
The Epsilon Generation Language

Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos,
and Fiona A.C. Polack

Department of Computer Science, University of York, UK
{louis,paige,dkolovos,fiona}@cs.york.ac.uk

Abstract. We present the Epsilon Generation Language (EGL), a
model-to-text (M2T) transformation language that is a component in
a model management tool chain. The distinctive features of EGL are
described, in particular its novel design which inherits a number of lan-
guage concepts and logical features from a base model navigation and
modification language. The value of being able to use a M2T language
as part of an extensible model management tool chain is outlined in a
case study, and EGL is compared to other M2T languages.

1 Introduction

For Model-Driven Development to be applicable in the large, and to complex
systems, mature and powerful model management tools and languages must be
available. Such tools and languages are beginning to emerge, e.g., model-to-
model (M2M) transformation tools such as ATL [8] and VIATRA [19], workflow
architectures such as oAW [17], and model-to-text (M2T) transformation tools
such as MOFScript [15] and XPand [17].

Whilst there are some mature model management tools, most such tools are
stand-alone, or are loosely integrated through their ability to manipulate and
manage the same kind of models, for instance via Eclipse EMF. (An excep-
tion is oAW, which supports model management workflows). These limitations
mean that development of new tools often entails substantial effort, with few
opportunities for reuse of language constructs and tools [13]. However, model
management tasks have many common requirements (e.g., the need to be able
to traverse models), share common concepts (e.g., the ability to query mod-
els) and have a common logic. There is substantial value, for developers and
users, in integrating model management tools, to share features and facilitate
construction of support for new model management tasks. Integrated tools im-
prove our ability to provide rich automated support for model management in
the large.

M2T transformation is an important model management task with a number
of applications, including model serialisation (enabling model interchange); code
and documentation generation; and model visualisation and exploration. In 2005,
the OMG [9] recognised the lack of a standardised approach to performing M2T
transformation with its M2T language RFP [16]. Various MDD tool vendors have
developed M2T languages, including JET [5], XPand and MOFScript. None of

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L.M. Rose et al.

these M2T languages has been built from other model management languages,
and none directly exploits existing M2M support – the new languages have been
developed either from scratch (e.g., JET and MOFScript), or as a component
that can be applied within a modelling workflow (e.g., XPand).

Our approach is to create tools that are components in an extensible and
integrated model management tool chain. This paper introduces the Epsilon
Generation Language (EGL), a language for specifying and performing M2T
transformations. We describe EGL’s basic and distinctive features, with par-
ticular emphasis on the advantages of building EGL as part of an extensible,
integrated platform for model management; we illustrate the minimalist deriva-
tion needed, from the existing EOL [13] that supports model navigation and
modification.

We start with an overview of key concerns for M2T transformation tools. In
Section 3, we discuss the features and tool support provided by EGL. We dis-
cuss EGL’s unique features, and explain its development from EOL, focusing on
how EOL’s design has been reused in EGL. In Section 4, a case study demon-
strates the use of EGL to perform model visualisation. In Section 5, we compare
EGL to other M2T transformation tools. Finally, in Section 6, we discuss future
work.

2 Background

In this section, we briefly outline the key concerns of an effective M2T transfor-
mation solution. We also briefly describe the Epsilon model management plat-
form, and its support for building new languages and tools.

2.1 Concerns of Model-to-Text Transformation

There are four key concerns in any M2T transformation solution.

Repeatability. M2T transformations may need to be repeatable, so that changes
made to models percolate through to generated text. However, repeated invo-
cation of transformations may need to respect hand-written changes that have
been made to generated artefacts [16].

Traceability. After performing a M2T transformation, it should be possible to
determine the elements of the source model from which a portion of the text
has been produced. Such traceability is particularly valuable when debugging a
model or when auditing the development process.

Readability. An M2T solution must maintain readability aspects, such as layout
and indentation.

Flexibility. M2T transformations, like M2M, need to be flexible; one approach
is to support parameterised transformation definitions [10].

The Epsilon Generation Language 3

2.2 The Epsilon Platform

Epsilon, the Extensible Platform for Specification of Integrated Languages for
mOdel maNagement [11], is a suite of tools and domain-specific languages for
model-driven development. Epsilon comprises a number of integrated model
management languages, based upon a common infrastructure, for performing
tasks such as model merging, model transformation and intermodel consistency
checking [12]. Whilst many model management languages are bound to a partic-
ular subset of modelling technologies, limiting their applicability [14], Epsilon is
metamodel-agnostic – models written in any modelling language can be manip-
ulated by Epsilon’s model management languages. (Epsilon currently supports
models implemented using EMF, MOF 1.4, pure XML, or CZT.)

