 45 students  from both  classes. 
All students were classified as typically achieving students; that is, none were identi-
fied as learning disabled. The second author taught both classes during the experiment 
and while he was not the students’ regular math teacher, he is a highly qualified, math 
through Algebra 1, special education teacher and was well-known to the students.  

The students had been introduced to the topic of symbolization approximately a 
month before this study; they were not studying this topic in parallel with the experi-
ment. This topic was chosen because it is the only topic that Ms. Lindquist teaches. 

Table 2. Overall experimental design 

Day Time Group 1 Group 2 

1 
~ 10-20 min-

utes 
Pretest / Introduction to 

Computer-system 
Pretest / Introduction to 

Computer-system 

2 30 minutes Classwork 
Web-based 
Homework 

3 
~ 10-15 min-

utes 
Mid test Mid test 

4 30 minutes 
Web-based 
Homework 

Classwork 

5 
~ 10-15 min-

utes 
Post-test Post-test 

                                                           
1 This was not a planned circumstance, as the original plan was to have students use computer 

labs in school. However, because the school recently installed new security software that pre-
vented the web site from functioning correctly, the instructor instead sought volunteers to en-
gage in the computer condition at home for extra class credit. Unfortunately, this excluded 
students who did not have internet at home from the study.  
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Design. A counterbalanced design was used in which all groups received all condi-
tions, but in a different order. Specifically, one group participated in the classwork 
condition first while the other group participated in the homework condition first, thus 
ensuring a different sequence of instruction for each group. 

A pretest was administered to both groups to ensure initial comparability on the 
dependent measures. The students were given a mid-test after participating in the first 
condition (according to which group they were in) and a post-test after completion of 
the experiment. The data for this study were analyzed using SPSS. Analysis of Vari-
ance, t-tests and descriptive tests were used. Table 2 displays the overall design of the 
study. 

Procedures. The study was conducted over a five day period and included a pretest, 
mid-test, and post-test administered on days one, three and five of the experiment, 
before and after each condition. The pretest, mid-test and post-test all contained the 
same nine problems and were administered on paper. The questions on these tests 
were symbolization problems similar to those worked on in the classwork and home-
work conditions. The following problems are samples of those that appeared on these 
tests:  
 

1) Mary starts a car washing business at the local gas station. She 
spends $30 to buy supplies. She then charges $10 to wash a car and 
scrub clean all four tires. Write an expression showing how much 
money she has made after she has washed “c” cars. 

2) Mary’s mom bought her a CD player that cost $200. She has to pay 
her mom $15 per month until it is paid off. Write an expression for 
the amount she owes her mom after “n” months. 

3) Martin got a Christmas bonus at work that was worth ‘b’ dollars. He 
first paid the rent which was ‘r’ dollars. He then split the remaining 
money between his three children. How much money did each child 
get? 

 

The experimental conditions occurred on days two and four in a counterbalanced 
manner. Group 1 participated in the classwork condition on day two and did the 
homework condition on day four, while Group 2 did the homework condition on day 
two and the classwork condition on day four. For the homework condition both 
groups were taught how to create an account and log on to the system and were in-
structed to spend at least thirty minutes on the computer system from the time they 
were logged on without stopping.  

To be clear, students who did not volunteer to do the extra homework were not in 
the classroom; students who did volunteer to do the extra homework required were 
“pulled out” of their normal classroom for the classwork part of this experiment. Ob-
viously, this was a more motivated group of students. 

The classwork activities were divided into two main parts: 1) introduction with  
in-class examples, and 2) guided practice. Students were given a worksheet with twenty-
five problems. The instructor demonstrated how to translate word problems into alge-
braic expressions by first displaying problems on an overhead projector and reading the 
problems to the class. The instructor then discussed several traditional textbook  
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methods used to translate word problems to algebraic expressions including matching 
“clue” words with mathematical operations and procedures and using problem-
solving plans such as: explore the problem, plan the solution, solve the problem, and 
examine the solution. The instructor demonstrated five problems that took approxi-
mately twenty minutes. During the remaining thirty minutes of the class, students 
completed their worksheets and the instructor was available to all students and as-
sisted them in the order in which students requested help. The students did not get 
feedback on every problem and those who did not request help got no feedback at all. 
Some of the problems in the worksheet are as follows: 

 

1) Missy starts a business selling fishing bait. She spends $40 buying sup-
plies like containers, bags, and minnows. She sells a container of bait for 
$3. If she sells “c” containers of bait, how much profit will she end up mak-
ing? 
2) Aunt Bee won “d” dollars in the lottery. She spent $40 on groceries and 
spilt the rest up in presents for her six children. How much did each child 
get? 
3) Jane is “j” years old. Peg is “p; years old. Mary is Peg’s age minus Tom’s 
age. Tom is 4 years younger than Jane. Peg is “x” years older than Mark. 
Write an expression for Mary’s age.  

 

Students in the homework condition were asked to log in to Ms. Lindquist and 
work for at least 30 minutes on symbolization problems. However, this experiment 
does not control for time since we could not control how much time students spent on 
their homework.  

Results 

We assume that the groups were fairly balanced since we found no statistically sig-
nificant difference (t = -0.655, p < 0.518) at pretest between groups. The mean pretest 
score for the computer first group was (m = 3.86, sd = 1.29) and for the computer 
second group, the mean pretest score was (m = 4.21, sd = 1.58). 

Overall, students showed large learning gains (F = 6.58, p < 0.016) as measured by 
repeated-measures ANOVA. For both groups, we looked to see if the pretest to post-
test gains were reliably different from zero, and in both cases they were, suggesting 
that students learned from doing classwork and from doing web-based homework.   

When comparing web-based homework gains and classwork gains, we found statis-
tically significant differences (t = 2.044, p = 0.051) in favor of the web-based home-
work condition (m = 1.41, sd = 1.00) over the classwork condition (m = 0.8707, sd = 
0.80), suggesting that students achieved a one-half problem learning gain from the 
computer condition overall. The effect size for this difference was 0.54 with confi-
dence intervals of -0.12 – 0.94. We ignore the order in which students participated in 
each condition in this analysis (the order of condition is considered in the next analy-
sis shown in Table 4). The results of this analysis are summarized in Table 3. 
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Table 3. Summary of results of comparing classwork to web-based homework 

N effect 
size 

p value Mean classwork gain 
score 

Mean homework gain 
score 

28 0.54 0.051 0.8707 1.41 

Finally, we looked to see if there was a difference in learning gains when taking into 
account the binary factors of order and computer condition. We found that for both 
groups (computer first and computer second) the difference was not statistically signifi-
cantly different (F = 2.508, p < 0.126). These results are summarized in Table 4. 

Table 4. The Average Learning Gain split out by whether the students did the web-based 
homework first or second. (Dependent Variable: Computer Gain) 

Group N Mean Standard Deviation 
Overall 28 1.3571 1.0261 

Computer first 14 1.5000 0.94054 
Computer second 14 1.2143 1.1217 

 
Anecdotal Data on Motivation: Students were directed to work for at least 30 min-
utes on the web-based homework, however some of the computer log files were lost 
due to technical difficulties, so we were not able to determine whether all students did 
their homework or not. We were able to recover 70% of the log files and we have no 
reason to believe that the files that were lost would differ greatly from those recov-
ered. From the recovered log files, we could see that students worked for an average 
of 25 minutes on Ms. Lindquist. Four students worked for over 30 minutes, one stu-
dent for an hour and twenty minutes. We hoped that the students would be motivated 
and want to spend more time on the computer doing their homework and some did. 
However, the average time spent by both groups on problem-solving seems compara-
ble and the classwork condition actually spent more time overall when we count the 
time spent by the instructor at the beginning of the class on the introduction and sym-
bolization examples (50 minutes total).    

There was evidence that students had a positive attitude toward the tutoring dialog 
and also thought it was helpful. For example, students were asked to respond to the 
following questions embedded within the computer-delivered instruction:  

 

1) “Rate from 1-10 how much trouble you had on this section. Use 1 for easy 
and 10 for hard.” 

2) “Did you find the computer-delivered instruction helpful?”  
3) “Before you quit, would you please give us feedback on Ms. Lindquist. Type 

your feedback anywhere in this window”.  
 

All but three students who did the web-based homework answered “yes” they 
thought the feedback was helpful and gave an average difficulty rating of 3.3. Several 
students answered question three with the following comments:  
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1) “I think this is a good program to help students in math and he helps them 
understand it better”, 

2) “It was fun and helped me understand it better”, 
3) “This program is a very good way to tutor people about algebra, but even 

though it tells you what you have done wrong it sometimes becomes frustrat-
ing therefore it may be a good idea to have the student write questions about 
specific problems that they may have because an actual person helping is al-
ways better than a computer program” 

4) “This program is a significant program in teaching algebra. Some problems 
are difficult, but are possible to figure out”. 

Discussion 

In this experiment, we found that students in both classwork and web-based home-
work conditions had learning gains between pre- mid- and post-tests. The web-based 
homework condition outperformed the classwork condition with an effect size of 
0.54. Given that students in the web-based homework condition learned more than 
students doing problem-solving practice in class, perhaps the ITS might well be bene-
ficial in the context of assigned homework. However, we are not sure if our results are 
due to better “intelligent” pedagogy or to students receiving immediate feedback on 
their work. 

We speculate that our results might be affected by the fact that we asked students 
to volunteer for this experiment and do extra credit work at home making this ex-
periment’s population probably more motivated (as indicated by being willing to do 
extra-credit work at home). Our results could also be affected by the fact that only 
students with access to computers and internet at home could participate in this ex-
periment. 

Some states in the U.S., such as Virginia, Maine, and Indiana are implementing “one-
to-one computing” programs [14] in schools where each child gets his/her own laptop to 
use during school and sometimes they are allowed to take the laptops home, as well. In 
fact, the Maine Learning Technology Initiative (2002-2004) supplied every seventh and 
eighth grade student in Maine and their teachers with laptop computers, allowing 40% 
of the middle schools students to take their laptops home. While we await research stud-
ies on the effects of one-to-one computing on teaching and learning we have seen re-
ports that students in one-to-one computing programs are more engaged, motivated and 
interact better with teachers [15, 16]. At the same time, widely published opposition 
cites the high cost, potential access to inappropriate material and lack of proven impact 
on student achievement [17, 18] as reasons to abandon one-to-one computing programs 
in schools. Even so, the numbers of U.S. schools that are adopting one-to-one comput-
ing programs continue to increase every year [18].  

As the digital divide narrows and more states become committed to one-to-one 
computing programs, opportunities for students to do their homework online increase. 
We conducted another study comparing web-based math homework to paper-and-
pencil math homework for fifth grade students which also showed favorable results 
for the web-based homework condition [19]. We think that implications of these stud-
ies, and others like them could be important to policy- makers, when considering 
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whether to adopt one-to-one computing programs (especially considering the falling 
price of laptops and claims that they can now be produced for prices as low as $200 
each [20].) 

Future Work. We believe that the results of this study may be affected by the fact 
that only some students could participate either because of the motivation to earn ex-
tra credit or because they did not have access to the web-based ITS. For future work, we 
would like to repeat this study with more students that are not limited to having com-
puters and internet at home. To counter this, we would direct students who do not have 
computers at home to use the computers in the library or the school’s computer lab after 
school. This way we would also be able to see if we could get similar results with stu-
dents who are not as motivated as the students in this study were by requiring that all 
students in the class participate by doing their homework using a web-based ITS.  
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Abstract. Today, learners have access to a wide range of sources where they 
regularly search for, find and use learning resources outside the scope of regular 
course material. Although E-learning systems offer a variety of tools and func-
tionalities, there are no specific provisions for learners to easily store and share 
these valuable resources. In this work we present SHAREK, a Web2.0 inspired 
approach to allow learners to store and share their resources. Specifically, 
SHAREK combines Artificial Intelligence techniques, such as Recommenda-
tion Systems and Information Retrieval with Web2.0 technologies, including 
RSS and tagging to allow easy sharing of resources and knowledge. Finally, we 
report on the implementation and validation of SHAREK. 

Keywords: Web2.0, Collaborative Learning, Knowledge Sharing. 

1   Introduction 

E-learning emerged over 20 years ago, and consisted solely of text like a book on a 
screen, and was ineffective and unpopular with learners. Today, E-learning has be-
come richer with multimedia content and more interactive. With E-learning, educa-
tion is shifting from being Tutor Centered where the tutor is the center and has access 
to the resources, and becoming more Learner Centered [1] where the student is the 
center and the focus of the learning process and has access to a multitude of re-
sources. Although learner centered education is not a novel idea, E-learning and ITS 
(Intelligent Tutoring Systems) [2] are major contributors to the development and 
advancement of learner centered education. 

As such, and with the availability of a multitude of resources (the World Wide 
Web, forums, Wikis, libraries, …), learners regularly search for, find and use learning 
resources, other than the regular class material. Indeed, in a recent survey we con-
ducted (further details in section 4), when asked how often they refer to resources 
external to the course material, 93% of the students said they do so regularly. 

Nonetheless, these precious resources are discarded after their use. Such resources 
and knowledge are important and valuable to other learners. Within the same survey, 
when asked how probably they would share these resources with classmates and 
friends, again 93% of the students were favorable to sharing. In current E-learning 
and ITS systems, there are provisions for collaborative learning [3, 4]. Systems such 
as SPRITS [5], Comtella [6] and iHelp [7] promote knowledge and resource sharing. 
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iHelp and SPRITS are designed for sharing knowledge and Comtella for sharing aca-
demic articles, yet learners access a wider variety of resource types. As such, we in-
troduce SHAREK (SHAring REsources and Knowledge) for learners to share their 
knowledge and resources. Inspired by the Web2.0 [8] approach at harnessing collec-
tive intelligence, SHAREK allows learners to augment the learning material proposed 
by the tutors by adding or attaching, to a course or lecture, learning resources that 
they have created or found. In contrast to existing systems, such as Comtella, iHelp or 
SPRITS, SHAREK aims to share various forms of knowledge (such as a report, a 
research paper, or an assessment) and resources (such as a video, a presentation, or an 
animation). Moreover, SHAREK combines several Web2.0 techniques including RSS 
(Really Simple Syndication), tags, as well as Collaborative Filtering recommendation 
[9] and Information Retrieval [10] techniques to help manage, share and locate the 
shared resources within SHAREK. 

The paper is organized as follows. Section 2 offers a brief introduction to Web2.0. 
Section 3 introduces SHAREK and details the components. Section 4 highlights the 
testing procedure and results. Section 5 concludes the paper and provides an overview 
of future work. 

2   Web2.0 

Although the term Web2.0 suggests a new version of the World Wide Web, it does 
not refer to an update or any technical specifications, but rather to changes in the 
ways software developers and end-users perceive and use the web. The term Web2.0 
refers to a perceived second generation of web-based communities and hosted ser-
vices (such as blogs, Wikis, etc.) which aim to facilitate creativity, and to promote 
collaboration and sharing between users. Table 1 [11] formulates a sense of what is 
Web2.0 by example: 

Table 1. Web1.0 vs. Web2.0 [11] 

Web1.0 Web2.0 
Britannica Online Wikipedia 
Personal websites Blogging 
Publishing Participation 
Directories (taxonomy) Tagging ("folksonomy") 
Content Management Systems Wikis 

One of the driving principles of Web2.0 is harnessing collective intelligence. In-
deed, in the context of Web2.0 users are not just recipients of information, but ac-
tively participate in the creation of such information, whether by building personal 
blogs, participating in Wikis, tagging, rating, sharing and/or referring websites. 

A recently published report [12] indicates that 64% of online teenagers in the US, 
ages 12 to 17, engage in at least one type of content creation. Moreover, both You-
Tube and Wikipedia are listed among the top 10 most visited sites by Alexa [13]. 
Both sites rely heavily on user input. These are some of the encouraging indications 
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about the willingness of users to create and share information and knowledge, a major 
motivation behind SHAREK. 

3   SHAREK (SHAring REsources and Knowledge) 

To the best of our knowledge, there are no existing mechanisms in E-learning systems 
to efficiently harness and take advantage of learner’s knowledge and the resources 
they locate and use. Supported by learner centered education, and the learners’ access 
to a variety of learning resources, and inspired by Web2.0, we propose our system 
SHAREK. SHAREK’s primary goals are to harness the collective intelligence and 
knowledge of learners obtained through accessing various learning resources, and 
sharing this knowledge and resources with other learners. Specifically, each time a 
learner accesses a course’s learning content (specified by the tutor), he would be able 
to also access additional learning resources located and used by other learners and 
classmates. Fig. 1 illustrates the positioning of SHAREK within an ITS architecture 
based on LTSA [14]. 

 

Fig. 1. SHAREK within an ITS 

Originally within the LTSA architecture, the Coach reviews a set of information, 
such as performance history and objectives, and searches, via the Query request, the 
Learning Resources for the proper learning content. In this case, the coach would 
send two Query requests, one to the Learning Resources for the learning content, and 
another to SHAREK for the learner added learning resources. SHAREK will process 
the coach’s query and send back the appropriate resources indexes, which in turn are 
sent, along with the locator index to Delivery. Delivery will retrieve both the content 
and the resources and send them as multimedia to the learner. Evaluation will send 
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any behavior feedback with regard to the resources (tags, rates, etc.) back to 
SHAREK which updates the Resources Library. Moreover, SHAREK handles the 
learners’ requests to add new resources. 

3.1   Adding Resources 

The first and most important step of the SHAREK process is for learners to be able to 
add, or attach new resources to a course or a lecture. What follows is the data gath-
ered about the different resources added by learners. The model presented here is 
inspired and based on the IEEE LOM (Learning Object Metadata) [15] standard. The 
data collected is divided into six categories. The General category contains informa-
tion such as the resource identifier, a unique id assigned by the system, the title, lan-
guage and a short description of the resource provided by the contributor when adding 
the resource. Moreover, the general category contains the Tags associated to the re-
source. Tags are keywords or terms associated with the resource to describe its con-
tent. Learner Ratings are also information stored under the general category. A rating 
is a score (on a scale of 1 to 5) a learner gives to a resource, with regard to its rele-
vance to the lesson, its utility, and its clarity and ease of use. Moreover, the flags are 
stored in the general category. Learners can flag the resource as being Inaccessible, 
Unrelated to the lesson, Redundant or Plagiarized. Flags reflect within the system to 
advise learners accessing the resource, and tutors are automatically notified for them 
to take the appropriate actions. 

The Educational category contains information such as the type of the resource, 
whether the resource is an exercise, an experiment, a lecture, etc. Moreover, the edu-
cational category contains the Related To, and Relation Type information. The first 
describes which part of the course, or which lesson the resource is related to, and the 
second describes the relationship of the resource to the lesson: whether to support the 
theory in the lesson, to contradict it, to illustrate the theory with an example, or to 
evaluate the learner’s knowledge in the topic. 

The Technical category contains information related as to what are the technical 
requirements to access the resource, the format of the resource, the resource size (if 
applicable) and its location. The content of location varies depending on the format of 
the resource: if the resource is an uploaded file, then the location indicates where this 
file is stored. Otherwise, if the resource is located online then the location will contain 
the URL address. 

The Contributor category contains the information to identify the learner who con-
tributed, or added the resource. The Context of Contribution category holds informa-
tion about the context in which the resource was added, including the course id, the 
semester, the tutor and the date the resource was contributed. Although the contributor 
could be the author of the resource, there are many situations when he is not. Thus, the 
Author category contains information about the actual author of the resource. 

3.2   Sharing and Accessing Resources 

Within such a context, it is important to have a well designed scheme to help learners 
locate resources. Indeed, with the availability of a multitude of resources attached to a 
single lesson or lecture, how can a learner easily locate the most suitable resource? 
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One approach would be to use the best rated resources, but this approach alone is 
inadequate. Indeed, different learners prefer different resources. Moreover, when 
relying just on the ratings, new and suitable resources, which have not yet been rated, 
would be overshadowed by other, probably less adequate, resources that have been 
rated. As such, we propose combining several different approaches (Fig. 2), including 
the use of a Collaborative Filtering (CF) recommendation system, RSS feeds and a 
Search tool. In short, a CF recommender system accumulates user ratings of items, 
identifies users with common ratings, and offers recommendations based on inter-user 
comparison [16]. 

 

Fig. 2. SHAREK process 

Within SHAREK, in the context of the lesson the learner is presented with the Top5 
resources attached to the specific lesson. The Top5 are determined using the CF ap-
proach, and are presented alongside the learning area. The CF process is composed of 
two steps: first determine the neighborhood of the learner, which consists of k learners 
with the highest ratings’ similarity. The similarity between the learner a and his 
neighbor u is derived using Pearson correlation coefficient. An important case to con-
sider is the cold start: which is when the recommender system first starts and doesn’t 
have enough data to produce reliable recommendations. For instance if the learner is 
new to the system (or has just a few ratings), the recommender system cannot efficiently 
determine the neighborhood, nor predict the learner’s preference for resources. Thus, in 
this case, the Top5 will be selected with regard to their overall rating. 

Although the recommender system does help locating the material learners appre-
ciate, it is not enough on its own. Indeed, since the recommendation relies on learner 
ratings, resources newly added to the system might get discarded and overlooked. 
Therefore, we introduce our second approach, a scheme inspired by social network-
ing. Each learner has a list of friends, to which he can add or remove other learners. 
The learner in question is then kept up to date on his friends’ resources activity 
through RSS. Specifically, RSS is a family of Web feed formats used to publish  
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frequently updated content. An RSS document, which is called a feed, usually con-
tains either a summary of content, from the associated web site or the full text. In 
short, RSS makes it easier to keep up with updates. As such, each learner has his own 
feed per course, automatically updated every time the learner adds a new resource, 
includes a resource into his favorite, or shares a resource with his friends. In order not 
to be overwhelmed with updates, a learner can choose, for each of his friends, one or 
more feeds to subscribe to: add a resource, favorite, or share. 

Finally, the third approach consists of a search tool used by the learners to locate 
shared resources. Specifically, learners can search for resources by specifying one or 
more of the following criteria: language, rating, tags, date added, format, by the edu-
cational type, relation type, or even within resources favorite by friends. 

3.3   Managing Resources 

The freedom offered to learners within SHAREK should be balanced with an equiva-
lent amount of control. Indeed, SHAREK is able to control unintended abuses of 
learners. One such abuse is the uncontrolled nature of tags. Undoubtedly, tagging has 
its strengths, and perhaps the most important is that it directly reflects the vocabulary 
of users. Indeed, tagging, with its uncontrolled nature, can adapt quickly to user vo-
cabulary changes and needs. Yet, this strength is the source of a main disadvantage. In 
particular, having too many different tags for a single resource affects the quality of a 
search based on tags. For example, when searching for “bubble sort” on YouTube, the 
second video in the list retrieved is about Barack Obama (a candidate for the 2008 US 
presidential elections), and other returned videos include, among other, a bubble gum 
advertisement. As such, in order to still take advantage of the flexibility of tags, and 
increase the accuracy of retrieval, we propose to make use of the tf-idf weighing 
scheme [17] such as to allow the most relevant tags to float above the rest. The tf-idf 
weighing scheme is a well established approach within the IR (Information Retrieval) 
field. Specifically, the term frequency tfij represents the relevance of the term, or tag i 
to a document j (in our case a resource j), and idfi represents the discriminating power 
of the tag i. As such, the most repeated tags with the most discriminating power can 
be determined for each resource. Currently within SHAREK, for each resource, only 
the five highest ranking tags, are considered while the other tags are not discarded, 
such that they might still float to the top. 

4   Implementation and Validation 

In order to validate our approach, we implemented an E-learning prototype platform 
that supports the tools and functionalities described in this paper. Specifically, the 
platform proposes three Data Structures lessons, one for each of the following sorting 
algorithms: Bubble Sort, Merge Sort and Selection Sort. Moreover, a minimum of 6 
resources were originally attached to each lesson. The technical environment of the 
prototype is: PHP, JavaScript, AJAX, and MySQL. 

After logging in for the first time, each learner is requested to complete a survey be-
fore having full access to the system. This survey collected background information 
about the learners, such as how often do they refer to learning material outside the regular 



444 H. Hage and E. Aïmeur 

class content, where do they look for these resources (search engines, Wikis, library 
books, etc.), how likely are they to share resources with friends, classmates or tutors, how 
likely are they to use resources referred by friends, and how familiar are they with com-
puter based training and Web2.0. After completing the survey, the learners can then 
access the lessons and their respective resources, where they can add new resources, use 
and rate existing resources, and test the different functionalities of the system. Finally, 
after having used and tested the system, the learners complete an evaluation form, an-
swering questions about how easy and intuitive the system is, would they use such a 
system if it existed, and would such a system encourage them to share resources. More-
over, they were asked to evaluate the functionalities of SHAREK, and whether there was 
any missing functionalities they would like to add, and finally they were asked to give an 
overall evaluation of the system, and to provide any comments. 

4.1   Results and Findings 

There were a total of 93 learners who tested the system. The volunteers consisted 
mainly of graduate and undergraduate students at the Computer Science department 
of our university (Université de Montréal). We will first start by relating the findings 
with regard to the survey, then highlight the results of the evaluation. 

The survey results mainly reinforce the hypothesis on which we based this work: 
learners do refer regularly to learning material outside the regular class content, and 
they are willing to share these resources with friends and classmates. Indeed, when 
asked, in question #1 of the survey, to specify on a scale of 1 to 5 (1: never and 5: 
always) how often they refer to learning material other than what is recommended by 
the tutor, 93% responded they do so on a regular basis (Fig. ). Moreover, when asked 
to rate how likely they would use a resource recommended by a classmate or friend, 
on a scale of 1 to 5 (1: never and 5: always) none of the respondents answered with 
less than 3, and 73% answered higher than 3, which indicates the willingness of 
learners to use resources recommended by colleagues and friends. Finally, when 
asked in question #4 of the survey, to rate on a scale of 1 to 5 (1: never and 5: al-
ways) how probably they would share these resources with the Tutor, Friends or  

 

  

Fig. 3. Partition of answers to the survey’s  
question #1 

Fig. 4. Average of answers to the sur-
vey’s question #4 
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Classmates, learners were the least eager to share resources with their tutor (actually 
10% of the respondents answered Never), and most eager to share their resources with 
their friends. Fig.  summarizes the averages of learners’ responses. Note that female 
respondents averaged higher that their male counterparts. 

With regard to the evaluation of SHAREK and its functionalities, when asked to 
rate, on a scale of 1 to 5 (1: Poor and 5: Excellent), the ease of use of SHAREK, the 
intuitiveness of the interface, and whether they would regularly use such a system, 
most respondents answered favorably, with ratings’ averages around 4. Moreover, 
when asked in question #2 of the evaluation, if a system such as SHAREK would 
encourage then to share resources, on a rate of 1 to 5 (1: never and 5: definitely), most 
respondents answered with a 3 and higher (see Fig.  for more details). In addition, 
learners who answered with a low score (1 or 2), where learners who initially, in the 
survey, had also given low scores to their willingness to share resources. In addition, 
when asked to rate the functionalities provided by SHAREK (such as the RSS feed, 
search tool, tagging, rating, etc.), on a scale of 1 to 5 (1: poor and 5: excellent) the 
respondents ratings averaged at 4.1. Moreover, when the learners were asked if there 
are any additional functionalities that they would require within SHAREK, there were 
several interesting suggestions, such as a forum and other student communication 
tools, functionalities which are usually part of E-learning systems (such as Black-
board or ATutor), which SHAREK is intended to complement. 

 

Fig. 5. Partition of answers to the evaluation question #2 

With regard to the efficiency of the CF resource recommender system, and the tf-
idf approach to float the most relative tags, preliminary findings are encouraging, 
unfortunately the results were insufficient. In fact, for such analysis to be accurate, we 
require further testing and data. In our case, all the volunteers used the system only 
once to evaluate it. Thus, the learners’ profiles were sparse (learners rated a couple of 
resources only) in order to perform CF recommendations, and the resources were not 
accessed and tagged intensively (as they would within a regular course) in order to 
analyze the tags floating approach. 
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5   Conclusions and Future Work 

Today, E-learning has become a standard, and there exist several virtual universities that 
offer online programs. Moreover, learners regularly locate and use learning resources 
from outside the courses’ scope. Although these resources are beneficial, to the best of 
our knowledge there are no functionalities in current E-learning systems to efficiently 
harness and take advantage of this knowledge. In this paper we presented SHAREK 
(SHAring REsources and Knowledge), which allows learners to easily share learning 
resources within the context of a course. Moreover, SHAREK utilizes well established 
Recommendation and Information Retrieval techniques to help learners locate the most 
suitable shared resources. In order to validate our approach we implemented and tested 
a prototype. Preliminary results are encouraging: out of 93 learners who tested 
SHAREK, 93% related their readiness to share resources in the pre-test survey, and 
90% of the respondents confirmed, after the testing procedure, that they would regularly 
use such a system and that it would encourage them to share resources. 

Nonetheless, we are working at further enhancing SHAREK: we are investigating 
the inclusion of provisions for competitive group work, such as resources would be 
shared and accessible only to learners of the same group. In addition, we are looking 
into considering pedagogical aspects and the learning profile, into the recommenda-
tion process. Moreover, we are currently in the process of implementing a resource 
management tool in order to control the size of the resource repository. In particular, 
we expect the number of resources to grow uncontrollably, thus clogging SHAREK 
with unused resources, which will become cumbersome for the learners and could 
cause a cognitive overload. As such, we are developing a methodology, inspired from 
the confidence and support approach in Data Mining [18] to automatically archive 
and discard unused and inadequate resources. Finally, we plan to investigate further 
the expected role of tutors, and their reactions to their new responsibilities within 
SHAREK. 
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Abstract. This paper presents an ontology-based approach for the dynamic 
generation of learning knowledge objects (LKO). These objects have the par-
ticularity of implementing AIED techniques and they exhibit characteristics 
hitherto reserved for intelligent tutoring systems (ITS): they are knowledge-
based, adapted to a learner model and they are composed dynamically accord-
ing to a learning need and a particular instructional theory. Additionally, the 
paper tackles the issue of using eLearning resources by ITS and shows how this 
could be realized. Finally, the paper also demonstrates how LKOs are deployed 
and evaluates briefly the results of the proposed approach.  

1   Introduction 

In the context of eLearning, educational material provides access to many knowledge 
sources. However, there are several shortcomings with this kind of web-based educa-
tion. First, the huge number of learning resources makes it difficult to find the appro-
priate resource to fulfill a learning need. The main burden of indexing, storing, ex-
tracting and organizing the learning material remains on human’s shoulders [6]. The 
creation and standardization of metadata offers structuring and indexing, but again 
this task has to be performed by a human expert. Moreover there are several standard-
ized metadata formats and they require a matching process to be used in a uniform 
way. Finally, an important shortcoming of educational material is that it cannot be 
exploited by ITS due to its lack of model. 

To alleviate the user’s tasks and provide access to better formalized knowledge 
structures, there is a need to set up (semi)automatic mechanisms to mine the learning 
object content. There is also an urgent need of rethinking the notion of learning ob-
ject. From one side, learning object has to evolve to become more appropriate for the 
current needs of eLearning: adaptation, on-the-fly composition, knowledge modeling, 
instructional theory modeling and learning objective statement.  On the other side, 
ITS should no longer neglect learning objects as potential knowledge sources. 

This paper presents the results of “The Knowledge Puzzle Project” (KPP) in its ef-
fort to offer an alternative to static learning objects by generating dynamically learn-
ing resources called “Learning Knowledge Object” (LKO). These LKOs have several 
characteristics: they are knowledge-based, theory-aware [18], dynamically generated 



 Bridging the Gap between ITS and eLearning: Towards Learning Knowledge Objects 449 

and they provide a tutoring service interface. Therefore, they draw several characteris-
tics from both AIED and eLearning communities, hence contributing to bridging the 
gap between them [3].  

The first part of this paper (section 2) discusses the current landscape of eLearning 
and AIED communities. It emphasizes on the current issues facing web-based educa-
tion and initiates a reflection over the impact of ITS modules on the learning object 
concept and vice-versa. Section 3 describes a general semantic Web architecture for 
the on-the-fly generation of LKOs that benefit from the AIED techniques to model the 
domain knowledge, adapt their content to a given learner and encode instructional 
theories in a declarative way.  Finally, section 4 presents an evaluation of the ap-
proach before a conclusion. 

2   Computer-Based Instruction Landscape 

Computer-based education is mainly divided into two communities: eLearning and 
AIED. ELearning has been widely adopted by organizations whereas AIED tech-
niques are still generally confined to research projects in the universities. 

2.1   ELearning Systems Landscape 

Since eLearning relies heavily on web-based resources and on the web as the training 
platform, we have seen, over the past few years, the proliferation of learning objects 
in repositories and their wide adoption in the industrial world. This success is also the 
result of the failure of more sophisticated techniques such as intelligent systems and 
artificial intelligence in education in general to take place on a wide scale. However, 
there are many problems in the eLearning vision [4, 17]: 

• The metadata problem: Metadata is used for the description and research of learning 
objects. The first problem is that metadata are designed with the idea that they are 
intended to humans and produced by humans [3]. The second problem is that these 
metadata, while necessary, are not sufficient. In fact, they describe the world around 
the learning object (the language used, the context of use, the author, etc.) but they 
remain very vague about its content.  

• The black-box problem: A learning object is a black box: it is presented as an inte-
grated content package containing all the necessary resources but its real content is 
inaccessible to a software agent.  

• The lack of explicit instructional theory problem: Learning objects implement an 
instructional theory provided by their designer. However, this theory remains im-
plicit and learning objects are therefore dependent on this theory and cannot modify 
it dynamically. 

• The lack of adaptability problem: Finally, learning objects are suffering from their 
static model and the lack of adaptation of their content to a learner model. This is 
why various researches focused on this issue and has led to the adoption of various 
standards for modeling the learner, such as IMS LIP (Learner Information Package) 
[12], or IMS ePortfolio [11]. The creation of teaching scenarios standards such as 
IMS-LD (IMS Learning Design) [13] is also another effort to formalize the peda-
gogical aspect and adapt it to a given learner. 
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2.2   Intelligent Tutoring Systems Landscape 

ITS rely on artificial intelligence techniques to improve the processes of computer-
based teaching and learning. Typically, a traditional ITS architecture uses various 
knowledge representation techniques. One of the main problems of ITS is the lack of 
an agreed standard among the AIED community regarding domain modeling, learner 
modeling, and instructional scenario modeling. This lack of standardization is felt in 
the different modules of an ITS which must be rebuilt from scratch in every project. It 
is also clearly felt in the knowledge representations themselves:  various representa-
tions, techniques and languages are used without clear distinction about when any of 
these formalisms should be used instead of another. The domain model is specially a 
heavy burden over the community shoulders when built manually, which is often the 
case.   

Finally, with the growing number of learning objects and their availability on a 
large scale, ITS should benefit from these learning resources and should find a way to 
integrate them into their knowledge base. 

3   Implementing the Semantic Web Architecture: The Knowledge 
Puzzle Experience 

To overcome the limitations mentioned above, the research community has gradually 
refocused on the need to create more complex representations than simple content 
aggregations, the need to adapt training to individual learners and the need of knowl-
edge representation and reasoning mechanisms able to exploit the knowledge base. 
The educational Semantic Web [1, 5, 17] represents a way to integrate all these efforts 
in a common architecture.  

In the Knowledge Puzzle Project (KPP), we propose a Semantic Web Architecture 
which aims at formalizing the different models of the traditional ITS architecture 
using ontologies and at offering a set of services that exploit the ontological model. 
Another goal of the project is to provide tools to support the dynamic composition of 
learning resources that act themselves as small tutoring systems: they possess a do-
main model, a learner model, and a pedagogical model. They also exhibit different 
characteristics:  they are active, domain-knowledgeable, independent, reusable and 
theory-aware [18]. We believe that this architecture makes the synergy of the 
strengths in the eLearning and the ITS field. First, it uses OWL as a standard language 
for knowledge representation and reasoning. Second it advocates the use of tutoring 
services to dynamically create learning objects implementing the traditional ITS ar-
chitecture.  

Contrary to classical eLearning approaches where learning objects repositories are 
considered as suppliers of learning objects, KPP exploits these repositories (or any 
kind of documents about the domain of interest) as raw materials for creating learning 
content. A number of tools and services are implemented to make use of these re-
sources to produce domain knowledge and to annotate relevant items according to 
different contexts (domain, instructional roles, competences, instructional theories). 
These different contexts are explained below and organized around the three models 
of an ITS: the domain model, the learner model and the pedagogical model.  
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Fig. 1. Overview of the KPP Semantic Web Architecture 

The following figure shows the KPP semantic web architecture. On the left, the 
different tools that feed the knowledge base are represented (Onto-Author, 
TEXCOMON). On the right, the exploitation of the knowledge base is shown through 
the deployment of LKOs in eLearning environments and ITS. 

3.1   Setting up the Knowledge Base 

The knowledge base is represented as a set of intertwined ontologies that are organ-
ized around the domain ontology.  These ontologies are the competence ontology, the 
instructional role ontology, and the instructional theory ontology. Ontology instances 
are created through two authoring suite tools: TEXCOMON and ONTO-AUTHOR.  

3.1.1   Setting up the Domain Model 
In KPP, the domain model is a three-layer structure including a domain ontology, a 
concept map and an index on related physical learning resources..  
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A domain ontology is used to formally describe a domain. Most of the works [8, 13] 
have considered first building a domain ontology from scratch and then annotating the 
learning objects with relevant ontological concepts. However, due to the difficulty and 
cost of such a manual operation, the adoption of automatic methods for extracting the 
domain knowledge is now acknowledged within ontology engineering communities. The 
domain ontology is generated semi-automatically through an ontology learning tool (The 
TEXCOMON Tool) that formalizes the domain knowledge as a set of concepts (most of 
them are primitive classes), individuals, concept attributes and relationships between 
concepts. The process of learning this domain ontology has been described elsewhere 
[23]. Without repeating its description, it is important at this stage to underline the benefit 
gained from the employed methodology. 

In fact, one of the main advantages of our approach is the resulting three-layer 
model that allows for the representation of text content through concept maps and the 
refining of these concepts maps into more formal domain ontology. Here, refining 
means the identification of the most important domain concepts according to the input 
documents. This importance is measured by the connection degree of a given concept 
with the others (the out-degree parameter). The domain model is thus represented by 
three structures in ascending order of abstraction: the texts (refered by an index), the 
concept maps and the domain ontology. It is then easy to navigate from one level to 
the other by searching a concept map around a given ontological concept and then 
retrieving text portions relevant to this map and vice versa (starting from a text to 
know the relevant domain concepts and relationships). In the last case, the domain 
ontology “automatically” reflects the domain knowledge covered by the input docu-
ments (or at least a part of it) and automatically references this knowledge. This is an 
interesting feature that helps the search of concepts or particular relationships between 
concepts by providing fine-grained resources (at the sentence-level, paragraph level, 
or whole text level). Course designers (human, software agents) as well as learners 
benefit both from these structures respectively to build a course or to understand a 
domain in an exploratory way.   

3.1.2   Setting up the Learner Model 
In ITS, the learner model is the key aspect that allows for the adaptation of instruc-
tion. We believe that the learner model should be expressed in an ontology in order to 
offer a better sharing of the model between training environments. For example, 
Dolog and Nejdl [7] have proposed a user model ontology based on IEEE Personal 
and Private Information (PAPI) and IMS Learner Information Package (LIP). Another 
ontology based on an RDF Schema is presented in TANGRAM [14]. An additional 
specification is emerging as a way to model learner knowledge over a long time pe-
riod: the IMS ePortfolio specification [11]. This specification has been used in [9] as a 
way to initialize the learner model and to conserve the trace of mastered competen-
cies.  Since the adoption of this specification is rapidly growing in higher education 
and is also suitable for organizations, we propose to build an ePortfolio ontology to 
represent the learner model. In KPP, the learner model is expressed as a set of skills 
(where one or more skills describe a competence) to acquire over domain concepts 
through an OWLObjectProperty “concept”. The terminology adopted (the Bloom 
taxonomy [2]) to describe the skills is independent from the domain model (example 



 Bridging the Gap between ITS and eLearning: Towards Learning Knowledge Objects 453 

of skill: define, analyze …) to enable its reusability and an easier sharing. This ontol-
ogy stores the mastered skills of a given learner over domain knowledge. 

3.1.3   Setting up the Pedagogical Model 
One of the other drawbacks that face ITS is their inability to model instructional theo-
ries and strategies in a standard and reusable manner. The instructional strategies are 
generally encoded in the ITS program and are then very difficult to update and reuse. 
Some efforts and reflections have been made to remedy the situation. Hayashi et al. 
[10] present a framework that gives theoretical justification to standard-compliant 
learning/instructional scenarios. There were also some efforts to encode instructional 
strategies in the form of rules by extending the SWRL standard [21]. 

In KPP, the pedagogical model includes instructional theories and instructional 
roles ontologies.  

The instructional theories ontology enables to present the same content with dif-
ferent instructional strategies. Each instructional theory is represented as a set of in-
structional steps. Each instructional step is fulfilled either through the presentation of 
an instructional role or through the execution of actions that are meant to represent 
basic tutor operations such as computing the learner score or generating or loading 
exercises. For expressing this link between a particular step and a given instructional 
role or a given instructional action, an instructional step is linked to a set of SWRL 
rules. Given a particular theory, these rules express the kind of processing the tutor 
should make at a particular step of the instruction (present a definition, generate an 
exercise, etc.).  It is then relatively easy for a designer to edit or add new rules or 
create ad-hoc rules. For the moment, we still use the SWRL editor provided by the 
Protégé Environment but easier ways to edit instructional rules are currently under-
took. Other initiatives regarding ontology-based instructional theory modeling are 
established by the research community such as the OMNIBUS project [17]. Since 
KPP instructional theory model is very simple, the final aim would be to integrate a 
richer ontology such as OMNIBUS instead of the one we currently use. 

The instructional role ontology represents instructional roles widely used in educa-
tion such as definitions, examples, descriptions, exercises, and so on. These roles are 
related to the domain ontology through an OWLObjectProperty “concept” that identi-
fies the referred topic. Instructional roles allow for the identification of reusable peda-
gogical knowledge fragments in learning objects or documents. These fragments are 
needed for the establishment of an automatic generation process of learning resources. 
Hence, they sustain the reusability of fine-grained learning resources, which is one of 
the main aims of eLearning.  

The ONTO-AUTHOR tool suite [22] is used to edit all the ontology instances. It 
comprises functionalities such as competence edition, instructional role annotation, 
instructional theory edition, etc.  It allows establishing the pedagogical, structural, 
domain and competence relationships between the contents.  The ONTO-AUTHOR 
tool suite uses the Protégé OWL API to communicate with the ontology layer. 

3.2   Exploiting the Knowledge Base 

As previously mentioned, KPP advocates a service-oriented architecture to exploit the 
knowledge base. Once the different models are set up, it is possible to organize a set 
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of services to effectively use the KB. Other projects have recognized the importance 
of the service-based vision in contrast with the resource-based vision such as the 
TELOS architecture [19] and the LUISA project [15]. In the same line of thought, 
KPP proposes the replacement of LORs by knowledge bases which should be exploit-
able by LCMS and ITS. One difference in the KPP vision is that we also consider a 
learning resource as a small knowledge base surrounded by services (the LKO). In 
fact, setting up the knowledge base as described above aims at providing the required 
resources to automatically generate LKOs. These LKOs can be usable by eLearning 
environment as well as by ITS. 

The LKO generation process is composed of three layers represented as services: 
the composition service, the deployment service and the standardization service (see 
fig.1, right side).  

3.2.1   The Composition Service 
The composition service is in charge of aggregating learning Knowledge Objects 
according to a given instructional theory, a specific competence need (CMP-Needs) 
and a specific learner model (IMS e-Portfolio). 

Once learning objectives are specified, the competence definition is matched 
against the learner profile using a Competence Gap Analyzer (CGA). For each skill in 
the targeted competence, the learner profile is checked to find out if this skill is al-
ready mastered or if required prerequisites have to be added. If this is the case then 
adjustments are made to the competence definition leading to a set of skills that are 
new to the learner (Adjusted Competence). 

The Adjusted Competence is transferred to an Instructional Plan Generator (IPG) 
that is in charge of composing the actual Learning Knowledge Object according to the 
chosen theory. The IPG exploits the Instructional Learning Theory Ontology in order 
to find out the instructional events and conditions that will effectively guide the com-
position. Actually, KPP supports the execution of SWRL rules using the Jess rule 
engine. As previously indicated, the execution of the rules indicates to the IPG the 
type of resources that should be used to fulfill each step or the type of action that 
should be performed. Each action described in the rules is implemented as a java 
function (for example: generate an exercise related to a given concept). 

Since an LKO is generated on-the-fly according to a particular training need, it re-
quires, at generation time, an ontological data structure to store relevant instances and 
resources. This data structure is represented by the LKO ontology. The instructional 
Plan Generator fills the LKO ontology with the required resources. 

3.2.2   An Ontology for Representing Data States in Learning Knowledge 
Objects  

The execution of the IPG produces a Learning Knowledge Object that is composed of 
a data state and of a set of functions to manipulate it.   

An LKO defines learning scenarios through topics from the domain ontology based on 
the definition of competences as learning objectives and guided by an instructional the-
ory. The data state is an OWL data structure composed of the various resources necessary 
for the LKO. An LKO is represented by a set of LKOActivities (CourseActivity or Exer-
ciseActivity). Each activity is targeted towards a specific skill and is linked to the skill 
concept. Each concept is in turn related to a set of LKOSemanticRelations that define the 
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concept map around the concept (its context). Each LKOActivity is composed of a set of 
LKOSteps that are conformant to a specific instructional theory. Each of the steps re-
quires a resource to fulfill it. 

The LKO functions are assembled into a standard interface that enables any LKO 
to act as a small “Intelligent Tutoring System”. This standard interface offers a num-
ber of functions that are further described in the deployment service. 

3.2.3   The Deployment Service 
The LKOs are targeted towards any kind of training environment. KPP provides an 
LKO Runtime Environment (LKO-RTE). The LKO-RTE makes it possible to run the 
LKO as a standalone resource. The user interface gives access to relevant functions 
that are implemented within the LKO to support the variety of learning services (func-
tions) described below. 

Scenario control is set up by following the instructional theory that was used to 
generate the Learning Knowledge Object. Basically the LKO Runtime Environment is 
composed of a course view, a concept map view and concept map exploration view.  

One deficiency of current textual learning objects is that they only foster one kind 
of learning. KPP’s aim is to offer some kind of constructivist environment using the 
learning object content. Each concept related to the skills that compose the learning 
knowledge object is presented with its context. The concept map view shows the 
context of these different concepts and the relationships between them.  

The concept map exploration enables a deeper understanding of the concepts at 
hand. In fact, it enables to explore the concepts connected to the current competence 
and it also allows exploring the surrounding concepts. Another possibility is to ex-
plore the different instructional roles related to a concept as well as their source 
documents. This can be helpful for a learner as well as for a course designer, because 
it gives a quick view of the available resources.  

Besides concept map exploration, the learner is offered with exercises to test his 
understanding regarding the presented concepts. An exercise can be any learning 
resource that is edited in the ONTO-AUTHOR Tool Suite. Single or multiple choice 
exercises can also be generated by exploiting the concept maps. Here an exercise is 
defined as a set of right and erroneous assertions where the learner should select the 
right ones. The right assertions (relationships between concepts) come from the do-
main model. The erroneous ones are automatically created by exchanging relation-
ships labels or concepts labels with other ones from the domain model that are not 
appropriate to the current learning situation. 

Finally, at any time, the learner is offered with the possibility of asking for the 
generation of a new learning knowledge object related to some concept of the context. 
For example, the learner can ask for the generation of an LKO about the concept of 
LMS (Learning Management System). 

3.2.4   The Standardization Service 
The standardization layer serves as an interface to different standard eLearning envi-
ronments and to ITS.  

For each eLearning standard (SCORM and IMS-LD), the same methodology is 
employed: Once the LKO is generated according to a particular instructional theory, it 
is possible to export the generated LKO ontology as an OWL File “lko.owl”. This file 
indicates the scenario to follow, the different resources related to each step and the 
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concepts and their context. An LKO applet takes this OWL file as input to display the 
generated LKO. This applet can be packaged in a SCORM content package with other 
required resources. The same procedure is used for IMS-LD where an LKO is consid-
ered as an activity executable in a Learning Design Player [20]. 

As far as ITS are concerned, a different approach may be necessary. If the ITS re-
lies on web-based resources such as HTML pages, it is then possible to launch the 
LKO applet as a resource to fulfill the given competence need. Proprietary ITS should 
also follow this methodology to be able to launch an LKO. Otherwise, a standard 
ontology-based ITS (what we call the LKO Runtime Environment) is required. This 
environment uses the ontologies as its knowledge base and exploits also standard 
services such as the ones described above. However, one may have noticed that an 
essential component in the ITS architecture is missing: the expert module. The actual 
knowledge base focuses on declarative knowledge. The expert procedural knowledge 
should then be manually added with usual techniques in the form of rules that come 
on top of the domain model. 

4   Evaluating the Semantic Web Architecture 

We performed evaluations of the proposed approach by mainly focusing on the se-
mantic validity of the domain concept maps and the domain ontology. In fact, since 
the domain model represents the basis of the proposed framework, it is really impor-
tant to ascertain the interest of the ontology learning techniques to produce relevant 
results. We completed a three-level analysis: a structural, semantic and comparative 
analysis. The structural analysis considers the domain ontology as a graph and focuses 
on structural properties such as the out-degree of a concept, the centrality of a con-
cept, etc. We found that the concepts were generally richly described and had suffi-
cient amount of parents. The semantic analysis relies on human experts to judge the 
validity of the ontology. On average, the two experts rated the pertinence of the  
generated ontology as follows: 86.65% for primitive classes, 84.3 for hierarchical 
relationships and 80.08 for conceptual relationships.  Finally, we completed a com-
parative evaluation (on the same corpus) with the Text-To-Onto Tool [16] where the 
analysis has shown a significant improvement of results with KPP ontologies espe-
cially in conceptual relation learning, often considered as one of the weakest points 
of similar text mining platforms.   

An empirical evaluation of the LKOs is needed to complete these experiments. Our 
goal is to compare, on a given subject, LKOs and traditional learning objects with a 
set of learners. Moreover, the main part of our efforts has been devoted, until now, to 
the evaluation of the automatic extraction techniques. However, another concern is to 
evaluate the workload for the teaching staff to set up the knowledge base. In fact, 
since annotation and edition tools are very simple to use, we do believe that this 
should not take more effort (at least) than “traditional” platforms. From the domain 
knowledge side, it is important to underline that an important part of the work is done 
automatically but the ontology should still be validated and enriched, which requires 
some effort from the expert. 
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5   Conclusion 

We presented a semantic web architecture that allows the incorporation of AIED 
techniques in learning objects. We also introduced a new definition of learning ob-
jects: these resources should not be static content packages but programs able to rea-
son over a small knowledge base. This new definition is concretized in the Learning 
Knowledge Objects that exhibit various characteristics and implement the three main 
models of ITS’ architecture: the domain model, the pedagogical model and the learner 
model. The architecture proposed here has many advantages: it lessens the burden of 
the manual creation of the domain model, which is one of the main obstacles to 
AIED, it allows guiding learners towards the right content, it clarifies the links be-
tween learning objects and between learning objects and domain concepts, and fi-
nally, it offers the ability to switch from an instructional theory to another by regener-
ating a new LKO. From the ITS side, we proposed a new vision based on the defini-
tion of the ITS architecture through ontologies. We also showed how ITS could ex-
ploit LKOs. 
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Abstract. A previously reported measure of dialog cohesion was ex-
tended to measure cohesion by counting semantic similarity (the repeti-
tion of meaning) as well as lexical reiteration (the repetition of words)
cohesive ties. Adding semantic similarity ties improved the algorithm’s
correlation with learning among high pre-testers in one of our corpora of
tutoring dialogs, where the lexical reiteration measure alone had corre-
lated only for low pre-testers. Counting cohesive ties which have increas-
ing semantic distance increases the measure’s correlation with learning
in that corpus. We also find that both directions of tie, student-to-tutor
and tutor-to-student, are equally important in producing these correla-
tions. Finally, we present evidence suggesting that the correlations we
find may be with deeper “far transfer” learning.

1 Introduction

Researchers in Intelligent Tutoring Systems often study tutorial dialog for clues
to the effectiveness [1] of human tutors. This research has focused on many
aspects of the tutoring interaction, from tutorial support [2] to the occurrence
of various dialog acts [3, 4]. Because deep dialog act features such as question
answering are difficult for tutoring systems to identify automatically, our own
research has also focused on shallow dialog features (such as word count or
turn length) which are more automatically computable [5]. Unfortunately these
shallow features tend to have poorer correlations with learning than the deeper
features [6]. We look for correlations between dialog act features and learning
both because we want to be able to detect learning during tutoring, and because
we want to be able to design effective tutorial dialog interventions later on.

Much work on tutorial interventions, however, suggests that their effectiveness
is often dependent on the preparedness level of the student. For example, Van-
Lehn et al. [7] present evidence that tutoring is only better than reading when
the reading material is too difficult for that particular student. Kalyuga et al.
describe a number of instructional techniques which work for low-knowledge stu-
dents, but not for high-knowledge students [8]. Similarly, Conati and VanLehn [9]
find that providing rich scaffolding for self-explanation helps low-knowledge stu-
dents, but can actually impede learning for high-knowledge students. McNamara
and Kintsch [10] find that increasing the coherence of text can aid recall for low,
but not for high-knowledge readers.

Inapreviouspaper [11],wefoundasimilar interactionwithstudentpreparedness.
In thatwork,we measured the cohesion of tutorial dialog in a way similar to the lex-
ical reiteration cohesion baseline described in Section 4. We found that the amount

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 459–469, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of cohesion in our tutorial dialogs predicted learning for our below-mean, but not
our above-mean pre-testers. In that paper [11], we speculated that maybe cohesion
could predict learning for our high-knowledge students, but we were measuring the
wrong kind of cohesion. Perhaps measuring the reiteration of senses (meanings),
rather than of words, would correlate with learning in high-knowledge students. In
this work we have implemented that idea, and report on the results.

We find that in one corpus of tutoring dialogs, adding a count of semantic
similarity reiterations to our lexical reiteration measure does indeed improve its
correlation with learning among above-mean pre-test students. We find that low-
ering a similarity threshold so that more semantically distant pairs are counted
as cohesive ties improves this correlation. We also find that tutor-to-student and
student-to-tutor cohesive ties are equally well correlated with learning. Finally,
we present suggestive evidence that our correlations may be with the deeper
learning measured by “far-transfer,” as opposed to “near-transfer” questions.

2 Related Work

In Section 5, we discuss a method by which dialog cohesiveness can be calculated
using a WordNet [12] based measure of semantic similarity. Many measures of
semantic similarity based on the WordNet taxonomy have been described in
the computational linguistics literature. These measures range from counting
edges [13], to adjusting edge counts with other information such as depth in the
taxonomy [14] or information content calculated from a corpus [15].

These systems are typically evaluated by comparing them to human judg-
ments or by seeing how they perform in tasks such as spelling correction [16].
We differ from the semantic similarity work mentioned above in that we apply
our measure to tutorial dialog, and evaluate it by how strongly it correlates
with learning in our corpora of tutorial dialogs. Pending future work, we use the
simplest reported measure of semantic similarity.

Other work examining the cohesiveness of tutorial dialog has been done by the
AutoTutor group at the University of Memphis. In [17], they use the CohMetrix
[18] cohesion analysis tool to analyze the cohesiveness of tutor and student di-
alog contributions along many dimensions. Our semantic measures are similar
in spirit, but where they use LSA to gauge the distributional similarity between
two turns, we use a WordNet similarity metric to locate specific pairs of similar
words between turns. Their “argument overlap” metric is also very similar to
our lexical reiteration measure. However, we look for correlations between dia-
log cohesion and learning, whereas [17] examines cohesion differences between
tutoring and other types of discourse.

3 Tutoring Dialog Corpora

We test our model on two corpora of tutoring transcripts collected by the It-
spoke intelligent tutoring system project [5] in 2003 and 2005. Itspoke is a speech
enhanced version of the Why2 qualitative physics tutoring system [19]. In both
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experiments, the Itspoke tutor taught qualitative physics to students who had
never taken physics before. The tutor was identical in each case, except that the
version used in 2005 had a larger language model to improve speech recognition
during dialog. In this work, we use dialog transcriptions, rather than speech
recognizer output. Students for the 2003 study were recruited by flyer, whereas
students in 2005 were recruited via their “Introduction to Psychology” instruc-
tor, as well as by flyer.

In each experiment, the students would first read instructional material about
physics, and take a pre-test to gauge their physics knowledge. The tutor would
then present a problem in qualitative physics, which the student would answer
in essay form. The computer tutor would interpret the essay and engage the
student in a spoken dialog to teach a missing or incorrect point. This would
repeat until the tutor was satisfied that all points were covered. Each student
worked through five problems this way, then took a post-test.

The 2003 and 2005 pre and post tests contained 26 questions in common. The
tests used in 2005 contained an additional 14 questions re-used from other exper-
iments. A pilot tagging study suggests that the full 40 question set (40Q) used
in 2005 contains about 50% “far” transfer questions that were non-isomorphic
to the tutored problems. However, the 26 question set (26Q) is about 27%, and
the 14 question set (14Q) is over 90% “far” transfer. A firm classification of the
questions into “near” and “far” is left for a more formal tagging study. Here, we
present results for the three 2005 question sets separately, and suggest that their
differences may be because of differing proportions of “far” transfer questions.

Table 1. Test Scores

2003 2005 40Q 2005 26Q 2005 14Q
Group M SD M SD M SD M SD

All Pre 0.48 0.17 0.54 0.17 0.49 0.18 0.61 0.18

All Post 0.69 0.18 0.71 0.14 0.70 0.16 0.70 0.15

High Pre 0.67 0.14 0.68 0.09 0.65 0.10 0.75 0.09

High Post 0.79 0.13 0.82 0.09 0.82 0.10 0.78 0.14

Low Pre 0.38 0.06 0.41 0.10 0.35 0.09 0.45 0.10

Low Post 0.64 0.18 0.61 0.11 0.61 0.14 0.60 0.09

There were twenty
students in the 2003
study, who completed a
total of ninety-five di-
alogs. A mean pre-test
split divided these stu-
dents into 13 “low” pre-
testers and 7 “high”
pre-testers. There were
34 students in the 2005
study, who completed
163 dialogs.1 A mean
pre-test split using the

40Q or 26Q test results divides these students into 18 “low” and 16 “high” pre-
testers. Using the 14Q set divides them into 16 “low” and 18 “high” pre-testers.
In each experiment, pre-test splits were done relative to the question set being
used. Mean (M) pre and post-test scores, with standard deviations (SD) are
shown in Table 1 for each pre-test group (All students, High & Low pre-testers).

1 Dialogs were not always collected for every one of a student’s five problems, because
the computer tutor would sometimes accept the initial essay without discussion.
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4 Baseline Cohesion Measure - Lexical Reiteration

As mentioned in Section 1, we want to know if measuring cohesion at the “sense”
level will improve our previous lexical cohesion measure. Our baseline, therefore,
will be a lexical reiteration cohesion measure similar to the one used in [11]. This
measures the cohesiveness of a dialog by counting the number of token and stem
matches between utterances, after removing stop words. A stem is the “root”
form of a word, which we find using a standard Porter stemmer. An illustration
of this measure is shown in Table 2. The top two lines of the table show two
consecutive utterances from one of our dialogs. Nine cohesive ties can be counted
between these utterances at the token level. The tokens matched are shown in
row three of the table, and in bold in the utterances. Cohesive ties can also be
counted at the stem level, by counting a tie whenever one utterance and the
next contain words with the same stem. An example of this is shown in row
four of Table 2, where the tokens “force” and “forces” have matched by stem. In
both of our measures, cohesive ties are counted between all consecutive pairs of
utterances, ie: both from tutor-to-student and student-to-tutor. This measure is
a close approximation to the “exact word repetition” type of cohesion described
by Halliday and Hassan [20] in Cohesion in English .

Table 2. Token, Stem, and Semantic Similarity (Sem) Matches

Speaker Utterance
Student Before the release of the keys, the man’s and the keys velocity are the same.

After the release the only force on the keys and man is downward force of
earth’s gravity, so they are in freefall. We can ignore the forces that the
air exerts on these objects since they are dense. Therefore, at every point in
time the keys will remain in front of the man’s face during their whole trip
down.

Tutor So you can compare it to your response, here’s my summary of a missing
point: After the release, the only force on the person, keys, and elevator
is the force of gravity. Kindly correct your essay. If you’re finished, press
the submit button.

Level Cohesive Ties Counted between Utterances, at each level
Token so-so, release-release, point-point, only-only, keys-keys, gravity-gravity, can-

can, after-after, force-force

Stem forces-force

Sem man-person

We count the total number of cohesive ties for each dialog as described above.
We then line normalize the count, dividing it by the total number of lines in
the dialog. We do this to remove the possibility that the count of cohesive ties
correlates with learning simply because the longer dialogs had more cohesive ties.
However, neither the total number of tutor turns, student turns, tutor words, or
student words are correlated with learning in spoken dialogs with our computer
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tutor [5]. In the example shown in Table 2, we count a total of 10 cohesive ties
at the token and stem levels, line-normalizing the count (as if this were an entire
dialog) would give a score of 10/2 = 5.

Finally, we sum the line normalized counts over all dialogs for each student,
resulting in a per-student cohesion measure which we correlate with learning. As
in previous work [11], we use partial correlations of post-test score with our cohe-
sion count measures, controlling for pre-test score. We control for pre-test score
because it is significantly correlated with post-test score in both our 2003 corpus
(r(18)=.462, p=.04) and in our 2005 corpus (40Q:r(32)=.817; 26Q:r(32)=.741;
14Q:r(32)=.698, all p< .001).

5 New Cohesion Measure - Semantic Similarity

We next extend the baseline measure described above by counting semantic sim-
ilarity, as well as lexical reiteration cohesive ties. We count a cohesive tie at the
semantic similarity level whenever one utterance and the next have different
words with similar meanings, and we measure similarity using WordNet [12].
WordNet is a large semantic lexicon with several features that are useful here.
First, it groups words into groups of synonyms called “synsets.” Second, it or-
ganizes synsets into an “is-a” (hypernym/hyponym) taxonomy. If we know the
sense in which a word is being used, and therefore its relevant synset, we can use
WordNet to find its relationship to other synsets in the taxonomy. An example
of these relationships can be seen in Figure 1, which reproduces a portion of the

Man

Male

Animal

Adult

Person

Fig. 1. Wordnet paths

WordNet taxonomy. For one sense of “man,”
we can see in WordNet that man is a type of
male, and that male is a type of animal. Man is
also a type of adult, which is a type of person.

We do not attempt to do word sense disam-
biguation before measuring the similarity of two
words in WordNet. Instead, for each potential
pair of words, we choose the senses in which the
words are most similar.

We measure semantic similarity as a func-
tion of the distance between two concepts in
the WordNet hierarchy. In this work, we use the

simplest method of measuring this distance: Path Distance Similarity, as im-
plemented in NLTK [21]. This measure calculates the similarity between two
concepts as 1/1+N, where N is the number of edges in the shortest path be-
tween them. Scores range from zero to one, where zero means no similarity and
one indicates exact synonyms. In Figure 1, the shortest path between “man”
and “person” has two edges, and so their similarity is 1/1+2, or.333.

5.1 Identifying Semantic Ties

Finding semantic similarity ties is slightly more complicated than finding lexical
reiteration ties because a word in one utterance may have non-zero similarities to
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several words in the other utterance. Therefore, we use the following algorithm
to find the best set of ties. For each word in utterance B, we look up the WordNet
path similarity values between it and each word in utterance A. After collecting
the set of all possible word pairs this way, we sort them by their similarity values.
Starting at the high end of the list, for each pair we remove all lower pairs which
have the same token in the same position. This process is illustrated in Table 3.
To keep the example small, we have selected only two tutor and three student
words from the example shown in Table 2. This produces six possible pairs,
which are shown in columns two and three of Table 3, sorted by their similarity

Table 3. Finding the best semantic ties

Start Step 1 Step 2
Sim Tok A Tok B Tok A Tok B Tok A Tok B
0.33 man person man person man person

0.13 release person release

0.13 release elevator release elevator release elevator
0.11 velocity person velocity velocity

0.09 man elevator elevator

0.07 velocity elevator velocity elevator velocity

values. Starting
at the top of
the list, we con-
sider first the
pair: “man-
person.” We re-
move all inst-
ances below of
“man” in posi-
tion A and of
“person” in po-
sition B. This
step is shown

under “Step 1” in Table 3. In step 2, we move down to the next remaining
pair, “release-elevator.” We remove all instances below that of “release” in po-
sition A and of “elevator” in position B. There are no pairs remaining to be
considered in our example, so we stop and count two semantic cohesive ties:
“man-person” with a similarity of .33, and “release-elevator” with a similarity
of .13.

This method can count cohesive ties with a broad range of similarity scores.
We will investigate whether the stronger ties are more useful by instituting a
threshold, and only counting cohesive ties for pairs with similarity values above
the threshold. In the example shown in Table 3, a threshold of .3 would count
the tie between “person” and “man” but not between “elevator” and “release.”

A threshold > .5 counts cohesive ties only for word pairings which are listed in
WordNet as being exact synonyms, and which therefore have a similarity score

Table 4. Example Semantic ties

Threshold
> 0.5 0.3 0
5-five motion-contact remains-same

remain-stay man-person man-runner

speed-velocity decrease-acceleration force-magnitude

conclude-reason acceleration-change summarize-point

package-packet travel-flying submit-pull

of one (note from the
path similarity formula
that scores between .5
and 1 are impossible). A
threshold reduced to .3
allows cohesive ties with
slightly more semantic
distance in the pair, and
a threshold of 0 allows
all pairs found by our
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algorithm. Examples of cohesive ties counted at each of these thresholds are
shown in Table 4. In these examples we can see that the matches counted be-
come more distant and less sensible as the threshold is reduced.

5.2 Semantic Similarity Measure

We count the number of cohesive ties between two utterances by first counting all
the exact token matches between them, then counting ties based on stem matches
as described in Section 4. After these lexical reiteration ties are identified, we
look for semantic similarity ties among the remaining words.

An example of an additional cohesive tie counted at the semantic similarity
level is shown in row five of Table 2. Here a tie between the tokens “man” and
“person” has been counted which, as shown in Table 3, have a semantic similarity
of .33. Adding this tie to the baseline measure from Section 4 brings our cohesive
tie count to 10.33, and our normalized cohesion score for the example to 5.16.

6 Results

Table 5. Learning-Cohesion Correlations

pre- 2003 2005 40Q 2005 26Q 2005 14Q
test Cor pVal Cor pVal Cor pVal Cor pVal
Group Lexical Only
All 0.474 0.035 0.273 0.118 0.185 0.295 0.289 0.098

Low 0.682 0.005 0.606 0.013 0.279 0.263 0.462 0.072

High 0.798 0.105 0.152 0.546 0.084 0.756 0.333 0.177

Lexical plus WordNet Similarity
Threshold = .5 to .99

All 0.470 0.036 0.276 0.114 0.187 0.289 0.298 0.087

Low 0.686 0.005 0.605 0.012 0.286 0.250 0.473 0.064

High 0.825 0.085 0.159 0.527 0.084 0.757 0.336 0.173

Threshold = .3
All 0.470 0.037 0.277 0.112 0.182 0.303 0.308 0.076

Low 0.689 0.004 0.613 0.011 0.271 0.276 0.495 0.051

High 0.899 0.038 0.153 0.543 0.070 0.797 0.341 0.166

Threshold = 0
All 0.451 0.046 0.286 0.100 0.183 0.301 0.337 0.051

Low 0.665 0.007 0.607 0.012 0.259 0.300 0.519 0.039
High 0.984 0.002 0.161 0.522 0.082 0.763 0.378 0.122

The top section of
Table 5 shows re-
sults for our lexi-
cal measure alone.
Here cohesive ties
are counted for to-
ken and stem
matches between
utterances, but not
for semantic simi-
larity matches. In
the 2003 corpus
(cols 2 & 3), this
measure produces
significant correla-
tions with learn-
ing for below mean
pre-testers, and for
the group of all
students. It does
not produce signi-
ficant correlations

with learning for above mean pre-testers. This pattern is similar to the one
reported in [11] 2.

2 The correlations shown here are slightly different from those reported in [11] because
of small differences in implementation.
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Next we examine results for the 2003 corpus after adding the semantic similar-
ity measure to the previous lexical reiteration measure, shown in the lower three
sections of Table 5. As the threshold is reduced, correlations for high pre-testers
become significant and increasingly stronger. Fisher’s z-test indicates that the
improvement in high pre-tester correlations between the > .5 and 0 thresholds
is significant (p <= .0003).

Results for the 2005 corpus are shown in the right three sections of Table 5.
Unfortunately, the success of the semantic similarity measure among high pre-
testers does not replicate in this corpus. Our measure correlates with learning
only among low pre-testers. However, comparing results from different question
sets gives us some insight into what sort of learning is correlating. Note that
we get strong, significant correlations for low pre-testers in the 40Q question
set (cols 4 & 5), which we have argued includes 50% far transfer questions. For
the 26Q set (cols 6 & 7), which has fewer far transfer, we get no correlations.
However for the 14Q set (cols 8 & 9), which is probably almost all far transfer,
we see a significant correlation for the semantic measure at a threshold of zero,
but not for the lexical measure. This suggests that our semantic measure may
be correlating with the deeper learning measured by far transfer questions.

As described in Section 4, the results presented in Table 5 are bi-directional,

Table 6. Directional Correlations

pre test 2003 2005 40Q
Group Cor pVal Cor pVal

Threshold = .3
Tutor to Student

Low 0.682 0.005 0.602 0.014
Student to Tutor

Low 0.634 0.011 0.593 0.015

ties are counted both when the student’s
utterance follows the tutor’s, and the
other way around. It is interesting, how-
ever, to consider whether one direction of
tie is more important than the other. Re-
sults for uni-directional cohesive ties are
shown in Table 6, for the 2003 corpus and
for the 2005 corpus with the full question
set. For brevity we present only signifi-
cant correlations with a threshold of .3.
Comparing these results to those shown

in Table 5 for the same threshold indicates that both directions are equally re-
sponsible for our results among low pre-testers. This suggests the possibility of
increasing learning by altering tutor word choice to manipulate dialog cohesion.

7 Discussion

As mentioned in Section 1, this work grew out of speculations we developed
when trying to explain the results reported in [11]. We hypothesized that the
lexical reiteration cohesive ties we were counting signaled inferences which led
to learning among our low pre-testers. We wondered if being able to recognize
cohesive ties between different words with similar meanings would allow us to
detect the deeper inferences that might lead to learning among high pre-testers.
For example, perhaps hearing (or producing) “person” when the dialog partner
just used “man” is associated with deeper inference than simply re-using “man.”

Results from both corpora suggest a relationship between inference and cohe-
sion. In the 2003 corpus, counting semantic reiteration cohesive ties does improve
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learning correlations for high pre-testers. Also, counting more semantically dis-
tant pairs, which may represent deeper inferences, improves this correlation.

In our 2005 corpus, correlations with “near transfer” learning seem to be
weaker than correlations with “far transfer” learning, using a preliminary di-
vision of questions into “near” and “far”. Also, correlations with “far transfer
only” (14Q) learning improve with lower thresholds, becoming significant at a
threshold of zero. This also supports a link between cohesion, inference and learn-
ing. Performance on “far transfer” tasks is often thought to be impeded if the
original knowledge is encoded too simply [22]. Counting ties at low thresholds
may partially measure the inferential elaboration which aids far transfer.

The comparative weakness of the 05 results, especially among high pre-testers
is unexplained. However, the 05 corpus has a stronger pre-to-post test score
correlation than the 03 corpus (.741(26Q) vs .462), suggesting that perhaps the
tutorial dialog is responsible for correspondingly less of the learning gain. If so,
we might also expect lower correlations between dialog features and learning.
Other work [23] has also found these corpora to be quite different with respect
to a suite of quantitative evaluation metrics.

8 Conclusions and Future Work

We have shown that measuring cohesion as the repetition of meanings, as op-
posed to only the repetition of words (or stems), improves the measure’s cor-
relation with learning among high pre-testers in one of our corpora of tutoring
dialogs. Also, these correlations improve as we allow more semantically distant
matches, which presumably require deeper inference to produce or understand.

Results from our other corpus suggest that counting semantic repetition co-
hesive ties predicts the deeper learning measured by “far transfer” problems.

In future work we hope to make a more formal division of questions into
“near” and “far” to confirm the relationship between cohesion and far transfer
learning. We are also currently extending this work to see if it will replicate in
other corpora of tutoring dialogs. If these results replicate successfully, we will
experiment with using tutor word choice to manipulate cohesion during tutoring.
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Abstract. Previous studies have examined human-to-human dialogue in expert 
tutoring on the speech act level, but these analyses fail to provide the context 
necessary for understanding how a series of speech acts relate to each other. 
This research examined tutorial dialogue in terms of sustained, pedagogically 
distinct phases, referred to as tutoring “modes”, which gives context to the 
finer-grained analysis of “moves”. Our accomplishments were twofold: we de-
veloped a new annotation scheme for tutorial dialogue that takes into account 
clusters of multiple dialogue moves, and we determined the extent to which 
these modes occurred in the tutoring sessions. We also examined likely se-
quences of modes, all of which are important factors when building an ITS that 
reproduces the efforts of expert human tutors. 

Keywords: dialogue modes, speech acts, tutoring, expert tutors. 

1   Introduction 

It is widely acknowledged that accomplished (expert) human tutors are highly suc-
cessful in promoting active knowledge construction via one-on-one tutoring sessions 
[1]. According to Bloom, [1] expert human tutors produce effect sizes (2 sigma) that 
are quantitatively higher than those obtained by unaccomplished tutors (0.4) [2] and 
Intelligent Tutoring Systems (1.0 sigma) [3]. 

However, as of yet, we know very little about the teaching methods of expert tutors 
because the tutors in a vast majority of human tutoring studies were peer tutors, cross-
age tutors, or paraprofessionals, untrained in tutoring skills with moderate domain 
knowledge [2]. The few studies that focus on expert tutors included six or fewer tu-
tors, with the majority including only one or two experts [e.g. 4-6], thereby calling 
into question the generalizability of the findings. Furthermore, in some cases the de-
gree of expertise of the tutors is questionable. For example, the expert tutors in some 
studies are Ph.D.s with extensive teaching and/or tutoring experience [7-10], whereas 
in others the experts are graduate students that work in tutoring centers [11]. There-
fore, there is a need to document the pedagogical and motivational strategies of expert 
tutors to inform the development of expert tutor-based Intelligent Tutoring Systems 
(ITSs). 
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Determining the appropriate level of granularity to study the skills and techniques 
utilized is still an open question. When the dialogue of tutors, expert and non-experts 
alike, are studied, the analysis usually takes place at a very fine-grained level, the 
speech act level. For example, Graesser, Person, & Magliono [12] studied novice tu-
tors using a coding scheme that specified pedagogical dialogue moves (speech acts). 
Chi et al. [13] classified statements made in tutoring sessions at the move level in or-
der to study the dominance of student or tutor in the course of a session. While Crom-
ley & Azevedo [14] identified problem-solving episodes (a larger unit of analysis), 
this was really only used to understand correct or incorrect answer responses.  

Simply put, tutorial dialogue studied at the move level has been the trend of the 
ITS community since the mid-90s, with more focus on the observed speech acts or 
dialogue moves than their contextualization. For example, the coding scheme formu-
lated by Shah et al. [15] sought to understand the motivation of the tutor and student 
by coding for the immediate learning goals of the student and tutor, but such a coding 
scheme still did not define the context with larger units of analysis. 

Little is known about how tutors use specific sequences of dialogue moves to 
achieve particular pedagogical goals. Identifying these dialogue move sequences will 
certainly expand the understanding of expert tutorial dialogue beyond what is cur-
rently known about individual dialogue moves (or speech acts). As mentioned earlier, 
a number of researchers have examined tutorial dialogue at the move level and have 
at times reported co-occurrences of some of the dialogue moves. This research adds to 
the tutorial discourse literature in that it had yielded an annotation scheme to study tu-
tor and student dialogue move sequences in terms of reoccurring, larger phases of a 
tutoring session, which we have termed “tutoring modes”, or more briefly “modes”. 
We have used this annotation scheme to code a large sample of expert tutoring ses-
sions (N = 40) in order to examine the occurrence and relationships between these 
modes. 

1.1   An Overview of the Coding Scheme 

The precise meaning of a speech act during a tutoring session is related to the larger 
overarching teaching phase of the tutoring session.  Therefore, a mode can be consid-
ered to be the overarching context or teaching phase during which learning occurs, as 
well as a means of examining existing tutoring models. For example, consider the 
modeling-scaffolding-fading paradigm [16]. Using the definitions of each mode be-
low, we can study how and when the modeling, scaffolding, and fading phases occur 
in an expert tutoring session.  

In expert tutoring sessions, modes are always initiated by the tutor; in line with 
previous research, it is not surprising to observe that tutors control the flow of the task 
and information [15, 12]. In 40 expert tutoring sessions, we identified eight mutually 
exclusive tutoring modes that encapsulate virtually all the dialogue that occurs in hu-
man expert tutoring sessions. 

• Introduction: This mode captures the non-teaching dialogue that occurs as both 
tutor and student exchange greetings and attempt to establish the agenda for the tu-
toring session. 

• Lecture: The tutor explicitly dispenses domain information to the student. 
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• Highlighting: During problem-solving activities, the tutor highlights what the 
problem is asking for and the information that it provides. The tutor can also break 
down the steps involved in a particular problem-solving method, create a “game 
plan” for working a problem, and redirect the student to the right path when they 
have forgotten parts of the method and its purpose.  

• Modeling: In this mode, the tutor works out a problem for the student. While the 
student may “participate” in the problem-solving process (i.e., do minor calcula-
tions that the tutor instructs them to do), the tutor takes the lead in solving the 
problem and initiates all of the problem-solving steps. 

• Scaffolding: The tutor and student work out a selected problem together, each con-
tributing portions of the answer that result in a solution. The tutor intervenes when 
necessary so that the student can successfully arrive at a correct solution.  

• Fading: The student works an entire problem with virtually no aid from the tutor, 
although the tutor may comment from time to time on their progress. 

• Off Topic: This is a portion of the session where the tutor and student are not en-
gaged in the tutoring lesson for a significant amount of time. 

• Conclusion: Like the Introduction, this mode captures the social pragmatics as the 
session comes to a close, which has little to do with the lesson. 

2   Methods 

We recruited eight expert math and science tutors to participate in this study, using 
stringent criteria to ensure tutor quality. The tutors were licensed to teach at the sec-
ondary level, had five or more years of tutoring experience, were employed by a pro-
fessionally tutoring agency, and were highly recommended by school personnel. 
Thirty students who worked with these tutors consented to participate; forty percent 
of the students were female, and sixty percent were male in grades 7 through 12. One 
of the students was receiving tutoring in order to obtain a GED. Each student partici-
pated in one or two tutorial sessions, while each tutor participated in at most 8 tutor-
ing sessions.  

Forty one-hour tutoring sessions were videotaped in various locations such as 
homes or libraries, depending on where the tutor and student agreed to meet. Tutors 
were given an informed consent and questionnaires to ascertain their views on learn-
ing prior to any tutoring sessions, and students were given an informed consent to be 
signed by their parents and themselves before their sessions. Cameras were positioned 
in front of the tutor and student, who faced the camera so that the sound, facial ex-
pressions, and actions of both parties could be recorded. No researchers were present 
in the rooms during the tutoring sessions. All 40 of the videotapes were digitized and 
transcribed.  

Two knowledgeable judges examined a subset of the tutoring transcripts and iden-
tified dialogue sequences that appeared to have different overarching purposes.  After 
multiple passes through the subset of tutoring transcripts and various category sort-
ings [17], the final annotation scheme with the eight categories described above was 
settled upon.  The researchers established a series of coding guidelines prior to cod-
ing; all 40 transcripts were coded in accordance with these guidelines. 
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3   Results 

Inter-rater reliability for each of the eight mode categories was computed using 
Cohen’s kappa; the unit of analysis was at the turn level. Several rounds of coding 
were necessary to achieve Kappa thresholds of .80 for each mode category. The reli-
ability statistics are reported in Table 1. 

A frequency analysis revealed that 650 modes occurred in the 40 sessions. There-
fore, on average there were 16.25 modes per session. As expected, each session began 
with an Introduction and ended with a Conclusion. Lecture and Scaffolding modes 
dominated the sessions with average frequencies of 3.4 and 4.8, respectively. The av-
erage frequencies for the other mode categories were as follows: Highlighting (2.1), 
Modeling (1.475), Fading (1.075), and Off Topic (1.475).  

Table 1. Kappa Values and Proportions of Occurrence of the Various Modes 

For each session, we computed the proportion of occurrence for each mode. Be-
cause some modes are inherently longer (span more turns) than others, we computed 
the proportions in two ways: unweighted by turns and weighted by turn. Table 1 lists 
the descriptive statistics for the mode proportions when not weighted by turn. A re-
peated measures ANOVA revealed that there were statistically significant differences 
in the occurrence of each of the modes, F(7,273) = 31.999, Mse = .009, p<.001, par-
tial-eta squared = .451. Lecture and Scaffolding modes were the most frequently oc-
curring modes, collectively comprising 51% of the observations. Bonferroni posthoc 
tests confirmed that the occurrence of Scaffolding was equal to that of Lecture and 
significantly higher than the other modes (p<.01). Lecture was not significantly dif-
ferent from Highlighting and Scaffolding but occurred more often than the other 
modes. Highlighting occurred more frequently than Fading (p<.05). The overall pat-
tern indicated that Scaffolding and Lecture modes dominate the tutoring session. 

The descriptive statistics for the mode proportions that were weighted by turns also 
appear in Table 1. A repeated measures ANOVA revealed that there were statistically 
significant differences in the occurrence of each of the modes when number of turns 
was taken into account, F(7,273) = 59.945, Mse = .020, p < .001, partial-eta squared = 
.606. The Lecture and Scaffolding modes comprised the most conversational turns, 

    Unweighted     Weighted Mode 

 

Kappa 

 Mean Stdev  Mean Stdev 
Scaffolding  .878  0.300 0.108  0.523 0.247 
Lecture  .810  0.211 0.141  0.217 .232 
Highlighting  .800  0.116 0.094  0.041 .048 

Off topic   .830  0.099 0.105  0.049 0.061 
Modeling  .975  0.077 0.079  0.084 0.119 
Introduction  1.00  0.071 0.026  0.036 0.039 

Conclusion  1.00  0.067 0.032  0.02 0.039 
Fading  .964  0.059 0.074  0.029 0.045 
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74% of the observations. Bonferroni posthoc tests showed that the number of turns 
devoted to Scaffolding was significantly greater than those devoted to Lecture, and 
was significantly higher than the number of turns that occurred in the other modes as 
well (p<.01). Lecture was not significantly different from Modeling (p>.05), but had 
significantly more turns than the other modes categories (p<.01). The number of turns 
devoted to the other modes were not significantly different (p>.05). 

We computed the conditional probabilities of one mode followed by another in or-
der to establish likely transitions between modes. In order to correct for baserate bi-
ases we utilized a likelihood metric depicted in Equation 1 below (for a more detailed 
explanation of how the test works, see [18]). 
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According to the transition likelihood metric (L), if L[C→X] ≈ 1, we can conclude 
that mode X always follows mode C above and beyond the prior probability of mode 
C. If, on the other hand, if L[C→X]  ≈ 0, then X follows C at the chance level. Fur-
thermore, if L[C→X] < 0, then the likelihood of mode X following mode C is much 
lower than the base rate of mode X. Therefore, in order to detect significant mode 
transitions we compared the likelihood of each mode occurring to a hypothesized 
mean of 0 (base rate) using a one-sample t-test.  

Table 2.  Mode Transitions 

+    mode transition significantly greater than base rate (chance).     
-     mode transition significantly less than base rate (chance).     
nt.  mode transition not tested, † marginally significant. 

 
With eight modes, there are 64 possible combinations of mode transitions. How-

ever, not all mode combinations are possible in our coding scheme. For example,  
Introduction mode could never be immediately followed by Conclusion mode. 
Twenty-four impossible mode combinations were eliminated, leaving 40 meaningful 
mode transitions. We tested the significance of each of the 40 mode transitions by 
performing a one-sample two-tailed t-test that compared the transition likelihood to a 

Next Mode Current 
 Mode Intro Lecture 

Highl-
lighting

Modeling Scaffold Fading Offtopic Conclusion 

Intro nt. +     nt. nt. 
Lecture nt. nt.   +  +†  
Highl. nt.  nt.  +    
Model nt.   nt.     
Scaffold nt. + +  nt.    
Fading nt.     nt.   
Offtopic nt.      nt. nt. 
Concl. nt. nt. nt. nt. nt. nt. nt. nt. 
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hypothesized mean of 0 (the chance level). A Bonferroni correction was applied to the 
significance threshold, making the effective significance level p<.00125 (0.05/40). 

From these 40 tests, only a handful of transitions were significant, as seen in Table 2. 
The interpretations of these analyses appear in the Discussion section of this paper. 

4   Discussion 

Researchers in the human tutoring and ITS community have hypothesized that model-
ing-scaffolding-fading [16], Socratic tutoring [19], contingent teaching (A ZPD ap-
proach) [20], cognitive apprenticeship [21, 6], transmission and information-delivery 
models, inquiry teaching [22], situated learning [21], anchored instruction [23, 24], 
case-based reasoning [25], coaching [26], reciprocal teaching [27] are the theoretical 
models and strategies that are preferred by expert tutors. However, it is difficult to di-
rectly test these theories when a tutoring session is analyzed at the dialogue move 
level. With the new coding scheme developed here, we hope to have laid the founda-
tion for a systematic evaluation of the theoretical models of human tutoring. 

4.1   Mode Frequencies 

The frequency of each mode in a session is an important factor in determining the dis-
tribution and prevalence of the modes, regardless of their length and the amount of 
time that they consume. The number of times that a tutor chooses to use a mode is 
akin to the number of times a mechanic chooses to use a tool, and both mechanics and 
tutors employ their tools at the precise moment that they are needed. With future re-
search, we hope discover the precise triggers that warrant the need for a particular 
mode, but for now, the number of times a mode is employed will give us some idea of 
its value and urgency. 

Modeling and Fading occur with similar frequency in the average session, although 
Modeling appears slightly more than Fading. The relatively low frequency of Model-
ing mode may reflect the tutor’s desire for the student to engage during problem-
solving rather than passively watch. Many of our tutors reported that they believe in 
the power of practice when proficiency and mastery are the goals of learning, and this 
seems to be reflected in both the high frequency of Scaffolding and the lower frequen-
cies of Modeling and Fading modes. The tutors were aware obviously that their 
struggling students needed a great deal of help, and so they employed hands-on exer-
cises that gave the students ample opportunity to engage in supervised practice. As a 
consequence, Modeling occurred relatively few times in the sessions, just enough to 
demonstrate particular methods. It may be the case that the time constraints of a one-
hour tutoring session precluded the tutors from spending too much time in the Fading 
mode as well. That is, tutors preferred to spend their instructional time interacting 
with students and adequately covering as much material as possible rather than having 
students pay money to sit and work problems on their own. 

The Highlighting mode also appears a fair number of times and by definition only 
occurs during problem-solving activities (i.e., they are usually embedded between 
Scaffolding modes). The Highlighting mode is a means for tutors to elucidate the con-
straints of particular problems, emphasize relevant information, and alert students to 
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appropriate problem-solving strategies. Highlighting differs from Lecture in that Lec-
ture is more theory-driven in its explanations of domain topics, and refers to problem-
solving in only a hypothetical sense. The occurrences of Lecture and Highlighting did 
not significantly differ from each other, which may be explained by the tutor’s sense 
that he/she must convey as much information as possible, both as a knowledge base 
and in reference to specific problem-solving strategies.  

Despite that our tutors believed in practice and problem-solving (as indicated on their 
pre-tutoring questionnaires), Lecture mode occurred about three times per session, mak-
ing it the second-most frequent mode. The prevalence of Lecture mode is interesting 
given the taboo associated with information transmission models of instruction and the 
popularity on active student learning. While tutors may claim to favor active problem-
solving, time constraints may once again prevent tutors from relying solely on problems 
to transmit basic knowledge. Considering the substantial knowledge deficits of the stu-
dents, tutors may opt to address some of these deficits with carefully timed Lectures , 
maximizing the amount of material covered in the session.  

Scaffolding was the most frequently occurring mode despite not significantly dif-
fering from Lecture. Scaffolding occurred approximately five times in each session. 
According to our criteria, Scaffolding constitutes any significant joint tutor-student 
involvement in problem-solving. This mode encompasses many degrees of tutor and 
student involvements, and this wide range makes it more likely to appear than other 
problem-solving modes (e.g., Modeling or Fading). The abundance of Scaffolding 
modes provides evidence that the tutors do indeed value student engagement in the 
problem-solving process. 

4.2   Modes in Terms of Length 

While frequencies give an indication of how often a mode is employed, they do not 
speak to the length of time an expert tutor spends in these modes. The number of turns 
in each mode gives us a more detailed understanding of how long these modes actu-
ally take, as well as how significant each mode is in teaching their student. Scaffold-
ing, Lecture, and Modeling were the three modes that occupied the most turns. 

Scaffolding requires significantly more dialogue turns than any other mode, which 
speaks to the importance and time-consumption of problem-solving activities during 
tutoring sessions. Over 50 percent of the dialogue exchanged between the tutors and 
students occurred in the Scaffolding mode. This may be because two people working 
on one problem, exchanging ideas and seeking confirmation from each other, requires 
more dialogue. In any event, the sheer volume of dialogue devoted to Scaffolding 
does indicate that this mode is a valued process in constructing knowledge, and per-
haps also in correcting it. During Scaffolding, students’ misconceptions are exposed, 
and the tutor can recognize the source of the error or confusion and calibrate their 
comments and instruction accordingly.  

To do this, however, tutors need to utilize other tools, and their tools of choice  
appear to be Lecture and Modeling. Lecture, the “just in time” information which ac-
counts for the next largest percentage of dialogue moves, is one of the most straight-
forward ways to fill the knowledge voids exposed in a session. Modeling works in a 
different capacity; students may grasp the basic tenets of the topic, but their  
knowledge needs practical implementation. A single modeled problem can lay the 



 Dialogue Modes in Expert Tutoring 477 

foundation for several scaffolded exercises, resulting in fewer turns being devoted to 
the Modeling mode. 

4.3   Mode Transitions 

Just as important as mapping out the length and frequency of each mode is under-
standing the relationships between the modes. Establishing likely mode transitions  
allows us not only to predict a mode sequence given any mode, but also provides a 
sequenced structure for building an ITS. The likely sequences of modes reveal several 
interesting connections, as well as several interesting insignificant findings that the tu-
toring literature predicts should have been significant. Once the mode sequences that 
are rendered impossible by the rules of the coding scheme are eliminated, only posi-
tive significant relationships exist. Introduction followed by Lecture mode appears to 
be the most common start to a tutoring session, which makes sense in the context of 
the tutor’s desire to create a knowledge base before progressing to the problem-
solving phase of the session. Scaffolding and Lecture, the two modes that occur the 
most, have a cyclical relationship, where both Lecture then Scaffolding and Scaffold-
ing then Lecture are significant mode sequences. We can conclude with some confi-
dence (due to our transition likelihood metric that effectively factors out baserate  
biases) that the cyclical relationship between Lecture and Scaffolding points to some 
underlying reason for tutors to use these modes in conjunction with each other as a 
valuable tool of the trade. A similarly bidirectional relationship exists between Scaf-
folding and Highlighting, and this mode pairing makes sense given the context that 
surrounds Highlighting. Highlighting usually occurs when tutor and student are col-
laborating on a problem so that the tutor can redirect the student when needed. This 
type of coding will allow future analysis to pinpoint the circumstances that surround 
or trigger the process of aiding a confused student. 

Of equal interest here is the negative evidence presented by the table, which can be 
used to raise questions about theoretical models of learning. For instance, many theo-
ries, such as Modeling-Scaffolding-Fading theory [16], would seem to predict that 
there should be some sequential relationship between those three problem-solving 
modes, but none exists. While this begs further research, it does bring up one of the 
advantages of a higher-order coding scheme; such a scheme can be the vehicle by 
which tutoring models may be tested in future research. Many models claim higher-
order patterns in tutoring sessions, though analysis up to now have been at a much 
smaller grain size, and so studying current theories with dialogue moves, modes, and 
information from tutor questionnaires may help validate or disconfirm these concep-
tually-based notions. 

