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Preface

The fourth edition of the European Conference on Model-Driven Architecture –
Foundations and Applications (ECMDA-FA 2008) was dedicated to furthering
the state of knowledge and fostering the industrialization of the model-driven
architecture (MDA) methodology. MDA is an initiative proposed by the Ob-
ject Management Group (OMG) for platform-generic software development. It
promotes the use of models in the specification, design, analysis, synthesis, de-
ployment, and evolution of complex software systems.

ECMDA-FA 2008 focused on engaging key European and international re-
searchers and practitioners in a dialogue which will result in a stronger, more
efficient industry, producing more reliable software on the basis of state-of-the-art
research results. ECMDA-FA is a forum for exchanging information, discussing
the latest results and arguing about future developments of MDA.

It is a pleasure to be able to introduce the proceedings of ECMDA-FA 2008.
ECMDA-FA addresses various MDA areas including model management, exe-
cutable models, concrete syntaxes, aspects and concerns, validation and test-
ing, model-based systems engineering, model-driven development and service-
oriented architectures, and the application of model-driven development.

There are so many people who deserve warm thanks and gratitude. The fruit-
ful collaboration of the Organization, Steering and Program Committee mem-
bers and the vibrant community led to a successful conference: ECMDA-FA 2008
obtained excellent results in terms of submissions, program size, and attendance.

The Program Committee accepted, with the help of additional reviewers,
research papers and industry papers for ECMDA-FA 2008: We received 87 sub-
missions. Of these, a total of 31 were accepted including 21 research papers and
10 industry papers. We thank them for the thorough and high-quality selection
process.

The Steering Committee members helped with various issues – we enjoyed
continuous and constructive interactions with them. Birgit Benner, the Organi-
zation Chair, is to be warmly thanked for her important role in making this con-
ference a well-organized event. In addition, ECMDA-FA 2008 was complemented
by a varied set of workshops: for this we would like to thank the Workshop Chair
Marc Born.

We would like to thank for the strong and consistent support received from
Fraunhofer FOKUS, Technical University Berlin, and the Alfried Krupp von
Bohlen und Halbach-Stiftung, without whom ECMDA-FA 2008 would not have
been possible. We are also very grateful to the European Association of Software
Science and Technology (EASST) and to the Joint Interest Groups on Modelling
(JIGMOD) of GI for their trust and support.

The proceedings were produced by Springer LNCS: we were assisted by Anna
Kramer and Erika Siebert-Cole, who made everything straightforward for us.
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Finally, we would like to thank all the authors who spent valuable time in prepar-
ing and submitting papers to ECMDA-FA 2008 and the sponsors of ECMDA-FA
2008.

June 2008 Ina Schieferdecker
Alan Hartman
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Jesús Garćıa-Molina
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The Epsilon Generation Language

Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos,
and Fiona A.C. Polack

Department of Computer Science, University of York, UK
{louis,paige,dkolovos,fiona}@cs.york.ac.uk

Abstract. We present the Epsilon Generation Language (EGL), a
model-to-text (M2T) transformation language that is a component in
a model management tool chain. The distinctive features of EGL are
described, in particular its novel design which inherits a number of lan-
guage concepts and logical features from a base model navigation and
modification language. The value of being able to use a M2T language
as part of an extensible model management tool chain is outlined in a
case study, and EGL is compared to other M2T languages.

1 Introduction

For Model-Driven Development to be applicable in the large, and to complex
systems, mature and powerful model management tools and languages must be
available. Such tools and languages are beginning to emerge, e.g., model-to-
model (M2M) transformation tools such as ATL [8] and VIATRA [19], workflow
architectures such as oAW [17], and model-to-text (M2T) transformation tools
such as MOFScript [15] and XPand [17].

Whilst there are some mature model management tools, most such tools are
stand-alone, or are loosely integrated through their ability to manipulate and
manage the same kind of models, for instance via Eclipse EMF. (An excep-
tion is oAW, which supports model management workflows). These limitations
mean that development of new tools often entails substantial effort, with few
opportunities for reuse of language constructs and tools [13]. However, model
management tasks have many common requirements (e.g., the need to be able
to traverse models), share common concepts (e.g., the ability to query mod-
els) and have a common logic. There is substantial value, for developers and
users, in integrating model management tools, to share features and facilitate
construction of support for new model management tasks. Integrated tools im-
prove our ability to provide rich automated support for model management in
the large.

M2T transformation is an important model management task with a number
of applications, including model serialisation (enabling model interchange); code
and documentation generation; and model visualisation and exploration. In 2005,
the OMG [9] recognised the lack of a standardised approach to performing M2T
transformation with its M2T language RFP [16]. Various MDD tool vendors have
developed M2T languages, including JET [5], XPand and MOFScript. None of

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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these M2T languages has been built from other model management languages,
and none directly exploits existing M2M support – the new languages have been
developed either from scratch (e.g., JET and MOFScript), or as a component
that can be applied within a modelling workflow (e.g., XPand).

Our approach is to create tools that are components in an extensible and
integrated model management tool chain. This paper introduces the Epsilon
Generation Language (EGL), a language for specifying and performing M2T
transformations. We describe EGL’s basic and distinctive features, with par-
ticular emphasis on the advantages of building EGL as part of an extensible,
integrated platform for model management; we illustrate the minimalist deriva-
tion needed, from the existing EOL [13] that supports model navigation and
modification.

We start with an overview of key concerns for M2T transformation tools. In
Section 3, we discuss the features and tool support provided by EGL. We dis-
cuss EGL’s unique features, and explain its development from EOL, focusing on
how EOL’s design has been reused in EGL. In Section 4, a case study demon-
strates the use of EGL to perform model visualisation. In Section 5, we compare
EGL to other M2T transformation tools. Finally, in Section 6, we discuss future
work.

2 Background

In this section, we briefly outline the key concerns of an effective M2T transfor-
mation solution. We also briefly describe the Epsilon model management plat-
form, and its support for building new languages and tools.

2.1 Concerns of Model-to-Text Transformation

There are four key concerns in any M2T transformation solution.

Repeatability. M2T transformations may need to be repeatable, so that changes
made to models percolate through to generated text. However, repeated invo-
cation of transformations may need to respect hand-written changes that have
been made to generated artefacts [16].

Traceability. After performing a M2T transformation, it should be possible to
determine the elements of the source model from which a portion of the text
has been produced. Such traceability is particularly valuable when debugging a
model or when auditing the development process.

Readability. An M2T solution must maintain readability aspects, such as layout
and indentation.

Flexibility. M2T transformations, like M2M, need to be flexible; one approach
is to support parameterised transformation definitions [10].
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2.2 The Epsilon Platform

Epsilon, the Extensible Platform for Specification of Integrated Languages for
mOdel maNagement [11], is a suite of tools and domain-specific languages for
model-driven development. Epsilon comprises a number of integrated model
management languages, based upon a common infrastructure, for performing
tasks such as model merging, model transformation and intermodel consistency
checking [12]. Whilst many model management languages are bound to a partic-
ular subset of modelling technologies, limiting their applicability [14], Epsilon is
metamodel-agnostic – models written in any modelling language can be manip-
ulated by Epsilon’s model management languages. (Epsilon currently supports
models implemented using EMF, MOF 1.4, pure XML, or CZT.)

Figure 1 illustrates the various components of Epsilon.

Fig. 1. The architecture of Epsilon

The design of Epsilon promotes reuse when building task-specific model man-
agement languages and tools. Each individual Epsilon language (e.g., ETL, ECL,
EGL) can be reused wholesale in the production of new languages. Ideally, the
developer of a new language only has to design language concepts and logic that
do not already exist in Epsilon languages.

EGL follows this principle, and inherits concepts and logic from Epsilon’s
base language, EOL, as described in Section 3. First, we outline EOL’s features,
particularly as they pertain to EGL.

2.2.1 The Epsilon Object Language. The core of the platform is the Ep-
silon Object Language (EOL) [13]. EOL’s scope is similar to that of OCL. How-
ever, EOL boasts an extended feature set, which includes the ability to update
models, conditional and loop statements, statement sequencing, and access to
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standard output and error streams. Every Epsilon language re-uses EOL, so
improvements to this object language enhance the entire platform.

A recent enhancement to EOL is the provision of constructs for profiling. EOL
also allows developers to delegate computationally intensive tasks to extension
points, where the task can be authored in Java. This now allows developers using
any Epsilon language to monitor and fine-tune performance – in EGL, this allows
fine-tuning of M2T transformations.

EOL itself provides the most basic M2T transformation facilities, because
every EOL type provides print and printlnmethods, which append a textual
representation of the instance to the default output stream. However, native EOL
is insufficient for M2T in the large – transformation specifications littered with
explicit print statements become unreadable, and EOL alone does not support
the sorts of features, specific to M2T transformation, which address the concerns
identified in Section 2.1.

3 The Epsilon Generation Language (EGL)

EGL provides a language for M2T in the large. EGL is a model-driven template-
based code generator, built atop Epsilon, and re-using all of EOL. In this section,
we discuss the design of EGL and its construction from existing Epsilon tools.

3.1 Abstract Syntax

Figure 2 depicts the abstract syntax of EGL’s core functionality.
In common with other template-based code generators, EGL defines sections,

from which templates may be constructed. Static sections delimit sections whose
contents appear verbatim in the generated text. Dynamic sections contain exe-
cutable code that can be used to control the generated text.

In its dynamic sections, EGL re-uses EOL’s mechanisms for structuring pro-
gram control flow, performing model inspection and navigation, and defining
custom operations. EGL provides an EOL object, out, for use within dynamic

Fig. 2. The abstract syntax of EGL’s core
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sections. This can be used to perform operations on the generated text, such as
appending and removing strings and specifying the type of text to be generated.

EGL also provides syntax for defining dynamic output sections, which provide
a convenient shorthand for outputting text from within dynamic sections. Similar
syntax is often provided by template-based code generators.

3.2 Concrete Syntax

The concrete syntax of EGL mirrors the style of other template-based code gen-
eration languages. The tag pair [% %] is used to delimit a dynamic section. Any
text not enclosed in such a tag pair is contained in a static section. Listing 1.1
illustrates the use of dynamic and static sections to form a basic EGL template.

Listing 1.1. A basic EGL template

1 [% for (i in Sequence{1..5}) { %]
2 i is [%=i%]
3 [% } %]

The [%=expr%] construct is shorthand for [% out.print(expr); %],
which appends expr to the output generated by the transformation. Note that
the out keyword also provides println(Object) and chop(Integer)
methods, which can be used to construct text with linefeeds, and to remove
the specified number of characters from the end of the generated text.

EGL exploits EOL’s model querying capabilities to output text from models
specified as input to transformations. For example, the EGL template depicted
in Listing 1.2 may be used to generate text from a model that conforms to a
metamodel that describes an object-oriented system.

Listing 1.2. Generating the name of each Class contained in an input model

1 [% for (class in Class.allInstances) { %]
2 [%=class.name%]
3 [% } %]

3.3 Parsing and Preprocessing

EGL provides a parser which generates an abstract syntax tree comprising static,
dynamic and dynamic output nodes for a given template. A preprocessor then
translates each section into corresponding EOL: static and dynamic output sec-
tions generate out.print() statements. Dynamic sections are already specified
in EOL, and require no translation.

Consider the EGL depicted in Listing 1.1. The preprocessor produces the EOL
shown in Listing 1.3 – the [% %] and [%= %] tag pairs have been removed,
and the text to be output is translated into out.print() statements.
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Listing 1.3. Resulting EOL generated by the preprocessor

1 for (i in Sequence{1..5}) {
2 out.print(‘i is ’);
3 out.print(i);
4 out.print(‘\r\n’);
5 }

When comparing Listings 1.1 and 1.3, it can be seen that the template-based
syntax is more concise, while the preprocessed syntax is arguably more readable.
For templates where there is more dynamic than static text, such as the one
depicted in Listing 1.1, a template-based syntax is often less readable. However,
this loss of readability is somewhat mitigated by EGL’s developer tools, which
are discussed in Section 3.8. By contrast, for templates that exhibit more static
than dynamic text, a template-based syntax is often more readable than its
preprocessed equivalent.

3.4 Deriving EGL from EOL

In designing functionality specific to M2T transformation, one option was to
enrich the existing EOL syntax with keywords such as print, contentType
and merge. However, EOL underpins all Epsilon languages, and the additional
keywords were needed only for M2T. Furthermore, the refactorings needed to
support the new keywords affect many components – the lexer, parser, execu-
tion context and execution engine – complicating maintenance and use by other
developers. Instead, we define a minimal syntax for EGL, allowing easy imple-
mentation of an EGL execution engine as a simple preprocessor for EOL.

The EGL execution engine augments the default context used by EOL dur-
ing execution with two read-only, global variables: out (Section 3.2) and Tem-
plateFactory (Section 3.5). The out object defines methods for performing
operations specific to M2T translation, and the TemplateFactory object pro-
vides methods for loading other templates. The implementation for the latter was
extended, late in the EGL development, to provide support for accessing tem-
plates from a file-system – a trivial extension that caused no migration problems
for existing EGL templates, due to the way in which EGL extends EOL.

3.5 Co-ordination

In the large, M2T transformations need to be able to not only generate text, but
also files, which are then used downstream as development artefacts. An M2T
tool must provide the language constructs for producing files and manipulating
the local file system. Often, this requires that the destination, as well as the
contents, be dynamically defined at a transformation’s execution time [6].

The EGL co-ordination engine supplies mechanisms for generating text di-
rectly to files. The design encourages decoupling of generated text from output
destinations. The Template data-type is provided to allow nested execution of
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M2T transformations, and operations on instances of this data-type facilitate
the generation of text directly to file. A factory object, TemplateFactory,
is provided to simplify the creation of Template objects. In Listing 1.4, these
objects are used in an EGL template that loads the the EGL template in Listing
1.2 from the file, ClassNames.egl, and writes out to disk the text generated by
executing ClassNames.egl.

Listing 1.4. Storing the name of each Class to disk

1 [%
2 var t : Template := TemplateFactory.load(‘ClassNames.egl’);
3 t.process();
4 t.store(‘Output.txt’);
5 %]

This approach to co-ordination allows EGL to be used to generate one or more
files from a single input model. Moreover, EGL’s co-ordination engine facilitates
the specification of platform-specific details (the destination of any files being
generated) separately from the platform-independent details (the contents of
any files being generated). The approach is compared to that in other M2T
transformation tools in Section 5.

3.6 Merge Engine

EGL provides language constructs that allow M2T transformations to designate
regions of generated text as protected. The contents of protected regions are pre-
served every time a M2T transformation generates text to the same destination.

Protected regions are specified by the preserve(String, String,
String, Boolean, String) method on the out keyword – based on the
PROTECT construct of the XPand language [18]. The first two parameters define
the comment delimiters of the target language. The other parameters provide
the name, enable-state and content of the protected region, as illustrated in
Listing 1.5.

Listing 1.5. Protected region declaration using the preserve method

1 [%=out.preserve(‘/*’, ‘*/’, ‘anId’, true,
2 ‘System.out.println(foo);’)
3 %]

A protected region declaration may have many lines, and use many EGL vari-
ables in the contents definition. To enhance readability, EGL provides two ad-
ditional methods on the out keyword: startPreserve(String, String,
String, Boolean) and stopPreserve. Listing 1.6 uses these to generate a
protected region equivalent to that in Listing 1.5.
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Listing 1.6. Protected region declaration

1 [%=out.startPreserve(‘/*’, ‘*/’, ‘anId’, true)%]
2 System.out.println(foo);
3 [%=out.stopPreserve()%]

Because an EGL template may contain many protected regions, EGL also
provides a separate method to set the target language generated by the cur-
rent template, setContentType(String). By default, EGL recognises Java,
HTML, Visual Basic, Perl and EGL as valid content types. An alternative con-
figuration file can be used to specify further content types. Following a call to
setContentType, the first two arguments to the preserve and
startPreserve methods can be omitted, as shown in Listing 1.7.

Listing 1.7. Setting the content type

1 [% out.setContentType(‘Java’); %]
2 [%=out.preserve(‘anId’, true, ‘System.out.println(foo);’)%]

Because some languages define more than one style of comment delimiter,
EGL allows mixed use of the styles for preserve and startPreserve meth-
ods.

Once a content type has been specified, a protected region may be declared
entirely from a static section, using the syntax in Listing 1.8.

Listing 1.8. Declaring a protected region from within a static section

1 [% out.setContentType(‘Java’); %]
2 // protected region anId [on|off] begin
3 System.out.println(foo);
4 // protected region anId end

When a template that defines one or more protected regions is processed by
the EGL execution engine, the target output destinations are interrogated and
existing contents of any protected regions are preserved. If either the output
generated by from the template or the existing contents of the target output
destination contains protected regions, a merging process is invoked. Table 1
shows the default behaviour of EGL’s merge engine.

3.7 Readability and Traceability

Conscientious developers apply various conventions to produce readable code.
EGL encourages template developers to prioritise the readability of templates
over the text that they generate. Like XPand [18], EGL provides a number
of text post-processors – or beautifiers – that can be executed on output of
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Table 1. EGL’s default merging behaviour

Protected Region Status
Contents taken from

Generated Existing
On On Existing
On Off Generated
On Absent Generated

Off On Existing
Off Off Generated
Off Absent Generated

Absent On Neither (causes a warning)
Absent Off Neither (causes a warning)

Fig. 3. Sample output from the traceability API

transformations to improve readability. Currently, beautifiers are invoked via
Epsilon’s extensions to Apache Ant [1], an XML-based build tool for Java.

EGL also provides a traceability API, as a debugging aid, and to support
auditing of the M2T transformation process. This API facilitates exploration of
the templates executed, files affected and protected regions processed during a
transformation. Figure 3 shows sample output from the traceability API after
execution of an EGL M2T transformation to generate Java code from an instance
of an OO metamodel.

The beautification interface is minimal, in order to allow re-use of existing code
formatting algorithms. Consequently, there is presently no traceability support
for beautified text. However, due to the coarse-grained approach employed by
EGL’s traceability API, this has little impact: clicking on a beautified protected
region in the traceability view might not highlight the correct line in the editor.

3.8 Tool Support

The Epsilon platform provides development tools for the Eclipse development
environment [4]. Re-use of Eclipse APIs allows Epsilon’s development tooling
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to incorporate a large number of features with minimal effort. Furthermore, the
flexibility of the plug-in architecture of Eclipse enhances modular authoring of
development tools for Epsilon.

In addition to the traceability view shown in Figure 3, EGL includes an Eclipse
editor and an outline view. In order to aid template readability, these tools
provide syntax highlighting and a structural overview for EGL templates, re-
spectively. Through its integration in the Epsilon perspective, EGL provides an
Eclipse workbench configuration that is tailored for use with Epsilon’s develop-
ment tools.

EGL, like other Epsilon languages, provides an Apache Ant [1] task defini-
tion, to facilitate invocation of model-management activies from within a build
script.

4 Case Study

In this section, we demonstrate EGL’s capabilities and design with a case study.
The example scenario requires analysis of the architecture and performance char-
acteristics of a number of systems. Distinct metamodels are used to describe the
way in which systems may be constructed and their response times.

The architecture metamodel, Figure 4, defines a system to comprise a number
of services. A Workflow describes the combination of services needed to perform
a complex task. The components of an example system are given in Table 2.
In the system, the SearchForProperty workflow comprises the LookupDatabase,
FilterUnsafeHouse and DisplayResults services; the BuyHouse workflow com-
prises SearchForProperty, and services, SelectProperty and PrintHouseDetails.

The metamodel defining system performance characteristics is shown in Fig-
ure 5. Each performance model comprises a number of service implementations,
which have a name and a response time. The name attribute of the service im-
plementation meta-class must correspond to the name attribute of the service
meta-class in the architectural metamodel. The response time of workflows are

Fig. 4. The Service architecture metamodel
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Table 2. An example instance of the Service metamodel

Type Name Max Response
Time

Service SelectProperty 3
Service FilterUnsafeHouses 4
Service DisplayResults 5
Service PrintHouseDetails 6
Service LookupDatabase 35

Workflow SearchForProperty
Workflow BuyHouse 30

not included in the performance metamodel; these are derived from the response
times of the services that make up the workflow.

Tooling was implemented using EGL and other Epsilon languages that al-
low the performance characteristics of a system to be calculated and visualised.
Firstly, the Epsilon Comparison Language (ECL) is used to determine whether
an instance of the architectural metamodel and an instance of the performance
metamodel are compatible. A performance model, p, was deemed to be com-
patible with an architectural model, a, if, for each service implementation in
p, there existed a service in a with name equal to the service implementation
service.

Where instances have been shown compatible, the two are merged using the
Epsilon Merging Language (EML). This creates an instance of the architectural
metamodel that also contains response times. This allows the response times
of each service and workflow to be compared with their maximum acceptable
response times. The Epsilon Validation Language (EVL) is used to enforce this
constraint and report any non-conformance.

Finally, EGL is used to produce a visualisation of the resulting model. The
code, given in Listing 1.9, generates a table with a row for each service and
workflow in the system, highlighting the performance characteristics of each.
Example output is given in Figure 6. Of particular interest are the use of EOL’s
declarative functions on collections (a feature that EOL re-uses from OCL),
which provide a concise means for expressing complex model inspections. For
example, the use of collect on line 73 allows the total response time of a
workflow to be calculated without explicit iteration.

Fig. 5. The ServicePerformance metamodel
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Listing 1.9. The EGL code used to generate the visualisation (HTML for the table
key is omitted)

1 <html>
2 <head>
3 <title>Service Model Visualisation</title>
4 <link title =‘‘default ’ ’ rel=‘‘ stylesheet ’ ’ type=‘‘text/css’ ’
5 href=‘‘Viz.css ’ ’/>
6 </head>
7 <body>
8

9 <table>
10 <tr>
11 <th>&nbsp;</th>
12 <th>Name</th>
13 <th>RT</th>
14 <th>MT</th>
15 <th>PE</th>
16 <th>SI</th>
17 </tr>
18 [%
19 services = Service. allInstances ();
20 for ( service in services .sortBy(s | s.getResponseTime())) {
21 %]
22 <tr>
23 <td>[%=service.getImage()%]</td>
24 <td>[%=service.name%]</td>
25 <td>[%=service.getResponseTime()%]</td>
26 <td>[%=service.maxAcceptableTime.toString()%]</td>
27 <td>[%=service.percentageExcess().toString()%]</td>
28 <td>[%=service.numberOfCalls()%]</td>
29 </tr>
30 [% } %]
31 </table>
32

33 </body>
34 </html>
35

36 [%
37 operation Any toString() : String {
38 if (self . isDefined()) {
39 return self;
40 } else {
41 return ‘&nbsp;’;
42 }
43 }
44

45 operation Service percentageExcess() : String {
46 if ( self .maxAcceptableTime.isDefined() and
47 self .maxAcceptableTime > 0) {
48

49 var percentage := 100 ∗ self .getResponseTime() /
50 self .maxAcceptableTime;
51 return (percentage − 100) + ’%’;
52 }
53 }
54

55 operation Service numberOfCalls() : Integer { return 1; }
56

57 operation Workflow numberOfCalls() : Integer {
58 return self . calls . collect (c|c.target .numberOfCalls())
59 .sum().ceiling ();
60 }
61

62 operation Service getImage() : String {
63 return ‘<img src=‘‘service.eps’ ’ alt=‘‘Service’ ’ />’;
64 }
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65

66 operation Workflow getImage() : String {
67 return ‘<img src=‘‘workflow.eps’’ alt=‘‘Workflow’’ />’;
68 }
69

70 operation Service getResponseTime() : Integer {
71 return self .responseTime;
72 }
73

74 operation Workflow getResponseTime() : Integer {
75 return self . calls
76 . collect (c|c. target .getResponseTime())
77 .sum();
78 }
79

80 operation Any getResponseTime() : Integer { return 0; }
81 %]

Fig. 6. Example output from the model visualisation phase

5 Related Work

5.1 JET 2.0

JET [5] is perhaps the most popular code-generation framework available for the
Eclipse platform. JET’s dynamic sections employ custom XML tags in order to
describe control flow. Attributes of these tags may include XPath [3] path ex-
pressions to support model interrogation. Developers may also include dynamic
sections, written in Java, in JET templates.

Out of the box, JET can perform transformations only upon XML- and EMF-
based models, and, unlike EGL, does not provide support for models imple-
mented using MOF 1.4 or CZT. Furthermore, while XPath provides a concise
means for specifying navigation of tree structures, it lacks some of the expres-
siveness of the OCL-like constructs for navigating collections (e.g. select, reject,
forAll) that Epsilon provides through EOL.
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JET provides support for active code generation, via the c:userRegion and
c:initialCode constructs. This is slightly more flexible than EGL, where text
used in EGL protected region markers has to conform to a simple grammar. How-
ever, this slight loss of flexibility enables EGL to provide constructs to simplify
protected region demarcation and thus to reduce duplication in templates.

5.2 MOFScript

MOFScript [15] has influenced the OMG’s MOF-based M2T transformation
RFP. MOFScript’s declarative style of syntax has similarities to the syntax style
of M2M transformation languages such as ATL. The declarative approach allows
transformation rules to use sophisticated mechanisms for abstraction and code
re-use, such as inheritance. However, EGL provides much the same scope for
reducing duplication of code using an imperative syntax plus facilities for code
modularisation. Although the way in which abstraction and re-use is achieved
is slightly less succinct in the imperative approach, the resulting templates are
more readable.

A key problem with MOFScript is that it encourages transformations with
tight coupling of destination and content: the MOFScript file type allows trans-
formations to write generated text (content) directly to disk. This means that
modification is needed to use the same transformation to generate content to a
different type of destination (a socket, an HTTP stream, etc.). The EGL style
encourages developers to separate destination and content of generated text, by
restricting direct access to output destinations from within templates, as dis-
cussed in Section 3.5.

Unlike JET, MOFScript provides some OCL-like constructs for traversing
and interrogating data structures (forEach and select keywords). MOFScript
also provides a prototype implementation for aspect-oriented programming con-
structs, allowing transformations to be woven together at compile-time.

5.3 XPand

The openArchitectureWare platform, oAW [17], provides open-source, model-
driven software development tools. It includes a M2T language, XPand [18],
with a declarative template syntax. XPand meets many of the requirements
outlined in Section 2.1. For instance, the language supports active code gen-
eration via the PROTECT construct, and provides beautifiers to enhance read-
ability of both templates and generated text. However, like MOFScript, XPand
encourages transformations to couple destination and content, which limits
re-usability.

Unlike the other M2T languages considered, XPand templates can be invoked
as part of a workflow, using oAW’s proprietary workflow definition language.
By contrast, Epsilon utilises Apache Ant to define workflows, which encourages
reuse of existing tools, such as AntUtility [7], for profiling, and the Nurflugel
AntScript Visualizer [2] for visualisation.
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6 Conclusions and Further Work

In this paper, we have presented the Epsilon Generation Language, a template-
based M2T transformation language for the Epsilon platform. Through its
derivation from EOL, EGL provides features specific to the M2T transformation
domain as well as having direct access to general model-management support,
and to future enhancements to EOL and the Epsilon platform. Furthermore,
by deriving EGL from EOL, we have been able to simplify the language design
activity of EGL development, and re-use the EOL execution engine.

We are now working on combining EGL with Epsilon’s languages for model
comparison and transformation (ECL and ETL), to support incremental code
generation. This would allow users to reflect in code all changes made to source
models, by applying a minimal number of transformations. We are also inves-
tigating an alternative approach, using change information derived by model
editing tools to perform impact analysis; by adding keywords to EGL this would
allow direct checking of staleness of model elements.

An alignment of EGL with a web-server has a number of potentially inter-
esting applications. The case study in Section 3.5 shows the potential of using
EGL as a component in a web-based model repository. Extending this idea,
the Epsilon languages could provide a scaffold for developing web-based appli-
cations: suppose the domain objects of such an application were encoded as
EMF-compliant models – Epsilon’s transformation language could be used to
describe suitable transformations on the domain model (such as adding, edit-
ing or removing an instance); the Epsilon Validation Language could check that
models remain valid and consistent subsequent to domain model transactions;
and EGL could be used to produce HTML for viewing domain objects.

Information on EGL, Epsilon and associated languages is available from the
Epsilon GMT project website, http://www.eclipse.org/gmt/epsilon.
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Abstract. Model transformations can be defined by a chain or network
of sub-transformations, each fulfilling a specific task. Many intermediate
models, possibly accompanied by traceability models, are thus generated
before reaching the final target(s). There is a need for tools that assist
the developer in managing and interpreting this growing amount of MDD
artifacts. In this paper we first discuss how a transformation chain can
be modeled and executed in a transformation language independent way.
We then explore how the available traceability information can be used
to generate suitable diagrams for all intermediate and final models. We
also propose a technique to visualize all the diagrams along with their
traceability information in a single view by using a 3D diagram editor.
Finally, we present an example transformation chain that has been mod-
eled, executed and visualized using our tools.

1 Introduction

Monolithic transformations, like most non-modularized software entities have
some inherent problems: little reuse opportunities, bad scalability, bad
separation-of-concerns, sensitivity to requirement changes, etc. A number of
these problems can be solved by decomposing a transformation into a sequence of
smaller sub-transformations: a transformation chain or transformation network.

Each stage of a transformation chain produces intermediate models, which
means that the total number of models can become very large. In the ideal
case this all happens automatically and correctly so we do not have to care
much about the intermediate models; only the final target models are to be
considered. Unfortunately, we often have to study and possibly modify interme-
diate models manually in order to get the desired result, if only for debugging
purposes. For example, if we detect an unexpected structure in the final output
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model we must look at the intermediate models to identify the responsible trans-
formation. In another case we might want to optimize the results of a complex
sub-transformation manually. In these cases, it may also be useful to inspect the
relations between the models under study – i.e. traceability. We have identified
three main problems with the scenarios sketched above.

1. Defining, executing and maintaining transformation chains is not a straight-
forward task. This is particularly difficult if a mixture of different transfor-
mation languages and tools is used.

2. Relying on automatic layout mechanisms to generate diagrams for interme-
diate models is often not satisfactory. Since layout information is neither
transformed nor preserved across transformation stages, each model’s di-
agram can look completely different even if subsequent models have only
slightly changed.

3. Trying to interpret traceability information manually is difficult since there
is no good graphical representation technique for this kind of information.
Therefore, this information can often not be fully exploited.

In this paper we explain our approach to construct a transformation chain
and present its output to a human user in a clear and comprehensible fashion.

We have extended UniTI (Unified Transformation Infrastructure) [1], a tool
for transformation chain modeling and execution, with the ability to keep track
of traceability models and their relation to other models in the chain. We discuss
how the output of a transformation chain – an intricate network of models con-
nected by traceability links – can be visualized. We explain how a proper diagram
layout can be produced for the generated models by leveraging traceability infor-
mation. Furthermore, we propose a technique to visualize the diagrams, together
with traceability links in a 3D editor.

The remainder of this paper is structured as follows. In Section 2 we give a
short overview of UniTI. Since traceability plays a crucial role in transformation
chains, we discuss our perspective on that subject in Section 3. In Section 4
we describe how to automatically create the layout for generated models and
introduce Gef3D, the framework used for implementing a 3D diagram editor.
We demonstrate our solution with an example transformation chain in Section
5 and summarize related work in Section 6. Finally, we wrap up by drawing
conclusions and identifying future work in Section 7.

2 Setting Up a Transformation Chain

Currently, most transformation technologies do not offer much support for re-
using and composing sub-transformations as high-level building blocks. They
focus on offering good abstractions and a clear syntax for implementation. Since
many transformation languages are now reaching a certain maturity, we need to
start focussing on reuse and composition of transformations.

We have developed an Eclipse plugin called UniTI (Unified Transformation
Infrastructure) that manages building blocks of a transformation chain. In this
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section we give a short overview of UniTI, for a more elaborate discussion we
refer to [1].

The basic principles of UniTI are inspired on those of Component Based
Software Engineering (CBSE) [2]. We have reformulated them to fit the model
transformation domain:

Black-Box. The black-box principle indicates a strict separation of a transfor-
mation’s public behavior (what it does) and its internal implementation (how
it does it). Implementation hiding makes any technique an eligible candidate
for implementing the transformation.

External specification. Each transformation should clearly specify what it
requires from the environment and what it provides.

Composition. Constructing a transformation with reusable transformation
building blocks should be considerably less work than writing it from scratch.
A transformation should be a self-contained unit and composition should be
easy and should require only a minimum of glue code.

Current transformation technologies do not focus on the principles outlined
above; in order to reuse an existing transformation implementation in a chain,
a very deep knowledge of that implementation is usually required [1]. This vi-
olates the black-box principle and is often consequence of the limited external
specification. In the related work section we discuss that QVT does have limited
support for the above principles.

In UniTI we try to not only adhere to the three CBSE principles, but also
to MDD practices. A transformation chain in UniTI is therefore a model itself,
making it a possible subject to MDD techniques such as model transformation.

A typical usage scenario of UniTI goes as follows (see Figure 1). A Trans-
formation Developer who is specialized in one or more transformation lan-
guages provides a number of executable transformations. The Transformation
Specifier is responsible for encapsulating these implementations in the the uni-
fied UniTI representation (TFSpecification). This entails specifying the valid
context in which the transformation may be executed by defining pre- and post-
conditions. Depending on the transformation language used for the implementa-
tion, it might also involve choosing concrete metamodels [3] or a transformation

Fig. 1. Overview of UniTI principles
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direction [4]. Currently we support semi-automatic generation of such transfor-
mation specifications for ATL [3], MTF [4] and Java transformations. Finally,
the Transformation Assembler creates a transformation chain model by intercon-
necting an arbitrary number of transformation instances (TFExecutions). This
can be done without any knowledge of implementation or technology details
of the underlying transformations since these are completely hidden by UniTI

at this point. Each transformation, be it ATL, MTF or Java, is represented
in exactly the same way. Once the transformation chain is completely modeled,
UniTI automatically executes all stages and produces the intermediate and final
models.

3 Transformation Traceability

Traceability has many applications in software engineering. In requirements engi-
neering, traces make the link between requirement documents and design models
or code while program analysis focuses on traces between function calls. From an
MDD point of view, traces can be any type of relation between model elements.
Traceability information is typically expressed as a model of its own: traces are
elements of a traceability model.

For this paper, we consider an MDD-specific kind of traceability: transforma-
tion traceability. In this case, traces are produced by automatic model transfor-
mations and denote how target elements are related to source elements and vice
versa. In this section we discuss how traceability is supported in UniTI (see 3.1)
and which traceability metamodels we use (see 3.2).

3.1 Traceability Support in UNITI

Since traceability information can be represented as a model itself, it can easily
be produced as an additional output of a transformation. We assume that the
creation of traceability models is explicitly implemented by the transformations
and that traceability models are available as normal transformation outputs.

While regular models can usually be interpreted independently, traceability
models contain cross-references to input and output models and are thus mean-
ingless on their own. These references are usually unidirectional in order to
prevent pollution of the regular models. This means that, given a traceability
model, we can locate the models to which it refers, but not the other way around.
Given only a model, we cannot locate the relevant traceability model(s).

Therefore, we have extended UniTI so it keeps track of the relations between
all models and traceability models involved in a transformation chain. Tools such
as Gef3D (see Section 4) can hence query the transformation chain model to
determine how models and traceability models are related.

Figure 2 shows a part of the UniTI metamodel that introduces dedicated sup-
port for traceability. This is a new feature that was not yet described in [1]. A
TFExecution (an instantiated transformation) has a number of input and out-
put parameters (TFParameter), which can be considered as model containers.
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Fig. 2. Traceability Tracking in UniTI

Traceability parameters (TFTraceParameter) represent a special type of para-
meter that encapsulates a traceability model and keeps track of its source and
target model; TFParameters have opposite references: sourceOf and targetOf. No-
tice that this structure (multiplicities of 1 for both source and target) enforces
a separate traceability model for each input/output model pair. This decision is
made to keep sub-transformations as independent as possible and to prevent sub-
transformation implementation details from leaking (see also next subsection).

In summary, traceability models play a first class role a transformation chain
modeled in UniTI, which facilitates traceability discovery by model navigation.

3.2 Traceability Metamodel

A lot of different metamodels for traceability information have already been
suggested in literature, e.g. in the MDA foundation model [5]. Some of them are
specialized, others propose a generalized model. At this point in time there does
not seem to be a generally accepted model. One could wonder whether a generic
model is necessary since traceability models can be transformed to conform to
a different metamodel if required. For this paper we use this transformation
approach since both UniTI and Gef3D use different traceability models.

The traceability models that we use are illustrated in Figure 3. On the left,
we see the traceability metamodel that is used by UniTI and on the right, the
metamodel required by Gef3D. Note that UniTI can also be used without trace-
ability and supports any kind of traceability metamodel, but in order to enable
some additional uses of traceability [6], this particular metamodel is required.

The UNITI Traceability Metamodel (left part of Figure 3) is designed to
minimize exposing implementation details of individual transformations in order
to prevent tight coupling within a transformation chain. A sub-transformation
should never be able to depend on specific implementation details (not part of
its specification) of a previous transformation. However, many transformation
traceability models indirectly expose these kind of details by including the (im-
plementation specific) transformation rule name in each trace. Even if this is
not the case, an m : n trace that links all elements involved in a single trans-
formation rule, can still expose the rule structure. This means that subsequent
transformations can depend on this structure, causing hard coupling within the
transformation chain. As a result, sub-transformations cannot easily be replaced
by others without breaking the chain.
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Fig. 3. UniTI Traceability Metamodel and Merged Traceability Metamodel

In order to hide these implementation details, the UniTI traceability meta-
model only allows binary trace relations. A tagging mechanism is offered to an-
notate individual traces with a specific semantic meaning that is independent of
the implementation. In the future, these tags will make part of the specification
of a transformation. More details on these tags can be found in [6].

The Merged Traceability Metamodel (MTM – right part of Figure 3),
used in Gef3D, is similar to the UniTI traceability metamodel but has at least
two important differences. First, a trace can contain a comment, which can be
the transformation rule name. Second, a trace can contain multiple source and
target elements. The main design consideration of the merged traceability model
is to minimize the amount of traces (MergedTraces) that are given to the diagram
layout algorithm (see Section 4.1). This is accomplished by creating only a single
trace element for each group of related model elements; typically a single source
element with a number of target elements.

It is clear that both traceability metamodels have different goals and therefore
have a different structure. In order to overcome these differences, we have used
a model transformation to translate UniTI traceability models to merged trace-
ability models. By using this technique, we ensure that both tools are loosely
coupled and that their traceability metamodels can evolve independently. If one
changes, it suffices to change the transformation.

In the next section we show how the merged traceability model is used to gen-
erate model diagrams and how traces between different models can be visualized
in a 3D editor.

4 Visualization

When visualizing a transformation chain, two main issues can be identified: How
to layout diagrams of generated models and how to visualize traces.

UML diagrams such as class diagrams can become quite complex. Often, much
time is spent by the user to layout a single model. For example, related elements
are grouped together or line crossings are minimized. While automatic layout
algorithms may achieve good results with respect to some optimization criteria,
users often try to visualize semantics in the layout which is not expressed in the
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model itself. For example in Figure 6 important classes are put in the center of
the diagram, something that cannot be mimicked by layout algorithms.

A big disadvantage of model transformations is that they don’t transform
layout information; diagrams are usually not transformed. If we want to take a
look at the final output model or at any of the intermediate models, we have
to rely on automatic layout algorithms. Since they only consider the current
model, the spacial relation to the previous diagrams is often lost. That is, the
user has created a mental map of the source diagram, knowing where on the
diagram certain elements are located. Common layout algorithms do not take
this mental map into account, therefore it can be very difficult to locate corre-
sponding elements in the target diagram. This is especially true for chains in
which intermediate models were used to simplify a single transformation – the
structure of the different models is usually very similar and thus it is even more
important to retain the mental map.

In [7] Kruchten writes: “Visual modeling [..] helps to maintain consistency
among a system’s artifacts.” [7, p. 11]. A base feature to “maintain consistency”
of models are traces, but traces are rarely visualized. Displaying traces between
elements of two models makes the diagram even more complex. A first approach
may be to draw the two models beneath or besides each other and to display
the traces as lines connecting related elements. But in this case, the diagrams
quickly become cluttered; many traces cross each other and other diagram el-
ements and the whole diagram becomes quite large (difficult to display on a
screen). Changing the diagram layout in order to minimize line crossings results
in destroying the manual layout and the mental map.

While traces make the problem of visualizing a transformation chain more
complex, they can help us in solving the layout problem. We show how to use
the traceability models, produced by the transformation chain, to automatically
layout intermediate diagrams based on the initial manually created model dia-
grams, hence preserving the mental map (see 4.1).

For solving the traceability visualization problem we “expand” the dimensions
in which we draw the diagrams. Most software engineering models are drawn
using two-dimensional diagrams. For drawing models with traces we can use
three-dimensional diagrams, using the third dimension to display the traces. In
most cases editors for single models already exist and we want to reuse these
editors. We therefore adapt existing two-dimensional editors and combine them
to a single 3D multieditor. This can be achieved by displaying the 2D diagrams
on 3D planes. Traces can then be visualized as connections between elements of
the different models displayed on these planes (see 4.2).

4.1 Derived Layout

The transformations used in a transformation chain usually only transform the
domain models. In most cases these domain models do not contain any layout
information. The layout of diagrams is defined using so called notation models,
but these models are not transformed. This is why generated models do not
have a layout and why we rely on layout algorithms in order to display these
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Fig. 4. Transformation of Notation Models

models. What we suggest here is a layout algorithm which is indeed a kind of a
transformation. Figure 4 illustrates the idea.

The first row in the figure shows the transformation chain as created by
UniTI. Some domain models DMn are related via transformations tn. Addi-
tional notation models NMn are used in order to display the domain models.
To preserve the structure of a diagram, that is the layout created by a user
in the very first notation model NM1, we have to make use of the informa-
tion stored in the notation model of the predecessor. Therefore we map the
source notation model to a target notation model. This is possible because a
path NMi+1 → DMi+1 → DMi ← NMi exists.1 A detailed description of the
algorithm can be found in [8].

4.2 2D Diagrams in a 3D Space

A lot of graphical editors are implemented today using the Eclipse Graphical
Editing Framework (GEF)[9]. Examples for such editors are the TopCased Tools
[10], or the Eclipse UML Tools. For visualizing models and traces in 3D, we do
not want to re-implement these editors, even if they are 2D only. The main
challenge here is to provide a technique allowing us to use existing editors in a
3D space. Besides minimizing implementation effort, we also retain the graphical
syntax used by these editors. Since we actually use the original editor code, the
3D version does not only display the models but also enables us to modify the
diagrams in this 3D view.

The concept of displaying models in a 3D space is to project common 2D
diagrams on planes and combine these 2D diagrams with real 3D elements.
Here, traces are visualized as 3D elements connecting 2D elements of the orig-
inal diagrams. Figure 5 shows four planes on which 2D digrams are drawn. 3D
connections (here traces) connect elements of these diagrams. The models of the
figure are explained more detailed in Section 5.

While 3D editors (or visualizations) are used in many domains (e.g. CAD),
they are rarely used in software engineering. Most software engineering diagrams
are graphs, that is nodes and connections drawn as lines between these nodes.
GEF is a framework for implementing editors for this kind of diagrams. Figure 6

1 While the transformation is usually unidirectional, the trace is always bidirectional
(DMi+1 → DMi). Since domain models are independent from the notation models,
i.e. the connection is directed from the notation model to the domain model (DMi ←
NMi), we have to use a reverse lookup, but this problem can easily be solved.
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Fig. 5. 2D diagrams on planes and 3D connections

illustrates the main concepts of GEF and Gef3D. GEF is using a Model-View-
Controller (MVC) architecture shown in the center of the figure. For each el-
ement drawn and edited in a GEF based diagram an MVC triple has to be
implemented. The view for each element is called figure (and its class has to im-
plement Draw2D’s IFigure interface). The controller of a single element is called
edit part (and its class has to implement GEF’s (Graphical)EditPart interface).
GEF is independent from any model implementation, but most often models are
implemented using the Eclipse Modeling Framework (EMF) [11]. The figures
and the edit parts are organized in a tree. The root of the figures is contained
in a so called lightweight system which is a bridge between the graphical system
of the platform and the figures. The edit parts are usually created by an edit
part factory, using the factory pattern. All parts of a graphical editor are held
together by an (edit part) viewer.

With Gef3D [12] we provide a 3D extension of GEF, making it possible to
display 2D diagrams on planes in a 3D space or even to implement real 3D
editors. It provides an OpenGL based implementation for figures, i.e. it pro-
vides a new interface for 3D figures (IFigure3D, which extends the original
interface IFigure). The original lightweight system and the canvas, on which
the figures are drawn, are replaced by 3D versions too. Instead of a 2D can-
vas an OpenGL canvas is used, that is we use OpenGL for rendering. These
new 3D enabled view elements are instantiated by corresponding 3D versions of
the graphical editor and viewer. The core of GEF can be used without further
changes.

Adapting an existing GEF based editor is very simple: Instead of rendering
the diagram directly on the screen, they are rendered as images wich are used as
textures for some 3D elements. Most parts of the 2D editors can be reused, only
the top level container figure (i.e. the diagram itself) and its controller have to
be replaced. In MDD, UML is often used for modeling. TopCased UML provides
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Fig. 6. Gef3D adds 3D to GEF

editors for most UML diagrams, and we adapted TopCased UML so that its
diagrams can be rendered in a 3D editor. The result is not only a visualization
of UML diagrams, but also a full-featured editor 2.

Since we do not only display a single diagram, multiple editors have to be
combined in a single editor called multi editor. This is possible due to GEF’s
design of the controller components, the edit parts. These parts are created
using a so called edit part factory. Gef3D extends this pattern by providing a
multi edit part factory. This factory nests already existing factories and creates
new elements using a nested factory based on the diagram element in which
the new element is contained. As demonstrated in the following example, not
only editors displaying the same type of diagrams can be combined, but also
completely different editors.

The performance of the 3D visualization is quite well due to the usage of
OpenGL. All 2D elements are currently rendered as images (one image per 2D
diagram), so if the diagrams aren’t too large, this causes no problem. We have
also implemented some performance tests, showing that 1000 real 3D nodes with
textures can be handled by the engine.

5 Example

In this Section we demonstrate the usage of UniTI and the capabilities of
Gef3D by creating and visualizing a typical transformation chain. The transfor-
mation chain starts with a simple UML model, creates several UML models, and
finally an Entity-Relationship (ER) model. The models represent, even if slightly

2 Currently not all editor features are implemented, see Section 7.
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Fig. 8. Part of the transformation chain as modeled in UniTI

simplified, typical artefacts used when creating an information system. We first
set up the transformation chain with UniTI and then visualize the whole chain
with a Gef3D based editor.

The example transformation chain is schematically represented in Figure 7.
It contains three transformation stages:

1. UML refinement – Id attribute (ta): The first (UML) model represents a do-
main model of a library. Since it is a domain model, implementation details
such as operations and persistency properties are omitted. The first refine-
ment transformation ta adds a unique identifier property to each class. For
the initial model, we have manually created a model diagram so that further
diagrams can be generated automatically (as described in 4.1).

2. UML refinement – getter and setter (tb): For each public property, a public
get and set method is added to control access to that property (which can
also refer to an association). The property itself is then marked as private.
This is useful if we want to add further transformation towards, e.g., a Java
implementation.

3. UML to ER (tc): Finally we transform the UML model to a corresponding
ER model.

This transformation chain was modeled in UniTI (see Figure 8) and the
results were visualized using Gef3D (see Figure 5).

The traces are displayed in different colors, depending on the level of the
connecting elements. That is, traces connecting top level elements (e.g. classes
or associations) are drawn red, while traces connecting nested elements (like
operations) are drawn green. We have implemented a filter to hide traces of the
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Fig. 9. Transformation chain output with filtered trace visualization

latter kind making the traceability much more clear. Figure 9 shows some filtered
traces. Since this paper leaves no room for more pictures, we refer to Gef3D’s3

and UniTI’s4 website, which provide some screenshots and screencasts.

6 Related Work

The approach that was presented in this paper consists of three main areas:
transformation chaining, traceability and visualization of models. In this section
we identify related approaches in each of these areas.

6.1 Transformation Chains

There are a number of alternatives to UniTI that allow to build and execute
transformation chains.

In [13], a transformation chain is seen as the composition of different tools
that each support one or more transformations. They make a strong separation
between transformation definition and execution. Transformation building blocks
are represented as plugins to the Eclipse framework. Another approach similar
to ours is described in [14]. They reuse classical component middleware as a

3 http://gef3d.org/
4 http://www.cs.kuleuven.be/∼bertvh/uniti.shtml
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Transformation Composition Framework (TCF); transformations, models and
metamodels are all represented as components.

These systems have a similar goal as UniTI, but there are some significant
differences. UniTI offers a model-based approach to specify and execute trans-
formation chains, while the former systems use a scripting language. A model-
based approach has the advantage that transformation chain models can easily
be explored by other MDD tools (e.g. the Gef3D editor in Section 5) and can
even be transformed themselves, for example to insert additional transforma-
tions. UniTI also integrates first class support for traceability models, which is
not present in the other approaches.

Similar to UniTI, QVT [15] supports chaining of black-box transformations.
However, it is up to each QVT implementation to provide concrete mechanisms
to call out to external transformations. At the moment of writing, existing im-
plementations of Borland and SmartQVT only enable Java to specify black-box
transformations.

The AM3 Global Model Management approach [16] aims to build a generic
model management infrastructure, including support for transformations, meta-
models and other MDD artifacts. A similar approach, though more specialized
towards model merging, is pursued in [17]. UniTI can be considered as one
application of model management, focused on managing transformation related
MDD resources.

6.2 Traceability

In our approach, we generate and visualize traceability models and use these
models to generate diagram layouts. Related work concerning the generation of
traceability and traceability in general is presented in this subsection, visualiza-
tion related work is presented in the next subsection.

Traceability Metamodels. Many traceability metamodels have already been
proposed for this purpose [18]. Some of them have a very specific purpose, others
try to come to a generic model that is suited for every situation. We do not believe
that such a generic model is feasible. Instead we were confronted ourselves with
two different traceability metamodels when integrating UniTI and Gef3D. We
have not attempted to adapt both tools to use a common traceability metamodel
but rather used a model transformation to convert the traceability model when
needed (see Section 3.2).

Traceability Generation. Most current transformation languages [15,3] build
an internal traceability model that can be interrogated at execution time, for
example, to check if a target element was already created for a given source
element. Although this kind of traceability is generated without any additional
required effort, there are some issues. Firstly, not all languages allow to export
this information into an additional model, this is the case for ATL and MTF.
Secondly, the traces cannot be adapted from within the transformation rules,
which is required for our trace tagging approach. For these reasons, it is often
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necessary to explicitly incorporate the generation of an addition traceability
model into each transformation, as we did in our approach.

Manual implementation of traceability generation can be very cumbersome
since very similar trace generating statements must be reproduced for each trans-
formation rule. A solution for automating parts of this work has been proposed
in [19]. They explain how trace generation statements can be added to an ex-
isting transformation by a model transformation – i.e. the transformation is
transformed itself. This technique can be used for transformations in UniTI as
well.

In [20], a distinction is made between traceability in the small (between model
elements) and traceability in the large (between models). In Section 3.1, we make
a similar distinction: traceability models contain links between model elements
and UniTI keeps links between models and their traceability models.

6.3 Visualization

There are three kinds of related work: Work related to visualizing (software
engineering) models in 3D, work related to visualizing diagrams on planes, and
work related to visualizing traces.

Software engineering models like class diagrams are visualized in a 3D manner
for example in [21] This work is not using common notations, but invents new
ones optimized for 3D visualization. The new notation syntax has to be learned
and it differs from common notations like UML, hence existing editors cannot be
reused. Often the visualization tools can only present, but not edit the diagrams,
while Gef3D has the potential of a real full-feature editor based on a widely
used framework.

The idea of visualizing 2D diagrams on planes is described in [22] already. In
this work, 3D diagrams that look quite similar to the ones presented here, are
shown. However, the diagrams here were produced by an existing tool. In [22] the
diagrams are only illustrations of an idea, but a tool was not yet implemented.
As far as we know there still is no tool, at least publicly, available.

Most work about visualizing traces examines requirement or execution traces.
In the first case, often matrices are used, a column for each requirement and a
row for each artifact [23]. In [24] execution traces are visualized in 3D diagrams,
but again new 3D notation syntax is used. Since usually a lot of execution
traces are produced in a software system, execution traceability becomes more
a quantitative information. The effect of this is that a single trace cannot be
identified anymore.

7 Conclusion and Future Work

Complex model transformations can often be split up into smaller sub-trans-
formations in order to provide better robustness to changes, to allow more reuse
opportunities and to simplify the implementation of individual transformations.
A transformation chain thus produces many intermediate models before deliv-
ering the final output model(s).
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While this approach seems very attractive, we have identified three issues.
First, we need an approach to manage all the high level MDD artifacts in a
transformation chain: models, metamodels and transformations. Second, model
diagram information must also be preserved throughout the transformation chain
to allow manual inspection of the intermediate and final models. Third, we need
a good representation for traceability information between different models.

We have proposed a solution to these problems by integrating two tools.
UniTI allows to model and execute transformation chains in a technology in-
dependent way. It also keeps track of traceability models and their relation to
other models. A Gef3D based tool queries the transformation chain model to
find models and traceability models. Based on the traceabiltiy models, it can
generate a consistent diagram layout for all models throughout the chain. Fur-
thermore, it visualizes all these diagrams in a 3D model editor where also the
traceability links themselves can be shown.

This integrated approach hence facilitates both the specification of trans-
formation chains and their visualization. The visualization provides a concrete
representation of otherwise abstract traceability information. It can for example
be used to quickly localize a problem in the transformation chain in order to
solve it locally in the identified sub-transformation.

We want to keep improving our approach in the future. UniTI will be extended
so that traceability information of the whole chain can accessed transparently by
subsequent transformations. Gef3D will be further developed in order to provide
full-featured editors, i.e. the diagrams should not only be visualized but also be
editable in the 3D view. Besides, the usability should be improved, e.g. by high-
lighting search results (or all elements connected by a trace).
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Abstract. Model driven development suggests to make models the main
artifact in software development. To get executable models in most cases
code generation to a “traditional” programming language like e.g. Java is
used. To obtain customizable code generation template-based approaches
are applied, commonly. So, to adapt the generated code to platform spe-
cific needs templates are modified by the user. After code generation, in
real world application the generated code is often changed e.g. by refac-
torings. To keep the code and the model synchronous reverse engineering
is needed. Many approaches use a Java parser and a mapping from the
Java parse tree to the UML model for this task. This causes maintenance
issues since every change to a template potentially results in a change
to this parse tree - model mapping. To tackle this maintenance prob-
lem our solution does not use a common language parser but uses the
templates as a grammar to parse the generated code, instead. This way
changes to the templates are automatically taken into account in the re-
verse engineering step. Our approach has been implemented and tested
in the Fujaba CASE tool as a part of the model and template-based code
generator CodeGen2 [11].

1 Introduction

Transforming models into various kinds of text languages is common practice,
nowadays. These textual languages are used to provide an executable mapping
for different kinds of models. Therefore such a model-to-text translation, to a
programming or description language, is subject to optimization, adaption and
maintenance work.

To obtain the required flexibility in the transformation engine, text templates
are a common means to facilitate the final transformation from model-to-text,
cf. e.g. [1,2]. These templates can easily be tuned, adapted and maintained. Even
users can edit templates to change the transformation results according to their
needs.

Transforming models to text is not the only direction that is needed. There
are still developers who edit source code directly, there are processes requiring
people to change text artifacts, and sometimes pieces of generated text may have
lost there corresponding models. Thus transformation from text to models are
a requirement as well.
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Common techniques for transforming text to models utilize a parser for the
specific text language and operate on the parse tree afterwards. This approach
is limited by the flexibility of the language parser (problems like syntax errors in
the text document) and it easily causes a maintenance problem if the templates
used for to-text-transformation are changed. In contrast to the template editing
for the forward engineering, the reverse engineering - parsing of text - cannot be
configured easily. To overcome these weaknesses our text-to-model transforma-
tion engine exploits the very same templates used for the model-to-text direction
for reverse engineering.

The work presented here has mainly been done in the context of the bachelor
and master thesis of Manuel Bork [6,7].

2 Related Work

Template based text generation has established itself as a standard technique
for web pages e.g. based on PHP or Java server pages. Consequently, the same
technique is frequently used for model-to-text code generation for example in
eclipse by Java emitter templates [2] or in Fujaba [10] by velocity [1].

For text-to-model or reverse engineering one commonly uses parsing technolo-
gies. This means, based on e.g. some Java grammar and e.g. a compiler compiler
like javacc/jjtree [3,4] one builds an abstract syntax tree and this tree is then
transformed with a model-to-model transformation into the original model. In
the Fujaba project we have been following this approach for several years, too
[14,17,19,16,18,20]. Especially, the thesis of Thomas Klein [13] created a first re-
verse engineering component with reasonable capabilities for Fujaba. However,
due to several changes to our code generation strategies, e.g. for association
implementation, we frequently had to update this reverse engineering compo-
nent and after only one year, the functionality was lost. Another approach [20]
tried to overcome the maintenance problems with fuzzy reasoning. They relaxed
the exactness of the pattern matching process in order to deal with minor code
variations. This of course had the drawback of false positives and false negatives.

Other reverse engineering approaches use fact extractors. Facts are tuples of
entities (i.e. classes, variables, methods) and relations (i.e. inheritance, function
calls, instantiations). A fact extractor for Java is introduced in [12].

In order to reverse engineer dynamic models other approaches are used. Briand
et al. generate UML sequence diagrams by protocolling execution traces at run-
time [8]. Rountev et al. however analyse directly the control flow in the source
code [21].

With the Columbus framework [9] it is possible to reverse engineer even large
C/C++ projects. It generates class diagrams, an abstract syntax tree and call
graphs. Furthermore, it supports design pattern recognition. CPP2XMI [15] is
based on Columbus and extracts UML class, sequence and activity diagrams.

Due to our knowledge, there is no other approach that exploits code generation
templates for parsing directly. One may argue that template files form some
kind of language grammar. However this template file based grammar will most
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likely not fulfill the constraints of an LALR1 or LL1 grammar, cf. [5]. Thus
one has to use more general techniques for context free grammars as e.g. the
Cocke-Younger-Kasami (CYK) algorithm. However, our templates contain local
variables, expressions, and control structures which again complicate matters.

3 Code Generation

A template based code generation is a prerequisite of our new reverse engineering
approach. This section gives an overview of the code generation software used for
our prototype. The code generation process is split into three tasks, cf. Figure 1.

Model Tokens Code

optimization

sorting/structuring

decomposition                           code writing

Templates

Fig. 1. Subtasks of the code generation with initial and resulting data

Our approach first transforms the original model into an intermediate token
structure. This intermediate token structure defines a visiting order for model
elements. This initial transformation step also handles a lot of conditional cases
and alternatives, e.g. this step may choose a specific strategy for the implemen-
tation of associations. Note, one model element may create multiple tokens for
different purposes, e.g. a model class may create a token structure for a Java
interface class and another one for an implementation class. The result of the
token creation task is a tree of tokens where the tokens may refer each other in
several ways (thus forming a graph of tokens).

The generated token graph represents our intermediate language. The code
generation for Fujaba’s graph rewrite rules performs additional structuring, sort-
ing and optimizing on this intermediate language. Tokens from class diagrams
usually need little to no further structuring.

Note, in reverse engineering, the token structure is extended by temporary
string attributes that hold references to model elements. These string references
are then resolved to real model references in a separate step.

In code generation, the final step generates code for the resulting token graph.
Therefore, the underlying token tree is visited in postorder. Every visited token
is passed to a chain of code writers. Usually, the responsible code writer opens a
specific template file and passes the token and additional information as context
to the template engine. This additional information includes the code generated
for all children of the token in the tokens hierarchy.
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Fig. 2. Code generation example

In our implementation, we use the velocity template engine [1]. Figure 2 shows
an example model and a simplified version of the template used for class tokens.
Within the class template, the class token is stored in variable $token. From this
variable, the template may access the original model via the token structure. For
example, the first two lines of the template declare two local variables: $name and
$superclass. The $name variable is read from the name attribute of the passed
$token object. The $superclass variable gets its value via the access chain
$token.superclass.name. Velocity allows attribute access or even method calls
on every object passed to the template engine. That makes the templates highly
customizable since every model element can be queried during code generation.
In line 3 of the template finally code is generated: The constant string “class”
followed by the current value of variable $name is produced as output. Velocity
also allows control flow such as looping or branching. The code fragment in
line 5 is only added to the output if the statement in line 4 evaluates to true.
This means it is only added if the variable $superclass is not empty. After the
opening bracket from line 7 the code for all subtokens (like methods or fields)
is added to the class’ code. That code is passed to the engine in the $children
variable. The code for the class is finished by the closing bracket from line 9.

Note, although the Velocity template engine provides control structures itself,
we do most of the complex computation during the construction and optimiza-
tion of the intermediate token structure. This reduces the complexity of our
templates dramatically and makes them reasonably simple.

4 Reverse Engineering

It is common practice to use a parser which is based on the grammar of the
target language to reverse engineer a piece of source code. But this common
approach has several disadvantages: First, a separate parser for each language,
which can be generated with the code generator, is needed. In contrast to that, it
is sufficient to write a set of new templates for a template based code generator
to support a new target language (with similar structure). Second, the parse tree
- the result from parsing a piece of source code with a common language parser
- is very fine grained. It is quite tedious to map this parse tree information to
an application meta model (e.g. UML). To accomplish this task model elements
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must be associated with more or less complex patterns, found in the parse tree.
Afterwards a pattern recognition mechanism is used to identify pattern instances
in the parse result and these matches are translated into model elements. As of
the nature of the parse results these pattern need to be adapted according to
the possible generated or hand written implementation style, found in the parsed
source code.

In the template-based approach, presented in this paper, this mapping is
still needed. Though, the result from the template-based parsing has a higher
granularity and higher abstraction level than the parse tree from a common
language parser. Thus the part of the pattern matching algorithms which is under
major maintenance due to template- or code-style-changes is instead already
covered in the template-based parsing.

Our text-to-model approach uses the very same templates that were used for
code generation before. So, while adapting the templates for whatever reason
one adapts the reverse engineering mechanism at the same time. This tackles
the major part of the maintenance problem. Section 3 introduced our template
based code generator. In a nutshell the application’s model is transformed into an
intermediate token tree and then passed to the template engine. The template
engine generates code, specified in the the according template, afterwards. In
Figure 2 an example for this procedure was given. For reverse engineering we
invert this procedure. Figure 3 exemplifies the reversed procedure.

Fig. 3. Template and source code are parsed to reconstruct the model

Our approach works as follows. Given a piece of source code, the code gen-
erator states which template is used first. Then, while traversing template and
source code the template’s variables are assigned with textual fragments of the
source code so that the given source code would be generated again. These as-
signments are utilized later on to reconstruct the intermediate token layer and
finally the model itself. As there are several possible solutions for this first step
some reasoning is performed next. Thereby boolean conditions that consist of
multiple variables are split up and contradictory solutions are removed. Both
tasks, template-based parsing and reasoning, are repeated for all included tem-
plates. After that the intermediate token layer is reconstructed generically. Then
textual references are resolved to real objects and mapped to the model.

In the following we present each subtask in detail.
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4.1 Template-Based Parsing

The goal of this subtask is to discover whether a given template has been used to
generate the source code given and how the templates variables were assigned.

The left side of Figure 3 illustrates an excerpt of a template for a Java class.
The right side shows two lines of source code. In order to reverse engineer this
source code the values assigned to the template variables are inferred. So first
of all the template itself must be parsed. Therefore the velocity template engine
contains a template parser. This parser returns a parse tree that is traversed
in the following step. To find the values in the example (i.e. for the classname
$name and the superclass’ name $superclass) the parser traverses the template
and tries to match the terminals1 of the template with text fragments from the
source code, first. Thus, in the example, the parser starts at the beginning of the
template and reads the terminal class. It finds the same text in the source code
at the starting position, too. As this is a successful match, parsing process contin-
ues. After that the variable $name is processed. As the parser does not know, yet,
which value is assigned to the variable, it just stores the variable name as pend-
ing. The next processed template part is a branching statement. As the parser
does not know yet how to evaluate the branching condition ($superclass), it
checks both possible paths through the template: a) assuming the condition to
be true and b) assuming it to be false. So in case a) the parser tries to find the
terminal extends in the source code. It is matched in the middle of the source
code. It is now possible to assign a value to the pending variable: $name gets the
assignment Teacher. After that the succeeding variable $superclass and the
rest of the template is processed likewise.

By this manner the parser finds the following assignments for the variables
from the template as a first possible solution: $name with Teacher and
$superclasswith Human. But one branch is still left to check. So the parser skips
the complete branching statement in the other case (assuming $superclass to
be false or empty) and tries to match the terminal {, which is found at the end of
the source code snippet. So the parser can assign the previously read source code
fragment Teacher extends Human to the variable $name. Obviously this assign-
ment does not make much sense, but nevertheless it is a valid result concerning
the parsing process. So this first subtask results in two possible solutions.

Trying all possible ways through the template is a very time consuming task.
Additionally many possible assignments emerge, if a terminal occurs several
times within a source code. For example, there are many opening braces in a
piece of Java source code: This causes the same number of possible assignments
for the first template variable, in the given example, as the number of opening
braces in the source code. We address this problem by specifying constraints
for the allowed values of variables. These constraints span from very simple
constraints (i.e. ”does not contain white spaces”) to very expressive constraints
(i.e. a complex regular expression). Commonly, most variables of a template
cover only one single line of generated source code. Thus specifying a single line
constraint as a default constraint for all variables of a template, helps decreasing
1 Text fragments which are not substituted by the template engine.
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the parsing time dramatically. In the example we would specify a constraint for
both variables $name and $superclass, which denotes that the assigned value
must not contain any whitespaces. This would discard the second solution.

In our implementation these constraints can be specified directly in the tem-
plate. We introduced a simple comment syntax for this purpose. Figure 4 shows
a constraint specification for the previous example.

## hints[ $name ] := SingleWordConstraint
## hints[ $superclass ] := RegularExpressionConstraint( "^[^\s]+$" )

Fig. 4. Example of a specification of constraints for variables of a template

The constraint definition starts with the keyword hints followed by the name
of the variable to constrain in brackets. An assignment operator follows and
finally the a constraint name with parameters concludes the statement. With
this syntax it is also possible to define multiple constraints for one variable
by using += as operator. If parameters are passed to the constraint, they are
specified in braces after the name of the constraint surrounded by double quotes.
In Figure 4 the second line shows such a case: A constraint specifying a regular
expression that does not allow any whitespace characters within a string. The
SingleWordConstraint in the upper line is a more convenient method for this
same purpose.

4.2 Reasoning

After the subtask of parsing there are often multiple possible solutions how the
template’s variables can be assigned with fragments of the source code. Several of
these solutions might be contradictory if e.g. a variable is one time evaluated to
true and another time evaluated to false in the same template application. The
reasoning subtask addresses this issue by removing contradictory parse results.
To retrieve all possible information complex expressions are used for reasoning,
too. E.g. branching conditions that consist of multiple variables concatenated by
an AND operator are split using constraint solving techniques. Additionally the
reasoning subtask is responsible for the removal of local variables that do not
originate from the context. The reasoning is discussed in this section.

Branching conditions often consist of multiple variables. We use a constraint
solver to split up these compositions and infer the boolean value of previously
not assigned variables wherever possible. The upper part of Figure 5 shows a
template with two conditional statements. The parser result states that the first
constant string “some text” was found but the second one “some other text”
was not. So, the first condition was evaluated to true and the second one to
false. This knowledge (shown in the lower left-hand site of Figure 5) is passed
to the constraint solver. The right-hand site of the figure below shows the results
returned by the constraint solver. The variable $c has to be true to fulfill the
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#if( ($a && $b ) || $c ) some text #end
#if( $a ) some other text #end

($a && $b ) || $c == true
$a == false

=⇒ $c := true
$b := undef

Fig. 5. Above: Extract of a template. Left side: Conditions from the template and
their boolean value, assigned to them by the parser. Right side: Values inferred by the
reasoning mechanism.

constraints. For variable $b no information can be inferred. So, a new assignment
$c = true is added to the set of assignments.

After the constraint solving is done, a check is performed that ensures that all
assignments are consistent. First of all a variable that is only accessed read-only
in the template (meaning there is no direct assignment to an value) must have the
same source code fragment assigned each time it is used in the complete template.
If a variable is assigned to a value (or another variable, or some calculated
value), we distinguish if it is assigned only once before it is accessed or even
afterwards. In the first case the variable is treated as if it was accessed read-only.
In the second case the variable is marked as mutable and cannot be used for the
reasoning subtask. If there are contradictory assignments the complete solution
can be dismissed. This way the reasoning reduces the number of solutions -
ideally only one solution will remain.

The last step of the reasoning is the removal of local variables. As many
template languages, Velocity offers the possibility to specify local variables. Local
variables are often used in templates e.g. to calculate a boolean value only once,
if it is needed several times. While the parser only assigns these local variables
with values, they should not be used to reconstruct the model, because the
reconstruction of the model should not depend on implementation details of the
templates. So, the reasoning mechanism has to remove the assignments of local
variables. After the removal of the local variables, only the (textual) values of the
attributes read from the intermediate layer are left. Figure 6 shows an example
of this step.

While parsing the allocation of a local variable was found in the template.
Then the parser was able to assign the local variable $myLocal with the logical
value true. From the definition of the local variable $myLocal the reasoner
is able to infer, that if $myLocal is true, both $token.foo and $token.bar
must be true, too. So by reversing all allocation statements (#set directives in
Velocity), local variable assignments are removed and the attribute values of the
intermediate layer are inferred.

At the end of the reasoning subtask ideally one solution remains. But if the
combination of template and source code is ambiguous, there may still remain
several solutions. A simple example of this case is if there are two succeeding
conditions with identical bodies but different condition statements. Then two
valid solutions remain even after reasoning and it is not possible to say which
solution has been used for code generation. Such problems should be avoided by
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#set($myLocal = $token.foo && $token.bar)
$myLocal == true

=⇒ $token.foo := true
$token.bar := true

Fig. 6. Left side: Example of an allocation of a local variable within a template and
an assignment found by the reasoner. Right side: Values inferred by the reasoning
mechanism.

the template designer whenever possible. Anyhow, if several solution are found,
our implementation needs user interaction to choose the right solution.

Parsing and reasoning are not necessarily subsequent tasks. In fact it makes
much sense to combine both tasks for performance reasons. Since the reasoning
excludes possible solutions, excluding those as soon as possible can really speeds
up the parsing process. E.g. if the parser has assigned one variable and finds
another value for the same variable later on, the current solution can be skipped
and the parser does not have to match neither the rest of the current template
nor nested templates.

4.3 Creating Tokens

After the subtask of reasoning there are lists of assignments for each pair of tem-
plate and source code. These assignments are key-value assigning attributes of
the intermediate layer of tokens to text extracted from the source code. Though
it is possible to generate the model directly from the information included in
these assignment, we create an intermediate layer first. This intermediate layer
can be generated generically. The advantage of this approach is that the up-
dating/creating of the model can now be described as a mapping between two
models.

So, this subtask addresses the issue of creating an intermediate layer of tokens.
Each token represents a single code fragment, for example an attribute of a class
or a method declaration. So, there exists a token type for every template. As
described in section 3, the token layer is linked as a tree: Source code generated
for each parent token contains the source code that is generated for its child
tokens. This structural information is obtained from CodeGen2.

The reconstruction of the token layer is done as follows: For each solution
(consisting of template, source code, and assignments) a token object is created
and then linked with previously reconstructed tokens according to the structural
information given by CodeGen2. Afterwards the textual assignments are mapped
to attributes of the created token. Figure 7 shows an example of this procedure.

The left side of figure 7 shows the assignments found for a template represent-
ing an attribute. So a token of type AttributeToken is created and linked in
the tree of previously created tokens. Then the fields of the attribute token are
accessed via reflection: The field name gets the value "example", visibility
the value "public" and type gets int. In this way the complete layer of token
is created.
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$token.name := "example"
$token.visibility := "public"
$token.type := "int"

Fig. 7. Left side: Textual assignments found for a template of an attribute. Right side:
Object diagram representing the token layer.

At the end of this task all textual assignments are transferred into the inter-
mediate layer of tokens.

4.4 Updating of the Model in the CASE Tool

The last step is now to create/update the model in the application itself. Therefor
the intermediate layer of tokens is traversed and the model is adapted accord-
ingly. This cannot be done generically, because the UML model is a complex
graph and not a plain tree like the token layer. So, there is a strategy for each
token type that updates the model. Even in case of reverse engineering, when
the existing model is empty, it is not sufficient to let the strategies simply cre-
ate all model elements. In fact it is necessary to search the model element first,
because it could have been created by another strategy before. Figure 8 shows
an example of this situation.

In this example two classes with one connecting association have been parsed
and the intermediate token layer was created. The model mapping mechanism
starts with the package token and continues with either of both class tokens,
for example with the one generated for the class Teacher. So a class Teacher is
created in the model, if it does not yet exist. The next token in the token tree is
the role token toN. In order to create the complete association in the model the
association’s target role and the corresponding class need to be created, too. It is
known that the role’s class must have the name Course, because this is the Type
of the field in class Teacher. So Course is created in the model, then both roles
and finally the association itself. These steps are done by the strategy for role
tokens. Later on, the other class has to be mapped to the model. Because the
class Course already exists, it is not created but updated. The class’ visibility
and some other properties are set that were not known while creating the class.
The same is done for the other role-token which is processed next: As there
already exists a role connected to an association with the name gives it must
only be updated. After this task the model represents the parsed source code.

Note that association detection normally is a complex task because one must
determine if two roles belong to the same association. As we generate the as-
sociation’s name into the source code (as comment of the roles) we can easily
identify both roles belonging to one association.
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Fig. 8. Object diagram of token layer (left side) and corresponding model

4.5 Dealing with Nested Templates

In section 4.1 we introduced the parsing as the first step of reverse engineering.
There we assumed that the template to use is predetermined. But in fact there
are often several templates to be considered. Furthermore the code generator
nests multiple templates to generate one single source code file. As described in
section 3 the code generator traverses the token tree inorder and starts generating
code for the leaves of that tree. The code generated for all child token is passed
when generating code for their parent token which usually includes the child
code in the parent code. In our implementation the parent templates include the
children’s code in the template variable $children.

So, the $children variable needs special treatment when reverse engineering
a piece of source. It is not sufficient if one single template matches2 a piece of
source code, but potentially embedded templates have to fit, too. It is possible
that a parent template matches but the children dont. So if the parser assigned
some value to the variable $children, one or more child templates must fit at
least once.

Figure 9 shows an example for nested templates.
The start template is predetermined by the code generator. So the parser

starts parsing the complete Java class with the template for Java classes and
assigns the class’ body to the template’s variable $children. Then multiple
templates have to be considered: As a Java class can contain methods and at-
tributes, the parser attempts to match the body with both templates. As in the
second step the method template matches - which includes other templates, too
- the parser attempts to parse the methods body before continuing parsing the
rest of the class’ body. In the example the template that matches the rest of the
class’ body is the template for attributes.

In general the order in which the parser attempts to match templates to source
code does not matter. But if the parser tries to match the subsequent templates

2 Matching in the sense of sections 4.1 and 4.2.
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Fig. 9. A Java class and corresponding templates. The numbers identify the order in
which the parser tries the nested templates. Note that the parser attempts to match
all suitable templates in each step.

before he matches the child templates successfully (in the example steps three
and four would be exchanged), the parsing time increases. As a method template
only consists of a method declaration, opening braces, the $children variable
and closing braces, this template is able to match less or more source code
than one complete method. For example starting at the method declaration and
ending at some closing braces in the middle of the method. As this does not
make much sense the complete solution should be discarded as soon as possible
and a longer match should be tried. But if the parser instead tries to match
subsequent templates parsing time increases. So our parser attempts to match
child templates before matching subsequent templates.

5 Conclusion

This paper presents an approach for reverse engineering of code generated by a
template based code generator. Our approach uses the templates as a “grammar”
to parse the given code. Thus, we have build some kind of compiler compiler.
However, since our template based “grammars” do not conform to LL1 or LALR1
grammar restrictions, our approach has to fight several performance issues. With
the help of some template extensions, we have achieved a reasonable performance
for our examples. This still needs improvement.

The main advantage of our approach is that the reverse engineering mecha-
nism is language independent since it does not rely on a specific language parser.
Additionally, the very frequent changes that are made to the templates by our
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developers are instantly taken into account by the reverse engineering component.
Only if our meta model or the structure of our intermediate token layer changes,
we have to adapt the model access parts of our templates. However, compared
to the templates, our meta model and the token layer are quite stable. Thus, we
have reduced the maintenance problem of keeping forward and reverse engineering
synchronous, dramatically.

Note, if a template is modified, our parsing approach is adapted, instantly.
Thus it is instantly able to recognize code generated with the new templates.
However, it may now fail to recognize code generated with the earlier version
of the template. Thus, in future work we will keep the earlier versions of our
templates and use those as fallbacks if the new version fails.

Using our new approach, we observed that the template based parsing ap-
proach facilitates the recognition of quite complex Java code structures, dra-
matically. For example, our code generation implements a to-n association with
the help of a container attribute and about 11 access methods. Using the old
pattern matching on the Java parse tree it was quite tedious to identify all these
parts of an association implementation, correctly, cf. [17]. Within our association
template all these access methods are listed in a row. Thus, the association tem-
plate provides exactly the pattern required to recognize all the access methods
during parsing. However, this has the drawback, that the template expects the
access methods in the given order and with exactly the given implementation. If
e.g. some IDE reorders the methods, our recognition will fail. In our experiences
this did not turn out to happen (to us) in practice.

We found that using the templates for parsing can result in a very slow parser
since the possibilities of template applications can easily explode. Since the tem-
plates form some kind of a context free grammar, ideally, the generated parser
should achieve a worst-case runtime complexity of O(n3) as the CYK algorithm.
While this is already pretty inefficient, the CYK algorithm requires normal-
ized grammar rules much simpler than our template structures and our parser
faces the additional task of resolving template control structures and variable
assignments. To overcome the performance problems, we add constraints to the
templates that reduce the state space. An open problem is to what extent such
constraints may be inferred directly from the meta-model. Additionally, to speed
up the parsing, our reasoning step excludes paths from the state space, as soon
as possible.

We have implemented our approach as a part of the code generation of the Fu-
jaba Tool Suite [10,6,7]. We are now able to reliably reverse engineer every code
generated by our code generation. In current work, we address manual changes
to the source code. If such changes obey the coding rules or our templates, our
reverse engineering works fine. However, a simple System.out.println in an at-
tribute access method may suffice to disable the recognition of the corresponding
template. Similarly, manual declarations of attributes or manual implementa-
tions of associations will most likely not be recognized by our usual template
based parser. To address such manual code, we have added so called “legacy
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templates” to our reverse engineering component. These legacy templates cover
all basic Java elements. We use these legacy templates as fallbacks if the usual
code generation templates fail. The result of such a legacy template recognition
is usually rather low level, e.g. an attribute of some container type instead of
a to-n association to some user defined class. However, we are able to reverse
engineer every possible Java source code.
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Abstract. Frameworks and libraries that use annotations are becoming popular.
However, there is not enough software engineering support for annotation de-
velopment. In particular, the validation of constraints in the use of annotations
requires further support. In this paper we postulate that annotation frameworks
are a projection of the domain model into a programming language model. Us-
ing this idea, we have developed a tool that allows the annotation programmer to
specify, and then validate the constraints of the annotation framework regarding
a given annotated application using a domain model. To validate our approach to
the validation of constraints using models, we apply it to the Fraclet annotation
framework and compare it to the previous implementation.

1 Introduction

Large annotation frameworks [6,16] are becoming more and more common. These
kinds of frameworks, such as EJB3 [12], offer to the application programmer, in ad-
dition to classes and methods, annotations that provide an additional, declarative way
to use the framework. Annotation framework design and implementation rises a num-
ber of challenges. Among them, the problem of validating that the application develop-
ers correctly use the annotations. It is interesting for the framework programmer to be
able to express the constraints of its annotation framework, and to automatically check
whether a program is valid with respect to these constraints.

Previously, we have developed a technique and a tool to express these constraints,
called AVal, that relies on meta-annotations. Constraints are then implemented by the
use of a meta-annotation framework, and are checked by an annotation processor. In
this paper, we extend AVal by investigating the relationship between annotation frame-
works and domain models. Based on this relationship, we show that the constraints of
an annotation framework can be translated into constraints on a domain model. Fur-
thermore, the validation of an annotated program corresponds to the validation of the
instance of the domain model. We apply this technique to a case studie: Fraclet.

The paper is organized as follows: first, in the next section we motivate the need for
annotation validation, and present our existing approach called AVal. Then, in Section 3
we present our proposal, by discussing the relation between annotations and models,
and their usefulness in annotation validation. In Section 5 we present how models aid
in the validation of a real-life annotation framework, Fraclet. Finally, in Sections 6 and
7 we compare our work to similar approaches, and conclude.
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2 Annotation Validation

The Java type system for annotations is not expressive enough to assure that the use of
annotations is correct. This type system allows the annotation framework developer to
define the names, types and default values of (optional) properties, as well as the Java
program elements to which it can be attached. It, however, leaves the responsibility of
more complex checks to the annotation framework developer.

Complex annotation frameworks impose further restrictions on the use of annota-
tions than those made available by the Java compiler. For example, in EJB3, the @Id
annotation that marks a field in an entity class as its identifier, can only be placed in
fields belonging to a class annotated as @Entity. Constraints such as these are com-
mon among annotation framework specifications. These kinds of constraints cannot be
enforced by the Java compiler, and it is up to the annotation developer to check them
as part of the annotation’s processing phase.

Annotation frameworks imply a number of constraints on their usage. This is not
different than for any other framework. However, in contrast to regular frameworks,
annotation frameworks are static entities; that is, their usage can be checked during the
compilation of the program. This is done so that the errors are provided to the final de-
veloper as soon as possible. Given the static nature of the semantics of annotations, their
constraint checking is considerably easier than that of its regular counterparts because,
in general, no complex static analysis must be performed.

We call the process of constraint checking validation of an annotated program. This
process takes as inputs the set of annotation types and a program carrying the corre-
sponding annotations. As output, a set of errors corresponding to the violations of the
constraints as they are used in the program are returned. In this process we identify two
actors: the developer of the annotation framework, i.e., the person that implemented the
annotation types; and the program developer, i.e., the person that wrote and annotated
the program.

Although the process flow for the validation of an annotated program is straight-
forward, the constraints actually checked strongly depend on the particular annotation
framework. Each annotation framework imposes its particular set of constraints that de-
rive from the domain in which they lay. In general, annotation validations are of two
kinds, those dealing with the relationship between an annotation type and the code el-
ement on which it is placed, and those dealing the annotation type’s properties, and
its relationship with other annotation types. We call the former code-wise validations,
while the later, structural validations.

2.1 AVal - Annotation-Based Validation

To perform the validation of annotation frameworks AVal [13] applies the concept of
annotations itself by defining an annotation framework that contains a set of meta-
annotations for the domain of annotation constraints validation. These validation
meta-annotations are used to augment the definition of the annotation framework under
development with meta-data relevant to validating a given constraint.

Annotating annotations with other annotations has the advantage to make the con-
straints explicit in the annotation framework’s definition and local to the annotation they
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Fig. 1. AVal Architecture

apply to. AVal provides a number of built-in validations, and means to add custom ones.
It uses Spoon [14] for compile-time reflection and annotation processing, and through
it, provides integration to the Eclipse IDE.

2.2 Annotation Validation for Java

The concept of using meta-annotations to declare restrictions on use of Java annotations
is already included in the JDK. Indeed, the Java Language Specification [10] defines a
Target annotation that must be placed on annotation type definitions to restrict where
instances of the annotation type can be placed. However, asides from Target, no other
validation annotations are provided.

AVal’s architecture is composed of four layers (Figure 1):

Base program: The (annotated) program that is to be validated. Elements of the pro-
gram are annotated by annotations defined on the annotation framework layer.

Domain-Specific (Annotation) Language: The domain specific annotations. Each an-
notation is meta-annotated by an AVal meta-annotation that expresses the con-
straints for its validation.

Validation meta-annotations: AVal annotations that encode the constraints to validate
domain specific annotations. Each meta-annotation represents a validation con-
straint, and is itself annotated with the class that is responsible for the implementa-
tion of it.

Implementation: A class per validation meta-annotation. The class must implement
the Validator interface, and it uses the Spoon compile-time model of base the pro-
gram, annotation framework, and meta-annotation in order to perform the validation.

AVal is implemented as a Spoon source code pre-processor that is executed before the
code generation or compilation phase in an annotation framework. It traverses the base
code looking for domain-specific annotations. Each time it finds an annotated element,
it checks the model of the annotation’s declaration to see if it has any meta-annotations.
In case the annotation has one or more validators, the tool executes each implementation
in the order in which they are defined. In order to ease the specification of constraints,
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Table 1. Default constraint annotations in AVal

Annotation Description

Inside(AT) The annotation must be placed on elements which are inside ele-
ments annotated with AT

Requires(AT) The annotation requires that the target of the annotation also is an-
notated with AT

RefersTo(AT,N) The property of the annotation must carry the same value as the
property called N belonging to AT

AValTarget(TE) The annotation must have as target the program element TE

AVal provides a number of annotations that represent commonly used rules. A subset of
these annotations, as well as their description is shown in Table 1, for a more complete
discussion on AVal’s annotations see [13].

In order to validate complex constraints, the annotation framework developer can
extend AVal with new meta-annotations. For this, a new annotation type and its corre-
sponding implementation (see Figure 1) must be provided. The annotation type serves
to mark the context of the constraint, while the actual checking must be performed
by traversing the AST of the program. This traversal, of course, requires an intimate
knowledge of the model used by the tool to represent the program, and its associated
API. Hence, the creation of new annotations for AVal can be a tedious task. In order to
ease the extension of AVal’s annotations, an abstraction over the AST of the program is
needed. Annotation models is one possible abstraction.

3 Annotation Models

As we have seen in the previous sections, complex annotation frameworks require val-
idations that concern both other annotations and the program on which they are used.
But, where do these constraints come from? Consider the Inside validation, if an an-
notation type A is required to reside inside another one, B, this implies a relationship
between them since it makes no sense for A to be present in the program without its
corresponding B. Now, suppose that both A and B are classes in an UML class model,
then the relationship induced by the Inside validation could be described by means
of a containment association between them.

3.1 Annotation and Code Models

Extending this idea of modeling annotation types, we can see that structural validations
can be mapped to relationships and invariants on a model that represents the annotation
types. We will call this model derived from the annotation types an annotation model.

Code-wise validations, on the contrary, cannot be described in terms of the anno-
tation model alone, since they deal with constraints on the relationship between the
annotations and the program on which they are imposed. To integrate code-wise valida-
tions into the model we need a representation of the target language, in this case Java,
so that an association between annotation models and code models can be reasoned on.
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Fig. 2. SAXSpoon annotation model

This model representation of the target language, called code model, needs to be at the
same level of abstraction as that of the annotation model to be able to mark the refer-
ences from one to the other, i.e. to state that a given annotation is to be placed on a given
code element. This code model is the AST of the language.

In this way, the annotation model corresponds to the model of the domain, defined
by the annotation types and their corresponding constraints, while the code-wise vali-
dations define a mapping between the annotation model and the code model. Now, just
as the annotations in the program conform to their annotation types, there is a model in-
stance for both the annotation model and the code model. Code-model instances would
represent the concrete syntax tree of a given program; while annotation-model instances
would represent the annotations present in the target program.

3.2 Example

To better understand the nature of the annotation models and their interaction with the
code model, let us suppose a simple annotation framework to define SAX-based XML
parsers called SAXSpoon. SAX frameworks traverse the tags of an XML document
up-calling a method each time a start or end tag is found. In our annotation framework,
we will define three annotations: SAXParser, HandlesStart and HandlesEnd.
SAXParser identifies a class as being a SAX parser and it defines a single property
that points to the DTD document that defines the type of documents that the class will
handle. HandlesStart and HandlesEnd respectively identify the methods that
handle the start and end of a tag, given as parameter to each annotation. The corre-
sponding annotation model for this framework is depicted in Figure 2. In it, The pack-
age SaxSpoon contains the annotation model, while the package Spoon contains the
relevant parts of the code model.
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Code-wise constraints for SAXSpoon can be encoded as OCL expressions on the
relations between the SaxSpoon and Spoon packages; while structural constraints
can be encoded in the relationships between the elements of the annotation model itself.

4 Validation Using Annotation Models

As discussed before, it is possible to embed constraints on the annotation and code
model. These constraints are then checked against a model instance derived from an
annotated program. In order to do this, the annotation developer must be able to de-
clare the constraints on its annotation framework, and she must be able to direct the
way in which the annotation model instance is generated. For this, we have extended
AVal (as presented in Section 2.1) with annotations to specify the instanciation of the
model (Association and DefaultValue) as well as the constraints on the model
(OCLConstraint). The implementation for the aforementioned annotations and its
corresponding tool chain is called ModelAn, and will be explained in the following
Section.

4.1 ModelAn - Model Based Annotation Validation

ModelAn is a tool chain for the definition of annotation model constraints and their
corresponding validation. It is driven by annotations (as opposed to models), and it
uses AVal as an underlying layer. The workflow for the use of ModelAn is depicted
in Figure 3. It starts from the annotation types defined as part of the framework by
the annotation framework developer. The set of annotation types carry annotations that
direct the Model Extraction engine in producing the annotation model and its
corresponding Model Instanciator. The program written by the application de-
veloper is then fed to it, producing an annotation model instance that conforms to the
annotation model extracted before. Using both the model and its instance, ModelAn
uses a constraint checker to validate the program, and report back to the application
developer any violations. The whole process is transparent to the application developer.

Fig. 3. ModelAn process flow
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Model Extraction

The annotation model is extracted from the set of annotation types that compose the
framework. As a starting point, each annotation type is represented as an element of the
model with its corresponding attributes. In addition to this, each element in the model
is associated with the code element which it is supposed to augment. This association
is called the target of the annotation.

The model is then augmented by the annotation framework developer using two
annotations on the annotation types: Association and DefaultValue

Association. Associations define the structural relations between annotations. An asso-
ciation must define a name, a type and a defining query. The OCL query is eval-
uated in the context of the annotation type on which it is placed, and can only reason
on associations on the code model because it itself is defining the associations on
the annotation model. For example, in the SAXSpoon annotation framework, there
is a relation between a SaxParser and its start and end handlers. Therefore, the
definition of the SaxParser annotation type would be as follows:

@Association(name = "Start",
type = HandlesStart.class ,
query =

"HandlesStart.allInstances()->select(self.target.Methods ->includes(target ))")
public @interface SaxParser {

String dtdURL () default "";
}

In this example, the query traverses all the HandlesStart elements, looking
for those which are placed on methods which belong to the class annotated with
SaxParser. Hence, this query constructively defines the relation start. A similar
construction is used to define the relation betweenSaxParser and HandlesEnd

DefaultValue. Attributes in annotations often have default values. In the general case,
the default value is a static value (for example the empty string), but in some cases,
the default value depends on the place in which an annotation is placed. For exam-
ple, suppose that the name of the tag that a method handles is by default the name
of the method. In this case, the default value cannot be known when the annotation
type is defined, since it will change depending on the use of the annotation. The
annotation framework developer can then state, using an OCL query, what the de-
fault value of the property should be. In the case of SaxSpoon, the definition of the
HandlesStart would be:

public @interface HandlesStart{
@DefaultValue("self.target.SimpleName")
String tagName();

}

Model Constraint Definition

Once the annotation model has been defined, the developer can define the constraints on
it. In order to do this, ModelAn defines a single annotation, OCLConstraint that is
to be placed on the annotation type. The constraint is represented by an OCL expression
that is evaluated in the context of the annotation model element that corresponds to the
current annotation type.
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OCLConstraint. OCL expressions placed on annotation types can use the associa-
tions defined by the Association annotation to express the constraints of the
annotation framework. The OCLConstraint annotation is an AVal annotation
(see Section 2.2) that defines a single property that contains the expression itself.
In SaxSpoon, the annotation framework developer may want to specify a constraint
stating that a warning should be raised if a Sax parser handles the Start, but not the
end of a given tag. For this, a constraint must be placed in the corresponds relation:

@Association(name = "corresponds",
type = HandlesEnd.class ,
query =

"HandlesEnd.allInstances()->select(handler|handler.tagName = self.tagName)")
@OCLConstraint("self.corresponds ->size() = 1")
public @interface HandlesStart {

String tagName ();
}

In this example, a corresponds association is defined using the first
Association annotation, and the second OCLConstraint annotation places
an OCL constraint that uses it to specify that there should be a single corresponding
tag handler for the same tag.

Using the information defined by the Association, DefaultValue and OCL-
Constraint annotations, the model extraction engine generates an Ecore file that
contains the annotation model. The Ecore annotation model references the SpoonEMF
[2] Ecore model that represents the Java programming language, i.e. the code model.
The resulting annotation model for our running example is shown in Figure 4. The OCL
queries that define the associations in the model are saved in this file by means of ecore-
annotations on the references, while an annotation on the element states the annotation
type that this element models. The OCL constraints are not included in the model itself.

Finally, the model extraction engine will generate a set of Spoon source code proces-
sors that will instantiate the annotation model and the code model of a given program.

Model Instanciator

The annotation model is instantiated by a source code processor generated by the model
extraction engine. The source code processor traverses the AST of the target program,
and using the Ecore file that contains the annotation model, creates an instance of the
corresponding element for each annotation it encounters. Once all the annotations in
the program have their corresponding instance, the source code processor executes the
OCL queries present in each association in order to populate them. At the end of the
process, an in-memory instance of the annotation model that represents the annotated
program is available. This instance can then be used to check the annotation framework
constraints.

Constraint Checker

The constraints themselves are checked using AVal. The AVal source code processor
passes over the program after the model instantiator. Each time an annotation with an
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@Associations({
@Association(name="startTag",
type = HandlesStartTag.class,
query= "HandlesStartTag.allInstances()->"+

"select(self.target.Methods->includes(target))"),
@Association(name="endTag",
type = HandlesEndTag.class,
query= "HandlesEndTag.allInstances()->"+

"select(self.target.Methods->includes(target))"),
})
public @interface SAXParser {

String dtdURL() default "";
}

@Associations({
@Association(name = "correspondingEnd",
type = HandlesEndTag.class,
query = "HandlesEndTag.allInstances()->"+"

select(handler|handler.value = self.value)")
})
@OCLConstraint("self.correspondingEnd->size() = 1")
public @interface HandlesStartTag {

String value();
}

@Associations({
@Association(name = "correspondingStart",
type = HandlesStartTag.class,
query = "HandlesStartTag.allInstances()->"+

"select(handler|handler.value = self.value)")
})
@OCLConstraint("self.correspondingStart->size() = 1")
public @interface HandlesEndTag {

String value();
}

Fig. 4. SAXspoon Ecore Model and Annotated types
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OCL constraint is found, the OCL expression is evaluated on the model’s instance. If
the expression evaluates to false, an error is raised. Since the constraint checker uses
AVal, the errors are presented to the programmer in the same format as Java compiler
errors (see [13]).

Although the process to validate the constraints of a program starting from the an-
notation framework, all the way to obtaining the errors may seem long, it is important
to note that each of the actors see only a one-step process. Indeed, for the annotation
framework developer, only the model extraction step is necessary, while for the appli-
cation developer, the model instantiation and constraint checking are a step of the com-
pilation process, and therefore transparent. In terms of advantages, the use of models
to define the constraints of an annotation framework allows the annotation framework
developer to abstract away from the code model, and reason about the relations in the
domain model itself. In the SaxSpoon example, this is evident in the constraint that
establishes the correspondence between start and end handlers. In this constraint, the
annotation framework developer does not refer to any code element in the constraint’s
expression, reasoning instead only on the actual domain of the annotation framework.
It is also important to note that this additional abstraction level comes at no cost to the
final application developer, since as we pointed out before, the constraint checking is
hidden behind the compilation of the program. The framework developer, in contrast,
is required to manipulate OCL expressions, which can be complex at times, to define
the associations and constraints of the annotation framework. In order to reduce the use
of OCL we expect to leverage UML’s stereotypes as a way to graphically specify the
annotation model. This is further discussed in Sections 6 and 7.

5 Case Study - Fraclet

Fraclet is an annotation framework for the Fractal component model [3]. The Fractal
component model defines the notions of component, component interface, and binding
between components. Each of these main notions is reflected in the annotation frame-
work defined by Fraclet. There are two implementations of Fraclet [15], one using XDo-
clet2, and the other one using Java5 annotations and Spoon annotation processors. The
annotations defined by Fraclet/Spoon are summarized in Table 2.

In Figure 5, Fraclet/Spoon is used to augment a Java class in order to represent
a Fractal primitive component. The Client class uses a Component annotation to
represent a component called helloworld.Client that provides a single interface
named r. Fields of this class are marked as attributes, required ports or controller hooks.
Finally, a method on the component is marked as a life-cycle handler.

