
I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 310–325, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Metamodeling Approach for Reasoning about
Requirements

Arda Goknil, Ivan Kurtev, and Klaas van den Berg

Software Engineering Group, University of Twente, 7500 AE Enschede, the Netherlands
{a.goknil,kurtev,k.g.van.den.berg}@ewi.utwente.nl

Abstract. In requirements engineering, there are several approaches for
requirements modeling such as goal-oriented, aspect-driven, and system
requirements modeling. In practice, companies often customize a given
approach to their specific needs. Thus, we seek a solution that allows
customization in a systematic way. In this paper, we propose a metamodel for
requirements models (called core metamodel) and an approach for customizing
this metamodel in order to support various requirements modeling approaches.
The core metamodel represents the common concepts extracted from some
prevalent approaches. We define the semantics of the concepts and the relations
in the core metamodel. Based on this formalization, we can perform reasoning
on requirements that may detect implicit relations and inconsistencies. Our
approach for customization keeps the semantics of the core concepts intact and
thus allows reuse of tools and reasoning over the customized metamodel. We
illustrate the customization of our core metamodel with SysML concepts. As a
case study, we apply the reasoning on requirements of an industrial mobile
service application based on this customized core requirements metamodel.

Keywords: requirements metamodels, reasoning, model customization.

1 Introduction

Model Driven Engineering (MDE) considers models as primary engineering artifacts
throughout the software development [11]. A software system is specified as a set of
models that are repetitively refined until a model with enough details to implement
the system is obtained.

Software development has different phases (requirement analysis, architectural
design, detailed design, implementation and testing) which result in different artifacts.
Currently, there exist standard modeling languages for expressing architecture,
detailed design, and implementation of systems. Requirements descriptions, however,
are considered mostly as textual artifacts with structure often not explicitly specified.
Requirements descriptions are one of the earliest models of a system. In order to keep
the continuum of models in MDE by treating every artifact as a model we need to
represent requirements descriptions as models as well. To achieve this, developers
need to employ a metamodel for requirements. However, it is difficult to propose a
single and eventually standardized metamodel for requirements. There are several

 A Metamodeling Approach for Reasoning about Requirements 311

commonly used approaches to represent requirements: goal-oriented [27] [16], aspect-
driven [20], variability management [16], use case [3], domain-specific [12], and
reuse-driven techniques [13]. Goal-oriented approach [27] defines a model for
decomposing system goal into requirements with goal trees and offers some decision
methods based on this decomposition. Aspect-oriented approach [20] gives a
requirements model for separation of crosscutting functional and non-functional
properties in requirements analysis phase.

A possible approach is to extract the common concepts from the existing
techniques into a single metamodel. The current state of the requirements engineering
practice shows that companies often adapt and customize a given approach to the
company’s specific needs. Thus, we need a solution that will allow us to achieve
generality by using a set of common concepts and to allow customization in a
systematic way.

In this paper, we propose a metamodel for requirements models (called core
metamodel) and suggest an approach for customizing this metamodel in order to
support different requirements specification techniques. We define the semantics of
the concepts and the relations in the core metamodel. On the basis of the semantics
we can perform reasoning on requirements that may detect implicit relations and
inconsistencies. Furthermore, our approach for customization keeps the semantics of
the core concepts intact and thus allows reuse of tools and reasoning over the
customized metamodel.

The core metamodel represents the common concepts extracted from some existing
requirements modeling approaches [27] [15] [16] [18] [20] [28]. The customization of
the core metamodel is based on set-theoretic operations. This ensures the validity of
the results inferred from the customized requirements models by using the reasoning
rules defined for the core metamodel. In the core metamodel we give the building
blocks of a requirements specification. We are not interested in giving the details of
requirements such as dynamic properties of target systems. Requirements engineer
can always come up with his/her domain specific language for different types of
requirements such as real-time specifications of embedded systems.

We illustrate our approach by customizing the core metamodel with SysML
constructs. As a case study we model the requirements of an industrial mobile service
application based on the customized metamodel.

The paper is structured as follows. In Section 2, we describe the customization
approach for the requirements metamodels. Section 3 gives the details of the core
requirements metamodel with the inference rules. Section 4 gives the details of
SysML requirements metamodel. In Section 5 we describe the mappings between the
two requirements metamodels. We also give the customized core requirements
metamodel for SysML. In Section 6, we give a case study to illustrate the
customization. Section 7 presents the related work. Section 8 summarizes the paper
and describes future work.

