
A Comparison of Standard Compliant Ways to
Define Domain Specific Languages

Ingo Weisemöller and Andy Schürr

Real-Time Systems Lab
Technische Universität Darmstadt

D-64283 Darmstadt, Germany
{weisemoeller,schuerr}@es.tu-darmstadt.de

http://www.es.tu-darmstadt.de/

Abstract. Domain specific languages are of increasing importance for
today’s software development processes. Their area of application ranges
from process modeling over architecture description and system design to
behavioral specification and simulation. There are numerous approaches
for the definition and implementation of DSLs. Among others, the OMG
offers UML profiles as a lightweight extension of a predefined multi-
purpose language and MOF as a metamodeling language, which can be
used to define DSLs from scratch. This contribution investigates var-
ious approaches to define DSLs, focusing on architectural description
languages as an example. Besides the usage of UML profiles and the def-
inition of an entirely new language with MOF, the adaption of the UML
based on a metamodel extension is also considered. As a consequence
of the shortcomings depicted for the different approaches, we suggest to
combine UML profiles and metamodeling in order to compensate their
weaknesses and take advantage of their benefits.

1 Introduction

Nowadays the usage of domain specific languages (DSLs) is of growing impor-
tance in software development processes. Languages like BPMN [13], ACME [5]
or MATLAB/Simulink [19] offer support for various phases of the software de-
velopment process. Most of them are built up from scratch, often by means of
a proprietary metamodeling language. As a matter of fact this results in high
efforts, when building tools based on these languages. The Object Management
Group (OMG) has, therefore, introduced profiles as a mechanism to describe
lightweight extensions of the Unified Modeling Language [16,17] (UML) as well
as the Meta Object Facility [14] (MOF) as a meta modeling language to provide
standard methods for the definition of domain specific languages.

From the coexistence of different standards for the definition of DSLs arises
the question for which languages UML profiles are appropriate and in which cases
we need to define a heavyweight extension or specify a new metamodel. On the
one hand, UML is wide spread and well known, and commercial tool support
is available at least for editing UML diagrams. Constraints on the models can

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 47–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 I. Weisemöller and A. Schürr

be defined in the Object Constraint Language [15] (OCL), for which support is
currently available in some research projects [3] and in a few commercial tools.
On the other hand, customized languages do not only offer potentially greater
expressive power than profiles, and allow the usage of domain specific modeling
elements. Their users also benefit from the availability of code generators, which
results in lower efforts to build analysis tools and editors with a customized
concrete syntax. Besides that, a customized language may be smaller and easier
to learn than is UML.

The following sections deal with various approaches to define a DSL for soft-
ware architectures and architecture families. As we primarily address users of
UML, we focus on profiles and MOF as metamodeling techniques. Indeed we
accept to run the risk of omitting the advantages of other languages, but this
makes it much easier to bring together the benefits of metamodeling and profiles,
since we already have MOF-QVT [11] as a standard for model-to-model trans-
formations, which we want to use to combine profiles and metamodeling in the
future. Altogether, we distinguish between three approaches of metamodeling:

– The description of a lightweight extension of the UML by using profiles and
the equivalent extension of the UML metamodel. (Section 3)

– Using inheritance to extend the UML metamodel fragment that deals with
components, thus introducing subclasses of the metaclasses defined in the
UML 2.1 specification. (Section 4)

– The specification of a metamodel for MVC architectures in MOF. (Section 5)

For each approach we will consider the models and the metamodel of both the
MVC design pattern and the architecture of the “Java Pet Store” (cf. section 2).
We will then survey each approach with respect to the clarity of the correspond-
ing metamodels and their semantics, usability for modelers and metamodelers,
ease of defining constraints, and tool support.