In order to define the constraints of each of these annotations, we have applied the
meta-annotations defined in Section 4.1 to extract an annotation model that represents
Fraclet. The resulting model is shown in the Figure 6.

Once, the model was defined, we discussed with the Fraclet developers in order to
learn the constraints that a correct Fraclet application must adhere to. Then we translated
the constraints to their corresponding OCL expressions. These are the constraints and
their corresponding translations:
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Table 2. Overview of Fraclet annotations

Annotation Location Parameter Description

Component Class name Annotation to describe a Fractal compo-
nent.

Interface Interface name, signature Annotation to describe a Fractal business
interface.

Attribute Field argument, value Annotation to describe an attribute of a
Fractal component.

Required Field name, cardinality, con-
tingency

Annotation to describe a binding of a Frac-
tal component.

Lifecycle Method value Annotation that marks a method as a life-
cycle callback. The parameter specifies the
step of the life-cycle.

Controller Field value Annotation that marks a field as an access
point to the component’s reflective services

@Component(name = "helloworld.Client",
provides = @Interface(name = "r",

signature = Runnable.class))
public class Client implements Runnable {

private final Logger log = getLogger("client");

@Attribute(value="Hello world") private String message;
@Requires(name="s") private Service service;
@Controller("name-controller") protected NameController nc;

@Lifecycle(CREATE) protected void whenCreated() {
log.info("helloworld.Client - created.");

}

public void run() {
this.service.print(this.message);

}
}

Fig. 5. Client Comoponent Fraclet Implementation

A Component’s name must be unique in the application. By default, the name
of a component is the simple name of the class on which the Component annotation
is placed. This is expressed using a DefaultValue annotation. The definition of the
component annotation is as follows:
public @interface Component {
@Default("self.target.SimpleName")
@OCLConstraint("Component.allInstances()->"+
"select(c:Component| c <> self and c.name = self.name)->isEmpty()")

String name() default "";
//...
}



Annotation Framework Validation Using Domain Models 59

Fig. 6. Fraclet Annotation Model

A Field on a Component cannot be at the same time Attribute and Required
@OCLConstraint("Requires.allInstances()->"+
"forAll(r:Requires|r.target <> self.target)")

public @interface Attribute {
//...
}

A Required Interface must be defined. The name of the required interface is by
default the name of the field on which it is placed.

@OCLConstraint("self.RefersTo->size() = 1")
@Association(type = Interface.class, name="RefersTo",

query="Interface.allInstances()->select(i|i.name = self.name)")
public @interface Requires {

@Default("self.target.SimpleName") String name() default "";
}

The previous version of Fraclet (studied in [13]) used AVal and needed six dif-
ferent annotations to perform the same tests we have implemented here with only
OCLConstraint. In addition to this, we were able to elegantly specify the default
values for the names of the Component and Attribute annotations, which was not
addressed in the previous AVal-based version.

6 Related Work

Related work in annotation framework validation and development can be
aligned along two axes: the development and validation of annotation frameworks and
the relationship between annotations and models.
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Annotation Validation. The need of validating annotations has been previously ad-
dressed by academia. First, in [5] Cepa et. al. propose a mechanism to validate the
use of custom attributes (similar to annotations in the .NET platform) by placing cus-
tom attributes on the definition of other custom attributes. This is quite similar to the
approach proposed in AVal, however, their technique only allows for the definition of
structural constraints, and no mechanism to extend the constraints is provided. Also,
they provide no explicit code or annotation model. In [7], Eichberg et.al. propose to
validate structural annotation constraints in Java programs by representing a program
as an XML document, and representing the constraints as XPath queries. In their ap-
proach, the XML schema of the document acts as an implicit code model, but they
do not provide an explicit annotation model. The lack of this model complicates the
definition of constraints, since no relation exists between annotations.

Finally, annotations are extensively used for the validation of programs
[8,9,11]. However, this use of annotations differs from our intention, since our focus
is the validation of the use of annotations themselves, not of the program on which they
are placed.

Annotations and Models. Annotations, seen as meta-data attached to a code entity, are
semantically close to stereotypes as defined in UML 2.0 [1]. Indeed, it is common to
represent annotations, during design, as stereotypes [4]. Nevertheless, it is difficult to
establish a direct mapping between stereotypes and annotations given the particularities
of annotations. For exmaple, annotations do not allow for inheritance, an annotation
can be placed on different code elements (stereotypes are restricted to one), and most
importantly, annotations can refer to types that are defined in the program in which they
are applied since for example, annotations can contain as a property enums defined in
the program. This last characteristic is the most problematic, since it places annotation
models somewhere in between levels M1 and M2. Nevertheless, it seems possible to
construct a mapping between UML profiles and annotation models. This will be the
subject of future work.

The use of models for the development of annotation-based programs is explored
in [16] by Wada et. al. They propose a full MDA approach that starts from a model, and
ends with an executable program. However, they start from the idea that the annotation
framework already exists, and therefore, provide no support for the development of it.
We believe their proposal and ours to be complementary.

7 Conclusion

We presented a way to specify and validate constraints on annotation frameworks based
on models. As an implementation, we introduced ModelAn, an annotation framework
that allows the annotation framework developer to define an annotation model and at-
tach constraints to it. ModelAn also constructs a source code processor that generates
instances of the annotation model in order to validate the constraints. The use of OCL
constraints offers the developer a greater degree of expressiveness when defining new
kinds of constraints with respect to the extensibility options of AVal. In addition to
this, the use of a code model and an annotation model provides an abstraction over



Annotation Framework Validation Using Domain Models 61

the direct manipulation of the AST of the program, which results in more concise
constraints.

The use of models to define the constraints of an annotation model allows the an-
notation framework developer to abstract away from the code model, and reason about
the relations in the domain model itself. Using OCL also provides a declarative way
to express these constraints, and diminishes the prerequisite knowledge of the underly-
ing AST API that the annotation developer must have. This two characteristics make
ModelAn a more extensible annotation framework validation platform than AVal.

As future work, we believe that the relation between annotations and models can
be further exploited. In particular, we are working on a model-directed approach that
allow us to define an annotation framework from a set of UML stereotypes and their
corresponding constraints. This will be done by implementing a model-to-model trans-
formation that goes from a profile to an annotation model, and then to the actual im-
plementation. Also, annotation models can prove to be of aid in the understanding of
an annotated program, since they make explicit the relation between annotations on it.
Furthermore, if a program uses different annotation frameworks to implement different
concerns on different domains, then each associated annotation model will provide a
domain specific view of the program.
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Abstract. This paper is about visual and executable domain-specific
modelling languages (DSMLs) that are used at the platform indepen-
dent level of the Model-Driven Architecture. We deal with DSMLs that
are new or evolve rapidly and, as a consequence, have to be prototyped
cheaply. We argue that for prototyping a DSML on the platform inde-
pendent level, its semantics should not only be described in a transfor-
mational but also in an operational fashion. For this, we use standard
modelling means, i.e. MOF and QVT Relations. We combine operational
semantics descriptions with existing metamodel-based editor creation
technology. This allows for cheap prototyping of visual interpreters and
debuggers. We exemplify our approach with a language for Petri nets
and assess the manual work necessary. Finally, we present EProvide, an
implementation of our approach based on the Eclipse platform, and we
identify missing features in the Eclipse tools we used.

1 Introduction

Developing a software system for a specific domain requires knowledge from
the practitioners of that domain, the so-called domain experts. In the Model
Driven Architecture (MDA), domain experts should be involved in creating the
computation independent model (CIM) [1]. The CIM captures the requirements
for the system—the “know-what”. Additionally, domain experts do also have
knowledge about how the system can fulfil the requirements—the “know-how”.
This knowledge is needed for the platform independent model (PIM). A PIM
can be expressed in a general-purpose modelling language like the UML. But
domain experts like seismologists or meteorologists are not used to the modelling
concepts and notation used in the UML.1 In contrast, a domain-specific modelling
language (DSML), specific for the application domain, provides domain experts
with concepts they know and with a special notation that matches their intuition.
Thus, DSMLs allow domain experts to provide their know-how on the PIM level.

1 UML can be customised with its profiling mechanism. However, this is not adequate
in all cases because a UML profile can only introduce new concepts as specialisation
of existing UML concepts.

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 63–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A DSML can have a very narrow application domain. When building a new
system, no existing DSML may be appropriate and a new one may be necessary.
Usually, the concepts the new DSML should offer are not clear in the first place
and multiple development iterations are necessary. Furthermore, when require-
ments for a system change, the DSML may need to be adapted. Therefore, a
prototyping process for the DSML is needed. To evaluate prototypical versions
of a DSML, the domain expert should be able to use the DSML: that is to create
example models expressed in the DSML and to execute them.

To enable model creation, editors for DSMLs can already be generated from a
declarative description [2]. The typical way in MDA to execute PIMs is to trans-
late them (by model transformation or code generation). But such a translation
does not have a proper level of abstraction for prototyping: language seman-
tics is intermingled with platform-specific details. This inhibits understanding,
troubleshooting, and adaptation of evolving language semantics—especially for
domain experts.

Therefore, we argue that for prototyping a DSML, its semantics should be
described on the platform independent level in an operational fashion. For this,
we use standard model transformation techniques. By combining this approach
with existing metamodel-based editor creation technology, we enable cheap pro-
totyping of visual interpreters and debuggers.

In the following section, we introduce necessary vocabulary and technology.
We present our approach and exemplify it with a language for Petri nets in
Sect. 3. In Sect. 4, we present EProvide, an Eclipse-based implementation of
our approach. In Sect. 5, we show the manual work necessary for developing a
Petri net debugger and we discuss missing features we encountered in Eclipse
EMF, GMF, and in the QVT implementation we use. We discuss related work
in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

2.1 Model-Driven Language Engineering

In the MDA, it is common practice to specify modelling languages by modelling
means. A metamodel is an object-oriented model of the abstract syntax of a
modelling language. With its Meta Object Facility (MOF) [3], the OMG provides
standard description means for metamodels.

Example 1 (Petri net metamodel). Figure 1(a) provides a MOF compliant meta-
model for Petri nets. A Petri net consists of an arbitrary number of places and
transitions. Transitions have input (src) and output places (snk). Places are
marked with a number of tokens. Places and transitions can have names.

Model transformations take a central place in MDA. They are used to translate
models to other models, e.g. PIMs into PSMs (platform-specific models). Often
they are used to translate a model into an executable form, e.g. to Java. From a
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Net

+ name: String

Transition
+ name: String
+ token: int

Place
transition0..* place0..*

snk src
0..* 0..*

src snk
0..* 0..*

(a) Static metamodel.

NetConfig

placeConfig0..*

+ runtimeToken: int

PlaceConfig Place (from static)
place

1

(b) Separate configuration metamodel.

Fig. 1. Petri net metamodels

language perspective, model transformations define translational semantics for
a modelling language.

In this paper, we use the high-level declarative language QVT Relations for
transformations. It is part of the OMG standard Query/View/Transformation
(QVT) [4] and heavily relies on OCL. In QVT Relations, a transformation con-
sists of queries and relations. A query returns the result of an OCL expres-
sion. A relation relates model elements in the domains of the transformation
by patterns. All relations of a transformation which are declared as top need
to hold. If a relation does not hold, the transformation tries to satisfy it by
changing model elements in domains declared as enforce. Relations can have
two kinds of clauses: Where clauses must hold in order to make a relation hold.
A where clause can contain OCL queries and invocations of other relation. When
clauses act as preconditions. A relation must hold only if its when clause already
holds.

Example 2 (Queries and relations in QVT Relations). Figure 2 shows a trans-
formation in QVT Relations. It relates the two domains input and output,
which both contain Petri net models. The transformation contains the queries
isActivated and getActivated. The first query returns whether a given tran-
sition in a Petri net is activated. For this, it checks if all the transition’s input
places are marked with tokens. The second query returns an activated transition
of a given Petri net. Here, the OCL predicate any ensures a non-deterministic
choice.

Furthermore, the transformation contains several relations. The relation run
relates a Petri net model from the input domain with a Petri net model from
the output domain. The first pattern of run binds the variable net to a Petri net
in the input domain. The second pattern enforces the same Petri net to occur
in the output domain, i.e., it will be created if it not already exists.

The relation obtains an activated transition of the net by calling the query
getActivated. To make the relation run hold, the unary relation fire needs to
hold. fire simply checks if the transition can be found in the input domain.

The first relation run is declared as top. Therefore, it has to hold to pro-
cess the transformation successfully. Since the relation fire is not declared
as top, it only has to hold to fulfil other relations calling it from their where
clauses. We will discuss the remaining relations produce, consume, and preserve
later on.
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transformation petri_sos(input:petri, output:petri) {

top relation run {
trans: Transition;
checkonly domain input net:Net{};
enforce domain domain output net:Net{};
where { trans = getActivated(net); fire(trans); }

}

query isActivated(trans: Transition): Boolean {
trans.src -> forAll(place | place.token > 0)

}

query getActivated(net: Net): Transition {
net.transition -> any(trans | isActivated(trans))

}

relation fire {
checkonly domain input trans:Transition{};

}

top relation produce {
checkonly domain input place:Place{

src = trans:Transition{}, token = n:Integer{}
};
enforce domain output place:Place{ token = n+1 };
when { fire(trans); trans.src -> excludes(place); }

}

top relation consume {
checkonly domain input place:Place{

snk = trans:Transition{}, token = n:Integer{}
};
enforce domain output place:Place{ token = n-1 };
when { fire(trans); trans.snk -> excludes(place); }

}

top relation preserve {
checkonly domain input place:Place{ token = n:Integer{} };
enforce domain output place:Place{ token = n-1 };
when { not produce(place, place); not consume(place, place); }

}
}

Fig. 2. Operational semantics for Petri nets

2.2 Structural Operational Semantics

The operational semantics of a language describes the meaning of a language
instance as a sequence of computational steps. Generally, a transition system
〈Γ, →〉 forms the mathematical foundation, where Γ is a set of configurations
and →⊆ Γ × Γ is a transition relation.

Plotkin pioneered this approach. In his work on structural operational seman-
tics [5], he proposed to describe transitions according to the abstract syntax of
the language. This allows for reasoning about programs by structural induction
and correctness proofs of compilers and debuggers [6]. The structural operational
semantics of a language defines an abstract interpreter for this language working
on its abstract syntax. It can be used as a reference to test implementations of
compilers and interpreters.
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3 Platform Independent Model Semantics

3.1 Abstract Interpretation

In this paper, we apply the idea of structural operational semantics to model-
driven language engineering. For this, we rely on standard modelling techniques
only: MOF and QVT Relations.

We represent the configurations in Γ as models, which we call configura-
tion models. Hence, we define the space of all possible configurations with a
metamodel, which we call configuration metamodel ; and we define the transi-
tion relation → with a model-to-model transformation, which we call transition
transformation.

For some simple languages, computational steps can be expressed as mere
syntactic manipulation of the program/model. A well-known example for this is
the lambda calculus [7]. Another example are Petri nets.

Example 3 (Syntactic manipulation of Petri nets). A configuration of a Petri net
is simply its current marking. Therefore, we can use the static DSML metamodel
from Fig. 1(a) as configuration metamodel, as well. A computation step in a
Petri net chooses an activated transition non-deterministically and fires it. The
marking of a place connected to the fired transition is

(i) increased by one token iff it is only an output place,
(ii) decreased by one token iff it is only an input place,
(iii) preserved otherwise.

The transformation given in Fig. 2, specifies these semantics in QVT Rela-
tions. It contains the relations run and fire as well as the queries isActivated
and getActivated, which we already discussed in Ex. 2. The relations produce
and consume adapt the token count of places that are connected to fired transi-
tions:

(i) The relation produce matches a place place in the input, an incoming
transition trans of this place, and its number of tokens n. It enforces an
increase of one in the number of tokens in the output. The relation needs
to hold only if the matched transition is fired and if the matched place is
not an input place of this transition.

(ii) The relation consume works similarly. It matches a place in the input, an
outgoing transition of this place, and its number of tokens. The number of
tokens in the output is decreased by one. The relation has to hold only if the
transition is fired and if the place is not an output place of the transition.

(iii) If neither produce nor consume hold for a place, its token count is preserved
by the relation preserve.

Describing operational semantics by mere syntactic manipulation works only for
simple languages. In general, runtime states cannot be expressed with instances
of the static language metamodel. Hence, a separate configuration metamodel is
needed to represent runtime states. In addition, an initialisation transformation
is needed that creates an initial configuration from a static model.
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transformation init(net: petri, config: petriCfg) {
top relation initNet {

checkonly domain net n:Net{};
enforce domain config nc:NetConfig{net = n};

}

top relation initPlace {
checkonly domain net n:Net {place = p: Place{token = i:Integer{}}};
enforce domain config nc:NetConfig{

placeConfig = pc:PlaceConfig{place = p, runtimeToken = i}
};
when { initNet(n, nc); }

}
}

Fig. 3. QVT transformation to initialise the runtime configuration of a Petri net

Example 4 (Advanced semantics of Petri nets). The Petri net semantics pre-
sented in Ex. 3 destroys the initial marking of a Petri net model by the exe-
cution. A separate configuration metamodel solves this problem (Fig. 1(b)). To
preserve the initial marking of a Petri net, we distinguish Net and its config-
uration NetConfig. A net configuration contains a configuration PlaceConfig
for each place in the net. The marking of a place is stored in the attribute
PlaceConfig.runtimeToken.

With a separate configuration metamodel, we need an initial configuration to
run the net. The QVT transformation given in Fig. 3 specifies this initialisation.
It enforces a net configuration to contain a configuration for each place in the
net. For a place configuration, the attribute runtimeToken is initialised with the
initial marking from the attribute token of the configured place. Furthermore,
we need to adapt the semantics description to act on the configuration instead
of the net. We will see the adapted description in Ex. 6.

3.2 Visual Interpretation

Given a visualisation of the runtime state, a visual interpreter comes for free:
PIMs are executed stepwise with the transition transformation and each step
can be visualised. We give the user the option to control how many execution
steps are performed before the visualisation gets updated. Thus, one can control
how fast the interpretation process is animated.

Because we represent the runtime state of a PIM (its current configuration) as
a model, it can easily be visualised reusing existing metamodel-based technology
for creating model editors. There are two options for visualising runtime elements
in a visual interpreter:

(i) runtime elements are visualised as additional graphical entities,
(ii) runtime elements affect the visualisation of static model elements, e.g. ex-

isting labels are extended with runtime values or the colour of existing
graphical entities is controlled by runtime values.



Prototyping Visual Interpreters and Debuggers for DSMLs 69

Fig. 4. Debugger for the Petri net DSML prototyped with EProvide

Example 5 (Petri net visualisation). Figure 4 shows an editor for the runtime
state of a Petri net. Following Petri net conventions, circles and boxes represent
places and transitions respectively. Incoming and outgoing arcs determine the
input and output places of transitions. A number inside a circle shows the run-
time marking of the place—not the initial (static) marking. This corresponds to
option (ii).

3.3 Visual Debugging

Debugging means to control the execution process and to access and possibly
modify the runtime state of a program. In usual debuggers, a program can be
executed stepwise and breakpoints can be set to halt the execution at a specified
point of execution. Whenever a program is halted, the user can access and modify
variable values.

With our approach, a PIM can be executed stepwise by setting the number
of execution steps to one. Further control on the execution, like support for
breakpoints, can be achieved by extending the configuration metamodel with
elements for controlling the interpretation process and adapting the transition
transformation to use these elements. Accessing and modifying runtime state
between interpretation steps is possible via the model editor that visualises the
configuration model.

As for visual interpretation, visual debugging is achieved by applying existing
editor creation technology.

Example 6 (Debugging Petri nets). When a user debugs Petri nets, he wants to
know if a transition is currently activated or not. Furthermore, he wants to con-
trol which transition fires in the next execution step. We extend the configuration
metamodel from Fig. 1(b) with a class RuntimeTransition that includes appro-
priate attributes. One is the derived attribute activated, which indicates the
activation of a transition. We specify its value with an OCL query, similar to the
body of isActivated given in Fig. 2. Additionally, we introduce the attribute
selected, which can be set by the user to select transitions for execution.

Breakpoints are another mandatory feature for debugging. For Petri nets,
we introduce two kinds of breakpoints in our metamodel referring places and
transitions respectively. A breakpoint for places defines a number of tokens.
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placeConfig 0..*

+ runtimeToken: int

PlaceConfig

Place (from static)

place 1

+ enabled: bool

Breakpoint

+ onActivated: bool

TransitionBP
+ onToken: int

PlaceBP

breakpoint0..*

NetConfig

+ activated: bool
+ selected: bool

TransitionConfig

Transition (from static)

transitionConfig 0..*

transition 1
place

1
transition 1

Fig. 5. Configuration metamodel extended with additional classes and attributes for
debugging

If the place is marked with the defined number of tokens, the execution will
be interrupted. A breakpoint for transitions refers to a transition and defines
whether it should become activated or deactivated in order to interrupt the
execution. Both kinds of breakpoints can be disabled or enabled.

Figure 5 shows the configuration metamodel extended for debugging. It in-
cludes the class TransitionConfig as well as the classes Breakpoint, PlaceBP,
and TransitionBP for breakpoints. To achieve the expected behaviour of the
debugger, we adapt the transition transformation. The adapted version is shown
in Fig. 6. The new relations breakPlace and breakTransition check whether
enabled breakpoints trigger an interruption of the execution. Furthermore, the
relation run is only established if no breakpoint meets its breaking condition.
To fire only selected transitions, the query getActivated is redefined to use
TransitionConfig’s new attributes activated and selected. The query is-
Activated is obsolete. All other relations remain unchanged.

4 Implementation

4.1 Base Technologies

In this section, we describe the implementation of our approach. We based our
implementation on Eclipse modelling technologies. As a metamodelling frame-
work, we use the Eclipse Modeling Framework (EMF) [8]. In EMF, metamodels
need to comply to the Ecore meta-metamodel which is very similar to Essential
MOF. Based on the Ecore-based metamodel of a DSML, Java code for a DSML
plugin can be generated with EMF. This plugin provides the infrastructure to
create, access, modify, and store models that are instances of the DSML.

For the creation of graphical editors, we use Eclipse’s Graphical Modeling
Framework2 (GMF). In GMF, an editor is described with a set of declarative
models, which we call editor definition in the following. Amongst other things,
those models define which graphical elements are used to represent which ele-
ments of the DSML metamodel. The editor definition is used by the GMF code
2 http://www.eclipse.org/gmf/

http://www.eclipse.org/gmf/
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transformation petri_debug(input:petriCfg, output:petriCfg) {

top relation breakPlace {
checkonly domain input nc:NetConfig{

breakpoint = bp:PlaceBP{
enabled = true, onToken = n:Integer{}, place = p:Place{}

},
placeConfig = pc:PlaceConfig{place = p, runtimeToken = n}

};
}

top relation breakTransition {
checkonly domain input nc:NetConfig{

breakpoint = bp:TransitionBP{
enabled = true, onActivated = b:Boolean{}, transition = t:Transition{}

},
transitionConfig = tc:TransitionConfig{transition = t, activated = b}

};
}

top relation run {
trans: Transition;
checkonly domain input nc:NetConfig{};
enforce domain output nc:NetConfig{};
when { not breakPlace(nc); not breakTransition(nc); }
where { trans = getActivated(nc); fire(trans); }

}

query getActivated(netCfg: NetConfig): Transition {
netCfg.transitionConfig -> any(selected & activated).trans;

}

top relation produce {
checkonly domain input placeCfg:PlaceConfig{

place = place:Place{ src = trans:Transition{} },
runtimeToken = n:Integer{}

};
enforce domain output placeCfg:PlaceConfig{ runtimeToken = n+1 };
when { fire(trans); trans.src -> excludes(place); }

}
...

}

Fig. 6. Operational semantics for debugging Petri nets

generator to generate Java source code for a graphical editor. The generated code
can be modified by hand afterwards. As we will see in Sect. 5, this was necessary
for the Petri net example.

For model-to-model transformations, we use ikv’s medini QVT3, an imple-
mentation of QVT Relations that can work with Ecore compliant metamodels.

4.2 EProvide

EProvide4 is an implementation of our approach. It is an Eclipse plugin that
plugs into the Eclipse execution infrastructure to make domain-specific
3 http://projects.ikv.de/qvt
4 Eclipse plugin for PROtotyping V isual Interpreters and DEbuggers; available at
http://eprovide.sf.net

http://projects.ikv.de/qvt
http://eprovide.sf.net
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Fig. 7. EProvide’s run dialogue

PIMs—or domain-specific models in general—executable. It provides an exten-
sion point that DSML plugins can use to register themselves with EProvide.

The Language User Perspective. EProvide offers a run dialogue in which the user
can configure model execution (Fig. 7): The user can choose whether the model
should be initialised and whether it should be executed to completion or stepwise.
If he selects “Run to completion”, the transition transformation gets repeatedly
executed until the model reaches a fixed-point state in which it persists. If he se-
lects “Stepwise execution”, the execution stops after the given number of steps (if
no fixed-point state is reached before). Furthermore, EProvide allows to animate
the execution process. The user can activate and configure this feature in the run
dialogue, as well. He can specify how often the editor gets updated (e.g. every
5-th transformation step) and how fast the animation is (i.e. how long each vi-
sualised configuration is shown). If multiple semantics are available for a DSML,
the run dialogue allows the user to select which semantics should be applied.

The Language Engineer Perspective. To achieve execution support for a new
DSML, the DSML plugin has to provide an extension for EProvide’s extension
point. In this extension, the following information is given: a name for the se-
mantics that is shown in the run dialogue, the file extension of the model files
that the semantics should be applied to, the path to the QVT files with the
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transition and the initialisation transformation, and the full qualified Java name
of the DSML’s metamodel package.

5 Case Study: A Debugger for the Petri Net DSML

In this section, we show the manual work necessary for developing a Petri net
debugger with EProvide. We develop the debugger in five steps, starting with a
simple editor and ending with the full debugger. In some steps, manual modifi-
cations of Java code generated with EMF or GMF are necessary. These manual
modifications could be avoided if EMF and GMF had some missing features
that we will identify in the following. Table 1 summarises the work necessary
for each step and also shows which work could be saved with which additional
features.

Step 1: Editor. The first step is to create a new DSML plugin that contains an
EMF compliant metamodel for the Petri net DSML (cf. Fig. 1(a) from Ex. 1) and
a GMF-definition of the graphical editor. This step is independent of EProvide.
The editor definition defines which graphical elements should be used (graphical
definition), for which elements of the metamodel creation tools exist (tooling
definition), and how metamodel elements are mapped to tooling elements and
graphical elements. Figure 4 shows a screenshot of the final debugger; the editor
actually does not yet highlight activated and selected transitions.

Step 2: Visual Interpreter without Separate Runtime Attributes. As
second step, we create an interpreter that uses the static metamodel to save
the runtime states as explained in Ex. 3. For this, we define a new extension for
EProvide’s extension point in the DSML plugin and we implement the transition
transformation as shown in Fig. 2 from Ex. 3. This transition transformation uses
the OCL-function any, which should behave non-deterministically.

Missing Feature 1: Non-deterministic Choice in QVT Implementation. Unfor-
tunately, the QVT implementation we use lacks non-determinism. Therefore,
we have to extend the class Net with a method choose() implementing a non-
deterministic choice. The signature of this method is specified in the metamodel
while its implementation is given in Java. We adapt the transition transformation
to use Net.choose() instead of the OCL-function any.

Step 3: Visual Interpreter with Separate Runtime Attributes. In this
step, we extend the interpreter so that interpretation does not destroy the ini-
tial marking of the Petri net. As described in Ex. 4, this requires to store the
configurations in separate metamodel elements and to provide an initialisation
transformation. We suggested to define a separate runtime metamodel (Fig. 1(b))
that augments the static metamodel. This would result in the architecture shown
in Fig. 8 and would have the advantage that the static metamodel is not pol-
luted with runtime elements. In this architecture, the visual interpreter would be
an extension of the model editor and would show the runtime marking instead
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Table 1. Manual work required for the development of the Petri net debugger. The
work that could be saved with additional EMF/GMF features is marked with the
number of the corresponding feature in parentheses.

1. Editor

Metamodel 3 classes (Net, Place, Transition), 5 associations, 3 attributes
Editor definition 35 + 13 + 35 XMI nodes (graphical, tooling, mapping)

2. Visual interpreter without separate runtime attributes, destroys initial state

Metamodel 1 operation (Net::choose) for non-deterministic choice (1)
DSML plugin 6 lines Java code for implementing Net.choose() (1)

8 lines in the plugin.xml for plugging into EProvide
Semantics 31 lines QVT Relations code

3. Visual interpreter with separate runtime attributes

Metamodel 3 attributes (Net::running, Place::initToken, Place::runtimeToken)
DSML plugin 23 lines Java code for Net.running-switch (2)
Semantics 17 lines QVT Relations code for initialising runtime model
Graphical editor 12 lines Java code for showing a running label (2)

4. Debugger without breakpoints

Metamodel 2 attributes (Transition::activated, Transition::selected)
Semantics 1 line QVT Relations code for using the new attributes
Graphical editor 27 lines Java code for visualising transition states (3)

8 lines Java code for change notif. for Transition.activated (4)

5. Debugger with breakpoints

Metamodel 3 classes (Breakpoint, PlaceBP, TransitionBP),
Semantics 17 lines QVT Relations code to take breakpoints into account
Editor definition — (breakpoints can only be defined in generic tree editor)

of the initial marking of a Petri net. In GMF, the layout information (element
positions, size, etc.) of a diagram is stored in a separate graphical model. In
the shown architecture, the graphical runtime model would augment the graph-
ical static model so that the layout information from the static model would be
reused for visual interpretation.

Missing Feature 2: Editor extension in GMF. GMF does not support this archi-
tecture. An editor definition cannot extend another one and a graphical model
cannot reference another one. Therefore, we cannot use a separate runtime
model with a separate visual interpreter but have to extend the static model
to an integrated model with runtime elements. The corresponding integrated
metamodel has three additional attributes and one with changed semantics.
Place.token now delegates to one of the two new attributes Place.initToken
and Place.runtimeToken. Which it delegates to is controlled by the third new
attribute, Net.running. In order to show the user whether the static model
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augments

augments

Static Model

Graphical St. Model

augments

Model Editor

edits

Config. Model

Graphical Co. Model

Visual Interpreter

edits

augments

Not supported by GMF

Fig. 8. The editor/interpreter architecture as it should be

or the runtime model is visualised, we manually add a “running” label to the
generated GMF editor code that is shown only for the runtime model (cf. Fig. 4).

Step 4: Debugger without Breakpoints. In this step, we add features that
allow the user to control the execution of a Petri net model. Stepwise execu-
tion of Petri net models is already provided by the EProvide infrastructure
(cf. Sect. 4.2). In addition, we want to visualise activated transitions with a
thick, black border (transition “top” in Fig. 4) and transitions selected by the
user to fire with a thick, blue border (transition “middle” in Fig. 4). To im-
plement this, we add two attributes (cf. Ex. 6) to the integrated metamodel:
Transition.activated is a derived attribute and implemented in OCL, and
Transition.selected is an ordinary attribute that can be set by the user.
Furthermore, we adapt the transition transformation to use the new attributes.

Missing Feature 3: Visual attributes in GMF derived from model attributes.
GMF’s editor definition does not support to derive the visualisation of a tran-
sition’s border from the transition’s model attributes. Therefore, we manually
add the visualisation in the generated GMF editor code.

Missing Feature 4: Change notifications for derived attributes in EMF. EMF
allows to define derived attributes in OCL. The Java code generated for the
metamodel then contains code that interprets the OCL expression. If an at-
tribute that the derived attribute depends on changes, the getter for the derived
attribute returns an updated value when it is called the next time. But the gen-
erated code does not automatically send a change notification for the derived
attribute. Therefore, we manually modify the generated code to send change
notifications for Transition.activated.

Step 5: Debugger with Breakpoints. In the last step, we add support
for breakpoints. For this, we add the three classes Breakpoint, PlaceBP, and
TransitionBP to the integrated metamodel. Furthermore, we adapt the tran-
sition transformation to use the new classes (cf. Ex. 6). In this case study, we
do not support graphical specification of breakpoints; they have to be specified
in the generic EMF tree editor. (If we wanted to support graphical breakpoint
specification, we had to extend the editor definition.)
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6 Related Work

Ptolemy [9] allows animated interpretation of hierarchically composed domain-
specific models with different execution semantics. Adding a new DSML to
Ptolemy requires a lot of work as both its syntax and its semantics have to
be coded manually in Java. GME [10] provides visualisation of the interpreta-
tion and support for creating a DSML editor without manual coding. But as
with Ptolemy the interpreter semantics has to be implemented manually in Java
or C++.

Several approaches address a metamodel-based formalisation of language se-
mantics. Sunyé et al. recommend UML action semantics for executable UML
models [11]. Furthermore, they suggest activities with action semantics for
language modelling. Scheidgen and Fischer follow this suggestion and provide
description means for the operational semantics of MOF compliant metamod-
els [12]. Muller et al. integrate OCL into an imperative action language [13]
to provide semantics description means for the Kermeta framework.In a similar
way, OCL is extended with actions to provide semantics description means in the
Mosaic framework [14]. The AMMA framework integrates Abstract State Ma-
chines for the specification of execution semantics [15]. Furthermore, the model
transformation language ATL [16] can be applied to specify operational seman-
tics. These approaches lack visualisation of the interpretation but those based
on EMF can be integrated into EProvide easily.

Graph transformations are a well-known technology to describe the opera-
tional semantics of visual languages. Engels et al. describe the operational se-
mantics of UML behaviour diagrams in terms of collaboration diagrams which
represent graph transformations [17]. Similarly, Ermel et al. translate UML be-
haviour diagrams into graph transformations to simulate UML models [18]. Since
they provide domain-specific animation views, the runtime state can not be
changed by the user which inhibits debugging.

The Moses tool suite [19] provides a generic architecture to animate and debug
visual models, which are represented as attributed graphs. The runtime state is
visualised by so called animation decorators added to the attributed graph. The
difference to our approach is that in Moses the execution semantics of models
is given as an abstract state machine description and the runtime state of a
model is encoded in ASM functions. In contrast, we store the runtime state
itself as a model, which allows us to reuse the same editor creation technology
for animation as for editing.

In AToM3, de Lara and Vangheluwe use graph grammars to define the op-
erational semantics of a visual modelling language [20]. In contrast, we rely on
OMG standard means to define metamodel-based operational semantics. Thus,
operational semantics can be integrated in an MDA process more naturally.

7 Conclusion

Contribution. We showed how operational semantics of a DSML can be spec-
ified at the PIM level with standard modelling techniques. Furthermore, we
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combined this approach with existing metamodel-based editor creation technol-
ogy. This enables rapid prototyping of visual interpreters and debuggers. We
illustrated our approach with a DSML for Petri nets. Thereby, we identified de-
sirable features missing in base technologies we used. With EProvide, we offer
an implementation of our approach as an Eclipse plugin.

Our approach minimises the effort for MDA practitioners to define prototyp-
ical language semantics. They can rely on standard means and tools they are
used to. This facilitates short iteration circles for language engineering, early
integration of domain experts, higher quality of DSMLs and the system under
development, and thus minimises development costs.

Future Work. In the Petri net case study, we did not distinguish between
static model and configuration model but used an integrated model. Although
we did this because of the missing editor extension feature in GMF, it allows
for another nice feature: a user can modify static model elements at runtime.
As we argued, we would prefer not to pollute the static model with configura-
tion elements. But without an integrated model, allowing the user to modify
static model elements at runtime would require additional work. For example,
if a user creates a new element in the static model, the corresponding element
in the configuration model must be created. This adaptation needs additional
specification. Here, the question is whether the adaptation must be programmed
manually or if it is possible to describe it declaratively in a model.

Typically, a DSML metamodel evolves over time. Prototypical tool support as
mentioned in this paper can help to reveal necessary changes. Automated adap-
tation of metamodels [21] helps to control metamodel evolution. Automated
co-adaptation helps to keep related artefacts like instances or semantic descrip-
tions in sync with the evolving metamodel. For the approach presented in this
paper, automated co-adaptation of declarative editor models is needed.
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Abstract. Executable modeling allows the models to be executed and treated as 
prototype to determine the behavior of a system. These models use precise 
action languages to specify the algorithms and computational details required 
for execution. These action languages are developed on the basis of UML 
action semantics metamodel that provides the abstract syntax. The use of a 
concrete action language makes a traditional model work like an executable 
one. The actions specified by the action language might involve variables and 
their data values that are useful to be analyzed in terms of data flow. In this 
paper, we provide data flow analysis (DFA) of the standard UML action 
semantics that can be used with executable models. The analysis provides a 
generic data flow at the abstract syntax level and allows a mapping to any of the 
action languages providing the concrete syntax. Our approach does not focus on 
a particular action language; therefore it can easily be applied to any concrete 
syntax. We apply the proposed approach to a case study and identify the data 
flow from executable UML state machine.  

Keywords: Executable modeling, Executable UML, Data Flow Analysis, 
Action Semantics. 

1   Introduction 

Executable modeling is the ability of models to be directly executable through the use 
of execution semantics [2]. The basic idea behind this concept is to model the systems 
using UML diagrams at a higher level of abstraction, which can be compiled, 
translated, and executed in order to validate system’s correctness [3, 5]. Formal test 
cases can be executed against the models to verify their behavior and to check their 
conformance to the specifications [1, 4]. Earlier versions of UML were not executable 
due to semantic incompleteness and ambiguities. There are many variations in making 
UML executable. One of the directions in executable modeling is the concept of 
Executable UML [1, 4] that is one of the subsets of UML. This subset comprises of 
UML class diagram, UML state machines and the action language corresponding to 
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action semantics [1]. In OMG’s UML Specifications [6], action semantics have been 
introduced by giving a set of fundamental actions and their precise semantics. Action 
semantics provides a standardized and platform independent way to specify the 
behavior of objects [6, 7]. The metamodel of action semantics provides the abstract 
syntax and does not have a uniform normative notation. Various vendors have defined 
the concrete syntax for the action languages based on UML’s action specifications. 
UML 2.1 provides semantics for the basic actions which are concerned with sending 
signals, invoking operations, reading and writing attributes, etc. These actions also 
define behavioral constructs that can be implemented by the concrete action 
languages [6].  

In the domain of Executable UML [1], actions are written inside the states in the 
form of Entry, Do, and Exit actions in a concrete action language. The executable 
UML assumes the state machines to be flattened [1], hence, the actions are only 
within the states [33]. These actions specify the activities to be carried out upon entry 
to a state, activities to be performed when in a particular state, and activities to be 
carried out while exiting the state, respectively. UML state machine represents the 
dynamic behavior and life cycle of an object in terms of various states that an object 
can assume. An object can change its state on an event trigger. This change in state 
might affect the values of the variables and attributes used within the state, therefore, 
affecting the overall behavior of the system. The state actions can also be involved in 
data flow within a state or among multiple states. In order to ensure the correct 
behavior represented by state machines, these actions should be considered in terms 
of data values and be analyzed in terms of data flow.    

The data flow analysis (DFA) is used to measure program complexity and forms a 
basis of data flow based testing by employing the definitions and uses of the variables 
in a program [25, 28]. This information can help to identify the paths where data flow 
is evident and where data dependencies can affect the overall program. Traditional 
data flow analysis is employed on code by carrying out either inter-procedural or 
inter-class DFA [8]. This kind of DFA analyzes the data flow among code variables 
written in programming languages. In case of action languages used with executable 
models, the code-based DFA can not be applied due to abstract nature of action 
languages. Moreover, action languages fall short of addressing platform-specific and 
low-level details unlike programming languages [9]. In executable UML, the actions 
are written inside the states of a state-machine and can not be tested as an independent 
module like a procedure or a class. These actions can also be involved in data flow 
within a state or among multiple states. Hence, the existing model-based and code-
based DFA fails to be applied to executable state-machines because none of these 
caters either inter-state data flow or testing of the actions.  

This paper addresses the issue of analyzing actions for data flow and provides a 
generic solution. We analyze the action semantics of UML 2.1 in terms of data flow 
and reveal how data flow and dependencies participate in the actions. The action 
semantics are independent of a concrete syntax and UML does not provide any 
standard action language, rather it gives the semantics and abstract syntax, which can 
be used by the vendors to develop their own action languages. This has resulted in a 
variety of action languages, each having its own concrete syntax that is not similar to 
rest of the languages. Due to this variation of syntax, the data flow analysis for one 
particular action language can not be applied to another action language. Therefore, in 
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our approach, we eliminate the need of the specific syntax of an action language and 
base our data flow analysis on the Action Semantics specified by UML. We have not 
focused on a specific action language; rather we have focused on the actions at an 
abstract syntax level defined in UML Action Semantics. This makes our DFA generic 
and flexible to be used with any language compliant to the UML action semantics 
metamodel. 

The rest of the paper is organized as follows: Section 2 discusses related work. 
Section 3 presents the proposed approach. Section 4 presents a case study to 
demonstrate the proposed approach. Section 5 concludes the paper and provides 
possible directions for future work. 

2   Related Work 

Data flow analysis (DFA) is a process that analyzes the programs on the basis of data 
and computes associations and relationships between data objects [25, 28]. Data flow 
analysis utilizes the definitions and uses of the variables in a program. The values of 
the variables might affect the control flow of the system, hence affecting the 
execution and behavior of a system. In other words, we can say that a system’s 
functionality can be easily highlighted in terms of data; therefore, data flow 
information must be considered when a system is intended to be analyzed or tested.  

Data flow analysis can be applied both on models as well as code [13, 14, 24]. In 
model-based testing, covering only the control information does not guarantee that the 
data is correctly flowing through the model. This requires the incorporation of data 
flow information to the control flow in order to thoroughly test the given system. 
There are a few techniques in literature that combine the control and data flow 
information for testing the models [11, 14, 30, 31]. In this context, Hutchins et al [14] 
examine the effectiveness of all-edges and all DU-path (Definition-Use path) 
coverage criteria and compares data flow and control flow coverage criteria. The 
authors have proposed a criterion known as all-DU and have compared it with the 
existing coverage metrics. [4].  

Combining both control and data flow is also of importance in Embedded Systems. 
In this regard, Varea and Al-Hashimi [30] present a design representation called Data 
Flow Net (DFN) to model the interrelationship between control and data flow in 
Embedded Systems. This model is based on Petri net structure and addresses the 
control as well as data flow. The methodology takes a DFN model and a set of 
properties in temporal logic as input and the model checker translates it into source 
code. Farwer and Varea [31] have examined the effect of object-based approaches on 
data flow and control flow analysis of models. The focus is on the separation of 
control flow and data flow by using Object Net and System Net, where the former 
represents data and latter depicts control. The authors have used the approach of Petri-
nets and provided a formal translation procedure for transforming a Dual Flow net 
into Object Petri net [31].  

Data Flow Analysis has numerous applications such as code optimization [24], 
program slicing [25], data flow based testing, reaching definitions, constant 
propagation problem, dead code elimination, path profiling, forward and backward 
analysis [23]. DFA is also of importance in the compilation process of programs, 
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especially Parallel Compilers [26] and program slicing that is employed in 
interpreters, compilers, and other program manipulation tools [25, 27]. These tools 
normally use demand-driven techniques and slicing is incorporated for data flow 
analysis. Another application of DFA is to measure software complexity where 
control flow often seems insufficient. The data flow-based metric forms the basis for 
data flow based testing because this metric uses the definitions and uses of the 
variables in a program [29].  

The most commonly used application of data flow analysis is data flow-based 
testing. Many researchers [12, 32] have discussed various forms of code-based testing 
including path testing and a variety of test coverage metrics and metric-based testing 
methods. Harrold & Rothermel [13] have presented an approach to test the methods 
that are accessible outside the class and can be called in an arbitrary order by using 
the data flow interactions between them.  For this purpose, a class control flow graph 
has been developed which represents all the methods of a class connected via data 
flow. This graph helps in testing the class at three levels that correspond to 3 levels of 
Def/Use (DU) pairs. Tsai et al [10] address the issue of applying data flow testing to 
test the classes in object-oriented systems and to avoid infeasible test cases due to the 
existence of data flow anomalies. The authors discuss data flow testing in two phases: 
detection and removal of data flow anomalies, and intra-class test case generation 
from sequences of messages. Another major contribution towards data flow based 
testing is by Rapps and Weyuker [11]. They have addressed the issue that all-path 
coverage criterion may not be able to reveal all possible errors in a software system 
because it employs only control flow for testing purpose. The authors develop a 
program graph which is then converted into a def-use graph by identifying definitions 
and uses from each node.  

The above discussion leads to the conclusion that DFA has numerous applications 
and is the most effective way to determine data flow. This information of data flow 
and data dependencies cannot be identified merely by control flow. Therefore, data 
flow information is required to provide the complete coverage of code as well as 
models and to ensure the correctness of the systems. 

3   The Proposed Approach 

Action language compliant to UML action semantics is the core of Executable UML, 
since it allows models to be executed. Various action languages are reported in 
literature, each having its own concrete syntax but having the same semantics. Based 
on the actions defined in action semantics metamodel, any language can be developed 
with a concrete syntax. Any language-specific technique developed for a particular 
syntax might not cover all the aspects available in some other language, hence can not 
provide reusability and generality. This can be avoided by focusing on the semantics 
at the abstract syntax level instead of concrete syntax so as to provide a generic 
solution. Keeping this in mind, we provide an approach that analyzes the UML action 
semantics in terms of data flow and can be used with Executable UML. We also 
provide a mapping from abstract syntax to concrete syntax. Our proposed approach is 
generic and provides the flexibility to be used with any action language by providing 
its Context-Free Grammar and mapping rules.  



 Data Flow Analysis of UML Action Semantics for Executable Models 83 

In this paper, we have used Action Specification Language (ASL) [15] as an 
example language to explain the idea. ASL is an abstract action language to define 
processing for executable UML models in an unambiguous and precise manner. The 
language defines its own syntax that includes all the basic syntactic constructs as 
required by a language. The syntactic information has been provided in terms of data 
types, sequential logic, classes and object manipulation, associations and 
generalizations, signals, arithmetic and logical operations, etc [15]. Some of these are 
typical language constructs that are purely syntax based, whereas, others are directly 
based on the semantics. Various ASL statements are based on the action semantics 
defined by UML. It is also used in a tool provided by Kennedy Carter for executable 
UML modeling known as iUML Model Simulator [16]. Our proposed approach is 
generic and is not restricted to a single action language. Several action languages 
exist, such as, BridgePoint’s OAL [17], SMALL, TALL, Kennedy-Carter’s ASL [15], 
JAL [18], Pathfinder Solutions’ PAL [19], JUMBALA [20] and Kabira’s Action 
Semantics [21] that can be used instead of ASL. We have used ASL, which is the 
most widely used language in the context of Executable UML.   

The process flow of our proposed technique is presented in figure 1. The ellipses 
represent the activities while the boxes represent the input and output from each 
activity. The technique takes a state machine model as input. The state machine 
contains actions written in ASL as an example action language. These actions are 
written inside the states, while the transition actions are not considered since the state 
machine is flattened. The flattened state machine also assumes the guard conditions 
written in OCL to be transformed accordingly [34]. In our approach, the state machine 
can be taken in the form of XMI that is a widely used representation especially in 
model-based automated tools. This input state machine is transformed into a feasible 
path matrix to store the control flow information. In addition to control flow, our 
approach incorporates the data flow information by carrying out a detailed data flow 
analysis of actions which are written inside the states in ASL. These actions are first 
parsed based on the Context-Free Grammar (CFG) of the ASL and mapping rules 
have been provided for concrete syntax to abstract syntax. From this DFA, we find 
the def-use associations among the variables used within the states of input model. 
The steps of the technique are described in the following sub-sections.  

3.1   Construct Feasible Path Matrix  

UML state machine represents the life cycle of an object in the form of various states. 
The transitions between the states represent the flow of control from one state to 
another. This control flow information can be stored in a flow graph or matrix that 
can be used later on. In our approach, we construct a feasible path matrix from the 
input state machine. This matrix is constructed to identify the possible transitions 
among states, i.e., feasible paths. These feasible paths help to reduce the effort of 
searching the entire state-machine to examine data dependencies. The matrix consists 
of rows and columns equal to the number of states. Each entry of the matrix is either 0 
or 1. An entry with 1 depicts that the two states are reachable and there is some path 
between the states, either direct or indirect. The entry with 0 represents an infeasible 
path. This feasible path matrix resembles the adjacency matrix, which shows only the  
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Fig. 1. Process Flow of Proposed Approach 

direct paths between the nodes of a graph [22]. In addition of showing the direct paths 
for reachable states as in adjacency matrix, the feasible path matrix also shows the 
indirect paths between the states. 

3.2   Find Feasible States 

The feasible path matrix, constructed in previous step, depicts all those states that are 
reachable from a given state of the input state machine. The knowledge of reachable 
states helps to keep track of the control flow among various states. The feasible path 
matrix also plays a major role in identifying the candidate states for carrying out data 
flow analysis. This is because traversing all the states of the state machine to identify 
data flow is infeasible and exhaustive. Moreover, certain data dependencies may exist 
among states that cannot be identified by traditional data flow based testing 
techniques. The order of execution of the states is also important and should be 
considered while handling the control flow. To overcome the above issues, a feasible 
path matrix can be constructed to identify only the feasible paths in a state-machine. 
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From this matrix, we can find those states that are reachable from a given state, either 
directly or indirectly and, hence, can generate feasible paths.   

3.3   Parse Action Language 

In addition to the construction of feasible path matrix, the input state machine is sent 
to the action language parser that parses the actions written in the states of the 
executable state-machine. The parser can be easily developed that uses the context 
free grammar (CFG) of the action language. It parses the given action language 
statements into tokens based on the CFG productions. During the parsing process, the 
parser also generates the corresponding CFG productions for each line of ASL code in 
the form of a parse tree. We also store the variables and structural features used in 
each ASL statement along with the CFG productions. This information is required to 
compute data flow analysis for the variables and structural features. CFG represents 
the syntactic structure of the action language in the form of productions or rules. As 
an example, an excerpt of the CFG for ASL (Action Specification Language) is 
shown in figure 2.  

<ASL_SEGMENT> ->  <STATEMENTS>  |  <ASL_FUNCTION> 
<STATEMENTS>   ->  <STATEMENT> <STATEMENTS>  |  
<STATEMENT>     ->   <SIMPLE_STMT>  |  <SEQ_LOG_STMT> 
<SIMPLE_STMT>  ->  <CREATE_STMT>  |  <DELETE_STMT>  | 

         <ASSIGNMENT_STMT>  |  <GENERATE_STMT> 
<CREATE_STMT> ->  <CREATE_OBJECT_STMT>  |  <CREATE_LINK_STMT> 

 

Fig. 2. An excerpt of CFG for ASL 

3.4   Apply Mapping Rules 

After parsing the action language, the parser generates the CFG production rules and 
variable list for each language statement. The CFG productions are generated in the 
form of a parse tree. Because, our proposed approach is not language-specific; we 
need to have some generic information for applying the testing strategy. For this 
purpose, we have defined some rules that provide a mapping from action language to 
corresponding actions defined in UML 2.1 Action Semantics. We have provided a 
mechanism to map the abstract syntax of actions to the concrete syntax of action 
languages. This mechanism provides the flexibility to apply our approach, to any 
concrete action language by simply providing mapping rules for that particular 
language and giving its CFG to the generic parser. 

The parse tree generated in the previous step is traversed in depth-first manner to 
find the CFG production with a corresponding mapping rule. While traversing the 
tree, each node and its child nodes are checked to see if a corresponding mapping rule 
representing a CFG production exists against this node. If found, the action on the 
right hand side of the mapping rule is returned as output.  

The mapping rules are used to obtain the actions against each ASL statement of the 
input model. This is required because we have carried out the data flow analysis on 
actions, rather than a specific action language. We can write the mapping rules in an 
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XML file based on the XML schema to define the mapping rules for any language. 
The XML schema and an excerpt of the mapping rules is shown in figure 3 and 4 
respectively. The rules basically map each CFG production to a corresponding action. 
Each rule consists of a CFG tag and an action. The CFG tag is further composed of a 
left and right tag to represent the CFG production. The right tag can be empty if the 
production consists of a single non-terminal symbol. In case of multiple actions 
against a single CFG production, we use the equality operator to separate the two 
actions. This equality operator helps to distinguish between the actions at the left of 
an expression from the one at the right. The output of this activity is a list of actions 
and variables against each CFG production obtained in previous step.  

<xs:schema elementFormDefault="qualified" 
targetNamespace="http://www.w3schools.com"> 

     <xs:import namespace="http://www.w3.org/2001/XMLSchema-instance" 
schemaLocation="xsi.xsd"/> 
<xs:element name="mappingRules"> 

      <xs:complexType>
          <xs:sequence>
                <xs:element maxOccurs="unbounded" ref="rule"/> 
            </xs:sequence>
            <xs:attribute ref="xsi:schemaLocation" use="required"/> 
       </xs:complexType>
    </xs:element>

 <xs:element name="rule"> 
     <xs:complexType>
         <xs:sequence>
               <xs:element ref="CFG"/> 
               <xs:element ref="action"/> 
           </xs:sequence>
       </xs:complexType>
    </xs:element>

 <xs:element name="CFG"> 
      <xs:complexType>
           <xs:sequence>
                 <xs:element ref="left"/> 
                 <xs:element ref="right"/> 
             </xs:sequence>
       </xs:complexType>
   </xs:element>
   <xs:element name="left" type="xs:string"/> 
   <xs:element name="right" type="xs:string"/> 
   <xs:element name="action" type="xs:string"/> 
</xs:schema>

 

Fig. 3. XML Schema for Mapping Rules 

3.5   Apply Data Flow Analysis Rules to Actions 

After obtaining the list of actions and variables, we apply data flow analysis rules to 
these actions. These rules have been defined for the actions provided by UML 2.1 
superstructure. UML 2.1 provides semantics for the basic actions that are concerned  
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<mappingRules xsi:schemaLocation="ruleSchema.xsd"> 
<rule>

     <CFG>
         <left> FUNCTION_INVOCATION1 </left>
         <right> # </right>

       </CFG>
       <action>CallAction</action>
   </rule>

<rule>
    <CFG>
        <left> READ_STMT </left>
        <right> create CLASSNAME  CREATE_OBJECT_STMT1 </right>
      </CFG>
      <action>WriteVariableAction=CreateObjectAction</action>
</rule>
……… 
</mappingRules>

 

Fig. 4. An excerpt of mapping rules 

with sending signals, invoking operations, reading and writing attributes and values, 
etc. The major categories of the actions defined by UML 2.1 are read/write actions 
and invocations actions [6]. We have carried out the data flow analysis of UML 
actions and have categorized them as defining or using some values. The data flow 
analysis rules have been defined in terms of definition and use of each variable, 
attribute, or object in the input model. This corresponds to the conventional def-use 
pairing of variables employed in data flow based testing techniques. The DFA of the 
actions is summarized in table 1; due to space limitation, we are not providing the 
details of each action. An entry of the table with ‘N/A’ means that the action is 
abstract and its def-use classification depends on its concrete subclasses.  

3.6   Find DU-Pairs 

After applying DFA rules on the actions, each action has been categorized as being 
defined or used. From this information, we generate DU-pairs to represent definition-
use associations among the variables. We find DU-pairs for each variable and 
structural feature within a state by looking at its assignment as def or use. This 
process is repeated for each state in the input model. For inter-state data flow, we 
consult the feasible path matrix for only the reachable states instead of traversing the 
whole state-machine. For each feasible state, we look for each variable or structural 
feature present in one state and find if it is present in some other feasible state or not. 
If the variable or structural feature also exists in feasible states, then its inter-state 
DU-pairs are also generated depending on its assignment as def or use.  

At the end of this process, we obtain the DU-pairs for all the variables or structural 
features that are involved in data flow within a state or among multiple states that are 
reachable from one state. The DU-pairs can later be used for several applications such 
as data flow testing, program slicing, forward and backward analysis, etc. 
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Table 1. Def-use classification of UML Actions 

Action Def/Use Action Def/Use 
AcceptCallAction Use ReadLinkAction Def/Use 
AcceptEventAction Use ReadLinkObjectEndAction Use 
AddStructuralFeatureValueAction Def ReadLinkObjectEndQualiferAction Use 
AddVariableValueAction Def/Use ReadSelfAction Use 
BroadcastSignalAction Use ReadStructuralFeatureAction Use 
CallAction Use ReadVariableAction Use 
CallBehaviorAction Use ReclassifyObjectAction Def 
CallOperationAction Use ReduceAction Def 
ClearAssociationAction Def RemoveStructuralFeatureAction Def 
ClearStructuralFeatureAction Def RemoveVariableValueAction Def 
ClearVariableAction Def ReplyAction Def/Use 
CreateLinkAction Def/Use SendObjectAction Use 
CreateLinkObjectAction Def/Use SendSignalAction Use 
CreateObjectAction Def StartClassifierBehaviorAction Use 
DestroyLinkAction Def/Use StructuralFeatureAction N/A 
DestroyObjectAction Def TestIdentityAction Use 
InvocationAction N/A UnmarshallAction Use 
LinkAction N/A ValueSpecificationAction Use 
OpaqueAction N/A VariableAction N/A 
RaiseExceptionAction Use WriteLinkAction N/A 
ReadExtentAction Use WriteStructuralFeatureAction N/A 
ReadIsClassifiedAction Use WriteVariableAction N/A 

 

4   Case Study 

In order to check the applicability of our proposed approach, we have applied it to a 
case study of Elevator Control System (ECS). ECS models the system of managing an 
elevator and its behavior. Figure 5 shows a state machine of Elevator object with 13 
states and transitions among the states. Each of the states contains actions written in 
an action language. For our case study, we have used ASL as an example language.  

Figure 6 shows the feasible path matrix constructed for the elevator state machine. 
Each of the states of input model is analyzed to find def-use associations among the 
variables. As an example, we only discuss here state 1 of the state machine, i.e., Idle | 
DoorClosed. This state has 5 actions written as ASL statements that are parsed by 
action language parser based on the CFG. This parsing is represented as parse trees. 
After parsing, the parse tree is traversed in depth-first and mapping rules are applied.  
The mapping rules return the action against each CFG production. Then each action is 
analyzed on the basis of data flow analysis rules discussed in section 3.6, depending 
on the variable or structural feature used. As a result, each variable or structural 
feature used in each statement is categorized as def or use as shown in table 2. Using 
this information, we compute def-use pairs. Some of the resulting DU-pairs for the 
variables in state 1 are depicted in table 3. 
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Fig. 5. State machine of Elevator 

Table 2. Actions and the variable categorization for the input statements 

ASL 
statement Action Obtained Variable 

List 
Categorization 

1.1 SendSignalAction door1 Use 
1.2 AddStructuralFeatureValueAction status Def 

1.3 
AddVariableValueAction = CreateObjectAction,      

AddStructuralFeatureValueAction 
cf,  

floorNo 
Def, Def 

1.4 AddVariableValueAction = CreateObjectAction ef Def 
1.5 AddVariableValueAction = CreateObjectAction sf Def 
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         1  2  3  4  5  6  7  8  9  10  11  12  13 

1        0  1  1  1  1  1  1  1  1   1    1     1    1 

2        0  1  1  1  1  0  1  1  0   1    1     1    1 

3        0  1  1  1  1  0  1  1  0   1    1     1    1 

4        0  1  1  1  1  0  1  1  0   1    1     1    1 

5        0  1  1  1  1  0  1  1  0   1    1     1    1 

6        0  1  1  1  1  0  1  1  0   1    1     1    1 

7        0  1  1  1  1  0  1  1  0   1    1     1    1 

8        0  1  1  1  1  0  1  1  0   1    1     1    1 

9        0  1  1  1  1  0  1  1  0   1    1     1    1 

10      0  1  1  1  1  0  1  1  0   1    1     1    1 

11      0  1  1  1  1  0  1  1  0   1    1     1    1 

12      0  1  1  1  1  0  1  1  0   1    1     1    1 

13      0  1  1  1  1  0  1  1  0   1    1     1    1 
 

Fig. 6. Feasible Path Matrix for Elevator state machine 

Table 3. DU-pairs for the variables/structural features in state machine 

Variable / 
Structural Feature

DU-pair 

cf (1.3, 2.2) 
cf (1.3, 5.2) 
cf (1.3, 6.3) 
cf (1.3, 9.3) 
floorNo (1.3, 7.1) 
floorNo (1.3, 10.1) 
floorNo (7.1, 7.1) 
floorNo (7.1, 10.1) 
ef (1.4, 3.4) 
ef (1.4, 7.1) 
ef (1.4, 10.1) 
ef (7.1, 3.4) 
ef (7.1, 7.1) 
ef (7.1, 10.1) 
sf (1.5, 3.1) 
sf (1.5, 3.2) 
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5   Conclusion and Future Work 

In this paper, we have presented the data flow analysis of actions defined by UML 
Action Semantics. This data flow analysis forms the basis of data flow-based testing 
and can also be used in other applications. In our approach, DFA is used to find def-
use associations among the actions written in an action language. Our proposed 
technique is applicable to Executable models, in which the models can be directly 
compiled and executed prior to implementation. This is a major contribution because 
the Executable models use actions inside the states of the state-machine to enable a 
model to be executed and compiled. There has been very little work done in the 
testing of executable models, hence our technique has a major impact on the domain 
of Executable modeling. As a proof of concept, we have applied our technique on a 
real world case study of Elevator Control System (ECS).  

We have carried out a detailed data flow analysis of UML actions that can be used 
in data flow testing, program slicing, code optimization and other applications of 
DFA. Our future work includes application of the proposed approach on a number of 
case studies of various sizes to have an empirical evaluation of the applicability of our 
approach. Mutation analysis can also be applied to ensure the fault detection 
effectiveness of our technique. We are developing a tool to prove the authenticity and 
applicability of our approach. Another possible direction can be to extend the 
technique to other UML artifacts, e.g., Activity Diagram in the context of executable 
modeling.  
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Abstract. Model transformations support a model-driven design by providing an
automatic translation of abstract models into more concrete ones, and eventually
program code. Crucial to a successful application of model transformations is
their correctness, in the sense that the meaning (semantics) of the models is pre-
served. This is especially important if the models not only describe the structure
but also the intended behaviour of the systems. Reasoning about and showing
correctness is, however, often impossible as the source and target models typi-
cally lack a precise definition of their semantics.

In this paper, we take a first step towards provably correct behavioural model
transformations. In particular, we develop transformations from UML Activities
(which are visual models) to programs in TAAL, which is a textual Java-like
programming language. Both languages come equipped with formal behavioural
semantics, which, moreover, have the same semantic domain. This sets the stage
for showing correctness, which in this case comes down to showing that the be-
haviour of every (well-formed) UML Activity coincides with that of the corre-
sponding TAAL program, in a well-defined sense.

1 Introduction

The concept of model-driven development (MDD) crucially depends on the possibility
of generating lower-level models (and finally code) from abstract models. Originally
meant as a help for structuring complex programs, models today take on a different,
and much more central, role: they not only act as the primary entity for discussions
with customers, but also within the development trajectory, for fixing interfaces with
other systems or analysing the system with respect to requirements. Thus, it is vital to
ensure that the actual system really adheres to the models. The MDD way of ensuring
this is by directly generating the code from the models, possibly through intermediate
steps where abstract models are refined into more concrete ones. However, this process,
called model transformation, is a real solution only by virtue of the correctness of the
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individual transformations, in the sense that they themselves do not change the meaning
(usually called the semantics) of the models in unintended ways. Showing that transfor-
mations are semantics-preserving is the core problem addressed by this paper. In fact,
we concentrate on behavioural semantics, which is concerned with what the system
actually does (in contrast to, for instance, structural semantics, which is concerned with
the system architecture).

The problem is aggravated by the fact that model transformations usually go between
different meta-models. Quite often, the abstract source model is developed using a vi-
sual modelling language (e.g. the UML), whereas the target model is textual (e.g., a
program).

A lot of research has been devoted to finding appropriate languages for describing
model transformations in the first place [1,2], a quest that has recently resulted in the
QVT language proposed by the OMG group (see [3]). In this context, various notions
of “correctness” have already been studied. Correctness can for instance refer to the
syntactical correctness of the generation algorithms (e.g. of transformation rules in a
rule-based setting [4]), it can be termination of the generation [5] or the uniqueness of
the generated model (confluence of rules) [6]. Behaviour preservation, addressed here,
is different from all these — in fact it presupposes that the transformations are already
correct in the above senses — and is particularly challenging. An area where behaviour
preservation has received some interest is refactoring, a specific kind of model trans-
formation improving the structure of models [7,8]. Contrary to our interest here, trans-
formations during refactorings do not operate on different meta-models but stay within
one language.

Showing behaviour preservation of model transformations between different meta-
models first of all requires a formal definition of the behavioural semantics of source
and target model. Moreover, the semantic domains should be the same, to avoid yet
another transformation on semantic domains. Given a formal semantics, a comparison
of the behaviour of source and target model is a matter of selecting an appropriate notion
of equivalence over the semantic domain.

In this paper, we show that this ideal of showing behavioural correctness of model
transformations is indeed attainable. As an example, we define a transformation from
UML Activities to TAAL [9] programs. An overview of the approach is depicted in
Fig. 1. UML Activities are used to model the orderings of actions within, for instance,
business processes (see [10]). They are frequently employed in workflow modelling
and constitute a very high level, visual description of workflows. They are defined as a
subset of UML, which we will denote UMLA in the sequel. On the other hand, TAAL
is a simple (Java-like) object-oriented programming language, featuring class defini-
tions, object instantiation and concurrency. The transformation thus has to bridge the
gap between a visual model on the one side and program code on the other side. We
achieve this by defining the model transformation on the (MOF-compliant) abstract
syntax meta-models of the two languages (MT in Fig. 1). The model transformation
is thus a transformation of one graph into another, and consequently we employ graph
transformation rules for their definition. This gives us a model transformation that is
both formally defined and executable, employing the graph-transformation tool Groove
[11] for rule execution.
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Fig. 1. Overall approach of behaviour-preserving model transformation

This choice of example model transformation has the great advantage that both lan-
guages (UMLA and TAAL) are already equipped with a formal semantics, which,
moreover, is defined on the same basis, viz. (again) through graph transformation. On
the UMLA side, we use a semantics defined with Dynamic Meta Modelling [12]; for
TAAL, the semantics were developed together with the language [9]. These formal se-
mantics (semUMLA and semTAAL in Fig. 1) first add run-time specific structure to
the meta-models (e.g. a program counter representation on the TAAL side) and then
define the behaviour as the possible changes in instances of that enhanced meta-model.
Again, meta-models being graphs leads to a graph-rule based definition of the seman-
tics, and we also use Groove to automatically derive the semantics of both UML Ac-
tivities and TAAL programs. The underlying common semantic domain are transition
systems (T S), in which transitions represent applications of graph rules, in particular
also those corresponding to executions of actions (in the UML Activity) or operations
(in the TAAL program). Our semantics thus generates a transition system out of a meta-
model instance of a UML Activity (TSAct) and TAAL program (TSTAAL). On these
transition systems we can compare the execution behaviour of UML Activity and gen-
erated TAAL program, and can show that the ordering of actions in the Activity coin-
cides with the ordering of corresponding methods (with the same name) in the TAAL
program.

Similar approaches to evaluating the correctness of model transformations have been
presented in e.g. [13], where different variants of Statecharts are transformed into each
other, and a bisimilarity check is carried out (on particular instances). In a sense, our
technique also resembles certification techniques for compilers [14,15], where one par-
ticular instance of compilation is afterwards checked for correctness using a gener-
ated certificate. Nevertheless, our ultimate aim is a general proof of correctness of
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the transformation. Once this task is done, we do not have to check the behaviour of
transformation results any more. This paper presents the first steps in this direction,
giving the model transformation itself, its tool-support, the two semantics and a com-
parison of the behaviour, viz. semantics, on examples.

In Section 2, we start with a short introduction to UML Activities and TAAL, and
we define the graph-based transformations as a set of transformation rules over the
meta-models of the two languages. In Section 3 we then argue that the semantics of
Activity and generated TAAL program coincide with respect to trace equivalence, when
comparing the execution traces of the UML model and the object-oriented program.
Section 4 describes the tool support for transformation and semantics generation.

2 Transformation

This section presents the model transformation from UML Activities to TAAL. We start
by discussing the general idea of the transformation and give a first example.

UML Activities are an expressive tool for expressing the order of execution of so-
called Actions, i.e., atomic behavioural units. The ordering is specified by a directed
graph with different sort of nodes: Actions themselves form nodes, the start and
end of an execution is marked with a special InitialNode and FinalNode, and
MergeNodes and DecisionNodes regulate the flow of control. Figure 2 shows
an example Activity (plus its corresponding TAAL program). The semantics of the
Activity is as follows: The first Action to be executed is A, indicated by the fact that
the InitialNode (the filled circle) points to it. The A Action is followed by a
MergeNode and a DecisionNode; if the guarding condition is true, Actions B
and C will be executed, otherwise D is executed, and the Activity ends (indicated by
the FinalNode).

Due to the Merge- and DecisionNodes, UML Activities allow for an unstruc-
tured flow of control which is hard to translate into a structured programming language
without GOTO statements. Therefore, we restrict our model transformation to well-
formed Activities which have a structured control flow.

Well-formedness is inductively defined (similar approaches to well-formedness can
be found in [16]). For this, we introduced the concept of building blocks. Every building
block has exactly one incoming and one outgoing edge connecting it to the rest of the
Activity.

– An Action itself constitutes a building block (see Fig. 3a).
– A sequence of two building blocks, connected by an ActivityEdge, is a build-

ing block (see Fig. 3b).
– A DecisionNode, followed by two building blocks and a closing MergeNode,

is a building block (see Fig. 3c). Note that one of the outgoing ActivityEdges
of the DecisionNodemust be equipped with a guard (i.e., a ValueSpecifi-
cation).

– A MergeNode followed by a DecisionNode and a building block which is
itself connected to the MergeNode is a building block (see Fig. 3d). Here, the
DecisionNode has an additional outgoing ActivityEdge which is taken if
the guarding condition is false.
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A

D

B

C

[gua rd]

program ActivityExecution
{

new ActivityExecutionClass().main()
}

class ActivityExecutionClass
main() {

A();
while [guard] do

B();
C();

endwhile
D();

}
A() {}
B() {}
C() {}
D() {}

endclass

endprogram

Fig. 2. A well-formed UML Activity and the corresponding TAAL program

– A ForkNode, followed by two building blocks and a closing JoinNode, is a
building block (see Fig. 3e).

– Finally, an InitialNode followed by a building block followed by a
FinalNode forms a well-formed Activity (see Fig. 3f).

Such well-formed Activities are the starting point for our transformation, which follows
the inductive definition of well-formedness:

– Actions are mapped to TAAL operations.
– A sequence of two Actions is mapped to a sequential execution of the corre-

sponding operations.
– A DecisionNode and its MergeNode are mapped to an if-then-else expression.
– A MergeNode followed by a DecisionNode is mapped to a while-do expres-

sion.
– A ForkNode followed by a JoinNode is mapped to a forking of methods (i.e.,

parallel execution of the parts in between the nodes).

The generated code is then embedded into a TAAL program skeleton, i.e., a main()
method which is owned by a class ActivityExecutionClass. This class is in-
stantiated, and the main() method is invoked. In the right of Fig. 2, we see the
TAAL program corresponding to the UML Activity on the left. The MergeNode-
DecisionNode structure of the Activity is translated into a TAAL while loop.

Now that we have given the general idea of our transformation, we want to look into
the details of the transformation’s realization. Before we can do so, we need to provide
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(a) Action (b) Sequence

(c) Decision–Merge (d) Merge–Decision

(e) Fork (f) InitialNode

Fig. 3. Different building blocks (a–e) and one well-formed Activity (f)

a couple of prerequisites. As we will see below, the transformation is defined on the
abstract syntax level, i.e. the meta-models.

Meta-models. The abstract syntax of the UML is defined by means of a meta-model,
i.e., a set of class diagrams describing the structure of valid diagram instances. Fig-
ure 4a shows the Activity concepts relevant for this paper. The class diagram basi-
cally looks as expected: An Activity consists of a number of ActivityNodes
which are connected by ActivityEdges. Actions are atomic units of behaviour,
and ControlNodes are used to introduce decisions etc. into the modelled flow of
execution.

The abstract syntax of the TAAL language is more complex. A TAAL Program
consists of a number of Types, one of which is the ObjectType (representing the
concept of a class). A Type owns a number of operations, which have a Signature
and a Statement representing the body of the operation. There are a number of
Statements, including a WhileStat, an ExprStat and a BlockStat used as
a container for an arbitrary number of Statements. An operation call is represented
by the OperCallExp expression. Figure 4b shows the most important concepts of the
TAAL language. Note that for the sake of simplicity, we have omitted a huge number
of concepts (including everything related to variables, literals etc.).

Transformation. As we have seen, the abstract syntax of both languages is described
by means of meta-models, i.e., class diagrams. Therefore, a valid instance of a UML
Activity or a TAAL program can be described as an object diagram which is consis-
tent to the according class diagram. Since object diagrams can be treated as (labelled)
graphs, we decided to use graph transformation rules (GTRs, [17]) for the specification
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Activity

ActivityNodeActivityEdge

Action

- name :  String

DecisionNode

ControlNode

MergeNode

ValueSpecification

* target 1

* source 1

* *

guard
1

(a) UML Activity

Program

Type

- name :  String

ObjectType

Signature

- name :  String

OperImpl

OperDecl

Statement

OperCallExpr

ExpStat BlockStat

WhileStatExpression

operations

0..*
{ordered}

*
refe rred Sig

1

expression

1

substats

0..*
{ordered}

*

con dit ion

1

*

signature

1

body

1

* {ordered}

types

(b) TAAL

Fig. 4. Excerpt of the meta-models

of our transformation. This approach is a common one for defining model transforma-
tions [18], and has—in particular for our undertaking—a number of advantages: First
of all, GTRs are specified completely formally; this is important for our final goal of
proving that our transformation is behaviour preserving. Second, due to their visual ap-
pearance, GTRs are relatively easy to understand, and third, the semantics of Activities
as well as TAAL programs is specified with GTRs, which will allow us to work with
the same formalism for finally proving the correctness of our transformation. Moreover,
due to the availability of GTR tools, our transformation is executable.

GTRs performs changes on a so-called host graph. They consist of a left-hand and a
right-hand graph; if a subgraph similar to the left-hand graph can be found in the host
graph, it is replaced by the right-hand graph. In our case, the start graph is the object
diagram representing the Activity to be transformed. After a couple of applications of
our GTRs, that object diagram is transformed into an object diagram representing the
target TAAL program.

GTRs can be presented in two ways: by explicitly showing the left-hand and right-
hand graph or by merging them into one graph. In this paper, we have chosen the latter,
one-graph approach. This implies that nodes and edges have to be annotated according
to their function within the rule. There are 4 types of elements:

– Nodes and edges which remain unchanged are depicted with black, solid, thin lines.
– Nodes and edges created by the rule are depicted with green, solid, fat lines.
– Nodes and edges deleted by the rule are depicted with blue, dashed, thin lines.
– Nodes and edges which must not exist in the host graph for the rule to match are

depicted with red, dashed, fat lines.

Having said all that, let us now dive into the details. To specify our transformation,
we had to implement 8 main transformation rules. Table 1 shows these rules and briefly
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Table 1. Transformation rules and their tasks

Rule name Task
Activity Creates TAAL skeleton (Program, class ExecutionClass

etc.)
Action Implementation Creates (empty) TAAL operation definitions for every Action,

adds it to ExecutionClass
Action Invocation Creates TAAL operation call for every Action, “wraps” it in

BlockStat
Sequence Merges two BlockStats into one, according to two sequential

building blocks
Decision Creates TAAL if-then-else structure from according

DecisionNode and MergeNode
While Creates TAAL while-do structure from according MergeNode and

DecisionNode
Fork Creates TAAL fork structure from according ForkNode and

JoinNode
Initial Sets the remaining BlockStat as Statement of main()

method

states their task within the transformation process. In the following, we will first explain
the general idea of our transformation, and we will then by way of example show one
of our transformation rules.

The transformation follows the inductive definition of well-formedness of UML Ac-
tivities. A building block can be translated as soon as its included building blocks have
been transformed. On the Activity side this is achieved by reducing translated structures
to simple, structure-less building blocks. While the UML Activity thus gets simpler
and simpler during the transformation, we at the same time build up the corresponding
structures on the TAAL side which grows. To remember which building block belongs
to which part of the TAAL constructs, we use correspondence nodes: Each correspon-
dence node is connected to a UML Activity building block (depicted on the left side)
and to the corresponding TAAL construct (depicted on the right side). Note that this
approach is inspired by Triple Graph Grammars (TGGs, [19]), which explicitly con-
sist of a left-hand graph, a right-hand graph and a correspondence graph associating
constructs from the left side with their pendants on the right side. Note also that the
concept of building blocks and correspondence nodes are only used within the GTRs;
consequently, they do not appear in the meta-models of the two languages.

We want to illustrate this approach with an example transformation rule. Its task is
to transform a certain Activity structure into a while loop, and it is depicted as Fig. 5.
The rule can be applied if the graph to be transformed contains the structure which can
be seen on the left side of the rule. Note the two ActivityEdges at the top and at
the bottom of the Activity structure: They are the connection to the rest of the Activity
and are therefore not deleted.

The part within the two ActivityEdges is the actual loop: A MergeNode is fol-
lowed by a DecisionNode which has two outgoing ActivityEdges: the bottom
one is the edge mentioned before, the left edge leads to the body of the loop. This body is
in fact a building block – it represents some arbitrary (but well-formed) structure which
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Fig. 5. Rule creating a While loop

has already been transformed. For instance, the building block could have been a single
Action; in this case, it would have been a result of applying the Action Invocation
rule. It may also have been a more complex structure which has been reduced to one
building block by applying a sequence of transformation rules.

Now, note that the building block has an association to a correspondence node, which
has a BlockStat node as its right side. That BlockStat node is the result of the
one or more transformation steps described above (the ones which finally resulted in
the single building block on the correspondence node’s left side).
The rule basically performs three changes on the host graph:

1. It creates the TAAL elements forming a while loop, i.e., the WhileStat, a
wrapping BlockStat and some elements representing the loop’s condition.

2. It sets the BlockStat corresponding to the building block as the body of the
while loop.

3. It deletes the loop structure on the Activity side, replaces it with a single building
block and creates a new correspondence node associating that building block with
the wrapping BlockStat mentioned above.

Similar rules are used to treat simple Actions, sequences of building blocks and the
Decision-Merge structure. In addition, we employ the Action Implementation rule to
create operation definitions on the TAAL side, the Activity rule to create the execu-
tion infrastructure like e.g. class definition, and the Initial rule to fill the main-method.
Together, these rules perform a transformation of a meta-model instance of UML Ac-
tivities into a meta-model instance of TAAL programs, from which we can then derive
the concrete syntax TAAL program.

3 Behaviour Preservation

Recall from the introduction that our final goal is to prove that our transformation is
behaviour preserving. In this section, we explain the notion of semantic equivalence
we have in mind, and we argue on our example that our transformation fulfils this
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requirement. To this end, we first of all need to explain the formal semantics of the two
languages, and most importantly, fix the notion of equivalence used in the comparison
(≈ in Fig. 1). As models of behaviour, we use the standard notion of transition system.

Definition 1. A transition system (Q, →, q0) over some alphabet A consists of a set of
states Q, a transition relation → ⊆ Q × A × Q, and an initial state q0 ∈ Q. The set of
transition systems with alphabet A is denoted TS [A].

Some related notation:

q −a→ q′ ⇐⇒ (q, a, q′) ∈ →
q −a1···an−−−−→ q′ ⇐⇒ ∃q1, . . . , qn+1.q = q1 −a1−→ q2 −a2−→ · · · −an−→ qn+1 = q′

A transition system captures the behaviour of a model (or program) if it comprises
precisely the execution steps that the model specifies (or the program executes). A single
execution step is captured by a transition. A run of the system is captured by a connected
sequence of transitions, or in other words, a path through the transition system. Note
that the individual transitions, or execution steps, are thought of as atomic; this imposes
a limit on the size of the steps that can be captured by a single transition, since on too
coarse a level of granularity, the atomicity assumption is not justified (large execution
steps may overlap, interfere or be aborted). In consequence, as we will see, we end up
with a rather “small-step” semantics.

The mechanism for extracting a transition system from a model is what we call the
behavioural semantics of the model (or, more precisely, of the modelling language).
In the case of UMLA and TAAL, this mechanism uses the same graphs as the model
transformation, and again works by means of graph transformation systems: see [9,12],
respectively. In a first step, the static graphs are enhanced to incorporate run-time spe-
cific aspects (e.g., a token in the case of UMLA and a program counter in the case of
TAAL). A graph transformation system, combined with the start graph that is given by
the abstract syntax graph of the model, gives rise to a transition system in the following
way:

– Each state is a graph;
– Each transition is the application of a transformation rule, where the label of the

transition is given by the name of the applied rule;
– The initial state is given by the start graph;
– Whenever a graph transformation rule is applicable to a state, the corresponding

rule application is a transition and the resulting graph is a state.

Thus, every well-formed UML Activity gives rise to a transition system, as does every
TAAL program. When, then, do two transition systems describe the same behaviour?
This is a question that has received much attention, especially in the context of process
algebra (see [20]). It has become clear that there is no single answer that is satisfactory
in all cases; rather, “sameness” can be captured by one of a range of so-called equiva-
lence relations over transition systems; see, e.g., [21]. The weakest (most liberal) notion
of “sameness” is that of trace equivalence, which is defined as follows.
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Definition 2 (trace equivalence). Assume that the alphabet A is partitioned into a set
of internal and external actions, Ain and Aex. A trace of a transition system T ∈ TS [A]
is a sequence a1 · · · an with ai ∈ Aex for all 1 ≤ i ≤ n, for which there is a path

q0 −w0 a1 w1 a2 ···wn an wn+1−−−−−−−−−−−−−−−−→ q′

such that wi ∈ A∗
in for all 0 ≤ i ≤ n + 1. The traces of T are collected in Traces(T ).

Two transition systems T1, T2 ∈ TS are trace equivalent, denoted T1 ≈ T2, if
Traces(T1) = Traces(T2).

In our case, the issue of equivalence is more complicated yet: despite the similarity of
the semantic definitions of UMLA and TAAL, we cannot directly apply the existing
theory, since the transition systems under comparison do not have the same alphabets.
The reason for this is simple: as labels we have the rule names of the graph transforma-
tion system, and these are different for both languages. Furthermore, and more subtly,
the granularity of the execution steps is not the same: in UMLA, executing an activity is
based on the movements of tokens, whereas in TAAL it is based on a program counter;
these mechanisms obey different rules, and hence moving a token from one activity to
the next comprises different steps, in a different order, than moving a program counter
from one method invocation to the next.

Our solution to this problem is to identify one rule in the graph transformation system
for UMLA as well as the one for TAAL that we take to represent the “actual” execution
of the action (on the one hand) or method (on the other).1 For this rule, instead of using
the rule name as label in the transition system, we use the name of the action. Thus, the
functions semUMLA and semTAAL in Fig. 1 map each UMLA resp. TAAL abstract
syntax graph to the transition system constructed as per the algorithm above, with the
modified transition labelling. All other rule names are interpreted as internal in the
sense of Def. 2.

The core challenge of our approach is then to prove that for all UMLA graphs G, the
following holds:

semTAAL(MT (G)) ≈ semUMLA(G) . (1)

Our claim is that (1) indeed holds. As an example, Fig. 6 shows the transition systems
derived from the example Activity and the resulting TAAL program of Fig. 2. We start
with the TAAL transition system (2.b), which exactly looks as expected: The loop can
immediately be identified. A closer investigation reveals that the set of traces is also
as expected: First, the A() operation is executed, followed by an arbitrary number of
executions of the sequence B()–C(), and finally the D() method is executed. Note
that all this happens within the execution of the main() operation, i.e., we do not
take that operation into account. The set of traces of the TAAL program can thus be
described by the regular expression A(B C)∗D.

The Activity’s transition system (2.a) looks different, though: It seems to contain two
loops. These loops are due to the traverse-to-completion semantics of UML Activities
[22]. Still, this does not affect the correctness in our chosen criterion: the UMLA tran-
sition system gives us exactly the same set of traces over Actions, namely A(B C)∗D.

1 For UMLA this is a rule called action.start(); for TAAL it is
OperVirtualCallExp.
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(a) UML Activity (b) TAAL

Fig. 6. The transition systems of the example

We have carried out this comparison on a large number of examples, involving differ-
ent structures of the UML Activity, in particular also with more complex nestings of
Decision and Merge nodes. In all of these examples, the resulting transition systems
were trace equivalent. Nevertheless, we see this only as a first step towards showing
behaviour preservation, and our ultimate aim is a general proof of correctness for the
transformation, in the sense of 1.

4 Tool Support

The preceding sections have shown that in our setting, the semantics of UML Activi-
ties and TAAL programs as well as our transformation is specified by means of graph
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transformation rules. Therefore, we rely on a tool which supports the creation and ap-
plication of graph transformation rules. As we have mentioned before, we use the tool
Groove [11] for this purpose.

For the transformation tool, our main requirement is that the transformation can be
specified formally – otherwise, we would not be able to perform a formal proof of
correctness. Since most of us already were experienced Groove users, it was an obvious
choice to also use that tool for defining the transformation itself. This section will detail
our reasons for that choice, and it will point out some particular strengths of Groove.

Despite the “standard” graph transformation features like creation and deletion of
nodes and edges, Groove supports some more advanced concepts which allowed us to
specify our transformation as desired. First, Groove supports attributed graphs, which
e.g. allowed us to create TAAL operations having the same name as their corresponding
Actions. Additionally, we were able to specify the Action Implementation rule in
such a way that one TAAL operation is created for every name of an Action; for an
Activity that contains two Actions named A, this results in a TAAL program with
one A operation, but two invocations of that operation.

Second, a powerful notion of universal quantification has been implemented in
Groove. In a nutshell, this means that rules can be written which manipulate all oc-
currences of a node in a certain context. While implementing our transformation, this
was of particular importance for the Sequence rule: Recall from Sect. 2 that this rule
merges two BlockStats into one, and part of this is to add all sub statements of
one BlockStat to the resulting BlockStat. Universal quantification allowed us to
implement this behaviour within one rule.

Another reason for choosing Groove was that the transformation rules we defined
basically relate parts of a UML Activity with their corresponding parts on the TAAL
side, in contrast to an operational transformation specification (e.g. in Java). Since re-
lating elements of source and target models will probably be an important part of our
proof, we hope to reuse the transformation rules for this purpose.

Figure 7 shows a screenshot of Groove. On the left side, the names of the transfor-
mation rules can be seen. Note that at the bottom of the rule’s compartment, a couple of
rules are shown whose names start with “Failure”. These rules match if certain struc-
tures exist in a state which would indicate that the transformation has failed. Note also
that these rules have a priority of 0: This makes sure that the failure rules can only
match if none of the transformation rules matches any more (i.e., after the complete
transformation has been carried out).

The big compartment on the right shows the start state representing the Activity as in-
troduced in Fig. 2. Note that Groove allows to hide parts of the displayed graph; we have
hidden the Activity node and its edges to the Activity’s element to reduce the complex-
ity of the graph’s visualisation. Note also the DMMSystem node to the left of the graph:
This node and the associated Invocations are needed for the graph transformation
rules describing the Activity’s semantics. They are deleted by our transformation.

In order to use Groove, we translated the UML Activity under consideration into a
suitable format. For this, we have written an Eclipse [23] plugin which takes a UML
Activity model as input and generates a Groove state graph out of it. The Activity is
given in the XMI format which is then read and processed using the API of the Eclipse
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Fig. 7. Screenshot of the tool Groove

UML2 project. Since the Activity’s model basically is the graph to be processed, the
generation is straight-forward.

On the TAAL side, a similar Eclipse plugin exists: It transforms TAAL programs into
Groove-format abstract syntax graphs and back again. Being able to generate a TAAL
program’s concrete syntax from a graph turned out to be very helpful for the validation
and debugging of our model transformation.

5 Conclusion

In this paper, we have developed a model transformation from UML Activities to
TAAL, defined a notion of correctness of the transformation and argued that—based
on the formal semantics of the two languages—the transformation is indeed correct.
Transformations from UML models to object-oriented programming languages are
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frequently employed in a model-based development, and thus their correctness con-
stitutes an important part of MDD. Our ultimate goal and future work is a formal proof
of correctness.

The contribution of this work does, however, go beyond this specific transformation.
Although the two modelling languages are conceptually very different, a comparison
can be carried out. There are a number of important issues which helped towards this
goal. First of all, it is the existence of meta-models (of the same language) which fa-
cilitated the definition of the transformation. Secondly, indispensable for a correctness
proof is (a) a formal definition of the transformation (here given because of the use of
graph transformation systems) and (b) a formal definition of the semantics of the lan-
guages. Crucial is also the (formal) definition of the employed notion of equivalence;
for this, a common semantic domain of the languages is important. Last but not least,
such a comparison would not have been possible without a tool for executing the model
transformation.

The method proposed in this paper for the comparison of behavioural semantics
is obviously only applicable if the modelling languages in question are indeed be-
havioural. Moreover, it should be possible to express their semantics by means of tran-
sition systems. Fortunately, the transition system formalism is itself quite general, so
we do not expect this to be a limiting factor.
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Abstract. By releasing their Model Driven Architecture (MDA) as a new stand-
ard, the Object Management Group (OMG) [1] proposed a new development 
concept toward existing traditional paradigms. It set a new exciting research 
area in which it would be possible to develop truly independent and powerful 
programming environments capable of achieving new levels of productivity, 
performance and maintainability. With this goal in mind, this paper describes a 
research conducted with the purpose of improving database performance 
through the union of autonomic computing aspects and MDA. It is widely 
accepted that the model development approach is gaining importance in IT 
projects today; therefore the technique discussed here, presents a way of 
assessing performance, identifying flaws and improving software activities in 
order to create a self-managed environment. With new defined stereotypes and 
tagged values; in conjunction with profiling libraries, and relying on autonomic 
aspects, the proposed extension enables code generation in order to conduct a 
thorough set of performance analysis, indicating the best suitable database 
configuration for a given functionality. After setting the underlying problem, 
explaining tools configuration and concepts and describing the profiling 
technique, it presents a study based on a real project conducted by the Brazilian 
Ministry of Defense.  

Keywords: MDA, Database, Profiling, benchmarking, performance testing, 
code generation.  

1   Introduction 

Research conducted in recent years has shown that model approaches are becoming 
essential tools in software development [1]. This new paradigm implies on new ways 
of analyzing overall software performance. Attempts to integrate performance 
analysis with MDA have been done, and are still in course [3]. However, such 
attempts present mostly ways to generate test code regarding general software 
engineering aspects. 

The lack of an efficient representation for Database profiling has motivated us to 
extend the UML models (as implemented in the development environment) in order 
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to cope with undesirable performance situations along software execution. Therefore, 
the idea relies on an extension with the ability to mark business domain models with 
stereotypes and tagged values, seeking to understand database performance aspects. 

Despite what is being done, there are still gaps involving proper database analysis. 
Still, different approaches focusing on benchmarking MDA techniques [5], or on the 
testing and verification of model transformation [6] are currently in activity, and our 
work comes to join all efforts to upgrade the MDA world. 

Although MDA promises to implement a self-sufficient model driven development 
theory, supported now by a few important companies and tools, it still needs to 
address several specific development aspects, including an efficient and complete set 
of Meta Object Facility [7] models and objects to address database specifics. 

Also, as stated by the IBM Autonomic Computing Manifest, we have come to a 
point at which the IT industry creates powerful computing systems on a daily basis. In 
order to make individuals and business more productive, by automating their practices 
and processes, we face paths ahead showing that the autonomic approach might prove 
to be valuable in the near future [21]. 

By pursuing the vision of creating intelligent solutions with self-management 
capabilities, the proposed extension, defines a set of general rules and techniques that 
creates a self-configuration and self-assessment environment, capable of identifying 
the best system-database interaction according to the functionality involved. 

2   Problem Definition 

Since the beginning of computational growth, companies are engaged in creating to-
ols to aid software profiling; creating autonomic algorithms; and enabling developers 
to identify flaws and re-factor problematic systems [8, 9 and 10].  

The promise of an efficient model driven development and the comparable effort 
of researching good autonomic practices have gained many adepts. The AdroMDA 
project [2] is one of few important model development tools, based on the OMG 
MDA specification [1]. From single CRUD (Create, Read, Update and Delete) 
application to complex enterprise applications, it uses a set of ready-made cartridges 
(which implements highly widespread of Java development API) to automatically 
generate up to 70% of software source code. It is expected that all efforts should point 
to an interesting future where the modeling and coding stages will be merged without 
significant losses. 

The same horizon is faced by autonomic computing experts. Although it might be 
considered a young research area, the autonomic computing perspective has brought 
to discussion the necessity of creating new techniques to cope with Information 
Technology increasing complexity. 

Given the foregoing, it is necessary to explain the problematic scenario that we 
have faced with in our project. Our projects use an MDA Framework composed by 
the AndroMDA environment, the Maven tool [16] and the Magic Draw Case Tool 
[24]. The AndroMDA environment comprises of a set of specialized cartridges that 
are used to generate the software code. One of its cartridges is the Hibernate 
Cartridge, which is responsible for generating all the database manipulation code. As 
for database code generation all seemed perfect, the development database was used 
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to test the system while as it was being constructed. Only three to five users were 
simultaneously accessing, the database and development seemed to go smoothly. 
When the system was deployed and put into production, a small set of functionalities 
presented longer response times than we had anticipated. The production environment 
needed to be accessed by 10 to 20 users simultaneously and had to deal with 
thousands, even millions of records to be queried or joined. It suffices to say that 
performance degradation perception was immediate, and as such, something should 
be done do locate and solve the root problem.  

To solve it we began by stating three topics that needed to be immediately 
addressed:   

1. How to isolate the functionalities and their problematic attributes? 
2. How to solve these problems in an elegant and transparent way for the end 

user? 
3. How to automate the solution extending the UML objects to address 

Database Testing and Analysis? 

Using the current infra-structure to address the database performance analysis was 
not the best way, since we wanted to create a systematic and self-sustained analysis 
approach. It was necessary to adjust the Hibernate Cartridge, and implement a new 
Profiling Cartridge, embedding autonomic aspects, in order to create a self-configuring, 
self-healing and self-optimization infrastructure, as explained in the next section. 

3   The Profiling Extension 

The profiling extension process was straightforward. We needed to create new design 
elements to indicate when it would be necessary to embed monitoring code inside the 
software. For that purpose we followed a five-step design process, in order to extend 
the MDA framework: 

1. Defining the profiling library. This stage was responsible for identifying the 
profiling libraries that would be used. Our objective was to create an infra-structure that 
could cope with any profiling library available, so we decided to use design patterns to 
enable the ability to plug the library as necessary. This technique is explained in the 
following sections. However, after analyzing several libraries two appeared to be the 
best choices: the JAMon Library [11] and the InfraRED Library [15]. 

2. Defining Stereotypes. This stage was responsible for creating all the stereotypes 
necessary to model configuration. For each feature available a stereotype was created:  

1. API timing: Average time taken by each API. APIs might be analyzed through 
threshold assessment and first, last, min, max execution times: 

→    <<APIView>>: which enables api monitoring; 

2. JDBC and SQL statistics: Being the objective of our research, we created the 
following stereotype for accessing JDBC and SQL statistics: 

→   <<SQLQueryView>>: which enabled the displaying of the created hibernate 
queries;  



 A Practical MDA Approach for Autonomic Profiling and Performance Assessment 113 

3. Tracing and Call Information: responsible for showing statistics for method 
calls. The following stereotype was created to mark/enable this option: 

→    <<TraceView>>: which enabled a detailed call tracing for method calls; 

3. Defining Tagged Values. This stage was responsible for creating all tagged values 
necessary to support and configure stereotypes: 

1. @profiling.active: defines whether the profiling activities are going to 
be executed. Setting its value to “yes”, implies generating the profiling code, 
and consequently enabling the profiling activities; setting to “no”, the code 
will not be generated. Applies to <<APIView>>,<<SQLQueryView>> and 
<<TraceView>> stereotypes; 

2. @profiling.apiview.starttime: Defines the starting time at which 
the profiling code should initiate monitoring. For example: it is not interesting 
to monitor every aspect of the system, therefore we indicate the minimum limit 
in which the profiling code should initiate the logging process. Applies to the 
<<APIView>> stereotype; 

3. @profiling.sqlqueryview.delaytime: Defines the starting time in 
which the profiling code should initiate SQL monitoring. For example: it is not 
interesting monitoring all query execution in the system. It is only necessary to 
assess queries that surpass a certain delay threshold. Applies to the 
<<SQLQueryView>> stereotype; 

4. @profiling.traceview.delaytime: Defines the starting time at which 
the profiling code should initiate Trace monitoring. For example: it is not 
interesting to monitor all method calls in the system. It is only necessary to 
assess the calls that surpass a certain delay threshold. Applies to the 
<<TraceView>> stereotype; 

 

Fig. 1. Stereotypes and tagged values hierarchy 
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Fig. 2. Associating the stereotype to the persistence package 

4. Adjusting the Hibernate Cartridge. This stage was responsible for extending the 
hibernate cartridge so it would be able to cope with the new stereotypes. The 
Hibernate API works through the concept of Sessions, where a set of instructions, 
referring to database interactions, creates the notion of an unique Session. Normally, 
when a database connection is opened, a Hibernate Session is opened to accommodate 
that database connection. It stays open as the hibernate continues to access the 
database. Given those rules, we realized that we would have, not only to analyze the 
software according to a class-based scope but we needed a broader and more 
complete approach in which the profiling would be able to gather information 
globally. The profiling scope should reach the entire persistence layer. This constraint 
motivated us to design the stereotype as having a package scope, not only class scope. 