5   Application  

The culmination of all this information is ultimately its application to intelligent  
tutoring system design. Current systems can be updated and revised based on the in-
formation about the general pattern of a tutoring session, and how tutors react given a 
certain student’s response. This may lead to a tutoring session that tailors itself to 
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each student’s specific needs at that moment in time, which optimizes the program’s 
external validity and student learning. 
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Abstract. Mediated communication technologies, conveying verbal and non-
verbal cues, are more and more employed in learning activities. Nevertheless, 
their effects on teacher-student interaction have been not clearly stated yet. 
Through two experimental studies, we investigated on the effects of nonverbal 
communication cues (kinesic and ostensive-inferential) on synchronous medi-
ated tutoring dialogue, in which a tutor and a student communicate through au-
dio-video communication tools. The outcomes show that kinesic cues lead tutor 
to monitor more carefully learner’s ongoing task and to encourage much more 
them, while ostensive-inferential cues improve learner's task performance and 
lead both tutor and student to focus better on tutoring speech acts. 

Keywords: audio-video mediated communication, nonverbal communication, 
kinesic cues, ostensive-inferential cues, tutoring dialogue. 

1   Introduction 

Mediated communication technologies are more and more used in several human 
activities, also in teaching environments. These technologies allow distant partici-
pants, such a tutor and students, to see one another during the interaction, to work 
together on any shared documents [1], or just to observe the actions they make in their 
own working environment [2]. Even if many organizations and pedagogical institu-
tions have already introduced these tools in their education services, the effects on the 
cognitive dimensions of the communication between teachers and students have not 
been clearly established yet [3].  

The aim of this paper is to understand the effect of audio-video mediated technolo-
gies on a specific type of communication, which is the mediated tutoring dialogue. In 
the first section, we define tutoring dialogue as a joint communication activity and we 
show the role of nonverbal cues. We then describe our general method and we present 
two experimentations we conducted on the affordances of two non-verbal cues (kine-
sic and ostensive-inferential) on synchronous mediated tutoring dialogue.   
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2   Tutoring Dialogue and Non Verbal Cues 

As human beings, we use both verbal and nonverbal languages to perform activities, 
as creating, teaching, etc. When we communicate with our partners, we cannot di-
rectly know their thoughts, feelings and intentions; we are just able to infer them by 
interpreting their utterances [4] and nonverbal behavior [5]. Nevertheless, communi-
cation is not a mere sending-receiving messages activity, but it is rather a cooperative 
action [6]. For example, in tutoring dialogue, both tutor and student coordinate their 
turns to ground on a mutual understanding, so that tutors may enable students to con-
textualize their own problem statements and to improve their knowledge [7]. Con-
cerning the nonverbal cues, we may distinguish kinesic cues (e.g., facial expressions, 
postures) and ostensive-inferential cues (e.g., actions and deictic gestures) [8]. Kine-
sic cues ensure the conversational floor between tutor and student, and moreover, they 
inform each participant about feelings and intentions of the other person [8]. Osten-
sive-inferential cues facilitate the verbal referring process, helping participants to 
coordinate their actions and to anticipate the other’s needs. In face-to-face tutoring 
dialogue setting, nonverbal cues are immediately available to both tutor and student: 
for instance, by observing students’ facial expression tutors infer when to help them 
without disturbing needlessly [7]. In a video-mediated setting, according to the social 
presence theory [10, 11], it would be sufficient to put all nonverbal cues at tutor’s and 
student’s disposal to allow a suitable and efficient tutoring dialogue. Nevertheless, 
this does not seem the best solution. In fact, on the one hand, kinesic cues help distant 
participants to establish a mutual understanding [12, 13, 14] and ostensive-inferential 
cues support participants to perform a mediated activity more quickly [15]; on the 
other hand, nonverbal cues do not always help participants to better perform their 
activities [16, 17, 18]. However, amongst mediated-communication studies, just a few 
specifically concern mediated tutoring dialogue. This lack of studies would need 
priority status in the agenda research on mediated tutoring environments.  

3   Research Problem 

These considerations on the effects of kinesic and ostensive-inferential cues lead us to 
investigate on the following issues: which type of nonverbal cue improves the tutor-
student learning interaction? Would it be better that the tutor and the student see each 
other (kinesic cues)? Would it be better that the tutor observes the student’s actions to 
improve (her) his learning (ostensive-inferential cues)? To answer these questions, we 
conducted two experimental studies to understand the effects of kinesic cues (study 1) 
and ostensive-inferential cues (study 2) on tutoring dialogue. 

4   General Method 

The two experiments we will report followed a same experimental task, same appara-
tus, same procedure and same dependent measures.  
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4.1   Task, Apparatus and Procedure 

Task & Apparatus. Tutors and students were involved in a sort of practical pedagogi-
cal work. The tutor had to help two students to learn basic commands of HTML lan-
guage and to create an easy web page. The two students had to edit some sentences of 
a text in bold and italic, as well as building an internal link. The tutor had to help each 
student spontaneously or when a student asked for help, yet (s)he could help only one 
student at a time, as in a dyadic tutoring situation: while (s)he was communicating to 
a student, the other student could not hear their dialogue. The tutor and the two stu-
dents settled down in three separate rooms, each one was equipped with a personal 
computer (central unit and monitor) and with a monitor for audio-video communica-
tion. Each computer was set with a web browser and a simple text editor. Anytime the 
tutor wanted to communicate with a student, (s)he chose the student by pressing a 
button on an ad hoc interface. Both students could ask the tutor to help them anytime, 
sending him/her a standard message by means of chat software.   

Procedure. Each experimental session lasted nearly an hour, and it included three 
main phases. In the preparing phase (15 minutes), the tutor met the two students and 
the researcher explained them the aims of the experimentation. Then, the tutor and 
each student reached their own working room. Each subject filled in a consent form 
and was briefed on the main functions of the apparatus (e.g., the button to use to start 
a call, the folder containing the html files, etc.). Next, each student answered a pre-
test to evaluate her/his HTML knowledge. Then the experimental phase started (35 
minutes). Each student received a four-page HTML manual, which contained some 
HTML basic commands. Of course, the students needed their tutor’s help to design  
 

Table 1. – Tutoring dialogue coding scheme 

Mutual understanding

Role Category Examples

To accept student’s utterance T: “yes” “ok, right”
Tutor

To check student’s understanding T: “is it clear now?”, “is it ok?”

To accept tutor’s utterance S: “yes”, “ok”
Student

To check tutor’s utterance S: “could you repeat, please?”, “what?”

Tutor’s and Student’s tutoring intrinsic speech acts

Role Category Examples

To find out student’s ongoing task T: “Did you try moving it on the red icon?”

To help student T: “Close the window and open the other file”Tutor

To encourage student T: “That’s good you’ve nearly finished”

To give tutor information about

ongoing task

S: “I still have to finish this part of the

exercise”Student

To ask tutor’s help S: “Is the I tag in the HEAD part of the text?”  

the web page. When time ended, each subject was asked to complete a post-test ques-
tionnaire (same questions of the pre-test), then (s)he was debriefed and dismissed. 

4.2   Measures 

We transcribed verbatim all experimental sessions that we had videotaped. Based on 
studies concerning the grounding processes in communication [6], affordances of 
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visual information in mediated communication [1, 9] and tutoring dialogues [19], we 
created the following coding scheme: a) the tutor’s proactive behavior: we distin-
guished the tutor’s spontaneous interventions towards the student as proactive inter-
ventions from the tutor’s reactive interventions when s(he) replied to a student’s call; 
b) the mutual understanding: we categorized all verbal markers that students and 
tutors had used during their dialogue to ground their mutual understanding (Table 1); 
c) the tutoring intrinsic speech acts: we categorized the tutors’ and students’ speech 
acts related to the intrinsic nature of the tutoring dialogue (Table 1). Three trained 
researchers coded the transcribed dialogues. We checked the reliability of coding by 
means of the reproducibility test, obtaining an average value for students’ acts 
(K=.58) and a high value for tutors’ speech acts (K=.82). d) Students' task perform-
ance: we scored the web page that students had realized.  

5   Experiment 1: The Effects of Kinesic Cues on Tutoring Dialogue 

5.1   Hypotheses 

H1) Given the great difficulty of the task for a HTML beginner, we made the hy-
pothesis that if the tutor could observe the students’ faces, (s)he would infer their 
difficulties during the practical work and then (s)he would be more proactive in help-
ing them without waiting for their call .  

H2) We supposed that mutual understanding would be easier if the students and the 
tutor could see each other: we expected that the number of verbal markers for the 
common ground process would be fewer when the participants could see each other 
than when they could not. 

H3) Consequently, we expected that their dialogue would be grounded on intrinsic 
tutoring speech acts and that intrinsic tutoring speech acts would be more numerous 
when participants could see each other than when they could not.  

H4) We expected that students’ performance would improve when tutor could see 
their faces while they were performing the task, because tutor could help them in a 
suitable manner.   

5.2   Participants 

We recruited 12 tutors, half men and half women (age M=30.9, S.D.=7.7). All of 
them were computer scientists owning good skills in HTML programming. We also 
recruited 48 undergraduate students in psychology (36 women and 12 men; age 
M=24.1, S.D.=6.2), all of them unskilled in HTML programming. 

5.3   Experimental Conditions 

We set the following conditions: c1) audio only: tutor and students could only talk to 
each other through the audio channel; c2) audio & human face: the tutor and each of 
the two students could see each other’s face and upper torso on a personal monitor, 
and they could talk to each other by means of the audio channel.  

Each tutor performed in both conditions (within-participants experimental design), 
whereas half students were assigned to one of the two conditions (between- partici-
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pants design). We controlled that the age of the students involved in the two condi-
tions were equivalent (t(46)=1.318;n.s.) and so was the HTML knowledge 
(t(46)=0.09;n.s.). To guard against order effects, we counterbalanced the tutors’ per-
forming order setting. 

5.4   Main Outcomes  

We conducted independent t-test and we calculated the value of the effect size d. 
H1) Tutors’ proactive interventions were more in the audio & human face than in 

the audio only condition (M = 4.6 (2) vs. 1.8 (0.9), t(22) = 4.27; p<.001, d = 1.8). H1 
was confirmed. 

H2) Concerning the mutual understanding, tutor had significantly produced fewer 
verbal markers to check students’ understanding in audio & human face than in audio 
only condition (M=3.9 (3.6) vs. 10 (6.4), t(22)=2.85; p<.01, d=1.17). About other stu-
dents’ and tutors’ verbal markers, we did not find any statistically significant differ-
ences between the two conditions. H2 was partially confirmed. 

H3) Concerning the speech acts referred to tutoring dialogue, we present the out-
comes about tutors’ speech acts and then the outcomes about students’ speech acts. 
i) Tutors produced significantly more speech acts to encourage students in audio & 
human face than in audio only condition (M=3.2(1.3) vs. 1.2(1.2), t(22)=2.9; p <.01, 
d=1.14). Moreover, the number of tutors’ speech acts oriented to know students’ 
ongoing task was significantly higher in audio & human face than in audio only con-
dition (M=60.7 (33.2) vs. 35.3 (8.1), t(22)=4.27; p<.02, d=1.05).  
ii) Consequently, students’ speech acts oriented to give tutors any details about the 
ongoing task was significantly higher in audio & human face than in audio only con-
dition (M=63.6 (28.4) vs. 43.8 (14.4), t(22)=2.15; p <.05, d=0.88).  

No statistically significant differences between the two conditions were found 
about other speech acts. H3 was partially confirmed. 

H4) Concerning the learning score, no significant differences were found between 
the two conditions (audio only M=4.2 (1.4) vs. audio & video-person M= 4.6 (1.5), 
t(22)=0.83; n.s., d =1.1). H4 was rejected. 

5.5   Discussions 

The aim of this first experimentation was to measure the effects of kinesic cues on 
several measures, such as the tutor's proactive behavior, the mutual understanding 
between the tutor and the students, the intrinsic tutoring speech acts and the student's 
task performance. Concerning the tutor's proactive behavior, the tutor assisted more 
spontaneously the students without waiting for their help request when tutor and stu-
dents could see each other. This outcome confirms that, as in face-to-face setting [7], 
tutors take the floor before students explicitly produce an aid request. Moreover, tu-
tors could easily check the students' understanding level by just observing their faces. 
This outcome corroborates that the addressees' face would help to be aware of their 
understanding [12]. Even if, however, the students' verbal markers are not signifi-
cantly different between the two conditions, we must consider that tutors have gener-
ally the floor in tutoring dialogue and that students play the role of a reactive  
addressee rather than the leading role [7]. On the other hand, it could be possible that, 
given the difficulty of the task, they chose to check tutor's utterances by using verbal 
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markers in order to be sure of the content of tutor's aid. The outcomes concerning the 
students' task performance imply that human faces do not improve the performance in 
procedural tasks [3, 17, 18].  

6   Experiment 2: The Effects of Ostensive-Inferential Cues 

The experimental method of this experiment was the same than for the first one. 

6.1   Hypotheses 

H1) We expected the tutor would be more proactive when (s)he could observe the 
students’ actions, because (s)he was always aware of their difficulties and (s)he could 
take the floor before they asked for help.  

H2) We expected that the number of verbal markers for mutual understanding 
would be fewer if tutors could observe the students’ actions. 

H3) We expected that the number of intrinsic tutoring speech acts would be higher 
when the tutors could observe the students' actions rather than when they could not.  

H4) We also predicted the students’ performance would improve when the tutor 
could observe their actions during the practical work session, because (s)he could 
choose the most suitable help to their needs.  

6.2   Participants 

We recruited the same tutors (N = 12) as for the first study, and 72 undergraduate 
students in psychology (50 women and 22 men; age M=23.8, S.D.=5.1), all of them 
unskilled in HTML programming. 

6.3   Experimental Conditions 

We set the three following conditions: c1) audio & human face: the tutor and the 
students could see each other’s face and upper torso on the screen and they talked to  
 
 

 

each other through the audio channel; c2) audio & student’s actions: the tutor and the 
students could talk through the audio channel, and the tutor could observe both stu-
dents’ computer screens (by means of VNC™ software). So, the tutor could observe 
the actions that each student was performing on their own computer desktop and (s)he 
could make the decision to help them; c3) audio & human face & student’s actions: 

Fig. 1. - Experimental conditions study 2 (from left): audio & human face vs. audio & 
student’s action vs. audio & human face & student’s actions 
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the tutor could observe both students’ face and upper torso and their computer 
screens, while (s)he could talk to each other by means of the audio channel. 

As for the first study, each tutor performed all conditions (within-participants de-
sign) and we counterbalanced the order of the tutors’ performance to guard against 
order effects. The students were equally assigned to the three experimental conditions. 
We controlled their age (F(2, 69) = 1.73; n.s.) and their HTML knowledge (F(2, 69) = 
0.16; n.s.) in each of the three groups.  

6.4   Main Outcomes 

We conducted an analysis of variance (ANOVA) and a priori comparisons between 
conditions. 

H1) About the tutors’ proactive behaviour, the number of their spontaneous inter-
ventions were significantly different between conditions (F(2, 33) = 4.671; p <.02, 
η2=0.22). In fact, the tutors were significantly more proactive in audio & human face 
& student’s actions than in audio & student’s actions condition (M = 6.6 (1.9) vs. 4.6 
(2), t(33)=2.366; p <.02, d=1.02) and than in audio & video-person condition (M = 6.6 
(1.9) vs. 4.2 (2.2), t(33)=2.859; p <.007, d=1.16). H1 was confirmed. 

H2) About mutual understanding, the number of tutors’ and students’ verbal mark-
ers used to ground the understanding are not significantly different between condi-
tions. H2 was rejected. 

H3) About tutoring speech acts, we will first present outcomes for tutors (i) and 
then for students (ii). 

i) Tutors. One-way ANOVA showed that the number of tutors’ speech acts to know 
the students’ ongoing task was significantly different between conditions 
(F(2,33)=4.529; p <.02, η2= 0.21). Tutors produced fewer speech acts to know the 
students’ task in audio & student’s actions than in audio & human face condition (M 
= 27.4 (7.6) vs. 35.3 (8.1), t(22)=2.8; p<.01, d=1) and fewer in audio & human face & 
student’s actions than in audio & human face condition (M = 26.6 (6.8) vs. 35.3 (8.1), 
t(22)=2.6; p<.005, d=1.16). Moreover, the tutors’ speech acts to help the student were 
significantly different between conditions (F(2, 33) = 15.248; p<.000, η2=0.48). In fact, 
tutors’ speech acts to help students were fewer in audio & human face than in audio 
& student’s actions (M=14.8 (10.4) vs. 40.2 (12.9), t(33)=4.99; p <.000, d=2.18) and  
fewer in audio & human face than in audio & human face & student’s actions 
(M=14.8 (10.4) vs. 37.9 (13.8), t(33)=4.55; p <.000, d=1.91). Finally, concerning the 
tutors’ speech acts to encourage students, their number was significantly different 
between conditions (F(2, 33) = 4.813; p <.01, η2= 0.22). In fact, tutors more often 
encouraged the students in audio & human face than in audio & student’s actions 
condition (M=3.2 (2.3) vs. 0.8 (1.1), t(33)=2.69; p<.01, d=1.33) and more often in au-
dio & human face & student’s actions than in audio & human face (M=3.2 (2.8) vs. 
0.8 (1.1), t(33)=2.69; p <.01, d=1.12). 
ii) Students. About the students’ speech acts to give tutors information about the on-
going task: the one-way analysis of variance showed significant differences between 
conditions (F(2, 33) = 4.529; p <.02, η2=0.21). Students less often gave their tutors 
information about their ongoing task in audio & human face & student’s actions than 
in audio & human face condition (M=26.5 (14.1) vs. 43.8 (14.4), t(22)=2.5; p<.01, 
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d=1.21) and less often in audio & student’s actions than in audio & human face con-
dition (M=27.7 (18.4) vs. 43.8 (14.4), t(22)=2.6; p<.005, d=0.97). All other students’ 
speech acts did not differ between conditions. H3 was partially confirmed. 

H4) The students’ web page score was significantly different between conditions 
(F(2, 69) = 5.776; p <.005, η2= 0.14). The students performed significantly better in 
audio & human face & student’s actions than in audio & human face condition (M = 
5.9 (1.6) vs. 4.5 (1.5), t(69)=3.27; p<.002, d=0.88) and better in audio & student’s ac-
tions than in audio & human face condition (M=5.5 (1.2) vs. 4.5 (1.5), t(69)=2.4;  
p<.02, d=0.73). H4 was confirmed. 

6.5   Discussions 

The second study focused on the effects of ostensive-inferential cues referring to stu-
dent's actions on tutoring dialogue. The overall outcomes showed: i) concerning the 
tutor’s proactive behavior, the effect of ostensive-inferential cues was not as important 
as we expected. In fact, the number of tutor’s proactive interventions produced with 
ostensive-inferential cues was nearly the same as produced with kinesic cues only. It 
appeared that ostensive-inferential cues only did not lead tutors to increase their proac-
tive contributions. In fact, the tutors’ proactive behavior would increase if both the kine-
sic and ostensive-inferential cues were available to the tutors. Against our expectations, 
ostensive-inferential cues did not improve the mutual understanding. Moreover, kinesics 
and ostensive-inferential cues support in an equivalent manner the mutual understand-
ing. This outcome suggests that even if the tutor could observe both students’ faces and 
actions, (s)he checked their understanding through verbal markers, and so corroborating 
tutors’ behavior in a face-to-face setting [20]. However, in other mediated communica-
tion activities [1, 15], ostensive-inferential cues decreases verbal markers used for mu-
tual understanding. This would suggest that the properties of ostensive-inferential cues 
have different effects on mutual understanding between distant partners, depending on 
the characteristics of the specific joint activity. Besides, when ostensive-inferential cues 
are available, tutors’ questions to know the students’ task status decreased and tutors’ 
speech acts to help students increased. We highlight that the number of tutors’ encour-
aging speech acts was higher with kinesic cues than with ostensive-inferential cues. This 
suggests that through kinesic cues the content of tutoring dialogue is oriented towards 
socio-relational issues rather than task issues. Concerning the students’ task perform-
ance, ostensive-inferential cues improved students’ task performance better than kinesic 
cues did.  

7   Conclusion 

The aim of these two experiments was to understand the effects of nonverbal cues, 
such as kinesic and ostensive-inferential cues, on mediated tutoring dialogue. Main 
outcomes of experiment 1 showed that when the tutor and the students could see each 
other’s face, the tutor more often took the floor spontaneously, (s)he produced fewer 
verbal markers to check students’ understanding and (s)he more willingly encouraged 
them. A possible interpretation is that kinesic cues, increasing the level of social pres-
ence, led tutor to monitor more carefully learners’ ongoing task and to encourage 
them, helping both students and tutors in mutual understanding process. Outcomes 



488 F. Tajariol, J.-M. Adam, and M. Dubois 

from experiment 2 partially corroborated the first ones, and also confirmed some 
previous researches (e.g., kinesic cues improve proactive behavior) [9]. Moreover, 
ostensive-inferential cues let the tutor and the student focus on intrinsic tutoring con-
tents, and improved student’s performance. Although these outcomes should be con-
sidered under some limits (e.g., visual parallaxes sometimes lowered the quality of the 
interaction between participants), if we are asked to suggest some tips for the design 
of tools supporting synchronous mediated tutoring dialogue, we argue that: a) if we 
want the tutor to be proactive, it would be better to let the tutor and the student see 
each other; b) if we want the student to improve learning, it would be better to let the 
tutor observe the student’s actions. These outcomes show that ostensive-inferential 
cues improve the learning performance of students involved in procedural task (prac-
tical works, training in using software, etc.) It would be necessary to corroborate their 
effects on declarative content tasks. More researches would be needed to better under-
stand the effects of the interaction between the different nonverbal cues, as well as to 
allow an efficient tutoring dialogue. 
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Abstract. Affect has been the subject of increasing attention in cognitive ac-
counts of learning. Many intelligent tutoring systems now seek to adapt peda-
gogy to student affective and motivational processes in an effort to increase the 
effectiveness of tutorial interaction and improve learning outcomes. To this end, 
recent work has begun to investigate the emotions experienced during learning 
in a variety of environments. In this paper we extend this line of research by in-
vestigating the affective transitions that occur throughout narrative-centered 
learning experiences. Further analysis differentiates the likelihood of affective 
transitions stemming from pedagogical agent empathetic responses to student 
affect. 

1 Introduction 

Affect has begun to play an increasingly important role in intelligent tutoring systems.  
The ITS community has seen the emergence of work on affective student modeling 
[8], detecting frustration and stress [6, 19, 24], modeling agents’ emotional states [1, 
15], devising affectively informed models of social interaction [16, 21, 23], detecting 
student motivation [25], and diagnosing and adapting to student self-efficacy [5].  All 
of this work seeks to increase the fidelity with which affective and motivational proc-
esses are understood and utilized in intelligent tutoring systems in an effort to increase 
the effectiveness of tutorial interactions and, ultimately, learning. 

Recent work seeking to characterize the affective experience of learners interacting 
with intelligent learning environments has considered student affective trajectories 
occurring during learning. D’Mello et al. [11] studied the likelihood of affective tran-
sitions among six affective states (boredom, flow, confusion, frustration, delight, and 
surprise) that were found to be relevant to complex learning [9]. In general, learners 
are likely to persist in the same affective state (e.g., transitioning from a state of bore-
dom to boredom is likely, and in some cases, significantly more likely than transition-
ing to another affective state).  This analysis was conducted in the AutoTutor learning 
environment [9, 11]. Baker et al. were able to replicate many of D’Mello et al.’s [11] 
findings when they calculated the likelihood of affective transitions in the Incredible 
Machine: Even More Contraptions, a simulation-based learning environment [3]. 
Baker et al. extend their analyses to investigate how usage choices [2] affect emotion 
transitions. This work found that confused learners are likely to game the system.  
Further, it was found that students who game the system are unlikely to transition into 
a confused state [3]. 
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In this paper we investigate the likelihood of affective transitions in a narrative-
centered learning environment, CRYSTAL ISLAND. The CRYSTAL ISLAND environment 
utilizes narrative as a mechanism to contextualize learning, making the experience 
meaningful.  Contextualized learning experiences are known to encourage regulated 
learning behavior [22] and influence student learning and motivation [18]. Because 
CRYSTAL ISLAND incorporates an engaging storyline into the learning experience, we 
supplement the known relevant emotions to learning used by D’Mello et al. [11] and 
Baker et al. [3] with affective states that may be relevant to the story (anger, anxiety, 
boredom, confusion, delight, excitement, fear, flow, frustration, and sadness). We 
extend our analysis of affective transitions to evaluate the impact of character empa-
thetic responses (parallel vs. reactive empathy) to student affect and the relative im-
pact on transitions. 

The paper is organized as follows.  Section 2 describes CRYSTAL ISLAND, the narra-
tive-centered learning environment that has been developed in our lab for the domains 
of microbiology and genetics. Section 3 presents the experimental method utilized for 
collection of student affective experiences. In Section 4 we report findings on probable 
transitions in narrative-centered learning and present analyses of the impact of empathy 
on such transitions. Results are discussed in Section 5. Section 6 notes the limitations 
of the work, followed by conclusions and future work in Section 7. 

2   Crystal Island 

The CRYSTAL ISLAND environment is being created for the domains of microbiology 
and genetics for middle school students. It features a science mystery set on a recently 
discovered volcanic island where a research station has been established to study the 
unique flora and fauna. The user plays the protagonist, Alex, attempting to discover 
the genetic makeup of the chickens whose eggs are carrying an unidentified infectious 
disease at the research station. The story opens by introducing the student to the island 
and the members of the research team for which her father serves as the lead scientist.  
As members of the research team fall ill, it is her task to discover the cause and the 
specific source of the outbreak. She is free to explore the world and interact with 
other characters while forming questions, generating hypotheses, collecting data, and 
testing her hypotheses. Throughout the mystery, she can walk around the island and 
visit various locations. She can pick up and manipulate objects, and she can talk with 
characters to gather clues about the source of the disease.  In the course of her adven-
ture she must gather enough evidence to correctly choose which breeds of chickens 
need to be banned from the island. 

The virtual world of CRYSTAL ISLAND, the semi-autonomous characters that in-
habit it, and the user interface were implemented with Valve Software’s Source™ 
engine, the 3D game platform for Half-Life 2. The Source engine also provides much 
of the low-level (reactive) character behavior control. The character behaviors and 
artifacts in the storyworld are the subject of continued work.  

The following scenario illustrates a student’s interactive narrative experience in 
CRYSTAL ISLAND. In the course of having members of her research team become ill, 
she has learned that an infectious disease is an illness that can be transmitted from one 
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Fig. 1. Overview of CRYSTAL ISLAND Fig. 2. The user, Alex, with Jin, the camp 
nurse on CRYSTAL ISLAND 

 
organism to another. As she concludes her introduction to infectious diseases, she 
learns from the camp nurse that the mystery illness seems to be coming from eggs laid 
by certain chickens and that the source of the disease must be identified. The student 
discovers through a series of tests that the bad eggs seem to be coming from chickens 
with white-feathers. The student then learns that this is a codominant trait and deter-
mines that any chicken containing the allele for white-feathers must be banned from 
the island immediately to halt the spread of the disease. The student reports her find-
ings back to the camp nurse. 

3   Methods 

3.1   Participants 

The subjects of the study consisted of 35 graduate students ranging in age from 21 to 
60 (M = 24.4, SD = 6.41) including 9 females and 26 males. Among these students, 
60% were Asian (n = 21), approximately 37% were Caucasian (n = 13) and one par-
ticipant chose not to respond. 

3.2   Procedure 

Participants entered the experiment room where they completed informed consent 
documentation. They were randomly assigned to either the control condition or the 
empathy condition and were seated in front of a laptop computer. They were then 
given an overview of the experiment agenda, and they completed the pre-experiment 
questionnaires including the demographics survey, the interpersonal reactivity index 
survey [12], and the goal orientation survey [14]. 

Upon completing the pre-experiment questionnaires, participants were instructed to 
review CRYSTAL ISLAND instruction materials. These materials consisted of the back-
story and task description, the character overviews, the map of the island, the control 
sheet, and definition sheet of the self-report emotions. Participants were then further 
briefed on the controls via a presentation summarizing the task and explaining each 
control in detail.  Participants maintained access to the materials, including the defini-
tion sheet of the self-report emotions, throughout their interaction. 
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Participants were given 35 minutes to solve the mystery.  Solving the mystery con-
sisted of completing 15 goals including learning about various diseases, compiling the 
symptoms of the sickened researchers, testing a variety of possible sources, and re-
porting the solution (cause and source) back to the camp nurse. 

Six CRYSTAL ISLAND characters (Audrey, Elise, Jin, Quentin, Robert, and Teresa), 
each play distinct roles in the CRYSTAL ISLAND environment. When subjects decided 
to interact with these particular characters, they were greeted with empathetic reac-
tions to their expressed affective state, which they communicated through self-reports 
via an in-game dialog. The self-report dialog asked participants to select the affective 
state that best described their feelings at that time from a set of 10 affective states 
(anger, anxiety, boredom, confusion, delight, excitement, fear, flow, frustration, and 
sadness). This set of emotions was comprised of emotions identified with learning [9, 
11, 16] together with basic emotions [13] that may play a role in students’ experience 
of the CRYSTAL ISLAND narrative. 

Immediately after solving the science mystery of CRYSTAL ISLAND (or after 35 
minutes of elapsed interaction time for subjects who had not solved the mystery), 
subjects completed a post-experiment questionnaire. This researcher-designed ques-
tionnaire assessed perceptions of individual CRYSTAL ISLAND characters. The results 
of this instrument are outside the scope of this discussion. 

4   Results 

In this section we first present findings regarding common affective transitions ob-
served in CRYSTAL ISLAND.  These findings are followed by an analysis comparing 
and contrasting likely affective transitions stemming from parallel and reactive empa-
thetic reactions by CRYSTAL ISLAND characters.   

To compute transition likelihoods we adopt D’Mello et al.’s L [11], which is based 
on Cohen’s Kappa [7], and has been used by Baker et al. for affective transition 
analysis in their simulation learning environment [3].  L computes the probability that 
a transition between two affective states (CURRENT → NEXT) will occur, where 
CURRENT refers to a reported emotion at time t, while NEXT refers to the next reported 
emotion at time t+1.  D’Mello et al.’s L accounts for the base frequency of the NEXT 
affective state in assessing the likelihood of a particular transition.  Formally,  

L’s numerator is divided by 1-P(NEXT) to normalize scores between -∞ and 1 [11].  A 
result of L equal to 1 translates to emotion NEXT always following the CURRENT emo-
tion; an L value equal to 0 means the likelihood of transitioning to emotion NEXT is 
equal to chance, i.e., the probability of experiencing NEXT (the base rate) regardless 
of the CURRENT emotion.  An L value less than 0 translates to the likelihood of transi-
tioning to emotion NEXT being less than chance (the probability of experiencing 
NEXT regardless of the CURRENT emotion).  
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Table 1. Likelihoods for all transitions CURRENT → NEXT for the affective states: Frustration, 
Flow, Confusion, Delight, Boredom, Anxiety, Excitement, Anger, Sadness, and Fear 

Next
Current Fr Fl Co De Bo Anx Ex Ang Sa Fe 

Fr 0.28 -0.19 0.10 -0.05 -0.07 -0.15 -0.10 -0.02 -0.01 0.09 

Fl -0.04 0.19 0.04 0.02 -0.01 0.03 -0.07 0.01 0.00 0.00 

Co 0.04 0.04 0.16 -0.03 0.05 -0.04 0.10 -0.01 -0.01 -0.03 

De 0.01 0.10 -0.13 0.21 -0.03 -0.05 -0.33 -0.02 0.00 0.00 

Bo 0.13 -0.03 -0.03 -0.08 0.13 -0.04 -0.04 0.00 -0.03 0.04 

Anx -0.08 0.06 0.04 -0.07 -0.01 0.14 -0.19 0.09 0.00 0.00 

Ex -0.05 -0.11 0.06 -0.03 -0.03 0.03 0.24 -0.01 0.01 -0.02 

Ang 0.00 -0.07 0.09 -0.39 0.00 0.23 0.01 0.00 0.00 0.00

Sa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

 

To characterize affective transitions we first compute L for each transition 
(CURRENT → NEXT), for each student.  We then use mean L values across students to 
determine the likelihood of transitioning from each emotion CURRENT to each emo-
tion NEXT.  The results of ANOVAs determine whether the differences in likelihoods 
of transitioning to each NEXT emotion are significantly different for particular 
CURRENT emotions. 

4.1   Affective Transitions 

Aggregating self-reported affective states across the 35 participants we find flow to be 
the most frequently reported state (42%), followed by excitement (14%), confusion 
(13%), delight (11%), anxiety (8%), frustration (6%), boredom (3%), sadness (2%), 
anger (1%), and fear (1%). 

ANOVAs indicated that six affective states had statistically significant differences 
among the likelihoods of transitions. Affective transitions were statistically signifi-
cantly different transitioning from frustration (F(9, 340) = 2.06, p = 0.03), flow (F(9, 
340) = 18.3, p < 0.0001), confusion (F(9, 340) = 1.79, p = 0.06), delight (F(9, 340) = 
5.22, p < 0.0001), anxiety (F(9, 340) = 2.98, p = 0.002), and excitement (F(9, 340) = 
2.62, p = 0.006).   

Frustrated learners are most likely to remain frustrated (Mean L = .28) followed by 
transitions to confusion (.10) and fear (.09). The remaining transitions were below 
chance levels (i.e., flow (-.19, t(34) = -4.24, p < 0.0001) and excitement (-.10)).   

Learners in the state of flow were most likely to remain in flow (.19) followed by 
confusion (.04, t(34) = -3.09, p = 0.003), anxiety (.03), and delight (.02).  Both frus-
tration (-.04, t(34) = -7.91, p < 0.0001) and excitement (-.07) were below chance 
levels.  The remaining transitions did not occur or occurred at chance levels. 
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Confused students were likely to remain in a confused state (.16) followed by ex-
citement (.10), boredom (.05), frustration (.04), and flow (.04).  The likelihood of 
these and all remaining conditions are summarized in Table 1. 

4.2   Affective Transitions by Empathy 

Empathy is the expression of emotion based on another’s situation and not merely 
one’s own [12]. Its expression can demonstrate that the target’s (the recipient of  
empathetic expression) feelings are understood or shared. In the case of parallel em-
pathy, an individual exhibits an emotion similar to that of the target [12].  This is 
typically based on an understanding of the target’s situation and shows the empa-
thizer’s ability to identify with the target. Reactive empathy, in contrast, focuses on 
the target’s affective state, in addition to her situation [12]. Reactive empathizers will 
display emotions that are different from the target’s, often in order to alter or enhance 
the target’s own affective state. This type of empathy is focused on the target whereas 
parallel empathy is more self-oriented. As such, reactive empathy can be viewed as a 
higher level of empathetic behavior.   

Recent research with the characters of CRYSTAL ISLAND has investigated the merit 
of providing characters with empathetic capabilities to effectively respond to unfold-
ing student experiences [20]. In CRYSTAL ISLAND, empathetic responses are short, 
text-based responses consisting of 1 to 2 sentences. Parallel responses consist of the 
character expressing the same emotion as the user through text responses. On the 
other hand, reactive responses demonstrate advanced cognitive processing on the 
character’s part by providing responses designed to be more motivating and thus 
revealing the character’s desire for the user to be in a positive emotional state. The 
results below investigate the likelihood of affective transitions based on empathetic 
expressions by CRYSTAL ISLAND characters in response to student CURRENT emo-
tions. The findings suggest that in certain situations, parallel and reactive empathy 
have significant differences in the affective transitions (NEXT emotion) that are likely 
to occur.   

While the relatively low frequencies of some transitions prevent many of the visi-
ble differences from being statistically significant, interesting patterns do emerge.  
Figures 3 and 4 present the transitions from the state of flow and frustration by empa-
thetic reaction type (parallel or reactive). Analyzing the transitions from the state of 
flow we find that parallel empathy (.11) is somewhat significantly more likely to 
support students’ remaining in the state of flow than reactive empathy (-.05), t(12) = -
2.08, p = 0.06. Similarly, we find that the likelihood of transitioning to frustration 
from a frustrated state is significantly more likely when characters empathetic reac-
tions are parallel in nature (.57) than reactive (-.13), t(12) = -2.09, p = 0.059.  Other 
patterns with visible differences emerging from this analysis of affective transitions 
are summarized in Table 2.  Although the transition frequencies were not sufficiently 
high for the differences to be statistically significant, they merit discussion. 
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Table 2. Interesting likelihood for transitions differences by empathetic response type (parallel 
or reactive) 

 

 

Fig. 3. Transitions from frustration and flow to FRustration, FLow, COnfusion, DElight, 
BOredom, ANxiety, EXcitement, ANger, SAdness, and FEar 

5   Discussion 

The analysis of affective state transitions in CRYSTAL ISLAND replicate findings by 
D’Mello et al. [11] and Baker et al. [3]. For instance, the state of flow dominated self-
reported affect. The dominance of the flow state has been reported in a number of 
affective studies with intelligent learning environments [3, 9, 11]. Frustration and 
boredom were reported notably less frequently than in D’Mello et al.’s study and was 
comparably reported to frequencies found in Baker et al. Perhaps surprisingly, emo-
tions found to be relevant to learning (boredom, confusion, delight, flow, and frustra-
tion) were more prevalent than the narrative affective states (anger, excitement, fear, 
and sadness) hypothesized to be relevant affective outcomes to experiencing the 
CRYSTAL ISLAND story.     
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Among the most likely transitions were transitions where NEXT = CURRENT.  This 
was true for the affective states frustration, flow, confusion, delight, boredom, anxi-
ety, excitement, and anger. This result also replicates the findings of [11] and [3].  
D’Mello termed these cycles vicious cycles for negative affective states (similar to 
Burleson’s notion of “state of stuck” [6]) and virtuous cycles when students are likely 
to stay in positive states (i.e., flow). 

When we consider affective transitions where NEXT occurs at time t+1 after an 
empathetic response from a CRYSTAL ISLAND character, we notice differences in the 
likely affective outcomes. For instance, if a student is in a frustrated state, parallel 
empathy is likely to elicit a transition in which the student stays frustrated. In contrast, 
reactive empathy is less likely than chance to prompt the same vicious cycle.  Instead 
reactive empathy tends to promote transitions to a confused state, which is known to 
have better correlations with learning [9]. 

When we consider likely transitions from the state of flow, we find that parallel 
empathy is likely to encourage students to enter a virtuous cycle and remain in the 
state of flow. Reactive empathy is less likely than chance to produce the flow state 
and is likely to promote an affective state transition to confusion.  Since a flow state is 
an optimal state of experience [10], we can understand why reactive empathy cannot 
motivate students to enter a more engaged state.  

Analyzing transition patterns from the state of boredom, we find parallel empathy is 
likely to encourage a vicious cycle while reactive empathy is less likely than chance to 
produce the same cycle. Instead, reactive empathy is most likely to transition to flow, 
with frustration slightly less likely than flow. In the future, when we can accurately pre-
dict when reactive empathy is likely to encourage flow as opposed to when it is likely to 
promote frustration, this diagnostic information can inform pedagogical agents’ empa-
thetic responses to alleviate student boredom and promote a state of flow. 

6   Limitations 

The results of this study are affected by the virtual characters that interacted empa-
thetically with participants. It is possible that the gender, narrative role, and pedagogi-
cal role of the characters may affect the likelihood of transitions in addition to the 
type of empathy. Another shortcoming is that affective states were solely collected 
from student self-reports. In contrast, both D’Mello et al [11] and Baker et al. [3] used 
judged reports of affect in their transition analysis. In the study reported here, video 
recordings of participants’ faces were collected during their interactions with the 
learning environment to permit future work to consider judged reports of affect with 
this dataset.  Finally, to determine how broadly the results hold, the transitions that 
were found to be likely with this subject population need to be validated with other 
populations, such as the intended population of middle school student users. 

7   Conclusion 

Given the central of role of affect and motivation in cognitive processes, it is becoming 
increasingly more important for intelligent tutoring systems to consider the affective 
experiences of students.  This study replicates the findings of studies conducted with 
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AutoTutor [11] and The Incredible Machine simulation-based learning environment [3], 
including a demonstration of the prominence of the state of flow during learning.  By 
extending our analysis to consider how affective transitions differ given empathetic char-
acter responses, the findings can inform the design of heuristics for pedagogical agents to 
determine when the use of empathy is likely to have desired outcomes and what type of 
empathy (parallel or reactive) would be best utilized.  Such analysis can also inform the 
utility induced models of empathy [20]. 

The results suggest two directions for future work.  First, they call for investigation 
of what type of feedback pedagogical agents should consider when empathy does not 
promote desirable affective states for learning.  For instance, reactive empathy was 
likely to encourage transitions to either flow or frustration.  In instances where empa-
thy promoted frustration we should determine why empathy does not work and what 
type of system response would be more appropriate.  Second, analysis of individual 
differences is necessary to determine the affective transitions common across a vari-
ety of demographics such as gender, but also across learning attributes such as effi-
cacy, goal orientation, interest, and abilities to self-regulate both learning and affect. 
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Abstract. Words with multiple meanings are a phenomenon inherent to any 
natural language. In this work, we study the effects of such lexical ambiguities 
on second language vocabulary learning. We demonstrate that machine learning 
algorithms for word sense disambiguation can induce classifiers that exhibit 
high accuracy at the task of disambiguating homonyms (words with multiple 
distinct meanings). Results from a user study that compared two versions of a 
vocabulary tutoring system, one that applied word sense disambiguation to sup-
port learning and another that did not, support rejection of the null hypothesis 
that learning outcomes with and without word sense disambiguation are equiva-
lent, with a p-value of 0.001. To our knowledge this is the first work that inves-
tigates the efficacy of word sense disambiguation for facilitating second  
language vocabulary learning. 

Keywords: Vocabulary Learning, Word Sense Disambiguation, English as a 
Second Language, Computer Assisted Language Learning. 

1   Introduction 

Learning vocabulary is central to learning any language. Learning a new word implies 
associating the word with the various meanings it can convey. Consequently it is 
helpful to think of acquiring vocabulary as a task of learning word-meaning pairs, 
such as, {(word_1, meaning_1), (word_1, meaning_2), (word_2, meaning_1)} rather 
than a task of learning words {(word_1), (word_2)}. This approach is, of course, more 
relevant for some words than others. Many words can convey only a single meaning. 
However for many other words that is not the case and such words are termed as 
ambiguous words. It is important for an intelligent tutoring system designed to assist 
English as a Second Language (ESL) students to improve their English vocabulary, to 
operate at the level of the word-meaning pairs being learned and not just the words 
being learned, for several reasons. The most important reason is to be able to assess 
learning of the particular meanings of a word that the student was exposed to. The 
second reason is to personalize and adapt the tutoring material in order to expose the 
student to all or a particular set of meanings of a word. These observations motivate 
the study of word meaning/sense disambiguation (WSD) for supporting vocabulary 
learning in a tutoring system.  
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2   Background 

For this study, we extended an existing tutoring system for ESL vocabulary, which is 
described below in Section 2.1. Sections 2.2 and 2.3 provide a background about the 
phenomenon of word sense ambiguity and its aspects relevant to this study.  

 

Fig. 1. REAP System Diagram 

2.1   REAP Tutoring System 

THE REAP tutoring system [1] assists ESL students in improving their vocabulary. 
Its approach is that of context-based teaching, where the word, its meaning and its 
usage are demonstrated by exposing the student to the word in a natural text (the prac-
tice text) instead of in isolation. For each grade level a human teacher prescribes a set 
of new words (focus words) that are appropriate for that level. The REAP system 
personalizes instruction for each student by allowing the student to indicate through 
self-assessments the words that he or she is familiar with, which modifies word priori-
ties. In each instructional cycle, the student chooses from four different practice texts, 
each containing two or more words from the student’s personalized word list. Once 
the student has finished reading the text, he or she answers practice questions that are 
based on the words that he or she was exposed to in the text.  

The practice texts containing focus words are selected from the World Wide Web 
(WWW). As such, REAP brings together the two sub-disciplines of language tech-
nologies, Information Retrieval (IR) and Computer Assisted Language Learning 
(CALL). The quality of the practice text is controlled by selecting only those docu-
ments from the WWW that pass through various automatic filters implemented in the 
REAP system, for instance, text-quality filter, reading-level filter and document 
length filter. REAP’s system diagram is shown in Figure 1. To maximize the time on 
task, documents containing multiple focus-words are preferred. Students can also 
indicate preferences for 16 general topics including Arts, Science, and Sports, which 
are taken into consideration by the system while choosing the practice texts for each 
student. A machine-readable version of an ESL dictionary, the Cambridge Advanced 
Learners Dictionary (CALD) [3] is integrated into REAP. Students can use CALD 
while they read a document, to lookup definitions and examples of a word. 
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2.2   Lexical Ambiguity in Language 

Most languages have words with multiple meanings. Zipf [4] proposed several em-
pirical laws based on the Principle of Least Effort to explain some of the phenomena 
observed in languages. One law proposes that word sense ambiguity arises as a result 
of two competing forces, both of which try to follow the principle of least effort. On 
one side, the effort of the speaker of the language will be minimized by using a small 
vocabulary, that is, by using few words that are capable of conveying many meanings. 
On the other side, the listener’s effort will be minimized by using as many distinct 
words, in terms of meaning, as possible. Zipf provides empirical evidence for his 
theory. However, the conclusion most pertinent to this study is that his theory formal-
izes the common belief that human language vocabularies are a mix of ambiguous and 
unambiguous words. 

2.3   Polysemes and Homonyms   

Ambiguous words can be categorized as polysemes or homonyms. Polysemes are 
words that can convey multiple related meanings, whereas, homonyms are words that 
can convey multiple distinct meanings. For example, the word branch as a noun has 
the following definitions listed in CALD that are all related. 

 

1. one of the parts of a tree that grows out from the main trunk and has leaves, flowers 
or fruit on it 

2. a part of something larger 
3. one of the offices or groups that form part of a large business organization 
4. a part of a river or road that leaves the main part 
 

whereas the following definitions for the word bark in the noun form convey clearly 
distinct meanings. 

 
1. the loud, rough noise that a dog and some other animals make 
2. the hard outer covering of a tree 
 

In this study we concentrate on homonyms for two reasons. First, distinguishing 
between related senses of a word is a highly subjective task. Several studies [5, 6, 7] 
have shown that the agreement between human annotators is very low on this task. 
Second, we believe that ESL students can transfer their knowledge about one sense of 
a word to another related sense of the word without much difficulty, especially in a 
context-based learning setup. However, we hypothesize that learners are not able to 
do so for homonyms, and thus assistance should improve learning. 

Given this background the two objectives of this work can be stated as:  
 

1. to demonstrate that automatic disambiguation of homonyms that occur in 
web-pages is possible and,  

2. to show that such methods can be applied in a tutoring environment to pro-
duce a positive effect on ESL vocabulary learning. 
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3   Word Sense Disambiguation Methodology 

WSD is a well-established research area in the field of natural language processing 
[8]. Here we concentrate on word sense disambiguation of homonyms that occur in 
web-pages. For the purposes of this paper we will refer to the task of homonym dis-
ambiguation as WSD. This task can be structured as a supervised learning problem 
where the availability of an annotated training-set is assumed or as an unsupervised 
learning problem where a training-set is not available. In the supervised learning set-
ting WSD becomes a text classification problem and in the unsupervised setting it is 
often referred as the word sense discrimination task [15, 16]. The unsupervised 
framework has the advantage of not requiring a training-set. We experimented with 
both approaches. However, models learned using supervised methods were consis-
tently more accurate than models learned using unsupervised techniques, thus we 
focus on the supervised methods in this paper. The decision to use supervised learning 
techniques was motivated by the need to minimize the potential effects of classifica-
tion errors on student learning. 

The supervised WSD task can be stated formally as follows. The following are 
given: 1) a homonym h, 2) the set M of distinct meanings that h can convey, and 3) a 
training-set T that consists of (i, k) pairs where i is a portion of text containing h, and 
k is the meaning that i conveys. The goal is to learn the best classification model Ĉ 
using T for h. A best classification model Ĉ would be one that generalizes well, that 
is, it not only performs classification with high accuracy on T but also on the test-set 
S, which consists of instances of h that were not used for inducing the model. Note 
that the phrase ‘the portion of text’ used above is a generic phrase that can refer to a 
phrase, a sentence, a paragraph, or an entire document containing h. The task of learn-
ing a text classification model is typically divided into two broad phases – feature 
extraction and classification algorithm. Section 3.1 describes the features that were 
used in this study. We used the Weka [10] implementation of two standard machine 
learning algorithms, namely, Multinomial Naïve Bayes (MNB) [11] and Support 
Vector Machines (SVM) [12]. Section 3.1 briefly describes these algorithms.  

3.1   Features Types and Classification Algorithms 

Loosely speaking, classification models generalize by learning patterns of co-
occurrences from the training data. For instance, a classification model for the homo-
nym bark might learn from the training examples that if the word dog occurs in the 
vicinity of the word bark then it is most likely that the first meaning of bark related to 
dogs, is at work in this instance. In general, identifying multiple such indicators or 
features from the training data can lead to learning a robust classification model, as-
suming that the task under consideration lends itself to such abstractions.  

We use two types of features, namely, unigrams (UNI) which are lexical features, and 
part-of-speech-bigrams (POS-BI) which are lexico-syntactic features. [13] shows that 
using such a combination of features is effective for supervised WSD. Unigrams are the 
unique words that occur in the training-set instances. However, only those unigrams that 
occurred within some window (-w, +w) of the homonym are considered. The intuition 
behind this approach is that a word’s local context is more likely to encode information 
about the word and its sense than distant context. The window size was one of the  



504 A. Kulkarni et al. 

parameters that we varied in our experiments (Section 4). Closed-class words such as 
articles, prepositions and numerals were not included because they rarely help distinguish 
between the different meanings of a homonym Unigrams that occur only once were also 
discarded. Generating the part-of-speech-bigrams was a two step process. In the first 
step, each word which was within a window of five words on the left and right of the 
homonym in each training-set instance was annotated with its part-of-speech tag, such as, 
noun, verb, adjective, using the Stanford Part-Of-Speech tagger1. Given this sequence of 
part-of-speech tags, unique pairs of consecutive part-of-speech tags are extracted in the 
second step. POS-BIs capture the syntactic information about the neighborhood of the 
homonym, and provide another level of abstraction. Generating other features such as 
lexical bigrams, trigrams or pos-trigrams, is possible. However, the available evidence 
for these features becomes very sparse. Intuitively, the number of occurrences in the 
training-set of the trigram “loud dog bark” would be much less than that of “loud”, 
“dog”, and “bark” individually. 

The Multinomial Naïve Bayes algorithm [11, 14] is a variation of the classification 
algorithm based on the Bayes’ Rule. MNB makes two assumptions:  i) the features are 
independent of each other given the class (the sense of the word in our case), and ii) 
the class conditional distribution of the features is a multinomial distribution. Support 
Vector Machines [12] identify a classification boundary that is maximally separated 
from all the classes (again, the senses of the homonym, in our case). MNB and SVM 
are well-known, frequently used, and frequently effective; however, they make very 
different assumptions about the data. As we will see, the assumptions made by MNB 
are empirically found to be more appropriate for our data. 

4   Experiments with WSD Approaches 

We focus on 30 homonyms in this study. The different morphological forms of these 
homonyms were treated as the same word type. For instance, along with the root form 
of the homonym issue, the derived form issues, was also analyzed. The list of 30 
words in their root form is given in Table 1. Following is the description of the train-
ing-set generation process.  

The definitions of a word provided by an ESL dictionary, the Cambridge Ad-
vanced Learners Dictionary (CALD), were manually grouped based on the related-
ness of the meaning that they convey. An example, for the homonym issue, is shown 
below: 
 

Group 1 
1. a subject or problem which people are thinking and talking about 

 Group 2 
2. a set of newspapers or magazines published at the same time or a single copy of 

a newspaper or magazine 
 Group 3 

3. An issue of shares is when a company gives people the chance to buy part of it 
or gives extra shares to people who already own some. 

4. to produce or provide something official  
 

                                                           
1 http://nlp.stanford.edu/software/tagger.shtml 
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The third column in Table 1 specifies the number of definition groups (senses) for 
each of the 30 words that were used in this study. These definition groups were used 
as the sense-inventory for the coding task, which is described next. The training-set 
was created for each word by annotating occurrences of the word in web-pages, using 
the word’s sense-inventory. This annotation task was performed by an independent 
group of coders from the Qualitative Data Analysis Program2 at the University of 
Pittsburgh. In the initial round, four coders annotated 100 documents. (We use the 
words ‘document’ and ‘web-page’ interchangeably.) The pair of coders with best 
inter-coder agreement (Cohen’s kappa = 0.88) was chosen to annotate the remaining 
documents. To expedite the annotation task, both coders annotated different sets of 
documents. A “spot-check” process was implemented by periodically providing a 
subset of the documents to both the coders for annotation. The inter-coder agreement 
for the entire training-set, in terms of Cohen’s kappa, based on spot-checks, was 0.92. 
These high kappa values provide empirical evidence that the task of distinguishing 
between distinct senses is much less subjective than the task of distinguishing be-
tween fine-grained senses, and thus can be automated much more effectively. The 
annotated dataset thus generated was used in the experiments described below. 

For each word, classification models were learned using the two machine learning 
algorithms described in Section 3.2. Further more, 46 different window sizes (10 
through 100, in steps of 5), for the unigram feature extraction task were experimented 
with. 10-fold cross-validation [9] was used to compare the different classification 
models learned. The best learning algorithm for each word and the best window size 
is specified in the second last and the last columns of the Table 1.3 Multinomial Naïve 
Bayes algorithm was the best classification algorithm for 22 of the 30 homonyms. 
The average best window size was 25 (-25, +25). The best accuracy values for each 
word are compared with the baseline accuracy given in the column 4. The baseline 
accuracy is computed by assigning labels to any given instance of the word with the 
most frequent sense of the word in the training-set. As the table shows, for some 
words the baseline accuracy is quite high (e.g., factor, function) indicating that one 
sense is extremely dominant. This can happen when all or a majority of the instances 
of the word in the training-set belong to the same topic, such as, science, or arts.  
Cohen’s kappa, reported in column 6, indicates the agreement between the gold stan-
dard and the predicted senses. Table 1 is sorted on the kappa values.  

5   User Study and Discussion 

A user study was conducted at the English Language Institute (ELI)4, at the Univer-
sity of Pittsburgh, to test the effects of WSD on ESL vocabulary learning. A total of 
56 students from the ELI Reading 4 and Reading 5 classes (respectively upper inter-
mediate and advanced ESL students) participated in the study. The Reading 4 group 
consisted of 39 students, and the Reading 5 group consisted of 18 students. The pre-
test consisted of 30 self-assessment questions similar to the Yes/No test [17], one for 
                                                           
2 http://www.qdap.pitt.edu/ 
3 Note that in this setting it is practical to use different learning algorithms and window sizes 

for each word, if that yields the best accuracy.   
4 http://www.eli.pitt.edu/ 
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each homonym, where each student was asked to indicate if he or she knew the word. 
The study was conducted for duration of eight consecutive weeks; one session per 
reading level per week. The pre-test was conducted, during the first session, and 
lasted approximately 10 minutes. The practice reading activity started during the same 
session and continued for the following seven consecutive weeks, one session per 
week. The post-test was conducted during the eighth and final session. It consisted of 
cloze questions for each of the <word, sense> pairs that the student was exposed to 
during the practice reading sessions. These cloze questions were manually created by 
the teachers at the ELI. Out of the 56 students 47 students attended the final session, 
the post-test. The following analysis is based only on these 47 students. The experi-
mental group that used the WSD-equipped REAP consisted of 24 students and the 
control group consisted of 23 students. General ESL proficiency was measured by 
Michigan Test of English Language Proficiency (MTELP) scores. 

Table 1. Summary of Supervised classification models for 30 homonyms 

 Homonym 

Number 
of 

senses 

Baseline 
Accuracy 

(%) 

Best 
Accuracy 

(%) 
Cohen's 
Kappa 

Classification 
Algorithm 

Window 
Size (w) 

1 panel 2 84.92 99.82 0.993 MNB 25 
2 transmission 2 51.91 99.15 0.983 MNB 70 
3 procedure 2 82.04 99.40 0.980 MNB 85 
4 foundation 3 79.17 98.81 0.965 MNB 85 
5 principal 2 64.39 98.05 0.957 SVM 40 
6 bond 2 81.78 98.67 0.956 SVM 70 
7 aid 2 59.76 97.71 0.952 SVM 85 
8 tape 2 75.16 98.14 0.951 MNB 40 
9 monitor 2 84.36 98.58 0.947 MNB 85 
10 code 2 66.18 97.10 0.936 MNB 85 
11 volume 3 51.00 96.00 0.934 MNB 85 
12 suspend 2 81.48 97.53 0.919 MNB 40 
13 contract 3 83.67 97.73 0.919 MNB 40 
14 qualify 3 79.81 97.12 0.909 MNB 70 
15 major 3 90.24 98.32 0.904 MNB 40 
16 conceive 2 80.92 96.95 0.898 SVM 70 
17 pose 3 58.26 94.78 0.893 MNB 25 
18 trigger 2 59.40 94.33 0.883 SVM 25 
19 brief 3 75.81 95.70 0.883 SVM 10 
20 parallel 2 53.70 94.14 0.882 MNB 85 
21 supplement 2 73.18 95.45 0.882 MNB 70 
22 channel 2 53.25 93.49 0.869 MNB 10 
23 depress 2 60.66 93.44 0.862 MNB 40 
24 manual 2 68.80 93.59 0.850 SVM 10 
25 factor 2 91.24 97.72 0.848 MNB 85 
26 shift 3 70.71 92.55 0.837 MNB 70 
27 function 2 90.84 97.01 0.830 MNB 55 
28 issue 3 80.90 92.96 0.767 MNB 85 
29 complex 3 58.51 86.86 0.735 MNB 70 
30 appreciate 2 68.63 86.27 0.690 SVM 40 
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The word sense disambiguation models learned for the 30 homonyms, that are de-
scribed in Section 4, were integrated into the REAP system to support vocabulary 
learning. This modified the system in two main ways. First, during the reading session 
whenever a student looked up one of the 30 homonyms in the integrated dictionary, 
the order of the definitions was adjusted to show the most appropriate definition for 
that particular document at the top of the list. Prior research such as [4] motivates this 
by observing that dictionary users often stop reading the entry for a word after reading 
only the top few definitions, irrespective of whether those provide them the correct 
definition for the given usage of the word.  

The second change improves the quality of the multiple-choice practice questions 
that follow each reading. Each question requires the student to select one among five 
alternative definitions of a word that he or she was exposed to in the reading. Generat-
ing these five alternative definitions (four distractors and one correct definition) is 
straightforward for words with single sense. However, for homonyms, without WSD 
it is not possible to ascertain that the definition of the homonym that conveys the 
meaning used in a particular document just read is included in the set of five alterna-
tives. For example, a student might read a document that contained ‘…the weekly 
issue of Time magazine…’ and thus the definition #2 for the issue, given in section 4, 
should be included as one of the five alternatives for the practice question. We refer to 
such correctly matched definitions as the ‘true’ definition for that (document, word) 
pair, in the following discussion. The version of REAP without WSD orders a word’s 
dictionary definitions by their frequency of usage in CALD, and generates the five 
alternatives for a given word by choosing four distractor definitions for words of the 
same part of speech and by choosing the definition with highest usage frequency that 
has not yet been used in any of the previous questions for that student. This method-
ology has a better chance of including the ‘true’ definition in the five alternatives than 
a methodology based on random selection of definition. Nevertheless, it does not 
always guarantee inclusion of ‘true’ definition. These post-reading definition ques-
tions provide additional practice for the <word, sense> pair that the student was ex-
posed to during the practice reading and thus reinforce the instruction. We claim that 
providing this additional exposure, where the student is actively involved in the proc-
ess, promotes robust learning. Mismatched practice questions can potentially confuse 
the student and thus adversely affect student learning. Thus, studying the effects of 
this WSD-induced matching as measured by post-test performance is the most reveal-
ing comparative analysis.  

Table 2 shows the data for this analysis. To make a fair comparison, we analyze 
only those <word, sense> pairs from the experimental group that would have been 
mismatched in the practice questions, even with the usage frequency methodology, 
had it not been for WSD. Thus, 45 <word, sense> pairs were found to have been well-
matched in practice questions and texts because of WSD. The performance of the 
experimental group on these 45 <word, sense> pairs on the post-test is given in the 
Table 2. The columns split the data according to the information provided by the 
student during self-assessment. The rows group the data based on the post-test results. 
For the control group, only those <word, sense> pairs that did not get matched by 
chance for the practice questions are analyzed.  

We use Generalized Estimating Equations (GEE) [18] to test our hypotheses. GEE 
takes into account the correlations between data-points that are not independently and 
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identically distributed. The use of GEE was warranted in this study because different 
data-points--corresponding to post-test results for particular words--were in some 
cases generated by the same student. Based on the data in Table 2 we perform the 
following hypothesis test using GEE. 

H0: The true distribution of the post-test performance of the experimental group 
for the chosen words and the true distribution of the post-test performance of the 
control group is the same.  

H1: The true distributions of post-test performance of the experimental group and 
the control group are not the same. 

Analysis with GEE produces a p-value 0.001, which strongly supports rejecting 
the null hypothesis. The mean and the standard deviation for the experimental and 
control groups are (M = 0.8, SD = 0.404) and (M = 0.5, SD = 0.505), respectively. We 
also performed another analysis for testing the above hypotheses, however, this time 
two additional explanatory (independent) variables were also included, pre-test in-
formation and the MTELP score of the student. This analysis produced a p-value of 
0.003 for the coefficient learned for the WSD status, which was the only significant 
coefficient in the model that was fit. Thus we can conclude that the treatment given to 
the experimental group had a statistically reliable and positive effect on their per-
formance in the task of vocabulary learning. 

Table 2. Data from the experimental and control groups of the user study 

 Experimental Group  Control Group 
 Known Unknown   Known Unknown  

Correct 28 8 36 Correct 16 6 22 
Incorrect 7 2 9 Incorrect 16 6 22 
 35 10 45  32 12 44 

 
It is important to note that the pre-test required the students to indicate the words 

that they were familiar with, but did not ask about their familiarity with the <word, 
sense> pairs. As a result, although it appears from the data in Table 2 that most of the 
students were familiar with majority of the words included in this study, it is quite 
likely that a student who indicated being familiar with a word could only be familiar 
with only one of the meanings of the word. In fact, the second analysis above showed 
that the pre-test information could not explain students’ performance on the post-test. 

6   Conclusion 

This work establishes that performing sense disambiguation for homonyms helps 
vocabulary learning in ESL students. It is demonstrated that the task of disambiguat-
ing homonyms can be automated by learning classifiers that can assign the appropri-
ate sense to a homonym in a given context with high accuracy. A user study reveals 
that students equipped with WSD-enabled vocabulary tutor perform significantly 
better than students using vocabulary tutor without the WSD capabilities.  
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Abstract. Note-taking has a long history in educational settings. Previous re-
search has shown that note-taking leads to improved learning and performance 
on assessment. It was therefore hypothesized that note-taking could play an im-
portant role in narrative-centered learning. To investigate this question, a note-
taking facility was introduced into a narrative-centered learning environment.  
Students were able to use the facility to take and review notes while solving a 
science mystery. In this paper we explore the individual differences of note-
takers and the notes they take. Finally, we use machine learning techniques to 
model the content of student notes to support future pedagogical adaptation in 
narrative-centered learning environments. 

1   Introduction 

Narrative is central to human cognition.  Because of the motivational and contextual 
properties of narrative, it has long been believed that story-based learning can be both 
engaging and effective. Research has begun to develop narrative-centered learning 
environments that combine story contexts and pedagogical support strategies to de-
liver compelling learning experiences. Contextualizing learning within narrative af-
fords the use of artificial intelligence techniques that tailor narrative and educational 
content to students’ actions, affective states, and abilities. Drawing on an interdisci-
plinary body of work including intelligent tutoring systems, embodied conversational 
agents, and serious games, these environments offer the promise of adaptive, motivat-
ing learning experiences. Narrative-centered learning environments are currently 
under investigation in a range of domains, including military soft-skills training [9, 
20], anti-bullying education [2], health intervention education [11], and science learn-
ing in microbiology and genetics [13]. 

Note-taking has a long history in educational settings.  It has repeatedly been found 
that student note-taking leads to 1) improved learning, regardless of whether the stu-
dents had the opportunity to review their notes prior to evaluation [19], and 2) in-
creases in test performance [4,10].  Note-taking is believed to simulate the generative 
process in which students encode connections between prior knowledge and learning 
content [15].  Students’ must self-regulate note-taking during learning episodes to 
manage strategy use, prior knowledge, and attentional capacity [19, 22].  Thus, self-
regulatory processes can be observed via student note-taking. 
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In this paper we investigate the merit of modeling student note-taking behavior. 
The approach adopted here draws on recent work in which linguistic features ex-
tracted from student writing have played important roles in modeling student learning 
in an intelligent tutoring system [8] and in analyzing student interactions in on-line 
discussions [12, 16]. ITSPOKE [8] predicts student learning using five sets of linguis-
tic features automatically extracted from the essays written by students. These fea-
tures include surface, semantic, pragmatic, discourse structure, and local dialogue 
context features, with the semantic features serving as the strongest predictor. 
ARGUNAUT [12] assists human tutors mediating student on-line discussions by 
analyzing student contributions in a discussion and recognizing important student 
actions.  Student action classifiers are trained from features including manual analysis 
of individual and connected contributions of students, where preliminary results sug-
gest the importance of the critical-reasoning feature. Another approach employs 
speech acts to investigate student interactions in on-line discussions [16]. Two speech 
act classifiers, a question classifier and an answer classifier, were constructed from n-
gram features automatically computed from student postings. 

Motivated by note-taking findings in the learning sciences literature and research 
in human language technologies, we analyze notes taken by middle school students in 
an experiment with the CRYSTAL ISLAND learning environment. The remainder of the 
paper is organized as follows: Section 2 describes CRYSTAL ISLAND, the narrative-
centered learning environment that has been developed in our lab and its note-taking 
functionalities. Sections 3, 4, and 5 report on an empirical study using CRYSTAL 

ISLAND that examines individual differences in note-taking and preliminary models of 
note taking. Design implications and limitations are discussed in Sections 6 and 7, 
respectively. Conclusions and directions for future work follow in Section 8. 

2   Crystal Island and Note-Taking 

CRYSTAL ISLAND is a narrative-centered learning environment that features a science 
mystery set on a recently discovered volcanic island. The curriculum underlying 
CRYSTAL ISLAND’s science mystery is derived from the state standard course of study 
for eighth-grade microbiology. Students play the role of the protagonist, Alyx, who is 
attempting to discover the identity and source of an unidentified infectious disease 
plaguing a newly established research station. The story opens by introducing the 
student to the island and members of the research team for which the protagonist’s 
father serves as the lead scientist. Several of the team’s members have fallen gravely 
ill, including Alyx’s father. Tensions have run high on the island, and one of the team 
members suddenly accuses another of having poisoned the other researchers. It is the 
student’s task to discover the outbreak’s cause and source, and either acquit or in-
criminate the accused team member.   

CRYSTAL ISLAND’s expansive setting includes a beach area with docks, a large 
outdoor field laboratory, underground caves, and a research camp with an infirmary, 
lab, dining hall, and living quarters for each member of the team.  Throughout the 
mystery, the student is free to explore the world and interact with other characters 
while forming questions, generating hypotheses, collecting data, and testing hypothe-
ses.  Students can pick up and manipulate objects, take notes, view posters, operate 
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lab equipment, and talk with non-player characters to gather clues about the source of 
the disease. During the course of solving the mystery, students are minimally guided 
through a five-problem curriculum. The first two problems deal pathogens, including 
viruses, bacteria, fungi, and parasites. Students gather information by interacting with 
in-game pathogen “experts” and viewing books and posters in the environment. In the 
third problem, students are asked to compare and contrast their knowledge of four 
types of pathogens. The fourth problem guides the student through an inquiry-based 
hypothesis-test-and-retest problem. In this problem students must complete a “fact 
sheet” with information pertaining to the disease inflicting members of the CRYSTAL 

ISLAND research team. Once the “fact sheet” is completed and verified by the camp 
nurse, the student completes the final problem regarding the treatment of viruses, 
bacteria, fungi, and parasites, and selects the appropriate treatment plan for sickened 
CRYSTAL ISLAND researchers. The story and curriculum are interwoven throughout 
the student experience. 

The virtual world of CRYSTAL ISLAND, the semi-autonomous characters inhabiting 
it, and the user interface were implemented with Valve Software’s Source™ engine, 
the 3D game platform for Half-Life 2. The Source engine also provides much of the 
low-level (reactive) character behavior control. The character behaviors and artifacts 
in the storyworld are the subject of continued work.  Note-taking functionalities were 
recently added to the CRYSTAL ISLAND environment. Students access their notes using 
the ‘N’ key, which launches an in-game dialog where students can review their notes 
and supply additional comments if they so choose.  Below we report findings on the 
use of note-taking in a CRYSTAL ISLAND study and investigate the potential benefits of 
modeling student notes. 

3   Experiment Method 

3.1   Participants 

There were 54 female and 62 male participants varying in age and race. Approxi-
mately 2% of the participants were American Indian or Alaska Native, 5% were 
Asian, 29% were Black or African American, 58% were Caucasian, 6% were His-
panic or Latino, and 6% were of other races. Participants were all eighth grade stu-
dents ranging in age from 12 to 15 (M = 13.27, SD = 0.51). The students had recently 
completed the microbiology curriculum mandated by the North Carolina state stan-
dard course of study before receiving the instruments, tests, and interventions of this 
experiment. 

3.2   Materials and Apparatus 

The pre-experiment paper-and-pencil materials for each participant were completed one 
week prior to intervention. These materials consisted of a researcher-generated CRYSTAL 

ISLAND curriculum test, demographic survey, achievement goals questionnaire [5], Self-
Efficacy for Self-Regulated Learning (SESRL) [3], Science Self-Efficacy, modified from 
[14], and immersion tendencies questionnaire [20]. The CRYSTAL ISLAND curriculum test 
consists of 23 questions created by an interdisciplinary team of researchers and was ap-
proved for language and content by the students’ eighth-grade science teachers. Elliot 
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and McGregor’s achievement goals questionnaire is a validated instrument that measures 
four achievement goal constructs (mastery-approach, performance-approach, mastery-
avoidance, and performance-avoidance goals) [6]. Bandura’s Self-Efficacy for Self-
Regulated Learning scale [3] consists of 11 items rated by participants on a 7-point Likert 
scale.  Witmer and Singer developed and validated the Immersive Tendencies Question-
naire (ITQ) to measure individual predispositions towards presence experiences [20].  
The ITQ consists of three subscales: activity involvement tendency, activity focus ten-
dency, and video game playing tendency. Participants indicate their level of tendency for 
each item on a 7-point Likert scale. Witmer and Singer found individual tendencies, as 
recorded by the ITQ, to be predictive of presence [20].  

Post-experiment materials were completed immediately following intervention.  
These materials consisted of the same CRYSTAL ISLAND curriculum test, achievement 
goals questionnaire [6], interest [18], science self-efficacy, and the presence question-
naire [20]. The interest scale was adapted from those used by Schraw to capture dif-
ferences across groups and to examine within-subject relationships with learning 
outcomes [18].  Participants’ presence experience was captured by the Presence Ques-
tionnaire (PQ) developed and validated by Witmer and Singer [20]. The PQ contains 
several subscales including involvement/control, naturalism of experience and quality 
of the interface scales.  The PQ accounts for four categories of contributing factors of 
presence: control, sensory, distraction, and realism. 

4   Design and Procedure 

4.1   Design 

The experiment randomly assigned students to a CRYSTAL ISLAND narrative condition 
or a minimal-narrative condition. The focus of the study was to investigate the role of 
note-taking in narrative-centered learning.  Students received an intervention consist-
ing of the CRYSTAL ISLAND microbiology curriculum through one of two deliveries.  
The CRYSTAL ISLAND narrative condition supplemented the curriculum with the full 
CRYSTAL ISLAND narrative, including the poisoning scenario, character backstories, 
and character personality. The CRYSTAL ISLAND minimal-narrative condition supple-
mented the curriculum with the minimal story required to support the curriculum. In 
this condition, the story consisted of research members falling ill and the request for 
the student to uncover the mysterious illness. The minimal-narrative condition did not 
include the poisoning storyline, character back stories or explicit character personal-
ity.  Students were able to take notes in both conditions. 

4.2   Participant Procedure 

Participants entered the experiment room having completed the pre-test and instru-
mentation one prior to the intervention. Participants were first instructed to review 
CRYSTAL ISLAND instruction materials. These materials consisted of the CRYSTAL 

ISLAND backstory and task description, a character handout, a map of the island, and a 
control sheet. Participants were then further directed on the controls via a presentation 
explaining each control in detail.  This included a brief remark that the ‘N’ key could 
be used to take notes. Five minutes were allotted for this instruction. 
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Participants in the CRYSTAL ISLAND conditions (narrative and minimal-narrative) 
were given 50 minutes to work on solving the mystery. Solving the mystery consisted 
of completing a number of goals including learning about pathogens, viruses, bacte-
ria, fungi, and parasites, compiling the symptoms of the sickened researchers, re-
cording features of hypothesized diseases causing the CRYSTAL ISLAND illness, testing 
a variety of possible sources, and reporting the solution (cause and source) back to the 
camp nurse to design a treatment plan. 

Immediately after solving the science mystery of CRYSTAL ISLAND, or 50 minutes 
of interaction, participants completed the post-experiment questionnaires.  First to be 
completed was the CRYSTAL ISLAND curriculum test, followed by the remaining post-
experiment questionnaires.  Completion of post-experiment materials took no longer 
than 35 minutes for participants.  In total, experiment sessions lasted 90 minutes. 

5   Results 

5.1   Annotating the Notes Corpus  

To analyze the type of notes taken by students, the corpus was annotated using a cod-
ing scheme consisting of six categories of tags that characterize the contents of stu-
dent notes (Table 1). The four main categories were Narrative (N), Curricular (C), 
Hypothesis (H), and Procedural (P). Notes containing facts from the narrative story-
line, such as summaries of the unfolding plot, observations of particular objects lo-
cated in specific area of the environment, and symptoms of ill-stricken characters 
were tagged with N. Similarly, notes pertaining to facts from the curriculum, such as 
definitions or characteristics of viruses and bacteria, were tagged with C. Student 
notes that explicitly expressed possible solutions regarding the source or cause of the 
outbreak or solution to the scientific mystery were tagged as H.  A hypothesis could 
be either narrative (e.g., suspecting a character of poisoning others) or curricular (e.g., 
guessing the cause of the disease wreaking havoc on the island). Notes that were di-
rected at maintaining a set of tasks to be completed were tagged as P. Two additional 
categories include Garbage (G) and Other (O).  G is used to mark notes that do not 
contain any meaningful information while O covers the remaining notes that contain 
meaningful information but do not belong to any one of the categories in the current 
coding scheme. 

Using the annotation scheme described above, four judges each tagged the corpus.  
Inter-rater reliability was determined using both Fleiss’ kappa [7], which allows for 
more than two raters, and Cohen’s kappa [5], for each pair of raters. There was full 
agreement between all four judges according to Fleiss’s kappa (K = .70). There were 
six possible pairings of judges. The paired-judge kappas ranged from moderate 
agreement to full agreement: judge2-judge4 (.59), judge1-judge4 (.62), judge3-judge4 
(.66), judge2-judge3 (.73), judge1-judge3 (.77), and judge1-judge2 (.82). From the 
tagged corpus, a voting scheme was used to select the tag with the highest frequency 
for each note. In instances of ties (n = 17) the scheme defaulted to Judge 1. 

For purposes of analysis, we calculate the frequency of notes taken in each cate-
gory for each student. These frequencies are the basis for the results reported below. 
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Table 1. Tagging scheme for note-taking content 

Category(tag) Description Student Example Freq. 

Narrative (N) 
Notes contain facts from the 
unfolding storyline 

Teresa - fever, pain, vomiting 79 

Curricular (C) 
Notes contain facts from the 
learning content 

fungi is easily spread on its 
own from person to person 

156 

Hypothesis (H) 
Notes contain a possible solu-
tion to the source and / or cause 
of the mysterious illness 

I think that she might have 
something to do with Adola. 

16 

Procedural (P) 
Notes pertain to tracking 
tasks/goals to be completed 

Something is wrong with dad 
and i have to find what 

22 

Garbage (G) 
Notes do not contain any 
meaningful information  

BLAH BLAH BLAH 4 

Other (O) 
Notes contain meaningful 
information, but do not belong 
to any other category 

Scientific method: 1. find 
method question/problem 

17 

5.2   The Effects and Individual Differences of Note-Taking 

Fifth-three percent of the students (n = 62, Total n = 116) took notes in CRYSTAL 

ISLAND. In general, post-test performance and learning gains were unaffected by stu-
dent note-taking (i.e., no statistical significance found). However, students who took 
notes on hypotheses (n = 10) surrounding the solution to the mystery did perform 
significantly better on the curriculum post-test, t(114) = 2.18, p = 0.03. Hypothesis 
note-takers also performed significantly better on the curriculum pre-test, t(114) = 
2.16, p = 0.03. This suggests that high achieving students are more likely to take hy-
pothesis notes. 

In reviewing the differences between the narrative and minimal-narrative condi-
tions we find that students in the minimal-narrative condition took significantly more 
curriculum notes, t(114) = 2.59, p = 0.01. Meanwhile students in the narrative condi-
tion took significantly more procedural notes, t(114) = -2.40, p = 0.01. Perhaps sur-
prisingly, there was no statistically significant difference the notes taken regarding the 
unfolding narrative between conditions. 

Gender played a significant role in note-taking.  Overall, females took significantly 
more notes than males, t(114) = 2.19, p = 0.03.  Females also took significantly more 
curriculum notes (t(114) = 2.08, p = 0.04) and narrative notes (t(114) = 1.83, p = 0.06, 
marginal significance).  While there were few garbage notes (n = 4, all composed by 
male students), a two-tailed t-test reveals marginal significance, t(114) = -1.64, p = 
0.10. There were no significant differences between gender for hypothesis and proce-
dural notes. 

High mastery-approach students (students with goals of understanding content for the 
sake of its own value), as measured by Elliot and McGregor’s Achievement Goals Ques-
tionnaire [6], took significantly more notes than low mastery-approach students, t(114) = 
2.06, p = 0.04. This includes high mastery-approach students taking significantly more 
narrative notes (t(114) = 2.44, p = 0.01) and procedural notes (t(114) = 2.01, p = 0.05) 
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than low mastery approach students. There were no significant differences for curriculum 
notes or hypothesis notes between low and high mastery-approach students. There were 
also no significant differences when considering other goal orientations (performance-
approach, performance-avoidance, and mastery-avoidance). 

Finally, there were significant correlations between note-taking and student effi-
cacy for self-regulated learning (SRL) [3]. A positive correlation was found between 
hypothesis note-taking and self-efficacy for SRL, r(114) = 0.185, p = 0.04.  There was 
also a significant positive correlation between narrative note-taking and self-efficacy 
for SRL, r(114) = 0.29, p = 0.002. 

5.3   Modeling the Content of Student Note-Taking 

We consider several machine learning techniques, namely, support vector machines 
(SVMs), naïve Bayes, nearest neighbor, and decision trees to induce models that pre-
dict note-taking categories characterizing the content of the notes. All models are 
induced using the Weka machine learning toolkit [21] using a tenfold cross validation 
scheme to produce the training and testing datasets. Tenfold cross-validation is widely 
used for obtaining the acceptable estimate of error [21]. 

We utilize Weka’s StringToWordVector filter to transpose a string value to a fea-
ture vector consisting of unigram tokens. Each token represents an individual feature 
within the feature vector. The filter supports several additional parameters, such as 
binary versus word count, TF and IDF weighting, and several optional stemming 
algorithms. For our analysis, the unigram tokenizer was chosen over the n-gram  
tokenizer, in part because of the filter’s inability to eliminate stopwords prior to to-
kenization. For instance, phrases such as towards the door would not eliminate the 
stopword the prior to tokenization. Instead of creating a single bigram towards door, 
the filter would create two bigrams towards the and the door. The default stoplist, as 
well as a stemming algorithm, were chosen to reduce the dimensions of the feature 
space and improve classifier performance [1]. 

For modeling purposes, notes were stripped of punctuation, contractions were to-
kenized (i.e., hasn’t → has not), and typos and misspellings were corrected. Addi-
tionally, numbers and measurements, such as 15 and nm/nanometer were each aggre-
gated into a special token [16]. 

The best performing induced model (SVM) correctly classified 86.4% of instances.  
The SVM model was followed by naïve Bayes (83.2%), nearest neighbor (81.0%), 
and decision tree (80.6%). The highest true positive rates (SVM model) were 
achieved with the curriculum and narrative class. These two classes also comprised 
86% of all instances. While hypothesis and procedural classes performed worse on 
recall (37.5% and 50% respectively), it is worth noting that precision values were 
reasonable for both classes (54.5% and 73.3%). The kappa between the judge-
annotated corpus and the SVM classification was .77. Using the tag occurring most 
frequently, curriculum, as a baseline measure (57.1%) we find the frequency with 
which the SVM model correctly classified instances significantly outperformed this 
baseline model, χ2(5, N = 273) = 49.84, p < 0.0001. 
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6   Discussion 

Note-taking offers a view into the problem-solving processes undertaken by students.  
The study reveals that students who took hypothesis notes performed better on post-tests, 
confirming inquiry-based learning findings that it is critical that learning environments 
scaffold students’ hypothesis generation activities. The individual differences suggest 
which students are likely to take notes, a finding that can inform the design of tutorial 
interventions that encourage note-taking for students who otherwise would be unlikely to 
take notes. The results identify several correlations between note-taking and self-efficacy 
for self-regulated learning (SRL), which can provide insight into student strategy use. 

The results also suggest that we can accurately model the content of student note-
taking. Because the note-taking classifiers can operate with a high level of accuracy, 
we may be able to incorporate them into learning environments to monitor strategy 
use. The key diagnostic information they can provide offers the opportunity for learn-
ing environments to scaffold note-taking strategies that are likely to lead to desirable 
learning outcomes. 

7   Limitations 

The experiment was designed to control for time on task, allowing 50 minutes for the 
intervention. As a result of this constraint, only 49 students of the 116 CRYSTAL ISLAND 
participants finished or were working on the final problem at the end of the 50 minute 
session.  An alternative design might consider controlling for task completion. The time 
constraint may have had an adverse effect on students’ strategies to make use of note-
taking, resulting in fewer students’ taking notes or a diminished quantity of their notes.   

8   Conclusion 

Given the role of note-taking in self-regulatory learning processes, the study has de-
sign implications for intelligent tutoring systems in general and narrative-centered 
learning environments in particular. The results indicate that students taking hypothe-
sis notes regarding likely solutions to a narrative-centered science problem show 
better performance on post-test measures. Furthermore, the ability to induce models 
that accurately predict the content of student notes provides a view into student self-
regulatory processes, which can be used by tutoring systems to monitor some forms 
of student strategy use.  

The results suggest several directions for future work.  First, it will be interesting to 
extend this analysis across a larger corpus of notes.  The study reported here high-
lights the merits of note-taking within narrative-centered learning environments; fu-
ture studies should consider conditions designed to motivate note-taking and specific 
note-taking formats (e.g., [10]).  Another interesting direction for future work is con-
sidering alternative approaches to motivating students to take notes given individual 
differences.  In particular, it is important to explore motivational techniques in the 
context of note-taking that target students with approach goals in contrast to those 
with avoidance goals.  It is important to identify which motivational techniques for 
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note-taking are most effective for students with a mastery orientation in contrast to 
those with a performance orientation.  
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Abstract. The Tactical Language and Culture Training System is interactive 
environment for learning foreign language and culture, designed to help people 
quickly acquire spoken communication skills. It is a serious game, combining 
interactive game experiences as well as interactive lessons. As part of our re-
search, we wish to understand what individual learner characteristics predict 
successful learning with this approach, and investigate whether the approach 
can be improved so that a wider range of learners can learn effectively with it. 
This paper reports on an experiment, to assess which learners learn most effec-
tively with TLCTS, and attempt to identify the individual factors that predict 
successful training with TLCTS. A group of US Marines participated in a ses-
sion of focused training with Tactical IraqiTM, an Iraqi Arabic course designed 
for military use. Performance scores and interaction logs were analyzed to de-
termine which learners were most successful, and why. 

Keywords: Student Assessment, Serious Game, Language Learning. 

1   Introduction 

The Tactical Language and Culture Training System is a serious game platform that 
helps learners quickly acquire knowledge of foreign language and culture through a 
combination of interactive lessons that focus on particular skills, and interactive 
games to practice and apply these skills.  The system makes extensive use of intelli-
gent tutoring and other artificial intelligence technologies, including automated 
speech recognition, spoken dialog and animated agents, natural language process and 
learner modeling. TLCTS is very widely used. At least twenty thousand copies of 
TLCTS courses have been distributed, and tens of thousands of learners have used 
them to date. The most widely used course is the Tactical IraqiTM, which teaches col-
loquial Iraqi Arabic. 

A study by the Marine Corps Center for Lessons Learned (MCCLL) currently is 
documenting strong evidence of Tactical IraqiTM’s effectiveness. It examines the 
experience of the 2nd Battalion and 3rd Battalion, 7th US Marine Regiment (2/7 and 3/7 
Marines), who trained with Tactical IraqiTM prior to their most recent tour of duty in 
Iraq. The 3/7 attracted the attention of MCCLL because it did not suffer a single com-
bat casualty during its most recent tour of duty. In the opinion of the 3/7 officers,  
the training greatly increased the battalion’s operational capability as it enabled it to 
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operate more efficiently, with an increased understanding of the situation and better 
relationships with the local people. They felt that the Marines who trained with Tacti-
cal IraqiTM achieved a substantial level of language proficiency, so much so that they 
deserved to receive college credit for the language proficiency they gained. These 
results, while preliminary, suggest that Tactical IraqiTM training led to improved on-
the-job performance (a Kirkpatrick level 3 result) [12] and this in turn contributed to 
improved organizational outcomes (a Kirkpatrick level 4 result).  These results follow 
earlier experimental studies that provide scientific evidence that Tactical IraqiTM pro-
duces learning gains [14]. 

However, there remain a number of questions that previous research does not an-
swer. Can one predict what types of learners will benefit the most from training with 
TLCTS? What patterns of learner behavior and performance are predictive of success 
with TLCTS?  

This paper presents preliminary results from a field study attempting to address 
these questions. A group of Marines took part in a focused training session with Tac-
tical IraqiTM, attempting to identify which individuals show the most promise of learn-
ing effectively with the software. This work is an example of what Chan has referred 
to as adoption-based research [2]: research that contributes to, and is predicated upon, 
the successful adoption of effective learning systems. Studies such as these, con-
ducted with learners in authentic educational settings, are necessary to understand 
how educational software performs in practice, and is a necessary step toward transi-
tion of learning technology into regular field use. 

2   System Overview 

The following is brief overview of some of the main capabilities that TLCTS training 
systems provide. More detail may be found elsewhere [9, 10, 11]. 

Figure 1 shows images of TLCTS trainers in use. Current systems run on Windows 
PCs equipped with a headset microphone. Each course includes a Skill Builder, con-
sisting of a set of interactive lessons, each of which focuses on communicative tasks. 
The top left of Figure 1 shows a Tactical Language learning lab installed for the U.S. 
Army 3rd Infantry Division at Ft. Stewart, GA. The top right of Figure 1 shows a typi-
cal Skill Builder lesson page. The learner can hear recordings of example phrases, and 
practice saying those phrases. The integrated speech recognizer, trained on language 
learner speech, gives the learner feedback as to whether or not their speech was intel-
ligible and matched the target phrase. Learners practice in a series of exercises that 
progressively prepare learners for employing their language and cultural knowledge 
in conversational settings. 

Two kinds of interactive games are included in TLCTS training systems. The bot-
tom right of Figure 1 shows the Arcade Game in Tactical PashtoTM, in which learners 
navigate their characters through a town by giving spoken commands in Pashto. The 
bottom left shows the Mission Game in which learners communicate with non-player 
characters using speech and gesture in order to carry out a mission.  In this scenario, 
from Tactical IraqiTM, the player is instructing Iraqi non-player characters in the 
proper procedure for manning a security checkpoint. 
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Fig. 1. Images from the Tactical Language and Culture Training System (TLCTS) 

TLCTS users receive tutorial feedback in the Skill Builder on their use of lan-
guage. Depending on the type of exercise, the system can give feedback on pronun-
ciation, morphological and grammatical forms, word choice, or cultural pragmatics, 
as in this example. In the games, on the other hand, the use of tutorial feedback is 
limited, as it was found to interfere- with game play. Instead, in the Mission Game 
feedback is integrated into the responses of the non-player characters in the game. 
The game display signals whenever the character’s attitude changes, and the changes 
in attitude can influence the way the character responds to the learner. 

3   Research Opportunity and Research Questions 

The US Marine Corps Training and Education Command (TECOM) is currently con-
ducting a multi-year study, called SEPTR (Simulation Enhanced Pre-deployment 
Training and Rehearsal) to evaluate the use of simulation-based training in preparing 
units for deployment overseas. The goals of the study are to test and validate existing 
training simulations, identify opportunities for improvement of those systems, and 
identify requirements for future training systems. The study is also expected to de-
velop model methods for integrating simulation-based training effectively into train-
ing programs. These methods may then be disseminated across the Marine Corps, 
leading to the adoption of computer simulations as a standard method for training. 

Because of TLCTS early success, TECOM selected it for inclusion in the SEPTR 
evaluations. The 2/7 Marines agreed to participate in SEPTR, and agreed to include 
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TLCTS into its current predeployment training program. However like any unit pre-
paring for deployment overseas, the 2/7 has many skills to train, and very little time to 
complete the training. The battalion therefore decided to organize a “masters pro-
gram”, in which two Marines per squad would receive intensive training in language 
and culture. The challenge then was to quickly identify the Marines that were likely to 
benefit the most from TLCTS training, and enroll them in an intensive program of 40 
or more hours of training with Tactical IraqiTM. 

The standard method for assessing language aptitude is to employ a language apti-
tude test, e.g., the Defense Language Aptitude Battery (DLAB) used to determine 
who may pursue training as a military linguist. Such language aptitude tests are only 
moderate predictors of learning outcomes, typically yielding correlations of between 
0.4 and 0.6 with learning outcomes as determined by a variety of outcome measures 
[4]. This is partly because other factors such as motivation influence language learn-
ing outcomes [5], but it also may be because current aptitude batteries may not test 
the full range of abilities relevant to language learning. In fact, the DLAB does not 
engage subjects in speaking the language, or using it for face-to-face communication 
in culturally appropriate ways. In contrast, TLCTS places particular emphasis on face-
to-face communication in simulated social encounters. It is therefore not clear how 
strong a predictor the DLAB would be for the skills that TLCTS trains. 

Therefore, instead of DLAB we decided to use a sample of material from Tactical 
IraqiTM itself to assess likelihood for success in the masters training program. All 
candidate Marines would complete several hours of beginner-level training with 
TLCTS. The curriculum selected for this assessment would introduce the candidates 
to aspects of the phonology, morphology, syntax, and pragmatics of Iraqi Arabic, as 
well as non-verbal gestures and other cultural information relevant to face-to-face 
encounters with people in Iraq. We would then collect and analyze the data from the 
training sessions, including quiz scores, estimates of learner skill mastery, interaction 
logs, and speech recordings. We would also collect background information on each 
candidate, as well as self-assessments of their interest and motivation to learn Arabic. 
These data would allow us to answer the following questions: 

 

1. Which candidates were most successful in their training? 
2. Which characteristics of individual learners were conducive to success? 
3. What patterns of training behavior led to success? 
 

The choice of a version of the training system itself an assessment tool is unusual, 
but affords a number of advantages. It tests a wide range of cognitive abilities relevant 
learning language, wider than what is typical of language aptitude tests. It gives us an 
opportunity to determine whether trainees are able to assess their own language per-
formance, plan their learning activities to achieve mastery, and recognize when they 
have successfully mastered the target language skills. Meanwhile, by taking part in 
the assessment the candidates are learning language and cultural skills that are poten-
tially valuable to the trainees. This enhances motivation, both at the individual level 
(individual candidates are more likely to have intrinsic motivation to learn the lan-
guage skills and do well) and at the organizational level (the officers in the battalion 
are more willing to set aside training time for the candidates to participate, and are 
more likely to have interest in successful training outcomes). 
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The data collected from this assessment, as well as from the training sessions of the 
candidates who are ultimately selected to complete the masters training program, gave 
us the opportunity to further investigate some research questions that are of concern to 
our research. One is the following: 

 

4. Are game-based learning techniques useful in promoting learning? 
 

Although games have attracted significant interest in educational circles, evidence 
of their effectiveness is mixed. This has led some educational researchers to question 
their value. Distractive elements [3] and learning-unrelated reward systems [13] are 
blamed for lowering productivity of learning activities. Undesired behaviors were 
reported where learners tried to use “shortcuts” to succeed in games by exploring the 
system properties instead of the learning materials [1]. Other researchers are optimis-
tic about learning by playing games, but suggest games should be paired with tradi-
tional classroom curriculums and practices [6]. Previous studies and experience with 
TLCTS courses has also produced mixed results. Reports from TLCTS users indicate 
that they consider the game and simulation elements of TLCTS courses to be impor-
tant and without them TLCTS would not have been chosen to be part of the SEPTR 
study. However an evaluation of an earlier version of Tactical IraqiTM indicated that 
trainees actually rated the Skill Builder more highly than the game components [14]. 
We hypothesized that the subjects in the earlier study did not receive a proper orienta-
tion briefing regarding proper use of the learning software, and that the content focus 
of the game experiences needed to be adapted to make it more relevant to their jobs 
and missions. We wished to see whether better initial orientation, and recent im-
provements to the Mission Game, would result in improved attitudes toward the game 
experiences. We also wished to collect data on learner interaction with the games, to 
see whether there are opportunities to further improve the structure of the game ex-
periences, and/or incorporate automated guidance and feedback, to help learners make 
most productive use of the games. 