2 Running Example

Each approach to define DSLs will be discussed based on the example of a
language for software architectures. In particular, we will focus on the formal
description of architectural guidelines and how to provide tool support for the
automated checking of these guidelines. As an example for a concrete software
architecture the Java Pet Store 1.1 web application, Sun’s sample application
for J2EE technology, will be used. It has been designed according to the Model
View Controller (MVC) design pattern, and a detailed textual description of
the architectural concepts [20] is available. Thus we have sufficient information
about its architectural concerns without being biased due to the usage of a
certain modeling language. Figure 1 shows an excerpt from the architecture in
a notation based on UML component diagrams.

The basic idea of the MVC design pattern is to decouple a system into three
areas of responsibility, each of which is improved in terms of extensibility, main-
tainability and replacability. We want to ensure architectures preserve this sep-
aration of concerns by demanding that each component of a system may only

A Comparison of Standard Compliant Ways to Define DSLs 49

Track page flow

RequestFilter

HttpRequest

FrontCon-
trollerServlet

FilteredRequest

Events

Command
Handler

Commands

SessionModel

Retrieve session
information

Modify session state

Edit objects

Retrieve model data

Business Model

Register Listeners

ScreenFlow-
Manager

Get status
screens

Show Page

Model

Controller

ViewHelper

EJB Tier
ControllerScreenView

Render in browser

View

Fig. 1. Simplified architecture model of the Java Pet Store

provide interfaces of the same area of responsibility as the component. Addi-
tionally, we will distinguish between critical, stable, and unstable components,
and define whether the usage of a component is strict, in which case the used
component must be at least as stable as the one that uses it.

3 Using UML Profiles

Profiles have been introduced by the OMG to allow users to adapt the UML to
their personal needs. According to the UML Superstructure specification [17],
profiles are not supposed to extend the UML metamodel. Thus they are concep-
tually interchangeable between tools, using XMI [12] as data format, though this
results in technical difficulties in practice, because most commercial tools do not
completely comply to the standard. However, although the specification states
that the UML metamodel is not extended by profiles, it describes metamodels
that are equivalent to a given profile. There has been a considerable amount of
publications on the modeling of architectural styles with UML profiles before,
most of which deal with UML 1.x (cf. section 6).

A sample profile for the distinction between model, view or controller elements
is shown on the left side of figure 2. To keep the example small, the separation
into the three areas of responsibility is limited to Interfaces and Components. The
right side of the same figure shows an extension of the UML metamodel that is
equivalent to the profile according to the UML Superstructure specification [17].

For the specification of the desired stability of a Component we introduce the
stereotype Importance, which provides an attribute of the Stability enumeration
type. An abstract stereotype Responsibility that generalizes the three stereotypes
Model, View, and Controller has been defined for the decoupling of the system

50 I. Weisemöller and A. Schürr

«profile» MVC

«metaclass»

Component
«metaclass»

Interface

«stereotype»

Responsibility

«stereotype»

Model
«stereotype»

View
«stereotype»

Controller

«enumeration»

Stability
CRITICAL
STABLE
UNSTABLE

«stereotype»

Importance

 + stability: Stability

{required}

{required} {required}

Component Interface

Responsibility

Model View Controller

1 1

1 1

extension_Responsibility extension_Responsibilit

base_Component base_Interfa

«enumeration»

Stability
CRITICAL
STABLE
UNSTABLE

Importance

 + stability: Stability

base_Component

extension_Importance

1

1

Fig. 2. A UML profile for MVC architectures and its MOF equivalent

into areas of responsibility. This should ensure that only one of the stereotypes
can be applied to each instance of the extended metaclasses. In fact this depends
on the mapping of inheritance between stereotypes to the metamodel. It relies
on the creation of an extension Responsibility link each time a substereotype is
applied. This is what commercial tools like Enterprise Architect in fact pretend
to do, but the UML specification does not clarify how to handle inheritance of
stereotypes. Therefore, the creation of associations for the concrete classes with
properties base Interface, base Component, extension model, extension View and
extension Controller must also be taken into consideration. If these associations
are marked as subsets of the one shown in the figure, the application of only
one stereotype would be ensured for the above reason. If a tool behaves different
in this point, this may force the user to introduce appropriate constraints and
make model interchange by means of XMI difficult or even impossible.