The solution involved the extension of the AndroMDA persistence base package 
(andromda-profile-persistence) in order to include support for our profiling stereotype 
and tagged value. That allowed us to embed the necessary profiling code in the 
hibernate generated code. 

5. Creating new configurable profiling cartridge. This stage was responsible for 
creating the profiling cartridge responsible for generating the monitoring code. The 
cartridge is explained in the following section. 

Next, an autonomic environment should be set in order to create the self-managed 
system-database relationship. This environment was based on the following aspects: 

1. Self-Configuration Aspect. This aspect was responsible for identifying the best 
hibernate session configuration according to functionality’s database access needs. 
Our objective was to create an infra-structure that could cope with the system 
demands, such as table joins and cache, and were also able to remember this 
configuration after resources have been released and/or system has been shutdown. 

2. Self-Optimization Aspect. This aspect was responsible for identifying the best 
configuration values for previously detected attributes. It should also persist long after 
system shutdown. 
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3. Self-Healing and Self-Protection Aspects. These aspects are not specifically 
attended in this implementation. It is still under development. There is enough 
literature addressing connection breakdown, web server crashes recovery and network 
disconnection. IBM Tivoli [22] is one that covers such elementary hardware issues. 

4   The Autonomic Profiling Strategy 

The autonomic profiling approach was built on top of the AndroMDA framework [2]. 
According to the background presented previously, we had two profiling libraries 
candidates to use. Both presented efficient and complementary functionalities and we 
decided to design a way to interchange both libraries as necessary. The configuration 
strategy, as the term describes, was to use the well known strategy pattern. With this 
approach, we managed to set the profiling library by means of a tagged value: 

• @profiling.strategy: defines which library should be used during 
profiling analysis. Assigned values are: {JAMON, INFRARED}. 

The specification of the profiling configuration details the functional relation 
between the MDA, as the source model, and the profiling technique, as the target 
implementation. This configuration method enabled us to interchange any profiling 
library of interest.  

 

Fig. 3. illustrates the strategy pattern of interchanging profiling libraries and profiling 
configuration 

 
Fig. 4. Decision Tree for configuration definition. Configuration takes into consideration a 
fetching strategy first and a cache strategy first. 
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Also, the configuration process was responsible for identifying the best system-
database relationship for the specified functionality. The configuration and 
optimization processes are best explained in figures 5 and 6: 

The overall idea is this: (1) the hibernate configuration initiates in its default 
values; (2) when the source code is generated, it embeds all the autonomic code that 
will measure any configuration attribute and evaluate it to find the best performance 
value; (3) the profiling code creates a decision tree and identifies the best 
configuration for that functionality; it first evaluates a fetching strategy as first 
perspective and after a cache strategy as first perspective. After acquiring the 
assessment measures, it identifies the best perspective solution; and (4) it than stores 
the configuration for future access, whenever that functionality is called.  

Additionally, we needed to guarantee that the configuration kept optimized through 
software execution. Meaning that, when in production, the system database would 
probably have the number of records increased, and join strategies could have its 
execution time affected. Therefore, the autonomic configuration policy should be re-
executed and reconfigured in order to guarantee a best perspective configuration.  

For example, whenever a new software release was put into production the 
configuration process was executed and used as base configuration for accessing 
functionality’s data. This value is than used for assessing whether the actual execution 
time is well adjusted with the stored configuration. So, whenever the functionality 
was called, a comparison was made between the actual time and the configured time. 
If the actual time falls below or above 20% of the configured value the system reruns 
the configuration process searching for a new configuration more suitable for that 
functionality. 

 

Fig. 5. This figure presents the range of values used to guarantee that the best accessing 
configuration was kept along system use 

5   Profiling Analysis and Results 

For the definition of the analysis process, we must understand the execution scenario. 
The development was focused on creating a Web-based application, using Struts [19], 
running on the JBoss Application Server (JAS) [20], and accessing a Relational 
Database through Hibernate API [13, 14]. System modeling was done using an UML 
tool, the AndroMDA, and the Maven tool [16], and for Java development we used the 
Eclipse IDE [17]. The data load, was irrelevant at development time, but it became 
crucial by the time the system was put into production. The generated Hibernate code 
and configuration did not comprise with the system’s response time non-functional 
requirements. 
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Fig. 6. Use Case used as Test Case 

As soon as the system performance started to interfere with overall system 
usability, we found urgent to locate the bottleneck source and recreate all involved 
models. On the other hand, we needed to ensure that the new modeling would not 
create new bottleneck sources. 

The profiling technique enabled us to embed monitoring code that gathered all 
necessary information and pointed the features that needed to be remodeled. The 
analysis below shows what the profiling technique is capable of. 

Statistics were acquired along two different scenarios: (1) less than 10,000 registers 
in non-optimized and optimized environments; (2) more than 2,000,000 registers with 
non-optimized and optimized environments. After performing measurements in both 
scenarios, we came up with the averages presented bellow.  Tables 1 and 2 present 
three functionalities that were assessed to test the MDA-Profiling strategy: 

Table 1. Non-Optimized Environment: Identifying problematic functionalities. Functionalities 
F2 and F3 show that the real execution time were alarmingly out of range. Functionality names 
were omitted for confidentiality purposes. Time values averages were rounded up.  

Functionalities Expected Execution 
Time  

Actual Execution 
Time 

Problematic 
Functionality 

Single Table (F1) 10 to 50 ms 30 ms No 
Join with 2 Tables (F2) 100 to 1000 ms 50,000 ms Yes 
Join with 3 Tables (F3) 500 to 1000 ms 10,000,000 ms Yes 

Table 2. Optimized Environment after reconfiguration: Solving problematic functionalities. 
After database access optimization, functionality F3 still presented an execution time 100% 
higher the estimate one. We assumed it as estimation error and corrected the non-functional 
requirement specification. Functionality names were omitted for confidentiality purposes. Time 
values averaged were rounded up.  

Functionalities Expected Execution Time  Actual Execution Time 
Single Table (F1) 10 to 50 ms 23 ms 
Join with 2 Tables (F2) 100 to 1000 ms 1000 ms 
Join with 3 Tables (F3) 500 to 1000 ms 3000 ms 
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Table 3. Configuration process for functionality F3. The best path ended with the select fetch 
strategy and the extra-lazy fetch type, noticing that it was configured on a cache first perspective. 

Cache Strategy ON   
Fetch Strategy Fetch Type Time (in seconds) Selection 

Join Fetch  Average (Total) (Hits)  
 Immediate 50 (250) 5  
 Lazy 16 (81) 5  
 Extra-Lazy 14 (70) 5  
 Proxy 12 (60) 5  

Batch Fetch    
 Immediate 6 (30)  5  
 Lazy 20 (100) 5  
 Extra-Lazy 20 (100) 5  
 Proxy 8 (40) 5  

Select Fetch    
 Immediate 6 (110) 21  
 Lazy 3 (30) 11  
 Extra-Lazy 3 (30) 12 X 
 Proxy 5 (50) 12  

Each system functionality was assigned an estimated execution time, based on 
system’s non-functional requirements, as shown in Table 2. The system was deployed 
in production environment and measured without the optimized code. Those 
functionalities that had overcome the estimated value by 20% were identified as 
problematic. 

After generating the code and deploying the system, the optimization process 
started searching for the best configuration possible. At this time, we were able to 
guarantee that the performance observed that functionalities F2 and F3 were the best 
that the configuration aspects could offer. 

 

Fig. 7. The best path for functionality F3 in the decision tree. Both Lazy and Extra-Lazy were 
candidates, but the number of hits (which means the number of database access) where lower 
for Lazy, therefore the overall average was higher. Values were rounded up by the profiling 
library. 
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Values presented in table 2 show that the new optimized code reduced significantly 
the execution time. It showed a large reduction in database resource consuming, 
taking into consideration that in a web-based environment such optimization might 
prove to be extremely relevant. 

6   Conclusions 

This paper presented a new approach for using profiling techniques in MDA 
development. Our contribution aimed at creating a MDA extension to help identifying 
and solving performance problems regarding information system and database (data 
warehouse) communications. In addition, we defined an extensible, easy-to-use 
profiling infra-structure that can be configured to execute different profiling libraries 
and techniques, obtaining a more complete set of results. 

 The analysis results have validated the autonomic profiling approach and proved 
that the MDA extension might be used to analyze the code as soon as it is deployed. 
The initial effort to create the infra-structure proved laborious although following 
developments shall not suffer the same problems as it has already been implemented 
and added to the AndroMDA features.  

Finally, the intention was to obtain development information in order to allow 
developers and analysts to make proper decisions regarding software design. 
According to the analysis results, the extension was able to expose flaws and delays 
during system execution, and, consequently promote the necessary corrections to 
ensure that the generated code was reliable and optimized in both scenarios. 
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Abstract. Ladder Diagram (LD) is the most used programming language for
Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial
computer used to automate industrial processes. Bugs in LD programs are very
costly and sometimes are even a threat to human safety. We propose a model
driven approach for formal verification of LD programs through model-checking.
We provide a metamodel for a subset of the LD language. We define a time Petri
net (TPN) semantics for LD programs through an ATL model transformation.
Finally, we automatically generate behavioral properties over the LD models as
LTL formulae which are then checked over the generated TPN using the model-
checkers available in the Tina toolkit. We focus on race condition detection.

1 Introduction

Actually, verifications of Programmable Logical Controllers (PLCs) programs are made
through exhaustive testing. This method takes a long time to be executed and some
errors may pass unnoticed in complex systems.

Ladder Diagram (LD) programs are difficult to debug and modify because its graph-
ical representation of switching logic obscures the sequential, state-dependent logic
inherent in the program design [1]. Not found bugs in PLC programs are often very
costly and sometimes are even a threat to human safety. This work aims to provide
a framework for automatic formal verification of PLC programs written in LD
language.

To perform the formal verification of LD programs we introduce a model driven
approach. LD models are designed according to an LD metamodel. These LD models
are then translated into a formal language. The generic LTL properties to be verified are
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generated automatically, and finally we rely on model-checking to verify the temporal
properties. For this work we have chosen the time Petri nets (TPN) as formal language,
and the Tina1 toolkit for simulation and model-checking. We focus on the verification
of generic, i.e. model independent, properties, especially the absence of race conditions
in LD programs.

This paper is organized as follows. Section 2 introduces the PLCs, the LD language
and the validation issue. Section 3 presents the approach used to formally verify LD
programs. Section 4 presents the related work and Section 5 concludes and presents
some perspectives and future work.

2 PLCs, Ladder Diagrams and Validation Issue

2.1 Programmable Logical Controllers (PLCs)

A PLC is a special purpose industrial computer used to automate industrial processes.
It can be connected to several inputs and outputs, and can be programmed to control the
state of the outputs depending on the configuration of the inputs and its internal state.

The PLC execution follows a cycle. The state of all inputs is copied into memory.
Then, the internal program runs and creates in memory a temporary table of all outputs.
When this program completes, the table is written to the outputs and a new cycle starts.
It repeats as long as the PLC is running.

A PLC can be programmed using any of the five languages [2] which are: Instruction
List (IL), Structured Text (ST), Function Blocks Diagrams (FBD), Sequential Function
Chart (SFC) and Ladder Diagram (LD). The semantics of these languages is not strictly
defined, certain definitions are missing or contain ambiguities. Some research work has
been made to solve these ambiguities, e.g. [3]. This article focuses on the LD language,
but the same approach could be used for the other languages.

2.2 Ladder Diagram (LD)

Ladder Diagram is the most used language for programming PLCs. It is a graphical
language where the basic elements are based on an analogy to physical relay diagrams
[4], so it does not represent a big paradigm shift for technicians that are not used to
the new computer techniques and programming languages. In Figure 1 is represented a
simple LD program in the textual concrete syntax (ASCII art) normally used. We can
look at it as a relay diagram where the power flows from the left to the right, passing
through the inputs to activate the outputs. The program is delimited by a vertical line on
the left representing the hot wire, and another one on the right representing the neutral
wire. These vertical lines are called the left and right rails.

The horizontal lines (rungs) and the associated elements represent boolean equations.
The dependent element of the equation (coil) is represented by the symbol "( )", while
the independent elements (contacts) are represented by "| |". A diagonal line is placed
in the middle of symbols as in "|/|" to indicate that the negated value of the variable
is used. Variables placed in series represent the AND boolean function while variables

1 http://www.laas.fr/tina/

http://www.laas.fr/tina/
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| A B C |
+--------| |----+---|/|-------( )-----+
| | |
| C | |
+--------| |----+ |
| |
| C D |
+--------| |------------------( )-----+

Fig. 1. Simple Ladder Diagram example

placed in parallel represent the OR boolean function. The rungs are executed in order
from the top to the bottom. So the program in Figure 1 represents the boolean equations
C = (A ∨C)∧¬B and D = C. A variable can be used as a coil and as a contact in the
same rung, that is the case of variable C in the first equation.

The elements presented so far are the basic elements of LD. A program may also
contain more complex elements, the functions and function blocks (FB). Functions al-
ways produce the same outputs when provided with the same inputs while FBs keep
an internal state that also influences the outputs. They are represented by a rectangular
box with their names inside, their inputs on the left side, and their outputs on the right
side. These boxes are connected in the diagram’s rungs through its inputs and outputs.
The LD language also provides other imperative elements (procedures, goto) that are
not treated in the scope of this work.

It can be noted that LD programs are hard to visualize and become unreadable even
for small to medium size programs. The validation of these programs through exhaus-
tive testing are very expensive and unsure. A method for their formal verification is then
of great help for system engineers.

2.3 Ladder Diagram Validation

In this work we intend to create a framework for automatic verification of temporal
properties in LD programs. The properties to be verified over an LD program could
be generic (and apply to every model) or specific to one model. Model related proper-
ties must be formulated by the programmer, while generic properties only rely on the
metamodel concepts and can be automatically generated from the model.

One of the important generic properties to be verified on an LD program is the ab-
sence of race conditions [5]. A race condition is an undesirable situation that occurs
when a device or system attempts to perform two or more operations at the same time
but, because of the nature of the device or system, the operations must be done in the
proper sequence in order to be done correctly. A race condition occurs in an LD program
when under fixed inputs and function block states, one or more outputs keep changing
their values. In the LD example of Figure 2, the variable A is an input, C and D are
memory, B and E are outputs. It can be seen that even if A is kept stable, the variables
C, D and E will not stabilize thus it is an example of race condition. This kind of prob-
lem is sometimes difficult to detect with traditional techniques, and bugs not detected
during the test period can be very costly to correct later. In section 3.4 we present how to
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express this property as a LTL formulae and how to automatically generate and validate
the formulae from the model.

3 MDE-Based Approach for Formal LD Program Validation

The approach we chose to verify properties in LD programs consists in translating the
semantics of LD programs to a language formally (mathematically) defined. The chosen
formal language is the Time Petri Net (TPN) [6].

To define and execute the translation we used a model driven engineering (MDE) ap-
proach. LD Programs are models that must conform to the LD metamodel. These mod-
els are then translated to a TPN model that conforms to a TPN metamodel. This TPN
model is then translated to the input format of the Tina tool. General properties over
the Ladder model are also automatically generated as LTL formulae. Finally, we use
model-checking to verify the properties represented in LTL formulae over the generated
TPN. A general schema of the process can be seen in Figure 3. All translations between
models cited above were written in ATL (ATLAS Transformation Language) [7]. This
language can be used to write translations of type model-to-model (M2M) and model-
to-text (M2T). In this case study we have developed one M2M (Ladder2PetriNet) and
two M2T (PetriNet2Tina and Properties) transformations.

3.1 Ladder Diagram Metamodel

The first contribution of this study is the definition of a metamodel for a subset of the LD
language. An incremental approach has been chosen to build the metamodel. As a first
step it was built a metamodel able to represent a significant subset of the LD language.
This metamodel can be seen in Figure 4. An LD program (Program) is composed of
variables (Variable) and rungs (Rung). A variable may represent an input, output or
memory location (InOutKind). A rung is composed of elements (Element) that denote
basic (BasicElement) and complex (ComplexElement) elements.

A basic element can be "normal_open" or "normal_closed" (PlacementKind). It de-
notes either a coil (Coil) or a contact (Contact) and always references a Variable. Com-
plex elements represent functions and FBs. The attribute kind contains the name of
the represented function or FB (Functions). Complex elements are composed of inputs

| A B |
+--------| |------------------( )-----+
| C D |
+--------|/|------------------( )-----+
| D C |
+--------| |------------------( )-----+
| C E |
+--------| |------------------( )-----+

Fig. 2. Simple example of races in LD
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(Input), outputs (Output) and internal variables (InternalVariable). The enumeration
Functions can be easily extended to contain all the standard functions and FBs.

We introduce in this work the concept of path (Path). A rung is composed of paths.
A path is a closed circuit by which the power can flow through the contacts to activate
a coil. In the example of Figure 1 we have two paths in the first rung, one representing
the boolean equation C = A ∧¬B and the other representing the equation C = C ∧¬B.
Note that this is a simple decomposition of the original equation. We have a single path
in the second rung representing the equation D = C.

A path may have any number of contacts or outputs of complex elements as opera-
tors (Operator) but only one coil or input of complex elements as result (Result). The
restriction of only one result per path was introduced to facilitate the translation later,
but it does not introduce loose of generality because a path with n results can always
be decomposed into n paths with one result. Note that Result is a generalization of
the elements that may have their state changed by the power flow, while Operator is a
generalization of the elements that are conditions for the power flow.

The data type of an internal variable of complex elements are restricted in this work
to Boolean and Integer (VariableType) and the global variables of the program (Vari-
able) are restricted to Boolean.

3.2 Time Petri Nets, SE-LTL and Tina Toolbox

In this study, we have chosen the technical space of time Petri nets as the target rep-
resentation for formally expressing our LD semantics. We also have chosen to express
our temporal properties as LTL formulae (Linear Temporal Logic) over the Petri net
associated to a LD model. Then we manipulate Petri nets and LTL formulae within the
Tina toolkit.

Time Petri Nets. Time Petri net (or TPN) [6] is one of the most widely used model for
the specification and verification of real-time systems. TPNs are Petri nets in which a
nonnegative real interval Is(t), with rational end-points, is associated with each transi-
tion t of the net [6].

Tina

Ladder
.ecore

PetriNet
.ecore

myProgram
.Ladder

myProgram
.PetriNet

Ladder
2PetriNet

.atl

myProgram
.net

<<conformsTo>>
<<conformsTo>>

ATL

PetriNet
2Tina
.atl

ATL

properties
.ltl

Fig. 3. General overview of the LD validation approach
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Fig. 4. A simplified LD Metamodel

Fig. 5. A Time Petri net

Definition 1. A TPN is a tuple 〈P,T,Pre,Post,m0, Is〉, in which 〈P, T, Pre, Post, m0〉 is
a Petri net, and Is : T → I+ is the Static Interval function.

P is the set of places, T is the set of transitions, Pre, Post : T → P → N+ are the
precondition and postcondition functions, m0 : P → N+ is the initial marking. I+ is the
set of nonempty real intervals with nonnegative rational end-points.
A Time Petri net is shown in Figure 5.

Let R+ be the set of nonnegative reals. For i ∈ I+, ↓ i denotes its left end-point, and
↑ i its right end-point (if i bounded) or ∞. For any θ ∈ R+, i −. θ denotes the interval
{x − θ|x ∈ i∧ x ≥ θ}.
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States and the temporal state transition relation
t@θ−→ are defined as follow:

Definition 2. A state of a TPN is a pair s = (m, I) in which m is a marking and I is a
function called the interval function. Function I : T → I+ associates a temporal interval
with every transition enabled at m.

We write (m, I) t@θ−→ (m′, I′) if θ ∈ R+ and:

1. m ≥ Pre(t) ∧ θ ≥ ↓ I(t) ∧ (∀k ∈ T )(m ≥ Pre(k) ⇒ θ ≤ ↑ I(k))
2. m′ = m− Pre(t)+ Post(t)
3. (∀k∈T )(m′ ≥ Pre(k) ⇒

I′(k) = if k �= qt ∧ m−Pre(t) ≥ Pre(k)
then I(k) −. θ
else Is(k))

States evolve as follows: assume the current state is s = (m, I), t is enabled at m, and
became last enabled at time τ. Then t cannot fire before time τ + Min(I(t)), and must
fire no later than τ + Max(I(t)), except if firing another transition before t made t not
enabled anymore. Firing transitions takes no time.

TPN Metamodel. The time Petri nets metamodel is given in Figure 6. A Petri net (Petri-
Net) is composed of nodes (Node) that denote places (Place) or transitions (Transition).
Nodes are linked together by arcs (Arc). Arcs can be normal ones or read-arcs (ArcKind).
The attribute weight specifies the number of tokens consumed in the source place or pro-
duced in the target one (in case of a read-arc, it is only used to check whether the source
place contains at least the specified number of tokens). Petri nets marking is defined by
the tokens attribute of Place. Finally, a time interval can be expressed on transitions.

Model-Checking. For this study, we use State/Event−LTL [8], a linear time temporal
logic supporting both state and transition properties. The modeling framework consists of
labeled Kripke structures (the state class graph in our case), which are directed graphs in
which states are labeled with atomic propositions and transitions are labeled with actions.

Formulae Φ of State/Event −LTL are defined according to the following grammar:

Φ ::= p | a | ¬Φ | Φ∨Φ | © Φ | � Φ | ♦ Φ | Φ U Φ

Example of State/Event − LTL formulae :

Fig. 6. Time Petri net Metamodel
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(For all paths)
P P holds at the beginning of the path,
© P P holds at the next step,
� P P globally holds,
♦ P P holds in a future step,
P U Q P holds until a step is reached where Q holds

Tina Toolbox for Time Petri Nets Verification

Tina (TIme Petri Net Analyzer) is a software environment to edit and analyze Petri
nets and time Petri nets [9]. The different tools constituting the environment can be
used alone or together. Some of these tools will be used in this study:

– nd (Net Draw) : nd is an editing tool for automata and TPN, under a textual or
graphical form. It integrates a “step by step” simulator (graphical or textual) for the
TPN and allows to call other tools without leaving the editor.

– tina : this tool builds the state space of a Petri net, timed or not. It can perform
classical constructs (marking graphs, covering trees) and also allows abstract state
space construction, based on partial order techniques. It proposes, for TPN, all quo-
tient graph constructions discussed in [10].

– selt: usually, it is necessary to check more specific properties than the ones dedi-
cated to general accessibility alone, such as boundedness, deadlocks, pseudo live-
ness and liveness already checked by tina. The selt tool is a model-checker for an
enriched version of State/Event − LTL. In case of non satisfiability, selt is able to
build a readable counter-example sequence or in a more compressed form usable
by the Tina simulator, in order to execute it step by step.
The selt logic is rich enough to encode marking invariants like � (p1 + p3 >= 3).
Example of selt formulae :

t1 ∧ p2 ≥ 2 for every path t1 and m0(p2) ≥ 2,
� (p2 + p4 + p5 = 2) a linear invariant marking,
� (p2 ∗ p4 ∗ p5 = 0) a non linear invariant marking,

selt also allows to define new operators :

in f ix q R p =� (p ⇒ ♦ q) definition of a “Responds to” operator, (denoted R),
t1 R t5 t1 “Responds to” t5.

3.3 Translational Semantics of LD Programs through Time Petri Nets

In order to apply the model-checking techniques to verify an LD program using the
available tools, it is necessary to represent the semantics of the program in a formal
language. In this section we describe the translational semantics of an LD program in
the form of a TPN.

The semantic transformation is based on the metamodel of the LD language
(Figure 4) and the metamodel of the TPN (Figure 6). It was coded using ATL [7]. In this
first work we do not translate the complex elements of the LD language, note that the
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complex elements represent the functions and FB of the LD language, these elements
have a unique semantics so a complete translation would have to take into account the
specific semantics of each function or FB.

The ATL code is composed of eight matched rules. A matched rule enables to match
some of the model elements of a source model, and to generate a number of distinct
target model elements. Figure 7 shows what target elements are created for each rules.
We use rule inheritance to filter different elements that are represented by a unique class
in the metamodel. This inheritance could had been done at the metamodel level but our
approach allows to keep the metamodel at a higher abstraction level and also allows to
factorize the ATL code.

Each LD Program will be translated to a TPN. This TPN can be divided in three differ-
ent groups of elements (Figure 8), each one with a different purpose during the simulation.

The first group is responsible for controlling the execution according to the PLC
operation, a place is introduced for each execution step, that is, read the inputs, execute
all the ordered rungs one by one, then update the outputs. The transitions are timed
"[1, 1]" so as to guarantee that all the actions depending on one execution step (these
actions are timed "[0, 0]") are executed before the state is changed. This mechanism is
used to give a higher priority to transitions associated with the second and third group.
We could have achieved the same effect by using prioritized Petri nets (PrTPNs) [11].

The second group represents the value of the variables. Each variable contained in
the program will be translated into two places, one representing the False (Variable-
Name_0) and the other the True (VariableName_1) state of the variable. Transitions are
also created to set and reset these variables. Note that transitions of this group – de-
scribing the behavior of the environment – evolve in parallel and remain active between
the capture of the environment (transition input_reading) and its update (transition re-
set_variables). This simplified modeling of the environment will result in a very strong
combinatorial explosion.

The third group represents the execution semantics. This group is composed of two
places for each variable as in the second group, but in this case the variables do not
represent the real value of the variable, but are used to calculate the new values. This
group represents the simulation variables. Input variables will have their simulation
value copied from the real value - on the second group - during the input reading state.
Output variables are calculated during the execution of the rungs and at the end, during
the output update state, the real value - on the second group - will be updated according
to the result of computation. At the end of each cycle all simulation variables are reset.

Figure 7 represents the elements generated for each of the eight rules. In some cases,
elements generated by one rule are used by another rule. For example, the place in-
put_reading is created by the rule Program2PetriNet and then is used by the rule In-
put2PetriNet.

The translation of paths generates the elements that calculate the value of the outputs
according to the inputs. In Figure 7 (Path2PetriNet) one can see the elements generated
by applying this rule to the first path of Figure 1. This path represents the boolean
equation C = A ∧¬B.

The translation method generates a safe (1-bounded) TPN. This is guaranteed by the
transformation. A structural analysis of the TPNs generated by the translation gives one



130 D.F. Bender et al.

Fig. 7. Schema of the ATL transformation Ladder2PetriNet

invariant for all places in the first group, and one invariant for each couple of places
representing the state True or False of variables.

3.4 Formal Verification of Race Conditions in LD Programs

In this section we demonstrate how to express the properties we wish to verify as LTL
formulae, how to automatically generate these properties from the LD model and finally
how to perform the model-checking with the selt tool.

Formalizing Race Conditions as LTL Formulae. To verify the absence of race con-
ditions in an LD program we need to formally describe this property. We first describe
the concept of stability of inputs and outputs. A boolean variable is said to be stable if it
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Fig. 8. TPN generated from the LD model on Figure 1

does not change its state, that is, it is always True or always False. When we translate an
LD program, every boolean variable is represented by two complementary TPN places,
(VariableName)_0 representing the false state and (VariableName)_1 representing the
true state. Based on that we can formulate the Definition 3.

Definition 3. An LD variable called x is stable if ((� x_0)∨ (� x_1)).

An LD program is free of race conditions if when the inputs are kept stable, all outputs
and memory variables will stabilize. This property is represented in Definition 4.

Definition 4. An LD program is free of race condition if
� (stable_inputs ⇒ ♦ stable_out puts) where stable_inputs represents a logical AND
between the stability condition for every input variable, while stable_outputs represents
a logical AND between the stability condition for every output and memory variable.

To reduce the model-checking effort we can decompose the LTL formula into more
simple ones. The decomposition is based on the following properties:

♦((� P)∧ (� Q)) ≡ ♦� P∧♦� Q
P ⇒ (Q∧R) ≡ (P ⇒ Q)∧ (P ⇒ R)

Our general property can be decomposed in several different properties, one for each
output or memory variable. Then we can check separately if every output will stabilize
when the inputs are kept stable. When this property does not hold for a variable x, the
LD program has a race on x.

The LTL formula can be simplified even more by applying the cone of influence
(COI) reduction. The COI reduction is a technique that reduces the size of a model if
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Table 1. Size of the TPN and state space generated

Program TPN Generated State Space
Figure 1 23 places, 24 transitions 462 places, 1432 transitions
Figure 2 31 places, 31 transitions 486 places, 1094 transitions

the propositional formula in the specification does not depend on all state variables in
the structure [12]. The COI of a variable x is all the variables that influence the value of
x. On the LD program represented in Figure 2 the COI of the variable B is {A}, while
the COI of variable C is {C, D}. So we can redefine the Definition 4 as:

Definition 5. An LD program is free of race condition if for every output or memory
variable V the following property holds: � (COI(V )_stable ⇒ ♦ V_stable), where
COI(V )_stable represents the stability condition for every variable in the COI of V .

Automatic Generation of LTL Properties. An ATL query was developed to automat-
ically generate the LTL properties in a text format. This query is a M2T transformation
that was built over the LD metamodel. It takes as input the LD model and generates the
file properties.ltl. The COI of a variable is calculated through iterative searching in the
model. We can use the genererated file to verify temporal properties with the selt tool.

Model-checking. To perform the model-checking we first use the tina tool to build the
state space of the TPN generated by the translation. The selt tool is then used to verify
the LTL properties over this state space.

3.5 Results

This method was applied to the LD program in Figure 1 and as expected the property was
evaluated to TRUE. The program is indeed free of race conditions. When applied to the
program in Figure 2 the property was evaluated to TRUE for variable B, and to FALSE
for variables C, D and E, proving that this program has a race on these three variables.
In Table 1 is presented the size of the TPN and state space generated for both programs.

The results obtained for the two examples prove that the MDE approach can be used
for verification of LD programs, transformation may be run on middle to complex LD
diagrams. However, this first approach for translation of LD diagrams to Petri Nets can
be largely optimised. The use of temporal constraints to simulate the priorities (instead
of inhibitor arcs or directly of priorities2) results in an important extra cost. Likewise,
the modeling of the environment is very simple (the environment continues to evolve
in parallel between two captures) inducing a useless combinatorial explosion. With this
translation, the Petri net associated with a LD program able to control a system con-
taining 6 actuators (outputs) and 7 sensors (inputs) generates a state space of 7 million
states. The “covering step graph” [13] construction of Tina, exploiting “partial order
techniques” [14], allows to reduce drastically this explosion and leads to a state space
of 40 states. However, a finer modeling of the environment will have to be carried out
to take into account significant LD programs.

2 Since March 2008, Tina 2.9.0 supports the priorities.
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4 Related Works

Numerous authors have been working in formal verification of PLC programs. These
works are normally based in two different approaches.

The first approach consists in implementing PLC programs directly in a formal lan-
guage, and then automatically generate the PLC code. [15] introduces a program based
on a set of rules to translate TIPN (Time Interpreted Petri Nets) control specifications
into Ladder Diagrams. In [16], [17] and [18] a set of tools was presented for im-
plementation of PLC programs using SIPN (Signal Interpreted Petri Nets), symbolic
model-checking was used for validation and verification and the control specification
was finally implemented through IL. [19] introduces a formalism based on timed state
machines called PLC-automata and a translation of this formalism into ST code.

The second approach consists in translating the existing PLC programs into a for-
mal language and automatically perform the verification. This approach permits the
use of formal languages for the verification of PLC programs without changing the pro-
gramming paradigm. Our work is based in this second approach. Some works using this
approach have been developed. [20] and [21] provide a Petri Nets semantics for a subset
of the IL language. [22] provides a framework for automatic verification of programs
written in IL, a formal semantics (transition system) is presented for a subset of the IL
language, which is directly coded into a model-checking tool (Cadence SMV3). It is
then possible to automatically verify behavioral properties written in LTL. In [23] LD
programs are formally represented through a transition system. In [5] a combination
of probabilistic testing and program analysis has been used to detect race conditions
in relay ladder programs. [24] generally discusses the transformations between NCES
(Net Condition Event Systems) State Charts and PLC languages. In [25] is presented a
method for formal verification of LD programs through a translation to timed automata.
They check model related properties, while we focus on generic properties. The original
program is abstracted according to these properties before the generation of the timed
automata, in this way, for each property to be verified it may be generated a differ-
ent timed automata. In [26] is discussed semantic issues and a verification approach for
SFC and IL programs. It uses a model-checking framework to verify SFC programs and
it suggests static analysis techniques, a combination of data flow analysis and abstract
interpretation to verify IL programs.

Our work is based on this second approach and is the first to present an MDE ap-
proach for PLCs program validation.

5 Conclusion and Future Work

We have introduced in this article a model driven approach for formal verification of LD
programs. We have defined a metamodel for a subset of the LD language. LD models
are designed according to this metamodel. An LD model is then translated into a formal
language (TPN) in the input format of Tina toolkit by means of two ATL transforma-
tions. The LTL properties to be verified are generated automatically from the model.

3 http://www.kenmcmil.com/smv.html

http://www.kenmcmil.com/smv.html


134 D.F. Bender et al.

Finally we utilize model-checking to verify the temporal properties over the generated
TPN.

Some things still remain to be done, the metamodel must be completed to represent
the complete LD language. The modelling of LD program s must be refined (specially
the modeling of the environment) to reduce the combinatorial explosion.

In order to implement a complete translation of the LD concepts, we need a lan-
guage directly supporting data processing like Fiacre [27]. Fiacre was designed in the
framework of the TOPCASED project [28] dealing with model-driven engineering and
gathering numerous partners, from both industry and academics. Therefore, Fiacre is
designed both as the target language of model transformation engines from various
models such as SDL, UML, AADL, and as the source language of compilers into the
targeted verification toolboxes, namely CADP and Tina.

Model related properties must be formulated by the programmer, as LD programmers
are not specialists in formal verification, a mechanism must be used to generate the
LTL properties from the user specification. One of these mechanisms is presented in
[29] where is presented an approach for generating LTL properties from TOCL ones,
a temporal extension of OCL. In [30] is presented a framework for generating formal
correctness properties from natural language requirements. The return of the model-
checking counter-examples to the user must be implemented in order to hide to the user
the complexities of the target language.

We are currently working on the recognition of the textual concrete syntax (ASCII
art) specified in the IEC 61131-3 standard. We want to be able to generate LD models
from its textual syntax. The metamodel presented in this article tries to represent the LD
language in a format closer to its semantics. For the recognition of the textual syntax
we should create an intermediate metamodel that is closer to this syntax and then ap-
ply a model transformation to obtain our original model. We are studying the possible
solutions, one is the use of TCS [31], that relates metamodel concepts with the textual
concrete syntax and allows to build a model from the textual syntax (injector) and also
to generate concrete syntax fromo a model (extractor).

Our work demonstrates that it is possible to apply a model driven approach in formal
verification of PLC programs. The combinatorial state explosion is a recurrent prob-
lem in the formal verification community and several works have been developed to
overcome this problem.
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Abstract. With the continuing advances in semiconductor technology driving 
the rise in complexity of electronic embedded systems, there is a demand for 
the development of high level modelling environments for computer-aided 
design. The modelling of highly repetitive structures in graphical form poses a 
particular challenge if a hierarchical approach is not adopted. This paper 
proposes a mechanism for describing such component structures in a compact 
form based upon extensions of the Array Oriented Language (Array-OL). An 
example is given as to how the structure described is subsequently mapped into 
VHDL code.  

1   Introduction 

To address the need for high level modelling environments, enabling designers of 
embedded systems to overcome the continuing rise in design complexity; the authors 
have previously developed a framework for deriving Very High Speed Integrated 
Circuits Hardware Description Language (VHDL) code from Unified Modelling 
Language (UML) state diagrams using Model Driven Development (MDD) 
techniques [1]. This paper focuses on extending that framework to incorporate the use 
of Array-OL (Array Oriented Language) [2] extensions as a mechanism for describing 
repetitive structural aspects of an electronic embedded system, including a description 
of how these descriptions may be mapped to VHDL.  

The Array-OL specification language was developed by Thomson Marconi Sonar 
to fulfil the needs for specification, standardization and efficiency of multi-dimen-
sional signal processing. The Authors in [3, 4, 5] have proposed a powerful Array-OL 
based mechanism for modelling complex topologies to specify connection links 
between model elements, defined as a UML profile which extends the UML 2.0 
structural modelling mechanism. The proposed extensions enable a design-time 
deterministic specification of all the links of model elements that will exist at run 
time. 

One of the proposed extensions for topology modelling is the abstract concept of 
LinkTopology [3], which comprises of an optional information set that can be 
associated to a relationship between potential instances. Two possible cases have been 
defined: 
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• Reshape (formerly known as RepetitiveLinkTopology), describing the links 
between different potential instances, 

• InterRepititionLinkTopology for links between potential instances connected to 
other potential instances of the same element. 

A simplification of the former RepetitiveLinkTopology concept is also defined as 
the RepetitiveStructuredClassifier. It contains a single element with multi-
dimensional multiplicity, which is connected to the ports of the Repetitive-
StructuredClassifier, as depicted in Figure . 

The author of [6, 7] presents the formal semantics of the Array-OL language and 
discusses how to map and schedule an Array-OL application on a parallel and 
distributed architecture. 

This paper illustrates some of the mechanisms, proposed in [3], for the description of 
regular connection patterns between model elements. It shows how these concepts can 
be mapped to VHDL; providing support for the structural description of a system. It 
further describes how it is decomposed into sub-systems and how these sub-systems are 
interconnected. The paper goes on to identify a limitation to the types of repetitive 
structures that this mechanism supports, proposing a solution in which an existing 
proposal for an Array-OL extension [3] could be further extended to define serial 
repetitions of elementary components, as a means of describing pipeline-like structures. 

2   Array OL Description for Repetitive Component Structures 

The Repetitive Component Structure describes the repetition of a single elementary 
component defined within a repetition space, as shown in Figure 1, and is modelled 
according to the repetitive concept of the Local Model in Array-OL. All components 
entities are characterised by an nth dimensional array of ports, depicted as comma 
separated dimensions containing integer values corresponding to the number of array 
elements. Each array is initially indexed from its first element.   

The elementary component B performs a simple task such as; Inversion, Logical 
operations, Multiplexing etc, on data supplied to its input ports, and presents the result 
at its output. For the purpose of this study, the nature of this behaviour is 
instantaneous and Asynchronous. 

<<RepetitiveStructuredClassifier>>  
A 

<<Elementary_Component>> 

B : b[3] 

<<Tiler>> <<Tiler>> 

A_out 
B_in 

A_in 
B_out 

{fitting = “{1,0}”, 
origin = “{0,0}”, 
paving = “{0,1}”} 

{fitting = “{0,1}”, 
origin = “{0,0}”, 
paving = “{1,0}”} 

A_in[6] A_out[3] 

B_out[1] B_in[2] 

 

Fig. 1. Array OL description of a repetitive structure 
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Component A is subsequently defined as a repetitive structure formed from a 
quantity of elementary components. Each instance of the elementary component B 
must exhibit exactly the same behaviour, allowing the collective to be depicted as a 
single entity. The number of instances of the elementary component is declared by the 
lower-case b attribute; in this case it is 3. The total number of input ports of the 
repeated elementary components is derived from the product of input ports on a single 
elementary component and the number of instances of that component. Each port can 
be uniquely addressed by expressing these ports and component instances in the form 
of an array: e.g. for the example in figure; [6] represents a single dimensional array of 
the 6 input ports for A, these are connected to a 2-dimensional array representing the 
2 ports of each of the 3 components [2, 3]. The same concept applies to the 
representation of output ports; however, for the purpose of this study, the following 
description refers to that of the input ports. 

The configuration of the repetitive structure is defined by the interconnections 
between its ports and those of the elementary components. These interconnections are 
referred to as Tilers, depicted by a single line, and are characterised in part by the 
number of associated port connections made at each end. The Tilers require additional 
information to determine how the ports of each instance of an elementary component 
are connected to the ports of the repetitive structure or those of another elementary 
component if required.  

As these ports are represented by arrays, the Tiler provides the means of 
associating an element of one array to the required element of another. To do so, the 
Tiler operates on sub-sets of the arrays known as Patterns. A pattern is the smallest 
representation of the elementary component as viewed by a Tiler, such that its 
repetition will generate the entire repetitive structure for that point. It is formed from 
the description of the ports for a single elementary component and is characterised by 
its size. The pattern for the description of the input ports of component B in figure1 
would take the form of the vector (2, 0). This pattern is initially used to reference the 
first two ports of the repetitive structure A; starting from the first element of its array. 
This process is referred to as Fitting. The Tiler then provides a mapping of this 
pattern to the ports of the first instance of the elementary component, defined by the 
relative position from an index reference within the input array for B, in a process 
referred to as Paving. Tiling is an iterative process of Fitting and Paving, performed 
until all of the ports interconnections have been mapped.   

Although the two arrays contain the same number of elements, they have very 
different ‘shapes’, the source being single dimensional [6] and the destination being 
2-dimensional [2, 3]. The Tiler must therefore be instructed as to how the elements of 
one should be mapped to the elements of the other. A set of attributes are therefore 
defined as follows: 

• Origin = ( ). The origin of the reference pattern (the first set of ports for the first 
component instance). This is usually expressed as (0) or (0, 0) in Cartesian form. 

• Fitting Matrix = ( ). Describes how to fill the pattern with the source array 
elements 

For each repetition of the Fitting process, a new reference in the source array 
is determined relative to that of the origin. The elements in the array related 
to the pattern are then identified from the Fitting Matrix.  
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For the example presented in figure1, the Fitting Matrix could be expressed 
as (1), signifying that adjacent elements in this single dimensional array 
should be accessed consecutively. A higher value would signify a defined 
distance between the elements used: e.g. A Fitting Matrix of (2) refers to 
alternate elements being used to fill the pattern. 

Alternatively, the Cartesian representation of this Fitting Matrix would be 
(1, 0), depicting the reference of adjacent elements in the ‘X’ direction, and 
none in the ‘Y’ direction.  

• Fitting Limit = ( ). Defines the size or shape of the pattern. 
The Fitting Limit in this case refers to the number of ports represented by the 
pattern for a single elementary component, so Fitting Limit = (2). This is 
used in conjunction with the Fitting Matrix and the Origin to enumerate the 
pattern with the source array elements. 

E.g. from the Origin at (0) of the input array, make a pattern of the size 
and shape (2, 0) from the Fitting Limit (2), and fill it from the elements 
whose relative positions are defined by the Fitting Matrix (1). This is 
depicted graphically in figure2.  

0   1 2   3   4   5

0   1

Pattern (2, 0) 

Input Array for Repetitive 
Structure A 

Fitting Matrix = (1, 0) 

Origin = (0, 0) 

Fitting Limit = (2) 

 

Fig. 2.  First iteration of the Tiler’s ‘Fitting’ process– Filling a pattern of size = 2 from adjacent 
elements of the input array 

Note: The values shown within the elements of both the array and the pattern 
signify the names of the elements by way of their relative position from the 
origin. This is not a representation of any data contained within. 

• Paving Matrix = ( ). Describes how the pattern fills the destination array in each 
dimension.   

The destination array in this case represents the repetition of the input ports, 
as seen by the Tiler, for each instance of the elementary component B. As the 
pattern size and shape was defined to match a single instance of the ports, the 
Paving Matrix provides the information necessary to map them to the correct 
instance of a component. In a similar scheme to that of fitting a pattern, 
Paving requires a destination reference point, from which the relative 
position for filling the array from the pattern can be determined. This can 
either be a reference to the Origin attribute as used by the Tiler for fitting the 
pattern, or defined as a separate attribute if the origin of the destination array 
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is not desired as the reference point. For each repetition of the Paving 
process, a new reference point must be determined relative to the first.  
The Paving Matrix attribute for the considered example would take the form 
of (0, 1); signifying that for each repetition, the new reference point is to be 
on the same ‘X’ plane as the previous  reference point position but one 
element away in the ‘Y’ direction. 

• Paving Limit = ( ). Defines the number of patterns required to fill the array for 
all dimensions.  

This provides the iteration limits for the iterative process of identifying the 
references points. For the considered example, the Paving Limit would be 
 (0, 3). 

Figure3 depicts the destination array and demonstrates how the first pattern is 
Paved into the array with respect to the initial reference point.  

The second Tiler in this example performs exactly the same tasks as described here 
for the interconnection of the output ports. 

Although different forms of repetitive structures are achievable using the Array OL 
description, the operation of the Tiler follows that outlined in this case study. A 
special case exists where ports are required to be mapped to different instances of the 
elementary component, an example of which is that of the ‘Perfect Shuffle’. The 
Tiling operation required in fact implements two Tilers for an interconnection 
forming an operation referred to as ‘Reshape’. The description of the Perfect Shuffle 
and the operation of the Reshape interconnect is covered in a separate document. 

Destination Array

Paving Matrix = (0, 1) 

Origin = (0, 0) 

Paving Limit = (0, 3) 

Pattern 

4   5

2   3

0   1First Iteration of Pattern 0   1

 

Fig. 3. Paving the destination array 

3   Mathematical Description of the Tiling Process 

This description is based upon the case study of the repetitive structure as depicted in 
figure1. 

The first task is to determine a pattern capable of describing the elementary 
component’s input ports for a single instance. This is then used to iteratively map all 
instances of the component to the ports of the repetitive structure. 

The Pattern 
A single component with 2 ports can be described as a pattern formed from a single 
dimensional array with 2 elements; represented as (2, 0). This pattern is a sub-set of 
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the source and destination arrays which describes the entire repetitive structure as 
viewed by the Tiler. The elements within the arrays use the zero-based indexing 
convention. Likewise, elements of the pattern itself use this convention; having the 
identity of 0 and 1 for the first and second elements respectively.   

Fitting the Pattern to the Source Array 
A formula to describe this process can be expressed as: 

)(,0, ddd xFrdxx ×+≤≤∀ mod m  

For all elements in the pattern, in the range of the pattern size, (determine the sum and 
product) within the limit of the array 

Where: 

dx  = an element in the reference pattern 

 0  = the origin in the reference pattern 

d  = the size and shape of the pattern 

r  = the reference relative to the origin in the array 

F  = the Fitting Matrix 

m  = the shape of the array 

• For the First Iteration:  
r = the origin (0, 0) and xd is 0 and 1 (being in the limits of 0 ≤ xd < 2) and F = (1, 0) 

Hence:  dxFr ×+  

For x0  =
0

0
.

1

0
0

0

0
  & For x1  =

0

0
.

1

0
1

1

0
 

 
Having filled the pattern with the first two elements of the source array, (0, 0) and (0, 
1), the next step is to ‘pave’ the destination array for the first iteration.  
Paving the Destination Array from the Pattern  

The first task of the Paving process is to determine the relative reference points in 
the destination array. The formula that describes this process can be expressed as: 

)(,0, qqq xPoqxx ×+≤≤∀  mod m  

Where: 

qx  = an element in the reference pattern 

q  = the size and shape of the pattern 

o  = the reference in the destination array 

P  = the Paving Matrix 

 For the first iteration: o = the origin (0, 0). The Paving Matrix P = (0, 1) 

[Equation A] 

[Equation B] 
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The reference is determined from equation B as: 

qxPor ×+=  

r = =
0

0
.

0

1
0

0

0
 

The pattern can how be fitted into the destination array, relative to this reference, in 
the same way that the pattern was filled using the Fitting process. 

Using:  dxFr ×+ from equation A 

For x0  =
0

0
.

1

0
0

0

0    

& For x1  =
0

0
.

1

0
1

1

0  
 

An alternative expression for Paving can take the form of: 

)(,0, dqdd xFxPodxx ×+×+≤≤∀  mod m  
where the two tasks of determining the reference point in the destination array and 
Fitting the contents of the Pattern into the array relative to that reference are contained 
within the same expression. 

• The Second Iteration  
Fitting the Pattern to the Source Array 

The next reference position becomes: drr +=  = =
0

0

2

0

2

0
 

Using:  dxFr ×+ from equation A to fit the new elements of the source array to 

the pattern: 

For x0  =
2

0
.

1

0
0

2

0
           &   For x1  =

2

0
.

1

0
1

3

0
 

 

Paving the Destination Array from the Pattern  

Using:  qxPor ×+=  from equation B to determine the new reference in the 

destination array: 

=r =
0

0
.

0

1
1

0

1
 

 

And now: dxFr ×+ from equation A to fit the pattern to the destination array 

elements: 

[Equation C] 
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For x0  =
0

1
.

1

0
0

0

1
           & For x1  =

0

1
.

1

0
1

1

1
 

• The Third and Final Iteration  
Fitting the Pattern to the Source Array 

The next reference position becomes: drr +=  = =
2

0

2

0

4

0
 

Using:  dxFr ×+ from equation A to fit the new elements of the source array to 

the pattern: 

For x0  =
4

0
.

1

0
0

4

0
           & For x1  =

4

0
.

1

0
1

5

0
 

 

Paving the Destination Array from the Pattern  

Using:  qxPor ×+= from equation B to determine the new reference in the 

destination array: 

 =r =
0

1
.

0

1
1

0

2  
And now:  dxFr ×+ from equation A to fit the pattern to the destination array 

elements: 

For x0  =
0

2
.

1

0
0

0

2
            & For x1  =

0

2
.

1

0
1

1

2
 

 

All elements of the source and destination arrays have now been mapped within the 
limits of the array sizes. 

4   VHDL Implementation of the Repetitive Component Structure 

It can be seen from this study that the operation performed by the Tiler can be 
considered as being equivalent to a ‘Port Map’ declaration used in a VHDL 
architecture description. This leads on to development of a VHDL implementation of 
the entire repetitive structure based upon its Array OL description.  

To produce the required VHDL representation of this component structure, we first 
require a generic form of the component entities and their behaviour. This will 
provide a library of templates into which we can pass the specific details for the 
number of ports, elementary components and their interconnections. 

5   VHDL Generic Template for the Repetitive Structure 

Code Listing 1 shows the generic VHDL implementation of the repetitive structure 
case study referred to as Y_Rep, due to the nature of its repetition in the Y-Plane of 
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Code Listing 1.  Generic VHDL implementation of the repetitive structure case study 

the repetition space. The architecture structure is completely generic, in that all values 
are referenced from the generic declaration in the entity. 

The repetition is achieved by an iterative generation of port map declarations of the 
elementary And_gate component’s ports to an array of interconnects. 

The number of iterations is derived from the number of required instances of the 
elementary component. The behaviour of the And_gate component is defined 
separately in its own entity declaration. Its ports are defined here using the same 
names and types as those in its own entity.  

The structure of this code and its derivation from the Array OL description will 
now be explained in stages, starting with the framework of a VHDL structure module.  

entity Y_Rep is
generic ( -- * * Generic values for each of the Tilers * * 

Array1Size: Positive:= 6; -- Total array size of source and destination for first Tiler
Array2Size: Positive:= 3; -- Total array size of source and destination for second Tiler

 Fit_Lim1: Positive:= 2; -- Fitting Limit of First Tiler
 Fit_Lim2: Positive:= 1; -- Fitting Limit of Second Tiler 
 Origin: Integer:= 0; -- Value of initial reference elements 
 Fit_Matrix1: Positive:= 1; -- Distance between array1 elements 
 Fit_Matrix2: Positive:= 2; -- Distance between array2 elements
 Pave_Lim: Positive:= 3 -- Paving Limit for both Tilers 
 );  
Port(
 Y_Rep_IN: in std_logic_vector (Origin to Array1Size -1); -- -1 due to the Zero-Based indexing
 Y_Rep_OUT: out std_logic_vector(Origin to Array2Size -1) 
 ); 
end Y_Rep; 

architecture Structure of Y_Rep is 
component and_gate -- Port description of an elementary component defined in a separate entity
Port(

  and_gate_IN: in std_logic_vector(Origin to Fit_Lim1 -1); 
  and_gate_OUT: out std_logic_vector(Origin to Fit_Lim2 -1) 
  ); 

end component;    
begin   -- The Tiling Processes for each generated instance of the elementary component 
 tilers: for i in Origin to Pave_Lim -1 generate
 new_and_gate: and_gate port map (and_gate_IN(Origin) => Y_Rep_IN(i*Fit_Lim1 + Fit_Matrix1*Origin),

 and_gate_IN(Origin+1) => Y_Rep_IN(i*Fit_Lim1 + Fit_Matrix1*Origin+1),
 and_gate_OUT(Origin) => Y_Rep_OUT(i*Fit_Lim2+ Fit_Matrix2*Origin)
);

end generate tilers; 
end Structure; 

 

VHDL Module 
Code Listing 2 shows the basic outline for a VHDL module of a structure. The line 
numbers depicted at the beginning of each line are included here for reference 
purposes, and are not representative of the actual line numbers of a completed VHDL 
module. Additional lines of code will exist outside of this structure, such as library 
references for the benefit of a VHDL code compiler. The bold type indicates reserved 
words in VHDL. 

The VHDL module is essentially a description of a hardware component or entity. 
The first part of this description relates to its outward appearance, such that it may be 
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referred to by other compo-
nents. At this point it is 
purely by a name declared 
in the first line, with no 
information as to what 
connections, or ports, are 
provided. Line 3 declares 
the end of the description of 
the entity. A description of 
the ports will be derived 
from the Array OL descrip-
tion of the component struc-
ture as depicted in figure1. 
The entity description can also include declarations of Generic terms for parameter 
values. 

The remaining portion of the code provides a description of the internal structure, 
or architecture, of the hardware entity, between lines 5 and 11. This again will be 
derived from the Array OL description of the component structure depicted in figure1. 

The Entity Definition 

• Port definitions 
The generic form of port declarations is shown in figure4. For each named port, its 
direction with respect to data flow through the component entity is defined as in or 
out. The type of data to be handled by the port, such as: bit, std_logic, bit_vector, 
std_logic_vector, is defined with appropriated size or range. 

 
 
 
 
 
 
 
 
 
 
Figure5 shows 

the Array OL de-
scription of the 
repetitive structure 
once again. This 
time however the 
compon-ents have 
be-en renamed to 
suit the application 
being described. 
For the purpose of 
this study, the use 

port( 
Port_name: direction type (range);  
Port_name: direction type (range);  
); 

Fig. 4.  Generic form of Port declaration 

1. entity entity_name  is 
2.  
3. end entity_name; 
4.   
5. architecture structure of entity_name is 
6.   
7. begin  
8.   
9.  
10.  
11. end structure; 
12.  

Code Listing 2. An ‘empty’ VHDL Module 

<Repetitive_Structure> Y_Rep

Elementary_Component 

and_gate =  
new_and_gate[3] 

<Tiler> <Tiler> 

[3] [2] [6] [1] 

 

Fig. 5.  Array OL description of a repetitive structure 
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of Generic para-meters is overlooked, using instead the numeric values defined in the 
Array OL description. 

The external ports of the entity are defined as vector quantities of the defined size 
with zero-based indexing. The names given to the ports use a naming convention 
whereby the entity name and direction of the port are used in combination.  

The resulting ports are defined as: 6 inputs named Y_Rep_IN and 3 outputs named 
Y_Rep_OUT , and as such are represented in VHDL as: 

 
entity Y_Rep is 
Port( 

Y_Rep_IN: in std_logic_vector (0 to 6 -1); -- First 
tiler’s array size 

Y_Rep_OUT: out std_logic_vector(0 to 3 -1) -- Second 
tiler’s array size 

); 
end Y_Rep; 

Code Listing 3.  VHDL Entity declaration for the repetitive structure case study 

The Architecture 
The architecture describes the internal construction of the entity and its operation. For 
an elementary component such as an AND gate; this would comprise of a port 
assignment, whereby the logical AND of the input ports defined in the entity 
declaration, are assigned to the output port.  

 

For example:  and_gate_OUT(0) <= and_gate_IN(0) and and_gate_IN(1)    
 

This would be sufficient to complete the description of a components architecture 
that performs an elementary task of this nature. 

More complex architectures, such as that of the repetitive structure, define the use 
of other entities as components within its structure, together with the necessary 
signals required to provide the interconnections between each component. 

 

• Component 
A Component is declared as a reference to an existing entity of the same name by 
describing its ports in exactly the same way. For example; to use an elementary 
component such as the two input and_gate entity, a component called and_gate is 
defined as: 

 component and_gate  
 Port( 
  and_gate_IN: in std_logic_vector(0 to 2 -1); 
  and_gate_OUT: out std_logic_vector(0 to 1 -1) 
  ); 
 end component;  

Code Listing 4.  VHDL Component declaration for the elementary component 

where the input and output ports are of the same name, type and size as those declared 
in the and_gate entity. The size of the vectors representing the ports is derived from 
the patterns size for each tiler. The input ports are managed by the first tiler, having a 
pattern size, or fitting limit, of 2. The output ports are managed by the second tiler, 
having a fitting limit of 1. 
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• Architecture Structure 
After the component declarations and any signal definitions have been made, the 
begin statement, shown on line 7 of Code Listing 2, signifies the start of the 
architecture structure definition. The definition describes how the repetitive structure 
is constructed by instantiating the elementary component at mapping its ports to the 
structure in an iterative process, until the maximum required components has been 
reached. This process represents that of the Tiler in the Array OL description, and 
therefore its values are taken directly from the description.  

The following characteristics are a sub-set of those defined by the two Tilers, and 
as such are used in the VHDL implementation. 

 

TILER 1(Input Ports)   TILER 2 (Output Ports) 
Origin o = 0     Origin o = 0  
Fitting Matrix F = (0,1)   Fitting Matrix F = (0,1)  
Fitting Limit 1 FL1 = (0,2)   Fitting Limit 2 FL2 = (0,1)  
Paving Limit PL= (0,3)    Paving Limit PL = (0,3) 
 
tilers: for i in 0 to 3 -1 generate 
new_and_gate: and_gate port map(  
    and_gate_IN(0) => Y_Rep_IN(i*2+1*0),  

    and_gate_IN(0+1) => Y_Rep_IN(i*2+1*0+1),   
    and_gate_OUT(0) => Y_Rep_OUT(i*1+1*0)  

    ); 
end generate tilers; 

Code Listing 5.  Instantiation  of the elementary components to form a repetitive structure 

Each increment of the index i, within the limits of Origin ≤ i < Paving Limit, 
instantiates the next repletion of the elementary component and provides a reference 
that is used to determine which of the structures ports are to be mapped to that 
instance of the component.  

The input and output ports of the elementary component are mapped to the inputs 
of the repetitive structure using the expression:  

dxFr ×+ from equation A.  

In the VHDL equivalent of the Tiler, shown in Code Listing 5, the paving reference 
r is determined by multiplying the current index value i with that of the Fitting Limit 
FL (FL1 = (2) and FL2 = (1)). The resultant value for r is then added to the product of 
the Fitting Matrix F (1 in both cases) and the pattern element values xd; where the 
first element of the input port pattern is (0) and the second and final element is (0+1), 
and the single element of the output port pattern is (0).   

 

For example, the input ports of the elementary AND gate component are mapped 
as: 

and_gate_IN(Origin) => Y_Rep_IN(i*Fit_Lim1 + Fit_Matrix1*Origin) 

and  
and_gate_IN(Origin +1) => Y_Rep_IN(i*Fit_Lim1 + Fit_Matrix1*Origin 
+1) 

 

and the output port is mapped as:     
and_gate_OUT(Origin) => Y_Rep_OUT(i*Fit_Lim1 + Fit_Matrix1*Origin) 
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This concludes the description of the architecture structure and in turn the entire 
description of the VHDL implementation of the repetitive structure. Having 
demonstrated the relationship between the Array OL description and synthesisable 
VHDL code; a simplified version of the code shown in Code Listing 1 can now be 
presented as Code Listing 6, where the use of generic values is dropped in favour of 
specific attribute values relative to this study. 

entity Y_Rep is
Port(
 Y_Rep_IN: in std_logic_vector (0 to 6 -1); -- -1 due to the Zero-Based indexing
 Y_Rep_OUT: out std_logic_vector(0 to 3 -1) 
 ); 
end Y_Rep; 

architecture Structure of Y_Rep is 
component and_gate -- Port description of an elementary component defined in a separate entity
Port(

  and_gate_IN: in std_logic_vector(0 to 2 -1); 
  and_gate_OUT: out std_logic_vector(0 to 1 -1) 
  ); 

end component;    
begin   -- The Tiling Processes for each generated instance of the elementary component 
 tilers: for i in Origin to Pave_Lim -1 generate
 new_and_gate: and_gate port map (and_gate_IN(0) => Y_Rep_IN(i*2), 

 and_gate_IN(1) => Y_Rep_IN(i*2+1),
 and_gate_OUT(0) => Y_Rep_OUT(i) 
);

end generate tilers; 
end Structure; 

 

Code Listing 6.  Specific VHDL implementation of the repetitive structure case study 

The simplification made to the port references has been derived from the required 
behaviour and not the Array OL description. However, they are numerically the same 
and this can be considered as a mathematical simplification that may be carried out 
during the transformation between the Array OL description and the VHDL code 
generation. 

The behaviour of the VHDL implementation presented in this study has been 
simulated, with results confirming the expected behaviour of the repetitive AND Gate 
structure.  

6   Test Data and Results 

The expected results derived from the required behaviour of the repetitive structure 
Y_Rep was mapped out in the table depicted in figure6. This is a sub-set of the 64 
possible input combinations, to demonstrate the operation of each instance of the 
elementary component. The timings used where arbitrary values.  

In this example; the 3-bit output values (Y_Rep_OUT) represent the three outputs 
formed by the repetitive structure, with the right-hand (least significant bit) being the 
output of the first component instance, etc. The first two bits on the right-hand side of 
the 6-bit input values (Y_Rep_IN) form the respective component input pair. 
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TIME Y_Rep_IN Y_Rep_OUT
  50 ns 000000 000 
100 ns 000001 000 
150 ns 000010 000 
200 ns 000011 001 
250 ns 000111 001 
300 ns 001011 001 
350 ns 001111 011 
400 ns 011111 011 
450 ns 101111 011 
500 ns 111111 111 

 
 
 

 

Fig. 7.  Simulation test results 

Each repeated instance of the AND Gate component should provide logic ‘1’ at its 
output (and_gate_OUT) when both of its input pairs (and_gate_IN) reach logic ‘1’ 
respectively.  

A simulation was carried out using Mentor Graphics ModelSim® and the resultant 
simulation waveforms are presented here in Figure7. 

Following the 100 ns initialisation period, the new input values are applied to the unit 
under test at 50 ns intervals. The first instance of the AND Gate component produces 
logic ‘1’ at its output at 250 ns when its input pair is asserted. Similarly for the second 
and third component instances produce logic ‘1’ at their outputs at 400 and550 ns 
respectively. It can be seen that the results are the same as those predicted in Figure6. 

7   Proposed Description for Serial Component Repetition 

Having considered a method of describing potentially large parallel structures in a 
condensed form, and how that description may be mapped into VHDL architectures, 
it is proposed that a similar means of describing serialised structures such as serial 
buffers or pipe-lined stages should be determined.  

Fig. 6.  Simulation test data 
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At present, no such method of describing a serial repetition exists within the 
semantics of Array-OL. However, it is proposed here that instead of introducing a 
further extension to the language, the use of the InterRepititionLinkTopology 
extension may be adapted as a possible solution to overcome this limitation. The 
InterRepititionLinkTopology describes the links between potential instances 
connected to other potential instances of the same element, such as in a grid or cube 
topology, with the ability to specify the relative position of neighbouring potential 
instances of an element having multi-dimensional multiplicities.  

Figure 8 shows the use of the InterRepititionLinkTopology mec-hanism for 
modelling a two-dimensional 3x3 cyclic grid topology. The mechanism’s repet-
itionSpaceDependance attribute is a translation vector on the space of the multi-
dimens-ional array that identifies the position of a neighbour element. The modulo 
attribute (inherited from LinkTopology) indicates if the tra-nslation should be applied 
modulo the size of the multi-dimensional array. If it is not the case, the translation is 
not applied on the borders of the array, and the corresponding link will not be created. 

It is envisaged that a serial repetitive 
structure can be modelled by declaring the 
elements Sarray [x, y] attribute  such that 
repetitions are performed in a single 
dimension, such as [3, 0]  to provide a 
west to east repetition. Using the 
techniques previously presented by the 
authors in [1], the serial repetition can then 
be mapped to VHDL generate constructs 
to provide port mapping, similar to those 
presented here in section 4.  

Further investigation of this 
mechanism is planned to verify the 
feasibility of this proposal for a means 
of modelling the serial repetition of 
components. This will primarily focus 
on how the existing concept of the 
defaultLink may be used to describe the input and output port connections of the 
repetitive structure to those of the system architecture. 

8   Conclusion 

This paper has presented a mechanism for describing repetitive structural aspects of 
an electronic embedded system as compact UML specifications to extend a MDD 
based framework for generating synthesizable VHDL code. Having identified 
semantic restrictions on the description of serial repetitions of components in this 
way, a proposed solution makes use of an existing proposal of an extension to the 
Array-OL language. 

The intermediate process of transforming the Array OL description into the VHDL 
code is yet to be implemented. With the VHDL generic template providing the 
necessary replications of the design model architecture, the transformation tool needs 

a [3;3] 

north 

west east 

south 

<InterRepetitionLinkTopology> 
repetitionSpaceDependance=[0,1] 
modulo=true

<InterRepetitionLinkTopology> 
repetitionSpaceDependance=[1,0] 
modulo=true  

Fig. 8.  A 3x3 cyclic grid topology model 
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to extract the required attributes from the design characteristics and pass them into the 
generic declaration for the repetitive structure’s entity. 
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Abstract. Although labelled graphical, many modelling languages rep-
resent important model parts as structured text. We benefit from so-
phisticated text editors when we use programming languages, but we
neglect the same technology when we edit the textual parts of graphi-
cal models. Recent advances in generative engineering of textual model
editors make the development of such sophisticated text editors practi-
cal, even for the smallest textual constructs of graphical languages. In
this paper, we present techniques to embed textual model editors into
graphical model editors and prove our approach for EMF-based textual
editors and graphical editors created with GMF.

1 Introduction

In the past, the superiority of (purely) graphical representations was widely
assumed at first and often challenged [1,2] later. Moher et al., for example,
concluded in [3]: ”Not only is no single representation best for all kinds of pro-
grams, no single representation is [. . . ] even best for all tasks involving the same
program.” Today, graphical modelling languages and domain-specific languages
(DSLs) often use a mixed form of representation: they use diagrams to represent
structures visually, while other elements are represented textually. Examples for
textual elements are signatures in UML class diagrams, mathematical expres-
sions in many DSLs, OCL expressions used in other modelling languages, and
many programming constructs of SDL [4].

Existing graphical editors address textual model parts poorly. The OCL ed-
itors of many UML tools, for example, barely provide syntactical checks and
keyword highlighting. As a result, modellers produce errors in OCL constraints:
errors that stay unnoticed until later processing, errors that when finally noticed
are hard to relate to the OCL constraint parts that caused them. For other con-
structs, like operation signatures in UML class diagrams, editors often provide
no textual editing capabilities at all. So editor users have to use big amounts of
clicks to create signatures with graphical editing means. This process is slower
and less intuitive than writing the signature down. As a general conclusion, edit-
ing the textual parts of models is less efficient than existing editor technology
for programming languages would allow.

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 153–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The Ecore GMF editor with an embedded textual model editor

This programming technology includes modern programming environments
with highly capable language-dependent text editors. These editors allow far
more efficient programming than the plain text editors that were used before and
that are still used for editing textual parts in graphical models. These modern
program editors are complex and have to be built for each language indepen-
dently. This renders the manual development of such editors too expensive for
the textual parts of graphical languages, especially those of DSLs. However, re-
cent research [5,6,7,8,9] utilizes generative engineering techniques to make text
editor development for small applications practical. Language engineers only
provide a high-level textual notation descriptions written in a corresponding
meta-language, and meta-tools can automatically generate editors from those
descriptions. The usual feature set of such generated editors comprises syntax
highlighting, outline views, annotation of syntactical and semantic errors, occur-
rence markings, content-assist, and code formatting.

In this paper, we present techniques to combine textual modelling with graph-
ical modelling, to embed textual model editors into graphical editors1. Editor
users open an embedded text editor by clicking on an element within the graphical
host editor. The embedded editor is shown in a small overlay window, positioned
at the selected element (see Fig. 1). Embedded editors have all the editing ca-
pabilities known from modern programming environments. To implement our
approach, we use our textual editing framework TEF [11] and create embedded
textual editors for graphical editors developed with the Eclipse Graphical Mod-
elling Framework (GMF). TEF allows to create textual notations for arbitrary
EMF meta-models. This includes meta-models with existing GMF editors.

As potential impact, our work can enhance the effectiveness of graphical mod-
elling with languages that partially rely textual representations. Furthermore, it
encourages the use of domain-specific modelling, because it allows the efficient

1 The applicability of the presented techniques is not limited to graphical editors,
but to editors based on the Model View Controller (MVC) pattern [10]. This also
includes tree-based model editors, which are very popular in EMF-based projects.
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development of DSL tools that combine the graphical and textual modelling
paradigm. In general, this work could provide the tooling for a new breed of lan-
guages that combine the visualisation and editing advantages of both graphical
notations and programming languages.

The remainder of this paper is structured as follows. The next section gives
an introduction to textual modelling. After that, section 3 discusses the prob-
lems associated with embedding editors in general. In section 4, we realise our
approach and implement it for several example languages. The paper is closed
with related work and conclusions in sections 5 and 6.

2 Textual Modelling and Generative Engineering of
Textual Model Editors

Textual modelling represents models with textual representations; modellers edit
models by creating or changing a string of characters. We call the usage of lan-
guages with textual notations textual modelling and the process of using corre-
sponding editors textual model editing. The necessary textual editing tools can
be generatively engineered using textual model editing frameworks. These frame-
works combine meta-languages for textual notations and corresponding meta-
tools. Language engineers describe notations and meta-tools generate feature
rich textual model editors automatically.

Before we explain how textual modelling can be embedded into graphical
modelling, we use this section to introduce general concepts of textual modelling
and the generative engineering of textual model editors. We accumulated this
information from many existing but similar approaches [5,7,9,12]. Some technical
details and the examples are specific to our own textual modelling framework
TEF, which we also use to technically realise embedded textual modelling later
in this paper.

2.1 Models and Their Representations, Corresponding Meta-models
and Notations

We use the term model to refer to an abstract structure, where possible ele-
ments of this structure are predetermined by a meta-model. Thus, a model is
always an instance of a meta-model. To read and modify a model, it needs to be
represented, for example, graphically or textually. Possible representations are

grammar mapping identification

textual
representation parse-tree model

meta-
model

constr-
aints

notationmeta-model-layer

model-layer
parser

user

feedback

checksmodel
creation

reference
resolution

Fig. 2. The background parsing strategy and involved artefacts
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defined by a notation. In the same way a model is an instance of a meta-model,
a model representation is an instance of a notation.

A textual notation (used for the considered textual model editing technology)
consists of a context-free grammar, and a mapping that relates this grammar to
a meta-model. The grammar defines a set of syntactical correct representations.
The mapping identifies the model corresponding to a representation. Fig. 3 shows
an example notation. This notation for the Ecore language is mapped to the
Ecore meta-model. A possible instance of this notation is shown in the top left
of Fig. 4, the corresponding Ecore model is shown in its graphical representation
on the top right of the same figure.

The notation in Fig. 3 is written for our TEF framework. It is a combination
of a context-free grammar with EBNF elements, augmented with mappings to a
meta-model. All string literals function as fixed terminals; all capitalized symbols
are morphem classes for integers or identifiers; everything else are non-terminals.
The bold printed elements relate grammar elements to meta-model classes and
features. If such a meta-model relation is attached to the left-hand-side of a rule,
the rule is related to a meta-model class; if attached to a right-hand-side sym-
bol, the right-hand-side rule part is related to a feature. We distinguish between
different kinds of meta-model relations: element relations relate to classes, com-
posite relations relate to attributes or other compositional structural features,
and reference relations relate to non-compositional structural features.2

2.2 The Background Parsing Strategy

Background parsing is a strategy to technically realise textual editing for context-
free grammar based notations, used by existing textual model editors (see Fig.
2). Background parsing is a circular process, containing four steps. First, the
user edits text as in a regular text editor. Second, the inserted text is parsed
according to the notation’s grammar. Third, a model is created from the resulting
parse-tree based on a given grammar to meta-model mapping. Finally, language
constraints are used to check the model. Errors in representation or resulting
model can arise in all steps and are reported back to the user. Otherwise, the user
is unaware of the parsing process, and continuous repetition gives the impression
that the user edits the model directly. As opposed to other editing strategies,
background parsing does not change the model, but creates a completely new
model that replaces the current model, in each repetition.
2 The terms compositional and non-compositional, hereby, refer to structural features

that imply and not imply exclusive ownership. The corresponding structural features
can carry other model elements as values. One model element used as a value in a
compositional feature of another element becomes part of the other element. The part
is called a component of the owning element; the owning element is called container
respectively. Each model element can be the component of one container only, i.e.
it can be a value in the structural features of one single model element at best. The
component-container relationship is called composition. Cycles in composition are
not allowed; composition forms trees within models. The roots of these trees are
model elements without container; the leafs are elements without components. [13]
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2.3 Creating Models from Parse-Trees

The result of parsing a textual representation is a syntax-tree or parse-tree. Each
node in a parse-tree is an instance of the grammar rule that was used to produce
the node. To create a model from a parse-tree, editors perform two depth-first
traversals on the tree.

In the first run, editors use the element relations attached to a node’s rule to
create an instance of the corresponding meta-model class. This instance becomes
the value represented by this node. It also serves as the context for traversing the
children of this node. Morphems create corresponding primitive values, e.g. inte-
gers or strings. During the same traversal, we use the composite relations to add
the values created by the respective child nodes to the referenced features in the
actual context object. With this technique, the parse-tree implies composition be-
tween model elements. Furthermore, the compositional design of the meta-model
must match the alignment of corresponding constructs in the textual notation.

syntax(Package) ”models/Ecore.ecore” {
Package:element(EPackage) ->

”package” IDENTIFIER:composite(name)
”{” (PackageContents)* ”}”;

PackageContents -> Package:composite(eSubpackages);
PackageContents -> Class:composite(eClassifiers);
PackageContents -> DataType:composite(eClassifiers);

Class:element(EClass) ->
”class” IDENTIFIER:composite(name) (SuperClasses)?
”{” (ClassContents)* ”}”;

SuperClasses -> ”extends” ClassRef:reference(eSuperTypes)
(”,” ClassRef:reference(eSuperTypes))*;

ClassRef:element(EClass) -> IDENTIFIER:composite(name);

ClassContents -> ”attribute” Attribute:composite(eStructuralFeatures);
ClassContents -> ”reference” Reference:composite(eStructuralFeatures);
ClassContents -> Operation:composite(eOperations);

Attribute:element(EAttribute) -> IDENTIFIER:composite(name) ”:”
TypeRef:reference(eType) Multiplicity;

TypeRef:element(EClassifier) -> IDENTIFIER:composite(name);

Multiplicity -> (”[” INTEGER:composite(lowerBound) ”:”
UNLIMITED INTEGER:composite(upperBound) ”]”)?;

Operation:element(EOperation) -> ...
}

Fig. 3. Excerpt from a notation description for the Ecore language
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Fig. 4. A representation, parse-tree, and model based on the example Ecore notation

2.4 Identity and Reference Resolution

Before we can understand how editors add feature values for references in the
second traversal, we have to understand identification of model elements. The
identity of a model element is a value that uniquely identifies this element within
a model. Each language defines a function that assigns each element of a language
instance an identity. Example identities can be the model element itself, the name
of the model element, or more complex constructs like full qualified names. An
identifier is a value used to identify a model element based on the element’s
identity. In simple languages, identifiers can often be used directly to identify
model elements: if an identifier and the identity of a model element are the
same, this identifier identifies this model element. In many languages, however,
identification is more complex, including name spaces, name hiding, imports, etc.
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In those cases, an identifier depends on the context it is used in. The language
must define a function that assigns a set of possible global identifiers to an
identifier and its context. These global identifiers are then used to find a model
element with an identity that matches one of those global identifiers.

Identity and identifiers are language-specific and might vary for model el-
ements of different meta-classes. Textual model editing frameworks can only
provide a simple default identification mechanism, i.e. based on a simple iden-
tity derived from a model element’s meta-class and possible name attribute.
TEF and other frameworks allow to customize this simple behaviour. Because
no specific description mechanisms for identification could be found for existing
textual editing frameworks yet, this part of a notation definition has usually to
be programmed within the used textual editing framework.

In the second traversal (also called reference resolution), the editor goes
through parse-tree and model simultaneously. Now, it uses all reference rela-
tions to add corresponding values to all non-compositional structural features.
This time, it does not use the child nodes’ values directly, but uses the child
nodes’ values as identifiers to resolve the corresponding referenced elements. Be-
cause all model elements were created in the first traversal, the referenced model
elements must already exist in the model.

3 Embedded Textual Model Editing

Graphical model editors are based on the Model View Controller MVC pat-
tern [10]. An MVC editor displays representations for model elements (model)
through view objects (view). It offers actions, which allow the user to change
model elements directly. Actions are realised in controller objects (controller).
Examples for such actions are creating a new model element, modify the value
set of a model element’s feature, deleting a model element. The representing
view objects react to these model changes and always show a representation of
the current model. In MVC editors the user does not change the representation,
only the model; the representation is just updated to the changed model. From
now on, we assume that the host editor is an MVC editor.

We propose the embedded editing process illustrated in Fig. 5: The user se-
lects a model element in the host editor and requests the embedded editor.
The embedded editor is opened for the selected model element (1). We call this
model element the edited model element. The edited model element includes the
selected model element itself and all its components. The opened textual model
editor creates an initial textual representation for the edited model element (2).
The user can now change this representation, and background parsing creates
new partial models, i.e. creates new edited model elements (3). The model in
the host editor is not changed, until the user commits changes and closes the
embedded textual model editor. At this point, the embedded editor replaces the
original edited model element in the host editor’s model, with the new edited
model element created in the last background parsing iteration (4).
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Fig. 5. Steps involved in the embedded textual editing process

There are three problems. First, we need textual model editors for partial mod-
els.Obviously, it is necessary to describe partial notations for corresponding partial
representations. Second, when the editor is opened, it needs to create an initial tex-
tual representation for the selected model part. Finally, when the editor is closed, a
new partial model has been created during background parsing. The newly created
partial model needs to replace the original edited element. All references and other
informationassociatedwith the original editedmodel elementhave tobepreserved.

3.1 Creating Partial Notation Descriptions

Textual model editors rely on textual notations. Whether these notations cover
a language’s complete meta-model or just parts of it, is irrelevant, as long as the
edited models only instantiate those meta-model parts that are covered by the
textual notation.

Two solutions are possible: first, language engineers only provide a partial
notation for the meta-model elements that they intend to provide embedded
textual modelling for. In this case, the engineers have to be sure that they cover
all related meta-model elements. Textual editing frameworks can automatically
validate this. Second, language engineers provide a complete notation, and the
editing framework automatically extracts partial notations for each meta-model
element that embedded editing is activated for.

3.2 Initial Textual Representations

To create the initial textual representation, an editor has to reverse the model
creating and parsing process: it creates a parse-tree from the edited model ele-
ment and pretty prints this tree.
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Creating a Parse-tree. To create a parse tree, the editor traverses the model
along its composition. For each model element, the editor can determine a set
of suitable grammar rules based on the element’s meta-class, the values of its
features, and the grammar to meta-model mapping. By using a back-tracking
strategy, the editor can determine one or more possible parse-trees for a model.
Notations that provide different possibilities to represent a single language con-
struct in different ways, will lead to multiple possible parse-trees for the same
model. Frameworks can give language engineers the possibility to prioritise gram-
mar rules accordingly. If the editor cannot determine a parse-tree for a model,
meta-model, grammar, and grammar to meta-model mapping are inconsistent.
For example, a model element name might be optional as defined by the meta-
model, but required by the notation: at some point in the model traversal, all
possible grammar rules for the element would require the name of the element,
but the name cannot be obtained.

Pretty Printing the Parse-tree. Pretty printing a parse-tree is basically straight
forward. The only problem are the white-spaces between two tokens. A human
readable textual representation needs reasonable white-spaces, i.e. layout infor-
mation, between these tokens. This is a problem with two possible solutions.
First, white-spaces originally created by editor users, can be stored within the
model. Second, editors can create white-spaces automatically. Disadvantages for
storing layout information are that the layout information has to be provided
by editor users, and model and meta-model have to be extended with layout in-
formation elements. The advantage is that user layouts and all information that
users express within layouts (also known as secondary notation [2]) are preserved.
The second solution has complementary advantages and disadvantages.

For embedded editing, we propose the automatic generation of white-spaces.
The edited text usually only comprises text pieces; white-spaces with hidden in-
formation, like empty lines, are not that important. Furthermore, the embedded
text editors rely on the modelling facilities of the host editor; storing information
beyond the model requires to change the host editor’s implementation. And finally,
with automatic layout, it is also possible to textually represent models that were
not created via a textual representation. Models created with other means than a
textual model editor (e.g. the host editor) can also be edited within such an editor.

Automatic layout of textual representations requires white-space clues as part
of the textual notation definition. We propose the use of white-space roles. Lan-
guage engineers add white-space roles as symbols to grammar rules. A white-
space role determines the role that the separation between two tokens plays.
Whites-spaces roles are dynamically instantiated with actual white-spaces, when
text is created from a model. A component called layout manager defines possible
white-space roles and is used to instantiate white-space roles. It creates white-
spaces for white-space roles in the order they appear within the created textual
model representation. The layout manager can instantiate the same white-space
role differently, depending on the context the white-space role is used in.

An example: A layout manager for block-layouts as used in programming
languages supports the roles space, emtpy, statement, blockstart, blockend, indent.
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package namespaces {
class NamedElement {

attribute name:EString[0,1]
      }

class Namespace extends NamedElement {
 ...

...
Class:element(EClass) ->  

 ws(indent) "class" ws(space) IDENTIFIER:composite(name) ws(space)
        (SuperClasses ws(space))?
        "{" ws(blockstart) (ClassContents)* ws(blockend)

ws(indent) "}" ws(statement);
 ... 
ClassContents -> "attribute" ws(space) Attribute:composite(eStructuralFeatures);
 ...  
Attribute:element(EAttribute) -> 
        ws(indent) IDENTIFIER:composite(name) 

ws(empty) ":" ws(empty) TypeExpr ws(empty) Multiplicity ws(statement);

1
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1

2
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Fig. 6. An example text with white-spaces for an example notation with white-space
roles

This manager instantiates each space with a space and each empty with an empty
string. But, if the manager detects that a single line of code becomes too long, the
layout manager can also instatiate both roles with a return and a followed proper
identation. The manager uses the blockstart and blockend roles to determine how
to instantiate an indent. It increases the indentation size when a blockstart is
instantiated, and decreases it, when a blockend is instatiated. Fig. 6 shows an
example representation and corresponding notation with white-space roles for
the Ecore language based on the block-layout manager.

3.3 Committing Model Changes

Problems caused by different editing paradigms. The host editor changes the
model with small actions that only affect single or very few model elements. Op-
posite to the MVC host editor, the embedded textual model editor is based on
background parsing and creates complete new model elements for each represen-
tation change. This causes two problems. First, other model elements that are
not part of the edited model element might reference the edited model element
or parts of it. These references break when the original edited model element is
replaced by a new one. Second, the edited model element might contain infor-
mation that is not represented; this information will be lost, because it is not
part of the model element created through background parsing.

In today’s modelling frameworks, e.g. EMF, we know all the references into the
edited element and its parts, and we can simply reassign these references to the
replacement model element and its parts. This would solve the first problem.
We could also merge changes manifested in the newly created model element
into the original model element. This would only update the original edited
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model element and not replace it. This would solve both problems. Anyway,
both solutions require identification: the editor has to access whether a model
element in the original model element is meant to be the same as a corresponding
model element part of the edited (newly created) model element. The editor can
achieve this based on the elements’ identity. This is obviously language-specific,
and identification has to be defined for each language (see section 2).

With identification, the editor can tell whether two model elements have the
same identity, and realising the first problem solution becomes very easy. The
editor takes all references into the original edited model element, determines
the identity of the referenced model elements within the original editor model
element, searches for a model element with the same identity within the newly
created model element, and reassigns the reference. The second problem solution
requires some sort of algorithm that navigates both, the edited model element
and the newly created model element, simultaneously along the model elements’
composition. The merge algorithm has to compare the model elements feature
by feature based on their identity, and transcribes all differences into the original
edited model element. Deeper discussions about model merging is outside of this
paper’s scope; model merging algorithms and techniques are described in [14,15].

One problem remains: this problem occurs, if the user changes the text repre-
sentation in a way that the identity of an element changes. Using the background
parsing strategy, it is not clear what the user’s intentions are. Did the user want
to change, e.g., the name of a model element, or did he want to actually replace
a model element, with a new element. The editor can only assume that the user
wanted to create a new element. One way to solve this problems is to give the
user the possibility to express his intention, e.g. provide a refactoring mechanism
that allows to rename a model element.

Problems Caused by Different Undo/redo Paradigms. A convenient feature of
model editors is the possibility to undo and redo model changes. This needs
to be preserved for model changes in embedded text editors. In MVC editors,
model changes are encapsulated in command objects, which allow to execute
single model changes, and to reverse the execution of single model changes.
Commands for executed model changes are stored in a command stack, which
the editor uses for undo/redo. This is different in a textual model editor based
on background parsing, where users change a string of characters. User actions
are represented as replacements on that string. Undo/redo is based on a stack of
string replacements. Embedded textual model editors and their graphical host
editors obviously use incompatible representations for model changes.

We propose the following solution. Embedded text editors offer string replace-
ment based undo/redo during textual editing. When the user closes the embed-
ded editor and commits the textual changes, the necessary actions to replace the
original edited model element are encapsulated into a single command, which is
then stacked into the host editors undo/redo facility. This is a compromise: it
allows to undo whole textual editing scenes, but does not allow to undo all the
intermediate textual editing steps once the embedded editor is closed.
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4 Realisation and Experiences

4.1 A Framework for Embedded Textual Model Editors

We created an EMF-based ([13]) textual editing framework for the Eclipse plat-
form called Textual Editing Framework (TEF) [11]. This framework allows to
describe textual model editors that use the background parsing strategy. Edi-
tors can be automatically derived from notation descriptions and support usual
modern text editor features: syntax highlighting, error annotations, content as-
sist [16], outline view, occurrences, and smart navigation. An example notation
description is shown in Fig. 3.

We extended TEF for the development of embedded editors. Embedded ed-
itors can be created for EMF generated tree-based editors and editors created
with the Graphical Modelling Framework (GMF) [17]. These embedded editors
do not require to change the host editor. In theory, TEF should work for all EMF-
based MVC host editors. To use TEF for embedded editors, language engineers
provide a notation description for those meta-model elements that embedded
textual editing is desired for. TEF automatically generates the embedded edi-
tors and provides so called object-contributions for corresponding EMF objects.
These object-contributions manifest as context menu items in the host editor.
With these menu items, users can open an embedded text editor for the selected
model element. The embedded editor is a full fledged TEF editor providing all
its features, except for the outline view, which is still showing the host editors
outline. The embedded editor will only show the textual representation of the
edited model element. The embedded text editor can be closed in two ways.
One way indicates cancellation (by clicking somewhere into the host editor); the
other way commits the changes made (pressing shift-enter).

We used the following problem solutions in TEF, which automatically cre-
ates partial notation descriptions by reducing a given notation for the specific
edited model element dynamically, when the editor is opened. TEF editors cre-
ate initial representations based on pretty printing with automatic white-space
generation using layout managers. Embedded editors commit model changes by
creating one single compound command that is added to the host editors com-
mand stack to preserve the host editors undo/redo capability. This command
contains sub-commands that replace the original edited element and reassign
all broken references based on either TEF’s default identification or a language-
specific identification mechanism. We plan to implement merging of newly cre-
ated edited model element and original model element as future work.

4.2 Textual Editing of Ecore Models

We used TEF to develop a textual notation for Ecore and generated embedded
textual editing for the graphical Ecore GMF editor and the standard tree-based
Ecore editor. We wanted a more convenient editing of signatures for attributes,
references, and operations. With the textual editing capabilities this becomes
indeed more convenient and, e.g., renders the process of creating an operation
with many parameters more efficient.
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The work on the Ecore editors affirmed a few of the mentioned problems.
First, many elements in the Ecore language carry information drawn from many
side aspects of meta-modelling, such as parameters for code generation or XMI
generation. Including all this information in the textual notation, would render
it very cumbersome. Omitting this information in the textual notation, how-
ever, causes the loss of this information, when the corresponding model parts
are edited textually. We hope to eliminate this problem by applying a model
merging approach to update the original edited model element instead of re-
placing it. Second, a textual notation for Ecore needs complex identification
constructs to realise textual references. Identification in Ecore has to rely on
namespaces, imports, local and full qualified names. None of those constructs
were defined in the language itself, and had to be invented on top of the actual
Ecore language. We had to augment the automatic generated editing facilities,
with manual implementations that describe such identification constructs.

4.3 An OCL Editor Integrated into Other Model Editors

The OCL constraint language is often used in conjunction with languages for
object-oriented structures, or the behaviour of such structures. Hence, OCL ex-
pressions are often attached to the graphical notations of languages like UML,
MOF, or Ecore. Therefore, editors for those languages should support OCL edit-
ing, but they usually only do by means of basic string based text editing.

We used TEF to develop an OCL editor based on the MDT OCL project. As
an example, we integrated this editor with the tree-based Ecore editor: The EMF
validation framework requires OCL constraints stored in Ecore annotations, be-
cause Ecore itself does not support the storage of OCL constraints. Because this
only allows to store OCL constraints in their textual representation as strings,
the embedded textual OCL editor is actually a normal text editor, which only
uses background parsing to create internal OCL models to support advanced ed-
itor features, i.e. code-completion and error annotations. This makes committing
the changes to OCL constraints particularly easy, because the embedded editor
only has to replace a string annotation in the host-editors Ecore model. Another
example application that we integrated the OCL editor into is the graphical
editor for the UML activity-based action language in [18,19].

4.4 Editing for Mathematical Expressions in DSLs

Many of today’s DSLs are developed based on EMF and instances of these lan-
guages are consequently edited using EMFs default generated tree-based model
editors. This is fine for most parts of these languages, but can become tiresome,
if models contain mathematical expressions. Because mathematics is commonly
used to express computation, such expressions are part of many languages.

We used TEF to develop a simple straight forward notation for a simple
straight forward expression meta-model. This expression meta-model and nota-
tions is a blueprint for integrating sophisticated editing capabilities for expres-
sions into DSLs. We used this to realise expressions in a domain-specific language
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for the definition of cellular automatons, used to predict the spread of natural
disasters like floods or fire.

5 Related Work

Work on textual notations based on meta-modelling with MOF includes Alanen
et al. [20], Scheidgen et al. [21], Wimmer et al. [12]. This basic research was
later utilised in frameworks for textual model editors. These are either based
on existing meta-models (TCS [7], TCSSL [9], MontiCore [5]), or they generate
meta-models or other parse-tree representations generated from the notations
(xText [22], Safari [6]). Those frameworks however, only support the editing of
text files. Models have to be created from those text files separately. Furthermore,
pretty printing capabilities, if supported, are not directly integrated into the
editors (because they are only text editors). This makes it hard to facilitate
those frameworks for embedded textual editing, because these editors can not
create an initial representation.

The GMF framework itself, provides some very simple means to describe
structured text. It allows to create simple templates that assign different por-
tions of a text to different object features. These simple templates allow less
than regular complexity, and are therefore inadequate for many textual language
constructs. First premature steps to describe the relations between graphical no-
tations and textual notations have been made by Tveit et al. [23].

Background parsing, its notation meta-languages, and used algorithms are
inspired by attributed grammars as described in [24]. Besides using context-
free grammar and background parsing, textual modelling can also be conducted
using the MVC pattern. MVC is used to realise Intentional Programming [25]
and the Meta Programming System (MPS) [26]. Because the editing paradigm
is the same than in graphical editors, it is thinkable that these frameworks can
be integrated into graphical editors as well, maybe with more natural solutions
to most of the presented problems. However, using MVC, only allows to create
models based on simple actions. This way, you have to create, e.g., an expression
as if you would create its parse-tree: from top to bottom. This is the same kind
of limitation that is already imposed upon graphical editors, and this is exactly
why we want to use textual modelling in the first place.

6 Conclusions and Future Work

The work presented in this paper showed that textual model editors can be
embedded into graphical editors. It also showed that this can be done efficiently
with generative development based on already existing technology. Furthermore,
existing graphical editors do not necessarily have to be changed to embed textual
editors; embedded editors can be provided as an add-on feature. Although, only
formal studies can proo that embedded textual modelling raises productivity,
we can assume increased productivity from the effect that modern text editors
already had on programming.
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There are a few issues that we suggest for further work. Problematic is that
background parsing makes it hard to read the user’s intention. A further problem
are changes that alter a model element’s identity and might result in unintended
effects. In today’s programming world, this is solved with refactoring. Textual
editing frameworks need to allow the generative engineering of such facilities for
textual editors (or model editors in general).

Furthermore, we need to explore the different grades of notation and edi-
tor integration. In this paper, we suggested to provide notation descriptions for
both the graphical and the textual notation separately, which allows to use both
editors (host and embedded) on arbitrary model elements. But, in many cases
it would be more natural to integrate both notation description into a single
notation description. This requires better integrated description languages and
editing frameworks, but would allow for more concise, coherent notation de-
scriptions and a more seamless overall modelling experience. On the technical
site, we should explore other possibilities to integrate editors into each other.
For example, it would be desirable to have the textual editor widget directly
contained in the corresponding graphical widget. This makes additional overlay
windows superfluous and would create a more fluid editing experience. Further-
more, this allows to see syntactical highlighting and error annotations directly
in the graphical model view.
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Abstract. Textual concrete syntaxes for models are beneficial for many reasons.
They foster usability and productivity because of their fast editing style, their us-
age of error markers, autocompletion and quick fixes. Furthermore, they can eas-
ily be integrated into existing tools such as diff/merge or information interchange
through e-mail, wikis or blogs. Several frameworks and tools from different com-
munities for creating concrete textual syntaxes for models emerged during recent
years. However, these approaches failed to provide a solution in general. Open
issues are incremental parsing and model updating as well as partial and fed-
erated views. To determine the capabilities of existing approaches, we provide a
classification schema, apply it to these approaches, and identify their deficiencies.

1 Introduction

With the advent of model-driven development techniques, graphical modelling lan-
guages became more and more popular. However, there are also use cases where a
concrete textual syntax (CTS) is more appropriate to edit models. For example, this ap-
plies to mathematical, expression-like languages such as query, or constraint languages
(e.g. Object Constraint Language (OCL)[1]). Another example where textual syntaxes
are preferred over graphical ones are model transformation languages such as QVT.
Even in graphical modelling there are parts that can only be expressed and displayed
textually in a convenient way, e.g., an operation signature in UML.

Advantages of such textual syntaxes are their clear structure (reading from left to
right, from top to bottom, indentation as substructures) and their focus on straight
ahead typing. Tools that can handle textual artefacts are widely spread and very ma-
ture. Especially software developers are used to having their development artefacts be-
ing developed as text. Helpers such as code highlighting, autocompletion, and error
annotations elevate the capabilities of textual editors significantly. Diff/merge opera-
tions, the construction of patches, etc. are already well understood for text in contrast to
graphically-noted models. Furthermore, submitting a part of text representing the model
to a discussion forum or writing a mail containing snippets written in the concrete syn-
tax is easy in a textual syntax because, due to its platform and tool independency, ev-
eryone can view and edit this text. Further advantages of a textual versus a graphical
concrete syntax for users as well as for tool developers are mentioned in [2].
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Basically, a CTS approach has to map constructs of a metamodel to the definition of a
textual syntax, i.e., a grammar. Tools that translate between the textual representation as
well as the abstract representation should be (automatically) derived from the mapping
definition. Additionally, an editor could be provided that facilitates features such as
syntax highlighting, autocompletion or error markers specific for the particular syntax.

However, for a CTS approach to prove applicable in an enterprise and in a large scale
environment a lot of requirements have to be met [3,4]. Important requirements are for
instance the incremental updating of existing models and the support for UUID-based
repositories or the definition of partial and/or combined views.

A great variety of approaches and tools that provide concrete textual syntax map-
pings for models emerged recently or have been enhanced to support it. Originating
from different communities, from academia as well as industry, their set of features is
also very diverse. Some approaches facilitate the translation from text to model by pars-
ing text from time to time in the background while others use a model-view-controller
(MVC) pattern to keep the model in sync with the text. Being able to store format infor-
mation in addition to the actual model, some approaches preserve the original format of
the text over subsequent translation runs. However, there are still requirements that are
not or insufficiently fulfilled by existing approaches.