4   Study Procedure 

The 2/7 officers selected 49 Marines to take part in the initial assessment, and organ-
ized them into two groups of approximately 25. The session proctor gave an initial 
twenty-minute orientation, demonstrated the software, and explained how to use it for 
training. The proctor told the candidates to strive to master the material, reviewing 
and repeating the learning materials, exercises, and quizzes as necessary. 

Candidates then spent ten minutes completing a short questionnaire. The question-
naire asked whether the candidates had been deployed to Iraq before, if so how many 
times, and how motivated they were to learn Arabic. These questions were asked 
because motivation has previously been found to affect language learning outcomes 
[2], and in the case of Tactical IraqiTM previous evaluations showed that trainees who 
had previously been deployed to Iraq had higher motivation to learn Arabic [8]. Can-
didates were asked to report their background information that reveal their maturity, 
experience, and/or job responsibilities, and training experience, which we hypothe-
sized might influence how the candidates learn. The candidates then trained for ap-
proximately 45 minutes in the Tactical IraqiTM Skill Builder. They were directed to 
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focus on four lessons: Getting Started (a tutorial), Meeting Strangers (vocabulary, 
phrases and etiquette relating to meeting strangers, possessive morphological end-
ings), Introducing Your Team (Arabic terms for military ranks, phrases and etiquette 
relating to making introductions, definite articles, demonstratives, grammatical gender 
and agreement), and Pronunciation Lesson 1 (easy Arabic consonants, long vs. short 
vowels, single vs. double consonants). The proctor provided the candidates with occa-
sional technical assistance, but otherwise left them to train on their own. After a 10 
minute break, the candidates were then directed to resume training in the Skill Builder 
for another 45 minutes. They were then directed to spend twenty minutes in the Mis-
sion Game, and then take another ten-minute break. Finally, the candidates completed 
another 30 minutes of Skill Builder training. 

5   Study Results 

Of the 49 participating Marines, one was excluded from the analysis presented here 
because he did not complete the survey questionnaire. Each subject was assigned a 
score between 1 (low) and 5 (high) for his performance in each of the three learning 
environments: Skill Builder, Arcade Game, and Mission Game. The Skill Builder 
scores were assigned according to the number lessons attempted, the number of les-
sons completed with a high quiz score (80% or better), and the number of individual 
language and cultural skills that the learner model indicated were fully mastered. The 
Arcade Game scores were assigned according to the number of levels played, com-
pleted, and the number of hints requested by the learner to complete the level. Simi-
larly, the Mission Game scores were assigned according to the number of scenes 
played, the number of scenes completed, and the number of hints the learner used to 
complete the scene. Overall performance scores were computed based on the envi-
ronment performance scores and time spent within each learning environment, using 
the following formula: 

∑∑ ×=
env

env
env

envenv TScoreToreformanceScOverallPer /)( , (1) 

where env represents the three learning environments, envT is the time spent in a par-

ticular environment, and envScore is the assigned score for this environment. Note 

that the overall performance scores are continuous values computed out of ordinal 
environment performance scores.  

5.1   General Results: Which Candidates Were Most Successful? 

Certain observations were recorded during the proctoring sessions. First, although the 
candidates were instructed to focus on the Skill Builder lessons, some trainees still 
remained in the two game environments that interested them until the proctor specifi-
cally directed them back to the lessons. Secondly, some trainees left early for various 
reasons. Thirdly, some trainees who had used TLCTS before tended to skip Skill 
Builder lessons and devoted more of their training time to the game environments. 
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Therefore, actual training time (as determined from the log data) had a relatively high 
variance (time in Skill Builder: M = 1.08 hrs, SD = 0.72 hrs; time in Mission Game: 
M = 0.92 hrs, SD = 0.55 hrs; time in Arcade Game: M = 0.36 hrs, SD = 0.36 hrs). 
And this in turn resulted in high variance in performance scores in each environment 
(Skill Builder score: M = 2.92, SD = 1.46; Mission Game score: M = 2.92, SD = 1.49; 
Arcade Game score: M = 2.48, SD = 1.38). 

Thus we needed to compute a summary score that can fairly reflect the trainees’ 
overall performance. We hypothesized that the result the trainee could achieve in a 
particular learning environment was proportional to the time he has spent in this envi-
ronment. Therefore, the aforementioned method (1) was introduced to compute the 
overall performance score and is expected to counteract the noise that perturbs the 
accuracy of otherwise simply computed average score that would be used as the over-
all performance score. We argue this method is valid because language and culture 
skills taught/practiced in these environments are closely related. For example, we 
regard those who invested most of their training time in one environment and accom-
plished great results as good learners even though they might have scored low in other 
environments due to time constraints. On the other hand, if a trainee evenly distrib-
uted his time but only does averagely in each environment, we view this trainee as a 
mediocre performer. 

As a result, the average overall performance score for this population (N=48) is 
close to the medium category (M=2.91, SD=1.13, %95CI = [2.585, 3.241]). We found 
10 most successful candidates who achieved high performance scores (>4.0). 1 out of 
10 scored 5 in all the three environments; 3 out of 10 scored 5 in two environments, 
and the rest 6 scored 5 in one environment. The best candidates spent on average 2.5 
hours pure training time with the system (SD = 0.43 hrs). 

5.2   Which Individual Characteristics Were Conducive to Success? 

The 11 characteristics we examined are categorized into 4 groups. The personal trait 
category includes age, education, self-reported motivation to learn Arabic language 
and culture, and experience of training with TLCTS before; the military experience 
category includes rank, time in service, experience of deployment to Iraq; the linguis-
tic category includes language spoken other than English and language formally 
studied; the music ability category includes self-rated musical talent, ability to sing or 
play instrument, and experience of formal music training. 

T-tests show that 32 trainees who identified their motivation greater or equal to 4 
outperformed the 14 trainees having motivation below 4 (t(44) = 2.012, p = 0.50). 
Older trainees (>=20 year old) scored lower than younger ones (<20), but the differ-
ence is not statistically significant (t(46) = -1.491, p = 0.14). No significant difference 
was found for education, either. The 21 trainees who received some college education 
had performance close to the 27 trainees who only received high school degrees 
(t(45.75) = -0.383, p = 0.715). Interestingly, former TLCTS trainers did not have 
superior performance than fresher users do. Rather, they scored a little lower than 
those who have never trained with TLCTS before (t(46) = -0.123, p = 0.902) as they 
would be expected to. The proctor observed that some former trainees devoted little 
effort to the Skill Builder lessons and played a lot in the game environment, but they 
were not able to complete the entire game, probably because their language skills had 
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decayed. Additionally, it also could be that some of the former trainees did not learn 
much in the previous experience, or only spent a little time on the system. Finally, 
among the former trainees there was a cluster of trainees who had both very low mo-
tivation and performance. 

In the military experience category, rank did not effect the training results, as the 
average scores for three groups of different ranks are approximately the same (Rank > 
E-3 Score: M = 2.88, SD=1.46; Rank = E-3 Score: M = 2.91, SD = 1.17; Rank = E-2 
Score: M = 2.95, SD = 1.04). However, the group with less than one year of time in 
service and the group with more then one year had statistically different performance 
(t(45) = 1.961, p = 0.056). As for experience of deployment to Iraq, there is no sig-
nificant finding between the group with the experience and the group without (t(44) = 
-.822, p = 0.416).  

Those who had studied another foreign language performed at a level that was 
close to those who did not (t(46) = 0.115, p = 0.909).In the language experience cate-
gory, only 4 trainees speak a language other than English, so it is impossible to draw 
conclusions about the role of foreign language fluency.  

In the music ability category, no significant effect is found. Trainees who rated 
their music talents higher seemed to score slightly lower than those who identified 
themselves as “I have no talent in music” (t(46) = -0.551, p = 0.584). Similarly, train-
ees who reported practicing singing or playing instrument were outperformed by their 
non-practicing counterparts (t(45) = -1.091, p = 0.281). However, those having taken 
formal music training scored a little higher (t(45) = 0.430, p = 0.669). But those re-
sults are not statistically significant to verify hypotheses. 

In summary, characteristics such as motivation and time in service seem promising 
to be conductive to success. We do not find significant effect with other characteris-
tics. The findings are reinforced when we take a look at the group of those successful 
candidates. We found out among the 10 best trainees, 90% reported high motivation, 
and 70% served in military more than 1 year. T-tests on the best candidate group and 
the other trainee group also show that motivation has significant effects on the overall 
performance (t(44) = 2.381, p = 0.021), while the effect of time in service seems not 
statistically significant (t(9.07) = 1.036, p = 0.372). 

5.3   What Patterns of Training Behavior Led to Success? 

We examined the activity patterns of the successful candidates against the rest of 
participants. It was found that successful learners did particularly well in Skill Builder 
lessons, compared with the rest of the trainees (quizzes completed: t(9.65) = 2.654, p 
= 0.025; skill mastered: t(46) = 2.691, p = 0.100). We believe that this provided them 
with good foundations to be able to apply the language and culture skills they learned 
from the lessons to the other game environments. In the Arcade Game, 60% of them 
never requested a single hint to complete a level, and therefore were never penalized 
by minus points because of hint requests. 

Log files show that they also performed in-game learning. For instance, 60% of 
them used this strategy: when playing the mission scenes, they first heavily used the 
hint facility to go through them, and then replayed the scenes and finally completed 
them The best performer group requested 59.10 mission game hints on average,  
compared with the other performer group which used only 20.97 hints on average 
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(t(9.87) = 2.382, p = 0.039). As we can see the successful learners used different 
strategies in the Mission Game and Arcade Game. The difference between these two 
games explains the distinction of their behaviors. In the Mission Game even though 
the aide agent can offer hints on the expected speech in English and Arabic, the 
learner would not be able to memorize it if he/she did not build up enough skill level 
from the Skill Builder lessons due to the complexity of the speech. Therefore, they 
need to request hints often. In the Arcade Game, especially the beginner levels, ex-
pected utterances are relatively short and simple, and therefore medium-leveled skills 
can be directly applied. 

6   Study Changes and Future Work 

After the assessment data described in this article were collected, the 2/7 Marines 
received word that they might have to deploy to Afghanistan instead of Iraq. The 2/7 
therefore called a halt to the Iraqi assessment, and made plans to initiate it again with 
the Dari language spoken in Afghanistan. This is an example of the challenges inher-
ent in conducting in vivo evaluations of learning software in the context of training 
practice. Such evaluations have greater external validity than studies in controlled 
laboratory settings, but they must adapt to the constraints of the organization’s train-
ing activities. 

Our future work includes the plan to collect more data from other Marines units to 
find out whether they were successful in their training. We also plan to observe their 
final live training exercise, in which they must interact with Iraqi role players. This 
will help to determine how effective their training really was. 

7   Conclusions 

A critical lesson we learnt from design of game-base training is how to design learn-
ing environments to optimize pacing. ITS research doesn't often consider the question 
how to keep learners engaged for extended periods. This of course is a key issue for 
computer games, which are typically designed specifically to promote extended play. 
The experience with Tactical Iraqi shows that this is a critical issue, and the game 
elements help to maintain a sustainable learning pace. 

One of the attractions of game-based learning is that games promote motivation. 
Our results indicate that motivation is overall a key predictor of learning success. 
However the experience shows that games also motivate learners to engage in learn-
ing of their choice, rather than follow a designated program of instruction. We con-
clude from this that we need to provide learners with that freedom of choice, yet we 
should also provide learners advice of what to work on next, to make sure that they 
are being productive at all times. And that in turn requires instructional planning ca-
pability that adapts to the learner's choices, and a learner modeling capability that is 
works robustly regardless of the learner's choices. 
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Abstract. Within the intelligent tutoring systems community, narrative is emerging 
as an effective medium for contextualizing learning. To date, relatively few empiri-
cal studies have been conducted to assess learning in narrative-centered learning 
environments. In this paper, we investigate the effect of narrative on learning ex-
periences and outcomes. We present results from an experiment conducted with 
eighth-grade middle school students interacting with a narrative-centered learning 
environment in the domain of microbiology. The study found that students do ex-
hibit learning gains, that those gains are less than those produced by traditional in-
structional approaches, but that the motivational benefits of narrative-centered 
learning with regard to self-efficacy, presence, interest, and perception of control 
are substantial. 

1   Introduction 

Narrative is the subject of increasing interest within the intelligent tutoring systems 
community. Researchers have begun to develop narrative-centered learning environ-
ments (NLEs) that combine story contexts and pedagogical support strategies to deliver 
effective, engaging educational experiences. Contextualizing learning within narrative 
affords the use of artificial intelligence techniques that tailor narrative and educational 
content to students’ actions, affective states, and abilities. Drawing on an interdisciplinary 
body of work, including intelligent tutoring systems, embodied conversational agents, 
and serious games, these environments offer the promise of adaptive, motivating learning 
experiences to students. NLEs are currently under investigation in a range of domains, 
including military soft-skills training [7,15], anti-bullying education [1], health interven-
tion education [11], and science learning in microbiology and genetics [12]. 

By incorporating learning into narrative-based, virtual environments, researchers 
hope to tap into students’ innate facilities for crafting and understanding stories. Con-
textualized learning experiences are known to encourage regulated learning behavior 
[14].  Narrative is also well suited to alternative learning paradigms such as guided 
discovery and inquiry-based learning. Leveraging stories’ ability to draw audiences 
into plots and settings, NLEs can introduce novel perceptual, emotional, and motiva-
tional experiences, as well as establish connections between narrative content and 
pedagogical subject matter in young learners [19]. Further, NLEs can effectively 
support the factors shown to contribute to student levels of motivation. Such contex-
tual experiences influence student learning and motivation [8].  
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There is a strong theoretical foundation and several active projects that support this 
line of work [1], but there has been limited empirical investigation of learning outcomes 
within narrative-centered learning environments.  Because of the challenges inherent in 
developing and deploying these types of systems, learning outcome evaluations in previ-
ous work has largely been subjective or preliminary in scope. This papers seeks to pro-
vide an empirical basis for the evaluation and investigation of NLEs.  It presents results 
from an empirical study conducted with eighth-grade middle school students interacting 
with an “early generation” NLE, CRYSTAL ISLAND.  

2   Related Work 

Much of the work on NLEs has focused on developing AI-based approaches that provide 
rich, adaptive narrative-based learning experiences and respond appropriately to student 
actions in the environment. FearNot! is a character-driven learning environment for the 
domain of anti-bullying social education [1]. The environment emphasizes autonomous, 
highly affective characters that foster empathetic relationships with students, who in turn 
offer coping suggestions to the victimized virtual character. FearNot! has been the sub-
ject of several small- and large-scale studies, although the subjective nature of the do-
main renders objective, learning-gain results impractical. Carmen’s Bright IDEAS seeks 
to teach health intervention skills to mothers of pediatric cancer patients [11].  The envi-
ronment combines autonomous characters with director and cinematographic agents in 
order to provide a dramatic story that satisfies pedagogical goals. Students control the 
main character’s (Carmen’s) decisions as she copes with the stresses and problems inher-
ent in caring for an ill child. Carmen’s Bright IDEAS has been the subject of clinical 
trials, but reported results have also been limited. 

Intelligent NLEs have recently been developed for military soft-skills training, par-
ticularly in leadership and language learning scenarios. IN-TALE is an interactive narra-
tive system that integrates autonomous character behaviors and an Automated Story 
Director to provide dramatic simulation experiences for social and cultural leadership 
training [15]. The system draws upon previous work in narrative planning and believable 
agent behavior to balance narrative coherence and user-agency in the simulation envi-
ronment. The Tactical Language and Culture Training System (TLCTS) is a story-
centric, serious game designed for language learning [7]. TLCTS use a combination of 
interactive lessons and games to train students in spoken and non-verbal communication, 
as well relevant cultural knowledge. Over the course of the last several years, TLCTS has 
transitioned into widespread use by the US military and other groups.  However, large-
scale, summative empirical results for learning outcomes have not yet been presented for 
either IN-TALE or TLCTS [6]. 

Despite the presence of several promising and successful examples of NLEs, empiri-
cal evaluation remains limited. We seek to extend preliminary results in narrative-
centered learning by reporting on a controlled experiment assessing learning outcomes 
between several versions of a NLE and a more traditional, didactic format.   
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3   Crystal Island 

CRYSTAL ISLAND is a narrative-centered learning environment built on Valve Software’s 
Source™ engine, the 3D game platform for Half-Life 2. CRYSTAL ISLAND features a 
science mystery set on a recently discovered volcanic island. The curriculum underlying 
CRYSTAL ISLAND’s science mystery is derived from the North Carolina state standard 
course of study for eighth-grade microbiology. Students play the role of the protagonist, 
Alyx, who is attempting to discover the identity and source of an unidentified infectious 
disease plaguing a newly established research station. The story opens by introducing the 
student to the island and members of the research team for which the protagonist’s father 
serves as the lead scientist. Several of the team’s members have fallen gravely ill, includ-
ing Alyx’s father. Tensions have run high on the island, and one of the team members 
suddenly accuses another of having poisoned the other researchers. It is the student’s task 
to discover the outbreak’s cause and source, and either acquit or incriminate the accused 
team member.   

CRYSTAL ISLAND’s setting includes a beach area with docks, a large outdoor field 
laboratory, underground caves, and a research camp. Throughout the mystery, the student 
is free to explore the world and interact with other characters while forming questions, 
generating hypotheses, collecting data, and testing hypotheses. The student can pick up 
and manipulate objects, take notes, view posters, operate lab equipment, and talk with 
non-player characters to gather clues about the source of the disease. During the course of 
solving the mystery, the student is minimally guided through a five problem curriculum.  
The first two problems focus on pathogens, including viruses, bacteria, fungi, and para-
sites. The student gathers information by interacting with in-game pathogen “experts” 
and viewing books and posters in the environment. In the third problem, the student is 
asked to compare and contrast her knowledge of four types of pathogens. In the fourth 
problem, the student is guided through an inquiry-based hypothesis-test-and-retest prob-
lem.  In this problem she must complete a “fact sheet” with information pertaining to the 
disease inflicting members of the CRYSTAL ISLAND research team. Once the “fact sheet” 
is completed and verified by the camp nurse, the student completes the final problem 
concerning the treatment of viruses, bacteria, fungi, and parasites, and selects the appro-
priate treatment plan for sickened CRYSTAL ISLAND researchers.  The story and curricu-
lum are interwoven throughout the  interactive experience.     

4   Method 

4.1   Participants 

There were 88 female and 91 male participants varying in age and race.  Approximately 
2% of the participants were American Indian or Alaska Native, 5% were Asian, 29% 
were Black or African American, 58% were Caucasian, 6% were Hispanic or Latino, and 
6% were of other races. Participants were all eighth-grade students ranging in age from 
12 to 15 (M = 13.27, SD = 0.51).  The students had recently completed the microbiology 
curriculum mandated by the North Carolina state standard course of study before receiv-
ing the instruments, tests, and interventions of this experiment. 
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4.2   Materials and Apparatus 

The pre-experiment paper-and-pencil materials for each participant were completed one 
week prior to intervention.  These materials consisted of a researcher generated CRYSTAL 

ISLAND curriculum test, demographic survey, Achievement Goals Questionnaire [4], 
Self-Efficacy for Self-Regulated Learning scale (SESRL) [3], Science Self-Efficacy 
scale, modified from [13], and Immersion Tendencies Questionnaire [21]. The CRYSTAL 

ISLAND curriculum test consists of 23 questions created by an interdisciplinary team of 
researchers and was approved for language and content by the students’ eighth-grade 
science teachers. Elliot and McGregor’s Achievement Goals Questionnaire is a validated 
instrument which measures four achievement goal constructs (mastery-approach, per-
formance-approach, mastery-avoidance, and performance-avoidance goals) [4]. Ban-
dura’s Self-Efficacy for Self-Regulated Learning scale [3] consists of 11 items rated by 
participants on a 7-point Likert scale. Witmer and Singer developed and validated the 
Immersive Tendencies Questionnaire (ITQ) to measure individual predispositions to-
wards presence experiences [21]. The ITQ consists of three subscales: activity involve-
ment tendency, activity focus tendency, and video game playing tendency. Participants 
indicate their level of tendency for each item on a 7-point Likert scale. Witmer and 
Singer found individual tendencies, as recorded by the ITQ, to be predictive of presence 
(discussed in Section 6.2) [21].  

Post-experiment materials were completed immediately following intervention.  These 
materials consisted of the same CRYSTAL ISLAND curriculum test, Achievement Goals 
Questionnaire [4], Science Self-Efficacy scale, an interest scale [19], and the Presence 
Questionnaire [21]. The interest scale was adapted from those used by Schraw to capture 
differences across groups and to examine within-subject relationships with learning out-
comes [19].  Participants’ presence experience was captured with the Presence Question-
naire (PQ) developed and validated by Witmer and Singer [21]. The PQ contains several 
subscales including involvement/control, naturalism of experience and quality of the 
interface scales.   

5   Design and Procedure 

5.1   Design 

The experiment randomly assigned the entire eighth grade population of Centennial 
Campus Middle School in Raleigh, North Carolina to four groups: holdout, CRYSTAL 

ISLAND narrative condition, CRYSTAL ISLAND minimal-narrative condition, or Power-
Point condition (see Table 1 for condition breakdown). Participants in the holdout condi-
tion did not receive an intervention and served as the control group for this experiment 
and planned longitudinal studies. In the remaining three conditions, students received an 
intervention consisting of the CRYSTAL ISLAND microbiology curriculum delivered in 
one of three formats. The CRYSTAL ISLAND narrative condition supplemented the  
curriculum with the full CRYSTAL ISLAND narrative, including a poisoning scenario, 
character back-stories, and rich character personalities. The CRYSTAL ISLAND minimal-
narrative condition supplemented the curriculum with the minimal story required to sup-
port the curriculum. In this condition, the story strictly consisted of research members 
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falling ill and the request for the student to identify the mysterious illness.  The minimal-
narrative condition did not include the poisoning storyline, character back-stories, or 
explicit character personality. The PowerPoint condition consisted of a narrated Power-
Point presentation of the same curriculum that was used in CRYSTAL ISLAND. Much of 
the text and images of the slides actually appear in CRYSTAL ISLAND in the form of 
books, posters, and character dialogue.  The PowerPoint condition did not contain a cor-
responding storyline. 

Table 1. Subject population by condition 

 

5.2   Participant Procedure 

Participants entered the experiment room having completed the pre-test and instrumenta-
tion one week prior to the intervention. Participants were first instructed to review 
CRYSTAL ISLAND instruction materials. These materials consisted of the CRYSTAL 

ISLAND back-story and task description, a character handout, a map of the island, and a 
control sheet. Participants were then further directed on the controls via a presentation 
explaining each control in detail.   

Participants in the three intervention conditions (narrative, minimal-narrative, and 
PowerPoint) were given 50 minutes to work on solving the mystery.  Solving the mystery 
consisted of completing a number of goals including learning about pathogens, viruses, 
bacteria, fungi, and parasites, compiling the symptoms of the researchers who had falled 
ill, recording features of hypothesized diseases causing the CRYSTAL ISLAND illness, 
testing a variety of possible sources, and reporting the solution (cause and source) to the 
camp nurse to design a treatment plan. 

Immediately after solving the science mystery of CRYSTAL ISLAND, or 50 minutes of 
interaction, participants completed the post-experiment questionnaires. First to be com-
pleted was the CRYSTAL ISLAND curriculum test, followed by the remaining post-
experiment questionnaires described above. Completion of post-experiment materials 
took no longer than 35 minutes for participants.  In total, sessions lasted 90 minutes. 

6   Results 

6.1   Learning Outcomes 

Investigating learning in CRYSTAL ISLAND as measured by the difference of post-test and 
pre-test scores, we find that, overall, students exhibited learning gains (learning gain, M = 
0.07, SD = 0.14).  On average, students answered 1.6 (SD = 3.3) more questions cor-
rectly on the post-test than on the pre-test.  Matched pairs t tests (comparing post-test to  
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pre-test scores) indicate that 
these learning gains are signifi-
cant overall, t(149) = 5.51, p < 
0.0001, and significant (al-
though weakly significant in 
the narrative condition) within 
each condition (narrative con-
dition: t(58) = 1.43, p = 0.07, 
minimal-narrative condition: 
t(55) = 2.97, p < 0.005, and the 
PowerPoint condition: t(34) = 
5.74, p < 0.0001).  Further, the 
learning gains in each condition 
were significantly different, 
F(2, 149) = 10.38, p < 0.0001.  

There was no significant difference among pre-test scores between conditions, F(4, 179) 
= 0.94, p = 0.44.  The largest learning gains occurred in the PowerPoint condition (M = 
0.15, SD = 0.15), followed by learning gains in the minimal-narrative condition (M = 
0.06, SD = 0.14), and the lowest learning gains in the narrative condition (M = 0.02, SD 
= 0.11).  Students in the hold out condition did not take a post-test, and therefore no 
learning gain results are available for that condition.  The CRYSTAL ISLAND curriculum 
test consisted of 23 items leading to a learning gain of 0.043, which equates to getting 
one additional question correct in the post-test compared to the pre-test.  Thus, on aver-
age, students in the PowerPoint condition answered 3.5 more questions correctly (SD = 
3.6) on the post-test, with participants in the minimal-narrative and narrative conditions 
answering 1.3 (SD = 3.2) and 0.5 (SD = 2.7) more questions correctly, respectively.  
Learning gains are depicted in Figure 1.  If we consider only the students who completed 
the CRYSTAL ISLAND mystery in the narrative condition, we find no significant difference 
between post-test scores with the PowerPoint condition, F(1, 48) = 0.32, p = 0.58.  How-
ever, the learning gains in the PowerPoint condition were somewhat significantly better 
than the students who finished the CRYSTAL ISLAND narrative experience, F(1, 48) = 
4.09, p = 0.05. 

Interestingly, there was an effect of gender on learning in CRYSTAL ISLAND.  When we 
consider only the problems on the CRYSTAL ISLAND curriculum test for which students 
were exposed to (not all students solved the CRYSTAL ISLAND mystery and completed all 
problem-solving activities), we find gender played a significant role, F(1, 114) = 4.44, p 
= 0.037.  In CRYSTAL ISLAND, on average, male students got an additional 1.3 problems 
correct (SD = 2.4) on post-tests compared to pre-tests, while female students got an addi-
tional 0.4 problems correct (SD = 1.7).  

6.2   Presence Outcomes 

Presence contributes to the goal of transparency in technology-mediated interactions.  
Although there has been substantial debate on formal definitions, there is a general con-
sensus that presence describes a user’s sense of “being there” when interacting with a 
mediated environment [5, 17].  Presence has been alternatively defined as “the perceptual 
illusion of nonmediation” [9], as well as “the subjective experience of being in one place 

 

Fig. 1. Learning gains (pre- to post-test) by condition 
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or environment, even when one is physically situated in another” [21].  Witmer and 
Singer further distinguish presence from involvement.  Involvement refers to the degree 
of attention and meaning devoted to some set of stimuli [21].  Here we report on stu-
dents’ reported sense of presence while interacting in the CRYSTAL ISLAND storyworld 
(narrative and minimal-narrative conditions only). 

Narrative had a significant effect on student presence, F(1, 115) = 4.23, p = 0.04.  
Higher presence was reported in the narrative condition (M = 147.35, SD = 30.6) com-
pared to the minimal-narrative condition (M = 136.5, SD = 25.8).  Gender was also found 
to have a weakly significant effect on presence, F(1, 115)  = 2.87, p = 0.09, with females 
reporting higher levels of presence (M = 146.9, SD = 26.1) than males (M = 137.9, SD = 
30.5).  Students reporting high-levels of interest (as gauged by the interest scale modified 
from [19]) reported higher levels of presence than students with low-levels of interest.  
There was a significant correlation of interest with student presence, r(114) = 0.36, p = 
0.0001, and several of the PQ’s subscales, including: involvement/control (r(114) = 0.42, 
p < 0.0001), naturalism of experience (r(114) = 0.27, p = 0.003), and resolution (r(114) = 
0.29, p = 0.002).  Self-efficacy and presence also had a significant interaction.  Students 
with high science efficacy reported higher levels of presence than less efficacious stu-
dents, r(114) = 0.35, p = 0.0001.  Likewise, students reporting greater levels of involve-
ment and control (a PQ subscale) also reported higher science efficacy, r(114) = .28, p = 
0.002. 

Student goal orientation was found to affect presence as well.  In particular, there was 
a significant effect of mastery approach on presence in both CRYSTAL ISLAND conditions, 
F(1, 114) = 8.65, p = 0.004, and performance avoidance on presence, F(1, 114) = 4.59, p 
= 0.034.  Mastery oriented students reported greater levels of presence than performance-
oriented students.  Students who sought to avoid negative performance outcomes also 
reported higher levels of presence than students who did not seek to avoid negative per-
formance outcomes.    

7   Discussion 

The experiment found that students who interacted with the CRYSTAL ISLAND environ-
ment achieved significant learning gains.  While pre- to post-test performance differences 
were greatest in the PowerPoint condition, the findings support the hypothesis that stu-
dents received clear motivational benefits from interacting with CRYSTAL ISLAND.  
Further, student levels of presence had significant relationships with factors relevant to 
learning and motivation, including self-efficacy, interest, involvement/control, and goal 
orientation.  While learning gains were higher in the minimal-narrative condition, stu-
dents reported higher levels of presence in the narrative condition, carrying promising 
implications for motivation.    

Drawing upon the experiment’s learning gain results, it is possible that the narrative 
condition’s additional story content overloaded cognition, enabling students to learn 
more without the supplemental storyline on proximal assessment.  An important direction 
for future work is conducting longitudinal studies to determine the the long-term effects 
of narrative on learning and inform scaffolding strategies for reducing cognitive load.   
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The study found significant effects of presence, with higher reported presence in the 
narrative condition.  With the benefits of efficacious learners having been widely demon-
strated [2,22], it is important to note that higher presence levels also lead to higher levels 
of reported self-efficacy.  If further study can identify the narrative factors that contribute 
to motivation and efficacy, we can enhance the ability of NLEs to support student prob-
lem solving, increase student effort, persistence, and resilience when confronted with 
failure, and raise the levels of success students are likely to achieve [2, 18, 22]. 

When considering the Involvement/Control subscale of the Presence Questionnaire 
[21], the findings indicated that high levels of Involvement/Control are correlated with 
higher reports of self-efficacy.  Perception of control is known to have motivational bene-
fits [10].  As a factor contributing to presence, involvement/control suggests probable 
relationships between presence and motivation.  The findings of this study highlight the 
potential for positive connections between narrative and motivation that deserve further 
investigation. Further exploration of these relationships will contribute to a deepened 
understanding of the narrative factors that relate story content, presence, learning, moti-
vation, and self-efficacy, as well as our ability to regulate these factors in an effort to 
support pedagogical objectives. 

The study also found an effect of student goal orientation on perceptions of presence 
among the middle school participants.  The gaming environment, on which CRYSTAL 

ISLAND is built, may have had an effect on performance-oriented students, encouraging 
them to attempt to solve the mystery quickly.  Meanwhile, it seems that mastery oriented 
students, who tend to measure accomplishments by learning successes, reported a greater 
perception of presence.  It is probable that mastery oriented students were more likely to 
take their time throughout their interactions, focusing their attention on the content of 
learning environment so that their presence experience was heightened. 

8   Limitations 

The experiment was designed to control for time on task, allowing 50 minutes for the 
intervention.  As a result of this constraint and the amount of content in CRYSTAL 

ISLAND, only 49 of the 116 CRYSTAL ISLAND participants finished or were working on 
the final problem at the end of the 50 minute session.  An alternative design, which will 
be adopted in future work, would consider controlling for task completion.  Another 
limitation is that this study, at the time of writing, does not include a longitudal test to 
assess the hypothesized benefits of narrative.     

9   Conclusion 

Narrative is receiving increasing attention in the ITS community as a medium for contex-
tualizing learning in meaningful ways while creating rich, engaging experiences for 
learners.  To date, there has been little empirical work supporting the use of narrative in 
interactive learning environment.  In a controlled experiment with an “early-generation” 
NLE, it was found that students do in fact exhibit learning gains, that those gains are less 
than those in produced by traditional instructional approaches, but that the motivational 
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benefits of narrative-centered learning, particularly with regard to self-efficacy, presence, 
interest, and perception of control, are substantial.     

The results highlight two important directions for future work.  First, the contextual 
benefits of narrative may be more pronounced in a longitudinal evaluation of learning 
rather than in the assessment administrated immediately following intervention as in the 
study reported here.  Second, it is important to begin exploring the educational role of the 
myriad components of narrative in learning episodes, such as plot coherence, drama, and 
character identification, and their impact on problem solving, learning outcomes, and 
engagement [16].   
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Abstract. There are several possible applications of Semantic Web techniques 
in Intelligent Tutoring Systems (ITSs) and important advantages can be ob-
tained from their application. This paper presents an architecture to combine 
Semantic Web techniques with ITSs, explaining its elements, relationships, 
challenges, and the different design criterions, offering some guidelines to make 
decisions when different implementation solutions are possible. We have im-
plemented an instance of this architecture using the XTutor ITS and the CWM 
(Closed World Machine) Semantic Web reasoner. The implemented framework 
permits personalization of problems with hints for students. The paper also de-
scribes this specific implementation of the general architecture as well as some 
user adaptation examples with the implemented framework.  

1   Introduction 

There are many different ITSs; a categorization of them can be seen in [1]. The func-
tions that such systems can perform vary; some examples are student assessment [2], 
or adaptive hypermedia [3], [4]. Some ITSs use educational information in a proprie-
tary way, while others follow educational standards to enable interoperability. 

There are several advantages in using Semantic Web techniques with ITSs, which 
justifies its combination. At present, few works have discussed architectures for ena-
bling this combination. Reference [6] presents a Web service-based architecture to 
enable Semantic Web methods in adaptive hypermedia. Our architecture approach 
presents a different point of view, because it focuses on the relationship between 
Semantic Web reasoners (from now on reasoners) and existing ITSs, explaining its 
architectural elements, design criterions, implementation problems, etc. Moreover, a 
few works exist which explain specific system solutions but they do not cover the 
different architectural design criterions and implementation problems. In this work, 
we contribute to these issues, explaining an architecture for combining Semantic Web 
with ITSs that is general enough. Furthermore, we explain some challenges that Se-
mantic Web techniques present when applied with ITSs; those challenges require 
architecture implementation decisions, and we give some recommendations. 

We illustrate a specific case of the general architecture with the implementation of 
a framework to provide adaptive hints in problem-based learning based on this archi-
tecture and using the CWM reasoner [7], a new specification of hints we defined [8], 
and a hint player [8] that we implemented into the XTutor ITS [9].  
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The remainder of this paper is organized as follows. In Section 2, there is an out-
line of the related work about hint tutors and Semantic Web applications in education. 
Section 3 explains the general proposed architecture for combining Semantic Web 
with ITSs. Section 4 presents a specific implementation of the architecture for adap-
tive hints. In Section 5, some user adaptation examples with the implemented frame-
work for adaptive hints are shown. Finally, Section 6 is devoted to the conclusions. 

2   Related Work 

2.1   Hint Tutors  

It is clear that the provision of hints as a teaching methodology during problem solv-
ing has a positive impact on student learning (e.g. [10]). Therefore, several hint ITSs 
exist, as well as related works about this topic (e.g. [11], [12], [13]). Several of these 
systems allow the personalization of hints but using techniques different from the 
Semantic Web, such as Bayesian Networks (e.g. [11]). 

2.2   Semantic Web Applications in Education 

Ontology engineering is a key aspect for the success of Semantic Web. In [14] there is 
a clear vision of the use of ontologies for Artificial Intelligence in education. There 
are educational ontologies for different purposes such as competences [15], or domain 
ontologies that can be derived from the text [16]. A repository of ontologies for edu-
cation was built [17]. Some ontologies have also been created to enable the inclusion 
of e-learning standards into the Semantic Web, such as for SCORM (Sharable Con-
tent Object Reference Model) [18], or IMS-LD (Learning Design) [19], [20].  

There are different possible applications of Semantic Web in education. We focus 
on adaptive applications. The different types of adaptive hypermedia are explained in 
[3]. Adaptive applications using the Semantic Web have been proposed for contents 
[21], assessments [22] or educational feedback [23]. In the implemented framework 
described in this paper, we focus on a different domain, which is the provision of 
adaptive hints, taking into account the defined elements of our specification of hints. 

3   General Architecture 

Fig. 1 shows a graphical representation of the proposed architecture. Section 3.1 ex-
plains its elements and relationships. Section 3.2 describes the design criterions, ana-
lyzing the advantages and disadvantages of the different possible decisions. 

3.1   Description of the Elements and Their Relationships 

The Data Storage contains the main information that the system can use. The data is 
divided into two groups: static and dynamic. Information is considered static when it 
does not change (e.g. specific course objectives), while information is considered 
dynamic when it can change (e.g. the number of times a student has visited some 
content). In any case, teachers or system designers must provide all the static informa-
tion at the beginning, and the initial state of dynamic information when applicable. 
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Fig. 1. General Architecture for Combining Semantic Web techniques with ITSs 

The Semantic Web reasoner is a tool that permits logic reasoning based on a set of 
rules, resources and facts according to defined ontologies, reaching conclusions as a 
result. Rules, resources and facts must be in specific formats (e.g. RDF/XML [24] or 
N3 [25]). Therefore, a transformation module is required to convert the different in-
formation formats into Semantic Web annotations (unless some information resources 
are directly annotated in Semantic Web languages, for which the transformation mod-
ule does nothing). 

The Arbiter and reasoned conclusions memory selects the conclusions to store in 
each moment in order not to repeat already made inferences. The reasoned conclu-
sions of the reasoner are in a format that is not usually understandable by ITSs. There-
fore, another transformation module is required to convert those conclusions into ITS 
known formats. Here again, some conclusions may not need transformation if the ITS 
does not use this information (but the reasoner may use it again, if it represents feed-
back conclusions to the reasoner as shown in Fig. 1).  

Lastly, the ITS receives Resources Requests from students that are then transmitted 
to the ITS Processing module which takes the proper actions, having data storage 
information as input. Dynamic data can be modified as a result of the ITS processing 
module. Finally, some resources (responses to requests) must be presented to the 
students, using the ITS Presentation module that can obtain any information from the 
Data Storage. Defined educational specifications may bring together (e.g. in XML 
files) processing and presentation information. 

3.2   Design Criterions and Decisions  

Several design criterions and decisions must be taken when implementing the archi-
tecture. Fig. 2 shows an overview of the different issues to decide. 
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Fig. 2. List of decisions to be taken in the defined architecture 

 

In Which Formats Is the Information Stored? The same information can be stored 
in different formats (e.g. a data base format, XML, N3 or ITS variables). We must 
make a decision about which format to use, based on the following points: 
 
1) Desired level of interoperability. The desired level of interoperability should be 
decided (e.g. with educational systems that interpret XML specifications, or with 
Semantic Web tools that interpret Semantic Web formats such as RDF or N3). It may 
be the case that interoperability is not important, so any formats are possible. 
2) Existing implemented tools: For example, if we had an ITS player already imple-
mented which interprets an XML format for assessments, then information about 
assessment description might be put into this format to take advantage of the tool. 

Sometimes the information must be replicated in different formats. The designer 
can write the information directly or a transformation module can be used. 

 
Which Element Performs Specific Processing Tasks? To decide which element 
will perform each specific task, we should achieve a balance between these issues: 
 
1) The formats of the existing information. 
2) The desired rules for reuse. If we want to reuse some Semantic rules between dif-
ferent systems (e.g. ITSs), then the reasoner should do the processing.  
3) Execution Time. In general, an ITS performs a processing task more quickly than 
the reasoner. For tasks where execution time is critical, this is important. 
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How is the Reasoner Executed? The reasoner can be executed as a response to a 
student resource request or in background. The advantages of the former are: 
 

1) Responses to the students are up to date, because the reasoner is executed for each 
specific request. 
2) It is not necessary to store past reasoned conclusions. Since each request is trans-
mitted to the reasoner, then the conclusion can be reached at that moment. 
But the main advantage of executing the reasoner in background is the reduction of 
the system response time to the user. When a user request arrives, the system may 
respond to the user with some data that had been inferred previously, so there is no 
extra time for reasoning on that specific request. 

Finally, it is important to note that both methods can be combined.  
 
How Are the Reasoned Conclusions Stored? For each application, there is a set of 
different input combinations that need reasoning processing. For example, it could be 
the combinations between the different user states and educational resources. The 
different possibilities regarding which reasoned conclusions should be stored are:  
 

1) All past states: All conclusions from any past states are stored. Indeed, all the states 
can be reasoned before the system starts working. With this solution, we save reason-
ing time, not having to repeat the same thing several times. This is recommended if 
there are few states, no storage limitations, and the response time is critical. 
2) Some past sates. Techniques similar to cache memory can be used to select the past 
stored states. This is recommended when there are a lot of different possible states, 
some memory limitation or the response time is not so critical. 
3) None. This is recommended when the response time for a request is not critical. 
4) Some Future States. It consists of doing the reasoning for selected future states 
considering the greatest likelihood of appearing based on the present ones. This is 
recommended in the same cases as Some past states, and they can be applied together.  
 
How Are Concurrent User Requests Addressed? Concurrent user request problems 
occur whenever the reasoner or/and the ITS try to write simultaneously to data that is 
common to several users. Solutions can include a specific storage area for each user 
or synchronize the part of code that accesses shared resources. Another effect of the 
concurrency problem is that the response time can increase because of the techniques 
to avoid it. This is particularly important for the reasoner. For each user request, at 
least one process related to the reasoning is created. This is more time-consuming 
than a thread for each request. In addition, if there are synchronized parts, then only 
one request is at the CPU at each time which increments the response time.   

4   Framework Implementation for Personalized Hints 

This section presents a specific implementation of the general architecture for achiev-
ing personalized hints. Section 4.1 introduces XTutor and the extension module of 
hints we developed. Section 4.2 explains the specific elements of the architecture. 
Finally, Section 4.3 explains the different design criterions and implementation deci-
sions. 
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4.1   Overview of XTutor and Its Hint Player 

XTutor [9] is an ITS developed at the Massachusetts Institute of Technology. It in-
cludes a library of standard tags to provide some types of questions for students. We 
complemented it with a new library (hints.tags.py) to allow XTutor to provide hints. 
Full details of our specification of hints are in [8]. The questions with hints are cre-
ated as XML files (called XDOCs) and XTutor is able to interpret and run them [8]. 

4.2   Elements of the Implemented Architecture 

Fig. 3 shows the architecture that we implemented to obtain adaptive hints. This ar-
chitecture is a particular case of the architecture presented in Fig. 1, and the same 
colour denotes the same function. In this implementation, the reasoner used is CWM 
[7], the ITS used is XTutor, and the Semantic Web language is N3 [25]. 

 

Fig. 3. Implemented Architecture for achieving personalized hints 

The student requests an URL resource. This request is received by the cwm.tags.py. 
That is a program file we have implemented which executes some processing tasks. It 
calls CWM several times. Reasoning is performed by CWM based on the personal-
ization rules, obtaining conclusions. The data that CWM receives as input are previ-
ous CWM conclusions related to the same user request; and Semantic annotations 
about users (preferences, knowledge, etc.), problems and hints (such as the number of 
students that solved the problem correctly without hints), and the subject domain. For 
each of these aspects, there is an ontology. Some static information (XML, rules and 
Semantic annotations) is written at the beginning (e.g. the XDOC initial files that 
teachers create that are XML files representing problems and hints), while other  



546 P.J.M. Merino and C.D. Kloos 

information changes dynamically and is stored as XTutor variables (such as the num-
ber of students that answered a problem without hints correctly) and needs a conver-
sion from XTutor to N3, so a transformation module is required. 

Once the whole sequence of specific rules is performed, a final conclusion is ob-
tained by CWM. This conclusion is related to the types, number of hints, etc. that will 
be applied to the requested resource. Next, as part of the cwm.tags.py file there is a 
transformation module from the N3 final conclusions and the initial XDOCs to a final 
XDOC compliant with the defined specification of hints. The initial XDOC is trans-
formed to a different XDOC based on the reasoned conclusions. At present, the initial 
XDOC is not used as an input for reasoning by CWM so it is only generated in XML 
format by the teacher; however we will introduce it too in the future. To do so, a 
transformation module from XDOC formats into N3 annotations will be required.  

Finally, the cwm.tags.py calls the hint player we implemented. This module re-
ceives the final XDOC as input and it runs it. The hint player performs processing and 
presentation tasks. The hint player processes information using state variables (e.g. 
present scoring, hints viewed or hints answered correctly), modifies variables accord-
ing to the interaction, and presents an HTML response page to the student with the 
problem with hints. The problem with hints is personalized according to the conclu-
sions inferred by CWM. Some of the variables modified in XTutor as a result of the 
interaction have an effect on the next CWM reasonings. For example, if a student 
responds incorrectly to a problem, then the student’s knowledge level will decrease in 
the concepts covered by such problem. These necessary dynamic data variables are 
transmitted through the transformation module to obtain N3 annotations to be used in 
reasonings. 

4.3   Decisions in the Specific Implemented Architecture 

Now, we tackle the decisions made. Firstly, we have the following information: 
 

1) XDOCs describing problems with hints. This is to allow interoperability at the 
XML level, to have data in a format understandable by the XTutor hint player (as it 
can perform quick processing and presentation of XML files), and because at this 
moment we do not need to reason about this aspect in CWM. 
2) Some information about users, problems, hints, subject concepts and rules in N3. 
This is because we want to perform all the processing related to personalization with 
CWM (this is for code reuse, high level abstraction language, etc.), so it is necessary 
to write it in a CWM understandable format. In addition, we want to have Semantic 
Web interoperability of such aspects. 
3) Dynamic information that changes between interactions. The database and the 
XTutor variables are the dynamic information. Since we do not need interoperability 
for this information, the quickest way for processing is to store such information in 
XTutor proprietary formats. But the information that is needed for reasoning is trans-
formed, so this information will be replicated in two different formats. 
 

CWM performs some processing tasks (to determine the personalized hints) be-
cause of rule reuse, while XTutor performs the other processing tasks. 

At present, CWM is executed for each user request, but not in background. In addi-
tion, there are no conclusions stored (neither past nor future conclusions). This is 
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because we have not had time response problems with the present implemented rules 
and number of users accessing to the system. But in case rules implied a higher proc-
essing time, it would then be worthwhile to consider other techniques. 

Finally, we are using different access areas per user to avoid concurrent user re-
quests problems. There is no concurrency problem for static or dynamic data that is 
controlled by XTutor because XTutor controls concurrency by itself. The only data 
that can bring concurrency problems are the final XDOC generated. Note that if some 
conclusions were stored (past or future conclusions), then a possible solution would 
be to store them as a part of the final generated XDOC (this is permitted by the speci-
fication of hints defined). In this case the initial XDOC for each request would be the 
latest XDOC generated and it would be necessary to synchronize access to the final 
XDOCs, since several users may want to write concurrently in the same XDOC. Fur-
thermore, CWM would be executed as a response to a request only in case the data 
related to the incoming request would not have been reasoned previously.   

5   User Adaptation Examples 

Figures. 4, 5, 6 and 7 show four different user adaptation examples in our framework. 
All the users request the same URL resource, so they obtain the same root problem (a 
multiple choice about servlets). But each student receives different personalized hints 
as a result of the reasoning performed by CWM. The first student (Fig. 4) does not 
receive a hint because he/she has a strong knowledge level in all the concepts. 

 

Fig. 4. User 1 adaptation example  

The second student (Fig. 5) receives one problem as a hint about the only concept 
included in the root problem that the student does not master. Among the candidate 
hints, the one whose level of difficulty is appropriate to the student level is selected.  

 

Fig. 5. User 2 adaptation example 

Fig. 6 shows a student that has a low knowledge level for all the concepts included 
in the root problem, so he/she is presented with a sequence hint composed by four 
problems, one for each concept. 
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Fig. 6. User 3 adaptation example  

User 4 does not receive the hints immediately (Fig. 7). Instead, he/she receives a 
list with meta-information about the concepts covered for each hint he/she can see 
(which it is in our hint terminology a hint group). This is because User 4 has a combi-
nation of features in his/her personality model, so CWM always provides a hint group 
for this user, and it will always provide as many hint possibilities as concepts included 
in the initial root problem, but he/she will be able to select only a maximum of n 
hints, being n the number of concepts the student does not know well. In this case 
User 4 had a low level only on one concept, so he/she could only select a maximum 
of one hint out of the four available. 

 

Fig. 7. User 4 adaptation example 

In these user adaptation examples, the number and types of hints provided, the con-
cepts chosen, etc. for each specific student are a result of the reasoning by CWM 
based on the different data. Finally, the conclusion results are transformed into XML 
files understandable by the XTutor hint module, which is the one that performs the 
final presentation to the users. 

6   Conclusions and Future Work 

In this paper we have presented an architecture for combining Semantic Web tech-
niques with ITSs. This architecture is feasible to develop as we have implemented a 
specific case of it, for the provision of personalizing hints using the CWM Semantic 
Web reasoner, and the XTutor ITS. 
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During the implementation we encountered different problems and specific design 
criterions were required. We analyzed these different problems and made decisions 
for our particular case, but then we generalized the different design criterions which 
we explain in this paper together with some guidelines for taking decisions. 

The implemented framework introduces Semantic Web techniques in the provision 
of adaptive hints that are personalized for students. In addition, it combines the use of 
a new defined XML specification of hints, the XTutor hint player that we imple-
mented, the CWM reasoning capabilities, and other features of the XTutor. 

At present, we are working in introducing more personalized rules in the system, 
extending the existing ones. We are planning to introduce this framework in class-
room during this year. 
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Abstract. Actors using Learning Object Repositories are faced to a diversity of 
components created for specific situations. This research focused on creating a 
generic solution to integrate various applications and scenarios representation in 
the context of help to actors using LOR. The ODIS framework was developed 
and tested to interlink applications written in different programming languages, 
using shared OWL models: Explor@Graph, a Computer Supported Experimen-
tation System, a scenario Editor and a Learning Object Repository. Models and 
instances are stored in a Sesame RDF database, offering many services such as 
import, export and query. Ontologies are used to standardize representations 
and models, so information can be exchanged and also to organize feedback and 
help in the environment. We will present how ODIS uses ontologies to trans-
pose learning scenarios representations, to enrich them with user models and to 
define help. 

Keywords: Ontologies, Help, Learning Object Repositories, Learning Envi-
ronment, Authoring tools, eLearning, Collaborative system. 

1   Supporting Actors in Learning Object Repositories 

The present research was done in the context of the LORNET effort to integrate dif-
ferent learning object repositories and to develop an integration framework and a set 
of applications to exploit them in the context of learning. More specifically this re-
search is concerned with defining help to actor using the LOR. Learning Objects can 
vary in granularity or types, ranging from a full course, to a definition, an image or a 
software program. Many repositories are being developed (ARIADNE, MERLOT, 
NIME, LORNET) and they pose interesting integration and compatibility problems, 
which can be solved using ontological representations. A simple integration solution 
was to develop standards for the metadata descriptions of resources (LOM) and for 
the definition of learning structures of activities (IMS-LD). If the level of difficulty 
and the structure of the domain are well defined, adaptive mechanisms can be defined 
to scaffold the access to resources as in adaptive hypermedia [1, 2, 3].  

Our goal was to support not only access to resources, but also the unfolding of 
more specific descriptions of activities, not only for learners, but also for other actors 
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using the LOR. The architecture to support activities in such a generic and distributed 
environment was not trivial, it was to offer advice and some control on the activities, 
in a generally flexible environment to suit the typically open tasks like exploring the 
content or building a course.  It was important for the system to offer an open and 
light integration of components, in order to face the diversity and rapid evolution of 
eLearning resources. We also wanted to organize it around formal representations, 
which could be easily changed and made to follow standards being developed in the 
field for the exchange of resources or the description of learning scenarios (IMS-LD).  

We will present here two problems which are addressed by this research: first on how 
the help can be given inside different objects and applications, running simultaneously 
with different implementations; second, we needed to find a way to maintain the models 
which are at the root of help, models of the domain, of the users, of the tasks, of the con-
text and applications. The solutions to both problems are linked since they rely on formal 
specifications of communication processes among applications as web services or other-
wise, and on the maintenance of the models and instances described using those models. 

A framework was developed to sepecify how the different contexts and application 
sshould be alligned, using OWL representations and a Sesame database to exchange 
structures and instances of specific ontologies. Using these generic representations, 
help can be defined to link user overlay models, with contextual navigation activities. 
We will present how the solution was developed using different generic tools, through 
the Ontology Data Integration System (ODIS).  

2   Support in Learning Environments 

Learning environments have explored different level of technological support to activi-
ties, ranging from the generic but passive Learning Management System like WebCT or 
Sakay, to more specialized and interactive environments like simulations, knowledge 
based system and Computer Supported laboratory, to less technical but more conceptual 
models or methodologies to structure interactions. Other researches try to unleash the full 
computational power into supporting further interactivity for learning, adding intelligent 
mechanisms to search for resources, to follow learner progression and to adapt his envi-
ronment, like in adaptive hypermedia [2, 4]. 

This research is at the frontier of these different approaches, and rely on a collabora-
tive system, where both structured interaction controlled by the system is possible, as 
well as flexible navigation and open task from the user. The Explor@Graph system [5, 6] 
was designed to let a professor easily structure learning environments inspired by the 
MOT representation [17], gathering resources from LOR and organizing them inside 
conceptual graphs linking activities, resources and concepts. The teacher can use the 
environment to organize the exploration of content and learning evaluations. The system 
leaves flexibility for students to be active, using intelligent mechanisms to support their 
interaction providing retroaction on progression and linking discussion with content [7]. 

We saw the opportunity to use ontologies to define support at a higher level using 
more generic knowledge structures underlying the learning activity as suggested by [8], 
for example to find unfinished prerequisites to a task. Further more, the help given to the 
activity was limited to the Explor@Graph environment and had to be extended in  
the context of the integration of different learning resources and learning management 
systems.  
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3   The Use of Ontologies to Improve Learning Environments 

As an AI technique, ontologies1 have raised great interest as a technology to support 
learning, first because they appeared promising to improve searching in resources, by 
adding an intelligent layer based on semantic representations of the domain, the ac-
tivities, or the pedagogical models [9, 10].  

The first interest for ontologies was for their potential to improve searching [11] in 
what would be called the semantic web. The integration of semantic representations 
makes it possible to search using classes, properties, relations and synonymous.  

Aside from their potential for searching, ontologies have been used to support visuali-
zation and access, for example Topic Maps is a standard (ISO/IEC 13250 [12]) which 
was developed to describe the organization of content and that can be used to exchange 
and organize the visualization of resources. In specific domains, topic maps can be con-
structed from expert knowledge of the domain, or they may be directly extracted from a 
corpus of textual resources and even from multimedia resources using speech to text. The 
semantically organized structure of contents can be used to display and browse informa-
tion for learning , in an organized and flexible way [13].   

Once informations are organized in a semantic structure, adaptive hypermedia tech-
niques can be used to define intelligent access [14], choosing elements to display depend-
ing on the context and the progression or preferences of learner. In the same direction, 
ontologies can be used for the personalization of learning environments and their adapta-
tion to cultural or accessibility differences. 

Another use of ontologies is to help define standards and strategies in the domain of 
Learning. Standards like the LOM, SCORM, but also of models of pedagogical activities 
IMS-LD and strategies are being developed to ensure that learning resources can be 
interconnected and shared in the community and across learning applications.  

Finally ontologies can be used as annotation tools. Tools like MagPie [15] give user 
powerful tool to organize resources as they read them and to exchange them with peers as 
in the FOAF system or in general in community of practices. The power of ontologies can 
be used to structure annotations and visualize content to which they are attached. Further-
more, the modeling of content and user’s navigation in parallel can support peer helping.  

4   Integration of Applications and Help Inside Explor@Graph 

The Explor@Graph interface was designed to be a unifying interface to represent concep-
tual structures of activities, concepts and resources, but also to facilitate the definition of 
support on those elements [16]. Each graph or node may have static and dynamic meta-
data associated, which is used to highlight visually the structure of information - comple-
tion, ordering. Following the MISA2 methodology and Explor@ models [17], the  

                                                           
1 The term ontology has been used as a generic term to cover different abstract representation of 

semantic structures, which sometimes are limited taxonomies of the domain concepts, some-
times called topic maps. Sometimes they include specifications of objects, classes and their 
properties (RDF), sometimes they include restrictions on properties (OWL) or logic rules to 
extract new knowledge (OWL-DL). In the context of this paper, we use ontology as a generic 
term, though we will specify its level of description. 

2 MISA is a design tool for learning systems, the web tool supporting this methodology is 
named ADISA, developed by LICEF. 
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Explora@Graph eLearning environment organizes navigation around the conceptual 
structures of concepts (rational models), tasks (functional models) and documents (media 
model) using typed relations like composition, precedence, resources and production). The 
conceptual structures are annotated by the user himself who may change his user’s model. 
These annotations serve as feedback and can be used as overlay models by the help system 
to adapt advices and adaptive help in the interface - open or highlight elements, propaga-
tion of user models using the structures of relations. Using these information, rules can 
easily be defined using a WISIWIG interface inside the Explor@Graph Editor, by select-
ing components, to verify conditions or events in the environment and to trigger actions on 
components (highlight or change a node or user model property) or to present help mes-
sages.  

During interaction with the Explor@Graph Navigator, helping rules are stored with 
the structure of the course and the user models. These rules will be sent to the Generic 
Advisor that will follow the user during different learning activities giving him advices 
and updating the user and the group models. This follow up is done using spying mod-
ules attached to each application that sends every action done by the user and notifys the 
expert system. After receiving these events depending on the set of rules and other facts 
collected about the user, the expert system can trigger two different types of actions: 
internal actions, which modify users and group models won’t have noticeable effect; the 
second type, external actions, could be a dialog box, an animated Microsoft Agent or a 
change in the environment as highlighting a text, opening a node or opening a menu, 
selecting a button, etc. For that Control Units are used. generated by parsing the user 
interface. Most of the control units use type discovery and the reflection APIs to manipu-
late the user interface. 

Though, the environment can be very powerful, in the context of the LOR, we needed 
to explore integration among other applications or resources and display help in relation 
to them. Thus we decided to develop a data integration framework for communication 
between the Explor@Graph activity description environment and other applications to 
describe and save the structures, their instances and also dynamic information as they are 
updated during the activity.  

5   Integration of Applications and Help Using XSD Specifications 

In order to define the support to activities inside the LOR, we have used different 
applications, in which integration and help can be defined. Generally, part of the 
structure is defined through the various applications of the LOR, but to define support 
we present a framework where other help structures can be defined [18]. 

Figure 1 presents the general framework: 
 

• The LOR where resources are saved, indexed and grouped.  
• The User and Context Manager where are defined users, groups, roles in rela-

tion to tasks, and where resources and privileges are linked to a context. 
• The Explor@Graph system (Editor and Navigator) where are defined graphi-

cal navigation structures, relating elements of tasks, concepts or documents, 
and where support rules can be defined using the properties of the represented 
structures as conditions and offering actions like MsAgent messages, or con-
trol functions on elements (show properties, change them, execute methods of 
objects, etc.).  
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Fig. 1. Integration and support across applications using XML communication with the Generic 
Advisor, XSD models of external applications and a Generic Rule Editor 

• In the first version [18], to generalize support, other structures were defined in 
XML Schema to represent other applications and support components. 

• The generic Rule editor is used to create conditions and actions using those 
XML elements to be used in support rules .  

• The Generic Advisor is an Expert System with a communication interface that 
receives events from applications, search for adequate rules and send selected 
actions back to applications, to be executed or to update internal models.  

 

The system was used to define contextual help inside a computer supported labora-
tory [18-20]. In this first implementation of generic support, the Explor@Graph sys-
tem is a fully integrated and usable system to define structures and support [21] but, 
the integration with other applications is minimal. It proceeds through manual de-
scription of XSD structures and XML components of external applications interfaces, 
which are read in the Generic Rule Editor, and where conditions and actions can be 
defined. Elements of rules may be transferred from the Generic Rule Editor to Ex-
plor@Graph, as external actions or conditions, using copy/paste. Thus elements of 
representations of concepts, scenarios and external environments can be mixed in 
rules: 

For example a rule may be defined stating that,  

if (EG openedGraph = ExperienceOxygen) 
   and (Plugin sensor = temperature) 
then MsAgent Prof speaks “Good you are using the tem-
perature sensor. In fact, colder water contains more 
oxygen, let’s see if you can measure that..” 
Action : Open EXAO form, highlight fields or tools to 
be used with values for the specific task.  
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But in this implementation [22], the instances of the structure of external applica-
tions were manually defined. Also the XML representations were limited to represent 
object relations among classes and did not use ontological restrictions or deduction. 
We wanted to be able to persist contextual and user models associated with those 
external applications. Finally, we wanted to generalize the navigation structures, to 
make them compatible with other LMS and especially compatible to description stan-
dards like IMS-LD, in the perspective of the integration of LORs.  

6   ODIS - Ontological Data Integration System 

In the new ODIS framework [23] (Figure 2) different OWL ontologies are developed 
using PROTEGE to describe applications and conceptual models. A composite ontol-
ogy is developed that describes the integration, alignment and augmentation.  

 

Fig. 2. ODIS framework- Integration of OWL ontologies using Protege and the generation of 
components 

This merged ontology serves as an input to the ShadowGenerator which will gen-
erate the different software components DCMs (DotNet Component Model) and 
JCMs (Java Component Model). 

The main functionality of these software components is to allow any application 
involved in this integration to persist, update and delete data using its own format- 
ontology- without worrying about the mapping, the communication layers and the 
data storage repositories (Figure 3).  In fact, the DCMs and/or the JCMs use the ser-
vices provided by ODIS server which relays on the ShadowPersistor software compo-
nent and Sesame APIs to query, update and save these models. This automatic code 
generation accelerates the development time related to data integration considerably 
allowing the developers and system designers to focus on what counts the most. 
However, this method involves defining manually how the ontologies are to be 
merged, which is then done automatically by the applications.  
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Fig. 3. ODIS framework : Interaction across different applications using the generated compo-
nents communicating with a Sesame RDF database 

Explor@GraphNet3 is used to display structures which are imported from the Ses-
ame database. Thus the functions to help define help inside Explor@Graph will be 
used with the structures coming from other LMS. In interaction, different applications 
use the ODIS server to access and communicate structures. Generic structures have 
been defined to query the ontology according to its graph structure. For example: 

find all the “activity” nodes, which are target of a 
“prerequisite” link to an “activity”  
find one node “resource”  which “is not completed” and 
linked as “resource” to a “concept” node.  

Elements between quotation marks can be any predicate associated to a node, a 
link or a graph, and the ontology is used to infer relations and properties of objects 
and their class. For example:   

If A prerequisite to B and B prerequisite to C than A 
is prerequisite to C. 

Queries use the classes and predicates of the ontology in the RDF database, for ex-
ample to select all nodes with a prerequisite relation to a node: 

 

Select DISTINCT  X from 
{Edge} ns10:Target_node_uid_eg {"2068"^^xsd:long}, 
{Edge} ns10:Src_node_uid_eg {X}, 
{Edge} ns10:EdgeType {ns10:Prerequis}, 
{Node} ns10:NodeID {X} 
using namespace 

owl = <http://www.w3.org/2002/07/owl#>, 
ns10= <http://www.owl-ontologies.com/unnamed.owl#>, 
xsd = <http://www.w3.org/2001/XMLSchema#> 
 

                                                           
3 Is a more generic version of Explor@Graph navigator, developed in VB.Net. 
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Fig. 4. Generic Framework of the support to functions, with the different levels of structures 

Figure 4 presents a summary of the research we presented and explain how the new 
ODIS framework can be used in combination with the previous Explora@Graph and 
Generic Rule Editor framework to support the definition of generic help across appli-
cations. Using generic navigation services, ontologies and generic applications to 
define and display help.  

7   Application of ODIS with the Doctoral Training Environment 

The new framework was used to connect the Doctoral Training Environment [24] 
with the Explor@GraphNet graphic interface. The DTE Authoring Tool allows users 
to design and generate Doctoral Training Environments (DTE), hence it is named 
DTE-Author. It was built upon CONCEPT@, Télé-université’s authoring environ-
ment, in connection with PALOMA, its Learning Objects Repository. Structures of 
activities and actions are described inside the DTE and are then exported in the Ses-
ame database.  
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Fig. 5. Interconnection of the Explor@GraphNet graphical interface with the Doctoral Learning 
Environment using ontologies 

Using the ODIS framework, the ontology of the DTE was aligned to the Ex-
plor@GraphNet ontology, for example, the alignment adds the visual properties to the 
elements; resources becomes independent nodes with a specific icon, a ‘resource’ link 
is added between resource node and the activity node, overlay user models are added 
to task elements imported from the DTE, etc. Since the user models are now proper-
ties associated with nodes, they can be persisted using existing functions of  Ex-
plor@Graph. The structure can then be viewed in the EGN Graphical Interface.  

The same generic framework is used to connect the scenario editor developed in 
LORNET and the Explor@Graph system to the Sesame database, so structures can be 
imported and exported from it. The Explor@Graph infrastructure to develop and 
display help functions can then be used on those structures developed in other LMS to 
integrate support in reaction to navigation inside different environments. Queries on 
ontologies can be used as conditions in the help system or to highlight elements of the 
structures, resource or task nodes using ontological inferences. 

8   Related Work  

As we saw, ontologies have been used to links structure of the domain and resources 
as in adaptive hypermedia. This has been enriched by the integration of models of the 
user knowledge and models of peer knowledge and preferences for peer helping. In 
that direction Brooks & al. MUMS system developed a user model ontology to organ-
ize and store user models across applications and to support peer helping in forums, 
linking content of discussion and preferences of users for a helpee or helper. 
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Others [25] have tried to develop systems to link learning design and learning ob-
ject content. They adapted the IMS-LD ontology to link it to resources. Learning 
context is represented by specific competencies, objectives and evaluations and is 
linked with the ontology of Learning resources Alo-COM (structure ad content type) 
in the LOCO-Cite ontology. The purpose of this ontology is to encourage repurposing 
of resources.  But the system does not offer support to interactions in complex re-
sources software applications like the EXAO system. 

Jovanović [26] presented the MICE framework that uses an ontology to define con-
text in the use of Learning Objects and to give feedback to users on their interaction 
with the system. Different applications are connected using this framework - BlueJ a 
Java Learning environment, G-Study and environment to track the use of resources 
and I-Help a discussion forum. As in our system, they propose a generic system, that 
track events in the environments and use the ontology to give feedback on the match 
between interaction and theoretically defined learner models of the domain, using a 
pedagogical model the SRL (Self Regulated Learning) model. The ontology they 
propose, links different ontologies on interaction, domain knowledge associated with 
user models and programming style models). It uses a Jess inference engine to trigger 
feedback as styles are recognized. In practice, if the framework is general, the ontol-
ogy is directly linked to the programming and chatting environment for which it was 
designed. The rules are defined to offer feedback in relation to activity models not to 
support adaptation of the environment as in our case. 

9   Discussion and Conclusions 

The framework that we presented opens many interesting possibilities. For one, Ex-
plor@Graph offers a generic interface for designing support system, can be used with 
its user modeling and support’s rules possibilities. It is now open for importing exter-
nal structures, and can be run simultaneously to follow activity in external applica-
tions, using the Sesame RDF database for exchanging information. On the other end, 
the OWL structures which are developed in PROTEGE are easy to visualize and mod-
ify. Components (DCM and JCM) which are exported directly from that structure 
facilitate the development of communication interfaces between applications and the 
RDF Sesame repository. The RDF structure can be used for searching or for ontologi-
cal logic reasoning on the information stored and thus augment power of the Generic 
Support system. We will use the Sesame database to maintain and share information 
on models of users and dynamic contexts of execution between the applications (more 
than just overlay models of nodes properties). 

The framework we have presented is a good step in providing support to activities 
inside a modular, evolving and opened context such as a network of LOR. In fact, the 
set of applications we have developed have been used to define support in various 
context: support in applying the MISA methodology inside the Adisa system [27]; 
support to professors designing courses based on pedagogical strategies inside the 
ExploraGraph Editor [28]; pedagogical support to students using a Computer Assisted 
Lab [20] and support to the Doctoral Training Environment [24]. 
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Future research will investigate the deduction possibilities using constraints in on-
tologies or relations among elements in tasks and learner models following the princi-
ples of Learning Design ontological models [8, 10]. 
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Abstract. Today’s technology enhanced learning practices cater to students and 
teachers who use many different learning tools and environments and are used 
to a paradigm of interaction derived from open, ubiquitous, and socially-
oriented services. In this context, a crucial issue for education systems in gen-
eral, and for ITSs in particular, is related to the ability of leveraging these new 
paradigms for creating, maintaining and sharing the knowledge that these sys-
tems embed. This will enable learning environments to benefit from shared  
information from disparate systems, which is related to learning content and 
student activities, so that the overall complexity of system development and 
maintenance would be reduced while at the same time improving the capability 
of personalization, context-awareness, collaboration, and feedback provision-
ing. In this paper, we investigate how the Social Semantic Web can be lever-
aged for enabling and easing this process. This paper analyzes each ITS mod-
ule, showing how it can benefit from the Social Semantic Web paradigm. 

Keywords: Intelligent Tutoring Systems, Semantic Web, Social Web, Ontolo-
gies, Folksonomies, E-learning. 

1   Introduction 

Intelligent Tutoring Systems (ITSs) are computer-based instructional tools that rely 
on artificial intelligence (AI) techniques to generate individualized interactions tai-
lored to a student's learning needs. They have emerged from AI at the very time that 
the field was struggling to move beyond the goal of equaling human intelligence by 
creating machines that could "think" like humans [1]. ITSs have demonstrated signifi-
cant results in the instruction of specific domains (e.g., algebra). However, today’s 
technology enhanced learning practices indicate that the education process of each 
particular learner is not limited to only one learning tool or environment (e.g., ITS), 
but instead students are using many different learning tools and services (e.g., learn-
ing management systems or discussion forums). It is natural to assume that, for exam-
ple, some knowledge and skills that students gain in the other learning environments 
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would be beneficial to bootstrap a student’s model in an ITS. Moreover, the reuse of 
some of the best pedagogical practices across different learning environments or 
learning content may also be useful for ITS developers.  

Equally important is the fact that learning is not an isolated process, and it happens 
in parallel with the regular day-to-day activities, which students and educators have. 
Students and educators now live in the world of Facebook, Wikipedia, YouTube, 
del.icio.us, and SecondLife. Most of these technologies are collected in a common 
framework, of the so-called Social Web, where the notions of social interaction, hu-
man computing, and collective intelligence are major assets. Today’s students have 
spent most of their lives surrounded by, and using, computers, videogames, digital 
music players, video cameras, cell phones, and the Web itself. We envision that the 
learners activities performed using these ubiquitous technologies should be leveraged 
in ITSs (e.g., for creating more informed student models, or to increase the collabora-
tive features of ITSs).  

Having the above examples in mind, the main question is: How might ITSs be in-
tegrated with the aforementioned technologies? A potential approach could be to lev-
erage learning technology standards such as the IEEE Learning Object Metadata and 
the IMS Learning Design definitions. However, those standards only provide a syn-
tactical layer for the integration of different learning tools. What they do not provide 
are effective and reliable mechanisms for managing (i.e., capturing, representing, and 
evolving) various types of knowledge (i.e., domain, user, and pedagogical) which 
should be shared among various environments and ITSs. To enable such knowledge 
sharing, we present important conditions that should be satisfied by knowledge shar-
ing solutions, to meet the requirements of ITSs:    

 

- a formal representation of the knowledge being shared, so that its semantics are 
fully preserved; 

- to be a low-cost, or less expensive solution than the current mechanisms com-
monly used for knowledge capturing and maintenance in ITSs; 

- to be in compliance with current Web and learning technology standards. 
 

In this paper, we analyze how the Social Semantic Web can be used as a means to 
satisfy the above conditions. We propose a synergetic space built on top of formal 
ontology-based representations of shared knowledge and social computing mecha-
nisms (e.g., folksonomies). We first introduce the fundamental concepts of the Social 
Semantic Web and then proceed to examine its benefits for each particular component 
of the ITS architecture.  

2   The Social Semantic Web 

The Semantic Web has been introduced as the evolution of the current Web in which 
“information is given well-defined meaning, better enabling computers and people to 
work in cooperation” [2]. The building blocks of the Semantic Web are ontologies. 
Ontologies are formally described conceptualizations of shared domain knowledge. 
They can be combined, shared, extended and used to semantically annotate different 
kinds of resources, such as web pages, documents, and multimedia content, to name a 
 



 Leveraging the Social Semantic Web in Intelligent Tutoring Systems 565 

few. By leveraging ontological infrastructure, one can build various intelligent ser-
vices that are capable of i) inferring new knowledge based on relationships specified 
in ontologies, and ii) correlating pieces of content according to their semantic annota-
tions, and thus interpreting meanings with respect to the underlying ontologies. De-
spite having many promising aspects, the Semantic Web is still not widely adopted 
yet. This is mainly due to the difficulties in ontology creation and maintenance, and 
the process of semantic annotation. 

A new wave of so-called social applications has emerged as a culmination of technol-
ogy and interaction techniques, and has been labeled the Social Web or Web 2.0 [3]. The 
Social Web transforms the ‘old’ model of the Web as a container of information accessed 
passively by users - into a platform for social and collaborative exchange in which users 
meet, collaborate, interact and most importantly create content and share knowledge. 
Popular social websites, such as Facebook, Flickr and YouTube, enable people to keep in 
touch with friends and share content. Other services such as blogs and wikis allow novice 
users to easily create, publish and share their own content. Further, users are able to eas-
ily annotate and share Web resources using social bookmarking and tagging; thus creat-
ing metadata for web content commonly referred to as “folksonomies”. However, Social 
Web technologies in general, and collaborative tagging in particular, suffer from the 
problems of ambiguous meanings. For instance, collaborative tags are often ambiguous 
due to their lack of semantics (e.g., synonymous meanings for a tag). Moreover, they lack 
a coherent categorization scheme, and require significant time and a sizeable community 
to be used effectively [4].  

Despite the initial perception that the Social Web and the Semantic Web oppose 
each other, the two efforts are jointly being used to create a common space of seman-
tic technologies. In fact, the Semantic Web can not work alone. It requires society-
scale applications (e.g., advanced collaborative applications that make use of shared 
data and annotations) [5]. The paradigm of knowledge creation derived from the So-
cial Web can be effectively used to refine/update ontologies generated according to 
Semantic Web standards and best-practices. At the same time the Social Web can 
benefit from the paradigm of structured knowledge, represented with standard lan-
guages adopted in the Semantic Web vision. Such standards will facilitate the sharing 
and application interoperation through the collectively created knowledge. 

The idea of merging the best of both worlds has converged in the concept of the 
Social Semantic Web, in which socially created and shared knowledge on the Web 
lead to the creation of explicit and semantically rich knowledge representations. The 
Social Semantic Web can be seen as a Web of collective knowledge systems, which 
are able to provide useful information that is based on human contributions, and 
which improves as more people participate [6]. Table 1 summarizes the key features 
of the Semantic, the Social, and the Social Semantic Web. 

Specific examples of the Social Semantic Web are being undertaken in a wide number 
of projects. For instance, DBpedia is a large-scale semantic knowledge base which struc-
tures socially created knowledge of the Wikipedia, a wiki-based encyclopedia. DBpedia 
takes advantage of the common patterns and templates used by Wikipedia authors to 
gather structured information into a knowledge base of socially created structured knowl-
edge. The result is a huge database of shared knowledge which allows ‘intelligent’ que-
ries such as: “List the 19th century poets from England” [7]. 
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Table 1. Comparison of the key features of the Semantic, the Social and the Social Semantic Web 

Semantic Web Social Web Social Semantic Web 
Structured Knowledge Semi-structured/ unstructured 

knowledge 
 

Structured or  
Semi-structured knowledge 

Standardized and machine under-
standable knowledge representation 
and annotations 

Knowledge and annotations not 
expressed in standard forms 

Standardized and machine 
understandable knowledge 
representation and annotations 
 

Knowledge creation process re-
quires engagement of experts for 
knowledge provision and formal 
modeling:  expensive 

Knowledge creation process 
based on social activities and 
informal knowledge modeling:  
inexpensive 

Simplified creation/refining of 
formalized knowledge based on 
social software sources 
 

Semantic annotation (annotation 
with ontological concepts):  expen-
sive 

Annotation based on social 
tagging, knowledge agreement 
in wikis: inexpensive 

Annotation based on inexpen-
sive social sources of knowl-
edge creation 

 
The implications of such technologies are significant for the educational domain, 

where students can find immediate answers to their detailed questions. Further than 
finding answers to questions, though, is the possibility of a web of pedagogically fo-
cused learning materials; where activities are easily created, shared, and used by stu-
dents and teachers, without the need for detailed knowledge engineering skills or 
know-how of advanced technologies. Specifically, for the field of ITS, we see several 
immediate benefits of incorporating the exisiting capabilities of the Social Semantic 
Web.  

3   Bringing Social Semantic Web to ITS Systems 

The Semantic Web and ITSs have a lot in common: besides common roots in AI, both 
are based on well defined principles, and have well defined structures. However, the 
Semantic Web is designed to enable (among other things) integration and interopera-
bility on a web-wide scale between applications. ITSs, in contrast, are typically de-
signed as closed systems. Semantic Web technologies can lead to the opening of ITSs, 
by allowing the sharing of learner interactions and of knowledge embedded in their 
modules. While some work has investigated the promise that Semantic Web tech-
nologies offer for ‘opening’ ITSs (e.g. [8]), the trend of closed systems continues. A 
common point of note between the Semantic Web and ITSs is that neither of them are 
widely adopted by the Web community, due to their complexity for laymen. The So-
cial Web paradigm is enabling a gradual acceptance of the Semantic Web among 
layman users - hopefully leading to its wider adoption. In the same way, we see the 
Social Web paradigm as potentially promoting broader acceptance of ITSs. 

There are several challenges in the ITS field which can either fully or partially be 
addressed with technologies offered by the Social Semantic Web. In the rest of the 
section, we look at each module of ITS systems and explain the benefits that can stem 
from the inclusion of the Social Semantic Web paradigm.  



 Leveraging the Social Semantic Web in Intelligent Tutoring Systems 567 

3.1    Benefits for the Domain Module 

The main problem with the development and maintenance of the domain modules of 
traditional ITS systems stems from the fact that despite the significant effort put into 
the definition of domain knowledge models, these models cannot be reused or shared 
between systems. Moreover, the process of their definition or evolution, even within 
the same ITS, can be accomplished only by domain experts. This problem can be ad-
dresses by expressing such models in a standard and interoperable format, which 
would enable the reuse of these models as well as facilitate sharing and combining 
models from different ITSs focused on the same domain; thus easing the process of 
model evolution.  

The Semantic Web offers technologies to address these needs through the Re-
source Description Framework (RDF) as an extensible and reusable data representa-
tion format. In addition, it provides means for formally specifying the semantics of 
the represented data (i.e., defining ontologies as sharable and machine-processable 
knowledge representation formats).  

For more than two decades, researchers in the ITS field have been on the road of 
using ontologies for domain knowledge modeling and representation [9], [10]. How-
ever, the problem is that these first endeavours were restricted to local ontologies that 
were usable only in systems for which they were developed, and not used for knowl-
edge sharing among ITSs covering the same or similar knowledge areas. Therefore, 
the problem of enabling (semi-)automatic knowledge sharing, reuse, and exchange 
among several different tutors covering the same or similar domain, is still open. M-
OBLIGE [11] was the first ontology-based knowledge model focused on enabling the 
interoperability of ITSs. However, at the time when this model was proposed (in 
2002), the Semantic Web infrastructure was not mature enough to provide the re-
quired support. Since the proposal of M-OBLIGE, Semantic Web technology has 
made significant progress, and the next generation of Semantic Web applications [12] 
can now take advantage of the vast amount of semantic data and ontologies, which are 
available online. For instance, there are now infrastructures (such as Watson1) for indexing 
semantic data and ontologies on the Web. 

Another problem related to the usage of ontologies for representing domain models 
is the constant need for ontology evolution (maintenance and updating). This is not a 
trivial task, because current approaches and tools assume a background in knowledge 
engineering, or familiarity with ontology languages; this is true even when a (semi-
)automatic approach is proposed. In general, tools are too complex to be used by most 
teachers. The social side of the Social Semantic Web paradigm offers a possibility to 
simplify the evolution process of ontology-based domain models. Student activities, 
which can be enabled within ITSs, such as annotating, tagging, and the like, can be 
leveraged for the maintenance of a domain model. Further, intrinsic motivation and 
trust of students in a system that derives knowledge from their activities is certain to 
increase, since they are aware that they are contributing to the system and that their 
contribution counts. 

In our latest work, we have suggested a novel method of interactive visualizations 
that provide an intuitive and practical way for instructors to incorporate the implicit 

                                                           
1 http://watson.kmi.open.ac.uk  
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feedback available from student folksonomies for evolving domain ontologies [13]. In 
addition, we leverage algorithms for computing the semantic relatedness to further 
facilitate the teachers' task of ontology maintenance. In this way, we combine several 
approaches to leverage student contribution for providing support in ontology 
evolvement. Such tasks of ontology refinement are constant, and our method allows 
support to be given which is consistent with the course content, and with the concep-
tualizations that instructors and students have of that content. 

3.2   The Benefits for the Student Module 

The use, within the Student Module, of interoperable representation of student models 
would enable ITS systems to construct and update their student models using infor-
mation coming from all of the different systems with which a student interacts. This 
would lead to an increased capability and consistency of personalization in ITSs.  

A lot of research effort has already been put into development of interoperable on-
tology-based user models that can be shared among different systems. For example, 
Dolog et al. [14] have proposed an ontology-based framework for manipulating and 
maintaining sharable learner profiles. Niederee et al. [15] have introduced a metaphor 
of a ‘context passport’ that accompanies users on their travel through the information 
space. When interacting with a system, the relevant “context-of-use” is extracted from 
this context passport and is used for improved support of related activities. There is 
also a proposal for an XML-based user model exchange language, called UserML, 
aimed at enabling decentralized systems to communicate through their user models 
[16]. The same research group has developed GUMO – the General User Model On-
tology - which allows for the uniform interpretation of decentralized user models.  

The Friend of a Friend (FOAF) ontology2, an ontology of social networks, provides 
a unified way for describing people and their relations. Due to its popularity and wide 
acceptance among Web users and communities, this ontology has become the basis 
for building domain/application specific ontologies for user and group modeling. For 
example, Ounnas et al. [17] has recently proposed a semantic learner model based on 
the FOAF ontology and aimed at supporting automation of the process of grouping 
students while preserving the individual’s personal needs and interests. They have 
actually extended the FOAF ontology with a set of student-properties, which are rele-
vant for the formation of different types of learning groups. Since it presents a com-
mon part of many of the application-specific user models commonly used, the FOAF 
ontology serves as a good base for sharing user models among diverse learning sys-
tems. In the context of ITSs, this offers the potential to allow learners to seek peer-
support while studying certain topics and by leveraging successful learning paths 
and/or knowledge of friends. Extending these functionalities even further is possible. 
For instance, a student would be able to export information about their achievements 
in an ITS into their e-portfolio. In this way, a user-centered profile management can 
be enabled allowing students to benefit from personalization, feedback provisioning 
and interaction while moving across different learning systems. 

                                                           
2 http://xmlns.com/foaf/spec/  
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3.3   The Benefits for the Teaching Module 

Design of teaching strategies and their representation in a computer executable form 
is a challenging task, and requires the engagement of both pedagogical experts (hav-
ing knowledge of instructional and learning theories as well as best teaching prac-
tices) and knowledge engineers (capable of representing pedagogical knowledge in a 
machine executable form). Therefore, it is highly important to enable sharing and 
reuse of the pedagogical knowledge as much as possible.  

One approach towards the reuse and the exchange of pedagogical knowledge is 
based on the reliance on standards and official specifications. The most relevant one 
is the IMS Learning Design3 (IMS LD) specification. The primary aim of IMS LD is 
to provide a common information model for representing pedagogy that is conceptu-
ally abstracted from context and content, so that proven pedagogical patterns can be 
shared and reused across instructional contexts and subject domains; as well as shared 
among different learning systems. Still, this specification can be improved by using 
ontologies. Giving a formal definition of semantics for such information models pro-
vides a stronger basis for integration into different systems. For example, Amorim et 
al. [18] developed an OWL ontology based on the IMS LD information model in or-
der to address the limited expressivity of the official specification.  

Not only are the semantics of learning designs more precise through the use of on-
tologies, but it is possible to relate elements of learning designs with various aspects 
characterizing specific contexts of their use. For example, learning activities can be 
connected with domain knowledge, learning content, and learner models of previous 
learners who participated in learning activities. In fact, the LOCO framework exactly 
addresses this problem, by providing a set of ontologies for defining learning context 
as an interplay of learning activities, learning content (and concepts), and users [19]. 
It makes the first steps towards materialization of the ecological approach [20] to the 
learning environments by fully leveraging formal semantics of ontologies and collec-
tive experiences of the learning content usage in previous learning contexts. For ITSs, 
this offers a tremendous potential for evaluating the quality of the shared learning 
designs, as well as all other shared learning resources (e.g., as it is shown in the 
LOCO-Analyst system [19]). For example, ITS developers may benefit from integra-
tion of an existing learn design into the teaching module. The teaching module itself 
may have heuristics and rules that reason over such shared learning designs for gener-
ating an instructional plan (e.g., to refer students to how their friends (FOAF) success-
fully completed learning activities on a certain topic). 

Not all research efforts aimed at developing ontological representations of instruc-
tional knowledge are based on IMS LD. Mizoguchi et al [21] have developed a  
comprehensive ontology that incorporates different theories and paradigms about in-
structional and learning design. The ontology came as a result of ten years of research 
commitment for providing a comprehensive and sharable model of instructional de-
sign knowledge. It is built based on the philosophical consideration of all the neces-
sary concepts for understanding learning, instruction and instructional design, and, as 
such, should enable increased theory-awareness in authoring tools. 

                                                           
3 http://www.imsglobal.org/learningdesign/  
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Based on a student’s current learning context and the system’s knowledge about 
the student stored in his/her student module, the teaching module schedules content 
selection and presentation, tutoring feedback, learner assessment, and other teaching 
actions. This means that the teaching module also stores procedural knowledge that 
describes the dynamics of the system. This knowledge often takes the form of differ-
ent kinds of rules, which are typically represented in well-known rule-based lan-
guages (e.g., Jess, Lisp). Recently, some researchers have proposed the use of the 
Semantic Web Rule Language4 (SWRL) for designing a system’s dynamics. For ex-
ample, Wang & Kim [22] proposed an extension of SWRL aimed at making this  
language sufficiently expressive for practical ITS development. They have also de-
veloped a concrete implementation of a teaching strategies engine using the extended 
SWRL and a standard rule engine.  

All of the above ideas promote sharing different types of knowledge among differ-
ent learners. However, as this may also affect the privacy of learners, it is also  
important to explore how policies can be integrated in the teaching module. For ex-
ample, policies can be used for defining access rights to certain resources based on the 
student’s current context and/or role or by negotiating trust (e.g., PeerTrust used in 
the ELENA project) [23]. This is especially relevant for mobile learning contexts, 
where the given context of learning (e.g., in a classroom) may be used by the teaching 
module to suggest collaboration or sharing of experiences with some peers. 

3.4   Benefits for Student-Tutor Interaction 

Some modern ITSs leverage improvements in natural language understanding techniques 
to accurately understand student utterances and to respond in productive and realistic 
ways. Beginners who have yet to refine their domain vocabularies - but are typically, 
surprisingly, consistent in their language patterns - are ideal targets for this technology 
[24]. Collaborative tagging can be leveraged to further improve the performance of these 
systems: folksonomies resulting from the students’ tagging activities reflects the vocabu-
lary they will typically use when communicating with the system, so it follows that those 
tags can be used for training the dialog component of an ITS.  

4   Conclusions 

The Social Semantic Web offers new approaches and technologies for making use of 
the not-so-formal contributions of users in many different systems. The educational 
domain is particularly well suited for first investigations of these approaches and 
technologies, since the goals and paths of its users are well defined and understood. 
Further, learners in online, distance, and independent learning situations – such as 
those targeted by ITSs – stand to benefit greatly from the new possibilities. ITSs in 
particular are complex to design, implement and maintain. Even though they are usu-
ally focused on specific domains and address particular needs, knowledge still remains 
embedded in the different ITS modules. Making this information accessible and reusable 
will reduce the costs of future ITS development, and, at the same time, improve the quality 
of the always growing quantity of information they contain. 
                                                           
4 http://www.w3.org/Submission/SWRL/  
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Through leveraging socially created knowledge and system interaction data from 
learner activities, we cite the most immediate benefit to ITSs as increased feedback 
and awareness of learner actions. This will increase pedagogical understanding of 
learner activities and enable timely and accurate evolution of domain ontologies. Fur-
ther, through structuring system and social interaction data, this information can be 
easily shared between ITSs and other educational systems to enable more accurate 
and complete personalization possibilities. Finally, students benefit from increased 
interactions with peers, the intrinsic motivations from contributing to their own learn-
ing, and new possibilities in ITS functionalities.  

In this paper, we have taken the first steps at outlining why new research and tech-
nologies in the Social Semantic Web should be leveraged in ITSs; given the tradi-
tional architecture and approach of ITS development. Our current endeavours include 
creating the infrastructure to support the incorporation of the Social Semantic Web 
paradigm into ITSs. To achieve this, we have already defined an extensive ontology 
which captures aspects of not only learners and instructional design, but also complex 
methods of representing and capturing social interactions and socially created knowl-
edge. Further, we will continue to develop the tools and software libraries that will 
allow for (semi-)automatically migrating social sources of information into detailed 
structured knowledge representations, which can be shared among, and used in, edu-
cational systems such as ITSs. 
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Abstract. Currently, there are little guidelines on building quality standard-
compliant learning courses. Although educational theories can be guidelines, 
there are difficulties in the practical use. An approach to the problem is to build 
a theory-aware and standard-compliant authoring system based on an ontology 
that establishes a multi-paradigm conceptual basis for learning/instructional 
theories. This paper discusses the feasibility of building such an ontology, as 
well as the functionality of a theory-aware authoring tool based on it.  

1   Introduction 

Standard technologies in the field of Technology-Enhanced Learning (TEL) are cur-
rently undergoing remarkable development [5]. However, a significant problem has 
been noted: in most of the learning/instructional design of TEL courses, learning 
objects (LOs) are combined with little justification, which can result in low-quality 
learning courses. A cause of this problem is in fact a disjunction between the learn-
ing/instructional theories and the standard technologies. Although the theories may 
not be always true, they can provide guidelines for quality design. 

As a key to the solution of the problem, the concern with ontologies has been 
growing [6]. We have made a study on an ontology for educational theories and a 
theory-aware and standard-compliant authoring system based on it [19, 20]. Issues 
addressed in this study are 1) to make computers understand and utilize a variety of 
educational theories and 2) to keep sharability of designed scenarios with theoretical 
justification. To achieve the understanding and the utilization requires a conceptual 
basis to ensure the compatibility among representations of theories. On the other 
hand, the sharability with justification requires a design environment for authors to 
articulate the design rationale of a learning/instructional scenario and to output the 
resultant scenario in a standard format such as IMS Learning Design (LD) 1. As the 
ongoing results we have published OMNIBUS ontology and an authoring system 
SMARTIES on the project website2. 
                                                           
1 http://www.imsglobal.org/learningdesign/ 
2 The OMNIBUS ontology and SMARTIES can be downloaded for free from the OMNIBUS 

project web site (http://edont.qee.jp/omnibus/) 
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This paper discusses the confirmation of the working hypothesis on which the 
OMNIBUS ontology is built and the feasibility of a theory-aware and standard-
compliant authoring system SMARTIES. This paper is structured as follows. Section 
2 describes the overview of the OMNIBUS ontology and a modeling framework for 
learning/instruction based on it. Section 3 presents the system structure and the func-
tionalities of SMARTIES. Section 4 considers the above results from three view-
points: confirmation of working hypothesis, theory-blending support on SMARITES 
and related studies about authoring tools. Finally, the last section concludes this paper 
and shows other potential of the OMNIBUS ontology than SMARTIES. 