Figure 1 illustrates the various components of Epsilon.

Fig. 1. The architecture of Epsilon

The design of Epsilon promotes reuse when building task-specific model man-
agement languages and tools. Each individual Epsilon language (e.g., ETL, ECL,
EGL) can be reused wholesale in the production of new languages. Ideally, the
developer of a new language only has to design language concepts and logic that
do not already exist in Epsilon languages.

EGL follows this principle, and inherits concepts and logic from Epsilon’s
base language, EOL, as described in Section 3. First, we outline EOL’s features,
particularly as they pertain to EGL.

2.2.1 The Epsilon Object Language. The core of the platform is the Ep-
silon Object Language (EOL) [13]. EOL’s scope is similar to that of OCL. How-
ever, EOL boasts an extended feature set, which includes the ability to update
models, conditional and loop statements, statement sequencing, and access to

4 L.M. Rose et al.

standard output and error streams. Every Epsilon language re-uses EOL, so
improvements to this object language enhance the entire platform.

A recent enhancement to EOL is the provision of constructs for profiling. EOL
also allows developers to delegate computationally intensive tasks to extension
points, where the task can be authored in Java. This now allows developers using
any Epsilon language to monitor and fine-tune performance – in EGL, this allows
fine-tuning of M2T transformations.

EOL itself provides the most basic M2T transformation facilities, because
every EOL type provides print and printlnmethods, which append a textual
representation of the instance to the default output stream. However, native EOL
is insufficient for M2T in the large – transformation specifications littered with
explicit print statements become unreadable, and EOL alone does not support
the sorts of features, specific to M2T transformation, which address the concerns
identified in Section 2.1.

3 The Epsilon Generation Language (EGL)

EGL provides a language for M2T in the large. EGL is a model-driven template-
based code generator, built atop Epsilon, and re-using all of EOL. In this section,
we discuss the design of EGL and its construction from existing Epsilon tools.

3.1 Abstract Syntax

Figure 2 depicts the abstract syntax of EGL’s core functionality.
In common with other template-based code generators, EGL defines sections,

from which templates may be constructed. Static sections delimit sections whose
contents appear verbatim in the generated text. Dynamic sections contain exe-
cutable code that can be used to control the generated text.

In its dynamic sections, EGL re-uses EOL’s mechanisms for structuring pro-
gram control flow, performing model inspection and navigation, and defining
custom operations. EGL provides an EOL object, out, for use within dynamic

Fig. 2. The abstract syntax of EGL’s core

The Epsilon Generation Language 5

sections. This can be used to perform operations on the generated text, such as
appending and removing strings and specifying the type of text to be generated.

EGL also provides syntax for defining dynamic output sections, which provide
a convenient shorthand for outputting text from within dynamic sections. Similar
syntax is often provided by template-based code generators.

3.2 Concrete Syntax

The concrete syntax of EGL mirrors the style of other template-based code gen-
eration languages. The tag pair [% %] is used to delimit a dynamic section. Any
text not enclosed in such a tag pair is contained in a static section. Listing 1.1
illustrates the use of dynamic and static sections to form a basic EGL template.

Listing 1.1. A basic EGL template

1 [% for (i in Sequence{1..5}) { %]
2 i is [%=i%]
3 [% } %]

The [%=expr%] construct is shorthand for [% out.print(expr); %],
which appends expr to the output generated by the transformation. Note that
the out keyword also provides println(Object) and chop(Integer)
methods, which can be used to construct text with linefeeds, and to remove
the specified number of characters from the end of the generated text.

EGL exploits EOL’s model querying capabilities to output text from models
specified as input to transformations. For example, the EGL template depicted
in Listing 1.2 may be used to generate text from a model that conforms to a
metamodel that describes an object-oriented system.

Listing 1.2. Generating the name of each Class contained in an input model

1 [% for (class in Class.allInstances) { %]
2 [%=class.name%]
3 [% } %]

3.3 Parsing and Preprocessing

EGL provides a parser which generates an abstract syntax tree comprising static,
dynamic and dynamic output nodes for a given template. A preprocessor then
translates each section into corresponding EOL: static and dynamic output sec-
tions generate out.print() statements. Dynamic sections are already specified
in EOL, and require no translation.