2 Overview of the Customization Approach

In our approach the requirements engineer starts with the core requirements
metamodel (See Fig. 1) and identifies the concepts that need specialization and
concepts that has to be added. The result of the customization is a new requirements

312 A. Goknil, I. Kurtev, and K. van den Berg

metamodel. In Fig. 1, we use SysML as an example metamodel that specializes the
core metamodel. The plus operator denotes the specification of the relations between
the elements in the metamodels. These relations are based on set operations. An
example is given in Section 5. Other metamodels for different approaches such as
goal-oriented and aspectual requirements can be composed with the core requirements
metamodel.

Fig. 1. Customization of Requirements Metamodels

In this paper we express the metamodels as OWL [4] ontologies. The composition
operator is also expressed in OWL since this language allows direct mapping from set
operations to the language constructs. By using OWL we can use the reasoning
capabilities of the ontology tools. The aim of the approach is to specify generic
inference rules for the core metamodel and to apply them for the customized
metamodels (see left part of Fig. 1). Additional inference rules, specific for a given
metamodel, may be added if needed.

3 Core Requirements Metamodel

The core requirements metamodel contains common concepts identified in existing
requirements modeling approaches [27] [15] [16] [18] [20] [28]. The core metamodel
in Fig. 2 includes entities such as Requirement, Stakeholder and Relationship in order
to model general characteristics of requirements artifacts. They serve as extension
points for possible customizations of the core metamodel. In this metamodel, all
requirements are captured in a requirements model (RequirementModel). A
requirements model is characterized by a name property and contains requirements
instances of the Requirement entity. All requirements have a unique identifier (ID

 A Metamodeling Approach for Reasoning about Requirements 313

Fig. 2. Core Requirements Metamodel

property), a name, a textual description (description property), a priority, a rationale
(reason property), and a status. Requirements may have additional descriptions
(AdditionalDescription entity) such as a use case or any other formalization.

Usually, requirements are classified as functional and non-functional requirements.
Since there might be different classifications of requirements for different approaches,
we decided not to give any further specialization of the Requirement concept in the
core metamodel: this can be added in the customization. Requirements can be related
with each other. We recognize four types of relations: Refines, Requires, Conflicts,
and Contains. These core relations can be specialized and new relations may be added
as specializations of the Relationship concept. The metamodel includes the entities
Stakeholder, TestCase, Glossary and Term. Test cases are not always considered as
parts of requirements specifications. However, they are important to validate or verify
requirements. Some metamodels [18] [28] consider test cases as a part of the
requirements specification.

In order to specify relations between core and other requirements metamodels we
give a set-theoretic interpretation of the core entities.

Let Core Requirements Metamodel (CRM) = {R, RS, RF, RQ, CF, CT SH, TC,
GS, T, AD} where the following abbreviations for the entities are used:

AD: AdditionalDescription R: Requirement SH: Stakeholder
CF: Conflicts RF: Refines T: Term
CT: Contains RQ: Requires TC: TestCase
GS: Glossary RS: Relationship

We assume that (a): all relations between requirements are the subset of
relationship and (b): the intersection of these four relations is an empty set and the
Refines relation is a subset of the Requires relation.

RQRFCTCFRQRFb

RSCTRSCFRSRQRSRFa

⊆∧≡∩∩∩
⊆∧⊆∧⊆∧⊆

φ:

)()()()(:

314 A. Goknil, I. Kurtev, and K. van den Berg

The relations in the core metamodel are defined and formalized as follows.

 Definition 1. Requires relation: A requirement R1 requires a requirement R2 if R1 is
fulfilled only when R2 is fulfilled. R2 can be treated as a pre-condition for R1 [28].

 Definition 2. Refines relation: A requirement R1 refines a requirement R2 if R1 is
derived from R2 by adding more details to it [27].

 Definition 3. Contains relation: A requirement R1 contains requirements R2..Rn if
R1 is the conjunction of the contained requirements R2..Rn. This relation enables a
complex requirement to be decomposed into child requirements [18].

 Definition 4. Conflicts relation: A requirement R1 conflicts with a requirement R2 if
the fulfillment of R1 excludes the fulfillment of R2 and vise versa [26].

The definitions given above are intuitive and informal. In the remaining part of this
section we give a formal definition of requirements and relations among them in order
to ensure sound inference rules.

We assume the general notion of requirement being “a property which must be
exhibited by a system” [7]. We define a requirement R as a tuple <P, S> where P is a
predicate (the property) and S is a set of systems that satisfy P, i.e.)(: sPSs ∈∀ .

 Formalization of Requires
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. R1 requires
R2 iff for every s1 ∈ S1 then s1 ∈ S2.

From this definition we conclude that S1 ⊂ S2. The subset relation between the
systems S1 and S2 gives us the properties of non-reflexive, non-symmetric, and
transitive for the requires relation.