The contributions of this paper are (1) a classification schema for CTS approaches,
(2) the application of this schema to existing CTS approaches as well as the identifica-
tion of their deficiencies and (3) the discussion of several important features that are not
yet addressed. The presented classification schema is used to describe the necessary as
well as extended features of a CTS mapping framework. Ten different approaches were
examined for their support of these features. The discussion of the yet unsupported fea-
tures focuses on the applicability of a CTS approach in an enterprise with a multitude
of modelling languages, metamodels and tools and distributed, parallel development.

This paper is structured as follows. An overview on the foundations of a CTS ap-
proach is given in Sect. 2. Section 3 presents the classification schema that includes the
features of a CTS approach. The actual classification is presented in Sect. 4. Section 5
discusses the findings and requirements for modelling in the enterprise. Related work
concerning the classification of CTS approaches is treated in Sect. 6. Conclusions are
drawn in Sect. 7.

2 Foundations of a Concrete Textual Syntax Mapping

Several basic components are needed to provide a comprehensive tooling for a CTS
approach. To be able to relate constructs from a metamodel to elements of a CTS,
a mapping between the metamodel and the definition of this syntax is needed. The
definition of a textual syntax is provided by a grammar. To translate the textual syntax
to its model representation, a lexer, a parser as well as a component that is responsible
for the semantical analysis (type checking, resolving of references, etc.) are needed.
Even for an approach that directly edits the model without having an explicit parser
component for the grammar, a similar component is needed that decides how the text
is translated into model elements. For reasons of convenience we will call all kinds
and combinations of components that implement the translation form text to model a
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Fig. 1. General structure of a CTS framework

parser. The backward transformation, from model to text, is provided by an emitter.
Both components can be generated using the above-mentioned mapping definition.

An overview of these components is depicted in Fig. 1. This figure shows that the
CTS framework uses the information that is provided in the mapping definition to gen-
erate the parser, emitter and editor components. For example, the mapping could define
that a UML class c is represented in the concrete syntax using the following template:
class <c.name> { <call to templates for contents of c> }.
The framework could then generate a parser that recognises this structure and instanti-
ates a UML class when parsing this pattern and setting the name property accordingly.
Furthermore, an emitter can use this template to translate an existing UML class into its
textual representation.

The grammar⇔metamodel mapping can also be used to generate an editor for the
language represented by the metamodel. This editor can then use the generated parser
and emitter to modify the text and the model. This editor is then also responsible for
keeping the text and the model in sync, e.g., by calling the parser everytime the text
has changed. Based on the mapping definition several features of the editor can be
generated, such as syntax highlighing, autocompletion or error reporting. Refactoring
actions can also be provided with this editor. Having the model as well as the text in its
direct access such an editor could, e.g, provide a rename action which updates the name
property of an element on the model and then uses the emitter to update all occurrences
of this name in the text.

3 Classification Schema

To be able to compare and classify different approaches that exist for the creation of a
concrete textual syntax for a metamodel a systematic list of possible features of such
an approach is needed. We chose to use feature diagrams [5] to provide an overview
on the available features. Figure 2 depicts a feature diagram of the features considered
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in this survey. The features shown in this figure are discussed in detail in the following
subsections. How and if these features are provided by the actual approaches is shown
in Tab. 1.

3.1 Supported Meta-metamodels (M3)

Current approaches are based on different meta-metamodels: Ecore [6], different ver-
sions of MOF 1.4 [7] or 2.0 [8] or the Kermeta meta-metamodel [9] used by Sintaks
[10]. Based on the capabilities of the meta-metamodels also the supported features of
the textual syntax approaches vary. For example, MOF 1.4 uses UUIDs (in this case
called MOFID) to identify model elements where Ecore uses designated key attributes.
Because of these different approaches also the implementation based on one of these
meta-metamodels needs to support the respective identification mechanism (see Sect. 5
for a detailed discussion on this problem).

3.2 Input and Output

Depending on the use case for a textual language and its editor, different artefacts may
already exist or need to be created. Possible combinations are:

1. Existing language specification, e.g. with a formal grammar, no metamodel exists.
This is a typical use case when existing languages, i.e. Domain Specific Languages
(DSL), should be integrated into a model driven development environment.

2. Existing metamodel, no specification for concrete syntax. For the development of a
new concrete syntax based on an existing metamodel this is an important use case.

3. Both, concrete syntax definition and metamodel exist. For this use case the mapping
definition needs to be flexible enough to bridge larger gaps between concrete and
abstract syntax (e.g., OCL).
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For frameworks which use a grammar as input it should also be distinguished if it is
possible to use standard (E)BNF grammars or if a proprietary definition for the CTS
constructs is needed. For approaches that specify the concrete syntax based on an ex-
isting metamodel a template-based approach that defines how each metamodel element
is represented as text may be used. The components needed to translate back and forth
between text and model—namely parser and emitter—are considered an output of the
CTS framework. This is closely connected to the bidirectionality support of an approach
because it is clear that if it only supports one direction, one of these components is not
needed. For example, an approach only supporting the translation from the textual syn-
tax to the model representation would not generate an emitter.

In Tab. 1 the following abbreviations denote the input and output parts of the CTS
frameworks: E=Emitter, G=EBNF grammar, Gpg=Reuse of an existing parser gen-
erator grammar definition, Gs=Proprietary grammar definition, M2=Metamodel, P=
Parser, T =Templates for the concrete syntax.

3.3 Update Mechanism

There are two main possibilities how changes of the text can be reflected in the model.
First, a Model View Controller (MVC) like approach may be used. Using an MVC-
based editor, all changes to the textual representation are directly reflected in the model
and vice versa. This means that there are only atomic commands that transform the
model from one consistent state to another. Hence, it is at every point in time consistent.
Second, a deferred update approach may be used. The parser is called from time to time
or when the text is saved. However, intermediate states of the text may then be out of
sync with the model because it may not always be possible to parse the text without
syntactical errors. Such an approach is for instance used in the background parsing
implementation of the Eclipse JDT project.

These approaches are identified in Tab. 1 by: mvc=Model View Controller, bg=
Background parsing.

3.4 Incrementality

If the translation between text and model is done incrementally, only the necessary el-
ements are changed rather than the whole text or model. For example, model elements
are kept, if possible, when the text is re-parsed. Vice versa, changes to the model would
only cause the necessary parts of the text to be updated. Especially when dealing with
models in which model elements are identified by a UUID an incremental update ap-
proach becomes more desirable. Here, incrementality is important to keep the UUIDs
of the model elements stable so that references from other models outside the current
scope do not break. Therefore it is important not to re-create model elements every time
a model is updated from its CTS. A detailed discussion on the issues that arise when
using a CTS approach on top of a UUID-based repository is performed in Sect. 5.

Even in a non UUID-based environment incrementality becomes important as soon
as the textual representation reaches a certain size. Lexing, parsing, semantical analysis
and instantiating model elements for the whole text causes a significant performance
overhead.
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In Tab. 1 the following abbreviations are used to distinguish these possibilities:
y=Full support for incremental parsing/updating, n=No support for incremental up-
dates, y([p|e])=Support only for incremental parsing(p) or emitting(e).

3.5 Format Retainment

If an emitter is used to translate models to their textual representation, users would ex-
pect that the format information of the text, such as whitespaces, is preserved. Further-
more, elements that are only present in the concrete syntax and not in the metamodel, as
for example comments, also need to be retained. Especially when the textual represen-
tation is not explicitly stored but rather derived from the actual model (c.f., Sect. 3.12)
format information has to be stored in addition to the model.

Possible values for this feature in Tab. 1 are the following: y=Format is retained upon
re-emitting, n=No format retainment support.

3.6 Directionality

Bidirectional transformations between the abstract model representation and its CTS
means that it is also possible to update existing textual representations if the model
has changed. An initial emitter that produces a default text for a model can easily be
produced using the information from the grammar or mapping definition. For a more so-
phisticated emitter, knowledge about formatting rules and format retainment is needed.

For updating existing representations, it would be expected that the user-defined for-
mat is retained. Imagine a textual editor that is used to create queries on business ob-
jects. Now an attribute in the business object model is renamed. This means that all
references in the queries need to be updated. Hence, the queries need to be re-emitted
from the model. For this case it would be desirable that the queries’ format looks exactly
the same as before that change rather than having the default format.

There are some difficult cases that should be considered: Imagine a series of inline
”//” comments that the user aligned nicely. When the length of the identifier changes,
it will be tricky to know what the user wanted with the formatting: aligned comments
or a specific number of spaces/tabs between the last character of the statement and the
”//” marker. Hence, perhaps there needs to be the possibility to specify the behaviour of
such formatting rules within the mapping definition.

The following values are possible for this feature in Tab. 1: y=Completely bidirec-
tional transformation, n=No bidirectionality supported, i=Creation of textual represen-
tation only initially.

3.7 Grammars Class

The parser component of an approach needs to have a grammar defined to be able to
handle the textual input of the concrete syntax. Possible grammar classes are those
of general-purpose programming languages such as LL or LALR [11]. However, it
might be possible that even non context-free grammars may be used as input. Another
possibility where no grammar in a usual form is needed would be a pseudo text editing
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approach. In such an approach no text file is edited but all modifications are directly
applied to the model using an MVC approach (c.f., Sect. 3.3).

The following grammar classes are considered for Tab. 1: LL(1/k/*), SLR, LR,
LALR, ncf=Non-context free, dir.=Direct editing.

3.8 Semantical Analysis

After the parser has analysed the structure of the text document links between the re-
sulting elements need to be created. For example, a method call expression in an OCL
constraint that was just parsed needs to be linked to the corresponding operation model
element. To represent these links, two different concepts may be used by the model
repository, either by their UUID or by designated key attributes (c.f., Sect. 5). As the
choice of one of these mechanisms has a great impact on the implementation of the
CTS approach (also see Sect. 5) this feature is also listed in this classification schema.

The following abbreviations are used in Tab. 1: UUID=Identification via UUID, Key-
Attr.=Identification by designated key attributes.

3.9 Operators

Especially in mathematical expressions the use infix operators is widely spread. Dur-
ing the semantical analysis the priorities, arities and associativities of such expressions
habe to be resolved. To be able to automatically translate a textual representation of such
an expression into its abstract model this information needs to be present in the map-
ping definition. If such an automated support is present this allows the gap between the
metamodel and the grammar to be much bigger. For approaches that generate a meta-
model from the mapping definition this feature is mostly implicitly supported since the
operator precedence is then directly encoded in the generated metamodel.

In Tab. 1 a y means that explicit support for operators is built into the framework, p
means partial support exists and n means that a manual translation is needed.

3.10 Symbol Table

A symbol table is needed to handle the resolving of references within the textual syntax.
As there is, mostly, only the containment hierarchy explicitely present within a CTS a
symbol table is needed during the parsing process to resolve other references that are
stated using e.g., named references. The support for custom namespace contexts (such
as blocks in Java) can also be an important feature of the employed symbol table.

Possible values for this feature in Tab. 1 are the following: y=full support including
custom contexts, p=partial support without additional contexts, n=no built-in symbol
table.

3.11 Features of the Generated Editor

Most approaches also generate a comfortable editor for the concrete syntax. Function-
ality that is based on the abstract syntax (such as autocompletion or error reporting)
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can be provided based on the model. If the tool also supports bidirectional transforma-
tion, refactoring support (such as renaming, etc.) may be easily implemented using the
model. Other possible features are syntax highlighting or quick fixes.

Table 2 shows an overview on the features of the generated editors of each frame-
work. The following features are considered: autocompletion, syntax highlighting,
refactoring, error markers and quick fixes.

3.12 Storage Mechanism

Having two kinds of representation, i.e. concrete textual syntax or abstract model, there
are several possibilities to store the model. First, the model may be stored just using the
concrete syntax. Second, only the abstract model is stored and the textual representa-
tion is derived on the fly whenever the textual editor opens the model. Then formatting
information needs to be stored additionally to the model (c.f., Sect. 3.5). Third, both rep-
resentations could be stored independent from each other. However, this means in most
cases that they are not kept in sync with each other. Fourth, a hybrid approach may be
implemented that stores the format information and merges them with the model when
it is loaded into the editor. This additional format storage may then again be represented
as an annotation model to the actual model or as some kind of textual template.

These different possibilities are identified in Tab. 1 using the following abbrevia-
tions: text=The textual representation is stored, mod.=The model is stored, both=Both
representations are stored, hyb.=Hybrid storage approach.

4 Classification of Existing Approaches

According to the classification schema presented in Sect. 3, we evaluated several ap-
proaches that present a possibility to create a model based CTS. Table 1 lists the sup-
ported features of each approach. Table 2 shows the features of a potentially generated
editor. All evaluations were based on the cited works and prototypes that were available
at the time of writing. Future work proposals of these sources were not considered.

Bridging Grammarware and Modelware: Grammar-based approaches are used to
automatically generate a metamodel for the CTS. Those metamodels are closely re-
lated to the grammar elements for which they were created. This inherently causes the
metamodel to be relatively large. Reduction rules can be used to reduce the amount of
metamodel elements that are produced for elements in the grammar.

For example, a trivial mapping would generate a class cntk
for each non-terminal ntk

in the grammar as well as one class calti for each alternative alti of ntk. Furthermore,
an association refalti would be generated that connects the calti to their cntk

. The calti

then reference the corresponding cntj for the referenced non-terminals ntj of alti. One
reasonable reduction rule for this scenario is: if ntk references only alti with only one
referenced non-terminal each, the refalti as well as calti could be omitted, reducing the
whole structure to a direct generalisation between the cntj and cntk

.
Some of these reduction rules can be applied automatically during the metamodel

generation, while others need additional information given as annotations to the
grammars.
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Wimmer and Kramler [12] present such an approach. A multi-phase automatic gener-
ation that facilitates reduction rules as well as manual annotations reduces this amount
to make the resulting metamodel more usable. The reduction steps that are applied
during these phases then also implicitly define the mapping between the mapping def-
inition. The main area where such an approach is useful is the Architecture Driven
Modernisation (ADM)[16] where existing legacy code is analysed for migration, docu-
mentation or gathering of metrics.

Frodo: Frodo [13] was developed with the goal to provide a unified solution for the
creation of a DSL. This approach presents an end-to-end solution for textual DSLs,
providing support for the creation of a CTS as well as back-end support for the target
DSL. It also makes initial attempts to derive a debugging support from the mapping
specification. Frodo supports several sources for the definition of the CTS. Either a
grammar metamodel may be specified or a specific grammar for a supported parser
generator (currently ANTLR) could be used. An implicit mapping from the grammar
to the DSL metamodel is automatically created. This is done by matching the names
of classes and attributes to elements in the grammar rules. Additional mapping rules,
such as those needed for the resolving of references between model elements can be
specified on the grammar metamodel.

Grammar Based Code Transformation for MDA: The approach elaborated in [14],
similar to Bridging Grammarware and Modelware, also relies on reduction and an-
notations to the grammar. However, this approach additionally facilitates the storage of
format information as a decorator model attached to the actual model.

Sintaks (TCSSL): Fondement [20] presents an bidirectional approach that generates a
parser (based on the ANTLR parser generator) and an emitter (using the JET template
engine). The mapping definition is created using the MOF concrete syntax. For complex
mappings which need several passes, e.g., for resolving references or performing type
checking, a multiple pass analysis can be integrated into the mapping. The main idea
of this approach is to have an n-pass architecture for the transformation from code to
model. Intermediate models are hereby treated as models decorated with refinements.
Model transformations are then used to subsequently transform these models and finally
create the abstract model that then conforms to the target metamodel.

TCS: A similar technique is presented in [10]. This approach also provides a generic
editor for the syntaxes handled by TCS. For each syntax that is defined using TCS,
there is also a definition that can be registered in the editor. Within this definition, it
can, for example, be specified how the syntax highlighting should be done. This editor
uses text-to-model trace-links that are created during parsing to allow hyperlinks and
hovers for references within the text. However, currently these links are implemented
as attributes (column and line number of the corresponding text) on a mandatory base
class (LocatedElement) for all metamodel elements handled by a TCS editor. If the
metamodel classes do not extend these class, the trace functionality is disabled. In later
versions of TCS, this issue might be resolved. The mapping definition of a TCS syntax is
tightly coupled to the metamodel, which means that for each element in the metamodel
there is one rule describing its textual notation. This tight coupling makes the definition
of a syntax relatively easy. However, it is therefore not possible to define additional
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rules in the mapping that are e.g., needed to resolve left recursions [11] within a LL
grammar.

MontiCore: Another approach to integrate a textual concrete syntax with a correspond-
ing metamodel is presented by Krahn et al. in [18]. This approach facilitates an inte-
grated definition where the abstract syntax (the metamodel) is also defined within a
grammar like definition of the concrete syntax. For simple languages and especially for
languages where only one form of presentation, i.e. the textual syntax, is used, this ap-
proach seems to be promising. However, if a metamodel may have several presentation
forms, or if only parts of the metamodel are represented as text, the tight integration
of concrete and abstract syntax this approach promotes does not seem to be applicable.
MontiCore allows the composition and inheritance of different languages and provides
a comfortable support for generating editors from these composite specifications [19].

HUTN: The Human-Usable Text Notation (HUTN) approach [23], now specified as a
standard by the Object Management Group (OMG) can be used to generate a standard
textual language for a given metamodel. It focuses on an easy-to-understand syntax as
well as the completeness of the language (it is able to represent all possible metamodel
instances). Furthermore all languages, though each language is different, conform to a
single style and structure and it is not possible to define an own syntax for a metamodel.
In HUTN a grammar for a metamodel, including parser and emitter is generated.

There were currently only two implementations for HUTN. An early implementa-
tion was developed by the DSTC, named TokTok. However, this implementation is not
available anymore. Another implementation was developed by Muller and Hassenforder
[24], who examined the applicability of HUTN as a bridge between models and con-
crete syntaxes. They identified several flaws in the specification that make it difficult to
use.

TEF: The first version of the Textual Editing Framework (TEF) presented in [21] was
based on an MVC updating approach. Inherent problems with this concept (see Sect.
5) led to the choice of background parsing as the final method for updating the model.
An interesting feature of TEF that is not directly mentioned in the classification schema
is the possibility to define multiple syntactic constructs for the same metamodel ele-
ment. Vice-versa, it is also possible to use the same notation for different elements by
providing a semantic function that selects the correct function based on the context.

JetBrains MPS: JetBrains developed a framework called Meta Programming System
(MPS) [17,25] that allows to define languages that consist of syntactical elements that
look like dynamically-arranged tabulars or forms. This means, that the elements of the
language are predefined boxes which can be filled with a value. MPS follows the MVC
updating approach that allows for direct editing of the underlying model. This allows
the editor to easily provide features such as syntax highlighting or code completion.
However, it is not possible to write code that does not conform to the language. Hence,
a copy, paste, adapt process is not possible in this approach.

xText: Developed as part of the openArchitectureWare (oAW) framework, xText [22]
allows the definition of a CTS within the oAW context. xText generates an intermediate
metamodel for the concrete syntax from the mapping specification. For this reason the
framework provides an EBNF-like definition language which facilitates features like
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Table 2. Editor capabilities

Name(s) Reference(s) Autocomp. Err. mark. Refactoring supp. Quick fixes
Frodo [13] n ?a n n

Gymnast [15] y y y n
IntelliJ MPS [17] y yb y y

MontiCore [19] y y y n
TCS [10] n y n n
TEF [21] y y y n

xText [22] y y y n

aThis feature could not be evaluated.
bNo syntactic errors possible because of resolute MVC concept.

the possibility to specify identity properties or abstract classes. A translation into an
instance of the intended target metamodel needs to be done by developing a model to
model transformation from this intermediate language into the target abstract syntax.
Having such an intermediate metamodel complicates the bidirectional mapping as an
additional transformation for the backwards transformation is needed.

Gymnast: Garcia and Sentossa present an approach called Gymnast in [15], which sim-
ilar to xText generates an intermediate language on which the editor is based. Refac-
torings, occurrence markings, etc., are provided by the generated editor based. As this
work’s main focus is on the generation of the editor and its functionality, a mapping to
an existing target metamodel has to be developed in addition to the generated tools.

Other Approaches: A recently emerged project on eclipse.org that also aims to tackle
the development of CTSs is the Eclipse IMP [26]. However, the current focus of the
project lies on the easy development of an editor and not on the integration with a
model repository. Still, it was stated in the project’s declaration of intent that an integra-
tion with EMF is projected. Furthermore, there is an eclipse.org project called Textual
Modelling Framework (TMF)[27] that currently regroups TCS and xText under a
common architecture. A different approach is followed by Intentional Software’s In-
tentional Programming [28]. Here, it seems to be possible to directly edit the model
using a text editor. Multiple syntaxes, also textual ones, can be defined and handled
even in the same editor. However, being a proprietary approach, the integration with
existing standards-based repositories may be problematic.

5 Discussion

Current CTS implementations span a continuum between text and model affine-frame-
works. On the text-end-side there are tools that stem from conventional programming
languages. The idea to create development tools that are based on a model rather than
on plain text was already developed before model-driven development became promi-
nent. The IDE of Smalltalk systems follows a similar paradigm. Code artefacts are
also Smalltalk objects that are edited using a specialised editor. Especially considering
refactoring, this is a great advantage. Another example where boundaries between a
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textual and a model view on code are starting to blur is the Eclipse Java Development
Tools (JDT) project. Even though the Java source files are still stored as plain text files,
JDT uses indices and meta-data in the background to be able to provide comprehensive
refactoring, navigation and error reporting capabilities. Many tools that were considered
here (such as Gymnast or xText) focus on this end of the spectrum. On the other end of
this spectrum, there are tools such as the MPS framework treating text as a sequence of
frames or compartments containing text blocks. While text-based issues such as diff or
merge are solved on text artefacts, solutions for these problems are still immature con-
cerning models. Vice versa, issues that can easily be or are already solved on models,
such as the usage of UUIDs for references or partial and combined views on models are
challenges that none of the currently available CTS approaches is able to handle.

As it can be seen in Tab. 1 support for incremental model updates is currently not
widely available. Only MPS provides some support for this. Furthermore, none of the
approaches under evaluation support the UUID identification mechanism for model el-
ements. Even HUTN, which is an OMG standard explicitly specifies that key attributes
need to be specified in order to realise model element identification. That lack of these
features complicates the application of these approaches in certain environments. The
next sections discuss some of the yet untreated issues.

5.1 Universally Unique Identifiers

There are two different possibilities how model repositories can handle links between
model elements: either by defining designated key attributes for each model element
(as, e.g., in EMF/Ecore) or by assigning each element a Universally Unique Identi-
fier (UUID) that remains stable across the lifetime of the element (e.g, the MOFID in
MOF 1.4) [3,4]. Very important issues arise when trying to put a parser-based approach
on top of a repository that uses UUIDs to identify model elements. In large scale envi-
ronments with a high number of model partitions and numerous connections between
those partitions, such repositories become very important. In distributed development
where developers of one artefact do not always know all referrers from other model
partitions to a specific model element it is crucial that elements have stable IDs. Further
advantages of the UUID-based approach can be found in [3].

In textual syntaxes identification through UUIDs becomes problematic for several
reasons:

– Storage Mechanism: If a model artefact is stored using the concrete syntax only,
there needs to be the possibility to store these IDs somewhere in the text. However,
during development a developer should not see these IDs as they contradict the
crisp textual view and make it confusing. On the other hand, if the artefact is solely
stored as model, other problems concerning the update from text to model arise
(see below).

– Model Updates: Updating existing models is an inherent problem of textual no-
tations. In graphical or forms-based modelling only a comparably small set of
changes may occur that can easily be wrapped into command structures that are ex-
ecuted in a transactional way, transforming the model from one consistent state to
another. In a textual editor this is very difficult, especially when IDs are not present
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in the textual representation. A small change, e.g., adding an opening bracket in the
text may alter the whole structure of the text, making it difficult to identify which
elements in the model are meant to be kept and which are not.

– Creation and Deletion of Model Elements: In a graphical editor there are explicit
commands to create and delete model elements. Within a textual editor this is dif-
ficult mostly because the creation or deletion of model elements is done implicitly.
For example, if the name of an element is changed in the textual syntax it may ei-
ther mean that the old element should be deleted and a new one should be created,
or a simple rename of the existing model element may have been intended.

A solution that lets transformations produce stable UUIDs for new model elements was
proposed in [4]. Such an approach may, for example, use the ID of the source element
and some transformation ID to compute the ID of the target element. However, if text is
used as source there is no stable ID for a source element, just properties derived directly
from the textual representation, such as a name attribute. Hence, no stable ID for a target
element can be computed and the only way to keep the identity is to rely on incremental
updates of the model (c.f. Sect. 5.2).

5.2 Update Mechanism

Many of the aforementioned problems may be solved by employing an MVC-based up-
date mechanism. However, there are still other problematic constructs in this concept.
Consider for example an expressions such as “(a+b)*c”: At the time of typing the ex-
pression in the parentheses, it can not be known that the model that actually should be
created would have the “*” expression as root node and the parenthesised expression
only as a subnode. A discussion of the advantages and disadvantages of the MVC and
the background parsing approach can be found in [21].

Closely related to the update issue is the general problem of incremental updates.
In compiler construction literature this problem was already discussed. For example,
Wagner [29] developed a methodology that allows incremental lexing as well as parsing.
Furthermore, Reps et. al. [30] present an incremental process that allows incremental
updates to the attributed trees that result from the semantical analysis. However, such
techniques were not adopted by any of the CTS frameworks under evaluation.

5.3 Partial and Combined Views

One advantage of graphical modelling is that it is easily possible to define partial views
on models. This means that it is possible to create diagrams that highlight only a spe-
cific aspect of the model while hiding other parts. for example, in UML one diagram
may be used to display an inheritance hierarchy of classes only while another diagram
is used to show the associations between these classes. Defining models with a CTS
should also include the possibility to do this. However, this imposes that there are two
different modes for deleting elements. One, which deletes only the text and another
which deletes the model element from the text and the model. Using only standard text
editing techniques (typing characters and using backspace or delete to remove them)
there is no possibility to distinguish between both commands.
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6 Related Work

An analysis of existing approaches for the creation of a CTS was conducted in [13].
However, neither a systematic schema was used to classify these approaches, nor was
a comprehensive analysis of the approaches’ features provided. Garcia [15] presented
an overview of existing approaches and highlighted some of their peculiarities. Never-
theless, an extensive analysis was considered “a lengthy, lengthy, affair” and therefore
omitted. Several of the papers presenting the CTS approaches contain a short section
on related work, but they also only give hints.

7 Conclusions and Future Work

In this paper we presented a classification schema for CTS mappings and their frame-
works. We applied this classification to several academic and industrial approaches. The
presented classification is not exhaustive. However, the classification schema can be
used to evaluate, classify and compare further approaches. Furthermore, we identified
issues that currently complicate the use of these frameworks in a large-scale enterprise
MDSD environment. Issues like those highlighted in our discussion need to be solved
in order to apply a CTS framework in a larger model-driven environment.

The contribution of this paper is useful for the practitioner, as he can select an ad-
equate approach for his particular requirements based on the presented classification.
Furthermore, it is also interesting for academia, as several unresolved issues concerning
a CTS mapping are highlighted.

We plan to develop a CTS approach that explicitly supports UUID-based reposito-
ries with all consequences, such as the need for incremental parsing and updating. The
envisioned approach should also support partial and combined views.
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Abstract. The development process of Domain Specific Languages
(DSL) can be tackled from different technical spaces such as XML, Gram-
marware or Model Driven Engineering (MDE). In the case of using MDE,
the definition of a concrete syntax for a textual DSL requires commonly
building a bridge between this technical space and Grammarware. Sev-
eral bridging approaches have been recently proposed in which the exist-
ing coupling between concrete and abstract syntaxes causes information
duplication in the development process of DSLs. Moreover, reusability
of concrete syntaxes has received no attention in these approaches.

In this paper we present the MSS (Metamodel Syntactic Sheets) ap-
proach for defining textual concrete syntaxes. MSS is intended to pro-
mote the reuse of textual concrete syntaxes and to avoid information
duplication. In MSS, metamodels are annotated with syntactic proper-
ties and a propagation mechanism reduces the number of annotations
required as well as the coupling between concrete and abstract syntaxes.
Textual concrete syntaxes can be reused by annotating syntactically the
metamodeling language. This reuse makes possible to share syntactic
idioms (textual conventions) among different DSLs.

1 Introduction

The development process of Domain Specific Languages (DSL) can be tackled
from different technical spaces such as XML, Grammarware or Model Driven
Engineering (MDE). MDE techniques and tools provide clear advantages to the
development process. First, it supports the definition of domain models by ap-
plying the expressiveness of metamodeling languages. Second, it facilitates the
consecution of automatic development processes. However, textual DSLs usually
need a grammar to specify the concrete syntax, so a bridge between MDE and
Grammarware technical spaces is required.

As noted in [1], there is significant redundancy between the grammar of the
textual concrete syntax and the metamodel of the abstract syntax. This prob-
lem is caused by the coupling between concrete and abstract syntaxes, and is
common to all the existing approaches for bridging Grammarware and MDE
([1], [2], [3], [4], [5]). On the other hand, reusability of textual concrete syntaxes
has received no attention in these approaches. Thus, proposals intended to avoid
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information duplication and to promote the reuse in the development process of
DSLs are necessary.

Families of textual DSLs are an example of the need for reusing concrete syn-
taxes. A textual DSL is often used in combination with other textual DSLs for
user communities. These communities establish usability criteria based on syn-
tactic conventions or standards. In this paper we introduce the syntactic idiom
term to refer to the syntactic conventions shared within the user community of
a DSL. Applying syntactic idioms commonly involves the repetition of syntac-
tic constructs along the specification of the concrete syntax, what increases the
development and maintenance costs. In this sense, reuse techniques would make
the definition of syntactic idioms more efficient.

MSS (Metamodel Syntactic Sheets) is an approach for the specification of
textual concrete syntaxes for metamodels, pursuing three main goals: to avoid
information redundancy between metamodels and concrete syntaxes; to facili-
tate reuse of concrete syntaxes; and to support the definition of syntactic idioms.
In MSS, a textual concrete syntax consists of syntactic sheets containing a set
of syntactic properties applied to the metamodel elements. A propagation mech-
anism spreads syntactic properties through the existing relationships between
metamodeling concepts such as the inheritance in metaclasses. This mechanism
also supports the annotation of the metamodeling language, which permits to
create syntactic idioms.

This paper is organized as follows. The next section motivates the proposed
approach and introduces a running example. Section 3 defines the concept of
syntactic property. Section 4 introduces the DSL used to specify textual concrete
syntaxes. Section 5 presents the property propagation mechanism. Section 6
describes the processing of syntactic sheets. Finally, in Section 7 related work is
presented and Section 8 presents some conclusions and future work.

2 Motivation and Running Example

In MDE, metamodeling techniques are applied to create DSLs, which are devised
for specifying models representing different aspects of the system. The abstract
syntax of DSLs is represented by a metamodel expressed in a metamodeling lan-
guage (e.g. EMOF, Ecore or KM3). The formalism used to specify the concrete
syntax of a DSL depends on the nature of the notation. In the case of a tex-
tual notation, the concrete syntax is commonly specified by a grammar, which
associates syntactic properties to metamodel elements.

In this paper we will present an approach for defining textual concrete syn-
taxes through the annotation of metamodels with syntactic information. In this
section we will illustrate the approach through a simple DSL whose metamodel
is shown in Figure 1. The purpose of this DSL, named DataForm, is to define
data forms. A data form consists of a set of groups, and each group includes a
number of data fields.

In this example, we propose a DataForm DSL specification with a nested
syntactic structure, what is very common in textual DSLs. According to this
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N a m e d E l e m e n t

 n a m e :  S t r i n g

 

F o r m

 d a t a :  S t r i n g

 t i t l e :  S t r i n g

 

G r o u p

F i e l d

 r e q u i r e d :  B o o l e a n

 l a b e l :  S t r i n g

 

T e x t

 m a x L e n g t h :  I n t e g e r

 

P a s s w o r d

D a t e

 f o r m a t :  S t r i n g

 

 g r o u p s  f i e l d s

Fig. 1. Abstract syntax of the DataForm DSL

structure, a DataForm specification consists of a set of syntactic constructs
describing metamodel concepts. Each concept construct has two parts: header
and body. A header consists of a keyword, whose name is the same as the meta-
class name corresponding to the concept, followed by a name identifying a con-
crete instance of the concept (e.g., Form "Basic User"). The body consists of
a list of constructs describing the attributes and associations of the concept
(metaclass). This list is enclosed between curly brackets and their constructs
are separated by a semi-colon. These constructs can be of two kinds: feature
construct and aggregation construct. A feature construct consists of the feature
identifier and its value, separated by the colon (e.g., data: "User"). An aggre-
gation construct encloses between square brackets a list of concept constructs
separated by a comma. The following text shows a DataForm specification.

Form "BasicUser" {
data: "User";
title: "User Registration";
groups: [

Group "Personal Data" {
fields: [

Text "name" {
required: true;
maxLength: 256;

} ,
Date "birthDate" {

required: false;
label: "Birth Date";
format: "mm/dd/yyyy";

}
]
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}
]

}

An excerpt of the grammar of the DSL DataForm is presented below. For the
sake of clarity, the names of the non-terminal symbols are defined according to
the metamodel elements; for instance, metaclass form refers to the declaration
of a Form metaclass and feature form data corresponds to the definition of the
feature data of the metaclass Form.

metaclass_form := ’Form’ ID ’{’ feature_form_data ’;’
feature_form_title ’;’ feature_form_groups ’}’ ;

feature_form_data := ’data’ ’:’ STRING ;

feature_form_title := ’title’ ’:’ STRING ;

feature_form_group := ’groups’ ’:’
( ’[’ ’]’ | ’[’ metaclass_group (’,’ metaclass_group)* ’]’ );

metaclass_group := ’Group’ ID ’{’ feature_group_fields ’}’

feature_group_fields := ’fields’ ’:’
( ’[’ ’]’ | ’[’ metaclass_field (’,’ metaclass_field)* ’]’ );

metaclass_field := ( metaclass_text | metaclass_date
| metaclass_password) ;

...

Note that the metamodel and the nested syntactic structure of the notation
establish the shape of the production rules. These rules could be classified accord-
ing to the three kinds of constructs defined above. Production rules belonging
to a category share the same structure, so similarity between rules arises. For
instance, the feature form data and feature form title productions specify
feature constructs and they only differ in the first terminal symbol, ’data’ and
’title’, respectively; and the feature form groups and feature group fields
productions specify aggregation associations and they have the same structure.

Therefore, each kind of syntactic construct can be considered a syntactic pat-
tern or template that can be parameterized with terminal symbols. For instance,
the pattern referring to metaclass features would have a parameter used to estab-
lish the terminal symbol that appears between the feature name and its value; in
the previous grammar, this parameter would have the colon as value. The MSS
approach for defining textual concrete syntaxes was influenced by this idea of
grammar syntactic pattern. We will use the syntactic property term to refer to
the pattern parameters, and the syntactic annotation term to the assignment of
a value to a property.
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We have identified a set of useful syntactic patterns to specify textual concrete
syntaxes. These patterns and the related syntactic properties are presented in
the next section. In MSS, metamodel elements are annotated with syntactic
properties in order to derive a grammar for processing the textual notation.
To express syntactic annotations, we have defined a DSL which is presented in
Section 4.

Besides identifying a set of basic syntactic properties for defining textual con-
crete syntax, the idea of syntactic pattern has been very useful to discover how
to achieve reuse of textual concrete syntax. A pattern has a scope establishing
the set of metamodel elements to which is applied. The scope can refer to ele-
ments of a metamodeling language (i.e. metaclass, attribute or association) or
elements of the metamodel (i.e. the metaclass Form or the attribute label of the
metaclass Field), that is, the scope can refer to M3 and M2 levels of the four-
level architecture of the metamodeling paradigm. Therefore, the pattern scope
allows us to distinguish between specific patterns coupled to a DSL metamodel
and general patterns that can be applied to several DSLs.

Obviously, general patterns are more interesting since the annotation of syn-
tactic properties at metamodeling language level allows for reusing textual con-
crete syntax. In this sense, MSS incorporates a propagation mechanism, which is
in charge of propagating the syntactic annotations through the relationships be-
tween metamodel elements and between a metamodel and its meta-metamodel.
In this way, MSS avoids information redundancy between metamodels and con-
crete syntaxes, and makes possible sharing syntactic idioms among DSLs. Sec-
tion 5 explains in detail the propagation mechanism of syntactic annotations.

3 Syntactic Properties

In this section we identify the set of syntactic properties included in MSS. These
properties have been extracted from a set of basic syntactic patterns which
has been defined to reach a trade-off between expressiveness and simplicity. For
instance, we have considered that each concept (metaclass) uses one feature
as identifier. Next, syntactic patterns are presented enclosing the name of the
syntactic properties between parentheses.

1. The specification of a DSL concept starts with the name of the metaclass
(metaclass identifier) and is followed by the identifier of the concept (main
feature).

2. The features of a concept are enclosed between two delimiters (content be-
gin/end delimiter) and the features are separated by a string (content sepa-
rator).

3. Boolean attributes can be located before the name of the concept (prefix
features). These features can be used as modifiers of the concept. The values
of these attributes have to be written following lexical patterns (true/false
boolean pattern), e.g. a true value could be represented by the name of the
attribute prefixed by ”is-”.
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4. Some features may appear after the identifier of the concept (header fea-
tures).

5. The definition of a metaclass feature starts with its name (feature identifier)
and is followed by a string (value separator), this preceding the value of the
feature.

6. The values of metaclass features with cardinality greater than one are de-
fined as lists. The elements are enclosed between two delimiters (multivalued
begin/end delimiter) and separated by a string (multivalued separator).

7. The value of a non-composite association (i.e. cross reference) is formed by
the name of the metaclass of the opposite side of the association (reference
metaclass identifier) and the identifier of the concept to which it refers.

As it can be noted, the syntactic patterns 1-4 define syntactic properties for
metaclasses, pattern 5 is referred to metaclass features, pattern 6 is applicable to
multivalued features, and pattern 7 to non-composite associations. Moreover, all
the properties applicable to metaclass features can also be applied to metaclasses
in order to reduce the coupling between the definition of the textual concrete
syntax and the metamodel. The propagation mechanism explained in Section 5
spreads syntactic annotations from metaclasses to their features.

Syntactic properties corresponding to the name of a metamodel element, i.e.
metaclass identifier, feature identifier and reference metaclass identifier, can
be established with special values such as ”auto” or ”auto-uppercase”, which
means the exact name of the element or the name of the element in uppercase,
respectively.

To illustrate the syntactic properties identified above, we show an example of
concept definition according to the DataForm metamodel of Figure 1, which is
based on the patterns introduced above.

not-required DATE "birthDate" label: "Birth Date" {
format: "mm/dd/yyyy";

}

In this example a Date field of a data form is defined. Notice that the metaclass
Date has four attributes: name and required are inherited from the metaclasses
NamedElement and Field, respectively, and label and format are declared in
the metaclass. The attribute required is a prefix feature defined according to the
textual pattern ”not-” (false boolean pattern), and then the metaclass identifier
is in uppercase. The attribute name is the main feature so it is defined only with
its value. The attribute label is a header feature and the attribute format is
enclosed between curly brackets (content delimiters). Both attributes are defined
according to the same pattern: the name of the feature (feature identifier) is
followed by colon (value separator) and then the value. In the next section we
will describe a DSL for specifying syntactic annotations and we will define the
textual concrete syntax for the DataForm metamodel.

The syntactic properties identified above allow us to generate a grammar for
processing DSL specifications. However, the parser also needs to convert a tree-
based representation produced by a grammar into a graph-based representation
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in order to create models as instances of metamodels. Therefore, non-composite
associations have to be resolved in order to obtain the cross-references among
model elements. In MSS, the syntactic property main feature of the metaclass
participating in an association denotes the feature used to match reference val-
ues. Since candidate objects can be fetched locally (i.e. from the concept that is
being defined) or globally (i.e. starting form the root concept), a property named
association context will define the search scope, and besides the metamodel is
constrained to having one root concept.

4 Metamodel Syntactic Sheets

This section describes the DSL proposed for annotating metamodels with syn-
tactic properties. We also refer to this DSL as MSS (Metamodel Syntactic
Sheet). The metamodel that represents the abstract syntax of MSS is depicted in
Figure 2. MSS provides the syntactic sheet and syntactic rule concepts in order
to organize the annotation of syntactic properties for a metamodel. A syntac-
tic sheet consists of a set of syntactic rules expressing one or more syntactic
properties to be applied to a target metamodel element. A rule has a selector
identifying the target element (i.e. metaclass or feature) and a body enclosing
the list of syntactic annotations.

S y n t a c t i c S h e e t

 m e t a m o d e l U R I

 

R u l e

 t a r g e t

 

 r u l e s

0 . . *

F e a t u r e R u l e

C l a s s R u l e

A n n o t a t i o n

 p r o p e r t y

 v a l u e

 

 a n n o t a t i o n s

0 . . *

Fig. 2. Abstract syntax of the MSS DSL

A syntactic sheet for the DataForm metamodel of Figure 1 is shown below.
The class and feature keywords are used to distinguish the two kinds of rule.

metamodel "http://gts.inf.um.es/data-form/";

class NamedElement priority: 1 {
main-feature: "name" ;
metaclass-identifier: "auto";

}
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class Group {
value-separator: "->";

}
class Field {

metaclass-identifier: "auto-uppercase";
prefix-features: "required";
header-features: "label";

}
feature Form.groups {

feature-identifier: "";
value-separator: "";

}

Note that a statement defining the reference URI of the metamodel to be
syntactically annotated precedes the set of rules in the syntactic sheet. In this
example, the metamodel is annotated by means of four rules. Three of them
are applied to metaclasses and one rule is applied to a metaclass feature. The
purpose of these rules is described next.

The first rule is applied to the abstract metaclass NamedElement. It expresses
two properties: i) the attribute name defined in the metaclass has to be used as
main feature to identify the concepts of the DSL, and ii) the definition of the
DSL concept starts with the name of the metaclass. This rule is applied to a
metaclass that is ancestor of all the metaclasses of the DSL, so the propagation
mechanism will spread the two syntactic annotations by means of the inheritance
relationship. Finally, a priority value is assigned to this rule. Prioritized rules are
relevant to choose an annotation in the presence of syntactic collisions. In Section
5 the technique used to resolve collisions is discussed as part of the propagation
mechanism.

The second rule is applied to the metaclass Group. This rule defines the string
”− >” as the value separator for the features of the metaclass. The metaclass
Group only has one feature (i.e. fields), but this rule is applicable to new
features. So, this rule relies on the containment relationship between metaclasses
and features to propagate the syntactic annotations.

The third rule is applied to the metaclass Field. It expresses three properties:
i) the declaration of data fields uses the name of the metaclass in uppercase,
ii) the feature required prefixes the declaration, and iii) the feature label is
included in the header of the concept declaration. These annotations may be
propagated to the descendants of the metaclass Field (i.e. Text, Password and
Date) if the properties are not annotated for these metaclasses.

The last rule is applied to the feature groups belonging to the metaclass Form.
This rule contains two properties denoting that the name of the feature and the
separator have to be omitted. This is the most specific rule in the syntactic
sheet since the annotations are only applied to a metamodel element and no
propagation is possible.

As we indicated previously, MSS allows the definition of syntactic idioms
by annotating the metamodeling language with syntactic properties, which are
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shared by several DSLs. Sharing is achieved by the propagation of syntactic
annotations from meta-metamodel concepts to metamodels. The syntactic con-
ventions established for a family of DSLs are expressed by a syntactic sheet
defined for the metamodeling language. The syntactic sheet below is an ex-
ample of syntactic idiom defined for the Ecore metamodeling language. The
first rule defines syntactic properties common to all the metaclasses because
the target element is EClass, whereas the second one is applied to the metaclass
EStructuralFeature, and it consists of syntactic annotations for structural fea-
tures of metaclasses, i.e. attributes and associations.

metamodel "http://www.eclipse.org/emf/2002/Ecore";

class EClass {
metaclass-identifier: "auto-lowercase" ;
feature-identifier: "auto" ;
value-separator: ":" ;
content-begin-delimiter: "{" ;
content-end-delimiter: "}" ;
content-separator: ";" ;
true-boolean-pattern: "is-*" ;
false-boolean-pattern: "not-*" ;

}
class EStructuralFeature {

multivalued-begin-delimiter: "[" ;
multivalued-end-delimiter: "]" ;
multivalued-separator: "," ;

}

The definition of a textual concrete syntax can require one or two syntactic
sheets. A syntactic sheet for the metamodel is enough, although another sheet
for the metamodeling language can be used. The metamodeling language sheet
could even be enough if a DSL has no specific notation. In this case, the coupling
between the textual concrete syntax and the metamodel would be completely
eliminated. In this section we have introduced two syntactic sheets in order to
illustrate the advantages of reusing a syntax idiom and the option of adjusting
syntactic properties on specific metamodel elements.

5 Propagation of Syntactic Annotations

The mechanism in charge of propagating syntactic property annotations through
metamodel elements is described in this section. The mechanism is illustrated
by the propagation of the annotations of the two syntactic sheets introduced in
the previous section.

In a sheet, syntactic rules are used to define the values assigned to the tar-
get element properties. However, a rule needs not to provide a value for each
property, because property annotations can be obtained by propagation. The
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propagation is carried out through the existing relationships among metamod-
eling concepts. Specifically, three relationships are used: i) inheritance relation-
ship between metaclasses, ii) containment relationship between a feature and the
metaclass containing it; and iii) instanceof relationship between a metamodel
element and its metaclass in the meta-metamodel (e.g. Form is an instance of
the Ecore metaclass EClass).

In the propagation process metaclasses can obtain syntactic annotations from
their parents, whereas metaclass features can obtain the annotations from the
metaclass they belong to. Combining propagation through inheritance and con-
tainment relationships reduces notably the number of syntactic annotations to
be included in the syntactic sheet of a metamodel. For example, the annotation
of abstract metaclasses, such as NamedElement in Figure 1, allows us to share
the definition of syntactic properties among all the elements of a metamodel.
However, the syntactic annotation of the meta-metamodel provides the highest
reuse of textual concrete syntaxes because the syntactic property annotations
can be shared among several DSLs.

Given a metamodel element, the propagation of syntactic annotations may
cause the collision of values annotating a property of the element, if various an-
notations are applicable. This problem is partially resolved by prioritizing the
three relationships used for the propagation. The inheritance and metaclass-
feature containment relationships cannot be applied to the same element (class
or feature) at the same time. So, it is only necessary to define the priority of the
instanceof relationship in relation to the inheritance and containment relation-
ships. We decide to prioritize inheritance and containment over instanceof, since
the syntactic annotations defined on the metamodel are more specific than the
annotations defined in the metamodeling language.

On the other hand, since metaclasses can have more than one parent, colli-
sions may appear in a inheritance-based propagation. This situation cannot be
automatically resolved, so information is required in the syntactic rules applied
to the involved metaclasses. In the metamodel syntactic sheet of Section 4, it
can be noted that a priority value has been assigned to the annotations of the
metaclass NamedElement. This value is used in case of inheritance collision, but
the resolution of the collisions depends on the correct assignment of the priorities
by the user.

The propagation mechanism works in the following way. Firstly, the syntactic
property annotations of each metaclass are checked. Then, missing annotations
are required from the parent metaclasses. If a property can be obtained from
various parent metaclasses, then the priority values are applied. The propaga-
tion through the inheritance relationship does not guarantee obtaining all the
properties. Thus, the annotations not solved by the inheritance can be obtained
from the meta-metaclass (EClass in Ecore language) applying the instanceof
relationship. Therefore, all the concepts of the Ecore language are expected to
be fully annotated as we discuss in Section 6. Once the propagation has been
applied to the metamodel metaclasses, then the propagation process goes on
with the features of metaclasses. Now, the propagation uses the containment
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relationship instead of inheritance relationship, and the instanceof relationship
is used to propagate annotations from the meta-metaclasses representing at-
tributes (EAttribute in Ecore) and associations (EReference in Ecore).

Now we will illustrate the propagation mechanism by analyzing annotations
applied to the metaclass Group and its feature fields of the DataForm meta-
model. The syntactic annotations are taken from the syntactic sheets presented
in Section 4. Figure 3 shows all the propagations that take place, which are
explained below.

In the metamodel syntactic sheet, the metaclass Group is annotated by a rule
which has only one property value, so the rest of syntactic annotations have to
be obtained by propagation (syntactic properties required for metaclasses are
presented in Section 3). Firstly, the inheritance relationship would provide two
annotations from the metaclass NamedElement. Note that a priority value has
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Fig. 3. Propagation of syntactic annotations for the metaclass Group and its feature
fields
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been assigned to the annotations of the metaclass NamedElement, but it is not
used because the metaclass Group only inherits from NamedElement.

As the application of the inheritance relationship is not enough to complete
the syntactic annotations required for the metaclass Group, the rest of missing
annotations must be obtained through the instanceof relationship. So, six anno-
tations are propagated from the Ecore metaclass EClass. Note that there exists
a collision for the property metaclass-identifier, but the inheritance prevails over
the instanceof relationship as it is indicated above.

Once the metaclass Group is fully annotated, the propagation mechanism has
to complete the annotations of their features. In this case, the feature fields has
not been annotated in the metamodel syntactic sheet so it is necessary to obtain
annotations for all their properties. Initially, annotations are fetched from the
metaclass Group containing the feature, but only two annotations are obtained.
Therefore, the missing properties have to be obtained from the metamodeling
language. The feature fields is an instance of the metaclass EReference in
Ecore. This metaclass has not been annotated in the Ecore syntactic sheet, but
inherits the syntactic annotations from EStructuralFeature. Afterwards, the
feature fields is completely annotated with the syntactic properties needed for
the generation of the grammar.

6 Processing of Textual Concrete Syntaxes

A textual concrete syntax processor is a tool whose purpose is to generate the
software artifacts required to bridge Grammarware and MDE technical spaces: a
parser that creates a model equivalent to a DSL textual specification, and a tool
that generates the textual representation of a model. Our approach is supported
by a processor which generates these tools taking as input the syntactic sheets
defining the concrete syntax and the metamodel of the abstract syntax.

Processing MSS concrete syntaxes requires all the metamodel elements to be
completely annotated with syntactic properties. The propagation mechanism is
used to fulfill this requirement, but it is not enough. Since this mechanism relies
on the instanceof relationship to obtain the missing annotations, it is necessary
to establish all the syntactic annotations in the metamodeling language. How-
ever, a syntactic sheet defined for the metamodeling language could neglect some
property. This problem can be resolved by defining a complete syntactic sheet
for the metamodeling language with default values for all the syntactic prop-
erties, and always processing this sheet first. Another syntactic sheet for the
metamodeling language can be provided in order to replace the default values.

Figure 4 shows the elements involved in the processing of the DataForm tex-
tual concrete syntax in MSS. As it can be noted, the MSS processor may have
as input three syntactic sheets: the default value syntactic sheet, the metamod-
eling language syntactic sheet, and the metamodel syntactic sheet, but only the
first one is mandatory and it is provided by the tool. Four files are generated as
result of processing these sheets: i) a textual file containing a complete syntactic
sheet with the annotations of all the metamodel elements; ii) another textual
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file containing a grammar definition with no semantic actions; iii) a parser defi-
nition for ANTLRv3 that creates models conforming to the metamodel; and iv)
a model containing all the annotations of the metamodel elements is obtained,
which will be used by an ANT task for the generation of the textual represen-
tation of models. The MSS processor is implemented in Java and uses EMF for
model management.

E c o r e - d e f a u l t . m s s

E c o r e . m s s

D a t a F o r m . m s sM S S

P r o c e s s o r
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D a t a F o r m . g 3

D a t a F o r m - m s s . x m i

D a t a F o r m . e c o r e

Fig. 4. Diagram of the processing of DataForm textual concrete syntax

7 Related Work

There are several approaches for bridging Grammarware and MDE technical
spaces. These approaches can be categorized in two groups. The first one fo-
cuses on generating metamodels from grammars, whereas the second one goes
in the opposite direction with grammars being generated from metamodels. The
grammar-based approaches are represented by the xText [2] tool and the works
of Wimmer et al. [3] and Kunert [4], and the metamodel-based approaches are
represented by TCS [1] and XMF-Mosaic [5] tools.

xText is a component of the toolkit OpenArchitectureWare [2]. It is used
to build textual DSLs in the Eclipse platform. xText provides an EBNF-based
DSL to specify textual concrete syntaxes. The processing of the concrete syntax
generates the Ecore metamodel of the abstract syntax of the DSL. The deriva-
tion of metamodels from concrete syntaxes relies on a number of rules that, for
instance, are used to identify concept hierarchies or to generalize features in a
hierarchy of concepts. Despite these rules, the quality of metamodels is poor be-
cause grammatical aspects of concrete syntaxes remain in metamodels. Except
for simple DSLs, it is usually necessary to define a more suitable metamodel
for the DSL. In this case, the definition of a model transformation from the
metamodel generated by xText to the defined metamodel is required.

Wimmer et al. [3] propose a generic framework for bridging Grammarware
and MDE. The framework introduces a basic set of rules to produce metamod-
els from grammars in a first stage. Next, the application of heuristics improves
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the quality of metamodels, but a user-driven stage is needed to refine the meta-
models. Similarly, Kunert [4] chooses to add annotations to the grammar in
order to drive the generation process, but the annotations are rather limited.
These approaches face the problem of the poor quality of the derived metamod-
els since the expressiveness of grammar formalisms is lower than metamodeling
languages.

TCS [1] is a tool integrated in the AMMA platform which provides a DSL
to specify textual concrete syntaxes for metamodels. A textual notation consists
of grammatical templates to syntactically annotate metamodels. In this sense,
MSS adopt the same approach for defining textual concrete syntaxes as TCS.
However, the analysis of several DSLs specified in TCS [6] reveals redundancy in
templates and high coupling between the concrete syntax and the metamodel,
since TCS does not provide a framework to reuse syntactic annotations within
a metamodel and between DSLs. In MSS, syntactic annotations are reused by
means of a propagation mechanism that takes advantage of relationships defined
in the metamodeling language.

XMF-Mosaic [5] includes a DSL named XBNF for defining the textual process-
ing of DSLs. XBNF is an extension of BNF that associates grammar production
rules with metaclasses and includes constructions to create models. In fact, this
approach is fairly similar to TCS since grammar production rules are templates
for processing metaclasses of the metamodel. Consequently, the XMF-Mosaic
approach faces the same problems as TCS, i.e. high coupling between concrete
and abstract syntaxes and lack of support for reusing textual concrete syntaxes.

The reusability of textual concrete syntaxes has been addressed in [7]. The au-
thors state the advantages of using a commonand usable textual notation formeta-
models and an approach to derive grammars from metamodels according to the
HUTN specification [8] is proposed. In this sense, the Epsilon project [9] provides
a textual editor for processing HUTN concrete syntaxes of Ecore metamodels in
Eclipse. However, both approaches are restricted to HUTN and it is not possible to
define other common textual notations. MSS allows us to define HUTN and other
syntactic idioms by annotating the metamodeling language syntactically. More-
over, it supports the adaptation of the textual concrete syntax throughout the de-
velopment process of a DSL to the specific requirements of its metamodel.

8 Conclusions and Further Work

In this paper we have presented the MSS approach for defining textual concrete
syntaxes. Compared to the existing approaches, MSS is characterized for two
main concepts: syntactic property and propagation of annotations of syntactic
properties. A textual concrete syntax consists of a set of syntactic property
annotations applied to metamodel elements. MSS provides the so-called syntactic
sheets as a convenient way of organizing the metamodel annotations by means
syntactic rules.

The propagation of syntactic annotations facilitates two ways of reusing tex-
tual concrete syntaxes: i) reusing annotations within of the same metamodel, and
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ii) reusing syntactic idioms defined by annotating the metamodeling language.
The main contributions of the MSS approach would be:

– Provision of reuse techniques for the development of textual concrete syntax.
– Creation of syntactic idioms.
– Reduction of information duplication due to the decrease of coupling between

abstract and concrete syntaxes.
– A software processor which generates the software tools to bridge Grammar-

ware and MDE technical spaces.

MSS has been applied for prototyping DSLs in several research projects. It also
has been used for providing textual concrete syntaxes to existing DSLs such as
the model transformation language RubyTL [10]. Currently we are considering
new syntactic patterns and properties in order to enhance the expressiveness of
concrete syntaxes and MMS is being integrated in a framework for DSL devel-
opment.

Acknowledgments

This work has been partially supported by Fundación Séneca, grant
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Abstract. Model-based techniques place modeling at the cornerstone of soft-
ware development. Because of the large number of domains and levels of  
abstraction one can find in software systems, a large number of modeling lan-
guages is necessary. Modeling languages need to be properly defined regarding 
concrete syntax in addition to abstract syntax and semantics. Most modeling 
languages use a graphical concrete syntax, and solutions to model those  
syntaxes appeared. If those solutions are convincing to support the rapid devel-
opment of graphical modeling tools, they are often restrictive in the range of 
possible concrete syntaxes for a given abstract syntax, and rely on dedicated 
technologies. In previous works, we proposed such a solution based on a repre-
sentation model which was more flexible in that it abstracted away purely 
graphical concerns. Those concerns include actual design for representation 
icons, how the design reacts to representation variations within the icons, possi-
ble interactions with an icon, and synchronization between the graphical repre-
sentation and the graphical model. In this paper, we show how to solve those 
four last points using the SVG open standard for vector graphics. We propose to 
define representation icons by SVG templates complemented by layout con-
straints, a predefined and extensible library of possible user interactions using 
DOM, and a specific approach based on events to synchronize the graphical 
representation with the graphical model. Thus, our solution solves the concrete 
realization of an modeling environment cumulating advantages of a clear sepa-
ration between abstract and concrete syntaxes at the modeling level, while bene-
fiting from the expertise of the vector graphics community. 

Keywords: MDE, MDA, Language Engineering, Graphical Concrete Syntax, 
XML, SVG, DOM. 

1   Introduction an Related Works 

Model-based techniques to software-intensive system engineering, such as Model 
Driven Engineering (MDE) [1], place models at the cornerstone of development  
activities. In parallel, long held research showed advantages of Domain Specific Lan-
guages over general purpose languages, provided those languages are properly sup-
ported and able to interoperate [2]. Of course, this DSL approach also applies for 
modeling languages [3]. As a consequence, because of the multiplicity of domains 
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and levels of abstraction implied even in a single software-intensive development 
project, there is a need for a large number of well-supported modeling languages. 
Thus, much is to be awaited from comprehensive and ergonomic techniques to model-
ing-language engineering. 

A (modeling) language is properly defined by an abstract syntax, semantics, and a 
set of concrete syntaxes [4]. Metamodeling is a convincing technique to capture the 
abstract syntax of a language in which a model (so called a metamodel) states the 
vocabulary and the taxonomy of a language. Thanks to these metamodels, automated 
tools make possible to manipulate and exchange conforming models, such as MDR 
[5]. Capturing semantics is still a research issue, even though solutions for support 
were already proposed, for example in [6]. Concrete syntaxes may be either textual or 
graphical, but are usually a mix of both. As an example, we proposed in [7] a domain 
specific language as a mean to support textual editing and representation of models. 

Solutions like GEF [8], Topcased [9] or MetaEdit [3] apply the same approach to 
support graphical concrete syntaxes for modeling languages: a domain specific  
language makes possible to describe how a modeling language is to be graphically 
represented. Automatic tools turn this specification into a complete graphical editing 
environment. Approaches such as AToM3 [10] or Tiger [11] are similar, even though 
their DSLs are given graphical (or hybrid) concrete syntaxes, and better apply lessons 
learned in the visual language community (e.g. by permitting a precise definition of 
user interactions). A problem with these approaches is that they restrict the range of 
possible concrete syntaxes for a given metamodel since structure of abstract syntax 
constraints structure of concrete syntax (with the notable exception of AToM3). They 
also need to provide a specific language for graphical depicting of icons. 

Another approach is to describe the mapping to a representation language, as ap-
plied in [12], by a bidirectional model transformation. A problem with this approach 
is that model transformation languages are not as well suited as a DSL (as those pre-
sented above) for expressing graphical concrete syntaxes. 

A last kind of approach we presented in [13] makes use of a concrete syntax graph 
which is synchronized with the abstract syntax graph (i.e. the model) while it is ed-
ited, (following in this the philosophy of AToM3). Constraints are designed to pre-
scribe the synchronization schemes, leaving the possibility to let a (verifiable) model 
transformation or a constraint solver realizing the actual synchronization. An impor-
tant advantage is that abstract and concrete syntaxes are completely decoupled thus 
encouraging reusability of concrete syntaxes and avoiding pollution of the abstract 
syntax by concrete syntax concerns. Moreover, the approach follows the results of the 
visual language community (the interested reader may refer to a synthesis in [14]) to 
modeling languages. However, an important drawback is that the graphical descrip-
tion of icons is left unclear. 

In this paper, extended from [15], we complement the latter approach by formally 
defining icons, trying to reuse best practices in the field of vector graphics. We pro-
pose to port to the metamodeling technological space the open standard Scalable Vec-
tor Graphics (SVG) [16], for clearly defining icons involved in the concrete syntax of 
modeling languages. An advantage is that the SVG standard can formally define 2D 
graphics. Moreover, designers who use SVG to represent icons of a language do not 
need to be (meta-)model specialists. 
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To specify a graphical concrete syntaxes, one has to state what are the icons of the 
representable concepts of the abstract syntax, what are the variation points and their 
synchronization with the model (e.g. an editable text to represent a name feature), and 
how the icons react to variations. Moreover, in order for the specification to be turned 
into a graphical editing environment, language engineers need to specify possible user 
interactions, e.g. that an icon can freely be moved on the diagramming scene, or that a 
path can be added an intermediate point. 
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Fig. 1. General Architecture 

Figure 1depicts the overall process. As said above, approach described in [13] 
specify the concrete syntax of a modeling language by formalizing the structure of the 
concrete syntax graph under the form of a metamodel 2. The concrete syntax graph 
4 is kept synchronized with the model 3 as specified with constraints. Moreover, 
additional constraints fix the spatial relationship between representation icons. The 
approach presented in this paper complements the specification by realizing the 
graphical representation. Icons are described by SVG templates 5. Constraints have 
long proven their ability to handle variability in graphical environments [17]. C-SVG 
[18] is an environment for supporting constraints in SVG that we propose as a mean 
to handle variability within icons. SVG templates should thus be complemented with 
constraints that can be expressed in the C-SVG language. Since SVG is an XML dia-
lect, we propose an extensible set of predefined user interactions using the DOM API 
[19] to manipulate XML documents at runtime 6. We propose a lightweight mean for 
synchronizing representation with the concrete syntax graph based on events, in order 
to render variation points. Finally, the modeling environment is an interactive SVG 
document 7 (the diagram) dynamically showed in an SVG renderer. 

The rest of the document is organized as follows. Section 2 presents an example 
for a modeling language and its specification following the approach we presented in 
[13] 12. Sections 3, 4, and 5 detail the approach along with the same example by 
presenting icon definition (including reactions to variations) 5, user interactions 6, 
and relation with the concrete syntax graph (further called the graphical model) 4, 
respectively. Section 6 end the paper with concluding remarks. 
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2   Specifying Concrete Syntax for Statecharts 

In this section, we detail an example for a modeling language. The abstract syntax of 
the language is specified by a metamodel, and a graphical concrete syntax is specified 
as presented in [13]. 

Statecharts are described in [20]. We show here a metamodel to state its abstract 
syntax (see figure 1 1). For sake of simplicity and readability, we will restrict our-
selves to a simplified subset of these concepts, as shown by figure 2. State vertices 
might be connected by transitions. A transition has exactly one source vertex and one 
target vertex. A vertex is either a pseudo state (initial state, choice,...) or a state, which 
is in turn either a composite state (i.e. containing other vertices and transitions), a 
simple state, or a final state. Transitions are triggered by events. A state machine is 
given by its top state. 

 

ModelElement

name : String

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

Final
State

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
choice
...

1

1

source

target

outgoing

incoming

*

*

subvertex

*

0..1

container

top 1

0..1trigger

*

 

Fig. 2. The Simplified Statechart Metamodel 

The concepts of the statechart language can be represented by the symbols shown 
in figure 4. There is no need to define the StateMachine symbol since a state ma-
chine cannot be represented. “event”, “name”, and “contents” parts of icons are varia-
tion points of the icons: the “event” text should be replaced (if necessary) by the name 
of the event that triggers the transition, “name” text should be replaced by the name of 
the represented state, and “content” text points the placeholder for sub-states of the 
represented composite state. The icons can be freely moved and resized in the dia-
gram, except icons for transitions that have to connect representations for the source 
and target states of the transition. 

Figure 3 shows an excerpt of the specification for the graphical concrete syntax of 
the statechart language informally described above. The figure is separated in three 
parts. The part in the left recalls the metamodel. The part in the right defines the-
graphical elements as a metamodel (see figure 1 2) by decomposing the graphical 
icons in different elements. Each graphical element extends the GraphicalEle-
ment abstract class, which holds relations exposing spatial relationships. As an  
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Fig. 3. Excerpt of the Statechart Graphical Concrete Syntax Specification 

Transition SimpleState 
Composite

State 
FinalState 

PseudoState
(initial) 

PseudoState 
(choice) 

  

Fig. 4. Symbols for the Statechart Concepts 

example, the icon for CompositeState is decomposed into a text, a line, and a 
placeholder for contained states. Possible variations in the elements of graphical ob-
jects state the possible variations in the icons (e.g. the value of the text attribute in 
SVGText). The mapping between abstract syntax and graphical syntax is described 
using mapping classes as shown in the middle part of figure 3. Those classes are  
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context TransitionDM inv:
if self.me.trigger->isEmpty()
then self.vo.event.text.size() = 0
else self.vo.event.text = self.me.trigger.name

endif
 

Fig. 5. Synchronization Constraint: Text shown on Transitions is Name of Triggering Event 

connected to representable classes of the metamodel to graphical elements. Con-
straints, that can be written in OCL [21], can make more precise synchronization (as 
exemplified in figure 5), and fix spatial relationships between graphical elements (as 
exemplified in figure 6). 

context CompositeStateDM
inv: self.me.subvertex->includesAll(

State.allInstances().dm
->select(sdm|self.vo.contains(sdm.vo)).me)

 
Fig. 6. Spatial Relationship Constraint: Containment of Composite States 

A major problem with that approach is that concrete representation of graphical 
elements and its evolution (including information held by the GraphicalElement 
class) is left unspecified. In the rest of the paper, we propose an approach to overcome 
this impediment. 

3   SVG Templates 

In this section, we detail the process of defining SVG template icons of a graphical 
modeling language, with the ability to react to variation. 

Principle of the approach is the following: a diagram is an SVG document (see fig-
ure 1 7) in which a system engineer may freely add new predefined SVG elements as 
copied from SVG templates (see figure 1 5). Each one of these SVG templates corre-
sponds to a main graphical element (see figure 3, right part) i.e. a graphical class that 
has a connection to a mapping class. In the example of figure 3, main graphical ele-
ments are SVGTransition, SVGSimpleState, and SVGCompositeState. 
Composed graphical elements should be described in the template of their topmost 
container: in the example, a section of the SVG template for SVGSimpleState 
must describe the name part. Note that it is possible to synchronize the representation 
directly with the model (see figure 1 3), but in this case, structure of the concrete 
syntax is forced to follow structure of the abstract syntax. 

When a system engineer decides to add a new element to his/her model, say a 
SimpleState, a copy of the SVG template for SVGSimpleState is integrated 
into the SVG document (see figure 1 7). In the meantime, an SVGSimpleState 
and an SVGText graphical objects are created, and a relation between the template 
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copy (i.e. the template instance) and the SVGSimpleState graphical object is 
maintained. According to specification described in section 2, the creation of an 
SVGSimpleState graphical object should trigger the creation of a SimpleStat-
eDM manager. Finally an associated SimpleState object, together with a synchro-
nization between the value of the name slot of the State object and the value of the 
text slot of the SVGText graphical object should be created, as described in sec-
tion 2. Relation between the template instance and the graphical object (in a model 
repository) will be further discussed in section 5, while possible interactions with the 
template instances in the diagramming scene will be described in section 4. 

Figure 7 exemplifies this template-based approach. Main display classes, which are 
emboldened on the figure, have a corresponding SVG template, and each one of con-
tained display classes has an SVG counterpart in the template. As an example, a 
start section appears in the SVG template for SVGTransition, which corre-
sponds to the contained start SVGArrowEnd display object. Note that the SVG 
section for the end display object is different, even though it corresponds to the same 
SVGArrowEnd display class. When the system engineer decides to place a new tran-
sition in the diagram (i.e. the SVG scene), any $$ occurrence in the SVG template is 
replaced by an identifier specific to the template instance in the SVG diagram so that 
the various SVG elements in the scene can be identified as part of a specific template 
instance. 

SVGSimpleState

SVGText

...
1

Graphical Syntax

SVGTransition

SVGArrowEnd

SVGArrowEnd

1

start

end

1

0..1

event

name

SVGText

text:String

<svg>
<rect name="start_$$"

visibility="hidden" …/>
<polygon name="end_$$" …/>
<text name="event_$$" …/>
…

</svg>

<svg …>
<g …>

<rect …/>
<text name="name_$$" …/>
…

</g>
</svg>

 

Fig. 7. SVG Templates for Statecharts 

As explained before, template instances are subject to variations according to user 
interactions. In the example of simple states, if name is changed, the containing rec-
tangle needs to grow accordingly. This means that template instances have some dy-
namic behavior, and may need to be reorganized. Templates thus need to specify a 
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layout mechanism to state how an automatic reorganization may happen. Constraints 
have long proven to be a comprehensive mean to specify such layout mechanism [17], 
and we decided to rely on C-SVG [18] that is specialized in constraining SVG docu-
ments. In the simple state template, the growing-name problem is solved as shown in 
figure 8. 

<svg …> <g …>
<c:variable name="w_$$" value=

"c:max(c:width(c:bbox(id('name_$$'))) + 20, 150)" />
<rect …>

<c:constraint attributeName="width" value="$w_$$"/>
</rect>
<text id="name_$$" …>Simple State Name</text>

</g> </svg>
 

Fig. 8. SimpleState SVG Template: CSVG Constraint to Handle Text Growth 

First, a variable named w_$$ tracks an arithmetic expression in which the  
computed width of the name_$$ text plays a central role. A constraint, placed in the 
rectangle, forces that rectangle to be as wide as the value of the w_$$ variable. 
Automatic tools can place listeners in the SVG documents so that the C-SVG con-
straint keep satisfied. If contents of name_$$ is changed, the computed value for 
w_$$ is updated, which triggers a new computation for the rectangle’s width. 

4   User Interactions 

SVG documents are not primarily intended to interact, e.g. by mean of mouse or key-
board, as it is necessary for modeling a system. In this section, we show how to en-
able user interactions in template instances. 

The principle we propose is the following: SVG is an XML dialect, and an SVG 
document is an XML tree. DOM is an API that programming languages such as Java 
use to read and alter XML trees [19]. Thus, a program making use of the DOM API 
may alter an SVG document. We will further call such kind of program a DOM com-
ponent. We chose an architecture in which user actions (e.g. mouse moved, mouse 
clicked, or key hit) trigger execution of some DOM components, which may alter the 
SVG document that represents the diagram scene. Those DOM components may be-
have differently depending on the context (e.g. what are the selected elements, what 
are the elements under the mouse). It is important for the SVG graphical renderer to 
dynamically adapt the shown diagram to alterations of the SVG document, as it is the 
case for the Apache Batik toolset [22]. 

The user interactions we propose may be compared to graph grammars to enable 
user interactions. The difference is that they transform XML trees rather than graphs. 
An advantage is that the SVG language (or more precisely the DOM interface) auto-
matically brings genericity so that an interaction only poorly rely on the transformed 
elements. 
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Possible user interactions with representation icons (or parts of them) are recurrent. 
For instance, behaviors like move, connect, or resize, apply in a wide range of con-
texts, regardless they should impact the model (see figure 1 3) or not. An important 
point is to have the possibility to choose exactly where those interactions are enabled. 
That is why we developed a library of standard interactions independent from the 
context, for them not to be implemented again and again depending on the SVG kind 
of element that has to expose the behavior. We developed those interactions as pa-
rametrized DOM components with the help of the DoPIdom framework [23]; as a 
consequence, the result of those interactions can only alter the SVG document that 
represent the diagram. The interactions are triggered by a controller that treats mouse 
and keyboard events. Parameters are stored in the SVG diagram. Note that some of 
these interactions are pure queries and do not alter the diagram; these query interac-
tions are intended to be used by other interactions. We list below some of the interac-
tions we implemented (the interested reader may find a more complete list in [24, 
25]). Of course, if one needs an additional interaction, it is possible to make the list 
evolve thanks to DoPidom. 

Interactions dedicated to position: 

• Locatable: finds the coordinates of the holding node in the scene in terms of 
position, width and height. 

• BorderFindable: finds a list of points in the scene drawing the outline of 
the holding SVG node. 

Interactions dedicated to movement: 

• Translatable: moves an SVG node according to given a vector. 

• BorderSlidable: makes the holding SVG node affix to the outline of an 
SVG element exposing the BorderFindable interaction, as can be found 
thanks to an attachedComponent parameter. 

• Resizeable: emphasizes the holding SVG node of a given factor. 

Interactions dedicated to text editing: 

• CharacterHitable: places a caret at a given index of a Text SVG node. 

• CharacterInstertable and CharacterDeletable: inserts/removes 
a given character at a given position of a Text SVG node. 

Interactions dedicated to scene management: 

• Selectable: places the holding SVG node as part of the selection of the scene. 

Interactions dedicated to connection-based languages (see [14]): 

• Link: such an SVG node will be holder for a connection and should not be 
rendered in the scene. A Link interaction makes the connection between SVG 
nodes participating in a connection by declaring what is the SVG node for the 
path (by mean of a curvedLine parameter) and what are the elements repre-
sented at the ends of the connection (by mean of start and end parameters). 

• CurvedLine: such an SVG node may be placed as a connection for a link. 
They overload a possible Selectable behavior by creating line handler in 
order to change its route (i.e. its intermediate points). Original link is registered 
by mean of a parentLink parameter. 
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• Arrow: such an SVG node can be placed at the start or the end of a link. A 
position parameter states whether the SVG node is at the beginning or at the 
end of the connection. 

Interactions dedicated to containment: 

• Container: such an SVG node is able to contain SVG nodes declaring the 
Containable interaction. Contained elements are placed in a contents pa-
rameter. Interaction changes an eventual Translatable behavior by making 
the contained nodes follow the same movement. This notion is independent 
from the notion of SVG group. 

• Contained: such an SVG node may be part of the contents of an SVG node 
declaring the Container interaction. Container is placed in a container 
parameter. Interaction changes the Translatable behavior by attaching or 
detaching the SVG node from its container according to its target position. 

<svg …>
  <g dpi:component="Translatable, Contained,…" …>
    <rect id="border_$$" dpi:component="BorderFindable,
…"…/>
    <text name="name" dpi:component="CharacterHitable,
CharacterInstertable, CharacterDeletable, …" …/>
    …
  </g>
</svg>

 
Fig. 9. Simplestate SVG Template: Declaring DOM Components 

An example, shown in figure 9, is the template definition for SVGSimpleState. 
In this code snippet, the first element is an SVG group that declares the Contained 
and Translatable interactions. These declarations makes thus possible both to 
move freely the representation for a simple state template instance as a whole, and to 
make it containable by another SVG element declaring the Container interaction 
(as it should be the case for the composite state template). The group contains a rec-
tangle that is responsible for being the outline of the state in that it declares the  
BorderFindable interaction; as such, another SVG node declaring the Border-
Slidable interaction can be affixed to the rectangle (e.g. an end in the representa-
tion for a transition). The group also contains a text that is the placeholder for the 
name of the state. That is why this text must be editable and declares the Charac-
terHitable, CharacterInsertable and CharacterDeletable interfaces. 

5   Relationship with the Model 

Our choice to develop reusable behaviors, which only act on the SVG representation, 
prevents from directly updating the information of the graphical elements (and of the 
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model as an indirect result). We show here how to complement SVG templates and 
predefined events for the modeling information to be updated. 

To do so, we propose to add listeners that can be declared on the SVG templates to 
synchronize atomic information in the SVG document with atomic information in the 
graphical model. We call atomic information a datum that is either a character string, 
a boolean, an integer or a real. This information may be processed in the document 
(e.g. using a C-SVG constraint or an XSL transformation) to be properly represented. 

Before realizing the synchronization, the relationship between the SVG representa-
tion and the graphical model needs to be established. The solution we propose is to 
maintain variables in the SVG document for each SVG node that corresponds to a 
graphical object. Those variables are to be filled at template instantiation time using 
an action language. Moreover, actions may have to be performed in case the template 
instance is removed from the scene. Variable declarations, initialization and removal 
actions can be specified in the SVG templates, as exemplified in figure 10. 

<svg onCreation="{Java|
t = model.getSVGText().createSVTText();
s = model.getSVGSimpleState().createSVGSimpleState();
s.setName(t);}"

onDeletion="{Java|
s.refDelete();}" …>

<g id="$$" …>
<m:variable name="self" value="$s" />
<rect id="border_$$" …/>
…
<text id="name_$$" …>

<m:variable name="self" value="$t" />
newState</text>

</g>
</svg>

 
Fig. 10. SimpleState SVG Template: Variables 

In the figure, the SVG template for simple states is complemented by a creation ac-
tion written in the java language (using the JMI API [26]) where a variable model 
plays the role of the model repository. In the action, two graphical objects (an 
SVGSimpleState and an SVGText further referred to s and t, respectively) are 
instantiated and associated as prescribed in figure 3. A deletion script states that the s 
object should be deleted when suppressing the template instance (note that the t ob-
ject does not need to be suppressed explicitly because of the composition relationship 
between the SVGSimmpleState and SVGText elements). Moreover, new vari-
able XML nodes are added to the SVG template to handle the local dependencies of 
the representation to the graphical model, as suggested by arrows in figure 7. At tem-
plate instantiation time, the action is executed, and the local variables are set to the 
references resulting from the execution of the action. In the simple state example, 
those variables are either initialized to s (for the group and the rectangle) or to t (for 
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the text) as declared by the values of the variable variable XML nodes. Note that 
an SVG node may declare different variables. 

Once the relationship between the SVG representation and the graphical model is 
established, it is possible to synchronize atomic information between them. To do so, 
we introduce a new update XML node. The location XML attribute of the up-
date node states, with an XPath expression [27], where does the atomic information 
to synchronize appears in the document. Two more XML attributes of the update 
XML node state what are the graphical object and the slot to observe. 

<svg …>
<g id="$$" …>
<rect id="border_$$" …/>
…
<text id="name_$$" value="newState"

dpi:component="CharacterInstertable, …" …>
<m:variable name="self" value="$t" />
<m:variable name="displayed" value="newState" />
<c:tval
value="../variable[@name=’displayed’][1]/@value" />
<m:updater var_source="$t" slot="text"
location="../variable[@name=’displayed’][1]/@value"
 />

</text>
</g>
</svg>

 
Fig. 11. SimmpleState SVG Template: Updater 

Figure 11 shows such a declaration of synchronization in the case of the simple 
state template: the text slot of the SVGText graphical object t has to be rendered 
in the (editable) text SVG node. To do so, we introduce a new variable dis-
played which will be rendered by the text SVG node thanks to a tval C-SVG 
constraint. An updater synchronizes the value of the display variable with the in-
formation in the model. When the text is edited in the representation, the C-SVG con-
straint changes the value of the display variable, which triggers propagation of the 
new text to the corresponding graphical object. When the text changes in the model, 
the updater is notified and changes the value for the variable, which is then rendered 
according to the C-SVG constraint. 

The last information that has to be reflected both in the graphical objects and in the 
SVG diagram is the information held by the GraphicalElement class, which are 
the spatial relationships and the visibility. The information is automatically updated 
by a double synchronization mechanism implemented by observers. On one hand, 
observers track actions performed by the interactions. On the other hand, other ob-
servers track changes in graphical objects as stored in the isVisible,  
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container, contained, nearby,  overlaps, and connected features. is-
Visible (as found in the graphical object maintained by the self variable of the 
representation node) is synchronized depending on the display SVG attribute. The 
other slots are updated during the execution of interactions e.g. Container, Con-
tained, or BorderSlidable, i.e. any interaction able to change spatial relation-
ship. Note that all these interactions can be vetoed (in case a constraint fails at model 
level - see section 2) or forced (in case the graphical model changes). 

6   Conclusion 

We proposed here a technique for concretely representing a model in a diagram, once 
the abstract syntax (i.e. the metamodel) is known. We took advantage from the widely 
accepted SVG standard to specify vector graphics. The approach is intended to be 
used in conjunction with the approach presented in [13], which clearly separates mod-
eling data from graphical data, and which leads the concrete realization, following the 
example of a component realizing its specification interfaces. 

When combining those two approaches, the steps to specify a graphical concrete 
syntax are thus the following: 

1. create a mapping class for each model element of the metamodel that needs to 
be represented, 

2. create for each mapping class one or more graphical class and its different parts 
reflecting the structure and the variability of the icon, 

3. write the constraints on the mapping classes for abstract/concrete synchroniza-
tion, representation alternatives and inter-icons relationship (e.g. spatial rela-
tionship), 

4. write the SVG template for each root graphical class, 

5. specify allowed interactions from a reusable and generic library acting on the 
SVG representation, 

6. complement the SVG templates with graphical constraints (e.g. using C-SVG) 
to handle intra-relationships between the various SVG elements composing the 
templates, 

7. create variables and initialization/deletion scripts to establish relation of the rep-
resentation to the graphical model, 

8. declare updaters so that the representation and the graphical model keep syn-
chronized. 

The approach we propose is certainly more verbose than other existing approaches (as 
GMF or GME). However, it manages a broader range of graphical concrete syntaxes. 
For example, the approach is not limited to connection-based languages thanks to its 
explicit management of spatial relationships. Moreover, we rely on one hand on 
metamodeling techniques (for the specification part) which is properly mastered by 
modeling language engineers, and on the other hand on SVG which is properly mas-
tered by graphical designers. Finally, the modeling language engineer only needs a 
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few knowledge about SVG to place action scripts, variable and updaters in the SVG 
templates. As such, if other approaches seem more adapted to prototype a graphical 
language, we believe that our approach is more adapted to realize the graphical con-
crete syntax of a modeling language. 

Compared to [15], we simplified the process of synchronizing the representation 
with the graphical model. Indeed, in [15], interactions were explicitly sending events 
that had to be answered by dedicated action scripts as parameters. Here, representa-
tion and graphical model are more tightly coupled thus avoiding such mechanisms. 
Moreover, those event action scripts were over-specifying synchronization rules be-
tween the model and the graphical model, thus dramatically limiting the interest of the 
graphical model and the implied reusability. 

One of the main drawback of our approach is that the specification of the synchro-
nization rules between the model and the graphical model is done using constraints. 
Thus, one need either a constraint solver (which are usually slow) or an additional 
bidirectional and incremental model transformation that realizes the constraints, 
which needs to be proved. Moreover, there is redundancy of information between the 
model and the graphical model. We plan to change this synchronization specification 
by making the graphical model a view on the model, following the example of the 
concept of view in databases. 

A prototype implementation can be found in [28]. More insight about interactions 
is given in [24] and about variables and action scripts in [25]. 
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Abstract. Although some techniques for aspect oriented modelling focus on
semantic-based composition, there has been a general lack of focus on how to pre-
serve semantics. We address semantics preservation in the context of sequence di-
agram aspects. We define semantics preservation based on two properties: mono-
tonicity of aspect composition with respect to refinement, and preservation of
events in the composed result. We analyse and compare existing sequence dia-
gram aspect techniques with respect to semantics preservation and find that both
syntactic based and semantic based aspect weaving techniques have serious chal-
lenges to meet semantics preservation.

1 Introduction

Sequence diagrams are frequently used as a formalism in system specification and are
useful for reasoning about system behaviour at different detailing levels, ranging from
requirements specification towards detailed design. The mechanisms available in UML
sequence diagrams allow for specifying complex control flow behaviour between inter-
acting system roles/objects. Formal refinement techniques, such as STAIRS [1], provide
the means for reasoning about system consistency during refinement of sequence dia-
grams.

Although UML sequence diagrams provide compositional mechanisms that allow
concerns to be separately specified and integrated through interaction uses and
decompositions, these are limited in that they require these separate concerns to be
integral parts of the same system; it is not straightforward to describe concerns as sep-
arate systems with subsequent composition into one coherent system. This has been
addressed by the aspect-oriented community for some time, initially at a program-
ming level [2,3,4,5]. As model-driven development and generative programming be-
comes more widespread, similar ideas have been dispersed to the modelling community
[6,7,8,9], but with no converging towards a standard way of supporting this.

Semantics preservation of aspect composition is a much neglected issue of aspect-
orientation in general, and aspect-oriented modelling specifically. Establishing aware-
ness of semantics preservation is important to reduce risk of design errors and increase
consistency of specifications.

We give a definition of semantics preservation for sequence diagram aspect com-
position and analyse existing sequence diagram aspect techniques with respect to this
definition. Our view on semantics preservation relies on formal definitions of sequence
diagram refinements from STAIRS [1,10,11]. We define two properties that contribute
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to semantics preservation: monotonicity of aspect composition with respect to refine-
ment and preservation of events.

2 Defining the Concepts of Sequence Diagram Aspects

Aspect-oriented specification and composition techniques provide flexible means for
separating and composing cross cutting concerns. Ensuring that using such techniques
does not break down consistency of our specifications is an important, albeit much over-
looked, concern. By adhering to principles that preserve semantics, greater confidence
can be given to our systems.

In this paper, we do not prescribe any specific technique for sequence diagram as-
pects. Rather, we seek to unfold some characteristics that are fruitful in the context of
semantics preservation. A range of different techniques for aspect-oriented specification
and composition of sequence diagrams have been described [12,13,14,15,16], but there
is currently no standard approach for this. Each approach has its strengths and weak-
nesses; some are based on syntactical matching and composition, some semantical.

We address semantics of sequence diagrams and make a definition of semantics
preservation for sequence diagram aspect composition. In this Section, we look at
STAIRS semantics for refinement as a basis for our definition. In Section 3, we analyse
existing techniques with respect to our semantics preservation definition.

2.1 Sequence Diagram Semantics

In STAIRS [10,11], the semantics of interactions is defined by the set of event traces it
represents. This set of traces are all possible sequences of events from a run of the inter-
action (the system). These event sequences are constrained by the causality and weak
sequencing properties of interactions: a send event must occur before its corresponding
receive event (causality) and the events on a lifeline have the same (relative) ordering
in a trace as on the lifeline (weak sequencing).

A trace can be positive, negative, or inconclusive with respect to an interaction. Neg-
ative traces represent disallowed behaviour and are produced by explicitly negating or
asserting fragments in an interaction. Positive traces represent allowed behaviour and
are all traces described by the interaction that are not negative. Inconclusive traces are
all other traces, i.e. the traces that are not covered by the interaction.

In [10,11], trace semantics are used to define and analyse refinement between inter-
actions. Three refinement relations are defined in STAIRS: supplementing, narrowing,
and detailing. Supplementing increases the set of positive traces by moving traces from
inconclusive to positive i.e. increases allowed behaviour. Narrowing refinement reduces
the set of positive traces making them negative, i.e. reduces allowed behaviour. Detail-
ing is refinement by means of decomposition.

Refinement in STAIRS is transitive: if A �B and B � C, then A � C (� is the
refinement relation). It is also monotonic with respect to the sequence diagram com-
position operators alt, opt, neg, seq, and par: if A⊕B is the composition with one of
those operators of interactions A and B, and A’ and B’ are refinements of A and B,
respectively, then A’⊕B’ is a refinement of A⊕B. (Proof can be found in [17].) This



Semantics Preservation of Sequence Diagram Aspects 217

characteristic is valuable to ensure system consistency during system evolution, so that
a system can be specified and refined in parts and later composed.

2.2 Defining Semantics Preservation for Sequence Diagram Aspects

Monotonicity of Aspect Composition with Respect to Refinement. In general system
engineering dividing and conquering is a valuable strategy for managing complexity. As
described in the previous Section, the monotonicity property of refinement provides this
for sequence diagrams. This allows individual components to be analysed separately.
When composing them, the analysis results will also be valid for the compositions.

We would like similar properties for sequence diagram aspect compositions. Specifi-
cally, we want composition of aspects with different sequence diagrams in a refinement
relation to conserve the refinement relation.

Given two sequence diagrams I1 and I2, where I1 � I2 (I2 is a refinement of I1).
Let A be a sequence diagram aspect and I1 ⊕ A the composition of sequence diagram
aspect A with I1. Now, we would like I2 ⊕ A to be a refinement of I1 ⊕ A: (I1 ⊕ A
= IA1) ∧ (I2 ⊕ A = IA2) → (IA1 � IA2). In other words, we would like sequence
diagram aspects to be monotonic with respect to STAIRS refinement.

Fig.1 illustrates the monotonicity property with respect to refinement using an aspect
representation similar to that of Klein et al. [18], where pointcut and advice is described
in separate sequence diagrams. When applying this aspect on the base model, the result
will be the result model. The base’ model is a supplementing refinement of base. When
applying this aspect on base’, the result will be the result’ model, which is a refinement
of the result model.

Event Preservation. When a sequence diagram aspect is composed with another se-
quence diagram, the traces of events, and hence the semantics, defined by the original
sequence diagram is altered. An intuition of semantics preservation under these cir-
cumstances is that the behaviour we could observe in the base model still should be

Fig. 1. Monotonicity of Aspect Composition with Respect to Refinement
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observable in the composition. The events defined by the base sequence diagram should
be present with the same relative order in the composed sequence diagram.

To be more precise, we define a hiding operator that hides events in a composition
that originating from one of the composition operands (e.g. the aspect). Let I1 be a base
sequence diagram with traces TI1, A an aspect with traces TA, and IA1 the composi-
tion of the aspect with the base model with traces TIA1. We define the hiding operator
hiding(TIA1, TA) → TI2 such that:

1. For each trace in the base model (t ∈ TI1), there exists a trace in the composition
(hiding(TIA1, TI1)) with the same event set.

2. For each trace in the composition (hiding(TIA1, TI1)), there exists a trace in the
base model, which is either equal or contains all the same events.

(1) ensures that the composition cannot be empty, as it must have a representation
of all traces of the base. (2) ensures that the traces that do represent a base trace are
equivalent and that new traces can be introduced by supplementing refinement.

The implications of event preservation is that a composition cannot remove or re-
place fragments originating from the operands of the composition.

Semantics Preservation. In this paper, we define semantics preservation of sequence
diagram aspect composition in terms of monotonicity with respect to refinement and
event preservation.

In the following, we will address how syntactic- and semantic-based matching and
composition approaches relate to the monotonicity property. Any such approach that
does not remove traces will be event preserving.

2.3 Syntactic Matching and Composition

When an end user models the system she/he will be concerned with the concrete syntax
provided as well as the semantics of what she/he describes. However, when doing se-
quence diagram aspect composition, there are difficulties in maintaining a semantically
consistent model. We will show that monotonicity with respect to refinement and as-
pect composition is problematic when working on the syntactical level, and it therefore
is problematic to be semantics preserving.

First we look at some examples of sequence diagrams and refinements and how a par-
ticular sequence diagram aspect technique (Whittle et al. [15]) provides compositions
on these models.

Fig.2 illustrates three models: a base model (abc1) and two refinements (abc1’ and
abc1”). The two refinements are supplementing refinements of the base model, as they
add positive behaviour. There is one new positive trace in each of abc1’ and abc1”.

Fig.3 illustrates a sequence diagram aspect (Aspect-A) that we want to bind to the
base model in Fig.2 i. It defines the creation of two messages x and y by using the
«create» stereotype. The search criteria (pointcut) of the aspect is defined by the non-
stereotyped messages (b1 and a1). So, the aspect looks for the pattern b1 followed by
a1 and creates an x message before and a y message after every match. The result of
composing this aspect with abc1 in Fig.3 i is shown in Fig.4 i.
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Fig. 2. Base Model abc1 with Two Refinements

Fig. 3. Sequence Diagram Aspect and Binding Query

Now, we want to investigate the effect of applying the same aspect on the refinements
of the base model. The results of these compositions are shown in Fig.4 ii and iii.
Refinement 1(abc1’ in Fig.2) introduced a new optional fragment that leads to a new
potential match for the aspect. The approach in [15] works on concrete syntax and hence
allows an aspect query (pointcut) to match fragments belonging to different fragment
containers. As a result, there will be two matches for our aspect in this refined sequence
diagram. The resulting composition (abc1’-aspectised in Fig.4 ii) is not a refinement
of the base model with the aspect (abc1-aspectised), since not all traces from abc1-
aspectised are traces in abc1’-aspectised. In fact, none of the traces are present.

If the approach disallows these kinds of matches, i.e. requiring fragments to have the
same owner, similar problems occur: the refinement abc1” introduced an alternative
combined fragment with a1 in one operand and a2 in another. When applying the aspect,
there will be no matches for the aspect pointcut. The result (abc1”-aspectised in Fig.4
iii) will not be a refinement of abc1-aspectised.

Narrowing refinement resulting from introduction of negative fragments in the base
model have similar problems with respect to monotonicity.

We conclude that pure syntactical aspect compositions may easily lead to non-
monotonicity with respect to refinement. It is possible to avoid this by introducing lim-
itations on what is allowed in a composition. These limitations, however, are so severe
that they will greatly diminish the value of sequence diagram aspect compositions.
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Fig. 4. Base Model and Refinements With Composed Aspect

Due to the problems with pointcuts that match across fragment containers (e.g. inside
and outside an optional fragment), as illustrated in Fig. 4 ii and problems in matching
several subsequent fragments (due to introduction of e.g. an alternative), as illustrated
by Fig. 4 iii, a syntactical approach could have the following restriction to be semantics
preserving: a pointcut can only match single messages or single combined fragments.

2.4 Semantic Matching and Composition

Matching and composition based on the sequence diagram semantics rather than the
concrete syntax should make it simpler to preserve semantics; this seems a somewhat
tautologous statement, but it depends on our understanding of semantics preservation.
By our definition of semantics preservation, which relies on refinement semantics, it
is very likely that a matching- and composition-system based on trace semantics will
be semantics preserving. Since a refinement will never remove a trace, but only add
new traces to the positive traceset from the inconclusive traceset, or move traces from
the positive traceset to the negative traceset, a matching-system will always re-find the
traces it found in the refined model. Thus, applying the same aspect on a base model
and its refinements will result in models in which the compositions of the refinements
are also refinements of the base model composition.

2.5 Refinement of the Aspects

So far, we have addressed monotonicity of base model refinement and aspect compo-
sition, where I1 ⊕ A = IA1 ∧ I2 ⊕ A = IA2 → IA1 � IA2. To generalise this, we
should also address refinement of the aspect: I1 ⊕ A = IA1 ∧ I2 ⊕ A′ = IA2 → IA1
� IA2, where aspect A’ is a refinement of A (A � A’).

To consider refinement of an aspect, we need to view it in terms of its two logically
distinct parts: its pointcut or query part and its advice. The pointcut of an aspect is
closely related to the mechanism of a weaving operation. Any refinement of this may
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Fig. 5. Refinement of Pointcut with Traces

alter the search criteria and the results. This will easily lead to compositions that are not
semantics preserving.

Fig.5 illustrates the problem with pointcut refinement using a trace-based matching
semantics. It shows a simple example where a sequence diagram aspect pointcut (A)
will result in a single match in the base model (I1). The advice used in the composition
is from Fig.6 and is assumed composed after pointcut matches. The pointcut A matches
the event sequence {<!b1,?b1,!a1,?a1>} in the base model. The pointcut refinement
(A2), however, will get two matches in the base: first, the trace {<!b1,?b1,!a1,?a1>}
and then {<!b1,?b1>}. The result model IA2 is not a refinement of the result model
IA1.

We conclude that pointcut refinement easily results in non-monotonicity with re-
spect to aspect composition and refinement. This will be the same for semantical and
syntactical approaches.

Therefore we limit our scope to refinement of the advice part of aspects. A refine-
ment of an aspect advice should be any legal sequence diagram refinement according to
STAIRS. Fig.6 shows how a refined advice influences the composition result. We use
the pointcut A described in Fig.5. The advice A2 is a refinement of the advice A and
the corresponding composition IA2 is a refinement of IA1.

Many aspect modelling approaches define special constructs in order to describe an
aspect. This makes the semantics of refinement unclear for that aspect. For any such
approach, the semantics of refinement must be defined with respect to these special
constructs.

Another issue with respect to refinement arises if pointcut and advice parts are mixed
in the aspect specification, which is the case in several approaches. In Whittle et al. [15],
the pointcut and advice is mixed in the same sequence diagram. It is not given how to
refine the aspect without modifying the pointcut part, and specifications of that seman-
tics must be defined to allow this. The approach proposed by Deubler et al. [12] has a
similar mixing of pointcut and advice, which displays the same problems with respect
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Fig. 6. Refinement of Advice

to advice refinement. We conclude that mixing of pointcut and advice in a sequence
diagram makes refinement and hence semantics preservation difficult.

In the next Section, we analyse existing sequence diagram aspect techniques with
respect to our definition of semantics preservation.