Consider the EGL depicted in Listing 1.1. The preprocessor produces the EOL
shown in Listing 1.3 – the [% %] and [%= %] tag pairs have been removed,
and the text to be output is translated into out.print() statements.

6 L.M. Rose et al.

Listing 1.3. Resulting EOL generated by the preprocessor

1 for (i in Sequence{1..5}) {
2 out.print(‘i is ’);
3 out.print(i);
4 out.print(‘\r\n’);
5 }

When comparing Listings 1.1 and 1.3, it can be seen that the template-based
syntax is more concise, while the preprocessed syntax is arguably more readable.
For templates where there is more dynamic than static text, such as the one
depicted in Listing 1.1, a template-based syntax is often less readable. However,
this loss of readability is somewhat mitigated by EGL’s developer tools, which
are discussed in Section 3.8. By contrast, for templates that exhibit more static
than dynamic text, a template-based syntax is often more readable than its
preprocessed equivalent.

3.4 Deriving EGL from EOL

In designing functionality specific to M2T transformation, one option was to
enrich the existing EOL syntax with keywords such as print, contentType
and merge. However, EOL underpins all Epsilon languages, and the additional
keywords were needed only for M2T. Furthermore, the refactorings needed to
support the new keywords affect many components – the lexer, parser, execu-
tion context and execution engine – complicating maintenance and use by other
developers. Instead, we define a minimal syntax for EGL, allowing easy imple-
mentation of an EGL execution engine as a simple preprocessor for EOL.

The EGL execution engine augments the default context used by EOL dur-
ing execution with two read-only, global variables: out (Section 3.2) and Tem-
plateFactory (Section 3.5). The out object defines methods for performing
operations specific to M2T translation, and the TemplateFactory object pro-
vides methods for loading other templates. The implementation for the latter was
extended, late in the EGL development, to provide support for accessing tem-
plates from a file-system – a trivial extension that caused no migration problems
for existing EGL templates, due to the way in which EGL extends EOL.

3.5 Co-ordination

In the large, M2T transformations need to be able to not only generate text, but
also files, which are then used downstream as development artefacts. An M2T
tool must provide the language constructs for producing files and manipulating
the local file system. Often, this requires that the destination, as well as the
contents, be dynamically defined at a transformation’s execution time [6].

The EGL co-ordination engine supplies mechanisms for generating text di-
rectly to files. The design encourages decoupling of generated text from output
destinations. The Template data-type is provided to allow nested execution of

The Epsilon Generation Language 7

M2T transformations, and operations on instances of this data-type facilitate
the generation of text directly to file. A factory object, TemplateFactory,
is provided to simplify the creation of Template objects. In Listing 1.4, these
objects are used in an EGL template that loads the the EGL template in Listing
1.2 from the file, ClassNames.egl, and writes out to disk the text generated by
executing ClassNames.egl.

Listing 1.4. Storing the name of each Class to disk

1 [%
2 var t : Template := TemplateFactory.load(‘ClassNames.egl’);
3 t.process();
4 t.store(‘Output.txt’);
5 %]

This approach to co-ordination allows EGL to be used to generate one or more
files from a single input model. Moreover, EGL’s co-ordination engine facilitates
the specification of platform-specific details (the destination of any files being
generated) separately from the platform-independent details (the contents of
any files being generated). The approach is compared to that in other M2T
transformation tools in Section 5.

3.6 Merge Engine

EGL provides language constructs that allow M2T transformations to designate
regions of generated text as protected. The contents of protected regions are pre-
served every time a M2T transformation generates text to the same destination.

Protected regions are specified by the preserve(String, String,
String, Boolean, String) method on the out keyword – based on the
PROTECT construct of the XPand language [18]. The first two parameters define
the comment delimiters of the target language. The other parameters provide
the name, enable-state and content of the protected region, as illustrated in
Listing 1.5.

Listing 1.5. Protected region declaration using the preserve method

1 [%=out.preserve(‘/*’, ‘*/’, ‘anId’, true,
2 ‘System.out.println(foo);’)
3 %]

A protected region declaration may have many lines, and use many EGL vari-
ables in the contents definition. To enhance readability, EGL provides two ad-
ditional methods on the out keyword: startPreserve(String, String,
String, Boolean) and stopPreserve. Listing 1.6 uses these to generate a
protected region equivalent to that in Listing 1.5.