 Formalization of Refines
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. We assume
that P1 and P2 are formulas in first order logic (there may be formalizations of
requirements in other types of logics such as modal and deontic logic [14]) and P2 can
be represented in a conjunctive normal form in the following way:

P2 = p1 ∧ p2 ∧ ... ∧ pn-1 ∧ pn ∧ q1 ∧ q2 ∧ ... ∧ qm-1 ∧ qm

Let q1
1, q

1
2, …, q1

m-1, q
1
m are the predicates such that q1

i → qi for mi ..1∈
R1 refines R2 iff P1 is derived from P2 by replacing every qi in P2 with q1

i mi ..1∈
such that the following two statements hold:

(a) P1 = p1 ∧ p2 ∧ ... ∧ pn-1 ∧ pn ∧ q1
1 ∧ q1

2 ∧ ... ∧ q1
m-1 ∧ q1

m
(b)

12 : SsSs ∉∈∃

From the definition we conclude that if P1 holds for a given system s then P2 also
holds for s. Therefore S1 ⊂ S2. Similarly to the previous relation we have the
properties non-reflexive, non-symmetric, transitive for the refines relation. Obviously,
if R1 refines R2 then R1 requires R2.

 Formalization of Contains

Let R1, R2 and R3 are requirements such that R1 = <P1, S1>, R2 = <P2, S2>, and R3 =
<P3, S3>. We assume that P2 and P3 are formulas in first order logic and can be
represented in a conjunctive normal form in the following way:

 A Metamodeling Approach for Reasoning about Requirements 315

P2 = p1 ∧ p2 ∧ ... ∧ pm-1 ∧ pm
P3 = pm+1 ∧ pm+2 ∧ ... ∧ pn-1 ∧ pn

R1 contains R2 and R3 iff P1 is derived from P2 and P3 as follows:
P1 = P2 ∧ P3 ∧ P' where P' denotes properties that are not captured in P2 and

P3 (i.e. we do not assume completeness of the decomposition [27])
From the definition we conclude that if P1 holds then P2 and P3 also hold.

Therefore, S1 ⊂ S2 and S1 ⊂ S3. Obviously, the contains relation is non-reflexive,
non-symmetric, and transitive.

 Formalization of Conflicts
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. Then, R1
conflicts with R2 iff)()(:: 2121 sPsPSsSss ∧∈∧∈¬∃ . The conflicts relation is

symmetric.

It should be noted that the definition of requires is given in extensional terms as a
subset relation between the systems that satisfy the requirements. The definitions of
refines and contains are given in intensional terms, that is, they take into account the
form of the requirement specification as a predicate. If we would interpret refines in
an extensional way then we will conclude that requires and refines are both
interpreted as a subset relation and therefore are equivalent. Apparently in our
formalization, refines and requires are different.

From the given definitions we may infer several rules that show how these three
relations can be combined. We explore all combinations of requirements relations in
the core metamodel in order to derive inference rules for requirements. Due to space
limitation we do not give all combinations and inference rules for the relations. The
rules are expressed in Semantic Web Rule Language (SWRL) [9] since OWL is not
expressive enough in this case. The following example illustrates some of the rules on
the basis of a concrete requirements specification document given in the WASP
framework [21]. The example requirements (see Case Study in Section 6) are:

- REQ_BDS_007: When changes are discovered in the status and/or location
of a user’s body, the WASP platform must sent out notifications according to the
alerts set by the user.

- REQ_NOT_006: The WASP platform must notify the end-user about the
occurrence of an event for which an alert was set, as soon as the event occurs.

- REQ_NOT_009: The WASP platform must actively monitor all events.

In the requirements document, the following relations are given: refines
(REQ_BDS_007, REQ_NOT_006) and requires (REQ_NOT_006, REQ_NOT_009).
When we apply the inference rules to the given requirements, we have inferred that
REQ_BDS_007 also requires REQ_NOT_009 (dashed line in Fig. 3).

Fig. 3. Example with Given and Inferred Relations

316 A. Goknil, I. Kurtev, and K. van den Berg

We can formalize and proof these rules as follows:

Rule 1: refines(R1, R2) ∧ requires(R2, R3) → requires(R1, R3)

Proof: Let R2 = <P2, S2> where P2 = p1 ∧ p2 ∧ … ∧ pn-1 ∧ pn
and R1 = <P1, S1>. Since R1 refines R2, from the definition we have that P1 = p1 ∧

p2 ∧ ... ∧ pn-1 ∧ pn ∧ q1
1 ∧ q1

2 ∧ ... ∧ q1
m-1 ∧ q1

m and q1
i → qi mi ..1∈ .

Again from the definition we have that if P1 holds then P2 also holds. From the
requires relation between R2 and R3 we have that S2 ⊂ S3. Therefore if P2 holds then
P3 also holds. Now we may conclude that if P1 holds then P3 also holds. This gives the
subset relation S1 ⊂ S3 which proves that R1 requires R3.