Figure 3 shows a small example of inheritance between an abstract and a con-
crete stereotype (A) and possible mappings to an equivalent MOF model (B–C).
It must be pointed out that none of them can be applied by a tool directly, since
this cannot modify its own metamodel at runtime. Instead, appropriate behavior
must be ensured by other means, but the implementation is left up to the tool

MyClass

«Stereotype»
SuperST

«Stereotype»
SubST

MyClass

SuperST

SubST

{required}

1

1

base_Class

extension_SuperST

MyClass

SuperST

SubST

1

1

base_Class

extension_SuperST

base_Class

extension_SubST

1

0..1

MyClass

SuperST

SubST

1

1

base_Class

extension_SuperST

base_Class

extension_SubST
{subsets
 extension_SuperST}

1

0..1

A B C D

Fig. 3. Generalization of stereotypes (A) and mappings to a MOF model (B–D)

A Comparison of Standard Compliant Ways to Define DSLs 51

developers. Getting back to the figure, we see that Mapping B is the one applied
in figure 2, introducing a single association in the MOF model. This ensures ex-
actly one subtype of SuperST (only SubST is available in the example) is applied
to each instance of MyClass. Mapping C introduces an additional association be-
tween each substereotype and the extended class, but this association does not
subset the one between the superclass and the extended class. If the superclass
is abstract and the stereotype is required (as in the example), there are three
possible ways to reflect the application of SubST to a MyClass instance. The
first one is to set only the extension SuperST property, in which case the other
association is useless. The second way is to set only the extension SubST prop-
erty, which results in a violation of the 1 multiplicity of the extension SuperST
association end, though we would expect this to result in a valid model. The
third possibility is to create two links (one for each association), which will re-
sult in a violation of the 1 multiplicity of the extension SuperST association end
in case multiple substereotypes are applied to an element. The mapping shown
in figure 3 D is only affected by the latter problem, since the application of an
instance of SubST to an instance of MyClass results in a link in both associations
due to the subsets property of the extension SubST association end.

For the remainder of this section we will assume that the extension of classes
by stereotypes is mapped to the metamodel as shown in figures 2 and 3 B. Based
on this, the following constraint can be added to Responsibility to ensure that all
Interfaces and their providing Components are of the same responsibility:

context Component inv: self.provided->forAll(i |
i.extension_Responsibility.getMetaClass() =
self.extension_Responsibility.getMetaClass())

As you will have noticed, the provided property and getMetaClass() method
are not defined in our profile, but are available from the UML metamodel respec-
tively the MOF reflection. Moreover we want to specify whether a Usage relation
between Components is strict, i.e. whether it may point from a component of a
certain level of stability to a less stable one. Therefore, we introduce a stereotype
Strict, which extends the Usage metaclass, and attach this constraint to it:

context Usage inv: Stability.ownedLiteral->indexOf(
self.client.extension_Importance.stability)

>= Stability.ownedLiteral->indexOf(
self.supplier.extension_Importance.stability)

Finally, let us look at the appliance of this profile to the concrete architecture
(figure 4). We will restrict this to the EJB Tier Controller, since the effect on
other components is basically the same. The concrete syntax for our extended
metamodel is defined by the UML specification. A minor issue is the presentation
of the stability tag in a note, where an additional attribute for the EJB Tier
Controller would be preferable.