8 L.M. Rose et al.

Listing 1.6. Protected region declaration

1 [%=out.startPreserve(‘/*’, ‘*/’, ‘anId’, true)%]
2 System.out.println(foo);
3 [%=out.stopPreserve()%]

Because an EGL template may contain many protected regions, EGL also
provides a separate method to set the target language generated by the cur-
rent template, setContentType(String). By default, EGL recognises Java,
HTML, Visual Basic, Perl and EGL as valid content types. An alternative con-
figuration file can be used to specify further content types. Following a call to
setContentType, the first two arguments to the preserve and
startPreserve methods can be omitted, as shown in Listing 1.7.

Listing 1.7. Setting the content type

1 [% out.setContentType(‘Java’); %]
2 [%=out.preserve(‘anId’, true, ‘System.out.println(foo);’)%]

Because some languages define more than one style of comment delimiter,
EGL allows mixed use of the styles for preserve and startPreserve meth-
ods.

Once a content type has been specified, a protected region may be declared
entirely from a static section, using the syntax in Listing 1.8.

Listing 1.8. Declaring a protected region from within a static section

1 [% out.setContentType(‘Java’); %]
2 // protected region anId [on|off] begin
3 System.out.println(foo);
4 // protected region anId end

When a template that defines one or more protected regions is processed by
the EGL execution engine, the target output destinations are interrogated and
existing contents of any protected regions are preserved. If either the output
generated by from the template or the existing contents of the target output
destination contains protected regions, a merging process is invoked. Table 1
shows the default behaviour of EGL’s merge engine.

3.7 Readability and Traceability

Conscientious developers apply various conventions to produce readable code.
EGL encourages template developers to prioritise the readability of templates
over the text that they generate. Like XPand [18], EGL provides a number
of text post-processors – or beautifiers – that can be executed on output of

The Epsilon Generation Language 9

Table 1. EGL’s default merging behaviour

Protected Region Status
Contents taken from

Generated Existing
On On Existing
On Off Generated
On Absent Generated
Off On Existing
Off Off Generated
Off Absent Generated
Absent On Neither (causes a warning)
Absent Off Neither (causes a warning)

Fig. 3. Sample output from the traceability API

transformations to improve readability. Currently, beautifiers are invoked via
Epsilon’s extensions to Apache Ant [1], an XML-based build tool for Java.

EGL also provides a traceability API, as a debugging aid, and to support
auditing of the M2T transformation process. This API facilitates exploration of
the templates executed, files affected and protected regions processed during a
transformation. Figure 3 shows sample output from the traceability API after
execution of an EGL M2T transformation to generate Java code from an instance
of an OO metamodel.

The beautification interface is minimal, in order to allow re-use of existing code
formatting algorithms. Consequently, there is presently no traceability support
for beautified text. However, due to the coarse-grained approach employed by
EGL’s traceability API, this has little impact: clicking on a beautified protected
region in the traceability view might not highlight the correct line in the editor.

3.8 Tool Support

The Epsilon platform provides development tools for the Eclipse development
environment [4]. Re-use of Eclipse APIs allows Epsilon’s development tooling

10 L.M. Rose et al.

to incorporate a large number of features with minimal effort. Furthermore, the
flexibility of the plug-in architecture of Eclipse enhances modular authoring of
development tools for Epsilon.

In addition to the traceability view shown in Figure 3, EGL includes an Eclipse
editor and an outline view. In order to aid template readability, these tools
provide syntax highlighting and a structural overview for EGL templates, re-
spectively. Through its integration in the Epsilon perspective, EGL provides an
Eclipse workbench configuration that is tailored for use with Epsilon’s develop-
ment tools.

EGL, like other Epsilon languages, provides an Apache Ant [1] task defini-
tion, to facilitate invocation of model-management activies from within a build
script.

4 Case Study

In this section, we demonstrate EGL’s capabilities and design with a case study.
The example scenario requires analysis of the architecture and performance char-
acteristics of a number of systems. Distinct metamodels are used to describe the
way in which systems may be constructed and their response times.