2   A Framework for Modeling Learning/Instructional Theories 

2.1   OMNIBUS: A Learning-Support-Related Theory Ontology 

The underlying philosophy of building OMNIBUS ontology is that all the learn-
ing/instructional actions can be defined relying on the state of learners that has been 
changed according to such actions. For example, cognitivism pays attention to cogni-
tive processing inside a learner while constructivism pays attention to interaction with 
others or the environment. Those paradigms seem to deal with different types of 
changes of state because cognitivism deals with a learner’s internal changes in the 
cognitive process whereas constructivism treats the external state affected by interac-
tion. In practice though, the educational strategies proposed by these theories are 
compatible and even complementary (e.g. [24]).  

The hypothesis in this study is that establishing a multi-paradigm set of states of 
the learner, for example, states concerning change of the cognitive structure as a result 
of the learning process, can help to make a connection among the various internal and 
external states of learners with which each paradigm deals [9]. The most serious issue 
is, of course, whether such a multi-paradigm set can be found or not. It is obvious that 
there are many different states specific to each learning theory at a detailed level. 
However, if based on the important guiding principle of “engineering approximation,” 
the states can be categorized into several groups such as those in common within 
some of the paradigms, those in common within all the paradigms or ones specific to 
each theory. 

2.2   A Framework for Modeling Learning/Instructional Scenario 

In the OMNIBUS ontology, learning/instructional processes are modeled from two 
viewpoints: “what” to achieve and “how” to achieve [9]. Figure 1 shows an example 
of the model. The oval nodes represent I_L events, in which “I_L” stands for the rela-
tionship between the Instruction and the Learning. An I_L event is composed of state 
change of a learner and actions of the learner and the instructor related to the change. 
This describes what learner state is achieved by the actions. Black squares linking the 
macro and the micro I_L events represent ways of learning/instructional goals 
achievement (hereafter, WAYs). A WAY means the relation in which the macro is 
achieved by the micros. The micros basically have smaller grain-sized state to be 
achieved than the macro’s. A WAY describes how the state in the macro can be 
achieved by the sequence of smaller grain-sized states.  
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Fig. 1. Example of WAY to achieve learning/instructional goals 

One of the characteristics of this framework is “OR” relation between WAYs. As 
shown in Figure 1, the macro has two WAYs; WAY1 and WAY2. It indicates that 
there are two alternative ways to achieve the macro (where the leaner recognizes what 
to learn). WAY1 is an instructor-led process in which the instructor directly informs 
what and how to learn, on the other hand WAY2 is a learner-led process in which the 
instructor gives a demonstration without explanations. These two WAYs have a 
common goal (expected state-change of the learner) but take different approaches to 
achieve it.  

In this manner, making a distinction between “What” and “How” to achieve will 
further clarify the differences and commonalities of ways for learning/instruction. 
Moreover, this also works as guidelines to consider alternative ways to achieve the 
same goal. WAY is defined as the relational concept [16] on Hozo ontology editor3 
and an example of the detailed definition is shown in [20]. 

2.3   Modeling Strategies from Theories in the Form of WAY 

Each strategy from a theory (hereafter called strategy) describes relationships between 
relevant learning/instructional approaches for possible situations and expected learning 
outcome. Moreover, a learning/instructional strategy is considered as an aggregation of 
such relationships. The relevant modeling of the theories would be declaratively describ-
ing these relationships. Consequently, this study proposed to model the schemes de-
scribed by theories as WAYs. Such WAYs are called WAY-knowledge. 

In this study, a hundred pieces of WAY-knowledge are defined based on the eleven 
theories. Table 1 is a summary of the amount of WAY-knowledge roughly sorted into 
four categories of the theories/models. Cross-paradigm, Cognitivism and Constructiv-
ism are in the grouping axis based on the differences in the paradigm of “Learning 
(mechanism)” but Instructional management is in a different axis because it deals 
with preparing learning conditions such as motivation. Another typical paradigm is 
the Behaviorism, but we excluded it from Table 1 since its WAY-knowledge has not 
been defined currently. We discuss the content of WAY-knowledge in 3.1. 

                                                           
3  Hozo ontology editor can be downloaded for free from the Hozo web site 

(http://www.hozo.jp/) 
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Table 1. Content of WAY-knowledge Definition 

Categories of theory/model 

Cross-paradigm Cognitivist Constructivist Instruction management 

Number of  
Theories/models 

1 3 6 1

Amount of  
WAY-knowledge 

2 30 51 16

Amount of  
WAY-knowledge 
by a theory/model 

Dick and 
Carey's  
I-model [7] 

2
Component  
display theory 
[18] 

21
Constructivist 
learning environ-
ment design [13] 

22
Keller's I-Theory 
(ARCS model) 
[14] 

16

Gagne's I-
Theory [8] 

8
STAR LEGACY 
model [25] 

18

Merrill and 
Tennyson’s  
I-Theory [17] 

1
Scaffolding  
theories 
[11, 12] 

3

Cognitive  
apprenticeship [4] 

8

 

3   SMARTIES: A Theory-Aware and Standard-Compliant 
Authoring Tool 

SMARTIES is a prototype of an authoring tool that supports authors to design learn-
ing/instructional scenarios based on the OMNIBUS ontology [20]. At the same time, 
this is a standard-compliant system that can output the models in the IMS LD format. 
All the information in scenario models designed using SMARTIES, which includes 
the theoretical justification of the scenario, can be referred to from IMS LD-compliant 
tools such as Reload LD player [10]. Unlike other systems in which theories are em-
bedded in a procedural manner, the assistance that SMARTIES offers is provided 
based on the declarative knowledge defined by the OMNIBUS ontology which en-
ables scenario generation by the flexible use of multiple theories and automatic gen-
eration of explanations about the theories and scenarios generated.  

3.1   An Overview of SMARITES 

The current scope of SMARTIES is the design phase, one of the five major phases of 
Instructional design: analysis, design, development, implementation and analysis. 
SMARTIES assist the scenario design from the abstract level to the concrete level, in 
other words, from goal setting of a scenario to assignment of learning objects (LOs) to 
it. In SMARTIES the scenario design is done by decompositions of the goal of a sce-
nario into sub-goals as WAYs. This process is to externalize the design rationale of 
the scenario as well as to specify LOs used in it. Finally, the resultant scenario model 
is output in IMS LD format and can be executed on IMS LD compliant tools. 

Figure 2 illustrates the system structure of SMARTIES. SMARTIES supports three 
kinds of authors: Scenario authors, Knowledge authors and Ontology authors. Sce-
nario authors are instructional designers or teachers for example, who designs sce-
nario models through the scenario editor with reference to concepts defined by the 
ontology and the educational theories described as WAY-knowledge. Knowledge 
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Fig. 2. The system structure of SMARTIES 

authors describe learning/instructional design knowledge such as theories, best prac-
tices and their own heuristics as a set of WAY-knowledge based on the ontology. The 
WAY-knowledge editor supports the task and stores the resultant pieces of WAY-
knowledge are stored in WAY-knowledge base. Finally, ontology authors maintain 
the OMNIBUS ontology through the Hozo ontology editor, which is located outside 
of SAMRTIES.  

3.2   The Scenario Design Support in SMARTIES 

Figure 3 shows the screen shots of the scenario editor where the author designs a 
scenario model for learning micro scopes based on STAR Legacy model [25]. This 
screen shot shows how an author makes a scenario model using “WAY-knowledge”. 
The scenario editor (Fig. 3(1)) is the main window, which provides a scenario author 
(hereafter, author) with an environment to describe a scenario model (Fig. 3(a)) as a 
tree structure of I_L events in which the root describes the goal of the whole scenario. 
In this window, the author decomposes the root I_L event step-by-step. For each I_L 
event, the setting panel is provided to the author (Fig. 3(2)). In the panel he/she can 
refer to the ontology and choose concepts to describe I_L event (Fig. 3(3)). The au-
thors can describe the decomposition of each I_L event by the author-defined WAY 
(Fig. 3(4)) or WAY-knowledge stored in SMARTIES.  

The Way proposal window (Fig. 3(5)) provides an author with applicable WAY-
knowledge in order to assist the author to decompose each I_L event in the scenario 
model. The list of applicable pieces of WAY-knowledge is shown in Fig 3(d). This is 
the result of the I_L event pattern matching based on OMNIBUS ontology. The I_L 
event selected in the scenario editor is compared with the macro I_L event of all the 
pieces of WAY-knowledge. If these match up, the WAY-knowledge is applicable. 
When the author chooses one of them, a proposed decomposition by the WAY-
knowledge is displayed on the viewer (Fig. 3(e)). If the author decides to adopt the 
selected Way, the proposal is applied to the scenario editor. By repetition of such a 
process, an author makes scenario model from abstract levels to concrete ones.  

At the end of the scenario design, learning objects are linked to a scenario model. 
The leaf nodes depicted by rounded rectangles in the scenario model stand for LOs. In 
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Fig. 3. Screenshot of SMARTIES 

this example, a simulation of a micro scope (Fig. 3(6)) is set in order to materialize 
the leaf I_L event. This is because the goal in this I_L event is to remind the learners 
of the procedure (the manipulation of micro scopes) and the transformational media, 
which are visual images illustrating changes in time or over space, is appropriate to 
such content according to Clark’s multimedia principle [3]. Authors can set an LO 
that they made or know as well as search LO repositories for LOs appropriate to the 
requirement (Fig. 3(7)). Although just the content type is used to discuss the require-
ment of LO in the current implementation, much more properties are considered to be 
used to specify the requirement, for example, learner characteristics such as age and 
prior knowledge, domain characteristics of the content and context characteristics 
such as mode of instruction and delivery listed in [20]. Enumerating such properties 
and linking them to LOM elements for LO search is currently in progress. 

4   Discussion 

In this section, we discuss the confirmation of the working hypothesis of the 
OMNIBUS ontology and the feasibility and the advantages of SMARTIES. 

4.1   Confirmation of the Working Hypothesis 

In order to confirm the working hypothesis discussed in 2.1, we summarized the us-
age of “state” in WAY-knowledge in Table 2. In this section, we examine if the char-
acteristics and the common ground of each paradigm are properly extracted. 

The states are classified roughly into six groups. The Learning stage is a state  
related to the progress of learning such as “Preparation,” “Development” and “As-
sessment.” The Cognitive process state is a state regarding the learner’s recognition 
process. The Meta-cognitive process state is a state regarding the metacognition proc-
ess. The Attitudinal state is a state regarding the learner’s attitude and interest such as  
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Table 2. Distribution of the States used in the WAY-knowledge 

The categories of theory/model 
Cross- 
paradigm  

Cognitivism  Constructivism 
Instruction  
management  

Number of  Theories/models 1 3 6 1
Amount of WAY-knowledge 2 30 51 16

The statistics of 
theory/model 

Number of states 8 77 132 39
Learning stage 71.4 4.8 6.3 0.0 
Cognitive process state 14.3 61.9 36.7 35.9 
Meta-cognitive process state 0.0 15.9 41.4 12.8 
Attitudinal state 0.0 9.5 4.7 43.6 
Developmental state 14.3 0.0 0.8 0.0 

Percentage of  
each category 

of states 

External state 0 7.9 10.2 7.7  

“Motivation.” The Developmental state is a state regarding the developmental stages 
of knowledge and skills and is defined following Bloom’s taxonomy [2]. Lastly, the 
External state is a state regarding the learner’s communication with others or the 
environment and has the subclasses such as “Informed” or “Asked.” 

In Table 2, the theory/model classification mostly used in each state classification is 
depicted in boldface. This result indicates that various learning/instructional strategies 
extracted from each theory reflect their characteristics. For example, the cognitivism uses 
many cognitive states because it focuses on the knowledge processing process while the 
constructivism uses many meta-cognitive states that are related to the meta-cognition 
process. The cross-paradigm theory uses many learning stages because it is directed to 
general learning/instructional processes in which the differences in paradigms are minor.  

As discussed above, by modeling strategies extracted from theories as WAY-
knowledge focusing on the learner state, the similarities and differences in paradigms 
are clarified. As Table 2 shows, there are the overlaps of the usage of state categories 
among paradigms. Therefore, multiple theories from multiple paradigms might be 
blended in one scenario with the common state concept working as the common 
ground. Since there do not exist theories that support theory-blending, the validity of 
blending is not always assured. However, we consider that its feasibility can be pre-
sented by the framework of WAY-knowledge that we propose in this study and the 
theory-blending function discussed below will provide useful information for the 
instructional designers and teachers. 

4.2   Consideration of the Alternative Strategy Applicable for a Scenario Model 

To consider the feasibility of the theory-blending support of SMARTIES, we have mod-
eled a scenario on SMARTIES and examine the possibility of theory-blending. This 
scenario is from [24] and based on the theory by Gagne and Briggs [8]. The original 
scenario consists of 11 steps. On the other hand, the scenario model built on SMARTIES 
has 15 leaf nodes (I_L events) therefore consists of 15 steps. The reason for the differ-
ence is that several steps in the original scenario include multiple interactions between 
the instructor and the learner. One interaction is described as one I_L event in the sce-
nario model therefore one step of the original scenario may be decomposed into several 
steps in the scenario model depending on the granularity of interaction. 

Most of the WAYs in the scenario model were able to be described by the pieces of 
WAY-knowledge extracted from the principles by Gagne and Briggs. The only part  
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that was not described by the pieces of WAY-knowledge is the lower layer of the 
scenario model, which mainly consists of an I_L event where actions are decomposed 
into concrete actions (i.e., Tell and Listen, which cannot be decomposed more in the 
OMNIBUS ontology.) Therefore, we believe the WAY-knowledge prepared for this 
study was sufficient to build an overall storyline of the scenario. 

In order to know the applicability of other theories to this scenario model, we 
checked all the WAYs in the scenario model to see if they had any other pieces of 
WAY-knowledge applicable to themselves. This experiment was conducted on 
SMARTIES and Figure 4 shows the result displayed on SMARTIES. The result 
showed that one or more substitutable pieces of WAY-knowledge were detected from 
99 pieces of WAY-knowledge for each of the 23 WAYs out of the 27 WAYs in the 
scenario model. These alternatives include some pieces of WAY-knowledge extracted 
from other theories or paradigms.  This can be considered that SMARTIES can pose 
the possibility for the application of other theories than the Gagne and Briggs’s to this 
scenario model. Of course, as mentioned in the previous section, not all the alterna-
tives are assured to be pedagogically relevant to be used in this scenario model, but 
they can work as helpful information for scenario authors. From this point of view, 
we may suggest the possibility of designing learning/instructional scenarios based on 
the multiple theories beyond paradigms through the modeling framework based on the 
OMNIBUS ontology.  

4.3   Related Studies Concerning the Authoring Systems 

A number of authoring systems have been suggested in the area of learning/instruction 
support systems [21]. In this section, concerning the support functions for learn-
ing/instructional scenario design, we make a comparison between SMARTIES and the 
other major theory-based authoring systems. 

As for the authoring systems that include theoretical knowledge, the CREAM tools 
[22] and CTAT (Cognitive Tutor Authoring Tools) [15] can be named as representa-
tive examples. They are based on the theories by Gagne [8] and by Anderson [1] 
respectively. By designing the support functions based on each theory, these tools can 
provide the author with detailed support. However, these two are based on a single 
theory and the author has to use another authoring tool if he/she wishes to use other 
theories because the content of the single theory is deeply embedded in the functions. 
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Furthermore, the clear correspondence between the assistance functions and the the-
ory is kept only in the system developer’s head and the authors cannot come to know 
it clearly when using the system.  

SMARTIES has the advantages of these authoring tools as well as complementing 
their disadvantages. It can provide design guidelines based on multiple theories ac-
cumulated as WAY-knowledge. Focusing on only one theory, of course, has the ad-
vantage that an authoring system has theoretical consistency from the behavior of the 
system to the user interface. However, the problem is the scalability concerning the 
accumulation of knowledge. Some sort of general-purpose framework to systematize 
theories is required in order to make the authoring tool continuously usable in re-
sponse to the change of theories. The WAY-knowledge is scalable in SMARTIES and 
knowledge authors can increase the number of the theories to be dealt with by in-
creasing the number of pieces of the WAY-knowledge.  

5   Conclusions 

We have discussed the feasibility of building a multi-paradigm conceptual basis for 
learning/instructional theories, as well as the functionality of a theory-aware authoring 
tool based on it. As discussed in Section 4, the OMNIBUS ontology works as a con-
ceptual basis for describing learning/instructional strategies from theories and 
SMARTIES has the scalability concerning theories to be dealt with. Although the 
definitions of the ontology need to be refined from the experts’ perspective of learn-
ing/instructional theories, its significance lies in the fact that it presented the feasibil-
ity of structurizing various learning/instructional theories. In addition, it is considered 
that the framework of WAY-knowledge can deal with not only theories but also some 
other types of design knowledge such as best practices and teachers’ heuristics. 

Furthermore, the OMNIBUS ontology suggests other possibility of the theory-
awareness than SMARTIES. CIAO [23] is a scenario analysis agent that also works 
based on the OMNIBUS ontology. This interprets the scenario described in the IMS 
LD format and infers the design rationale of it. [26] proposes an ITS based on the 
OMNIBUS ontology. In the ITS, pieces of WAY-knowledge are converted to SWRL 
rules and used by the ITS to select an instructional strategy appropriate to the learner. 
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Abstract. The knowledge acquisition bottleneck is a problem pertinent to the 
authoring of any intelligent tutoring system. Allowing students a broad scope of 
reasoning and solution representation whereby a wide range of plausible student 
solutions are accepted by the system, places additional burden on knowledge 
acquisition. In this paper we present a strategy to alleviate the burden of knowl-
edge acquisition for building a tutoring system for medical problem-based 
learning (PBL). The Unified Medical Language System (UMLS) is deployed as 
domain ontology and information structure in the ontology is exploited to make 
intelligent inferences and expand the domain model. Using these inferences and 
expanded domain model, the tutoring system is able to accept a broader range 
of plausible student solutions that lie beyond the scope of explicitly encoded so-
lutions. We describe the development of a tutoring system prototype and report 
the evaluation of system correctness in accepting such plausible solutions. The 
system evaluation indicates an average accuracy of 94.59 % when compared 
against human domain experts, who agreed among themselves with a statistical 
agreement based on Pearson Correlation Coefficient of 0.48 and p < 0.05.  

Keywords: Robustness, intelligent tutoring systems, medical problem-based 
learning, UMLS, knowledge acquisition bottleneck. 

1   Introduction 

Intelligent tutoring systems typically present a problem scenario to the students, who 
solve the problem and receive hints from the system to help them in reasoning  
towards the correct solution. Solutions presented by students are evaluated by com-
paring them against a particular solution accepted by the tutoring system as being 
correct. Thus plausible student solutions that do not match that particular solution or a 
small set of stored solutions recognized by the system are often rejected by the system 
as being incorrect. This forces students to memorize expert solutions and stifles stu-
dent creativity. Students should be able to use their understanding of concepts and 
concept relationships and learn how to apply their knowledge to given problems. This 
is particularly relevant in medical PBL, where a diverse set of solutions may be ac-
ceptable instead of a single perfect solution. 
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Plausible solutions may differ along a number of dimensions such as comprehen-
siveness, level of detail and the choice of alternate and synonymous terms to describe 
a concept. Different solutions to a problem may also be acceptable depending on the 
perspective one chooses to analyze from and this may particularly be applicable to ill-
defined domains such as medical education [1]. The value of being able to accept a 
broader set of solutions is that it supports an approach to learning that promotes free 
thinking and novel solutions. To the best of our knowledge, the task of accepting a 
range of solutions larger than the explicitly encoded scope of solutions, is yet to be 
addressed in intelligent tutoring systems.  

In order for a tutoring system to exhibit robust human-level tutoring, it needs broad 
knowledge to allow students to explore a large space of solutions and work creatively. 
Authoring tutoring systems typically requires knowledge acquisition in the three areas 
of domain expert knowledge, student model and pedagogical model [2]. Domain 
expert knowledge is acquired to equip the system with the curriculum knowledge that 
is to be taught to the students; pedagogical knowledge is acquired to equip the system 
with teaching techniques and strategies; and knowledge of the student model is ac-
quired to help the system assess the knowledge level of the student. Acquiring and 
encoding the relevant knowledge can lead to a large overhead in the development 
time of a tutoring system [3, 4]. Manually encoding all knowledge into the system so 
that it can accept the full range of plausible solutions is not feasible and places great 
burden on human domain experts, whose time is very costly. A natural choice to 
overcome this knowledge acquisition bottleneck is to make use of existing knowledge 
available for reuse and sharing. The use of ontologies is a viable alternative in reduc-
ing the burden of knowledge acquisition for knowledge based systems. 

Ontologies have been employed in the design of various tutoring systems [5, 6, 7], 
which often require cumbersome encoding of the ontology. The Constraint Acquisi-
tion System [8] uses a more automated approach of encoding the ontology constraints 
by learning from examples using constraint based modeling. However, it still requires 
the initial design of the ontology to be defined manually. 

In the next few sections we describe how the burden of knowledge acquisition can 
be lightened for a medical tutoring system, through the use of the broad and widely 
available medical knowledge source UMLS, distributed by the U.S. National Library 
of Medicine [9]. We also describe a mechanism of exploiting the information struc-
ture in UMLS, through which the tutoring system can accept a range of plausible 
solutions larger than the explicitly encoded scope of solutions. 

2   Related Work 

The issue of brittleness and burden of knowledge acquisition has been addressed in 
the design of various intelligent tutoring systems [10, 11]. Kumar [10] discusses the 
use of model-based reasoning for domain modeling in the context of web-based tutor-
ing system for helping students to learn to debug C++ programs. Arguing that rule-
based systems are not flexible and are not adaptable to varying system behavioral 
discrepancies, he proposes model-based reasoning as an alternative. 

The KASER [11] design is implemented in a tutoring system that teaches the sci-
ence of crystal-laser design. They argue that production rules, when found to be in 
error, are corrected through explicitly encoding the revised rule back into the system. 
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They propose a production system, which initially requires explicit encoding of rules 
and can later self generate other rules as extension to the ones created earlier, easing 
the burden of knowledge acquisition. 

The designs of medical tutoring systems built to date, have typically been based on 
customized knowledge bases that offer students a limited set of medical terms and 
concepts, to form their solution. The CIRCSIM-Tutor [12] teaches cardiovascular 
physiology by describing a perturbation of a cardiovascular condition, and initiating a 
question answer dialog with the student, to help the student in reasoning towards the 
correct solution. The system design lays emphasis on qualitative reasoning, but the 
scope of hypothesis (solution) representation is narrow, as students are confined to 
assigning values to a small set of variables for forming their hypothesis.  

The SlideTutor [5] teaches students dermatopathology by presenting a visual slide 
as a problem scenario and asks students to classify the diseases. After observing the 
visual evidence presented in the slide, students present their hypothesis through a 
mouse driven menu selection, identifying features and their attributes from an ontol-
ogy that has been manually encoded for the problem scenarios fed to the tutoring 
system. Solutions accepted by the tutoring system are also based on the ontology 
customized for the system. Thus students are not allowed to present alternative plau-
sible hypotheses that may lie beyond the scope of this customized ontology. 

This motivates the need to have a medical tutoring system that offers students a 
broad knowledge base of medical concepts and terms, such as the UMLS [9], to select 
their hypothesis concepts. This tutoring system should also be able to accept a wide 
variety of plausible hypotheses to a given problem. 

3   Medical PBL and System Prototype 

In a typical PBL session in the medical domain, a problem scenario is presented to a 
group of 6-8 students, who form their hypothesis in the form of a causal graph, where 
graph nodes represent hypothesis concepts and directed edges (causal links) represent 
cause effect relationships between respective concepts. The hypothesis graph is based 
on the Illness Script, where hypothesis nodes may represent enabling conditions, 
faults or consequences [13]. Enabling conditions are factors that trigger the onset of a 
medical condition, e.g., aging, smoking, etc.; faults are the bodily malfunctions that 
result in various signs and symptoms, e.g., pneumonia, diabetes, etc.; consequences 
are the signs and symptoms that occur as a result of the diseases or disorders, e.g., 
fatigue, coughing, etc. 

There is difference of opinion on whether experts or non-experts should be used as 
a PBL tutor or facilitator [14, 15]. Different PBL tutors may also disagree over the 
extent to which a causal link is acceptable. While one tutor may find a causal link 
perfectly acceptable, another tutor may only be inclined to accept it with reservation. 
Quite often a PBL tutor may accept varying solutions that may differ in the choice of 
alternate terms or also in the level of detail with which the solutions are presented. 

Our work is based on the extension of the COMET system [16, 17] designed to 
cover medical PBL for various domains. In the COMET system, each problem sce-
nario is first referred to human domain experts who provide an expert solution that is 
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   Fig. 1. (a) System Prototype Interface                  (b) Relationships in UMLS 

eventually fed to the system. Student solutions are compared against this expert solu-
tion for evaluation. Thus a plausible student solution that does not match the expert 
solution is not entertained. The system allows students to form their hypothesis by 
choosing medical concepts from a repository manually encoded into the system.  

We have developed a tutoring system for PBL in the medical domain. Problem so-
lutions collected from experts are combined with UMLS tables to form the domain 
model. The pedagogical module of the system comprises of a hint generation mecha-
nism that leverages off of the UMLS concept hierarchy and provides students a meas-
ure of partial correctness of their hypotheses [18]. Since the hint generation employs 
the rich domain knowledge of the UMLS in lieu of a student model, the design of our 
tutoring system does not include a student model.  

The problem representation in our system is the same as that in COMET of a di-
rected acyclic graph for forming the hypothesis. The student user is provided with a 
workspace as a hypothesis board to form the hypothesis, along with a text chat pane 
that returns hints from the system to guide the student in his/her clinical reasoning, as 
shown in Figure 1 (a). The student chooses concepts from the UMLS Metathesaurus 
[9] as hypothesis nodes and draws edges between nodes, using a mouse. The problem 
solving activity begins as the student is presented a problem scenario, such as: 

“Mr. Heng-heng is a 48-year-old admitted with severe chest pain” … “His father 
died of heart attack aged 55. He smokes 20 cigarettes a day. He is still in pain”… 

After studying the above problem description related to heart attack, the student 
hypothesizes that endothelial degeneration is a cause of coronary arteriosclerosis, 
which is shown to be a cause of myocardial infarction, as shown in Figure 1 (a). 

4   System Knowledge Base and UMLS Knowledge Source 

The UMLS [9] is a widely available medical knowledge source and is essentially a 
collation of various medical ontologies and terminologies (MeSH, SNOMED-CT, 
Gene Ontology, etc). The broad and diverse UMLS contains over 1 million medical 
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concepts covering various medical domains and about 135 semantic types, where 
each medical concept is assigned at least one semantic type [9].  

The UMLS has been studied for use in many intelligent system applications [19, 
20, 21, 22]. However, to the best of our knowledge, UMLS has not been used as the 
main knowledge source for inference purposes in an intelligent tutoring system. The 
Docs ‘n Drug tutoring system [23] employs the use of medical terminologies that are 
a subset of UMLS, to allow students to choose concepts from these incrementally 
expandable terminologies. However, this system does not exploit the knowledge 
structure within these terminologies and make inferences for reasoning purposes.  

The design of our system knowledge base comprises of UMLS tables and an addi-
tional table that is henceforth referred to as the expert knowledge base. The expert 
knowledge base is encoded with the help of human domain experts, and it contains the 
causal relationship between various medical concepts, such as: 

 

Hyperlipidemia  Endothelial Degeneration 
Endothelial Degeneration  Coronary Arteriosclerosis 
Endothelial Degeneration  Atherosclerosis 
Coronary Arteriosclerosis  Myocardial Infarction 
 

Student solutions that are considered acceptable by human experts are merged into 
the expert knowledge base. The expert knowledge base is formed through the colla-
tion of expert solutions to various problem scenarios, along with the student solutions 
that are certified by the experts to be correct. The construction of an expert solution 
requires about 2-3 hours. Since each solution is in the form of a hypothesis graph, the 
collation of different solutions implies the incremental addition of the causal links in 
each solution, to the expert knowledge base. The goal is to expand the expert knowl-
edge base over time. This is achieved through a convenient mechanism of knowledge 
acquisition, when student hypotheses are intermittently referred to a human tutor. 
While examining a plausible student hypothesis, the human tutor has the option to 
click the Accept Button, as shown in Figure 1 (a). This adds all links in the student 
hypothesis being examined, to the expert knowledge base. 

5   System Reasoning and Hypothesis Evaluation 

Each hypothesis causal link drawn by the student is evaluated by the system. The 
system refers to its knowledge base to check whether the link is acceptable. If the link 
is found to be acceptable, the system allows the directed edge (causal link) to be 
drawn; otherwise the system disallows the edge to be drawn and returns an appropri-
ate hint as feedback to the student. The acceptability of the student hypothesis link is 
evaluated by comparing it against the expert knowledge base. If there is a match, the 
link under evaluation is considered acceptable; however if the link is not found in the 
expert knowledge base, the system makes use of a heuristic method to see if the link is 
close to acceptable. 

This heuristic method makes use of the information structure within UMLS to 
make inferences. We use the relationships alike and child-parent for our purpose of 
heuristic based evaluation of the student solutions. A hierarchy based on parent-child 
relationships between UMLS concepts is shown in Figure 1 (b). While evaluating a 
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causal link, we consider the alike and parent-child relationships of each of the parent 
node and the child node in the causal link. All concepts that are found to have alike 
relationship or parent relationship with the parent node are considered equivalent to 
the parent node, while all concepts that have alike or parent relationship with the 
child node are considered equivalent to the child node. For a causal link under evalua-
tion, let set A contain all concepts considered equivalent to the parent node and let set 
B contain all concepts considered equivalent to the child node. If the system finds a 
causal link in the expert knowledge base whose parent node is a concept from set A 
and whose child node is a concept from set B, then the link under evaluation will be 
considered acceptable.  

Our experiments with expert ratings of causal links, revealed that links with con-
cepts belonging to the four terminologies of Medical Subject Headings (MSH), 
UMLS Metathesaurus (MTH), Systematized Nomenclature of Medicine-Clinical 
Terms (SNOMEDCT) and National Cancer Institute (NCI), were found to be more 
acceptable. Thus in order to reduce the number of erroneous links, the system only 
accepts causal links whose concepts belong to any of these four terminologies.  

The tutoring system starts by evaluating each causal link in the hypothesis sepa-
rately, and then evaluates the graph as a whole. A hypothesis is considered valid if it 
contains a chain of reasoning, where nodes representing enabling conditions lead to 
other nodes in succession that eventually lead to the symptoms.  

5.1   Example 

Consider the problem scenario related to heart attack described above. Two different 
solutions shown in Figure 2, considered acceptable by human experts are merged into 
the expert knowledge base. Thus the student hypothesis shown in Figure 3 (a) is ac-
cepted by the system, since this hypothesis is justified through the merging of the 
expert solutions shown in Figure 2. 

For illustration of the heuristic method of accepting inferred links, consider the 
causal link from an expert solution, shown in Figure 3 (b). The expert knowledge base 
contains this causal link leading from hypoinsulinism to glucose metabolism disorder. 
For this link, two lists are generated. The first list L1 comprises of concepts that have 
alike or parent relationship with hypoinsulinism, so that L1 = {hypoinsulinism, dis-
eases of endocrine pancreas}. The second list L2 comprises of concepts that have 
alike or parent relationship with glucose metabolism disorder, so that L2 = {glucose 
metabolism disorders, metabolic diseases, disorder of carbohydrate metabolism}. 

Part of Expert Solution B Part of Expert Solution A 

Coronary
Arteriosclerosis

Coronary
Arteriosclerosis 

Myocardial 
Infarction 

Indigestion Myocardial 
Infarction 

Sweating Chest Pain 

Indigestion 

 

Fig. 2. Expert Solutions merged into the expert knowledge base 
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The space of plausible solutions is expanded, as the system accepts all hypothesis 
links that are formed through L1  L2, such as: 

 

hypoinsulinism  glucose metabolism disorder 
hypoinsulinism  metabolic diseases 
hypoinsulinism  disorder of carbohydrate metabolism 
diseases of endocrine pancreas  glucose metabolism disorder 
diseases of endocrine pancreas  metabolic diseases 
diseases of endocrine pancreas  disorder of carbohydrate metabolism 

Coronary 
Arteriosclerosis

Myocardial 
Infarction 

Sweating 

Chest Pain 

Glucose Metabolism 
Disorder

Hypoinsulinism 

 

       Fig. 3. (a) Student solution accepted by the system                (b) Expert Causal Link 

6   Results 

We conducted system evaluations of the acceptability of causal links beyond those 
explicitly encoded into the system. We randomly selected 14 causal links from expert 
solutions to three problem scenarios related to diseases and disorders such as heart 
attack, diabetes and pneumonia. For each node in the causal link we generated a list of 
concepts that were found to have alike and parent relationship with the nodes in the 
causal link. Thus we generated a pair of lists of concepts for each causal link. We then 
formed links between each pair of concepts found in the respective lists. 

From an initial number of 14 links, the system generated a total of 228 links based 
on the alike and parent relationships. These system generated causal links were then 
presented to a total of 10 medical experts from Thammasat University Medical 
School, who had at least 5 years of experience in conducting PBL sessions. The ex-
perts were asked to rate the acceptability of each link on a scale of 1-5, where 1 im-
plied unacceptable, 2 implied not quite acceptable, 3 implied not sure, 4 implied close 
to acceptable and 5 implied acceptable. The ratings were so chosen to accommodate 
the difference of opinion often found among PBL tutors as mentioned in section 3. 
Figure 4 shows part of the expert evaluation form based on the links generated from 
the causal link shown in Figure 3 (b). 

These 228 links were short listed by medical experts to comprise only of links that 
could conceivably be formed by medical students according to expert judgment. This 
resulted in 213 links, which were further short listed to comprise of only those links 
whose concepts belonged to any of the above mentioned four terminologies: MSH, 
SNOMEDCT, MTH and NCI. Thus a total of 111 system generated causal links were 
considered for evaluation. Based on the ratings 1-5 assigned by the medical experts, 
we computed the average score for each causal link. The overall mean of the ratings 
came out to be 4.11 with a standard deviation mean of 0.69. 
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Fig. 4. Part of Expert Evaluation Form showing inferred links 

 

Fig. 5. (a) Distribution of Acceptability Ratings              (b) Inter-Expert Correlation 

To get a measure of acceptability we collapsed the rating scale to divide the links 
into acceptable or unacceptable. All links that had an average rating above 3 were 
considered acceptable, while the rest were considered unacceptable. Based on this 
criterion, 105 links were found acceptable, whereas 6 links were found unacceptable, 
leading to an overall accuracy of 94.59 %. The experts were found to agree with each 
other with a good degree of statistical agreement (Pearson Correlation Coefficient = 
0.48, p < 0.05). Figure 5 (a) shows the frequency distribution of the 1110 acceptabil-
ity ratings assigned by 10 experts for 111 samples, whereas Figure 5 (b) shows the 
correlation values of individual experts with rest of the experts. 

7   Discussion 

The average score of 4.11 out of 5.0 and the overall accuracy of 94.59 % together 
with good statistical agreement among expert ratings, indicate that the system is 
mostly correct in accepting inferred links. As can be observed from the correlation 
values in Figure 5 (b), the experts were not in perfect agreement with one another 
over the acceptability of the causal links. Furthermore, the expert evaluations also 
revealed that in some cases, links inferred by the system scored higher than the corre-
sponding original links created by human experts. For example, the inferred links: 
heredity  vascular diseases and heredity  arteriosclerosis received mean scores 
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of 4.5 and 4.2 respectively, whereas the original expert link heredity  atherosclero-
sis received a mean score of 3.3. This evidence further points to the inherent variation 
involved in the evaluation of PBL hypothesis links and reinforces the need to have a 
tutoring system that evaluates student solutions in a broad context. 

8   Conclusion 

In this paper we have described how to reduce the burden of knowledge acquisition in 
an intelligent tutoring system. We have described how a broad and easily available 
medical knowledge source such as UMLS can be deployed as the domain ontology 
for a tutoring system for medical PBL. We have presented a strategy of making the 
tutoring system more robust by broadening the scope of solutions that are accepted by 
the tutoring system as being correct. The inference mechanism for expanding the 
solution space can also be applied to other domains, where the problem representation 
is in the form of causal graphs.  

We intend to evaluate the effectiveness of the system’s tutoring hints vis-à-vis the 
two major components of hint generation in our system: the measure of partial cor-
rectness and the leveraging off of the UMLS concept hierarchy. Finally we intend to 
conduct evaluations of learning outcomes by assessing the clinical reasoning gains 
acquired by student users as a result of using this medical tutoring system. 

 
Acknowledgments. We thank the medical experts at Thammasat University Medical 
School for generously donating their time and effort for the system evaluations. 
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Abstract. How to best sequence instruction in a collection of basic facts is a 
problem often faced by intelligent tutoring systems. To solve this problem, the 
following work details two tests of a system to provide drill practice (test trials 
with feedback) for foreign language vocabulary learning using a practice 
schedule determined to be optimal according to a cognitive model. In the first 
test, students chose between an optimized version and a version that merely cy-
cled the vocabulary items. Examination of the time on task data revealed a pref-
erence for practice based on the decisions of the cognitive model.  In the second 
test, the system was used to train the component parts of Chinese characters and 
measure the transfer of knowledge to subsequent learning of Chinese charac-
ters.  Chinese character learning was improved for students with the relevant 
optimized training.   

Keywords: computer assisted instruction, practice scheduling, prerequisites. 

1   Introduction 

Because many domains rely on basic facts, this paper addresses a general method for 
how deficits in basic facts can be addressed through efficient scheduling of practice. To 
illustrate, consider the case of vocabulary in foreign language learning. The importance 
of vocabulary knowledge to success in foreign language learning is emphasized by ex-
perts in foreign language instruction [1]. However, students are not always motivated to 
spend time in the repetitive exercises necessary to produce fast and accurate recall of 
vocabulary items in a language they are learning. Indeed, while taking advantage of the 
spacing effect (the advantage to long-term learning when practice is distributed in time) 
is recommended by many authorities [e.g. 2], the high numbers of errors produced during 
learning that uses spaced repetition might further reduce motivation for extended practice 
thus making spaced practice a difficult method to apply [3]. 

To address this dilemma, we have been developing a system that delivers practice 
of facts scheduled according to the predictions of a cognitive model. This optimal 
practice scheduling algorithm provides more efficient practice in the laboratory [4] 
and this paper reports two classroom experiments with the system in a college level 
Chinese I language class. 
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2   Practice Model and Optimization Algorithm 

We will begin by describing the ACT-R (Adaptive Control of Thought – Rational) 
model variant that we use to make scheduling decisions [5]. While ACT-R is best 
known for its production rule system that models the flow of procedural execution, 
the model in this paper uses the ACT-R memory equations to predict performance 
based on a history of learning events. 

2.1   ACT-R Variant Practice Model 

The model characterizes the strength of an item in memory (vocabulary pairs in the 
experiments in this paper) by a quantity referred to as “activation”. Activation is a 
continuous real valued quantity specified by Equation 1. 
 

mn( )t1..n = βs ln ∑
i=1

n

biti
d i + 

 

(1) 

In equation 1, n is the number of prior practices for an item for which activation is 
being computed. The ti values are the ages (in seconds) for each prior practice of the 
item by a learner. The summation of these ti values captures the benefit of frequency 
of practice while the power function decay parameter (d) models how more recent 
practice contribute more to the summation. The b value multiplied by each ti captures 
the influence of the result of each practice in later predictions. In the case where the 
past practice was a successful recall, b is typically high, whereas in the case of a  
failure, b is typically low. The βs value is initially set at 0 for each student and is esti-
mated during learning to dynamically improve the overall fit of the model for individ-
ual differences. These incremental adjustments occur every 50 trials. The d values in 
the superscript are computed according to Equation 2.  
 

di = ce
m i 1 a +  

(2) 

In Equation 2 a and c are fitted parameters and mi-1 is equal to the activation at the 
time practice i originally occurred. For example, if we are computing d7 (decay value 
for the 7th practice drill), we need to know the activation at the time this drill occurred 
m6. Keep in mind that this is recursive since to compute m6 we need to know ds 1 thru 
6. (Since m0 = -infinity, d1 = a, according to Equation 2.)  Equation 2 captures the 
spacing effect.  It represents practice being forgotten more quickly when an item is 
easier due to narrow spacing of prior practices. 

For activation, it has also proven necessary to scale the times between sessions as 
if it passes more slowly than time within practice sessions [5]. So, if a practice oc-
curred during a previous session its ti is modified by subtracting a fraction of the 
intersession from the actual ti value. For example, if t6 occurred 100000s ago and 
99000s of this period was spent outside the practice sessions, the modifier (0.00046 
for the experiments here) is multiplied by the inter-session time and the result (45.5s) 
is added to the within session practice duration (1000s). For this example t6 is com-
puted to be 1045.5s according to this procedure. Theoretically this mechanism cap-
tures the idea that memory interference (from other items in the set of items being 
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learned) may be much less intense when practice is not occurring as compared to 
when it is. Further, at least in the case of classroom experiments where students can 
be expected to practice the items outside the tutor for classroom work, this parameter 
also captures some of this learning that occurs without the tutor between sessions. 
This picking up of classroom learning in this parameter is unintentional and a more 
principled solution to issue will be sought in future versions. 

Equations 3 and 4 are the functions that model recall probability and recall latency 
as a function of activation. In Equation 3, s captures the variance of the logistic trans-
formation of activation into probability while τ captures the threshold of recall. If s = 
0 it implies that activations above threshold result in perfect recall, while activation 
below threshold means recall always fails. As s increases the transition from 0% to 
100% recall becomes increasingly graded. In Equation 4, F scales the latency, which 
is an exponential function of activation. Equation 4 captures the variable time neces-
sary to perform a correct recall. Fixed costs of each practice are often summed to this 
variable cost function to capture perceptual motor costs of responding. Like the βs 
parameter, F is incrementally adjusted every 40 trials. 
 

p( )m =
1

1 e
τ m

s +  

(3) 

 
l( )m = Fe m

 (4) 

2.2   Optimized Practice Scheduling 

These ACT-R equations model the effect of practice history (including practice spac-
ing, frequency, recency, and success) on both success and latency of later perform-
ances. This model allows fine-grained trial by trial predictions of which item of a 
learning set is optimal to practice next. These predictions are made by computing the 
long-term efficiency of practice for each item in the set, and then selecting items for 
practice when they are at a time when their efficiency is maximal. Efficiency is a 
value computed directly from the model and is equivalent to the long term learning 
gain divided by the expected time cost of practice for a particular item. Long term 
learning gains are shown by increase in the “activation” value, which is the strength 
of an item in memory. Expected time cost depends on activation’s effect on latency of 
recall and on the probability of failure (which results in feedback time). Equation 5 
shows the efficiency score equation used for the experiments in this report. The vari-
able r is the retention interval desired for the optimization and is scaled like the t 
values for the reduced effect of between session forgetting. We set the raw r equal to 
30 days, which, scaled by the 0.00046 between session adjustment fixed r at 1191s. 
 

effm =
pmbsucr

d m ( )1 pm bfailr
d m + 

pm Fe m fixedcosts + ( )1 pm fixedfailcosts +  

(5) 

Figure 1 graphs this function at the parameter values used and shows the inverted u-
shaped relationship between efficiency and activation (memory strength). The initial 
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increase in efficiency, as activation increases, is due to the reduction in failed drill oppor-
tunities with higher memory strength. Failed drills consume more time because they 
require the presentation of feedback for the item, and also because failure itself is typi-
cally slower than recall. 

 

Fig. 1. Graph of the efficiency function for optimized practice 

We can also see in Figure 1 that at some point increasing activation no longer pro-
vides benefits, but rather leads to less efficient learning. This effect is due to the 
model of spaced practice, which assumes that the learning from each drill would be 
more permanent if the drill occurs when activation is less. Each repetition in widely 
spaced practice reduces activation, as there is more time to forget between repetitions 
relative to more massed practice. Therefore, spaced practice causes more long-term 
gain for each trial despite resulting in lower correctness during learning.  

Figure 1 illustrates how the interaction of the speed advantage effect for narrow 
spacing and the long-term learning spacing advantage translate to predict an optimal 
activation point at which a drill is optimal. The optimal scheduling in the following 
experiments used an algorithm created using this model to schedule items for practice 
at this point of maximally efficient learning. To do this, before each trial, the change 
in the efficiency score as a function of time (the first derivative of efficiency) is com-
puted for every item. Items are selected for immediate practice when the change in the 
efficiency score approaches 0. If no items have approached 0 either because the de-
rivatives are all positive (in which case more will be learned by waiting for spacing of 
practice to increase) or because no items have been introduced, the algorithm intro-
duces a new item into the set. After all items have been introduced and the change in 
efficiency score for all items is positive the algorithm selects the item with the small-
est change in efficiency score.  

One interesting consequence of Equation 5 is that given a value for r it specifies a 
specific activation that corresponds to a specific percent correct performance level 
that should result in maximal efficiency. For Figure 1 this corresponds to -0.04 activa-
tion and a percent correct level of 92.6%. However, while the algorithm predicts this 
specific level at which practice should be optimal, the spacing of practice for each 
item increases as the learner accumulates practice. Spacing increases because of the 
increasing stability of the activation value as practice accumulates. This increasing 
stability is caused by the power function model of forgetting, which indicates that 
learning from older practices decays more slowly than recent learning. Figure 1 was 
computed for the following parameter values: s = .261, τ = -0.7, F = 2.322, bsuc = 
2.497, fixed success cost = 0.63s, fixed failure cost = 9s, a = .17, c = 0.21 and  
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r = 1191s. These parameters were estimated by fitting the model for past classroom 
experiments not reported here. bfail was estimated to be 1.526 for the first practice of 
any item with later practices b = 0. 

3   Experiment 1 

The first between-subjects experiment described here compares two computerized 
practice delivery systems in a Chinese I university level course. The control system 
drills the course vocabulary by cycling through each unit items in random order. The 
experimental system uses an identical drill procedure, but cycles through items ac-
cording to the predictions of the model based algorithm designed to maximize learn-
ing. In laboratory studies, this optimized model results in large gains in performance 
(effect size ≈ 1), but it has proven hard to show similar performance advantages in the 
classroom. This difficulty seems to be mainly due to the relatively small amount of 
time for which students are assigned to use the tutor. 

As a partial resolution to this problem, the following study compares two condi-
tions using time on task as the dependent variable rather than final performance. By 
doing this we can avoid the problem of having limited classroom time allocated to 
either condition by simply looking at the total time students spend in each condition. 
An advantage for time on task is then taken to be evidence for improved motivation 
and compliance in that condition.  

The two practice systems were made available to students by the professor, and 
students were asked to complete 15 minutes per unit for approximately 1-2% of their 
semester grade. The webpage that students used to access the two conditions gave 
simple instructions that were identical in each system. Further, the webpage random-
ized the order the two tutors appeared on the page so that one condition would not be 
selected more frequently because of its position on the page. However, students were 
not blind to condition since the optimized condition was described as, “Optimized 
Version -- In this version of the practice software, a model of learning is used to 
choose which flashcard to give for each trial. The model is set to provide approxi-
mately optimal spacing and repetition. You can choose to go through either the full 
set of flashcards for the class, or any particular unit. Your progress is saved, and you 
can return to where you left off at any time”, while the flashcard condition was de-
scribed as, “Flashcard Version -- In this version of the practice software, flashcards 
are delivered in random order, but drop out of the deck when you get them right. You 
can choose to go through either the full set of flashcards for the class, or any particu-
lar unit. Your progress is saved, and you can return to where you left off at any time”. 

Students were free to switch back and forth between systems by saving their data 
and returning to the webpage to continue with another version. This meant that stu-
dents were not locked into their choice, but rather could change their preference at 
any time. Other than the practice scheduling the only difference between the versions 
was that the optimized version listed immediate and one month recall predictions 
based on the model while the control version kept track of the remaining pairs to be 
answered correctly to finish one repetition of the selected learning set. 
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3.1   Participants, Stimuli and Procedures 

We only analyzed data from students that had produced complete data on the pre-quiz 
and post-quiz. According to this criterion there were 90 participants each of which 
distributed their practice between the two practice methods.  

The practice items in each condition were identical for each between subject condi-
tion, however the item set varied from 540 pairs in 8 of the 9 class sections (the sec-
tions that included regular classroom meetings) to 555 pairs in 1 section of the 9 (the 
online only section with limited face to face meetings). Since the online section had a 
correspondingly small sample size it was aggregated with the classroom sections. 
There were three vocabulary pairs of stimuli and responses for each semantic item: 
Chinese sound file  English response, Chinese sound file  pinyin response, Hanzi 
character  pinyin response. (Hanzi are the Chinese characters, while pinyin is the 
English character orthography for the Chinese pronunciation.) This indicates there 
were 180 (540 / 3 pairings) classroom semantic items and 185 online semantic items. 
Every pairing was modeled by an activation value in the optimized condition. 

There were 7 units of practice in the one online sections and 10 units of practice in 
the eight classroom sections. Order of introduction of items was randomized within 
unit for each version. Additionally, the optimized condition was set so that no related 
pairs (where the underlying semantic item was the same) were presented with a spac-
ing of less than 2 intervening items. Further, while the flashcard condition random-
ized all pairings independently to determine the introduction order, the optimized 
condition randomized units by the groupings of 3 related pairs for each item. Having 
items introduced in groups was not an explicit model-based decision, but respects the 
spirit of the model since the model implies that related items should be spaced nar-
rowly at introduction. In contrast, the standard spacing effect suggests practice should 
be maximally spaced as items were in the flashcard condition. 

Practice was distributed according the algorithm in each condition. In the flashcard 
control condition practice for a particular unit simply involved randomizing the order 
of the vocabulary items and presenting them one by one. If an item was responded to 
correctly it was “discarded” and if an item was responded to incorrectly it was put at 
the end of the order. This procedure continued for each unit until all items were an-
swered correctly for the unit (at which time the order was rerandomized and practice 
began again) or until the student quit using the tutor. 

The drill procedure used for each trial was identical in both conditions. Each drill 
presented a stimulus on the left side of the screen and allowed the student 20 seconds 
to respond. If the response was correct there was a 0.5s presentation of a “check 
mark” to indicate correctness. If the response was incorrect there was a 3s presenta-
tion of the correct stimuli and response. If the response was incorrect but the student 
provided an answer to another item the system gave a 6s study opportunity of both the 
pair tested and the pair which the student provided a response for.  

Pre- and post-quizzes tested the ability to translate 54 items randomly selected 
from the full item set for each student. Items did not repeat from pre-quiz to post-quiz. 

3.2   Results 

The main effect of interest was time spent practicing by students in each condition. Using 
the raw data there was no significant effect (M = 1.26 hours for optimized practice and  
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M = 1.12 for flashcard practice). However, these values overestimate the preference for 
the flashcard version since some students merely allowed the flashcard tutor to run with-
out practicing and this happened more frequently for the flashcard condition. To alleviate 
this, we choose to only consider practice in a condition if probability correct was greater 
than 0.1 overall. This conservative analysis filtered out students that allowed the tutor to 
run without practicing. Using this filtered data there was a preference for the optimized 
version (M’s equal 1.24 and 0.86 for optimized and flashcard conditions, t = 2.37, p = 
.020, Cohen’s d effect size = .25).  

While the post-quiz results could not be used to establish whether practice was 
more effective in one condition, it was possible to determine the correlation of prac-
tice in each version with gain in post-quiz scores. To do this we computed the correla-
tion of 8 measures of practice in the tutor with the improvement in performance from 
pre-quiz to post-quiz. These measures included for each condition: total time (raw 
value), total time filtered to remove p(success) < 0.1 values, total count of correct 
responses, and probability correct during practice. Only 2 correlations were signifi-
cant. First, the count of correct responses in the optimized condition correlated with 
pre-test to post-test gain, r = 0.421 (p = 0.000036). Second, the raw time spent in the 
flashcard condition was negative correlated with r = -0.366 (p = 0.00121) pre-test to 
post-test gain. This negative correlation was driven by the few subjects that used the 
flashcard condition but did not attempt to respond to the drills as discussed above. 

 

Fig. 2. Average learning curves across the first 5 practices for items in either condition 

Figure 2 (created from the raw data) helps us understand why the preference oc-
curred. The figure illustrates the average correctness for items  in each condition as a 
function of the repetition. As the figure illustrates, students found practice in the op-
timized condition to be easier due to the narrower scheduling used by the optimization 
condition. In contrast, the lower performance for the flashcard condition showed it 
was more difficult, which we also take to be an effect of scheduling. Curiously, we 
also see an advantage for the first drill of practice when the algorithm was simply 
introducing the item. This benefit is different than the optimized scheduling benefit 
and was probably due to the procedure of randomizing the related pairings in groups 
of three and introducing them relatively close together (minimum of 2 intervening 
trials) in the schedule. However, this grouping would not have significantly affected 
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later trials because item schedules were dependent on performance after the first trial 
in the optimized condition. 

4   Experiment 2 

This between-subjects experiment applied the optimization algorithm to teach learn-
ing components rather than to directly train the items that would be tested. To do this 
experiment we relied on the structure of Chinese characters. Each Chinese character 
contains one radical item that forms part of the character (sometimes characters have 
more than one radical, but one radical is always primary). Figure 3 provides an exam-
ple. As we can note the “see” radical forms part of the verb for “to think”. This  
experiment tested the idea that learning these radical components would improve 
learning of the characters. While this particular benefit has been found before [6], and 
theory of part-whole transfer makes it seem likely it can be reproduced [7], we 
thought it would be interesting to explore this paradigm as a prototype for one type 
application of the optimal training of basic facts. So, while no single part of this ex-
periment is novel, it remains an important test because it shows real world applicabil-
ity by bringing a part whole training paradigm into the classroom using a design that 
measures long term effects on future learning rates. 

覺得
to think

見
“see” radical

 

Fig. 3. Example of a Hanzi character and a constituent radical it contains 

This experiment was run concurrently with Experiment 1; however, this study in-
dependently randomly assigned subjects into either an experimental “radical” training 
condition or a control “Hanzi” training condition. Both conditions used optimally 
scheduled practice. The hypothesis was that the “radical’ components learned in the 
experimental condition would produce better learning of Hanzi characters. In contrast, 
practicing in the Hanzi condition should not improve learning since assessment used a 
different set of Hanzi than was used in practice. (The Hanzi control condition was 
intended to rule out the possibility that experience with the software by itself might 
cause any effects found.) The students were asked to complete one hour practice in 
the condition they were placed; however, some students practice more or less than 
that amount. 

4.1   Participants, Stimuli and Procedures 

We only analyzed data from students that had produced complete data on the pre-quiz 
and post-quiz. According to this criterion there were 94 participants, 46 of which were 
randomized into the radical condition and 48 of which were randomized into the 
Hanzi condition. 
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The radical set used for training was provided by the Chinese professor and in-
cluded 154 radical pairs that were identified as components of the Hanzi characters 
students had to learn for Chinese I. Since some radicals appeared in multiple charac-
ters, we choose to introduce the radicals in the order from most frequent to least fre-
quent. For the Hanzi control condition the practice set corresponded to the Hanzi 
characters for the first three units of the course. In the classroom version of the ex-
periment, the Hanzi set contained 90 practice items, while the online only version 
contained 106. In both radical and Hanzi practice conditions, the practice items were 
both radical/Hanzi  pinyin trials and radical/Hanzi  English trials. Thus, for ex-
ample, there were 77 radicals trained, each of which appeared in 2 pairings. 

For the pre and post-quizzes, we tested randomly selected Hanzi items from the 
last 3 units of the course. Since the post-quizzes occurred at mid semester, this meant 
that the items were unfamiliar and unlearned for the majority of students. Both pre-
quizzes and post-quizzes had the same structure, with 27 items tested each with 2 drill 
trials. Items did not repeat from pre-quiz to post-quiz. The goal of the quizzes was to 
produce a learning rate score for each quiz that was a measure of the average correct-
ness on the second drill of a character minus the average correctness of a first drill. 
For example, on a pre-quiz, a student might get only 1 of 27 items correct for the first 
drills on the pre-quiz and then get 10 of 27 items correct for the second drills. This 
would indicate a 33% learning rate for the pre-quiz for this student. 

4.2   Results 

We were interested in comparing learning rates from the pre-quiz and post-quiz to see 
if there was an advantage for the post-quiz learning rate as compared to the pre-quiz 
learning rate. First we ran an ANOVA that compared the gain in learning rate from 
pre-quiz to post-quiz using the pre-quiz learning rate result as the covariate. This 
result showed the significant advantage for radical training (F (1, 91) = 5.62, p = 
0.020, d = 0.49). The mean gain in learning rate was 12.8% in the radical condition 
and 6.6% in the Hanzi practice condition. Raw pre-quiz learning rates were 28.8% for 
radical training and 27.2 for Hanzi training. Raw post-quiz learning rates were 41.6% 
for radical training and 33.8% for Hanzi training. 

Additionally, we were interested in whether this more accurate learning also trans-
lated to faster performance on the post-quiz. To look for this we compared the reduc-
tion in time for the post-quiz compared to the pre-quiz using the pre-quiz duration as a 
covariate. This result showed a significant benefit for the radical condition (F (1, 91) 
= 4.04, p = 0.048, d = 0.42). The mean time saved on the post-quiz was 46.1s for the 
radical condition and 17.6s for the Hanzi condition. These values are considerable 
since the average completion time on the pre-quiz was only 394 seconds. 

Finally, we wanted to make sure that the result was not driven merely by better 
time on task in the radical condition. The difference for total practice time was not 
significant, nor was it significant when pre-quiz duration was used as a covariate (M = 
3771s for the optimized condition and M=3428s for the flashcard condition). 

5   Discussion 

To address the importance of these basic facts, this paper described a theoretically 
based, algorithmic method of scheduling performance for such basic facts. This 
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method takes advantage of well know properties of memory such as the benefits of 
recency, frequency and spacing to optimize the efficiency of such fact learning. We 
tested this method of practice in 2 experiments. In Experiment 1 we were able to 
show that students tend to use the optimized practice more often when given the op-
portunity to choose an alternative more conventional schedule of practice. This result 
suggests that students either found the system more effective or more enjoyable. The 
higher level of correct performance for the optimization condition shown in Figure 2 
may be the one reason why people prefer the optimized practice. Experiment 2 fo-
cused on efficacy, showing that learning using this method may automatically transfer 
to new contexts in a naturalistic classroom setting.  
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Abstract. One important goal of Intelligent Tutoring Systems (ITSs) is to bring 
students up to the same level of mastery. We showed that an ITS teaching a 
domain-independent problem-solving strategy indeed closed the gap between 
High and Low learners, not only in the domain where it was taught (probability) 
but also in a second domain where it was not taught (physics). The strategy in-
cludes two main components: one is solving problems via Backward-Chaining 
(BC) from goals to givens, named the BC-strategy, and the other is drawing 
students’ attention on the characteristics of each individual domain principle, 
named the principle-emphasis skill. Evidence suggests that the Low learners 
transferred the principle-emphasis skill to physics while the High learners 
seemingly already had such skill and thus mainly transferred the other skill, the 
BC-strategy. Surprisingly, the former learned just as effectively as the latter in 
physics. We concluded that the effective element of the taught strategy seemed 
not to be the BC-Strategy, but the principle-emphasis skill.  

Keywords: Intelligent Tutoring Systems, meta-cognitive skills, domain-
independent Problem-Solving Strategies.  

1   Introduction 

Bloom [2] argued that human tutors not only raised the mean of scores, but also de-
crease the standard deviation of scores. That is, students generally start with a wide 
distribution in test scores; but as they are tutored, the distribution becomes nar-
rower—the students on the low end of the distribution begin to catch up with those on 
the high end. Another way to measure the same phenomenon is to split students into 
High and Low groups based on their incoming competence. One then measures the 
learning gains of both groups. According to Bloom, a good tutor should exhibit an 
aptitude-treatment interaction: both groups should learn, and yet the learning gains of 
the Low students should be so much greater than the High ones’ that their perform-
ance in the post-test ties with the High ones. That is, one benefit of tutoring is to nar-
row or even eliminate the gap between High and Low.  

Previously, we found that Pyrenees [11], an ITS that explicitly taught a problem-
solving strategy, was more effective than Andes [12], an ITS that did not explicitly 
teach any strategy not only in the domain where it was used, but in a second domain 
where it was not used [3]. The strategy seemed to have lived up to our expectations 
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and transferred from one domain to another. In this paper, we investigated whether 
explicit strategy instruction exhibited an aptitude-treatment interaction, that is, 
whether it narrows or even eliminates the gap between High and Low; moreover, 
whether both High and Low indeed transferred the strategy to the second domain.  

2   Background 

A task domain is deductive if solving a problem requires producing an argument, 
proof or derivation consisting of one or more inference steps, and each step is the 
result of applying a domain principle, operator or rule. Deductive domains are com-
mon parts of math and science courses. Two common problem-solving strategies in 
deductive domains are forward chaining (FC) and backward chaining (BC) [7]. In FC, 
reasoning proceeds from givens toward goals; while in BC, it works backward from 
goals to givens. FC and BC have been widely used in computer science; however, 
they are rarely observed in a pure form in natural human problem solving. Early stud-
ies suggested that novices used BC and experts used FC [5], but later studies showed 
that both used fairly similar mixtures [6]. It appears that most human solvers use a 
mixture of strategies, heuristics, and analogies with past solutions as well as other 
general knowledge. Although human solvers don’t seem to use FC and BC in their 
pure form, the strategies' success in guiding computer problem solvers suggests that 
teaching human solvers to use FC or BC might improve their problem-solving per-
formance. Several ITS-based studies were conducted to test this hypothesis.  

Trafton and Reiser [10] tested the benefits of explicit strategy instruction on an ITS 
called Graphical Instruction in Lisp. Three forms of instruction were compared: FC-
only, BC-only or freely. After 13 training problems were completed in less than one 
hour, all three groups achieved the same learning gains. Scheines and Sieg [8] gave 
students over 100 training problems in sentential logic and they found students who 
were taught and required to use FC or BC learned just as effective as those who were 
not taught any strategy. VanLehn et al. [10] compared two ITSs that teach introduc-
tory college physics. One system explicitly taught students a version of BC; while the 
other did not teach or require students to follow any explicit strategy. Although some 
outcome measures differed between groups, overall performance on the post-test was 
quite poor, suggesting a floor effect.  

In summary, most previous studies were conducted in a single domain and con-
trasted students who were taught a strategy and those who were not. In this paper, we 
investigated the impact of explicit strategy instruction on eliminating the gap between 
High and Low across two unrelated domains and two different ITSs. The problem-
solving strategy chosen is the Target Variable Strategy (TVS) [11], a domain-
independent BC strategy, and the two selected domains were probability and physics. 
Probability covered 10 major principles in Axiom of Probability and Conditional 
Probability; and physics covered 10 principles in Work and Energy. During probabil-
ity instruction, the Experimental students were trained on an ITS, Pyrenees, that  
explicitly taught the TVS; while the Control students were trained on another ITS, 
Andes, without explicit strategy instruction. During subsequent physics instruction, 
both groups were trained on the same ITS, which did not teach any strategy. On both 
probability and physics post-tests, we expect:  
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High-Experimental = Low-Experimental = High -Control > Low-Control.  

That is, for both task domains, the Low students should catch up with the High 
students, but only if they were taught the TVS. 

3   Methods 

3.1   Participants 

Participants were 44 college students who received payment for their participation. 
They were required to have a basic understanding of high-school algebra, but not to 
have taken college-level statistics or physics courses. Students were randomly as-
signed to the two conditions. Two students were eliminated: one for a perfect score on 
the probability pre-test and one for deliberately wasting time.  

3.2   Three ITSs 

The three ITSs involved in this study were Pyrenees, Andes-probability, and Andes-
physics respectively. The first two taught probability while the third taught physics. 
Apart from domain knowledge, Andes-probability and Andes-physics were the same 
and we use ‘Andes’ to refer to both. Pyrenees required students to follow the TVS 
while Andes did not require students to follow any explicit problem-solving strategy. 
Next, we will compare Pyrenees and Andes from the perspectives of both the user 
interface and students’ behaviors. 

User Interfaces Perspectives: Both Pyrenees and Andes provide a multi-paned 
screen that consists of a problem-statement window, a variable window for listing 
defined variables, an equation window, and a dialog window. The tutor-student inter-
actions are quite different for each system.  

Pyrenees is a restrictive tutor-initiative ITS. It guides students in applying the TVS by 
prompting them to take each step as dictated by the strategy. For example, when the TVS 
determines that it is time to define a variable, Pyrenees will pop up a tool for that pur-
pose. Thus the tutor-student interactions in Pyrenees take the form of a turn-taking dia-
logue, where the tutor’s turns end with a prompt or question to which the student must 
reply and all interactions only takes place in the dialogue window. Andes, on the other 
hand, is a nonrestrictive mixed-initiative ITS. Students use GUI tools to construct and 
manipulate a solution, so the interaction is event-driven. Students may edit or interact 
with any of the four windows: by drawing vectors in vector window, writing or editing 
equations in the equation window, and so on. Once an entry or edit has been made suc-
cessfully, Andes provides no further prompt to make the next step. 

Interactive Behaviors Perspectives: Both Andes and Pyrenees provide immediate 
feedback. However, their standard of correctness differs. Andes considers an entry 
correct if it is true, regardless of whether it is useful for solving the problem; on Pyre-
nees, however, an entry is considered correct if it is true and strategically acceptable 
to the TVS.  Moreover, students can enter an equation that is the algebraic combina-
tion of several principle applications on Andes but not on Pyrenees because the TVS 
requires students to apply one principle at a time. 
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Both systems provide hints when students asked. When an entry is incorrect, stu-
dents can either fix it independently, or ask for what’s-wrong help. When they do not 
know what to do next, they can ask for next-step help. Both next-step help and what’s-
wrong help are provided via a sequence of hints that gradually increase in specificity. 
The last hint in the sequence, called the bottom-out hint, tells the student exactly what 
to do. Pyrenees and Andes give the same what’s-wrong help for any given entry, but 
their next-step help differs. Because Pyrenees requires students to follow the TVS, it 
knows what step they should be doing next so it gives specific hints. In Andes, how-
ever, students can always enter any correct step, so Andes does not attempt to deter-
mine their problem-solving plans. Instead, it asks students what principle they are 
working on. If students indicate a principle that is part of a solution to the problem, 
Andes hints an uncompleted step from the principle application. If no acceptable 
principle is chosen, Andes picks an unapplied principle from the solution that they are 
most likely to be working on.  

3.3   Procedure 

The study had 4 main parts: background survey, probability instruction, Andes Inter-
face training, and physics instruction (shown in the left column of Table 1). All mate-
rials were online. The background survey asked for High school GPA, SAT scores, 
experience with algebra and other information.  

Table 1. Experiment Procedure 

Part Experimental Control 

Survey Background survey 
Pre-training 

Pre-test
Training on Pyrenees Training on Andes-

Probability 

Probability Instruc-
tion 

Post-test 

Andes Interface 
Training 

Solve a probability prob-
lem on Andes-Probability 

 

Pre-training 

Pre-test 
Training on Andes-Physics 

Physics Instruction 

Post-test 

 
The probability and physics instruction each consisted of four phases: 1) Pre-

training, 2) Pre-test,3) Training on the ITS, and 4) Post-test. During pre-training, 
students studied domain principles. For each principle, they read a text description, 
reviewed some worked examples, and solved some single-principle and multiple-
principle problems. After solving a problem, their answer was marked correct or  
incorrect, and the expert’s solution was also displayed. The students then took the 
pretests. All students took the same pre- and post-tests. All test problems were  
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open-ended and required students to derive answers by writing and solving one or 
more equations. In phase 3, students in both conditions solved the same problems in 
the same order, albeit on different ITSs. Each of the domain principles was applied at 
least twice in both trainings. The Experimental group learned probability in Pyrenees 
and physics in Andes-physics while the Control group learned both domains in An-
des. Students could access the domain textbook at any time during the training. Fi-
nally, students took the post-tests. On each post-test, 5 problems were isomorphic to a 
training problem in phase 3. There were also 5 novel, non-isomorphic multiple-
principle problems on the probability post-test and 8 on the physics post-test. 

Only the Experimental students took the third part, Andes Interface Training. Its 
purpose was to familiarize them with the Andes GUI without introducing any new 
domain knowledge. The problem used was one of the twelve probability training 
problems that they had previously solved on Pyrenees. Pilot studies showed that one 
problem was sufficient for most students to become familiar with Andes GUI. 

To summarize, the procedural differences between the two conditions were: 1) dur-
ing the probability training, the Experimental condition trained on Pyrenees while the 
Control condition trained on Andes-probability; 2) the Experimental students learned 
how to use Andes’ GUI before physics instruction.  

3.4   Grading Criteria 

We used two scoring rubrics: binary and partial credit. Under binary, a solution is 
worth 1 point if it was completely correct or 0 if not. Under partial credit, each prob-
lem score is a proportion of correct principle applications evident in the solution. If 
they correctly apply 4 of 5 possible principles they would get a score of 0.8. Solutions 
were scored by a single grader blind to condition. 

4   Results 

In order to measure aptitude-treatment interaction, we needed to define High and Low 
groups based on some measure of incoming competence. We chose to use MSAT 
scores because probability and physics are both math-like domains. Our split point 
was 640, which divide into: High (n = 20) and Low (n = 22). Except for the MSAT 
scores and High school GPA, no significant difference was found between High and 
Low on other background information such as age, gender, VSAT scores and so on. 
As expected, the High group out-performed the low group during the probability pre-
training and the probability pre-test under the binary scoring rubric: t(40)= 3.15, p= 
0.003, d= 0.96,  t(40)= 2.15, p= 0.038, d= 0.66, and t(40)= 2.27, p <0.03, d=0.70 on 
single-principle, multiple-principle problems during probability pre-training and 
overall in probability pre-test respectively . The same pattern was found under partial 
rubric in the probability pretest. Thus, the MSAT score successfully predicted the 
incoming competence of the students, which justifies using it to define our High vs. 
Low split.  

Incoming competence combined with conditions partitioned the students into four 
groups: High-Experimental (n = 10), Low-Experimental (n = 10), High-Control (n = 
10), and Low-Control (n = 12). Fortunately, random assignment balanced the  
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Experimental vs. Control conditions for ability, and this balance persisted even with 
the groups were subdivided into High and Low via MSAT score. On every measure of 
incoming competence, no significant difference was found between the Experimental 
and Control groups, the Low-Experimental and Low-Control ones, or the High-
Experimental and High-Control ones. These measures were: the background survey, 
the probability pre-test; probability pre-training scores, the time spent reading the 
probability textbook, and the time spent solving the pre-training problems. Averaged 
over all students, the total times for each training phase were: 2.4 hrs and 2.7 hrs for 
probability pre-training and training; 1.5 hrs and 3.0 hrs for physics pre-training and 
training respectively. No significant differences were found among the four groups on 
any of these times.  

4.1   Test Scores 

Figure 1 shows that the test score results are consistent with our hypothesis: after 
trained on Pyrenees, the Low-Experimental students scored significantly higher than 
their Low-Control peers on all three assessments: probability post-test, physics pre-
test and physics post-tests: t(20) = 4.43, p < 0.0005, d = 1.90; t(20) = 3.23, p < 0.005, 
d = 1.34; and t(20) = 4.15, p < 0.0005, d = 1.84 respectively. More importantly, the 
Low-Experimental students even seemed to catch up with the High ones: no signifi-
cantly difference was found among the High Experimental, Low-Experimental, and 
High-Control on all three assessments even though the two Experimental groups 
seemed to out-perform the High-Control in Figure 1.  
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Fig. 1. Compare four groups on four tests (maximum score = 1) 

Thus, explicit strategy instruction in probability caused the Low-Experimental 
group to learn more effectively than the Low-Control group during probability train-
ing, physics training and even physics pre-training. They seemed to have caught up to 
the High ones while the Low-Control ones did not. Moreover, while the High-
Experimental group didn’t benefit much from the TVS, they were not harmed either.  

Dynamic Assessments 

While test results are the most common assessment of learning performance, one can 
also compare students’ behaviors as they learn. Such comparisons are called dynamic 
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assessments [2]. In so doing, we can identify students who are effective learners even 
though their test scores may be equal to or even lower than others. Here we investi-
gated students’ interactive behaviors on Andes during physics training, as all students 
received the identical procedure during that period.  

Frequency of help requests: Andes-Physics logs every user’s interface action per-
formed, including help requests, tool usage, and equation entries. We first tried to 
characterize the overall difference in students’ solutions via the amount of help they 
requested. On each of 8 physics training problems, the Low-Experimental students 
made significantly fewer next-steps help requests than the Low-Control ones. No 
significant difference was found among the Low-Experimental, the High-
Experimental and High-Control groups. This suggests that the Low-Experimental 
may have transferred the TVS. However, there are other possible explanations, so we 
conducted several other analyses. 

Triage of Logs: Solution logs were grouped into 3 categories: smooth, help-abuse, 
and rocky: 

Smooth solutions included no help requests, except on problems that required more 
than eight principle applications. There students were permitted up to two what’s-
wrong help requests.  

Help-abuse solutions are produced when every entry was derived from one or more 
next-step helps.  

Otherwise, the solution was categorized as Rocky because students appeared capa-
ble of solving part of the problem on their own, but needed help on the rest. 

Figure 2 shows there was a significant difference among four groups on the distri-
bution of the three types of solutions. While no significant difference was found be-
tween the High-Experimental and Low-Experimental, there was a significant differ-
ence between the Low-Experimental and the High-Control: χ2(2) = 11.74, p(χ2) < 
0.003; and between the High-Experimental and High-Control: χ2(2) = 9.06, p(χ2) < 
0.01. Qualitatively, the results appear to be: High-Experimental = Low-Experimental 
> High-Control > Low-Control. 
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Fig. 2. Solution Percentage by Type 

For a more quantitative measure, we used a smaller unit of analysis: individual 
equations. We coded each correct equation entry in the solution logs with 3 features:  

Relevance: The equation was labeled relevant or irrelevant based on whether it con-
tributed to the problem solution.  
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Help: The equation was labeled “Help” if it was entered after the student asked for 
help from Andes-physics. Otherwise, it was labeled “No-help”. 

Content: The equation’s content was coded as either “a correct equation with new 
physics content” or “others”.  

We sought to find out how frequently students made progress toward solving a 
problem without asking for any help from Andes. In terms of the three-feature coding 
mentioned above, such a “desirable” equation would be coded as “Relevant”, “No-
help”, and “Correct equation with new physics content”. We called them desirable 
steps and defined the desirable steps ratio DSR:  
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Fig. 3. DSR on overall solutions 

As shown in Figure 3, the Low-Experimental had significantly Higher DSR than 
the Low-Control: t(169)= 7.50, p<0.0001. In fact, the former even made significantly 
more progress than the High-Control: t(150)= 3.84, p< 0.001. While there is a signifi-
cant difference between the Low-Control and High-Control groups: (t(171)=2.83, p< 
0.01), there is no such difference between the two Experimental groups. In short, this 
dynamic assessment showed that: High-Experimental = Low-Experimental > High-
Control > Low-Control.  

To summarize, both test scores and dynamic assessments show that the Low stu-
dents catch up with the High ones in the Experimental condition but not in the Control 
condition. On some measures, the Low-Experimental students even surpass the High-
Control ones. Next, we’ll investigate what was transferred from probability to physics 
that made the Low-Experimental students so successful?  

Transferring the Two Cognitive Skills of the TVS 

The TVS is BC problem-solving strategy [11]. That is, it solves problems backwards 
from goals to givens. However, it differs from pure BC in that it requires students to 
explicitly identify principles before applying them. As an illustration, Table 2 presents 
the principle application part of a TVS solution.  

Prior work on BC through equations required students to enter the equations alone [1]. 
Thus, they might only write the equations shown in the middle column of Table 2. Our 
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TVS strategy, however, also requires them to attend to the application of individual do-
main principles, as shown in the right column of Table 2. For example, instead of simply 
entering an equation with one principle application each, students need to pick an un-
known variable, select a principle that apply to the unknown variable, define all the vari-
ables appearing in its equation if undefined yet, write the equation, and finally remove 
the “sought” mark and mark new unknown variables. Students were also asked various 
questions on the characteristics of the principle. For example, in last row in Table 2, after 
students pick the complement theorem, Pyrenees would ask: “… To apply the principle, you 
must have noticed that there are a set of events that are mutually exclusive and collectively exhaus-
tive. What are these events?” Students should answer: ~(A∩B) and (A∩B). Therefore, the 
TVS is not only a BC strategy, but it draws students’ attention to the characteristics of 
each individual domain principle, such as when it is applicable. 

Table 2. Part of a TVS example solution 

Problem: Given P(A)=1/3, P(B)=1/4, P(A ∩ B)=1/6, find: P(~A ∪ ~B). 

Step Equations Justification 
1 P(~A ∪ ~B)=P(~(A∩B)) To find P(~A ∪ ~B), apply De Morgan’s theorem. 

Delete “sought” from P(~A ∪ ~B) and add 
“sought” to P(~(A∩B)) 

2 P(A∩B) + P(~(A∩B))=1 To find P(~(A∩B)), apply the Complement theo-
rem. Delete “sought” from P(~(A∩B)) 

 
In short, we argue that the TVS includes two main components: one is to solve 

problems via BC from goals to givens, named the BC-strategy, and the other is to 
focus attention to the domain principles, named the principle-emphasis skill. In order 
to determine the BC-strategy usage, we analyzed students’ logs to see whether the 
order of equations in their solutions follows the BC. For the principle-emphasis skill, 
we used the single-principle problems as our litmus test because students who had 
applied the BC-strategy would have no particular advantage on them because solving 
these single-principle problems only need to apply one principle; while students who 
had learned the idea of focusing on domains principles should show an advantage on 
them.  

Transfer the BC-Strategy: If students engaged in the BC-strategy, we expect they 
would apply the BC-strategy when they had difficulties, that is, on rocky solutions. 
Whereas on smooth solutions, students don’t have any difficulties since they may 
solve problems mainly based on existing schemas [9]. Thus, we subcategorized each 
desirable step in the logs as BC or non-BC, where non-BC included FC, combined 
equations, and so on. We then defined BC% as the proportion of desirable steps that 
were coded as BC. Figure 4 showed that on Rocky solutions the High-Experimental 
group applied BC significantly more frequently than the other three groups: 
t(40)=2.25, p=0.03 while the Low-Experimental group used the BC as frequently as 
the two Control groups. Thus, apparently it was the High-Experimental group alone 
who transferred the BC-Strategy to physics. 
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On Rocky solutions
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Fig. 4. BC Usage on Rocky Solutions  

Transfer of the Principle-Emphasis Skill: The Low-Experimental students scored just 
as high as the High-Experimental ones even though they used the BC no more frequently 
than two Control groups. Thus, they must have transferred something else of the TVS. 
Our hypothesis is that they transferred the principle-emphasis skill. We divided both 
post-tests into single-principle and multiple-principle problems. Furthermore, we divided 
the multiple-principle problems into those that were isomorphic to a training problem and 
those that were not. If the Low-Experimental group applied the principle-emphasis skill, 
we expected them to out-perform the Low-Control group on all of them in both post-
tests. This turned out to be the case (see  Figure 5). It suggests that the main effect of 
teaching the TVS to the Low students was to get them to focus on the domain principles. 
Further analysis showed no significant difference among the High-Control, the Low-
Experimental, and High-Experimental on any types of problems, which indicates that 
High students may already have such skill. 
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Fig. 5. Scores on Three Types of Problems in Both Tests  

5   Conclusions 

Overall, we found teaching students the TVS indeed exhibited an aptitude-treatment 
interaction in deductive domains: the gap between High and Low students in the Ex-
perimental Condition seemed to be eliminated in both probability and physics. Al-
though the two Experimental groups performed equally well in both physics pre- and 
post-tests, the Low-Experimental group transferred the principle-emphasis skill to 
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physics while the High-Experimental apparently already possessed it and thus they 
mainly transferred the BC-strategy.  

These results suggest that it is not the BC-strategy that is most important to teach 
Low learners. Instead, one should teach the meta-cognitive skill of focusing on indi-
vidual principle applications. It could be that Low and High learners may have dif-
fered initially in that Low students lacked this "how to learn" meta-cognitive knowl-
edge for a principle-based domain like probability or physics. Such results suggest 
building an ITS that does not teach the TVS explicitly, but instead just teaches to 
focus on principle applications in deductive domains. Perhaps it would be just as 
effective as Pyrenees. Indeed, because its students need not learn all the complicated 
bookkeeping of the BC-strategy, which may cause cognitive overload [9], it might 
even be more effective than Pyrenees not only for an initial domain where the ITS 
was used but subsequent domains where it is not used.   
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Abstract. Using hidden Markov models (HMMs) and traditional behavior 
analysis, we have examined the effect of metacognitive prompting on students’ 
learning in the context of our computer-based learning-by-teaching environ-
ment. This paper discusses our analysis techniques, and presents evidence that 
HMMs can be used to effectively determine students’ pattern of activities.  The 
results indicate clear differences between different interventions, and links be-
tween students learning performance and their interactions with the system. 

Keywords: Learning by Teaching environments, Metacognition, Behavior 
Analysis, hidden Markov modeling. 

1   Introduction 

We have developed exploratory learning environments called teachable agents that 
use a learning-by-teaching paradigm to promote learning and reasoning skills with 
middle school science students [1][2]. The students are typically not domain experts 
and have little knowledge of teaching practices. In these environments, students teach 
a computer agent called Betty using structured graphical representations called con-
cept maps [3]. Since the concept maps are purported to be representations of Betty’s 
knowledge, the students are teaching Betty and fixing her errors by revising the maps. 
Of course, the maps are generated by the students based on their own knowledge, thus 
they are actually representations of the students’ own domain understanding (Fig. 1). 

The teaching aspects of this environment build upon research showing that stu-
dents can benefit academically by teaching other students [1][4]. Biswas, Schwartz, & 
Bransford have reported that students preparing to teach felt that the responsibility to 
teach encouraged them to gain deeper understanding of the materials [5]. Beyond pre-
paring to teach, actual teaching taps into three critical aspects of learning interactions 
– structuring, taking responsibility, and reflecting. These interactions facilitate self-
monitoring and reflective knowledge-building for the teacher [6]. Effective teaching 
requires the monitoring of how well students understand and use ideas. Tutors and 
teachers often reflect on their interactions with students during and after the teaching 
process in order to better prepare for future sessions [7][8].  
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Fig. 1. Betty’s Brain system with Query Window 

The visual concept map structure also helps students make concepts and relation-
ships explicit, which supports self-monitoring and knowledge organization [3]. The 
concept mapping also occurs in a context where the students can query Betty, ask her 
to explain her reasoning, and assess her knowledge by having her to take quizzes. For 
these reasons, we have hypothesized that working with Betty can help students to bet-
ter understand science concepts, and engage in productive learning strategies that 
promote metacognition, organization, and reasoning with causal knowledge 

Our previous work has focused on students’ learning as measured by the quality of 
their concept maps. We found that learning-by-teaching with metacognitive support 
helped students learn about river ecosystems, and also better prepared them for future 
learning on related topics [1][9]. We compared several versions of the learning by 
teaching environment with a non-teaching version. Students who taught Betty devel-
oped more complete and interconnected concept maps than students who created 
maps for themselves (i.e., these students made concept maps and received feedback 
from the system on the quality of the map, but there was no cover story of teaching an 
agent). Learning outcomes were strongest for students who also received metacogni-
tive feedback from Betty, in which she exhibited self-regulated learning behaviors 
that the student teacher could appropriate to improve their own learning. These differ-
ences persisted during a transfer phase in which students learned about a new domain 
and taught Betty in the absence of most feedback and prompts.  

We have recently turned our attention to analyses of students’ behaviors as they 
teach Betty and create concept maps. Such analyses are important because they shed 
light on students’ choices of interactive behaviors that influence learning, and the 
strategies they bring to the learning task [4]. Preliminary analyses of prior data 
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showed that the quality of students’ concept maps was paralleled by patterns in their 
behaviors [2].  These results suggest that self-regulated learning prompts and feed-
back from Betty helped student teachers engage in productive learning interactions.  

In this paper, we discuss data from a new study testing the benefits of the Betty’s 
Brain system. In particular, we present a refined methodology for exploring students’ 
strategies using hidden Markov models (HMMs) to capture students’ behaviors as 
they use the system [10]. Ours is a specific implementation of the generic process out-
lined by Fisher and Sanderson [11]. We discuss our methods for extracting the student 
interaction patterns from system log files, and describe our procedure for deriving and 
interpreting the HMMs of student behaviors. We then compare the HMMs across 
three experimental conditions in the main and transfer phases. We believe that this 
approach has merit for analyzing student behaviors for several reasons. First, HMMs 
allow us to go beyond frequency counts or proportions of individual behaviors, in-
stead examining how these behaviors cohere in larger patterns or strategies. Similarly, 
this approach takes into account the entire sample of students’ behaviors, rather than 
focusing only on specific behaviors or moments in time. The holistic nature of our 
analysis may provide a useful global view of how students approach the learning task. 

2   Experimental Design and System Features 

Our participants were 56 students in two 5th grade science classrooms, taught by the 
same teacher. Students were assigned to one of three conditions using stratified ran-
dom assignment based on standardized test scores. The conditions varied on the type 
of scaffolding provided by the mentor agent and/or the Betty agent. The students first 
created concept maps on river ecosystems during the main phase (seven 45-minute 
sessions). After an eight-week delay, students participated in the transfer phase (five 
45-minute sessions) in which they learned about a new domain, the land-based nitro-
gen cycle. All students used an identical system during the transfer phase. 

The three versions of the system were: (i) a learning by teaching (LBT) version in 
which students taught Betty, (ii) a self-regulated learning by teaching (SRL) version 
in which students taught Betty and received metacognitive prompts from Betty, and 
(iii) an intelligent coaching system (ICS) version in which students created a map for 
themselves with guidance from the mentor agent.  

Students’ interactions with Betty include three main activities: “teaching” by gen-
erating the concept map; “querying” by using a template to ask Betty questions; and 
“quizzing” Betty by asking set of predefined questions that have been “assigned” by 
the mentor agent. Betty answers questions using qualitative reasoning methods [1] to 
follow chains of links to determine how changes in one concept affect other concepts. 
After asking Betty a question, students can ask Betty to explain her reasoning steps. 

The ICS version was our control condition. Students constructed a concept map to 
answer three sets of quiz questions. These students had access to the same teach, 
query, and quiz functions, but they were not presented in terms of teaching Betty. 
Students directly edited and queried their own maps.  When students submitted their 
maps for the quizzes, Mr. Davis, the mentor agent, provided corrective feedback in 
the form of hints on how to correct errors [1]. The LBT group received the same cor-
rective feedback from Mr. Davis after Betty took a quiz. The feedback to the SRL 
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students focused on higher level concepts (e.g., read about the food chain or the waste 
cycle) and suggestions on how they could become better learners and teachers.  

For the transfer phase, all students used a stripped down version of the LBT system 
with no feedback provided by Betty or the mentor. Students could still check their 
maps by asking questions or submitting them for a quiz. 

2.1   Metacognitive Support in Betty’s Brain 

An important part of our system is the self-regulated learning support provided to the 
students. Self-regulated learning theory describes a set of comprehensive skills such 
as setting learning goals, selecting appropriate strategies, monitoring one’s learning 
progress, and revising one’s knowledge and strategies as necessary [11][12].  

Table 1. Some Interactive Action Patterns and Betty’s responses 

Regulation Goal Pattern  
Description Betty Response 

MONITORING BY  
ASKING QUERIES 

Successive quiz re-
quests but no queries 
asked of Betty in be-
tween quizzes 

I’m still unsure of this material and I 
would like to do well. Mr. Davis said 
“take the quiz only if you think you will 
do well.” 
(Betty refuses to take quiz) 

MONITORING 

THROUGH  
EXPLANATIONS 

Multiple requests for 
Betty to give an an-
swer but no request 
for explanation 

Let’s see, you have asked me a lot of 
questions, but you have not asked for my 
explanations lately. Please make me ex-
plain my answers so you will know if I 
really understand. 

TRACKING 

PROGRESS 

The most recent quiz 
score is significantly 
worse than the previ-
ous score 

I would really like to do better. Please 
check the resources, teach me, and make 
sure I understand by asking me questions 
that are on the quiz. My explanation will 
help you find out why I am making mis-
takes in my answers. Also, be sure to 
check out the new tips from Mr. Davis. 

 
Betty’s SRL persona incorporates aspects of this metacognitive knowledge that she 

conveys to the students to help them develop and apply monitoring and self regulation 
strategies [2]. For example, when the student is building the concept map, Betty 
occasionally responds by demonstrating reasoning through chains of events. She may 
remark (right or wrong) that the answer she is deriving does not seem to make sense. 
The idea of these spontaneous prompts is to get students to reflect on what they are 
teaching and perhaps check on their tutee’s learning progress. These interactions are 
directed to help Betty’s student-teacher understand the importance of monitoring and 
being aware of one’s own abilities. 

We have identified several recurrent sequences where metacognitive feedback 
might be useful. When the system detects such patterns, Betty provides suggestions 
the students may employ to improve their own understanding. Some of the triggering 
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patterns along with Betty’s response are shown in Table 1. After Betty takes a quiz, 
the mentor agent also reminds Betty and her teacher about the importance of reading 
resources, and checking one’s understanding after learning (teaching) new material. 

3   Learning Results 

In the main phase, the SRL condition generated maps with significantly more correct 
concepts and links than the LBT, p < .05, and ICS students, p < .05 [2]. These results 
suggest that the metacognitive prompting improved the students’ learning. However, 
the LBT students also generated more correct maps than the ICS students, which sug-
gests an overall benefit for learning by teaching. 

Table 2. Concept map quality: main and transfer studies 

Condition Mean (SD) Map Scores 

 Main Phase Transfer Phase 

ICS 22.83 (5.3) 22.65 (13.7) 

LBT 25.65 (6.5)c 31.81 (12.0) 

SRL 31.58 (6.6)a,b 32.56 (9.9)a 
a SRL > ICS, p < .05; b SRL > LBT, p < .05; c LBT > ICS, p < .05. 

 
Students’ transfer map scores provide indications whether a given version of the 

system better prepared students to learn in a new domain without scaffolds and 
prompts. Students in the SRL condition still had the highest map scores after the 
transfer phase, and scored significantly higher than the ICS students, p < .05. Interest-
ingly, the LBT students’ scores were now comparable to the SRL students. However, 
LBT students did not differ significantly from the ICS group, in part because of the 
high level of variability within that group.   

Our interpretation is that working with Betty, especially with metacognitive 
prompts, helped students develop metacognitive strategies that supported their abili-
ties to learn subsequently. However, another possible explanation is that ICS students 
were at a disadvantage because they switched from a non-teaching environment to a 
teaching environment in the transfer phase of the study, whereas the other students 
had not. By directly analyzing patterns of how students interact with the system, we 
explore the validity of these explanations. 

4   Analysis of Behavior Patterns 

We recorded log files of students’ interactions with the system. From these log files, 
we identified the six main activities summarized in Table 3.  

Sequences of these activities were then extracted from the log files, and mined using 
statistical learning methods to search for patterns that defined students’ interactions with 
system.  Our goal was to determine if there was evidence of different activity patterns  
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between groups during the main phase, and whether these patterns persisted or changed 
when students worked in a new environment during the transfer phase. We thus derived 
two sets of HMMs, one set from students’ accumulated activity sequences from all main 
phase sessions, and the second set from the transfer phase sessions [10].  

Table 3. Student Activities and Related Actions 

Activity Student Actions 

Edit Map (EM) adding, modifying, or deleting concepts and links

ASK QUERY (AQ) asking Betty queries 

REQUEST QUIZ (RQ) asking Betty to take the quiz 

RESOURCE ACCESS (RA) accessing the resources 

REQUEST EXPLANATION (RE) asking Betty for an explanation to her query answer 

CONTINUE EXPLANATION (CE) asking Betty to provide a more detailed explanation 
 

HMMs are so named because their states are hidden. That is, they are not directly 
observed in the input sequences, but provide an aggregated description of the stu-
dents’ interactions with the system. Sequences of states may be interpreted as the stu-
dents’ learning behavior patterns. The set of parameters that define a HMM comprise 
(i) the transition probabilities between the states, (ii) observation probabilities for de-
tecting a particular observation in a state, and (iii) initial probabilities for each state 
[13]. The particular learning method used, developed by Li and Biswas [13] utilizes 
the Bayesian information criterion (BIC) to find the optimal number of states that de-
fine the HMM.  

The HMM models derived for the three conditions in the two phases of our study 
are summarized in Figure 2. For convenience, each hidden state is labeled by the pre-
dominant activity (or activities) comprising that state. (Only those activities whose 
likelihood of occurrence exceed 10% are listed). Some states are dominated by a sin-
gle activity (e.g., editing the map), whereas others represent a composite of more than 
one activity (e.g., requesting quizzes and accessing the resources). Figure 2 also pro-
vides the likelihood, expressed as a percentage, of a student in a given state transition-
ing to a different state or remaining in the current state. 