Altogether, modeling of architectural styles based on UML profiles is quite
an extensive approach. It requires an OCL expression for the rather simple con-
straint on relationships between components and interfaces. All constraints are

52 I. Weisemöller and A. Schürr

«Controller,
Importance»

EJB Tier
Controller

«Controller»
Commands

«Controller»
Events

«Importance»

stability = STABLE

EJB Tier
Controller:

Component

Events:
Interface

Commands:
Interface

: Controller : Controller

: Controller
: Importance

stability = STABLE

Fig. 4. The UML profile applied to the architecture and an equivalent object diagram

rather complicated since we have to navigate between stereotypes and the ex-
tended classes, and there are some ambiguities concerning inheritance between
stereotypes. The advantage of UML profiles, besides reusability of the UML
metamodel, is the variety of existing tools we can use to describe architectures
now. Support for UML profiles is provided by a series of commercial products,
though not all of them do support UML 2 yet. These tools allow the definition
of profiles as well as their appliance to a model, thus being usable as an editor
not only for UML, but also for DSLs defined by means of UML profiles. Unfor-
tunately, the validation of OCL constraints does not work properly in general.

4 Extending the UML Metamodel

This section addresses heavyweight extensions of the UML by means of a MOF
tool. This differs from the approach described in section 3, for which a UML tool
supporting profiles is sufficient. Unfortunately, the definition of a metamodel ex-
tension is not that easy. If the creation, deletion and modification of arbitrary
elements was allowed, it might be “extended” to any other metamodel. To our
knowledge there is no generally accepted definition of a metamodel extension.
However, the OMG suggests to use the package merge concept from the UML
Infrastructure [16, pp 162ff] for this. Therefore, we limit extensions of a meta-
model to the merge of an arbitrary package into the outermost package of the
original metamodel.

Based on this, one obvious way to distinguish between interfaces provided by
model, view and controller components is to introduce subclasses for Component
and Interface from the UML metamodel. Unfortunately, we cannot make existing
metaclasses abstract to ensure only the subclasses are instantiated. This is due
to the definition of package merge: “For all matching classifier elements: if both
matching elements are abstract, the resulting element is abstract, otherwise,
the resulting element is non-abstract”, which implies that a non-abstract UML
metaclass remains non-abstract in our extended metamodel. Therefore, we have
to attach the constraints shown in figure 5 to Component and Interface to ensure
no instances of them can be created. The new subclasses do not necessarily have
additional attributes, but they allow us to redefine associations and introduce
constraints for our needs to describe MVC architectures.

As with UML profiles, we will try to express that an interface of a specific type
must be provided by a component of the same type. Therefore, we introduce an
association between each subclass of Component and the corresponding subclass

A Comparison of Standard Compliant Ways to Define DSLs 53

Component

ModelComponent ViewComponentControllerComponent

Interface

ModelInterface ViewInterfaceControllerInterface

+/required

+/provided

*

*

inv: not
self.oclIsTypeOf
(Component)

inv: not
self.oclIsTypeOf
(Interface)

{redefines provided} {redefines provided}

{redefines provided}

«enumeration»
Stability

CRITICAL
STABLE
UNSTABLE

+ stability: Stability

ComponentUsage

+ strict: Boolean

inv: self.strict implies
self.client->forAll(c: Component|
self.supplier->forAll(s: Component|
Stability.ownedLiteral->indexOf(s.stability)
<= Stability.ownedLiteral->indexOf(c.stability)))

UML::Classes::
Dependencies::

Usage

{subsets supplier}
{redefines supplier}

{subsets supplierDependency}
{redefines supplierDependency}

{subsets client}
{redefines client}

{subsets clientDependency}
{redefines clientDependency}

UML::Components::
PackagingComponents::

Component

UML::Classes::
Interfaces::

Interface

Fig. 5. Excerpt from the UML metamodel extended by subclasses

of Interface, which redefines the association between the superclasses as shown
in figure 5. We can also define several categories of stability in an enumeration
and add a new attribute of this type to a subclass of Component. Additionally,
we introduce a subclass ComponentUsage of the Usage relation from the UML
metamodel and add the attribute strict to it. The association ends between
this class and Component redefine those from the UML metamodel. Thus all
usages of components must be properly modeled by an instance of the new
ComponentUsage class. The following constraint ensures a component does not
depend on a less stable one if the strict attribute is set:

inv: self.strict implies self.client->forAll(c: Component|
self.supplier->forAll(s: Component|
Stability.ownedLiteral->indexOf(s.stability)
<= Stability.ownedLiteral->indexOf(c.stability)))

Each component and interface in a model must now be represented by an
instance of one of the new subclasses instead of Component and Interface from the
original UML metamodel. The association refinements and the constraints make
sure components provide only interfaces of appropriate types and do not strictly
depend on less stable components. The concrete architecture will basically look
the same as the one shown in Figure 1, except that a concrete syntax for the
new subclasses and relation needs to be introduced.