Rule 2: contains(R1, R2) ∧ requires(R2, R3) → requires(R1, R3)

Proof: Let R1 = <P1, S1>, R2 = <P2, S2>, and R3 = <P3, S3>
Since R1 contains R2 we have S1 ⊂ S2. From R2 requires R3 it follows that S2 ⊂ S3.

Consequently S1 ⊂ S3. Similarly to the previous proof, we conclude that R1
requires R3.

We can have implications for more combinations (e.g. three relations for four
requirements and two conjunction operators) by using these inference rules.

Fig. 4. Example with Inferred Relations by Combining Inference Rules

The relations shown with dash lines in Fig. 4 are inferred by using Rule 1, the
transitivity of the relations, and the fact that refines implies requires. By combining
these rules we have the following indirect relations:

requires(R1, R2) ∧ refines(R2, R3) ∧ requires(R3, R4) →
requires(R2, R3) ∧ requires(R2, R4) ∧ requires(R1, R3) ∧ requires(R1, R4)

Several rules for consistency checking are derived from the basic combinations
where there is only one relation between two requirements. These inconsistencies are
different from conflicts relation between requirements. Inconsistencies here indicate
that relations between requirements are violating their constraints. Some of the
consistency rules are given below:

- refines(x1, x2) → ¬ refines(x2, x1)
- refines(x1, x2) → ¬ requires(x2, x1)
- refines(x1, x2) → ¬ contains(x2, x1)

We specified OWL [4] ontologies for each metamodel with Protégé [6]
environment. Inference rules were expressed in SWRL [9]. The rules to check the
consistency of relations were implemented as SPARQL [24] queries. The inference
rules are executed by Jess rule engine [10] available as a plug-in in Protégé. To reason

 A Metamodeling Approach for Reasoning about Requirements 317

upon the requirements, the user specifies them as individuals (i.e., instances) in
ontology. The inference and consistency checking rules are executed on this ontology.

4 SysML Requirements Metamodel

The System Modeling Language (SysML) [18] is a domain specific modeling
language for system engineering. It is defined as an extension of a subset of UML
using UML’s profiling mechanisms. SysML provides modeling constructs to
represent text-based requirements and relate them to other modeling elements with
stereotypes. We apply the customization mechanism (see Fig. 1) on a metamodel for
requirements used in SysML. (see Fig. 5). The requirements are represented as a
requirements diagram, and have a name, a unique identifier (ID property), and a
textual description. Requirements may be additionally described by use cases. There
are also use case relations Uses, Specializes and Extends.

There are different types of requirements specified as an extension of Extended-
Reqt entity. They are InterfaceReqt, PerformanceReqt and DesignConstraint. Requi-
rements may be related with each other with relations Derives, Copies, and Contains.
The relations extend the concept Trace. Similarly to the core metamodel we interpret
the metamodel elements as sets.

Let SysML Requirements Metamodel (SRM) = {R, US, AD, EX, SC, CP, FR, T,
CT, IR, TC, DC, PR, UC, DV, PSR, UCR, ER} using the following abbreviations for
the entities:

AD: AdditionalDescription EX: Extends SC: Specializes
CP: Copy FR: FunctionalReqt T: Trace
CT: Contains IR: InterfaceReqt TC: TestCase
DC: DesignConstraint PR: PerformanceReqt UC: UseCase
DV: Derives PSR: PhysicalReqt UCR: UseCaseRelation
ER: ExtendedReqt R: Requirement US: Uses

Fig. 5. SysML Requirements Metamodel

318 A. Goknil, I. Kurtev, and K. van den Berg

We assume that (a): Requirements types in SysML are subsets of ExtendedReqt
which is a subset of Requirement, (b): The intersection of all these requirements types
is an empty set (they are disjoint), (c): Relations between requirements are the subset
of relationship Trace, (d): the intersection of these relations is an empty set, (e):
UseCase is a subset of AdditionalDescription, (f): Relations between use cases are the
subset of relationship UseCaseRelation, and (g): the intersection of the relations
between use cases is an empty set.