4.1   Interpreting the HMMs  

Much like factor analysis, it is up to the researcher to give meaning to the derived in-
teractive states, and hypothesize strategies for learning that may be associated with 
these states. Our analyses suggest several interpretable patterns that are relevant to in-
teractive metacognition. These patterns combine several activity states and transitions 
to define higher level behavior patterns with links to metacognitive strategies. 

One pattern is basic map building. This activity pattern is characterized by editing 
the map (EM), submitting the map for a quiz (RQ), and occasionally accessing the 
reading resources (RA). The pattern reflects a basic and important metacognitive 
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strategy. Students work on their maps, check the map by taking a quiz to see if there 
are flaws, and occasionally refer to the readings.  

A second pattern is map probing. Students edit the map (EM) and then ask a ques-
tion (AQ) to check for specific relations between two concepts (e.g., if fish increase, 
what happens to algae?). This pattern exhibits a more proactive, conceptually driven 
strategy, because students are targeting specific relations rather than relying on the 
quiz to identify errors. Students also need to formulate their own questions to do so. 

The third pattern is map tracing. This pattern reflects students asking Betty or the 
mentor (depending on the system) to explain the reasoning step by step (RE and CE).  
When Betty or the mentor initially answers a question, they state that a change in one 
entity causes a change in another entity and highlight the paths they followed to reach 
their answer.  To follow the details of the inference chain, students had to ask Betty or 
Mr. Davis to explain their reasoning. The agents did so by hierarchically decompos-
ing the chain of inference; for each explanation request, they showed how a particular 
path within the larger chain contributed to the final answer. Receiving more details 
about the reasoning process is particularly useful when maps become complex, and 
there are multiple paths between two concepts 

The individual states portrayed in the original HMMs (Fig. 2) can be combined and 
re-represented in order to reflect these higher level aggregate states. These aggregate 
states are shown in Fig. 2, which are separated by condition and phase of the study. 
The percentages accompanying each arrow indicate the likelihood of transitioning 
from one aggregate to another or remaining in a given aggregate state. In addition, we 
exploited the stationary nature of these models to calculate the steady state probabili-
ties of each aggregate state as the sum of the stationary probability of the individual 
states that make up the aggregate state (Table 4). These values indicate the probability 
that a student would be in a given state. For example, during the main phase, ICS stu-
dents had a 62% chance of engaging in map building, but only a 7% chance of engag-
ing in map tracing. The individual states’ steady-state probabilities were also taken 
into account when calculating the transition probabilities between aggregate states. 

4.1.1   Main Phase Patterns 
One way to approach each figure is to assume that students begin with basic map 
building. As an example, the ICS models show that there is a greater than 90% chance 
that the students remain in the map building condition, and less than a 10% chance 
that they transition to the map probing state. The LBT behavior model is very similar 
to the ICS model, except that these students in this group were more likely to transi-
tion to the map probing state from the map building state (15%). Both the ICS and 
LBT groups rarely use Map Tracing as a learning behavior. 

The SRL behavior model is different in that the map building and map probing 
states are tightly coupled, and thus aggregated into one state. This is not surprising 
because Betty’s prompts required the students to ask queries and check her answers 
between quizzes. The aggregated model indicates that the SRL students were more 
likely to engage in map tracing behaviors (15% as opposed to 8% for the LBT group 
and 7% for the ICS group) perhaps to understand how she reasoned with the concept 
map to derive her answers. Overall, the SRL condition exhibited a more versatile rep-
ertoire of interactive strategies for completing the cognitive task of teaching Betty. 
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Fig. 2. HMMs for the three conditions in the main and transfer phases 

This offers one explanation for why the SRL students generated higher quality 
maps in the main phase, even though they were never explicitly told how to correct 
their maps. The support for interactive metacognition, primarily in terms of seeking 
information from the resources, and monitoring Betty’s learning helped them learn 
the content better than the other two conditions. 

4.1.2   Transfer Phase Patterns  
In the transfer phase, all students taught Betty but all scaffolds were removed. The 
only feedback students received was how well Betty performed on the quizzes. The 
question was whether there was any continuation of the patterns developed during the 
main phase. The ICS condition continued to focus on the basic map building pattern 
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Fig. 3. Behavior Patterns for the three groups in the main and transfer study 

 
Table 4. Aggregate state stationary probablities (i.e., probability of being in a given state) 

State ICS LBT SRL 
Transfer 

ICS 
Transfer 

LBT 
Transfer 

SRL 

Map Building 0.62 0.54 x 0.60 0.66 x 

Map Probing 0.31 0.38 x 0.36 0.34 x 

Map Tracing 0.07 0.08 0.15 0.04 x 0.11 

Building & Probing x x 0.85 x x 0.89 

 
(60%). Their map probing behavior occurrence increased marginally (31% to 36%), 
and their use of the tracing mechanisms was limited (4%), even though they were now 
teaching Betty just like the other two groups. We inferred that the teaching aspect 
alone did not override the students’ desire to simply get quiz answers right. The ICS 
students did not seem inclined to probe Betty’s understanding, and by extension their 
own understanding.  

The transfer phase behavior patterns exhibited by the SRL group were also similar 
to their main phase behaviors. The map building and map probing states were still  
aggregated, and occurred with high frequency (89%). The transitions from the build-
ing/probing state to map tracing decreased (9% to 6%). It is possible that the SRL stu-
dents had internalized the reasoning mechanism and did not need to probe Betty as  
often or ask her to explain. However, once these students transitioned to the map trac-
ing state, there were more internal transitions in that state (transition likelihood was 
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22%). This may indicate that when the concept map and the answer generation proc-
ess became complex, the students did spend more time in map tracing activities. 

The LBT condition behavior model also remained similar with map building and 
map probing dominating their learning activities. However, a more careful study of 
the more detailed model in Figure 3 reveals that within the map building phase these 
students spent almost twice as much time reading the resources as they did in editing 
their maps (41% to 25%). The amount of map tracing by this group seemed to de-
crease and all map tracing activity was integrated with the map building and map 
probing states. This version of Betty used in the transfer phase was most similar to the 
original LBT condition, except there was no corrective feedback provided by Mr. 
Davis. Therefore, it is reasonable to expect that the LBT condition would show the 
same interactive patterns across study phases. Instead, the LBT students seemed to 
develop a different learning strategy that included more time spent in reading the re-
sources to learn about the new domain during the map building phase.  

Unlike the SRL group the LBT group did not receive feedback on monitoring 
strategies in the main phase of the study. As a result, the LBT group did not seem to 
use map tracing as a learning strategy. Instead, their strategy was to track down 
Betty’s wrong answers by querying her and then reading the resources to find how to 
change their map to get the correct answer (given that they were no longer given cor-
rective feedback). Teaching in the main phase of the study seemed to have a positive 
effect on the LBT groups learning behaviors because they performed better than the 
ICS group in the transfer phase where both groups worked with the same system. The 
differences in the feedback received during the main phase of the study also produced 
differences in learning behaviors between the LBT and SRL groups. Whereas the 
LBT group combined map probing and reading of resources to learn the new domain, 
the SRL group also used map tracing when faced with complex reasoning situations 
with their concept maps. 

5   Discussion and Conclusions 

The Betty’s Brain system is designed to leverage the benefits of learning by teaching 
and concept mapping to facilitate students’ science learning and causal reasoning. Our 
hypothesis that working with Betty helped students engage in educationally produc-
tive cognitive and metacognitive processes is supported by the results reported here. 
Students who utilized the LBT and SRL systems constructed better concept maps 
with more causal relationships between entities than students who used the non-
teaching ICS version of the system. Moreover, students’ performance was strongest 
when we explicitly supported their use of self-regulated learning strategies by having 
Betty model and prompt for such behaviors. Not only did these students do well in the 
main phase of our study when the prompts were present, they also continued to out-
perform other groups in the transfer phase when the prompts were absent. 

Although assessments of learning outcomes were in agreement with our hypothe-
ses, it was also critical to explore students’ actual behaviors during the teaching and 
learning process. Using HMMs to characterize students’ behaviors allowed us to iden-
tify several meaningful patterns that distinguished our three experimental conditions 
in the main and transfer phases.  
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Examining the map building, map probing, and map tracing patterns across the 
three conditions provided interesting results. First, these results support the claim that 
our SRL system with metacognitive prompting was beneficial because it altered stu-
dents’ behaviors in positive ways. Whereas LBT and ICS students relied heavily on 
basic map building, we were successful in encouraging SRL students to engage in 
more probing and tracing. In addition, these beneficial patterns tended to persist in the 
transfer phase of the study. An interesting result is the learning strategy that the LBT 
students developed as they progressed from the main to the transfer phase. Although 
these students used more map building during the main study, they spontaneously 
showed a shift toward probing and resource reading to correct errors, but they did not 
develop the tracing behavior during the transfer phase. Because the LBT students 
used fairly similar systems in both the main and transfer phases, these results suggest 
that use of a learning-by-teaching system over a period of time may help students 
gradually develop better learning strategies. But there is also added value to focusing 
on metacognitive and self-regulated learning strategies through social interactions be-
tween tutors, their students, and agents who play the role of mentors.  More research 
is needed to look at the benefits of extended use of our system.  
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Abstract. The effectiveness of intelligent tutoring systems at increasing learn-
ing might be improved if the systems were combined with collaborative activi-
ties that encouraged conceptual elaboration. We extended the Cognitive Tutor 
Algebra, an intelligent tutoring system for high-school mathematics, with a peer 
tutoring activity that was designed to encourage interaction, reflection, and ac-
countability. Two types of domain support were provided: adaptive support, 
which used the intelligent tutor domain models to provide feedback to the peer 
tutor, and fixed support, which simply consisted of answers to the problems. 
We compared the two peer tutoring conditions (adaptive or fixed support) to in-
dividual use of the cognitive tutor (without peer-tutoring activities). Even 
though students in the individual condition solved more problems during in-
struction, we did not find significant differences between the individual and col-
laborative conditions on learning. However, we found a correlation between 
tutee impasses and tutor learning. 

Keywords: Peer tutoring, cognitive tutor, algebra, in-vivo experimentation, 
adaptive collaborative learning system. 

1   Introduction 

The Cognitive Tutor Algebra (CTA) has been shown to increase student learning by 
roughly one standard deviation over traditional classroom instruction [1], and is used 
by about 475,000 students a year [2]. However, the impact of the intervention still 
falls short of the effectiveness of good human tutors, who can improve student learn-
ing by two standard deviations over classroom practice [3]. As students may acquire 
shallow conceptual knowledge while using tutoring systems, researchers augment 
cognitive tutors with activities that encourage conceptual elaboration such as self-
explanation [4] and scripted collaboration [5]. However, it appears that in order for 
significant improvement over CTA instruction to occur, students must be able and 
motivated to apply the metacognitive skills targeted by an intervention [6]. 

In our work, we augment individual use of the CTA with a collaborative peer tutor-
ing activity. Instead of the computer tutoring the student, students take turns tutoring 
each other (see Figure 1). Tutees can ask their tutors questions and self-explain, and 
tutors can then provide their tutees with elaborated help. Ideally, students in the tutee 
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role should benefit from the peer instruction at least as much as students using the 
CTA individually, and students in the tutor role should benefit even more from the 
additional conceptual demands of tutoring. However, because peer tutors are also in 
the process of learning the domain material, they may not be able to provide the tutee 
with feedback that is timely or correct. The tutee may then be unable to successfully 
complete the curriculum problems, and will not benefit from the instruction. There-
fore, we implemented a meta-tutor that provides adaptive domain support to the peer 
tutor. In this paper, we discuss how students learn from tutoring and how an adaptive 
system might support this process, describe the design of the meta-tutor, and compare 
the adaptive system to a fixed support system and to typical use of the CTA. 

 

Fig. 1. Three tutoring scenarios used in the study 

1.1   Peer Tutoring: Learning by Teaching 

Incorporating peer tutoring into the CTA might be a way to encourage deep learning. 
Roscoe and Chi conclude that peer tutors benefit due to knowledge-building, where 
they reflect on their current knowledge and use it as a basis for constructing new 
knowledge [7]. Because these positive effects are independent of tutor domain ability, 
researchers implement reciprocal peer tutoring programs, where students of similar 
abilities take turns tutoring each other. This type of peer tutoring has been shown to 
increase academic achievement and positive attitudes in long-term classroom inter-
ventions [8]. Biswas et al. [9] described three properties of peer tutoring related to 
tutor learning: tutors are accountable for their tutee’s knowledge, they reflect on tutee 
actions, and they engage in asking questions and giving explanations. Tutee learning 
is maximized at times when the tutee reaches an impasse, is prompted to find and 
explain the correct step, and is given an explanation if they fail to do so [10]. 

Peer tutors rarely exhibit knowledge-building behaviors spontaneously [7], and 
thus successful interventions provide them with assistance in order to achieve better 
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learning outcomes for them and their tutees. This assistance can target tutoring behav-
iors through training, providing positive examples, or structuring the tutoring activi-
ties. For example, training students to give conceptual explanations had a significantly 
positive effect on learning [11]. It is just as critical for assistance to target domain 
expertise of the peer tutors, in order to ensure that they have sufficient knowledge 
about a problem to help their partner solve it. Otherwise, there may be cognitive con-
sequences (tutees cannot correctly solve problems) and affective consequences (stu-
dents feel that they are poor tutors and become discouraged [12]). Domain assistance 
can take the form of preparation on the problems and scaffolding during tutoring [e.g., 
8]. Although assistance for peer tutoring has generally been fixed, providing adaptive 
support may be a promising approach. 

1.2   Adaptive Collaborative Learning Systems 

In order to benefit from collaboration students must interact in productive ways, and 
collaborative activities can be structured (scripted) to encourage these behaviors [e.g., 
13]. However, fixed scripts implemented in a one-size-fits-all fashion may be too 
restrictive for some students and place a high cognitive demand on others [13, 14]. An 
adaptive system would be able to monitor student behaviors and provide support only 
when needed. Preliminary results suggest that adaptive support is indeed beneficial: 
Adaptive prompting realized in a Wizard of Oz fashion has been shown to have a 
positive effect on interaction and learning compared to an unscripted condition [15]. 
An effective way to deliver this support would be to use an adaptive collaborative 
learning system, where feedback on collaboration is delivered by an intelligent agent. 

Work on adaptive collaborative learning systems is still at an early stage. One ap-
proach is to use machine learning to detect problematic elements of student interac-
tion in real-time and trigger helpful prompts. Although implementations have lead to 
significant learning gains, the adaptive feedback appears to be disruptive to dyadic 
interaction [16]. Another promising approach has explored using an intelligent agent 
as one of the collaborators; students teach the agent about ecosystems with the help of 
a mentoring agent [9]. However, the agents do not interact with the students in natural 
language, one of the primary benefits of collaboration.  

With respect to peer tutoring, intelligent tutoring technology could be applied ei-
ther to supporting tutor behaviors or domain knowledge of peer tutors. As it is very 
difficult to build an intelligent tutor for collaborative processes, we decided to de-
velop a general script for the peer tutoring interaction and then focus on providing 
adaptive domain assistance to peer tutors by leveraging the existing domain models 
of the CTA. A condition where students tutor each other with adaptive domain sup-
port provided to the peer tutor is likely to be better than a condition where the peer 
tutor merely has access to an answer key, because the support would be tailored to 
each individual tutor’s needs. It is also likely to be better than a condition where stu-
dents use the CTA individually, because the students in the collaborative condition 
would be able to interact deeply about the domain material. 
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Fig. 2. Peer tutor's interface 

2   Method 

2.1   System Design 

Peer Tutoring Script. We extended the CTA for peer tutoring using a literal equation 
solving unit, where students are given a prompt like “Solve for x,” and then given an 
equation like “ax + by = c.” Students went through a preparation and collaboration 
phase. In the preparation phase, students individually solved the problems they would 
later tutor. They used an equation solver to perform operations on the equation, were 
given immediate feedback from the CTA when making a mistake, and could ask for a 
hint from the CTA at any time. They were also given feedback on their progress by a 
Skillometer. After each problem in the preparation phase, we gave students reflection 
questions to prepare them for tutoring (e.g., “A good question asks why something is 
done, or what would happen if the problem was solved a certain way. What is a good 
question to ask about the problem?”). 

During the collaboration phase, students in the same class were grouped into pairs 
of similar abilities and collaborated with each other at different computers, taking 
turns being peer tutors and tutees on alternating problems. Although they were located 
in the same room, they were seated far apart and discouraged from talking to each 
other out loud. Peer tutees solved the same problems as their tutor had solved in the 
preparation phase, using the same interface. The peer tutor was able to see the peer 
tutee’s actions, but could not solve the problem themselves (see Figure 2). Instead, the 
peer tutor took the role of the cognitive tutor, marking the peer tutee’s actions right or 
wrong and adjusting the values of the tutee’s skill bars. There was also a chat tool, 
where tutees could ask questions and tutors could provide hints and feedback. 
 
 



630 E. Walker, N. Rummel, and K.R. Koedinger 

 

Fig. 3. Feedback presented to the peer tutor 

Domain Support. We implemented two different support conditions for peer tutors: 
fixed domain support and adaptive domain support. In the fixed support condition, 
answers to the problem were located in a separate tab in the interface. Peer tutors 
could access the tab at any time, but viewing the tab they could no longer see what the 
tutee was doing. If both the tutee and tutor agreed that the problem was finished the 
students could move to the next problem, even if they were not actually done. 

In the adaptive support implementation, peer tutors were given feedback by the in-
telligent tutoring system in two cases. If the peer tutee asked for a hint, the peer tutor 
could request it from the cognitive tutor and relay it to the tutee. If the peer tutor 
marked something incorrectly in the interface (e.g., they marked a wrong step by the 
tutee correct), the intelligent tutor would highlight the answer in the interface, and 
present the peer tutor with an error message. Hints and error messages were com-
posed of a prompt to collaborate and the domain help the tutees would have received 
had they been solving the problem individually (see Figure 3). If both students agreed 
the problem was done, and were incorrect, the peer tutor would be notified and told to 
ask for a hint about how to complete the problem. In general, messages provided by 
the intelligent tutoring system were presented only to the peer tutor, and it was the 
peer tutor’s responsibility to explain them to the tutee. Feedback was based on the 
peer tutor’s actions, and not solely on the peer tutee’s actions. As with the fixed sup-
port, peer tutors had access to the problem answers in the interface. 

2.2   Experimental Design 

We compared three conditions: (1) students tutored each other with adaptive domain 
support in addition to the peer tutoring script (adaptive collaboration condition), (2) 
students tutored each other with fixed domain support in addition to the peer tutoring 
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script (fixed collaboration condition), and (3) students used the CTA individually 
(individual condition). As argued above, we expected the adaptive collaborative con-
dition to learn more than the fixed collaboration and individual conditions because of 
the combination of tutoring interaction and adaptive domain support. 

Participants. Participants were 62 high school students from five algebra classes at a 
vocational high school in the United States, taught by the same teacher. The high 
school used the individual version of the CTA as part of regular classroom practice. 
Students from each class were randomly assigned to one of the three conditions. 11 
students were excluded from analysis because either they or their partner were absent 
during a collaborative part of the intervention, and they were not re-paired with an-
other student. Another 12 participants did not take the delayed posttest, but were in-
cluded in all other analyses. The total number of students included in the analysis was 
51 (20 in the individual condition, 14 in the fixed collaboration condition, and 17 in 
the adaptive collaboration condition). 39 students took the delayed posttest (18 in the 
individual condition, 10 in the fixed collaboration condition, and 11 in the adaptive 
collaboration condition).  

Procedure. The study took place over five weeks. Students were given a 15 minute 
pretest during the first week. The intervention took place during two 70 minute class 
periods, each one week apart. On both intervention days, students in the collaborative 
conditions spent half the period in the preparation phase and the remaining time tak-
ing turns tutoring each other in the collaboration phase. Students in the individual 
condition used the CTA alone during both phases. The week after the intervention, 
students were given a 15 minute posttest. Two weeks later, students were given a 15 
minute delayed test to assess their long-term retention. The pre-, post-, and delayed 
tests were counterbalanced, contained 8 questions, and were administered on paper.  

3   Results 

3.1   Learning Gains 

We scored answers on the pre-, post-, and delayed tests by marking whether the solu-
tions were correct or incorrect. If students got a completely correct solution or 
reached a nearly correct solution with just a copying error, they received a 1. If stu-
dents performed at least one important conceptual step incorrectly they received a 0. 
Points on all the questions were summed, with a maximum score of 8 points. We 
conducted a two-way (condition x test-time) repeated-measure ANOVA, with test-
time (pretest, posttest, or delayed test) as the repeated measure. There was a signifi-
cant effect for test-time (F(2,72) = 41.303, p < .001), but there were no significant 
differences between conditions, and no interaction. A priori contrasts revealed that the 
effect was due to the difference between the pretest and the other two tests (t(36) = 
69.541), p < .001) and not due to the difference between the posttest and the delayed 
posttest (t(36) = 2.544, p = .119). Table 1 contains the scores of the students who took 
all three tests. For the correlational analysis in the remainder of this section, we com-
puted normalized gain scores for the posttest and the delayed test. 
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Our hypothesis that the adaptive collaboration condition would lead to more learn-
ing than the other two conditions was not supported by the data. We next investigated 
how process related to learning outcomes, by examining student progress through the 
unit, the effect of tutee impasses, and the feedback that students received. 

Table 1. Pre, post and delayed test scores 

 Pretest Posttest Delayed 
Posttest 

Condition M SD M SD M SD 
Individual 1.28 1.60 3.00 1.75 3.67 1.78 
Fixed .90 .876 3.50 2.17 3.60 2.17 
Adaptive .82 1.08 2.36 1.57 2.82 1.78 

3.2   Student Progress 

We expected that the collaboration conditions might complete fewer problems than 
the individual condition because students spend more time interacting. However, 
tutees in all conditions should make similar numbers of incorrect problem-solving 
actions per problem if they receive comparable support from their tutors. We con-
ducted a one-way (condition: individual, fixed, adaptive) ANOVA on the number of 
problems completed per hour in the collaboration phase of the study (see Table 2). 
For this analysis, we grouped the students in the collaborative conditions by dyad, as 
the number of problems that one pair member completes (and the time that they take) 
is dependent on the number of problems the other pair member completes. Condition 
was indeed significantly related to problems solved (F(2,34) = 8.764, p = .001). We 
then conducted a one-way (condition: individual, fixed, adaptive) ANCOVA on the 
average number of incorrect actions per problem (see Table 2). We included pretest as 
a covariate because it was significantly correlated with incorrect attempts. Because 
we wanted a comparable measure of individual progress across conditions, we looked 
at incorrect attempts per problem for each tutee, rather than by dyad. Pretest was 
significantly predictive of incorrect attempts (F(1,47) = 5.449, p = .024). Condition 
marginally affected incorrect attempts per problem (F(2,47) =  2.480, p = .095).  

Table 2. Problems completed, incorrect attempts, help requested, and help given 

  Problems 
Completed  

per hour 

 Incorrect 
Attempts  

per problem  

Help 
Requested 

per problem 

Help 
Given  

per problem 
Condition N   M  SD N   M  SD   M SD  M  SD 
Individual 20 47.0 30.2 20 1.46 1.26 .648 .806 1.41 1.41 
Fixed 8 13.3 7.71 14 1.81 1.04 .929 .647 .943 .839 
Adaptive 9 17.7 5.69 17 2.46 1.87 1.32 1.60 1.96 1.63 
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Table 3. Types of help requested and given 

 

3.3   Tutee Impasses 

The collaborative conditions differed on how easy it was for students to move to the 
next problem. In the adaptive condition, students could not continue unless they had 
successfully completed the problem, making it possible for students to get “stuck”, 
where they repeatedly tried incorrectly to move to the next problem. The number of 
these incorrect done tries was negatively correlated with tutee gain scores on the de-
layed test (r = -.591, p = .056), but positively correlated with tutor gain scores on the 
delayed test (r = .463, p = .115). In the fixed condition, students were not notified 
when their attempts to continue were incorrect, and thus could “skip” to the next 
problem even if the previous problem was not done. Problems skipped were nega-
tively correlated with tutee learning (r = -.614, p = .059) and tutor learning (r =  
-.369, p = .329). If problems were skipped tutors did not benefit from tutee impasses. 

To further investigate, we looked at how incorrect attempts might be related to 
tutee and tutor learning. In the adaptive collaboration condition, total incorrect prob-
lem-solving attempts were negatively correlated with tutee gain scores on the delayed 
test (r = -0.614, p = .044), but positively correlated with the delayed gain score of the 
tutor (r = .428, p = .190). Posttest correlations with tutee learning (r = -.206, p = .427) 
and tutor learning (r = .320, p = .210) were not as strong. In the fixed collaboration 
condition, the pattern was still present, but slightly weaker for the tutees, perhaps 
because students could sidestep impasses by skipping to the next problem; incorrect 
attempts were negatively correlated with tutee gains on the delayed test (r = -.378, p = 
.281) and positively correlated with tutor gains on the delayed test (r = .472, p = 
.199). In this condition, posttest scores were not correlated with incorrect attempts for 
the tutee (r = -.046, p = .876) or the tutor (r = .034, p = .917).  

3.4   Feedback Received 

Even though the number of incorrect attempts made across conditions was not signifi-
cantly different, there may have been differences in the way tutors gave feedback. We 
computed a measure for help requested by counting the number of times the students 
in the individual condition clicked on the hint button and the number of times peer 
tutees in the collaborative conditions expressed confusion or asked a question (see 
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Table 3). We then computed a measure of help given by the peer tutor by counting the 
number of times the cognitive tutor gave a feedback message and the number of times 
the peer tutor gave advice (see Table 2). Help given was not significantly different 
across conditions (F(2,48) = 2.16, p = .127), nor was help requested (F(2,48) = 1.794, 
p = .191).  

4   Discussion 

Both individual use of the CTA and peer tutoring activities lead to significant learning 
gains. The fact that the collaborative conditions performed just as well as the individ-
ual condition is encouraging. They achieved similar gains even though they solved 
fewer problems, suggesting that interacting in depth about a small number of prob-
lems might be as efficient for learning as solving a large number. Further, peer tutor-
ing can have social and attitudinal benefits [8], so students may gain more from peer 
tutoring than from working individually. 

It is surprising that quantitative measures of student progress and feedback ex-
change within problems were so similar across all three conditions. Although one 
would expect hint requests to be the same across tutees and individual problem-
solvers, one might expect that peer tutors would have difficulty giving hints to a tutee 
compared to an intelligent system, either delivering more or less help than necessary. 
However, the results indicate that on a broad level the mechanisms of intelligent tu-
toring and novice tutoring are similar. It appears that to improve the effects of the 
tutoring, the best approach may be to focus on the details of the interaction by coding 
utterances for the type of help given or requested (e.g., using Webb’s coding scheme 
[17]). We can look more closely at how different feedback provided to peer tutors 
affects quality and timing of their help, and how those elements might relate to tutor 
and tutee learning. 

The tutors’ apparent benefit from tutee impasses, which were negatively correlated 
with tutee learning gains, is problematic since it suggests that in order for the tutor to 
improve, the tutee must struggle. This result occurred mainly on the delayed test, 
which is a measure of long-term retention, and therefore a measure of deeper learning 
than the posttest. It is important to be cautious in interpreting this correlation, but it is 
consistent with the result that viewing erroneous worked examples may improve stu-
dent learning [18]. If this is the case, it is important to give students the opportunity to 
experience these impasses. However, we need to examine in greater detail why tutors 
could not help tutees benefit from impasses, and provide assistance for these circum-
stances to better support the peer tutor in explaining the relevant concepts to the tutee. 
Focusing on this aspect, we may be able to use collaborative learning to improve on 
individual use of the CTA. 
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Abstract. Learning outcomes from intelligent tutoring systems (ITSs) tend to 
be quite strong, usually in the neighborhood of one standard deviation. How-
ever, most ITS designers use the learning outcomes from expert human tutoring 
as the gold standard (i.e., two standard deviations). What can be done, with the 
current state of the art, to increase learning from an ITS? One method is to 
modify the learning situation by asking students to use the ITS in pairs. To en-
hance performance, we drew upon the beneficial effects of structured peer col-
laboration. The results suggest that the intervention was successful. Pairs of 
students solved more problems and requested fewer bottom-out hints than indi-
viduals. To test the possibility that the effect was due to the best partner in the 
group directing the problem solving, a nominal groups analysis was conducted. 
A nominal group is a statistical pairing of the non-interacting individuals’ per-
formance. The results from the nominal groups replicated the same pattern of 
results, but with a reduced magnitude. This suggests that the best member may 
have contributed to some of the overall success of the pair, but does not com-
pletely explain their performance. 

Keywords: Collaborative learning; explanation activities; studying examples. 

1   Introduction 

An often-heard suggestion is that students may learn more from an intelligent tutoring 
system (ITS) if two students worked together on the system instead of working on it 
alone. Early studies did not support this hypothesis, and instead suggested that having 
pairs of students using an ITS produced the same learning gains as having students 
work alone as they used it [early studies with Lisp & geometry tutors]. However, null 
results are often open to many interpretations, such as a lack of statistical power. This 
issue has been re-opened recently, and for good reasons. The simplest reason for re-
opening the pair/solo hypothesis is that, despite the designers’ best efforts, the hints 
given by an ITS are sometimes more confusing than helpful. Perhaps having two 
students interpret the hints may help alleviate this problem. 

Another reason for studying pairs using an ITS is that learning gains can be impres-
sive when the students in a pair actually collaborate, as opposed to one student dominat-
ing the problem solving. Collaborators can encourage each other’s reasoning, notice and 
productively resolve conflicts in their thinking, confirm each other’s beliefs, externalize 
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their thoughts, and so on. Collaborators could use an ITS to catch mistakes that the stu-
dents manage to overlook, to provide hints when they have exhausted their mutual 
knowledge, or to resolve conflicts that they cannot resolve themselves. In short, meta-
cognitive strategies exist for using an ITS as an effective scaffolding for peer problem 
solving.  

Lastly, many observers have noticed that students working alone often abuse the 
ITS by asking for more help or less help than they need [1]. In particular, many ITSs 
give increasingly specific hints when asked, and the last “bottom-out” hint tells the 
student exactly what step to enter. Some students ask for bottom-out hints on almost 
every step. Conversely, some students will enter incorrect versions of a step dozens of 
times without asking for a hint. Although it is possible that students do not know how 
to use the help system effectively, experiments with a help-seeking tutor have shown 
that explicitly teaching students effective help-seeking strategies did not change their 
long-term behavior [2]. They went back to abusing the ITS as soon as the help-
seeking tutor was replaced by the regular ITS. This suggests that students know how 
to seek help effectively, but they sometimes choose otherwise. 

One way to reduce the frequency of help misuse may be to have students work in 
pairs. If both students know that rapidly pressing the hint button in order to get the 
bottom-out hint is bad for learning, then such abuse would only occur if they both 
simultaneously agree to be “bad.” Similarly, they would have to both agree to enter 
mistaken entries repeatedly without asking for help, even though they both know this 
could be a waste of time. So perhaps having students work in pairs on an ITS could 
increase the frequency of proper help usage, compared to students working alone. 

In short, there are at least three reasons why pairs of student should learn more than 
individuals using an ITS: (1) pairs may be able to interpret the ITS’s hints more suc-
cessfully, (2) the ITS may help student collaborate effectively, and (3) pairs of stu-
dents are less likely to abuse the ITS than individuals. 

Although the first and third hypotheses are somewhat novel, there has been a con-
siderable amount of work on the second hypothesis [3, 4]. For example, Rummel and 
Spada [5] contrasted learning and problem solving under four different conditions. 
The first was a detailed, worked-out example of successful collaboration. Participants 
were asked to study the example of smooth collaboration, and apply it to their own 
dialog. A second group was provided with a collaboration script, in which case their 
interactions were structured in a way that was hypothesize to promote successful 
collaborative outcomes. Finally, there were two control conditions that did not struc-
ture the collaborative interactions. They found that the example and scripted condi-
tions demonstrated better understanding of successful collaboration principles, as well 
as a better understanding of the domain (i.e., therapy and diagnosis of medical and 
psychological disorders) than the control conditions. 

The laboratory study by Rummel and Spada suggests that successful collaborative 
interactions can be instructed and scripted. Walker et al. [6] extended this finding by 
developing a cognitive tutor that teaches students how to interact in the context of 
peer tutoring. They developed a peer-tutoring script that assists students along three 
dimensions. The first dimension prepares students for peer tutoring by providing 
instruction on the domain content, as well as relevant pedagogical strategies. The 
second dimension involves actual tutoring, whereby the tutor is taught to set goals for 
the student, as well as monitor the student’s progress during problem solving. The last 
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dimension introduces skills for effective interaction, such as providing elaborated 
help. These three dimensions were used to construct a cognitive tutoring system for 
peer collaboration, thus reifying the empirical results on effective peer tutoring and 
collaboration. 

Although the available evidence suggests that ITSs can have a positive impact on 
collaborative learning (i.e., hypothesis 2), research addressing the collaborative use of 
ITS hints has been relatively sparse (i.e., hypotheses 1 and 3). However, the empirical 
work on collaboratively studying worked-out examples, which is reviewed in the next 
section, may be of some relevance because requesting a string of bottom-out hints can 
turn a problem into a worked-out example. 

1.1   Collaborative Example Studying 

So far, we have discussed the hypothesis that pairs would be more effective than indi-
viduals when they work on an ITS, but similar remarks apply to studying examples as 
well. By example, we mean a problem plus a presentation of the multiple steps required 
for its solution. When individuals study an example, they sometimes self-explain it by 
filling in the gaps between steps, relating the inter-step reasoning to prior knowledge, etc. 
[7]. Sometimes students do anticipatory self-explanation, where they try to generate the 
next solution step themselves, then look at the example to see if they are right [8]. 
Prompting can increase the amount of self-explanation [9, 10]. However, even with 
prompting, students can abuse an example just as they can abuse an ITS. They abuse an 
example by simply reading it shallowly and not trying to self-explain much of it.  

When discussing pairs using an ITS, we suggested that they may be more effective 
than individuals for 3 reasons: (1) pairs may be able to interpret the ITS’s hints more 
successfully, (2) the ITS may help student collaborate effectively, and (3) pairs of 
students are less likely to abuse the ITS than individuals. Those same three reasons 
apply to examples as well. (1) A pair may be more able to interpret an examples’ 
reasoning more successfully than an individual student. (2) An example scaffolds 
collaborators by helping them extend their reasoning when they get stuck, resolve 
conflicts productively, externalize their reasoning, confirm their beliefs, etc. (3) Pairs 
are less likely to abuse an example than individuals. 

Laboratory evidence, which suggests that pairs may be better suited for studying 
examples than individuals, can be found in [11]. In their experiment, participants were 
asked to study some instructional materials collaboratively, then solve LISP pro-
gramming problems individually. The pairs’ performance on the LISP problems was 
contrasted with individuals studying the instructional materials alone. They found that 
the programming performance of the pairs was significantly better than the solo stu-
dent performance; however, the authors note that the advantage for collaboration 
diminished over time. 

The present study is another step toward understanding if and when “two heads are 
better than one” for learning. The study compares pairs vs. solo students who are both 
studying examples and solving problems with an ITS. As they study examples, they 
are prompted to self-explain. This study is preliminary in that we did not use pre-tests 
and post-tests, and thus cannot measure students’ learning gains. However, we did 
record their behavior during the training in order to determine if it was affected by the 
solo/pair manipulation. Thus, this study counts as a manipulation check for a subse-
quent study of learning gains. 



 Shall We Explain? Augmenting Learning from Intelligent Tutoring Systems 639 

Although verbal protocols were collected, they have not yet been fully analyzed, so 
this paper reports only the analyses of log files generated by the tutoring system. Us-
ing them, we found evidence that pairs abused the help system less frequently than 
solo students, as predicted. We also looked for but failed to find signs of collaborative 
facilitation, in that pairs would make fewer errors due to collaboration than nominal 
pairs. On the other hand, the pairs did no worse than the nominal pairs, so there was 
no process loss [12]. Thus, all the current evidence is positive—two heads may indeed 
be better than one for explaining examples and solving problems with an ITS. 

1.2   Problem Solving and Example Studying in an ITS 

The Andes physics tutor was initially developed as a replacement for paper and pencil 
homework problems. The advantage for solving problems with Andes is the adaptive 
support it provides to the student. One form of adaptive support is the on-demand 
hints, which are provided in a graded fashion. Typically, the first hint points the stu-
dent’s attention to a relevant feature of the problem (i.e., a Pointing Hint). The second 
hint level presents general instructional principles that are relevant to the problem 
(i.e., a Teaching Hint). Finally, at the terminal level, the bottom-out hint tells the 
student exactly which action to take (i.e., a Bottom-out Hint). 

In addition to the on-demand hints, Andes provides a series of videos that the stu-
dents can watch in order to learn about various solution strategies, as well as how to 
use elements of the Andes interface. For the purposes of the current study, we modi-
fied the available videos so that they were broken down into individual problem-
solving steps. Typically, students are responsible for starting and stopping the videos, 
but that generally leads to shallow cognitive processing of the video content. Instead, 
at the juncture of each step, we prompted the students to engage in an explanatory 
activity. Solo students and pairs were prompted to generate explanations while study-
ing video-based, worked-out examples. The purpose of prompting students was to 
increase their cognitive processing of the examples. 

The use of examples in the present experiment slightly diverges from traditional 
studies in the sense that students were prompted to engage in explanation while study-
ing an isomorphic worked-out example after solving a related problem. We used this 
design for two reasons. First, the ACT-R theory of learning suggests that students 
only learn from the correct application of knowledge [13]. Second, the cognitive load 
associated with problem solving can impede a deep encoding of the problem-solving 
goals and operators [14]. 

2   Method 

The following experiment was designed to test the effects of collaboration on problem 
solving and example studying while using an ITS, primarily with an emphasis on the 
collaborative use of hints. 

2.1   Participants 

Thirty-nine undergraduates, enrolled in a second semester physics course, were ran-
domly assigned to one of two experimental conditions: solo students (n = 11) or pairs 
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(n = 14). Volunteers were recruited from several sections of a second-semester phys-
ics course, which covered Electricity and Magnetism. Participants were recruited 
during the third week of the semester, with the intention that the experimental materi-
als would coincide with their introduction in the actual physics course. The partici-
pants were paid $10 per hour. To ensure that the participants’ motivation remained 
high during the entire two-hour session, they were offered an incentive of an addi-
tional $10 for doing well on the tests, which they all received. 

2.2   Materials 

The materials developed for this experiment were adapted from an earlier experiment 
[15]. The domain selected for this experiment was electro-dynamics with a focus on 
the definition of the electric field, which is expressed by the vector equation: F = qE. 
This particular topic is typically covered within the first few weeks of a second-
semester physics course. Thus, it is an important concept for students to learn because 
it represents their first exposure to the idea that a field can exert a force on a body. 

To instruct the participants, several materials were developed. Four electro-
dynamics problems were created. These problems are representative of typical prob-
lems found at the end of a chapter in a traditional physics textbook. The problems 
covered a variety of topics, including the definition of the electric field, Newton’s first 
and second law, the weight law, and several kinematics equations. Each of the four 
problems was implemented in Andes. Andes was chosen because its design allowed 
for both the presentation of video-based examples, as well as coached problem solv-
ing. The first problem served as a warm-up problem because none of the students had 
any prior experience with the Andes user interface. 

In addition to the problems, three examples were created in collaboration with two 
physics instructors at the U.S. Naval Academy. The examples contained a voice-over 
narration of an expert solving the problems, and they were structured such that they 
were isomorphic to the immediately preceding problem. 

2.3   Procedure 

The procedure consisted of several activities. The first activity was to watch a short, 
introductory video on the Andes user interface. Afterwards, the participants read in-
structions on how to produce explanations, including an example. Next, participants 
were asked to use Andes to solve a warm-up problem. The experimenter was avail-
able to answer any user-interface questions. He was not, however, allowed to give 
away any domain-specific information. During problem solving, the student had ac-
cess to the flag feedback, the hint sequences, and an Equation Cheat Sheet. Once the 
student submitted a final answer, she then watched and explained an example of an 
expert solution of an isomorphic problem. The example solutions were broken down 
into steps, and at the conclusion of each step the student was prompted to explain 
(either individually or collaboratively). Once the explanation was complete, the par-
ticipant clicked a button to go onto the next step. Only the cover story and given  
values differed between the problem-solving and example problems. The students 
alternated between solving problems and studying examples until all four problems 
were solved and all three examples were studied, or until two hours elapsed. 
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2.4   Measures 

Several dependent measures, taken from the log files, were used to assess problem-
solving performance, including: the number of entries, correct entries, solution rate, 
and the number of bottom-out hint requests. 

3   Results 

The results are organized into two sections. The first reports performance differences 
between the solo students and pairs at the problem level. The second section then 
reports the same dependent measures using a “nominal group analysis," which is 
considered the gold standard for collaborative research [16]. A nominal group is a 
statistical pairing of the non-interacting individuals. To construct a nominal group, 
individuals from the solo condition were randomly paired, and the best performance 
from each individual was taken to represent the pair. 

3.1   Performance Differences 

Before delving into the problem-solving performance measures, we first analyzed the 
solution rates (i.e., whether or not a final answer was found) for two reasons. First, the 
students worked at their own pace; and second, the experiment was capped at two 
hours. Thus, there was no guarantee that all of the students would finish all of the 
problems in the allotted time. The pairs were much more likely to submit an answer to 
the final problem than the solo students (χ2 = 4.81, p = .03). 

An analysis of the mean number of entries and correct entries for the final problem 
confirmed the solution rate results. The pairs (M = 34.29, SD = 6.72) demonstrated 
more entries than the solos (M = 25.00, SD = 14.97), F(1, 23) = 4.32, p = .05, d = .87. 
Moreover, the pairs (M = 23.29, SD = 5.06) demonstrated reliably more correct en-
tries for the final problem than the solos (M = 15.64, SD = 9.85), F(1, 23) = 6.36, p < 
.02, d = 1.06. Taken together, these results suggest that the pairs were more efficient 
in solving the problems during the two-hour experiment.  

To test if the participants abused the available help, bottom-out hint requests were 
analyzed. Requesting multiple bottom-out hints is an indication that the student re-
quired more direct instruction, and this may have translated into gaming the system 
behaviors. However, if the student requests a reasonable number of bottom-out hints, 
then that is an indication that she is more interested in connecting the information 
found in the instructional materials (i.e., examples) to the individual problem-solving 
steps. 

The bottom-out hint usage interacted with time, such that the difference between 
conditions was apparent early in the experiment, but diminished over time. To correct 
for Type II errors due to multiple statistical tests across the four problems, a repeated 
measures ANOVA was used. The univariate tests, which contrasted the two condi-
tions for each problem, indicated that the solos demonstrated marginally higher bot-
tom-out hint requests for the warm-up problem (F(1, 21) = 3.98, p = .06), reliably 
more hint requests for the first problem (F(1, 21) = 7.64, p = .01), and no reliable 
differences for the final two problems (see Fig. 1). 
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Fig. 1. The mean number of bottom-out hint requests per problem for solos and pairs 

3.2   Nominal Group Analyses 

One of the dangers of working in a collaborative setting is the threat of requiring more 
time to complete a task than it would when working alone. To test if there was a loss 
in efficiency, we compared real pairs to the nominal pairs by measuring the amount of 
time taken to input each correct entry. The results suggest there were no time penal-
ties for working in a group. In fact, there was a small amount of evidence to the con-
trary. On average, real pairs (M = 47.96, SD = 17.17) demonstrated faster times be-
tween correct entries for the first problem than the nominal pairs (M = 67.05, SD = 
16.45), F(1, 23) = 7.89, p = .01, d = 1.18. 

In addition, the dependent measures used to contrast problem-solving performance 
between the two experimental conditions were repeated for the real pairs and the 
 

 

Fig. 2. The mean number of bottom-out hint requests per problem, including nominal pairs 
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nominal pairs. For the final problem, the nominal pairs (M = 33.54, SD = 9.15) sub-
mitted an equal number of entries for the final problem as the real pairs (M = 34.29, 
SD = 6.72). However, the number of correct entries made for the final problem was 
replicated. There was a marginal difference between the two groups in terms of the 
correct number of entries made on the last problem, F(1, 23) = 3.16, p = .09, d = .75. 
The real pairs (M = 23.29, SD = 5.06) entered marginally more correct entries for the 
final problem than the nominal pairs (M = 18.73, SD = 7.73). 

In terms of the bottom-out hint requests, the pattern of results was also consistent 
with the solo results (see Fig. 2). The real pairs still requested fewer bottom-out hints 
for the Problem 1 than the nominal pairs, F(1, 23) = 5.11, p = .03, d = .95. None of 
the other contrasts reached traditional levels of statistical significance. 

4   Discussion 

The introduction to this paper proposed three hypotheses regarding collaboration 
during solving problems with an ITS. The first hypothesis stated that pairs may be in 
a better position to profit from an ITS’s hints than individuals because each student 
may interpret the hint in a different way. Through the process of sharing and debug-
ging their various interpretations, pairs of students can help each other make sense of 
the hints. Evidence for this claim can be found in both the completion rate and the use 
of bottom-out hints. The pairs progressed further into the problem set than the indi-
viduals, and they required fewer bottom-out hints to finish the problems.  

The second hypothesis stated that a step-based ITS may help students collaborate 
more effectively. Although, the present study did not directly test this hypothesis (i.e. 
by contrasting the frequency of successful collaborative processes for step-based 
tutoring with a more open learning environment), we indirectly tested the hypothesis 
by conducting a nominal groups analysis. Nominal groups were formed by randomly 
pairing individuals from the solo condition and taking the best performance from each 
member. For example, if Solo Member A asked for 3 bottom-out hints, and Solo 
Member B asked for 2, then the score for that nominal group on the bottom-out hint 
measure was “2.” However, if Solo A correctly imputed 8 steps, and Solo B entered 5 
correct steps, then the score for that nominal pair was “8.” Therefore, the source of 
the nominal pair’s score could come from a different individual for the different 
measures of problem-solving performance. 

The results from the nominal-groups analysis replicated the set of results from the 
solos. Although the magnitude of the differences between pairs and solos was re-
duced, the same trend of results was observed. This suggests that there was something 
special about participating in a collaborative discussion while solving problems with 
an ITS. That is, the tutoring system helped to scaffold the dialog between interacting 
students above and beyond the performance of the non-interacting individuals. 

Finally, the third hypothesis stated that pairs of students should be less likely to 
abuse the ITS than individuals because students have a general sense of the proper use 
of a learning environment. Stated differently, having a partner keeps the individuals 
honest. Evidence for the third hypothesis was most directly demonstrated with the 
bottom-out hint requests. Pairs of students requested an average of 67.6% fewer bot-
tom-out hints across the entire 2-hour experiment. The difference in bottom-out hint 
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requests between the pairs and solos was most pronounced after studying the first 
example (i.e., Warm-up Problem = 67.9% vs. Problem 1 = 85.6%). This suggests that 
the pairs may have also been less likely to abuse the examples. Instead of shallowly 
processing the content, they may have better comprehended and later reused the in-
formation in the examples. In the future, we plan to test this hypothesis more directly 
by analyzing the verbal protocols produced while studying the examples.  

In summary, the results from each of the three hypotheses suggest that asking stu-
dents to solve problems collaboratively, with a step-based tutoring system, is a pro-
ductive way to enhance learning from an ITS. This study, which served as a positive 
example of a manipulation check, suggests that future experiments continue to exam-
ine the boundary conditions under which collaboration is effective in an ITS. Addi-
tional measures of learning need to be used to evaluate the strength of the learning 
that results from collaboration. For example, the present study does not indicate if 
learning from collaboration will transfer to individual problem solving and to novel 
domains. Additional research is needed to answer these and related questions. 
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Abstract. Group formation plays a critical role in collaborative learning (CL). 
It affects the acceptance of group activities by learners and the success of the 
collaborative learning process. Nevertheless, proposing an effective and peda-
gogically sound group formation is a very complex issue due to the multiple 
factors that influence group arrangement. The main goal of this paper is to pre-
sent an ontology that works as a framework based on learning theories that  
facilitates group formation and CL design. To validate the usefulness and effec-
tiveness of this ontology we present a method to use it and the results of an ex-
periment carried out with four instructors and twenty participants. The results 
suggest that our ontology can be used adequately and the concepts represented 
on it can positively affect the performance of individuals during group learning.  

1   Introduction 

Collaborative learning (CL) has a long history in Education [14]. According to [13], 
over the past decades the numbers of technologies that enable people to learn collabo-
ratively have increased considerably. In CL, group formation plays a critical role that 
affects the acceptance of group activities and the success of the learning process. 
Some researchers claim that an inadequate group formation has been the main reason 
for many unsuccessful applications that rely on CL [5;6]. Nevertheless, according to 
[17], only a few CSCL systems provide the functionality for group formation. The 
large majority focuses on techniques for sharing resources or on improvements of 
group performance (which does not guarantee an improvement of learning [3]). The 
policy used by conventional methods concerns situation-independent CL activities 
where the idea of groups composed by heterogeneous participants is always the best 
solution. Such policy (lower-level policy) is applicable to any situation without regu-
lation of the group. While it has satisfactorily facilitated the use of group formation in 
CSCL systems [12], the lower-level policy has difficulties in supporting well-
structured groups where each learner has a defined role and learning goal. This limita-
tion may impair the chances of successful learning and complicates the analysis of the 
CL processes. 

To overcome this problem our work deals with a higher-level policy that can be put 
on top of the lower-level policy to further increase the benefits of CL by bringing 
structure and context into the group. Thus, the main problem we are addressing is 
how to propose an effective group formation. By effective we mean the selection of 
appropriate information to propose a principled group formation that creates favorable 
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conditions for learners to perform CL activities and helps instructors to more easily 
estimate the learning benefits of these activities. In order to identify the necessary 
information for effective group formation, our approach relies on achievements of the 
Learning Science Community (especially learning theories) and those of ontology 
engineering to support CL [6]. The use of ontologies aims to establish an engineering 
infrastructure for making theories more understandable, shareable and usable for both 
computers and humans. Then, we can propose techniques for reasoning on theories, 
facilitating the development of intelligent authoring tools for CL. 

In this paper we, first, overview our theory-driven group formation concept devel-
oped to date. Second, we present our ontology and a method to use it to form groups. 
Finally, to validate the usefulness of this ontology, we present the results of an ex-
periment performed with four instructors that have used our ontologies to form groups 
with the intent to sharpen the communication skills of twenty participants. 

2   Theory-Driven Group Formation 

Many learning theories contribute to in-depth understanding and support of CL (e.g. 
LPP [8]). By selecting an adequate theory, we can provide the rationale justifying that 
the suggested group formation can help learners to achieve the learning goals. One 
could disagree that it is possible to support or enhance effective group formation by 
using learning theories. The authors are aware that theories have some flaws and are 
not “watertight.” However, from our point of view, learning theories can provide 
some essential conditions in which learners are able to learn more smoothly or effec-
tively. By explaining the learning process, besides trying to explain what happens 
inside of a learner, a learning theory also gives (explicitly or implicitly), for example, 
the context in which the learning activities have been taking place, the target knowl-
edge/skill that has been tackled, and the roles played by learners. Others could think 
that the use of learning theories to adopt some regulations (suggestions to improve the 
quality of CL) could harm the CL process. However, according to [3] and [15], effec-
tiveness of CL relies on how well we can understand the multiple factors that influ-
ence group interactions and use such understanding to prescribe appropriated learning 
groups that facilitate meaningful interactions among learners. From such an observa-
tion, the use of theories as guidelines can increase the effectiveness of CL. 

To select an appropriate theory for a specific situation is a difficult and time-
consuming task. One of the reasons is the difficulty in understanding the theories because 
of their complexity and ambiguity. Therefore, to allow the rational use of theories to 
support CL, we must establish a common conceptual infrastructure on which we can 
clarify, at least partially, what CL is and how learning theories can facilitate the identifi-
cation of a well thought out group structure. In this context, ontologies have shown sig-
nificant results to represent educational theories and to use them effectively [9]. In CSCL, 
a pioneering works in using ontologies to establish a system of concepts for CL, with 
theoretical support, was presented in [6]. Nevertheless, previous achievements have some 
room for improvement. Especially, it is difficult to propose group formation in compli-
ance with theories. To overcome such a limitation we have been working to clarify the 
concepts extracted from theories and to promote the adequate use of these concepts. In 
the next session, we present some of these concepts and explain how we can use them to 
propose effective group formation. 
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3   Ontology-Enabled Group Formation 

Our work uses ontologies as a common framework to describe learning theories and 
CL explicitly and formally. We aim to enable theory-driven group formation that 
offers guiding principles that link the design of CL activities with interaction analysis. 
This approach allows the identifying of intended goals, roles, and strategies for a 
group and its members during the design process. Then, we can more easily analyze 
individuals’ interactions to identify whether the proposed interactions were carried 
out successfully or not and whether learners attained the expected benefits or not. 
Finally, with a good analysis of interactions it is possible to acquire knowledge about 
learners and propose a better group formation afterwards (Figure 1). 

 

Fig. 1. A full view of the total system of the theory-based group formation and analysis 

In the previous work, we extend the CL ontology to represent the relationship 
among interactions and learner’s development, and to propose theory-compliant ac-
tivities to enhance interactions among learners [7]. In this paper, we offer more ex-
pressiveness to this ontology discussing its use to support group formation. 

3.1   Main Concepts for Group Formation 

This section presents 3 key concepts, extracted from theories, necessary to understand 
how groups are formed using our ontology: learning goal (individual and group goal), 
role and instructional-learning event. 

According to [1;6;10], although there is a variety of learning goals, the process of a 
learner’s growth can be described as the process of knowledge acquisition and skill 
development (Table1). Thus, concerning individual goals, the CL ontology describes 
succinctly the learner’s knowledge acquisition process and skill development process. 

The process of acquiring specific knowledge includes three stages of learning: ac-
cretion, tuning and restructuring [10]. Accretion is adding and interpreting new in-
formation in terms of pre-existing knowledge. Tuning is understanding knowledge 
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through its application in a specific situation. Restructuring is considering the rela-
tionships of acquired knowledge and rebuilding the existing knowledge structure. 

Considering the development of skills, there are also three stages: the cognitive 
stage (rough and explanatory), the associative stage and the autonomous stage [1]. 
The cognitive stage involves an initial encoding of a target skill that allows the learner 
to present the desired behavior or, at least, some crude approximation. The associative 
stage is the improvement of the desired skill through practice. In this stage, mistakes 
presented initially are gradually detected and eliminated. The autonomous stage is the 
gradual and continued improvement of the skill. In this stage, the learner can perform 
accurately and quickly the desired behavior. s(x,y) is the simplified form of represent-
ing the actual stage of the learner: x represents the skill development and y represents 
the knowledge acquisition. For instance, s(0,1) illustrates that the stage of skill devel-
opment is nothing and the stage of knowledge acquisition is accretion. 

Table 1. Stages of learning development [6] 

Concerning the description of group goals in the CL ontology, there are four types: 
knowledge sharing, creating a solution, spread of a skill and knowledge building (or 
knowledge transmission). These goals are supported by some of the theories we have 
analyzed. For example, the Cognitive Flexibility theory supports the sharing of 
knowledge; and the Cognitive Apprenticeship theory supports the spread of skills.  

One of the main factors that affect learners’ interactions and, consequently, the 
achievement of learning goals is the role played by learners. A role provides peda-
gogical support stating functions, goals, and responsibilities that guide learner’s be-
havior and tend to increase group stability, satisfaction and communication [15]. For 
example, the role of “Tutor” offers benefits for a learner who has knowledge about 
the content, but does not have much experience in using it. It is because this learner 
has to explain the content using his own words in order to teach (obtaining a better 
understanding about it). However, the same role does not bring as much benefit for a 
learner who understands the content well and teaches it many times. Therefore, we 
need to know what roles a learner can play in order to support effective group forma-
tion. Currently, the CL ontology represents 12 roles and their pre-requisites.  

Finally, a learner needs the adequate context to play a role. Context is extracted 
from each analyzed theory and includes sequence of activities to be performed (inter-
action patterns [7]), participants to interact with, and so forth. Nowadays, we have 
analyzed seven learning theories frequently used to support CL (e.g. [2;8;16]). 

Individual goals (I-goal) Stages of development Abbreviation Sources 
Nothing s(x, 0), x=0..4 
Accretion s(x, 1) , x=1..4 
Tuning s(x, 2), x=1..4 

Acquisition of Content-Specific 
Knowledge 

Restructuring s(x, 3), x=1..4 

[10] 

Development of Skill   

Some Types Nothing s(0, y), y=0..3 
Rough-Cognitive s(1, y), y=0..3 
Explanatory-Cognitive s(2, y), y=0..3 
Associative s(3, y), y=0..3 

- Cognitive skills 
- Meta-cognitive skills 
- Skill for self-Expression 
… 

 

Autonomous s(4, y), y=0..3 

[1] 
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To express the concepts presented in this section, in Figure 2 we show an updated 
version of our ontological structure developed previously [7]. This structure consists 
of two main parts: the Learning Strategy and the CL process. The Learning Strategy, 
composed by the members of a group and the goals of one learner (I-role), specifies 
how (Y<= I-goal) the learner (I-role) should interact with other members of the group 
(You-role) to achieve his objectives (I-goal). For instance, in Cognitive Apprentice-
ship a learner interacts with other learners to guide them during the resolution of a 
problem. In this case the learning strategy (Y<= I-goal) used by this learner is “learn 
by guiding”; his role (I-role) is known as a “master role”, the role of the learner who 
receives the guidance (You-role) is known as an "apprentice role," and the goals of 
the learner who guide (I-goal) are to acquire cognitive skills (and meta-cognitive 
skills) at an autonomous level. To play a role effectively, a learner should satisfy 
some necessary and desired conditions. 
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Fig. 2. Part of the Ontological Structure used for group formation 

The CL Process (W(A)-goal) specifies the goals of the group activity (W(L)-goal) 
and the rational sequence of interactions (interaction pattern) provided by theories. 
The interaction patterns are represented by the necessary and desired interaction ac-
tivities among members of a group (e.g. tutor and tutee). In our ontology, we describe 
interactions as I_L events (instructional-learning event), as presented by [9], for ex-
plicitly representing the interaction and its benefits from both points of view: for those 
who do the action and for those who receive the action. Each event is composed by an 
actor of an action, the action, and the benefits of the player of this action. 

3.2   A Group Formation Method 

The question now is how to use the ontology presented in section 3.1 to form groups. 
A procedural example is shown on Table 2. First of all, the ontology is used as a 
common vocabulary to set up the CL session. After that, we use the relationship 
among concepts to identify the best formation that satisfies the session requirements. 
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Table 2. Procedure to form a group using the ontology presented in Figure 2 

Step 1 - Setup a CL session:  
1.1. To determine what the target individuals 
have done in the past (experience) and what 
they can do now (initial levels of knowl-
edge/skills). This step aims to identify the 
necessities of individuals and the roles they 
are able to play. 
1.2. Assess the content worth learning 
and/or the content needed to be learned. The 
content should be divided in knowledge to 
be acquired and skills to be developed. The 
relationships among knowledge-knowledge, 
knowledge-skill and skill-skill should also 
be identified. 
1.3. Elect the learning goals expected to be 
achieved by individuals and/or by the entire 
group for the specific content. 
1.4. State the initial levels of knowl-
edge/skills and the learning goals of each 
individual in terms of stages of learning 
development s(x,y) as indicated in Table 1. 
A more detailed specification of this process 
will be provided in future papers. Further-
more, each step described previously can be 
completed (at least partially) by following 
some instructional design strategies. Some 
of them can be found in [11]. 

Step 2 – Forming the Groups: 
There are many possibilities to form a 
group. Let us explore one way concerning 
individual goals. 
2.1. Match the individuals’ goals with a CL 
session by looking in the I-goal (Figure 2a). 
If no match is found, it means that the theo-
ries represented in our ontology cannot help 
the improvement of the specific goal. How-
ever, usually there is more than one session 
that can help learners to achieve their goals. 
2.2. Check if learners have the necessary and 
desired conditions to play a role (Figure 2b). 
Learners with all the conditions have high-
priority to join the group; learners with only 
the necessary conditions have low-priority; 
and the other learners cannot join the group, 
because they could harm the CL process. 
2.3. Set the group goal (common goal) as 
shown in Figure 2c; and design CL activities 
according to the interaction patterns that are 
described or prescribed by theories (Figure 
2d). These patterns can be followed by 
learners in order to obtain the desired indi-
vidual and group goals. In previous works 
we have shown how to design CL activities 
using this ontology. 

Note that, unlike other approaches, the method of group formation using ontologies 
can provide the rationale for each choice made to form a group providing pedagogical 
justifications. We can support instructors by explaining why some learners should 
collaborate and why others should not; it is also possible to help them to set reason-
able goals for learners and for the entire group considering the theoretical point of 
view, the learners’ pre-conditions and the content to be learned; and we can ask learn-
ers to play specific roles in order to produce a more sophisticated collaboration. 

4   Experiment 

With the objective of obtaining information about the impact of forming groups using 
the theory-driven group formation with our ontologies, we designed an experiment as 
a proof of concepts. The main goals of the experiment were to gather information and 
verify (a) whether instructors can use the concepts contained in the ontology ade-
quately, and (b) if the framework of the group formation suggested by the ontology is 
really relevant to the success of the CL session. 

The study was carried out with 2 pairs of instructors, each pair from a different in-
stitution, and 20 participants who are expected to develop information sharing and 
self-expression skills. The participants are from 7 different countries of Latin  
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America, pursuing different degrees in Japan and between the ages of 18 and 35 years 
old. We chose such an ill-structured environment for two main reasons: (a) these 
participants have been working together since 2004, but have been suffering from 
problems in collaborating and sharing information; and (b) in an ill-structured envi-
ronment, it is easier to identify when a set of changes in the CL settings affects the 
success of the CL process. We expended about 2 months to complete the whole ex-
periment. 

The experiment consists of two phases. The first phase was the planning (set up) of 
the CL session and the second phase was its actual execution. In the first phase, in-
structors were asked to deal with the group problem using their own methods. After 
that, they should find an agreement and select or merge some of the created CL ses-
sions. We specifically asked the instructors to give details about the content to be 
learned by the participants, their choices to form groups, to define goals, and to create 
a sequence of activities (including tools to be used). Next, the same tasks were done 
using our ontology with methods similar to those proposed in section 3.2. 

The second phase was the application of the proposed sessions. For each CL ses-
sion, about half of the participants used the scenario proposed by instructors without 
support of our ontology (controlled groups), and the other half used the scenario with 
ontological support. All groups (experimental and controlled) received support of 
instructors during the activities. For each session, different participants were selected 
to join the experimental groups according to the necessary requirements described in 
the ontology. All sessions were recorded and evaluated by both instructors and par-
ticipants who filled out questionnaires after the sessions. 

In total, it was created four CL sessions. The first one, which the main goal was to 
spread a specific knowledge among participants, was performed in pairs where the 
more knowledgeable participant should “teach” the content to the less knowledgeable 
one. Four groups followed a Peer Tutoring based CL session [4], and six groups 
where controlled groups that did not have any specific guideline. In the second ses-
sion, the main goal was to improve skills of self-expression. It was created five 
groups with four members each. Three groups followed a Cognitive Flexibility based 
CL session [16] where learners had to expose their opinions from different perspec-
tives. The third and fourth sessions were based in mind maps constructions and the 
main goal was to improve the cognitive and meta-cognitive skills and again skills  
for self-expression. It was created four groups with five members each. One group 

Table 3. Some Interactions and their benefits for two groups based on different theories 

Expected benefits (From→To) 
Interaction 

Role A Role B 
Learning 
Theory 

 Master Apprentice 
Demonstration s(3, 2)→s(4, 2) s(0, x)→s(1, x); s(1, x)→s(2, x); x=0,1,2 

Instigating thinking s(3, 2)→s(4, 2) s(1, x)→s(2, x); x=0,1,2 
Monitoring/Coaching s(3, 2)→s(4, 2) s(1, x)→s(2, x); s(2, x)→s(3, x); x=0,1,2 

Cognitive 
Apprenticeship 

[2] 

 Full Participant Peripheral participant 
Requesting details s(3, 2)→s(3,3) s(0,x)→s(1,x); x=0,1,2 

Instigating discussion s(3, 2)→s(4,3) s(1,x)→s(3,x); x=0,1,2 
Exchanging information s(3, 2)→s(4,3) s(1,x)→s(3,x); x=0,1,2 

LPP [8] 
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followed the Cognitive Apprenticeship CL session [2] with one master and four ap-
prentices; and another one followed the LPP CL session [8] with two full participants 
and three peripheral participants. The group that followed Cognitive Apprenticeship 
theory had activities such as demonstration and guided tasks. Although the final goals 
were the same, the group that followed LPP theory had activities such as discussions 
and exchange of ideas. In Table 3, we show some interaction between learners and 
their educational benefits. 

5   Results and Discussion 

The interface between instructors and ontologies was mediated by the authors. The inten-
tion was to capture the necessities of users and to check the usefulness of concepts in our 
ontologies (and not the usefulness of a system built using ontologies). With the encourag-
ing feedback and data obtained in the experiment, we believe it will be feasible to de-
velop a complete ontology-aware system for CL as shown in Figure 1. 

Concerning the first phase (planning), all the instructors agreed that the use of the 
ontology was quite helpful in obtaining a good insight about the group formation. It 
was discovered that many unconscious choices of instructors, in fact, have been ex-
plicitly represented in our ontology. Furthermore, instructors have considered it very 
informative and meaningful that the concepts in our ontology were linked with the 
relevant theory. Besides, it gives the rationale behind each choice to form a group and 
to design CL activities; in some cases, the instructors could select the theory they felt 
more comfortable working with. Another benefit pointed out by instructors was the 
facility to create and to share CL sessions. When each instructor produced their own 
sessions/scenarios using their own vocabulary, it was quite difficult to discuss the 
benefits of each one in order to find a common agreement and to merge them. Using 
the ontology, the sessions described by one instructor were comprehensible by the 
others with only small misunderstandings. Finally, the ontology was used only as 
guideline to help instructors propose groups with theoretical justification, thus, the 
instructors had the flexibility to not rely too much on the theories and add the charac-
teristics they think the groups need in order to work effectively. It shows that the use 
of the ontology did not restrict instructors’ action or their creativity. Instead, it helped 
them to focus on the main problem and to make efforts in parts where their expertise 
was required the most. For example, after using the information in the ontology, some 
participants were able to join the experimental groups and, because each session re-
quired different learner’s conditions, usually we had different participants in these 
groups. However, sometimes there were too many participants, who could join the 
experimental groups. Then, instructors also had to consider: the language (to facilitate 
self-expression), educational background and culture (to increase heterogeneity), 
previous relationships with other participants (to avoid meaningless interactions), and 
intrinsic behavior of participants. 

In the second phase, we tried to verify the differences between the controlled 
groups and the groups formed using our ontology (experimental groups). For each CL 
session, instructors checked how the participants have interacted with each other, the 
groups’ achievements, and the benefits obtained by individuals, besides other indica-
tors. As a result, it was observed that in most of the sessions the participants in the 
experimental groups had more improvement in the desired skills and the performance 
of the whole group was better, if compared with the controlled groups. Instructors 
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observed that, in the controlled groups, half of the scheduled time of some sessions 
was filled with meaningless interactions instead of performing the necessary activities 
that would improve the desired skills. Furthermore, it was noted that on many occa-
sions, members of experimental groups who had worked well together in previous 
sessions could not work together in controlled groups, harming the CL process. One 
explanation is that in the experimental groups, participants were chosen adequately 
(rather than randomly, as it usually happens), had defined roles and could follow well 
structured interaction patterns. As many studies have shown, following these regula-
tions can decrease the chances of undesirable interactions occurring. 

We observed that the experimental groups were effective in achieving the desired re-
sults. Most of the participants who joined these groups achieved their individual goals 
and the groups performed effectively. For example, in the session shown in Table 3, the 
group had as a group goal to spread the skill for building a mind map and, as one of the 
individual goals, the master had to develop this skill in the autonomous stage (increase 
his ability to build a map) while the apprentices had to develop the same skill in the asso-
ciative stage (learn how to build a map adequately). The master helped the apprentices by 
externalizing his cognitive processes while building maps and monitoring apprentices. 
On one hand, the master acquired the desired goal. And on the other hand, by observing, 
imitating and being monitored, the apprentices developed the desired skill effectively. 
However, participants in the experimental groups complained that it was difficult to 
follow the appointed role/strategy. They argued that sometimes they had to neglect their 
personal behavior to get the task done as required. Those complaints are reasonable and 
will be taken into consideration to improve our ontology. In this same session, although 
some members of the controlled groups achieved their individual goals, the groups could 
not achieve their desired goal.  

The results in this experiment suggest that the ontology-based framework of group 
formation can be used adequately to form effective groups. This verification is essen-
tial in order to provide intelligent systems with theoretical knowledge that clarify how 
learning theories can help instructors to form groups, to design CL activities and to 
enhance learning outcomes. The ontology presented in this work aims to represent the 
knowledge of intelligent educational systems that support CL, playing a central role in 
the decision making about how, when, and why we should use theories to form 
groups considering the multiple factors that influence the CL process.  

6   Conclusions  

In this paper we focused our discussion on the necessity of sophisticated group formation 
to set roles, goals, and activities for learners before a CL session starts. To propose effec-
tive groups, it is helpful to have a clear and sharable understanding about many learning 
theories and their features. However, it is very difficult for users (e.g. instructors) to have 
such a common understanding. Our approach calls upon techniques of ontological engi-
neering to build ontologies that represent, explicitly and formally, the main concepts of 
each theory which are obtained by our interpretation of theories from group formation 
perspectives. We then proposed a method for using those concepts adequately. And fi-
nally, we conducted an experiment to check the usefulness of our ontology in an ill-
structured environment. The results of the experiment indicate that the concepts in the 
ontology helped instructors to form groups and to design CL activities with theoretical 
justifications. Furthermore, the results also suggest that individuals in experimental 
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groups, where each member was carefully selected and the interactions were partially 
moderated following the prescriptions in the ontology, performed and learned better than 
in controlled groups whose members were not selected so rigorously and could interact 
freely with others. 

We believe this is a step forward in the development of the foundations of an intel-
ligent authoring tool for CL, with a well grounded theoretical knowledge, that sup-
ports group formation, facilitates the design of CL activities, and minimizes the load 
of interaction analysis (Figure 1). Our ultimate goal is to develop this tool. 
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Abstract. To individualize instruction, a tutor must infer which knowl-
edge components the student knows and does not know. Self-assessments,
by which the student directly reports to the tutor whether a certain item
is known, are a fast measure of student knowledge. We investigate their
use to initialize a learner model used to individualize instruction ESL
vocabulary. Experimental results indicate that self-assessments can be
useful measures of knowledge for use in a tutoring system for vocabu-
lary. Self-assessments appear to be particularly reliable when learners
claim that words are not known.

1 Introduction

We explore the use of self-assessments in REAP1, a tutoring system for vocabu-
lary current aimed at intermediate and advanced English as a Second Language
(ESL) students. REAP provides practice readings containing target vocabulary
words, as well as easy dictionary access and post-reading practice vocabulary ex-
ercises. The system individualizes and adapts by choosing texts at the appropri-
ate reading level, and by considering knowledge estimates for target words when
selecting readings. The REAP tutor uses a learner model to estimate knowledge
of specific target words. Evaluations of student performance on post-reading
multiple choice cloze, or fill-in-the-blank practice exercises provide data for the
student model. Brown, Frishkoff, and Eskenazi discuss the use and generation
of cloze questions for the REAP tutor [1]. A pre-test, however, is utilized to
measure initial knowledge prior to the practice readings. Heilman, Eskenazi,
Collins-Thompson, and Callan provide more details on the REAP tutor [2].

The primary motivation for self-assessments is to minimize the amount of
time required for initial assessments while maintaining accurate measures of
knowledge. A challenge of efficiently assessing initial knowledge is that there are
a very large number of words which might be taught. For example, Coxhead’s
Academic Word List [3] has 570 head words. Assessing knowledge of every word,
or even a substantial fraction of them, with cloze questions or other performance-
based methods would take a considerable amount of time. The Yes/No Test [4] is
a test consisting of self-assessments for vocabulary, but it is designed to infer the
overall size of a person’s receptive vocabulary rather than knowledge of particular

1 For more information on REAP, see http://reap.cs.cmu.edu.
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words. Rather than dealing with general language skills, we investigate the use
of self-assessments for measuring individual word knowledge. Specifically, we
investigated whether self-assessments are faster assessments than cloze questions,
and also whether self-assessments and cloze questions agree with each other.

2 Experimental Design

We conducted an in vivo study with the REAP Tutor involving forty-two adult
ESL students of a variety of native languages whoe were part of an upper-
intermediate English Reading course in the Summer of 2006 at the University
of Pittsburgh. The pre-test and subsequent instruction covered ten words ran-
domly chosen from Coxhead’s Academic Word List[3]: acknowledge, demonstrate,
controversy, identical, retain, precise, undergo, sacred, cease, and outcome. The
pre-test included both cloze and self-assessment questions for each word, in a
different random order for each student. The self-assessment questions asked
students to make a binary decision as to whether or not they knew a given
word (e.g., Do you know the word “sacred”?). For all cloze questions in this
study, students had to choose from a word bank of twenty words that included
the correct target word and a set of foils that were other target words used in
REAP. The reliability of the cloze questions and self-assessments were evaluated
by a follow-up cloze questions, with different base sentences, given just before
the first instructional opportunity for each word. Due to time constraints, data
for only about 330 of a possible 420 pre-test and follow-up question pairs were
available for each type. In our analysis, we assume that an agreement of the
follow-up assessment with the pre-test assessment is an indication of accuracy
of a pre-test assessment, whether self-assessment or cloze. Response times were
recorded automatically by the tutoring system.

3 Results and Discussion

On the pre-test, students spent 38.8 seconds (N = 329 questions, SD = 29.9)
per cloze question. In contrast, students spent only 6.1 seconds (N = 331, SD
= 5.2) per self-assessment. A two-tailed t -test for independent samples with
unequal variance indicates the difference is statistically significant (p <0.001).

Pre-test cloze questions agreed with the follow-up cloze questions 74.7 percent
of the time. That is, approximately three quarters of the time, the student either
answered both correctly or both incorrectly. In contrast, self-assessments agreed
with cloze questions only 56.4 percent of the time, which is barely above random
chance. The upper half of Table 1 is a contingency table for pre-test cloze and
follow-up cloze questions, and the lower half Table 1 is a contingency table for
pre-test self-assessments and follow-up cloze questions. The cells in each table
are the percentages of question pairs in a particular case. The self-assessments
appear to be accurate when students claim that a word is unknown. When
students claimed to not know a word, they answered follow-up cloze questions
incorrectly 92% of the time, as indicated in the lower half of Table 1. When
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students claimed to know a word, however, they correctly answered the follow-
up cloze question for that word only 29% of the time. These findings suggest that
self-assessment of knowledge of particular vocabulary words are accurate when
students claim not to know a word. Recent versions of the REAP tutor use self-
assessments to initialize learner models by setting different initial probabilities
of knowledge based on whether the student claims to know a word.

Self-assessments of individual target vocabulary words can be much faster
than other assessments such as cloze questions. Also, self-assessments appear
to be particularly reliable when students claim that they do not know partic-
ular words. Thus, it appears that data from self-assessments can be effectively
used with a learner model to make inferences about word knowledge in order to
individualize instruction.

Table 1. Contingency Table for 331 Pairs of Pre-test Cloze and Follow-up Questions
(upper) and 329 Pairs of Pre-test Self-Assessment and Follow-up Questions (lower)

Cloze-Correct Cloze-Incorrect Total

Follow-up-Correct 67% 18% 20%

Follow-up-Incorrect 33% 82% 80%

TOTAL 15% 85% 100%

Self-Assessment-Known Self-Assessment-Unknown Total

Follow-up-Correct 29% 8% 20%

Follow-up-Incorrect 71% 92% 80%

TOTAL 56% 44% 100%
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Abstract. The number of texts used by the REAP tutor and challenges
of automatically generating reading comprehension questions necessi-
tated a simpler automated type of question. We describe an algorithm for
generating such reading-check questions for arbitrary texts. Two studies
investigating the utility of these questions found reliable, moderate cor-
relations with vocabulary learning and reading comprehension.

Keywords: reading comprehension, question generation, language tu-
toring.

1 Introduction

Computer-based instructional systems often include text instruction as a signif-
icant component. In particular, language tutoring systems often integrate texts
with practice tasks. For example, the REAP1 tutor for English as a Second Lan-
guage vocabulary asks students to read authentic texts containing target words
to expose them to contextualized implicit information [1]. Estimates of student
comprehension of these chosen texts can be useful for many purposes: as ex-
perimental data, input for a learner model, or as an indicator that the tutoring
system should select easier texts.

One type of possible measure is the deep comprehension question, which re-
quires inference and integration of concepts represented in the text. This question
type often appears on standardized tests of verbal ability. Shallower comprehen-
sion questions might simply require the recall of facts from a text. A simpler
measure which can be automated, which we call a “reading-check” question, re-
quires recall of simple surface features of the text-for example, specific lexical
items.

Ideally, a system would employ deep comprehension questions. However, gen-
erating such questions is currently extremely challenging. Systems have been
designed for generating comprehension questions from texts, such as in work
described by Kunichika, Katayama, Hirashima, and Takeuchi [2]. Also, Li and
Sambasivam[3] describe a method for generating questions from an ontology, or
domain specific knowledge base, rather than from a specific text. These systems,
1 For more information on REAP, see http://reap.cs.cmu.edu.
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however, are not simultaneously error-free, domain-general, and completely au-
tomatic. Tutoring systems such as the REAP tutor require automaticity and do-
main generality because they employ a large number of texts covering a variety
of topics. Therefore, the simpler reading-check questions are employed because
they are essentially error-free and thus can be completely automated.

Automatically generated reading-check questions ask the student to choose,
from among set of foils, a small set of words that appear in a particular text that
he has read. For a given text, the algorithm first extracts a list of unique words
appearing in the text. It then calculates a measure of the salience of each word
by evaluating the relative frequency of the word in the text minus the relative
frequency of the word in general English, divided by the relative frequency of
the word in general English. The top N words are then chosen for the answer
set (N = 8 in these experiments). Foils are generated by taking the answer set
and replacing half of the words with randomly chosen words that did not appear
in the text.

2 Reading-Check Questions and Vocabulary Learning

We conducted a study to measure vocabulary learning with the REAP tutor.
Forty-four students at the English Language Institute at the University of Pitts-
burgh participated in this experiment as part of an intermediate English as a
Second Language Reading course in the Fall of 2006. After nine training sessions
with REAP, students took a post-test consisting of twenty cloze, or fill-in-the-
blank, vocabulary questions and ten sentence production tasks for target vocab-
ulary words. Statistically reliable correlations were found between performance
on reading-check questions during training sessions and post-test cloze scores (r
= .547, two-tailed test of independent samples, t(31) = 3.64, p = .001) and sen-
tence production tasks (r = .536, t(31) = 3.53, p = .011). These results indicate
reliable associations between reading-check performance and two measures of
vocabulary learning. The reading-check questions seem to measure a construct
that facilitates vocabulary acquisition while reading practice texts.

3 Association of Reading-Check Questions to
Comprehension Questions

We conducted a follow-up study to attempt to determine whether performance
on automatically-generated reading-check questions correlates with performance
on more sophisticated, manually-authored reading comprehension questions.
Thirty undergraduate students attending summer research programs at Carnegie
Mellon University participated in the lab study. All were native speakers of
English in order to reduce the number of confounds (e.g., native language)
and ensure at least partial comprehension of the texts. The study employed
a between-participants design. Participants read five passages, each followed by
four reading-check questions, and three to five expert-written reading compre-
hension questions. Passages were between 500 to 1,000 words and of varying
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levels of difficulty. When looking at the participants’ percentages of correct re-
sponses for both question types, the two variables had a medium positive cor-
relation of .366 (p <.0005, one-tailed test). The R2 value of 0.13 means that
overall, thirteen percent of the variance of performance in answering reading
comprehension questions can be explained reading-check performance.

4 Discussion

The first study revealed a significant correlation between performance on auto-
mated reading-check questions and vocabulary learning in the REAP tutor. A
second experiment investigated the extent to which reading-check questions are
associated with measures of reading comprehension. The study revealed a reli-
able, but not extremely strong, correlation between reading-check performance
and reading comprehension, suggesting that the reading-check questions measure
a construct that is associated with but not equivalent to comprehension. The
most plausible explanation for the findings of the two studies seems to be that
the reading-check questions measure reader attention. If students are attending
to a text, then they are more likely to comprehend it. Similarly, students attend-
ing to a text are more likely but not certain to process implicit information in
the text about target vocabulary, as seen in the first study. From this inference,
it seems valid to continue to use reading-check questions to facilitate learning
within the REAP tutoring system.
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Abstract. The number of digital lecture video recordings has increased
dramatically since recording technology became available. The accessibil-
ity and the search inside of this large archive are limited and difficult.
Manual annotation and segmentation is time-consuming and useless. A
promising approach is based on using the audio layer of a lecture recording
to get information about the lecture contents. In this paper, we are pre-
senting a retrieval method and a user-interface based on existing recorded
lectures. A deficient transcription from a speech recognition engine (SRE)
is sufficient for browsing in the video-archive. A user-interface for dynamic
browsing of the e-learning contents is presented and an evaluation of the
supplied keywords concludes the paper.

1 System

Audiovisual recordings in terms of streaming media are used more and more
for correspondence course institutions 1. Independent of time and place learners
have access to libraries of recorded lectures. But the accessibility and traceability
of their content for further use is rather limited. Two major challenges arise
while preparing recorded lectures for content based retrieval: automated indexing
of multimedia videos and the retrieval of semantically appropriate information
from a lecture knowledge base. The requested information is often covered by
a few minutes of the lecture recording and is therefore hidden within a full 90
minute recording stored among thousands of others. But, how to retrieve the
appropriate information in a large lecture video data base in a more efficient
way? (Manual) segmentation of video lectures into smaller units, each segment
related to a specific topic, is an accepted approach to finding the desired piece of
information [1,3,4]. It has been shown in [1] that a keyword-based search in an
imperfect transcript yields reliable results. But such solutions fail if word sense
disambiguation is required.

In this paper, we present our efforts at putting together results from different
fields and projects in order to create a user-interface for browsing the educational
lecture video archive based on the transcripts of a SRE.

1 e.g. http://www.tele-task.de/
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Fig. 1. The inside, before, after and superordinate area for the query IP

The system is organized in three basic functional modules:

Module 1:
This module is discussed in detail in [2]. The transcript consists of a list of words
with the corresponding point in time when the word was spotted in the speaker’s
flow of words.

Module 2:
The input of this modul are the words from module 1 and the output data is an
index of the term-chains. Clustering is used to detect cohesive areas (chains) in
the transcript. A chain is constructed to consist of all repetitions ranging from
the first to the last appearance of the term in the lecture. The chain is divided
into subparts when there is a long hiatus between the terms [2].

Module 3:
This well-known module consists of a web-server and a web-browser.

In a retrieval experiment 153 topic words (e.g.: XML, topology...) are used
for evaluate the first relevant chains (the chain with the maximum word number).
79 percent of all hits are correct and only 21 percent are completely wrong or
not in the correct time. The generated chain-index supports a dissolving of the
ambiguity: In Figure 1 the term UDP is used in the context of protocol. The
sense of this word is clear from the context it is used in. Moreover, the index
supports a keyword register for each video-segment. In Figure 1, the search query
of the user is IP and the chain with the highest word-nummber of the chain and
their inside chains ( Address, UDP, Suffix, Header, TCP) is returned. The inside
chains represent the content of the video-segment IP. In fact, a chain has a before,
after and superordinate area too. These areas consist themselves of areas. The
user has the opportunity to browse through these areas to find the semantically
proper position in the video. Furthermore, the problem of word- composite can
be solved with the help of the chain-index.

The user-interface consists of three regions: The first region is set for the
input of the search query. The second region is the result of the search. The
third region shows the summary of the before, after and inside areas. The user
can start a video with a click on the adequate chain term. After that, an external
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Fig. 2. User Interface with time information

player plays the video-segment and additionally, the third region of our site is
expanded to this chain with its before, after and inside areas.

It is clear that the results produced by such a search tool depend on the accu-
racy of the SRE. But some wrongly detected words and wrong compound words
are not a problem for our retrieval system and user-interface. The term occurs very
often in relevant chains and so a high redundancy exists. Thus, some wrongly de-
tected words have no influence on the generated and final result [1]. Nevertheless,
the user-interface allows an exact, easy and fast navigation in the video archive.
In addition, it allows the disambiguation of words. The results demonstrate how
surprisingly well the browsing and disambiguation works. The result shows that it
is possible to add data to the result set that supports the students with the helpful
information they are searching for. Our system needs no additional resourses. The
lecture-browser supports simple navigation through the corpus of lectures.
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Abstract. Affective Computing is a new Artificial Intelligence area that deals 
with the possibility of making computers able to recognize human emotions in 
different ways. This paper represents a study about the integration of this new 
area in the intelligent tutoring system. The main goal is to analyses learner fa-
cial expressions and show how Affective Computing could contribute for this 
interaction, being part of the development of computer systems where informa-
tion about learner’ emotion would be helpful. 

Keywords: Affective Computing, intelligent tutoring system, learner’ emotion. 

1   EMASPEL Framework 

An Intelligent Tutoring System (ITS) is a computer-based educational system that 
provides individualized instruction like a human tutor. A traditional Intelligent Tutor-
ing System decides how and what to teach based on the learner pedagogical state. 
However, it has been demonstrated that an experienced human tutor manages the 
emotional state (besides the pedagogical state) of the learner to motivate him and to 
improve the learning process. Therefore, the learner model structure needs to be aug-
mented to include knowledge about the affective state. The ITS needs the ability of 
reasoning about the affective state to provide learners with an adequate response from 
a pedagogical and more precisely affective point of view; that’s why we require the 
affective e-learning system that it has two main functions: i) to infer the affective 
learner state; and ii) to establish the optimal tutorial action considering the learner 
affective state. In this way, our proposed framework improve learning within our 
virtual learning environment by means of a more personalized environment through 
recognizing the learners’ affective state with the aim of reacting appropriately from a 
pedagogical and affective point of view. The affective system considers the learner 
affective state and the tutorial situation to establish the affective action (via the 
EECA). The affective action helps the tutor to establish the next pedagogical action 
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based in the knowledge base (KB), and it also helps to the curriculum agent to estab-
lish the physical realization of the pedagogical action based in the DB1 and DB1. So 
the learner receives a tutorial action with an affective component and a pedagogical 
component, which is our main contribution in this paper. The other novelty of our 
paper is the use of the multi-agent methodology that can certainly bring several ad-
vantages to the development of e-learning systems since it deals well with applica-
tions where such crucial issues (distance, cooperation among different entities and 
integration of different components of software) are found. As a result, multi-agent 
systems, combined with technologies of networking and telecommunications, bring 
powerful resources to develop the affective e-learning systems. So, in this research 
work, we propose affective framework for an intelligent affective system.[ This 
framework: EMASPEL (Emotional Multi-Agents System for Peer-to-peer E-
Learning) [1] (fig.1), where we have integrated five kinds of agent (Interface agent, 
emotional agents, EEC agents, curriculum agent, and tutoring agent) in order to pro-
mote a more dynamic and flexible affective communication between the learner and 
the affective system. 

1.1   The Emotional Agents  

Facial expression is a fundamental carrier of emotional information and is used 
widely in all cultures and civilizations to express as well as perceive emotion. In addi-
tion, to make effective communication between an EECA [2] and a learner, they need 
to be able to identify the other’s emotion state through the other’s expression and we 
call this task emotion identification established by the emotional agents. Extracting 
and validating emotional cues through analyzing the learner’s facial expressions is of 
high importance for improving the level of interaction in man-machine communica-
tion systems. Extraction of appropriate facial features and consequent recognition of 
the learner’s emotional state that can be robust to facial expression variations among 
different learners is the topic of these emotional agents.  

The emotional agents have been successfully integrated in a learning environment 
and aims at capturing and managing the emotions expressed by the learner during a 
learning session. They recognized the learner emotional state by capturing currently 
emotions that he or she expressed during learning activities and sent it to the EECA 
[3] Nevertheless, to develop a system that interprets facial expressions is difficult. 
Two kinds of problems have to be solved: facial expression feature extraction and 
facial expression classification. Facial features’ extraction uses a standard webcam 
and requires no specific illumination or background conditions. Emotional classifica-
tion is based on the variation of certain distances from the neutral face and manages 
the six basic universal emotions of Ekman [4]. 

1.2   Emotional Embodied Conversational Agent 

The affective virtual character (EECA) was integrated to a learning environment, 
communicating with the learners in verbal and in non verbal language such as facial 
expression, suggested readings according to the activities being performed. When a 
learner needs assistance to learn a given topic, the EECA is capable of finding other 
learners that may play the role of a tutor after recognizing and processing his affective 
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state via the emotional agents. In the case that the EECA has not found the appropri-
ate learner, he can address this request to the tutor for giving any explanations and/or 
remarks. 

2   Results 

 

Fig. 1. EMASPEL Framework 

References 

1. Neji, M., Ben Ammar, M.: Agent-based Collaborative Affective e-Learning Framework. 
The Electronic Journal of e-Learning 5(2), 123–134 (2007) 

2. Ben Ammar, M., Neji, M., Gouardères, G.: Conversational Embodied Peer agents in affec-
tive e-learning. In: Rebolledo-Mendez, G., Martinez-Miron, E. (eds.) Workshop on Motiva-
tional and Affective Issues in ITS. 8th International Conference on ITS 2006, pp. 29–37 
(2006) 

3. Nkambou, R.: Towards Affective Intelligent Tutoring System, Workshop on Motivational 
and Affective Issues in ITS. In: 8th International Conference on ITS 2006, pp. 5–12 (2006) 

4. Ekman, P., Friesen, W.V.: Unmasking the face: a guide to recognizing emotions facial cues. 
Prentice-Hall (1975) 

 



Measuring the Perceived Difficulty of a Lecture

Using Automatic Facial Expression Recognition

Jacob Whitehill, Marian Bartlett, and Javier Movellan

Machine Perception Laboratory
University of California, San Diego

{jake,movellan}@mplab.ucsd.edu, marni@salk.edu

Abstract. This project explores the idea of facial expression for au-
tomated feedback in teaching. We show how automatic real-time facial
expression recognition can be effectively used to estimate the difficulty
level, as perceived by an individual student, of a delivered lecture. We
also show that facial expression is predictive of an individual student’s
preferred rate of curriculum presentation at each moment in time. On a
video lecture viewing task, training on less than two minutes of recorded
facial expression data and testing on a separate validation set, our sys-
tem predicted the subjects’ self-reported difficulty scores with mean ac-
curacy of 0.42 (Pearson r) and their preferred viewing speeds with mean
accuracy of 0.29. Our techniques are fully automatic and have potential
applications for both intelligent tutoring systems (ITS) and standard
classroom environments. 1

1 Introduction

This paper explores the utility of facial expression as a feedback signal from
student to teacher. Previous work [2,3] has investigated using facial expression
for predicting the student’s affective state. This paper investigates the usefulness
of automatic expression recognition for two tasks: (1) measuring the student’s
perception of difficulty of a delivered lecture at each moment in time, and (2)
determining a student’s preferred viewing speed of lesson material.

2 Experiment

We conducted a pilot experiment in which subjects viewed a video lecture at an
adjustable speed while their facial expressions were recognized automatically and
recorded. Using the “difficulty” scores that the subjects report, the correlations
between facial expression and difficulty, and between expression and preferred
viewing speed, were assessed. Each of 8 human subjects watched a recorded video
lecture 200 seconds (3 min 20 sec) in length. The video consisted of 7 short video
clips concatenated together about a disparate range of topics, including physics,
philosophy, math, and teenage gossip. The experiment proceeded as follows:
1 The full version of this paper is available at [1].
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1. Watch the video lecture. The playback speed could be adjusted by the
subject using the keyboard. Facial expression data of each human subject
were recorded while they watched the video.

2. Take the quiz. The quiz consisted of 6 specific questions about the lecture.
3. Self-report on the difficulty. The lecture was re-played at a speed of 1.0.

Subjects adjusted their rating of the video’s difficulty on a scale of 1 to 10
on a frame-by-frame basis using arrow keys.

Facial expressions were analyzed and recorded automatically using the CERT
system [4]. CERT outputs estimated intensities of facial “action units” (AUs)
of face videos in real time. AUs are the component muscle movements that
comprise facial expressions, analagous to phonemes for words, and are defined
in the Facial Action Coding System [5], which is the standard framework for
objectively coding human facial expression. CERT recognizes AUs 1, 2, 4, 5, 9,
10, 12, 14, 15, 17, 20, and 45 as well as Smile.

None of the subjects was aware of the purpose of the experiment or that
expression data were measured. Subjects were encouraged to view the video
efficiently (by adjusting its speed) by a conspicuous automatic “shut-off” timer
and a quiz. In actuality, the timer had no effect, and the quiz was not graded.