3 Analysis of Existing Sequence Diagram Aspect Techniques

We give an overview and analysis of different sequence diagram aspect techniques,
specifically with the semantics preserving properties in mind. We use the buyItem ex-
ample in Fig.7 to illustrate some of the approaches. The figure shows a base model se-
quence diagram (buyItem) and a modified sequence diagram that is a composition of the
base model and a transaction aspect that adds new fragments for transaction handling
to our model. The aspect adds a startTransaction message before and a commit/abort
alternative after the existing sendPayment.

3.1 Syntactic-Based Approaches

Solberg et al. Solberg et al. [13] have developed a UML-based language for describing
aspects for sequence diagrams. The approach relies on a role-based extension to UML
[19] where classes, objects, operations, and properties can be marked as templates.
They distinguish primary models from aspect models. Primary models are explicitly
tagged using specific combined fragment styles called simpleAspect and compositeA-
spect, i.e. the joinpoints are explicitly tagged in the primary model, i.e. there is no query
mechanism. The tags bind the content fragments to a specific aspect and pass necessary
parameters to the aspects (Fig.8).

A simpleAspect is always bound only to a single lifeline in the primary model. A
compositeAspect is more elaborate, covers several template lifelines, and may define
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Fig. 7. Sales Example - buyItem and buyItem with Transaction

different kinds of advice fragments, begin, before, body, after, and end, which are mod-
elled as special stereotyped combined fragments. The advice fragments allow messages
to be inserted at the beginning and end of the compositeAspect tag, before or after each
message within the tag. The body advice specifies a merging of the contents of the com-
positeAspect fragment in the primary model with the messages in the body advice. The
semantics of the body advice requires it to contain one or more template operations.
In this approach, the base model knows about the aspect since references to the aspect
is placed in the base model (i.e. it is not oblivious). The aspect on the other hand, is
oblivious of the base model.

In this approach, there is no query model that can modify the selected joinpoint for
an aspect, but an explicit combined fragment that tags the selection in the base model.
This implies that the aspect will always apply to that designated tag and its contents,
whatever refinement is done on the base model. An open issue in this model, however, is
what refinement of a model containing an aspect tag means. If this is defined such that
the aspect tag fragments never can be moved into new optional/alternative combined
fragment, aspect composition in this approach will be monotonic with respect to base
model refinement.

Refinement of the aspect itself also needs semantical clarifications for the different
constructs (i.e. tags) used in an aspect. If we assume that a refinement is only allowed
to make changes inside these tags (e.g. add an optional fragment), the approach is also
monotonic with respect to aspect advice refinement.

In this approach, an aspect can only add fragments to the base model. It will as such
provide compositions that are event preserving.

Whittle et al. Whittle et al. [15] uses graph transformations to specify and compose
UML-based aspects in the MATA tool, a general purpose tool for aspect composition in
any language with a well-defined metamodel. A special profile is defined with stereo-
types that allow manipulation of language elements to support composition (create,
delete, context, any). Pointcuts and advice (aspects) are combined in a single MATA
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Fig. 8. Aspect modelling Solberg et al. Style

rule that is used for matching and composition with a base model. They use the con-
crete syntax of UML with the stereotypes to describe the aspects. In sequence diagrams,
messages or combined fragments can be associated with these stereotypes to define the
transformation/composition. The strength of this approach, which may also be its weak-
ness, is the specification of pointcut and advice in the same sequence diagram. For the
end user of a particular aspect in a particular context, it gives an intuitive view of the
concern. However, it makes each aspect less reusable, as they reference the base model
explicitly. In this approach, the base model is oblivious to the existence of the aspect
(Fig.9).

The approach by Whittle et al. will break monotonicity with respect to refinement of
the base and aspect advice, since matches may be lost and/or compositions may work

Fig. 9. Aspect Modelling Whittle et al. Style
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differently in refinements, which is consistent with the problems described for syntactic
aspect composition in Section 2.3. The approach allows removal of fragments from the
base model, and does as such not provide event preserving compositions.

Clarke and Baniassad. Clarke and Baniassad have developed the Theme method [16],
covering the lifecycle of software development using model-based concerns. The back-
ground of themes is work on composition in subject-oriented modelling [8]. Theme
also addresses composition of sequence diagrams defined as behavioural part of themes
and composition of aspect themes. A sequence diagram in an aspect theme defines tem-
plate parameters that are used as names of messages in the sequence diagram. These
are bound to concrete names during composition or binding. A theme can have several
template parameters; for sequence diagrams, these refer to messages and operations of
the lifeline types (Fig.10).

Fig. 10. Aspect Modelling Theme Approach

A crosscutting theme does not specify any compositional semantics with base theme
sequence diagrams. It specifies how base behaviour is placed within crosscutting be-
haviour at the message/operation level; the execution of the base behaviour is always
kept in its whole. There is an indirect reference to base operations that represent the
original base behaviour. If we consider that this referenced base operation has associ-
ated sequence diagram behaviour, it could be inserted as an interaction use. The theme
approach is designed for composing complete behaviours with crosscutting behaviour
and does not allow merging of behaviour into a base sequence diagram.

In this approach, the base model and the aspect themes are mutually independent.
The only links between them are in the bindings. A composition will always refer-
ence/use the base behaviour; hence, the approach is event preserving. If there is any base
model sequence diagram behaviour, a refinement of it would not influence monotonic-
ity. Refinement of the theme aspect sequence diagram will also result in monotonicity
of theme composition.

Stein et al. Stein et al. [20] defines a syntax and semantics for definition of join-
point queries in UML called Joint Point Designation Diagrams (JPDD). In this work,
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Stein et al. address joinpoint queries within different UML diagram types, including se-
quence diagrams. They do not address the weaving/composition process. The notation
for JPDD sequence diagrams is sequence diagrams extended with name patterns and
wildcards, indirect call graph paths, and identifier variables. Since Stein et al. do not
address the composition process, this approach is not relevant with respect to mono-
tonicity of the compositions. However, their JPDD notation is an alternative graphical
query language for sequence diagram aspects. It is based on UML, but extends it with
various notational elements to provide advanced search mechanisms.

3.2 Semantic-Based Approaches

Klein et al. Klein et al. [18] address issues of semantic weaving of sequence charts,
in contrast to syntax-based weaving. They define a semantics-based weaving algorithm
for High-Level Message Sequence Charts (HMSC), which analyses the behaviour of
sequence charts to identify the execution paths that matches a given pointcut. Pointcuts
and advice are described in terms of basic MSCs, and the weaving algorithm com-
putes the behavioural matches to the pointcut and refactors the base HMSC to the se-
mantically desired result. This work is followed up in [21], focusing on weaving of
several aspects that may be interfering with each other. They use sequence diagrams
to describe pointcuts and advice of an aspect. In this approach, aspects may remove,
complement, or replace matched behaviour. The main focus of Klein et al. is the weav-
ing algorithm itself and its capability with respect to semantics-based weaving. Fig.11
illustrates pointcut and advice sequence diagrams in this approach.

Fig. 11. Aspect Modelling Klein et al. Style

The base models are oblivious of the aspect, and the aspect references the base
model. The advice part of an aspect is implicitly dependent of the pointcut part, as
the advice copies the elements from the pointcut in order to replace the matches found.
This does not influence refinements of the advice with respect to monotonicity. How-
ever, since the advice contains a copy of the elements from the pointcut, advice refine-
ments may result in generation of new traces in which fragments from the pointcut is
gone; still, the original pointcut fragments will always be present in some traces as long
as the original advice specification contained a pointcut copy.
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The approach provides monotonicity with respect to refinement of the base and as-
pect advice models. As it allows for deletion and replacement it is not event preserving.

Grønmo et al. Grønmo et al. [22] take a different approach to semantics-based weav-
ing of sequence diagrams, based on mapping the sequence diagrams to traces and per-
forming the weaving on the trace level. Using the semantic representation of traces of
sequence diagrams of base models and aspects a close relationship with the semantic
domain of sequence diagrams is ensured, and compositions done at this level will be
monotonic with respect to refinement of the base model. They consider only additive
aspects, i.e. aspects that do not remove or replace anything. The approach is thus event
preserving.

They represent pointcut and advice in separate sequence diagrams, similarly to [18].
The base model is thus oblivious of the aspect, and the aspect pointcut references the
base model. The same dependency between pointcut and advice exists as in [18]. How-
ever, this approach is also monotonic with respect to refinement of the aspect advice.

Deubler et al. Deubler et al. [12] defines an aspect-oriented modelling technique for
services based on sequence diagrams. In this approach, an aspect is described as a se-
quence diagram with special kinds of lifelines representing pointcut and advice infor-
mation. These identify join points of a base model and define what will happen with
the aspect at these join points in terms of execution. Four types of join points are de-
fined: before, after, wrapping, and overriding. They use names to identify join points,
which may be grouped within combined fragments to specify more complex joinpoint
expressions. They allow using wildcards for identifying joinpoints.

In this approach, the base model is oblivious of the aspect. The aspect itself mixes
pointcut and advice in one sequence diagram, which makes refinement of the aspect
advice hard, since a refinement of this model may modify the aspect pointcut. Deubler
et al. do not specify the result of applying aspects to a base model. Rather, their approach
is based on inserting the aspect behaviour at execution time of the scenarios. As such,
their approach is semantic-based and it would cater for monotonicity with respect to
refinement of the base model. However, since refinement of the aspect may modify
pointcuts, the approach is not monotonic with respect to aspect advice refinement. Since
their aspects may override behaviour, a composition may refrain from executing the
behaviour from the base model. Hence, the approach is not event preserving.

Table 1 shows a feature overview of the different approaches. We see that four
of six approaches indeed are monotonic with respect to base model refinement. The
two approaches that mix pointcut and advice within a single sequence diagram are not
monotonic with respect to advice refinement. One of the syntactical approaches is non-
monotonic both with respect to base and advice refinement. In one case, we cannot
conclude on the monotonicity properties of neither base nor advice refinement.

Our analysis shows that three out of six approaches provide monotonicity with re-
spect to aspect composition and refinement. Only two of these are event preserving and
hence semantics preserving under the definition given in Section 2.2. However, one
could only restrict the last one with respect to fragment removal and it would be event
preserving and semantics preserving.

We see that for the syntactical approaches, one provides monotonicity with respect
to aspect composition and refinement. The same is true for two of the semantical
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Table 1. Feature Table for Aspect Oriented Sequence Diagram Approaches

Monotonic wrt
refinement of base

Monotonic wrt
refinement of aspect
advice

Event Preserving

Solberg et al. (syn) See Remark 1 See Remark 1 Yes
Whittle et al. (syn) No No No
Clarke et al. (syn) Yes Yes Yes

Deubler et al. (sem) Yes No No
Klein et al. (sem) Yes Yes No

Grønmo et al. (sem) Yes Yes Yes

Remark 1.This approach requires the semantics of special tags in base and aspect models to
be defined in order for refinement to be well-defined. Therefore, it is problematic to conclude
on the monotonicity properties of this approach. However, if we absorb the assumptions out-
lined in Section 3.1, the approach will be monotonic.

approaches. We would expect that the syntactical approaches were not semantics pre-
serving, but under the definition given in this paper, this is not necessarily so. Why is
this? The answer lies in the quite restrictive mechanisms provided by these syntacti-
cal approaches: the approach in [16] is restricted in that it does not query base model
behaviour to provide composition and does not merge base sequence diagrams with
crosscutting behaviour; it only does sequential composition of crosscutting behaviour
and complete base model sequence diagrams. The approach in [13] is restricted by the
static identification of joinpoints in the base model, which restrain the flexibility of the
aspect and controls where it can act.

4 Conclusions

We have defined semantics preservation for sequence diagram aspect composition based
on refinement semantics and event preservation. Under this definition, a sequence di-
agram aspect approach is semantics preserving if it is monotonic with respect to base
model and advice refinement and at the same time is event preserving, i.e. does not
remove any fragments in a base model sequence diagram.

This definition of semantics preservation provides two things: it enables base models
and aspects to be refined, and ensures that resulting composition after refinement are
refinements of the compositions prior to refinement. It also ensures that no events that
were part of the base model are lost or removed; events from the base model can be
found within the composition traces if events from the aspect are hidden.

A lot of work has been done on defining the semantics of sequence diagrams, its
compositional operators, and refinement [10,23,24]. Various semantics preservation
characteristics have been addressed with respect to model evolution and model trans-
formation: Engels et al. [25] address model consistency in model evolution by using
model transformations that represent evolution steps. Baar et al. [26] address semantics
preservation of model refactorings using graph transformation representation of OCL
constraints. Katz and Katz [27] describe an approach for verifying the conformance of
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a system to scenario-based aspect specifications. This is done by checking if system ex-
ecutions have a convenient computational representation in the scenario specifications.
This work addresses a complimentary problems to ours. It addresses the adherence of
aspect scenario semantics to a refinement (the implementation), while we address the
preservation of refinement relationships when applying sequence diagram aspects.

Our analysis of sequence diagram aspect techniques addressed techniques with both
syntactical and semantical matching and composition semantics. It shows that several
approaches are semantics preserving under our definition. A general observation is that
mixing of pointcut and advice in a single sequence diagram is negative with respect to
monotonicity of aspect refinement, and hence semantics preservation. For syntactical
approaches, we observe that they too can be semantics preserving, if they are strongly
restricted in their querying mechanism. The more liberal approach results in composi-
tions that are not semantics preserving.

In future work we will address if and how sequence-diagram aspects can be flexible,
syntactically based, and still preserve semantics.
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Abstract. The increasing complexity of software applications requires improved
software development techniques in order to cope with, a.o., software reuse and
evolution, the management of heterogeneous concerns, and the retargeting of sys-
tems towards new software platforms. The introduction of AOSD (aspect-oriented
software development) and the support for MDD (model-driven development) are
two important and promising evolutions that can contribute to better control of
software complexity. In this paper we present an AOM (Aspect-Oriented Model-
ing) based framework to promote and enhance the reuse of concerns expressed in
UML. We have developed a prototype composition engine implemented in ATL
that can be used to compose concern models specified in UML.

1 Introduction

Aspect-Oriented Modeling (AOM) is a recent development paradigm that aims at pro-
viding support for separation of concerns at higher levels of abstractions [1]. Following
an AOM approach, one can model parts of a complete solution separately, and compose
them afterwards using model composition techniques.

In order for AOM to bring an increase of efficiency in software development, it must
be possible to model concerns once and reuse them in different contexts. If one has to
create a concern every time from scratch, the gains of AOM will diminish substantially.
Also, there is a need to define criteria that evaluate whether a given concern is reusable.

In this paper we define and characterize reusable concern models. We provide several
key criteria that are crucial in improving concern model reusability. We have developed
a graphical framework that can be used to model the structure and the behavior of
certain types of concerns, and we specify their composition in a composition model.
We have implemented a generic composition engine in ATL [2], which can compose
UML concern models specified in our framework .

In section 2, we define the key requirements that are necessary to improve con-
cern reusability. In section 3, we present the Generic Reusable Concern Compositions
(GReCCo) approach in detail, and describe the composition specifics of our approach.
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In section 4, we illustrate our approach by applying it to a case study. In section 5,
we evaluate how GReCCo improves reusability by discussing each of the reusability
requirements presented in section 2. In section 6, we present related work. Finally, we
conclude and outline future work.

2 Concern Reuse

Concerns are the primary motivation for organizing and decomposing software into
manageable and comprehensible parts [3]. We use the term concern to uniformly refer
to what AOSD practitioners often call an aspect concern and a base or component
concern [4]. The component concern usually represents the functional core of a given
application, whereas different aspect concerns represent functional and non-functional
parts that extend the core.

To our knowledge, there is no clear notion of reuse for concern models in AOM.
We therefore define and characterize what makes a given concern model more or less
reusable.

2.1 Requirements for Reuse

We define a reusable concern model as a known solution for a certain problem, which
can be used in several contexts to produce required assets. Different contexts mean for
instance different applications, projects, companies, application domains, etc. However,
using this definition we cannot measure how reusable a concern model is. That is why
we introduce several more concrete qualities of a concern model and an AOM approach
as a whole that are important in increasing the reusability of concerns.

Composition Obliviousness: Concerns, represented by their models, should ideally
be modeled independently from a concrete context in which they are going to be
applied. Reusable concerns usually represent generic solutions to known software
problems, and therefore such concerns cannot be completely oblivious [5] of the
context in which they will be applied. However, a given concern is more oblivious
of the composition if it allows more variations in the composition. Consider the
following simplified security concern in Figure 1 that represents a solution to real-
ize secure logging [6]. The concern designer provides a complete generic solution,
declaring that the Client class is a template entity that should be instantiated by a
concrete element whenever this concern is used. However, if the concern needs to
be composed with an application that already implements a LogFactory, it would
be impossible to reuse this concern as it is. Figure 2 shows a different version of
the same concern, which is relatively more oblivious [5] as it allows any element
to be instantiated by a concrete element. Of course, a template entity may have
a full implementation, which will be used in case it is not instantiated during a
composition.

Composition Symmetry: All concerns should be treated uniformly, i.e., we should be
able to compose any two given concerns. A non-symmetric (asymmetric) composi-
tion approach allows only base-aspect compositions. However, this will constrain
the concern reuse as we will not be able to use concerns within other concerns.
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SecureLogger LogManager

LogFactory<<template>>
Client

Logger

Fig. 1. Secure Logger Concern

<<template>>
SecureLogger

<<template>>
LogManager

<<template>>
LogFactory

<<template>>
Client

<<template>>
Logger

Fig. 2. Secure Logger Concern with Increased
Obliviousness

Interdependency Management: There are many (often hidden) interactions between
the different concerns, since they are not always completely orthogonal to each
other. Such concern interactions can be classified to one of the following five cat-
egories: dependency, mutual exclusiveness, alternatives, conflict and mutual influ-
ence [7]. Hence, it is essential to be able to declare such a potential interdependency
explicitly, and take it into account when composing different concerns. Otherwise a
reused model may create an invalid composition by, e.g., introducing a dependency
that is never resolved or adding a conflicting set of concerns.

In this paper we introduce a conceptual framework for representing concerns and spec-
ifying compositions with other concerns that improves support for reuse by tackling
each of these requirements.

3 Generic Reusable Concern Compositions (GReCCo)

In this section, we first describe the general principle behind the GReCCo approach.
Then we present the specifics of the composition of concern models. In addition, we
discuss the problem of concern interactions and show how this can be tackled by inte-
grating an existing complementary solution [7] into our approach.

3.1 General Description

The GReCCo approach is used to compose concern models. As presented on Figure 3,
we represent each composition step as the Greek letter upsilon (ϒ). The left and the
right branches of the upsilon contain two concern models. Our approach is symmetric
(composition symmetry) in the sense that we treat component and aspect concerns
uniformly. In order to combine the concern models, we provide a composition model
that instructs the model transformation engine how the two models should be composed.

Concern Models 1 and 2 (fig. 3) describe the structure and the behavior of the con-
cerns using respectively UML class and sequence diagrams. The Composition Model,
which also consists of UML class and sequence diagrams using the GReCCo profile,
specifies how the concern models are composed by defining all composition-specific
parameters and their bindings. This assures a higher degree of reusability of the two
concerns as they can be used in different contexts (composition obliviousness). The
Composition Model describes how the source concern models should be composed,
and is therefore by definition depending on these models. Using a generic composi-
tion engine, we generate the output Composed Model from the input composition and
concern models.
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Fig. 3. General Approach

3.2 Composition Specification

In order to compose two concern models, we need to specify the composition by defin-
ing the Composition Model. We consider the structural and behavioral concerns of the
composition separately. Elements that are not directly referenced in the Composition
Model are copied to the Composed Model. Other elements are modified by the compo-
sition engine according to the composition specification. The next subsections describe
the composition specifics in detail and illustrate some of them using simple examples.
A complete set of illustrations can be found in [8].

3.2.1 Structure

We distinguish five structural composition directives in total. From the point of view
of a single concern model, we distinguish the following directives that involve one el-
ement: (1) we can add a new element, (2) we can modify the properties of an existing
element, and (3) we can remove an existing element. When two concern models are
composed, there are some additional composition directives that we can specify for the
input elements. We can (4) merge two elements to obtain a single entity with the com-
bined properties. Some concerns introduce roles and/or template parameters as semantic
variation points, which we can (5) instantiate by using concrete UML elements. As we
are dealing with structure, we distinguish between four main types of UML elements:
class, property, operation and association.

Add. The composition of two concerns can add new elements to the composed model.
For instance, we may need to link a class from one of the input concern models with
a class from the other one. In order to do so, we have to add the element to the com-
position model and tag it with the UML stereotype � add �, which will indicate that
this is a new element that must be added to the composed model. Consider two input
concerns containing the classes A and B respectively. Fig. 4 shows a composition model
that shows how we can link A and B with an association.

Modify. During the composition, we may need to modify some properties of the ex-
isting elements. We can modify any UML property of a structural element. We specify
this by marking the to be modified element with the � modi f y � stereotype in the
composition model. In addition, we indicate the UML meta-property that needs to be
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B A
<<add>>

Fig. 4. Add Usage (Composition Model)

modified and its new value using a stereotype attribute (called a tag in UML 1.x). Each
stereotype attribute will have a name, indicating the UML property that should be mod-
ified, a type, which is the same as the UML type of the property to be modified, and a
value, indicating the new value. For instance, if we wish to modify the classname of a
given class, we need to place a � modi f y � stereotype on that class, and fill out the
className stereotype attribute with the new classname. If several UML properties of
a given UML element need to be modified we will use several stereotype attributes on
the same � modi f y � stereotype.

Remove. Due to the composition of concerns, certain entities may become unnecessary
in the composed model. For instance, a concern may introduce an indirect association
between two entities that are already connected directly in another concern. We realize
the removal of elements by putting the � remove � stereotype on the element that
needs to be removed.

Merge. When two concern models are involved, we sometimes have to deal with el-
ements that represent a different view on the same entity. We need to merge these el-
ements to obtain a single entity with combined properties. In order to merge two ele-
ments, we need to add a UML association between the elements and mark it with the
� merge � stereotype. The merge results in a new element that is composed from the
properties of the original two elements. The name of the composed element is set to the
concatenation of the names of the original elements. Conflicts such as name clashes,
mutually exclusive properties, etc. should be resolved explicitly by using the modify
strategy. In the same manner, elements with the same name that are appearing in two
models and that should be merged, must be explicitly labeled using the merge strategy.

Instantiate. A concern can contain a number of template elements (e.g., roles) that must
be bound to concrete elements when the concern is composed. As we aim for oblivious
compositions, we model all concern elements as concrete ones. On the composition
model, however, we use the instantiation directive, which tells the composition engine
that a given concern element is considered to be a template that must be instantiated by a
concrete element from the other model. In practice, instantiation is similar to merge with
the only difference that all conflicts are resolved by taking the properties of the concrete
element. In addition, the name of the composed element is kept the same as the name of
the concrete element. To specify an instantiation, we need to place an � instantiate �
dependency link from the entity that must be considered to be a template to the concrete
element.

3.2.2 Behavior

We use UML sequence diagrams to describe the behavior of concerns, which must be
in correspondence with their structural counterpart specified by UML class diagrams.
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A concern model may contain several sequence diagrams. Each sequence diagram rep-
resents a certain scenario. Scenarios from the input concern models that are completely
independent of each other, are simply copied to the composed model. We define two
scenario’s as independent of each other if they can be executed in parallel, meaning that
the messages can be freely interleaved. For overlapping behavior scenarios we need to
be able to address the following use-cases: (1) specify the sequence of messages be-
tween the input behavior scenarios, (2) indicate that a call from one input scenario is
the same as a call from the other input scenario, and (3) replace a call or a set of calls
from one input scenario by a call or a set of calls from the other input scenario.

General Ordering. To realize the first use-case, we introduce the notion of general
ordering partially borrowed from the UML 2.0 specification [9]. A general ordering is a
binary relation between two interaction fragments to describe that one of the fragments
must occur before the other one. Each interaction fragment contains a set of events.
The resulting scenario defines a partial ordering of the input events. To specify this
on a model we use a dependency between the event(s) that should precede another
event(s) and mark it with the � genordering � stereotype. The interpretation by the
composition engine is that the dependency client fragment should immediately precede
the dependency supplier fragment. Events that are not involved in any general ordering
relation are put in parallel fragment blocks.

Merge. In order to specify the second use-case we use a dependency marked with the
� merge � stereotype between the two calls. If we do not use this dependency the
calls will appear in duplicate on the composed sequence diagram. Note that event call
merging is only possible when the call receiver classes are the same or if they have also
been merged on the structural composition diagram.

Replace. Finally, to realize the last use-case, we group the event(s) that are to be re-
placed as well as the replacing events in interaction fragments. We place a � replace �
dependency from the replacing to the to-be-replaced fragments. Grouping in interaction
fragments may be omitted in case of a single event or if the set of events is already
grouped in an interaction fragment.

We illustrate the merge and general ordering concepts on the example of two be-
havior concerns that were described by Klein et al. [10]. Figure 5 shows an example
of the composition specification. The left part of the composition represents the be-
havior of an authentication concern, while the right part describes the set of events
for a logging concern. We would like to obtain a composed scenario that performs
authorization and in case of a successful authentication writes it to a log. If the au-
thorization fails, the authorization concern itself is in charge of saving the failed at-
tempt. The login() events from the two concerns should be considered the same, there-
fore we place a � merge � dependency link between them. In addition, we need
to put the logEvent() event after the OK message. We specify this by placing a �
genordering � dependency from OK to logEvent(). As a result we obtain a combined
sequence scenario that performs both authentication and logging in case of a successful
authentication.
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[ ]

[else]

al

 : DBExchanger : Server : Server  : Client : Client

<<genordering>>

<<merge>>
logEvent()

save()

OK

try again

login()
login()

[ ]

alt

Fig. 5. Behavior Composition

Fig. 6. Concern composition chain

3.3 Concern Interactions

One of the goals of our approach is the ability to build a system by reusing a number of
existing concerns. Fig. 6 is an example of a composition tree that can be obtained if we
combine five concern models. The rectangle boxes represent the UML models of five
concerns. The concerns are composed in a certain order to obtain the final combined
model (M12345). The ovals represent the composition models.

Concern models are rarely completely orthogonal to each other, but can relate to each
other in a variety of different ways. A concern can be involved in an arbitrary number
of interactions with one or more other concerns. Sanen et al. [7] distinguish between
five different classes of concern interactions: dependency, conflict, choice, mutex and
assistance. They also provide a conceptual Concern Interaction Acquisition (CIA) ex-
pert system for describing the relevant information about interactions between concerns
that need to be captured. Figure 7 shows a simplified overview of the CIA framework.
Domain experts add expertise about interactions between concerns into the CIA system.
In order to use the CIA system for the investigation of concern interactions in GReCCo,
the GReCCo tool has to provide the concern composition specification, which provides
the CIA system with the information on concern selection. The list of the selected con-
cerns is analyzed by the CIA system and the list of interactions is presented back to the
GReCCo tool.
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Fig. 7. Architecture of the CIA expert system from [7]

Our approach is currently constrained to the composition of only two concerns at a
time. However, if we keep a composition history we could query about interactions with
concerns that are already composed during the previous steps. An existing prototype of
the CIA expert system is not yet incorporated in the GReCCo engine. However, its
integration is conceptually straightforward and will be realized in the near future.

4 Case-Study

In this section, we present an application from the domain of Electronic Health Infor-
mation and Privacy (EHIP). We start from a description of the primary model of the
application. On top of this application, we apply several reusable concerns using the
GReCCo methodology described in the previous section. Because of space restrictions
some of the models will be shown only partially. For a complete description of this case
study refer to [8].

4.1 Screening Application

Screening application represents an information system of a screening lab. Fig. 8
presents a UML class diagram for the screening lab application. Patients (ScreeningSub-
ject) make an appointment to have their radiographic pictures (Screening) taken by a Ra-
diographer. Two different Radiologists perform a Reading of the radiographic screening.
In case the reading results are the same, an automatic Conclusion is generated. Otherwise,
a third reading takes place, whereafter the third radiologist creates a final conclusion. In
addition to the system itself, we have realized an additional client-server mechanism so

RegistryServer

+executeService( id : int )

ScreeningSubject

-sisID : String
-name : String

ScreeningService

-id : int

+execute()

Doctor

-license : String

Employee

-name : String
-salary : double

Radiographer

Reading

-outcome : int
-results : String

Conclusion

-report : String Screening

-date : date
-image

+screen()

RadiologistClient

1

1

1
*

1

*

access *
1

*

1

1
*

*
1

Fig. 8. Screening Lab Application Model

 : ScreeningService : RegistryServer : Client

execute()
executeService(id=)

Fig. 9. Execute service
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PEP

+interceptMessage()
+requestService()

ApplicationFirewall

+requestService()

Application

+forwardService()

PAP

+grantAccess()
+log()
+controlAccess()

+authenticate()

IdentityBase
+check()

PolicyBaseIdentity

−id
−credentials
−roles

Policy

−serviceID
−role
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Caller

Fig. 10. Application Firewall Concern

 : PAP : ApplicationFirewall  : IdentityBase  : Application : PolicyBase : Caller  : PEP

authenticate()

check()access granted

requestService()

forwardService()

result

client authenticated

result

access granted

requestService() controlAccess()

request accepted

Fig. 11. Request Service

that patients can consult their own data at home using, e.g., a web browser (Client). Reg-
istryService offers a set of ScreeningServices, each having its own id. Fig. 9 represents
the scenario where patients execute a service in order to obtain their own data.

4.2 Application Firewall Concern

The registry server, introduced in the previous section, must ensure that only authen-
ticated and authorized clients may use a given service. A sound solution in this case
would be to interpose an application-level firewall [6] that can analyze incoming re-
quests for the registry services and authorize them. A client can access a service of
the registry server only if a specific policy authorizes it. Policies for each application
are centralized within the ApplicationFirewall and they are accessed through a policy
authorization point (PAP) (fig. 10 and 11).

We want to compose the application firewall concern with the screening application.
We follow the framework described in the previous section and define the composition
model for the structure. We specify that Application, Caller and forwardService() should
be instantiated by RegistryServer, Client and executeService() elements respectively. In
addition, we need to remove the direct association between RegistryServer and Client
as the application firewall concern will introduce an indirect link between the two. For
illustration purposes, we rename the RegistryServer to Server by placing a � modi f y �
stereotype on the class, using a tag name to indicate the new name (fig. 12). Because of
space restrictions we do not show the composition specification of the behavior models.
For that we would need to place a � replace � dependency link from a fragment, which
includes executeService() and execute() events, to forwardService() event.
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<<modify>>
RegistryServer

{name = "Server" }

+executeService( id : int )

Application

+forwardService()

Client Caller

<<instantiate >>
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<<remove>> access

Fig. 12. Composition Model
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ApplicationFirewall
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ScreeningService

-id : int

+execute()
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1

*

Fig. 13. Screening Application with Ap-
plication Firewall Structure

Fig. 14. Screening Application with Application Fire-
wall Behavior

AuditInterceptor
+request()

+lookupEvent()

EventCatalog

Target
+request()

AuditLog
+logEvent()
+log()

Client
forwards

1..*1
sends

11..*

uses logs

Fig. 15. Audit Interceptor Structure Fig. 16. Audit Interceptor Behavior

The structure and behavior of the resulting composed model are partially shown on
fig. 13 and 14.

4.3 Audit and Secure Logger Concerns

In the next step of our case study we would like to add auditing support to our design.
We have selected the Audit Interceptor concern (fig. 15 and 16) to centralize auditing
functionality. An Audit Interceptor intercepts business tier requests and responses and
creates audit events.

Audit Interceptor depends on some secure logging facility without which it is im-
possible to guarantee the integrity of the audit trails. This is why we introduce also the
Secure Logger concern (fig. 17 and 18) that will ensure this additional requirement.

For illustration purposes, we chose to combine the audit interceptor and secure logger
concerns using GReCCo first, and then apply the combined concern on the application
model (fig. 13 and 14). The AuditLog entity in the Audit Interceptor concern represents
the Client entity in the Secure Logger concern. Hence, in order to combine the two con-
cerns, we have to merge the two entities by relating them with a � merge � association
(fig. 19). For the behavior composition we place a general ordering relation between the
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Fig. 21. Structure Composition Model

log() event from the AuditLog object and the log() event from the SecureLogger. The
structure of the combined concern is shown on fig. 20.

4.4 Final Refined Application

In the final step we will compose the combined Audit and Secure Logging concerns
(fig. 20) with the combined screening application and application firewall concern (fig.
13). In order to realize the structural composition, we specify that the Client class from
the combined concern should be instantiated by the ApplicationFirewall class from the
main application. We also instantiate the Target class by the Server class from the main
application (fig. 21).

Fig. 22 shows the structure of the final application model with Application Firewall,
Audit Interceptor and Secure Logger concerns composed into it.

5 Evaluation

Our approach represents a framework for AOM using reusable concerns, in which each
concern is modeled using UML class and sequence diagrams. The approach comes with
a prototype generic composition engine written in ATL, that can compose two concern
models based on the composition directives defined in a dedicated composition model.
In this section, we evaluate how our approach tackles the reusability requirements pre-
sented in section 2.
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5.1 Key Requirements for Reuse

We have illustrated in our case study how we can use the GReCCo approach to reuse
modularized concerns. Each of the concerns used in our case-study can be reused in
another application simply by defining an appropriate composition model.

Composition Obliviousness. In our approach, each concern is modeled independently
from a concrete context in which it is going to be applied. All composition specifics,
such as template parameters, structural and behavioral modifications, etc., are specified
in a separate composition model, which is unique per composition. We are aware that
the maximized reuse of concerns comes at the cost of a potentially larger and more
complex composition model. However, we believe that we can minimize the effort re-
quired to build a composition model by introducing reusable composition models. We
will investigate this in our future work.

Composition symmetry. Our framework supports a generic approach to concern com-
position, i.e., symmetrical composition. We use the term concern to uniformly refer to
base and aspect concerns and we allow compositions between any two concerns.

Interdependency management. We have tackled this requirement by reusing an ex-
isting generic framework that helps us to detect and manage the different interactions
when composing different concerns. The implementation of the interdependency man-
agement framework integration in GReCCo will be available in the near future.

5.2 Proof-of-Concept Implementation

We have developed a generic composition engine that realizes our approach on top of
ATL. A current working version of GReCCo can be found on the GReCCo website
[11]. All proposed composition directives for the structural composition have been im-
plemented and evaluated with a number of examples [8]. The behavioral composition
is not yet fully supported.
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6 Related Research

There are many AOM approaches, each pursuing a distinguished goal and providing
different concepts as well as notations. We consider them categorized by the alignment
to phases criteria introduced by Op de beeck et al. [12]:

6.1 AOM Approaches Aligned to Implementation

Some AOM approaches offer no high level modeling concept that can map the design
to the concerns identified during requirements phase. Typically they focus on modeling
AOP concepts such as join points, pointcuts, advices, etc. [13,14,15,16]. Even though
this allows the modeling of a given concern in a certain manner, these approaches re-
main too close to the implementation level. All these approaches typically come with
a relatively rich tool support. However, these approaches do not score high given our
reusability criteria. Almost all implementation centric approaches support composition
asymmetry, which only supports base-aspect compositions. The composition context is
very much pre-defined by the aspect concerns (composition obliviousness). In addition,
as far as we know, these approaches provide little means to declare and detect concern
interdependencies.

6.2 AOM Approaches Independent from Implementation

Several other approaches are implementation independent and provide higher-level
mechanisms for concern modeling and composition. These approaches by default score
better concerning reusability as they allow a more abstract concern representation and
composition. Our approach belongs to this group.

The Theme approach of Clarke et al. [17] provides means for AOM in the analysis
phase with Theme/Doc and in the design phase with Theme/UML. A Theme represents
a modularized view of a concern in the system. It allows a developer to model features
and aspects of a system, and specify how they should be combined. Theme supports
composition symmetry and allows any given themes to be composed.

The Aspect-Oriented Architecture Models (AAM) approach of France et al. [18]
presents an approach for composing aspect-oriented design models, where each aspect
model describes a feature that crosscuts elements in the primary model. Aspect and
primary models are composed to obtain an integrated design view. This approach is
asymmetric and allows only aspect models to be composed with the primary model.

Klein et al. [19] present an approach for specifying reusable aspect models that define
structure and behavior. The approach allows expressing aspect dependencies and weaving
them in a dependency-consistent manner. The behavioral composition is realized using a
semantic composition algorithm. Klein’s approach is symmetric as well and allows does
not differentiate between aspect and base models what concerns the composition.

Our approach is similar to these approaches, however, there are several key differ-
ences that result in a better concern reuse. All three approaches use a template-based
mechanism for crosscutting concern compositions. Each crosscutting concern comes
with a set of template parameters that are instantiated during the composition by con-
crete elements from the other concern. Template parameters already pre-define the
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composition context as it is not easy to reuse a given concern with a different set of pa-
rameters (composition obliviousness). Our approach allows any element of a reusable
concern to be parametrized. This provides a more flexible composition mechanism as
the same concern can be reused in more contexts using a different set of instantiated
parameters. Many concerns should (or must) be used with an a priori given set of pa-
rameters. However, there are concerns where it makes sense to allow a more flexible
selection of parameters. For example, even though the Application Firewall concern
(fig. 10 and 11) comes with a generic policy authorization point (PAP), we would like
to allow the possibility of overriding it with a more specific PAP.

Klein’s approach is the only one that allows the definition and detection of concern
interdependencies. However, only one sort of interdependency, namely dependency, is
supported. The CIA framework, on the other hand, is a systematic approach that sup-
ports the complete set of possible interdependencies.

6.3 Other Approaches

An approach conceptually similar to GReCCo, is the hyperspace approach [3]. The hy-
perspace approach is more generic as it allows separation of concerns along multiple
dimensions called hyperspaces. GReCCo separates them only along class and concern
dimensions. The concepts of class and concern in GReCCo can be seen as hyperslices,
which represent concerns in a given hyperspace. The declarative completeness crite-
ria, which requires hyperslices to declare everything to which they refer, is similar to
the composition obliviousness criteria that requires concerns not to refer to any specific
composition. Declarative completeness also implies the composition symmetry criteria.
Finally, the composition model in GReCCo is close to a hypermodule, which integrates
hyperslices. Hyper/J and Theme are the most prominent implementations of the hyper-
space approach. However, Hyper/J is a code-level solution and Theme’s crosscutting
templates do not quite conform to the declarative completeness criteria. Notice that
both implementations support only two dimensions/hyperspaces, similar to GReCCo.

7 Conclusions and Future Work

In this paper we have listed and discussed what in our view are key characteristics for
the enhancement of concern reuse: composition obliviousness, composition symme-
try and concern interdependency management. We have described a new approach for
specifying concerns and their compositions and illustrated it on a case-study from the
Electronic Health Information and Privacy (EHIP) domain. We have evaluated how the
GReCCo approach can help us tackle each of the key qualities for improving reuse.

In the future we plan to investigate the possibility to reuse the composition models.
We will also extend the GReCCo engine to support the behavioral composition and
integrate it with the Concern Interdependency Acquisition (CIA) framework. We are
also investigating the possibility to use domain-specific modeling languages for certain
concerns. In addition, we plan to formalize the composition mechanisms and evaluate
the scalability of our approach.
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Abstract. Human participation in business processes needs to be addressed in
process modeling. BPEL4People with WS-HumanTask covers this concern in the
context of BPEL. Bound to specific workflow technology this leads to a number
of problems. Firstly, maintaining and migrating processes to new or similar tech-
nologies is expensive. Secondly, the low-level, technical standards make it hard
to communicate the process models to human domain experts. Model-driven ap-
proaches can help to easier cope with technology changes, and present the process
models at a higher level of abstraction than offered by the technology standards.
In this paper, we extend the model-driven approach with a view-based frame-
work for business process modeling, in which models can be viewed at different
abstraction levels and different concerns of a model can be viewed separately. Our
approach enables developers to work with meta-models that represent a technical
view on the human participation, whereas human domain experts can have an ab-
stract view on human participation in a business process. In order to validate our
work, a mapping to BPEL4People technology will be demonstrated.

1 Introduction

In a process-driven, service-oriented architecture (SOA), process activities invoke ser-
vices to perform the various tasks of the process. In such processes, often humans play
a central role, and hence process activities must be provided that model human tasks
and use services to “invoke” human actors who play a particular role in the process.
In such a process-driven SOA with human involvement, various concepts and tech-
nologies (standard and proprietary) are involved. A typical standards-based solution in
the Web services realm is to use REST [1] and SOAP [2,3] for distributed service in-
vocations, WSDL [4] for service descriptions, BPEL [5] for orchestration of services
through process models, BPEL4People [6] for human involvement in BPEL processes,
and WS-HumanTask [7] to describe service-oriented descriptions of human tasks.

The diversity and constant evolution of these technologies and the underlying con-
cepts hinders the changeability, understandability, and maintainability of process-driven
SOAs – and hence makes evolution of process-driven SOAs a costly and error-prone
undertaking. This is because systems are realized using specific technology without
abstracting or conceptualizing the solutions. Historically, however, none of the tech-
nologies mentioned has emerged without having a precursor, and often companies have
a legacy investment in one or multiple legacy technologies. For instance, the mentioned
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BPEL standard evolved out of WSFL [8] and XLANG [9], which themselves emerged
out of other existing workflow languages, and also there are several versions of the
BPEL standard. The same is true for all other mentioned technologies and standards.

BPEL4People was proposed in a white paper in June 2005 as a technology for inte-
grating human interaction of people with BPEL processes [10]. Two years later, in July
2007, version 1.0 of BPEL4People and the related WS-HumanTask [7] standards have
been published. During this long period naturally solutions for integrating humans into
service-oriented infrastructures have been proposed, for instance Human-provided Ser-
vices [11]. Also BPEL4People concepts based on the white paper have been realized
by industry and academia (see for instance [12]). They specified syntax and defined
semantics for addressing the concepts as introduced in the white paper. These imple-
mentations now must be adapted to comply with the standards. Looking ahead it is clear
that with new versions to come the current standards will become obsolete again in only
a matter of time.

In order to reduce migration and maintenance costs, adaptation to such – rather typ-
ical – technology and (technology standards) life-cycles should be easy to perform.
While concepts of a system may not change, new technology may introduce new syn-
tax elements and may modify semantics. Therefore it is desirable to have conceptual
representations within a system that have only the necessary dependencies on founda-
tional technology.

The case of modeling human aspects in SOAs shows this aspect very clearly. There
is a second, related problem that is also quite apparent in this case: the representation
of the conceptual knowledge embedded in the technologies to end-users. While devel-
opers may be interested in the low-level, technical standards mentioned above, such
technology-dependent views on a process-driven system are hard to communicate to
domain experts. Instead a simplified view at a higher level of abstraction is needed.

Model-driven development (MDD) [13] addresses these needs by defining meta-
models that express domain concepts. Platform-independent models that conform to
these meta-models can subsequently be transformed to platform-specific code. In order
to switch to similar but different technology all that needs to be done is to define a
different transformation that transforms the conceptual models accordingly. Within this
work we apply model-driven development to business process design. Particularly we
focus on modeling business processes that involve humans.

However, these meta-models are typically still too detailed and technical to be pre-
sented to domain experts. To solve this issue, we propose to present a customized repre-
sentation of our conceptual models to stakeholders. In particular, we propose to extend
the model-driven approach using a view-based modeling framework [14] that realizes
separation of concerns [15] for managing development complexity. For instance, while
a business expert may be interested in the control-flow of a process, a human resource
officer rather deals with assigning people to tasks. As we will introduce the framework,
we will also present a concept of realizing such views as an extension of the model-
driven approach.

But not only does the framework realize a separation of concern, it also enables
developers to place meta-models at defined levels of abstraction. Complexity can be
added gradually and while top level views give a simplified overview, refined models
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may supply technical details on the given concern. This is needed for instance to model
that technical developers need a technology-related view, while the two aforementioned
stakeholders rather need less detailed views, abstracting from the technical details.

Within this work we will particularly refine an abstract human meta-model towards
a technology-specific one for which a model-to-code transformation will be defined in
order to obtain a BPEL4People process. That is, we will extend the view-based mod-
eling framework by new views, dedicated to the concern of how people interact with
business processes. While general Human-Process dependencies will be reflected by an
abstract, conceptual view, details specific to BPEL4People and WS-HumanTask will be
subjoined in an refined BPEL4People view. Finally, we will relate these meta-models
to appropriate syntax elements.

This paper is structured as follows: After having defined the problem, Section 2
will introduce and extend a view-based modeling framework [14] with a meta-model
for human-process participation and association. This view will then be extended with
concepts from BPEL4People. A concrete binding to BPEL4People is presented in Sec-
tion 3 by mapping these meta-models to the BPEL4People syntax. In Section 4 we will
discuss related work and we will conclude with Section 5 by referring to further work.

2 A View-Based Approach

In order to describe human aspects of business processes, we have defined dedicated
views for our view-based modeling framework (VbMF, see [14] for more details),
which is introduced in this section. The VbMF framework consists of modeling el-
ements such as a meta-meta-model, meta-models, and views. The meta-models are
defined using the Eclipse Modeling Framework (EMF) [16]. These EMF models are
utilized in openArchitectureWare (oAW) [17], a modular generator for MDD and
model-driven architectures (MDA) [18], for integrating the view-based models and
model-to-code-transformations.

A view is a representation of a process from the perspective of related concerns. In
VbMF, new architectural views can be designed, existing meta-models can be extended
by adding new features, views can be integrated in order to produce a richer view of a
business process and using transformations, platform specific code can be generated.

Figure 2 demonstrates the core meta-model of the framework that is derived from
the Ecore meta-meta-model [16]. It defines basic elements for the framework and in-
troduces an element view as an representation of a business process concern. Other
meta-models make use of this core meta-model, so that relationships between different
meta-models can be defined and maintained. In particular model integration is realized
by name-based matching amongst name attributes of elements within the core meta-
model. Other matching algorithms, such as semantic matching can be plugged into
VbMF, if needed.

As mentioned, the framework consists of multiple views, separating the various con-
cerns that in their entirety describe an overall business process and the service inte-
gration. The main views defined by VbMF are: The control-flow view describes the
control-flow of the process. The collaboration view specifies the orchestration of ex-
ternal activities. The information view contains details on data types and messages.
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Fig. 1. Overview of the view-based modeling framework

The transaction view deals with long-running transactions, as they can be found in
process-based systems. Figure 1 gives an overview of the VbMF framework and its
main views.

VbMF is generally designed to be extensible in various ways. Firstly, VbMF can
be extended with views for other concerns. We will illustrate this extensibility in the
next section using a human view. Secondly, VbMF can be extended with views situ-
ated at different abstraction levels. For instance, for the above mentioned views, more
technical views have been defined for BPEL/WSDL-based control-flow, collaboration,
information, and transactions. Below we will illustrate this kind of extension using the
BPEL4People view, which extends the human view.

2.1 Extending the Framework with Human Views

Figure 3(a) gives an overview of our extensions to the VbMF framework introduced in
this paper: Two views dedicated to describe human aspects of business processes have
been defined and a transformation for generating BPEL4People has been implemented
(described in the next section).

We have extended the framework with a human view as shown in Figure 3(b) for
describing human aspects of a process. Via name-based matching, it introduces the
relation of processes and activities to human roles. Roles are abstracting concrete users
that may play certain roles. The human view thus establishes a role-based abstraction.
This role-based abstraction can be used for role-based access control (RBAC). RBAC,
in general, is administered through roles and role hierarchies that mirror an enterprise’s
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job positions and organizational structure. Users are assigned membership into roles
consistent with a user’s duties, competency, and responsibility [19].

We can specify an activity as defined within a control-flow view to be a human task
that is bound to for instance an owner, the person who performs the task. Likewise pro-
cess stakeholders can be specified for the process by associating them with the human
view that together with other views describes the overall process.

In the meta-models, described so far, there are no restrictions on how processes and
tasks may be bound to roles. Particularly this view does not define or propose roles for
processes or tasks. BPEL4People as well as WS-HumanTask on the other hand define
generic human roles (see also Section 3.2). The specifications describe certain use case
scenarios for different roles and therefore dictate access control for the human roles. By
working with these roles, BPEL4People technology can help to reduce the complexity
and cost of authorization management [19].

2.2 Refining the Meta-Model for BPEL4People

The more specific BPEL4People view extends the human view with a technology-
specific perspective on the human aspect. BPEL4People glues BPEL activities and
human tasks by introducing peopleActivity as a new BPEL extensionActivity.
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The human tasks that may be encapsulated or referenced by the people activities are
described in the WS-HumanTask specification. In order to hide complexity, these
technology-related aspects are not shown in the generic human view, but only in the
specific BPEL4People view.

A meta-model for the BPEL4People view is shown in Figure 4. This view inher-
its from the human view, binds roles to people links (that themselves are bound to
concrete people queries) and integrates other concepts from BPEL4People. A task for
example may hold a description, may be specified to be skipable and can specify sched-
uled actions that occur when time constraints are violated. Also propagation of ad hoc
attachments from and to the process can be defined for a task.

Although for instance descriptions of tasks may already have been defined within a
technology neutral meta-model, the optional description – which might be supplied for
an arbitrary number of languages – is a specific requirement of BPEL4People. There-
fore and in order to avoid polluting the abstract meta-model, the task description is spec-
ified – together with other technology-specific concepts – in the BPEL4People view.
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Fig. 4. Meta-model for the BPEL4People view

Roles need to be bound to a set of instances of data that identify persons. Therefore
they make use of a people link that – when resolved by people resolution – results in
such a set. People links contain people queries, can have descriptions and may specify
parameters. Expressed in a certain language, people queries will be executed during
people resolution. By decoupling roles from people links, reuse of the latter can take
place. Furthermore – and as mentioned above – a role-based abstraction is established
from the people link with its more technical aggregations.

3 Application to BPEL4People

To demonstrate the application of the presented models to BPEL4People and platform-
specific code, we will elaborate on the mapping to BPEL4People and WS-HumanTask
that define concrete syntaxes for human process interactions and relations. We will
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conclude this section by demonstrating a use case example. For explaining how the
different modeled concepts relate to the standards we will already utilize code of this
use case for illustrating purposes within the following paragraphs. Although we will
cover important concepts as captured within the introduced human view meta-models,
we do not intend to be complete in regard to the specifications [6,7] within this paper.

3.1 Tasks

A human task is a process element that is part of the control-flow. It is realized by a
people activity in BPEL4People as shown in Listing 1.1 that defines or references a
task definition. Section 4.7 of [6] permits the specification of scheduled actions like
defer activation and expiration that can contain for or until expressions. Moreover the
propagation of attachments from and to processes can be specified for a people activity
and the attribute isSkipable indicates whether the task associated with the activity
can be skipped at runtime or not. Section 4.1.1 of [6] lists and describes the semantic of
different properties.

<bpel:extensionActivity>
<b4p:peopleActivity name="Acknowledgement"

inputVariable="ack_input"
outputVariable="ack_output"
isSkipable="true">

<b4p:localTask reference="tns:AcknowledgementTask"/>
<b4p:scheduledActions>

<b4p:deferActivation>
<b4p:for>

...
</b4p:for>

</b4p:deferActivation>
</b4p:scheduledActions>
<b4p:attachmentPropagation fromProcess="all" toProcess="all"/>

</b4p:peopleActivity>
</bpel:extensionActivity>

Listing 1.1. BPEL4People syntax for a human process element

In our view-based modeling framework human tasks are modeled as simple activities
in the control-flow view. Within the human view such activities can be annotated via
name-based matching to contain human aspects by specifying the name as denoted in
the simple activity of the control-flow view.

We translate a task that was modeled in the human view to an appropriate task defi-
nition and reference it within a people activity. In contrast to encapsulated tasks, local
reuse of task definitions within a process can thus take place which might result in an
optimized behavior of the runtime engine that hosts the BPEL4People process.

3.2 Roles

Generic human roles as process stakeholders, process initiators and business adminis-
trators for processes have been defined in Section 3.1 of [6]. The human view meta-
model contains an association between the human view of the process and roles that
may define these generic human roles. Analogically this can be done for the task-role
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association. Section 3.1 of [7] defines appropriate roles for tasks such as task initiator,
task stakeholders, potential owners, actual owner, excluded owners, business adminis-
trators and notification recipients.

Process Roles. When mapping to BPEL4People we define the generic human roles for
the process within a peopleAssignments container by referencing to corresponding
logicalPeopleGroups as shown in Listing 1.2.

<b4p:peopleAssignments>
<b4p:businessAdministrators>

<htd:from logicalPeopleGroup="businessAdministratorsLPG" />
</b4p:businessAdministrators>
<b4p:processInitiator>

<htd:from logicalPeopleGroup="processInitiatorLPG" />
</b4p:processInitiator>
<b4p:processStakeholder>

<htd:from logicalPeopleGroup="processStackeholderLPG" />
</b4p:processStakeholder>

</b4p:peopleAssignments>

Listing 1.2. BPEL4People syntax for associating human roles to a process

Task Roles People assignment for generic human task roles is performed within a task
definition. As with process roles we reference corresponding logicalPeopleGroups
as shown in Listing 1.3.

<htd:task name="AcknowledgementTask">
<htd:interface operation="ack"

portType="acknowledgementservice:acknowledgePT"/>
<htd:peopleAssignments>

<htd:taskInitiator>
<htd:from logicalPeopleGroup="taskInitiatorLPG" />

</htd:taskInitiator>
<htd:taskStakeholders>

<htd:from logicalPeopleGroup="taskStakeholdersLPG" />
</htd:taskStakeholders>
<htd:potentialOwners>

<htd:from logicalPeopleGroup="acknowledgementPotentialOwnersLPG" />
</htd:potentialOwners>
<htd:notificationRecipients>

<htd:from logicalPeopleGroup="notificationRecipientsLPG" />
</htd:notificationRecipients>
<htd:excludedOwners>

<htd:from logicalPeopleGroup="peopleNotAllowed2AcknowledgeLPG" />
</htd:excludedOwners>

</htd:peopleAssignments>
</htd:task>

Listing 1.3. WS-HumanTask syntax for associating human roles to a task

The binding of roles to people links within the BPEL4People view is not restricted
to a one-to-one mapping. Instead reuse of people links can take place as no composition
is specified for the relation.

3.3 People Links

People links are transformed to logicalPeopleGroup elements as shown in List-
ing 1.4. Descriptions are translated to documentation elements that – together with
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optional parameters, that data can be used for people query evaluation – are placed as
sub-elements within the corresponding elements.

<htd:logicalPeopleGroups>
<htd:logicalPeopleGroup name="peopleNotAllowed2AcknowledgeLPG">

<htd:documentation xml:lang="en">
These people are not allowed to
acknowledge the order.

</htd:documentation>
<htd:parameter name="name" type="xs:string"/>
...

</htd:logicalPeopleGroup>
<htd:logicalPeopleGroup name="processStackeholderLPG" >

...
</htd:logicalPeopleGroup>
...

</htd:logicalPeopleGroups>

Listing 1.4. WS-HumanTask syntax for associating people links to people queries

We have stated a possible mapping from the presented conceptual meta-models
to BPEL4People code. We have seen that elements like people links, together with
their aggregated descriptions and parameters, have concrete relations to designated
BPEL4People and WS-HumanTask syntax elements.

3.4 A Use Case Scenario

In this section, we have explained the main concepts of human-process relation in regard
to the BPEL4People and WS-HumanTask specifications. For demonstrating purposes
we already have shown code examples that derive from a use case that we now want to
describe in more detail where we will illustrate code generation using model-to-code
templates. These templates are written in Xpand, which is a language for model-to-code
transformation within the oAW’s expression framework.

We illustrated a use case scenario for a shopping ordering process. At a certain stage
of the process an acknowledgement from an authorized person is required. Therefore
the process makes use of a human task as a special kind of a process activity.

We have modeled this scenario using the VbMF and Figure 5 shows how the human
task Acknowledgment has been designed in various views. While Figure 5(a) shows the
control-flow of the process with a corresponding simple activity, Figure 5(c) defines the
task in the human view. Invocation of activities as well as human tasks with input and
output variables is specified in the collaboration view as shown in Figure 5(b). Besides
the definition of the human task, the appropriate generic human roles, that are associated
with the process and the tasks, are also defined in the BPEL4People view.

People links are transformed into a set of logicalPeopleGroups as Figure 6
demonstrates. In order to obtain valid BPEL4People code the element names for the
generic human roles as defined in [6] and [7] have to be used as the name of the people
links when modeling. Figure 7 shows the generation of task definitions with task roles
that reference corresponding people links.

The invocation of process activities may be performed by a Web service invoca-
tion using the BPEL invoke activity or in case of a local task the BPEL4People
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(a) control-flow view (b) collaboration view (c) human view

Fig. 5. A human task within the different views

Fig. 6. Model-to-code template for people links

peopleActivity. Figure 8 shows the transformation template that generates an ap-
propriate extensionActivity for the peopleActivity in case a task is found in the
human view for the activity as specified in the control-flow by name-based matching.
The getTaskByName function accomplishes this matching algorithm. This referenced
function has been implemented in Xtend, another language of the oAW’s expression
framework, that provides the possibility to define libraries of independent operations
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Fig. 7. Model-to-code template for tasks

and no-invasive meta-model extensions [17]. If no task has locally been specified for
the process, an external activity will be invoked.

The control-flow view does not distinguish between the invocation of an external ac-
tivity or the delegation to a local human task. Adopting the notion of transparency [20]
we can therefore say that invocation is made transparent for modeled activities of the
control-flow from a design point of view. As a consequence, activities can simply be
exchanged between human tasks or Web service invocations without the need to alter
the control-flow in turn.

4 Related Work

Related Work on Model-Driven Design Our work is based on the model-driven de-
velopment (MDD) paradigm [21] and extends the MDD paradigm with the notion of
architectural views – expressed in terms of meta-models. Two kinds of extensibility are
supported: “horizontal” extension with views for additional concerns and “vertical” ex-
tension with views at different abstraction levels. Using our view-based approach, we
are able to separate the human view – in focus of this paper – from other concerns, and
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Fig. 8. Model-to-code template for activity invocation

separate the views for different stakeholders on the human view: high-level views for
domain experts and low-level views for technical experts.

List and Korherr [22] compare and evaluate seven conceptual business process
modeling languages and propose a generic meta-model that is categorized according
to the framework introduced in [23] to four perspectives: organisational, functional,
behavioural, and informational. Additionally a perspective for the business context
addresses context information like process goals. While it is interesting to capture
different conceptual business process modeling languages into a common normalized
meta-model we do not need to support these in order to obtain code for process runtime
execution. As a matter of fact, a mapping from high level business process model-
ing languages such as the Business Process Modeling Notation (BPMN) to a certain
technology such as BPEL often is missing [24,25,26]. Instead of a comprehensive
meta-model we, moreover, want to work with small conceptual models as proposed
in [27] that rather represent the least common denominator but can be extended and
bound and/or translated to low-level models that support process execution.
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A Model Driven Visualization framework is introduced by Bull [28] that provides a
mechanism to rapidly prototype new visualizations from meta-models. So called snap
points define views for domain experts. Considering that the VbMF defines the meta-
models for business processes, a direct application of the presented work - that also
is based on EMF - would allow customized business process representation to various
stakeholders.

Related Work on View-Based Modeling. There are only a few view-based approaches
to business process modeling. To the best of our knowledge, none of them integrates a
human view. The approach by Mendling et al. [29] is inspired by the idea of schema
integration in database design. Process models based on Event-driven Process Chains
(EPCs) [30] are investigated, and the pre-defined semantic relationships between model
elements such as equivalent, sequence, and merge operations are performed to integrate
two distinct views. In contrast our approach introduces a common core meta-model
and well-defined extension points, and utilizes the model-driven paradigm for view
integration. That is, our approach is both more flexible and provides more well defined
extension points for view integration and extension.

The Amfibia [31,32] approach focuses on formalizing different aspects of business
process modeling, and/or develops an open framework to integrate various modeling
formalisms through the interface concept. Akin to our approach, Amfibia has the main
idea of providing a modeling framework that does not depend on a particular existing
formalism or methodology. The major contribution in Amfibia is to exploit dynamic
interaction of those aspects. Like our approach, Amfibia’s framework also has a core
model with a small number of important elements, which are referred to, or refined
in other models. The distinct point to our framework is that in Amfibia the interaction
of different ‘aspects’ is only performed by event synchronization at run-time when the
workflow management system executes the process. Using extension and integration
mechanisms in our framework, the integrity and consistency between models can be
verified earlier at the model level.

Related Work on Role-Based Abstraction. Working with human labor, the use and ad-
ministration of roles in regard to business processes is another topic that relates to our
work as by modeling the human aspects of processes, relations between processes and
tasks to authorized roles are defined.

Johnson and Henderson [33] propose data authorization and access control mech-
anism for Workflow Management Systems (WfMS) [34]. Similar to our human view
the presented comprehensive access control model also establishes - besides defining
other relations - a role based abstraction. Predicate-based access control is applied for
implementation.

A standard for a functional RBAC model has been proposed by Ferraiolo et al. [19].
While the human view within the VbMF establishes role based abstraction, the actual
access control for different roles is defined implicitly and applied by the technology.
For instance, it is possible to specify the role of a business administrator in the hu-
man view and assign actual users to this role via people queries in the BPEL4People
view. The semantics concerning the access controls of this role however are defined in
the BPEL4People specification and will only be interpreted by the executing engine.
Therefore, there is no need to model access controls within the VbMF as assignment
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of people to specific roles suffices in order to obtain a business process with predefined
role based access controls for human participants.

5 Summary

We have presented meta-models for expressing human aspects of business processes
within a view-based modeling framework that support the specification of processes
and tasks containing human aspects. Modeling the human aspects in a process-driven
SOA is challenging because technology for human aspects (such as BPEL4People and
WS-HumanTask) is constantly evolving, the technology is dependent on many other
technologies which also evolve (such as BPEL and Web service technology used in our
work), and, finally, different stakeholders, such as domain experts in the field of human
resource management, as well as software architects and developers must work with the
models – and require different views. Our approach resolves this challenging case by
providing a view-based modeling extension to the model-driven paradigm and by pro-
viding models that cover the concern of human-process relation. The presented views
are split into an abstract, platform independent meta-model as well as an refined one.
While the latter can be used for model-to-code transformation, the conceptual model
is suitable for being presented to human domain experts. By exchanging the transfor-
mations and/or adapting the low-level models, the adaptation of a refined model to a
new version of a standard or to another technology can easily be performed. Via model-
to-code transformation we have demonstrated a possible mapping to BPEL4People as
a specific technology addressing the mentioned concern. While in this work, we have
focused on the case of human aspects in process models, the same view-based approach
can be generalized and be applied to other cases with similar requirements as well.

In addition to applying our approach to other cases, we plan for the following further
work: Specifying the relationship between models by formalizing integration points
would permit automatic and generic model integration. Therefore we plan to extend the
framework with a domain specific language tailoring the merging of views. In order to
support more features of BPEL4People like escalation, additional refinements to the
VbMF may be defined to the presented basic views. Besides the design of business
processes, also the monitoring needs to be addressed by conceptual models. Therefore
we plan to provide execution views for capturing business processes runtime states.
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Abstract. In this paper we introduce an aspect language that can define cross-
cutting e�ects on a set of UML 2.0 sequence diagrams. The aspects and sequence
diagrams are woven at the model level. By basing the weaving upon a formal trace
model for sequence diagrams, we ensure that the weaving is semantics-based. We
propose the arbitrary events symbol as a wildcard mechanism to express zero or
more events on a sequence diagram lifeline. The approach is explained by a real-
life example, and a weaving tool partially implements the approach.

1 Introduction

Aspect-orientation for programming has emerged as a promising way to separately
define cross-cutting parts of programs, in order to achieve separation of concern. We
believe that the same potential is there also for modeling. This paper explores aspect-
oriented modeling for UML 2 sequence diagrams [14].

In aspect-oriented programming the base program is the main program upon which
one or more aspects may define some cross-cutting code as additions or changes. An
aspect is defined by a pair (pointcut and advice), where the pointcut defines where to
a�ect the base program and the corresponding advice defines what to do in the places
identified by the pointcut. Analogously we term our set of sequence diagrams as the
base model, and we define an aspect diagram to consist of a pointcut diagram and an
advice diagram, both based upon the concrete syntax of sequence diagrams.

In this paper we assume that the sequence diagrams are used to automatically pro-
duce executable test code, e.g. to test if a sequence diagram is a correct refinement of
another sequence diagram [12], or to test if a system specified by UML statecharts,
class diagrams and object diagrams is consistent with sequence diagram specifications
[15]. Thus, we need to weave the aspect and the base model before generation of test
code. The aspect diagram defines the cross-cutting model elements to influence the
base model, so that an aspect weaver can produce a new model which is the base model
woven with the advice.

The woven model is not intended to be viewed (except for debugging) or further
updated by the modeler. This means that the structure of the result is not a primary
focus. It suÆces that the woven model is correct with respect to our formal model.

Many aspect-oriented approaches su�er because they rely on a pure syntactic point-
cut matching and weaving. Syntactic-based matching has a problem because it does not

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 262–277, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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Interaction Event | WeakSeq | Alternatives

Event Kind ”(” Signal ”,” Transmitter ”,” Receiver ”)”
Interactions Interaction | Interactions ”,” Interaction

WeakSeq ”seq [” Interactions ”]”

Alternatives ”alt [” Interactions ”]”

Kind ”!” | ”?”

Signal is the message content, 
Transmitter and Receiver are lifeline names.

L1
m1

pointcut

m2

L2 L1

base

L2

alt a

m1

alt b

m2

Fig. 1. Left: Syntactic-based matching problem, Right: Syntax for sequence diagrams

capture all the matches it conceptually should do. The pointcut of Figure 1 expresses
that the message �� from the lifeline �� to the lifeline �� is followed by the message
�� from �� to ��. The base model has two consecutive ��� operators. An ��� operator
defines a choice of di�erent alternatives, where the alternatives are given as operands
separated by a dashed line. If we try to find matches of the pointcut within the base
model with pure syntactic matching, then we do not find any matches. However, one
possible execution trace chooses the second operands of the two ��� operators, which
then should result in a match of the specified pointcut.

Our main contribution consists of: 1) an aspect language which is suÆcient to han-
dle our case study, and 2) semantics-based matching and weaving. We devote much
attention to the arbitrary events symbol that makes it possible to define pointcuts with
an arbitrary number of events in specific positions. This symbol enables us 1) to make
the pointcut more robust with respect to some kinds of changes in the base model, and
2) to define more relaxed matching criteria leading to additional matches in cases with
irrelevant base model di�erences.

The paper is organized as follows; Section 2 introduces the STAIRS formal model for
sequence diagrams in relation to our case study; Section 3 presents the aspect diagram
language including the arbitrary events symbol; Section 4 defines the semantics-based
matching; Section 5 explains how the weaving algorithm works; Section 6 compares
our approach with related work; and finally Section 7 provides the conclusions and
suggests future work.

2 Sequence Diagrams and STAIRS

STAIRS defines a formal model where the semantics of a sequence diagram is un-
derstood as a set of execution traces. The syntax of a UML sequence diagram, called
interaction, follows the EBNF in the right part of Figure 1 [16]. We focus on the opera-
tors �	
 and ���. These two operators are chosen because they are the basic operators
from which we also may define several other operators.

Each message is represented by two events, a transmission event (�) and a reception
event (�) (the transmitter and receiver lifelines are omitted for readability when this
information is unambiguously defined by associated diagrams). An event takes place
on a lifeline �� if it is a transmission event on ��, e.g. ��������������, or a recep-
tion event on ��, i.e. ��������������. We require that the messages are complete
(i.e. contain both events � and �) within each ��� operand, pointcut, advice and each
sequence diagram in the base model.
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The weak sequence operator, �	
, of sequence diagrams imposes a partial order of
events given by: 1) the transmission event must come before the reception event of the
same message, and 2) all events are ordered for each lifeline in isolation. An intuitive
idea behind this partial order is that messages are sent asynchronously and that they
may happen in any order on di�erent lifelines, but sequentially on the same lifeline.
The ��� operator defines alternative interactions.

Sequence diagrams do allow crossing messages, i.e. two messages � and � are cross-
ing only when they have events on the same two lifelines, and � has an event be-
fore � on one lifeline, while � has an event before � on the other lifeline, e.g. �	

[!(a� L1� L2)� !(b� L1� L2)� ?(b� L1� L2)� ?(a� L1� L2)].

Figure 2 shows an extract of a base model sequence diagram for the ICU (I see you)
buddy system. Prototype implementations have been used as test cases within computer
science courses at the University of Oslo. ICU is an SMS-based service where the users
have access to di�erent positioning services including the positioning of users who
have accepted to be on the buddy list. The services have been partially specified by
sequence diagrams. The sequence diagrams have been manually interpreted to produce
conforming state machines for which Java code has been produced by the JavaFrame
code generation framework [5]. Future versions may automate the production of state
machines from sequence diagrams [10].

There are four diagram levels due to lifeline decomposition of which we will con-
centrate on the first two levels as this will be suÆcient to explain our approach. The
number of decomposition levels for a particular scenario is chosen by the modeler.

In the position user service (Figure 2), an SMS message is sent from ��	� to ����,
at level 1, to request the positioning of a buddy. The message is forwarded from ���� to
the decomposed (indicated by the keyword �	�) lifeline �����	�. In the decomposed
diagram, at level 2, we see that the same message is received by the �	
�	�� lifeline.
The �	
�	�� lifeline translates the message into an internal message, �����	�, which
is sent to the decomposed lifeline ���	. Its internal lifelines and the messages at level
3 and 4 are omitted from the illustration. The �����	� message will finally reach the
proper session object at level 4. The session object will initiate a message, ����	
�	��,
to the positioning service ���� via �	�����	, to position the buddy. The fourth lifeline
at level 2 without any messages in the figure,  !, stores all the persistent data and
provides querying services upon these data. The syntax representation for the position
user service is shown in the middle part of Figure 2.

User

sms(”pos buddy”)

base diagram – level 1

PATS ref PosUser

sms(”pos buddy”)

posRequest()

...

Request

sms(”pos buddy”)

base diagram – level 2

Response ref Core

posRequest()

...

PosUser

DB

posUser()

posRequest()

seq[ !(sms,User,P),
?(sms,User,P),
!(sms,P,Req),
?(sms,P,Req),
!(posUser,Req,Core),
?(posUser,Req,Core), 
!(posReq,Core,Resp),
?(posReq,Core,Resp),
!(posReq,Resp,P), 
?(posReq,Resp,P),...]

base syntax

sms = sms(”pos buddy”), 
Req = Request, Resp = Response, 
P = PATS, posReq = posRequest

Fig. 2. Base model extract of the position user service
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We briefly explain the semantics operator, � �, while a precise definition is given in
[16]. The semantics of an interaction i is �i� � (p� n), where p is the set of positive traces
and n is the set of negative traces. Positive traces define valid behavior and negative
traces define invalid behavior, while all other traces are defined as inconclusive. In this
paper we concentrate on aspects that only a�ect positive traces, and we therefore use
a simplified model without negative traces: that is �i� � p. A trace is a sequence of
events which we display as �e1� � � � � en�, where ei are events for all i � 1��n.

The � � operator produces one trace for each valid permutation of events that satisfy
the two partial order requirements as explained for the seq operator above. The � �

operator produces the union of the traces for each operand of the ��� operator. Each
message in the trace is dynamically given a unique identifier, which is shared between
the transmission and reception events of the message.

We define one trace to be partial order equivalent (POE) to another trace if they are
both permutations of the same set of events with the same order on each lifeline. The
� � operator is used to define POE since it is defined to produce all such permutations:

Definition 1. We say that two traces tA � �tA
1 � � � � � tA

n � and tB � �tB
1 � � � � � tB

n � are partial
order equivalent (POE) if and only if:

����
�
tA
1 � � � � � tA

n

�
� � ����

�
tB
1 � � � � � tB

n

�
�

We let the function, �"#$ ���%	� ���%	�	�, calculate all the POE traces of a given
trace, �"#(�tA

1 � � � � � tA
n �) � ��	


�
tA
1 � � � � � tA

n

�
�. The pointcut diagram in Figure 1 has two

traces which are POE: �!m1� ?m1� !m2� ?m2� and �!m1� !m2� ?m1� ?m2�. The function
�"#� of either of these two traces returns the set of both traces.

3 Aspect Diagram

The aspect diagrams are inspired by graph transformation [3] where the left part, the
pointcut diagram, defines a pattern for which we are looking for matches or morphisms
in the base model. The right part, the advice diagram, defines a replacement of the
matches within the base model. This implies that messages present only in the pointcut
and not in the advice, will be deleted, while messages present only in the advice and not
in the pointcut, will be added. Both the pointcut and advice diagrams are based upon
the graphical elements of sequence diagrams so that the modeler can think in terms of
an already familiar notation.

Property names (lifelines, messages or message parameters) to be matched in the
pointcut may be defined by its full name or by a mixture of fixed characters and the
wildcard symbol &. Identifier variables may be shown explicitly in the diagram as part
of the property name: '�($����	��)*��	. The '�( will be bound to the actual iden-
tifier of a matching element. Ids that are repeated in the advice must be placed on an
identical kind of element, so it is not allowed to repeat the id from a pointcut message
in the advice and to change either the message name, transmission or reception lifeline.
Repeated elements in the advice may use the full form '�($����	��)*��	, where all
parts need to be identical from the pointcut, or we may as a shorthand omit either the
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id part or the property name. We allow to use messages with signatures equivalent to
those defined in AspectJ [7] where ++� means an arbitrary number of parameters.

The pointcut diagram is restricted so that it can only use events and the �	
 operator.
We avoid the ��� operator in the pointcut since it is not obvious how to combine this
with the advice. To avoid possible confusion for the aspect modeler, we require that
such alternatives are modeled explicitly by several aspect diagrams instead of a single,
more compact aspect diagram.

We continue the presentation of the aspect diagram language in two subsections.
First we show an aspect diagram example for our case study, and then we introduce the
arbitrary events symbol.

3.1 Example

We will now investigate the aspect model example in Figure 3 which shall ensure that
the user is registered in the ICU system before using the available services. This is a
cross-cutting functionality since it shall be applied to all the ICU services (including
the position user service in Figure 2), except the register user service. So instead of
augmenting all but one of the sequence diagrams at four levels for each of the services
(about 10 services have been used in the ICU system), we would like to apply a single
aspect definition for easier specification and maintenance.

The aspect diagram will follow the same decomposition principles of ordinary se-
quence diagrams, so that we may define a pair of pointcut and advice for each level in
the base model. In the figure we only show the first two levels of aspect diagrams (as
we did with the base model).

The pointcut at level 1 defines that we are looking for matches of all incoming SMS
messages with any content (wildcard & ) except for the service to register the user.
The exception is defined as a negative pointcut (called Negative Application Condition
(NAC) in graph transformation) where the '���,� identifier of the pointcut is reused
from the ordinary pointcut to restrict the possible matches. There may be an arbitrary
number of negative pointcut diagrams associated with each level of pointcut diagrams.
Pointcut matches are excluded if at least one negative pointcut also provides a match.

The two messages identified by the pointcut ('���,� and '���,��) are repeated in
the advice and will thus remain in the result. The advice contains an ��� operator which
shall be added to the base model.

We propose a new operator, insertRest, which in the example is placed in the 	��	

operand of the ��� operator. The insertRest operator defines that the remaining part of
the base model shall go into the ��� operand, overriding the default behavior of being
placed after the full ��� operator. An insertRest operator must span over all lifelines
and may be placed anywhere in the advice. Multiple insertRest operators are allowed in
the advice.

Notice that there are two messages to be added by the advice diagram at level 2,
����	��	� and its reply, which were not visible at level 1 since they are only between
internal lifelines. Wildcard matching symbols & are used in all places where the base
sequence diagrams have di�erent values to be matched: the content of the incoming
SMS messages ('���,� and '���,��), the name of the decomposed lifeline ('�%�),
and the internal message ('�	�-�%	) initiated by the SMS message.
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User

#smsIn: sms(*)

pointcut – level 1

PATS ref #icu: *

#smsIn2: sms(*)

negative pointcut – level 1

User

#smsIn

advice – level 1

PATS

#smsIn2

alt [not reg.]

sms(”Not registered”)

sms(”Not registered”)

[else]
========== insertRest ==========

Request

#smsIn2

ad
vi

ce
–

le
ve

l2 Response ref Core#icu DB

Request

#smsIn2

pointcut – level 2

Response ref Core

#icu

DB

#service: *
alt [not reg.]

sms(”Not registered”)

sms(”Not registered”)

[else]

isUserReg()

isUserRegReply()

================ insertRest =================

User

#smsIn: sms(”Register user”)

PATS #icu

level 1
level 2

#service

ref #icu: *

Fig. 3. Aspect: Check User Registration

Our aspect diagrams follow ordinary UML decomposition rules. The ��� of the ad-
vice introduced at level 1 that spans over the decomposed lifeline, must be repeated
at all the lower decomposition levels. A reception event on a decomposed lifeline has
the decomposed diagram frame, in the next level, as its source, and one of its inter-
nal lifelines as its target, e.g. �'���,��������'�%�� at level 1 corresponds with
�'���,���'�%���	
�	��� at level 2. A transmission event on a decomposed life-
line has the decomposed diagram frame, in the next level, as its target, and one of its
internal lifelines as its source, e.g. ����.*�� �	����	�	(.��'�%������� at level
1 corresponds with ����.*�� �	����	�	(.���	�����	�'�%��at level 2. The or-
dering of events on the decomposed lifeline must be maintained within the decomposed
diagram, e.g. '���,�� must come before the ��� operator both at level 1 and 2.

3.2 Arbitrary Events Symbol

Our pointcut in Figure 3 defines that there are some events that have to happen directly
after each other: �'���,�� followed by �'���,��� on the ���� lifeline at level 1,
and �'���,��� followed by �'�	�-�%	� on the �	
�	�� lifeline at level 2. These
positions in the pointcut are fragile with respect to base model evolutions. Consider that
we decide to send a request confirmation back to the user directly after each incoming
SMS message on the ���� lifeline. Such a base model change may be registered directly
in the base model or as another aspect. In either case there will be an intermediate event
in between �'���,�� and �'���,��� which unintentionally prevents our aspect to
be applied.

The two aspects (� and !) in the left part of Figure 4 share the same pointcut, and ap-
plication of one aspect will prevent application of the other aspect at the same position.



268 R. Grønmo et al.

L1
a

b

pointcut

L2 L1
a

b

advice

L2

A) log

L1
a

b

pointcut

L2 L1
a

b

advice

L2

B) c

L1
a

b

pointcut

L2

// //

L1
a

b

advice

L2

// //ad

Fig. 4. left: Mutually exclusive aspects, right: The arbitrary events symbol

In many cases it is desirable to allow pointcut matches even with intermediate events,
while in other cases such intermediate events should not be allowed.

Klein et al. [8] suggest that the matching strategy of allowing intermediate events or
not should be a user-configurable property of the matching tool, and will thus not be
visible in the aspect diagrams. We propose on the other hand that the matching strategy
is explicitly defined as part of the pointcut with the arbitrary events symbol ( �). This
provides the benefit that we may easily define how to merge the intermediate events
with the advice inserted events. We may also use di�erent matching strategies within
the same aspect. In between two events we may forbid other events, while for other
event pairs we may allow intermediate events.

The arbitrary events symbol is placed on the lifeline of a pointcut or advice diagram
to indicate the presence of an arbitrary number of events (including zero events). An
arbitrary events symbol used in the pointcut has to be preserved from the pointcut, stay
on the same lifeline and remain in the same order relative to the other arbitrary events
symbols in the advice diagram. Due to this restriction we do not need identifiers for the
arbitrary events symbols, but we will use the symbol �L

i to denote the i’th arbitrary
events symbol on a lifeline � numbered from top to bottom. An arbitrary events symbol
belongs to a specific lifeline, and it cannot be placed on a decomposed lifeline.

The pointcut in the right part of Figure 4 defines that we are looking for matches of
an � message followed by a � message, and the arbitrary events symbol used on both the
lifelines indicate that there may be arbitrary events in between �� and �� on lifeline ��
and between �� and �� on lifeline ��. The corresponding advice adds an �( message
with an explicit position relative to the arbitrary events. The transmission event of �(,
��(, shall be inserted directly after the �� event (and before all the arbitrary events) on
lifeline ��, and the reception event, ��(, shall be inserted directly before the �� event
(and after all the arbitrary events) on lifeline ��.

Figure 5A shows an illegal aspect since the arbitrary events symbols in the pointcut
are not preserved in the advice. We do not allow to delete the arbitrary events since this
may be harmful, and it may also produce illegal sequence diagrams where messages
do not have both a transmission and reception event. We do not allow directly consec-
utive arbitrary events symbols in the pointcut such as in Figure 5B since this would be
redundant. This disallowed redundancy case for pointcut diagrams of Figure 5B may
however occur in the advice and still be allowed when explicit pointcut messages are
deleted. Figure 5C illustrates that the arbitrary events symbol represents events and not
messages and it is thus meaningful to specify that �� and �� may have arbitrary events
in between, while �� and �� cannot have any events between them.

Since we have introduced the arbitrary events symbol and the insertRest operator,
we need to extend the syntax for sequence diagrams. Both the pointcut and advice dia-
grams get additional EBNF clauses (the insertRest operator is only allowed for advice
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L1 a

b

pointcut

L2

//
//

not
allowed

L1
a

b

pointcut

L2

// //

L1
a

b

advice

L2

ad

L1
a

b

pointcut

L2

//

allowednot
allowed

A) B) C)

Fig. 5. Rules for the arbitrary events symbol

diagrams): ,��	��%����� � � � � �L � ���	���	��. The arbitrary events symbol has
a superscripted � to indicate its owner lifeline. A possible syntax representation for the
advice diagram in the right part of Figure 4 is:

�	

�
�	
 [!a� ?a] � !ad� �L1

� �	

�

�L2
� ?ad�

�
� !b� ?b

�
(1)

Notice that there are multiple alternatives for the syntax representation, since all per-
mutations that follow the partial orders of each lifeline are valid (and the �	
 operator
may be nested arbitrarily).

4 Semantics-Based Matching

In order to make the matching semantics-based, we define matches directly on the base
model traces. Remember that all messages are given unique identifiers which are shared
between the transmission and reception events of the message, meaning that all the
events in the pointcut trace have di�erent identifiers from the events in the base trace.
We need an injective mapping function, �: #-	��� #-	��, which maps from pointcut
events to base events. For each event, � only maps the identifier, while it preserves all
the other event properties (kind, signal, transmitter, receiver). The � mapping function
will be one-to-one between the match part of the base trace and the pointcut trace.

Definition 2. For a pointcut without any arbitrary events symbols we have a match if
and only if a base trace contains a pointcut trace, where each event in the pointcut trace
is mapped by �

In theory we may calculate all the pointcut and base traces to find matches. In prac-
tice this is an intractable problem since the number of traces may have an exponential
growth relative to the number of events in the diagram. In our first test implementation
we were not able to handle a relatively small base model, consisting of eleven consec-
utive messages in the same direction between the same two lifelines, since there are as
much as 58� 786 traces.

In an optimized weave algorithm we avoid calculating all the traces by instead work-
ing on the POE (last paragraph of Section 2) equivalence classes (abbreviated as POE
classes) instead. This has a large impact on the performance since a POE class may
represent thousands of actual traces, e.g. all the 58� 786 traces in the base model men-
tioned above belong to the same POE class. The maximum number of POE classes for
an interaction is equal to the total number of ��� operands. For each POE class, we
only represent the event orders per lifeline, so that each event occurs only once. An
interaction may be defined as a collection of POE classes. The next lemma states that a
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L1

a
b

pointcut

L2 L2 L1
a

b

base

L2 L2

c

pointcut traces:

{ <!a,?a,!b,?b> }
base traces:

{ <!a,?a,!c,?c,!b,?b>,<!a,?a,!b,!c,?c,?b>,

<!a,!c,?a,!b,?c,?b>,<!a,!c,?c,?a,!b,?b>,

<!a,?a,!c,!b,?c,?b>,<!a,!c,?a,?c,!b,?b>}

Fig. 6. � is a match blocking message

lifeline-based matching wrt. to each POE class is suÆcient to identify all the possible
matches:

Lemma 1. (Lifeline-based matching) For a pointcut without any arbitrary events sym-
bols and a base trace ������: There exists a match in one of its POE traces
(	
��������) if and only if

1. �l � ���������: the event order on l of 	
�������� contains the event order on
l of the pointcut (where each event in the pointcut is mapped by �) AND

2. there are no messages in 	
�������� having the reception event before the con-
tained pointcut on one lifeline and the transmission event after the contained point-
cut on another lifeline (match blocking messages).

A proof of Lemma 1 is given in [4]. Lemma 1 needs to exclude match blocking mes-
sages. Otherwise the if-direction of the lemma does not hold as we can see from Fig-
ure 6. The pointcut has a single trace: �!a� ?a� !b� ?b�. None of the six shown base traces
have a contained pointcut trace, and thus there are no matches (Def. 2). This is because
the match blocking % message will always get its two events between the first and last
events of the matched pointcut trace.

The decomposed lifelines and diagrams at di�erent levels, as we had within the po-
sition user service (Figure 2), do not need any special treatment when we work with
traces. This is because the trace events represent a flattened structure where the decom-
posed lifelines are not present, only lifelines with transmission and reception events.
For the �����	
�	�� event in Figure 2, the event is shown at both level 1 and level
2, but there will only be a single event represented in the trace, i.e. �����	
�	���
�	�����	� �����.

4.1 Matching with the Arbitrary Events Symbol

As opposed to decompositioning of base models and aspect models, the arbitrary events
symbol needs special treatment in the matching process. Since the arbitrary events sym-
bol is a lifeline-based mechanism, it fits nicely with the lifeline-based matching. The
event order per lifeline of the pointcut can simply be extended to include the arbitrary
events symbol. Then the arbitrary events symbol represents a wildcard of an event list
with zero or more arbitrary events, and the lifeline-based matching will work fine also
for arbitrary events symbols.

Figure 7 shows a pointcut expressing that we are looking for an � message followed
by a � message, where there may be an arbitrary number of events in between the ��

and �� events and between the �� and �� events. Base model 1 will have a match, where
the arbitrary events symbols have the matches: �L1

� �?d� and �L2
� �?c� !d�.
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pointcut

b

L2

// //

L1
a

base 1

b

L2 L3
c

L1
a

base 2
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L2

ad reducible
match

irreducible
match

Fig. 7. Matching

The base model 2 in Figure 7 shows a base model where we have two overlapping
matches, one with both � messages (reducible match) and the other one with only a
single � message (irreducible match). In the reducible match, the second � message
matches arbitrary events symbols. It seems more appropriate and intuitive to choose the
match with only a single � message.

Definition 3. A match mmin � �m1� � � � � mn� is an irreducible match if there is no sub-
sequence of mmin which is a match.

The irreducible match definition can be easily translated also to the lifeline-based
matching by saying that there shall not exist a subsequence on any of the lifelines, which
also constitutes a match in combination with the other lifelines. Reducible matches will
only occur in cases where the arbitrary events symbol is used. In our matching we re-
quire that the matches are irreducible.

5 Weaving

The previous section showed that a lifeline-based matching of the POE classes is equiv-
alent to a semantics-based matching on the traces. This section continues by defining a
lifeline-based weaving.

We calculate the POE classes of the base model, the single POE class of the pointcut
and the POE classes of the advice. Since the pointcut is restricted to use only �	


and events, it has always only one POE class. The POE classes are derived from an
interaction by configuring all combinations of ��� operands into (potentially) di�erent
POE classes.

The weave algorithm repeats the following three steps as long as there are unhandled
matches in the base POE classes: 1) Identify a match in a base POE class (lifeline-based
matching), 2) Perform lifeline-based weaving, according to Def. 4 below, for each of
the advice POE classes. Add the results, a new POE class for each advice POE class, to
the set of base POE classes, and 3) Remove the matched base POE class and repeat the
three steps if there are more matches.

Definition 4. Lifeline-based weaving for a matched base POE class (����	) with
match � and an advice POE class (���	). The resulting POE class, ���, gets the initial
value: ��� � ����	. Then the lifelines of ��� are updated according to three rules:

(1) �l � baseP�LLs : m(l) � �� � res�replaceEvts(l� m(l)� advP�evts(l))
(2) �l � advP�LLs � baseP�LLs : res�addLL(l� advP�evts(l))
(3) �l � baseP�LLs : ( m(l) � �� 	 advP�evts(l) � �� ) � res�ins(l� advP�evts(l))
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Prerequisites of Def. 4: A POE class contains the following methods; ���� retrieves
the set of (non-empty) lifelines; �	���%	#-���������(-�+	-����� replaces the
match events by the advice events on lifeline �; �(-�+	-���� retrieves the list of
events of the advice on lifeline �; �((�����(-�+	-����� adds � as a new lifeline
with the advice events on � as the content; ������(-�+	-����� inserts the advice
event list on lifeline � into an appropriate position on lifeline � (the details are given
below). ��� retrieves the event list of the match on the � lifeline, and �� denotes an
empty event list.

Explanation of Def. 4: Each lifeline can be woven separately, as defined by three
mutually exclusive rules. When a lifeline has matched events, rule (1), then the matched
events on this lifeline are simply replaced by the corresponding advice events (in some
cases an empty list). When a lifeline has events in the advice and not in the base, rule
(2), then all of this advice lifeline is inserted as a new base lifeline.

The most diÆcult rule, rule (3), is when a lifeline has no matched events, but have
events in both the base and advice, e.g. the ��(- event in the advice of Figure 8 occurs
on lifeline �/ with no events in the pointcut (the match part), and there is a �� event on
the �/ lifeline in the base model. Should the new event ���� be placed before or after
the �� event?. Choosing to place ��(- before �� will produce the undesired woven
diagram (Figure 8) which has no possible traces because there is a deadlock.

In many cases, a proper placement can be found by exploring the partial order rela-
tionships. Let ��e1�e2� denote a partial order where the event e1 must happen before
the event e2. We will produce the union of the partial orders of the advice POE class
and the matched base POE class:


po(!a� ?a)� po(!adv� ?adv)� po(!b� ?b)� po(?a� !adv)� po(?b� ?a)�

Since partial order is a transitive relation, we may calculate the transitive closure,
which will produce the pair �������(-�. This defines a unique and proper position
for ��(- on the base �/ lifeline in Figure 8. There are however cases, where there may
be several position choices fulfilling the partial order requirements, e.g. add another
event �%��/��0� after �� on �/. In such cases we choose an arbitrary position among
the choices except that we will avoid or minimize the number of crossing messages,
and provide a warning message to the modeler.

In our advice at level 2 in Figure 3 there are four events on the  ! and �	�����	

lifelines. The pointcut has no events on these lifelines, but the base model does. How-
ever, all these four events get unique positions when calculating the transitive closure
of the partial order relation (due to limited space the base model details to show this is
not included in the paper).

L1

a

base

L2

undesired woven result

L3
b

L1
a

advice

L2 L3

adv

L1
a

pointcut

L2 L1

a

L2 L3
b

adv

Fig. 8. Placement of a new event on a lifeline with no events in the pointcut
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Fig. 9. Trace-based weaving on POE classes

When there are no more unhandled matches, the woven result is a set of POE classes.
Finally, we need to go from POE classes to a woven interaction. Each POE class is
represented by a single �	
 operator with the lifeline events as operands in one of
the legal orders (the choice is insignificant). Then all these �	
 operators are used as
operands inside an outermost ��� operator to represent the woven interaction.

Figure 9 shows the weaving of an aspect and a base model. The aspect defines a
replacement of all occurrences of two consecutive messages �� and ��, by an advice
which adds the message �	1 and an ��� operator. Each POE class is represented by
its event order on each of the two lifelines �� and ��. In addition to the single pointcut
POE class, there are two advice POE classes and four base POE classes. The only base
POE class with a match (marked by rectangles) is woven for each of the two advice POE
classes, resulting in two new POE classes which adds up to a total of five POE classes.
The weaving terminates since there are no more matches. The final woven interaction
is shown in the bottom right part of the figure.

5.1 Weaving of the Arbitrary Events Symbol and the Insertrest Operator

To handle the arbitrary events symbols in the weaving, we need to bind these symbols
to actual events relative to the match. �L

i will then hold an event sequence for the
i’th arbitrary events symbol on the � lifeline, and these event sequences will replace
the corresponding arbitrary events symbols in the advice so that the advice will have
ordinary event sequences for all its lifelines.

Each insertRest operator in the advice will be replaced by an event order per lifeline.
For each lifeline the event order will be the remaining subsequence of the base model
events after the match part. Alternatively we may describe this relative to the general
match definition and for a given match �m1� � � � � mn� within a base trace, the insertRest
events will be:
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�	������ � �� � � � m1� � � � � mn� � � �

����

�	�����	�

�

These insertRest events are distributed to event orders per lifeline for the lifeline-
based implementation.

We have a tool implementation of the basic matching and weaving approach de-
scribed in this paper. The tool uses an Eclipse-based SeDi sequence diagram editor
v.1 [11] to define base, pointcut and advice diagrams. The weaving has been verified
to behave correctly on our test examples, by manually investigating the woven textual
interactions. We are currently implementing a translation from textual interactions to
graphical diagrams for easier manual validation purposes. Future work is to extend the
tool to also support the arbitrary events symbol, decomposition (introduced in SeDi v.2)
and the insertRest operator.

5.2 Discussion

Consider the aspect and base model example in Figure 10. The aspect defines that two
consecutive � messages should be replaced by a �message, and the base model contains
four consecutive � messages. Without using ids and the injective mapping function �

in the match, we could mistakenly choose a match which does not pair the correct
transmission and reception events (shown as black boxes in the figure). By matching
the last two events on the �� lifeline and the first two events on the �� lifeline, we get
a final woven result with a crossing � message (notice that the � message is a match
blocking message for the two remaining � messages). Crossing messages are allowed
in general, but it is unexpected and undesired in this case.

We have described the matching strategy as a random matching. Find any match, per-
form weaving and repeat the process. If our weaving terminates, then we are guaranteed
that there will not exist any matches in the woven model. With the aspect and base mod-
els in Figure 10, a random matching strategy gives one of the following three alternative
derivations with two di�erent end results: 1) �������� �����, 2) �������� �����

� ���, and 3) �������� ������ ���. Klein et al. [9] suggest a left-most matching
strategy leading to the unique derivation alternative 3. Our weaving also supports the
left-most matching by ensuring that we always choose the top-most matches of each
lifeline.

We define a plain additive aspect to be an aspect that does not delete events. For
such aspects we will mark all the events in a treated match and exclude them from
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Fig. 10. Incorrect match leads to undesired weaving � Alternative woven results
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possible future matches. This ensures a terminating weaving process for a lot of aspects
that would otherwise never terminate, e.g. ��� � ����� (shorthand notation for an
aspect: �����%�� � �(-�%	).

6 Related Work

In this paper we have restricted the base model to use only the �	
 and ��� operators.
However, the results are directly applicable to other operators that can be defined with
�	
 and ���, e.g. ��� (optional), ��� (parallel), and the ���� operator for loops with
an upper bound. The ����%� operator is not supported. It represents a strict sequence
of events also across lifelines, which is in strong contrast to our approach.

We have reported complementary work in [4], where we perform a static weaving
on a finite structure even for many typical loops without upper bounds. This paper goes
beyond [4] by providing details of the aspect language including property matching,
identifiers, negative pointcuts, decomposition, the ���	���	�� operator and the arbi-
trary events symbol.

The pointcut model in AspectJ [7] cannot express matching based on a sequence
of events, which is necessary to encounter the problem of syntactic-based matching
described in this paper. QVT [13] is a model-to-model transformation language which
supports general source and target MOF-languages. Since we address transformations
where the source and target is the same language, UML sequence diagrams, we benefit
from making tailored constructs and enabling the user to work on the more intuitive
concrete syntax.

The identifiers, property name matching, and the arbitrary events symbol are in-
spired by Join Point Designation Diagrams (JPDD) [18] proposed by Stein et al. We
have modified the notation slightly and introduced advice diagrams since JPDD only
covers pointcut diagrams. JPDD is intended for mapping to aspect-oriented program-
ming languages such as AspectJ, as opposed to our model matching and weaving.

Deubler et al. [2], Solberg et al. [17], and Jayaraman et al. [6] all define syntactic-
based approaches for sequence diagrams. Deubler et al. match single events only and
provide no model weaving or mapping to a concrete aspect language. Solberg et al.
rely on binding models instead of a generic matching pattern (as in our approach), to
identify the base model elements to be a�ected by the aspects.

Klein et al. [8,9] perform a semantics-based weaving of sequence diagrams by using
automata representations. They present four di�erent matching choices which is defined
to be a tool-specific configuration, and where a single matching strategy applies to the
entire pointcut diagram. We support the general part (by using the arbitrary events
symbol) and enclosed part.

Klein et al. [8] support wildcard matching of events. The important di�erence be-
tween their approach and our proposed arbitrary events symbol, is that they have no
explicit graphical element for this, but define a matching strategy outside of the aspect
diagram. Their approach have two drawbacks compared to our arbitrary events symbol:
1) their wildcard matching applies in all or no positions within the entire diagram, 2) it
is a tool choice (or a global choice) how to merge the wildcard events with the aspect
added events.
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Decomposed lifelines and aspect diagram definition over multiple levels is some-
thing we have not seen in any related work. Decomposition for aspect diagrams allows
the modeler to work with smaller units in isolation. Furthermore, decomposition does
not introduce any added complexity since this syntactic arrangement is not visible at
the trace level where our matching and weaving is performed.