The architecture metamodel, Figure 4, defines a system to comprise a number
of services. A Workflow describes the combination of services needed to perform
a complex task. The components of an example system are given in Table 2.
In the system, the SearchForProperty workflow comprises the LookupDatabase,
FilterUnsafeHouse and DisplayResults services; the BuyHouse workflow com-
prises SearchForProperty, and services, SelectProperty and PrintHouseDetails.

The metamodel defining system performance characteristics is shown in Fig-
ure 5. Each performance model comprises a number of service implementations,
which have a name and a response time. The name attribute of the service im-
plementation meta-class must correspond to the name attribute of the service
meta-class in the architectural metamodel. The response time of workflows are

Fig. 4. The Service architecture metamodel

The Epsilon Generation Language 11

Table 2. An example instance of the Service metamodel

Type Name Max Response
Time

Service SelectProperty 3
Service FilterUnsafeHouses 4
Service DisplayResults 5
Service PrintHouseDetails 6
Service LookupDatabase 35
Workflow SearchForProperty
Workflow BuyHouse 30

not included in the performance metamodel; these are derived from the response
times of the services that make up the workflow.

Tooling was implemented using EGL and other Epsilon languages that al-
low the performance characteristics of a system to be calculated and visualised.
Firstly, the Epsilon Comparison Language (ECL) is used to determine whether
an instance of the architectural metamodel and an instance of the performance
metamodel are compatible. A performance model, p, was deemed to be com-
patible with an architectural model, a, if, for each service implementation in
p, there existed a service in a with name equal to the service implementation
service.

Where instances have been shown compatible, the two are merged using the
Epsilon Merging Language (EML). This creates an instance of the architectural
metamodel that also contains response times. This allows the response times
of each service and workflow to be compared with their maximum acceptable
response times. The Epsilon Validation Language (EVL) is used to enforce this
constraint and report any non-conformance.

Finally, EGL is used to produce a visualisation of the resulting model. The
code, given in Listing 1.9, generates a table with a row for each service and
workflow in the system, highlighting the performance characteristics of each.
Example output is given in Figure 6. Of particular interest are the use of EOL’s
declarative functions on collections (a feature that EOL re-uses from OCL),
which provide a concise means for expressing complex model inspections. For
example, the use of collect on line 73 allows the total response time of a
workflow to be calculated without explicit iteration.

Fig. 5. The ServicePerformance metamodel

12 L.M. Rose et al.

Listing 1.9. The EGL code used to generate the visualisation (HTML for the table
key is omitted)

1 <html>
2 <head>
3 <title>Service Model Visualisation</title>
4 <link title =‘‘default ’ ’ rel=‘‘ stylesheet ’ ’ type=‘‘text/css’ ’
5 href=‘‘Viz.css ’ ’/>
6 </head>
7 <body>
8

9 <table>
10 <tr>
11 <th> </th>
12 <th>Name</th>
13 <th>RT</th>
14 <th>MT</th>
15 <th>PE</th>
16 <th>SI</th>
17 </tr>
18 [%
19 services = Service. allInstances ();
20 for (service in services .sortBy(s | s.getResponseTime())) {
21 %]
22 <tr>
23 <td>[%=service.getImage()%]</td>
24 <td>[%=service.name%]</td>
25 <td>[%=service.getResponseTime()%]</td>
26 <td>[%=service.maxAcceptableTime.toString()%]</td>
27 <td>[%=service.percentageExcess().toString()%]</td>
28 <td>[%=service.numberOfCalls()%]</td>
29 </tr>
30 [% } %]
31 </table>
32

33 </body>
34 </html>
35

36 [%
37 operation Any toString() : String {
38 if (self . isDefined()) {
39 return self;
40 } else {
41 return ‘ ’;
42 }
43 }
44

45 operation Service percentageExcess() : String {
46 if (self .maxAcceptableTime.isDefined() and
47 self .maxAcceptableTime > 0) {
48

49 var percentage := 100 ∗ self .getResponseTime() /
50 self .maxAcceptableTime;
51 return (percentage − 100) + ’%’;
52 }
53 }
54

55 operation Service numberOfCalls() : Integer { return 1; }
56

57 operation Workflow numberOfCalls() : Integer {
58 return self . calls . collect (c|c.target .numberOfCalls())
59 .sum().ceiling ();
60 }
61