φ

φ

φ

≡∩∩
⊆∧⊆∧⊆

⊆
≡∩∩

⊆∧⊆∧⊆
≡∩∩∩∩

⊆∧⊆∧⊆∧⊆∧⊆∧⊆

EXSCUSg

UCREXUCRSCUCRUSf

ADUCe

CTCPDVd

TCTTCPTDVc

DCPSRFRPRIRb

RERERDCERPSRERFRERPRERIRa

:

)()()(:

:

:

)()()(:

:

)()()()()()(:

We introduce the following inference rules specific for SysML and not defined for
the core metamodel. The relations uses, extends and specializes are transitive.
Transitivity is captured in Rule 1:

Rule 1. uses(uc1, uc2) ∧ uses(uc2, uc3) → uses(uc1, uc3)

If two use-cases are related, derived requirements from these use-cases are also
related. Rule 2 specifies this:

Rule 2. uses(uc1, uc2) ∧ hasAdditionalDescription(req1, uc1) ∧ hasAdditional-
Description(req2, uc2) → requires(req1, req2)

Since the concepts of use case and uses relation are not precisely defined in
SysML, the inference rules 1 and 2 express the intuitive meaning we assigned to
them. The formalization of SysML concepts needs further investigation.

5 Mappings between the Core and SysML Metamodels

In order to customize the core metamodel with SysML constructs we establish map-
pings between the elements in these metamodels. Mappings are specified as relations
on sets. Some elements like Requirement in the core and Requirement in SysML are
mapped directly. However, some elements e.g. Derive from SysML has no
corresponding element in the core metamodel. Table 1 shows the mappings between
core and SysML metamodels.
The semantically equivalent entities are related with set equality (e.g. rows 1, 5, 6).
All specialized requirements in SysML are specializations of Requirement in the core
metamodel (row 2). Requires (RQ) and Conflicts (CF) have no corresponding relation
in SysML metamodel. All relations that have no corresponding relations in SysML
metamodel are specializations of Trace (T) relation (rows 9 and 10). The relation

 A Metamodeling Approach for Reasoning about Requirements 319

Table 1. Mapping between Core and SysML Requirements Metamodels

 Core Metamodel Relation SysML Requirements MM
1. R ≡ R
2. R ⊇ IR ∪ PR ∪ FR ∪ PSR ∪ DC
3. RF ∪ RQ ∪ CF ∪ CT ⊆ T
4. RS ⊇ DV ∪ CP ∪ CT
5. RS ≡ T
6. RF ≡ DV
7. CT ≡ CT
8. RS ⊇ CP

9. RQ ⊆ T
10. CF ⊆ T
11. AD ≡ AD
12. TC ≡ TC

Copy (CP) in SysML is mapped to a specialization of Relationship (RS) in core
metamodel (row 8).

Customization operators are derived from the mappings given in Table 1. Two
required operators are “equivalent class” and “sub-class”. They may be expressed in
different ways depending on the technology. In OWL environment these operators
correspond to rdfs:equivalentClass, rdfs:subClassOf, rdfs:equivalentProperty, and
rdfs:subPropertyOf. Fig. 6 gives customized core requirements metamodel for
SysML. This metamodel is the output of the customization process given in Fig. 1.

-name : String
RequirementsModel

-ID : Integer
-name : String
-description : String
-priority : Priority
-reason : String
-master : Requirement
-status : Status

Requirement

1

*

+neutral
+lowCritical
+critical
+veryCritical

«enumeration»
Priority

-ID : Integer
-description : String

TestCase

1

-tests*

-validatedBy

*

-validates*

-name : String
-description : String

Stakeholder

1

-definedBy*

-proposedBy1..*

-proposes

*

Glossary

1

1

-name : String
-description : String

Term

1

1..*

-synonym

-uses

*

-usedBy

*

-name : String
Trace

-source

1 *-target

1 *

Derives Copy ContainsRequires Conflicts

1

*

ExtendedReqt

InterfaceReqt PerformanceReqt FunctionalReqt PhysicalReqt DesignConstraint

AdditionalDescription

*
-refines

1

1

*

UseCaseUseCaseRelation

*

-source

1

*

-target

1

Uses Specializes

*

-antonym

+proposed
+analyzed
+accepted
+rejected
+replaced

«enumeration»
Status

Extends

Fig. 6. Customized Core Requirements Metamodel for SysML

6 Case Study WASP Application Framework

In this section we apply the proposed approach in a case study. An existing
requirements specification document is represented as a model instance of the
customized metamodel from Section 5. The case study is about the requirements for

320 A. Goknil, I. Kurtev, and K. van den Berg

WASP (Web Architectures for Services Platforms), a framework for context-aware
mobile services [21]. The requirements are identified using a three-step process of
defining scenarios, use cases and requirements (see [21] for concrete details). There
are 2 scenarios, 32 use cases and 81 requirements (70 functional and 2 non-
functional;; three of these requirements are decomposed into 9 sub-requirements).

We compared the reasoning facilities available in our approach with the similar
support provided by IBM Rational RequisitePro. RequisitePro provides only two
relations between requirements: traceFrom and traceTo. The relations in the
customized metamodel (e.g., the uses relation) must all be mapped to one of those two
relations. For example, links from requirements to use cases are mapped to traceTo
links in RequisitePro and to hasAdditional-Description in our framework.