Avgustinov et al. [1] have a trace-based run-time matching of events to execute some
extra code when a match occurs. Since this happens during run-time and not statically
as in our approach, the aspects are restricted to additive parts that are inserted entirely
after the already executed match part. While performance is a major issue in run-time
weaving, our weaving is static and termination within reasonable time is suÆcient.

7 Conclusions

We have proposed an aspect language for UML 2.0 sequence diagrams. Aspect diagrams
in terms of pointcut and advice diagrams use the same graphical elements as sequence
diagrams, with only a few extensions, thus providing a familiar notation to sequence
diagram users. The advice diagram replaces matches of the pointcut diagram, which can
simulate traditional aspect-oriented mechanisms like before, after, replace and around.

Syntactic-based matching will fail to match all the intented base model joinpoints
even for simple pointcuts as two consecutive messages. Our aspect language is there-
fore based upon a formal trace model (STAIRS) for sequence diagrams, and thereby on
semantics-based matching. Matching is defined on traces of the base model traces. For
performance reasons we have established a semantically equivalent implementation to
plain trace-based matching, which works on partial order equivalent classes represent-
ing sets of traces.

The arbitrary events symbol is a powerful extension that allows to match an arbitrary
number of events on a lifeline. This symbol allows to define flexible and robust pointcut
definitions, and also to define how the additive parts of an aspect shall be positioned
in relation to these arbitrary events. This mechanism may be useful in the context of
multiple aspects or base model evolution which could otherwise unintentionally prevent
matches of a pointcut.

As future work we plan to investigate more real-life scenarios to see if the expressive-
ness of the proposed language is enough, or if additional constructs are needed. We are
also investigating confluence and termination properties of the proposed aspect language.

Acknowledgment. The work reported in this paper has been funded by The Research
Council of Norway, grant no. 167172�V30 (the SWAT project).
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9. Klein, J., Hélouët, L., Jézéquel, J.-M.: Semantic-based weaving of scenarios. In: The 5th
International Conference on Aspect-Oriented Software Development (2006)
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Abstract. The increasing size and complexity of software systems requires 
sophisticated testing methodologies. Since platform limitations could void the 
results of test suites, especially the embedded systems domain requires testing 
methodologies that also consider hardware resources. Current approaches for 
specifying and executing test cases, e.g. approaches based on the UML testing 
model, do not support the concept of platform testing very well. Deployment 
descriptions are only used for documentation. In this work, we address this 
problem by providing an extension to the UML testing profile that covers the 
modeling of platform testing models, which include realistic deployments, and 
by C-PartsSim, our simulation tool that is capable of executing these platform 
testing models. With C-PartsSim, it is possible to connect specialized 
simulators at runtime, thereby providing a configurable, platform-specific 
system simulation for testing. We describe the automatic transformation from 
scenario models to a tailored simulator instance for a concrete testing scenario 
and present case studies to demonstrate the flexibility and accuracy of our 
approach. 

1   Introduction 

Test-driven development methodologies, which propagate testing through the whole 
software development process, have shown their beneficial impact on software quality 
in several research studies [1]. Especially in model-driven development processes, the 
UML testing profile [2] is used to create testing models together with the specification 
of software systems. This way, early testing of specifications is supported, which 
results in earlier defect detection and therefore lower development costs [3]. 
However, modern embedded software systems are more and more deployed on hybrid 
hardware platforms. From real-world experiments, it is evident that platform 
resources can have a significant impact on the behavior of a software system after 
deployment [4] [5]. Especially when high-level software models are deployed on 
embedded sensor nodes, there is a risk that the modeled behavior is altered 
significantly due to platform constraints. Therefore, we propose platform-specific 
testing already in early stages of the development process. We distinguish between 
platform testing, which tests the correctness of a design model on a hardware platform 
with respect to defined test cases, and performance evaluation, which evaluates the 
performance of a design model together with (simulated) hardware devices in defined 
scenarios.  
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Current testing methods including the UML testing profile provide only limited 
support for platform testing. Only generic UML deployment diagrams are supported 
by the UML testing profile; these diagrams are not sufficient to provide a deployment 
specification that would be usable for a wider set of testing tools. Therefore, current 
simulation tools must be configured using their own scripting language; for example, 
the network simulator 2 (ns-2) [6] is configured using the OTCL scripting language. 

Although there exist specialized simulators for certain system aspects that can be 
used for platform testing, only some hardware resources are simulated accurately by 
these simulators. Our first contributions to address and improve this situation were the 
simulation tools ns+SDL [5] and PartsSim [4]. Both tools connect a runtime enviro-
nment, which is capable to execute models of software systems by specialized simu-
lators, thus supporting early platform testing. The simulator ns+SDL was developed 
to support performance evaluation of software systems (e.g. communication proto-
cols) that were specified with the SDL [17] specification language, by connecting an 
SDL runtime environment to the network simulator ns-2 [6]. PartsSim adds simulator 
components for realistic platforms, which have been extracted from existing platform 
simulators (e.g. from the Avrora [9] simulator). 

A drawback of both ns+SDL and PartsSim is that the interfaces and connections 
between simulator components are hard-coded [4]. Consequently, the integration of 
new simulator components requires simulator modifications. For a simulation run, the 
design models of the System under Test and of the test components are loaded by the 
simulators, as they would be loaded into existing devices in a physical deployment. In 
this way, it is possible to simulate system deployment on a specific target hardware 
quite accurately. Both tools have shown their applicability in various simulation 
studies [4] [5]. However, due to the hard-coded simulator interfaces and connections, 
their usability is limited. 

To improve this situation, we have devised a simulation framework that 
incorporates simulator components into the testing process dynamically. Our solution 
consists of two parts, the UML platform testing profile i.e., a UML profile extending 
the UML testing profile, and a new, configurable version of PartsSim called C-
PartsSim. The UML platform testing profile provides a generic approach to model 
testing scenarios and deployments. The specialization of the UML testing profile 
ensures conformance to a standard methodology for modeling testing scenarios. A 
front-end to C-PartsSim reads conforming test configurations from test contexts and 
dynamically creates a simulation script for every test case. The generated simulation 
script couples simulator components according to the model and generates timed 
events, thus creating a tailored, scenario-specific simulator instance. 

The remaining part of this paper is structured as follows: Section 2 surveys related 
work. Section 3 documents our UML platform testing profile. Section 4 describes C-
PartsSim. Section 5 identifies possible ways to extend C-PartsSim through the 
definition of new testing components. Section 6 reports on experiences of applying 
our framework, demonstrating the feasibility of our approach as well as the accuracy 
of the simulation results. Section 7 draws conclusions and lays out future work. 
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2   Related Work 

There is a large body of work on simulators for platform testing or for performance 
evaluation. In this section, we focus on approaches that test SDL or UML models in 
combination with simulated hardware. 

The work presented in [19] proposes a set of stereotypes as extensions to UML 
models of software systems. These stereotypes enable modeling of resource usage and 
temporal constraints. The stereotyped models are then used as input for a 
transformation that automatically generates models for the network simulator OpNet 
[7], which is capable of simulating wired and wireless networks. It expects its input, 
software systems, and simulated devices as set of finite state machine models. The 
approach presented in [19] enables performance testing of UML models to the extent 
that is possible with the OpNet simulator. It is not necessary to re-specify the tested 
system specifically for the simulation. The drawback of this approach is that only 
UML models that map to the finite state machines of OpNet are supported. In 
particular, no platform resources can be simulated with this approach, and no network 
simulators other than OpNet can be used. 

The Fraunhofer Institute for integrated circuits has devised a simulator coupling 
infrastructure [10], which is capable of coupling Matlab/Simulink, ModelSim, User 
Mode Linux and VHDL simulations together. The ns-2 network simulator controls the 
simulation. This simulator coupling infrastructure supports the direct execution of 
software systems without raising the need to re-specify its behavior for a specific 
simulator. The structure of the simulated system is fixed, every node is simulated by 
one simulator, and all nodes are connected to a simulated network. While this 
approach is powerful enough for simulating a number of common networking 
scenarios, the fixed structure limits its applicability for scenarios with multiple 
networks, and for scenarios that require the simulation of non-networking devices. 
Furthermore, no platform simulation is provided by the simulation framework 
presented in [10]. 

UMLSim [11] utilizes User Mode Linux to load and execute simulated appli-
cations. UMLSim does not take UML models as input, but regular compiled Linux 
applications, which could be generated from UML models using available tools. 
Therefore, the same executable can be used for simulation and for deployment to real 
hardware. This raises the credibility of simulations, with the drawback that only 
Linux applications can be simulated. The only supported communication between 
applications is a TCP/IP network. No accurate platform timing is supported. This 
limits the applicability of this approach with regard to platform testing and the 
embedded systems domain. 

SDL2SPEETCL [22] provides transformations of SDL models to the performance 
evaluation library SPEETCL [21]. This enables performance evaluation of SDL models 
to the extent that is possible with SPEETCL. SPEETCL simulates no specific network 
hardware; networks are simulated with the help of stochastic simulation components 
that introduce errors according to a defined distribution. Traffic generators are supplied 
to simulate typical traffic streams like web-, speech-, and ftp-traffic. 

The Network Simulator for SDL systems ns+SDL [5] links SDL systems with the 
well-known network simulator ns-2 [6]. The ns-2 provides accurate simulation of a 
broad range of network hardware. The same compilers are used to transform the SDL 
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system into an executable for both simulation and deployment, which raises the 
credibility of simulation results. The ns+SDL does not support the simulation of 
platform resources, therefore, this approach is also limited in its applicability with 
respect to platform testing of embedded systems that run on platforms with low 
computational and memory resources. 

In summary, there have been several efforts towards platform testing of SDL or 
UML models. However, all approaches are limited in their applicability to specific 
scenarios and resources of embedded systems. While there exist approaches that 
automatically map software system models to network simulators, these simulators 
only consider topologies, movements, and networks. None of the currently available 
network simulators provides realistic simulation of platform timing or memory 
resources, which have a significant impact on the performance of the software system 
(this impact is further outlined in Section 6 of this work). Additionally, none of the 
aforementioned simulators supports non-networking devices and user interactions. 

On the other hand, simulators such as XEEMU [8] and Avrora [9] only provide 
platform simulation, with no support for the simulation of other resources and only 
very limited support of devices. Especially the simulation of realistic networks or of 
realistic environments consisting of sensors and actuators is not supported. This limits 
the applicability of these simulators to systems without communication requirements. 

To overcome these shortcomings, our simulation framework combines available, 
specialized simulators into a tailored simulator instance that provides a holistic 
simulation of all required system artifacts. The simulator integration is controlled by a 
simulation script. By using AndroMDA [13], C-PartsSim generates this simulation 
script automatically when it is started out of a UML model describing the testing 
scenario. 

3   The UML Platform Testing Profile 

Based on the UML testing profile, we have devised a UML platform testing profile 
that supports the modeling of platform testing scenarios as well as performance 
evaluation scenarios. The UML testing profile [2] was developed to define a language 
for modeling the structure of test systems. The rationale was to define a profile that 
supports model-driven testing, supplementing model-driven development of software 
systems. The following core concepts were defined to achieve this goal: 

• Test contexts are a collection of test cases and a test configuration.  
• A test case is the complete specification of one test, describing on how the System 

under Test (SUT) should be tested for a given test objective. It specifies the 
interaction of test components with an SUT to realize a test objective. Test 
objectives specify the objective of a test case or of a test context.  

• A test configuration defines a set of test components including the System under 
Test and the connections between them. Test components realize the behavior of a 
test case, they interact with other test components and with the System under Test. 
Test components are active parts of a test context. They execute sequences of 
stimuli and coordinate with other test components.  
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Fig. 1. Framework components 

• The result of a test is judged by the arbiter component, and can be positive, 
negative or inconclusive. Arbiters support the automatic execution of testing 
scenarios and the assessment of the test results. 

Our platform testing profile extends the UML testing profile with concepts that 
support the modeling of realistic deployments. Therefore, we introduce platform 
nodes, which model the physical entity of an execution environment, platform 
runtimes that model the computational resources of a platform, and devices. Every 
node is assigned to one execution platform, which controls the platform resources of 
that node. Every node executes one software system model on that platform. Devices 
model hardware components, or user interfaces. Devices and platforms are connected 
to test components, which implement their behavior.  

As shown in Figure 1, the platform testing profile extends the UML testing profile, 
and can be subdivided into two parts. The deployment profile models realistic 
deployments, the scenario profile contains additional stereotypes that are used to 
model platform testing configurations. The additional stereotypes of the scenario 
profile specify node topologies, instance sets and timed messages. Timed messages 
are used to specify the behavior of a test case; messages are generated and transmitted 
to test components at defined points of time. Instance sets specify deployments of 
similar nodes, and therefore support the creation of large deployments. The example 
test context in Section 6 contains an example for an instance set. A platform testing 
configuration must contain exactly one topology and exactly one scheduler. It may 
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contain any number of nodes, which may also be of different type. The topology 
component controls the placement of every simulated node. This placement can be 
accessed by all test components, i.e. network simulators or simulated devices. The 
scheduler controls the simulation by recording and ordering all simulation events. By 
replacing the scheduler component, the time base of a simulation can be changed 
from simulation time to real-time, which supports the integration of a simulator into a 
running system. 

Platform nodes represent simulated physical entities. They consist of a platform 
runtime, of zero to many devices, and of an associated behavior. The associated 
behavior is either implemented natively, or it is a software model, e.g. the System 
under Test. Platform runtimes represent characteristics of an execution environment. 
An associated test component implements the platform simulation and is responsible 
for the level of detail the platform runtime is simulated with. Currently, we have 
implemented two test components, simulating two different platforms: A generic 
platform component, modeling no constraints at all, as well as the Avrora component, 
which is based on the Avrora simulator [9], accurately modeling the performance and 
energy consumption of an Atmel ATMega128L processor. This way, the evaluation 
of platform-independent as well as the evaluation of platform-specific scenarios is 
possible. Devices are used to model existing or virtual devices. Devices are always 
connected to exactly one node; the device behavior is also implemented by a test 
component.  

Depending on the simulated deployment, multiple levels of abstraction are 
supported. Figure 2 shows an example from the embedded systems domain on three 
abstraction levels. Figure 2a presents a basic scenario, which has been modeled with 
stereotypes defined by the UML testing profile only. Two instances of the System 
under Test (ProtocolSUT) are executed, and connected through the virtual channel 
“SimpleMedium”, which is implemented by a test component. The medium is an 
abstract SDL model, which simulates a perfect medium. Since no execution 
environment was assigned to the test components, the generic platform without 
resource constraints is used. Using this abstraction level, the validation of the 
functional behavior of the System is supported. 
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Figure 2b shows an abstraction level that is used after successful validation of the 
functional behavior. This abstraction level links the network simulator ns-2 as 
simulation component to the System under Test. The System under Test communicates 
with the network simulator through simulated devices of type NS_CC2420, which 
simulate an interface to the ChipCon CC2420 wireless transceiver chip. The behavior of 
the transceiver chip and radio propagation is simulated by the ns-2; the test component 
NS2_Network configures a simulated wireless network, the component NS2Implemen-
tation provides the simulator backend. This abstraction level is suitable for platform 
testing after a communication technology was selected. The network simulator provides 
an accurate simulation of network parameters like bandwidth, delay, and jitter. This 
way, it can be evaluated whether a selected communication technology fulfills the 
requirements. Again, the System under Test is executed on the generic platform, which 
has no resource constraints. 

The scenario shown in Figure 2c adds platform simulator components. Protocol-
Node extends the generic MicaZ platform, which provides an Atmel ATMega128L 
microcontroller. The platform is simulated by the Avrora simulator, which is 
integrated as simulation component into PartsSim. This way, a cycle-accurate 
simulation of the ATMega128L microcontroller is provided. 

4   C-PartsSim 

To simulate UML platform testing models, we have devised C-PartsSim, a simulator 
that integrates specialized platform and native simulators dynamically. C-PartsSim 
includes a front-end that automatically transforms a model of a testing scenario into a 
simulation script. The simulation script is a TCL file that creates a tailored instance of 
C-PartsSim for a specific scenario. It instantiates necessary simulation components 
and sets up links between them. 

A tailored C-PartsSim instance is created by selecting and connecting simulation 
components. C-PartsSim processes Nodes and test components. Platform nodes are 
mapped to nodes, all other component types, i.e. devices, and platform runtimes, are 
mapped to generic test components. This is done during the AndroMDA 
transformation (see Figure 3). Test components have, either a native implementation, 
or they have a behavior model assigned to them, which can be specified in SDL or 
UML. Nodes link test components together. 

Figure 3 shows the transformation of an instance set. The platform node cyclist and 
all connected platform devices and test components are mapped to C-PartsSim test 
components. AndroMDA generates an array into the TCL script for the instance set, and 
first instantiates all test components. In a second step, connections are transformed. A 
third step (not shown) transforms the sequence diagram specified behavior of the 
associated test case into events that are generated at the appropriate times. 

Services provided by test components are connected to each other using 
synchronous, message-based communication for interaction. The extensibility of the 
simulation framework is given due to the ability to define or to specialize new service 
interfaces, message types, and services anytime – even while a simulation scenario is 
executed. This way, a broad variety of system structures is supported by the 
simulator. New components can easily be integrated into the simulation framework 
(see Section 5). 
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# Create instance set “CyclistInstances[4]”
set cyclist(0)   [new PlatformFacade] 
set cc2420Dev(0) [new NSCC2420] 
                 : 
                 : 

$scenario connect $cyclist(0) $cc2420Dev(0) CC2420 

<<TestComponent>>

PlatformFacade

<<TestComponent>>

NS CC2420 

<<TestComponent>>

CyclistSim

<<TestComponent>>

SensorSim

CyclistInstances[4]

AndroMDA 
Transformation

 

Fig. 3. Transformation of platform testing model into C-PartsSim configuration 

The creation of a simulation framework requires clear definitions and semantics for 
all connected simulator components. One important definition for all simulators is the 
simulation time. Simulation time is the relevant time for all simulated devices and 
models. A simulated operation, i.e. the transmission of a frame over a wireless 
network ideally requires the same amount of simulation time that a real transmission 
would require. On the other hand, the simulation of this transmission may require any 
amount of real time, which depends on the resources of the host system, on which the 
simulation is executed on. 

Our simulation framework splits the whole simulation into events, which trigger 
simulation operations in multiple simulation components. The scheduler orders all 
events according to their scheduled firing time in simulation time, and therefore 
serializes the execution of simulation operations. Simulation time is eventually 
advanced when the next event in the queue is processed. Currently, a token passing 
architecture is implemented. Only one simulation component can acquire the token 
and therefore can be active at any point of time in real time. 

event n 
fire at simulation time 1.1 
to component A 

event n+1 
fire at simulation time 1.1 
to component B 

1.1 2.0

Do not advance simulation time  
Pass the active token to component b 

Tevent n+2 
fire at simulation time 2.0 
to component B 

 

Fig. 4. Token passing 
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In Figure 4, two simulation components A and B schedule events at simulation 
time 1.1. The scheduler serializes the processing of these events in real-time. Event n 
of component A is processed first. Afterwards, event n+1 of component B is 
processed. Since event n+1 is scheduled at the same simulation time as event n, the 
simulation time is not advanced. After completion of event n+1, event n+2 is 
scheduled. The token remains at component B. The simulation time is advanced to 
time 2.0 before the event is dispatched. This way, the execution of all simulation 
components is serialized. Nevertheless, all simulation components can schedule and 
execute events at the same point of simulation time. 

A simulation operation cannot be interrupted by another simulation event, and can 
have any duration in simulation time. The duration of a simulation operation defines 
the maximum offset between the simulation time of the scheduler, and the simulation 
time of a simulation component. The acceptable synchronization offset constrains the 
accuracy of the simulation. Operations that require larger amounts of simulation time 
should be separated into multiple, shorter operations to decrease synchronization 
offset.  
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Fig. 5. Processor simulator 

In Figure 5, the processor simulation component receives a “Run” message (Figure 
5.a), which triggers a simulation operation that simulates the execution of ncycles 
processor cycles. The simulation time of the processor simulation component and of 
the main scheduler is tn. The duration of the simulation operation dSim is defined to be 
ncycles * dSimCycle, the number of cycles that are executed multiplied with the simulated 
duration of one processing cycle. The simulation time of the processor simulation 
component is tn+1 = tn + dSim, after the atomic event is completed (Figure 5.b). 
Therefore, it schedules the next “Run” event en+1 to catch up with the other simulation 
components. The scheduling request is received by the scheduler at simulation time tn, 
because its simulation time was not advanced yet. The event en+1 is scheduled at 
simulation time tn+1 (see Figure 5.c). At time tn+1, the simulation scheduler and the 
processor simulation component are synchronized again. In the example above, the 
synchronization accuracy is constrained by the ncycles * dSimCycle, which is the duration 
of the simulation operation. 

The problem of synchronizing multiple simulation components becomes evident in 
scenarios that are simulated by a combination of multiple simulators. Simulation 
components interact by message-based communication, i.e. by scheduling events of  
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Fig. 6. Synchronization of multiple simulation components 

each other. The basic interfaces that are used for communication are defined by the 
simulation framework. All events that are generated by the active simulation 
component for another component are queued in the scheduler. 

In the example shown in Figure 6, a Tx request is transmitted from the processor 
simulation component to the ns-2 simulation component, which implements the 
network simulator. The event is transmitted at simulation time tn1 = tn + dSimCycle * 
100, i.e. one hundred simulated processor cycles in simulation time after the run 
request was received. This message triggers the transmission of a Wireless LAN 
frame over a simulated network. Instead of transmitting the message directly to the 
network simulator, the message is scheduled for delivery to the network simulator 
component at simulation time tn1 (see Figure 6.a). The simulation time of the network 
simulator is still tn, which is earlier than tn1, so it will process the event precisely at 
time tn1. After the processor simulator completes its simulation operation, the 
scheduler forwards the event to the network simulator, and the Tx request for the 
simulated network is processed at simulation time tn1 (Figure 6.b). The simulation 
time of the processor simulator is already at tn2 = tn + (ncycles * dSimCycle), ncycles > 100. 
Since it is not possible to go backwards in simulation time, a response from the 
network simulator will be received by the processor simulation component, and 
therefore by the System under Test that is executed on it, at time tn2 at earliest. 

Therefore, when multiple simulator components are coupled, all simulator compo-
nents are responsible for retaining synchronization with the main simulation time. A 
longer, uninterrupted simulation yields shorter execution times, resulting from less 
overhead. Shorter simulation operations yield more accurate simulations, but consume 
more time due to increased synchronization overhead. The accuracy of simulations 
depends on the duration of the longest simulation operation that any of the simulator 
components utilize. 

5   Extending C-PartsSim 

Our simulation framework is modular; it can be extended with new test components 
as well as with new interfaces, and event types. Test components are the central point 
for extending C-PartsSim. They serve as simulation components, implementing  
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backends for the simulation of devices and platforms. They also simulate scenario-
specific parts, like user behavior or inputs to the System under Test. Test components 
are created either out of UML sequence diagrams, out of a model, or using native C++ 
or Java code.  

Test components created out of sequence diagrams support a very simple behavior. 
Such a behavior only consists of timed messages that generate signals, which are 
transmitted at defined points of time (see Figure 7.a). This limitation originates from 
the transformation that is currently used by the front-end to C-PartsSim for handling 
sequence diagrams. The transformation embeds these sequence diagrams directly into 
the simulation script. Test components based on sequence diagrams can be used to 
trigger the System under Test using well defined sequences of messages, running 
predefined test cases. 

The creation of test components out of models requires a compatible model 
runtime environment for the used transformation. We currently support the Cmicro 
and Cadvanced SDL-to-C compilers from the Telelogic SDL suite [14], as well as 
experimental support of the UML Tool TAU Generation 2 [15] and the SDL compiler 
ConTraST [20] through our SEnF2 [12] runtime environment. This enables us to 
create test components, as well as Systems under Test from SDL and UML 
specifications. Scenarios consisting of both types of test components, whose behavior 
is specified in SDL and UML, are supported, too. 

The creation of a simulation component using native C++ or Java code is used for 
the integration of existing simulators into C-PartsSim. Natively implemented test 
components must refine the basic C-PartsSim framework. The framework defines a 
message-based interface, which covers the basic C-PartsSim messages. Turning an 
existing simulator into a simulation component for C-PartsSim is done as follows: 

• The generic signals of C-PartsSim must be specialized to resemble the specific 
needs of the added simulator. Eventually, multiple specializations are to be created 
to define a hierarchy of simulator-specific signals. 

• Depending on the type of the added simulator, which is either a device or a 
platform simulator, the interface service to C-PartsSim must be implemented. This 
is supported by an existing framework, which can be extended. 

 
 

<<TestContext>>
scenario

<<InstanceSet>>
cyclists

<<PlatformNode>>
trainer

runReq2: 

runReq1: 

<<timedMessage>>
{txtimeS = 1 , 
txtimeNS = 0 }

 

<<device>>

SimulatedDevice

<<framework>>

ScenarioFramework

ComponentBehavior
<<TestComponent>>

<<device>>

CC2420

NS2_SimComponent

<<TestComponent>>
NS2Implementation

CC2420ToNS

 
(a) (b) 

Fig. 7. Implementation of C-PartsSim components 
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• All internal simulation components of the added simulator, i.e. the scheduler 
component and the component that loads the scenario, must be replaced by a 
component that interfaces with the C-PartsSim scheduler service. 

• All parts of the added simulator that are simulated with other simulator 
components from C-PartsSim must be replaced with interfaces to C-PartsSim. In 
ns-2, these were the topology simulator and the implementation of the System 
under Test. For the Avrora simulator, the network simulation was replaced. 

• Simulator specific test components, eventually also node devices and runtime 
environments must be created. Figure 7.b shows an example integration of the 
CC2420 wireless transceiver chip, which is simulated by the ns-2 as simulator 
backend. 

Depending on the complexity of the added simulator, this task can be completed 
within several days if the internal structure and the semantics of the added simulator 
are known. Using this methodology, it is possible to add new simulation backends for 
the simulation of existing devices as well as completely new devices that interact with 
each other. 

6   Experiences 

In this section, we present two case studies showing the feasibility of our simulator on 
multiple abstraction levels. The context of both evaluation scenarios is our Assisted 
Bicycle Trainer [16], a distributed system supporting the group training of cyclists. 
The distributed software system that is deployed to the cyclist and to the trainer nodes 
was specified with SDL. Sensor data is collected by every bicycle and transmitted 
over a wireless ad-hoc network over multiple hops to the trainer node. The processor 
is an Atmel ATMega 128L microcontroller, with very scarce computational and 
memory resources. 

First, we show a test situation, where the model runtime environment is evaluated. 
The ability of evaluating the model runtime environment through simulations shows 
the strength of our approach. This scenario shows the capabilities of C-PartsSim to 
integrate scenario specific test components. The second case study is a performance 
prediction scenario, which we originally performed using PartsSim, the predecessor 
of C-PartsSim [4]. 

6.1   Evaluating a Model-Runtime Environment 

The sensors of every bicycle periodically transmit data to a local node, which 
accumulates this data and forwards the accumulated data through the network once 
per second. Since sensor events may also happen spontaneously, the number of 
generated events per time unit is not predictable. If the number of events waiting in 
the signal queue exceeds the queue size, the behavior of the generated software 
system is no longer conforming to the SDL standard, which assumes unbounded 
queues. Therefore, we have devised an SDL language extension for the specification 
of queue bounds [18]. This language extension was tested with C-PartsSim, using a 
basic scenario together with a generic platform simulation.  
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The simulation was performed using the test context shown in Figure 8. Internal 
simulator components, i.e. the scheduler and the topology were not modeled; 
therefore, default values are inserted by the transformation front-end. The test 
component SensorSim serves as a driver for the System under Test named 
BicycleSUT. The component SensorArbiter receives the accumulated sensor values. 
The behavior of all test components (SensorSim, BicycleSUT, ArbiterINST) is 
specified in SDL and loaded into the simulation at runtime. The SDL models are 
represented by artifacts. No platforms and devices are instantiated; therefore, test 
components are connected directly using message-based communication, and the 
simulation is performed on a generic platform, i.e. on platform without hardware 
constraints. 

The SensorSim test component increases the number of generated signals by one 
per second. For this scenario, we have limited the SDL signal queue to 20 signals, 
such that the effect of producing results that are non-conforming to the specification 
becomes visible. Figure 9.a shows the results of the simulation using a runtime 
environment without our modifications.  

After 12 seconds of simulation time, the number of sensor messages together with 
internal messages exceeds the queue size. The accumulated sensor values are not 
produced anymore, as the timer signal triggering the accumulation periodically can 
not be appended to the queue and is therefore discarded. In addition, all further 
incoming sensor values are discarded. The results of this test context, using our 
modified runtime environment as well as our language extensions, are shown in 
Figure 9.b. As indicated, the test context with queue bounds shows a correct behavior, 
the accumulated sensor values are transmitted once every second. This shows that our 
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Fig. 9. Test results with and without queue bounds 
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Fig. 8. Test context for testing an SDL language extension 
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simulation framework is not only capable of evaluating the System under Test, but 
also the used runtime environments. 

6.2   Testing a Communication System 

The assisted bicycle trainer is placed on top of a communication system that is able to 
utilize contention-free communication. Therefore, a time-slotted, virtual medium is 
established, and slots are assigned to individual nodes. In [4], we have presented 
simulation results of this scenario. Here, we elaborate on modeling the scenario for C-
PartsSim, and on the differences to PartsSim. 
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Fig. 10. Assisted Bicycle Trainer test context 

Figure 10 shows the complete specification of the test context of Figure 3c, which 
is specified with our UML profile (see Figure 1). In contrast to the simulator PartsSim 
[4], all connections between devices and test components can be altered for a specific 
scenario. This provides much more flexibility than the PartsSim solution. C-PartsSim 
retains the high simulation accuracy that is provided by PartsSim. Scenarios 
simulated with PartsSim yield the same simulation results if the same random seeds 
are provided. Therefore, existing simulation scenarios can iteratively be ported from 
PartsSim to C-PartsSim. 

7   Conclusions and Future Work 

In this work, we have presented our approach to support model-driven platform 
testing and performance evaluation. This is supported by our simulation framework, 
which consists of a UML platform testing profile and a new, configurable simulator 
called C-PartsSim. Our framework provides defined semantics for interconnecting 
specialized simulators, which are turned into simulator components. A front-end to C-
PartsSim instantiates a tailored platform simulator based on a given UML platform 
testing model. This way, C-PartsSim is capable of simulating the deployment of a 
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software system on multiple levels of platform abstraction. We have also documented 
a methodology for extending C-PartsSim, either with pre-existing, specialized 
simulator components or with test components, modeled with SDL or UML 2.0. 

Our simulation results show the accuracy of the instances of our simulation 
framework. Scenarios can be tested with the help of a tailored system simulator at 
multiple levels of platform abstraction. The tailored system simulator is instantiated 
based on a UML model of the testing scenario. Future work in this area includes the 
integration of continuous simulators with event-based simulators 
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Abstract. In this paper, we deal with errors in metamodels. Metamod-
els define the abstract syntax of modeling languages. They play a cen-
tral role in the Model-Driven Architecture. Other artifacts like models
or tools are based on them and have to be changed if the metamodel is
changed. Consequently, correcting errors in a metamodel can be quite
expensive as dependent artifacts have to be adapted to the corrected
metamodel. We argue that metamodels should be tested systematically
with automated tests. We present a corresponding approach that allows
automated metamodel testing based on a test specification. From a test
specification, multiple test models can be derived. Each test model de-
fines a potential instance of the metamodel under test. A positive test
model defines a potential instance that should be an actual instance of
the metamodel; a negative test model defines one that should not. We
exemplify our approach with a metamodel for defining a company’s struc-
ture. Finally, we present MMUnit, an implementation of our approach
that builds on the Eclipse platform and integrates the JUnit framework.
MMUnit allows to test EMF-based metamodels, which can contain ad-
ditional constraints, e.g. constraints expressed in OCL.

1 Introduction

Metamodels describe the structure of modeling languages. They play a central
role in all model-driven MDx technologies like MDA, MDD, and MDSE [1]. With
these technologies becoming ever increasing popular, metamodels are getting
more and more important.

Metamodels are artifacts of the software engineering process just like ordinary
models, program code, or documentation. As such, they contain errors : For
instance, they may specify classes with attributes of wrong type; associations
between classes may be missing or superfluous or have wrong multiplicities;
additional constraints (e.g. expressed in OCL) may contain errors.

Model transformations and tools for a modeling language like editors, inter-
preters, or debuggers base on a metamodel. When errors in the metamodel are
detected and removed after modeling or after tool development, already created
models and dependent tools must be adapted.1 This requires additional effort
1 This applies both to manually implemented tools and to declarative tool descriptions

that tools can be automatically generated from.
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and causes higher costs. Hence, the early detection of errors in a metamodel can
save time and money.

In software engineering, testing is the primary means to detect errors. To
our knowledge, metamodels are not tested systematically, yet. In this paper,
we advocate testing metamodels and present an approach for automated testing
based on a test specification for multiple metamodel test cases.

In the following section, we define the terms used in this paper. In Sec. 3,
we develop an approach for automated, systematic metamodel testing. We clar-
ify this approach by examples in Sec. 4 and by a detailed explanation of the
corresponding test execution process in Sec. 5. We sketch our prototype imple-
mentation in Sec. 6, discuss related work in Sec. 7, and conclude in Sec. 8.

2 Terminology

In this section, we give brief definitions of the terms used in this paper and we
introduce necessary mathematical notation.

Language, Syntax, Semantics. A language consists of syntax and seman-
tics. The syntax of a language is a possibly infinite set of language utterances.
A grammar is a common means of defining the syntax of a textual language.
For graphical languages, graph-grammars or metamodels can be used. Often,
abstract syntax and concrete syntax are distinguished: The abstract syntax of a
language defines the mere structure of the language utterances; the concrete syn-
tax of a language additionally contains elements that are necessary for displaying
language utterances to a user, e.g. brackets in a mathematical expression. The
semantics of a language provides a meaning for the language utterances.

Metamodel, Model. A metamodel in our sense is an object-oriented specifi-
cation of the abstract syntax of a modeling language. It does not specify other
aspects of a modeling language like concrete syntax or semantics. A metamodel
instance or a model is a language utterance of a language whose abstract syntax
is defined with a metamodel. Given a metamodel mm, we denote the abstract
syntax specified with this metamodel with Θmm . This means, Θmm is a set of
models that contains all instances of the metamodel mm.

We consider metamodels that are instances of a MOF-like meta-metamodel
[2]. Those metamodels are elements of the set ΘMOF

2.

3 Specifying Metamodel Tests

In this section, we describe the artifacts we use for metamodel testing. While
this section provides a rather static view on our approach, Sec. 5 describes how
these artifacts are used for metamodel test execution.
2 Due to the recursive definition of MOF, MOF itself is an element of the set of models

it specifies: MOF ∈ ΘMOF .
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Fig. 1. Relations between different artifacts for metamodel testing

Figure 1 shows the relations between the different artifacts of our approach.
A user creates a test specification, which is an instance of the test specification
metamodel (TSMM). A test specification specifies one or multiple test models ,
which are instances of the test metamodel (TMM). Each test model defines a
potential instance of the metamodel under test (MMUT). For this, it references
elements of the MMUT by name. Furthermore, a test model defines whether the
potential instance should or should not be an actual instance of the MMUT. In
the first case, we speak of a positive test model with a positive potential instance;
in the second case, we speak of a negative test model with a negative potential
instance. Detailed definitions of the artifacts follow in the rest of this section.

3.1 Testing Metamodels with Potential Instances

What is an error in a metamodel? In general, an error in a metamodel MMUT

manifests in the specified set of models ΘMMUT . If the MMUT is erroneous,
ΘMMUT contains a model that is undesired or it lacks a model that is desired. For
instance, an MMUT can define classes with attributes of wrong type; associations
between classes can have wrong multiplicities or can be missing or superfluous.

One possibility to test a set specification is to check if each element of the set
is desired and each desired element is part of the set. Since metamodels gener-
ally specify an infinite set of models, this is impossible. Instead, representative
elements can be given that lie either inside or outside this set. For metamodels,
we call these representative elements potential instances of the MMUT.

Let M be the set of all models specifiable with MOF-compliant metamodels:

M =
⋃

x∈ΘMOF

Θx .

Definition 1 (Potential instance). A potential instance pi is an arbitrary
model from the set of all possible models: pi ∈ M . If a potential instance is an
instance of the MMUT, which means pi ∈ ΘMMUT, we call it a positive potential
instance (Fig. 2a); otherwise, we call it a negative potential instance (Fig. 2b).
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Fig. 2. Metamodel as a set specification; models as elements

Figure 2 shows an Euler diagram visualizing this idea. The rectangle represents
M and the oval represents ΘMMUT ⊂ M .

3.2 Defining Potential Instances with Test Models

In our approach, the user defines potential instances and annotates if they are
positive or negative ones. Technically, he needs a way to describe and to store
potential instances. As potential instances are models, it seems as if we would
just need a corresponding metamodel. Can we use the MMUT? No, we cannot
for two reasons: First and foremost, a potential instance may just not be an
instance of the MMUT. This may either be because it is a negative potential
instance or because the MMUT contains an error so that the potential instance,
albeit a positive one, is not an instance of the MMUT. Second, the user may want
to specify instances before the MMUT even exists. In fact, not only the MMUT is
not a fitting metamodel for potential instances but any fixed metamodel is not
fitting.

Theorem 1. No fixed metamodel fmm can serve the purpose to store potential
instances.

Proof (No fixed metamodel for potential instances (indirect)). Suppose a fixed
metamodel fmm exists that can store any potential instance pi ∈ Θfmm . As
a consequence, all classes instantiated in pi must be defined in fmm. As each
(meta)model is finite, fmm contains a finite number of classes. Therefore, there
is a class name cn that is not already used for a class in fmm. We construct a
potential instance p̂i that contains an instance of the class with the name cn.
Since Θfmm does not contain a class called cn, p̂i /∈ Θfmm . ��
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Fig. 3. A test specification specifies multiple test models. Each test model defines a po-
tential instance of the MMUT. White = positive, black = negative test model/potential
instance.

Therefore, potential instances used to test an MMUT cannot be stored as
models. Nevertheless, they can be defined by models, which we call test models .

Definition 2 (Test model). A test model is a model that defines a potential
instance. It contains the information whether the defined potential instance is a
positive or a negative one. If a test model defines a positive potential instance,
we call it a positive test model; otherwise, we call it a negative test model.

Definition 3 (Test metamodel). The test metamodel (TMM) is the meta-
model for test models.

Formally, we define a function ε : ΘTMM → M that maps a test model to a
potential instance. ε is realized in the test execution (Sec. 5). Figure 3 shows an
Euler diagram visualizing ΘTMM , ΘMMUT , and ε. Also shown is ΘTSMM , which
we will describe later on.

3.3 Structure of the Test Metamodel

The TMM (Fig. 4) is similar to the metamodel for UML object diagrams with two
differences: (1) it references elements (classes, attributes, associations) from the
MMUT by name and (2) it contains an additional attribute TestModel.positive
to express whether the defined potential instance is a positive or a negative one.

A TestModel consists of Instances that can have Attributes and are con-
nected by References. An Instance defines an instance of a class from the
MMUT with the name from the Instances’s attribute className. For documen-
tation, an Instance can be given an optional name in the attribute objectName.
Each Attribute has a name and a value, which is given generically as a string
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Test Metamodel

+ name: String
+ value: String

Attribute

+ positive: boolean

TestModel

+ className: String
+ objName: String [0..1]

Instance
+ end1Name: String
+ end2Name: String

Reference
attributes
0..*

instances0..* references0..*

end1
1

end2
1

Fig. 4. The test metamodel

literal. The name of an Attribute together with the name of its containing
Instance identify the attribute of the potential instance of the MMUT which
the value should be assigned to. For the same purpose, the ends of a Reference
can be named.

Parallels in Textual Languages. We found some interesting parallels between
our TMM and textual languages. One of the reasons why we couldn’t store
potential instances as instances of the MMUT was that a user may want to define
potential instance before the MMUT exists. In test-driven development [3] this
approach is called test first . In traditional programming, “test first” means to
write a test before writing the piece of software that is tested.

In a textual language, writing test code that refers to not yet existing code
is possible due to the genericness of the textual representation of the test. This
genericness relies on two properties of text: (i) Text can be written and saved
without a specific grammar. For instance, Java code can be written in an or-
dinary text editor that knows nothing about Java. Even with an editor made
particularly for Java editing, Java files are saved as plain text. (ii) Text that
refers to elements like classes, variables, or functions can be written even when
these elements are not (yet) defined3. This is possible because references in source
code are expressed by writing names whose resolution is deferred.

The TMM possesses the same properties: (i) It is a “universal” metamodel in
the sense that it allows to define arbitrary potential instances. (ii) It allows to
reference elements of the MMUT by name, so that reference resolution is deferred
(cf. Sec. 5).

3.4 Specifying Multiple Test Models with a Test Specification

With the test models presented so far, a user can define potential instances and
can specify whether they lie inside or outside ΘMMUT . But which test models
3 To be more precise: when no text has been written that defines these elements.
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Fig. 5. The test specification metamodel

make good tests? Test models can define potential instances that just lie any-
where inside or outside of ΘMMUT , like those shown in Figs. 2a and 2b. But
these probably don’t make good tests because they lie far from the boundary of
ΘMMUT . Therefore, they are not sensitive to changes in the metamodel.

What does it mean for a potential instance to be “near the boundary” of
ΘMMUT? The nearer a potential instance is to the boundary of ΘMMUT , the
less has to be changed in the defining test model in order to cross the boundary.
With pairs of a positive and a negative test model that differ only slightly,
one can demarcate the boundary of ΘMMUT (Fig. 2c). Such pairs should be as
similar as possible in order to keep the demarcated boundary as thin as possible.
For instance, they may differ in an attribute value or by the existence of some
object or reference. This resembles the common testing technique of boundary
testing [4,5].

Also, a user may want to specify multiple variations of a test model (Fig. 2d).
We want to enable a user to specify such pairs and multiple variations with little
redundancy. Little redundancy means that he has to specify the similar parts of
the test models only once and has to specify only the differences, in addition.
For this, we define a new type of models: test specifications .

Definition 4 (Test specification). A test specification is an extended version
of a test model. It contains additional existence specifications for the model
elements. The existence specifications specify how multiple (ordinary) test models
can be derived from one test specification.

Definition 5 (Test specification metamodel). The test specification meta-
model TSMM is the metamodel for test specifications. It extends the TMM with
the possibility to give existence specifications for model elements.
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Formally, we define a function τ : ΘTSMM → P(ΘTMM ) that maps a test speci-
fication to a set of test models. τ is realized in the test execution (Sec. 5). The
Euler diagram in Fig. 3 shows ΘTSMM and a test specification that specifies one
positive and four negative test models.

The TSMM extends the TMM by package merge (Fig. 5). It introduces the
common superclass ModelElement for Instance, Attribute, and Reference. A
ModelElement’s existence specification can be set in its attribute existence.
Possible existence specifications are arbitrary, enforced , and forbidden. The de-
fault is arbitrary.

Assuming a test specification with TestModel.positive= true, from a user’s
perspective the existence specifications mean the following: Arbitrary: the ele-
ment has no special role. Enforced : keeping the element results in a positive test
model and removing it in a negative one. Forbidden: keeping the element results
in a negative test model and removing it in a positive one. In Sec. 5, this rather
intuitive definition is defined more formally.

Multiple elements can have an existence specification different from arbi-
trary. In this case, the test specification specifies not only a pair of test models
but multiple test models. For instance, in a test specification with TestModel.
positive= true, four elements could be forbidden. Then, this test specification
would specify one positive and four negative test models (Fig. 3). The positive
test model would contain no forbidden element and each of the four negative
test models would contain one of the four forbidden elements.

If the four elements should be forbidden conjunctionally, i.e. they should de-
scribe just one negative test model, then they can be connected by a Conjunction.

4 Example: An Erroneous Metamodel

In this section, we give the reader an intuition of how metamodel test specifica-
tion and execution may look like from the perspective of a metamodel engineer.
The test specifications in this section are shown in screenshots of the test spec-
ification editor that is part of our implementation (Sec. 6). The task of the
metamodel engineer is to develop tools that support several functions connected
to the hierarchy of a company, e.g. book keeping or responsibility assignment.
As she is a determined modeler, she starts with developing a metamodel. In
order to prevent high adaptation costs, she tests the metamodel with scenarios
of known company structures.

Figure 6 shows an exemplary metamodel. Its purpose is the definition of a com-
pany’s structure. The metamodel contains classes for the projects of a company,
its employees and their insurances, and for the company itself. In our example,
each company has to contain at least one employee and each employee can have
at most one boss. The OCL invariant of Employee is satisfied iff the insured sum
for each employee is at least 1.000.000 or the employee has no boss. However,
the engineer wanted to express that the insured sum for each boss has to be at
least 1.000.000. Since these two expressions are not equal, the specification of
the metamodel contains an error.
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Fig. 6. An erroneous metamodel for a company’s structure

Fig. 7. Screenshot of a test specification that successfully validates the MMUT

In the following, we present the two test specifications available to the meta-
model engineer, which are depicted in Fig. 7 and Fig. 8.

We start with Fig. 7: The object c1:Company is enforced, which is depicted
by the thick, black border. Removing it results in a negative test model, for
which the defined potential instance must not be an instance of the company
metamodel. This test is passed for the company metamodel because it specifies
that each employee must belong to one company.
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Fig. 8. Screenshot of a test specification that reveals the error in the MMUT

Fig. 9. The test specified in Fig. 8 revealed an error in the metamodel

The object p3:Project is forbidden, which is depicted by the dashed, gray
border. Consequently, the test specification represents a positive test model with-
out p3:Project. Adding it to the test model results in a negative test model.
Again, this test is passed for the company metamodel because it specifies that
each employee should be assigned to at most two projects.4

Both employees of the test specification are enforced and they are connected
by a conjunction, which is depicted by a “∧” in a circle. Removing both employees
leads to a negative test model. Again, the company metamodel fulfills this test
because it specifies that each company must have at least one employee.

In Fig. 8, a different test specification is shown. The goal of this test speci-
fication is to validate the OCL expression of the MMUT: The intention of the
metamodel engineer was to express that the insured sum of each boss in the com-
pany is at least 1.000.000. Consequently, the test in Fig. 8 contains a forbidden
4 Alternatively, the reference between the objects e1:Employee and p3:Project could

have been set to forbidden. In this case, p3:Project would be part of the positive
test model but it would not be referenced by the Employee.
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relationship between the employees Deng and Chang: If Chang was the boss of
Deng, then Chang’s insured sum would have to be at least 1.000.000. However,
the insured sum of Chang is only 500.000. Consequently, the addition of this
boss-relationship has to cause an error and, therefore, it has to be forbidden. All
references to the MMUT can be resolved, all multiplicities of the test model are
valid. However, the corresponding test case fails (shown in Fig. 9) because the
corresponding negative test model causes no error. The reason is the described
error in the OCL expression of the MMUT. The metamodel engineer recognizes
the error and corrects the OCL expression, which should contain “e.boss =
self” instead of “self.boss = e”. After correction, all metamodel tests pass.

5 Metamodel Test Execution

In this section, we describe how metamodel tests specified in a test specification
are executed. The test process consists of 5 steps:

1. Derive test models from the test specification.
The metamodel tests are specified in test specifications. For testing, test mod-
els have to be derived from the test specification according to the function τ .
Figure 10 shows a pseudo-code definition of this function.

We presented our approach as describing positive and negative potential in-
stances and checking if they are elements of ΘMMUT . Each test specification
can specify corresponding positive and negative test models. The value of the
attribute TestModel.positive strongly influences the way these test models
are derived. For instance, TestModel.positive= true and the exclusion of all
forbidden elements specifies a positive test model. The same test model with
TestModel.positive= false is a negative test model. Consequently, the type of
the test models specified by the test specification depends on TestModel.posi-
tive. For reasons of conciseness, we describe the test execution for TestModel.
positive= true. The case TestModel.positive= false is handled likewise.

The positive test model is derived from the test specification by leaving out all
forbidden elements. A separate negative test model is derived for each conjunc-
tion in the test specification and for each enforced or forbidden element that is
not connected to a conjunction: Let c be a conjunction of elements and e a single
element for each of which a negative test model is to be derived. Then, a negative
test model for e or c is created as follows: All elements of the test specification ex-
cept conjunctions are copied to a new instance of TMM, which is the new negative
test model. Furthermore, all forbidden elements except e or except the referenced
elements of c are removed from the new negative test model. If e or a referenced
element of c is enforced, then it is also removed from the negative test model.

2. For each test model: Resolve references of the test models to the MMUT.
Each test model references the elements of the MMUT by name. In this step, it is
checked if all references can be resolved to elements of the MMUT. If a reference
of a positive test model cannot be resolved, the test fails. On the other hand, an
unresolved reference is sufficient for a test with a negative test model to pass.
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τ(model) {
testmodels = Set();

— Create positive test model.
positiveTestmodel = model.clone();
— Remove all forbidden elements from positive test model.
positiveTestmodel->remove(positiveTestmodel->allElements()

->select( e | e.existence = forbidden ));
testmodels += positiveTestmodel;

— Create negative test models for all elements not part of a conjunction.
foreach element in (model.elements - model.conjunctions.elements)

->select( e | e.existence <> arbitrary ) {
testmodels += buildTestmodel(model, Set(element));

}

— Create negative test models for all conjunctions.
foreach conjunction in model.conjunctions {
testmodels += buildTestmodel(model, conjunctions.elements

->select( e | e.existence <> arbitrary ));
}

return testmodels;
}

— Helper function that creates a negative test model according to
— the given elements with existence specifications.
buildTestmodel(model, elementsWithExistenceSpec) {

result = model.clone();
result.positive = not result.positive;
— Remove all enforced elements from negative test model.
result->remove(elementsWithExistenceSpec

->select( e | e.existence = enforced ));
return result;

}

Fig. 10. Pseudo-code definition of τ

3. For each test model: Create a corresponding instance of the MMUT.
After successfully passing the second step for a test model without detecting an
error, it is possible to create a corresponding instance of the MMUT. For that, all
elements of the MMUT referenced by the test model are instantiated and all at-
tributes and and references are set. This step discovers if, e.g., a default value of an
attribute is an instance of the attribute type and can be assigned to the attribute.

4. For each test model: Check multiplicities and constraints of the created in-
stance of the MMUT.
Other than the resolved classes, attributes, and references, the MMUT contains ad-
ditional information like multiplicities and OCL constraints. The created instance
from Step 3 is now used to validate these information. For the concrete prototype
implementation, several supporting validation frameworks can be used (cf. Sec. 6).
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5. For each test model and each test specification: Decide test outcome.
The results of the preceding steps are now combined: If the test for a negative
test model fails any of the preceding steps or the test for a positive test model
succeeds in all of them, the corresponding test is passed. Otherwise, the test fails.
Since a test specification specifies a set of test models, the test outcome for the
test specification is composed of the outcomes for the test models. Likewise, if
the tests for all specified test models are passed, then the test for corresponding
test specification is passed. Otherwise, it fails.

6 MMUnit: Implementation

We implemented our approach based on the Eclipse Modeling Framework
(EMF). The implemented metamodels are based on Ecore, EMF’s meta-
metamodel, which is similar to Essential MOF (EMOF). Since ΘTMM ⊂ ΘTSMM ,
we restricted the implementation to the use of TSMM: test models are imple-
mented as instances of TSMM without conjunctions. The resulting prototype
MMUnit5 provides an editor for test specifications (Fig. 7 and Fig. 8) and can
be used to generate a JUnit [6] test for each test specification. The generated
JUnit tests (Fig. 11) use a library of MMUnit containing the class MMTester.
This class implements the test process almost as described in Sec. 5. Since these
attributes just influence the numbers of generated postive and negative test mod-
els, this means no restriction to our approach. The important features like the
specification of test models in one test specification, the definition of potential
instances, and the validation of OCL expressions are implemented. To validate
the OCL expressions of the MMUT, the Eclipse Validator Framework is used.
MMUnit also allows to combine the execution of several test specifications in one
JUnit class: Corresponding entries in the context menu of the test specifications
and a dialog provide possibilities to choose a set of test models.

@Test
public void testrun1() {

MMTester oMMTester = new MMTester();
oMMTester.setTestModel("model/tests/example_paper.mmunit");

oMMTester.setMetaModelFile("model/companymm.ecore");
assertTrue(oMMTester.runTest());

}

Fig. 11. The generated JUnit Code

7 Related Work

Many approaches in model-based testing use models as specifications to generate
test cases for a system under test (SUT) [7,8,9,10]. The tests validate if the SUT
5 Available for download at http://mmunit.sf.net

http://mmunit.sf.net
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satisfies all constraints of the model. The models themselves are assumed to be
correct. In contrast to this, we want to test the correctness of metamodels.

Küster [11] validates model transformations. Wang et al. [12] verify metamodel
coverage of model transformations. Brottier et al. [13] generate metamodel based
tests for model transformations. They all assume that the used metamodels are
correct and they focus on testing the transformation process between them. Our
approach is complementary to their approaches, as it tests the metamodels they
assume to be correct. Especially for model transformations, a combination of
both approaches seems to be promising.

In grammar testing [14], character sequences are used to test a developed
grammar [15]. This generic approach permits to define both words that conform
to the grammar and words that do not. Similar to that, our test metamodel
allows to generically describe instances of metamodels.

In the field of software engineering, many frameworks arose that support de-
velopment and testing. Development is supported by, e.g., tools for the Eclipse
platform [16,17]. Unit tests are supported by the frameworks JUnit [6] and
NUnit [18]. In our work, we created a prototype that is based on Eclipse and
that supports JUnit. The integration of MMUnit into existing and widely used
frameworks simplifies the integration into existing development projects.

8 Conclusion

Contribution. In all model-driven development processes, metamodels play
an important role. In this paper, we considered the correctness of metamodels
and identified metamodel testing as a method to reduce the effort for correcting
erroneous metamodels and dependent tools and models.

Our contribution is an approach for automated and systematic metamodel
testing. Our approach is founded on regarding metamodels as set specifications.
We described an algorithm for the test process, implemented a corresponding
prototype, and demonstrated our approach with a metamodel for a company.

By the integration with JUnit, metamodel tests can be executed automatically
and test execution can be integrated into the existing software development
process (e.g. metamodel tests can be executed as part of a continuous integration
build). Metamodel tests are not restricted to validate new metamodels. Rather,
they can be used as regression tests for evolving metamodels [19]. This would
help MDA engineers to understand the effects of changing a metamodel. Thus,
metamodel tests make it less likely for MDA engineers to introduce new errors.

The main benefit of our approach is a way to test a metamodel indepen-
dently of the models and tools that depend on it. This allows for a test-driven
development with “test first” and, therefore, helps reducing development and
maintenance effort. To our knowledge, there is no tool support for testing meta-
models besides MMUnit.

Future Work. Textual and graphical editors can be built for metamodels. An
editor should allow a user to create arbitrary instances of the metamodel but
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should warn him of—or even prevent him from—creating models that are not
instances of the metamodel. Our approach could be extended to test editors, as
well. For this, test models could be transformed to a series of creation commands
for the editor under test.

In this paper, we did not deal with the quality of test specifications. The
quality of tests in general can be measured with coverage criteria. We plan to
adapt coverage criteria for metamodel testing from other fields. For instance,
the work about adequacy criteria for UML design models by Andrews et al. [20]
may be a starting point.

Our implementation MMUnit should be improved regarding error reporting.
Currently errors are only reported on the console. Instead, they could be visu-
alized in the test specification editor or in the metamodel editor.

Finally, systematic case studies are necessary to answer these questions: How
can metamodel testing be integrated into an overall MDA process? Is creating
metamodel tests profitable—in terms of quality and in economic terms?
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Abstract. In requirements engineering, there are several approaches for 
requirements modeling such as goal-oriented, aspect-driven, and system 
requirements modeling. In practice, companies often customize a given 
approach to their specific needs. Thus, we seek a solution that allows 
customization in a systematic way. In this paper, we propose a metamodel for 
requirements models (called core metamodel) and an approach for customizing 
this metamodel in order to support various requirements modeling approaches. 
The core metamodel represents the common concepts extracted from some 
prevalent approaches. We define the semantics of the concepts and the relations 
in the core metamodel. Based on this formalization, we can perform reasoning 
on requirements that may detect implicit relations and inconsistencies. Our 
approach for customization keeps the semantics of the core concepts intact and 
thus allows reuse of tools and reasoning over the customized metamodel. We 
illustrate the customization of our core metamodel with SysML concepts. As a 
case study, we apply the reasoning on requirements of an industrial mobile 
service application based on this customized core requirements metamodel. 

Keywords: requirements metamodels, reasoning, model customization. 

1   Introduction 

Model Driven Engineering (MDE) considers models as primary engineering artifacts 
throughout the software development [11]. A software system is specified as a set of 
models that are repetitively refined until a model with enough details to implement 
the system is obtained. 

Software development has different phases (requirement analysis, architectural 
design, detailed design, implementation and testing) which result in different artifacts. 
Currently, there exist standard modeling languages for expressing architecture, 
detailed design, and implementation of systems. Requirements descriptions, however, 
are considered mostly as textual artifacts with structure often not explicitly specified. 
Requirements descriptions are one of the earliest models of a system. In order to keep 
the continuum of models in MDE by treating every artifact as a model we need to 
represent requirements descriptions as models as well. To achieve this, developers 
need to employ a metamodel for requirements. However, it is difficult to propose a 
single and eventually standardized metamodel for requirements. There are several 
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commonly used approaches to represent requirements: goal-oriented [27] [16], aspect-
driven [20], variability management [16], use case [3], domain-specific [12], and 
reuse-driven techniques [13]. Goal-oriented approach [27] defines a model for 
decomposing system goal into requirements with goal trees and offers some decision 
methods based on this decomposition. Aspect-oriented approach [20] gives a 
requirements model for separation of crosscutting functional and non-functional 
properties in requirements analysis phase. 

A possible approach is to extract the common concepts from the existing 
techniques into a single metamodel. The current state of the requirements engineering 
practice shows that companies often adapt and customize a given approach to the 
company’s specific needs. Thus, we need a solution that will allow us to achieve 
generality by using a set of common concepts and to allow customization in a 
systematic way. 

In this paper, we propose a metamodel for requirements models (called core 
metamodel) and suggest an approach for customizing this metamodel in order to 
support different requirements specification techniques. We define the semantics of 
the concepts and the relations in the core metamodel. On the basis of the semantics 
we can perform reasoning on requirements that may detect implicit relations and 
inconsistencies. Furthermore, our approach for customization keeps the semantics of 
the core concepts intact and thus allows reuse of tools and reasoning over the 
customized metamodel.  

The core metamodel represents the common concepts extracted from some existing 
requirements modeling approaches [27] [15] [16] [18] [20] [28]. The customization of 
the core metamodel is based on set-theoretic operations. This ensures the validity of 
the results inferred from the customized requirements models by using the reasoning 
rules defined for the core metamodel. In the core metamodel we give the building 
blocks of a requirements specification. We are not interested in giving the details of 
requirements such as dynamic properties of target systems. Requirements engineer 
can always come up with his/her domain specific language for different types of 
requirements such as real-time specifications of embedded systems. 

We illustrate our approach by customizing the core metamodel with SysML 
constructs. As a case study we model the requirements of an industrial mobile service 
application based on the customized metamodel. 

The paper is structured as follows. In Section 2, we describe the customization 
approach for the requirements metamodels. Section 3 gives the details of the core 
requirements metamodel with the inference rules. Section 4 gives the details of 
SysML requirements metamodel. In Section 5 we describe the mappings between the 
two requirements metamodels. We also give the customized core requirements 
metamodel for SysML. In Section 6, we give a case study to illustrate the 
customization. Section 7 presents the related work. Section 8 summarizes the paper 
and describes future work. 

2   Overview of the Customization Approach 

In our approach the requirements engineer starts with the core requirements 
metamodel (See Fig. 1) and identifies the concepts that need specialization and 
concepts that has to be added. The result of the customization is a new requirements 
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metamodel. In Fig. 1, we use SysML as an example metamodel that specializes the 
core metamodel. The plus operator denotes the specification of the relations between 
the elements in the metamodels. These relations are based on set operations. An 
example is given in Section 5. Other metamodels for different approaches such as 
goal-oriented and aspectual requirements can be composed with the core requirements 
metamodel.  

 

Fig. 1. Customization of Requirements Metamodels 

In this paper we express the metamodels as OWL [4] ontologies. The composition 
operator is also expressed in OWL since this language allows direct mapping from set 
operations to the language constructs. By using OWL we can use the reasoning 
capabilities of the ontology tools. The aim of the approach is to specify generic 
inference rules for the core metamodel and to apply them for the customized 
metamodels (see left part of Fig. 1). Additional inference rules, specific for a given 
metamodel, may be added if needed.   

3   Core Requirements Metamodel 

The core requirements metamodel contains common concepts identified in existing 
requirements modeling approaches [27] [15] [16] [18] [20] [28]. The core metamodel 
in Fig. 2 includes entities such as Requirement, Stakeholder and Relationship in order 
to model general characteristics of requirements artifacts. They serve as extension 
points for possible customizations of the core metamodel. In this metamodel, all 
requirements are captured in a requirements model (RequirementModel). A 
requirements model is characterized by a name property and contains requirements 
instances of the Requirement entity. All requirements have a unique identifier (ID  
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Fig. 2. Core Requirements Metamodel 

property), a name, a textual description (description property), a priority, a rationale 
(reason property), and a status. Requirements may have additional descriptions 
(AdditionalDescription entity) such as a use case or any other formalization. 

Usually, requirements are classified as functional and non-functional requirements. 
Since there might be different classifications of requirements for different approaches, 
we decided not to give any further specialization of the Requirement concept in the 
core metamodel: this can be added in the customization. Requirements can be related 
with each other. We recognize four types of relations: Refines, Requires, Conflicts, 
and Contains. These core relations can be specialized and new relations may be added 
as specializations of the Relationship concept. The metamodel includes the entities 
Stakeholder, TestCase, Glossary and Term. Test cases are not always considered as 
parts of requirements specifications. However, they are important to validate or verify 
requirements. Some metamodels [18] [28] consider test cases as a part of the 
requirements specification. 

In order to specify relations between core and other requirements metamodels we 
give a set-theoretic interpretation of the core entities.  

Let Core Requirements Metamodel (CRM) = {R, RS, RF, RQ, CF, CT SH, TC, 
GS, T, AD} where the following abbreviations for the entities are used: 

 

AD: AdditionalDescription R: Requirement SH: Stakeholder 
CF: Conflicts RF: Refines T: Term 
CT: Contains RQ: Requires TC: TestCase 
GS: Glossary RS: Relationship  

 

We assume that (a): all relations between requirements are the subset of 
relationship and (b): the intersection of these four relations is an empty set and the 
Refines relation is a subset of the Requires relation. 

 

RQRFCTCFRQRFb

RSCTRSCFRSRQRSRFa

⊆∧≡∩∩∩
⊆∧⊆∧⊆∧⊆

φ:

)()()()(:  
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The relations in the core metamodel are defined and formalized as follows.  
 

 Definition 1. Requires relation: A requirement R1 requires a requirement R2 if R1 is 
fulfilled only when R2 is fulfilled. R2 can be treated as a pre-condition for R1 [28]. 

 Definition 2. Refines relation: A requirement R1 refines a requirement R2 if R1 is 
derived from R2 by adding more details to it [27]. 

 Definition 3. Contains relation: A requirement R1 contains requirements R2..Rn if 
R1 is the conjunction of the contained requirements R2..Rn. This relation enables a 
complex requirement to be decomposed into child requirements [18]. 

 Definition 4. Conflicts relation: A requirement R1 conflicts with a requirement R2 if 
the fulfillment of R1 excludes the fulfillment of R2 and vise versa [26]. 
 

The definitions given above are intuitive and informal. In the remaining part of this 
section we give a formal definition of requirements and relations among them in order 
to ensure sound inference rules. 

We assume the general notion of requirement being “a property which must be 
exhibited by a system” [7]. We define a requirement R as a tuple <P, S> where P is a 
predicate (the property) and S is a set of systems that satisfy P, i.e. )(: sPSs ∈∀ . 

 

 Formalization of Requires 
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. R1 requires 
R2 iff for every s1 ∈ S1 then s1 ∈ S2.  

From this definition we conclude that S1 ⊂  S2. The subset relation between the 
systems S1 and S2 gives us the properties of non-reflexive, non-symmetric, and 
transitive for the requires relation. 

 

 Formalization of Refines 
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. We assume 
that P1 and P2 are formulas in first order logic (there may be formalizations of 
requirements in other types of logics such as modal and deontic logic [14]) and P2 can 
be represented in a conjunctive normal form in the following way:  

 

P2 = p1 ∧  p2 ∧  ... ∧  pn-1 ∧  pn ∧  q1 ∧  q2 ∧  ... ∧  qm-1 ∧  qm 
 

Let q1
1, q

1
2, …, q1

m-1, q
1
m are the predicates such that q1

i  → qi for mi ..1∈   
R1 refines R2 iff P1 is derived from P2 by replacing every qi in P2 with q1

i  mi ..1∈  
such that the following two statements hold: 

 

(a) P1 = p1 ∧  p2 ∧  ... ∧  pn-1 ∧  pn ∧  q1
1 ∧  q1

2 ∧  ... ∧  q1
m-1 ∧  q1

m 
(b) 

12 : SsSs ∉∈∃  
 

From the definition we conclude that if P1 holds for a given system s then P2 also 
holds for s. Therefore S1 ⊂  S2. Similarly to the previous relation we have the 
properties non-reflexive, non-symmetric, transitive for the refines relation. Obviously, 
if R1 refines R2 then R1 requires R2. 

 
 Formalization of Contains 

Let R1, R2 and R3 are requirements such that R1 = <P1, S1>, R2 = <P2, S2>, and R3 = 
<P3, S3>. We assume that P2 and P3 are formulas in first order logic and can be 
represented in a conjunctive normal form in the following way: 
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P2 = p1 ∧  p2 ∧  ... ∧  pm-1 ∧  pm 
P3 = pm+1 ∧  pm+2 ∧  ... ∧  pn-1 ∧  pn 

R1 contains R2 and R3 iff P1 is derived from P2 and P3 as follows: 
P1 = P2 ∧  P3 ∧  P' where P' denotes properties that are not captured in P2 and 

P3 (i.e. we do not assume completeness of the decomposition [27])  
From the definition we conclude that if P1 holds then P2 and P3 also hold. 

Therefore, S1 ⊂  S2 and S1 ⊂  S3. Obviously, the contains relation is non-reflexive, 
non-symmetric, and transitive. 

 

 Formalization of Conflicts 
Let R1 and R2 are requirements such that R1 = <P1, S1> and R2 = <P2, S2>. Then, R1 
conflicts with R2 iff )()(:: 2121 sPsPSsSss ∧∈∧∈¬∃ . The conflicts relation is 

symmetric. 
 

It should be noted that the definition of requires is given in extensional terms as a 
subset relation between the systems that satisfy the requirements. The definitions of 
refines and contains are given in intensional terms, that is, they take into account the 
form of the requirement specification as a predicate. If we would interpret refines in 
an extensional way then we will conclude that requires and refines are both 
interpreted as a subset relation and therefore are equivalent. Apparently in our 
formalization, refines and requires are different. 

From the given definitions we may infer several rules that show how these three 
relations can be combined. We explore all combinations of requirements relations in 
the core metamodel in order to derive inference rules for requirements. Due to space 
limitation we do not give all combinations and inference rules for the relations. The 
rules are expressed in Semantic Web Rule Language (SWRL) [9] since OWL is not 
expressive enough in this case. The following example illustrates some of the rules on 
the basis of a concrete requirements specification document given in the WASP 
framework [21]. The example requirements (see Case Study in Section 6) are: 

- REQ_BDS_007: When changes are discovered in the status and/or location 
of a user’s body, the WASP platform must sent out notifications according to the 
alerts set by the user. 

- REQ_NOT_006: The WASP platform must notify the end-user about the 
occurrence of an event for which an alert was set, as soon as the event occurs. 

- REQ_NOT_009: The WASP platform must actively monitor all events. 

In the requirements document, the following relations are given: refines 
(REQ_BDS_007, REQ_NOT_006) and requires (REQ_NOT_006, REQ_NOT_009). 
When we apply the inference rules to the given requirements, we have inferred that 
REQ_BDS_007 also requires REQ_NOT_009 (dashed line in Fig. 3).  
 

 
Fig. 3. Example with Given and Inferred Relations 
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We can formalize and proof these rules as follows: 
 

Rule 1: refines(R1, R2)  ∧   requires(R2, R3) → requires(R1, R3) 
 

Proof: Let R2 = <P2, S2> where P2 = p1 ∧  p2 ∧  … ∧  pn-1 ∧  pn  
and R1 = <P1, S1>. Since R1 refines R2, from the definition we have that P1 = p1 ∧  

p2 ∧  ... ∧  pn-1 ∧  pn ∧  q1
1 ∧  q1

2 ∧  ... ∧  q1
m-1 ∧  q1

m and q1
i  → qi mi ..1∈ . 

Again from the definition we have that if P1 holds then P2 also holds. From the 
requires relation between R2 and R3 we have that S2 ⊂ S3. Therefore if P2 holds then 
P3 also holds. Now we may conclude that if P1 holds then P3 also holds. This gives the 
subset relation S1 ⊂ S3 which proves that R1 requires R3. 

 

Rule 2: contains(R1, R2)  ∧   requires(R2, R3) → requires(R1, R3) 
 

Proof: Let R1 = <P1, S1>, R2 = <P2, S2>, and R3 = <P3, S3> 
Since R1 contains R2 we have S1 ⊂ S2. From R2 requires R3 it follows that S2 ⊂ S3. 

Consequently S1 ⊂ S3. Similarly to the previous proof, we conclude that R1  
requires R3. 

We can have implications for more combinations (e.g. three relations for four 
requirements and two conjunction operators) by using these inference rules. 

 

Fig. 4. Example with Inferred Relations by Combining Inference Rules 

The relations shown with dash lines in Fig. 4 are inferred by using Rule 1, the 
transitivity of the relations, and the fact that refines implies requires. By combining 
these rules we have the following indirect relations: 

 

requires(R1, R2) ∧  refines(R2, R3) ∧  requires(R3, R4) →   
requires(R2, R3) ∧  requires(R2, R4) ∧  requires(R1, R3) ∧  requires(R1, R4) 

 

Several rules for consistency checking are derived from the basic combinations 
where there is only one relation between two requirements. These inconsistencies are 
different from conflicts relation between requirements. Inconsistencies here indicate 
that relations between requirements are violating their constraints. Some of the 
consistency rules are given below: 

- refines(x1, x2) → ¬  refines(x2, x1) 
- refines(x1, x2) → ¬  requires(x2, x1) 
- refines(x1, x2) → ¬  contains(x2, x1) 

We specified OWL [4] ontologies for each metamodel with Protégé [6] 
environment. Inference rules were expressed in SWRL [9]. The rules to check the 
consistency of relations were implemented as SPARQL [24] queries. The inference 
rules are executed by Jess rule engine [10] available as a plug-in in Protégé. To reason 
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upon the requirements, the user specifies them as individuals (i.e., instances) in 
ontology. The inference and consistency checking rules are executed on this ontology.  

4   SysML Requirements Metamodel 

The System Modeling Language (SysML) [18] is a domain specific modeling 
language for system engineering. It is defined as an extension of a subset of UML 
using UML’s profiling mechanisms. SysML provides modeling constructs to 
represent text-based requirements and relate them to other modeling elements with 
stereotypes. We apply the customization mechanism (see Fig. 1) on a metamodel for 
requirements used in SysML. (see Fig. 5). The requirements are represented as a 
requirements diagram, and have a name, a unique identifier (ID property), and a 
textual description. Requirements may be additionally described by use cases. There 
are also use case relations Uses, Specializes and Extends.  

There are different types of requirements specified as an extension of Extended-
Reqt entity. They are InterfaceReqt, PerformanceReqt and DesignConstraint. Requi-
rements may be related with each other with relations Derives, Copies, and Contains. 
The relations extend the concept Trace. Similarly to the core metamodel we interpret 
the metamodel elements as sets. 

Let SysML Requirements Metamodel (SRM) = {R, US, AD, EX, SC, CP, FR, T, 
CT, IR, TC, DC, PR, UC, DV, PSR, UCR, ER} using the following abbreviations for 
the entities: 

 
AD: AdditionalDescription EX: Extends SC: Specializes 
CP: Copy FR: FunctionalReqt T: Trace 
CT: Contains IR: InterfaceReqt TC: TestCase 
DC: DesignConstraint PR: PerformanceReqt UC: UseCase 
DV: Derives PSR: PhysicalReqt UCR: UseCaseRelation 
ER: ExtendedReqt R: Requirement US: Uses 

 

Fig. 5. SysML Requirements Metamodel 
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We assume that (a): Requirements types in SysML are subsets of ExtendedReqt 
which is a subset of Requirement, (b): The intersection of all these requirements types 
is an empty set (they are disjoint), (c): Relations between requirements are the subset 
of relationship Trace, (d): the intersection of these relations is an empty set, (e): 
UseCase is a subset of AdditionalDescription, (f): Relations between use cases are the 
subset of relationship UseCaseRelation, and (g): the intersection of the relations 
between use cases is an empty set.  

φ

φ

φ

≡∩∩
⊆∧⊆∧⊆

⊆
≡∩∩

⊆∧⊆∧⊆
≡∩∩∩∩
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We introduce the following inference rules specific for SysML and not defined for 
the core metamodel. The relations uses, extends and specializes are transitive. 
Transitivity is captured in Rule 1: 

 

Rule 1. uses(uc1, uc2) ∧  uses(uc2, uc3) →  uses(uc1, uc3) 
 

If two use-cases are related, derived requirements from these use-cases are also 
related. Rule 2 specifies this: 

 

Rule 2. uses(uc1, uc2) ∧  hasAdditionalDescription(req1, uc1) ∧  hasAdditional-
Description(req2, uc2)  →  requires(req1, req2) 
 

Since the concepts of use case and uses relation are not precisely defined in 
SysML, the inference rules 1 and 2 express the intuitive meaning we assigned to 
them. The formalization of SysML concepts needs further investigation. 

5   Mappings between the Core and SysML Metamodels 

In order to customize the core metamodel with SysML constructs we establish map-
pings between the elements in these metamodels. Mappings are specified as relations 
on sets. Some elements like Requirement in the core and Requirement in SysML are 
mapped directly. However, some elements e.g. Derive from SysML has no 
corresponding element in the core metamodel. Table 1 shows the mappings between 
core and SysML metamodels. 
The semantically equivalent entities are related with set equality (e.g. rows 1, 5, 6). 
All specialized requirements in SysML are specializations of Requirement in the core 
metamodel (row 2). Requires (RQ) and Conflicts (CF) have no corresponding relation 
in SysML metamodel. All relations that have no corresponding relations in SysML 
metamodel are specializations of Trace (T) relation (rows 9 and 10). The relation  
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Table 1. Mapping between Core and SysML Requirements Metamodels 

 Core Metamodel Relation SysML Requirements MM 
1. R ≡  R 
2. R ⊇  IR ∪ PR ∪ FR ∪ PSR ∪ DC 
3. RF ∪ RQ ∪ CF ∪ CT ⊆  T 
4. RS ⊇  DV ∪ CP ∪ CT 
5. RS ≡  T 
6. RF ≡  DV 
7. CT ≡  CT 
8. RS ⊇  CP 

9. RQ ⊆  T 
10. CF ⊆  T 
11. AD ≡  AD 
12. TC ≡  TC 

 
Copy (CP) in SysML is mapped to a specialization of Relationship (RS) in core 
metamodel (row 8). 

Customization operators are derived from the mappings given in Table 1. Two 
required operators are “equivalent class” and “sub-class”. They may be expressed in 
different ways depending on the technology. In OWL environment these operators 
correspond to rdfs:equivalentClass, rdfs:subClassOf, rdfs:equivalentProperty, and 
rdfs:subPropertyOf. Fig. 6 gives customized core requirements metamodel for 
SysML. This metamodel is the output of the customization process given in Fig. 1. 
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Fig. 6. Customized Core Requirements Metamodel for SysML 

6   Case Study WASP Application Framework 

In this section we apply the proposed approach in a case study. An existing 
requirements specification document is represented as a model instance of the 
customized metamodel from Section 5. The case study is about the requirements for 
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WASP (Web Architectures for Services Platforms), a framework for context-aware 
mobile services [21]. The requirements are identified using a three-step process of 
defining scenarios, use cases and requirements (see [21] for concrete details). There 
are 2 scenarios, 32 use cases and 81 requirements (70 functional and 2 non-
functional;; three of these requirements are decomposed into 9 sub-requirements). 

We compared the reasoning facilities available in our approach with the similar 
support provided by IBM Rational RequisitePro. RequisitePro provides only two 
relations between requirements: traceFrom and traceTo. The relations in the 
customized metamodel (e.g., the uses relation) must all be mapped to one of those two 
relations. For example, links from requirements to use cases are mapped to traceTo 
links in RequisitePro and to hasAdditional-Description in our framework. 

There is no explicit indication in the WASP requirements document for 
requirements relations. However, there are some keywords in the document to 
reference to other requirements. These keywords are “see also”, “implies”, “implied 
by” and “extension of”. We mapped them to the available relations in RequisitePro 
and our framework (see Table 2). In the 4th column, we indicate our choice for the 
directionality, e.g. for “implies” and “implied-by”. 

Table 2. Mapping of Requirements Relations in Case Study 

Document RequisitePro Our Framework Directionality 
w.r.t. document 

R1 see (also) R2 R1 traceTo R2 R1 requires R2 both the same 
R1 implies R2 R1 traceTo R2 R1 requires R2 both the same 
R1 implied by R2 R2 traceTo R1 R2 requires R1 both reversed 
R1 extension of R2 R1 traceTo R2 R1 refines R2 both the same 
R1 example in R2 R1 traceTo R2 R2 refines R1 ours reversed 
 
Individual requirements in the document were represented as individuals in the 

OWL ontology in Protégé. The execution of the inference rules with the Jess rule 
engine inferred the implicit relations between requirements in the document. We also 
executed consistency rules to check the requirements relations (both given and 
inferred). The Jess rule engine was executed in two steps: a) with inference rules 
written for only the core requirements metamodel, b) with inference rules written for 
the customized metamodel for SysML. Table 3 shows given and inferred facts for 
requirements document of the WASP application. 

Table 3. Given and Inferred Facts for the WASP Application Requirements 

 
Facts 

# 
R 

# UC # Relations 
R x R 

# Relations 
R x UC 

# Relations 
UC x UC 

Given 81 32 20 103 24 
Inferred in Step a 0 0 5 0 0 
Inferred in Step b 0 0 735 0 4 
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Reasoning on the core metamodel (step a) resulted in 5 inferred relations between 
requirements. Since we do not have any inference rule for use cases in the core 
metamodel, we do not have any inferred relations between use cases and use cases & 
requirements. We executed the rules to check the consistency of the given and 
inferred requirements relations. We did not detect any inconsistency for these 
relations. The result reflects the accuracy of relations given in the document regarding 
the relation definitions we use for the core metamodel. We also checked the inferred 
relations manually if they correspond to a relation that can be identified by analyzing 
the textual requirements document. We found one inferred relation that is not true. 
When we traced from the inferred relation back to the given relations, we found that 
one given relation in the ontology has not a correct mapping to the requirement 
relations in the document. This is due to the assumption that links “see (also)” 
represent “requires” relations. However, we found that one of these links actually 
corresponds to “refines” relation. Our conclusion is that often the requirements 
engineers use links with ambiguous meaning or the links are not applied 
systematically.   

The execution of the inference rules added by the SysML requirements meta-
models (step b) resulted in 735 inferred relations between requirements and 4 inferred 
relations between use cases. The consistency check detected 16 inconsistent relations. 
The analysis of these inconsistencies revealed that they are caused by Rule 2 in 
Section 4. Rule 2 implies that if two requirements are related to two different use 
cases and one of these use cases uses another one, then there should be a “requires” 
relation between these requirements. When we checked the given relations in the 
requirements document, we realized that the interpretation of the requirements 
engineer for “uses” relation is different. There are given “requires” relations between 
requirements whose use cases are not related each other with “uses cases”. Therefore, 
Rule 2 does not capture the document structure properly and does not reflect the 
understanding of the requirements engineer. In order to apply the rules in practice, we 
should give the precise definition for each relation to requirements engineer and offer 
a guideline about how to specify these relations for more accurate reasoning results.  

We compared the results in our framework with the results in RequisitePro. Table 
4 gives the given and inferred relations in RequisitePro and our framework. 

We observe more inferred relations between requirements and use cases in 
RequisitePro than in our framework. RequisitePro infers links on the base of the 
 

Table 4. Given and Inferred Relations in RequisitePro and Our Framework 

relations # Given # Inferred  # Inferred 
# UC = 32; # R = 81 Document RequisitePro Our Framework 
UC x UC  24 3 3 
UC x R 103 98 0 
Step a:  R x R 9 1 5 

# inconsistencies - - 0 
Step b:  R x R 9 - 735 

# inconsistencies - - 16 
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transitivity of trace relations without considering the linked artifacts. For example, it 
assumes transitivity between R1 and UC in case of R1 traceTo R2 traceTo UC, which 
is debatable. RequisitePro does not define any specific types of relations. This 
prohibits sophisticated reasoning based on various relation types and leads to some 
wrong inferred relations as seen in UC x R. In our framework, the relation types and 
the inference rules allow us to have more precise inferred relations. Having types for 
relations also avoids finding non-meaningful relations inferred by RequisitePro. 

7   Related Work 

Several authors address requirements modeling in the context of MDE. In [28] a 
metamodel and an environment based on it are described. The tool supports graphical 
requirements models and automatic generation of Software Requirements 
Specifications (SRS). Baudry et al. [1] introduce a metamodel for requirements and 
present how they use it on top of a constrained natural language for requirements 
definition. In [2] they propose a model-driven engineering mechanism to merge 
different requirement specifications and reveal inconsistencies between them by using 
their core requirement metamodel. However, their core metamodel is mainly used to 
produce a global requirements model from a given set of texts. It does not specify 
entities and core relations and does not support customization.  

Some authors [8] [25] use UML profiling mechanism in goal-oriented requirements 
engineering approach. Heaven et al. [8] introduce a profile that allows the KAOS model 
[27] to be represented in UML. They also provide an integration of requirements models 
with lower level design models in UML. Supakkul et al. [25] use UML profiling 
mechanism to provide an integrated modeling language for functional and non-
functional requirements that are mostly specified by using different notations. SysML 
[18] also uses UML profiling mechanism to provide modeling constructs that represent 
text-based requirements and relate them to other modeling elements. 

Koch et al. [12] propose a requirements metamodel that is specific to web systems. 
They do not consider general concepts for requirements analysis. They identify the 
general structure of web systems in order to define the requirements metamodel. 
Rashid et al. [20] give an activity model in requirements engineering for identifying 
and separating crosscutting functional and non-functional properties. Moon et al. [15] 
propose a methodology of producing requirements that can be considered as a core 
asset in the product line. Lopez et al. [13] propose a metamodel for requirements 
reuse as a conceptual schema to integrate semiformal requirement diagrams into a 
reuse strategy. The requirements metamodel is used to integrate different abstraction 
levels for requirements definitions. Navarro et al. [17] propose a customization 
approach for requirements metamodels similar to ours. Their core metamodel is too 
generic and considers only artifact and dependency as core entities. It does not 
contain any entity specific to requirements. This prevents applying inference rules 
written for the core entities to customized entities. Requirements Interchange Format 
(RIF) [22] is a format which structures requirements and their attributes, types, access 
permissions and relationships. It is tool independent and defined as an XML schema. 
However, its data model has too generic entities and relations like Information Type, 
Association, and Generalization instead of entities that can be formalized to reason 
about requirements and their relations. Ramesh et. al [19] propose models for 
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requirements traceability. Models include basic entities like Stakeholder, Object and 
Source. Relations between different software artifacts and requirements are captured 
instead of core relations between requirements.  

A number of approaches suggest reasoning about requirements. Zowghi et al. [29] 
propose a logical framework for modeling and reasoning about the evolution of 
requirements. Duff et al. [5] propose a logic-based framework for reasoning about 
requirements specifications based on goal-tree structures. Rodrigues et al. [22] 
propose a framework for the analysis of evolving specifications that can tolerate 
inconsistency by allowing reasoning in the presence of inconsistency.  

8   Conclusion 

There are several approaches for modeling requirements. These approaches are 
usually customized to serve specific needs and standards in industrial projects. In this 
paper, we proposed a metamodel for requirements and a customization approach in 
the context of Model Driven Engineering. Using metamodels for this customization 
allows us providing an environment for reuse of tools such as reasoners. The main 
concepts in our approach are the core requirements metamodel and the customization 
mechanism. We surveyed existing requirements modeling approaches to extract the 
core metamodel. We presented definitions and a formalization of requirements 
relations for the core metamodel. The customization mechanism is implemented on 
the basis of OWL properties in ontology. 

We applied our approach in a case study based on a requirements specification 
document from a real project. We were able to infer several new relations that were 
not explicit in the document. We compared the capability of our approach to infer 
relations with the similar functionality provided by IBM RequisitePro, a commercial 
tool for requirements management. The relations in RequisitePro lack formal 
semantics. As a consequence, the inferred relations may not correspond to a “real” 
relation that may be discovered by inspecting the requirements document. 

Since a wide range of inconsistencies can arise during requirements engineering, 
we did not elaborate on the conflicts relation in this paper. Some authors [26] review 
the main types of inconsistency and formalize them for specific cases. We plan to 
study definition and formalization of conflicts relation as future work. The impact of 
changes in requirements on inferred relations and checking the consistency of 
requirements against these changes are another future work in evolution dimension. 
For the evolution of requirements, we also want to analyze the impact of changes in 
requirements on architectural and detailed design. We need trace models to link 
requirement models to design models. These trace models will enable us to determine 
possible impacts of changes of requirements models on design models. 
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Abstract. In this paper we report on our experience on using the so-
called model-driven security approach in an MDA industrial project. In
model-driven security, “designers specify system models along with their
security requirements and use tools to automatically generate system
architectures from the models.” Our report includes a discussion of the
languages that we used to model both the functional and the security
system’s requirements, as well as a description of the transformation
function that we developed to build from the security-design models
the system’s access control infrastructure. The report concludes with
the lessons about the feasibility and practical industrial relevance of the
model-driven security approach that we learned from this experience.

1 Introduction

Model-Driven Architecture (MDA) [4] holds the promise of reducing system
development time while improving the quality of the resulting products. It is
argued that the construction of models during requirements analysis and system
design will improve the quality of the resulting systems by providing a founda-
tion for early analysis and fault detection. Moreover, the models constructed in
the analysis and design phases will serve as specifications for the later develop-
ment phases and, when they are sufficiently formal, they will also provide the
basis for refinement down to code through well-defined model transformation
functions.

Model-Driven Security (MDS) [2] is a recently proposed specialization of the
MDA approach. Here, “designers specify system models along with their security
requirements and use tools to automatically generate system architectures from
the models, including complete, configured access control infrastructures.” It is
argued that this approach “bridges the gap between security analysis and the
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integration of access control mechanism into end systems. Moreover, it integrates
security models with system design models and thus yields a new kind of model,
security design models.”

This paper reports on our experience on using MDS in a mid-size MDA in-
dustrial project. The project was funded by a major Information Technology
company 1 with a two-fold goal: on the one hand, it was aimed towards en-
hancing the test report configuration facility currently provided by a general-
purpose, automatic test system, which is developed and commercialized by the
company; on the other hand, it was conceived as a pilot project for assessing
the benefits of MDA when applied to concrete in-house software development
projects.

For this project we have used the ComponentUML language (a simplified
version of the UML [6] class diagram’s language) to model the functional re-
quirements of the test report configuration utility, and the SecureUML lan-
guage [2] (an extended version of Role-Based Access Control [3]) to model the
requirements regarding the configuration utility access control policy. In fact,
we have combined the SecureUML and ComponentUML languages to produce
the security-design model of the test report configuration utility, which inte-
grates in a single model our system and security models. Moreover, to precise
the above models, we have extensively used the OCL language [5], first, to specify
the invariants on the system’s classes (including their methods’ pre- and post-
conditions), and, second, to formulate the authorization constraints associated
with the system’s access permissions. Finally, we have followed a step-by-step
methodology to build, from our security-design model, the complete access con-
trol infrastructure for the test report configuration utility.

The enhanced test report configuration utility was delivered to our client on
time. In our opinion, the success of this project provides further evidences of
the potential benefits of applying MDS: mainly, it gives rise to security-aware
models that are technology independent, reusable, and evolvable; and, it allows
to build security-aware applications that are consistent with the security-aware
models. Despite this potential, the current lack of appropriate tool support will
hinder its applicability in large-size industrial projects.

Organization. The paper is organized as follows. First, Section 2 summarizes the
project requirements and Section 3 provides background material on the MDS
languages that we used in this project. Then, Sections 4 and 5 explain our MDS
approach for specifying the functional and the access control requirements as
security-design models, while Section 6 describes our MDS transformation func-
tion to build security-aware applications from security-design models. Finally,
Section 7 summarizes the lesson that we have learned in this project.

1 The company is ranked among the three first European companies in its sector
according to stock market capitalization, and it is one of the three Spanish companies
with more investment in R&D. In 2007, revenues will exceed e 2.150M, of which a
third comes from the international market. The company employs more than 23.000
professionals and has clients in more than 80 countries.
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Table 1. Some requirements for the test report configuration utility

Clause#1 A repository of TRCs shall exist in the system.

Clause#6 The scope of a TRC can be one of the following: Global: the TRC is
accessible for reading to everybody; Private: the TRC is accessible (for
reading and writing) only to its owner.

Clause#7 Every TRC has one and only one owner. The user that creates a TRC
is its owner.

Clause#8.1 Any user with Test Supervisor and Test Administrator privileges is al-
lowed to create a TRC.

Clause#8.4 Every TRC shall be univocally identified, both to the user and to the
system. The identification shall include the owner and the name, so that
one user cannot define two TRCs with the same name.

Clause#8.5 Users in the Test Supervisor or Test Administrator groups can create
TRCs with either Global or Private scope. At the moment of creation,
the user shall establish the scope of the TRC. Users not in the above
groups can only create TRCs with Private scope.

Clause#9 A TRC with Global scope shall be accessible to all users with read
permission. A TRC with Private scope shall only be accessible to its
owner and any user with Supervisor and Administrator privileges with
read/write permissions.

Clause#11.1 Only users with write access on the TRC are allowed to delete that TRC.

2 The Project Requirements

At the start of the project, we were provided with a two-page document explain-
ing the overall features of the existing test report configuration utility and the
enhancements that were expected from this project. These enhancements were
defined in a five-page document listing fifty clauses written in English by the
Chief Software Engineer of the test system development team. The enhanced
test report configuration utility should allow the users to select (and possibly
modify) the configurations (called TRCs) to be used for reporting the results of
their tests. To this effect, the users will choose from a pool of available test report
configurations, which may include private, global, and default ones, the latter
associated with individual test programs or with families of test programs. The
permissions to create, edit, delete, or apply report configurations will depend
both on the user’s role and on the actual properties (including the ownership) of
the configurations. In Table 1 we show the clauses used in this paper to illustrate
the application of MDS in this project.

3 The SecureUML+ComponentUML Language

This section provides background material on the modeling language that we
used for applying MDS in this project, namely, SecureUML and Componen-
tUML. This material is borrowed from [2,1].
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SecureUML. This is the security modeling language that we chose in our project.
It is a language for formalizing access control requirements that is based on Role-
Based Access Control (RBAC) [3]. In RBAC, permissions specify which roles are
allowed to perform given operations. These roles typically represent job functions
within an organization. Users are granted permissions by being assigned to the
appropriate roles, based on their competencies and responsibilities in the organi-
zation. RBAC additionally allows one to organize the roles in a hierarchy, where
roles can inherit permissions along the hierarchy. In this way, the security policy
can be described in terms of the hierarchical structure of an organization.

SecureUML extends RBAC with authorization constraints to specify policies
that depend on dynamic properties of the system state. Thus, it formalizes access
control decisions of two kinds:

1. Declarative access control decisions which are based on static information,
namely the assignments of users and permissions to roles.

2. Programmatic access control decisions which are based on dynamic infor-
mation, namely the satisfaction of authorization constraints in the current
system state.

In practical terms, SecureUML provides a language for modeling Roles, Per-
missions, Actions, Resources, and Authorization Constraints, along with their
Assignments, i.e., it allows for the specification of which permissions are as-
signed to which roles, which actions are assigned to which permissions, which
resources are assigned to which actions, and which constraints are assigned to
which permissions. In addition, actions can be either Atomic or Composite. The
atomic actions are intended to map directly onto actual operations of the mod-
eled system. The composite actions are used to hierarchically group more lower-
level ones and are used to specify permissions for sets of actions. SecureUML
leaves open what the protected resources are and which actions they offer to
clients. These are specified in a so-called dialect and depend on the primitives
for constructing models in the system design modeling language of choice.

ComponentUML. This is the system design modeling language that we chose
for our project. It is a simple language for modeling component-based systems.
Essentially, it provides a subset of UML class models: Entities can be related by
Associations and may have Attributes and Methods.

SecureUML+ComponentUML. This is the SecureUML dialect that provides the
language for expressing SecureUML access control policies over ComponentUML
resources. As a SecureUML dialect, its metamodel [2,1] specifies:

1. The protected resources. In SecureUML+ComponentUML, the protected re-
sources are the entities depicted in the ComponentUML model, as well as
their attributes, methods, and association-ends (but not the associations as
such).

2. The actions that the protected resources offer and their hierarchies. The ac-
tions considered in SecureUML+ComponentUML are shown in the following
table, where underlined actions are composite actions.
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Resource Actions
Entity create, read, update, delete,

full access
Attribute read, update, full access
Method execute
AssociationEnd read, update, full access

3. The default access control policy for those actions where no explicit permis-
sions are defined in the models (i.e., whether access is allowed or denied by
default). In SecureUML+ComponentUML, the access is granted by default.

4 Modeling the Functional Requirements

Following the MDS approach, we first built a design model of the the test report
configuration utility, based exclusively on the functional requirements included
in the requirements document. For this task we used the modeling language
ComponentUML. To add precision to our models, we imposed invariants on
the classes, and pre- and post-conditions on the methods using the constraint
language OCL.

To illustrate our approach we show in Figure 1 the ComponentUML model
corresponding to the functional requirements listed in Table 1. First, we mod-
eled the static part of the configuration utility with a class TRC that has the
attributes owner, name, and scope, and the methods create, delete, and read.
Then, we specified the (first part of the) Clause#8.4, namely,

“Every TRC shall be univocally identified, both to the user and to the
system. This identification should include the owner and the name [...].”

with the following OCL class invariant:

context TRC inv uniqueIdentifier:
TRC.allInstances−>forAll(trc |

trc<>self implies (trc.owner<>self.owner or trc.name<>self.name))

which restricts the valid instances of our model to those where each TRC has a
unique identifier, namely, the name of its owner followed by its own name. Next,
we specified the (second part of) Clause#8.4, namely,

“[The identification shall include the owner and the name,] so that one
user cannot define two TRCs with the same name.”

with the following OCL pre-condition and post-condition:

context TRC::create(p scope:TypeOfScope,p owner:String,p name:String)
pre: TRC.allInstances−>forAll(trc|trc.owner<>p owner or trc.name<>p name)

post: self.scope = p scope and self.owner=p owner and self.name=p name
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TRC

+owner: String

+scope: TypeOfScope

+name: String

+create(p_scope:TypeOfScope,p_owner:String,
        p_name:String)

+delete()

<<Enumerate>>

TypeOfScope

+Private

+Global

context TRC inv:

   TRC.allInstances->forAll(trc|trc<>self implies (trc.owner<>self.owner or trc.name<>self.name))

context TRC::create(p_scope:TypeOfScope,p_owner:String,p_name:String)

   pre: TRC.allInstances->forAll(trc|trc.owner<>p_owner or trc.name<>p_name)

   post: self.scope=p_scope and self.owner=p_owner and self.name=p_name 

Fig. 1. Modeling the functional requirements

which guarantees that the method create preserves the invariant uniqueIdentifier.
Notice, however, that the above post-condition only partially specified the (sec-
ond part of) Clause#7, namely,

“The user that creates a TRC is its owner.”

The problem is that to fully specify this restriction we must also specify that
the method create is always called with the name of the user who intends to
create a TRC as its second argument. However, since a ComponentUML dia-
gram only models the static part of the system, the actual caller of the method
create can not be modeled here (and, consequently, can not be referred to ei-
ther). In the next section, we will see how this restriction is specified in the
SecureUML+ComponentUML diagram.