3 Analysis

Our experiment yielded three data series which we time-aligned:

1. Difficulty: The subjects’ self-reported scores of how difficult they perceived
the lecture at each moment in time.

2. Speed: The lecture speed at each moment as controlled by the user.
3. Expression: A set of real-valued expression channels output by CERT which

estimate the intensity of 13 expression channels (12 AUs + Smile). The
channels were smoothed using local quadratic regression.

We employed linear regression over the Expression channels to predict both
Difficulty and Speed (see Figure 1 for an example). Separate regression models
were trained for each subject. The average correlation (over all 8 subjects) of
the Difficulty scores predicted by the regression model (training over all data)
with the self-reported Difficulty scores was 0.75, suggesting that facial expression
contains a large amount of useful signal.

Subjects exhibited a wide variability of which facial muscle movements were
correlated with Difficulty and Speed. The facial movement most consistently
correlated was AU 45 (“blink”). For six out of eight subjects, the correlation was
negative (subjects blinked less during more difficult lecture segments), which is
consistent with evidence from experimental psychology that blink rate decreases
when interest or mental load is high [6].

Generalization Performance: To assess the effectiveness of using facial ex-
pression to predict Difficulty and Speed values in a real intelligent tutoring sys-
tem, we split the data series into disjoint “bands” (∼ 12 sec long ) of training
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Fig. 1. Comparison of the self-reported Difficulty scores with the predicted Difficulty
scores using linear regression over the facial expression channels for Subject #6. For
this figure, all data were used for training the regression model.

and validation sets (see [1] for details). Linear regression models over the Ex-
pression data series were trained to predict Difficulty and Speed for each human
subject. Generalization performance was assessed by correlating predicted to
self-reported Difficulty and Speed values over the validation data.

The average correlation across all subjects of predicted to self-reported Dif-
ficulty was 0.42; the average correlation for Speed was 0.29. Individual corre-
lations were statistically significant for all but one subject. While these results
show room for improvement, they already demonstrate that automatic facial
expression recognition can extract relevant information for ITS.

4 Conclusions

Our results show that automatic facial expression recognition is already a useful
feedback signal for intelligent tutoring systems for two concrete tasks: perceived
difficulty estimation, and preferred speed prediction. As expression recognition
technology improves, its usefulness in ITS will continue to grow.
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Abstract. We analyzed unexpected student responses to a natural lan-
guage (NL) ITS to determine if improved feedback could be beneficial.
Our analysis of a corpus of ITS-student dialogues suggests that unex-
pected responses represent learning opportunities. We outline our plans
for testing feedback appropriate to subclassifications of these responses.

1 Introduction

Some patterns found in human-human and human-computer interactions predict
similar outcomes while some do not [1,2,3]. So it is valuable to look at both types
of interactions when building ITS. One study of human-human interactions sug-
gests that increased tutor feedback predicts a bad learning outcome and that
student errors do not account for these negative correlations [1]. Our research
focuses on student responses that an ITS categorizes as unrecognizable (or de-
fault). In such cases ITS typically provide only minimal feedback that indicates
whether a student action is correct or not [4]. The variety of ways in which ITS
handle the default category (e.g. always treat it as either correct or incorrect)
[4] suggests that choosing one fixed way of handling these responses may not
suffice in all situations.

Default student responses range from those that are not fully correct to those
that are simply failures to respond [4]. We are exploring whether some default
responses arise because the student does not recognize what the tutor wants
(i.e. tutor’s communicative intentions) since this could lead students to respond
in a way that ITS builders did not anticipate. Generally during human-human
dialogue a hearer is expected to show to what degree he has understood a speaker
[5] so that repairs are better informed. If an ITS provided this type of feedback,
the human dialogue partner would have more information with which to make
a repair and could improve the efficiency of the interaction. For example, if the
ITS says “You’re close but you need to be more careful. Try it again.” then the
student knows he should focus on adding details. Otherwise the student doesn’t
know what sort of repair to attempt.

2 The NL ITS Testbed and Corpus

The corpus we are using to analyze default student responses comprises 448 typed
dialogues between 64 students and a NL ITS that tutors seven qualitative physics
� This work was funded by NSF grant 0325054.
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Table 1. Corpus excerpts

Example of a no attempt response

system: Which variable quantity does the ’24.0 N’ represent?
student: I don’t know. (choices: applied force, attempted, no attempt)
system: The ’24.0 N’ represents the man‘s applied force on the crate.

Example of an attempted but wrong response

system: Which variable quantity does the ’24.0 N’ represent?
student: Force of friction (choices: applied force, attempted, no attempt)
system: No. The ’24.0 N’ represents the man‘s applied force on the crate.

Example of a vague response

system: What quantities influence the kinetic energy of the truck?
student: The velocity of travel and the mass of the truck

(choices: mass and magnitude of velocity, attempted, no attempt)
system: I disagree. From KE = 1/2 ∗ m ∗ v2, we can infer that kinetic

energy is influenced by the truck’s magnitude of velocity and its mass

problems in the work-energy domain [6]. Domain experts identified 30 knowledge
components (KCs) that were needed to solve the problems and developed a 33
item test for pre-/post-testing. Every item tests one or more KCs. Learning gains
were significant for a majority of the KCs, as were composite learning gains (e.g.
the lowest composite gain was for KCs about net work F(3,61)=3.2, p<.03).

The NL ITS guided students through problem solving and asked for justifica-
tions for key KCs. Because the corpus was collected for the purpose of deriving
dialogue strategies on when to elicit responses and when to request justifica-
tions, its fully automated NL understanding module was replaced with a human
interpreter, called the wizard, to reduce the confounds of misrecognizing student
explanations. The wizard’s interface showed the dialogue history, the student’s
last response and a list of choices for classifying the student’s response. Dialogue
excerpts from the corpus are illustrated in Table 1, where the choices available
are shown after the student response and the wizard’s selection is in bold.

3 An Analysis of Students’ Default Responses

Only two default subclasses were available for wizards to select; attempted and
no attempt. For no attempt responses such as “I don’t know.” the system gave no
minimal feedback before it followed up and for attempted responses, it gave nega-
tive feedback since the response did not answer the intended question. We found
that 21% of all NL responses from students were classified as attempted and 12%
as no attempt. But only 2% of responses turned out to be no attempt because at-
tempted responses were sometimes misclassified by wizards as no attempt. Possibly
this was done to circumvent students receiving negative feedback. But even with
these misclassifications, there were still significant correlations between classifica-
tions of responses and learning; there was a significant moderate positive correla-
tion between post-test scores (after removing the effects of pre-test scores) and the
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percentage of students’ non-default responses (R=.47,p=0) and there were signif-
icant weak negative correlations between post-test scores and responses that were
classified as no attempt (R=-.30,p=.017) or attempted (R=-.32,p=.011). The non-
default responses are step specific and are either correct or non-correct ones that
warrant a specific follow-up. As in other studies substantive responses from stu-
dents were predictive of learning regardless of correctness. Negative correlations
with learning suggest that default responses are possible learning opportunities
and thus warrant further analysis.

4 Discussion and On-Going Work

We identified the following alternative subclasses for default responses in the cor-
pus; no attempt, wrong, vague and overly specific. Intuition suggests that vague
and overly specific responses indicate the student is close to having learned a
KC while the remaining default responses indicate the opposite. These subclasses
could reflect the student’s progress on a KC. When the student receives a pointer
on what kind of error to look for and fix, it is reasonable to expect that if he at-
tempts a repair he will move closer to a fully correct response. Furthermore, the
student may be more motivated to pay attention to any specific feedback that
follows a retry. Thus students may be able to achieve correct contributions sooner
during their tutoring when they receive generic feedback that indicates the type
of error and have a chance to retry. To test this hypothesis, we will conduct a
controlled experiment with two conditions; the treatment condition will receive
appropriate minimal feedback for each subclass of a default response and the
control condition will receive no minimal feedback for any default response. We
will compare the learning gains, learning curves and correctness during dialogues
for the two conditions.
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Abstract. We investigate whether students can edit their learner model appro-
priately considering: (i) evidence about the model contents; (ii) accuracy of 
self-assessment; (iii) type of information in the model; (iv) level of knowledge.  

1   Introduction 

Some systems open the learner model to the user, and some also allow users to pro-
vide data directly to their model (e.g. [1],[2]), giving learners greater responsibility 
and control over their learning (see [1]). However, little work has investigated users' 
ability to edit their model accurately. We address some of the initial questions using 
three simple learner modelling systems: DataEvidence (data structures), Busines-
sAssess (accounting & finance), NLPInfo (natural language processing).  
 

1. Does evidence for model contents affect ability to edit the model appropriately? 
2. Does accuracy of self-assessment affect ability to edit the model appropriately? 
3. Does type of information displayed affect ability to edit the model appropriately? 
4. Does level of knowledge affect ability to edit the model appropriately? 

2   Do Users Accurately Edit Their Learner Model? 

Users may not notice if adaptation is incorrect based on preferences [3]. If users also 
do not notice errors in their learner model, they will not be able to correct them. To 
explore whether users notice and correct errors, errors were automatically inserted in 
the models (e.g. knowledge misconception), with a balance of positive/negative 
changes (4-6 errors for most users). We investigate how learners edited their models. 

Multiple-choice questions are used to elicit learner beliefs. The learner models are pre-
sented textually, describing concepts/misconceptions, e.g. in DataEvidence: 'You may 
believe the queue adds items at one end and removes items at the other' for a belief mod-
elled with uncertainty (uncertainty shown by 'you may believe'). Model editing is by 
selection from a belief list - see Fig. 1 (BusinessAssess). NLPInfo has two model presen-
tations: skill meters showing knowledge level (Fig. 1); and the concept model (as above, 
but without misconceptions). Editing skill meters has to allow students to change knowl-
edge level rather than select a belief. Radio buttons give 3 levels of knowledge: good, 
moderate, unsatisfactory. For consistency, to edit a concept students select whether they 
believe, may believe, or do not believe it. Users of each system were volunteers taking 
relevant degrees. Sessions lasted 30 minutes. Logs, learner models and questionnaires 
were analysed. 
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Fig. 1. Editing the learner model 

Table 1. Editing the learner model 
 
 

Correct Edits Incorrect Edits DataEvidence (n=24) Errors
Noticed Concept Miscon Concept Miscon 

Evidence
Useful

(i)   no evidence (n=8) 6 users 5 users 1 user 2 users 3 users - 
(ii)  evidence (n=8) 6 users 6 users 0 users 2 users 1 user 7 users 
(iii) ev. optional (n=8) 5 users 5 users 1 user 0 users 3 users 3 users 

Correct Edits Incorrect Edits BusinessAssess (n=16) Errors
Noticed Concept Miscon Concept Miscon 

Would
Edit

(i)   accurate (n=8) 7 users 0 users 7 users 0 users 0 users 7 users 
(ii)  overestimate (n=5) 5 users 0 users 3 users 0 users 1 user 5 users 
(iii) underestim. (n=3) 3 users 0 users 2 users 0 users 0 users 2 users 

NLPInfo (n=20) Errors
Noticed 

Correct
Edits

 Near Correct 
Edits

Incorrect
Edits

Confident 
 to Edit 

(i)   concept (n=20) 18 users 8 users 10 users 2 users 13 users 
(ii)  skill m (n=20) 14 users 5 users 7 users 5 users 3 users  

0 20 40 60 80 100

incorrect edits: misconception

incorrect edits: concept

correct edits: misconception

correct edits: concept

errors detected

high

medium
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Fig. 2. Editing the learner model according to knowledge level - percent (n=60) 

1. DataEvidence explains its inferences, e.g. 'You chose to output the last inserted 
element first in questions about the output sequence to a certain input'. There were 24 
users in 3 groups of 8: no access to evidence; requirement to read evidence; optional 
access to evidence (3 of the 8 read the evidence). Results are given in Table 1.  
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 2. Viewing the learner model can have positive effects on self-assessment [4]. In 
contrast, BusinessAssess investigates whether students who assess their knowledge 
accurately also edit their model accurately. Of 16 users, 3 had high knowledge; 7 
medium; 6 low. Although often suggested that competent learners may more likely 
underestimate, and less able learners overestimate themselves [5], no relationship was 
found. Table 1 gives results for model editing in relation to self-assessment accuracy. 

3. NLPInfo shows skill meters and beliefs on 3 levels. Errors were inserted on the 
extremes (e.g. good unsatisfactory; believe do not believe). 20 users took part: half 
viewing belief statements, and half skill meters first. There were no differences relat-
ing to sequence. ('Near correct edits' are towards correct edits.) See Table 1. 

4. To consider knowledge level we use all data: 60 users. 13 had a high knowledge 
level; 28 medium; 19 low. NLPInfo does not model misconceptions, so the maximum 
number who could have edited misconceptions is 40. Of these, 11 had high knowl-
edge; 19 medium; 10 low. As 'near correct edits' indicate an edit that moves closer to 
a correct representation, we include them in 'correct edits'. Results are in Table 1. 

3   Conclusions 

Learner involvement in learner modelling can assist the modelling process while 
giving learners greater responsibility for decisions in their learning. Not all errors 
inserted into the models were identified, but most users noticed at least one inserted 
error, and most errors detected were edited appropriately; with fewer new errors in-
troduced. There was no clear link between some of the features investigated and the 
accuracy of model editing (provision of evidence, self-assessment skills). But: weaker 
learners tended to have more difficulty detecting errors and editing inserted known 
concepts (but not misconceptions); and editing was more successful when the model 
showed belief statements rather than knowledge levels. We hypothesise also that the 
nature of the domain may influence model editing, as there were differences between 
editing concepts and misconceptions in DataEvidence and BusinessAssess. Given that 
some of the inserted errors were detected and correctly edited, we recommend further 
research into the potential for editable learner models to increase model accuracy and 
give learners more responsibility for their learning.  
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Abstract. When should instruction provide or withhold assistance? In three 
empirical studies, we have investigated whether worked examples, a high-
assistance approach, studied in conjunction with tutored problems to be solved, 
a mid-level assistance approach, can lead to better learning. Contrary to prior 
results with untutored problem solving, a low-assistance approach, we found 
that worked examples alternating with isomorphic tutored problems did not 
produce more learning gains than tutored problems alone. However, the exam-
ples group across the three studies learned more efficiently than the tutored-
alone group. Our studies, in conjunction with past studies, suggest that  
mid-level assistance leads to better learning than either lower or higher level as-
sistance.  However, while our results are illuminating, more work is needed to 
develop predictive theory for what combinations of assistance yield the most ef-
fective and efficient learning. 

1   Introduction 

The Assistance Dilemma [1] characterizes a long-standing unsolved problem in the 
learning sciences: when should instruction provide students with assistance and when 
should it be withheld? Some researchers have argued for providing maximal assis-
tance [e.g., 2], while others, argue for minimal assistance [e.g., 3]. In three studies in 
the domain of chemistry we have explored the assistance dilemma [4, 5].  

In this paper we discuss our results in experimenting with an intelligent tutor sup-
plemented with worked examples, a combination that has only recently been investi-
gated. The worked example principle, as stated in [6], is: “Replace some practice 
problems with worked examples”, i.e., provide students with an alternating combina-
tion of worked examples and problems. The theory behind the principle is that human 
working memory, which has a limited capacity, is taxed by strictly solving problems, 
which requires thinking, such as the setting of subgoals. The rationale, then, is that 
worked examples free mental resources for learning processes. 

But then why mix worked examples and problem solving, as suggested by the 
worked example principle? The theory seems to suggest that worked examples alone, 
a high-assistance approach, would be best for learning. Past empirical results have 
been mixed on this issue. For instance, Trafton and Reiser compared problem solving 
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with no tutoring to interleaved worked examples and problem solving with no tutor-
ing and found statistically significant learning gains and learning efficiency for the 
alternating condition [7]. Lovett performed a study that showed that both a low and 
high assistant approach could be beneficial [8], while Kalyuga et al’s results suggest 
that assistance should decline over time, as subjects gain expertise [9]. These (and 
other) mixed results indicate that there is room for continued studies to explore the 
issue of when assistance is appropriate in instruction. 

Furthermore, until recently there had been little study of the comparative learning 
benefits of intelligent tutored problem solving and other forms of assistance. Tutored 
problem solving is a mid-level assistance approach that provides more assistance than 
untutored problem solving but somewhat less than worked examples. Only Schwonke 
et al [10], besides ourselves, have explored the combination of tutored problems and 
worked examples (without one approach being used by and subservient to the other). 
Our hypothesis is that the interleaving of worked examples with tutored problems will 
further improve learning beyond the benefits of the tutor itself.  We explored this 
hypothesis using the Stoichiometry Tutor, a web-based intelligent tutor that provides 
support for a basic subarea of high school chemistry [4, 5]. 

2   Study Design and Results 

In all three studies a 2x2 between-subjects design was employed. The independent 
variable of primary interest to this paper is Worked Examples, with one level being 
Tutored Alone and the other Worked Examples + Tutored. In the former condition, 
which will be referred to as the “Problems Condition”, subjects solely solved prob-
lems with the Stoichiometry Tutor. In the latter condition, which will be referred to as 
the “Examples Condition”, subjects alternated between studying a worked example 
(followed by self-explanation questions) and solving an isomorphic problem with the 
aid of the tutor. (The second independent variable of the studies, “personalization,” 
will not be discussed in this brief paper, as it is not our focus here.) 

All instructional materials were provided via the Internet. All subjects worked on 10 
study problems (15 in Study 1), presented according to the two conditions described 
above. All subjects were also given pre- and post-questionnaires, and pre and posttests, 
with all pre and posttest problems involving the same type of problems as the study prob-
lems. Instructional videos on stoichiometry were interspersed, as appropriate, with the 
study problems in both conditions. The N values of the 3 studies were, respectively, 63, 
60, and 81, for a total of 204 participants across all three studies. 

Table 1. Average learning efficiency, calculated, per subject, as z-score (learning gain) - z-
score (instructional time) with z-score = (value – average) / stddev. The P-value was calculated 
using a one-way ANOVA between the Examples and Problems Conditions’ learning efficiency. 

 
 

Examples Condition 
Learning Efficiency 

Problems Condition 
Learning Efficiency 

P-value 
 

Effect Size 
(Cohen’s d) 

Study 1 0.47 -0.45 0.005* 0.75 

Study 2 0.24 -0.26 0.146 0.39 

Study 3 0.40 -0.41 0.015* 0.56 

* - Significant result. 
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The results were as follows. The students exhibited significant learning between 
the pre and posttests in all conditions of all studies. On the other hand, the students in 
the Examples Conditions did not learn more than those in the Problems Conditions, 
contrary to previous findings such as [7]. However, subjects in all of the Examples 
Conditions spent significantly less time with the study problems.  That is, the subjects 
in the Examples Condition, while they did not learn more, they learned more effi-
ciently than those in the Problems Condition, as shown in Table 1.  

3   Conclusion 

The students in the Examples Condition used 21% less time to complete the same 
problems. If these results were to scale across a 20-week course, students could save 4 
weeks of time – yet learn just as much. What explains these findings?  Students in the 
Examples Conditions worked significantly faster on the first of the isomorphic exam-
ple-problem pairs (i.e., the example) than the second (i.e., the problem).  The extra 
time the students in the Problems Condition took on the first problems – which often 
seemed to be used to turn problems into examples by clicking to bottom-out hints – 
did not benefit them.  This may be because clicking through hints is a less efficient 
way to see an example compared to seeing that example immediately.  

Unlike most prior studies, ours involved tutored instead of untutored problem solv-
ing. Like [10], our results are consistent with the hypothesis that mid-level assistance 
provides the greatest learning advantages. We plan to test this more explicitly in a 
new study, which will compare three levels of assistance: all tutored problems (lower 
assistance), alternating examples and tutored problems (mid-level), and all worked 
examples (higher assistance).  Of course, to more generally test the hypothesis it is 
important to do similar studies in other domains with different tutors.   
 

Acknowledgements. The PSLC, NSF Grant #0354420, supported this research. 
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Abstract. Privacy and trust are the cornerstones of safe and engag-
ing learning environments. Trust is associated with the reputation of
an actor. Pseudonymous identities can accrue trust while preserving the
actor’s privacy. But activities such as aggregating reputations from an
actor’s multiple pseudo-identities or transferring reputation to a new
pseudonym pose problems with privacy preservation. In this vein, we pro-
pose privacy-preserving identity management systems for learners that
support reputation aggregation and transfer across multiple pseudonyms.

1 Introduction

We [1], along with many others [3], view that identity management is an effective
solution to privacy in the learning domains. In an identity management scheme,
each user participates in a context by assuming a context-specific partial identity
and potentially many identifiers or pseudonyms. However, since the pseudo-
identities and pseudonyms offered by the identity management solutions are
not linkable, reputation earned over a pseudonym is untransferable with the
cancellation or switching of that pseudonym.

In this paper, we present an implementation of a secure reputation transfer
protocol [2] to allow reputation transfer among multiple pseudo-identities (e.g.
pseudonyms) without letting anyone draw associations among these pseudo-
identities. We have built a prototypical system that manages reputation for
three different sorts of roles present in an e-learning community: helper, peer,
and lurker. We have also done a preliminary evaluation to show that our system
helps facilitate trust while effectively preserving privacy.

2 Reputation Evaluation and Transfer

Conceptually, the reputation transfer protocol proposed earlier [2] is able to se-
curely transfer reputation across pseudonyms ensuring no leakage of identities of
participants through the process of transferring reputation. We have employed
a reputation generating technique and implemented the reputation transfer pro-
tocol in a prototypical system to manage reputation for learners. Additionally,
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our system makes a reputation transfer unobservable and restricts foul play for
taking undue advantage of reputation transfer.

To provide a solid and parsimonious foundation for the empirical study of
trust for another party, Mayer et al. [4] observe three characteristics of a trustee
appearing often in the literature: ability, benevolence, and integrity. To evaluate
reputation of learners, we map each of these characteristic to a feature, specific
to roles a learner plays in various learning contexts. For example, a learner
in a helper role is evaluated by three features: insightfulness, helpfulness, and
availability representing ability, benevolence, and integrity respectively. In our
system, reputation is measured by averaging a set of feedbacks (ratings on a 0 to
5 scale) by other actors on role specific features. In case of merge/transfer, one
actor’s aggregate rating is incremented one-by-one by for each rating transaction
of the other actor and vice versa. There is a random time delay between each
of the increments to make reputation transfer indistinguishable from reputation
update by a new rating, making reputation transfer unobservable.

3 Implementation

Our prototypical system is implemented through a client (for actors) and a
multi-threaded server (for guarantor) suite written in Java language. The sys-
tem manages reputation for 3 different roles that are present in an e-learning
community: helper, peer, and lurker. Our system allows a user to perform any
of the following 4 tasks: “register (i.e., register a pseudonym with a guarantor)”,
“evaluate (i.e., rate an actor)”, “transfer”(e.g. transfer/merge reputation across
pseudonyms), and “query”(e.g. query reputation of a pseudonymous actor).

As a pseudonym, say TomTheHelper requests a reputation transfer, it presents
the registration number and the reputation digest (originally provided to it by
the guarantor) to the guarantor, so the guarantor could authenticate its identity
and retrieve its reputation. The guarantor then awaits consent (of reputation
transfer) from another pseudonym, Say JerryTheSage in the form of presenting
its (i.e. JerryTheSage’s) registration number and reputation digest. The guar-
antor transfers/merges TomTheHelper’s reputation to JerryTheSage only when
they appear to be a registered user making a simultaneous request. Empirical
tests successfully show that the transferring aspect of our system works.

4 Evaluation and Results

Our study was designed to see whether our system facilitates reputation based
trust while preserving privacy by making secure reputation transfer/merge across
multiple pseudonyms. For the above purpose, we have initialized our system to
generate multiple instances of the four types of events (reputation evaluation
request, reputation transfer request, reputation merge request, and nothing hap-
pened) in some random order for four pseudonyms representing two actors. At
multiple time steps during the simulation, we queried the guarantor for the latest
reputation of each of the registered pseudonyms and logged them accordingly.
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These logs were then provided to a security attack-defense expert to attempt to
deduce what events might have occurred based on an analysis of the reputation
score patterns over various time steps. We also asked our expert to see whether
he could distinguish among reputation transfer, reputation merge, and normal
updates of ratings.

In generating reputation logs, the simulation performed 3 transfers and 7
merges of reputations across four pseudonyms of two actors. Although the data
set was relatively small, the expert could not make any definitive conclusions that
would identify which pseudonyms corresponded to the same actor. Our expert
suspected that four mergers or transfers of reputation occurred. The one merger
hypothesis in which he was most confident was totally incorrect. Two of our
expert’s suspected mergers or transfers actually did correspond to real mergers
or transfers, but he entirely missed eight of the events. Our expert correctly
had a suspicion that one transfer and one merger (of the ten) had occurred, but
he could not be sure. Out of these 2 correct hypotheses, the expert could not
confirm conclusively about any of the mergers or transfers. We could say that
these correct guesses are no more than random luck. With an increase in the
number of actors, it becomes even harder to guess about any reputation transfer
or merge. Therefore, we could say that our system supports reputation transfer
with privacy preservation.

5 Conclusion

A learner uses trust as a scale to find a suitable recommender, peer, helper, and
mentor. On the other hand, a naively constructed privacy-enhanced learning
environment offers isolated personal learning spaces, which allow learners to
be sometimes frustrated, overwhelmed, or dissatisfied with learning objects or
instructors. In this paper, an approach to address privacy protection and trust
facilitation was explored. A mechanism to evaluate and attach reputation to a
pseudonymous identity can help measure trust without the loss of privacy.
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Abstract. We present Greenmind, an authoring tool for developing intelligent 
educational games. Greenmind separates game development from ITS delivery, 
allowing specialist game developers or teachers to create their own game front-
end clients for the WETAS ITS server, and making it possible for a game inter-
face to be added to existing tutoring systems. 

1   Introduction 

Intelligent Tutoring Systems are emerging from the lab and beginning to expand the 
horizons of education from traditional students and learning institutions to anyone with 
an Internet connection. Acting as an enhancement to traditional distance learning offer-
ings, they promise to augment laboratories and tutorials by allowing students to practice 
the skills they are learning from home. In recent years tutors such as the Geometry and 
Algebra tutors [1], and the Addison-Wesley database place suite (SQL-Tutor, ER-Tutor 
and NORMIT) [2] have made it out of the lab and into the classroom.  

Another emerging trend in education is the use of computer games as a teaching 
medium. For example, at the University of Canterbury courses are now being offered 
on the development of educational games, and topics such as Machine Learning and 
Artificial Intelligence are being taught using games, because this is an approach most 
students are familiar with and can relate to. The ITS community has also become 
interested, with several education game systems recently appearing, including Tacti-
cal Iraqi [3], Language Builder [4], ExpertCop [5] and My-Pet-Our-Pet [6]. Such 
systems typically report gains attributed to the game environment, and thus provide a 
strong motivation for building games into our ITS.  

We are interested in whether adding a game front-end increases the effectiveness of 
ITS in general. Unfortunately educational games are not easy to build. In particular, it is 
not readily apparent how a game interface could be easily built for an existing ITS to 
measure the difference in student learning, an essential step to verify the efficacy of the 
approach. To overcome this we have developed Greenmind, an educational game author-
ing system that allows ITS developers to add educational game interfaces to existing and 
new ITS developed using the WETAS [4] ITS authoring shell.  

2   Greenmind 

Greenmind is an educational game-authoring tool that works with Greenfoot [7], a JAVA 
IDE for 2D graphical programming that is particularly suited to game development, by 



 Authoring Educational Games with Greenmind 685 

extending its class library to include ITS functionality. Game authors develop their game 
scenario as they normally would in Greenfoot, however they also implement additional 
methods that provide the educational content. Once one or more game scenarios have 
been created they can be bundled into a Greenmind game and exported as a standalone 
Java application. Greenmind uses the WETAS intelligent tutoring shell via an RPC inter-
face to provide the ITS functionality. 

Central to a Greenmind scenario is the “Tutor” class, which is an extension of 
Greenfoot’s “Actor”. This class contains low-level methods for interacting with the 
tutoring backend (WETAS). These methods expose an API very similar to that pro-
vided by the WETAS RPC interface, including functions such as get problem, get 
feedback, set the sub domain, load/save the current solution and get help. The game 
developer extends this class to create the individual characters in the game. The au-
thor uses the tutoring methods to add ITS content by calling them as part of the 
“act()” method for the Tutor class. This method determines the character’s overall 
behavior. The typical situation is as follows: when the player’s actor encounters an-
other actor in the game the latter will provide an educational experience by retrieving 
a problem from the ITS. This problem is presented to the player, who is required to 
answer it. The other actor then submits the solution on the player’s behalf and re-
ceives feedback, which it uses to help the player (e.g. via further dialogue). 

Each actor has individual control over the ITS interaction and may tailor this interac-
tion in several ways. First, each actor can specify what questions it may ask by restricting 
possible questions to those containing a certain keyword or keywords. For example, if the 
domain is French and the actor is a chef, she might ask questions about food, while a 
“taxi driver” actor might ask about places in Paris. Second, each actor can request ques-
tions from a different sub domain, allowing, for example, certain actors to ask hard ques-
tions (from an advanced sub domain) and others to ask easier questions, allowing the 
player to have some choice over problem difficulty (by seeking out “easy” actors). Note 
that sub domains do not even need to necessarily be related, thus an author could poten-
tially develop a single ITS game that spans several (related) subjects. 

Actors also have control over the structure of interactions, including what happens 
when the user gets an answer right or wrong. In the latter case WETAS returns a se-
verity (from 0 to 1) as well as feedback about errors. The severity is computed based 
on the likelihood the student would have made that error: the less likely (i.e. the more 
certain the system is that they knew the underlying concepts) the higher the severity. 
The actor can use this to moderate their response: a high severity error may cause an 
actor to become less co-operative, for example. 

The source code for the Greenmind classes is made available to the developer, al-
lowing them to extend or tailor Greenmind itself (via the standard Greenfoot devel-
opment environment), by modifying its base classes or developing new ones. For 
example, Greenmind provides a standard interface for retrieving data from the student 
via a free text field. However, developers can create alternate classes that interact in 
other ways, such as presenting radio buttons for multiple-choice questions.  

3   Conclusions and Further Work 

With the advent of authoring systems such as WETAS, Intelligent Tutoring Systems are 
maturing to the point where they could soon become mainstream. One of the challenges 
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is to serve ITS content to students in a way that is engaging as well as educational. ITS 
experts are not necessarily the best people to provide such interfaces, so the need exists to 
separate the user experience from the reasoning systems. Greenmind attempts to do this 
by building on Greenfoot, a free educational tool for developing Java programs with a 2D 
visual element. Greenmind takes Greenfoot’s excellence as a game development envi-
ronment and adds ITS capability by allowing it to communicate with the WETAS intelli-
gent tutoring shell. Educational games are an interesting variation on classic ITS, and 
may prove to be an essential approach for widening the acceptance of ITS.  

One of the barriers to mass use of ITS is the need for specialists to develop the sys-
tem, either leading to “off-the-shelf” systems that do not meet the teachers’ needs or 
requiring massive investment in the development of individual, customized tutors. 
Greenmind helps this dilemma by separating the student experience from the ITS, 
allowing teachers (or their developers) to create their own student experience for a 
given tutoring system, but re-using existing ITS development. We believe tools like 
Greenmind are an important step towards greater uptake of ITS in the classroom. 

Acknowledgements. The author would like to thank the “Actions Per Minute” 
software engineering team at the University of Canterbury (Haruki Nishikawa, 
Johannes Pagwiwoko, James Oh, Jack Fang, Joshua Trotter and Geoffrey Clark) who 
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Abstract. We have developed a computer-based environment for learning by 
problem-posing as sentence-integration. The system was evaluated through two 
months usage in classroom by the ninety-nine students belonging to three 
classes of an elementary school second grade. As the results, we found that (1) 
the second grade students of elementary school had posed problems continuously 
with the system, and (2) both students and teachers answered questionnaires that 
the problem-posing activity using this system was useful for learning. Moreover, 
we confirmed that (3) our system improved the problem solving ability of low per-
formance students. 

1   Introduction 

Learning by problem posing is well recognized as an important way to learn mathemat-
ics. In the USA, documents promoting curricular and pedagogical innovation in mathe-
matics education have called for an increased emphasis on problem posing activities in 
the mathematics classroom. Several investigations have also suggested that mathematical 
problem posing had a positive influence on the learners' problem-solving abilities or their 
attitude toward mathematics.  

However, despite the importance of problem posing, it is not popular as a learning 
method in reality. This is due to a few factors. First, learners can make various kinds 
of problems, but some of the problems may be wrong. In addition, some of the learn-
ers might repeatedly make similar problems, or make problems that are too simple to 
be useful for learning. In such cases, adequate feedback for each problem is required. 
However, because learners can make a large range of problems, it is difficult to pre-
pare adequate feedback for every problem that learners might make. In problem pos-
ing, assessment of each posed problem and assistance based on the assessment is 
necessary. Because the above task puts a heavy burden on teachers, it is very difficult 
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for teachers to use problem posing as a learning method. From this point of view, this 
"learning by problem-posing" is highly required to realize individual and intelligent 
interaction. Therefore, we have been investigating a computer-based learning envi-
ronment for interactive problem-posing in arithmetical word problems [1]. We call 
the learning environment MOSAKUN. 

In this paper, a use case of the environment for two months in elementary school 
second grade is reported. In this use, several computers installed the learning envi-
ronment were set in several classrooms and allowed students to pose problems freely 
with the computers out of class time. Through this practical use, we evaluated the 
learning effect of the learning environment by long-term use and confirmed that 
whether it can be used by students by their own initiative. 

2   Experimental Use of MOSAKUN in Classroom 

The interface of problem-posing (Figure 1) offers, on the left side, an image black-
board as a problem-composition area. At the top of the area, a calculation expression 
is presented. A learner is required to pose a problem that is able to solve by the calcu-
lation expression. Here, the expression is the solution-method. Although the expres-
sion itself is easy, the learner has to consider the combination of not only a number 
but also a subject, object and predicate in each sentence. The three blanks in the area 
are the ones to put sentence cards. Sentence cards are presented at right side of the 
interface. A learner can move the card by drag&drop method freely in the interface. 
When a learner pushes "diagnosis button" under the problem-composition area, the 
system diagnoses the combination of sentences. The results of the diagnosis and mes-
sage to help the learner's problem-posing is presented by another window.  

Return 

Pose a problem that can be solved 
by " 5 + 3 ".

Quit Change task

Put a card in this blank

Put a card in this blank

Put a card in this blank

R e je c t

R e je c t

R e je c t

Tom had five pencils. 

Ken received three pencils 
from Tom.

How many pencils does 
Tom have?

How many pencils does 
Ken have?

Tom had three pencils.

Ken gave three pencils to 
Tom.

Check the problem!

Put a card in the same shape 
blank

 

Fig. 1. Problem-Posing Interface of MONSAKUN (Currently, it can deal with Japanese only. 
All words were translated into English for this paper). 
 

2.1   Situation of the Experimental Use 

Purposes of this experiment were (1) to examine the learning effect of long-term use 
of problem-posing with MONSAKUN, and (2) to confirm whether students use 
MONSAKUN of their own free will. For the first purpose, we used “extraneous prob-
lem test” which includes extraneous information that is not necessary to solve the 
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word problem. For the second purpose, we examine the numbers of problems posed 
by individual students and the results of questionnaire. 

Before this experimental use, two class times (ninety minutes in total) were taken 
as introductory use of MONSAKUN in an elementary school where each student was 
able to use a computer. Then, two computers with MONSAKUN are placed in each 
class (six computers were used in the school in total). So, about fifteen students were 
assigned to one computer. Teachers of the classes didn't instruct students how to use 
the system but made rules to share the systems. The period of the experimental use 
was nine weeks including 46 school days. We carried out pre-test just after the intro-
ductory use, and post-test at the end of the period.  

2.2   Results of System Use 

The total number of problems posed by the six systems is 8,386. In a day, 30.4 prob-
lems were posed with a system. The average used days of each student is 8.5 days. In 
summary, three students were used a system a day and each of them posed ten prob-
lems. As the results of questionnaires, most of the students thought that the use of 
MONSAKUN made arithmetic enjoyable, and they hope to use it more. Teachers who 
had taken charge of the classes also agreed to these considerations. Because more 
than fifteen students shared one system, students could not always use the system 
when they liked to use. Besides, the available time of the systems was only out of 
class time. Considering these restrictions, the above results suggest that the second 
grade students were continuously able to pose problems with MONSAKUN by their 
own will, and accepted the use as learning and enjoyable activity. 

In the analysis of the test of extraneous problems, based on the average score (= 
8.32) of extraneous problem test, the students were divided into two groups: a high-
score group and a low-score group. Then, the students were also divided into a high-
posed group and a low-posed group based the median (= 77) of the number of posed 
problems by each student. As the results, the number of high-score and high-posed 
group is thirty-two, high-score and low-posed group is twenty, low-score and high-
posed groups is twelve, and low-score and low-posed group is twenty-one. As the 
results, only low-score/high-posed students had significantly improved their scores.  

3   Conclusion 

Through two months use of MONSAKUN, we found that (1) the second grade stu-
dents of elementary school had posed problems continuously with the system, and (2) 
both students and teachers answered questionnaires that the problem-posing activity 
using this system was useful for learning. Moreover, we confirmed that (3) our system 
improved the problem solving ability of low performance students.  
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Abstract. We analyzed cohesion and coherence in tutorial dialogues from 66 
think-aloud transcripts collected from a human tutorial dialogue study which 
investigated the effect of tutoring on middle and high school students’ learning 
about the circulatory system with hypermedia [1]. Our findings showed that 
there were significant differences in the tutorial dialogues of Jumpers (i.e., 
those who showed significant pretest-posttest mental model shifts about the sci-
ence topic) versus No-jumpers (i.e., those who showed no significant shifts) in 
the semantic/conceptual similarity, readability scores, incidence scores of 
causal verbs and causal connectives, and turn length. We argue that the seman-
tic/conceptual similarity of the discourse, causal verbs/causal connectives, and 
longer turns primarily facilitated the improvement in Jumpers’ mental models 
and deep learning.                       

Keywords: Cohesion, Coherence, Human Tutorial Dialogue, Learning, Hy-
permedia, Human Tutoring. 

1   Introduction: Cohesion and Coherence in Text and Discourse 

People normally attempt to construct a coherent mental model during learning and com-
prehension. Cohesion and coherence in text and discourse are important factors that in-
fluence text and discourse processing. Cohesion differs from coherence in that coherence 
refers to characteristics of mental (or situation) models that people establish during com-
prehension, whereas cohesion indicates linguistic characteristics of text and discourse 
such as argument overlap, anaphora, discourse markers, and connectives [2].    

Recent technology-based computational linguistics have motivated our research 
group to develop Coh-Metrix, an automated software tool that analyzes text and dis-
course on over 600 measures of cohesion, coherence, readability, and language [3]. 
Coh-Metrix was used in this human tutoring study to analyze cohesion, coherence, 
and readability of human tutorial dialogues. 

2   Method 

The original study conducted by Azevedo and colleague [1] examined how self-regulated 
learning (SRL) and externally-facilitated self-regulated learning (ERL) differentially  
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affected adolescents’ learning about the circulatory system while using a hypermedia 
environment for 40 minutes. A total of 128 middle and high school students with little 
prior knowledge of the topic were randomly assigned to either the SRL or ERL condi-
tion. Learners in the SRL condition regulated their own learning, while learners in the 
ERL condition had access to a human tutor who facilitated their self-regulated learning.  

The goal of this paper is to report the analyses that were conducted on the 66 think-
aloud protocols only from the ERL tutoring condition by focusing on cohesion and 
coherence measures extracted from the 1,250 pages of think-aloud protocols using 
Coh-Metrix. As such, the 66 adolescents were re-classified into 2 groups: (1) Mental 
model shift group (n = 33) which includes a pretest score between 1-6 and a posttest 
score between 7-12; and (2) No jump group (n = 33) which includes anyone whose 
pretest mental model score is identical to their posttest mental model score (e.g., 2 on 
pretest and 2 on the posttest).   

2.1   Materials and Procedures for Analyzing Tutorial Dialogue Data 

Based on the 66 think-aloud transcripts (i.e., tutor-student dialogues from 66 adolescents 
who participated in the ERL condition for this study), we split the tutor-student conversa-
tions into ‘tutor-only’ (i.e., those that contain only tutor turns) and ‘student-only’ (i.e., 
those that include only student turns) turns. Then, we entered only the student turns into 
Coh-Metrix because the primary goal of this paper is to compare cohesion, coherence, 
and readability of Jumpers’ dialogues versus No-Jumpers’ dialogues.    

3   Results 

We focused on a few specific measures of Coh-Metrix for this paper. Table 1 presents 
the means of those Coh-Metrix indices of the jump and no jump conditions. Our find-
ings showed that (1) there was no significant difference between the Jumpers and No-
Jumpers for the co-referential cohesion (i.e., the argument overlap proportions for 

 
Table 1. Means (SDs) for the indices of Coh-Metrix by mental model classification (* p < .05) 

Indices of Coh-Metrix Mental Model 
Jumpers (n=33) 

Mental Model 
No-Jumpers 

(n=33) 
Argument Overlap for adjacent sentences  .05 (.02) .05 (.03) 
LSA (Latent Semantic Analysis) cosines 

for adjacent sentences * 
.34 (.20) .23 (.09) 

LSA cosines for turn to turn * .36 (.20) .25 (.09) 
Flesch Reading Ease score (0-100) * 91 (6.2) 87 (6.4) 
Flesch-Kincaid Grade level (0-12) * 1.6 (1.1) 2.3 (1.1) 
Incidence of causal verbs * 116 (138) 54 (30) 
Incidence of causal connectives * 28 (22.7) 17 (10.4) 
Total number of turns 161 (51) 157 (57) 
Total number of sentences 212 (93) 180 (75) 
Total number of words 860 (439) 847 (515) 
Average sentences per turn * 1.3 (.4) 1.1 (.1) 
Average words per sentence 4.2 (1.6) 4.6 (1.8) 
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neighboring sentence pairs); (2) the discourse of the Jumpers were more coherent 
locally (i.e., the higher LSA cosines for neighboring sentence pairs) and globally (i.e., 
the higher LSA cosines for all the turns in the tutorial discourse) than No-Jumpers; (3) 
No-Jumpers’ discourse is more difficult to read than the Jumpers’ discourse (based on 
the standard readability formulas); (4) the Jumpers tended to use more causal verbs 
and causal connectives interacting with the human tutor to gain a deep conceptual 
understanding for the circulatory system; (5) the Jumpers inclined to produce more 
sentences in a single turn (i.e., the longer turns) than No-Jumpers to assimilate critical 
concepts and information of the circulatory system.      

4   Summary 

In this paper, we analyzed cohesion and coherence in tutorial dialogues from 66 think-
aloud transcripts collected from a human discourse study which investigated the effect 
of tutoring on adolescent students’ learning about the circulatory system with hyper-
media. We argue that the semantic/conceptual similarity (i.e., the local and global 
coherence) of the discourse, causal verbs, causal connectives, and longer turns primar-
ily facilitated the improvement in Jumpers’ conceptual mental model and deep learn-
ing for the circulatory system.  
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Abstract. Mobile devices used in education have the potential to provide learn-
ers with access to tutoring systems outside of the classroom or computer labora-
tory setting. To effectively deliver tutors on mobile devices, developers must 
consider the interface constraints imposed by the devices.  The primary restric-
tion is the small display available to users and the large amount of text and  
diagrams integral to desktop tutors. This paper describes two approaches to cre-
ating a mobile tutor interface and discusses the tradeoffs of each approach. 

1   Introduction 

The ubiquitous use of cell phones in society has led researchers to investigate meth-
ods to employ mobile devices in education. The integration of mobile devices and 
intelligent tutoring systems can deliver a low-cost one-to-one tutoring solution to a 
wide audience of learners. Tutors delivered on mobile devices have the potential to 
move tutor use beyond computer labs and traditional classrooms thereby providing 
learners with additional opportunities for use after school, at home, and in other loca-
tions outside of brick and mortar school buildings. 

There have been tutoring systems implemented on mobile devices [1, 2]. One sys-
tem allows instructors to tailor questions for students based on their previous  
performance [2]. The questions are then delivered to students via short messaging 
system (SMS). Another system investigates users learning procedural knowledge in 
fraction addition [1].  However, neither system addresses the issue of modifying the 
user interface for compatibility with mobile device displays. 

One major challenge for mobile tutoring systems is that mobile device displays are 
small while the user interfaces for typical desktop ITS applications are large and 
complex. Tutors created for desktop-sized displays present users with text, diagrams, 
workspace, a problem, and status information enabling them to view the necessary 
components while using the tutor. Thus, we are faced with the challenge of reducing 
the complex interface to a small display in manner that does not impair user perform-
ance and student learning. In this paper we examine tutor interface components and 
address issues involved in representing the complex interfaces on small displays. 

2   Mobile Intelligent Tutor Interface Challenges 

One constraint in mobile device user interface design is the limited amount of infor-
mation that can be clearly displayed. Devices with higher resolutions encounter this 



694 Q. Brown et al. 

problem as well because font sizes as low as 10 points can be too small for users to 
comfortably read and applications requiring users to read or enter large amounts of 
text create undesirable user experiences [3]. Hierarchical design is a technique used to 
present mobile device users with high level information and allow them to select links 
to receive detailed information [4]. Another successful approach has been to use inter-
faces that are smaller versions of desktop sized applications. 

An evaluation of tutor interfaces, such as, Carnegie Learning [5], Active Math [8], 
and Andes Physics Tutor [7], yields complex interfaces with multiple regions of user 
interaction. Each region is integral to the efficacy of the tutor thereby making each a 
necessary component in a mobile tutor interface. The importance of each region poses 
a dilemma because none can be removed without lessening the efficacy of the tutor.  

The primary challenges in creating mobile tutor interfaces are the display of the 
complex interface and the small font size required by the smaller display. The designs 
presented in this paper integrate mobile device research and the limitations imposed 
by complex tutor interfaces.  Each design introduces tradeoffs that can affect user 
interaction.  

 

Fig. 1. Carnegie Learning [5], Andes Physics [7] and Active Math [6] Tutor interfaces 

3   Preliminary Mobile Tutor Interface Designs 

The designs presented in this paper integrate mobile device interface research and the 
constraints imposed by complex tutor interfaces. Each design presents tradeoffs that 
can effect user interaction. The first presents users with a smaller version of the desk-
top interface displaying all regions in one screen. This design was developed to mini-
mize the navigation required to view all regions. The second design presents users 
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with a multi-tab interface where each tab corresponds to one region.  This design im-
proves the readability of the interface by placing each region in its own screen and 
utilizes larger font sizes that are easier to read. However, the larger font size is pre-
sented at the expense of increased user navigation. 

4   Conclusion and Future Work 

To explore the usability of the interface designs we will conduct iterations of user 
tests to arrive a design that balances the aforementioned tradeoffs. Upon completion 
of the interface design we intend to implement a mobile intelligent tutoring system.  
In addition to the interface issues described in this paper, our future research includes 
teaching and learning strategies as well as an architecture required to implement a 
mobile intelligent tutoring system. 

Acknowledgements 

**The author is supported by National Science Foundation grant #DGE-0538476, and 
the third author is supported by National Science Foundation grant #IIS-0426674. 

References 

[1] Kong, S.C., Lam, S.Y., Kwok, L.F.: A Cognitive Tool in Handheld Devices for Collabora-
tive Learning: Comprehending Procedural Knowledge of the Addition of Common Frac-
tions. In: Computer Support For Collaborative Learning, Taipei, Taiwan (2005) 

[2] Virvou, M., Alepis, E.: Mobile educational features in authoring tools for personalised tu-
toring. Computers & Education 44, 53–68 (2005) 

[3] Sharples, M., Taylor, J., Vavoula, G.: Towards a Theory of Mobile Learning. In: mLearn 
2005, Cape Town, South Africa (2005) 

[4] Hao, J., Zhang, K.: A Mobile Interface for Hierarchical Information Visualization and 
Navigation. In: International Symposium on Consumer Electronics, pp. 1–7. IEEE (2007) 

[5] Koedinger, K.R., Aleven, V.: Exploring the Assistance Dilemma in Experiments with 
Cognitive Tutors. Educational Psychological Review 19, 239–264 (2007) 

[6] ActiveMath, ActiveMath Main Page (2008). Retrieved April 1, 2008 from, 
http://commons.activemath.org/ActiveMath2/main/menu.cmd 

[7] Schulze, K.G., Shelby, R.N., Treacy, D.J., Wintersgill, M.C.: Andes: A Coached Learning 
Environment for Classical Newtonian Physics. In: International Conference on College 
Teaching and Learning, Jacksonville (2000) 



Agora UCS

Ubiquitous Collaborative Space

Pascal Dugénie, Stefano A. Cerri, Philippe Lemoisson, and Abdelkader Gouaich
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Abstract. Agora UCS is a new architecture designed for distributed
learning as a side effect of communication and collaboration. This archi-
tecture aims to achieve (i) ubiquity (time and space independent access
by community members); (ii) immanence (full internal control of the des-
tiny of the community) and (iii) multi-modal communication (reinforcing
the interactions between the members of the community). The theoreti-
cal model underlying Agora UCS is inspired by an integration of agents
and Grid concepts (AGIL). Agora UCS has been experimented by a
dozen of communities, which represent alltogether about seventy mem-
bers. We achieved quite promising results in terms of motivation and
collective performances1.

1 Requirements

Conversation and collaboration is the foundation of human learning. We base
our requirements on a learning theory consisting of conversational cycles [9].
This theoretical background led us to draft the essential characteristics of a
collaborative environment supporting mutual understanding and joint work: (i)
immediate awareness of the life of the community; (ii) ability to maintain a
clear and unambiguous internal model of the working environment and ongoing
processes during the successive collaboration sessions. These general ideas have
grounded the concept of Agora UCS in order to: (i) allow secure access to ser-
vices in a terminal independent way; (ii) support ubiquity yet keeping the state
of the collaboration independently from the user access location; (iii) dynami-
cally allocate resources for any use of any service within a pool of mutualized
and virtualized physical resources.

2 Architecture

The integration of Agents [1,2,3,7] and Grid concepts [5,6] has been extensively
modeled in [8]. Figure 1 represents the Agora UCS architecture which is based
on a ternary relation between three concepts. The VO (Virtual Organisation), a
concept borrowed from Grid, is a community of agents associated with dedicated
1 As partners from the European ELeGI project (European Learning Grid Infrastruc-

ture, IST-002205): Joost Breuker and Marc Eisenstadt are gratefully acknowledged.
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resources (the service container) and rights which specify the level of authori-
sations of a VO member over a given service. This conceptual model allows to
develop a flexible structure satisfying the self organisation requirement of the
communities. In the figure, the inspiring Agent and Grid models are highlighted
(AGR: Agent-Group Role [5], OGSA: Open Grid Service Architecture [6]).

Fig. 1. The Agora conceptual model

3 Experimentations and Results

The experimentations focus both on user behavior as well as system performance
to compare subjective and objective results. Most users do not have any skill in
computer management. The seamless access to Agora UCS via a simple web
browser as a thin terminal, was implied by the requirements. Once created, a VO
is completely autonomous. Among others, the EnCOrE2 scenario has provided
the most interesting results. Agora UCS allowed a quick mastering of complex
computational tools: unskilled users were at ease in their operations including
the delegation of rights [4]. Agora UCS enabled, for instance, the visual rep-
resentation of chemistry models at a distance so that attention was put by the
users on the semantics of the domain. Since, the behavior could not be forseen
in advance, the flexibility of the Agora UCS model allowed the community to
freely organise itself. Various situations of collaboration with reinforced modal-
ities of interaction by using a synchronous communication interface has favored
the emergence of collective intelligence. Discussions in real time, combined with

2 EnCOrE: Encyclopédie de Chimie Organique Electronique.
Demo available at http://agora.lirmm.fr
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visual representations on shared desktops, allowed the actors to increase the ef-
fectiveness of the collaboration process. As a conclusion, the acceptance of the
technology was extremely high and promising, even if we cannot yet certify that
learning has indeed occured as a side effect of enthousiastic collaboration at a
distance.
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Abstract. In this paper, we want to present our tool for personalization of learn-
ing activities: the Adapte module. Our approach consists in helping teachers to 
provide activities suited to the abilities highlighted in learners’ profiles. We will 
present the context of the utilization of Adapte, then we will explain its princi-
ples and its mechanism. We will finish with the research prospects of this mod-
ule and the PERLEA project in witch it is integrated. 

Keywords: Personalization of learning, learner’s profile, generation of activi-
ties, teacher’s tool. 

1   Introduction 

In the context of the personalization of learning, we want to provide teachers with 
generic tools enabling them to personalize activities they offer learners. The PERLEA 
project [1] aims at conceiving a system enabling teachers to manage existing learners’ 
profiles. In this system, the Adapte module proposes to children activities suited to the 
abilities highlighted in their profiles. These activities are either paper and pencil 
worksheets or activities on an ILE. 

2   Context of Utilization 

A teacher uses in his classroom an ILE on geography. At the end of the learning ses-
sion, this ILE generates a profile for each learner. In addition, the teacher organized 
for all his students the national assessments due in the beginning of year. These as-
sessments have generated a diagnostic on the achievements, mistakes and difficulties 
of each pupil in mathematics and French. Thus, the teacher has for each pupil several 
profiles from different sources, ILE and pencil and paper, and for several disciplines. 
He wants to use these profiles globally so as to provide, for each pupil, personalized 
exercise sheets. These sheets should enable learners to be self-reliant when working 
and this in several disciplines. The teacher also wants to define parameters of the ILE 
on geography so that it proposes sessions suited to each learner’s profile. 

3   The Adapte Module: What Help for the Teacher? 

The role of the Adapte module is to provide learners with activities suited to their 
profiles. These activities can be paper and pencil exercises or computerized activities 
managed by an external ILE. 
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In the case of paper and pencil activities, Adapte generates a worksheet matching 
the profile of each learner. To do so, it creates tailor-made exercises to be included in 
the sheet and determines the size and/or duration of the worksheet. It also provides the 
teacher with answers to the exercises contained in the sheet.��

In the case of computerized activities, there are three scenarios depending on how 
the ILE is customizable by Adapte: definition of the parameters of ILE when possible; 
definition of an instruction sheet for the teacher to set ILE through an administrator 
interface; definition of a list of exercises that the student will have to do on the ILE, if 
this ILE is not customizable. In all cases, Adapte sets personalized sessions on the 
ILE according to the learner’s profile. To do so, it uses ILE exercise generators or 
chooses exercises in the ILE database. It also determines the order in which the exer-
cises appear, their number and the duration of the session. 

4   The Mechanism of the Adapte Module 

Adapte, with the help of the teacher, proposes activities adapted to the learners’ pro-
files. In this purpose, the teacher defines a set of assignment criteria. These assign-
ment criteria use the activity frames contained in the system or defined by the 
teacher. Then the system creates personalized activities. We will now go back on each 
step of Adapte enabling this mechanism to operate (cf. Fig. 1). 

Integration of ILEs. This step is performed by an expert of the ILE to personalize. It 
enables to integrate the necessary technical and didactical knowledge for each ILE. 
The didactic knowledge contains everything related to what is taught in the ILE 
(discipline, practiced competences…). The technical knowledge specifies how to act 
on the ILE to personalize it (position of files, generators, exercise bases…). This step 
is compulsory so that Adapte can personalize an ILE but it is only done once.  

 

 

Fig. 1. Mechanism of the Adapte module 

Creation of activity frames. This step is performed by the teacher to define exercises 
corresponding to his working habits. For the paper and pencil part of Adapte, the 
teacher chooses an exercise pattern (i.e. a type of exercise) and defines the constraints 
he wishes so that the system can generate exercises that satisfy him. For the 
personalization of ILE, the teacher defines the constraints of exercise generation when 
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the ILE to personalize contains a generator, or defines the constraints to select an 
exercise in the system databases. All these constraints are saved in an activity frame. 

Creation of assignment criteria for allocating activities to learners. This step is 
performed by the teacher and enables him to link parts of learners’ profiles to activity 
frames. The parts of profile frame are selected and are constrained in order to choose 
students with a particular difficulty or competence. For example, the teacher will 
choose in the learner’s profile the "Command of the punctuation rules" competence 
and will provide a type of exercise for students with a success rate between 0 and 
25%, another type of exercise for those with a rate between 25 and 75%, and nothing 
for students with a rate higher than 75%.  

Creation of personalized activities. This step is performed by the system from the 
learners’ profiles, the assignment criteria defined by the teacher and the knowledge 
related to either the creation of a paper and pencil worksheet, or to the creation of a 
session on an ILE. After Adapte has proposed its selection of personalized activities, 
the teacher can validate or modify the choices of the system.  

5   Prospects 

The Adapte module offers learners activities suited to their profiles. A first prototype 
implements the results defined for the generation and assignment of paper and pencil 
activities. This prototype enables teachers to achieve the full approach proposed by 
Adapte. Now, we would like to work with experts from education sciences to validate 
our typology of exercises and therefore all the exercises generators. We are currently 
focusing on the part of Adapte offering sessions adapted to the competences of the 
learner on an external ILE. Then, we will set up more rigorous evaluations of our 
results. This will be done through experiments with many teachers unrelated to the 
conception of the module. These experiments will involve all related modules of the 
PERLEA project environment, and will range from the definition of a profile frame 
by the teacher to the effective use of personalized activities by learners.  
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Abstract. Considering learning as a dynamic, evolving, social, and lifelong process 
which occurs in a wide variety of contexts, we aim to improve online learning by 
offering learning adaptation possibilities, lifelong learning follow-up, learning evo-
lution follow-up, openness to the learner’s contexts (personal, professional, and 
academic), and openness to actors involved in the learning process. To achieve this 
goal, we propose the development of a meta-model for learner models based on 
competencies, integrating learner production and personal and professional infor-
mation, IPP, evolving in time and taking into account different viewpoints. This 
meta-model may be used for creating different kind of learner models which serve 
different purposes: adaptation of learning to the learner’s cognitive state, learning 
evaluation, self-reflection, team work… From these kinds of models, models repre-
senting individuals will be instantiated. 

Keywords: Online learning, learner model, personalization, competency. 

1   Introduction 

Online learning fills the need for lifelong learning and is supported by the develop-
ment of information technologies. The issues around this theme are multiple. We are 
especially interested in work done around actors (learner, peers, professor…) and 
their knowledge and competencies. In this project, we will consider learning as a 
dynamic, evolving, social, and lifelong process that occurs in a variety of contexts. 

Our research issue is how to create a learner model that offers learning adaptation 
possibilities, lifelong learning and learning evolution follow-up, openness to the 
learner’s contexts (personal, professional, and academic), and openness to the actors 
involved in the learning process. The learner model needs to be semantically rich, 
should evolve in time for learning never stops, must take into account the social di-
mension of learning, and should be formal, and interoperable. In this paper, we will 
present the conceptual model of a meta-model for learner models. The meta-model 
allows the design of different kinds of learner model depending on the purposes of 
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these ones (for evaluation, collaboration, self-reflection…). And from those kinds of 
learner models, we can instantiate learner models modeling individuals. We start by 
presenting our cognitive learner model. In the following sections, we describe its 
multi-viewpoint and evolving characteristics as well as the mechanism on which the 
model interactions are based. We end with the main conclusions and the future work. 

2   A Cognitive Learner Model 

We propose a cognitive learner model based on competencies which integrates per-
sonal and professional information as well as learner's productions. The model is 
owned by the learner and connects, as needed and with the learner agreement, to dif-
ferent online learning systems. It is semantically rich (based on competencies), for-
mal, and interoperable. And it may be used for different purposes: adapting learning, 
facilitating team work, evaluation of learning, self-reflection… 

Competencies are the heart of our model. We will work with Paquette's definition 
[1] of a competency: a relation between actor, skill, knowledge and context. We 
choose this competency approach because it offers a strong semantic referencing to 
link the learner model with the learning resources. We assume that semantic referenc-
ing on competencies is stronger than semantic referencing on knowledge for they 
consider skills and context. We believe that this semantic referencing is essential for a 
pertinent personalization according to learner expectations and needs. 

The second component of our model is the ePortfolio. It contains the learner's pro-
ductions. Our learner model will have core competencies as well as domain compe-
tencies for each domain the learner is involved in.  

The third component is the personal and professional information (PPI), the 
learner’s link to his broad world. Learning is a continuous process which occurs in 
different contexts, including the personal and professional ones. PPI and learner's 
productions are linked to the competencies they illustrate. 

3   Multi-viewpoint Learner Model 

We have already stated that learning takes place in the learner’s different learning 
situations and through social interactions [2]. Different units of learning as well as 
actors interact with the learner and should be allowed to register the result of these 
interactions in the learner model. The learner model is thus seen from different view-
points.  A viewpoint is “A mental position from which things are viewed” [3].  

Our learner model is a multi-viewpoint model composed of the core learner model 
and the related learner model viewpoints. The core learner model includes objective 
information such as PPI and productions, as well as the learner information that has 
the consensus of the different human and machine actors. Linked to this core learner 
model, there are as many viewpoints as there are differentiated observers allowed to 
modify the learner model (tutors, professors, peers, learning units, etc.) Those view-
points are not pre-established but settled by the learning context of the learner (their 
can be a view point by individual or a viewpoint by roles (learner, professor…)). A 
viewpoint contains competencies along with links between those competencies and 
the learner’s PPI and productions. 
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When a modification is proposed by one of the actors in the system, the viewpoint 
corresponding to this actor is updated with the modification and a modification pro-
posal mechanism is launched. This mechanism is defined outside of the model and 
takes into account organizational hierarchies and conflict solving strategies. If agree-
ment is obtained, the modification is reflected in the core model. 

4   Evolving Learner Model 

For us, learning is a knowledge building process proceeding from the interaction 
between a learner and his/her environment [4]. From this environment the learner 
pulls off his/her learning conditions. We can then consider learning as a social act 
which evolves taking into account interaction with the learner’s environment, making 
it a dynamic learning process. A learner model has to reflect this dynamic characteris-
tic and must be evolving too. An evolving learner model updates itself according to 
the learning progress. Thus, during learning, different versions of the model will be 
created. Those versions need to be managed. 

To deal with this evolutionary dimension, the learner model proposed in the pre-
ceding section will be extended to include different learner model versions. For this, 
we will integrate a version control system into our learner model. The model can then 
be searched by viewpoint or by version, and the evolution of a competency can be 
tracked in time. 

5   Learner Model Interaction 

We state that the learner is the owner of his/her model. Thus, any manipulation of the 
model should have the agreement of the learner. As the model will be in interaction 
with actors and online learning systems, the learner should agree on those actors and 
systems interactions. For this, we propose to use contracts. Contracts are used in 
computer science to specify the relations between different actors (or components or 
systems or models…) [5]. For example, if a learner wishes to take a course at a spe-
cific university, this latter may require accessing all information contained in the 
learner model. This access allowance could be specified in a contract. More precisely 
in our project, contracts will allow the specification of which kinds of actors can in-
teract with the model and which action each of these actor kinds can take. Contracts 
can also specify when modifications can take place (evolution characteristic of the 
model). 

Interactions can be of two kinds. The first one consists of extending the model with 
new information. The second one consists of consulting the information contained in 
the model (to adapt learning for example). 

6   Conclusion and Further Work 

This research project aims to improve online learning by offering learning adaptation 
possibilities, lifelong learning follow-up, learning evolution follow-up, openness to 
the learner's contexts (personal, professional, and academic), and openness to actors 
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involved in the learning process. To achieve this goal, we propose the development of 
a meta-model for the design of learner models based on competencies that integrate 
learner production and IPP, that evolve in time as well as learning progress, and that 
take into account different viewpoints while remaining interoperable. Those models 
may be of different kinds depending on their purposes: adapting learning to the 
learner’s cognitive state, learning evaluation, self-reflection, teamwork… The 
strength of this model is its ability to integrate different elements in the same learner 
model: a learner cognitive model (knowledge and competencies), a learner production 
model, a multi-viewpoint model, and an evolving model. 

The next step of this project is to complete a prototype development. This devel-
opment has begun and is based on Java, using Castor Project to map Java objects and 
XML files, and integrating the Subversion version control system to manage the 
model's evolution in time. 
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Abstract. CSIEC (Computer Simulation in Educational Communication), is not 
only an intelligent web-based human-computer dialogue system with natural 
language for English instruction, but also a learning assessment system for 
learners and teachers. Its multiple functions including grammar gap filling exer-
cises, talk show and chatting on a given topic, can satisfy the various needs 
from the students with different backgrounds and learning abilities. In this pa-
per we present a case study of the integration of CSIEC’s multiple functions 
into English syllabus design in a middle school and its pedagogical effective-
ness. The comparison of two examination results before and after the system in-
tegration shows great improvement of students’ performance, and the survey 
data also indicates the students’ favor to this system. 

1   Brief Introduction of CSIEC System 

Brennan defined a chatbot as "an artificial construct that is designed to converse with 
human beings using natural language as input and output" [1]. Since 1990s with the 
development of natural language processing, the usage of chatbot systems in educa-
tion is drawing more and more attention from researchers in related fields. 

CSIEC (Computer Simulation in Educational Communication), firstly introduced 
in [2], is one of the most early chatbots applied in Education. It originally aimed at 
providing the English learners a virtual talking partner which can be accessed anytime 
anywhere via Internet. After continuous development its current pedagogical func-
tions include automatic scoring of gap-filling exercises without defined answers, 
listening training, talk show of two robots, multimodal user interface and selectable 
chatting pattern, free chatting adaptive to user preference and topic, and guided chat-
ting in given scenarios, and scoring mechanism, etc. So it is not only an intelligent 
web-based human-computer dialogue system with natural language for English in-
struction, but also a learning assessment system for learners and teachers. Therefore it 
is on one side freely accessible by the Internet users, most of which are students at 
different levels, on the other side integrated in graduate students English instruction, 
and middle school English class. In this paper we explore its application in middle 
school English classes to facilitate the individual study. 
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2   Syllabus Design: Integration of CSIEC into Individual Learning 

The experiment class is in Grade One of a middle school located in Guangdong Prov-
ince. The school is equipped with modern computer rooms with Internet access and 
projectors. The 50 students in the class graduated from primary schools with different 
teaching levels, and their entrance English examination scores varied greatly. The 
mean was 64.39 of 100, the minimal score was 0, maximal was 94, and the standard 
deviation was 20.129. The average score was ranked number 16 in all 16 classes in 
Grade One, and was 15.3 less than the number one class. 

How to treat the 50 different students is a great challenge to the sole female Eng-
lish teacher of the class. Purely the checking of students’ exercise outcome is a great 
burden for her. The teaching content is the same. If the teaching methods are also the 
same, the students’ difference will be ignored, and the fair teaching can’t be guaran-
teed. If the teacher separates the students into several groups explicitly, the students 
with lower scores will feel disregarded and frustrated. 

The CSIEC system with its multiple functions supplies a good opportunity to apply 
individual instruction for the different students. We illustrate how to use it to facilitate 
the individual learning through the example of a teaching unit syllabus design and 
implementation: “How much is it?”. The students were classified into A, B, C three 
groups according to their entrance examination score: A [80, 100], B [60, 80), 
C [0,60). The students in group A, B, C made up 18%, 56%, and 26% of the total 
students, respectively. We just wrote this classification into the students table of 
CSIEC system, but didn’t inform the students of it. In this sense it was an implicit 
classification, and could protect the self-respect of the students in lower groups. The 
students in group C were required to do more exercises and drills than those in B and 
A, and the ones in B were required to do more than those in A. 

We used gap-filling exercises without defined answers to drill the students in the 
mastery of grammar knowledge and useful expressions, and transformed a dialogue 
example in the textbook into a sentence filling exercise so that the students should 
learn the expressions by heart as exactly as the ones in the textbook. For them in 
Grade 1 the reciting of textbook content is necessary for the language learning. 

We designed 6 pieces of talk shows for the given topics in this unit, as well as 6 
pieces of human-computer interactive dialogues for the topics in this unit. The guided 
chatting on one given topic requires that the user is familiar with the chatting content, 
for example after watching the talk shows, and should try not to escape from this 
topic. So the marking mechanism in the chatting will praise the user with a high extra 
mark if he/she keeps the topic, otherwise punish him/her with a low extra mark. All 
the students must take part in the six dialogues, and must get certain points of extra 
mark in every dialogue according to their group. 

If one student has finished the required exercises, he/she will win a star from the 
system as congratulation to his/her achievement. The teacher is also authorized to 
check the status of students. She can send emails to any student to praise him/her for 
the good performance or remind him/her to finish the required exercises on time. 

Every week one hour’s English class was held in the computer room with Internet 
access, so that the students could do the exercises together. Additionally as most stu-
dent families had computers at home, they could also do the exercises after school. 



708 J. Jia and M. Ruan 

3   Students’ Perception about CSIEC Application and 
Examination Performance Improvement 

At the end of the school term an online survey was conducted to investigate the stu-
dents’ attitude toward CSIEC application. The collected questionnaire data shows the 
students agreed the design of the system functions adaptive to the textbook can bene-
fit their English learning. 41% of them used the user log to review their exercise his-
tory, and 56.4% thought the user log function can supervise their learning activities. 
All the students were willing to recommend this system to others. 48.7% of them used 
the system in the time span from 1 hour to 5 hours, 10.3% more than 10 hours, 17.9% 
between 5 hours and 10 hours. 76.9% of them hoped to use the CSIEC in the whole 
English instruction very much, 23.1% hoped to use it in the whole English class. 

In the midterm exam the students in the experiment class achieved very good 
scores. The mean was 90.81, the median 93.25, and the standard deviation was only 
9.572. The average score was ranked number 2 in all 16 classes in Grade One, and 
only 0.2 less than the number one. Compared with the entrance exam scores, all stu-
dents improved their scores. Those with lower entrance scores got much more in-
crease. 

4   Conclusion and Discussion 

Rooted in the constructivist learning theory and situated learning theory, the CSIEC 
system attempts to create situated practice for English learners and suitable situation 
to motivate the learning activities. The comparison of the pretest and posttest per-
formance shows the students in the experiment class greatly improved their English 
skills. Moreover, compared with other 15 classes in the same grade without using the 
CSIEC, the collective performance improvement of this class was also remarkable. 
Surely many factors caused the score improvement. But because only this experiment 
class used the CSIEC system just between the two tests, the great score improvement 
can’t be irrelevant with the CSIEC application. We should keep on integrating the 
CSIEC into English syllabus in this experiment class to watch the long-term students’ 
performance and to compare it with other classes. 
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Abstract. Chemistry students often learn to solve problems algorithmically, apply-
ing well-practiced procedures to problems. Such an approach may hinder devel-
opment of conceptual understanding. We propose to promote conceptual learning 
by having pairs of students collaborate on problems in a virtual laboratory (VLab), 
assisted by a computer-mediated collaboration script that guides the students 
through the stages of scientific experimentation by adapting to a particular stu-
dent’s (or dyad’s) skills. In this paper, we report on our early steps toward this goal, 
including technology development and an initial wizard-of-oz study. 

1   Research Motivation 

Chemistry educators face the challenge of teaching students to solve problems con-
ceptually rather than simply apply mathematical equations. Students struggle in solv-
ing problems similar to ones in textbooks or in the classroom, because they do not 
grasp the similar underlying concepts [1]. Research in chemistry education has sug-
gested that collaborative activities can improve conceptual learning. While there have 
been very few controlled experiments which have investigated the benefits of collabo-
rative learning in chemistry, evidence that collaboration is beneficial exists in other 
disciplines, such as physics [2]. This evidence has led us to investigate the potential 
advantages of collaborative activities for conceptual learning in chemistry.  

When learning collaboratively, learners do, however, often not benefit as much as they 
could, because they fail to engage in productive forms of interaction. This observation 
suggests supporting students with collaboration scripts. By scripting collaboration we 
mean providing prompts and questions that guide students through collaborative work 
(e.g., [3]). However, it is possible to over-script, i.e., provide too many scaffolds, or 
overwhelm students with the concurrent demands of collaborating, following script in-
structions, and trying to learn [4]. To avoid these bottlenecks of collaboration we propose 
to use adaptive scripting: altering and/ or fading scripts depending on the collaborators’ 
need for support. Adaptive scripts can be considered a form of intelligent tutoring [5] as 
feedback is provided based on the individual student (or group) performance. 
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We hypothesize that computer-mediated collaboration within an experimental 
framework - and guided by a script - can promote conceptual chemistry knowledge. 
We also believe that adaptive scripting will promote conceptual chemistry knowledge 
even more. This paper outlines our experiences with a wizard-of-oz study that tested 
the adaptive scripting approach. 

2   Technology Development  

The implementation of the adaptive scripts into a collaborative setting involved de-
veloping collaborative extensions to the VLab chemistry experimentation tool [6], 
through integration with FreeStyler, an existing collaborative software environment 
[7]. Our script consisted of experimentation steps inspired by [8] and was imple-
mented in FreeStyler with tabs representing the experimentation steps and additional 
ordering restrictions.  

3   Wizard-of-Oz Study  

We conducted a small wizard-of-oz study that compared an adaptive and a non-adaptive 
version of our system. There were 3 dyads per condition, and the experimental procedure 
was standard pre-test/intervention/post-test. The students in both conditions collaborated 
by using a number of tools that scripted and supported their collaboration within FreeSty-
ler tabs.  

In the adaptive condition, a human wizard who observed the students as they collabo-
rated provided adaptive support via prompts sent to the students, to promote explana-
tions, reflection, and help giving/receiving. The wizard used a flowchart to observe and 
recognize situations requiring a prompt, and to choose and give the appropriate prompt. 
The flowchart was developed based on the data analysis of the first study and on a litera-
ture review of collaborative learning research (e.g., [2]).  Examples of adaptive prompts 
are “Don't forget to explain your statements and actions to each other.” which was pro-
vided by the wizard when a student neglected to explain a statement or action despite a 
request by his partner, and “Remember to talk about and reach a consensus on your next 
activity before moving on.” which was provided when a student started an activity alone 
before agreeing on previous activities with his partner. 

The study results were encouraging. With a possible highest score of 6 points on 
the conceptual post-test, the adaptive condition mean was M=4.6 (SD 1.63) compared 
to M=3.5 (SD 2.81) for the non-adaptive condition, showing a tendency toward better 
conceptual understanding due to adaptive support. A process analysis of screen re-
cordings taken during the experiments showed that the non-adaptive dyads were less 
likely to correct flaws in their collaborative and script practice. On the other hand, the 
prompts given to the adaptive dyads, although not always appreciated by the students, 
had a clear positive effect on collaboration, motivation, and to some extent on the way 
the collaborating students followed scripts.  
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4   Conclusion 

We will use the knowledge gained from the wizard-of-oz study presented here to ex-
tend the system towards a full collaborative intelligent tutoring system by automating 
our adaptive feedback. To this end, one of the approaches we will explore is the use 
of machine learning to create “adaptive detectors”, similar to the work of Baker in de-
veloping gaming detectors [9]. That is, we will annotate student actions in the VLab 
for aberrant behavior and apply machine-learning algorithms to identify situations in 
which prompts are necessary. We also plan to use the collaboration expertise captured 
in the wizard flowchart as guidance for feedback in particular situations.  
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Abstract. Several research in psycho-pedagogy showed that the relevance of 
the training implies as many intellectual aspects as socio-emotional and the 
emotional state of the learner influence directly his performance in a positive or 
negative way. For that, the e-learning systems must take into account the emo-
tional state of learners in order to favor their training. However, it is important 
to underline the implementation problem which is posed and summarized in the 
detection and the interpretation of the emotions which are not directly observ-
able by the machine and which are generally expressed by a whole of behav-
iours whose indicators are either the words used, or the voice ton, the gestures 
and body attitudes or facial expressions. In this paper, we propose emotionally 
intelligent system architecture dedicated to the learning activities. We focus 
ourselves more particularly on the process of emotional recognition, ensured by 
agent EMOTIO, from a bimodal analysis of the speech and text used by a 
speaker's learner, in a training session, in order to improve the recognition pre-
cision (precision in acoustical analysis is 63.44 % but precision in bimodal 
analysis is 71.2%). This analysis is based on the indices extraction on two lin-
guistic levels: prosodic and lexical.  

Keywords: Emotional agent, Recognition, speech, prosodic cues, textual cues, 
e-learning, learner. 

1   Introduction 

Recent research in neurosciences and psychology [1] showed that the emotions have 
influences on several behavioural and cognitive processes, such as the attention and 
the memorization in the long term, and have a preponderant role in the communica-
tion process where the quality is an important aspect in training tasks. Consequently, 
in the learning activities, the emotional state of the learner influences directly his per-
formance in a positive or negative way [2]. 

For these reasons, it is important that the systems dedicated to the training are en-
dowed with a certain intelligence called emotional which allows recognizing the cur-
rent learner emotional state, in order to induce emotions favoring his training [3]. 
However, this intelligence carry some implementation problems, because learner’s 
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emotional expressions expressed generally by a verbal or not verbal behaviours [4], 
are not directly observable by the machine and research works in human machine 
interaction was mainly focused on the set up of automatic characterization models and 
the vocal expression of the emotion by acoustic analysis [5,6]. Also, the facial expres-
sion by analysis of several indices of a physiognomic order [7], of the textual expres-
sion by analysis of several indices of the lexical, morphological, syntactic, semantic 
and dialogical type [8], and finally, the physiological expression by analysis of certain 
indices of physiological and expressive orders [6]. In our study, we plan to combine 
the two methods, vocal and textual, that the speech integrates to improve the recogni-
tion precision of the learner emotional state.  

2   Contextual Framework: The EMOTORAT System 

We are interested here in the emotional treatment in learning context where an emo-
tionally intelligent system is conceived, dedicated to the emotional recognition and 
management of learners baptized EMOTORAT (see Fig 1). 

The EMOTORAT system integrates 
several agents, designed for the learner 
emotions management, and a learner model 
containing a cognitive state (knowledge, 
competences, historic, pedagogical trav-
erses …) and an emotional state (moods, 
emotions, psychological profile, prefer-
ences, styles of training,…). EMOTORAT 
also integrates an interface module accessi-
ble by the learner and which contains the 
whole of the interactions tools necessary 
for the training. 

3   EMOTIO: An Emotional Recognition and Management Agent   

In its emotional recognition method, EMOTIO is based on a bimodal perception of 
the emotional expressions. It detects emotions from two types of information: voice 
and text, and classify them according to five basic types, joy, sadness, anger, fear and 
neutral. This bimodal analysis will give more precision for the recognition of the 
leaner current emotional state. The final emotional state is given by combining the 
results of the prosodic and textual analyses with the history of the learner emotional 
states. The architecture of the EMOTIO agent is based on: the learner emotional rec-
ognition (ER), which is the purpose of this article, and the emotional management 
(EM) to guarantee an effective training. Emotional recognition (ER) module’s archi-
tecture, as schematized in Fig 2, is based on two sub modules for recognition: an emo-
tional recognition by vocal analysis (ERVA) and an emotional recognition by textual 
analysis (ERTA). 

Fig. 1. Architecture of EMOTORAT
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Fig. 2. Architecture of EMOTIO                              Fig. 3. Architecture of ER module 

The ERVA sub module consists in identifying the emotion expressed in the 
speaker speech by the voice analysis which consists to a signal pre-treatment that al-
lows preparing the data received sensor to the following analysis phase devoted to 
parameters extraction which the goal is to extract the emotion characteristic property. 
The sub Module ERTA goal is the emotional detection from lexical information and 
classify them according to five basic studies types. For that, we suppose that the emo-
tional orientation of a sentence in entry is primarily represented by the appearance of 
two types of words: the keywords with emotional reference, which provide a funda-
mental emotion description of a sentence, and the words of emotional modification, 
which can intensify or eliminate the emotional state.   

4   Conclusion and Perspectives 

The emotional detection is certainly not perfect; we are still far from being able to 
concretely determine the demonstrations subjacent with a given type of emotion. Ow-
ing to a part of signals complexity and on the other extreme variability intra and inter 
individual. Nevertheless, the idea of this bimodal recognition based speech and text 
gives us a satisfaction as for the improvement of the emotional perception precision.  
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Abstract. For many practical learning scenarios, the integrated use of more than
one learning tool is educationally beneficial. In these cases, interoperability be-
tween learning tools – getting the pieces to talk – is a crucial requirement that is
often hard to achieve. This paper describes an architecture that aims at the inte-
gration of independent learning tools into one collaborative learning scenario.

1 Introduction

In the field of educational technology, there have been numerous attempts in recent
years to connect differently targeted learning tools to one another. For example, a
teacher may want to start her course with students’ individual intelligent tutoring ses-
sions, followed by plenum discussions about the topic, then some small-group work
with simulation tools, and finally followed by individual essay writing. For each of
these sessions, there is likely to be a different tool that is suitable to support the activ-
ity, such as Cognitive Tutors, discussion support tools, and educational simulations, yet
these individual tools do not usually interoperate or exchange data, resulting in scattered
artifacts and functionality that is hard to integrate.

Especially in the field of collaborative learning, tool interoperability and data
exchange between heterogeneous learning tools is a crucial requirement. This is so
because the data flows in group learning tend to be more complex and require data ex-
change between a greater variety of tools (such as discussion and graphical mapping
tools) and more instances of such tools (e.g., one per student) than in individual learn-
ing scenarios. Many collaborative software tools have the advantage that they need to
externalize their data anyhow to allow users to exchange data with peers (and thus trans-
fer this data between applications). This characteristic should facilitate inter-tool data
exchange – yet, reality has shown that in the field of educational technology, not many
collaborative learning tools are interoperable.

In our efforts to implement longer-term learning flows, we have frequently encoun-
tered the need to make our tools – such as Cool Modes [1] or FreeStyler – interop-
erable with other tools. A recurring approach we have adopted is to employ a generic
data storage and exchange mechanism, and use this to achieve seamless communication
with learning components through the use of adapters. This solution principle, which
we call the "Scalable Adapter," has proven successful in a number of different scenarios
and projects. Thus, we propose this principle as a general software design pattern [2],
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i.e. a re-usable solution to the named problem,and discuss it together with its imple-
mentation in the remainder of the paper.

2 The "Scalable Adapter" Design Pattern

This section describes the "Scalable Adapter" design pattern which constitutes a soft-
ware architecture that can be used to create interoperability between different educa-
tional tools, in particular between collaborative learning tools and intelligent tutors.

The problem context is that there exist learning tools (e.g. discussion tools, simu-
lation tools, or ITS systems) that each provide specific functionality and data. Part of
this data can be used to inform other tools within an integrated learning scenario. The
recurring problem to solve is that the different preexisting learning tools need to interop-
erate with each other through data exchange. Potentially, each environment is interested
in only specific portions of the data of other applications. Since it cannot be foreseen
which applications need which parts of the data, a flexible design solution is required.
Another force to be considered is that the existing learning tools should not need to be
altered (or at least not much) in order to facilitate their use in their original context.
Yet, the interoperation and data exchange between the systems must be supported in a
flexible way to allow for arbitrary learning data to be exchanged.

The solution we propose is to extend existing learning tools with specific adapter
components [2] that provide the interoperability with other components. The granular-
ity of the information to be exchanged between components is tailorable in a scale-free
way through the use of a composite data structure. The Adapters leave the original
learning tools unaltered for the most part. They provide the interface for interaction be-
tween the learning tool that the adapter is attached to and the other components used
within an integrated learning scenario. The Composite Data Structure provides access
to arbitrary parts of the data to be shared between the learning applications. Addition-
ally, a subscription mechanism for parts of this data structure is provided. This mech-
anism uses notifications to inform registered learning tools about changes in shared
data (parts), thus avoiding inefficient communication via active polling processes. The
learning tools use the functionality of the adapter to gain access to the data elements
of interest. The processing of the data (i.e., the interpretation of the exchanged learning
data) is fully encapsulated within this component.

The learning tools and the composite data structure are completely decoupled (i.e.,
the shared data is separated from the specific tools), with the adapter assuming a me-
diating function between these two. The composite data structure provides access to
arbitrary data elements using a tree structure (de-)composition. Note that there is a 1-
to-n relation between the data structure and the adapters and a 1-to-1 relation between
an adapter and a learning tool. This implementation requires both minimal changes to
the learning tools (only the communication with the adapter has to be developed) and
allows multiple learning tools to access the shared data. The composite data structure
allows different learning tools to use different (or the same) parts of the shared data.

The typical component interaction in this micro-architecture is that a learning tool lt1
sends out data changes (e.g. learner actions) via an adapter a1 to the composite data struc-
ture. This notifies all registered adapters about changes to the respective components of
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the structure, enabling the adapters to process relevant information only and thus to com-
municate efficiently. Each adapter ai updates its learning tool lti. This way, application
lti can be informed about the relevant changes caused by students or system actions.

3 Using the "Scalable Adapter" in the CoChemEx Project

The Scalable Adapter pattern was used within the CoChemEx project [3], where the
virtual chemistry experimentation laboratory "VLab" [4] is used within different col-
laborative inquiry learning scenarios. Here, the features for collaboration and commu-
nication of the shared workspace systems FreeStyler / Cool Modes environments [1],
such as chat and graphical argumentation, are used in conjunction with the sophisticated
experiments students can conduct within the VLab.

In the CoChemEx project, the educational scenario was defined by researchers and
practitioners from educational psychology and chemistry education. The scenario is
implemented by a collaboration script [3] consisting of several phases of activities.
These are represented by separate tabs in the FreeStyler environment.

In this learning scenario, interoperability and data exchange between the different
pre-existing tools – in particular, between VLab and FreeStyler – was a crucial require-
ment. Following the Scalable Adapter design pattern principle, this interoperability –
and thus the integration of the VLab into a collaborative context – was achieved via
a newly developed VLab adapter that creates a communication channel to FreeStyler
through the jointly-used data stored in a composite data structure (MatchMaker). The
use of the Scalable Adapter pattern to connect the applications has two immediate ad-
vantages. First, it enables the VLab to interact with other VLab instances of the col-
laborators, thus supporting collaborative experimentation, and, second, it enables data
exchange between the experimentation functions in VLab and the FreeStyler tools
which are valuable for experimentation, such as hypothesis generation and documenta-
tion of experiments. Both features are important contributions towards richer learning
experiences that only integrated solutions combining various learning tools can achieve.

One conceptual challenge we still must tackle is that for every learning tool, a spe-
cific adapter must be defined. Also, the shared composite data structure is currently
scenario-specific. Mechanisms for a more flexible configuration of the data structure by
explicit specification of structure levels seem feasible and preferrable to hard-coding all
dependencies.

Acknowledgements. The Pittsburgh Science of Learning Center, NSF Grant 0354420,
supported this research. We are grateful to Nikol Rummel, Dimitra Tsovaltzi and all our
student workers for their valuable contributions to the CoChemEx project.
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Abstract. This paper presents a guided learning strategy model for dynamic 
pedagogical tailoring within intelligent tutoring systems (ITS). The proposed 
model is based on the integration of the cognitive load theory within an ITS ar-
chitecture. Our approach takes into account the cognitive limitations of the stu-
dent in order to offers personalised learning via instructional guidance. 

1   Introduction 

Most intelligent tutoring systems (ITS) use pedagogical objectives or performance 
measures in order to adapt tutoring strategies [1,3,11]. A number of researches in 
educational psychology suggest that highly effective instruction can only be attained 
by taking into account the learner cognitive constraints [4,10]. This paper introduces a 
novel approach for guided learning within ITS which aims to dynamically adapt in-
struction in order to respect the student cognitive limitations. The approach is based 
on the cognitive load theory (CLT) framework and uses a working memory simulator. 
The remainder of the paper is organised as follow. Section 2 exposes the CLT frame-
work. Section 3 expounds the integration of the CLT concepts in our ITS and con-
cluding remarks are given in section 4. 

2   The Cognitive Load Theory 

The cognitive load theory is a framework representing characteristics of the mental 
effort that results from the performance of complex cognitive tasks during learning 
[2,8,9]. CLT is based on the interaction between the human cognitive architecture and 
knowledge structures in order to identify optimal methods of instruction. 

Cognitive load is defined by three components: intrinsic cognitive load (ICL), ex-
traneous cognitive load (ECL) and germane cognitive load (GCL).  ICL represents the 
interaction between the knowledge to be learned and the expertise level of the learner 
(current knowledge). This load is imposed by the number of elements to be addressed 
simultaneously in working memory during problem solving. ECL represents all form 
of load which is not directly devoted to the execution of the current task. This load is 
not effective for learning and can be reduced by a better instructional design. GCL 
represents the load resulting from learning processes and is a form of ECL that ac-
tively participates in learning. These three types of cognitive load are additive. Their 



720 F. Courtemanche, M. Najjar, and A. Mayers 

sum may not exceed the working memory capacity without causing a failure of the 
ongoing task or impairing learning. 

3   Using the CLT Framework in ITS 

Similarly to most intelligent tutoring systems [12], our ITS architecture includes four 
main modules: expert agent, interface agent, learner agent and pedagogical agent. Our 
learner agent extends the standard capabilities by modeling the mental effort (cognitive 
load) of the learner during problem solving. Using a working memory simulator, the 
learner agent provides cognitive load patterns representing the load composition (intrin-
sic, extraneous and germane) resulting from each resolution step. The originality of our 
pedagogical agent is its ability to take into account dynamically the cognitive load im-
posed by the various resolution steps of a learning task in order to implement a guided 
learning strategy. 

Several researches in educational sciences [5,6] argue that guided learning is supe-
rior to other forms of learning that allow more freedom to the student (e.g. discovery 
learning [7]). Our pedagogical agent implements a form of guided learning based on 
the cognitive load theory (CLT) which aims to guide the learner during problem solv-
ing according to the cognitive load imposed by each resolution step. The role of the 
pedagogical agent is to help the student choosing resolution steps that maximise 
learning. To do so, our pedagogical agent chooses the optimal step sequence regard-
ing learning efficiency via a CLT-based guidance heuristic. 

3.1   The CLT-Based Guidance Heuristic 

The first stage of the guidance heuristic is to quote the possible next actions with a 
cognitive load pattern provided by the learner agent. At each resolution step, or fol-
lowing a help request by the student, the pedagogical agent suggests a resolution step 
offering an optimal cognitive load pattern. The latter is defined as an equilibrate 
amount of germane cognitive load (GCL) and intrinsic cognitive load (ICL) [10]. Low 
ICL indicates a step containing no learning opportunities (knowledge to be auto-
mated) [9]. High ICL and GCL indicate that the interconnected handled knowledge 
exceeds the learner working memory capacity [10]. During an instructional session, 
cognitive patterns for the same resolution steps will change depending on the student 
expertise progress. More precisely, the intrinsic cognitive load component will de-
crease in function of the progressive automation of knowledge due to their utilisation 
during learning tasks. The pedagogical agent will then suggest to the learner a resolu-
tion step whose component knowledge is not automated.  

The learner will progress from a novice level (low knowledge automation) to an 
expert level (high knowledge automation). Because the student is guided in a progres-
sive manner which is consistent with his/her expertise level and his/her cognitive 
limitations, the number of resolution steps will be greatly reduced. This results in an 
optimal learning strategy in terms of instructional time and mental effort. 
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4   Conclusion and Further Work 

We have proposed a model for dynamic pedagogical tailoring within intelligent tutor-
ing systems. The model uses the cognitive load theory framework and a working 
memory simulator. An in-depth validation of our cognitive load pattern estimation 
mechanism is actually in progress.  
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Abstract. Open learner models (OLM) are learner models which are accessible 
to the learner, allowing them to view, and sometimes modify, their model. This 
openness may raise questions of learner trust in their learner model: if users do 
not agree with, or trust the information they can see about themselves, their 
trust in the interaction will likely be reduced. Using a Wizard-of-Oz approach, 
we consider learner trust and possibilities for developing trust in OLMs. 

1   Introduction 

Open learner models (OLM) externalise the learner model contents to the user. Thus 
OLMs assist learners in tracking their knowledge, and promote independent learning 
by offering information about their knowledge that the learner would not usually see 
(e.g. a breakdown of concept understanding or descriptions of misconceptions held) 
which may allow learners to identify areas to target their study. Opening the model to 
the learner raises issues of learner trust in their learner model, and hence trust in the 
system. Lack of trust in the inferences of a learner model may discourage system use, 
and is therefore an important issue to address.  

Gaining students’ trust in their learner models has been explored using a multi-
agent system with agents cooperating on behalf of learners in a collaborative context 
[1]. In psychology, trust may relate to personal traits that deal with belief and expecta-
tion or feelings [2]. In decision aid systems trust may be defined as the extent to 
which a user is confident in, and willing to act on the basis of, the recommendations 
of the system [3]. These definitions may also apply to OLM.  

Learners may have more or less control over their learner model contents [4], al-
though there may be risks when control is given to learners [4], [5]. Research suggests 
students may be uncomfortable with directly editing the model, and prefer an OLM 
where they have less direct control, such as one they can negotiate [6]. Negotiated 
OLMs facilitate maintenance of the model through collaborative student-system nego-
tiation of the represented beliefs. The fact that students are willing to give some con-
trol to the system suggests that they may trust an OLM or, at least, may have greater 
confidence in the system assessing their knowledge than in their self-assessments. 
Similarly, allowing learners some control over the model (such as in negotiated 
OLMs) may help to increase learners’ trust as they are able to influence the model 
contents if they disagree with it. Given the user preferences for some level of system 
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control, we adopt a negotiated OLM approach to explore trust issues. We present a 
Wizard-of-Oz study (where part of the system behaviour is simulated by a human 
‘wizard’ – the experimenter) of negotiating the learner model, to identify some of the 
trust issues in OLM systems, as perceived by learners.   

