
Models in Conflict – Towards a Semantically
Enhanced Version Control System for Models

Kerstin Altmanninger

Department of Telecooperation, Johannes Kepler University Linz, Austria
kerstin.altmanninger@jku.at

Abstract. For a widespread success of the model-driven paradigm, ap-
propriate tools such as “Version Control Systems” (VCS) allowing for
consistency maintenance between concurrently edited model versions are
required to adequately support a model-based development process. Ini-
tial attempts for graph-based versioning of model artifacts are either
tightly coupled to the modeling environment, not flexible with respect
to the used modeling language or cannot interpret the model’s seman-
tics. On basis of those characteristics, the goal of the outlined thesis
presented in this paper is to provide mechanisms to detect conflicting
modifications between parallel edited model versions more accurately.
By reducing falsely indicated conflicts and by finding additional semantic
conflicts, the resolution process can be simplified by means of appropri-
ate techniques for comparison, conflict detection, conflict resolution and
merge.

1 Introduction

The shift from code-centric to model-centric software development places models
as first class entities in “Model-driven Software Development” (MDSD) processes.
A major prerequisite for the wide acceptance of MDSD are proper methods and
tools which are available for traditional software development, such as build tools,
test frameworks or “Version Control Systems” (VCS). Considering the latter, op-
timistic VCS which do not rely on pessimistic methods (such as locking) are par-
ticularly essential when the development process proceeds in parallel such that
different developers concurrently modify a model, which may result in concur-
rent, potentially conflicting modifications. Hence, such conflicting modifications
need to be resolved in terms of a model check-in process of the VCS by appro-
priate techniques for model comparison, conflict detection, conflict resolution and
merging.

In case model developers use different modeling environments to edit their
model artifacts and hence the employed modeling tools are not tightly coupled
to the VCS, certain approaches that rely on tracking model modifications (e.g.,
operation-based mechanisms) are not applicable. Instead, a loosely-coupled VCS
for model artifacts has to be provided which operates in a state-based man-
ner. However, in the light of a growing number of “Domain Specific Languages”

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 293–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



294 K. Altmanninger

(DSLs), a flexible approach, which can be adapted to the used modeling lan-
guage, is desirable since most of the VCS for models (e.g., like the commercial
tool IBM Rational Software Architect1 and Odyssey-VCS [1]) solely concentrate
on versioning UML models.

For dealing with concurrent modifications on models and specifically for the
identification of conflicts, it is necessary not only to consider the logical structure
of models in terms of a graph-based representation but also to “understand”
the model’s semantics. For example, concurrent modifications on a model may
not result in an obvious conflict when syntactically different parts of the model
(e.g., different model elements) were edited. Nevertheless, they may interfere
with each other due to side effects [2], thus yielding an actual conflict, which,
without considering the model’s semantics, would remain hidden. Furthermore,
certain conflicts which would be detected by a structural difference computation
are not necessarily conflicts because in modeling languages often more than
one possibility exists to model a specific case. E.g., in UML activity diagrams,
decision nodes as well as conditional nodes are two equivalent ways to express
alternative branches in a process, which could in fact result in a conflict if two
developers edit a model concurrently by using such different but semantically
equivalent modeling concepts. Valuable conflict reports, however, are essential
for model developers in order to ensure the correctness of the merged version and
consequently to avoid finally merged model artifacts which are not in the model
developers intent. Therefore, in this paper, an optimistic, loosely coupled and
flexible “Semantically enhanced Model Version Control System” (SMoVer)2 is
laid out which is able to provide some “understanding” of the model’s semantics
in order to achieve accurate conflict reports by reducing falsely indicated conflicts
and by finding additional semantic conflicts.

The remainder of this paper is structured as follows: Section 2 identifies the
problems encountered by existing approaches. In Section 3, the research hypothe-
ses are given and the goal of the thesis, presented in this paper, is laid out. In
Section 4, the conceptional design of SMoVer is explained. The actual realization
status of SMoVer is presented in Section 5 and a comparison to existing VCS
is given in Section 6. Finally, Section 7 discusses further prospects beyond the
scope of the outlined thesis and Section 8 gives a conclusion.

2 Problem Identification

The challenges emerging when realizing an optimistic, loosely coupled and flexi-
ble semantically enhanced VCS for model artifacts, for which an accurate conflict
detection process has to be employed, span over the following issues.