62 operation Service getImage() : String {
63 return ‘’;
64 }

The Epsilon Generation Language 13

65

66 operation Workflow getImage() : String {
67 return ‘’;
68 }
69

70 operation Service getResponseTime() : Integer {
71 return self .responseTime;
72 }
73

74 operation Workflow getResponseTime() : Integer {
75 return self . calls
76 . collect (c|c. target .getResponseTime())
77 .sum();
78 }
79

80 operation Any getResponseTime() : Integer { return 0; }
81 %]

Fig. 6. Example output from the model visualisation phase

5 Related Work

5.1 JET 2.0

JET [5] is perhaps the most popular code-generation framework available for the
Eclipse platform. JET’s dynamic sections employ custom XML tags in order to
describe control flow. Attributes of these tags may include XPath [3] path ex-
pressions to support model interrogation. Developers may also include dynamic
sections, written in Java, in JET templates.

Out of the box, JET can perform transformations only upon XML- and EMF-
based models, and, unlike EGL, does not provide support for models imple-
mented using MOF 1.4 or CZT. Furthermore, while XPath provides a concise
means for specifying navigation of tree structures, it lacks some of the expres-
siveness of the OCL-like constructs for navigating collections (e.g. select, reject,
forAll) that Epsilon provides through EOL.

14 L.M. Rose et al.

JET provides support for active code generation, via the c:userRegion and
c:initialCode constructs. This is slightly more flexible than EGL, where text
used in EGL protected region markers has to conform to a simple grammar. How-
ever, this slight loss of flexibility enables EGL to provide constructs to simplify
protected region demarcation and thus to reduce duplication in templates.

5.2 MOFScript

MOFScript [15] has influenced the OMG’s MOF-based M2T transformation
RFP. MOFScript’s declarative style of syntax has similarities to the syntax style
of M2M transformation languages such as ATL. The declarative approach allows
transformation rules to use sophisticated mechanisms for abstraction and code
re-use, such as inheritance. However, EGL provides much the same scope for
reducing duplication of code using an imperative syntax plus facilities for code
modularisation. Although the way in which abstraction and re-use is achieved
is slightly less succinct in the imperative approach, the resulting templates are
more readable.

A key problem with MOFScript is that it encourages transformations with
tight coupling of destination and content: the MOFScript file type allows trans-
formations to write generated text (content) directly to disk. This means that
modification is needed to use the same transformation to generate content to a
different type of destination (a socket, an HTTP stream, etc.). The EGL style
encourages developers to separate destination and content of generated text, by
restricting direct access to output destinations from within templates, as dis-
cussed in Section 3.5.

Unlike JET, MOFScript provides some OCL-like constructs for traversing
and interrogating data structures (forEach and select keywords). MOFScript
also provides a prototype implementation for aspect-oriented programming con-
structs, allowing transformations to be woven together at compile-time.

5.3 XPand

The openArchitectureWare platform, oAW [17], provides open-source, model-
driven software development tools. It includes a M2T language, XPand [18],
with a declarative template syntax. XPand meets many of the requirements
outlined in Section 2.1. For instance, the language supports active code gen-
eration via the PROTECT construct, and provides beautifiers to enhance read-
ability of both templates and generated text. However, like MOFScript, XPand
encourages transformations to couple destination and content, which limits
re-usability.

Unlike the other M2T languages considered, XPand templates can be invoked
as part of a workflow, using oAW’s proprietary workflow definition language.
By contrast, Epsilon utilises Apache Ant to define workflows, which encourages
reuse of existing tools, such as AntUtility [7], for profiling, and the Nurflugel
AntScript Visualizer [2] for visualisation.

The Epsilon Generation Language 15

6 Conclusions and Further Work

In this paper, we have presented the Epsilon Generation Language, a template-
based M2T transformation language for the Epsilon platform. Through its
derivation from EOL, EGL provides features specific to the M2T transformation
domain as well as having direct access to general model-management support,
and to future enhancements to EOL and the Epsilon platform. Furthermore,
by deriving EGL from EOL, we have been able to simplify the language design
activity of EGL development, and re-use the EOL execution engine.

We are now working on combining EGL with Epsilon’s languages for model
comparison and transformation (ECL and ETL), to support incremental code
generation. This would allow users to reflect in code all changes made to source
models, by applying a minimal number of transformations. We are also inves-
tigating an alternative approach, using change information derived by model
editing tools to perform impact analysis; by adding keywords to EGL this would
allow direct checking of staleness of model elements.