54 I. Weisemöller and A. Schürr

The FrontController component from our sample architecture provides a view
interface which offers frequently used pages, e.g. login or error screens. This vio-
lates the association refinements specified above, so a tool based on our extended
metamodel would have prevented a software architect from creating this model.
Instead, he might have introduced an additional view component, which gets
status information from the FrontController and creates status screens from it.

As we see, the formulation and check of some basic constraints can be ac-
complished in an UML metamodel extended by inheritance. On the other hand,
elements from the original metamodel which have become unnecessary are still
present in the extended metamodel. The most serious problem is the loss of com-
patibility to existing UML tools. So, in order to apply this approach, one would
have to modify an existing or write a new tool according to the new metamodel.

5 Defining a New Metamodel

The last approach discussed in this contribution is the specification of domain
specific languages from scratch by means of a metamodeling language. In con-
trast to an increasing number of proprietary metamodeling languages, the Meta
Object Facility [14] (MOF) has been introduced by the OMG to describe mod-
els of metadata in a format independent of platform and manufacturer. A small
number of tools supporting the specification of models using MOF [1] or its less
expressive subset EMOF is available. In this section, the adequacy of MOF for
the specification of DSLs will be discussed.

Figure 6 shows a simple metamodel to distinguish between model, view and
controller components or interfaces. It is similar to the extended UML meta-
model discussed in section 4, but there are some differences due to the fact that
we did not start with a predefined metamodel: First of all, the subsystems of

dependsOn

Module

ModelModule ViewModuleControllerModule

Interface

ModelInterface ViewInterfaceControllerInterface

required

/provided {union}

1

1

*

*

{redefines provided}
{subsets provided}

+ stability: Stability

*

{redefines provided}
{subsets provided}

{redefines provided}
{subsets provided}

inv: self.dependsOn->forAll(c |
Stability.owndedLiteral->indexOf(c.stability)
<= Stability.owndedLiteral->indexOf(self.stability))

«enumeration»
Stability

CRITICAL
STABLE
UNSTABLE

*

Fig. 6. A MOF model for the MVC design pattern

A Comparison of Standard Compliant Ways to Define DSLs 55

an architecture are no longer referred as components, but as Modules. When
building a metamodel from scratch, arbitrary names can be given to the model
elements, which allows the usage of identifiers specific to the users organisa-
tion for instance. Second, the superclasses Module and Interface can be abstract
classes, so we do not have to define a constraint to ensure they cannot be in-
stantiated. Third, the provided property of a Module is the derived union of its
subsets (which may be determined by a different derivation rule in turn), instead
of the derivation rule taken over from the UML into our extended metamodel.

viewHelper:
ViewModule registerListeners:

ModelInterface

businessModel:
ModelModule

providedrequired

dependsOn

stability = STABLE stability = CRITICAL

Fig. 7. An excerpt from the architecture model of the Pet Store

Since we have not introduced any notation, an excerpt from the architecture
of our sample application is shown as an object diagram in figure 7. To be able
to build a graphical editor for DSLs, a concrete syntax needs to be defined;
frameworks for building editors and tools based on MOF or EMOF models are
currently being developed by several organisations, e.g. [10]. The figure shows
the coupling of the model and the view subsystem, which is realized by the reg-
isterListeners interface. Due to the usage of this interface the viewHelper module
depends on businessModel, which requires the businessModel to be at least as
stable as the viewHelper. The corresponding constraint from the metamodel is
fulfilled in the example, so this is a valid model.