Firstly, a check-in process which allows to detect and resolve conflicting modi-
fications between parallel developed model versions [3,4] has to be provided. Sec-
ondly, to realize a loosely coupledVCS, the exchange ofmodel artifacts between the
VCS and the used modeling environments by model developers has to be

1 http://www-306.ibm.com/software/awdtools/architect/swarchitect/
2 http://smover.tk.uni-linz.ac.at/



Models in Conflict – Towards a Semantically Enhanced VCS 295

enabled.Thirdly, techniques for a language independent and therefore flexibleVCS
and finally semantic enrichment techniques and strategies for the VCS’s check-in
process, for a more precise determination and resolution of conflicts, are needed.

Considering the check-in process in more detail, the succeeding challenges
arise. Starting with the first phase of the check-in process, model comparison
should not rely on text- or tree based approaches (like e.g., CVS3, Subversion4

and CoEd [5]) since they do not take the logical structure of models into account
which is required for effective model comparison. Hence, existing graph-based ap-
proaches have to be employed. Furthermore, for the model comparison process
techniques like the use of identifiers (IDs) for model elements or heuristics need
to be considered in order to identify created, deleted and updated elements be-
tween model versions. In the conflict detection phase conflicts should not solely
be identified due to the syntactical structure of models but additionally some
“understanding” about the artifacts to be versioned should be provided to prop-
erly identify conflicts. This is already done by approaches [2,4] in the area of
programming languages. They are, however, typically restricted to specific pro-
gramming languages and therefore cannot immediately be reused in the realm
of models. In addition, these approaches rely on formal semantics whereas ex-
isting modeling languages, such as UML, commonly do not exhibit a formal
description of their semantics not least since being hard and costly to define [6].
Therefore, the conflict detection phase requires a more specific approach where
semantics can be defined particularly for the purpose of detecting conflicts more
precisely. Conflict resolution, however, commands for an appropriate identifi-
cation of the reasons of conflicts, especially when going beyond just supporting
syntactical conflict detection. Hence, conflicts need to be visualized and reported
adequately to model developers. Model merging, finally, must produce a consis-
tent new model which is based on the results of the previous phases and which
can be facilitated by model transformations.

3 Research Hypotheses and Goal of the Approach

To tackle the identified challenges in order to achieve a merged model versions
with the greatest possibility to be in all developers intents, the following hy-
potheses have been defined:

– Model comparison can be successfully achieved by applying existing graph-
based comparison techniques and has to rely on 3-way comparison approaches
comprising the concurrently edited model versions and their common ances-
tor. Therefore, comparison techniques must not solely rely on either using
identifiers or heuristics and need to consider any possible change which can
be undergone by a model element.

– Conflict detection can be conducted on top of the before calculated difference
sets and can not rely on full formal specifications of the semantics underlying

3 http://www.nongnu.org/cvs/
4 http://subversion.tigris.org/



296 K. Altmanninger

a model since only certain aspects are relevant. Therefore, conflict detection
can benefit from the definition of semantics allowing to find conflicts more
precisely i.e., by avoiding falsely indicated syntactic conflicts, by finding
previously undiscovered semantic conflicts and by finding more precisely
defined conflicts.

– Conflict resolution can be empowered by reasoning on the semantics of the
conflicts detected. Furthermore, adequate visualization techniques have to
be provided for model developers.

Hence, the goal of the thesis can be reflected in three areas:

– Development of concepts and techniques for establishing an optimistic, loosely
coupled and flexible semantically enhanced VCS which enables finding and
resolving conflicts between model versions more accurate by reducing falsely
indicated conflicts and by detecting additional semantic conflicts.

– Implementation of SMoVer which incorporates the concepts and techniques
established by using state of the art technologies and standards (cf. Subsec-
tion 5.2).

– Evaluation of the quality of the conflict detection and resolution process of
SMoVer. Firstly, on basis of a comparison of the loosely coupled approach
to other loosely coupled and tightly coupled VCSs for models and secondly,
of the power of expressiveness of the technique for semantic enrichment in-
troduced by this approach for different modeling languages.

4 SMoVer - Conceptual Design

In the light of the previously mentioned goals of the approach, SMoVer is pro-
posed. In the following, the conceptual design of the system is explained.