5 Modeling the Access Control Policy

Next, following the MDS approach, we constructed a security-design model of the
test report configuration utility by modeling the access control policy defined in
the requirements document on top of the model describing the static part of the
system. For this task we used the modeling language SecureUML+Component-
UML, which requires the use of OCL to express the authorization constraints
restricting the access permissions.2

To illustrate our approach, we show in Figure 2 the SecureUML+Component-
UML model corresponding to the access control policy for the creation of TRCs
as defined in Table 1. We specified the user groups with three roles (hierarchically

2 In an OCL authorization constraint, the variable ‘caller’ refers to the the user who
intends to access the resource, while the variable ‘self’ refers to the resource that is
being accessed. Here we assume that users have a name.
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organized): Test Operator, Test Supervisor and Test Administrator. Then, we
specified the Clause#8.5 and the (second part of) Clause#7, namely,

“Users in the Test Supervisor or Test Administrator groups can create
TRCs with either Global or Private scope. At the moment of creation,
the user shall establish the scope of the TRC. Users not in the above
groups can only create TRCs with Private scope.”
“The user that creates a TRC is its owner.”

with the permissions NewPrivate and NewGlobal. These permissions are as-
signed, respectively, to the Test Operator and Test Supervisor roles. First, notice
that the permissions NewPrivate and NewGlobal are both constraint by the OCL
expression

p owner = caller.name

which authorizes the execution of the method create only when it is called with
the name of the user who intends to create a TRC as its second argument.
With this authorization constraint, together with the postcondition of create,
we effectively guarantee that “The user that creates a TRC is its owner.”

Also, notice that the permission NewPrivate is additionally constraint by the
OCL expression

p scope = Private.

With this authorization constraint, together with the postcondition of create, we
guarantee that users not in the Test Supervisor or Test Administrator groups
“can only create TRCs with Private scope.”

Finally, notice that, since Test Supervisor is a sub-role of Test Operator,
users in the Test Supervisor group inherit the permission NewPrivate. Sim-
ilarly, since Test Administrator is a sub-role of Test Supervisor, users in the
Test Administrator group inherit the permissions NewPrivate and NewGlobal.
Therefore, we guarantee that “users in the Test Supervisor or Test Administra-
tor groups can create TRCs with either Global or Private scope.”

6 Building the Security-Aware Application

As part of our application of the MDS approach, we defined a transformation
function F from SecureUML+ComponentUML models to C++ code.3 As it is
well-known, transformation functions from models to models and, ultimately,
from models to code, are a key component of MDA. In our project, the trans-
formation function F was indeed crucial not only to implement the access con-
trol policy which was defined in the original requirements document, but also to

3 In [2] the authors defined two different transformation functions to translate security-
design models to either EJB or .NET technology.
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<<Role>>

Test_Operator

<<Role>>

Test_Supervisor

<<Role>>

Test_Administrator

<<Entity>>

TRC

+owner: String

+scope: TypeOfScope

+name: String

+create(p_scope:TypeOfScope,p_owner:String,
        p_name:String)

+delete()

<<Permission>>

NewPr iva te

+create: AtomicExecute

p_owner = caller.name and p_scope = Private

<<Permission>>

NewGlobal

+create: AtomicExecute

p_owner = caller.name

Fig. 2. Modeling the access control requirements

modify this implementation when the client introduced refinements or changes in
the original document, as happened on several occasions throughout the project.4

As expected, the transformation function F takes into consideration (and,
consequently, is limited by) the technology used by our client to implement
access control policies, which includes, in particular:

– A specific XML document, named UserRights, in which one can define the
relationship between the user groups and the so-called “topics”, as well as
the hierarchy among the user groups. Topics can have different meanings:
we will use them to denote permissions.

– A specific method, named isServiceGranted(topic), with which one can
test whether the logged-in user belongs to (either directly or indirectly) the
group associated with topic in the UserRights XML document; this method
is provided by a component IUserAdmGet.

In particular, the transformation function F provides the following step-by-step
methodology to implement in C++ the access control policy modeled in a di-
agram. Although we have not implemented this transformation function (due
both to time constraints and the experimental nature of the project, which as
mentioned before was conceived by the company as a pilot project), we did man-
ually follow the steps defined here when implementing the enhanced test report
configuration utility’s access control policy.

Step 1. Define as groups in the UserRights document the roles depicted in the
diagram, as well as the hierarchy among them. For example, the following

4 Interestingly, these refinements or changes were mostly prompted by some unin-
tended implications of the clauses contained in the original document, which were
easily exposed after analyzing the corresponding security-design model.
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XML code is part of the UserRights document that we have used to translate
the model depicted in Figure 2.5

<VIRTUAL_USER_GROUPS>
<VIRTUAL_USER_GROUP name="L1">

<USER_GROUP name="Test_Administrator"/>
</VIRTUAL_USER_GROUP>
<VIRTUAL_USER_GROUP name="L2">

<USER_GROUP name="Test_Supervisor"/>
<VIRTUAL_USER_GROUP_REF name="L1"/>

</VIRTUAL_USER_GROUP>
<VIRTUAL_USER_GROUP name="L3">

<USER_GROUP name="Test_Operator"/>
<VIRTUAL_USER_GROUP_REF name="L2"/>

</VIRTUAL_USER_GROUP>
</VIRTUAL_USER_GROUPS>

Step 2. Define as topics in the UserRights document the permissions depicted
in the diagram, associating with each topic the group linked to the corre-
sponding permission. For example, the following XML code is part of the
UserRights document that we have used to translate the model depicted in
Figure 2.6

<TOPIC name="NewPrivate">
<RIGHTS>

<VIRTUAL_USER_GROUP_REF name="L3"/>
</RIGHTS>

</TOPIC>
<TOPIC name="NewGlobal">
<RIGHTS>

<VIRTUAL_USER_GROUP_REF name="L2"/>
</RIGHTS>

</TOPIC>

To explain the next step, we introduce first some notation. For each method
in the security-design diagram, let PRM(method) be the set of permissions that
grant (conditional or unconditional) access to execute method. Also, for each per-
mission in the diagram, let CTR(permission) be the OCL expression that con-
strains permission (or simply ‘true’ if no authorization constraint is associated
5 In a UserRights XML document, the tag VIRTUAL USER GROUP is used to declare a

group: its attribute name provides a reference to it. The name of the group is declared
using the tag USER GROUP. A hierarchical relationship between two groups is declared
using the tag VIRTUAL USER GROUP REF: its attribute name refers to the name of the
group “above” in the hierarchy. The VIRTUAL USER GROUP declarations must occur
inside the tag VIRTUAL USER GROUPS.

6 In a UserRights XML document, the tag TOPIC is used to declare a topic. A topic is
related with a given group by means of the tag VIRTUAL USER GROUP REF: its attribute
name refers to the name of the group. This association must be declared within a
RIGHTS tag.
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with permission). In addition, for each method in the diagram, let PRE(method)
be the OCL expressions that (pre-)conditions the execution of method (or simply
‘true’ if method does not have a precondition). Finally, for any OCL Boolean
expression, let C++(expression) denote the C++ Boolean function that imple-
ments expression.

Step 3. Make the execution of each method in the diagram to depend on the
satisfaction of its precondition and of its access control policy. The former is
implemented by the function C++(PRE(method)), while the latter is coded
by CHK(method), which is a Boolean function (typically with the same pa-
rameters as method) that returns true if and only if there exists a permis-
sion in PRM(method) such that both isServiceGranted(permission) and
C++(CTR(permission)) return true.
Notice that a naive implementation of CHK (method) can be easily generated
for each method in a diagram as follows. Let PRM (method) = {pi}1≤i≤n.
Then, CHK (method) can be implemented by the following C++ code, where
the variable m uag references the object of type IUserAdmGet that encapsu-
lates the information about the logged-in user.

if (m uag->isServiceGranted(p1) && C++(CTR(p1)))
{
return true;

}
· · ·
if (m uag->isServiceGranted(pn) && C++(CTR(pn)))
{
return true;

}
return false

Of course, more efficient implementation of CHK (method) can be generated
if we take into consideration the role hierarchy and/or the logical implications
among the authorization constraints (we omit here the details). For example,
the following C++ code is part of the function CHK( create) that we have
used to translate the model depicted in Figure 2:

m_uag->GetUser(user_name);
if (m_uag->isServiceGranted(‘‘NewPrivate’’))
{

if (p_scope = Private && p_owner = user_name)
{

return true;
}
else
{

if (m_uag->isServiceGranted(‘‘NewGlobal’’)
&& p_owner = user_name)



336 M. Clavel et al.

{
return true;

}
}

return false

Notice that, since every user in the Test Supervisor (or Test Administrator)
group is also a user in the Test Operator group, our (efficient version of
the) function CHK( create) directly returns false if the logged-in user does
not belong to the group associated with the topic “NewPrivate” (namely,
Test Operator).

7 The Lessons Learned

We conclude this report with a brief summary of the lessons we have learned
with respect to both the MDA approach and the MDS approach. First, with
respect to the MDA approach:

– The construction of models during requirement analysis and system design
provides a foundation for early analysis and fault detection. The analysis of
the models constructed from the original document prompted us to refine
those requirements that were ambiguous, to eliminate those that were dupli-
cated or implied by others, and to fill those that were simply missing. As an
example, we found out that the requirements neither specify whether a TRC
with Global scope can be deleted (and by whom), nor do they unambiguously
specify if the user that modifies a TRC can become its owner

– The models constructed in the analysis and design phases provide a basis
for refinement down to code. The generation of the C++ code following our
transformation function F helped us to correctly implement (and modify)
the test report configuration utility’s access control policy. As an example,
in several occasions throughout the project, the client refined (or modified)
the system’s access control policy in order to fix the inconsistencies and
ambiguities that were detected in the original document; to adapt our code
to the new requirements, we simply modified the models and applied to them
our transformation function F .

Now, with respect to the MDS approach:

– The security design models integrate security models with system design mod-
els, remaining at the same time technology independent, reusable, and evolv-
able. First, the system design and the security models helped us to under-
stand (and discuss) the original requirements document by allowing us to
independently model each clause based on its principal concern (whether
functional or security-related). Then, the security design models helped us
to integrate the resulting functional and security models, without having to
commit ourselves to a specific technology.
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– The security design models are understandable by those familiar with the
UML-notation. The security design models became in fact the lingua franca
used in the discussions between the requirements and software engineers
(from the company) and the software developers (from our group).

Finally, SecureUML+ComponentUML (with OCL) was expressive enough to
model the access control policy defined in the original requirements document
provided by our client. However, access control policies are not for sure the only
security requirements found in industrial specifications. In the near future, we
plan to apply the MDS approach to other security requirements, which may
require the use (or even the definition) of other modeling languages and tools.
We also plan to design these projects so as to be able to gather more quantitive
results about the benefits of applying MDS in system development.
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Abstract. Input models that are not completely checked generate ill-formed 
output models in MDA transformation processes. Model executability is a 
means for, at development time, simulating/testing models and thus making 
them compliant with requirements. At runtime, persistent models bring added 
values like the monitoring and control of applications through the observation 
of the active states, the guards which hold true, the occurring events… This 
paper on purpose presents a Java-based execution engine for the UML State 
Machine Diagrams. In order to incorporate this UML interpreter into MDA 
tools, the execution semantics of the UML State Machine Diagrams is first 
analyzed and next disambiguated. Execution semantics choices are thus 
proposed and justified accordingly. 

Keywords: UML, Statecharts, model executability. 

1   Introduction 

This paper discusses the constituents of a Java library and its associated API [1] for 
executing the UML State Machine Diagrams [2, pp. 520-582]. It is acknowledged 
that Harel’s Statecharts [3] with their numerous object-oriented (or not) variants, e.g., 
[4], [5], [6], and the UML State Machine Diagrams do not offer the same execution 
semantics. Many theoretical contributions exist, e.g., [7], [8], [9], but few explain how 
a well-defined execution semantics may be implemented in a CASE tool. To that 
extent, the Java framework presented in this paper is currently incorporated into the 
Topcased MDA platform [10] which itself lays out on the top of the Eclipse Modeling 
Framework (EMF). 

The execution semantics of UML is not really formal (it has some ambiguities). It 
is also open through the notion of “semantic variation point” [11]. In fact, the nature 
of encountered problems is conceptual rather than technical in the sense that one must 
first of all disambiguate the execution semantics of UML. 

Models based on the formalism of the UML State Machine Diagrams are written 
in XMI (XML Metadata Interchange). This XMI code is transformed into Java code 
which itself relies on the proposed Java library/API. The generated code is a 
trustworthy representation of the upstream models so that this code may serve for 
simulations/tests (development time) or for building end user applications (runtime). 
So, in simulation/test phases, the observation of unexpected behaviors allows us to 
correct models in relation with requirements. This supposes that the built models are 
fully deterministic. To create this determinism, this paper discusses how the UML 
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State Machine Diagrams are accurately and uniformly interpreted. Most of the time, 
the interpretation rules are textually described in the UML documentation [2, pp. 520-
582], but some of these rules require further investigations. 

In order to elaborate on this topic, Section 2 provides some key design principles 
associated with the use of the UML State Machine Diagrams execution support 
presented in this paper. Section 3 discussed what is, in our opinion, the key problem 
of a UML State Machine Diagrams interpreter: the management of conflicting 
transitions when one wants to move a state machine from one stable consistent 
context to another. Section 4 is about the notion of allowed event which has a 
different denomination in UML. We show the lack of specification of this notion in 
UML. Finally, we conclude in the fifth section. 

2   Design Principles 

The key design principles promoted by the Java framework presented in this paper are 
as follows: from a UML state machine diagram (Fig. 1), one derives the micro-
architecture of a software component (My component in Fig. 2) in which its provided 
interface (A provided interface in Fig. 2) and its implementation (see the list of 
operations within My component in Fig. 2) are clearly separated. In short, events on 
transitions become services of the component having the state machine diagram as 
behavioral specification. In contrast, states, actions and event self-sending are parts of 
the component’s inner workings. 
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Fig. 1. Behavioral specification of a software component 

2.1   Event Processing Based on Run-to-completion Steps 

At runtime, instances of My component process events according an execution 
semantics. This amounts to obey to the execution semantics assigned to the UML 
State Machine Diagrams plus some additional hypotheses below described. 
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Fig. 2. Architectural organization of My component which owns the model in Fig. 1 (A state 
machine) as behavioral specification (request h is not part of My component’s provided 
interface since it is only sent internally, i.e., entry/self.^request h, when entering into S22). 

A run-to-completion cycle is in essence bound to the processing of a single event 
occurrence. This event is typed by its name, or better by its signature (if any) in a state 
machine diagram. Event occurrences are not shared by state machines. Moreover, as 
many occurrences as needed of a given event type must be sent, if several components 
have to be informed of (and thus have to process) the event at a given time. For 
example, two instances of the My component type may exist at a given time and thus 
two state machines (Fig. 3) as well. If present, an occurrence of the go event is 
assigned to one and only one state machine among the two in Fig. 3. In other words, a 
given event occurrence cannot generate two effects. This means that this occurrence is 
consumed once and for all by one and only one state machine. 

This consumption model enables the distribution of state machines, especially 
when they are encapsulated in distributable software components, like Enterprise 
JavaBeans (EJBs) for instance [12], which may run on distinct deployment nodes. 
This rule is also relevant for mobile systems (Java ME platform) in which 
components, and thus state machines, are embedded in wireless devices [13]. Sharing 
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Fig. 3. Two instances of My component (c1 and c2) with both the Idle state active 
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Fig. 4. Two instances of My component (c1 and c2) after the processing of only one occurrence 
of the go event 

events is conceptually appealing for theoretical computing paradigms but unlikely in 
today’s applications which tend to avoid centralization. 

As a result, in Fig. 4, a single occurrence of the go event has moved the state 
machine on the left hand side of Fig. 3 to a new set of active states, while that on the 
right hand side has not changed. 

The execution semantics is therefore based on the principle that event occurrences 
are partly defined/identified through the unambiguous identity of their unique 
expected receiver (here, the component which has the state machine on the left hand 
side of Fig. 4). The principle relating to the fact that senders and receivers have 
identities and that events carry these identities, relies on the notion of component 
connector in UML [1, p. 177]: “Specifies a link that enables communication between 
two or more instances. This link may be an instance of an association, or it may 
represent the possibility of the instances being able to communicate because their 
identities are known by virtue of being passed in as parameters (…)” A detailed 
accurate discussion on this topic also appears in [14]. 

2.2   Lost of Events, Event Consumption Principle 

The notion of “deferred events” in UML [1, p. 550] is a semantic variation point [11]. 
More precisely, events are picked up in state machines’ queues as soon as a run-to-
completion steps terminate. In this line of reasoning, let us make the following 
observation about the c1 component instance on the left hand side of Fig. 4: its Idle 
state is not grayed meaning that it is not active. Let us now suppose that, at this 
moment, the go event occurs and is dispatched to c1. In this context, the model in Fig. 
1 tells us that this occurrence is discarded or “lost” (deferred events = false, the 
default UML mode). With deferred events = true, the state machine’s interpreter has 
to find another interpretable event occurrence in its queue: the go occurrence is not 
lost and is intended to be later processed. No accurate rigorous policy is however 
provided about this issue in the UML documentation. In the Java framework 
presented in this paper, we only use the deferred events = false mode because of its 
immediate compliance with UML. 
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3   Transitions Conflicts 

In the UML doc. [1, p. 562], it is written: “In other words, in case of conflicting 
transitions, only one of them will fire in a single run-to-completion step.” This rule 
first supposes the availability of a definition about what are conflicting transitions: 
“Two transitions are said to conflict if they both exit the same state, or, more 
precisely, that the intersection of the set of states they exit is non-empty. Only 
transitions that occur in mutually orthogonal regions may be fired simultaneously.” In 
this section and in Section 4, we discuss why this characterization is inadequate. 

3.1   Transition Overriding 

In the beginning of a run-to-completion step, the presence of the current event 
occurrence to be processed, the evaluation of the active states and the evaluation of 
the guards attached this event occurrence, amount to computing a set of eligible 
transitions. If this set is empty, the event occurrence is discarded (see above). If this 
set has more than one enabled transition, the run-to-completion engine has to establish 
all mutual conflicts, if any. Finally, this engine must develop a policy based on 
choosing between some transitions to be triggered and the rest to be put aside. 

According to UML, in Fig. 5, if Substate is active (and thus Superstate is also 
active) and an occurrence of r exists, then only the g action is executed. In other 
words, the two depicted transitions are eligible, but they are in conflict. As written 
above, “(…) the intersection of the set of states they exit is non-empty.”: {Superstate, 
Substate}. So, f is not launched even if Superstate is also active and r occurs because 
the transition labeled r/g hides r/f. This specific case is ruled by an implicit priority 
policy in UML: “By definition, a transition originating from a substate has higher 
priority than a conflicting transition originating from any of its containing states.” [1, 
p. 562]. This rule is considered in [8] and [9] has a key difference between the 
classical Harel’s Statecharts and UML. 

 

Fig. 5. Potential transition conflict 

 

Fig. 6. Potential transition conflict versus no conflict at all 
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However, the UML criterion which allows an execution engine to determine if two 
or more transitions are mutually in conflict is, in our opinion, limited in scope. For 
example, the model in Fig. 6 is not a source of conflict. 

In Fig. 6, the single significant difference with Fig. 5 is the fact that the two 
“conflicting” transitions are from Super to Sub1 and from Super to Sub2 with Super 
being the superstate (whether direct or indirect is of no importance) of Sub1 and 
Sub2. Applying the UML execution semantics leads to considering the model in  
Fig. 6 as a source of conflict, if g2 and g3 are true when e occurs. Indeed, the set of 
states the two “conflicting” transitions exit is non-empty and equal to {Super}1. 
However, the model pattern in Fig. 6 is common in Statecharts-based modeling. For 
example, the a and b actions may correspond to the refreshing of distinct display 
elements within a MVC interaction. In this case, g2 and g3 may determine if the data 
to be displayed has changed. We thus do not apply the UML precepts for situations 
like that in Fig. 6. 

3.2   Transitions with Orthogonal States as Destinations 

The state machine diagram which formalizes the behavior of another software 
component in Fig. 7 shows, once again, a situation in which the g2 and g3 guards are 
a potential source of conflict. If S1 is active and e occurs while g2 and g3 are true, the 
two terminal states (S2 and S3) of the two enabled transitions can be potentially 
attained due to the fact that they are orthogonal. 

The execution semantics of UML is clear about this issue: this case is a “true” 
conflict. Nevertheless, the conflict does not rely on the two target states which are 
compatible (i.e., parallel). In UML, the rule to comply with is that one transition at the 
most must be triggered among the two that are leaving S1 in Fig. 7. So, if g2 and g3 
are true at the same time, triggering only one transition among the two conflicting 
ones is based on expressed priorities. This is an option in UML, but noting priorities 
in diagrams is not yet instrumented (by stereotypes or any native modeling construct). 
Thus, in the most common case (i.e., no priority is setup), one might interpret the 
execution semantics of UML as follows: the state machine remains is S1. This 
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Fig. 7. The behavior of a second software component 

                                                           
1 The notation in Fig. 6 is equivalent to having two self-transitions connected with Sub1 and 

Sub2. This notation is useful when one wants to factorize specification elements. 
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solution is unsatisfactory because an exception must also be thrown to make the 
conflict visible. Alternatively, one may consider the model in Fig. 7 as closely related 
to that in Fig. 6 in the sense that the two reachable states are orthogonal. To have a 
uniform approach, we reject the UML semantics and view the situation in Fig. 7 as 
non-conflicting. So, both transitions are triggered and thus the a and b actions are run. 

3.3   Transitions with Nested States as Destinations 

In Fig. 8, there is a slight variant of the state machine diagram of Fig. 7. In Fig. 8, the 
target states of the transitions S1 -> S2 and S1 -> S3 are nested. Like orthogonal 
states, they are always active at the same time. So, if S1 is active and e occurs while 
g2 and g3 are true, UML views these two transitions as incompatible. 

What the models in Fig. 6 and Fig. 7 have in common is that the two (orthogonal) 
attainable states never constitute the source of the conflict. The same analysis can be 
done for the model in Fig. 8: they do not cause the conflict. However, the model in 
Fig. 8 can be, with some additional elements, a source of tricky problems. For 
instance, non-decidable situations may arise if there is another default input state (see 
S4 in Fig. 9). In this case, state machines truly become non-deterministic at runtime, 
if g2 and g3 are both true at the same time when e occurs. 
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Fig. 8. The behavior of a third software component 
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Fig. 9. Variant of the behavior of the software component in Fig. 8 
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To sum up, in Fig. 8, the two target states (S2 and S3) of the two conflicting 
transitions are “compatible”. In contrast, in Fig. 9, S2 and S3 are “incompatible”: 
reaching S2 means reaching S4 which has a exclusiveness relationship with S3. 

To keep a uniform approach, we apply the UML semantics to the two models in 
Fig. 8 and in Fig. 9. So, if g2 and g3 are both true at the same time when e occurs, the 
execution of the models in Fig. 8 and in Fig. 9 leads to raising an exception2. Since we 
do not have a method for arbitrarily choosing between the two conflicting transitions, 
S1 remains active. The key issue is the fact that the model in Fig. 8 is not managed 
like the models Fig. 6 and Fig. 7. We arrive at the following amended definition of a 
conflicting transition: two eligible transitions are in conflict if and only if they target 
states are not orthogonal. 

4   Allowed Events 

An allowed event is an event which does not trigger any transition. This concept has 
been formally defined in [14]. An allowed event is associated with a given state and, 
by definition, bypasses the entry and exit actions of this state. In UML, such a concept 
is named “internal action”3 since an allowed event in a state (many allowed events 
may however appear) is connected with an action to be executed when this event 
occurs and the said state is active (Fig. 10, see e in the inside of S1 or S11). 
Otherwise, without associated action, an allowed event is useless. 

Having a formalism dedicated to allowed events precludes for creating fictitious 
states and unintelligible transitions that do not correspond to the business logic. In 
other words, allowed events have to be processed, without impact on the course of a 
state machine: there is no state change at all when an allowed event is processed. 

However, allowed events may be the source of conflicting transitions (Fig. 10): 
“An internal transition in a state conflicts only with transitions that cause an exit from 
that state.” [1, p. 562]. Indeed, for a given state, an event can be declared both as 
“allowed” and as a label of an outgoing transition. Moreover, this phenomenon may 
be generalized for many states, which are (S1 and S11 in Fig. 10) or are not nested. 

Conflict problems in Fig. 10 come from the possible values of the g1, g2, g3 and 
g4 guards. First, one may notice that the e event is an allowed event for both S1 and  
 

 

Any

e[g3]/c

e[g4]/d
S11 

e[g2]/b

S1 
e[g1]/a

 

Fig. 10. Conflicts linked to the use of allowed events 

                                                           
2 Stopping a state machine after an exception or going on is a decision which is external to the 

interpreter. 
3 The “internal transition” expression is also used for characterizing the effect of allowed events 

even though no transition actually occurs. One may also notice that an “internal transition” is 
not equivalent to a self-transition which, in contrast, does not bypass entry and exit actions. 
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S11. We consider that there is no conflict if g1 and g2 are true while g3 and g4 are 
false when e occurs. Because S1 and S11 are in essence active at the same time, one 
executes a and b. Moreover, S1 and S11 remain active. There is no predefined order 
when executing a and b. The modeler must be aware that the a;b sequence or b;a can 
be performed. 

An alternative semantics is executing b while a is not executed (same conditions: 
g1 and g2 are true while g3 and g4 are false when e occurs). This semantics relies on 
what follows: “(…) nested states override enclosing states.” [1, p. 552]. To assess the 
relevance of this semantics, the following text extract may also be studied: “For 
example, consider the case of two transitions originating from the same state, 
triggered by the same event, but with different guards. If that event occurs and both 
guard conditions are true, then only one transition will fire.” [1, p. 562]. In Fig. 10, 
the two “internal transitions” have no true “origin state” since they have no 
extremities at all. So, this alternative semantics (b is executed while a is not) is 
rejected. This choice is inspired by the fact that S1 and S11 are “compatible”: S1 and 
S11 are always, by definition, both active or both inactive at the same time. To sum 
up, our semantics enables three kinds of execution: a (g1 ∧ ¬g2), b (¬g1 ∧ g2) or, a 
and b (g1 ∧ g2). The alternative semantics only allows us to execute a (g1 ∧ ¬g2) or 
b (g2). It thus seems poorer in terms of expressiveness. 

An extended conflict case is when e occurs, g1 and g2 are true, and g3 is true or g4 
is true or both. So, do we enter into Any? What is executed? From a model checking 
viewpoint, an appropriate solution is to demonstrate, by means of a symbolic 
evaluation, some definitive logical dependencies between g1, g2, g3 and g4. For 
example, a dependency like g1 = ¬g3 definitely exclude runtime conflicts about, 
leaving or not S1 and thus, executing c or a. Unfortunately, such a symbolic 
computation is not always possible. A conflict management policy is thus required at 
runtime. Besides, even if the behavior assigned to substates contractually overrides 
the behavior assigned to superstates, one also needs to establish a priority between 
“internal” transitions and “external” transitions. In our framework, for a given state, 
“internal transitions” have higher priorities than “external transitions”. Again, no 
strategy is provided by UML about this issue. Returning to the example in Fig. 10, 
one may accordingly observe at runtime the following execution semantics: 

• g2 -> b (no situation change: S1 and S11 active) 
• ¬g2 ∧ g4 -> d (Any active) 

The first clause shows that when g2 is true, the execution of d is bypassed (g4 being 
true or not). We have a dual situation for the (g1,g3) pair. This clause illustrates the 
highest priority of “internal transitions” compared to “external transitions”. The second 
clause illustrates the crossing of concerns between internal/external transitions on one 
side and, enclosing/nested states on the other side. If g4 is true (g1 being true or not), a 
is bypassed. This means that an external transition of a nested state has higher priority 
than an internal transition of an enclosing state. We adopt this priority type to be closer 
as possible to UML (i.e., “(…) nested states override enclosing states.”). 

In any case, we think that we obtain a robust modeling framework. Even if the 
choice for internal/external transitions is debatable, it can be easily managed through 
a stereotype, say «InternalVersusExternal», which is associated with two tagged 
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values. This stereotype is either an extension of the UML State metatype or 
StateMachine. It depends upon the degree of desired precision. 

5   Conclusion 

There are many papers which discuss execution semantics variants for the UML State 
Machine Diagrams, but few discuss implementations in a tool and explain how a 
chosen execution semantics has to be controlled by this tool. Moreover, we show in 
this paper that arbitrations and tradeoffs are numerous and important if we want to 
have a rigorous interpreter of the UML State Machine Diagrams. We especially show 
that this objective does not always favor a compliance with UML. 

The code which aims at simulating models can also be used at runtime: such a code 
is model-centric and acts as an appropriate support for component observability and 
controllability. It greatly benefits from the upstream models it is derived from. 
Consequences are manageability, including the real-time visualization of state mac-
hine changes. Furthermore, state machines may act as appropriate supports for having 
self-configuring and self-healing components: the idea of autonomic computing. Self-
healing extends the idea of self-configuring as follows: the availability of facilities for 
carrying out analyses and diagnoses of sequential run-to-completion cycles, may 
favor the identification/construction of correction strategies. As it happens, corre-
ctions may be defined as applying undo/rollback actions to cancel the effect of 
triggered transitions associated with caught exceptions. All of these challenges and 
research orientations are relevant perspectives to enhance the Java framework 
presented in this paper. 
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Abstract. Railroad interlocking software drives specialised micro-
devices, known as interlocking controllers. These controllers primarily
actuate railroad points and change signal aspects in real-time, based on
sensor and timer input. Due to their central function in railroad con-
trol, interlocking controllers and their firmware are safety-critical. The
firmware programs, which mimic physical relays, are written in variants
of domain-specific programming languages based on ladder logic. The
programs have to comply with a more abstract specification of allowable
states of sections of railroad track and equipment, known as a control
table. The translation of a track layout and associated control tables
into ladder logic-based code is manual, and hence subject to costly re-
view and rework cycles. In this report, we describe a case study that
uses a model-driven tool-chain as an automated alternative to the exist-
ing process. The two domain languages, control table and ladder logic,
were modelled and transformations were implemented between the two
models, and from model to program text. We report on implementation
challenges, and describe the outlook and scalability of the approach in
this application domain.

1 Introduction

Railway interlocking software drives specialised micro-devices, known as in-
terlocking controllers. These controllers primarily actuate railroad points and
change signal aspects in real-time, based on sensor and timer input. Currently,
interlocking software is written by railroad engineers. The programs have to com-
ply with a more abstract specification of railroad tracks and equipment, known
as track layout and control tables. Interlocking software is written in variants of
domain-specific programming languages based on ladder logic. The translation
of a track layout and associated control tables into ladder logic is manual, and
hence subject to costly review and rework cycles. It is guided by policy docu-
ments specific to a railway company or to an area of a company’s network. The
resulting variability makes it challenging to automate this process.

Since the MDA is particularly suitable for generating domain-specific soft-
ware [2] and the ladder logic programming language is fairly simple, it seems

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 349–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://en.wikipedia.org/wiki/Ladder_logic


350 C. Chevillat et al.

sensible to apply the Model Driven Architecture (MDA) for generating railway
interlocking software. In this case, the Platform Independent Model consists of
a model of the track layout and control tables, and the Platform Specific Model
corresponds to the ladder logic code.

In this paper, we present a proof-of-concept of this idea. The work was a collab-
oration between The University of Queensland and Ansaldo STS, whose support
for this work we would like to acknowledge. Ansaldo develops railway interlock-
ing software for their Microlok II logic controller for many railway companies.
Longer-term, it is hoped that the MDA technology will support the develop-
ment of railway interlocking software for different domains, but in this initial
proof-of-concept, we applied the technology to a single interlocking from a single
railway company. In particular, we developed meta-models for the track layout
and control tables, and for the Microlok II Control Logic Language (MLC), as
well as transformations between them. These meta-models and transformations,
as well as additional pre- and post-processing steps, have been integrated in the
LokGen prototype tool. It has been applied to two small, but real railway in-
terlockings. We describe the prototype tool and the results of the case study,
including several implementation challenges that we faced, which provides an
indication of the current state of tool maturity in MDA. We also describe the
outlook and scalability of the approach in this application domain.

The remainder of this paper is organised as follows. Related work is reviewed in
Section 2. We provide the necessary background to the relevant railway signalling
terminology and documents that we use in Section 3. In Section 4, we present
an overview of the approach. Section 5 presents the results of the case study.
The outcomes of the project and case study are discussed in Section 6. Section 7
discusses future plans and concludes the paper.

2 Related Work

The safety-critical nature of railway interlocking systems has made them a pop-
ular target for research in software development and verification. One of the
goals of such research is to ensure that the controlling software correctly im-
plements the safety requirements so that trains do not collide or derail. The
requirements of railway interlocking systems are complicated since they involve
multiple pieces of equipment (signals, tracks, points, etc.) and assumptions about
accepted behaviour of trains. As a consequence, abstract models are normally
developed to capture the requirements precisely. The value of such models is
generally accepted [3]: “Through modelling, we have found many things that
were inconsistent, over-specified (ruling out of states which logically never arise)
or had simply been forgotten and thus even if the UML model were not to be
used outside of our office, the improvements it led to would remain”.

Many different modelling notations have been used [4,5,6,7], with formal nota-
tions normally being more amenable to rigorous analysis and verification. UML
as a general-purpose modelling language has also been applied to the railway
interlocking domain [3,8,9], even though its semantics are not fully formalised
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and its analysis support tools are less powerful than more specialised modelling
notations. Rastocny et al. [8] believe that the “general availability and under-
standability of the standard UML is an undoubted advantage, together with
minimum cost needed to learn it and permanent support of the UML standard
from the main providers of software tools”.

A critical challenge with using a model to perform software verification is en-
suring that the implemented software corresponds to the verified model. This is
why the Model-Driven Architecture (MDA) approach is important, since it pro-
motes models as primary development artifacts and generates the corresponding
executable software via model transformation techniques. Naturally, the trans-
formations also need to be verified, but the MDA approach reduces the likelihood
of inconsistencies between the models and the executed software, especially as
systems evolve over time. Majzik et al. [10] use a subset of UML state machines
to avoid problems with semantic ambiguities and describe a tool chain that en-
ables them to simulate the state machine behaviour to check the completeness
and consistency of the specification, and to generate the control software and
test cases. Rastocny et al. [8] model a railway interlocking system in UML and
use the I-Logix Rhapsody tool to animate the model and automatically generate
code (“at least 90% of the generic code of the interlocking logic”).

3 Background

Controling railroad lines is safety-critical, safety requirements are made more ex-
plicit than in many other areas of software engineering. For example, the equip-
ment that interacts with trains and track, called ’field equipment’ in domain
terminology, is classed as vital or non-vital. The procedures followed by railroad
engineers ensure that any failure of vital equipment will maximally cause op-
erations to cease, but never endanger human lives in the process. Also, railway
signalling uses a rigid but safe approach to collision avoidance. Every train is as-
signed a route, which is a configuration of tracks starting at a signal and ending
at another signal, that provides an exclusive path with no other simultaneous
user. Once a route is locked in, a train can traverse it without danger of a colli-
sion. In its simplest term, railway signalling involves the safe establishment and
release of routes for trains. Routes will also be inspected for safe travel condi-
tions. For example, configuring two consecutive points in such a way that a train
has to change direction twice may be safe for a low-speed train, but dangerous
for a high-speed train. As a result, the set of routes is smaller than the set of
potential paths through the network. Designing routes is not an easy task and
it requires that railroad engineers foresee conditions of contention.

The control technology for field equipment has evolved from a box of mechan-
ical levers, to electrical circuits and relays, which are true parallel evaluation
systems, to single-processor microcontrollers like the MLK2, that simulate par-
allel behaviour. As a result, the ladder logic programming language of the MLK2
is modelled on the older relay technology. The translation of the requirements
of the control table into the logic program of the microcontroller has so far been
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Fig. 1. Example of a track layout showing signals 14 and 23, tracks 14 and 25, and
point 7

carried out by specialists and each change in the control table requires a re-
translation to code and subsequent inspection of the solution. In this project the
translation step was mechanised to make it more repeatable and reliable.

Two types of documents are used to produce MLC programs for a specific
part of a railroad network. The first type consists of technical documents that
describe the particular section of the railway network that the MLC program
is intended to control. Primarily these are the Track Layout and the Control
Tables. In addition, the electrical signalling connection of the microcontroller
that runs the resulting program is specified in an Input/Output Bit List. The
second type consists of documents that define implementation policies specific
to a company or an area of a company’s network. In this case they are called
the Data Structure Document (DSD) and the Signalling Principles. Policy doc-
uments lay out best practices including quality and safety requirements. The
following sections describe these documents in more detail.

The Track Layout diagram shows the physical arrangement of field equipment.
It also defines blocks of track that serve as interfaces to adjacent areas of control,
usually neighbouring stations. Figure 1 is an excerpt of a track layout.

A Control Table is a tabular representation of all vital dependencies within the
signalling system for control and release of signals, points, and other equipment.
Control tables are constructed by a railroad engineer applying signalling princi-
ples to the track layout. They define the prerequisites that have to be satisfied
before an action can be taken. For example, turning a signal to green will re-
quire that following block is free and all other tracks leading into it are sealed
off with signals. The design of control tables varies between railroads. Table 1 is
an example of a control table for signals.

Bit Lists declare Boolean variables that map to input/output registers in the
external communication interface of the controller. They define the interface to
the local field equipment and to the Train Control System (TCS), which provides
operational control of the whole network.
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Table 1. Signal control table

REQUIRES
SIGNAL TRACK CIRCUITS POINTS ROUTE LOCKING
ROUTE ASPECT SIGNAL CLEAR SET & OR TIME AFTER

Id. NORMAL STICK OTHER LOCKED TRACKS RELEASED SIGNAL
TRACK TRACKS N : R Secs USED

13 Y 35 42 (41 w 6R) 13AT 13BT (20AT 8
(54BT w 20 cl)

G w 8N 6R
&w 7N 6N)

20A Y w JI 42 36 20AT 24AT 6 28AT CLEAR 28A 43A
(27 w 8R 6R) (27CT w 10R) 28BT

G w JI (44 w 8R 6N 7R
&w 8R 6R 7N)

20B Y 20AT 19AT w 7R 6 27AT 180 44A

G

A DSD of a railroad project is a best-practice catalogue of patterns for pro-
gramming in Microlok II Control Logic Language (MLC). It evolves during the
project. It is produced by rail engineers that interpret the provisions of the ’Sig-
nalling Principles’ document and then write quality MLC programs based on
the track layout, control tables, and bit lists. Whenever a typical pattern occurs,
the input from these three sources and the corresponding output code is listed,
leading to a mapping template. When a pattern reoccurs, the same mapping
template is applied. As new situations are encountered, the pattern catalogue
grows. As a result, a DSD grows into an informal and partial description of a
mapping or transformation.

Signalling Principles define design principles for a specific railway company
and/or area. They cover the operational requirements that need to be considered
when producing the signalling arrangements, control tables, interlocking design,
and programs. For example, a high-speed rail may have minimal separation
distances between signals, or maximal approach speeds. These affect switching
times required for points and signals, and track speeds. Signalling Principles
thus affect the strategies used to implement the application logic. Consequently,
a DSD is derived from the signalling principles applied during its creation.

4 MDA Approach

This section discusses the underlying technology and workflow of our solution
and describes interesting aspects of its major components: the control-table and
code metamodels, and the model transformation.

4.1 Technology

The project used the Eclipse Modelling Framework (EMF) as its basis for imple-
mentation. EMF consists of libraries and code generators that convert a meta-
model into a storage layer, a data manipulation layer that provides undo/redo,
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and a user interface component that is compatible with the Eclipse IDE. This
high degree of automation and integration enabled us to concentrate on the
modelling side much more than would have been possible with previously avail-
able Meta Object Facility (MOF) approaches like the Java Metadata Interface.
However, EMF does not yet provide model transformation tools as part of the
basic framework. There is still a great deal of competition in this area despite the
fact that the OMG has already published the QVT standard. In this project the
model transformation was implemented in Java. Transformations from model to
text were implemented using Java Emitter Templates (JET) technology, which
is used by EMF itself to generate source code. JET combines text templates with
data drawn from a storage facility. JET is crucial to the functioning of EMF,
hence it is mature, so we can confidently apply it in the project.

4.2 Workflow

The MLC Program Generation Software (LokGen) generates MLC following the
workflow in Figure 2. It shows the MOF levels M2, which holds the model of
the domain language, and M1, which holds instances of those languages. The
model transformation is an interpretation of the DSD and formalizes how an
instance of the Control Tables Extended Metamodel (CTExtended) is mapped
to an instance of the Microlok II Program Metamodel (MLKCode). The trans-
formation takes one control table model as its input and returns one microlok
II code model as its output. Internally, it uses EMF OCL to query the source
model.

EMF uses a mechanism called ’resource factories’ to load and store models in
different external formats. MLC Program Generation Software (LokGen) con-
tains two resource factories for loading the control table: either it is read from
a ZIP archive containing five tables stored as Comma Separated Values (CSV)
files or one Excel file containing the same tables as worksheets. The layout of
the tables follows the layout of the work items that rail engineers are used to.
The control tables follow the layout used in the CAD drawings of the stations
map and the bit lists follow the layout used in specification documents. The code
output is generated using JET.

4.3 Metamodels

The degree of detail and semantic strength of the two metamodels are different:
The Extended Control Table is modelled as expressively as possible, while the
code model is very close to the syntactical presentation of the output text. 1

The CTExtended model is segmented into four packages. Three of these pack-
ages reflect the domain entities described earlier: track layout including field
equipment, control tables and bit lists. The fourth is a system container. This
modularity simplifies adaptation and maintenance of the models.
1 A detailed discussion of the metamodels is available from
http://www.itee.uq.edu.au/∼mdavv/.

http://www.itee.uq.edu.au/~mdavv/
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Fig. 2. MLC Program generation workflow

Part of the control table model is a model of a textual grammar. The customer-
specific variant of control tables implemented in this project uses a simple no-
tation for conjunctive formulas to express required conditions on pieces of field
equipment and tracks, as shown in Table 1. For example, the statement below
specifies that Track 13B must be unoccupied, and Track 20A must be empty
either (&) when point 8 is Normal and point 6 is Reverse, or when points 7 and
6 are both Normal. In addition to the point conditions that apply to Track 20A,
Track 54B is required to be unoccupied when signal 20 is clear.

13BT (20AT (54BT w 20cl) w 8N 6R &w 7N 6N)

Similar to the strategy applied to OCL2 in the UML2 standardisation, the
constraints are parsed and turned into model elements to make them accessible
to model-based tools. In contrast to the OCL approach, our parser retains the
syntactical order and form of terms. It does not canonize the formula or op-
timize redundancies. This was done deliberately to retain formatting based on
syntactical conventions that may implicitly be used by the domain engineers.

All models use derived attributes to describe secondary properties using do-
main terminology. Internally, these derived attributes are realised as OCL queries
and can hence be expressed in a more compact and explicit way than would be
possible with a Java implementation. The model does not make use of meta-
model operations or the EMF validation framework because most conditions are
currently checked by the resource factory during table load.

The code model is a close rendition of the grammar and style used for MLK2
programs. As it follows the style laid down in the DSD, it cannot be used to
reverse-engineer every syntactically correct MLK2 program. Rather it is intended
as a blueprint for well-formatted MLK2 programs that adhere to the DSD.

4.4 Transformation

The model transformation implements rules of the DSD that define the ren-
dering of control tables to code by patterns. As a result, these rules are not
described strictly in terms of either the source or target model. However, the
code examples that are used to illustrate the rules are concrete, so they are
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primarily used in structuring the transformation program. The set of rules was
expressed as a set of Java methods that have no order dependence. The Java
methods recursively decompose the transformation problem, and do not access
overlapping sections of the target. These restrictions were adopted to allow a
refactoring of the implementation in the future to change to a declarative model
transformation approach. In addition, the methods use OCL query expressions
to select parts of the source model. These are shorter and more expressive than
imperative loops, and hence avoid errors when navigating the model.

5 Evaluation

The tool was evaluated on a real station design, and the output compared with
the actual implementation that had been verified by railroad engineers. The im-
plementation was designed and evaluated with inputs encoded for two station
designs. The first design was used as sample data for testing the implementation
during development. The second design was used only after the implementation
of the tool was completed, to separate implementation and validation. The sta-
tion designs are small, but representative of typical stations in local railroads.
The corresponding track layouts contain three points, six main signals, two shunt
signals, a siding line and two block sections. In both cases, the design contains
5 condition lines in the points control table and 11 condition lines in the signals
control table. The following sections list some interesting aspects of the results
of the case study.

The process generated syntactically correct MLC programs for the samples
used in the case study. The MLC compiler accepted the code in all cases.
This is interesting, as the available documentation did not include the com-
piler’s documentation or a BNF. It shows that building a code generation fa-
cility from semantically well-defined samples can effectively create a sound sub-
language.

As the transformation system is built as an implementation of the guidelines
of the DSD, all generated programs comply with the DSD’s provisions. Code
produced by LokGen offers improved readability and orientation through con-
sistent variable ordering and naming, based on the order of occurence in the
control tables. In addition, indentation and section titles make it easy to nav-
igate the produced code. Assignments are explicit and fine-grained, using only
basic constructs of the Microlok II (MLK) language, which aids debugging in
the simulator.

While the project initially assumed that the information to generate the code
was completely provided within the tables being processed, it became apparent
that the CAD drawing of the station layout must also be considered as input for
the transformation. For example, the tables do not contain information about
routes that use the same piece of track in opposite directions, which leads to
an additional requirement of setting blocking signals for the opposing direction.
Similar issues arise if a track is subdivided into smaller consecutive units.
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Listing 1.1. Example of the effect of Shorthand notation use

ASSIGN HS13DPR TO HS13D2PR;
ASSIGN HS13DPR ∗ HS15DPR TO HS15D2PR;

ASSIGN HS13 . 15DPR TO HS13 . 15D2PR;

ASSIGN HS13DPR ∗ HS15DPR TO HS13D2PR;
ASSIGN HS13DPR ∗ HS15DPR TO HS15D2PR;

Although LokGen produces MLC code that, after compilation will ensure safe
operation according to the definitions of the DSD, railroad engineers criticised its
style. Investigating why revealed that railroad engineers use the code as a speci-
fication document in its own right and add information to it that is not available
in the control table or track layout, and cannot be computed. Listing 1.1 is
intended to illustrate such an issue. It shows source code for a Hypothetical
Station (HS). Each line contains a statement that ASSIGNs the evaluation result
of a logical formula over variables to output variables.

As the railroad engineers use the code as an additional specification docu-
ment, they are naturally interested in terseness. This leads to the use of syn-
tactic shorthand notations of the MLK language, which often implicitly alter
the meaning of the program. For example, the notation xN.M translates into the
conjunction of xN and xM if used on the input side, and causes the creation
of two assignment lines if used on the output side. In theory, these forms can
hence be translated mechanically. Consider the example in Listing 1.1. It reads
as follows: Assign the state of the Clear Repeat Relay of track 13 (HS13DPR)
to the second Clear Repeat Relay of track 13 (HS13D2PR). Assign the state
conjunction of the Clear Repeat Relays of tracks 13 and 15 to the second
Clear Repeat Relay of track 15. This is the smallest possible and explicit so-
lution, and it is generated by LokGen. The railroad engineers prefer to use the
line below as an abbreviation. It expands to the two explicit lines shown be-
low it, which are not semantically identical, as they introduce an additional
unnecessary condition. These effects grow even more severe if another short-
hand “..” is used, which acts as a “for all” construct. The differences ob-
served all stem from the fact that the code is seen as a detached artefact,
rather than an intermediate product in a chain from station design to executable
binary.

6 Discussion

Summarily the case study can be rated as a success, as the partner is interested
in pursuing this approach further. The main motivator is the substantial savings
in time to produce a base implementation. While the definition of practice by ex-
ample as used in the Data Structure Document (DSD) yields acceptable results
for the largest part of the work, it also reveals that full automation will require
a more thorough formalisation of the rules. Such formalisation would implicitly



358 C. Chevillat et al.

standardise the procedures of railroad engineers, reducing the degrees of freedom
they currently enjoy in making implementation decisions. In addition, the case
study has shown that the assumed inputs for the generation are insufficient
as they do not include certain topological information from the station layout,
such as opposing routes or subdivided blocks of track. These limitations require
a railroad engineer in the design loop, and reduces the traceability of outputs to
the original designs. To capture the topological information CAD-drawn station
layouts would need to follow more stringent conventions to make them parseable.
Finally, an MDA process raises issues of version control and build management.
Currently, work artefacts are versioned, moved and archived in paper form. In
an MDA setting, this could be automated to ensure that inputs and outputs
remain traceable.

The case study also showed that while the core frameworks of MDA are reli-
able and provide time savings to programmers, other more peripheral building
blocks for MDA solutions are still maturing. These limitations prompted certain
design decisions in the implementation.

Although the OMG has finalized the QVT standard, uptake of the standard
has been slow. Implementations are still rare. There is no complete implementa-
tion of the QVT standard as of this writing. Further, although most implemen-
tations use EMF as a basis, transformation models are not interchangeable be-
tween implementations. Originally we had intended to use the Tefkat [11] model
transformation system to implement the core model transformation. However,
Tefkat describes its transformations in terms of the source model, which did not
match the way rules were described in the DSD. More prominently, Tefkat was
not as mature as we had expected and also suffered from an underlying bug in
the EMF core. As a result, the Java-based solution was implemented, using the
restricted implementation pattern described previously.

As the design of the tool started with tests of sample data to be imported into
the model, the resource factory which is responsible for parsing the data checks
a large number of well-formedness conditions on the imported table data. As a
result, this part of the system is comparatively complex, while the control table
model remained a structured data container. In the future, responsibility for
upholding well-formedness rules should probably be refactored into a separate
validation module. In addition, the parser that disassembles the inline condition
statements could be represented as a metamodel operation. That this has not
been done yet exposes an issue with EMF: Clean specification of behavioural
model aspects (invariants, derived attributes, and operations) are complicated
because they are implemented in Java by default.

The development of frameworks that link text-editors and underlying mod-
els, such as the Textual Editing Framework, is just beginning. Consequently,
the development of text-based model editors currently involves substantial pro-
gramming effort and was not undertaken in this project. There is currently no
text editor for MLK code. However, we believe that a semantically rich model
would be a useful contribution towards code analysis and refactoring of existing
source.

http://en.wikipedia.org/wiki/QVT#Implementations
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html


Model-Based Generation of Interlocking Controller Software 359

7 Conclusion and Outlook

Ansaldo, our project partner in the development of this case study, has continued
our joint work with development of the tool for two other railroad projects.
In these projects MLC Program Generation Software (LokGen) is being used
in parallel to the individually programmed solutions provided by the railroad
engineer. Both extensions require moderate changes to the input model and
transformation, while the output stage has remained the same.

Although building a new but similar variant of the tool for different clients
and rail-road types still presents some savings in labour, the optimal solution
would encompass a generic model. Such a model would canonize the sets of
conditions that are expressed in the different forms of control tables. Designs
could then be transferred between projects, and engineers would not need to
learn different tools. Maintenance and development could be streamlined, with
version management, distribution and update provided by the facilities of the
Eclipse framework. Combining these factors will maximise reuse and pay-off. To
explore this perspective, we are planning a follow-on project with Ansaldo.

Representation of the control tables and other associated input as models
opens up the possibility to revisit previous work on verifying these as specifi-
cations using model checkers. In previous work, the presentation of generation
dependencies and counter examples presented a challenge [12]. The ability of
model-based technology to build cross-referenced models should contribute im-
provements in this area.

While controllers theoretically represent a correct representation of the elec-
trical relay-based mechanism that is simulated in the ladder-logic programming
languages, they are in practice restricted by the limits of a classical von-Neumann
machine. As such, parallel operations in the language translate into prioritized
queues of operations in machine language. In extreme cases, the queues can cause
critical real-time limits to be exceeded, or stacks can overflow. As a result, regres-
sion testing of the system is necessary. Currently, this is another labour-intensive
manual task that offers potential for automation.

The capacity limits of the micro controller may require several collaborating
controllers to realise larger station layouts. Ideally, the MDA tool would assign
portions of the required program to the different processor nodes and furbish
them with operationally safe communication code. Currently, the decomposition
of a larger station layout is done manually. Potentially, the MDA approach would
allow for safe optimisation of the protocols, or allow automated decomposition
and thereby reduce the number of processing nodes required to realise a project.
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Abstract. This paper reports an industrial experiment made at Thales
to use Model Driven Architecture (MDA) for system engineering. System
engineering processes are currently mainly document-centric. The main
experiment goal was to study the applicability of MDA at the system
engineering level. The experiment consisted of setting up a model-driven
simulation environment for a maritime surveillance system. The simu-
lation is achieved thanks to 3 models conform to 3 metamodels. The
implementation uses the Eclipse Modeling Framework and is written in
the Java Programming language. This pilot project met the deadline,
the budget and the threshold of desired functionalities. We report the
main advances given by the MDA approach in the context of simulation
for system engineering.

1 Introduction

Simulation is a key step in the development of a maritime surveillance system [1].
At the very beginning of the life cycle of the system i.e.; at the system engineering
level, simulation is a way to communicate with the customer in order to elicit
the needs. Therefore, simulation eases the consistency between the customer
requirements and the delivered product. From an engineering point of view,
simulation is a way to validate parts of the architecture, as well as the behavior
of the product. Last but not least, this permits a better cost estimation and a
better planning of technical and human resources.

A maritime surveillance system (MSS) is a multi-mission system. As depicted
in figure 1 as a UML use case diagram, it is intended to supervise the maritime
traffic, to prevent pollution at sea, to control the fishing activities, to control
borders. It is usually composed of an aircraft, a set of sensors, a crew and a large
number of software artifacts. The number of functionalities, the relationships
between hardware and software components and the communication between
the system and others entities (base, other MSSs) indicate the complexity of the
system.

Maritime surveillance system designers have been developing simulators for
several decades. Current simulation methods, sometimes processed at early stage
of design through technico-operational simulations, do not fully warranty the

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 361–368, 2008.
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Fig. 1. Use cases of a maritime surveillance system

design quality. Because there is no link between the system model checked by
simulation and the system design. Moreover, the techniques used did not meet
the required openness for reuse and modifiability. One of the key point of a
simulator is to let the end-user, the customer, to test as many versions of the
product as needed, and to let the engineers to add easily new features wanted
by the customer.

In this paper, we report an industrial experiment we made to develop a new
simulator for maritime surveillance systems following a Model Driven Architec-
ture (MDA) approach [2]. The innovation did not reside in 1) new functionalities
since the new simulator does not have more functionalities than the legacy ones
2) neither in the modeling activities since simulation has always been based on
simulation models. The explored innovation consisted in the use of MDA.

The main goal of this experiment was to study the applicability and the
advantages of MDA for system engineering activities. The experiment was a
success. We mainly found that the MDA principles enable:

– to keep a complete independence between different concerns that are system
architecture, simulation scenarios, and simulation-based analysis.

– to align the system engineering model and the simulation model which can
be both explicitly specified.

The paper is organized as follows. In section 2, we present the design of the
model-driven simulator. We then present the lessons learned in section 3 and
conclude.

2 The Design of the Model-Driven Simulator

Our model-driven simulator was built following the process as follows: 1) identify
the domain objects to be modeled; 2) elaborate the corresponding metamodels;
3) design the simulator; 4) develop the simulator.
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The remainder of this section does not follow this chronological process. For
sake of understandability, we will first present the architecture of the simulator,
the metamodels and models used, and we conclude by exploring more in depth
how we leverage model orientation in a simulation point of view.

2.1 The Model-Driven Simulation Process

In figure 2 is depicted the architecture of the model-driven simulation process.
The backbone of the simulator is the Y pattern depicted as bold lines. The
simulator takes as input two models: a model of maritime surveillance system
and a model of the tactical situation, called a scenario model. It outputs a
model of simulation traces. The three models are specified by three metamodels
respectively. The contents of these metamodels are presented in the next sections.

This architecture is built on two model-driven principles: 1) all data are ex-
changed as models specified by a metamodel 2) the domain concepts are kept
independent of implementation concerns. This is slightly different from the Plat-
form Independent Model (PIM) / Platform Model (PM) / Platform Specific
Model (PSM) of the seminal MDA paper [2]. However, the architecture follows
exactly the same principles. To a certain extent, the MSS model corresponds to
a PIM, the scenario model to a PM and the simulation trace model to the PSM.

This architecture has several desirable properties. All the variability of the
simulator is encoded into models. For instance, adding a given radar, or changing
a feature of the radar to the maritime surveillance system is made by modifying
the input MSS model.

The MSS model and the scenario model are not coupled at all. Therefore, we
can create several MSS models, several scenario models and study the comport-
ment of each system in each scenario.

Fig. 2. The MDA architecture of the simulation process
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The graphical output of the simulator is absolutely not coupled with the
simulation rules. This property enables to easily have many tools that analyze
the simulation output. That is to say, we have one and only one interface for
plugging modules to the simulator. In such a model-driven architecture, the
interface is a model, and is fully, consistently specified by a metamodel, the
simulation trace metamodel. This point is further explored in section 2.3.

2.2 The Metamodels and Models Used

Maritime Surveillance System Metamodel. The maritime surveilllance
system metamodel is divided in five packages. The criterion used to create the
packages is a functional decomposition. The navigation system package con-
tains classes whose roles are to represent routing and positioning components
(hardware, software and composite). For instance, there is a GPS1 class. The
attributes of this class are the main characteristics of a GPS.

The detection package contains classes representing detection components of
a MSS. For instance, the MSS model can be simulated with a classical radar, a
IFF (Identification Friend and Foe), a FLIR (Forward Looking Infra Red). The
attributes of a model of the radar include the antenna angle, the rotation speed,
the impulse period.

The communication system package explicit the communication type and sys-
tems that will be simulated with the model. It ranges from internal communica-
tion between the crew members and external communications. The classes covers
the communication support (e.g. VHF, IHF, satellite) and communication prop-
erties (encryption, protocols).

Finally, the crew package contains classes to specify the number of crew mem-
bers, their respective skills and their functions. The database package acts like a
schema of the embedded database of tactical information (e.g.; radar signatures).

The model mainly used for testing purpose represents a maritime surveil-
lance system composed of an airplane Falcon, embedding a radar and an inertial
system.

Scenario Metamodel. The scenario metamodels contains all the needed
classes to represent a tactictal situation. A model, instance of this metamodel,
specifies the surveillance zone, the number and types of objects that are in the
zone. For each object is specified a trajectory including the speed of the object.
Furthermore, at the system engineering level, and for simulation purposes, we
had to specify the concept of surface equivalent radar (SER) per object and the
concept of weather for a given zone. During the simulation, the weather is used
to compute the quality of the information given by the embedded sensors.

Simulation Trace Metamodel. The simulator takes two models as inputs:
a MSS model and a scenario model. Then according to the semantics of the
simulation, it outputs a simulation trace. Following a model-driven approach,
this simulation trace is a model too, specified by a simulation metamodel.
1 Global Positioning System.
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The simulation traces contain all the events that have a semantic with respect
to the simulation at the system engineering level. They are :

– the position of the MSS system;
– the position of every objects of the zone;
– the internal attributes of the MSS: fuel, detection field of the radar;
– the semantic events, for instance the detection and identification of the ob-

jects achieved by the system core.

In the next section, we show how we use this information to leverage as much
as possible of the information given by the simulation.

2.3 Leveraging Model Driven Orientation

The core of a model-driven simulator is to specify all inputs and outputs with
metamodels. To a certain extent, each of these metamodels specify an interface.
This enables to introduce a kind of composition between the simulator functions.
The MDA architecture of the simulator presented in figure 2 illustrates this point.

However the architecture goes far beyond. The simulation part of figure 2
contains only the simulation rules that represent the interactions between the
model and the scenario. The architecture enforces that no analysis is done during
this phase.

Our idea is to consider that any treatment on the simulation output could be
absolutely decoupled of the rest of the application. The treatments are mainly
visualization and measurement. However, there are several possible visualization
as well as several measurements. We encapsulate each of them into a simulation
analysis component, that takes as input a simulation trace model specified by the
simulation trace metamodel. This is depicted in figure 3. We apply this design
principle to several simulation analysis components.

The first component is a video player of the simulation events contained in the
simulation trace model. It outputs the tactical view of the zone of surveillance. A
screenshot of this player is given figure 4. The main screen is a 2D representation

Fig. 3. Usages of the simulaton traces
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of the zone, with a geographic map, the maritime surveillance system (the yellow
dot), the objects of the zone (several boats represented as orange dots), and the
detection field of the radar, which is not visibe due to the size of the figure. In
the upper bar, there are the indicators of the simulation characteristics (time,
position and fuel consumption of the MSS). In the left bar is a list of the tactical
events that occur, for instance ship detections. The remaining items are widgets
to control the simulation (play/pause/stop buttons). The scale that controls
the speed of the video player lets to play the scene at a speed different of the
simulated time. This simulation component is a demonstrator to communicate
with customers as well as to illustrate the impact of a certain system design
choice.

Fig. 4. Screenshot of the model-driven video player

Since we already have human training processes using simulators, we devel-
oped an another simulation analysis component to represent the view of a radar
operator. The last simulation analysis component computes several domain met-
ric values such as the ratio of detected objects or the ratio of identified objects.
This component is generated from an abstract specification of domain metrics,
thanks to a dedicated framework developed in another project [3].

Finally, since the simulation analysis components are decoupled from the sim-
ulation itself, we plan to reuse these components to analyze some traces of real
missions. This will enable to elaborate powerful processes for training and de-
briefing, as well as analyzing real missions in order to improve future versions of
the simulator.
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3 Lessons Learned

First of all, this project to apply MDA at the system engineering level was a
success. The project met the deadline, the budget and the threshold of desired
functionalities. This validates the MDA as an architectural principle for a mar-
itime surveillance system simulator.

Productivity Gain. Our experiment gives some clues about a potential MDA-
specific productivity gain. First of all, we obtained the prototype within six
months of work of a junior engineer. The technologies used were the Eclipse
Modeling Framework [4] coupled to Java to implement the simulator. Thanks
to the totally generated EMF model editor, we could right away, and for free,
give the system engineers, who are not necessarily computer scientists, a tool
to express the models. This is to be compared with the legacy simulators where
a specific graphical user interface had to be developed to specify the models
involved in the simulation.

An Agility Problem. The main disadvantage of EMF is the code generation step.
Code generation is not a problem when one does not have to modify or enrich
the generated source code (e.g.; a classical mature compiler). But in the EMF
case, some methods and method bodies have to be added into the generated code.
Our metamodels were very volatile during the prototyping phase, hence required
many code re-generation and the associated method modifications. On the one
hand, this hampers the agility of the development process. On the other hand,
some re-generations were destructive, i.e; destroyed manually added code, due
to the number, the complexity and the sensitivity of the generation parameters.
This problem was partially addressed with a source revisioning system.

Separation of Concerns. The MDA achitecture of the simulation process en-
ables a real separation of concerns. The variability of a MSS simulator lies in
the system architecture, the simulation scenarios, the kinds of post-simulation
analysis. All the variability of the models is explicitely concentrated into differ-
ent metamodels. There is no dependency links between the metamodels hence
we obtained a total independence between concerns. This architecture is totally
open w.r.t. system models, scenarios and analysis; e.g.; we are able to test dif-
ferent scenarios with a same model or perform different analysis from a same
simulation.

Early Model Alignment. The real innovation of our experiment was the meta-
modeling of the domain of maritime surveillance systems. Thanks to this step,
the creation of a model involves only domain concepts and is not polluted by
implementation concerns. This was perceived as highly valuable: the system en-
gineering model facilitates the communication between the different stakeholders
(a kind of mental alignment); it can be linked to a design model; and it is totally
aligned with the simulation model by construction.
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4 Conclusion and Perspectives

In this paper, we presented our experiment to apply Model Driven Architec-
ture at the system engineering level. The experiment consisted in developing a
model-driven simulator for maritime surveillance systems. This experiment was
a success and raises new issues, which will be explored in further R&D projects.

First of all, the domain metamodel can be seen as the specification of a domain
specific modeling language (DSML). We will explore the ways to leverage the
metamodel with a dedicated human-machine interface that supports an intuitive
concrete syntax for the models. Thus, we would have a intuitive and usable
modeling backbone to support the system engineering process.

The core of the simulator is an interpreter of a domain model, achieved by
dedicated transformation of two models (MSS and scenario) into a simulation
trace model. For prototyping and efficiency reasons, it was implemented in Java.
We would like to evaluate the relevance of transformation languages in our case,
with respect to the requirements specific to simulation.

The product line of maritime surveillance systems is highly driven by the need
for composability. We are exploring how to express this composability within the
MDA architecture of the simulator. Studies will be made to explore various solu-
tions, e.g.; expressing the composability directly into the maritime surveillance
system metamodel, or building a set of composable models of maritime surveil-
lance systems.

Finally, the great promises of MDA for system engineering would have to
be compared to other approaches within a controlled comparative experiment,
which was not the goal of ours.
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Abstract. Composite Applications on top of SAPs implementation of
SOA (Enterprise SOA) enable the extension of already existing business
logic. In this paper we show, based on a case study, how Model-Driven
Engineering concepts are applied in the development of such Composite
Applications. Our Case Study extends a back-end business process which
is required for the specific needs of a demo company selling wine. We use
this to describe how the business centric models specifying the modified
business behaviour of our case study can be utilized for business per-
formance analysis where most of the actions are performed by humans.
In particular, we apply a refined version of Model-Driven Performance
Engineering that we proposed in our previous work and motivate which
business domain specifics have to be taken into account for business per-
formance analysis. We additionally motivate the need for performance
related decision support for domain experts, who generally lack perfor-
mance related skills. Such a support should offer visual guidance about
what should be changed in the design and resource mapping to get im-
proved results with respect to modification constraints and performance
objectives, or objectives for time.

Keywords: Model-Driven Engineering, Model-Driven Performance En-
gineering, Performance Decision Support, Composite Applications, Com-
position Environment, Enterprise SOA.

1 Introduction

Enterprise SOA offers flexibility for the definition of business processes by the
orchestration of business control logic based on Enterprise Services which are
technically implemented as Web Services extended with proprietary features
[1]. Flexibility in the design of business control logic is further realized by
distinguishing between two kinds of process orchestrations: Back-end process
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orchestration is done to define business processes with longer lifecycles, whereas
front-end orchestration, encapsulated in Composite Applications, is done to com-
pose business processes with shorter lifecycles.

Composite Applications are self-contained applications that combine
Enterprise Services with its own business logic, and thereby provide user centric
front-end processes. These processes transcend functional boundaries, and are
completely independent from the underlying architecture, implementation and
software life cycle.

In the development process of Composite Applications, as well as back-end
processes, MDE lets domain experts confine their focus to the creative tasks
of defining new business processes on top of existing ones by utilizing Domain-
Specific Languages (DSLs). The utilization of MDE concepts, furthermore,
means that the error prone and time consuming task of actually integrating the
new business processes with the complex enterprise scale underlying platform,
such as provided by the SAP products Business Suite for large size companies
and Business ByDesign for small and mid-size companies, is done in a more
efficient way.

A high degree of flexibility along with the fact that domain experts are usually
non-performance experts raises the need to develop tools and methodologies to
support them in their daily work from the performance perspective.

This paper is structured as followed: Section 2 describes, based on an indus-
trial case study, how Composite Applications are developed by utilizing MDE
concepts. In section 3 we apply the MDPE process to the presented example.
Section 4 stipulates the need for performance related decision support. In section
5 we describe the state of the art. Finally, section 6 concludes the paper.

2 MDE for Composite Applications

Our case study involves a Wine Seller who gets wine supply from several suppli-
ers, and thereafter sells the wine to different customers. The Sales and Distribu-
tion Organization of the Wine Seller is supported by a standard software product
implementing standard back-end processes. The back-end process under consid-
eration is organized in functional units providing its own business behaviour
called Process Components. Thus, a concrete business application uses function-
ality provided by multiple Process Components. A complete set provided by the
Business Suite can be found in [2].

The manager of the Sales and Distribution Organization of the Wine Seller
now wants to extend the existing business process so that it is supported to add
an extra free bottle of wine to orders of those customers who notified a quality
issue for their previous order. The decision as to which wine will be added for
free has to be taken manually by a wine specialist based on a wine rating and
the customer’s purchase over the last 12 months. Addtionally, the selection has
to be approved by the manager of the Sales and Distribution Organization.

This raises the need for an extended version of one Process Component, which
is Sales Order Processing in this case. It is, however, not desirable to change
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Fig. 1. Development of Composite Applications

the business process directly in the back-end because the application should be
independent of the software vendor life cycle. Therefore, a platform independent
technology is needed that could use the platform back-end business logic. To
meet this requirement, we developed the Composite Application called Wine
UndeR Special Treatment (xWURST).

Our research mainly targets Business ByDesign systems. However, at the time
of our first experiments a running instance was not available yet for our needs.
Therefore, the Composite Application we use to motivate our research was im-
plemented as an extension based on two Business Suite sandbox systems: HU2
[3] provided us with access to these Process Components which are part of SAP
Enterprise Resource Planning (ERP) and HU8 [4] gave us access to the SAP
Supply Chain Management (SCM) Process Components1.

A description of the building blocks of our case study is now presented.
The bottom layer of figure 1 depicts those Process Components which are

relevant for our case study. As can be seen, we mainly use ERP Process Compo-
nents, such as Quality Issue Processing, providing Enterprise Services, such as
QualityIssueNotificationByElement. Additionally, Process Components available
in SCM are employed as well. A 3rd party service provided by an Independent
Software Provider (ISV) is also used. For our case study, we extended the Process

1 Interested readers can apply for a user of the HU2 and the HU8 systems [2].
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Component Sales Order Processing with two manual steps called SelectWine-
ToBeAddedForFree and Approval, which modify the behaviour of the overall
back-end business process.

The functionality required to develop, deploy and maintain Composite Appli-
cations is encapsulated in the SAPs Composition Environment (CE) providing
the design-time and the run-time of Composite Applications. The design time
tooling, which is of interest for this paper, is integrated in the NetWeaver Devel-
oper Studio. Three groups of technologies could be identified in order to better
understand the MDE-concepts in the development of Composite applications:

The Services Group, called Composite Application Framework (CAF, see fig-
ure 1 second layer from the bottom), enables the technical integration of the
new front-end business logic of the Composite Application with the existing
business process logic provided as services. For xWURST we used the function-
ality of CAF to provide infrastructure to publish services (see for instance Get
Sales Order by Quality Issue in figure 1 that can be used by the front-end busi-
ness processes. CAF also generated the code for the dependencies between the
xWURST Composite Application and back-end processes. Additionally, we had
to define new business logic, the 3rd party wine rating, which is defined within
a new Business Object that can have a local persistence. CAF also enables the
development of Business Objects with remote persistence. We published the
functionality of our business object as a service called Get Wine Rating to be
consumed by front-end business processes. Services and Business Objects pro-
vided by CAF are implemented as Enterprise Java Beans (EJBs) and can rely
on the existing persistence and life cycle mechanisms of the Java EE technology.

The Views Group provides model-driven tooling for the development of user
interfaces for Composite Applications, such as the Visual Composer, which is a
completely code free environment for user interface development. This environ-
ment consumes Web Services and provides a DSL to define the mapping between
service inputs and outputs to user interface elements such as forms, tables or
charts. In [5] a more detailed description can be found on model-driven devel-
opment of user interfaces with the Visual Composer. Other technologies, such
as Adobe Interactive Forms, mobile user interface technologies, and voice-based
user interface technologies are supported as well but not used in our case study.
In our use case we published the central operations of xWURST as Web Ser-
vices. This enabled us to use them with two wizards modelled with the Visual
Composer, one for a specialist who selects the wine to be added and one for
a manager who has to approve this selection (see figure 1 third layer from the
bottom).

The Processes Group enables definition of new front-end business processes
by a domain expert, who utilizes MDE concepts. For modelling the front-end
business processes, a tool called Galaxy has not been released yet to customers or
ISV’s. However, we assume the availability of a tool to model front-end business
processes by using Business Process Modeling Notation (BPMN) [6] as DSL for
front-end business process development, as depicted by figure 1 in the fourth
layer from the bottom.
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Concluding, models and MDE concepts are for the development of user inter-
faces, front-end business processes and proprietary models of back-end processes
are available. Therefore, not only the Composite Applications, but also back-end
processes can be developed by applying MDE concepts and by involving domain
experts in the software development process. Additionally, service-oriented con-
cepts enable a high degree of flexibility, as presented in the xWURST application
by extending a back-end process independent of the software vendor lifecycle.

Based on the xWURST scenario, the authors see the following challenges for
the design of business processes and the mapping of human or artificial resources
to process steps:

– Several steps within the business applications have to be processed by human
resources. The decision about which human resource performs which step in
a business process is not trivial to make.

– The former difficulty is further increased by the flexibility introduced with
the possibility of extending the back-end processes with front-end processes
by a domain expert, with no performance related skills. This can dramati-
cally change the behaviour of already running and stable systems.

It is obvious that a domain expert, with no performance skills, cannot decide
while introducing the extensions or customizations if this could lead to any
performance related consequences. In the xWURST example context, the per-
formance related issue would be that if the two additional manual steps in the
back-end business process now needs more time than defined as an objective. We
applied MDPE in order to deal with this problem as described in the following
section.

3 MDPE for Composite Applications

MDPE [7], which is refined here, is defined as an extension of MDE enabling
performance engineering based on development models and additional perfor-
mance related data. Hence, the approach utilizes MDE concepts. In comparison
to other approaches, the process supports n kinds of development models and m
kinds of performance prediction techniques. Additionally, the process enables, as
proposed by the SPE approach, stepwise horizontal refinement of performance
models by automated transformations.

In order to support multiple kinds of development models and multiple perfor-
mance prediction techniques and reduce the number of required transformations,
MDPE uses Tool Independent Performance Models (TIPMs)(see figure 2), as the
performance modelling language containing all information about the develop-
ment models, relevant for performance engineering. This enable us not only to
deal with proprietary modelling languages but also with well known modelling
languages, such as UML. Additionally, tool independence is enabled which is
of high value for business software vendors, such as SAP, in order to be not
dependent on one specific simulation tool.
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Fig. 2. MDPE concept as Block Diagram [8]

Within the MODELPLEX project, we contributed to the definition of the
TIPM meta-model together with TU-Dresden, the simulation tool
provider XJTech, and IBM Haifa. The TIPM meta-model has been defined as
a refined and slightly extended version of the CSM [9]. It focuses on behaviour
information, available resources and consumption of resources. It can be horizon-
tally refined by annotating stepwise performance related information (resource
demands, branch probabilities, factors due to contention for resources).

Initial Performance Feedback is based on development models, resource de-
mands of steps and branch probabilities. The computation of the mean, best-case
and worst-case response time values can be done based on TIPMs.

Extended Performance Feedback additionally takes factors due to contention
for resources into account. Performance prediction is more advanced than in
the former case. Multiple tools are supported that enables multiple performance
prediction techniques. Hence, Tool Specific Performance Models (TSPMs) (see
figure 2), are used as input for performance prediction tools.

For the xWURST case we tried to utilize annotated proprietary models of
back-end business processes and of front-end processes for MDPE. We con-
sider that both the original and the customized Process Component are avail-
able as the UML Activity Diagram. The initial UML representation has been
selected due to its popularity and good tool support for editing models. Ad-
ditionally, UML provides tool supported meta-model extension mechanims via
UML-profiles. Figure 3 shows the UML Model of the Sales Order Processing
Process Component which is extended by the xWURST front-end-process. It is
obvious that it is required to not only consider models of one Process Component
but of a whole back-end process consisting of multiple Process Components for
future research, in order to perform more realistic business performance analysis.

The composition of front-end and back-end process models but also the com-
position of models of different Process Components can be realized with the
Reuseware tool. Further details about the Reuseware tool are available at [10].
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Fig. 3. Example model of the Process Component Sales Order Processing extended
with new front-end logic

We can assume that the back-end process of the xWURST was already run-
ning for a period of time. Hence, we are able to get the average resource demands
in employee time for each manually processed Action in the Activity Diagram
of our original back-end business process out of already existing business perfor-
mance analysis tools on top of SAPs Business Intelligence (BI). Since automated
Actions do not acquire human resources we ignored them. Additionally, based
on the data in the BI, we are able to calculate the probabilities of paths in
the Activity Diagram and know about the resource mapping, in particular, how
many employees are working on which manual step in our behaviour model. For
newly defined front-end processes assumed values have to be annotated in order
to specify resource demands, probabilities of paths and resource mappings.

Like other authors such as [11], we initially ignored the business domain-
specifics. Due to the neglection of business domain-specifics we were able to
manually annotate the resource demands of manually processed actions, path
probabilities and resource mapping to the UML model elements conforming to
the Performance Analysis Modelling (PAM) package of the MARTE profile [12]
which was originally intended to extend “UML for model-driven development of
Real Time and Embedded Systems” [12]. MARTE is currently the latest pro-
file for performance annotations specified by the Object Management Group
(OMG). In [13] we propose a tool supported approach to perform this task
systematically for large model repositories. In order to automatically transform
the the annotated UML model to a TIPM, we implemented a transformation be-
tween the UML meta-model and the TIPM meta-model. We selected the ATLAS
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Transformation Language (ATL) [14] to implement the transformation. Another
transformation from TIPMs to TSPMs for the Simulation Tool AnyLogic [15]
has been developed by developers of XJTech2. Hence, for UML as development
model we were able to perform an Extended Performance Analysis in the MDPE
process.

ATL is the standard transformation language for EMF based models and
good tool support is provided as well. AnyLogic enables on-the-fly analysis by
simulation as well as graphical representation of simulation models. Hence, it
was applicable for our experiments.

From the simulation based on the UML representation of the business process
we are able to predict the throughput time for a Sales Order. We are also able
to predict the utilization for each department for the Wine Seller.

However, we identified the need for taking conditional resource mappings into
account since for the business performance analysis of business processes it could
be required to express that, for instance, if the value of the added wine increases
by at least 10 Euro, the modification has to be approved by a manager, otherwise
by a sales representative. Hence, our current MDPE implementation does not
support business performance analysis yet as the PAM package of the MARTE
profile but also the TIPM is not dealing with conditional resource mapings.
Thus, we have to consider these specifics for an updated version of the TIPM
and for the definition of a performance annotation formalism for our proprietary
models.

Additionally, we identified the need for performance related decision support
described in the following section.

4 Identified Challenge for Future MDE Research

In [16] the problem of layered bottle-necks is described. According to [16], a
bottle-neck in one layer may in fact result in a bottle-neck in another layer by a
push-back effect which makes interpretation difficult.

This problem can occur in the case of layered use of resources and can be
applied for business performance where one resource, e.g. the Sales Order Pro-
cessing department in figure 4, requires services of other resources, such as the
department responsible for the manual Customer Requirement Processing steps
to process its requests.

If, for instance, a simulated utilization of the three different departments per-
forming Sales Order Processing, Customer Requirement Processing and Supplier
Invoice Processing at Customer is over 90 percent, each of the departments looks
initially like a bottleneck.

As can be seen, the automated generation of performance simulation helps
to obtain predictions for several performance parameters, but the results have

2 The details of the transformations are not relevant here. However, the interested
reader is referred to [7] containing a description and a reference to the sources of a
direct transformation from similar UML models to AnyLogic simulation models.
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Fig. 4. Layered use of resources involved in a simplified business process as block
diagram [8]

still to be interpreted in order to make a decision about how the business pro-
cess design and the resource mapping needs to be changed. Specifically for the
xWURST use case, questions arise as to which of the departments should get
which and how much additional resources.

Based on these questions, which are specific for our use case, we identified
the following general requirements for targeting performance related decision
support for MDE:

– Information filtering: For the domain expert developing Composite Appli-
cations, like xWURST, only relevant information should be provided with
respect to the modification constraints and performance objectives. In this
paper performance objectives are defined as performance requirements and
performance improvements. Performance requirements include, for instance,
maximum throughput time for a scenario or minimum resource utilization.
Performance improvements are concerned with maximizing the resource uti-
lization and minimizing the response time of the modelled system.

– Information interpretation: Provide support to domain experts, who gener-
ally lack the performance engineering knowledge, in interpreting the mea-
surement data, performance models, and performance prediction results by
providing performance related metrics or concrete proposals about how the
performance can be improved. A similar observation can be found in [17].
There, it is mentioned that performance information and models still have
to be interpreted: “We must [. . . ] learn how to combine measurement data
interpretation with model interpretation and to get the most out of both”.
A first step towards this kind of interpretation is taken in [16], in which
a metric is introduced for the detection of bottle-neck sources for decision
support, in order to apply improvements and realistically estimate their ef-
fectiveness. The decision support in that work is based on a metric called
“Bottle-Neck Strength” offering a first step towards combining measurement
interpretation and model interpretation.

– Systematic model synchronization: Provision of an approach for the system-
atic integration of performance metrics or proposals back into the
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development models in the MDE process, which are used by domain ex-
perts for their daily work. Hence, the domain expert should not be required
to analyse simulation models which may contain unknown model elements.

– Assessment visualization: Visualization support for the graphical represen-
tation of identified performance metrics or proposals.

5 State of the Art

A number of approaches, such as [18], [19], [20], [21] and [22] are available to
generate performance analysis models from development models by the utiliza-
tion of MDE techniques. In the business domain, products like IBM WebSphere
Business Modeller [23] enable generation of simulations out of business behaviour
models. However, an approach is required to directly use BI-data and models of
back-end and front-end business processes which are available due to the appli-
cation of MDE concepts for the development of Composite Applications but also
back-end processes. Additionally, performance related decision support based on
models is not considered yet since the relationship between performance objec-
tives, modification constraints and design decisions is currently not taken into
account.

In [16], the authors define the “Bottle-Neck Strength” which is a first step
towards addressing the identified requirement of Information interpretation. In
any case, this approach is concerned only with the calculation and interpretation
of one single metric, and does not address the integration of performance related
decision support in the MDE process. In the former section we described the
need for such an integration.

6 Conclusion

In this paper we presented how MDE concepts can be used for the develop-
ment of Composite Applications for a Wine Seller on top of Enterprise SOA.
We also showed that development models describing the behaviour of back-end
and of front-end business processes can be used to apply MDPE enabling busi-
ness performance prediction when performance data and resource mappings are
accessible and can be mapped to these models.

Based on our first hand experiences requirements have been identified to re-
alize valuable business performance analysis. As a follow up we are currently
working on a transformation of the used proprietary models to TIPMs by taking
multiple Process Components and conditional resource mappings into account
in order to deal with business domain specifics. Also, an extension mechanism
which enables refinement of proprietary models towards the business perfor-
mance domain has to be defined.

The TIPM saves us a lot of effort, since we can reuse the transformation from
TIPM to the tool AnyLogic in order to simulate our proprietary models. The
simulation tool AnyLogic is usable for business process simulation but can be
easily relaced by another one due to the tool independence introduced by the
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TIPM. This tool independence is of high value for business software vendors,
such as SAP, to be not dependent on one specific simulation tool.

Concluding, we identified the issue that, even if business domain specifics are
taken into account, Extended Performance Analysis is still not appropriate to
support domain experts, with no performance expertise, in the MDE process.
Based on this observation we identified requirements for how such decision sup-
port should look like.

Acknowledgement

This research has been co-funded by the European Commission within the
6th Framework Programme project Modelplex contract number 034081 (cf.
http://www.modelplex.org).

References

1. Heidasch, R.: Get ready for the next generation of sap business application based
on enterprise service-oriented architecture (enterprise soa) (2007)

2. SAP AG: SAP Enterprise Services Workplace (2008),
http://erp.esworkplace.sap.com

3. SAP AG: HU2 sandbox system (ERP6.0) (2008),
https://erp.esworkplace.sap.com/sap/bc/gui/sap/its/webgui

4. SAP AG: HU8 sandbox system (SCM2005) (2008),
https://scm.esworkplace.sap.com/sap/bc/gui/sap/its/webgui

5. Bnnen, C., Herger, M.: SAP NetWeaver Visual Composer. SAP PRESS (December
2006)

6. OMG: Business Process Modeling Notation Specification, Final Adopted Specifi-
cation (2006)

7. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven
Engineering: Model-Driven Performance Engineering. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735. Springer, Heidel-
berg (2007)
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Abstract. One of the major challenges in today's complex business 
environment is the delivery of a complete solution from business architecture 
design downstream to SOA IT realization. The IBM Service Oriented Modeling 
and Architecture (SOMA) methodology attempts to address this objective. Our 
project captures information from business architecture design and presents this 
information in a graphical user interface for its later utilization by the solution 
development team, compliant to the SOMA methodology. Our model-driven 
development (MDD) cycle consists of modeling with XML Schema Definition 
(XSD), generating code with Eclipse Model Framework (EMF) and Eclipse 
Graphical Model Framework (GMF), customizing the code, and testing  
the solution. The tool was tested on a supply chain management scenario. The 
results demonstrated the feasibility of capturing business design and using the 
artifacts for IT realization with MDD. Our overall MDD experience is 
discussed. 

Keywords: CBM, SOA, SOMA, services, EMF, GMF, collaboration diagram. 

1   Introduction 

Advances in information technology (IT), coupled with the increased competition 
brought about by globalization, are strongly affecting the business environment. To 
succeed in this environment, businesses are transforming themselves and becoming 
more agile and more efficient.  

Business leaders are demanding more from business and looking for new ways to 
achieve growth, productivity, and an optimized technology environment aligned to 
the business. As industry leaders position themselves to adapt and thrive in an 
environment of continuous, unpredictable change, a new approach is required to 
analyze and transform the business [1]. Many companies are turning to Component 
Business Modeling (CBM) [2], [3], [4], [5], [6].  

Component Business Modeling (CBM) offers a new way to model a business, 
enabling specialization in areas where it commands a comparative advantage in the 
marketplace. CBM is an IBM proprietary business architecture methodology. 
Business architecture can be defined as the grouping of business functions and related 
business objects into clusters (“business domains”) over which meaningful 
accountability can be taken as depicted in the high-level description of the related 
business processes [7]. For more details on business architecture, see [8], [9], [10], 
[11], and [12]. 
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CBM is an aggregation of models, methods, and techniques designed to organize, 
understand, evaluate, and ultimately transform an enterprise [2], [3], [4], [5], [6]. 
Business components are the modular building blocks that make up enterprises 
according to CBM. Business components are bounded groups of tightly linked 
business activities. Instead of stages in a traditional business process, we can think of 
components as discrete nodes in a configurable value network, and the whole 
organization as a collection of components networking together [2], [3], [6]. 
Components have well-defined interfaces; each receives input, adds value, and 
outputs the results to other components in the network [6]. 

In this paper, we describe our approach for driving an end-to-end solution from a 
componentized business architecture to IT solution following the SOMA method-
ology using MDD. Our project captures information from business architecture design 
and presents this information in a graphical user interface for its later utilization by 
the technical architecture team compliant to the SOMA methodology. The tool 
developed was tested on a Supply Chain Management (SCM) scenario. The results 
demonstrated the feasibility of capturing business design and using the artifacts for IT 
realization with MDD. We discuss our practice and experience in implementing such 
a solution and present lessons learned. 

The rest of this paper is organized as follows. Section 2 briefly describes 
background and some basic terms. Section 3 outlines the approach and technologies 
used. Section 4 describes a case study in which the developed tool was tested. 
Lessons learned are presented in Section 5. We summarize the paper with concluding 
remarks and future directions. 

2   Background and Terms 

2.1   Business Component 

A component-based approach divides an enterprise into a set of non-overlapping 
modular building blocks, which IBM calls components. A component is defined along 
five dimensions [2], [3]:  
• A component's business purpose is the logical reason for its existence within the 

organization, as defined by the value it provides to other components. 
• Each component conducts a mutually exclusive set of activities to achieve its 

business purpose. 
• Components require resources: people, knowledge, and assets that support their 

activities. 
• Each component is managed as an independent entity, based on its own 

governance model. 
• Similar to a standalone business, each business component provides and receives 

business services. 

2.2   Business Service 

A business service is some well-defined value offered to other business components 
[3], [5]. Business components interact with each other by providing and consuming 
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business services [3]. This enables businesses to think of a component as a service 
center within the enterprise [3]. Business components expose the functions they 
support only through their provided or offered business services. These services are 
enabled by the component activities contained within the components.  

Following the principle of a component being a “black box” to other external 
business components in the network [2], [3], all activities and “business logic” are 
encapsulated in a single component. Furthermore, a component's activities are unique 
to a single component [13]. 

Components interact with one another via services based on the requirements of 
the business activities defined within their operations. When an internal business 
process requires information/functionality that does not appear in its component's 
scope, the business process must get it from external resources. For that purpose, a 
business service offered by an external component is invoked through a service 
invocation activity [5], [13].  

2.3   Business Collaboration  

To achieve the desired business outcome, components collaborate with other 
components through services [2]. When one service component requires business 
information from another service component, an external service is invoked, and an 
interaction occurs. In other words, an interaction involves exactly two components—
a service requester and a service provider—which "agree" on a single service. 
Collaborations are interactions between two or more components, working together 
towards a common business goal. As services reflect the component's functionality to 
the external world and serve as component-only interfaces, collaborations can be 
formulated only through the exchange of business services. Collaborations do not 
include semantics for the service control flow such as decision nodes, joins and 
merges, if-else rules, and do-while loops. Alternatively, they do provide a high-level 
view of the “wiring” between the business services interactions [13]. A collaboration 
diagram depicts a business collaboration in swim lane form. Each swim lane 
describes possible interactions of a single component with other components in the 
collaboration on a timeline. Fig. 1 provides an example of an illustrative collaboration 
diagram. In this collaboration diagram, three components (Component 1, Component 
2, and Component 3) interact through services Service 1.1, Service 2.1, Service 3.3, 
and Service 2.4, as depicted in the diagram. The envelope icon represents the business 
items transported through the interactions (represented by the arrows).  

2.4   Business Item 

Business components are responsible for managing business items (BIs) and exposing 
their functionality to the external environment through business services. BIs are 
tangible or intangible assets that are managed by the enterprise through its 
components and exploited to create economic value for the firm. Examples of tangible 
BIs include people, buildings, customer accounts, manufacturing machine capacity, 
supplier orders, and documents containing business information. Examples of 
intangible business entities include brand, marketplace insight, exclusive “know how” 
capability, knowledge, design, and content. CBM design enforces each BI to be  
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Fig. 1. Illustrative example of a collaboration diagram 

managed by a single component, while a component can manage more than one BI. 
Moreover, CBM design rules ensure that the specified business component is 
accountable for the whole lifecycle of its BIs [13]. 

2.5   SOA and SOMA 

Service Oriented Architecture (SOA) is a discipline that spans the entire spectrum 
from business architecture to IT implementation. At the business end of the spectrum 
are business components that describe a business as a collection of service-bounded 
building blocks of the entire business. The business services are generally coarsely 
grained and usually specified informally. However, at the other end, IT services (e.g., 
web services) are fine grained and specified precisely. The goal is the realization of 
business services that a component provides, as a composition of well-defined IT 
services [5]. 

Basically, SOA is a "business to IT aligned" approach in which applications rely 
on available services to facilitate business processes. SOA is a model that guides the 
establishment of a loosely coupled system with flexibility and extensibility. 
Implementing an SOA mainly involves componentizing enterprise and/or developing 
applications that use services, making applications as services for other applications 
to use, and so on [9]. 

Although in CBM, components offer services to each other, and in SOA there are 
software components that offer services to one another, these are two different distinct 
concepts and the transformation between them is not trivial [10]. The business service 
concept has attributes that are relevant to communication among business people 
(such as terms and conditions associated with business service consumption, 
governance, and management), but it does not include the solution aspects. It is 
important to understand this distinction to fully appreciate the concepts associated 
with modeling the business architecture of a service-oriented enterprise [10].   

For mapping the business structure to the IT layer, IBM has developed SOMA. 
SOMA is a consulting-oriented services development method.  

Service-oriented modeling is necessary for the creation of an SOA. This modeling 
uses the results of the business componentization analysis as inputs. The output is an 
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SOA architecture independent of any specific technology that can then be realized 
using the appropriate technologies. SOMA starts from the description of the business 
process to be implemented. The most important result from the SOMA analysis is the 
services model, which comprises a set of IT services that support the business 
services and processes and their goals. For more details on SOMA refer to [3]. 

3   Approach 

The purpose of our tool is to capture information at the business architecture level and 
transform it to artifacts that the solution development team applying IBM SOMA 
method can utilize. This section describes the requirements from the tool and the 
system architecture used to provide the desired deliverables. 

3.1   Requirements 

Our major requirements were: 

• Model Formalization - One of the major requirements was to formalize the 
business architect's mindset in a model. From our perspective, a business 
architect (BA) is someone who designs and develops a company's business 
architecture. This was done by gathering information (mostly in PowerPoint) and 
having conference call sessions with the business architectures that sponsored the 
project. 

• End-to-end Solution - Our project captures information from business 
architecture design and presents this information in a graphical user interface for 
its later utilization by the solution development team compliant to the SOMA 
methodology. The goal is to demonstrate a possible solution that encompasses all 
phases from business architecture information to IT realization, providing an end-
to-end business solution.   

• Data Capture - The tool captures the component names and business goals along 
with the activities performed by the components. In addition, for each 
component, the services it provides and receives and the business items 
transported by these services are specified. In alignment with CBM methodology, 
some of the activities encapsulated in a component participate in the realization 
of the services provided by the component, while other activities are service 
invocation activities [13]. To capture the data, two types of editors were 
designed. A tabular editor was used to collect data concerning individual 
components including services, goals, activities, and business items, while a 
graphical diagram editor was used to collect information concerning business 
collaboration diagrams. 

• Output - The work-in-progress artifacts provided by the tool are used by the 
business architect to iteratively refine the CBM design and contents. As 
mentioned before, the outputs of the tool are transferred to the solution 
development team for IT realization in alignment with the SOMA methodology. 
The main output artifact produced by the tool is an XML file containing all of the 
CBM design and contents: component names, goals, activities, services, business 
items, and collaboration diagrams.  
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• Look-and-feel and Ease-of-use - The primary user of our tool is the business 
architect, who is not an IT person (who is mostly familiar with data entry 
applications), but rather a business user who is used to work with office tools 
(e.g., Excel, PowerPoint, and Word). Therefore, the look and feel of our tool 
needed to be easy to learn and use without requiring any pre-requisite software in 
the user's machine. 

Fig. 2 illustrates the flow of data end-to-end from the BA input to the consumption 
of the artifacts by the solution development team. 
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Fig. 2. End-to-end data flow 

3.2   Tools Used 

The Eclipse development platform was used for the development phase of the project. 
Eclipse is an open source community, whose projects are focused on building an open 
development platform comprised of extensible frameworks, tools, and runtimes for 
building, deploying, and managing software across its lifecycle [14]. We used a 
number of Eclipse projects: XML Schema Definition (XSD) editor, Eclipse Modeling 
Framework (EMF [15]), and the Graphical Modeling Framework (GMF [16]). 

The EMF project is a modeling framework and code generation facility for 
building tools and other applications based on a structured data model. We started 
from a model specification described in XSD. XSD provides a model and API for 
manipulating components of an XML Schema. EMF provides a tool that transforms 
the XSD to an Ecore file (a model specification described in XMI (XML Metadata 
Interchange)). EMF provides tools and runtime support to produce a set of Java 
classes for the model, along with a basic editor and a set of adapter classes that enable 
viewing and command-based editing of the model [17]. The generated Java classes 
were changed during the customization phase to provide a progressive editor and 
other capabilities. The EMF platform was used to generate the tabular editor, which 
was then used to capture the components' data content. 

The Eclipse Graphical Modeling Framework (GMF) provides a generative 
component and runtime infrastructure for developing graphical editors based on EMF 
and GEF (Graphical Editing Framework [18]). GEF allows developers to take an 
existing application model and quickly create a rich graphical editor. The combination 
of EMF and GEF enabled the creation of the model-based graphical editor used to 
model collaboration diagrams. 
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3.3   Architecture of Our Solution Cycle 

Prior to the tool, the business architects captured their information in a number of 
Excel spreadsheets. We needed to model that information and 1) allow the architects 
to capture that information and validate it as much as feasibly possible 2) pass this 
information on to other processes in the food-chain. Drawing mockups gave us our 
requirements for how our end-user interface should look and feel. The XSD file gave 
us the original definition of how the business information would be transferred. 

To capture the information at the business architecture design level, we composed 
a metamodel that describes the business architects' way of work. Next we looked at 
the artifacts SOMA uses for the transformation to the realization phase and modeled 
how information can be transferred.  

Model Using XSD. Using the IBM Rational Software Architect (RSA) tool, a UML 
(Unified Modeling Language) model of the BA Excel spreadsheets was crafted. Since 
there was a requirement to produce XML and not XMI files, the model was manually 
transferred to an XSD model, which was used to generate an Ecore model. 

Generate Code via EMF and GMF. From the Ecore model, using EMF JET [19] 
technology, code was automatically generated for both the model and the end-user 
interface for the table editor. To generate the base code for the graphical diagram 
editor, we needed to create a graphical definition file (consisting of node figures and 
connection figure), a tooling definition file (creation tools), and a mapping file 
(mapping from the model to the graphical definitions) using GMF wizards. Once that 
was done, code was generated for the graphical diagram editor.  