As we have seen, the most important advantage of building a new metamodel
are the extensive possibilities to adapt it to our needs and preferences. The
association concepts of MOF provide a more precise and convenient way to
specify relationships. Besides that, the elements can be defined in a way that
makes the OCL constraints more compact than in UML profiles. Basic support
for MOF based metamodeling is available as well as support for building tools
on top of these metamodels. Nevertheless, building tools is still a complex and
extensive task. Moreover, the introduction of a new language may require more
practice than the extension of UML by means of profiles, which requires neither
an entirely new concrete syntax nor new tools for the introduction of domain
specific modeling elements.

6 Related Work

Several publications address the definition of DSLs, many of which deal with
extensions of the UML or the specification of a new DSL by means of MOF.

Dong and Yang suggest to use UML profiles to describe architectural styles
in [4], but they focus on the visualization of patterns in system design rather
than consistency checking, though a few examples of constraints are given.

56 I. Weisemöller and A. Schürr

A publication of Henderson-Sellers and Gonzalez-Perez [7] investigates the
differences between stereotypes in UML 1 and UML 2 and points out some
issues about their specification from a set theoretical point of view. However, it
contains some serious flaws. For instance, the authors state that “the Stereotype
metaclass in UML 2.0 is a subtype of Class, so only classes can be stereotyped”,
where the first has nothing to do with the latter (and it should be mentioned
that “classes” in this sense are more than classes in class diagrams), or they
point out the “inability of stereotypes to express behavior”, although this does
obviously not hold for stereotypes which extend behavioral constructs.

The authors of [6] use a framework for model-to-model transformations to
map domain specific languages to UML. As discussed in the previous sections of
this contribution, they state that code generation and automated model analysis
usually come along with the introduction of DSLs, whereas UML is primarily
used as a target language for the visualization of models. However, their ap-
proach does not make use of UML profiles yet, but is focused on basic UML
instead.

Besides these scientific projects there are a few commercial, proprietary
meta-case-tools available [8], which in general lack interoperability, because they
do not comply to a standard meta modeling language, and modularization
concepts.

7 Conclusions

Our comparison of various approaches to define domain specific languages has
shown the benefits and drawbacks of UML profiles and metamodeling. Profiles
are supported by current CASE tools, but the concepts to refine associations
are rather weak in comparison to those of a metamodeling language. They also
suffer from a lack of flexibility, which makes the specification of constraints for
consistency and integrity checking more complicated than necessary. In addition
to these issues, there are some uncertainties about how to map profiles to an
equivalent metamodel. Domain specific languages built up from scratch or as a
heavyweight extension of the UML are better suited for these purposes, but they
require high effort on tool building to be really usable for model editing.

Table 1. Overview of approaches to specify DSLs

UML profiles UML extension New Metamodel
Expressive power - + +

Flexibility - o +
Clarity of semantics - + +
Simple constraints - o +
Model Notation - - +
Tool support + - -

A Comparison of Standard Compliant Ways to Define DSLs 57

8 Future Work

From the benefits and drawbacks of the approaches discussed in the previous
sections follows the desire to combine the advantages of UML profiles and meta-
modeling. More precisely, a way to define DSLs and make them usable without
building entirely new tools is required. For this purpose, we suggest to define a
mapping from a limited set of domain specific languages to UML profiles and
vice versa, which will make the use of commercial CASE tools as editors possi-
ble, but enable us to revert to the possibilities provided by metamodeling tools
for integrity and consistency checking of the models. For the definition of a DSL
and adaption of existing tools to this language we want to perform the following
steps as shown in figure 8:

UML Profile

Standard
UML Tool

Triple Graph
Grammar

Translator

MOF/OCL
Metamodel

MOF Tool
MOFLON

Fig. 8. Combination of UML profiles and metamodel based technologies

1. The abstract syntax of a DSL is defined in a MOF-compliant metamodel-
ing tool like MOFLON [1]. OCL constraints may be used to define static
semantics of models described in the DSL.