There is no explicit indication in the WASP requirements document for
requirements relations. However, there are some keywords in the document to
reference to other requirements. These keywords are “see also”, “implies”, “implied
by” and “extension of”. We mapped them to the available relations in RequisitePro
and our framework (see Table 2). In the 4th column, we indicate our choice for the
directionality, e.g. for “implies” and “implied-by”.

Table 2. Mapping of Requirements Relations in Case Study

Document RequisitePro Our Framework Directionality
w.r.t. document

R1 see (also) R2 R1 traceTo R2 R1 requires R2 both the same
R1 implies R2 R1 traceTo R2 R1 requires R2 both the same
R1 implied by R2 R2 traceTo R1 R2 requires R1 both reversed
R1 extension of R2 R1 traceTo R2 R1 refines R2 both the same
R1 example in R2 R1 traceTo R2 R2 refines R1 ours reversed

Individual requirements in the document were represented as individuals in the

OWL ontology in Protégé. The execution of the inference rules with the Jess rule
engine inferred the implicit relations between requirements in the document. We also
executed consistency rules to check the requirements relations (both given and
inferred). The Jess rule engine was executed in two steps: a) with inference rules
written for only the core requirements metamodel, b) with inference rules written for
the customized metamodel for SysML. Table 3 shows given and inferred facts for
requirements document of the WASP application.

Table 3. Given and Inferred Facts for the WASP Application Requirements

Facts

R

UC # Relations
R x R

Relations
R x UC

Relations
UC x UC

Given 81 32 20 103 24
Inferred in Step a 0 0 5 0 0
Inferred in Step b 0 0 735 0 4

 A Metamodeling Approach for Reasoning about Requirements 321

Reasoning on the core metamodel (step a) resulted in 5 inferred relations between
requirements. Since we do not have any inference rule for use cases in the core
metamodel, we do not have any inferred relations between use cases and use cases &
requirements. We executed the rules to check the consistency of the given and
inferred requirements relations. We did not detect any inconsistency for these
relations. The result reflects the accuracy of relations given in the document regarding
the relation definitions we use for the core metamodel. We also checked the inferred
relations manually if they correspond to a relation that can be identified by analyzing
the textual requirements document. We found one inferred relation that is not true.
When we traced from the inferred relation back to the given relations, we found that
one given relation in the ontology has not a correct mapping to the requirement
relations in the document. This is due to the assumption that links “see (also)”
represent “requires” relations. However, we found that one of these links actually
corresponds to “refines” relation. Our conclusion is that often the requirements
engineers use links with ambiguous meaning or the links are not applied
systematically.

The execution of the inference rules added by the SysML requirements meta-
models (step b) resulted in 735 inferred relations between requirements and 4 inferred
relations between use cases. The consistency check detected 16 inconsistent relations.
The analysis of these inconsistencies revealed that they are caused by Rule 2 in
Section 4. Rule 2 implies that if two requirements are related to two different use
cases and one of these use cases uses another one, then there should be a “requires”
relation between these requirements. When we checked the given relations in the
requirements document, we realized that the interpretation of the requirements
engineer for “uses” relation is different. There are given “requires” relations between
requirements whose use cases are not related each other with “uses cases”. Therefore,
Rule 2 does not capture the document structure properly and does not reflect the
understanding of the requirements engineer. In order to apply the rules in practice, we
should give the precise definition for each relation to requirements engineer and offer
a guideline about how to specify these relations for more accurate reasoning results.

We compared the results in our framework with the results in RequisitePro. Table
4 gives the given and inferred relations in RequisitePro and our framework.

We observe more inferred relations between requirements and use cases in
RequisitePro than in our framework. RequisitePro infers links on the base of the

Table 4. Given and Inferred Relations in RequisitePro and Our Framework

relations # Given # Inferred # Inferred
UC = 32; # R = 81 Document RequisitePro Our Framework
UC x UC 24 3 3
UC x R 103 98 0
Step a: R x R 9 1 5

inconsistencies - - 0
Step b: R x R 9 - 735

inconsistencies - - 16

322 A. Goknil, I. Kurtev, and K. van den Berg

transitivity of trace relations without considering the linked artifacts. For example, it
assumes transitivity between R1 and UC in case of R1 traceTo R2 traceTo UC, which
is debatable. RequisitePro does not define any specific types of relations. This
prohibits sophisticated reasoning based on various relation types and leads to some
wrong inferred relations as seen in UC x R. In our framework, the relation types and
the inference rules allow us to have more precise inferred relations. Having types for
relations also avoids finding non-meaningful relations inferred by RequisitePro.