Customize. To meet the ease-of-use requirement, we changed the automatic 
generated editors. The EMF editor needed to be customized to give the user the look–
and-feel of Excel-like spreadsheet typing (primarily in place editing, and multiple 
column table support). To support multiple-column in-place table editing, a custom 
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table widget was developed. The model needed less customization and a small 
number (~10%) of methods was added or altered from the generated form. The GMF 
generated editor needed to be customized to conform to our mock-up requirements. 
Items such as layouts, alternating colors, and pop-ups for in-place choices needed to 
be altered or added to the generated code. 

Test and Cycle. The methodology used was that of iterative, agile [20] design. We 
did a number of cycles adding features to each cycle and occasionally changing the 
design. Changes in a cycle could involve changes to our UML model, XSD 
definitions, GMF model files, Ecore model, or customized code. Each individual 
change caused propagation of additional derived changes throughout the development 
cycle. Fig. 3 depicts our development cycle along with the tools deployed. 

4   Case Study 

The solution was tested on a prototypical supply chain management scenario. The 
components in this scenario needed to support a supply/demand synchronization 
facility that balances and maintains customer product positions according to sales, 
customer agreements, and availability. The specific scenario does on-demand 
allocation of a product across multiple sales lot inventory states. 

The scenario included three components: the first component provides a current 
view of product allocations across all customers. The second tracks available product 
sales and submitted product replacement requests. The third component orders 
products based upon need and current allocation of available inventory. These 
components interact to formulate and maintain a position for the allocation of a 
product across customers.  

The first stage of the case study was capturing and collecting the data through the 
tabular and the collaboration diagram editors. 

The next stage was transforming the outputs for use in an internal IBM SOMA 
tool. The transformation was done using a model-to-model transformation via UML 
prototypes [21]. 

The solution development team received all artifacts produced by our tool. Using 
the SOMA methodology, these artifacts were consumed and processed to deliver an 
IT SOA solution.  

The end-to-end solution was tested successfully, and checked to see if it could 
perform the proposed scenario. In the next section, we describe our findings regarding 
the use of the tool.  

4.1   Findings  

Capturing the information in a model-driven tool allows validation checks and 
detection of possible conceptual bugs, previously unnoticed by the business architects 
while using Excel sheets. Over 10 conceptual and functional bugs were found in the 
components details and collaboration diagram descriptions. These bugs were 
reviewed with the business architecture team, which emphasized to them the 
additional power and advantages of working with our tool. 
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Capturing the information was an iterative process, as understanding the BA’s intent 
evolved over a number of discussions and through our demonstration of the tool.   

Feedback was received from users on both ends of the tool. The first feedback we 
received was from the BA team. They were impressed by the tool’s ability to do 
consistency checks of the information fed. This reduced the number of problems in 
later phases, when this information is passed on to the solution development team. In 
later phases, the problems found are more expensive in terms of time and effort (the 
user at that stage is a solution architect rather than a business architect and the 
resolution of such problems requires a greater amount of time). Good feedback 
regarding the tool's ease-of-use and its graphic visualizations were also provided. 

The second feedback we received was from the solution development team. They 
reported ~30% reduction in the total effort invested in the SOA IT realization phase.  

Overall, the accomplishments of this tool are as follows:  

• Business architecture design artifacts were captured by a model-based tool and 
produced meaningful artifacts related to CBM and SOMA methodology.  

• The same model was used for both the business architecture team and IT 
realization team without forcing them to use a different methodology. 

• A feasible, complete, repeatable, generic solution was produced for the problem 
described above. 

• Model-to-model transformation of the business architecture information was 
performed and the information transferred in a structured way. The major 
byproduct of this automatic transformation is the dramatic reduction of the 
number of bugs in this process, which was previously performed by people from 
the solution development team (we saved errors both in the business architecture 
and in the transformation). 

• The tool enabled a knowledge artifact transfer to the SOMA methodology in a 
structured way. Previously, it was clear what necessary inputs for the SOMA 
methodology are, but deriving them from a business design was somewhat of an 
art requiring skilled personnel.  

• The tool can be reused to produce repeatable end-to-end solutions. Since the tool 
is not specific for the SCM realm, it can be reused for any other domain. When 
an engagement for a different domain will occur, the consulting teams could 
reuse this tool. The reuse of this tool could be made at two levels: first, existing 
data in the tool could be reused. A client might have a need for similar 
components, or slightly different components that can be built reusing the data in 
the existing components. The second level of reuse could be for the solution 
teams. If inputs to the solution teams are similar, then the realization phase could 
also reuse realizations done in previous engagements.  

5   Lessons Learned 

In this section we discuss the main findings concerning the development frameworks 
used throughout the project and MDD. 
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5.1   Experience in Development 

The learning curve for these technologies is steep (three-plus weeks each), even for 
experienced developers. Although tutorials are available for certain topics, in general 
there is a scarcity of information. However, once that obstacle was overcome, initial 
working versions of the editors were rapidly generated (2-4 days). The customization 
phase required a longer period of time. Again, although forums exist, there is a 
paucity of help resources for non-standard problems. 

5.2   Analysis of Key Technologies 

In this section, we discuss the technologies used to develop the tools, and their 
advantages and disadvantages. 

In general, the editors for model definition were easy to use and their usage 
intuitive. The code generated was efficient, understandable, and relatively easy to 
modify. The mechanism for round-tripping works well for code generation, excluding 
the code generated for constructors. 

Conversely, the ease of usage of the technology depended on its maturity. The 
ranking of most mature to emerging technology, and correspondingly the ranking of 
easiest to most difficult to use, was UML, XSD, EMF, and finally GMF. As long as 
standard items were being developed, the use of the various tools was straightforward. 
However, as soon as one strayed into modifications, it became cumbersome. As 
mentioned above, the round-tripping from the Ecore model to the code worked well. 
What didn’t work as well was the round-tripping from XSD to Ecore.  

The use of wizards in EMF and GMF was complicated at times because it wasn’t 
always clear where errors were generated from. An even greater difficulty was that at 
times, it wasn't even clear what the nature of the error exactly was. 

Non-standard layout in GMF proved problematic but surmountable. 
Connection to the semantic model, and diagram partitioning, are areas that are not 

sufficiently documented. Creating variables so that colors and sizes could be used 
consistently across the application was not part of the framework's capabilities.   

One of the main drawbacks we encountered was related to the lack of support for 
the transformation from UML to XSD and Ecore, and vice-versa. This lack of 
capability imposed upon us the need to maintain two separate models (UML and 
XSD). As previously mentioned, the XSD model was needed to produce an XML file 
(an XMI file can be created from UML). 

6   Conclusions and Future Work 

Advances in IT, coupled with increased competition, are strongly affecting business 
structures. To succeed in this new environment, many companies are turning to CBM 
as a new approach for analyzing and transforming their business.  

One of the main challenges in an SOA enterprise is the bridge from the service-
oriented architecture as provided by CBM, downstream to the IT realization of the 
services. IBM SOMA methodology addresses this gap. 

In this paper, we described our experiences following SOMA methodology by 
developing a tool that captures business design and content in a MDD manner. The 
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artifacts generated by the tool are transferred and consumed by a solution 
development team to realize the IT services. This end-to-end solution was tested 
successfully on a supply chain management scenario. 

The MDD approach has proven to be efficient in developing the tool and the 
necessary artifacts along with their transformation for later use. Due to MDD, 
changes to the model can be propagated easily and in a coherent manner, shortening 
the total lead time of the complete solution provided. 

Future work should include testing the tool and the approach on larger 
engagements. Improvements to the tool include the use of a central repository for the 
sharing of the designs and contents for their reuse. Smart searches connected to the 
model for the management of the artifacts produced by the tool can enrich the level of 
reusability and repeatability achieved by the tool. 
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Abstract. The paper presents an approach for developing composite tele-
communication services running on mobile phones which takes advantage of 
the use of model driven techniques as well as the loose coupling paradigm in 
SOA. A domain-specific UML dialect named SPATEL has been developed 
which serves as the basis for generating applications that can be deployed in 
distinct terminals and servers technologies. The composite services typically 
combines telecommunication enablers - like SMS sending and GSM locali-
sation - with traditional IT components accessible over the internet, such as a 
Yellow Page facility. This work has been conducted in the context of the IST 
SPICE European collaborative project.  

Keywords: MDA, SOA. 

1   Introduction 

The emergence of SOA[1] and MDA[2] as engineering approaches to build software 
and systems in the IT world will have a significant impact in the way telecom 
infrastructures are built and telecommunication services are created. In this paper we 
describe our experience on combining the strengths of both paradigms to facilitate 
agile and portable development of telecommunication services running over different 
server execution technologies and mobile terminals.   

1.1   Meaning of SOA in Our Context 

The SOA acronym, meaning Service Oriented Architecture, is an over-used term used 
to describe very different situations and products. Generally speaking it refers to the 
mechanisms that provide service functionality remotely in a loosely coupled and 
distributed way over web resources.  

Now, what is the impact of SOA in telecom? Telecom operators have realized the 
importance for the growth of their market to open, in a controlled way, the APIs to 
access to their telecom network resources, in a similar way as important IT players 
do. More specifically, various companies like Orange are now offering to third party 
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service providers the possibility to access elementary functionality, like SMS sending, 
call control and localization (called telecommunication enablers) through simple 
SOAP web services.  

Hence, from the point of view of services developers that have to build complex 
composites services that make use of these telecom enablers, effective adoption of 
SOA principles is of major importance since it represents the ability to program 
telecom services without having to be necessarily experts in the telecom domain. This 
is a significant point, since it may imply important cost reduction in development. 

1.2   Meaning of MDA in Our Context 

The MDA acronym has been defined by the OMG standardization body in 2000. It 
means Model Driven Architecture but may represent very disparate things. In the 
context of service creation a model-driven approach  consists primarily in the ability 
to generate large amounts of a service implementation from a high-level abstraction 
definition of the service, exploiting object-oriented modelling techniques – like MOF 
[3], UML[4] and QVT[5] standards. Apart from this technical aspect – which is 
mainly intended to improve productivity – another aspect of MDA relevance in 
telecom domain is the issue on heterogeneity of terminals and execution platforms. A 
telecom service for mobiles ideally would require to be developed once and yet be 
able to run, at the client side, in different kinds of mobile terminals and, at server side, 
be prepared to evolve from a technology to another (like evolving to the IMS 
architecture [6]).  

1.3   Organization of the Paper 

The following chapters will describe with some detail the SPATEL service 
description language, the service creation tool associated with this language and an 
application use case illustrating the usage of our model-driven framework in a typical 
context-aware telecom service combining IT and TELCO components. 

Finally we will discuss some of the interesting issues raised by our experiments. 

2   The SPATEL Service Description Language  

 The SPICE project has defined a high-level and executable language for describing 
composite telecommunication services. This formalism, named SPATEL, meaning 
SPICE Advanced language for Telecommunication services, can essentially, be seen 
as a customization of the UML language for expressing the definition of service 
interfaces and service composition logic that is well-suited to the telecom domain.  

In contrast with most IT web services, telecom services are generally transactional, 
asynchronous, state-full and sometimes long-running processes. In addition a telecom 
service can be designed to be multi-modal – the ability to achieve a conversation 
using parallel interaction means like voice, text and image. Also the behavior of a 
telecom service needs to be often split in two parts: one running in the mobile 
terminal of the user – dealing with GUI aspects and local activation of telecom 
resources (like SMS sending) - and the other part running at server side, usually 
hosted by a telecom operator. 
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In the service developer formalism, a service is primarily described through an 
external view which provides information that is useful for service clients. The 
external view is basically an interface declaring a list of operations, input and output 
events, multimedia streams and relevant side-effects. The constraints on the service 
interface such as the ordering of operation invocations can be precisely defined 
through a contract. An important feature of SPATEL is the ability to annotate the 
elements of the interface (like the operations and the parameters) with semantics tags 
and non functional features to enable rich scenarios for service discovery and 
dynamic composition. Non-functional features are partitioned on the basis of 
categories like quality of service (QoS), charging, internationalization or resource 
usage. The annotation mechanism, which is similar to the approach taken in SA-
WSDL approach – as it relies on pointers to pre-existing ontologies – is not detailed 
in this paper – which is focused on static composition. 

The service developer formalism also allows representing the internal view of a 
service (white box representation) by means of a set of inter-connected service 
components. Two distinct views are available: an architectural view showing the list 
of involved components and their connections and a behavioral view consisting of 
state machines that define precisely the logic of an operation – an orchestration of 
components being a particular case. We will see some examples of the usage of this 
formalism in Section 4.2. The choice of state machines – rather than activity diagrams 
– is motivated by the idea of integrating "voice-based" dialogs in a service 
specification, since state machines are the most used paradigm for expressing the 
complexity that can be found in human-machine voice conversations. We should note 
however that the scope of SPATEL is much broader than the scope of traditional 
voice services since we have to deal with remote synchronous and asynchronous 
invocations, parallel threads of execution and dedicated GUIs definition at terminal 
level. 

Concerning the definition of user interaction at client side, SPATEL provides the 
ability to represent potentially the usage of different GUI frameworks found in mobile 
world like, the very constrained J2ME [7] GUI environment or the richer GUI 
framework available in S60 Nokia [8] smartphones. This heterogeneity is enabled in 
the SPATEL meta-model by the fact that the coding of GUIs elements is generic: a 
Container contains recursively GUI Elements which in turns define GUI properties – 
which are name/value pairs. In addition to that GUI events can be connected to 
service events used within the logic of the service. Hence, thanks to this very 
pragmatic approach – not trying to model the whole IT world! – in our context, 
supporting a GUI framework means having the corresponding library of the GUI 
widget model components instantiated in the SPATEL design tool and having the 
corresponding code generator targeting the specific GUI framework.  

In addition to this GUI aspect, SPATEL provides means to represent typical voice-
based interactions: recognition of voice as utterance events, buffered construction of 
voice messages – which are delivered when reaching a stable state and support of 
specific events – like inactivity or failure recognition. The SPATEL language and 
execution environment inherits from previous research work done in the field of voice 
service modeling [9]. Hence, this aspect will not be detailed here. However it is 
important to point out that the combination of voice interaction modeling with GUI 
modeling brings the ability to model multi-modal services.  
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As we can notice, despite the specificity in telecom services, from a design point of 
view, the concepts needed by the service description language are not significantly 
different from those exposed by the well-know SOA standards like WSDL [10] and 
BPEL [11] and formalized in a more abstract way by UML [4]. The SPATEL 
formalism aggregates in fact well-know constructs coming from different sources 
(ITU-SDL [12], SA-WSDL [13], VoiceXML[14]) in order to provide the needed 
subset – not less, not more – that is needed for a high-level and executable formalism 
usable in telecom context. Among the potentially infinite design choices that UML 
can offer, SPATEL makes a very precise and exclusive selection like: using simple 
UML 1.4 state-machines instead of the full UML2 capability, not using 
collaborations, representing an orchestration as the behavior specification of an 
operation. Selectivity in the usage of the constructs offered by UML for behavior 
definition is necessary to have at the end an unambiguous and executable formalism 
that can be implemented at reasonable cost. Notice that we are not claiming that the 
choice we made is the only possible one. In our case the state-machine formalism had 
the advantage not only to be well accepted within the community of service designers 
but also to have well-established and robust implementations that could be used as 
entry points for our developments.     

Technically speaking the SPATEL formalism has been defined by an EMOF meta-
model and is accompanied with a UML2 profile defining the conventions for using the 
UML graphical notation – like adding an specific icon to represent the invocation of 
remote service operations. This approach, which makes the distinction between abstract 
syntax and concrete notation, allows using a rather compact and understandable XMI 
serialization format as exchange and pivot format, significantly less complex than the 
one associated with the complete UML2 metamodel. Also it allows attaching alternative 
notations to the SPATEL language, such as a dedicated textual syntax, and still relying 
on a common abstract representation in memory and in persistent storage. 

3   The SPICE Service Creation Environment  

In this section we will describe the overall architecture of the service creation 
environment developed by the SPICE project, as well as, some highlights on the 
different components that together provide the necessary ingredients for an agile 
development of telecommunication services in line with the formalism defined in the 
previous section.  

3.1   Architecture 

The SPATEL Developer Studio contains four main macro constituents depicted in 
Figure 1: 

 
- The SCE Service Designer is a graphical editor to edit SPATEL service 

interfaces as well as to edit the logic of composite services, 
- The Service Design Repository is a catalog of re-usable service descriptions, 
- The Analysis and Testing tools is basically a "native" execution engine capable 

of interpreting almost directly the SPATEL definitions. It is used in particular 
to simulate and test the services before real deployment, 
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Fig. 1. Data flows between macro components in the Service Creation Environment  

- The SCE Service transformers module represents a set of model transformers 
and code generators producing service implementations on top of the 
supported platforms. 

 

In this figure we see a list of complementary macro components which are out of the 
scope of this paper: these are the Automatic Composition Engine (ACE) to create 
automatically SPATEL service compositions from semantically annotated SPATEL 
service descriptions and the End-User Studio which offers a dedicated user interface 
for non-professional service designers. 

3.2   Implementation of the Developer Studio components 

The actual implementation of the SCE Service Designer is build on top of the UML 
StarUML tool [16]. This component may be replaced by any other graphical facility 
capable of creating SPATEL XML files – the pivot format used by SCE for service 
definitions (see Section 2). An alternative editor based on GMF/Eclipse framework 
[17] is currently under construction. 

The model transformations and the code generators are implemented using two 
alternative techniques: firstly through direct usage of the meta-modeling APIs 
generated from the SPATEL meta-model, and secondly using the dedicated QVT [5] 
model to model transformation language. Two general purpose languages are 
supported for the APIs: firstly Java, using the ECLIPSE/EMF [18] generated APIs for 
the Java language and, secondly Python, using the PYMOF [19] framework. These 
two APIs have in common to use the same storage format, which is the XMI format 
used by ECLIPSE/EMF. The SPATEL to BPEL and the SPATEL to Nokia S60 
terminals are developed using the Python API whereas the WSDL to SPATEL 
importer is developed using the QVT Operational formalism by means of the 
SmartQVT open source tool [20]. In general QVT usage makes a transformation 
definition much more readable and compact. It requires however that the sources and 
targets are already expressed in the form of meta-models. Otherwise an extra work is 
needed to comply with this requirement. 
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The Developer Studio is connected to two other SPICE components: 
 

- The SPICE repository, to import and export the definition of running spice 
services. This differs from the Design Repository, which only contains re-
usable fragments of SPATEL service definitions. 

- The SPICE Life Cycle Manager, to deploy and activate services in the SPICE 
Service Execution Environment. 

3.3   Process for Using the Developer Studio 

The typical steps when using the Developer Studio are: 

− The service designer opens the graphical front end, initializes its design model 
using the available SPATEL-specific menus, such as a command to initialize 
model contents with some pre-defined constituents. In general the use of the 
tailored menus is perceived as very important by practitioners since it avoids 
having to deal with all UML complexity, 

− The service designer imports from a catalog of pre-existing service designs the 
service components to be re-used in the composition.  This service design 
repository is generally linked to the SPICE service repository which provides 
deployment information on the list of available running services, 

− The service designer defines the interface of any additional non existing service 
that would need to be invoked within the logic of the composite service, 

− The service designer opens the pre-initialized behavior diagram to edit the state-
machine expressing the logic of the composite service, 

− The service designer uses the SPATEL specific menu to generate the terminal-side 
code and the server-side code for one or more target technologies – for instance a 
BPEL engine at server side and a S60 Nokia phone at terminal side, 

− The service developer completes the generated code – in general, the body of the 
declared operations and, if necessary, the glue code implementing the invocation of 
a given service component. Manual completion of the glue code is not needed 
when dealing with standardized protocols like SOAP-based web services since, in 
that case, the invocation code is generated automatically based on the deployment 
descriptors,  

− The service designer and service developer executes locally the service logic using 
the default web interface provided by the SPATEL native execution engine. This 
step is useful to debug the logic and the glue code, 

− The service designer iterates over these steps until it obtains the required 
functionality, 

− The service integrator deploys the service generated files into a remote server or 
into a specific terminal using the Service Deployer component. 

4   Use Case: E-Tourism Dinner Planning Service 

We describe here the definition and the implementation of a specific context-aware 
Dinner Planning Service example which has been developed as an illustration of the 
model-driven approach taken to develop services. 
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4.1   Scenario Definition 

The E-tourism dinner planning scenario is as follow: 

− An End User is on travel in a city. Because he does not want to waste time trying 
to find a good restaurant for his dinner he will delegate this task to a specialized 
dinner planning service. In the morning, he sends an SMS to the Service dinner 
planning requesting for finding a "recommended" restaurant at 20:00 near to the 
location where he will at that time, and respecting some criteria (type of food), 

− At dinner time (20:00) the Service locate a suitable restaurant list based on the end 
user geographic position, 

− The Service sends a message to the End User containing the list of restaurants 
located in the surroundings including the contact points for reservation, 

− The End User activates a call to the restaurant of choice using the restaurant 
contact point information. 

 

The components that need to be in place for this scenario are: 
 

- A Personal Agenda, to store from the user its willingness to be notified at dinner 
time, 

- A Localization service, which will found the user's location relying on GSM 
network information, 

- A SMS or Instant Messaging enabler to notify the user when the list of 
restaurants is found, 

- A Yellow Pages service  to found the restaurants near the location of the user,  
- A Third Party Call component to activate the call to the selected restaurant. 

The figure below shows the interaction between the different composed components 
and the orchestration engine: 
 

Agenda

Traveller

LocalizationLocalization

Interest Points

3rd Party Call

Orchestration
Engine

1-21-2

2-12-1

2-22-2

2-32-3

3-23-2

1-1
Add event "find restaurant at 20:00"

1-1
Add event "find restaurant at 20:00"Add event "find restaurant at 20:00"

3-1

Call the selected restaurant

3-1

Call the selected restaurant

2-4

Restaurant List

2-4

Restaurant List

2-4

Restaurant List

 
Fig. 2. Dinner planning scenario overview 
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From the point of view of the orchestrator, the scenario has three temporal phases:  

- The orchestration engine receives the user request (1-1) and registers the event in the 
personal agenda (1-2), 
- At dinner time, the orchestrator receives the reminder from the personal agenda (2.1) 
which invokes the localization services (2.2) to obtain the location information of the 
traveler. Then it request the interest points of the yellow pages services (2.3), collects 
the responses and sends the results to the traveler (2.4). 
- Finally, if the user selects a restaurant, the orchestrator receives the request (3.1) and 
invokes the 3rd party call service to establish the communication.  

4.2   Design of the Composite Service 

In our experiment the SPATEL language, described in Section 2, has been used to 
develop the dinner planning service. In practice, following the SPATEL language 
philosophy this means: 

 

- Declaring the interfaces for all the invoked components (Agenda, Localization, 
Yellow Pages, 3rd Party Call), 

- Declaring the composite component – with a single 'orchestrate' operation – and 
defining the logic of this operation through a state machine. 

 

All of the components to invoke already exist in some form. The Localization 
component is provided by Orange in the form of a web service, the Interest Points 
restaurant inspection can be obtained using an HTTP GET request on the French 
"Pages Jaunes" web site (after some filtering an parsing of the HTML output), the 3rd 
Party Call is another web service, and the agenda on line web component role can 
alternatively be played by Google Calendar application of a specific Orange Personal 
Calendar service.  
So at this level, various questions arise, like: 

- When a web service, is available should I directly derive the SPATEL interface 
from the WSDL interface or should I try to make some filtering to simplify it? 

- When we have more than one candidate, should I try to define an interface that 
works for all the available possibilities? 

 

Taking the WSDL file "as is" – through the WSDL to SPATEL importer – could be a 
comfortable solution but has some drawbacks. For instance, it could have an impact in 
the complexity of service logic definition, due to the fact that additional parameters - 
not really relevant to the designed composite service - may need to be constructed and 
passed anyway to have a valid service invocation.  

Concerning the second issue, abstracting a common interface implies that there is 
the possibility to make the adaptation somewhere – maybe at deployment, when 
generating code from the model of the logic, or, at runtime, when executing the 
service through an intermediate object that performs the argument conversion. The 
best choice really depends on the target execution technology. When using the BPEL 
engine we tend to favor the first solution relying on code generator intelligence to 
perform the interface adaptation, since adding an intermediate web service would be 
costly. In the case of the Spatel Engine, for which an intermediate local proxy class is 
always generated, the second solution is much more convenient. 
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Fig. 3. Interface of the Personal Agenda component  

/Initialisation

IM.subscribeToMessage(msgfilter,this.listener)

Loop

MessageEvent(userid,dest,src,body) AlarmEvent(userid,rkind)

rkind = RI.getKind(body)

time = RI.getTime(body)

PA.addEvent(agendainfo,this.listener)

Loop

restauid = RI.getRestaurantId(body)

PCC.activateCall(userid,restauid)

Loop

ploc = PLOC.locate(userid);

tinfo = TLOC.getFrenchTown(ploc.latitude,ploc.longitude)

reslist = YP.getInterest("restaurant",tinfo.name,tinfo.zipcode)

body = RI.prepareResult(reslist)

IM.sendMessage(userid,this.sipaddress, body, this.listener,false)

Loop

[ rkind=="FindRestaurant" ] [ rkind=="ContactRestaurant" ] 

agendainfo = RI.prepareAlarm(time)

 
Fig. 4. Logic of the dinner planning service orchestration  

In the case of the Dinner Planning service we followed the strategy of abstracting 
and simplifying as much as possible the interfaces of the invoked services. At the end, 
this had some implications in the design of the Service Repository: a unique SOAP 
web service may be associated to one or more registered SPATEL interfaces. 

The figure below shows the interface of the Agenda component which abstracts a 
piece of functionality common to the Google Calendar and the Orange Personal 
Agenda component. 

The following figure shows the modeling of the logic of the orchestration 
operation: we see the three threads of execution as described in the scenario definition 
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(in Section 5.1). On the left, we have the reception of the user initial request, on the 
right the treatment of the event triggered at dinner time and in the middle the final 
phone call. Note that this state machine uses the new UML2 transition centric view  - 
in fact taken from ITU SDL – in which the list of actions executed during the 
triggering of a transition are explicitly represented as rectangles. In this diagram a 
specific icon is used to denote a remote service invocation, similar to an asynchronous 
signal sending symbol in UML. For the comprehension of this diagram, we should 
also mention that a Service Call in the SPATEL formalism is not an action but a State 
node, which gives the possibility for defining explicit exceptions transitions in case of 
invocation errors - overriding the default mechanism for handling errors. 

4.3   Implementation and Deployment of the Composite Service 

We generate two alternative implementations: one on top of the BPEL engine and the 
other on top of the SPATEL engine. In our development process, the implementation 
is the engineering phase where code generators are invoked and code completion is 
done when necessary. Because the state machines used in SPATEL have 
unambiguous execution semantics, the code corresponding to the state machine was 
completely generated. The part that required some manual code completion was the 
code related to the realization of "non standard" remote service operation calls, like 
the one performed to connect to Google Calendar [15] since this follows a proprietary 
protocol. Also all intermediate computations – like the formatting of the message 
containing the list of restaurants, which were modeled as invocations of local black-
boxes operation calls – need to be completed, since only the skeletons were generated. 
The percentage of generated code in our dinner planning application was 80%. Notice 
however that in situations were all invoked components represent already existing 
components - registered as implemented components in the SPICE service repository 
- this generation factor may be of 100%! The richer is the catalogue of services, best 
are the chances to produce composite services without any code writing.   
The client part for the Nokia N80 phone was generated using a simple description of 
the GUI in the form of Python code directly interpreted by the phone. The figure 
below represents the screen to activate the service. 

 

 
 

Fig. 5. Activation menu for the dinner planning service 
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5   Discussion 

In this section, we will discuss an interesting question which concerns the legitimacy 
for using graphical notations like SPATEL for defining service logic. This is a 
controversial question and we will try to respond on the basis of our experience. 

5.1   Does It Make Sense to Define Service Logic by Means of Graphic Models? 

The target users of the SPATEL graphical language are professional service architects 
and service developers. The first population of users will probably not have to deal 
with the implementation tasks. However, for the second category of users, we can 
legitimately ask whether it make sense to develop the logic of a service using a 
graphical notation instead of using directly a general purpose programming language. 

Our, experiments yields us to the observation that, for sure, for a programmer, 
using a graphical notation is much more time expensive than direct coding. However, 
if the time for providing an implementation is not a dramatic issue, there are clear 
advantages to make use of graphical notation to develop service logic that have good 
quality: 
 

- Firstly, in formalisms like SPATEL, the designer is free to decide where to put 
the border between "graphical design" and "textual coding" of service logic: any 
intensive computation can be encapsulated by means of a black-box local 
operation. Also, some components may be completely implemented using opaque 
code and still have a well-defined SPATEL interface to allow its reference in 
other services. This emphasizes the fact that the choice between graphics and text 
is not black or white. The good balance between both is the responsibility of the 
service writer. 

- Use of graphical notation helps in defining a "clean" logic, which can be 
understood by others, and hence facilitates the design of a logic that can be valid 
in different platforms. Quality of abstraction is an important feature for those that 
want to apply model-driven transformations to create multiple implementations 
from the same specification. 

 

We believe the problem of the border between design and code will always exist. 
However we notice that model-driven technology is effectively pushing in the way of 
making more and more design and less coding and this is particularly true in the 
domain of service development. 

6   Conclusions 

Service composition has become a hot topic for all telecommunication players. The 
ability for professionals and, even more for end users, to compose efficiently running 
telecom components, depends a lot on the availability of tools capable of hiding the 
complexity to access the telecommunication network resources. Many initiatives are 
currently launched in the telecom arena to try to solve the complexity of distribution 
and heterogeneity, especially now that the operators tend to open their access to their 
network resources. 
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The SPICE is contributing to this challenge by developing a set of powerful inter-
related tools which are integrated within its Service Creation Environment. The 
combined used of SOA and MDA is a distinguishing characteristic of the work 
conducted by this project.  

In this paper we have limited the scope to the case of the service creation for 
developers. We presented a subset of UML named SPATEL that is designed to create 
services that are easily portable to different platforms at server and terminal side. 

On the language side, future work will focus on a possible alignment of our 
formalism with the UPMS specification [21], which is still under construction at the 
OMG. In this respect, we tend to perceive SPATEL as a specialization of UPMS 
where only simple UML interfaces are used (no explicit notion of required interfaces) 
and where a composite service is represented by a default "service participant" 
containing the operation behaviours in the form of either an opaque implementation 
or a state-machine.  

On the platform side, future work will focus on targeting new telecom oriented 
platforms like the Android environment from Google [22] or FlexLite from Adobe 
Technologies [23]. An interesting point for the future will be to see if the 
heterogeneity in mobile terminals will continue to be an issue with the emergence of a 
limited number of de facto Web 2.0 standards technologies in the mobile world. 
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Abstract. Today, many practitioners have consolidated their experience with 
software models in collections of design flaws, smells, antipatterns, or guide-
lines that have a negative impact on quality aspects (such as maintainability). 
Besides these quality defects, many compilability errors or conformance warn-
ings might occur in a software design. Programming IDEs typically present 
problems regarding compilability in or near the code (e.g., icons at the line or 
underlining in the code). Modeling IDEs in MDSD follow a visual paradigm 
and need a similar mechanism for presenting problems in a clear, consistent, 
and familiar way. In this paper, we present different visualization concepts for 
visualizing quality defects and other problems in software models. These con-
cepts use different dimensions such as color, size, or icons to present this  
information to the user. We used a survey to explore the opinions held by prac-
titioners showing that 89.9% want to be informed about potential defects and 
prefer icon-, view- and underscore-based concepts to other types of concepts.  

Keywords: Visual Annotations, Software Models, Intelligent Assistance, Qual-
ity Defects, Software Diagnostics, MDSD. 

1   Introduction 

Model-driven software development (MDSD) drastically alters the software devel-
opment process, which is characterized by a high degree of innovation and productiv-
ity. MDSD focuses on the idea of constructing software systems by designing visual 
models that are translated into executable software systems by generators. These 
characteristics enable designers to deliver product releases within much shorter peri-
ods of time compared to the traditional development methods. In theory, this process 
makes it unnecessary to worry about an executable system’s quality, as it is "opti-
mized" by the generators. 

However, just as in current software programming, people make mistakes that  
result in defects of the software model. These defects might prevent the compila-
tion/transformation of the model, deteriorate its quality aspects such as its  
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maintainability, or violate conformance to a modeling standard. In programming 
errors and warnings are usually presented to the programmer in the textual editor by 
means of problematic parts being underlined or marked with little icons. In MDSD, 
problems are typically not annotated directly in the visual models. 

In this paper, we present several concepts for annotating software models in order 
to provide architects, designers, and modelers with additional information about prob-
lems regarding the compilability, quality, or conformance of a software model. Our 
primary research goal was to identify the acceptance of our concepts by practitioners 
and explore their intent to use these visualization concepts.  

After presenting related work in section 1, we describe details of the annotation 
concepts in section 2. The instrument for the evaluation of visual mockups, used to 
evaluate the acceptance of our annotation concepts, as well as the findings of our 
survey is described in section 3. Finally, we conclude our contribution in section 4 

2   Related Work 

In order to inform the modeler about the quality defects in his software model (e.g., 
the PIM), we need to annotate the visual diagrams presented to him. However, anno-
tating UML with information about quality defects is not a straightforward task. UML 
is intended to describe the structural (and, with Action Semantics, the behavioral) 
elements of a software system. Nevertheless, in UML (2.1) [13] several mechanisms 
exist to store additional (non-standard) information in the software model. However 
the additional information are either not shown in the diagrams (e.g., UML annota-
tions) or would flood the diagrams (e.g., UML comments). 

2.1   Defects in Programming IDEs 

In programming IDEs, icons are typically used to pinpoint problems such as compiler 
warnings or errors. For example, the Eclipse IDE (V3.3) [5] uses markers to annotate 
problems in the source code and icons are anchored directly beside the respective line, 
while underlines are used to pinpoint the exact position. A problem view is used to 
list all problems in all projects and decorators are used to annotate problems in a class 
or other files shown in the project file tree. Netbeans (V5.5) [7] also presents defects 
as icons in the source code directly beside the respective line and underlines the exact 
position in the text. In Visual Studio .Net 2003 (V7.1) [15], defects are listed in the 
Task List after the build process is started. 

Another source for error or defect visualization are tools used for bug tracing and 
error detection. A couple of such tools exist for the Java language. Most of them are 
extensions to the Eclipse environment. During our survey, we looked at the most 
commonly used tools: Findbugs [6], PMD [9] and CheckStyle [2]. All tools are based 
on Eclipse and use the features Eclipse provides, such as the “problem view”, to re-
port problems to the user. While these annotations are very useful in textual IDEs, 
they are not sufficient for visual IDEs in MDSD. Here we need to annotate elements 
in 2D graphs with multiple defects of various severity, priority, and effects. 
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2.2   Defects in Modeling IDEs 

In software modeling, the visual annotation of defects in software models is scarcely 
explored. Current modeling tools can be classified as either being based on the 
Eclipse framework or being standalone tool. Those tools integrated into Eclipse usu-
ally use the known Eclipse features to visualize errors:  

• The problem view lists errors and warnings from multiple sources and aggregates 
them into one list. The list usually supports icons to indicate the level of serious-
ness, such as error, warning, or info. 

• The outline view is a representation of the model tree and usually contains informa-
tion on errors, which are indicated by mini-icons (i.e., so-called decorators). 

• Errors in the textual editor area are usually indicated by an icon directly beside the 
line of code and the text block containing the error is highlighted by underscores. 
To facilitate navigation, errors are marked right besides the scrollbar.  

Typical examples of model editors built on top of the Eclipse functionalities are 
Topcased and OmondoUML. Topcased [12] displays errors in the UML models as 
tasks in the Eclipse Problem List and also little icons directly in the diagram as well 
as the tree view of the UML model. The icons are rather small. Only one error type is 
used. Errors in hidden parts of the tree view are not shown in collapsed nodes. One 
example that combines all methods is OmondoUML [8] that is also based on Eclipse 
and used within Java projects. It attaches Java coding directly to the model. Errors in 
the Java coding are shown in multiple locations such as the UML diagram, the code, 
the Eclipse Problem list, and the project (resp. package) tree. 

Examples of tools that are not based on Eclipse are Poseidon [10] and Enter-
prise Architect [4]. Poseidon [10] is the commercial variant of ArgoUML [1], which 
presents some errors in the UML diagram using icons and most others in a list. Enter-
prise Architect [4] supports model validation and detects errors and warnings found in 
the model. They are visualized as lists similar to the Eclipse Problem list. However, 
these tools do not use differentiating icons in the error list or in the diagram. 

2.3   Safety Signs and Defect Pictograms 

Beyond our own domain people in the field of technical documentation are using 
icons, signs, and pictograms to warn about dangerous substances or situations. ISO 
3864-2 2002 and ANSI Z535.2-2002 are standards for environmental & facility safety 
signs that includes plain warning symbols, detailed message panels, and short header 
sections (see Figure 1a). It is intended to establish “the safety identification colors and 
design principles for safety signs to be used in workplaces and in public areas for the 
purpose of accident prevention, fire protection, health hazard information and emer-
gency evacuation”. Other standards include ISO 7010 (see Figure 1c), IEC 61310, 
ISO 16069, IEC/TR 60878, (see Figure 1b), ISO 7000, or IEC 60417. Similar to the 
passenger/pedestrian symbols developed in the 1970s by the AIGA and the U.S. De-
partment of Transportation (DOT), they represent uniform and consistent visual lan-
guages. 

However, while these pictograms can be used in the context of MDSD to annotate 
defects in software models, they are not tailored to represent different types, sever-
ities, priorities, or effects of these defects. 
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Fig. 1. Warning Symbols and Pictograms 

3   Visualization Concepts 

For the annotation concepts, we used an exemplary UML diagram contaminated with 
multiple defects. This example was also used in the survey as the guiding scenario. As 
presented in Figure 2, the UML class diagram contains a package (Opportunity) and two 
class declarations (Opportunity and SalesForecast). The class Opportunity is meant to 
represent an opportunity for a sale (e.g., during project acquisition) and SalesForecast 
the prognosis / forecast about the chances and benefits of this opportunity. 

Since the focus of this survey was on the defect annotation of the software models, 
we introduced five defects on different levels that are marked with numbers in the 
following diagram:  

1. Relation defect: Defect in the relations between the two classes. In this case, a 
circular inheritance was introduced.  

2. Attribute defect: Defect in the attributes of the class SalesForecast. In this case, 
one identifier is specified twice.  

3. Method defect: A defect in the method declaration of the class SalesForecast. In 
this case, too many parameters (i.e., the code smell "Long parameter list").  

4. Class defect: Defect in the Opportunity class itself: The class has too few methods 
and attributes (i.e., the code smell "Lazy Class").  

5. Diagram defect: Defect in the diagram: The diagram has too few elements and 
might be superfluous.  

Fig. 2. Scenario Mock-up 

a) ISO 3864 b) IEC 60878 c) ISO 7000
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We collected several kinds of annotations during a brainstorming session. We iden-
tified 11 techniques applicable to two-dimensional software models listed in Table 1. 
The first five (Icons to Aura) including the last one (Views) were selected for evalua-
tion as they appeared to be the most promising. The concepts are characterized, as to 
whether they can be applied in entities (e.g., boxes for classes or packages), relations 
between entities, the connectors of relations (e.g., the diamond shaped ends of an 
aggregation), or additional notes or comments. Furthermore, the positioning of  
the annotation is differentiated in the body (e.g., within a box or connector), the line, 
the frame (e.g., borderline of a box or connector), and the aura (e.g., directly outside 
the box or connector). 

Table. 1. Visualization Concepts and Affected Elements 

Entities Relations Connectors Notes   
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Icons  -  -   -     

Color            

Bold   -  - -  -    

Dashed -  -  - -  -    

Aura   -  -   -    

Form            

Size            

Pattern            

Opaque     -   -    

Tilting    -  -    -  

Views - - - - - - - - - - - 

In order to annotate software models in MDSD with information on defects, we 
developed the previously described concepts that should visually present defects. As 
we developed these concepts, we identified the following constraints: 

• They should be integrated into the UML (Version 2.1) and not change the meaning 
and standard representation of the language’s elements (e.g., by changing the form 
of class-boxes). 

• They should be easily integratable into today’s UML modeling environments (i.e., 
this excludes animated or 3D visualizations).  

• They should pinpoint the location of the defect as exactly as possible. 
• They should enable differentiating between different defects (e.g., based on type). 
• They should enable the annotation of one modeling element with multiple defects. 
• They should not distract modeler from his work (i.e., excluded large annotations). 

Finally, the annotations should be presented to today’s software developers and 
modelers in a familiar way. 
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Icon-Based Concept 
The icon-based concept is centered around the idea of representing every defect by a 
distinct icon positioned at a package, class, method, attribute, or relation in a UML 
model. As depicted in Figure 3, the five previously mentioned defects are positioned 
very close to the defective element. However, only one icon per element can be at-
tached (except for packages/diagrams, classes, and possibly (long) relations) and, if 
more defects were diagnosed, they have to be hidden (i.e., stacked) below the first 
one. The amount of icons positioned at packages/diagrams, classes, and relations is 
basically constrained by their individual size. 

Fig. 3. The Icon-based Concept 

We varied the icons in order to represent different defects, since in reality, several 
different kinds of defects (e.g., compiler errors, maintainability defects, security 
flaws, etc.) would be shown. However, as several hundreds of these defects are 
known [11] it is probably not possible to represent every individual defect by one 
distinct icon (esp. considering the size limitations of 16 x 16 pixels). Nevertheless, 
groups of defects regarding one specific quality aspect (cf. ISO 9126) might be repre-
sented by one icon. 

Color-Based Concept 
The color-based concept is centers around the idea of representing every defect with a 
distinct color for a package, class, method, attribute, or relation in a UML model. 
Here the five previously mentioned defects are indicated by different colors. 

As with icons, the concept allows only one color to be assigned for each individual 
element and therefore only one defect/error type. Multiple colors can represent sev-
eral different kinds of defects (e.g., compiler errors, maintainability defects, security 
flaws, etc.), but if multiple defects need to be assigned to one model element, only the 
color of the defect with the highest priority can be presented. 

However, as color can and is used in UML tools to distinguish entities such as 
classes, this concept has to be handled with care. Furthermore, if color is used it 
should affect the readability of the diagram (e.g., a red text on a red background 
would be hard to read). 
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Boldness-Based Concept 
The boldness-based concept is very similar to the color-based concept but represents 
defects in boldface text for package, class, method, attribute names and with 
thicker/bold lines for relations and boxes in the UML model. The concept is expected 
to be less intrusive or distractive, however, the drawback is that the visualization 
cannot distinguish different types of defects. 

Underscore-Based Concept 
The underscore-based concept adapts a concept for error visualization from code 
editors as well as from spellcheckers in word processors. Since VIDE visual syntax 
goes beyond textual, this concept has been extended to diagrams where needed. While 
package, class, method, and attribute names are underlined, relations are overlaid with 
a dashed line. The concept may be extended to other diagrams and connectors as 
needed. To distinguish different defect types, different colors can be used similar to 
the color-based concept and as depicted in Figure 4. 

Fig. 4. The Underscore-based Concept 

Aura-Based Concept 
The aura-based concept represents a fusion of the underline-based concept with the 
color-based concept in order to maintain consistency of the annotated diagram. In this 
concept, diagrams, entities, relations, and text are enriched with a colored aura or 
halo. The aura-based concept surrounds all elements (package, class, method, attrib-
ute, and relation) with defects/errors in a consistent way. 

The Views Concept 
A separate view that lists all errors, defects, warnings etc. is the most common and 
accepted concept. Today, the majority of development, bug tracing, and diagram 
modeling tools feature a separate view that shows identified defects. The views are 
organized as simple lists that often support (hierarchical) categories and sorting.  

Icons are often used to facilitate understanding. These icons should be the same (also 
semantically) as those used in other views (i.e., a diagram or the coding/textual view.). 
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Fig. 5. Concept Using Views 

4   Evaluation 

In order to evaluate these annotation concepts for architectural models, we conducted 
a survey using an electronic questionnaire. The survey was aimed at eliciting which 
annotation concept practitioners prefer and when, what kind, why, and where they 
prefer the annotations.  

We conducted the survey between 24 September and 8 October 2007. The main 
target groups were architects, designers, as well as programmers and testers in soft-
ware organizations who are involved in daily software development activities. Our 
respondents consisted of a total of 292 individuals, of whom 78 completely finalized 
the questionnaire – 48.3% from SMEs and 51.7% from large enterprises. 

To develop the survey pages and make them available on the Internet, a commer-
cial tool called OPST from the company Globalpark (http://www.globalpark.de/) was 
used. The questionnaire was designed using multiple choice questions (mostly based 
on a 7-point semantic differential or five-point Likert scale) wherever possible, as 
these are more likely to be answered, and it is easy to statistically analyze the an-
swers. To allow unexpected answers, most concepts had an open question with some 
extra space for comments. 

Figure 6 summarizes the respondent profile of our survey. The respondents had 6-
10 years of experience on average and consisted of 54.2% architects, 18.6% develop-
ers, and only 27.1% other (of which 1.5% stated to be project managers).  
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Fig. 6. Experience with Software Modeling 



414 J. Rech and A. Spriestersbach 

 

Furthermore, 67.9% of their employers had been using modeling techniques for 
over 2 years for their commercial software, 66.1% for their internal software, and 
50.9% were applying the model-driven approach (i.e., code generation). 

The respondent profile obtained met our prior expectations, considering the basic 
user group of assistance in software engineering tools. Non-management employees 
and project managers are the group that is supposed to have the most contact with 
tools in this domain. 

4.1   Findings 

The following results are extracted from the answers to the survey and are provided in 
graphical format for reasons of brevity. The main feedback on the evaluated visualiza-
tion concepts is depicted in Figure 7. To compare the concepts we defined eight fac-
tors that are targeted to explore the intent to use a visualization concept. We asked the 
following questions using a semantic differential between 7 and 1, with 4 representing 
the neutral center: 

• Useful vs. useless: To identify if the participants perceive the visual concept as 
useful or not. 

• Unobtrusive vs. distracting: To identify if the participants perceive the visual con-
cept as distracting or not. 

• Appealing vs. repelling: To identify if the participants perceive the visual concept as 
appealing or not. 

 

Fig. 7. Kiviat Graph Overview 
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• Understandable vs. incomprehensible: To identify if the participants perceive the 
visual concept as understandable or not. 

• Consistent vs. inconsistent: To identify if the participants perceive the visual con-
cept as consistent or not. 

• Precise vs. imprecise: To identify if the participants perceive the visual concept as 
precise or not. 

• Easy to use vs. hard to use: To identify if the participants perceive the visual con-
cept as easy to use or not. 

• Familiar vs. strange: To identify if the participants perceive the visual concept as 
familiar or not. 

In order to compare all annotation concepts and rank them, we mapped the scores 
from all questions onto one value. As shown in Figure 8 the concepts with the highest 
overall scores are the views, icons, and underscore concepts. While no concept was 
found to be inadequate, the participants were almost undecided regarding the bold-
based concept. The color- and aura-based concepts were slightly accepted and are 
only marginally behind the underscore-based concept. 

 

Fig. 8. Average Score for Concepts 

The general preference of visual in-model presentation concepts (plus additional 
ones such as form or opaqueness) is shown in Figure 9 question was: “Assuming I 
had access to a modeling system (e.g., an UML tool) with a defect annotation exten-
sion, I would use it if it presented defects with the following types of annotations”. 
While the participants had no picture that described the concept the results seem to 
indicate that they are interested in the “Pattern (e.g., the background of a box)” con-
cept. Concepts based on size (e.g., larger boxes and font sizes) or forms (e.g., de-
formed boxes) seem to be very undesirable. 

4.2   Discussion 

In this paper, we present different visualization concepts and used a survey to explore 
the practitioners’ opinions. In this section, we discuss the strengths and weaknesses of  
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Fig. 9. General Preference of Concepts 

our work. Beside the data presented in section 3, we have observed that the partici-
pants were very interested in the matter and gave long comments (3-4 sentences) to 
each concept. 

Strengths 
The survey described above has enabled us to undertake a transparent collection of 
opinions regarding the perceived usefulness and acceptance based on the technology 
acceptance model (TAM). While the original TAM (as well as UTAUT [14]) ques-
tions are not aimed at evaluating mockups, Davis and Venkatesh analyzed TAM for 
the user acceptance testing of pre-prototypes/mockups [3]. 

This survey was constructed to record information on visualization concepts for 
quality defects in software models. In retrospective, this approach and our implemen-
tation had the following strong points: 

• The survey is replicable due to the approach described, the search terms used, and 
the selection process.  

• It is transferable to other, new visualization concepts and can be used to compare 
them to the concepts we selected for the review. 
Whether the results really show the intended use, i.e., whether the results of Davis 

and Venkatesh will hold, has to be investigated in the future. 

Weaknesses & Threats to Validity 
However, besides these strong points, we are aware that there may be weak points to 
our survey. From our point of view, it had the following weak points: 

• The participants only evaluated a static representation of the visualization concept 
and could not “work” with it. However, we follow the research done by Davis and 
Venkatesh [3] that the evaluation of mockups can be used to judge the real usage 
behavior. 

• We should have used more “obviously” bad concepts in order to find more explicit 
differences between the concepts. However, due to the constraints regarding the 
time participants are willing to invest, we assume that only few (i.e., 2-4 more for a 
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total of 8-10) concepts could be added, as one concept requires approx. 3-5 minutes 
to evaluate. 
Finally, it is unclear if the results of the survey are truly representative, as no in-

formation on the basic population in the field of MDSD is documented. However, as 
we have elicited answers from people in organizations of various sizes and in differ-
ent domains, as well as from different experience levels we assume that there was no 
large systematic error. 

5   Conclusion 

The findings of this survey provide a general characterization of the preferences of 
practitioners regarding the annotation of software models in MDSD. The findings 
helped us to identify the most promising candidate for quality defect annotation and 
might be used as a starting point for people interested in the development of intelli-
gent assistance systems and annotation languages.  

The survey results provided the following observations about visual annotations of 
software models as perceived by the participants: 

• Almost all participants (89.8%) want to be informed about defects in their software 
models.  

• Of the visual concepts presented, the icons-based concept was preferred above all 
others.  

• Views that present a list of defects are clearly preferred by many people and should 
not be replaced by purely visual concepts. 

• The most useful, appealing, understandable, easy to use, and familiar concept seems 
to be icons. 

• The most unobtrusive concept seems to be bold. 
• The most consistent concept seems to be color. 
• The most precise concept seems to be underscore. 

As MDSD is becoming more and more getting productive and enables software 
engineers to visually develop software systems, we expect to see our or similar con-
cepts integrated into visual IDEs. Therefore, we are currently working on the imple-
mentation of defect annotations into an open source IDE for MDSD and are construct-
ing a visual language for the differentiation of individual defects. 
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Abstract. Model-Driven Development (MDD) has become a familiar software 
engineering term in recent years, thanks to the profound influence of the Model 
Driven Architecture (MDA). Yet MDD, like MDA itself, defines a general 
framework, and as such is a generic approach rather than a concrete 
development methodology. Methodology support for MDA has been rather 
slow in coming, yet even though several MDA-based methodologies have 
emerged, they have not been objectively analyzed yet. The need remains for a 
critical appraisal of these methodologies, mainly aimed at identifying their 
achievements, and the shortcomings that should be addressed. We provide a 
review of several prominent MDA-based methodologies, and present a criteria-
based evaluation which highlights their strengths and weaknesses. The results 
can be used for assessing, comparing, selecting, and adapting MDA-based 
methodologies. 

Keywords: Model Driven Architecture, Software Development Methodology, 
Evaluation Criteria.   

1   Introduction 

The Model-Driven Architecture (MDA) proposed by the Object Management Group 
(OMG) defines an approach to information systems specification that separates the 
specification of system functionality from the specification of the implementation of 
that functionality on a specific technology platform. The primary goals of MDA are 
portability, interoperability, and reusability of software. To achieve these goals, MDA 
raises the level of abstraction and strives to automate the software generation process.  

There are a number of important OMG standards at the core of MDA: The Unified 
Modeling Language (UML), Meta Object Facility (MOF), XML Metadata 
Interchange (XMI), and Common Warehouse Metamodel (CWM) [1]. These 
standards define the core infrastructure of the MDA, and have greatly contributed to 
modern systems modeling. The core standards of the MDA (UML, MOF, XMI, and 
CWM) form the basis for building coherent schemes for authoring, publishing, and 
managing models within a model-driven architecture.  

MDA provides an approach for specifying systems in terms of models; system 
requirements are specified in the Computation-Independent Model (CIM); the 
Platform-Independent Model (PIM) is the model that describes the system design 
independent of the implementation platform; the Platform-Specific Model (PSM), on 
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the other hand, describes the system design in the form of a platform-dependent 
model. Through its multi-layered modeling approach, MDA raises the abstraction 
level of traditional platform-dependent design approaches. 

A Software Development Methodology (SDM) is a framework for applying 
software engineering practices with the specific aim of providing the necessary means 
for developing software-intensive systems [2]. A methodology consists of two main 
parts: a set of modeling conventions comprising a modeling language (syntax and 
semantics), and a process which provides guidelines as to the order of the activities 
and specifies the artifacts developed using the modeling language. According to the 
above definition, MDA is not a methodology, but rather an approach to software 
development. This fact forces organizations willing to adopt the MDA to either 
transform their software development methodologies into Model-Driven 
Development (MDD) methodologies, or use new methodologies that utilize MDA 
principles and tools towards the realization of MDA standards.  

This research presents an analytical review and evaluation of a select set of existing 
MDA-based methodologies. The research has been performed in three main steps: 
information gathering and methodology selection, development of Evaluation Criteria 
(EC), and criteria-based evaluation of the selected MDA-based methodologies – with 
results and observations presented in tabular form. The results can be used by 
software developers to select the MDA-based methodology best suited to their needs, 
and by method engineers to create MDA-based methodologies through making use of 
the strengths identified and addressing the deficiencies observed.    

The information gathering step involves studying relevant MDA literature and 
identifying prominent MDA-based methodologies. An initial set of evaluation criteria 
is then defined; this initial set is refined and completed to satisfy a predefined set of 
suitability Meta-Criteria (criteria to evaluate evaluation criteria). The last step 
involves performing the evaluation based on the set of criteria, and tabulating and 
analyzing the results. 

The rest of the paper is organized as follows: Section 2 provides a review of 
existing MDA-based methodologies; we present our evaluation results in section 3, 
and provide an analysis of the results in Section 4; conclusions and areas for 
furthering this research are presented in section 5. 

2   Review of MDA-Based Methodologies 

In this section, we present a review on MDA-Based methodologies using the process-
centered template introduced in [2], which accentuates the processes of the metho-
dologies. The main factor influencing the selection of these particular methodologies 
was the availability of proper resources and documentation on their processes.  

2.1   ODAC Methodology 

ODAC is an MDA based methodology specifically targeted at distributed systems. It 
provides a set of concepts and structure rules to create systems. The "viewpoint" is the 
main concept used in this methodology. A viewpoint is a subdivision of the complex 
specification of the system [3], used for organizing the modeling activities. ODAC 
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considers five viewpoints: enterprise, information, computational, engineering, and 
technology. It uses these concepts to define development steps by identifying the 
correspondences between analysis, design, and implementation activities and the 
viewpoints. ODAC identifies three categories of specifications for each system: 
behavioral, engineering, and operational [4].  ODAC phases are as follows (Fig. 1):  

• Analysis: produces the behavioral specifications (PIM) of the system.  
• Design: establishes the engineering specifications (analogous to MDA’s Platform 

Description Model–PDM) and uses it to produce the operational specifications 
(PSM) via projection of the PIM onto a target environment.  

• Implementation: generates the execution code from the PSM.  
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Fig. 1. The ODAC Process 

2.2   MASTER Methodology 

MASTER was developed as part of a European information project of the same name. 
The methodology includes an MDD process and a set of system family engineering 
methods to adapt the MDD process according to customer requirements [5]. The 
activities and roles of this methodology are defined based on the Software Process 
Engineering Metamodel (SPEM) [6]. MASTER phases are as follows (Figure 2): 

• Capture User Requirements: covers requirements elicitation and documentation.  
• PIM Context Definition: describes the domain scope of the software system to be 

developed. The output of this phase is a clear definition of the system, its goals, 
and its domain.  

• PIM Requirements Specification: develops a clear and complete requirements 
model. The main activity of this phase includes specifying capabilities (use 
cases) and enforcers (nonfunctional requirements) of the system. 

• PIM Analysis: models the internal view of the system regardless of the 
technological constraints.  

• Design: models the detailed structure and behavior of the system.  
• Coding and Integration: develops and verifies the execution code. The code can 

be generated from the platform-specific model by means of MDA tools.  
• Test: verifies and validates the final system.  
• Deployment: transitions the system to the user environment.  
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Fig. 2. The MASTER Process 

2.3   C3 Methodology 

The C3 methodology uses principles of Business Object Oriented Software Techn-
ology for Enterprise Reengineering (BOOSTER) to develop business applications [7]. 
The name C3 is derived from the three concepts of inter-organization Collaboration, 
Concurrent software engineering and Component development. Concurrent software 
engineering for both system architectural design and component design is realized 
through Model-Driven Development and XMI-based techniques.  

The phases of this methodology are as follows (Figure 3): 

• Standardization: downloads the required model elements needed to develop the 
target business software from the project repository.  

• Software Development: defines the application’s overall architecture.  

Code Generation phase

Model Design phase

Application Deployment 
phase

Software Development 
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Code
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Fig. 3. The C3 Process 
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Fig. 4. The DREAM Process  

• Model Design: refines the business application architecture. The PIM is the 
output of this phase.  

• Code Generation: transforms the PIM to PSM and deployable components.  
• Application Deployment: prepares the software for deployment into the 

operational environment based on the architectural framework. 

2.4   DREAM Methodology 

The DRamatically Effective Application development Methodology (DREAM) 
combines the key activities of Product Line Engineering (PLE) with the model 
transformation features of MDA [8]. DREAM phases are as follows (Fig. 4): 

• Domain Analysis: captures the features of several organizations in the same 
domain, and analyzes the Commonality and Variability (C&V). The output is the 
specification of common features and differences between organizations.  

• Product Line Scoping: determines the scope of the target product line.  
• Framework Modeling: realizes the C&V in a framework, presented as a PIM. The 

framework defines the general architecture for the desired members of the 
product line, together with the relationships and constraints.  

• Application Requirements Analysis: analyzes the application requirements and 
identifies the features related to the application at hand. The output of this phase 
is the application analysis model. 

• Application-Specific Design: realizes the application analysis model as a 
platform-independent design model. The output is the application-specific PIM.  

• Framework Instantiation: instantiates the framework for the specific application 
by setting the variants accordingly. The output of this phase is the instantiated 
framework PIM.  

• Model Integration: integrates the specific application PIM and the instantiated 
framework PIM into one model.  
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• Application Detailed Design: refines the integrated model by considering 
platform-specific issues, thereby producing the PSM.  

• Application Implementation: generates the execution code and its related 
implementation complements – such as the database – from the PSM.  

2.5   MODA-TEL Methodology 

The MODA-TEL methodology is mainly targeted at distributed applications [9]. The 
activities and roles of this methodology are defined based on SPEM [6].  

 

Fig. 5. The MODA-TEL Process 

As shown in Fig. 5, the MODA-TEL process consists of five phases: 

• Project Management: manages and monitors the project.  
• Preliminary Preparation: identifies modeling and transformation requirements.   
• Detailed Preparation: determines modeling and transformation specifications.  
• Infrastructure Setup: provides the tool support and metadata management 

facilities to be used in the execution phase. 
• Execution: aims at developing the software artifacts and executable code. The 

activities include: Requirement Analysis, Modeling (producing the PIM), 
Verification/Validation, Transformation (PIM to PSM), Coding/Testing, 
Integration/Deployment, and Operation/Maintenance. 

2.6   DRIP-Catalyst Methodology 

DRIP-Catalyst is an MDA-based methodology for developing complex, fault-tolerant 
distributed families of software [10]. DRIP stands for Dependable Remote Interacting 
Processes. The methodology makes use of the notion of “Atomic Action” as a 
recovery technique that permits programmers to apply backward and forward error 
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recovery. A Coordinated Atomic Action (CAA) consists of distributed transactions 
and an atomic action. The DRIP framework embodies the CAAs in terms of a set of 
java classes. It builds on the notion of Dependable Multiparty Interaction (DMI). 
DRIP Catalyst includes a process, a UML profile and a set of transformations, all of 
which have been integrated into a tool. DRIP-Catalyst phases are as follows (Fig. 6):  

• Problem to Solution Transition: maps the requirements to the solution through 
sketching nested CAA diagrams.  

• Platform-Independent Architectural Design: categorizes the CAAs generated in 
the previous phase in a coherent package of UML class diagrams.  

• Platform-Independent Detailed Design: details the modeling elements related to 
each CAA identified in the previous phase, using UML activity diagrams. 

• Formal Verification: automatically checks dependability properties using formal 
methods, and verifies that the models satisfy the requirements, thus producing a 
verified Platform-Independent Detailed Design Model (PIM2DM).  

• PIM to PSM Transition: maps the PIM2DM to a platform-specific model through 
transformation provided by MDA tools, producing the PSM.  

• PSM to Code: maps the PSM to execution code.  
• Completion: produces code that can be compiled.  
• Deployment: defines a configuration set that realizes the deployment of the 

application, through producing deployment guides and configuration files. 

 

Fig. 6. The DRIP-Catalyst Process 

3   Evaluation of MDA-Based Methodologies 

We have evaluated the MDA-based methodologies reviewed in the previous section 
using a method similar to the Feature Analysis approach [11]. The Feature Analysis 
approach was developed in 1996 under a collaborative project between academia and 
industry. The outcome of this project was a method to evaluate software engineering 
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methods and tools. Feature Analysis provides two ways for evaluating any product in 
terms of results: a simple form and a scale form. In its simple form, the approach 
presents a list of “yes/no” responses against the existence of some feature in a 
product. In the scale form, instead of “yes/no” responses, a number between -1 to 5 is 
used which represents the degree of conformance of the product to a feature.  

Since the selected MDA-based methodologies are evaluated with a set of 
Evaluation Criteria (EC), the development of the criterion set is an important feature 
of our research. The collected criteria are of two types: (a) Scale type, where a scale 
represents the degree of presence of a criterion in the methodology (we use scales 
with three levels for each such criterion); and (b) Narrative type, where the degree of 
the implementation of the criterion in the methodology is described in narrative form.  

The criterion set used for evaluation was developed through gradual refinement: an 
initial set of general criteria – addressing software development processes and MDD-
related issues – was compiled through studying relevant resources, such as official 
MDA specifications and survey/analysis reports on software development 
methodologies [2]; the set was then refined, using a set of  meta-criteria (criteria to 
evaluate the EC set) to guide the refinement process towards a reasonably complete 
and precise set of criteria. The following meta-criteria were defined for this purpose:  

(I) Existence of tool-related criteria: used to ensure that the EC set provides tool 
evaluation, as most MDA practices are enacted through specialized tools. This 
meta-criterion ensures the existence of criteria that measure how much of a 
task is governed by tools and how much by the methodology itself; that is, 
whether the methodology participates in such activities or leaves them to tools. 

(II) Existence of MDA-related criteria: used to evaluate the completeness of the EC 
set as pertinent to MDA aspects. This meta-criterion ensures that the EC set 
covers the MDA aspects of methodologies. MDA-related criteria are applied to 
the methodologies only in an MDA-related context. 

(III) Existence of general criteria: used to evaluate the completeness of the EC set 
from general aspects. This meta-criterion ensures that the EC set covers the 
general aspects of the methodologies; general criteria can be applied to all 
methodology types: plan-driven, agile and MDA-based methodologies alike.  

The refinement process proceeded by categorizing the initial set of criteria into 
tool-related, MDA-related, and general criteria (according to the above meta-criteria). 
For each category, relevant resources were then searched iteratively for new criteria 
and ideas for refining the existing ones. For instance, in striving to complete the 
criteria belonging to the general category, general software engineering resources and 
existing documentation on methodologies (such as plan-driven, agile and component-
based) were consulted; as an example, since most methodologies (especially agile 
methods) include activities for customizing and adapting their processes, adaptability 
was added as a criterion in order to cover this need in MDA-based methodologies; 
Reusability was also added, based on the observation that MDA and most component-
based methodologies consider it as essential. Tables 1, 2 and 3 show the resulting 
evaluation criteria; the three tables correspond to meta-criteria I, II and III 
respectively. We have strived to produce a useful, relevant, and meaningful criterion 
set, while keeping it small and practical. We have therefore focused on addressing 
features that are particularly important and significant in MDA and MDD.   
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As a basic requirement, evaluation criteria targeted at software development 
processes are expected to satisfy certain validity meta-criteria; one such set has been 
defined in [12]. Our evaluation criteria satisfy the four validity meta-criteria of [12], 
in that they are: 1) general enough to be applicable to all MDA-based methodologies; 
2) precise enough to help discern the similarities and differences among MDA-based 
methodologies; 3) comprehensive enough to cover all significant features of MDA-
based methodologies; and 4) balanced, i.e. adequate attention has been given to all 
three major types of features in a methodology: technical, managerial and usage [12].  

Table 1. Tool-related evaluation criteria (satisfying meta-criterion I) 
 

Table 2. MDA-related evaluation criteria (satisfying meta-criterion II) 
 
Criterion Name Criterion Type Description of Levels 

Tool Selection/Implementation  Scale Form 

A: The methodology does not provide a specific tool and there are no 
explicit guidelines as to how to select an appropriate alternative tool. 
B: The methodology does not provide a complete toolset, or only 
general guidelines are provided for selecting alternative tools. 
C: The methodology provides a complete toolset, or provides precise 
guidelines for selecting appropriate alternative tools.  

CIM Creation Scale Form 

PIM Creation Scale Form 

PSM Creation Scale Form 

A: Production of the model is not addressed by the methodology. 
B: The methodology provides general guidelines for creating the 
model; creation steps are not determined precisely.  
C: The methodology explicitly describes steps and techniques for 
creating the model.   

Verification/ Validation  Scale Form 
Extension of Rules  Scale Form 
Round-trip Engineering Scale Form 
Source Model and Target Model Synchronization Scale Form 

A: The activity is not defined and is devolved to the developers. 
B: The activity is defined by the methodology, but not in detail. 
C: The methodology provides explicit and detailed guidelines and 
techniques for performing the activity. 

Use of UML Profiles Narrative  

 
Tables 4, 5, and 6 show the results of applying the evaluation criteria to the 

selected set of MDA-based methodologies. It should be noted that the interpretation 
of the results is largely dependent on the usage context. The evaluation results can be 
used for selecting a suitable process from the set of surveyed ones based on a set of 
predefined requirements, or for identifying shortcomings in these processes in order 
to improve them. The evaluation framework (criteria) and the results can also be used 
in a Method Engineering (ME) context; i.e. for guiding the adaptation, extension, 
meta-modeling/instantiation, and decomposition/assembly of MDA-based processes.  

4   Analysis of the Results  

The following subsections contain analyses of the evaluation results shown in tables 
4, 5, and 6. Of the methodologies reviewed herein, MODA-TEL and MASTER are 
the methodologies that satisfy most of the criteria. 

 

Criterion Name Criterion Type Description of Levels 
PIM to PSM Transformation Narrative 
PSM to Code Transformation Narrative 
Metadata Management Narrative 
Automatic Test Narrative 
Traceability between Models Narrative 

Involved: The Methodology explicitly participates in the activity and 
provides precise techniques/guidelines. 
Devolved:  The activity is devolved to the tools and the methodology 
does not prescribe the steps that should be performed by the tools.    
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Table 3. General evaluation criteria (satisfying meta-criterion III) 

Description of Levels Criterion Type Criterion Name 
A: The methodology does not provide coverage for the phase.  
B: The methodology provides general guidelines for the phase. 
C: The methodology provides detailed directives for the phase.     

Scale FormRequirements EngineeringG
eneric Life C

ycle 

C
overage 

Scale Form Analysis 
Scale Form Design 
Scale Form Implementation 
Scale Form Test 
Scale Form Deployment 
Scale FormMaintenance 

A: The methodology does not provide coverage for the activity.  
B: The methodology provides general guidelines for the activity. 
C: The methodology provides detailed directives for the activity.         

Scale Form Project Management 

U
m

brella
A

ctivities

Scale Form Quality Assurance 
Scale Form Risk Management 

A: Problem Domain Analysis has not been addressed. 
B: Problem Domain Analysis is implicit and confined to requirements 
engineering. 
C: Problem Domain Analysis is explicitly addressed by the 
methodology, and traceability is maintained.  

Scale Form Problem Domain Analysis 

A: The task is devolved to the developers; the methodology does not 
prescribe techniques/guidelines.  
B: The methodology explicitly prescribes techniques to create 
potentially reusable artifacts. 
C: In addition to B, the methodology prescribes techniques to record 
syntactic/semantic features of reusable aspects for future reuse.    

Scale Form Reusability 

A: No techniques are prescribed for adapting the methodology. 
B:  The methodology provides extensible notations.  
C: In addition to B, the methodology prescribes explicit techniques for 
configuring the process and/or modeling language. 

Scale Form Adaptability 

A: Some phases of the methodology are not completely specified. 
B: All phases are completely specified (in breadth) but details are 
lacking in some phases. 
C: All phases are completely specified at an adequate level of detail. 

Scale Form Completeness of Definition 

Extended: The methodology is the result of extending an    existing 
methodology to support MDA-based development. 
MDA-based (Genuine): The methodology has been created from 
scratch aimed at supporting MDA-based development. 

Scale Form Methodology Type 

NarrativeApplication Scope 
 

4.1   Tool-Related Evaluation Results 

The results seem to show that most of the methodologies examined do not offer any 
guidelines as to how MDA tools should be used in coherence with the methodology, 
thus leaving all tool-related issues to the tools themselves. The only counterexamples 
are MODA-TEL and MASTER, and even these do not provide full coverage.    

4.2   MDA-Related Evaluation Results 

Since tools have a key role in MDD, MDA-based methodologies are expected to 
incorporate activities aimed at selecting or implementing appropriate tools. While 
DRIP-Catalyst and MASTER incorporate suitable tools themselves, MODA-TEL 
provides guidelines for selecting the tool from existing commercial and open source 
MDA toolsets. DREAM, C3 and ODAC are at the other end of the spectrum: they do 
not even offer any guidelines as to how an appropriate alternative tool can be selected.  

All of the MDA-based methodologies reviewed incorporate activities for creating 
the PIM and PSM; creation of the CIM, however, is only addressed by MASTER and 
C3. Due to the model-centric nature of MDD, syntactic and semantic accuracy of the 
models is essential, as is their traceability to requirements; however, most of the 
processes reviewed do not provide adequate support for model verification/validation.   

All the methodologies reviewed (except for MASTER) are weak in providing other 
important MDA features; i.e., support for extension of rules, round-trip engineering, 
and source-model and target-model synchronization.  
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4.3   General Evaluation Results 

Most of the methodologies reviewed cover the analysis, design, and implementation 
phases of the generic software development life cycle, either by prescribing 
specialized techniques, or through making use of existing object oriented techniques; 
however, the requirements engineering, test, deployment, and maintenance phases are 
not adequately supported in most of them. For instance, only MODA-TEL supports 
maintenance, whereas MDA-based maintenance requires special techniques that 
cannot be simply borrowed from existing methodologies. Another area where MDA-
based processes need improvement is support for umbrella activities; of the processes 
reviewed, only MODA-TEL and MASTER provide support for project management 
and quality assurance, while risk management is not supported by any methodology.  

Table 4. Results of applying the Tool-related evaluation criteria  

                           Methodology
Criterion MODA-TEL MASTER C3 ODAC DREAM DRIP-Catalyst 

PIM to PSM Transformation Involved Involved Devolved Devolved Devolved Devolved 
PSM to Code Transformation Involved Involved Devolved Devolved Devolved Devolved 
Metadata Management Involved Involved Involved Devolved Devolved Devolved 
Automatic Test Devolved Involved Devolved Devolved Devolved Devolved 
Traceability between Models Involved Devolved Devolved Devolved Devolved Devolved  

Table 5. Results of applying the MDA-related criteria 

                 Methodology 
Criterion MODA-TEL MASTER C3 ODAC DREAM DRIP-Catalyst 

Tool Selection/ 
Implementation  B C A A A C 

CIM Creation A B B A A A
PIM Creation B C B C B C 
PSM Creation B C B B B B 
Verification/ Validation  B A A A A B
Extension of Rules  C B A B B A 
Round-trip Engineering B A A A A A 
Source Model and Target 
Model Synchronization  B B A A A A 

Use of UML Profiles 
Used for 
Requirements 
Representation 

Used for Annotating 
PIM with Management 
Information 

Not
Used 

Used for Describing 
Development Steps. 

Used for Defining 
Well-Structured 
Models 

Used for Defining 
Fault-Tolerant 
Transactions  

Table 6. Results of applying the General criteria 

DRIP-Catalyst DREAM ODAC C3MASTER MODA-TEL                                Methodology 
Criterion 

ABABCBRequirements Engineering G
eneric Life C

ycle

C
overage 

CBCACBAnalysis 
CBCBCBDesign 
BBBBBBImplementation 
AAAACBTest
BAABBBDeployment 
AAAAABMaintenance 
AAAACBProject Management 

U
m

brella
A

ctivities

AAAABBQuality Assurance 
AAAAAARisk Management 
ABABBAProblem Domain Analysis 
ABABBBReusability  
AAAABBAdaptability  
ABBACBCompleteness of Definition  
Extended Extended Extended Extended MDA-BasedMDA-Based Methodology Type 
Distributed Fault-
Tolerant Applications 

Product Line 
Engineering 

Agent-Oriented 
Systems 

Business 
Software 

Information 
Systems 

Distributed 
Applications Application Scope 
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Most of the MDA-based methodologies reviewed provide techniques for creating 
and applying reusable artifacts. Support for reusability, however, is not 
comprehensive enough: Methodologies do not prescribe techniques for recording the 
syntactic- and semantic features of reusable artifacts in order to facilitate future reuse.     

Developers prefer methodologies which lend themselves to customization and 
adaptation; but of the methodologies reviewed, only MODA-TEL and MASTER 
provide adaptability (in the form of extensible notations). Furthermore, methodologies 
need to be properly defined in order to be usable; however, some of the 
methodologies reviewed herein (e.g., C3) suffer from cursory definitions of activities.  

5   Conclusions and Future Work 

MDA cannot be useful without software development methodology support and the 
tools that implement its main concepts and standards. We have surveyed several 
prominent MDA-based methodologies and have evaluated them using a predefined 
set of evaluation criteria. According to the evaluations results, we can conclude that: 

 The MDA-based methodologies studied herein are not mature enough, especially 
as pertaining to providing support for standard software engineering activities. 

 Definitions of methodologies are not complete. 
 Umbrella activities are not adequately addressed in most of these methodologies. 
 Most of the methodologies do not participate in the activities that are supported 

by tools, and do not even provide guidelines for tool usage.  
 PIM and PSM production is supported by the majority of these methodologies; 

the CIM, however, is mostly neglected. 
 Most of the methodologies use conventional OOA and OOD techniques to 

produce PIMs. 

We aim to further this research by identifying a set of process patterns showing 
recurring activities in different MDA-based methodologies, thereby producing a 
generic and instantiable process for such methodologies. 
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Abstract. Model-Driven Engineering (MDE) has been promoted as a solution 
to handle the complexity of software development by raising the abstraction 
level and automating labor-intensive and error-prone tasks. However, few 
efforts have been made at collecting evidence to evaluate its benefits and 
limitations, which is the subject of this review. We searched several publication 
channels in the period 2000 to June 2007 for empirical studies on applying 
MDE in industry, which produced 25 papers for the review. Our findings 
include industry motivations for investigating MDE and the different domains it 
has been applied to. In most cases the maturity of third-party tool environments 
is still perceived as unsatisfactory for large-scale industrial adoption. We found 
reports of improvements in software quality and of both productivity gains and 
losses, but these reports were mainly from small-scale studies. There are a few 
reports on advantages of applying MDE in larger projects, however, more 
empirical studies and detailed data are needed to strengthen the evidence. We 
conclude that there is too little evidence to allow generalization of the results at 
this stage.   

Keywords: Model-driven engineering, quality, productivity, evidence. 

1   Introduction 

The model-driven approach has received considerable attention this decade. The 
OMG’s Model-Driven Architecture (MDA) initiative, Model-Driven Development 
(MDD) or Model-Driven Engineering (MDE)1 has been hailed as the solution to 
handle the key problem facing the software development industry; increasing 
complexity, by (1) providing better abstraction techniques and (2) facilitating 
automation. By switching to a MDE approach, businesses are promised to reap 
benefits through increased productivity and software quality [26].  

The motivation behind this paper is that even though many promises are made, 
these are in most cases poorly, if at all, supported by evidence. During recent years 
we have witnessed the surfacing of attempts to evaluate practices and benefits of 
MDE through empirical studies; including experiments and industry experience 

                                                           
1 In the remainder of the paper we use MDE to refer to a model-driven software development 

approach, also where MDD is used in the papers. 
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reports. This paper, the result of an extensive literature review, contributes to the state 
of evidence in MDE by gathering the individual evaluations and providing a detailed 
overview of industry’s experiences with MDE. 

The remainder of the paper is organized as follows. Section 2 presents the review 
framework and the three research questions leading the review, the strategy used for 
literature search, the publication channels, and an overview of the reviewed papers. 
Section 3 through 5 reports our findings, before Section 6 summarizes and concludes 
the paper. 

2   The Review Process and an Overview of Papers  

2.1   The Review Framework and Research Questions  

We follow the review framework presented in [19], adopted to this review and depicted 
in Figure 1. The formulation of the review questions follows recommendations by Dybå 
et al. for collecting evidence as answer to questions. Questions should be well-
partitioned into intervention, context and effect [9]. In this review, the intervention is 
“MDE” (vs. non-MDE approaches), the context is “industrial settings” and the effects 
are “changes in productivity and quality, or cost savings”.  

Effects: 
benefits & savings

Intervention:
MDE

cause-effect

Theory

Observation in industry

Inputs:
assets, 

current practices

Outcomes:
metrics & findings

Complementary factors:
e.g., training or tools

construct 
validity

construct 
validity

internal 
validity

conclusion
validity

external 
validity

Treatment:
new practices, 

metrics

Confounding factors:
e.g., context, 

complexity or size
 

Fig. 1. The review process  

To understand the intervention and context, we ask the following Research 
Questions (RQs): 

• RQ1. Where and why is MDE applied? 
• RQ2. What is the state of maturity of MDE? 

And to evaluate the effects, we ask: 

• RQ3. What evidence do we have on the impact of MDE on productivity and 
software quality? 
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2.2   An Overview of the Reviewed Papers 

We searched the following publication channels for industrial studies related to MDE: 

• The Software and Systems Modeling (SoSyM) journal from 2002 (the first issue). 
• The Empirical Software Engineering journal since 2000. 
• Proceedings of the UML conference from 2000 to 2004, succeeded by the 

MODELS conference to 2006. 
• Proceedings of The European Conference on MDA- Foundations and 

Applications (ECMDA-FA) started in 2005, and to 2007. 
• Proceedings of the DSM workshops at OOPSLA since start in 2002. 

We also performed a search by keywords in the IEEE Xplore, the ACM digital 
library and the Internet. A few additional papers were discovered through references 
in the detected papers. The review identified 33 papers and reports (generally called 
papers).  From these, we excluded 8 papers with claims on industrial application but 
no description of the application (a list can be provided by the authors). This left 25 
papers for the review.  

It was not possible to extract information on the size of projects from the majority 
of papers. For appraising the evidence, we asked what types of studies were 
performed (see [19] for a definition of study types). We concluded that: 

• 20 of papers are experience reports from single projects with description of a 
project or development method and discussion of experiences [1-7, 8, 10, 11, 13, 
20-24, 27-29 and 31]. Of these, only two include some quantitative data from the 
projects (both from Motorola). 

• Three papers have used interviews and questionnaires in addition to observations 
[24-26]. 

• Three papers describe comparative studies (comparing projects or development 
of components with each other) [12, 14 and16].  From these, [12] provides no 
quantitative data. 

• One paper describes three (quasi)experiments [16]. 

Only seven papers report experiences from completed projects [1, 3, 6, 13, 25, 27 
and 29], while the others are from pilot studies or ongoing projects at the time of 
reporting, and one is from a terminated project [ABB Robotics in 26].  

When it comes to publication channels, 13 papers are published in the proceedings 
of conferences (especially the ECMDA-FA conference), 9 papers in workshops and 
satellite activities of conferences, two are online reports and only one is published in a 
journal.   

3   Where and Why Is MDE Applied (RQ1)? 

A broad range of companies in various domains report their experience from 
investigating or applying MDE.  To name some, the papers cover: 

• Telecommunications domain [2, 3, 16, 21, 26, 28 and 29]. 
• Business applications and financial organizations [1, 7, 8, 16 and 24]. 
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• Defense / aerodynamics / avionic systems [5 and 11]. 
• Web applications [6 and 14]. 

We found examples of safety-critical and trustworthy systems [5, 11 and 27] and 
embedded systems [23 and 27]. MDE approaches are also applied to software product 
lines as in [2, 10 and 27]. In connection with legacy systems, Bloomfield reports 
successful remodeling of a component [5] and Raistrick reports developing new 
components that were integrated with existing components [22]. On the other hand, 
ABB Robotics refrained from adopting MDE due to the base of legacy code [26].  

Regarding motivations for evaluating or applying MDE, the papers discuss: 

• Increasing productivity and shortening development time:  as in [12, 14, 16, 25, 
Ericsson in 26 and 29]. 

• Improving quality: improving the quality of the generated code [25, 27 and 29], 
improving the quality (assurance) of system requirements [4] and managing 
requirement volatility [22], improving the quality of intermediate models [4], and 
earlier detection of bugs [12, 27 and 29]. 

• Automation: generating code and other artifacts and introducing automation into 
the development process [1-3, 6, 7, 8, 11-13, 16, 21, 23 and 27], and model-based 
simulation and testing [3]. 

• Standardization and formalism: providing a common framework for software 
development across the company and phases of the lifecycle [2, 24 and 25], 
formalize and organize software engineering knowledge at a higher level of 
abstraction [29], and common data exchange format [20]. 

• Maintenance and evolution concerns: maintaining the architecture intact from 
analysis to implementation [25], evolution of legacy systems [12], concerns over 
software method and tool obsolescence [5], verification of system by producing 
models from traces [28] and that PIMs have long lifespan [14]. 

• Improved communication and information sharing: between stakeholders [18 and 
24] and within the development team [12, 26 and 27] and ease of learning [27 
and 29]. 

Additional motivations are traceability throughout software development artifacts 
[17 and 26], early assessment [22 and 26], promoting reuse [2, 18, 24 and 29], 
porting of solutions to new platforms [12 and 13], and the ability to estimate costs 
based on the models [22 and 26]. 

On the above list, increasing productivity (and shortening development time) and 
improving quality may be regarded as the ultimate reasons for applying MDE. The 
other items, on the other hand, are basically means towards these two ends. 

4   What Is the Experienced Maturity of MDE (or, the-State-of-
MDE) (RQ2)? 

In this section we present findings related to the current state of practicing MDE. It 
covers automation as a key means to achieve the MDE benefits. We also discuss the 
state of software development processes and tools for MDE. 
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4.1   Level of Automation 

By using transformations the MDE approach emphasizes generating models, code and 
other artifacts from models, in addition to verification and validation on the model 
level. In this section we analyze to what extent this is possible in the presented 
contexts and with the current state of tools 

Automatic Generation of Code. While some papers report generating all or most of 
the code from the models [5 and 6], others report that only part of the code could be 
generated. Motorola evaluates the potential of MDE in generation to be between 65 to 
96 percent depending on the type of the code (low level code is not captured in the 
design and is unlikely to be generated), and perceives the status of code generators as 
satisfactory in producing code with no introduced defects [3 and 29]. Automatic 
generation of code required developing Domain Specific Languages (DSLs) or UML 
profiles and own code generators in several cases, as in [1, 3, 7, 10, 21 and 29].  

Generating XML Schemas. In [20] a metamodel was implemented as a UML profile 
and the needed XML schemas were generated directly from the marked PIM models. 
[2]’s toolset also includes an XML schema generator, a code generator using the 
schemas and other outputs. In the case of [10], the developed framework included a 
XML schema generator, HTML documentation generator and a model browser.  

Automation of Testing. In Motorola, by using TTCN scripts, 90% of the tests are 
automated which has led to a 30% reduction in box-test cycle time [29]. 

Executable Models. A few papers have discussed that developing executable models 
is still a challenge. Deng et al. write that they used Visio as a static design tool, while 
a dynamic provisioning tool is desired to make the blocks executable [8]. MacDonald 
et al. report difficulties in specifying behavior using Telelogic Tau and that they could 
not develop executable models [12].  

4.2   Software Processes 

The importance of utilizing a defined process in software engineering has been known 
for several years. However, most “tried and tested” processes are not tailored for 
MDE, which does not make any assumptions on the software development process or 
the design methodology. Baker et al. report that many teams in Motorola encountered 
major obstacles in adopting MDE due to the lack of a well-defined process, lack of 
necessary skills and inflexibility in changing the existing culture [3]. Also, 
MacDonald et al. write that there is no well-defined process for developing non-trivial 
MDE components, especially when these are part of legacy systems [12].  Staron 
means that there are two reasons for why they currently find it unrealistic to purely 
use a MDE process [26]: 

1. Software engineering methods are not fitted to use models as main artifacts, i.e. 
activities such as analysis and evaluation is still largely done at the code level. 

2. Software engineering environments are not mature enough. 
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Some have attempted to apply pre-existing software processes to MDE, such as 
using a modified version of the Rational Unified Process (RUP) [24], and combining 
agile methods and MDE [23, 27 and 30]. Others have attempted defining processes 
for MDE. Firstly, THALES has defined a MDE process by extending the IEEE 1471 
standard [11]. Secondly, Biffl et al. propose an iterative software development 
lifecycle, which includes creating models with explicit stakeholder requirements, a 
first quality assurance (QA) step with type checking and semantic validation and 
transforming these into intermediate models, and a second QA step with static 
validation of models [4]. Thirdly, Staron et al. discuss that raising the abstraction 
level and employing automatic code generation moves the complexity of software 
development to transformations [25]. An MDE process should consequently prioritize 
defining transformations before defining profiles, since profiles are considered a 
means of making the transformations automated. The importance of developing 
transformations early is further supported by [21]. None of the studies report using 
any of the already existing – although few – model-based methodologies, e.g. KobrA2 
or COMET3.   

4.3   Tools 

Supporting MDE with a comprehensive tool environment is crucial, as many of the 
techniques promoted as necessary in MDE strongly depend on proper tool support.  A 
survey performed among industry participants (presented in [26]) showed that, when 
considering whether or not to adopt MDE, the availability of tools was perceived as 
the most influential factor. However, a tool chain has to integrate the various tools for 
software development (e.g., requirements management, modeling, model 
transformations, traceability, simulation, validation and testing [15]), support multiple 
platforms and domain-specific design [12] and the possibility to generate correct code 
by adding constraints and rules [1, 13, 27 and 31].  

Integrating a tool suite that satisfies these requirements into a coherent 
environment is evidently a challenge. In the MODELWARE project, a wide range of 
tools were used, but all partners experienced problems with instability of the tools and 
their integration [15 and 17]. Also according to Motorola, third-part MDE tools do not 
scale well to large system development [3]. Safa writes that using third-party tools 
raises questions of suitability for the product, adaptability to new platforms, 
availability over time, and loss of differentiation factors since competitors may use 
the same tools [23].  

The vendor lock-in problem persuades some users to use open source tools such as 
the Eclipse framework. Others combine third-party products with self-developed tools 
[27 and 29], or develop their own tools [2, 4 and 10]. Having to invest time and effort 
into the development and maintenance of an MDE tool chain raises issues of cost. 
France Telecom calculated that the cost for creating their tool chain in 
MODELWARE was approximately one person-year in terms of resources, in addition 
to approximately 0.4 person-year for maintenance [15].  
                                                           
2 www.old.netobjectdays.org/pdf/02/papers/node/0308.pdf  
3http://www.uio.no/studier/emner/matnat/ifi/INF5120/v05/undervisningsmateriale/COMET_M
ethod_v2-4.pdf  
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5   What Evidence Do We have on the Impact of MDE on 
Productivity and Software Quality? (RQ3) 

Productivity and software quality gains are often given as main motivations for 
selecting new technologies, and most papers in this review include discussion of 
either one or both of the aspects. In this section, we present the reported data, 
observations and explanations on observations. 

5.1   MDE Impact on Productivity 

Three of the papers in the review report results from comparative studies on 
productivity (i.e., developing a product twice or comparing with company baseline 
data), although the studies are of small-scale.  

Firstly, in a report from 2003, the Middleware Company, on behalf of Compuware, 
conducted a comparative case study on the productivity of MDA [14]. Two teams 
developed the same application, one using MDE and the other using a non-MDE 
approach.  The result was that the MDE team developed their application 35% faster 
than the other team – needing 330 hours compared to 507,5. It is worth noting that the 
MDE team used a tool with pre-made transformation mappings, which relieved them 
of potential work. On the other hand, this was the developers’ first experience with 
MDE and related tools, which would presumably hamper their productivity. Issues 
like application performance and maintenance were not evaluated. 

Secondly, we have the results of the EU IST project MODELWARE4 [16]. In 
September 2006, results from six small-scale case studies and (quasi)experiments 
performed by five industrial partners were disseminated. When it comes to 
productivity, the results are differing: 

• In WM-Data (desktop business applications), two developers re-implemented a 
subset of requirements and the effort was compared to some baseline data. The 
productivity gain was on average 24% using MDE. 

• WesternGeco (oil and gas exploration) performed an experiment with 24 
developers who were given four tasks – two involving a traditional development 
process and two involving MDE. Only eight subjects finished the experiment due 
to problems with the MDE tooling and complexity of the tasks. The results show 
no difference in productivity between the two approaches.  

• A team of two developers from Enabler (specialist in creation and integration of 
IT solutions for retailers) developed a module twice over a period of 
approximately 300 hours. The results show an overall loss in productivity when 
using MDE by 27%. When discounting the problems with the use of immature 
tools, the loss in productivity was 10%.  

• France Telecom measured the effort needed to specify, implement and change 
five different functional units, normalized by the weight of their complexity, and 
compared to the data on effort spent in a non-MDD approach. A productivity 
gain of 20% was measured during design activity and 69% during coding. This 
observed productivity gain does not take into account the cost of the development 
of tool chain.  

                                                           
4 http://www.modelware-ist.org 
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The third paper reports redevelopment of a small component of a legacy system 
using MDE [12]. The authors report that there is no proof that development speed is 
improved, especially with the workarounds required to integrate with legacy systems.  

A few other papers have reported productivity gains in single projects when 
applying MDE, without having a clear baseline or providing detailed data. Firstly, 
Motorola has employed a MDE approach for more than 15 years and has shipped 
millions of lines of code based on MDE [3]. All in all, they have experienced a 2X–
8X productivity improvement when measured in terms of equivalent lines of source 
code. These numbers are all approximates, as Motorola is lacking a common baseline. 
Also, an experience report by Trask et al. deals with the application of a combination 
of software product line and MDE techniques to the “software defined radio” domain 
[27]. The programmers reportedly experienced a 500% productivity gain, minimum, 
by utilizing their domain-specific modeling tool. These results are based on 
experiences and are not validated by data or experiments. And finally, Thales Air 
Traffic Management (TATM) in the MODELWARE project estimated 5 to 25% 
productivity gains based on the assumption that a certain type of defect (interface 
mismatch) cannot occur because of the MDE process. 

The industrial papers that reported productivity gains accredited the improvement 
to automatic code generation [3, 14, 27 and 29], model-based simulation and testing 
[3, 15 and 29], automatic test generation [3, 29], avoiding defects [27 and TATM in 
16], domain-specific languages [27], and reuse of design and test between platforms 
or releases [29]. 

As discussed above, there are also reports of productivity loss. The main reasons 
are mentioned to be immature tools and high start up costs [Enabler in 18], and that 
modeling can be at least as complex as programming with a traditional third 
generation language [12].   

5.2   MDE Impact on Software Quality 

Among industry adopters discussing improvements in software quality due to MDE, 
the key experienced benefit is a drastic reduction in the number of software defects. 
However, there are not much quantitative data presented in the papers.  

Firstly, we discuss the Motorola case. Weigert and Weil write that with MDE, 
there are fewer inspections required to ensure the quality of the developed code than 
using conventional development. In addition, inspection rates are higher and have 
increased from 100 source lines per hour to in between 300 and 1000 source lines per 
hour [29]. Motorola data also shows that simulation is about 30% more effective in 
catching defects than the most rigorous inspections, and that defects are detected 
earlier in the software development lifecycle. They expect a 3X reduction in defects, 
which is backed up by an earlier Motorola study, experiencing “a 1.2X–4X overall 
reduction in defects and a 3X improvement in phase containment of defects”.  Baker 
et al. write that it is not unusual to see a 30X–70X reduction in the time needed to 
correctly fix a defect by detecting and correcting the problems at the model level [3].   

That models are verified through simulation (or other techniques) and checked for 
completeness also improves quality significantly according to [15 and 29]. In [15], 
France Telecom writes that being able to validate the specification using simulation, 
allows them to “to eliminate uncomfortable ergonomics that would be difficult to 
detect otherwise”.   
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6   Summary and Conclusions 

This review examined experiences of applying MDE in industry published since 
2000, showing the status as it is and identifying gaps for future research. Validity 
threats are identified to be: 

• The low number of studies is the main threat to the external validity of the 
results (i.e., generalization to a population or theory).  

• Success cases are more likely to be published than failures. 
• Some companies may refrain from publishing their results to keep their 

competitive advantage. 
• Projects with external financing, such as EU projects, may report biased results. 

However, in the case of the MODELWARE project, we know the details of the 
studies and do not consider this as a threat to the validity of the results.  

• There are few results of large-scale studies and the scalability of MDE to large 
system development should be evaluated in more cases. 

• There is a lack of baseline data in most companies, which results in subjective 
evaluations. 

• Most studies do not include enough quantitative data or the metrics are not 
properly defined.  

Due to the low number of experiments, we do not discuss experimentation validity 
threats in more details. Finally, we mainly searched journals and conferences that 
have a review process and are considered relevant to our subject, in addition to 
including two on-line reports [14 and 16]. Additional search in other publication 
channels may add new papers which can extend the results of this review. 

We asked three research questions and the findings are summarized here:  

• RQ1-Context and motivation. MDE is applied in a wide range of domains; 
including safety-critical systems and product lines. MDE is assumed to lead to 
higher productivity (by increased automation in the development process), 
increased standardization and formalism, and improved communication within 
development teams and with external stakeholders, to name the most frequently 
given benefits. Labor-intensive and error-prone development tasks are automated 
and best-known solutions can be integrated in code generators, resulting in 
reducing defects and improving software quality.  

• RQ2-State-of-the-MDE. The current state of MDE is far from mature. There is a 
varying degree of automation and it is mostly applied for code generation. 
Examples of using models for simulation and test generation are also given. 
Tools are improved during the recent years but several papers still discuss the 
lack of a coherent MDE environment and tool chain. Tools should scale to large-
scale development and support the domain-specific approach more effectively. 
Software processes should also be adapted to MDE. Other challenges in adopting 
MDE are the complexity of modeling itself, developing PIMs that are portable to 
several platforms and using MDE together with legacy systems. 

• RQ3-MDE impact on productivity and software quality. We found some 
quantitative evidence on productivity gains in the Motorola context [3 and 29], 
from a domain-specific environment [27], and three small-scale comparative 
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studies and quasi-experiments described in [14 and 16]. The Motorola studies are 
the only ones providing some quantitative data on software quality 
improvements. Software quality benefits are discussed in several papers but are 
not backed up with data. 

Modeling should be easier and faster than code writing to promote MDE. 
Appropriate tools and processes and increased expertise on modeling are areas for 
improvement in most cases. Combining MDE with domain-specific approaches and 
in-house developed tools has played a key role in successful adoption of the approach 
in several cases. One of promises of MDE in increasing portability of solutions to 
multiple platforms has not often been feasible, mainly due to the fact that tools are 
bound to specific platforms. However, most papers evaluate models as useful for 
improving understandability and communication among stakeholders. 

It is a challenge to collect convincing proof on any technology – MDE included. 
Future work for evaluation of MDE should focus on performing more empirical 
studies, improving data collection and analyzing MDE practices so that success and 
failure factors and appropriate contexts for MDE can be better identified. Future 
research should also cover evaluating Return-On-Investment (ROI) of MDE in 
various contexts and for different project scales. We only found an estimation of ROI 
in France Telecom which provided an estimation based on costs related to the training 
and tool chain setup and the measured productivity gain [15]. High initial investment 
and unsure benefits were one of the issues influencing the decision of the non-
adopters [26]. In the MODELPLEX project5, we continue the MODELWARE 
approach in combining research with industrial application and evaluation and will 
report the results of research on applying MDE in large and complex system 
development on the project website and in future publications.  
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