2. A UML Profile is used to define the concrete syntax of the new language
with constructs similar or identical to those used by UML.

3. An implementation of QVT based on Triple Graph Grammars [9,18] is used
to translate the stereotyped UML model into an instance of the metamodel
and vice versa.

The combination of UML profiles and metamodel based technologies is sup-
posed to be a systematic replacement for extensive usage of profiles [2], reducing
the effort of implementations to ensure the proper use of such profiles.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Basin, D., Doser, J., Lodderstedt, T.: Model driven security for process-oriented
systems. In: SACMAT 2003: Proceedings of the eighth ACM symposium on Access
control models and technologies, pp. 100–109. ACM Press, New York (2003)

3. Chiorean, D., Demuth, B., Gogolla, M., Warmer, J.: OCL for (Meta-)Models
in Multiple Application Domains. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 152–158. Springer, Heidelberg (2007)

58 I. Weisemöller and A. Schürr

4. Dong, J., Yang, S.: Visualizing design patterns with a uml profile (2003)
5. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-

based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

6. Graaf, B., van Deursen, A.: Visualisation of Domain-Specific Modelling Languages
Using UML. In: ECBS 2007: Proceedings of the 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems, Wash-
ington, DC, USA, pp. 586–595. IEEE Computer Society, Los Alamitos (2007)

7. Henderson-Sellers, B., Gonzalez-Perez, C.: Uses and abuses of the stereotype mech-
anism in uml 1.x and 2.0. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 16–26. Springer, Heidelberg (2006)

8. Isazadeh, H., Lamb, D.A.: CASE Environments and MetaCASE Tools. Technical
report, Queen’s University School of Computing (1997)

9. Königs, A.: Model Integration and Transformation – A Triple Graph Grammar-
based QVT Implementation. PhD thesis, Technische Universität Darmstadt (to
appear, 2007)

10. Minas, M.: Generating Visual Editors Based on Fujaba/MOFLON and DiaMeta.
In: Proc. 4th Fujaba Days, Technical Report tr-ri-06-275, pp. 35–42, University
Paderborn (2006)

11. Object Management Group, Inc. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification (November 2005),
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

12. Object Management Group, Inc. MOF 2.0/XMI Mapping Specification, v2.1 (Sep-
tember 2005), http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

13. Object Management Group, Inc. Business Process Modeling Notation Specification
(February 2006), http://www.omg.org/cgi-bin/apps/doc?dtc/06-02-01.pdf

14. Object Management Group, Inc. Meta Object Facility (MOF) Core Specification
(January 2006), http://www.omg.org/cgi-bin/apps/doc?formal/06-01-01.pdf

15. Object Management Group, Inc. Object Constraint Language (May 2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

16. Object Management Group, Inc. Unified Modeling Language: Infrastructure (Feb-
ruary 2007), http://www.omg.org/cgi-bin/apps/doc?formal/07-02-06.pdf

17. Object Management Group, Inc. Unified Modeling Language: Superstructure (Feb-
ruary 2007), http://www.omg.org/cgi-bin/apps/doc?formal/07-02-05.pdf

18. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

19. Simulink - simulation and model-based design (1994–2007),
http://www.mathworks.com/products/simulink/

20. Sun Microsystems, Inc. Java pet store architectural overview (2001),
http://java.sun.com/blueprints/code/jps11/archoverview.html

http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf
http://www.omg.org/cgi-bin/apps/doc?dtc/06-02-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/06-01-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-02-06.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-02-05.pdf
http://www.mathworks.com/products/simulink/
http://java.sun.com/blueprints/code/jps11/archoverview.html

	A Comparison of Standard Compliant Ways to Define Domain Specific Languages
	Introduction
	Running Example
	Using UML Profiles
	Extending the UML Metamodel
	Defining a New Metamodel
	Related Work
	Conclusions
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