7 Related Work

Several authors address requirements modeling in the context of MDE. In [28] a
metamodel and an environment based on it are described. The tool supports graphical
requirements models and automatic generation of Software Requirements
Specifications (SRS). Baudry et al. [1] introduce a metamodel for requirements and
present how they use it on top of a constrained natural language for requirements
definition. In [2] they propose a model-driven engineering mechanism to merge
different requirement specifications and reveal inconsistencies between them by using
their core requirement metamodel. However, their core metamodel is mainly used to
produce a global requirements model from a given set of texts. It does not specify
entities and core relations and does not support customization.

Some authors [8] [25] use UML profiling mechanism in goal-oriented requirements
engineering approach. Heaven et al. [8] introduce a profile that allows the KAOS model
[27] to be represented in UML. They also provide an integration of requirements models
with lower level design models in UML. Supakkul et al. [25] use UML profiling
mechanism to provide an integrated modeling language for functional and non-
functional requirements that are mostly specified by using different notations. SysML
[18] also uses UML profiling mechanism to provide modeling constructs that represent
text-based requirements and relate them to other modeling elements.

Koch et al. [12] propose a requirements metamodel that is specific to web systems.
They do not consider general concepts for requirements analysis. They identify the
general structure of web systems in order to define the requirements metamodel.
Rashid et al. [20] give an activity model in requirements engineering for identifying
and separating crosscutting functional and non-functional properties. Moon et al. [15]
propose a methodology of producing requirements that can be considered as a core
asset in the product line. Lopez et al. [13] propose a metamodel for requirements
reuse as a conceptual schema to integrate semiformal requirement diagrams into a
reuse strategy. The requirements metamodel is used to integrate different abstraction
levels for requirements definitions. Navarro et al. [17] propose a customization
approach for requirements metamodels similar to ours. Their core metamodel is too
generic and considers only artifact and dependency as core entities. It does not
contain any entity specific to requirements. This prevents applying inference rules
written for the core entities to customized entities. Requirements Interchange Format
(RIF) [22] is a format which structures requirements and their attributes, types, access
permissions and relationships. It is tool independent and defined as an XML schema.
However, its data model has too generic entities and relations like Information Type,
Association, and Generalization instead of entities that can be formalized to reason
about requirements and their relations. Ramesh et. al [19] propose models for

 A Metamodeling Approach for Reasoning about Requirements 323

requirements traceability. Models include basic entities like Stakeholder, Object and
Source. Relations between different software artifacts and requirements are captured
instead of core relations between requirements.

A number of approaches suggest reasoning about requirements. Zowghi et al. [29]
propose a logical framework for modeling and reasoning about the evolution of
requirements. Duff et al. [5] propose a logic-based framework for reasoning about
requirements specifications based on goal-tree structures. Rodrigues et al. [22]
propose a framework for the analysis of evolving specifications that can tolerate
inconsistency by allowing reasoning in the presence of inconsistency.

8 Conclusion

There are several approaches for modeling requirements. These approaches are
usually customized to serve specific needs and standards in industrial projects. In this
paper, we proposed a metamodel for requirements and a customization approach in
the context of Model Driven Engineering. Using metamodels for this customization
allows us providing an environment for reuse of tools such as reasoners. The main
concepts in our approach are the core requirements metamodel and the customization
mechanism. We surveyed existing requirements modeling approaches to extract the
core metamodel. We presented definitions and a formalization of requirements
relations for the core metamodel. The customization mechanism is implemented on
the basis of OWL properties in ontology.

We applied our approach in a case study based on a requirements specification
document from a real project. We were able to infer several new relations that were
not explicit in the document. We compared the capability of our approach to infer
relations with the similar functionality provided by IBM RequisitePro, a commercial
tool for requirements management. The relations in RequisitePro lack formal
semantics. As a consequence, the inferred relations may not correspond to a “real”
relation that may be discovered by inspecting the requirements document.

Since a wide range of inconsistencies can arise during requirements engineering,
we did not elaborate on the conflicts relation in this paper. Some authors [26] review
the main types of inconsistency and formalize them for specific cases. We plan to
study definition and formalization of conflicts relation as future work. The impact of
changes in requirements on inferred relations and checking the consistency of
requirements against these changes are another future work in evolution dimension.
For the evolution of requirements, we also want to analyze the impact of changes in
requirements on architectural and detailed design. We need trace models to link
requirement models to design models. These trace models will enable us to determine
possible impacts of changes of requirements models on design models.