2   Investigating Student Trust in Open Learner Models 

The participants were 40 students in the Electronic, Electrical and Computer Engi-
neering Department at the University of Birmingham, UK. Participants interacted 
with Flexi-OLM [6], modified to provide (by the ‘wizard’) a simulated chatbot for 
negotiation of the learner model [7], for a minimum of 20 minutes (mean 28.79 min-
utes). Participants completed a questionnaire with a five-point Likert scale, and fur-
ther free response elements, designed to investigate issues relating to trust in OLM. 

Table 1. Summary of questionnaire responses 
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I was frequently convinced by the Chatbot's arguments 4 19 14 2 1 
The negotiation changed my view of my understanding 7 17 11 5 0 
I always challenged the Chatbot when I disagreed (or I would)* 15 15 6 2 0 
I was happy to accept the Chatbot’s opinions when I disagreed 2 18 12 6 2 
I liked the Chatbot when it disagreed with me 4 21 10 3 2 
I liked the Chatbot when it agreed with me * 7 22 10 0 0  

* 38 responses. 

 
As shown in Table 1, 23 of the 40 users agreed they were frequently convinced by 

the chatbot’s (wizard’s) arguments in negotiation; 14 remained neutral. 34 said the 
negotiation changed their view of their understanding. These are key issues for nego-
tiated learner modelling as if learner and system are to be equal in the negotiation then 
each must be prepared to consider the other’s arguments. The level of trust in the 
system will influence the user in whether they follow the system’s advice. However, 
different OLM designs suit different users, and we would not expect any single sys-
tem to suit (or engender trust from) all users. 

A common theme in responses was the ability of the system to provide reasoning, 
e.g. “It gives me objective reasoning”, “I could see why it was disagreeing”, and 
“when it disagreed it was justified”. If transparency of the OLM can help to support 
trust, then these comments are consistent with the dimension of interpretive transpar-
ency in [5] and suggest the building of some level of trust in this system. 

30 users agreed they would always challenge the system if they disagreed with it. 
Users will gain most benefit from a negotiated OLM if they are willing to initiate 
discussion where their own and the system’s assessments of their knowledge differ. A 
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user must feel that challenging the system can be effectual or they may not attempt it. 
This suggests that the users who would challenge the system believe their inputs will 
be considered, and trust their ability to affect the system’s behaviour.  

Mayer et al.’s definition [2] does not imply reciprocity of trust; it does not require 
both parties be vulnerable to the other. However, if the user may influence the system, 
then the system’s willingness to vulnerability may develop users’ trust in the system. 

It might be expected that users will like the chatbot (wizard) when it agrees with 
them; it is perhaps surprising that 28 users agreed they liked the chatbot when it dis-
agreed with them. Users appeared to demonstrate some level of trust in the system’s 
beliefs, stating “it explained its reasoning”, and “seemed to understand exact miscon-
ception and how to get rid of this”. Without trusting the system’s assessments and 
arguments of the system it is unlikely that users would claim to like the chatbot.  

While it is difficult to measure trust directly, user comments about their interaction 
suggest trust in the OLM. Given these findings using a Wizard-of-Oz simulation, 
there are now further issues to consider relating to trust in open learner modelling. It 
will be interesting to investigate how trust develops in an OLM over time, in a real 
learning setting. It is also likely that different users have different demands and ex-
pectations of what the OLM will offer them, and so it may be that different facilities 
are required by different users to enhance trust in the learner model.  

3   Summary 

This paper explored some of the trust issues in learner modelling, including trust in 
the relationship with the system, in the OLM evidence, in the user’s ability to influ-
ence the system, and in the purpose of negotiated learner modelling. The users ap-
peared to demonstrate trust in all of these areas. Further investigation will consider 
issues affecting trust in wider OLM contexts, and will seek to develop strategies to 
support the development and enhancement of user trust in open learner modelling. 
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Abstract. In this article we present the Lausanne Model: a learning
object based reference model that: (i) considers learning issues such as
granularity level, description formalism,(ii) organizes learning objects in
a network where links are explicated, (iii) enhances user mobility from
one environment to another and (iv) considers both individual and social
adaptation.

1 Introduction

In order to deliver personalized learning paths composed with adequate sets of
inter- connected learning resources extracted from Learning Object Repositories
[1], we tried to apply some adaptive hypermedia reference models [2] [3].

Because, none of these models addresses specific learning issues, we felt the
need to come up with a learning object based reference model.

In this paper we depict our Lausanne Reference Model paying special atten-
tion first to the Domain Model and in particular to the granularity issue. We
then concentrate on the User Model focusing on the information that should
be retained about the learner to provide the best-possible personalized learn-
ing path. To conclude, we describe the adaptation algorithm based on the user
model and other users’ experience.

2 Domain Model: How to Model What?

In the context of a learning environment, the Domain Model focuses on ped-
agogical material content and aims at describing it by representing its entities
and their relationships in a standardized manner. Learning issues raised in this
model are: granularity degree and description formalism. If we consider a level of
granularity to be adequate when the element is small enough to allow for flexible
and integrative reuse and big enough to make sense by itself” then a learning
object, as defined here above, could be considered as a potential good candidate.
Two methods are available to describe educational resources: indexation and an-
notation. Both provides useful but different information about the object. In the
following example, we show how to combine each of those methods.
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Example. Let us consider the context of segmentation (an annotation formal-
ism) [4] in which it can be claimed that the highest level of granularity of a
document is the document itself, while the smallest level of granularity is any
of its identified presentation chain seen as a learning object per se. We have
adapted MLR (Metadata for Learning Resources) (an indexation formalism) [5]
to describe the relationships between learning objects capitalizing on the seman-
tic information obtained when segmenting the document. We distinguish three
types of metadata:

– Navigational metadata that aims at personalizing the navigation in a given
domain taking into account the environmental constraints (MLR:
Contextualization), the security issues (MLR:Access) and the relationships
between presentation chains (MLR:Description:Relation). Navigation is done
through a graph of resource anchors, the navigational metadata being asso-
ciated to the anchors.

– The conceptual metadata that comprises all the attributes of a concept other
than those belonging to navigational metadata. It is stored, when it exists,
in the Description category (MLR:Description :Description).

– Descriptive metadata that gives a global description of the resource. It is
associated directly with the resources in one and same file which is uploaded
in a Learning Object Repository (LOR) [1].

3 User Model: Adapt to What?

Bearing in mind that we aim at being able to deliver a suitable personalized
path to a learner, we need to gather as much information as possible about the
learner to derive and determine a number of specific useful characteristics: a
User Model. We have studied two standards of a user model: IEEE Public And
Private Information (PAPI) [6] and IMS Learner Information Package (LIP) [7].

Much more detailed than PAPI, LIP nevertheless entitles the learner to mod-
ify the attributes of his user model (like PAPI). Because we believe that the
responsibility of the learning process should not be entirely delegated to the
learner, we think that this possibility should be shared and restricted. We pro-
pose therefore to split the learner’s attributes into four categories depending on
the modification rights: machine driven, learner driven, system driven and tutor
driven. For any specific learner to be able to easily retrieve adequate learning
objects, and therefore for the system to provide a personalized learning path, we
propose to map XUM with some MLR attributes (as a metadata example).

4 Adaptation Model: How to Adapt?

We are now in a position to describe how we use the information stored in the
XUM to retrieve suitable learning objects: we first get a set of possible candidates
from which we choose the elements to be ultimately retained to be included
in the learning path to be proposed to the learner. Based on an active user
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model (individual adaptation) and on other users’ profiles (social adaptation),
the Adaptation model describes how the adaptation is performed.

The individual adaptation process filters items based on the user’s needs as
they are mainly recorded in the fields of the machine driven modification cate-
gory. It is used when calculating the next unit to be visited (Choice function).
The Social adaptation process aims at providing a personalized learning path
based on the experience of other learners provided they share a similar knowl-
edge level (proficiencies) and the same interests. Our algorithm includes both
processes and aims at building a suitable learning path for a specific learner.
To generate this personalized learning path, we propose to use the Ant Colony
Optimization algorithm (ACO) [8].

5 Conclusion

In this article, we have described the Lausanne Reference Model, designed for
learning object systems. The Domain Model is described as a set of indexed
learning objects. The User Model, baptized XUM, is based on the user profile
two main standards, the IEEE/PAPI and IMS/LIP. The Adaptation Model is
based on the ACO algorithm which has the advantage of benefiting from the
social dimension and provides a suitable learning path. Future work will consist
in integrating the Lausanne Model based system in a learning environment. This
system, applied in a lifelong learning process, could bring a real added-value if
coupled to a knowledge portfolio.
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Abstract. Tools for generating learning material in automatic or semiautomatic 
way are needed in order to lighten the development of Computer Supported 
Learning Systems. This paper describes an approach to semi automatic genera-
tion of didactic resources from electronic documents using ontologies and Natu-
ral Language Processing techniques. 
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1   Introduction 

Content authoring is a time and effort-consuming task so the idea of knowledge reus-
ing existing learning material in Computer Supported Learning Systems should be 
promoted. Traditionally, written documents have been used as a resource to transmit 
knowledge from one generation to the next one. Textbooks and books in general col-
lect years and years of knowledge about many different domains. To be able to reuse 
that knowledge in computers would be really a big success.  

The work here presented is part of a project which aims to semi automatically develop 
the Domain Module for Computer Supported Learning Systems from electronic docu-
ments by using a combination of different NLP tools, ontologies and heuristics reasoning 
[1]. This paper deals with the identification of the Didactic Resources (DRs) related to 
the topics of a learning domain. After describing the identification and creation of DRs 
from documents, some conclusions and future work are pointed out. 

2   Semi Automatic Domain Module Generation. DR Generation 

In the approach here presented, the process of semi automatically acquiring the Do-
main Module from electronic documents is divided into three phases:  

• Domain Module Structure Acquisition: the domain ontology containing the do-
main topics and the pedagogical relationships among topics is gathered.  

• Generation of Didactic Material: ontology-driven analysis of the whole document 
in which fragments related to the domain topics are detected and categorized. 
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• Domain Maintenance: this maintenance implies analysing new documents repeat-
ing the first two phases of the process in order to keep the domain module up to 
date. Ontology integration techniques will be needed to tackle this phase. 

This paper focuses on the Generation of the Didactic Material. A domain ontology, 
which has been gathered in the Domain Module Structure Acquisition phase, and a 
didactic ontology [2, 3] are used to look for the fragments of the document that corre-
spond to didactic resources. First, a linguistic analysis is performed on the document 
obtaining the part-of-speech information of the document. This information, the 
original document and the domain ontology are used in the next step, DR identifica-
tion, in order to find fragments of the document that correspond to DRs. Document 
authors use similar structures to provide topic definitions, examples, exercises and so 
on. A grammar that defines these patterns has been developed. This grammar facili-
tates the identification of the fragments of text in the documents that contain simple 
DRs. The identified DRs are usually quite simple, so consecutive DRs are combined 
in order to get more accurate DRs. Two DRs are combined if they are considered 
similar. The similarity of two DR is determined by two aspects: the similarity of their 
content, i.e. the domain topics they reference, and the resemblance of their DR types. 
The methods that determine these similarities return a value in the [0, 1] range. Two 
DRs are considered similar if the obtained topic similarity and the DR type similarity 
are beyond the corresponding threshold values. The DR composition process is re-
peated until no changes are done in the input DR set. 

In order to measure the similarity of the contents of two DRs, not only the referred 
topics but the semantic relationships between them are considered. The content similarity 
measuring method is based on the work of Hughes and Ramage [4], which computes the 
semantic relationships among topics in order to get the stationary probabilistic distribu-
tion for every topic. The relatedness of the two documents is computed as the similarity 
of their stationary distributions. In this case, the vectors containing the stationary distribu-
tions of the two DRs are computed using the formula (1) to get their similarity where d 
and d’ are the vectors used to model each text. In this work, each vector element contains 
how many times the corresponding domain topic is referenced in the DR. 

'

'
)',cos(

dd

dd
dd

•=  (1) 

The method to measure the DR type similarity uses the same approach but using a 
Didactic Ontology [2, 3] to represent the relationships among the types of DRs and 
compute their similarity. In this case, d and d’ contain how many times the corre-
sponding DR type appears in the DR. 

When developing the application, all the found patterns were considered and in-
cluded in the grammar in order to get a 100% recall, i.e. percentage of real DRs de-
tected, even if that may affect the precision (percentage of correctly identified DRs). 
It might be easier to discard invalid DRs than building undetected ones. The obtained 
results have been compared to the DRs identified by human instructors. 92.86% of the 
gathered DRs were correct. The referred topics were correctly identified for 92.22% 
of the obtained DRs. Just 7.59% of the DRs had to be enhanced while just 4.12% of 
the DRs had to be split to meet human instructors’ classification. 



730 M. Larrañaga, J.A. Elorriaga, and A. Arruarte 

3   Conclusions and Future Work 

In this paper a domain independent method for semi automatically generating didactic 
resources (DRs) from documents has been described. The method relies on the use of 
ontologies and NLP techniques. A grammar defining the patterns or syntactic struc-
tures that may identify DRs has been developed after the analysis of several textbooks 
in Basque language. This grammar is applied on electronic documents and the ob-
tained atomic DRs are combined in order to get more accurate ones, i.e, closer to the 
DRs the human instructors identify. Several similarity measure methods that deter-
mine which DRs must be composed have been tested so as to get results near to  
human instructors’ outcomes. 

Future work includes the development of a graphical user friendly application that 
will allow the supervision of the results to any human instructor and the integration of 
the work here presented in Elkar-DOM [5] in order to facilitate the whole process of 
generation of DRs.  
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Abstract. Reading comprehension is a very important life skill, yet millions of 
Americans are functionally illiterate. Technology can help, but most computer-
based training programs for reading skills fall short in their ability to provide 
self-paced, individualized learning. The Navy funded three innovative intelli-
gent tutors that were developed based on well-recognized cognitive models of 
reading and learning. In addition, these tutors provide tools for customization of 
content. This paper reports a large-scale study of these tutors that demonstrates 
their teaching effectiveness when used individually and in combination. Of par-
ticular note is an ordering of the tutors that led to a skill gain of 1.1 grade levels. 

1   The Problem of Literacy and Its Significance 

While a high school diploma is required for enlisting in the Navy, a significant per-
centage of the enlisted crew have weak reading skills. Twenty-five percent of the 
Navy’s enlisted population, for example, scores below the eighth grade level in read-
ing, writing, and arithmetic. Beyond the Navy, literacy is one of the most fundamental 
requirements for succeeding in today’s world. Yet, fifty million Americans are not 
functionally literate.  A few computer-based training tools that have been developed 
for reading [www.ncslearn.com, www.plato.com] are not suitable for the Navy. First, 
they require instructor intervention for assessment and lesson assignment. Second, 
they have fixed content that cannot be tailored to an organization’s environment and 
needs. Finally, many training programs for reading target skills at the phonetic level. 
To enlist in the Navy requires a basic ability to read. Navy personnel have mastered 
the skill of decoding, at least at its most basic level. To address these problems, the 
Navy funded the development of three intelligent tutors with customizable content for 
teaching reading comprehension skills. This paper briefly describes the tutors, and fo-
cuses on the results of a large-scale evaluation of their teaching effectiveness.  

2   The Three Reading Tutors 

ReadOn aims to improve the reading skills of students through targeted assessment, read-
ing practice, and remediation. Using the reading skills described in [2] as the domain 
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model, ReadOn provides coached reading practice by prompting learners to read pas-
sages and answer multiple-choice questions on the passage that cover a wide range of 
skills. The student model is a Bayesian Network overlaid on the domain model and is 
used to select optimal challenge level, present targeted remediation, for dynamic selec-
tion of questions with exercises. The domain model, the student model and the tutoring 
approach are described in detail in [4;5]. 

GradAtions [http://www.i-a-i.com/view.asp?aid=28] and STAR ([1] are the other two 
reading tutors developed with funding from the Navy. The three systems have comple-
mentary approaches. Whereas ReadOn is geared towards practice and assessment of a 
broad range of skills, GradAtions focuses mainly on summarization, a high-level cogni-
tive skill that contributes significantly to reading comprehension. GradAtions provides 
several scaffolding mechanisms that help learners identify the key information in a given 
passage and generate a good summary. It includes automated assessment of the summa-
ries provided by the learners. STAR, on the other hand, implements the reciprocal teach-
ing method [3] where a teacher models critical thinking skills through active questioning 
and the learners attempt to follow the model with active questioning of their own. STAR 
implements this policy where the tutor models questions and learners respond by specify-
ing questions in turn. 

3   Evaluation 

A large-scale evaluation of the three reading tutors was conducted at Arizona State 
University where the objective was to study the effectiveness of each of the three tu-
tors individually and in combination. Of the 368 participants initially registered, 159  
completed the entire study. The participants were assigned in approximately equal 
proportion to one of seven conditions. The first six conditions represent the six ways 
in which the three ONR-funded tutoring programs could be ordered. The seventh 
condition was Lifetime Library’s Reading Program which is a popular computer-
based training software for reading that is currently used by the Army. Each testing 
procedure for one of the experimental conditions and the control condition is shown 
below1 (Here, A = Read on!, B = STAR, C = Gradations, and D = Lifetime Library’s 
Reading Program). The other five experimental conditions tested the other possible 
orderings of the three tutors. 

Table 1. 

(Pretest) 
Assessment 1 

Treat. 
Period 1 Assessment 2 

Treat. 
Period 2 Assessment 3 

Treat. 
Period 3 

(Posttest) 
Assessment 4 

Cond. 
6 

ACCUPLACER 
+ TABE 

+ ASVAB 
C 

ACCUPLACER 
+ affective 

B 
ACCUPLACER 

+ affective 
A 

ACCUPLACER 
+ ASVAB  
+ TABE 

+ affective 

Cond. 
7 

ACCUPLACER 
+ TABE 

+ ASVAB 
D 

ACCUPLACER 
+ affective 

D 
ACCUPLACER 

+ affective 
D 

ACCUPLACER 
+ ASVAB  
+ TABE 

+ affective 
 

                                                           
1 ACCUPLACER, TABE and ASVAB are standardized assessment instruments for reading 

comprehension skills. 
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The mean instructional time for the six experimental conditions—excluding the 
Lifetime Learning control condition—was 35.64 hours (SD = 4.82). The group with 
Lifetime Learning got about 40 hours of instruction. 

Participants that initially worked exclusively on GradAtions and ReadOn achieved 
significantly higher scores on the ACCUPLACER after working with these tutors for 
approximately 15 and 5 hours, respectively (p=<.001 for GradAtions, and p<0.05 for 
ReadOn). The experiment also revealed that four combinations of the three reading 
programs produced significantly higher scores on the final ACCUPLACER test than 
the first. Of these, however, the GradAtions  STAR  ReadOn combination pro-
duced the largest learning gains. The participants that worked with this sequence had 
a gain of 15.5 points, which corresponds with a reading comprehension grade level 
gain of 1.1 (p < 0.01). Thus, the most optimal way of ordering the three tutors is Gra-
dations first, STAR second, and ReadOn third. The affective questionnaires indicate 
that learners rated ReadOn significantly higher than the other tutors in terms of ease 
of use and engagement. 

In conclusion, we described an evaluation that shows the effectiveness of three in-
telligent tutoring systems for reading comprehension both alone and in combination. 
Results show that these tutors lead to significant gains in reading comprehension 
skills after only about thirty five hours of instruction. The tutors are undergoing fur-
ther evaluations in the Navy.  
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Abstract. In this paper we introduce an Intelligent Web-Based Learning Sys-
tem Virtus which supports role-based collaboration using a group contract 
model (a charter) based on roles and rules. The originality of our work consists, 
on the one hand, in proposing a declarative language to express contracts using 
declarative rules, commitments and role responsibilities and, on the other hand, 
in automatically executing the contract thanks to a knowledge-based system. 
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1   Introduction 

Web-based platforms devoted to e-learning usually provide a virtual learning envi-
ronment which supports learning activities. These platforms are used within a variety 
of methods ranging from classroom education to partially or completely on-line dis-
tance education and from individual to collaborative work. They offer a wide range of 
tools to support one-to-one or group learning: communication tools, course manage-
ment tools, content management tools and collaborative work tools. 

In this paper we present a software component named VirtusCharte as a part of an 
e-learning platform that will support group work using a contract by automating the 
execution of the rules of the contract. Once the contract is defined for a group, it is 
translated into an executable rule language and periodically, the Virtus platform [1], 
resulting from our work, extracts information from the learning environment and 
activates a knowledge-based system for each active group in the virtual learning envi-
ronment in order to ensure that the conditions described in the contract are followed. 

2   Virtus Platform 

The Virtus platform consists of two modules: VirtusWeb which manages the services of 
the learning environment (like usual Learning Management Systems) and VirtusCharte 
which implements an Intelligent Support System to support groups using the rules of the 
contract during collaborative work. This means that the Virtus platform supplies a regula-
tion and monitoring mechanism [2] for group activities based on concepts of contract and 
role [3]. This mechanism is fully configurable through the rules expressed in the pro-
posed contract language using freely defined roles. VirtusCharte is based primarily on an 
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intelligent tool that will automatically support collaborative work using VirtusWeb, the 
LMS part of the Virtus platform. So, VirtusCharte contributes to the field of Intelligent 
Web-based learning. 

Our proposal is based on the relation between rules and roles. Rules mean a guide-
line, a formula that indicates what needs to be done within a certain context. Roles 
mean that each person is identified with a role, so that he/she can quickly identify 
his/her participation, prerogatives and commitments. We use the term "role" in accor-
dance with [4]: a role is a set of requirements that define how a member should be-
have in a group. The rules are based on the concepts of the learning environment: 
resources, activities, events and roles. 

The contract declarative language is able to describe how to monitor the status of 
an activity and the actions carried out on an activity (such as postponing an activity 
deadline). Using the rules, the author of the contract expresses, for example, how to 
react in cases where there is a procedure that is non-compliant with the behavior ex-
pected for the role. The assigned user’s roles indicate the responsibilities and expected 
actions of each group member. The rules could question the work carried out by other 
roles or those that are performed outside the specified time constraints.  

Using the contract, the users will benefit from an automatic group management 
support mechanism. From the point of view of a human user, VirtusCharte may act as 
a virtual user on VirtusWeb working environment and could also recall the users’ 
commitments by sending notifications. These actions and/or notifications are a conse-
quence of the group contract execution.  

A learning environment running on Virtus platform is made by a set of services in 
a given context. The context is structured on three levels: (i) the individual (private 
user space), (ii) the group (all group members space), and (iii) the community (whole 
community space). Everyone has his own private space and can participate in public 
spaces structured in groups within communities. An object always exists in a context 
and it is always handled in functional spaces categorized in services. Currently, Virtus 
provides three types of services: (i) activity management, (ii) event management, and 
(iii) resource management. All functionalities take into account the three contexts (a 
user could participate in several groups and communities playing different roles). 

As a result, we have, on the one hand, VirtusWeb an environment where activities, 
events and resources are created, viewed and edited, and on the other hand, Vir-
tusCharte, a system that interacts with these objects, applying the terms of the con-
tract. VirtusCharte must be able to consult, edit and modify them using the contract in 
a specific context. By separating the two software modules of the platform, we aim to 
run the contract mechanism independently of a particular platform. This means that 
VirtusCharte could, with some adaptations, be plugged in another LMS. This will be 
effectively applied in the system’s design and in the prototype implementation.  

For the development of VirtusWeb, we used free software that is commonly used 
in open-source LMS systems, the LAMP platform: Linux, Apache, MySQL and 
PHP.VirtusCharte has been implemented in Java and uses the same classes as Vir-
tusWeb with regard to the model of the system. We used JESS [5], a Java Expert 
System Shell to build the knowledge-based system used in VirtusCharte.  

For each execution of the knowledge-based system in a private, community or 
group context, VirtusCharte built the initial facts recovering them with a selective 
loading algorithm importing them from the VirtusWeb database. Once it has loaded 
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the required information, it creates its own lists of objects and deals with this informa-
tion to state the necessary facts to start the expert system. 

At the end of the knowledge-based system inference cycle, VirtusCharte consults 
the working memory (which was changed by the rules) to find the facts which indi-
cate actions to be undertaken on the Virtus platform and notifications to be sent. The 
actions undertaken by the methods of VirtusCharte are performed using web services 
in a session where VirtusCharte becomes a user of VirtusWeb. 

3   Conclusion and Further Work 

The originality of our work consists in proposing a declarative language to express 
contracts using declarative rules, commitments and role responsibilities and in auto-
matically executing the contract using a tailored knowledge-based system.  

In the medium term, the goal is to achieve an adaptive environment in the sense 
that VirtusCharte will run a contract originally adopted by a group and monitor how 
the effective behavior of groups complies with the terms of the contract when per-
forming a learning activity. If a discrepancy is found between the contract prescribed 
and the actual conduct of the group, VirtusCharte could propose changes to the con-
tract in order to be more in line with the group behavior [6]. The contract is then re-
negotiated and revised by the group members. 
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Abstract. This paper describes a proposal to build an intelligent feedback selec-
tion system for Intelligent Interactive Learning Systems (IILS). The system is 
aimed at generating multimodal feedback in real-time as a response to student’s 
actions. We examine both educational and human factors that have influence on 
the behavior and let the instructor decide the significance of each factor. The in-
structor will customize the system to refine its behavior in each training session, 
and while the system decides which the appropriate feedback is, the instructor 
can focus on other instructional tasks.  

Keywords: Feedback system, simulators, adaptive, customizable, training, vir-
tual reality, intelligent interactive learning system. 

1   Introduction 

Intelligent Tutoring techniques have also been used in well-known Virtual Reality sys-
tems like STEVE [1] showing some of the benefits that the combination of technologies 
can bring. However, as Virtual Reality evolves, increasingly complex systems can be 
developed and new challenges must be faced to build Intelligent Interactive Learning 
Systems (IILS), that is, systems that integrate both Intelligent Tutoring and Virtual Real-
ity technologies. 

This study is focused on advanced IILS. Specifically, a truck simulator is used as a 
demonstrator where the students feel like driving a real truck. Meanwhile, the instruc-
tor is in charge of monitoring and analyzing all the data to determine the performance 
of the students at the Instructor Position. The study presented in this paper is aimed at 
automating the process of giving feedback to the students during the training sessions 
while, the human instructor is in charge of other instructional tasks. 

2   The Feedback System 

Our objective is to build an adaptive and customizable feedback system for emulating 
desired behaviors. We focus our work on the real-time communication with the students 
in response to their actions. We deal with neither choosing the objectives of the task nor 
updating the student model. The instructor or the ITS (if it exists) must do this work. 
However, when deciding how to give feedback to the student, the objectives of the task 
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and a simple student model are necessary to provide every student with feedback adapted 
to them. We use a diagnostic component based on DETECTive [2] [3]. 

As regards the design of a customizable feedback system, we mean that the instruc-
tors must be allowed to choose and refine the behavior of the system according to 
their needs, for example letting the students explore with freedom and learning from 
their mistakes [4]. 

Two modules cooperate to make decisions in the feedback selection process and a 
third one is the responsible for the presentation of the feedback: 

 

Module 1: Discard insignificant messages. 
Module 2: Decide which feedback is the optimal feedback. 
 

We let the instructor decide the value of the main factor that characterizes the 
feedback system behavior, the intrusiveness, that is, how and how much the system 
can interrupt the student.  

The system can have different behaviors when choosing which messages from the 
diagnostic component to discard. The significance of every received message is esti-
mated, and negligible messages are discarded. To estimate the significance of a mes-
sage we use four parameters. First, time since last feedback is important in order to 
avoid overloading the student [18]. Then, the seriousness of the mistake, that repre-
sents the importance that the instructor assigns to a mistake from an educational point 
of view. The difficulty of the action is the third parameter involved in the significance 
estimation. The fourth parameter is the difference of level between the instructional 
level of the action and the level of the student.  

 

Fig. 1. Significance of errors with equi-weighted (white) and weighted (black) system 

 

Once all the partial significances are estimated, the global significance of the mes-
sage is estimated, then the instructor chooses weights for the parameters and the 
weighted average of all the partial results is calculated. 

In our experiment the actions are distributed along the time to form different re-
gions. These regions are defined by grouping actions that share a common feature 
related to the weighted parameters. Region A groups serious mistakes. Region B 
contains mostly easy actions and actions that the student worked in previous instruc-
tional levels (low level actions). Then we see region C where actions have low diffi-
culty. Finally, the actions in the region D belong to low level. 
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The experiment is aimed at showing how the changes of weight modify the final 
decisions of the feedback system. Initially, the feedback system is configured with 
equi-weighted parameters. Next, we assign a high weight to each parameter individu-
ally and we compare the decisions made by the feedback system with the results pro-
duced by the equi-weighted configuration. In order not to overload the paper, we will 
only show the relevant parts of each simulation. 

In Fig. 1 regions A and C show that significance is relevantly increased where the 
actions related to the modified parameter are present. In the center of the region D, 
there are actions with low difficulty, so, giving high weight to the difficulty parameter 
does not increase the significance. On the other hand, the difficulty of the actions is 
high in the borders, so the effect is similar to regions A and C. In B we see that the 
significance is either very high (when last feedback was long ago) or very low.  

3   Conclusions and Future Work 

We propose a customizable and adaptive feedback system which behaves as the in-
structor likes. We show how the decision of giving feedback change depending on 
how important is each parameter for the instructor. The system adapts itself to provide 
real-time multimodal feedback according to how the student performs every action 
during the whole learning process. 

Our next steps involve researching about the different types of feedback that can be 
used. Then, we will conduct exhaustive validation experiments with real students to 
test the effectiveness of the system from the educational point of view.  
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Abstract. One of the bases of adaptation and learning tracking is the learner’s 
modeling. Research in this field, or more generally in the field of user model-
ing, was sustained mainly on the detection of features related to the user’s 
knowledge, interests, goals, background, and individual traits [3]. We are inter-
ested in this last aspect, in particular the identification of the learning style. In 
this paper, we propose an approach for the learner’s activity perception on an e-
learning platform to identify the user’s learning styles from observable indica-
tors related to their learning path and interactions.  

1   Introduction 

Informing the teacher on the way in which the learner studies in distance learning is a 
fundamental element to organize the tracking in order to specify, at best, how and 
when the tutor intervenes. It also helps the learning or teaching contents designer to 
adapt them, to ensure an individualized learning, and gives the learners a reflexive 
glance on their learning methods so as to acquire a meta-cognitive knowledge. These 
characteristics, to locate, constitute the learner model. Different ways exist to model it 
[3]. Wenger distinguishes two levels [6]: a behavioral level, observed-reality organi-
zation and, in a more abstract way, an epistemic level which seeks to interpret this 
behavior and which often resides in a diagnostic function. It is on this level that we 
can identify the learner’s working method, or his/her learning style. In this paper, we 
propose a methodology to identify learning styles by the interpretation of observable 
indicators in educational hypermedia systems (EHS).  

2   Learning Style and EHS 

Several definitions of learning style are proposed in literature. To clarify this concept, 
Chevrier and al. [4] organize them into three categories, according to whether they 
refer to: a specific way of behaving, predisposition or preferences related to learning 
and teaching contexts; information processing; personality characteristics. In this way, 
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various learning styles models were proposed; Coffield and al. [5] count 71 models, 
of which some were implemented in educational hypermedia systems (WHURLE, 
CS383, ILASH, etc. [2]). The detection of these styles rests on questionnaires pro-
posed for each model (ILS, FSQ, etc. [4]).  

Our interest relates to the detection, in an e-learning framework, of learner’s learn-
ing styles by the automatic analysis of behaviors through the collection and interpreta-
tion of information (called tracks or observables) on the learner’s activities. To  
address this issue, we propose a methodology to identify learning styles by the inter-
pretation of observable indicators. To determine these indicators, we relied, on the 
one hand, on state of the art studies on digital tracks resulting from learning situations 
[7], and on the other hand, on the analysis of feedback that teachers want to have on 
their students. This was done through an investigation carried out with teachers. Thus, 
we detected the most significant indicators at the different navigation levels we can 
observe (page, course, platform and session). They were also classified according to 
the level of interpretation they provide [7]: low level (having no meaning alone), 
intermediate, and high level (interpretable, inferred from other indicators). The inter-
pretation is mainly based on the semantics of learner’s browsing path, relied on stud-
ies undertaken for the analysis of Web browsing semantics [1].  

To measure the learning style, we classify the studied learning style models pro-
posed in literature by connecting them according to our needs, based on the three 
elements of the learning style definition: 1) Educational preferences: environment 
preference, representations and encoding methods, preferred learning time; 2) Learn-
ing process: learning strategy, comprehension and progression approach; 3) Cognitive 
abilities: motivation and concentration capacity. Each layer is defined by two or three 
attributes we both can and want to observe, each attribute having a value. The values 
of each layer’s attribute are chosen from existing learning style models, by making 
their definitions closer. They are calculated from high level indicators as shown in the 
figure 1 for the comprehension attribute of the learning process layer. The proposed 
 

Learning Style / Learning process/Comprehension
Sequential - Global  Epistemic Level 

Navigation Typology:
Browsing, Searching

Browsing Pattern:
Path, Spike, Ring

  Behavioral Level
  High Level Indicator

Average Consultation duration of a 
course’s page: Tmp= Ds/Npd=5mn

Consultation type of pages 

Percentage of research actions on path’s 
pages: Tar=1,14

Chc: Consultation Chronology 

Path linearity: 
Tlc = Npd/Npc=0,5

Intermediate level Indicator

Number of different visited 
pages: Npd=7

Number of the path’s 
steps: Npc=14

    Low Level Indicator 

Number of previous 
access to the course=2

The Course Planned 
duration: 120mn

Course Metadata

Additional Data 

Semantics Proximity between 
visited pages: Prox=0,67

Session Duration:
Ds=45mn

Previous access 
Duration=20mn

Number of research 
actions/page

 

Fig. 1. Example of learning style calculation based on indicators 
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learning style model intervenes, therefore, on the epistemic level of the learner model. 
At the behavioral level, we find the already defined high level indicators. 

3   Conclusion 

In order to track user learning, we seek to understand the way the learner studies in an 
e-learning environment. Consequently, we developed a learning style model that takes 
its values from observable indicators, identified after the analysis of the feedback 
required by teachers. This approach allows the tutor to perceive learners individual 
characteristics on both epistemic and behavioral levels. It is also useful for adaptation 
and training individualization goals. The next step of this work is to observe the  
behavior of a group of learners in a context of distance learning course with no prede-
fined scenario. For validation and relevance, the results from the learning style detec-
tion based on indicators will be compared with those of questionnaires. 
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1   Context: A Collective Mediated Challenge 

We define a pedagogic collective challenge as a CSCL learning situation where: (1) the 
problem is designed to make learners practice some target domain-related and/or meta-
cognitive competencies; (2) a group of learners is involved, as a team, in the solving of 
the problem; (3) the solving requires the learners to join their forces; (4) the problem and 
the setting are designed to create a positive tension that motivates learners. Such chall- 
enges aim at enhancing learners’ motivation in involving themselves in the collective 
solving and, within this process, in knowledge generative interactions such as conflict 
resolution, explanation or mutual regulation [1]. 

We use as a case study a problem entitled “the race with no winner” (and the Flash 
simulation) defined by a community of practice dedicated to the use of simulations in 
mathematics and physics [5]. The simulation embeds 10 cars that can be put on a 
track. The cars have different behaviours (e.g., speed or dynamics). Learners must 
first test all the cars (with the simulation) in order to collect the data necessary to the 
establishment of a relation between the departure position of every single car and its 
arrival on the arrival line. This requires solving equations to determine speed, 
duration and distance. When the learners are ready, the tutor puts one of the 10 cars 
on the track and designates 2 others. The learners have to put these 2 cars on the track 
in order for the 3 cars to arrive on the arrival line at the same time. When done, the 
simulation is run to check their solution. There are thus 3 phases: (1) preparing the 
data (measuring and calculating the data related to the 10 cars); (2) calculating where 
to put the 2 cars after the tutor has selected his car and has put it on the track (this is to 
be done in a limited amount of time, on the basis of the behaviours of these cars as 
calculated at the previous step); (3) simulation to check if it is a success or a failure.  

2   Issue: Supporting Learners’ Self-organization 

A collective learning situation such as a pedagogic collective challenge is made up of 
two overlapping systems of activities: the collective problem-solving and the 
organization of this collective problem-solving. It corresponds to a particular case of 
collective work situation, i.e., a situation where the learners are mutually dependent in 
their work. Actors engaged in such interdependent processes must address an 
overhead activity, that of articulating (dividing, allocating, coordinating, scheduling, 



744 P. Moguel, P. Tchounikine, and A. Tricot 

 

meshing, interrelating) their respective activities [4]. This meta-level overhead 
activity aims at maintaining a more-or-less stable pattern of cooperative arrangement. 

The notion of learners’ self-organization denotes the meta-level activity that a 
group of learners engaged in a CSCL setting may engage in so as to maintain, within 
the reference frame that is externally defined by the setting, a more-or-less stable 
pattern of collective arrangement [2]. “Self” is meant to highlight that, in such a 
context, part of the organization is set by the setting (here, the challenge) and part is 
related to emergent features of learners’ enactment of the challenge at run-time. 

In our case study, learners only have limited amount to calculate where to put their 
cars (phase 2; in our experiments we gave them 20 minutes). Therefore, in phase 1, they 
must not only prepare all the useful data (i.e., calculate the different cars behaviours), but 
also organize themselves for the second phase: identify what are the different tasks to be 
achieved during phase 2 (acquire x, measure y, calculate z), and decide how to organize 
themselves (who will achieve each subtask, when and how). As we observed it in our 
experiments, they naturally engage (however, to different extents) in adopting a more or 
less explicit strategy and setting up a form of monitoring and regulation of the process: 
they self-organize themselves. 

Our research aims at designing a computer-based system that can (1) support 
learners in self-organizing themselves in the context of on-line mediated challenges 
and (2) provide tutors with means to analyze this organization and engage regulation 
actions. This requires, as a preliminary step, identifying a theoretical basis that helps 
analyzing the challenge enactment in a way that denotes self-organization issues. 

3   Model, Results, and Directions for Design 

In order to analyze self-organization 
issues we propose to use J. Bardram’s 
model (Fig 1). This model aims at 
perceiving breakdowns that may appear 
during collaboration, as a way to help 
in understanding the collaboration 
dynamics [3]. It stresses the dynamic 
transformations that may appear in a 
collective activity between the co-
ordination, co-operation and co-
construction levels. We present here below these different levels and their instances in 
our case study, as shown by the exploratory experiments we conducted. 

The co-construction is the level where actors focus on conceptualizing or re-
conceptualizing their own organization and interaction in relation to their shared 
objects. In our case, the experiments corroborate the classical issue of common 
ground: it is of crucial importance that learners develop a common vocabulary to 
reflect both on organizational issues (e.g., subtasks) and domain-related issues (e.g., 
data to be acquired). A specific phase/place allowing the elaboration (and, in case of 
difficulty or breakdown, revision) of a common view and vocabulary, and of the 
general scheduling of subtasks, is required. Drawing learners’ attention to this phase, 
proposing adapted means and allowing/facilitating tutor’s monitoring and regulation 

 
Fig. 1. Bardram’s 3-levels model [3] 
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of this phase are critical to enhance the chances students involve in communication, 
argumentation, analysis or reflection related to both (1) the problem-solving strategy 
and division of labor and (2) the domain-level issues (here, mathematical issues). 

The co-operation level is an intermediate level where actors are active at considering 
the shared objective. This enables them to relate to each other and make corrective 
adjustment to their own and others’ actions according to the overall collective objective. 
In our case, this level relates with how to achieve what has been planned: the role of each 
member (task attribution, task decomposition if necessary), the means to achieve the 
tasks (e.g., a tool to help in editing and structuring the data), the sequencing, etc. 
Organization must be made visible and presented in a way that allows learners and tutors 
to understand it to its details. 

The co-ordination level is the level where actors concentrate on the task they have 
been assigned. Their work is related to a common goal, but their individual actions are 
only externally related to each other: they realize the global task from the point of view of 
their individual activity. In our case, each learner is confronted with personal tasks: 
measuring distance or time, calculating speed, applying mathematical procedures, etc. 
Tasks, rules or roles have been fixed at the preceding level (and learners can come back 
to this upper-level by a bottom-up transition). Learners’ work is both separated but 
coordinated with that of other learners. 

Bottom-up transitions are related to an analysis of the object or the means of the work, 
which can occur in relation with a breakdown or an explicit shift of focus. Top-down 
transitions are related to the solving of problems and contradictions, and conduct to a 
stabilization of the object and means of the work. Transitions from one level to another 
can originate from two sources. Learners can spontaneously go from a level to another in 
relation with a difficulty they encounter, or by a voluntary shift of focus. Such transitions 
correspond to self-organization dimensions as defined previously. In our case another 
origin for transition appears: the learners’ process is monitored by the tutor. He can 
launch regulation actions such as drawing learners’ attention to the fact they should shift 
from a level to another (i.e., interact about a feature of another level than the current one) 
in relation with a problem encountered by a learner or by the group, an anticipation of a 
breakdown, a pedagogical opportunity, etc. This requires means to detect such issues.  
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Abstract. Tailoring material to the individual learner for delivery on handheld 
computers represents a major challenge. Most of the current work in mobile in-
telligent tutoring systems is more related with personalized systems because 
they do not support any artificial intelligent technique for implementing the 
adaptive part in the applications. In this paper, we present MLTutor, an author 
tool to facilitate the creation of adaptive learning material to be used in mobile 
devices applying an artificial intelligence approach.  

1   Introduction 

Adapting learning material to the individual learner for mobile computers is a current topic 
[1, 2, and 3]. However, while there is a growing interest in opportunities for adapting an 
interaction to the specific needs of the individual on handheld computers, this is mostly 
not concerned with authoring tools for self-regulated building of learning material.   

The task of creating courses for mobile devices is not a simple work, and requires 
technical knowledge of the computer science field (design, programming, etc.).  

In order to deal with the new challenge of producing adaptive learning applica-
tions, we implemented an author tool where a non-programmer instructor can more 
easily produce Intelligent Tutoring System for mobile devices. 

Firstly, the author imports learning objects previously created under SCORM com-
pliant and other files from different formats like PDF, DOC and HTML. The material 
is distributed under four different student learning styles according to the theory of 
Multiple Intelligences by Gardner [4]. This work can be performed in any computer 
with Java support. Secondly, the author exports the courses to the mobile device. The 
courses can dynamically recognize user learning characteristics and adaptively pre-
sent customized learning material tailored to the learner. The tool has been tested 
extensively by creating several courses for different purposes and for different kinds 
of mobile technologies and architectures. 

With respect to related work, there are some author tools used to create mobile appli-
cations like MyLearning [5], zirada[6], and Test Editor [3]. They are more focused to 
quiz editing or game-based learning. But, none of those author tools have the capability 
of adaptation to the user’s form of learning and the tool’s portability across different 
computer and operating system platforms. 
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2   Test and Results 

Figure 1 shows a running example using MLTutor for an Object-Oriented Analysis 
and Design course. We show four different instances when building/editing the struc-
ture and the fuzzy sets and when executing the course in a mobile phone.   

CHAPTER

CONTENT  QUIZ

EDITING A FUZZY
SET

CHAPTER

CONTENT  QUIZ

CHAPTER

CONTENT  QUIZ

EDITING A FUZZY
SET

 

Fig. 1. A Running Example 

3   MLTutor Architecture and Implementation 

Figure 2 illustrates the architecture of the author tool. There exist two principal actors: 
the author and the student. The first one creates courses by editing the learning ma-
terial to four different instances or student learning styles: Logical/Mathematical, 
Verbal/Linguistic, Visual/Spatial and Musical/Rhythmic. The intelligent module 
consists of three sub-modules: fuzzy-logic, neural-network and linguistic-variables 
sub-modules. The output of the editor can be a Mobile Course or a SCORM course. 
When a mobile course is exported to a mobile device, a XML interpreter is added to 
the course. This interpreter displays the material of the course into the mobile device 
according with the learning style of the student or learner. A profile of the student is 
produced according to linguistic variables stored in the intelligent module. The vari-
ables keep linguistic values on the learner’s performance during the accessing to a 
course. Some values are: the time spent in a chapter or in a question, the number of 
correct answers, the answers selection order, etc. 

MLTutor was implemented using Java and XML since both technologies are plat-
form independent. The Intelligent Module was implemented by three components: a 
domain module, a user profile, and an inference engine.  
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Fig. 2. General Architecture of MLTutor 

4   Conclusions and Future Work 

MLTutor is an author tool that allows an instructor to produce mobile intelligent tu-
toring systems. One feature of the tool is simplicity, allowing a fast creation of mobile 
applications. Future work includes implementing the part of the neural net so the 
intelligent tutoring system can also learn from experience. Another future step is to 
conduct a user study with learners of the products developed with the tool.  
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Abstract. VanLehn argued that an essential feature of many intelligent
tutoring systems (ITSs) is that they provide feedback and hints on every
step of a multi-step solution.But if step-based feedback and hints alone
suffice for strong learning gains, as Anderson et al. conjecture ([1]), then
perhaps a lightweight tutoring system that employ only feedback and
bottom-out hints would have advantages. This motivates the current
project.Using Excel there are some immediately advantages that can be
obtained: most people is familiar with its user interface and its notation
for mathematical expressions, Excel already contains facilities for solving
some systems of equations and it can be easy combined with many other
pieces of software, making it easier for instructors to include the tutor
in their course activities. Finally, web-based delivery is simple because
most students already have and use Excel.

1 Introduction

It was already tested on some well-kown ITS that providing feedback and hints
on every step of a multi-step solution is an essential feature. It is not clear yet
whether step-based feedback and hints alone suffice for strong learning gains, as
Anderson at al. conjecture ([1]).

We wonder if the spreadsheet program Excel would allow easy construction
of an ITS that would teach the same class of equation-based task domains as
Andes (VanLehn at al. [3]) and Pyrenees (VanLehn et al. [2]). In these task
domains, students solve a problem by defining variables, writing equations and
finally solving the system of equations algebraically.

2 Using XTutor

As Fig. 1 illustrates, a problem in our Excel-based tutor, XTutor, is presented
as an Excel worksheet with the statement of the problem on the first row of
the sheet. Rows three and four briefly explain what should be entered in each
column and how. All the other rows are filled in by the student.

Figure 1 shows the worksheet after it has been filled out by the student. Each
row has:

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 749–751, 2008.
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Fig. 1. Example of a problem in XTutor

1. a variable name that is automatically filled in by the tutor when the student
selects its definition

2. a definition for the variable that is selected from a problem-specific menu of
all possible variables definitions.

3. an algebraic formula, typed in by the student, to compute the variables value
4. a numerical value for the variable, filled in by the tutor, as the result of the

previously introduced formula
5. units for the value, typed in by the student
6. the name of the principle that justifies the algebraic expression used for the

variables value or other type of short justification selected by the student
from a list of all possible justifications defined for that particular problem.

XTutor provides feedback on each student entry. Variables used in a formula
that were not previously defined are signaled by a #Name type of error in
the Value field. Algebraic expressions, units and justifications are also given
immediate feedback. Moreover, if the student asks for a hint on a cell, the system
can give a sequence of hints, where the final bottom out hint says exactly what
should be entered in the cell.

At the end, the < Done > button checks if the problem was correctly and
completely solved.

3 Authoring Domain Knowledge for XTutor

XTutor is an example-tracing type of tutor. That is, the domain knowledge of
the system consists of a set of examples, one per problem. The example contains
at least one and possibly several complete solutions to the problem.

The author enters an example exactly as a student would when solving the
problem, except that the author must enter all the cells by herself. This suffices
for giving immediate feedback and bottom-out hints. If the author wants any
hints besides the bottom out hint on a cell, then the hints must be entered for
that cell specifically.
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4 Positive and Negative Features of XTutor

The main advantage of XTutor is its simplicity, for both students and authors. It
takes only minutes to learn how to use it. A second feature is that once students
have seen how to use Excel in this fashion to solve problems, they can continue
to do so without the help of XTutor. Thus, we expect significant transfer from
XTutor to unsupported problem solving using Excel.

However, there are certainly drawbacks to XTutor. In a solution, every vari-
able appears in two or more equations. It is sometimes not clear to the student
which equation should be written in the row for a variable. Students often pre-
fer to work forwards from the given values. Usually, this eliminates all choices.
However, even using this strategy, choices sometimes remain.

Take, for example, the following problem: How many liters of 70% alcohol so-
lution must be added to 50 liters of 40% alcohol solution to produce 50% alcohol
solution? Suppose the student is working on a row for tot mix, which represents
quantity, in liters, of the mixture. There are two choices: tot mix=tot low+tot high
or tot mix=alc mix/pr mix, where tot low and tot high are the total quantity of
low and high concentration solutions, alc mix is the total quantity, in liters, of al-
cohol in the mixture solution and pr mix is the percentage of alcohol in the mix-
ture solution. If the student picks the first version then she must first think what
formula to assign to tot high (or tot low) since tot high=tot mix-tot low is not per-
mitted anymore. Similar problems appear if the second formula is used to define
tot mix. When assigned to more skilled solvers, such problems may actually be
beneficial, as they encourage students to plan their solutions before writing them
down. Thus, we see this feature as positive but with a potential for misuse.

The domain generality of XTutor has already been tested in a preliminary way
by authoring problems in three task domains: physics, math and chemistry. The
next step is to try it out on students, first in pilot studies and then in comparison
to paper-and-pencil and an established tutoring system, such as Andes.
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Abstract. One of the main problems facing the development of ontology-aware 
authoring systems (OAS) is to link domain-independent knowledge (ontologies) 
with content of a specific domain. In collaborative learning (CL), this problem 
hinders the development of OAS that aids the design of pedagogically sound 
CL sessions with strong technological support. In this paper, we propose a 
framework to connect an ontology that represents CL explicitly with domain 
content without asking end-users to create their own ontologies from scratch. 

Keywords: ontology-aware authoring system, ontological engineering, CSCL. 

1   Introduction 

One of the main problems facing the development of ontology-aware authoring systems 
(OAS) is to link well-designed domain independent knowledge (ontologies) with the 
contents of a specific domain [1]. In OAS for collaborative learning (CL), on one hand, 
we have a very powerful and sharable knowledge that can be used to support CL sessions 
with theoretical justifications. On the other hand, we have domain-specific content that 
needs to be adequately connected with theoretical foundations to provide a well-designed 
CL session. To solve this problem, this work proposes a framework that connects domain 
independent ontologies, specifically the CL ontology [2], with domain-specific content 
and learning objects (LOs) without the necessity of asking end-users to create new on-
tologies. This approach promotes a user-friendly way to implement the CL ontology by 
offering a graphical visualization of information along with templates that help users to 
link adequate LOs with the instantiated concepts in the ontology. 

2   A Framework to Support Ontologies, Domain Content and LOs 

In order to develop a system to support the design of CL activities based on ontolo-
gies, we have been developing CHOCOLATO (Concrete and Helpful Ontology-
aware Collaborative Learning Authoring Tool)—an ontology-aware system that uses 
ontologies developed in the Hozo ontology editor (http://www.hozo.jp) to provide its 
theoretical knowledge [3]. One of its sub-systems, called MARI (Main Adaptive Rep-
resentation Interface) allows the representation of learning theories on the screen 
using the Growth Model Improved by Interaction Patterns (GMIP). The GMIP is a 
graph model based on an ontological structure that describes an excerpt of learning 
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theory. It represents, in a simplified way, the learner's knowledge acquisition and skill 
development processes, and explains the relationships between learning strategies, 
educational benefits and the interactions used to achieve these benefits.  

Using the ontologies and the GMIP, MARI can select appropriate learning theories 
that support CL and suggest a consistent sequence of activities for learners in a group. 
The suggestions given by our system are guidelines that can be used to propose CL 
activities based on theories which (a) preserve the consistency of the CL process and 
(b) guarantee, to some extent, a suitable path to achieve desired benefits. MARI is 
strongly based on domain-independent ontologies. This means that it can provide 
domain-independent recommendations that can be used in different situations and are 
justified by theories, but it does not consider the actual domain in which the recom-
mendations will be applied. Thus, to augment our research and show that a theoreti-
cally valid approach can be applied in real environments, we propose a framework to 
link domain-specific content into our model GMIP and our ontologies. The proposed 
framework, shown in Figure 2, has four linked layers. The top two layers are com-
pletely domain-independent, representing the knowledge about CL, learning theories 
and learning stages of a learner. The two bottom layers are related to domain-
dependent content. One is related to the knowledge and skills of the domain-specific 
content and the other is related to the LOs connected with this content. 

Learning 
resources

Knowledge/
Skill

LO1

LO2

SK SK

SK SK

SK SK

SK SK

GMIP

Learning 
stage

Domain 
dependent
learning objects

Domain 
independent 
ontologies

(a)
(b) (c)

(d)

boundary

 

Fig. 1. Framework to link domain independent ontologies, domain specific content and LOs 

We define the learning stage layer (top layer in Figure 2) as a set of nodes of dif-
ferent GMIPs where each node represents the stages of knowledge acquisition and 
skill development. The second layer is the GMIP. In this layer we show how learners 
can develop their knowledge/skills as transitions between nodes. In previous works 
we presented how this model was created and used to design CL activities [3].  

To define the third layer and link it with the second layer, first of all, given a do-
main-specific content and a learning goal, we must separate the knowledge from the 
skills necessary to achieve this goal in the specified domain. The knowledge to 
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achieve the learning goal should be decomposed into different sub-knowledge pieces 
to be acquired. Similarly, the skills should be decomposed into sub-skills to be devel-
oped. The final structure will be a decomposition tree that identifies the minimum 
knowledge and skills necessary to achieve a domain-specific goal. The granularity of 
the decomposition tree depends on the learning goals and the expertise of the user 
who creates the tree. Note that this tree represents the knowledge and skills to be 
developed without any reference to how it will be developed. Using this approach, we 
can separate information about the content from information about how to learn the 
content. Such differentiation is important when we think about learner-centered envi-
ronments where the environments adapt the way to provide information or the way to 
teach the same content according to learning/teaching preferences. 

To complete the mapping of knowledge and skills into GMIP it is necessary to ex-
plicitly identify the relationship of the knowledge/skills in the tree. Each skill can be 
related to one or more pieces of knowledge and vice-versa. For each relationship 
knowledge-skill we can create an instantiated GMIP, which will then be able to sup-
port the development of this knowledge and skill in the specific domain. To facilitate 
such a task, we provide templates that help users to adequately understand the knowl-
edge and skill development process. Furthermore, it helps to create a support system 
that semi-automatically maps specific knowledge/skill into GMIP and the CL ontol-
ogy. The last layer in our framework is the learning resources layer. Each resource is 
a learning object that can be used to improve a domain-specific knowledge or skill. 
The LOs can be linked with the third layer and end-users can add/remove LOs to 
satisfy specific conditions in the environment where the learning will occur. 

3   Conclusions 

To create intelligent educational systems based on well-grounded theoretical knowl-
edge and to apply them in real environments are two important challenges that re-
search in the development of ontology-aware systems are facing nowadays. In order 
to solve these problems in the context of CSCL, we proposed a framework that in-
tends to connect the CL ontology [2] with domain content and LOs intermediated by 
our model GMIP. By providing this connection, we can offer a more user-friendly 
way to design pedagogically sound CL sessions in a specific domain with strong 
technological support. Such an approach seems to be more reliable than other ap-
proaches, especially because it removes the burden of asking end-users to create on-
tologies for each domain of application. 
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Abstract. Narciss’ theoretical framework for informative tutorial feed-
back (ITF) suggests to adapt the feedback along the dimensions: content,
procedure, form, and presentation according to the task, the learner’s re-
sponse and to the learner’s characteristics and particular situation. As
prerequisites for the adaptations we devised a knowledge representation
for exercises to which various tutorial and presentation strategies can
be applied. We also developed techniques for generating the procedure,
form and presentation of feedback.

1 Introduction

Widely investigated feedback strategies in computer-based instruction are
’knowledge of result’ (KR) that just informs the learner whether her answer
is correct or incorrect, ’knowledge of the correct response’ (KCR).1 Informa-
tive Tutorial Feedback (ITF) refers to elaborate feedback types that provide
strategically useful information. The empirical results about the benefits of those
strategies are inconclusive.

[5] provides a theoretical framework for ITF that postulates the need to adapt
the feedback’s content, procedure, form, and presentation not only to the stu-
dent’s response and task but also to the learner’s characteristics and to the par-
ticular situation. Hence, our ultimate goal is to adapt feedback in ActInMath

along those dimensions.
As prerequisites for the adaption of feedback in interactive (multi-step) ex-

ercises we devised a knowledge representation for exercises to which a number
of tutorial and presentation strategies can be applied. We also implemented
functions that transform an exercise representation into a representation with
a common tutorial stratgey extracted from teachers’ practice, Naricss’ experi-
ments, and our own tutoring experience.

2 Generation of Tutorial Strategies

ActInMath’s exercise system player can handle pre-scripted and generated
exercises. Pre-scripted exercises are authored as finite state machines (FSM)
� This publication was supported by Deutsche Forschungsgemeinschaft, DFG, project

ATuF ME 1136/5-1.
1 Also called bottom out.
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including edges representing correct and typical incorrect student input and its
diagnosis, and nodes representing the system’s (re)action to correct responses
and to the causes of errors.

There are three types of states in an exercise FSM: tasks, so-called interactions
representing interactive elements using which the learner enters the solution, and
feedbacks of different types. As we see later, such separation provides a basis for
reusability of different states when applying tutorial strategies.

Exercises can be also completely generated with the help of a domain reasoner.
A partial FSM of such an exercise is dynamically generated from the solution
space of the problem produced by the domain reasoner.

A Tutorial Strategy defines the procedure of the interactions, as well as form
and content of feedback, presented to the learner. These dimensions of feedback
are considered to be important for learning, as suggested in [5]. Therefore, our
main research question is how to devise Tutorial Strategies and exercise repre-
sentations enable adaptation to these substantiated dimensions.

Technically, in order to change the procedure and the form of feedback, (as
part of) an exercise FSM is transformed into another FSM. In order to choose
appropriate feedback content, a feedback generator component is invoked. Feed-
back generator first tries to find the feedback of the needed type in the exercise
FSM and if such is not authored, generates it. Since interactions are separated
from tasks, the strategy can vary the procedure of interactions without modify-
ing the tasks, the form and content of feedbacks can be varied as well in which
the feedbacks with needed properties only are shown or replaced with generated
ones.

Two commonly used tutorial strategies that we have implemented are
decompose-into-subgoals and simpler-version.

The algorithm for decompose-into-subgoals transforms a problem statement
into subgoals - this is a procedure change. The algorithm for simpler-version
strategy transforms the content. The resulting feedback suggests to solve an
easier problem for the same concepts and competencies, and when the student
succeeds with that the original problemis reinvoked.

The set of simpler versions of a problem may be dependent on several param-
eters, such as the focus concepts, the task, learner’s mastery values etc.

A Presentation Strategy defines the GUI appearance of the exercise. It defines
how parts of the exercise states are rendered. This includes windows, buttons,
placement of feedbacks within a window and other presentational aspects such
as different foreground and background color, highlighting, icons, etc. A Presen-
tation Strategy can also define whether previous responses, feedback and hints
should be visible or not.

3 Recent Related Work

Instructional benefits of elaborate feedback were obtained in empirical studies
which selected the feedback components on the basis of cognitive task and er-
ror analyses, and assembled them as a multiple try feedback (e.g., [1,6]). The
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relatively simple variations for elaborate feedback included a varying number of
student trials plus location of error and KCR vs. KR and KCR only.

A corpus study of human-human dialogues in foreign language learning [3]
elicited a number of feedback strategies teachers use in foreign language learning:
for positive feedback this includes acknowledgement, acceptance, repetition, and
rephrasing; corrective giving-answer strategies include repetition, recast, explicit
correction, give answer, show (location of) error; corrective prompting-answer
strategies include clues without giving the target form, clarification request, and
elicitation.

Related work also includes Hefernan’s Ms.Lindquist [4] that has four feedback
strategies for algebra word problems: concrete-articulation, explain-verbally,
abstraction-and-substitution, and worked-example. Its rich tutorial strategies
resulting from observation of tutors are used in a fixed way and encoded in the
exercise representation. The actual presentation is fixed too.

4 Future Work

The issue how and when Tutorial and Presentation Strategies should be used
to optimize learning is future collaboration with our psychology partners. Based
on their empirical results we shall devise a model for the adaptation of tutorial
strategies and presentation strategies. This model will comprise not only the type
and cause of error and task but also the student’s competencies and motivation.

For instance, if a learner has a weak self-efficiacy, it is detrimental to provide
negative feedback [2]. Therefore, an alternative feedback to an incorrect answer
could be to pose a similar but simpler task which still trains the same skill.
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Abstract. Authoring the knowledge base for an intelligent tutoring system 
(ITS) is difficult and time consuming. In many ITS, the knowledge base is used 
for solving problems, so authoring it is an instance of the notoriously difficult 
knowledge acquisition problem of expert systems.  General tools for knowledge 
acquisition have shown only limited success, which suggests developing tools 
that apply only to specific kinds of knowledge bases. Pyrenees is an ITS whose 
knowledge base is composed mostly of conditioned equations. We have devel-
oped several tools for authoring Pyrenees knowledge bases. This paper focuses 
on a novel and particularly powerful tool that uses bidirectional search to locate 
bugs in the knowledge base. In several evaluations, human authoring was sig-
nificantly faster when the tool was available than when it was unavailable 

Keywords: Bi-directional search, authoring tools, automatic error detection on 
knowledge. 

1   Introduction 

ITS can be classified depending on how their inner loops represent domain knowledge. 
One classification, which is the focus of this paper, is tutors whose domain knowledge 
solves the same problems that the students does and thus “model” the desired ways to 
solve them. These ITS are sometimes called model-tracing tutors, although that term is 
often taken to denote the particular technology used by CMU tutors [8] and Carnegie 
Learning  (http://www.carnegielearning.com/).   

In this paper, we describe the authoring tools used with Pyrenees [10] [11].  Pyrenees 
uses a large set of knowledge components, called principles, to solve a problem. How-
ever, what makes Pyrenees unusual is that most of its principles are conditioned equa-
tions. That is, such a principle asserts that under certain conditions, a certain equation  
is true. This allows a sophisticated error detection method to be used to located buggy 
principles.   

In Pyrenees, Each principle is represented by a condition and an equation, where the 
condition indicates when the equation holds (Fig. 1). A set of problems, like the princi-
ples, are expressed in terms of the ontology. Fig. 2 illustrates a problem named “isobaric 
expansion of water” which would be stated in English as “A reservoir contains a liquid, 



 Bi-directional Search for Bugs 759 

called water, of mass 0.001 kg and heat capacity 4,196 J/(kg*C).  The pressure is held 
constant at 200,000 Pa.  As the water is heated, it increases its volume by 0.000001 m^3 
and its temperature by 31 C.  What is the work done during this time?”  

 
Pa_true(isobaric_expansion(Gas, T) ):- 

gas(Gas),  
        time_interval(T), 

constant(var(at(pressure(Gas), 
T)). 

Pa_equation(isobaric_expansion(Gas, T), 
W=P*Vdiff):- 

              W=var(at(work_done_by(Gas), T)), 
              P=var(at(pressure(Gas), T)), 
              Vdiff=var(at(diff(volume(Gas), T))). 

Fig. 1. Predicates defining a condition (pa_true) and equation (pa_equation) 

p_definition(isobaric_expansion_of_water, 
 [substance(liquid), 
   reservoir(liquid, _, _), 
   known(var(mass(liquid)), dnum(0.001, kg)), 
   %heat capacity 
   known(var(heat_capacity(liquid)), dnum(4196, 'J/(kg*C)')), 
   known(var(pressure(liquid)), dnum(200000, 'Pa')), 
   known(var(diff(volume(liquid))), dnum(0.00000001, 'm^3')), 
   known(var(diff(temperature(liquid))), dnum(31, 'C')), 
   sought(var(work(liquid)), dnum(0.002, 'J'))             ]).                    %answer; 0.002  

Fig. 2. An example of domain problem 

Pyrenees solves problems via a version of backward chaining called the Target 
Variable Strategy [10] [11]. The basic idea is simple: Given a sought quantity, gener-
ate an equation that applies to this problem and contains the sought quantity. Include 
it in the set of equations that comprise the solution.  If the equation has any quantities 
in it that are neither known nor previously sought, then treat them as sought and recur. 
When the Target Variable Strategy stops, it has generated a set of equations that are 
guaranteed to be solvable. 

2   Error Detection Using Bidirectional Search 

Whenever we add a new problem, we call the problem solver to see if it can be solved. 
The most frequent sign of a bug is that a problem cannot be solved. This occurs when 
some principle that should have applied did not get applied. One heuristic to try to find 
the spot where the principle should have applied is to focus on the dead ends. A dead end 
is a sought quantity that cannot be calculated from the known quantities. It is likely, but 
not certain, that a principle should be applied to the dead end, but it failed to apply be-
cause the principle was buggy. Although one could examine the dead ends of the tree by 
hand, there can be hundreds of them.   

Bugs that prevent a principle from applying can appear in 3 locations. The bug could 
be in (1) the principle’s condition or (2) in the problem statement. Pyrenees also has a 
few knowledge components that are now conditioned equations, but instead draw infer-
ences that bridge between a principles condition and the problem statements. (3) Bugs in 
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these rules can also prevent a principle from applying. Fig. 3 illustrates 3 different kinds 
of errors. These errors are common, hard to notice by inspection and will block a princi-
ple from applying.  

The bi-directional tool starts by creating all possible forward chaining trees. That is, it 
generates all applicable equations, then use them repeatedly to generate values for all 
possible quantities. None of the dead end quantities will be among these quantities with 
known values, because otherwise they would not be dead ends.   

pa_true(isobaric_expanson(Gas, T) ):-                        %  Typo. Should be “expansion” 
 gas(Gas),  
              time_interval(T), 
 constant(var(at(pressure(Gas)), T)).             % Wrong parenthesis.  Should be …Gas), T))) 
constant(Quantity):- 
 known(Quantity, _), 
 \+(     Quantity=at(_, T) 
                  ;      time_interval(T)   ).                          % OR (;) should be AND (,) 

Fig. 3. Examples of bugs  

However, a dead end may be “one equation away” from the known quantities.  
Thus, given a dead end quantity, we search for a principle such that one (or more) of 
its variable specifications unifies with a dead end quantity (W in Fig. 4) and all of the 
remaining variable specifications unify with known quantities (P and Vdiff in Fig. 4). 
If we find such a principle, then we know that if it had applied, the dead end would 
not exist. Thus, a bug must be preventing the principle’s condition from unifying with 
the problems’ description.   

Principle 

isobaric_ 
expansion

sought 

known

known
known

known

Solution tree                                                                Forward chaining trees 

Var W

Var P

Var Vdiff

 

Fig. 4. Bi-directional search identifies a principle whose condition isn’t satisfied 

3   Evaluation and Conclusions 

In order to evaluate the effects of using the bi-directional tool, two kinds of experi-
ments were performed. The task domain was thermodynamics, and it included 14 
problems and 15 conditioned-equation principles. The lead author of this paper was 
the debugger.  
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Fig. 5. The result of experiments 

 

Fig. 5-(a) and (b) shows the results for error detection tests on automatically gener-
ated errors. The average time spent per a test with the tool was shorter than without 
the tool (281 vs. 634 seconds, p = 0.00008). Fig. 5-(b) shows debugging time using 
the tool either the cases when error detection succeeded or failed. The average time 
spent when error detection succeeded was shorter than when failed (151 vs. 474 sec-
onds). When error detection failed, the time spent didn’t show significant difference 
from the time without using the tool (p = 0.35). 

For the authoring test, the number of domain problems was 13 for each domain (to-
tal 26). Thermodynamics and sound/wave domains were implemented in each of two 
passes. Fig. 5-(c) shows the result of knowledge adding tests using the alternation 
scheme. Authoring the tool was significantly faster than without using the tool (58.38 
minutes vs. 90.36 minutes, p =0.017).  

Although Pyrenees already had state-of-the-art tools for authoring, including a 
visualization tool, ontology-based checking of principle semantics and regression 
testing, we found that a new tool, based on bi-directional search, significantly acceler-
ated authoring. When a problem cannot be solved, the tool searches through the dead 
ends in the tree generated by the normal, backward chaining problem solver used by 
Pyrenees. If it can find a dead end that is “one principle away” from a known quanti-
ties developed by forward chaining, then it is likely that this principle should have 
applied but did not because its condition failed to match the problem’s description. 
This localizes the bug, which makes it much easier to spot. Evaluations indicated that 
the tool saved time, and the difference was statistically reliable.   
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Abstract. We describe the design of a computer system for problem field gen-
eration in mathematics. The concept of problem field refers to a sequence of  
related problems. The relationship between the problems assures that their suc-
cessive solution promotes deep learning of the topic (sequence problems). We 
define four relations between the field’s problems: difficulty and rule, question 
or property preservation. The problem’s difficulty is given by problem-type, al-
gebraic complexity and difficulties of the problem’s question and rule used for 
solution. A problem field based on difficulty will modify one of the above ele-
ments in order to get new problems from existing ones. In rule- and property-
preserving generation the field’s problems differ in their type or difficulty level. 
In question preserving generation the problems maintain the initial problem’s 
unknown. Once the details of the change are established the new problem will 
be generated using templates, rules and examples.  

Keywords: automated problem generation, problem fields, mathematics. 

1   Introduction 

During the last decade automated problem generation received considerable attention, 
not only from specialists involved in the development of large scale tests but also 
from researchers in the field of Intelligent Tutoring Systems. The employed genera-
tion methods vary considerably  [1, 2] as well the application domains.   

Our approach is different since we part from a cognitive account of problem gen-
eration, that is, we build on empirical experiments of problem generation done by 
students and teachers [3]. By such way we expect to extend the systems capabilities 
beyond that of the use of predefined rules. The application domain is mathematics.  

The main purpose of mathematical education is to lead to deep learning [4]. 
Pehkonen suggests to use open-ended tasks for such purpose and propose the use of a 
set of connected problems (problem field). There is no explicit specification of the 
type of connection; but it is important to draw the student’s attention to an aspect that 
would not be so evident with isolated problems. In the paper we describe the design 
of our system for problem field generation in the domain of mathematical analysis, 
specifically in the topic of numerical sequences.  
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2   System Design 

In this section we describe the system’s design from two point of view: the process of 
problem field generation and the employed knowledge structures. 

The automated process starts with selecting the connection between the problems, 
defining the problem templates and enters a “pose-improve” cycle. There are four 
types of relations defined in the system: increasing difficulty, rule, question and prop-
erty-preservation. The term strategy denotes the process of electing one of these rela-
tions and describes the generation process at high level. The selected strategy imposes 
constrains on problem characteristics. For example, the rule-preservation strategy 
restricts the types of problems that can be used. Once a problem type has been se-
lected, the system draws on the knowledge stored in the system to fill in the missing 
elements. The “pose-improve” cycle it is necessary, since it can happen that the pro-
posed problem is not satisfactory (it is not enough difficult). The process is synthe-
sized in figure 1. The knowledge base is stored in the long-term memory (LTM), 
meanwhile the problem under construction is in the short time memory (STM). The 
“pose-improve” cycle transfers information from LTM to STM. 

 

Fig. 1. The problem field generation process 

It has to be said that the cyclic view of problem field generation requires to define 
some criteria for assessing problem difficulty and ending the generation process. 
Problem difficulty arises from the employed rule, expression, question and the type of 
the problem. Rules have associated a difficulty level in function of their use in text-
books: more common rules are easier. The difficulty of the problem’s expression 
depends on the presence of parameters, number of involved concepts, needed trans-
formations and algebraic complexity. Question difficulty depends on problem type.  
Rules, questions and problem types were identified from textbooks. The condition for 
problem field generation is to propose problems with increasing difficulty. The gen-
eration process ends when problems have the desired difficulty. 
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The knowledge base contains: strategies, templates for problem types and expressions, 
examples, domain-specific rules, questions and techniques for modifying problems. The 
problem type templates describe the form of the general term. Expression templates refer 
to generic expressions that can be instantiated by replacing variable values with con-
stants. The rules allow to combine previous problems into a new one. Questions refer to 
some property of the sequence. The techniques describe ways to obtain some expression 
with desired property. The frame of the rules and techniques have two special slots. One 
stands the condition of application and the second for the result. This information helps to 
connect the steps in the generation process.  In figure 2 we give an example of the gen-
eration process. 

 

Fig. 2. The outline of an example generated by the “maintain rule” strategy 

 
The strategy specifies the set of actions to be carried out. Next the rule is chosen 

and then decided the available problem types. The system starts with the type of low-
est difficulty as problem 1 and then the next problems are chosen from types with 
higher difficulty. An example generation is given for the Weierstrass rule. 

In conclusion, the systems’ design is based on empirical studies carried out with 
pupils, students and teachers. The generation process is modeled as a “pose-test” 
cycle that starts with the selection of a strategy. At its turn, the strategy impose re-
strictions on the problems. During “pose-test” cycle  the problem is constantly modi-
fied until the desired level of difficulty is achieved. 
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Abstract. Client-based intelligent tutoring systems present challenges
for content distribution, software updates, and research activity. With
server-based intelligent tutoring systems, it is possible to easily distribute
new and updated content, deploy new features and bug fixes, and allow
researchers to more easily perform randomized, controlled studies with
minimal client-side changes. Building a scalable system architecture that
provides reliable service to students, teachers, and researchers is a chal-
lenge for server-based intelligent tutors. Our research team has built As-
sistment, a Web-based tutor used by hundreds of students every day in
the Worcester and Pittsburgh areas. Scaling up a server-based intelligent
tutoring system requires a particular focus on speed and reliability from
the software and system developers. This paper discusses the evolution
of our architecture and how it has reduced the cost of authoring ITS and
improved the performance and reliability of the system.

Keywords: ITS, Web-based tutor, scaling, architecture.

1 Introduction

The idea of Web-based intelligent tutoring systems has been around for many
years. Ritter and Koedinger suggested the possibility transitioning to Web-based
tutors as early as 1996 [4] and he predicted many of the performance problems
that we experience today.

Server-based tutoring systems have many advantages over client-based ap-
proaches [1]. Accessibility is an important concern for tutoring systems. Stu-
dents, teachers, and content creators all must have access to the system. Because
of widespread Internet access, Web-based tutoring systems have the potential
to provide access to many more users than can be reached with client-based
software. Brusilovsky has claimed that Web-based systems have longer lifespans
and better visibility than client-based [2]. Web-based systems virtually elimi-
nate much of time and cost of installing software on individual client machines.
Another advantage of server-based architectures is greater control over content
distribution. Software updates and configuration changes are easily manageable

B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 766–770, 2008.
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with server-based architectures. Data collection is simplified by a centralized
system. In addition, the data are available immediately in the form of reports.

The disadvantage of server-based systems is scalability as centralization of
resources can create bottlenecks. This paper describes our ongoing efforts and
solutions for addressing scaling problems in our system. The first part of the pa-
per discusses different architecture problems and solutions through our research
project evolution. Second, we propose a new hybrid architecture that addresses
many scalability issues for ITS researchers.

2 Architectures

We were interested in architecture models for load-balancing and for fault-
tolerance for online learning, which is becoming increasingly important [6]. In
the case of a 24 hour/7 day per week service, reliability is of great importance.
The system needs to be active and responsive otherwise we can lose valuable
students, teachers, and schools who are unwilling to wait for service.

2.1 First and Second Generations — Tomcat Implementation with
Scalability

The first version of the system was in Java. Our infrastructure contained two
Web servers, two Tomcat application servers, two load balancers (master-slave),
Web cache system, and one back-end database server [3]. Our software has four
main components: 1) a “portal” though which students and teacher log into, 2)
a “runtime” where students get tutored, 3) a “reporting” system where teachers
get reports on what their students have done, and 4) a “content builder” used
by teachers and researchers at CMU and WPI.

Given that we run about 100 classes, we wish to see how far we are from
supporting all the 8th grade students in the state of Massachusetts. First, we were
interested in the communication between the application server and the database
server. We set up a test environment with one application and a database server
that used a browser to play student and tried to capture the time and the number
of reads and writes at the back-end.

With the old system and infrastructure the most important result shown in
Figure 1 is that all but a handful of these 10-minute interval have average page
creation times that are less than one second. Most of these are clustered around
100 milliseconds. Since each public school classes have about 20 students, we
noticed clusters (shown in ovals in the bottom left) of intervals where a single
class was logged on. We noticed a second cluster of around 40 users, which most
likely represents instances where two classes of students were using the system
simultaneously. Surprising to us, even the intervals where 80–100 users were on
the system simultaneously, there was no appreciable pattern towards a slower
page creation time.

With our second generation system, we wanted to evaluate our decision to
increase scalability by adding an application server to our load-balanced infras-
tructure. Our research question was whether we could get a linear speed-up with
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Fig. 1. Average response time of the first generation Assistment system

additional Tomcat servers or not. We also wanted to see if a caching method
could increase performance.

It does seem that the load balancer did appear to cut the response time in
half; however, the caching method had a much less significant role in reducing
the average response time. We seem to have able to get linear speed-up with the
help of the load-balancer and an additional Tomcat server.

2.2 Third Generation — Reimplementation in Ruby on Rails

As our project progressed, the complexity of our Java source code reached the
limits of maintainability. The size of the code base, contributions by many dif-
ferent developers, and thousands of lines of uncommented code made the system
difficult to learn. A reimplementation was need and Ruby on Rails, a free Web
application framework based on the open-source Ruby programming language,
was chosen for the rewrite.

Because Rails and Java are fundamentally different systems, our infrastructure
required a redesign to accommodate the new system. Mongrel, a single-threaded
Web server for Ruby applications, is used to serve content. Because it is single-
threaded, multiple Mongrel application servers are used concurrently in a cluster.
A simple Apache Web server provides load balancing to the cluster and a single
PostgreSQL database server stores all content and data.

As more students began using the system simultaneously, we encountered se-
vere scaling problems. Examining loads on the application and database servers
revealed that the database was a serious bottleneck in the system. During peak
times, the database server was constantly at maximum capacity while the
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application servers remained nearly idle waiting for data. Because of the slow
database response time, the incoming request rate quickly exceeded our service
rate. Examining the most expensive operations in the system revealed some
implementation flaws in our system.

According to log data, the tutoring portion of our system spent an average of
2.27 seconds processing a request (standard deviation of 3.39). With six Mongrel
servers, our system could only handle approximately three requests per second.
In addition, analysis demonstrated that we encountered scalability problems at
very low usage.

2.3 Fourth Generation — Rails with Thicker Client Architecture

In light of serious design problems, we focused on fundamental changes that
would allow the system to scale well beyond our current user base. Instead
of handling all data processing ourselves, we decided to take advantage of the
computing power of our users by pushing many of the basic tasks to the clients.
However, we still wanted to avoid a thick-client implementation for the reasons
discussed previously.

For the reasons described, our servers are still responsible for on-demand
content distribution and log gathering and retention, while data processing (e.g.,
determining the correctness of answers) has been re-implemented in JavaScript
and is now the responsibility of the client system. This redesign has reduced load
on the database dramatically.

Latency is a frequent problem for Web users. Stern, Woolf, and Kurose dis-
cussed the idea of prefetching content in their MANIC system [5]. To address this
concern, at the start of an assignment, the client requests and stores questions
asynchronously while the student begins working. Network or server delays are
hidden by the asynchronous communication. In initial testing of the JavaScript
implementation of the tutor, our system spends an average of 0.08 seconds pro-
cessing a request (standard deviation of 1.43). With just six Mongrel servers, our
system is now posed to handle 75 requests per second. Even if our throughput
does not match this estimate, latency hiding via asynchronous requests will help
provide a fast user experience.

3 Future Work

Our goal is to provide reliable and effective tutoring to hundreds of thousands
of users. Although we do not have a total solution yet, we are actively exploring
architecture designs that will allow us to meet the goal. Our client-server hybrid
solution is a step in this direction. However, the database is a single point of
failure and a significant bottleneck in the system. Future work will investigate
database scalability.

We currently have Assistment content hosted as a Web service. Because of
this, by implementing a Web service interface, another ITS could incorporate
Assistment content into their system. The Assistment project is looking to col-
laborate with other systems to include various features. This is just one example
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of how Web services have enabled the Assistment project to become more col-
laborative and extensible. Intelligent Tutoring Systems are customarily thought
of as closed systems. With such a strong research community, it would seem
beneficial for researchers to be able to work together; using contents and tutor-
ing methods from within other existing system. With this collaboration, existing
tutors could reach broader audience.

4 Conclusions

We have reported some positive results with regard to scaling up ITS. Clearly,
many of the issues discussed in this paper are specific to our implementation.
However, the underlying architecture decisions we have made are of general in-
terest to the Web-based tutoring community. Server-based systems allow greater
control of content distribution, system configuration, and software maintenance
than client-based systems. In addition, server-based systems, particularly Web-
based systems, offer greater accessibility to users. Finally, a server-based system
has the benefit of immediate data collection: teachers and researchers have ac-
cess to the same information in real-time. Unfortunately, server-based systems
face scalability problems. The hybrid design we are currently exploring retains
many of the advantages of server-based systems while addressing these scalabil-
ity concerns. The evolution of our system and the result of this research is useful
for the entire ITS community. Sharing the results of our work with other ITS
researchers will help expand the development of server-based tutoring systems.
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Abstract. This paper analyzes the challenges of tailoring feedback to the stu-
dent’s response certitude during the assessment in Web-based Learning systems 
(WBLSs). We present the summary of the results of a series of experiments re-
lated to the online assessment of students through multiple-choice quizzes, 
where students had to select the confidence level and were able to request dif-
ferent kinds of feedback for each of the answered questions.1  

Keywords: online assessment, response certitude, feedback personalization. 

1   Introduction 

Online assessment becomes an important component of modern education comple-
menting traditional methods of (self-)evaluation of the student’s performance.  

Feedback is usually a significant part of the assessment as students need to be in-
formed about the results of their (current and/or overall) performance. The existing 
great variety of the feedback functions and types that the system can actually support 
make the authoring and design of the feedback in e-learning rather complicated [4]. 
Another important issue is that different types of feedback can be differently effective 
up to having negative influence on the learning and interaction processes [1].  

Feedback personalization becomes a challenging perspective for the development 
of feedback in the assessment components of WBLSs as it is aimed to provide a stu-
dent with the feedback that is most suitable and useful for his/her personality and the 
performed task [4]. In this work we study how the feedback in online assessments can 
be personalized to the student’s response certitude (confidence or certainty) that 
specifies her certainty in the answer and helps in understanding the learning behavior. 

The traditional scheme of multiple-choice tests evaluation, where the responses are 
being treated as absolutely correct or absolutely wrong, ignores the obvious situations 
when the correct response can be the result of the random or an intuitive guess and 
luck, and the incorrect answer can be given as due to the careless mistake as due to 
some misconceptions a student may have.  

                                                           
1 An extended version of this paper can be found at http://wwwis.win.tue.nl/~debra/its08/ 
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The use of feedback in certitude-based assessment in traditional education has been 
actively researched for over 30 years [2][3]. In spite of this intensive research, the 
methods and guidelines for designing and implementing feedback in confidence-
based assessment remain scarce so far. In this work we discuss the results of a series 
of experiments related to the online assessment of students through multiple-choice 
quizzes, where students had to select the confidence level and were able to request 
different kinds of feedback for each of the answered questions. 

2   Method and Results 

The data for this study were collected from seven online multiple-choice tests (partial 
exams or mandatory individual exercises for three different courses). Each question 
(answered strictly one after another) in a test was accompanied by the compulsory 
question about response confidence that affected the grade2 (2 points for a HCCR, 1 
point for a LCCR, -1 point for a HCWR, and, 0 for a LCWR). After giving the re-
sponse (with a specified certainty) the student could either go directly to the next 
question or request immediate (KCR/KR/EF) and delayed (EF) feedback. Students 
could optionally answer to the questions whether EF was useful or not.  

Types of feedback requested. Most of the students were eager to get KCR and/or 
KR. There were usually only a few students who did not check their answers for most 
of the questions in each test. In two tests we analyzed whether the students were eager 
to only KR feedback or also KCR+EF by separating these possibilities. In this sce-
nario more students requested only the KR, without KCR+EF. In another test where 
KCR/KR could only obtained from studying the EF students did request the EF to 
extract the KCR/KR. 

After students knew whether their answer was correct they tended not to request 
any EF (and this was independent of the response certitude). For incorrect responses, 
especially for the HCWRs, the frequency of  “ignoring” the EF was lowest.  

In two tests we experimented with EF recommendation (based on students’ learn-
ing style, response correctness and certitude) when a few different types of EF for a 
question were available. Corresponding results can be found in [5]. 

Time used for examining feedback. Students were spending less time on average for 
reading EF when giving HCCRs vs. LCCRs, and more time for reading EF for HCWRs 
vs. LCWRs (this would not be the case if the students were simply not careful with 
HCRWs). Having a misconception, it takes more time to understand the problem and 
“patch” the knowledge of certain concepts rather than simply get an understanding of 
some concept having no strong (incorrect) opinion about it before. 

Students with many LCWRs were interested much less in the EF and more often 
spend just a few seconds for scanning through the explanations.  

Effectiveness and usefulness of the immediate EF. The corresponding grades of the 
students were sufficiently higher in those cases, when the EF for the preceding related 

                                                           
2 The results have shown that students were able to estimate the level of the confidence in their 

answers reasonably well. Used acronyms: H(L)CC(W)R – high (low) confidence correct 
(wrong) response; K(C)R – knowledge of (correct) response; EF – elaborated feedback. 
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questions was examined. This positive effect is due to the facts that EF helped many 
students to answer correctly the forthcoming related questions, and to choose appro-
priately low (i.e. if EF could not help to fix the knowledge problem it was still useful 
to choose the “correct” certainty for the answers) or high (i.e. EL indeed helped to fix 
the problem or confirmed the correctness of students thinking) certainty. 

3   Conclusions 

Designing and authoring feedback and tailoring it to students is an important problem 
of the online learning assessment. In this paper we addressed this problem focusing 
on the issues of the response certitude and the response correctness, in particular 
studying how they affect (1) the types of feedback the students preferred to request; 
(2) time the students used for examining the feedback; and (3) effectiveness of the 
immediate EF on the overall performance of the students during the test. 

The obtained results confirmed our expectations regarding the main functions that 
EF may play in the online assessment depending on the combination of correctness 
and certitude: (1) “patching” the student’s knowledge, (2) filling the gaps in the stu-
dent’s knowledge, and, (3) simply providing KR and KCR information.  

The results strongly suggest that (1) students are able to estimate the certainty of 
their responses fairly well, (2) knowledge of response certitude together with response 
correctness allows determining what kind of feedback is more preferable and more 
effective for the students, and (3) elaborated feedback may sufficiently improve the 
performance of students within the online tests. 

Concluding the stated above, the results obtained in our study strongly advocate 
the benefits and necessity of evaluation of the response certitude during the online 
assessment, and reveal the additional possibilities of feedback personalization [6].  
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Abstract. Many model-tracing intelligent tutoring systems give, upon demand, 
a series of hints until they reach the bottom-out hint that tells them exactly what 
to do (exact answer of the question). Since students don’t know the number of 
hints available for a given question, some students might be surprised to, all of 
a sudden, be told the final answer; letting them know when the bottom out hint 
is getting close should help cut down on the incidence of bottom-out hinting. 
We were interested in creating an intervention that would reduce the chance 
that a student would ask for the bottom out hint. Our intervention was straight-
forward; we simply told them the number of hints they had not yet seen so that 
they could see they were getting close to the bottom out hint. We conducted a 
randomized controlled experiment where we randomly assigned classrooms to 
conditions. Contrary to what we expected, our intervention led to more, not 
less, bottom out hinting. We conclude that the many intelligent tutoring systems 
that give hints in this manner should not consider this intuitively appealing idea.    

1   Introduction 

Providing help to students when they get stuck in the learning process is a pedagogi-
cal strategy in Intelligent Tutoring System (ITS). Showing student hints is a popular 
way of guiding students in most tutoring system. The Andes Physics Tutoring System 
gives learners different levels of hints on demand in their process of learning [1]. 
Cognitive tutor also gives hints on demand [2].Our system ASSISTment also pro-
vides, for each question, some unspecified number of hints, which eventually will 
terminate with the student being told exactly what to do. However, none of them 
informs students when they will get the bottom-out hint. Our hypothesis is that stu-
dents might not want to be told the exact answer, but in the current systems they can 
never be sure if the next time they ask for a hint, they will get told the answer. We 
want the student to think over the problem before he goes through all the hints to the 
bottom one. In other words, the intelligent tutoring system needs to prevent the stu-
dent from “gaming the system” [3] by cheating the system to reach a correct answer. 
Others have also investigated ways to reduce students’ gaming behavior ([4, 5]).The 
goal of this research is to find if telling students how many hints there are left in the 
problem will lead students to less often reach bottom-out hints. 
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We carried out the experiment on ASSISTment, a web-based tutoring system  
developed by Worcester Polytechnic Institute. It assists student learning math by provid-
ing individual help in the manner of giving a sequence of hints and scaffolding questions 
while assessing student. Teachers are able to keep track of students’ performance in the 
system through several up-to-date reports generated by the system. Content builders are 
provided the tool to build main questions, scaffolding questions, hints, answers, buggy 
messages and so on so forth in a convenient way. The system is freely available at 
www.assistment.org. ASSISTment is now used by thousands of kids and teachers as a 
normal part of their classes. We changed the system’s help request interface for this ex-
periment and built a logistic regression model to analyze the data.  

2   Experiment 

Our approach is as following. Instead of showing the button labeled with “Request 
Help,” we count how many hints are left in the problem for a specific student and 
label the help button as “Show me hint <N1> out of <N2>”. N2 equals total hints of 
the problem and N1 means how many hints the student has asked if he clicks on the 
button. When student is about to reach the bottom hint, we will label the button as 
“Show me the last hint”, explicitly telling them this hint will show the exact answer of 
the question. We collected data from 2007/9/30 to 2007/11/29. Roughly halfway 
through this time period, on 10/29, we turned this intervention “on” in half the class-
rooms, leaving the other classrooms to act as a control to control for any existing 
trends over time in student behavior. For each teacher in our system, we randomly 
selected half of the classrooms to be in the experiment, while the other classes served 
as the control.  We had 320 students that did more than 20 problems both before and 
after 10/29 with 88 students in experiment group and 232 students in control group. 
We filtered the data by 20 problems for the reason that we wanted to focus on the 
behavior of consistent users of ASSISTment during the time period.  

The data was collected on question level. Each row includes the information about 
how one specific student performs on one particular problem. We collected the infor-
mation of “student_id”, “hit_bottom” (whether the student reaches bottom-out hint in 
this problem), “easiness” (easiness of problem which is measured by correctness over 
all the students in the system), condition (whether the student in experiment group or 
control group), “beforeEx” (whether this problem is done pre-intervention or post-
intervention). The reason we collected data in this manner is that in our expectation, 
whether the student will hit the bottom-out hint relates to the problem easiness level, 
student himself, which condition the student is in and when this problem is done. 
There are more than 37,000 rows in our dataset. 

3   Result and Analysis 

We built a logistic regression model to predict dependent variable “hit_bottom” with 
factors “student_id”, “condition”, “beforeEx” and covariate “easiness”. Since these 
are elements affecting students’ bottom-out hinting behavior, we consider them as 
main effects in our model and moreover, we take beforeEx * condition into account as 
an interaction effect.  
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The parameter estimates of the model are shown in Table 1. The higher the β value is, 
the less likely the student will hit the bottom-out hint. The fact that the β value for control 
group is 0.280 and with P=0.547 suggests that there is no significant change on students 
hinting behavior whether he is in control group or experiment group when ignoring the 
time period. The fact the β value for “After Intervention” is -0.092 with P =0.151 tells us 
that students hit more bottom-out hints after the intervention. However, this is not statis-
tically reliable. We can not get conclusion related to the effect of intervention by simply 
looking at these two parameters, which is the reason that we take the interaction of these 
two parameters into consideration. The Easiness parameter of +5.441 suggests that there 
is more bottom out hinting on harder items, which is to be expected. Finally, and most 
interesting, the interaction between beforeEx*condition, is the crucial parameter that 
allows us to see if there is a change in student behavior due to the experiment, after tak-
ing into account all the other parameters in the model. The fact the parameter for [Condi-
tion=C]*[beforeEx=0] is 0.310 indicates that the experiment caused more bottom out 
hinting, contrary to our hypothesis. This difference was statistically reliable. 