An alignment of EGL with a web-server has a number of potentially inter-
esting applications. The case study in Section 3.5 shows the potential of using
EGL as a component in a web-based model repository. Extending this idea,
the Epsilon languages could provide a scaffold for developing web-based appli-
cations: suppose the domain objects of such an application were encoded as
EMF-compliant models – Epsilon’s transformation language could be used to
describe suitable transformations on the domain model (such as adding, edit-
ing or removing an instance); the Epsilon Validation Language could check that
models remain valid and consistent subsequent to domain model transactions;
and EGL could be used to produce HTML for viewing domain objects.

Information on EGL, Epsilon and associated languages is available from the
Epsilon GMT project website, http://www.eclipse.org/gmt/epsilon.

Acknowledgement. The work in this paper was supported by the European
Commission via the MODELPLEX project, co-funded by the European Commis-
sion under the “Information Society Technologies” Sixth Framework Programme
(2006-2009).

References

1. Apache. The Apache Ant Project (2007), http://ant.apache.org/
2. Bullard, D.: Ant Script Visualizer (2005),

http://www.nurflugel.com/webstart/AntScriptVisualizer/
3. World Wide Web Consortium. XML Path Language (XPath) Version 1.0 (1999),

http://www.w3.org/TR/xpath
4. The Eclipse Foundation. Eclipse - an open development platform (2007),

http://www.eclipse.org
5. The Eclipse Foundation. JET, part of Eclipse’s Model To Text (M2T) component

(2007), http://www.eclipse.org/modeling/m2t/?project=jet#jet
6. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing.

Wiley, New York (2003)

http://www.eclipse.org/gmt/epsilon
http://ant.apache.org/
http://www.nurflugel.com/webstart/AntScriptVisualizer/
http://www.w3.org/TR/xpath
http://www.eclipse.org
http://www.eclipse.org/modeling/m2t/?project=jet#jet

16 L.M. Rose et al.

7. David Green. Ant Utility (2007), https://antutility.dev.java.net/
8. ATLAS Group. Atlas Transformation Language Project Website (2007),

http://www.eclipse.org/m2m/atl/
9. The Object Management Group. OMG Official Website (2007),

http://www.omg.org
10. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-

ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc, Boston
(2003)

11. Kolovos, D.S.: Extensible Platform for Specification of Integrated Languages for
mOdel maNagement Project Website (2007),
http://www.eclipse.org/gmt/epsilon

12. Kolovos, D.S., Paige, R.F., Polack, F.: Epsilon Development Tools for Eclipse. In:
Eclipse Summit 2006, Esslingen, Germany (October 2006)

13. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

14. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: A Short Introduction to Epsilon (2007),
http://www-users.cs.york.ac.uk/∼dkolovos/epsilon/Epsilon.ppt

15. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J.Ø., Berre, A.-J.: Toward standard-
ised model to text transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 239–253. Springer, Heidelberg (2005)

16. OMG. MOF Model to Text Transformation Language RFP (2005),
http://www.omg.org/docs/ad/04-04-07.pdf

17. openArchitectureWare. openArchitectureWare Project Website (2007),
http://www.eclipse.org/gmt/oaw/

18. openArchitectureWare. XPand Language Reference (2007),
http://www.eclipse.org/gmt/oaw/doc/4.1/r20 xPandReference.pdf

19. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program 68(3), 187–207 (2007)

https://antutility.dev.java.net/
http://www.eclipse.org/m2m/atl/
http://www.omg.org
http://www.eclipse.org/gmt/epsilon
http://www-users.cs.york.ac.uk/~dkolovos/epsilon/Epsilon.ppt
http://www.omg.org/docs/ad/04-04-07.pdf
http://www.eclipse.org/gmt/oaw/
http://www.eclipse.org/gmt/oaw/doc/4.1/r20_xPandReference.pdf

	The Epsilon Generation Language
	Introduction
	Background
	Concerns of Model-to-Text Transformation
	The Epsilon Platform

	The Epsilon Generation Language (EGL)
	Abstract Syntax
	Concrete Syntax
	Parsing and Preprocessing
	Deriving EGL from EOL
	Co-ordination
	Merge Engine
	Readability and Traceability
	Tool Support

	Case Study
	Related Work
	JET 2.0
	MOFScript
	XPand

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