References

1. Baudry, B., Nebut, C., Le Traon, Y.: Model-Driven Engineering for Requirements
Analysis. In: EDOC 2007, pp. 459–466. IEEE, Annapolis (2007)

2. Brottier, E., Baudry, B., Le Traon, Y., Touzet, D., Nicolas, B.: Producing a Global
Requirement Model from Multiple Requirement Specifications. In: EDOC 2007, pp. 390–
404. IEEE Computer Society Press, Annapolis (2007)

324 A. Goknil, I. Kurtev, and K. van den Berg

3. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2000)
4. Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.,

Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference W3C
Recommendation (2004)

5. Duffy, D., MacHish, C., McDermid, J., Morris, P.: A Framework for Requirements
Analysis Using Automated Reasoning. In: Iivari, J., Rossi, M., Lyytinen, K. (eds.) CAiSE
1995. LNCS, vol. 932. Springer, Heidelberg (1995)

6. Gennari, J., Musen, A., Fergerson, R.W., Grosso, W.E., Crubezy, M., Eriksson, H., Noy,
N.F., Tu, S.W.: The Evolution of Protégé: An Environment for Knowledge-Based Systems
Development. International Journal of Human-Computer Studies 58(1), 89–123 (2003)

7. Guide to Software Engineering Body of Knowledge. IEEE Computer Society, Los
Alamitos (last visit 06.02.2008), http://www.swebok.org/

8. Heaven, W., Finkelstein, A.: UML Profile to Support Requirements Engineering with
KAOS. IEE Proceedings – Software 151(1) (February 2004)

9. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
Semantic Web Rule Language – Combining OWL and RuleML. W3C (May 2004)

10. Jess, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/
11. Kent, S.: Model Driven Engineering. In: Proceedings of the 3rd International Conference on

Integrated Formal Methods, London, UK, pp. 286–298 (2002)
12. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web

Applications. In: Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P.,
Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 497–506. Springer, Heidelberg
(2003)

13. Lopez, O., Laguna, M.A., Garcia, F.J.: Metamodeling for Requirements Reuse. In: Anais
do WER 2002 - Workshop em Engenharia de Requisitos, Valencia, Spain (2002)

14. Meyer, J.J.C., Wieringa, R., Dignum, F.: The Role of Deontic Logic in the Specification of
Information Systems. Logics for Databases and Information Systems, 71–115 (1998)

15. Moon, M., Yeom, K., Chae, H.S.: An Approach to Developing Domain Requirements as a
Core Asset Based on Commonality and Variability Analysis in a Product Line. IEEE
Transactions on Software Engineering 31(7) (2005)

16. Mylopoulos, J., Chung, L., Yu, E.: From Object-Oriented to Goal Oriented Requirements
Analysis. Communications of the ACM 42(1) (1999)

17. Navarro, E., Mocholi, J.A., Letelier, P., Ramos, I.: A Metamodeling Approach for
Requirements Specification. The Journal of Computer Information Systems 46(5), 67–77
(2006)

18. OMG: SysML Specification OMG ptc/06-05-04, http://www.sysml.org/specs.htm
19. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE

Transactions on Software Engineering 27(1) (2007)
20. Rashid, A., Moreira, A., Araujo, J.: Modularization and Composition of Aspectual

Requirements. In: AOSD 2003, Boston, United States, pp. 11–20 (2003)
21. Requirements for the WASP application Framework, https://doc.telin.nl/dsweb/Get/

Document-27861/WASP_D2.1_version_1.0_Final.pdf
22. Requirements Interchange Format (RIF), http://www.automotive-his.de/rif/doku.php
23. Rodrigues, O., Garcez, A., Russo, A.: Reasoning about Requirements Evolution using

Clustered Belief Revision. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI),
vol. 3171. Springer, Heidelberg (2004)

24. SPARQL Query Language for RDF. W3C (January 2008), http://www.w3.org/TR/rdf-
sparql-query/

 A Metamodeling Approach for Reasoning about Requirements 325

25. Supakkul, S., Chung, L.: A UML Profile for Goal-Oriented and Use Case-Driven
Representation of NFRs and FRs. In: SERA 2005 (2005)

26. van Lamswerdee, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE Transactions on Software Engineering 24(11) (November
1998)

27. van Lamswerdee, A.: Goal-Oriented Requirements Engineering: A Roundtrip from
Research to Practice. In: Invited Minitutorial, Proceedings RE 2001 - 5th International
Symposium Requirements Engineering, Toronto, pp. 249–263 (2001)

28. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and Formatting. Journal of Object
Technology, Special Issue TOOLS Europe 2007 6(9), 437–454 (2007)

29. Zowghi, D., Offen, R.: A Logical Framework for Modeling and Reasoning about the
Evolution of Requirements. In: RE 1997, Annapolis, USA (January 1997)

	A Metamodeling Approach for Reasoning about Requirements
	Introduction
	Overview of the Customization Approach
	Core Requirements Metamodel
	SysML Requirements Metamodel
	Mappings between the Core and SysML Metamodels
	Case Study WASP Application Framework
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