Table 1. Parameter Estimates 

 β Sig. 
Control Group(Condition=C) 0.280 0.547 

Experiment(Condition=E) 0* - 
After Intervention(beforeEx=0) -0.092 0.151 

Before Intervention(beforeEx=1) 0* - 
Control Group and After Interven-
tion([Condition=C]*[beforeEx=0]) 

0.310 <0.0002 

          Control Group and Before Interven-
tion([Condition=C]*[beforeEx=1]) 

0* - 

Experiment Group and After Interven-
tion([Condition=E]*[beforeEx=0]) 

0* - 

Control Group and After Interven-
tion([Condition=E]*[beforeEx=1]) 

0* - 

Easiness 5.441 <0.00001 
*This parameter is set to zero because it is redundant. 

 
For further analysis, we divided the students into three groups with high, medium 

and low math proficiency according to the student proficiency parameter estimated by 
the one-parameter Item Response Theory model (Rasch model)1. The Rasch model 
was trained based on data collected in ASSISTment system from Sept. 2004 to Jan. 
2008 that includes 14273 students’ responses to 2796 main questions [6]. Since the 
intervention might have different effect on distinct population, the analysis in the 
view of student’s proficiency came next. 

We built a logistic regression model for each group. We will put our main focus on 
the interaction effect. In Table2, we show the β values for interaction effect in each 
                                                           
1 We won’t go further into “Item Response Theory model” in this paper. Basically, it gives us a 

statistically reliable estimate of student’s math proficiency based on their entire responses in 
the interaction with ASSISTment.  
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group. The β value of interaction is 0.274 with P=0.013 indicates that for the popula-
tion with low math proficiency, the intervention led to more bottom-out hints. It is the 
same case as population with medium math proficiency, giving β value equals 0.477 
and P value less than 0.002. Moreover, the effects are statistically reliable. However, 
for population with high math proficiency, the intervention has no statistically reliable 
effect. 

Table 2. Parameter Estimates for three groups 

[Condition=C]*[beforeEx=0] β Sig. 
Low proficiency group 0.274 0.013 

Medium proficiency group 0.477 <0.002 
High proficiency group 0.061 0.777 

4   Conclusion and Future Work 

This experiment shows that telling student how many hints they have left affects stu-
dent behavior regarding the bottom-out hint. The logistic regression shows that the 
change will in general lead to more bottom-out hints, contrary to our hypothesis. 
Further analysis in terms of different population indicates that the intervention will 
lead to more bottom-out hints in the population with low and medium math profi-
ciency while has no statistically reliable effect on the students with high proficiency. 
According to the results, telling students how many hints left is not a suggestion that 
other tutoring systems designers should implement. One explanation of this result is 
that students might not believe that asking for hints, or getting the bottom out hint, 
hurts their learning. For those students who are aimed at “gaming the system,” show-
ing the number of remaining hints might assist or encourage their gaming behavior.  

We will continue working on how to prevent students from asking for more help than 
they probably need in the learning process. As it has been stated that students might not 
consider that asking for more help than they need hurts their learning, an intervention as 
following seems to be a potential strategy. For instance, we can provide a partial credit 
for each question with some initial value and show it to the student. Whenever student 
asks for help, we will take some points off the credit. Hopefully, this intervention would 
to some extent guide students to contribute more efforts to get the question done correctly 
by themselves or based on the help they’ve already attained from the system. Moreover, 
we will focus on analyzing if students gain more learning through the intervention, which 
is an important metric of intelligent tutoring systems.  

Acknowledgement. We would like to thank Worcester Public Schools and all of the 
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org who made this experiment possible. We would also like to acknowledge funding 
from the US Department of Education, the National Science Foundation, the Office of 
Naval Research and the Spencer Foundation. All of the opinions expressed in this paper 
are those solely of the authors and not those of our funding organizations. 



778 Y. Guo, J.E. Beck, and N.T.Heffernan 

References 

1. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., 
Weinstein, A., Wintersgill, M.: The Andes Physics Tutoring System: Lessons Learned. In-
ternational Journal of Artificial Intelligence in Education 15(3), 1–47 (2005) 

2. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.: Intelligent tutoring goes to 
school in the big city. International Journal of Artificial Intelligence in Education 8, 30–43 
(1997) 

3. Baker, R.: Is Gaming the System State-or-Trait? Educational Data Mining Through the 
Multi-Contextual Application of a Validated Behavioral Model. In: Workshop on Data Min-
ing for User Modeling, Educational Data Mining Track, at User Modeling, pp. 76–80 
(2007) 

4. Walonoski, J., Heffernan, N.T.: Detection and analysis of off-task gaming behavior in intel-
ligent tutoring systems. In: Ikeda, Ashley, Chan (eds.) Proceedings of the Eight Interna-
tional Conference on Intelligent Tutoring Systems, pp. 382–391 (2006a) 

5. Lloyd, N., Heffernan, N.T., Ruiz, C.: Predicting student engagement in intelligent tutoring 
systems using teacher expert knowledge. In: The Educational Data Mining Workshop held 
at the 13th Conference on Artificial Intelligence in Education, pp. 40–49 (2007) 

6. Feng, M., Beck, J., Heffernan, N.T., Koedinger, K.R.: Can an Intelligent Tutoring System 
Predict Math Proficiency as Well as a Standardized Test? In: The 1st International Annual 
Conference on Education Data Mining, Montreal (DRAFT) (submitted, 2008) 



Leveraging C-Rater’s Automated Scoring

Capability for Providing Instructional Feedback
for Short Constructed Responses

Jana Sukkarieh and Eleanor Bolge

Educational Testing Service,
Princeton NJ, 08541, USA

http://www.ets.org

Abstract. Due to some progress on the natural language processing
(NLP) front, researchers are able to pursue the problem of automatic
content assessment for free text responses with some success. In particu-
lar, a concept-based scoring method implemented in c-rater, Educational
Testing Service’s (ETS) technology for content scoring of short free-text
answers makes c-rater capable of giving instantaneous formative indi-
vidualized feedback without going fully into a dialog-based system nor
restricting itself to just canned hints and corrective prompts.

1 Introduction

In the last few years, a keen interest in automatic content scoring of constructed
response items has emerged. Progress in NLP has made it possible to ’judge’
content without having to fully understand the text. Several systems for content
scoring exist. However, the only four systems that deal with both short answers
and analytic-based content (i.e. look at content in terms of the main points
or concepts expected in an answer) are Automark at Intelligent Assessment
Technologies [2] , c-rater at ETS [1], the Oxford-UCLES system at the University
of Oxford [5] and CarmelTC at Carnegie Mellon University [4]. Though the first 3
systems were developed independently, their first versions worked very similarly
using a knowledge-engineered IE approach taking advantage of shallow linguistic
features that ensure robustness against noisy data (students’ answers are full of
misspellings and grammatical errors). Later on, OXFORD-UCLES experimented
with machine learning techniques similar to the ones in CarmelTC. Though these
latter techniques proved very promising in categorizing students’ answers into
classes (corresponding to the main points expected in an answer - or none of the
concepts), we believe the models of such techniques are not transparent enough
in order to devise individualized feedback except probably a canned set of hints
and prompts corresponding to a certain main point. This year we have changed
the way c-rater scores students’ answers in order to increase the accuracy in
tracking down the concepts that students get wrong or right. This allow us
to give more individualized formative feedback for each answer c-rater scores
without having to go into a full dialog-based system yet not restrict ourselves
just to canned hints and prompts.
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c© Springer-Verlag Berlin Heidelberg 2008

http://www.ets.org


780 J. Sukkarieh and E. Bolge

2 Current C-Rater in a Nutshell

In Table 1 please see examples of items that c-rater deals with. On the left, the
prompt or the question is listed while on the right there is a list of main/key
points or concepts (We use these words interchangeably). A non-ambiguous scor-
ing guide for the item is also provided. The number, N , is the number of concepts
that examiners are expecting in a student’s answer and Ci is the ith concept.

Table 1. Sample items in Biology and Reading Comprehension

Statement of the item Rubric
Prompt 1. Full Credit is 2 Concepts: 6
Identify TWO common
ways the body C1:cellular respiration ; C2:increased breathing rate;
maintains homeostasis C3:decreased digestion;C4:sweating
during exercise C5:dilation of blood vessels;C6:increased circulation rate
Scoring Guide 2 points for 2 or more elements

1 point for 1 element else 0

Prompt 2. Full credit is 3 Concepts: 24
Identify three ways in which an C1:temperature change or fever;
animal’s body can respond to an C2:water loss;
invading pathogen. C3:production of more mucous;

21 other concepts that we will not list here
Scoring Guide 1 point for each element

Prompt 3. Full credit is 2 Concepts: 11
(a reading is given) Explain C1:to understand the conflict with England;
what you think the delegates C2:to take their side against England;
may be trying to persuade C3:to appeal to the Native Americans;
the Native Americans to believe C4:by calling them as brothers;
or to do. Then, name an example of how C5:use authoritative language;
the delegates attempt to persuade 6 other concepts
through their speech.
Scoring Guide 1 point for ’what’ concept

1 point for ’how’ concept

In 2007, we started viewing c-rater’s task as a textual entailment problem
(TE). We use TE here to mean either a paraphrase or an inference up to the
context of the item. c-rater’s task is reduced to a TE problem in the following
way:

Given: a concept, C, (for example, “body increases its temperature”)
and a student answer, A, (for example either “the body raise tempera-
ture”, “the bdy responded. His temperature was 37◦ and now it is 38◦”
or “Max has a fever”) and the context of the item the aim is to check
whether C is an inference or a paraphrase of A (in other words A implies
C and A is true)

To solve this problem, the following is undertaken. A human writes a set of
model answers (in terms of a set of model sentences) by looking at a sample
of manually annotated students’ answers. The annotation consists of finding,
for each concept C, evidence E in an answer such that C is a TE of E (if such
evidence exists). Hence, we call this way of model building concept-based and
consequently we call this method concept-based scoring. The size of the training
sample varies depending on the linguistic complexity of the concepts expected
in an answer. An unseen answer is then compared to a model answer. The
current comparison module, Goldmap (version implemented in 2006 and 2007),
is based on maximum entropy modeling [3]. Basically, given a set of attributes or
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features, constraints over these attributes and a set of instances or training data
consisting of pairs of sentences that are both manually-annotated for match
or no-match and automatically-annotated according to the set of attributes,
Goldmap learns a matching model. Given an unseen answer, the matching model
outputs a probability on the match between the unseen answer and a model
answer. In general, we use a threshold of 0.5 to determine a match. Scoring rules
are then applied to obtain a score.

The attributes in Goldmap depend on a set of linguistic features that are ob-
tained by various NLP modules in c-rater. These attributes comprise some syn-
tactic variations like active/passive, morphological variations like went/go/gone,
semantic variations depending solely on synonyms and detection of negation of
heads of noun phrases, verb phrases and adjective phrases.

A student answer is processed as follows. Consider an answer like the body
could raise tempratuer. John sweats. This gets split into two sentences then each
sentence is taken as a separate input. Then, the body raise tempratuer goes
through a spelling corrector (this is one way to minimize noise for subsequent
NLP). Once words in the sentence are corrected, the sentence goes through a
part-of-speech tagger and a parser to output a parse tree (OpenNLP parser,
Baldridge and Morton http://opennlp.sourceforge.net/). The OpenNLP parser
attempts to output a deep constituent parse tree. A preliminary evaluation of
the parser revealed that it is robust enough towards misspellings and ungram-
maticality. Risking losing some information from a parse tree yet being able to
add some dependency features, a parse is reduced to a flat structure representing
phrasal chunks annotated with some syntactic and semantic roles. The structure
also indicates the links between various chunks and distributes links when nec-
essary. For example, if there is a conjunction, a link is established. The next
stage is an attempt to resolve pronouns and definite descriptions. Hence, the
body is resolved to an animal’s body (this appears in the prompt of the item).
Currently, each Goldmap attribute is an aggregate of various features obtained
from the above process1. We tested our current implementation on items 3 and
4 in Table 1 with 24 and 11 concepts, respectively, with 500 answers as training
data and 500 as blind data for each. We asked two human raters to annotate and
score the data according to the concepts and we implemented c-rater’s model
answer building process to be driven by these annotations as explained earlier.
The results were very promising with an average unweighted kappa agreement
of c-rater with human raters of 0.71 vs human-human agreement of 0.76 for
the Biology item and 0.54 c-rater with humans vs 0.69 human-human kappa
agreement for the Reading.

The motivation behind concept-based scoring has many aspects. The most im-
portant is that we expect better accuracy with which the matching algorithm de-
cides about whether Concept C is a TE of Answer A since it is learning from a
much more accurate set of linguistic features about the TE task than it does with-
out this correspondence. Furthermore, the features obtained from the various NLP

1 We leave the description of a detailed process and the inclusion of the context of the
item for another occasion.
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components and grouped in various Goldmap attributes form powerful linguistic
information. Consequently, we expect a more informed technique to give individ-
ualized feedback for students. Also, a concept-based scoring allows us to put more
weight on one concept than another, if necessary, depending on what a tutor be-
lieves should be concentrated on in a student’s knowledge at one particular time.
In the following, we show how c-rater can be seen as a kernel for an interactive
tutorial tool.

3 C-Rater for Learning

In the past, c-rater’s feedback consisted merely of a message indicating right
or wrong. Currently, enhanced by concept-based scoring and a linguistically-
driven learning algorithm, c-rater gives quality feedback indicating to the stu-
dents which concepts in their answers they get right and which concept they
get wrong with the capability of scaffolding additional individualized questions,
hints and feedback. When students get an answer or a concept wrong c-rater has
different modes to choose from (to give hints, questions or feedback) depending
on the application at hand, the grade level and the difficulty of the item. The
following cases occur:

☞ A concept that is partially wrong. There are several key elements and the
student gets all except one of them correct and that one s/he got it partially
right.
– Scenario 1: Assume one student enters 5 out of 6 correct elements

in item 1 and for the 6th element s/he enters a partially-right answer.
c-rater prompts her/him with the correct parts and acknowledges the
partially correct part while correcting the part that is not correct by
providing canned tutoring session on the ”missing” concept.

– Scenario 2: Assume a student gives an answer like increased digestion
for decreased digestion. In that case, c-rater tells the student that in-
creased digestion does the opposite of what the body needs to do and
asks the student to try again. Instead of giving the right answer, the idea
is to give a hint that is most specific and suitable for the answer that
the student provided, e.g., if for the same item, the student writes the
digestive process changes then c-rater’s prompt would be either give a
qualification for that change or simply changes how?.

☞ A particular concept is completely wrong. There are two feedback modes in
c-rater.
1. c-rater just provides the correct concept(s) or
2. c-rater gives hints to the student that are specific and most suitable for

the answer and ask him/her to try again (see 2(a) below)
☞ All that the student enters is wrong. Again, there are two feedback modes

in c-rater.
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1. c-rater simply lists the right concepts or key elements
2. c-rater asks scaffolded questions to the student to check whether the stu-

dent understands the question or not (if a student does not understand the
question then obviously s/he cannot reply), e.g., c-rater prompts the stu-
dent: do you know the definition of homeostasis? c-rater expects a yes or no
answer.
(a) if YES then c-rater asks the student to provide the definition. c-rater

then scores the answer that the student provides (treats it as another
short item to score / layers of scaffolding can be introduced). If c-rater
decides the answer is wrong then it provides the definition and asks the
studenttotrythequestionagain.Ifc-raterdecidesthestudentknowsthe
definition then it starts giving the student some hints to help him/her.

(b) if NO then c-rater provides the definition and gives the student an-
other chance to answer [repeat process (a)].

4 Conclusion

c-rater’s new way of scoring, namely, concept-based scoring allows it to give a more
powerful individualized feedback on concepts expected in the space of knowledge
of a student. The fact that c-rater automatically scores the content of short free-
text means that introducing scaffolded prompts and scoring these prompts are in
c-rater’s nature. Assessment and learning go in tandem in a literal sense in c-rater.
Though the ASSISTment system at CMU (www.assistment.org) is only for mul-
tiple choice and feedback cannot be individualized in the same way c-rater’s feed-
back can, their experience could be very valuable for us. The experience Autotutor
group (http://www.autotutor.org/) could be very valuable for us too. Finally, we
would like to conduct a more comprehensive evaluation for concept-based scoring
and linguistically-driven feedback before making any wide claims.
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Abstract. Natural language dialogues have been demonstrated to be effective 
for instruction in a variety of settings. However, previous research has demon-
strated that the hierarchical structure of dialogue, which is a natural representa-
tion for linguists, is difficult for non-linguists to understand and work with.  
Even for linguists, it is possible to lose track of where one is in this hierarchical 
structure during authoring.  We refer to difficulty in working with this hierar-
chical representation as the hierarchical navigation problem.  In this short paper 
we present a simple but powerful tool1 designed to facilitate the authoring proc-
ess, which includes innovative interface elements that specifically target the hi-
erarchical navigation problem. Our user study demonstrates progress towards 
overcoming this difficulty. 

1   User Study 

In the past decade, tutorial dialogue has become a well established mode of instruc-
tion within the intelligent tutoring community for supporting learning with technol-
ogy. The dynamic nature of dialogue enables dialogue to be tailored to the specific 
needs of students in a highly flexible way. 

Nevertheless, authoring dialogue agents is not trivial. The dynamic and adaptive na-
ture of dialogue arises from a relatively complex, hierarchical structure that lies beneath 
the deceptively simple appearance of a dialogue from the surface. Beyond the complexity 
of the dialogue phenomena itself, authoring dialogue agents comes with technical chal-
lenges as well. Many dialogue systems provide modules to support the development of 
dialogues [1,2]. However, they do not provide users who have little or no programming 
expertise an easy and effective way of authoring complex dialogue behavior. In order to 
address this problem, prior research in the intelligent tutoring community has produced 
authoring environments capable of shielding authors from the underlying technical de-
tails of the dialogue representations and machinery they are authoring by means of 
graphical interfaces [3,4]. Nevertheless, in these environments, authors must still specify 
                                                           
1 This research was supported by Office of Naval Research, Cognitive and Neural Sciences 

Division, grant N00014-05-1-0043. 
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the hierarchical structure of the dialogues they are creating. Because of this, non-linguists 
struggle to keep from getting lost in the complexity, even in graphical environments 
meant to simplify the task for them. Because the hierarchical structure of dialogue is 
essential for facilitating the dynamic and adaptive nature that makes it so valuable, an 
important goal for this community is to develop authoring environments that are capable 
of supporting authors in navigating this complex structure without getting lost in the 
process. 

The important contribution of this work with respect to the design is the support for 
navigation within the hierarchical representation of dialogue behavior. There are three 
main parts in the Tutalk authoring tool: the Author panel, the Preview panel and the Test 
panel. The Author panel is the main panel that authors use to build the dialogue agents. 
The Preview panel provides a way to preview the dialogues that will be generated by the 
agent and check for errors in the dialogues. The Test panel actually runs the dialogues 
and provide a platform where users can interact with the dialogue agents they have cre-
ated. The navigation difficulties we address in this paper mainly relate to the Authoring 
panel. The navigation support we have built in works similarly to navigation within a 
browser window so that links to subdialogues take the author to a page that focuses on 
the indicated subdialogue, and a back button pops the user back to the higher level of 
representation. During the process no new windows are opened. The author simply navi-
gates the structure within the same window. In this way, the author can go very deep in 
the embedded sub-dialogues and easily return back to the main dialogue using the back 
button as in a web browser. As simple as this approach appears, this turns out to be the 
most effective way of navigating in the complex hierarchical structure of the dialogues.  
The Preview panel is a second aspect of this navigation support as is allows authors to 
preview alternative flows through the authored dialogue representation in order to verify 
that it makes sense under all possible conditions of input from students. 

In order to measure the contribution of the innovative navigation support that we 
added to our authoring environment, we ran a user study in which we compared the 
performance of participants using a version of the tool with the new interface ele-
ments with that of participants using an otherwise identical version of the tool that did 
not include this navigation support. The results provide a clear indication that partici-
pants are able to work more efficiently with the tool that includes navigation support. 
 

Experimental Design. The user study was a simple 2 condition, between subjects design, 
which contrasted a version of the authoring environment that included the innovative 
navigation support (for use in the Experimental Condition) with an otherwise identical 
version that did not include this support (for use in the Control condition). This baseline 
version of the authoring environment that was used in the Control condition had been 
evaluated during use in a week long intelligent tutoring summer school, hosted at our 
institution in the summer of 2006. While participants of that summer school were able to 
learn to use the tool and author their own dialogues as part of their involvement in the 
summer school, we observed difficulty with navigation, which we seek to overcome with 
the navigation support we evaluate here. 
 
Participants. During our pilot testing phase, we noticed that graduate students and under-
graduate students displayed a different pattern of behavior from one another. Thus, for 
the formal study, we were careful to avoid having this difference bias the results we 
would observe. We recruited 10 graduate students and 10 undergraduate students for the 
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formal user study from a variety of technical and non-technical fields of study, including 
Fine Art, Psychology, Management, Engineering, and Science, but purposefully none 
from Computer Science. All of the participants were comfortable with using computers 
but were not experts in dialogue authoring technology. Participants from both the gradu-
ate and undergraduate subject pools were randomly assigned to the experimental or con-
trol conditions such that we balanced the distribution of undergraduate and graduate 
students between conditions. 
 

Experimental procedure. The experimental procedure was composed of eight main seg-
ments, namely: (1) Questionnaire (5 minutes), (2) Training (10 minutes), (3) Pre-test (10 
minutes) (4) Coached Tool use (20 minutes), (5) Informal interview (5 minutes), (6) 
Uncoached tool use (70 minutes split into 40 minutes for task 1 and 30 minutes for task 
2), (7) Post-test (10 minutes), and (8) Evaluation questionnaire.   
 

Results. We evaluated whether participants in the two conditions differed with respect 
to their success as completing task 1 and/or task 2 without errors within the allotted 
time. In both cases, the trend was in favor of the Experimental condition, however it 
was only significant in the case of task 1, based on a binary logistic regression analy-
sis. For task one, 90% of participants in the Experimental condition were able to 
complete Task 1 without errors, whereas only 30% of Control condition subjects were 
(p < .005).  For task 2, 70% of Experimental condition participants were able to com-
plete the task perfectly within the allotted time, whereas only 50% of the Control 
condition participants were.  Results from the questionnaire further supported the 
finding that authoring with navigation support was more effective.   
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Abstract. Organizations need to change for developing and surviving in the 
marketplace, but changes bring uncertainty and not only produce feelings of 
apprehension, anxiety and stress, but also create resistance among employees. 
Resistance can delay and increase the costs of a change process. So, it is essen-
tial to present organizational changes in a manner that reduce the potential for 
resistance. In this paper, we propose an intelligent agent able to reduce em-
ployee’s resistance to change by presenting the best corrective emotional strat-
egy according to his personality in order to temper his negative emotion. 

1   Introduction 

Organizational changes are defined as one or more efforts to transform structure, 
goals, technology or tasks of a company [1]. Although the organizations need to 
change for developing and surviving in the marketplace, a change brings uncertainty 
and evokes apprehension, anxiety and stress. Face a change, employees may be afraid 
of new situations and can have a belief that change will have a negative impact on 
them and so they show a resistance. Several studies on resistance to change have 
considered that negative emotions are an indicator of an individual’s resistance [2]. 
Moreover, resistance can block and increase the costs of a change process [3]. So, it is 
crucial to present changes in a manner that reduces the potential for resistance [4].  

In this present work, we propose to reduce employee’s resistance to change using an 
intelligent agent able to apply a corrective emotional strategy according to various fac-
tors including the personality of the employee. First, we present the architecture of our 
agent and then the experiment that we have set up to determine the best corrective emo-
tional strategy. Finally, we discuss the evolution and perspective of our next works. 

2   The EMIARC Architecture 

In order to reduce employees resistance to change, we created an Emotionally Intelli-
gent Agent for Resistance to Change (EMIARC) aiming to propose the best corrective 
strategy to be applied to an employee subject to a change process. This strategy is 
defined as the strategy that will minimize the emotional impact of change. Figure 1 
illustrates the EMIARC architecture composed of 3 main modules. 
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Fig. 1. Architecture of EMIARC 

The agent is an autonomous system which interacts with the employee who is 
faced to a specific change in his environment. This agent will progressively acquire 
expertise about the adequate corrective strategy to apply by experimenting different 
cases. This expertise will be stored in the rules base which is initially empty; the rules 
will be created by successive runs of the agent on specific change situations and dif-
ferent employees. EMIARC will run according to two successive phases. In the first 
phase it will acquire data (training data) then, in a second phase, he will be able to 
send the corrective strategy directly to the employee or to his manager. The different 
steps of EMIARC intervention are the following: 

1. The first module (Data Collector) acquires the employee’s personality traits by 
sending to him the personality questionnaire called Saucier’s Big-five Mini-
Markers [5].  

2. After collecting personal data, the second module (Change Selector) extracts a 
scenario of organizational change from the base of scenarios and presents it to the 
employee. This base contains various types of scenarios which are credible stories 
about the future changes in an organization. Presented to the employee, this sce-
nario will trigger successively an emotional reaction and a behavioural reaction. If 
the emotional reaction is negative then the behavioural reaction will consist in re-
sistance to change. Moreover, the type of reaction will vary according to the em-
ployee’s personality. The emotional reaction and the behavioral reaction of the 
employees are obtained by asking them to imagine their emotional state and indi-
cate their behavioral intentions towards the change. 

3. Knowing the reactions of the employee, the agent aims now to minimize the em-
ployee’s resistance. The third module (Strategy Extractor) will select a corrective 
emotional strategy that will be presented to the employee with the scenario of 
change in order to reduce the emotional impact. Negative emotions are due in gen-
eral to a lack of explanation and fear of uncertainty. So, this strategy is a sequence 
of additional information giving more explanation to the change, how the em-
ployee can adapt, which compensation he will be able to get, etc. Now, our goal is 
to select the best corrective strategy which is the strategy able to reduce the most 
the negative emotion. We have then conducted an experiment in order to provide 
the agent with a mechanism able to select the best corrective strategy. 
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3   Experiment 

We have applied EMIARC in two steps, as indicated above:  

(1) acquiring personal data and emotional reactions to identified scenarios, using a  
machine learning technique, the Naïve Bayes Classifier [6], to determine the highest 
negative emotion class given the user’s personality, the scenario of change, and the 
user’s negative emotion with the highest value for this scenario, then  

(2) by proposing different corrective strategies the system was able to determine (us-
ing again the same machine learning technique) their impact to reduce the emotions 
and consequently the best corrective strategy class. Results were stored as rules in the 
rules base and have shown a great reduction, and even a suppression, of the negative 
emotions. This experiment was implemented and tested by twenty three volunteers. 

4   Conclusion and Future Work 

The agent provides a double capability: 
 

• The agent is a tool able to create a database of change scenarios specific to the 
company and personality traits of the employees.  

• Once the acquisition phase is realized, the agent can recommend to the managers 
the corrective strategy to apply to reduce the impact of the change process. 

Results have shown a clear impact of the agent on change management. For future 
research, we plan to keep running the experiment in order to obtain more training data 
and create more rules. 

Acknowledgements. We acknowledge the support of the FQRSC (Fonds Québécois 
de la Recherche sur la Société et la Culture) and NSERC (National Science and 
Engineering Research Council) for this work. 
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Abstract. We present a novel authoring infrastructure1 for accelerating the rate of 
content creation for coached practice environments. In an initial authoring stage, 
the tool supports quick authoring of scaffolded problems, drawing upon principles 
established in prior intelligent tutoring authoring research. However, in contrast to 
earlier approaches, the result of this stage is a structured template than can be used 
to generate a multitude of variations on the same problem concept.   

1   Morph Generation Tool 

Coached problem solving environments employing some form of “model tracing” in-
spired by theories of problem solving from cognitive psychology have proven effective 
for learning, and have recently been used for developing assessment systems that can be 
used to do assessment during instruction. A variety of authoring environments have been 
developed to greatly accelerate the rate at which content for such systems can be au-
thored [2,4]. These environments make development of coached problem solving envi-
ronments easier and more cost-effective by making it possible for non-programmers to 
create the content. Nevertheless, authoring an item involves demonstrating alternative 
correct and incorrect problem solving steps and then annotating steps in the resulting 
representation with hint messages and feedback messages. Often it is desirable for stu-
dents to work through several similar problems, which we refer to as “morphs”, in the 
course of a year in order to perfect the relevant skills. Currently only rudimentary support 
for reusing the effort involved in authoring a single item is available.  Research related to 
generating morphs has focused on generalizing the numbers, equations, or graphs that are 
included in a problem, sometimes in order to manipulate problem difficulty, but not the 
cover story [3].  We see this as an opportunity to build on earlier successes by using story 
generation technology to multiply the fruits of authoring effort by augmenting existing 
item authoring technology.  Thus, in this poster we present an authoring infrastructure 
that was designed to templatize the output from such authoring environments so that the 
effort expended to author a single problem can produce multiple problems with an inter-
esting variety of cover stories. 
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The authoring process for content creation in existing environments such as the 
Cognitive Tutor Authoring Tools and the Assistments Builder is a two stage process 
in which the texts that are presented to students in the final running system are au-
thored directly, and then these texts are embedded in the “machinery” that transforms 
them into fully functioning items that can be used within coached problem solving 
environments.  In contrast, in our approach, templates are authored that can be used to 
instantiate a variety of texts.  And a middle stage is inserted in between the initial and 
final stages of the original authoring process, in which the templates are instantiated 
in multiple ways in order to produce a variety of cover stories.  From a high level, the 
authoring process is illustrated in Figure 1.   

 

Fig. 1. Morph generation process 

The morph authoring interface is illustrated in Figure 2.  Notice that at the simplest 
level, authored texts can be templatized by inserting variables that can be instantiated 
in a variety of ways.  The template appearing in Figure 2 could be instantiated in such 
a way as to produce the following two texts: 

 
[1] “Seeing a laptop for a great discount price, Fred bought it on-line. There is a 

discount of 25% off the price of $700 for the laptop. How much did Fred pay after the 
discount?” 

[2] “Seeing a bicycle for a great discount price, Alice bought it at Walmart. There 
is a discount of 10% off the price of $100 for the bicycle.  How much did Alice pay 
after the discount?” 

 

This is the level of variation that can be achieved with the simplest use of the au-
thoring environment.  However, the environment includes a hierarchical planner as a 
control structure that allows morphs to be authored in a more flexible fashion, as in 
the TuTalk tutorial dialogue authoring environment [1].  For example, the template in 
Figure 2 contains 3 sentences.  Instead of authoring the template in this way, it could 
have been authored as 3 separate story steps.  And each of those story steps could 
have been specified to have a range of alternative step definitions, rather than being 
defined directly as texts with variables.  Each of those step definitions could have then 
been defined as texts with variables, like the text contained in Figure 2.  In that way, 
then a great deal more variation can be achieved.  For example, for the first sentence, 
there may be three alternative step definitions, which include the following template 
texts: 

 
[1] “Seeing a ?purchase-object for a great discount price, ?person-name bought it? 

purchase-location.” 
[2]“Let's think about the discount?person-name got on a ?purchase-object? pur-

chase-location.” 
[3] “?person-name wanted to buy a ?purchase-object.  Buying it ?purchase-location 

had the advantage of an attractive discount.” 
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Fig. 2. Morph generator interface 

By defining the morph at an even higher level of abstraction, different types of prob-
lems can be generated. For example, a slight variation would allow a problem about 
adding on tax rather than subtracting a discount. The same alternatives for the first sen-
tence can be reused. Furthermore, work specifying lists of possible purchase objects, 
names, stores, etc., can be reused across these two story types. In pilot evaluations of our 
morph generation approach, we have been able to generate hundreds of alternative stories 
from a hierarchically structured template specification.  
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Abstract. We present SIDE1 (the Summarization Integrated Development Envi-
ronment), which is an infrastructure that facilitates the construction of reporting 
interfaces that support group learning facilitators in the task of getting a quick 
sense of the quality and effectiveness of a collaborative learning interaction. 
The SIDE framework offers flexibility in the specification of which conversa-
tional behavior to take note of as well as how noted behavior should be reported 
to instructors, making it a valuable research tool.   

It is said that a facilitator of effective collaborative learning should be a “guide on the 
side” rather than a “sage on the stage”. In classrooms, instructors roam around the room, 
listen to conversations, and jump in at key moments to offer guidance. In on-line settings, 
group learning facilitators are responsible for a larger number of groups. Listening in on 
conversations involves reading a high volume of text based chat, often paired with data 
streams in other modalities such as a digital whiteboard. The challenge is to enable group 
learning facilitators to quickly get a sense of the collaborative interaction so his resources 
can be strategically invested. In this poster, we present SIDE (the Summarization Inte-
grated Development Environment), an infrastructure that supports group learning facilita-
tors in quickly getting a sense of the quality and effectiveness of a collaborative learning 
interaction so that the instructor is better equipped to carry out this challenging task. 

It has been found that effective learning in collaborative groups is linked to the proc-
ess by which learners work on the task together, how they construct arguments, and how 
they build on the contributions of their learning partners, otherwise known as transactiv-
ity. Earlier research suggests that it is more effective to judge the quality of an interaction 
for learning when transactivity based conversational contributions are flagged [2]. The 
goal of our proposed reporting interface is to track these qualities of collaborative dis-
course as is becoming more practical because of projects such as TagHelper tools [1] that 
are capable of automatic collaborative learning process analysis.  However, investigating 
the patterns of conversational behavior that are most indicative of the quality of an inter-
action or indicative of trouble in an interaction, is still an active area of research. Open 
questions related to which types of information and how much of it is ideal to present to 
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group learning facilitators, and in what form, are still at the frontier of this important area 
of research.  Thus, rather than present a specific reporting tool designed to do a single 
type of analysis and present reports in one way, we present a framework that facilitates 
rapid prototyping of such reporting interfaces so that research in this area can move for-
ward at an accelerated rate. 

 

Fig. 1. SIDE Architecture 

The architectural diagram in Figure 1 illustrates the two stage process of building a re-
port from a discussion log. Consider the example of a report that charts how the consen-
sus building style of different participants in an on-line discussion shifts over time [3].  
The documents input to the process in Figure 1 are individual contributions to the discus-
sion. A Data Reader reads in those texts and stores them in a flat representation. The 
Filters each encode a type of analysis that can be applied to the unstructured conversa-
tional data- e.g. one Filter might be responsible for applying a coding scheme that labels 
argumentation acts such as Claim, Data, Qualifier, or Warrant, while another flags seg-
ments at a higher level of argumentation structure such as Argument, Counter-Argument, 
or Integration. Thus, each Filter encapsulates the analysis functionality currently included 
in tool sets like TagHelper tools [1]. Once the Filters are applied to unstructured data, it 
then becomes structured data. The segmentation and labeling facilitate navigation 
through the data in a principled fashion. It is then possible to determine the most common 
type of contribution within a region of a conversation, or the last time someone contrib-
uted a Counter-Argument. The Summarizer in Figure 1 uses the structure applied by the 
Filters to select a subset of the conversation and presents either the texts themselves or 
some aggregation of the texts as the summary, for example by plotting the concentration 
of Counter-Arguments within 10 minute intervals over the course of a 2 hour discussion. 

The interface for the Summarizer is displayed in Figure 2. A separate interface is 
provided for defining Filters, which is not shown. The Summarizer interface allows a 
summary to be defined as a sequence of Recipes. Each Recipe consists of a Selector, a 
Ranker, a Limiter, a Sequencer, and a Display. The Selector uses the analysis applied 
by the Filters to select a subset of segments of data that satisfy a Boolean expression- 
e.g. the expression might specify that all Counter Arguments and Integrations should 
be selected.  The Ranker specifies criteria used to rate selected segments with respect 
 



 Supporting the Guide on the SIDE 795 

to its importance for the summary. The Limiter specifies what proportion of the seg-
ments that were selected by the Selector should be retained and presented in the re-
port- if 50% is selected, then the segments will be sorted based on the Ranker criteria, 
and the top half will be retained. These segments are then ordered by the Sequencer in 
the order in which they were contributed to the conversation. Finally, the sequenced 
list of segments are passed to a Display module, which might simply present the text 
from each segment in order, or might present some summary of what was found, like 
the ratio of Counter Arguments to Integrations, etc. 

 

Fig. 2. SIDE Summarizer Interface 

We are currently pilot testing SIDE in a graduate course on Summarization and 
Personal Information Management where students are using it to develop prototype 
reporting tools, so that we can determine what additional functionality is desirable. 
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Abstract. A step in ITS often involve multiple skills. Thus a step requiring a 
conjunction of skills is harder than steps that require requiring each individual 
skill only. We developed two Item-Response Models – Additive Factor Model 
(AFM) and Conjunctive Factor Model (CFM) – to model the conjunctive skills 
in the student data sets.  Both models are compared on simulated data sets and a 
real assessment data set.  We showed that CFM was as good as or better than 
AFM in the mean cross validation errors on the simulated data. In the real data 
set CFM is not clearly better. However, AFM is essentially performing as a 
conjunctive model.    

1   Introduction 

A step in ITS is “the smallest possible correct entry that a student can make. It connects 
the transaction-level representation to the theoretically-derived knowledge component 
level” [1]. Often times in ITS, students face steps with conjunctive skill requirements -
- The student needs multiple skills to solve the whole step. Thus, a step requiring a 
conjunction of skills is harder than steps that require requiring each individual skill 
only. In this paper, we want to answer the following questions: 

 

1. Are the skills in the student log data set conjunctive in character? 
2. What is a better method to model this conjunctivity?  
 

These questions are of importance to the ITS community who is interested build-
ing quality cognitive model. Two popular classes of ITS – the Model Tracing Tutor, 
which builds explicitly on the cognitive model, and the Constraint-based Tutor [2] – 
represents domain knowledge as state constraints The effectiveness of these tutors is 
largely determined by the quality of written skills and constraints. A conjunctive 
model can be useful in evaluating the cognitive model against empirical student data. 

2   Two IRT Models 

To test the skill conjunctivity in the data, we developed two parametric IRT models. 
The first model – the Additive Factor Model (AFM) –, originated from [3], is de-
picted by Equation (1). The term “Additive” comes from the fact that a linear combi-
nation of skill parameters determines logit( )ijp in the equation 
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Where 
 

ijY = the response of student i on item j  

iθ = coefficient for proficiency of student i  

kβ = coefficient for difficulty of skill k  

kγ = coefficient for the learning rate of skill k 

ikT = the number of practice opportunities student i has had on the skill k 

jkq = 1 if item j uses skill k; 0 otherwise 

K  = the total number of skills in the Q-matrix 
 

The intuition of this model is that the probability of a student getting a step correct is 
proportional to the amount of required knowledge the student knows, plus the “easiness” 
of that skill, plus the amount of learning gained for each practice opportunity. 

The second model -- the Conjunctive Factor Model (CFM) -- depicted by Equation (2) 
can be thought as modeling the conjunctivity as a multiplication of skill parameters. 
CFM is a special case of Embretson’s multicomponent latent trait model [4] and is cus-
tomized for the high dimensional feature of ITS, as there are many more skills in a cogni-
tive model than the number of cognitive attributes in a traditional assessment.  
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To fit the parameters from the data, we designed a Penalized Maximum Likelihood 
Estimation method (PMLE) depicted in equation (3) to overcome over fitting. This 
PMLE penalizes the oversized student parameters in the joint estimation of the stu-
dent and the skill parameters. Maximizing Equation (3) is equivalent to finding a pos-
terior mode for a Bayesian model, with a normal prior on θ and flat priors on β  

and γ . A higher value for λ below corresponds to lower prior variance. The BFGS 

optimization algorithm is used in computing PMLE. 
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where I = the total number of students. 

3   Simulation Results, Real Data Results and Discussion 

To compare CFM with AFM, we used both a simulated data set and a real assessment 
data set. Since students in the assessment data set were not exposed to repetitive learning 
opportunities, we removed the learning term from both models. Cross validation errors 
and the interpretability of the actual parameter fits are used to evaluate the models. 
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The simulated data is used to answer the question “If the data is conjunctive, which 
model is better?” We simulated data drawn from a CFM model with 100 student pa-
rameters, 3 skill parameters, and 7 items. We explored for different sets of the three 
skill probability values (.1, .5, .9), (.1, .1, .1), (.4, .5, .6) and (.9, .9, .9). In nearly all 
cases, CFM-PMLE was as good as or better than AFM-PMLE in cross validation. The 
biggest difference was from the skill set (.9, .9, .9) because the skill parameter values 
are so high that AFM-P cannot behave in a conjunctive form (which it can if the logic 
values are negative). Table 1 shows the results from one of the above skill sets. 

Table 1. Model comparison of the simulated data.
 
β  = (.1, .5, .9).in probability. 

 CVMean CVSd β̂ in probability β̂ in logit 

AFM-P 0.120 0.281 (0.03, 0.34, 0.73) (-3.4, -0.67, 0.97) 

CFM-P 0.111 0.174 (0.07, 0.5, 0.89) (-2.54, 0.02, 2.07) 

The real data is used to answer the questions “Is the data conjunctive? If so, which 
model is better” The real data set EAPS is taken from a difficulty factor study of 247 
U.S. algebra students [5]. There are 1976 observations and 96 distinctive items. A 
simplification of their skill coding involves 3 skills. 

Table 2. Model comparison of the EAPS data 

 CVMean CVSd β̂ in probability β̂ in logit 

AFM-P 0.202 0.142 (0.35, 0.47, 0.43) (-0.63, -0.14, -0.3) 

CFM-P 0.187 0.221 (0.61, 0.7, 0.67) (0.43, 0.85, 0.7) 

In the real data set, CFM-P is not clearly better. However, AFM-P is essentially per-
forming as a conjunctive model because the estimates are all negative. We saw this in the 
simulated data set with lower probability skill estimates. A goal of future research is to 
test CFM-P on real data sets where AFM-P cannot act conjunctively as in Table 2.  
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Abstract. We evaluated the effect of providing error-flagging, i.e., error detection 
but not error-correction support, during testing. We found that error-flagging is not 
a substitute for knowing the correct answer. It does not help students game the 
tutor. But, it does help students improve their test score.   

1   Introduction 

Delayed feedback, error-flagging and immediate feedback are three typical types of 
feedback provided by tutors. Error detection and error correction are treated differently 
by the three types of feedback: immediate feedback detects and suggests corrections for 
errors, whereas delayed feedback expects the learner to both detect and correct errors. 
Error-flagging is a via-media – it detects errors for the learner, but leaves it to the learner 
whether and how to correct the errors.   

One of the studies with the ACT Programming Tutor [1] found that immediate 
feedback helped learn the fastest, followed by error-flagging and delayed feedback in that 
order. There was little difference among the types of feedback on tests. Another study 
with the SQL-Tutor [3] found one of the highest initial learning rates with error-flagging 
– measured in terms of the probability of violating a constraint after feedback had been 
provided on the constraint on prior occasions. In an earlier preliminary study, we had 
found that providing error-flagging was not effective when the tutor did not explicitly 
state that errors were being flagged. On the other hand, explaining and providing error-
flagging during tests resulted in significantly better scores [4]. In this paper, we will 
analyze some of the data that we have collected since our earlier study to evaluate the 
effect of providing error-flagging support during tests.   

In spring 2007, we conducted in-vivo controlled studies with the arithmetic tutor. The 
arithmetic tutor presents arithmetic expressions and asks the student to evaluate them 
step-by-step, i.e., one operator at a time. After the student has submitted his/her answer, 
the tutor provides delayed feedback – it lists how many steps the student solved correctly, 
and displays the correct evaluation of the expression. Normally, when the student is 
entering his/her answer, the tutor displays it in black. When the tutor is set to provide 
error-flagging feedback, it color-codes the student’s answer as it is being entered – it 
displays the answer in red if it is incorrect and green if it is correct. So, it provides error-
detection support. The student has the option to correct the error, since the undo option  
is always available to the student. But, the tutor does not provide any feedback as to  
why the answer is incorrect, so, it does not provide error-correction support. In a 
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multiple-choice question, such support for error-detection but not correction could 
encourage the student to employ a trial-and-error approach to answering questions. But, 
in expression evaluation, if an expression includes n operators, there are n! different 
orders in which the expression can be evaluated, and infinite options for intermediate 
results. So, trial-and-error is not a gainful strategy for evaluating expressions when 
support is provided for error-detection but not error-correction.    

2   Evaluation 

The arithmetic tutor was set up to administer the pre-test-practice-post-test protocol, with 
both the practice and post-test being adaptive [2]. The tutor was used by 10 sections of 
Computer Science I course. We randomly assigned sections to either control or test 
group. Both control and test groups got delayed feedback. In addition, test group got 
error-flagging support. The tutoring session was limited to 30 minutes. Since our interest 
was in examining the effect of error-flagging on testing, we considered only the data 
from the pre-test. The pre-test consisted of 14 problems on 23 concepts. We considered 
data of only those students who attempted all 14 problems on the pretest.  

Presumably, when a student is told that his answer is incorrect (but not why), he will 
attempt to revise his answer. So, we partitioned the problems solved by each student into 
those where the student revised his answer and those where he did not revise his answer. 
We did a 2 X 2 mixed factor ANOVA analysis with each student’s average score on the 
problems on which the student did not versus did revise the answer as the repeated 
measure and the treatment (without versus with error-flagging) as the between-subjects 
factor. We found a significant main effect for revising the answer (F[1,166] = 16.824, p = 
0.000) – students scored more without revision (0.879) than with revision (0.807). 
Students revise their answer when they are not sure of their answer (without error-
flagging) or are told that their answer is incorrect (with error-flagging). In other words, 
students revise their answer on problems on which they would otherwise have scored 
fewer points. But, even after revising their answer, students scored fewer points than on 
the problems where they did not (need to) revise their answer, i.e., problems on which 
they already knew the correct answer. This difference was significant when error-
flagging support was provided (See Table 1). So, error-flagging, i.e., error-detection but 
not error-correction support is not a substitute for knowing the correct answer, and does 
not necessarily result in  a student demonstrating the same performance as if the student 
knew the correct answer.   

We found a significant main effect for treatment (F[1,166] = 37.434, p = 0.000) – 
subjects without error-flagging averaged 0.763 whereas those with error-flagging aver-
aged 0.922 points, indicating an inherent difference in the two groups, which is a 
confound of our study. 

Finally, we did not find a significant interaction between revisions and treatment – 
both control and test groups scored less with revisions than without (See Table 1). 
But, the difference between the problems without and with revision was significantly 
smaller for the test group (average 0.15) than for the control group (average 0.538, p 
= 0.000), i.e., test group students scored more points than control group students by 
revising their answers. Table 2 lists the number and percentage of students who 
revised their answers, number and percentage of problems on which they revised their 
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Table 1. Both control and test groups scored less on problems with revision than on problems 
without revision. The difference was significant for the test group only. Test group scored 
significantly more than the control group with and without revision. 

Arithmetic Tutor Without Revisions With Revisions Within-subjects p 
N 70 26 
Ave 0.803 0.722 

Control Group 
(Without  
Error-Flagging) Std-Dev 0.154 0.290 

0.128 

N 160 142 
Ave 0.942 0.892 

Test Group 
(With  
Error-Flagging) Std-Dev 0.111 0.146 

0.000 

Between-subjects p 0.000 0.007  

 
answers and the number and percentage of times they revised their answers, i.e., selected 
‘Undo last answer’ or ‘Clear entire answer’ menu option. Test subjects revised their 
answers far more often than control subjects. Test subjects revised their answers on 
30.43% of the 14 pre-test problems and 29.30% of the 33 possible steps. Curiously, 11% 
of the test subjects never revised their answers in spite of error-flagging support and 
37.14% of the control subjects revised their answers even without error-flagging support. 
Without the benefit of error-detection support, however, control group students did not 
improve their scores as much as test group students. So, error-flagging support does help 
students improve their score, even though this may not be on par with actually knowing 
the correct answer. 

Table 2. Number of students who revised their answers, number of problems on which they revised 
their answers, and number of times they revised their answers 

Revisers Problems Undos Arithmetic N 
Total % of  

N 
Total Per 

Student 
Total Per 

Student 

Clears 

Control 70 26 35.7%  39 1.5 50 1.92 4 
Test 160 142 88.75% 605 4.26 1373 9.67 47 

 
Finally, we considered whether error-flagging was helping students game the system – 

randomly guess the correct answer with the aid of error-flagging. Since gaming involves 
random/uninformed guessing until the student finds the correct answer, the average for 
problems with revision should have been 1.0, which is clearly not the case. So, error-
flagging does not help students game the system.  

Error-flagging support may be helping students avoid inadvertent mistakes or re-
consider incorrect “first-impression” answers. In either case, it behooves us to provide 
error-flagging support during online-testing to give students the benefit of the doubt, 
the best advantage.   
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Abstract. Developing a learning system with the intent of optimizing human 
knowledge acquisition is a complex endeavor. CTS (Conscious Tutoring Sys-
tem) is meant to help astronauts learn the manipulation of Canadarm2. Our 
proposition relies on a cognitive architecture involving "consciousness" mecha-
nisms. We give a partial account of CTS' cognitive architecture in its current 
state of development, and how it compares to other cognitive architectures and 
agents. 

Keywords: Conscious agent, Global Workspace, ITS, deliberation, personality. 

1   Introduction 

Developing an ITS able to evolve in an autonomous way to better adapt both to the 
learner and to the learning environment would be a great advantage for our educational 
system. One of the big challenges with such a system is how it may be capable to deal 
with a variety of knowledge sources to adapt, learn and act.  

Manipulating Canadarm2, a complex robotic arm, requires serious training. As part of 
a Canadian Space Agency research project, a virtual simulator complemented with a non-
cognitive tutoring system, RomanTutor (Nkambou, Belghith and Kabanza, 2006), has 
been developed in our lab. However, aside from showing possible manipulation paths, it 
mostly supports weak coaching thanks to a path-planner integrated in the system. The 
coaching mainly consists in providing the learner with feedbacks about his actions. This 
approach fails to support thorough diagnosis of learner’s failures. RomanTutor tutoring 
capabilities are being augmented by those of our “conscious” cognitive tutoring agent. In 
this paper, we offer an updated quick overview of our solution on this issue. 

2   CTS’ Consciousness Capabilities 

Computers and various cognitive architectures already incorporate many of conscious-
ness features. Our research intends to take this trend closer to humanly structures by 
reproducing some of consciousness' mechanisms and phenomena, even though there is 
not a universal definition for these (Güzeldere, 1997). We chose to iteratively converge to 
biological plausibility from psychological plausibility. Baars' Global Workspace (GW) 
theory (Baars, 1997) offers a valuable framework to that end. A justification for our 
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choice can be found in previous papers. CTS’ fundamental aspects refer to the GW the-
ory and on how Franklin's team translated it in computational terms (Franklin & Patter-
son, 2006). A description of CTS' conceptual architecture and the interactions between 
modules and various codelets is given in (Dubois et al., 2007). 

Consciousness is essential for the sense of self. It makes possible to refer to one's 
preferences and long-term goals, evaluate situations and solutions, and choose in 
which direction to improve. CTS currently has an embryo of personality (fundamental 
principles as motivators) that we are in the process of augmenting by a complete 
framework for principles, values and emotions. When, for instance, deliberating upon 
the poor success it meets in helping his student, CTS may come to associating aspects 
of the situation with traits of the personality it his displaying, and therefore decide to 
modulate somewhat those traits that may cause the difficulties. Consciousness is al-
ways involved in situations where "canned solutions" cannot play part.  

As Figure 1 illustrates (in another scenario), a deliberation consists in examining  
inputs coming from various modules belonging to the architecture in loops of proposal-
feedback. All CTS resources (Behavior Network, Learner Model, Domain Expert,  
 

 

Fig. 1. Sequence diagram of a deliberation process. On the left, we show how a coalition of 
information codelets evolves along the way. 
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various memories, and Codelets) have to be made aware of the ongoing situation so they 
may contribute in achieving the most accurate assessment possible with the help of mul-
tiple angles of analysis. But no one knows in advance where the best contribution will 
come from; it is a contextual, emergent process. 

Progressively, in the course of multiple cognitive cycles with "conscious" publica-
tions, the modules enrich or oppose certain information offered by other resources. An 
example of this happens when the astronaut appears inactive. Is he baffled and at a loss, 
or distracted, or annoyed and thinking of stopping, or is he analyzing and planning his 
move? The Learner Model may have many hypotheses to offer, one for each of its sub-
components (Learner Profile, Learner Knowledge, Learner Affect); the same is true of 
Episodic Memory, which may bring back parallels with other similar situations. After 
publication, an hypothesis suggesting that he is demotivated (Affect) may receive rein-
forcement from Episodic Memory with an implicit causal explanation of this demotiva-
tion (he previously had difficulties in similar situations) and from Learner Profile (this 
astronaut has a tendency to doubt himself and get discouraged). But this hypothesis may 
be opposed by the Domain Expert that states that this operation simply is difficult. With 
this opposition, the proposal looses some of its attractiveness. In effect, CTS may decide 
to wait a little more before attempting an intervention.  

Sometimes there is no solution to the ongoing problem. In this case, the system re-
nounces the deliberation and publishes the failure; the BN will then provide the most 
appropriate way to react to the situation in the current context, often soliciting input 
from the learner. More about deliberation can be found in (Dubois et al., 2007). 

3   Comparison with Other Cognitive Architectures 

CTS' architecture parallels other cognitive agents and agent architectures: symbolic ones 
such as ACT-R, PRS (BDI), Blackboard, SOAR, CS/SAS, Icarus, etc., and, sub-
symbolic ones, such as CLARION. This comparison exceeds the available space, but we 
can draw some general conclusions about some of them. We have described many of 
CTS's capabilities put forth here in previous papers. 

CTS incorporates PRS completely, which has been the first implementation of the 
BDI theory. What CTS adds is the ability to deal with emotions and their roles. It also 
allows the building of plans on-the-fly. CTS is also more faithful to the human model, 
with "consciousness", simple and specialized "unconscious processes", and learning. 

The Blackboard architecture is also a foundation to CTS' functioning. CTS' architec-
ture extends the original idea with the capability to learn and selectively keep successful 
sequences of action (solutions), automatization, creation of unexpected associations in 
WM (creativity), global and implicit analysis of situations (intuition), emotional influ-
ence on cognition.  

In most its principles and mechanisms, CTS is also very close to ACT-R, with  
sub-symbolic (or rather, implicit) as well as symbolic levels, modularity, concurrent 
parallelism/serialism, etc. ACT-R clearly exceeds CTS in its predictive capability, as the 
equations driving its declarative memory strive to reproduce experimental results. Other 
differences exist in the way information is processed: ACT-R's rules do not readily lend 
themselves to a meta-level; is uses a simpler hypothesis about the cognitive cycle, and 
supports no clear separation between conscious and unconscious processing. With an 
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explicit central coordinator between the modules (the rules themselves), there's no room 
for unexpected solutions (intuition and creativity). Finally, adding other aspects such as 
emotions and multiple aspects regarding the learner might prove a challenge, at least if 
they are to be part of the rules as decision parameters. 

4   Conclusion 

In cases of incorrect maneuvers, the "consciousness" mechanism implemented in CTS 
allows diagnosing the situation by gathering opinions from multiple resources that 
look into the problem from their particular point of view. Although not described in 
this article, CTS' personality and fundamental principles also participate in decisions. 

Our current works seek to enrich CTS' pedagogical capability. We are also design-
ing and implementing emotional processing and some machine learning mechanism 
to help orient tutor's decisions, action, and support to the learner.  
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Abstract. We present the results of a study1 in which we contrast alternative 
forms of collaborative learning support in the midst of a collaborative design 
task in which students negotiate between increasing power and increasing envi-
ronmental friendliness. In this context, we evaluated the instructional effective-
ness of four alternative support conditions as well as a goal manipulation. Both 
manipulations yield surprising findings, which we are continuing to investigate. 

1   Research Study 

We are conducting our research on dynamic support for collaborative design learning in 
the domain of thermodynamics, using as a foundation the CyclePad articulate simulator 
[1,2] which allows students to implement design ideas using graphical interface widgets, 
and to explore the relationships between the settings of various parameters within the 
cycle design. In the study described in this paper, we specifically focus on issues related 
to “Green Design” with Rankine cycles. In the collaborative design exercise described 
below, students work in pairs to struggle with trade-offs between power output and envi-
ronmental friendliness in the design of a Rankine cycle, which is a type of heat engine.  
We assigned each student within each pair to a different competing goal, with one stu-
dent instructed to increase power output as much as possible and the other student  
instructed to make the design as environmentally friendly as possible. The trade-offs 
involved in this task offer students the opportunity to find one of the major motivations 
for seeking to increase the efficiency of a designed cycle.   

84 students participated in the study by attending one of four lab sessions, which were 
structured into multiple phases during which we strictly controlled for time.  At the be-
ginning of each lab session that was part of the study, students were lead through formal 
training on the simulation software from an instructor using power point slides and the 
simulation environment. They then worked on Rankine cycles in Cyclepad using infor-
mation from a booklet given to them, which was developed by a professor from the  
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Mechanical Engineering Department. Subsequent to this, they took the pre-test, immedi-
ately before the experimental manipulation. The exploratory design exercise, which fol-
lowed, was where the students worked in pairs using CyclePad and the ConcertChat 
collaboration environment [3] to optimize power and environmental friendliness. This 
was followed by the post-test and the questionnaire. 

In our experiment presented below, we contrast 3 support conditions where dialogue 
agents offer different levels if interactive instruction within the chat environment, with a 
Control condition where no support was offered. Students use a collaboration software 
package called ConcertChat [3] to chat with each other as well as using the digital white-
board associated with that environment to pass graphical information back and forth to 
one another.   

In order to control for information presentation, the 3 support conditions offered stu-
dents exactly the same information as was included in the booklet that all students had 
access to, although it was presented to them in 3 different ways. In the Knowledge Con-
struction Dialogue (KCD) condition, a dialogue agent participated in the conversation at 
3 pre-determined times in order to engage students in discussion related to a topic related 
to their design task. This form of support was evaluated successfully in a prior study [4]. 
In the second “Pointer” condition- rather than engage students in a dialogue, students 
were simply asked to refer to the page in the book that included the same information that 
was offered by the KCD. In the final “Minilesson” condition, the same information was 
inserted into the chat buffer by the dialogue agent, and students were not required to find 
the material in the book. While all three methods direct students to important informa-
tion, they differ with respect to how intrusive they are and how much effort they require 
the student to make. Thus, by comparing learning effectiveness across all four conditions, 
we can determine whether the primary contribution of the KCDs used successfully in 
prior studies was the fact that it addresses the problem that students have trouble deter-
mining what information they need at key points, or if part of the value is in the interac-
tive manner in which KCDs present information to students.  

As outcome measures, we examined learning gains between Pre and Post test. 35 mul-
tiple choice and short answer questions were used to test analytical and conceptual 
knowledge of Rankine cycles. We also examined the quality of their design rationales 
contributed at the end of the collaborative design exercise. Finally, we compared answers 
to affective questionnaire items across conditions. 

First we examined the effect on learning of the goal manipulation, i.e., whether stu-
dents were assigned to the goal to achieve the greatest power (Power) or the condition to 
achieve the greatest environmental friendliness (Green). We were surprised at the result.  
With an ANCOVA analysis where we use total post-test score as the dependent variable, 
pre-test score as the covariate, and Goal as the independent variable, we see a marginal 
effect in favor of the Power condition F(1,83) = 2.68, p = .1, effect size .3 standard devia-
tions. In terms of likelihood of pre to post test gain, we determined that students in the 
Power condition were marginally more likely to gain between pre and post test than 
students in the Green condition based on a binary logistic regression (P < .1). On the 
questionnaire, students in the Green condition also reported higher tendencies to feel 
influenced by their partner’s point of view than their counterparts in the Power condition.  
Nevertheless, not too surprisingly, we see an effect on their design rationales.  In particu-
lar, while there is no significant difference in likelihood of mentioning efficiency or an 
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efficiency related factor in the rationale between conditions, students in the Power condi-
tion were marginally more likely to mention a Power related factor (P < .1) whereas 
students in the Green condition were significantly more likely to mention an environ-
mental friendliness related factor (P < .05).  Although the negative effect of the Goal 
manipulation on students in the Green condition is only marginal, it is still surprising 
since students in the two conditions worked in pairs, where in each pair there was one 
student from each of these conditions. So they were exposed to all of the same material 
and worked through exactly the same solution.  Considering also that it would have been 
more desirable for the Green condition to be the preferred condition, it is disappointing 
that the result came out the opposite, and to add insult to injury, the Green students were 
more swayed towards the Power side than the opposite. 

The results with respect to the support variable were no less troubling.  Comparing the 
frequency of students who gained between pre and post test across conditions using a 
binary logistic regression, all support conditions were significantly more likely to pro-
duce a pre to post test gain than the Control condition. However, to our surprise, the 
Pointer and Minilesson conditions were also significantly more likely to produce a pre to 
post test gain than the KCD condition. This shows that the potential gain for instructional 
support in the midst of collaborative learning is not restricted to the navigation problem 
we noticed in earlier studies, where students are not sure what material to attend to. It is 
disappointing, however, that the interactive support provided by the dialogue agents was 
worse than the non-interactive support. We suspect that this has to do with the interrup-
tive affect of the agents that has been noted to decrease the level of transactivity in the 
discussion between students in collaborative pairs in our earlier studies. If we can address 
this problem, we believe we can dramatically improve the instructional effectiveness of 
tutorial dialogue agents for supporting collaborative learning, building on prior very 
encouraging results [4]. 

Moving forward from here we would like to do a much more in depth analysis of 
the collaborative learning discussion logs, especially with respect to transactive con-
versational behavior across the four conditions.   
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Abstract. We present an intelligent tutoring system for teachers, which was de-
signed to support them while they learn and adapt a learning scenario for their 
teaching. The system is a learning environment where teachers can explore dif-
ferent learning scenarios and get advice on the criteria for choosing among 
them. Then they choose a “case study” scenario and learn to adapt it to their 
own context. Different kind of support are given during the interaction with the 
system, declarative and procedural help is presented as indexed help on each ac-
tivity, but also as contextual help using a rule based advice system. The system 
was experimented with eight teachers (four academic and four from industry), 
who succeeded to adapt the ‘case study” scenario to their own context. The 
evaluation and discussion present what help they found more useful and how 
the system could be improved.  

Keywords: Learning system, web based learning, agent support to learning. 

1   Introduction 

Research on computer support for learning are trying to share not only ideas but 
learning objects and also to address the need to share and reuse learning objects, as 
well as the expertise on the pedagogy using computers for distant learning, in class-
rooms or when developing eportefolios systems. A scenario can be seen as “a set of 
organised tasks, ruled by actors, that use and define resources » [1]. 

A recent study across Candada [3] shows that Learning Objects are not being used 
that much. Learning scenarios are not easy to reuse and to adapt [4] as the content and 
context may vary, and each authors needs to control how it is integrated in his specific 
context. For Cromier [5] the reuse of learning scenarios must answer the need to save 
time, bring new ideas, discover new pedagogical methods, but scenarios must exist, 
the teacher must be open to reuse, and he must be trained to do it.  

We proposed a model to support the design process, offering an environment where 
scenarios could be reused, and where the task to design learning scenarios could be ex-
plained. We present the experimentation of the system with teachers.  
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2   Designing a System to Support the Reuse and Adaptation of 
Scenarios 

Villiot-Leclercq [6] proposes to define reuse as a process in three steps, which must 
be supported : the choice, the appropriation and the adaptation of the scenario. One of 
the challenges when supporting a task is to take into account the needs of users in the 
context of the task (complexity, time constraitns, learning styles, objectives, etc.) [7]. 

Many theories and research highlight the important parameters to adequately sup-
port learners: individual reactions to support, instructional design theories on the 
structures of information for learning [8], on the use of proximal development zone  
[9]. According to situated learning approach, learning can only occur in relation to a 
relevant context [10] : a real problem, with real activities, with access to expert 
knowledge, asking to explicit knowledge, in a collaborative context, with scaffolding 
and evaluation of learning [11]. Thus in the context of this research on supporting  the 
design of scenarios, we tried to meet those requirements: an authentic problem, access 
to expertise and to explicit processes, scaffolding with multi-views perspective on the 
knowledge to be learned, co-construction with reflection and coaching. We designed a 
set of cognitive and technical artifacts to support the learning process activity:  

 

• A scenario editor Explor@Graph [2]. 
• A formal model to express scenarios as Pleiades formalism [12]. 
• A graphic model of the scenario, on how to reuse, and adapt scenarios. 
• Different models of typical scenarios also called Patterns 
• Declarative, procedural and strategic knowledge on scenarios design .  
• A real and a virtual coach to support the learning process. 
 

The Explor@Graph Scenario Editor was used to present typical scenarios and to sup-
port teachers learning to adapt a « case study » scenario to their own context.   

3   Experimentation of the Learning System  

An evaluation of the system was done with eight users: four teachers which were 
collaborators in the CAUSA project on educational scenarisation practices and four 
insctructional designer at Symetrix an e-learning business designing online courses. 

They are all expert designers who use technology on a regular basis, having ex-
perience with learning scenarios, so they could have a critical point of view on the 
proposed formalism, on the support environment and on the help system.  

The assessment has identified some tracks on the advantages and limitations of 
each type of artifact : interest to use formalized scenario, benefits of the editor based 
on a graphical and flexible representation, interest for suggestions focused on peda-
gogical aspects, but also for their improvement (more procedural suggestions, more 
contextualized suggestions, in parallel but not interrupting the activity, which are also 
accessible as indexed help.To improve the support to different context, it would be 
interesting to adapt the system to different profiles of teachers and to different learn-
ing contexts (institutional / industrial). 
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Finally our work has focused on a device to support reuse of individual scenarios, 
however, reuse can be done in a collective way, and it is necessary to consider 
mechanisms for achieving support in such collective context of resuse, for example in 
team teaching or community of practices. In such sharing context, typical scenarios 
might evolve, as well as the pedagogical suggestions, which are linked to them. 
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Abstract. Usually, learning objects are described and indexed in repositories 
using metadata so that users can select them to create new on line courses. What 
must the granularity level of these metadata be to make them fit the learners’ 
needs? We describe here the problems encountered in integrating a complex 
learning object to train learners in solving problems in a web-based interactive 
learning system based on a learner model, and we give a possible solution.  
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1   Context 

To define learning sequences is a subject of research, which is foregrounded because 
indexing and describing learning objects are now progressing on the way of normali-
sation and some repositories begin to exist and be used. As Brooks and al. [2] said: 
"combining ITS and e-learning Technologies is a challenge". Our work comes within 
this context using two mature systems of different and complementary nature. 

Our aim is to add a complex activity to a web-based interactive learning system 
ActiveMath [1] thanks to a learning object Combien? [3] [4], which is a training envi-
ronment. We would like to take advantages of the wealth of the two environments. 
ActiveMath enables users to create courses from a set of learning objects relative to a 
concept to be learned. It uses a non domain specific learner model to choose the exer-
cise that best fit the learner’s level at a given moment [5]. The Combien? software 
enables learners to train themselves in solving combinatorics problems. It is a com-
plex environment based on a meta-model to express the domain, the problems and the 
solutions. It proposes rich exercises (not MCQ) to learn a solving method. It contains 
a mechanism to detect errors incrementally, using error schema bases so that learners 
cannot continue their solving if it leads to a dead-end; in this case Combien? gives 
them hints to continue the solving rightly. It contains numerous varied exercises; each 
of them is in itself a learning object.  

Let us take an example of Combien? exercise EX1: “How many five-digit numbers 
are there with exactly three occurrences of the digit 0?”. The general form is: “given a 
set or sets (here, the set of positions P, and the set of digits D), count within some 
universe of configurations (here each configuration is a mapping from P to D and the 
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universe is the set of all these mappings) the elements that satisfy some constraints 
(here the injective mappings whose range contains the digit 0 exactly three times) ”. 
Solving a combinatorics exercise consists in counting the cardinal of the set SeC (set 
of the elements which satisfy the constraints). It forces learners to use the “construc-
tive method” that consists in building step by step an element of the set to be counted 
SeC and then to reason about this construction to count the cardinal of SeC.  

To make ActiveMath and Combien? interact, metadata have to be compatible. A 
“good” level of metadata is necessary to allow efficient search for finding the exercise 
most suited to the learner at a given learning stage. The main characteristic of the 
Combien? exercises is the class of the exercise according to the solving schema. Then 
for each class the solving difficulty depends on three types of skills: the modelling of 
the exercise statement, the finding of appropriate constraints, and the use of appropri-
ate formulas to calculate. 

2   Extra Metadata 

ActiveMath uses metadata LOM compatible on the basis of DublinCore and OMDoc. 
Exercises are annotated by metadata relations for, pre-requisites or counter which 
link them to the concepts. Activemath has extended these metadata for pedagogical 
purpose. We are particularly interested in the relation for which links exercises and 
concepts, and in metadata difficulty which can be annotated by the learning context, in 
competencylevel and in competency (adopted from PISA). But we need more special-
ized metadata to distinguish between Combien? exercises.  

To use the relation for, let us see the concepts which Combien? exercises are 
linked to. The first concepts concern the class of the exercise which is bound to the 
type of sets to be built (a set of sets, a set of functions, the union of sets of sets or of 
sets of functions). Other concepts are the two combinatorics principles, the multiplica-
tive principle and the additive principle. For instance, EX1 is linked to the building of 
a set of functions and to the multiplicative principle by for relations. 

Competency and competencylevel are very informative for the learner model. They 
respectively describe the mathematical competencies and the mathematical knowl-
edge level an exercise trains. Competencylevel is a metadata which is associated not 
only to an exercise but also to the learner model. Thus, the estimated difficulty of an 
exercise for a learner is calculated on the one hand from the values of the metadata 
competency level and difficulty of the exercise and on the other hand from the value 
of the competency level of the learner. As we have seen in the previous section, the 
difficulty of a Combien? exercise depends on various characteristics. The difficulty 
metadata must be linked with these characteristics. We propose to extend annotations 
for difficulty using a new relation for_skill. For example, the difficulty linked to the 
characteristic modelling defined in the previous section, can be expressed by a level 
of difficulty for the skill modelling. Values of skills specify the values of ActiveMath 
competency which are too general for our purpose. Here, the skill modelling is fo-
cused on a deep understanding of the exercise statement and can be linked with the 
model competency. To ensure the possibility of describing all the occurrences of dif-
ficulty according to the characteristics we presented, we define a vocabulary for 
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learners’ skills in the context of Combien?: modelling of the exercise statement, de-
termineConstraints for the finding of appropriate constraints, and calculate for the use 
of appropriate formulas.  

For EX1, the value of difficulty is given by the three elements: 
 

<difficulty value= “easy” for_skill= “modelling”/>,  
<difficulty value=“medium” for_skill= “determineConstraints”/>, 
<difficulty value=“medium” for_skill=“calculate”/>  
 

To be efficient, these addings of metadata must come with addings in the learner 
model. This one must contain skills to allow the search procedure to link these skills 
and those of the exercise description. Skills are more precise than competencies, but 
they are domain dependent and thus the kind of learner model is modified regarding 
ActiveMath purpose. To update the learner model after the solving of an exercise, a 
report is sent to ActiveMath which would be enriched by the analysis of the solving 
tracks.  

The propositions to add skills to the description of the exercises and to the learner 
model and to explicitly link skill and difficulty fit in with the position of the PISA 
group when they say that their competencies describe skills at a very high level and 
must be specified to describe precise skill in a restricted domain.  

3   Conclusion 

To make two separately designed systems interact is always difficult. Our aim was to 
take advantage of the two systems. On the one hand Activemath capacity to choose a 
“right” learning object according to the user model and the domain to learn and, on 
the other hand, of the wealth of the training Combien? system. Both systems use 
metadata to describe and choice learning objects but these are not of the same level 
because of the restricted domain of Combien? 

We have been confronted with a problem of a difference of level between the two 
metadata systems and we have been able to join these systems with respect to the 
Activemath features. We think that this study can open new perspectives to incorpo-
rate specialized complex activities in a general web learning environment.  
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Abstract. This paper proposes a proof theoretic approach to check con-
flicts between the arguments derived from the ontologies of learning re-
sources. Two types of arguments that can arise in a situation where a
learner encounters conflicting viewpoints about a topic are identified,
namely syllogistic arguments and arguments about the set of necessary
and sufficient conditions that represent a concept. A method based on
set equations is applied to create Syllogistic arguments from ontologies.
The taxonomic associations of concepts in Ontologies, can be converted
to categorical statements giving rise to syllogisms. We also consider argu-
ments about the necessary and sufficient features for the representation
of concepts and show that they can be handled in a very similar way
as syllogistic arguments. The approach can be applied by a pedagogical
agent in an interactive learning environment in order to identify, dis-
cuss differences in conceptualizations and check the validity of claims of
different resources.

1 Introduction

Ontologies enable the representation of the semantic content of learning re-
sources. With the growing release of semantic web tools and technologies these
resources are becoming increasingly available to the learners. However, the ex-
istence of multiple resources gives rise to multiple perspectives and viewpoints
about the same topics. Empirical research [1] has recorded evidence of discrepan-
cies in conceptualizations of experts attributed to different background knowl-
edge and practices. The educational community [2,3,4] argues that the use of
argumentation in order to identify discrepancies in conceptualizations enables
reflection and articulation and can enrich the learning experience. The purpose
of this paper is to discuss our approach for the derivation of arguments from
ontologies and for testing the validity of arguments raised by a learner. We focus
on two types of arguments, namely syllogistic arguments and necessity and suf-
ficiency arguments, which are important for learning. The rest of the paper is
organized as follows: Section 2 shows how syllogistic arguments and arguments
about necessary and jointly sufficient features can be inferred from ontologies
and validated via a theorem prover. Section 3 summarizes the issues raised in
this paper and the future objectives.
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2 Formalization

2.1 Terminology

We define an ontology O as a structure O ≡ 〈C, D, R〉, where C is a set of con-
cepts, D is a non-empty set called the domain of the ontology and R is a set
of relations over C. An interpretation I of O is an assignment associating to
each concept Ci ∈ C a non-empty subset, Ci

I , of D, and to each relation in R
a subset of C × C. We define the model, M of an ontology O, as an interpre-
tation that satisfies each relation in R. An Ontology may include one or more
hierarchies of concepts. These are important for the derivation of arguments con-
sidered in this paper. We use the term concept hierarchy to denote the structure
H =< CH, RH > where CH is a set of concepts, st. CH ⊆ C of the ontology
O, and RH = {Disjoint, SubclassOf, InstanceOf, Union, Intersects} and ev-
ery concept in CH is associated with another concept via a relation in RH. As
above, we are interested in those interpretations of a hierarchy that satisfy all
the taxonomic relations within the hierarchy. A model, MH of H is an interpre-
tation I of H where all the taxonomic relations in RH are satisfied. Obviously,
MH is a sub-model of M.

2.2 Syllogistic Arguments and Ontological Taxonomic Relations

Generalized statements of the form: Every X is a Y or Every X has the prop-
erty Y are referred to as categorical propositions . A syllogism is a particular
type of argument that always has two premises and a single conclusion and all
three statements are categorical propositions [5]. There are four basic categor-
ical propositions that can be combined to produce 64 patterns of Syllogistic
Arguments. However, only 27 of them are valid. As a result, testing validity of
syllogistic arguments is important in any interaction with the tutor. The four
basic categorical propositions are shown below, together with their ontological
representations and set equations. 1

Categorical Statement Ontological Primitive Set Equation

Every S is a P SubclassOf(S, P) S ⊆ P

No S is a P SubclassOf( S, ComplementOf(P)) S ⊆ P

Some S is a P Intersects(S, P) S ∩ P

Some S is not P Intersects(S, ComplementOf(P)) S ∩ P

2.3 Necessary and Sufficiency Conditions Arguments

We use the classical view of the representation of concepts which states that
the features representing a concept are singly necessary and jointly sufficient to
define a concept. Intuitively, a feature φ is singly necessary for the definition
of C if and only if existence of C implies existence of φ. More formally, let us
assume a feature φ. We define a set Φ consisting of all items of the domain which
1 For simplicity, we use the concepts themselves instead of the actual interpretation

of concepts in set equations.
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have feature φ. Then, φ is necessary for the representation of concept C if and
only if CI ⊆ Φ. Now assume that {Φ1, . . . , Φn} represent the set of concepts
corresponding to features φ1, ..., φn respectively. Then if {Φ1∩, . . . , ∩Φn} ⊆ CI

we say that φ1, ..., φn are jointly sufficient for the definition of C. So, now we
can easily derive the universal set equations corresponding to above the notions
of sufficient and necessary features for the representation of concepts.

2.4 Checking validity of Arguments

Bennett [6] proved that universal equations can be translated to equivalent
propositional logic formulae that can be tested for their validity with a proposi-
tional theorem prover. By adapting the classical entailment correspondence the-
orem [6] we get an equivalent result for taxonomic relations as follows: MH |= φ
iff MC+ |= τ = U , where φ CF �ST τ for each i and C+ is the universal set
equations language.

3 Conclusion

In this paper we show how a tutoring agent can infer arguments from ontologies.
Arguments can be used to identify discrepancies in the ontologies of learning
resources and differences between ontologies and a learner’s beliefs. We show
that syllogistic arguments follow naturally from ontological primitives and we
represent arguments about the necessary and sufficient properties of concepts.
The latter help to differentiate between concepts. Concepts and their associations
are given set-theoretic semantics and can be translated to universal set equations.
Bennett’s [6] theory is used to convert universal set equations to propositional
logic statements that can be checked for their validity with a propositional logic
theorem prover. The theorem prover can also be extended to infer arguments
from an ontology automatically.
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Abstract. We describe an affective behavior model (ABM) for intelligent tutor-
ing systems. The model is a Dynamic Decision Network that selects tutorial ac-
tions based on both the current affective and pedagogical state of a student, as 
well as on the assessment of the expected effect of each available action on the 
student. We integrated the ABM with an educational game to learn number fac-
torization, and here we present the preliminary results of a user study to evalu-
ate its effectiveness. 

Keywords: affective student model, Bayesian networks, dynamic decision net-
works, intelligent tutoring systems. 

1   The Affective Behavior Model (ABM) 

The ABM is designed to enable intelligent tutoring systems to include affective re-
sponses in their pedagogical actions. A diagram of the ABM is shown in Fig. 1. The 
ABM relies on both a model of a student’s current knowledge (pedagogical model in 
Fig. 1) and a model of student affect (affective model in Fig. 1) to select an affective 
and a pedagogical action to support student learning and morale in the current situa-
tion. The two actions are then integrated into the actual tutorial action delivered to the 
student through the interface module. The ABM is basically a model that allows an 
ITS to establish a mapping from a student’s affective and pedagogical state to tutorial 
actions. The mapping cannot be deterministic because there is inherent uncertainty in 
the assessment of both the current relevant student states and the effects of tutor’s 
actions on these states. To deal with this uncertainty, the ABM relies on a dynamic 
decision network (DDN), depicted in Fig. 2. The DDN generates a probabilistic as-
sessment of how each available tutorial action influences the affective and pedagogi-
cal state of the student, given a probability distribution over his/her current state. This 
assessment is then used to establish the expected utility of each tutorial action for the 
current state. The DDN selects the tutorial action considering two utility measures, 
one on learning and one on affect, which are combined to obtain the global utility of 
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each available action for the tutor’s goals. The influence of each tutorial action on the 
pedagogical and affective states is based the teachers’ expertise, as we describe next. 
For a more detailed description of the model, see [2]. 
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Fig. 1. General diagram of the affective behavior model 
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Fig. 2. High level dynamic decision network for the affective tutor model 

2   Evaluation of the Model 

We integrated the ABM with Prime Climb, an educational game to learn number 
factorization for grade 6 and 7 students. This game includes Merlin, a pedagogical 
agent implemented through Microsoft Agent [4], as well as Bayesian models for both 
student affect [1] and learning [3]. The agent in the original game does not explicitly 
consider affective factors in its decisions, i.e. it does not rely on the affective student 
model and only generate pedagogical actions in the form of verbal hints appearing in 
a speech bubble; for example: “Think about how to factorize the number you clicked 
on” or “You cannot click on a number which shares common factors with your part-
ner’s number”. To deliver the pedagogical hints Merlin takes a fixed, neutral pose and 
facial expression. Therefore, we devised a new version of the game that includes the 
ABM and uses it to select affective actions in addition to select pedagogical actions. 
Affective actions are animations of the pedagogical agent, such as Merlin making a 
conciliating expression and extending his arms trying to explain and motivate the 
student. To decide which affective/pedagogical actions to include in the system and 
define their impact on the student state, we relied on teachers’ expertise. Eleven 
teachers were shown the various animations and verbal hints available to Merlin, as 
well as a video of a student playing the game. Based on this information, they selected 
the animations and verbal hints they thought were most suitable for the Prime Climb 
agent. They also established a mapping between the various playing situations shown 
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Fig. 3. Two tutorial actions composed by an affective action (Merlin’s animation) and a peda-
gogical action (verbal hint) selected by the affective behavior model for Prime Climb 

in the video and what they thought were the most suitable agent actions for these 
circumstances. Fig. 3 shows two tutorial actions composed by an affective action, 
(Merlin’s animation) and a pedagogical action (a verbal hint). 

We conducted a user study in a school in Mexico with students from grades 
equivalent to grades 6, 7 and 8 in elementary school in the American system. The 
students in the lowest grade had just learned number factorization. Students in the 
higher grades were supposed to know this topic already, but their teachers thought it 
would still be useful for them to use Prime Climb as a review. For each grade, the 
students were divided into two groups; the control group played Prime Climb with the 
original pedagogical agent, the experimental group played with the ABM version. We 
gave each student a pre-test, then the students played for 40 minutes, and after that 
they took a post-test and a questionnaire. We found a significant effect of game ver-
sion on post-pre test gain for the students in grade 6 (1-tailed t-test, t = 6.95, p < 
0.001), with the experimental group learning more. This result shows that the ABM 
has great potential to improve an ITS’s performance by including affective factors in 
its tutorial decisions. For the higher grades, neither groups showed significant im-
provements from pre-test to post-test. For the highest grade this is due to a ceiling 
effect in the pre-test, but for the intermediate grades, the pre-tests showed that stu-
dents still needed help with number factorization. We speculate these students did not 
learn from Prime Climb as much as the younger students did because they did not put 
effort into it, believing that they had already mastered the topic. However, further 
studies are necessary to clarify this finding. 
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Abstract. This paper proposes the use of machine learning techniques to build 
an efficient learner’s emotional transition diagram transition. For information 
Extraction tasks, we led an experimentation in which we exposed a group of 17 
learners to a series of pictures from the International Affective Picture System 
(IAPS). Decision tree classifier has demonstrated the best ability to learn model 
structure from data collected. Among the emotions involved in learning and ac-
cording to the picture from IAPS and the current emotional state, we drew up 
the transition diagram. Our model aims to improve the task of predicting the 
emotional state in an Intelligent Tutoring System and achieve a prediction accu-
racy of 63.11%. These results suggest that the implementation of the decision 
tree algorithm in the intelligent tutoring system we are developing improves the 
ability for an ITS to track the learners emotional states. 

1   Previous Work 

Our previous work [2][3] indicated that an EEG is an efficient information source to 
detect emotions. Results show that the student’s affect (Anger, Boredom, Confusion, 
Contempt, Curious, Disgust, Eureka, and Frustration) can be accurately detected 
(82%) from brainwaves [3]. We have also conducted an experimentation in which we 
explored the link between brainwaves and emotional assessment on the SAM scale 
(pleasure, arousal and domination). Results were promising, with 73.55%, 74.86% 
and 75.16% for pleasure, arousal and dominance respectively [2]. Those results sup-
port the claim that all rating classes for the three emotional dimensions (pleasure, 
arousal and domination) can be automatically predicted with good accuracy through 
the nearest neighbor algorithm. In this paper, we focus on the emotions that are exhib-
ited during learning [1] and we identify them using classification methods. We use the 
International Affective Picture System to present to the learner different pictures able 
to trigger emotions; and we aim to estimate the average duration of each emotion and 
the effect of the visual emotional stimuli. Brainwaves are categorized into 4 different 
frequency bands, or types, known as delta, theta, alpha, and beta waves. Each of these 
wave types often correlates with different mental states. Table 1 lists the different 
frequency bands and their associated mental states. 

The emotions that we will consider are those which appear during learning [1] and 
are: anger, boredom, confusion, contempt, curiosity, disgust, eureka and frustration. 
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Table 1. Brainwaves Categories 

Wave Type Frequency Mental State 
Delta (δ) 0-4 Hz Deep sleep 

Theta (θ) 4-8 Hz 
Creativity, dream sleep, drifting 
thoughts 

Alpha (α) 8-12 Hz Relaxation, calmness, abstract thinking 

Beta (β) +12 Hz 
Relaxed focus, high alertness, agita-
tion, anxiety 

2   Experimentation Description and Results 

The experiment included 17 learners selected from the Computer Science Department 
of University of Montreal. In order to induce the emotions which occur during learn-
ing, we use IAPS. The participant is connected to an EEG. The purpose of the ex-
perimentation is to record any change related to the emotions or the brainwave ampli-
tude. The resulting database was composed of 30551 tuples that contained the user id, 
the id of the picture displayed (from IAPS). the emotion of the user and the time (in 

ssmmhh :: ) of the recording. The first treatment that was applied to the database 
was to extract a dataset of tuples that contains the picture id, the emotional transition 
from emotion te  to emotion tte Δ+ , and the time, tΔ  (in sec) between each emotional 

or picture transition. Tuples with tΔ  values equal to 0 where removed as well as the 
few ones that had their tΔ  values scattered between 55 and 206. We eliminated cate-
gories of less than 6. Several classification algorithms were tested in order to provide 
the best accuracy (table 2). Classification accuracy varies from 60.85% (+/- 3.88%) to 
63.12% (+/- 3.12%). 

Table 2. Results of the algorithms that gave the best results 

Algorithm Accuracy Kappa 
Decision tree 63.11% +/- 3.12% 0.534 +/- 0.038  
Random Forest 63.12% +/- 5.72% 0.532 +/- 0.079 
CHAID 62.85% +/- 4.21% 0.529 +/- 0.057 
Rule learner 60.85% +/- 3.88% 0.508 +/- 0.055 

 
Figure 1 shows the results obtained from the Decision tree algorithm. Starting from 

emotion e1, for instance with emotion 2, we observe that we shift to emotion 6 if the 
duration ( tΔ ) is higher than 7 seconds. We can observe that the average duration of 
feeling a particular emotion is estimated between 6 and 9 seconds. An interesting 
observation is that the picture category seems to be a relevant parameter only in the 
case of transitions from disgust. In the case of transitions from other emotions, the 
only parameter kept by the algorithm was tΔ .  
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Fig. 1. The decision tree showing the transitions between emotions 

3   Conclusion 

It appears that there the learner’s emotional transition depends always on the duration 
and, in the case of disgust, also on the picture category. Therefore, results show that 
we can follow the emotional transitions of the learner and that certain picture catego-
ries can influence emotions. The output of decision tree resulted in accurate predic-
tions. If the method described above proves to be effective in tracking the learner’s 
emotions, we can direct our focus to a second stage. Using this prediction, an ITS 
could select an adequate pedagogical strategy able to cope to certain learner’s emo-
tions in addition to cognitive states. This adaptation would increase the bandwidth of 
communication and allow an ITS to respond at a better level. If this hypothesis holds 
in future replication, then it would give indications on how to help those learners to 
induce positive emotions during learning. 
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Abstract. It is important to investigate what tutoring paradigms are appropriate 
for ill-defined domains. We focus on teaching intercultural competence, where 
asynchronous online discussion is a typical instructional task. We explore two 
methods of assessing student contributions and delivering feedback: an adaptive 
support system that provides individual feedback, and a peer moderator from 
the class supported by adaptive assistance. 

1   Introduction 

Intercultural competence, where students learn to interpret events in a foreign culture 
in terms of cultural differences, is often taught by presenting students with cultural 
video and then asking them to discuss the relevant issues. As more and more in-class 
discussion moves online to asynchronous discussion forums, teachers are not always 
available to support the discussion [1]. We are interested in applying the techniques of 
intelligent tutoring systems (ITSs) to address this problem. ITSs have made signifi-
cant strides in well-defined domains such as math, but approaches for ill-defined  
domains, such as the learning of culture, are now just emerging. We leverage two 
resources in delivering discussion support: an intelligent autonomous system and fel-
low students from the class. Our work attempts to answer the following two ques-
tions. First, where can adaptive support be best applied in asynchronous discussion on 
intercultural competence? Second, how does providing feedback through these two 
resources affect discussion posts? 

To teach intercultural competence, we use an e-learning environment developed by 
Ogan et al. [2], where students watch a video clip from a French film that includes 
cultural content (e.g., what immigration means to France), and follow exercises that 
encourage them to reflect deeply on the content. After this process, students engage in 
discussion, which we attempt to support in two ways. First, we develop an adaptive 
collaborative learning system (ACLS) that compares a given student post to a simple 
model of good intercultural discussion, and provides private feedback to students 
based on the model (individual ACLS). In the second approach, adaptive support is 
delivered to a peer moderator, a student from the class who moderates the discussion 
forum (moderator ACLS). In this work, we developed a prototype of each approach 
and piloted the prototypes with a small number of students.  
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2   Design and Implementation 

To form a basis for adaptive support, we used theoretical and empirical analyses to iden-
tify five dimensions of good cultural discussion. The first two are specific to cultural dis-
cussions, while the remaining three are general and we consider them prerequisite for 
cultural discussion. The first dimension is taken from Steglitz [3] who includes intercul-
tural perspective taking as an important measure of intercultural learning (D1: Does the 
post show awareness of multiple points of view?). Next, our data revealed that students 
did not always post correct facts to the forum, thus suggesting D2: Does the post refer-
ence correct cultural elements specific to the theme of the video? Moving to general 
properties of good discussion, on-topic discussion should enable learning [4] (D3: Is this 
post on-topic?). Next, students should post at a high level of “cognitive depth” (e.g., [5]), 
manifested by D4: Does the post have good argumentation? Finally, our existing forum 
data revealed that discussions benefited from having students introduce novel facts, lead-
ing to D5: Does this post introduce relevant new facts? 

We designed the individual and moderator adaptive support based on the above di-
mensions. To implement the individual ACLS, we used automated key-word detection to 
achieve reasonable accuracy in identifying three of the five dimensions: D1, D3, and D4. 
After students created a post for the discussion board, they had to submit it to the system 
prior to posting. The system determined where the post fell along each dimension and 
randomly selected one feedback message from several with alternate wordings that were 
associated with the problematic dimensions. The system then added correct facts related 
to the content of the post from a collection of facts about the issues presented in the 
video. This feedback was presented privately to the student, who was required to make at 
least one modification to the post before submitting the final version to the discussion 
board. The following is an example of a final post: 

“Maybe Momo is a little arrogant, and M Ibrahim wants to "put him in his 
place" a little. If his father is so racist (seen by saying go to chez l'arabe) it's 
possible that Momo will imitate him.  It is a little kind and nice of him to give a 
name a little funny or cute so that he learns that he is not superior to others. 
Also, the computer suggests that I add 'in the past, names given to infants born 
in France were required to be the names of Catholic saints, and often, Jewish 
families changed their names to better conform to the dominant culture.’ So 
maybe Ibrahim wants Momo to follow his roots”. 

In our moderator intervention, two students from the class were chosen to moderate each 
assignment. They were asked to reply to threads with feedback on the posts that had been 
made so far and guide the discussion. Moderators were asked to rate posts on a binary 
scale (“yes/no”) for each of the five model dimensions and submit them to the moderator 
support agent. The adaptive support gave the moderator a feedback template to fill in and 
suggested some facts that the moderator might want to incorporate into his or her post. 
The moderator then used the template to write and submit a post to the discussion forum. 
The following is an example of a feedback template: 

“You make a good argument when you say __________.  But have you considered 
looking at the issue from a different perspective?  Maybe what is happening is 
______________” 
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3   Evaluation 

We conducted a pilot evaluation of the two types of support in two different upper 
level French classes. Both studies took place over a week, during which students 
watched a film clip and were asked to post to the discussion board three times. The 
individual ACLS forum had 8 participants, while the moderator ACLS forum had 3 
participants and 2 moderators. We assessed both the quality and effect of feedback 
provided by each approach. In general, moderators deleted the feedback template and 
wrote their own feedback, often asking questions about specific issues in the video. 
Their posts contributed to the discussion with multiple perspectives, introduction of 
prior knowledge, and good argumentation. The feedback given by the individual 
ACLS offered suggestions for improvement along the dimensions and presented the 
students with relevant facts. A majority of the system ratings matched human ratings 
of the posts. When posts received less accurate ratings, we observed that the feedback 
was not out of place, perhaps because it was designed to apply in multiple situations. 
We then asked whether students used the feedback to improve the discussion. After 
feedback from the peer moderator, subsequent student posts tended to improve, al-
though the small number of participants warrants further study. In the individual 
ACLS, students used the feedback they received to modify 15 out of the 25 posts. The 
majority of these posts improved, mostly on using correct facts. These facts were sug-
gested in the feedback and may have also lead to the improvement seen in argumenta-
tion scores, because they provided better evidence to support students’ conclusions.  

In this work, we have created prototypes applying adaptive support technology to 
the ill-defined domain of intercultural competence. We see promise both in providing 
private adaptive feedback to posters in a discussion forum (through post improve-
ment) and to a peer moderator of the discussion (through richer feedback). While fur-
ther evaluation is necessary, these approaches could improve intercultural competence 
instruction and change our conception of asynchronous discussion support. 
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