Fig. 1 visualizes a common scenario in a VCS, where two model developers
Sally & Harry create personal working copies of a model (V) out of the repos-
itory ❶. After they modified their personal working copies with their preferred
modeling environment, both want to check-in their version later on to the repos-
itory. However, if Sally commits her changed model (V’) to the repository first,

otsmrofnoc

SM
oV

er
(w

or
kin

g 
wi

th
 E

MF
co

nf
or

m
 m

od
eli

ng
 la

ng
ua

ge
s)

Mo
de

lin
g

En
vir

on
m

en
t

)1(tyrotisoper

yrraHyllaS

daerdaer

1

V V

V

etirw
tseuqer

yllaS yrraH

'V "V

'V etirw
V

'V

"V

yrraH

*V

*V
Vetirw

ecafretniSCV
rotpadaloot

V noisrevledmo…
t pmatsemit…

V 'V 'V

)2(tyrotisoper
a

b

Co
nf

lic
t 

De
te

ct
io

n

tseuqeretirw

yllaS yrraH

'V "V

)2(tyrotisoper a

b

Co
m

-
pa

ris
on

V 'V Co
m

-
pa

ris
on

sesahpni-kcehcyaw-3

daer

daer Co
nf

lic
t

Re
so

lu
tio

n

c

etirw

)3(tyrotisoper

ledomateM

otsmrofnoc

ledomateM

otsmrofnoc

ledomateM
32

ledomateM
otsmrofnoc

*V
otsmrofnoc

tis

1

…
…
…
…

a

b

(y a

b -

Me
rg

e

ledomateM

otsmrofnoc s

32

otsmrofnoc

Fig. 1. Workflow in a loosely coupled and flexible VCS



Models in Conflict – Towards a Semantically Enhanced VCS 297

the check-in process can proceed since the current revision in the repository is
the direct ancestor of the incoming working copy (Fig. 1, ❷). Harry attempts to
commit his changed model (V”) later whereas he has to apply a 3-way check-in
process because the last revision in the repository is not the one he has checked-
out previously (Fig. 1, ❸). This means, the two model versions of Sally and Harry
have to be compared with respect to their common ancestor version in the repos-
itory, in order to ensure consistency between the parallel edited model versions.
This comparison process, however, is based on a graph-based structural differ-
ence computation between the model versions. The actual comparison of model
elements is based on an ID designated in the metamodel. Conflicts, however,
may origin due to creation, deletion or update of model elements. By inspecting
the structural features, namely the attributes and references of a model element,
one can determine whether the model element as a whole has been updated. In
particular four different update strategies to detect structural changes in a graph
that are of interest for conflict detection are considered:

– Attribute update (ATT): The value of an attribute has been changed.
– Reference update (REFS): The set of referenced model elements has been

changed. For example, new model elements have been created or deleted.
Therefore the following possible combinations can be identified: Create-
Create (CC), Create-Delete (CD), Delete-Create (DC), Delete-Delete (DD).

– Role update (ROL): A model element is referenced or de-referenced by
another model element. Again, the four possible combinations of create and
delete can be enumerated (CC, CD, DC, DD).

– Referenced element update (REF): A referenced model element has
undergone an update (e.g., an attribute, reference or role update).

To make this process of detecting conflicts explicit, the following OCL expres-
sions define the derivation of the corresponding conflict sets. In more detail, the
conflict set (Con) contains all conflicting model elements and is a union of three
further sets that represent update-update (UpdCon), create-create (CrCon) and
update-delete (DelCon) conflicts accordingly. The isUpdated function determines
updated model elements and the function areNotEqual checks for the equality
(as opposed to the identity) of two model elements.

To represent the model’s semantics, so-called semantic view definitions are
introduced in order to make certain semantic aspects explicit. To start with, the

Creates ’=(V ’−V)
Creates ”=(V”−V)
Updates ’=V−>s e l e c t ( e | e . i sUpdated (V,V ’ )
Updates”=V−>s e l e c t ( e | e . i sUpdated (V,V”)
Del e t es ’=(V−V’ )
Del e t es ”=(V−V”)

CrCon =Creates ’−>i n t e r s e c t i o n ( Creates ”)−> s e l e c t ( e | e . areNotEqual (V ’ ,V”))
UpdCon=Updates ’−>i n t e r s e c t i o n (Updates”)−> s e l e c t ( e | e . areNotEqual (V ’ ,V”))
DelCon=(Updates ’−> i n t e r s e c t i o n ( Del e t es ”))−>union (Updates”−> i n t e r s e c t i o n ( Del e t es ’ ) )

Con=UpdCon−>union (CrCon−>union (DelCon ) )

Listing 1.1. OCL constraints for the determination of conflict sets



298 K. Altmanninger

SMoVer Front-end

Model V'syn

Merge

Comparison

conforms to

Model V"syn Model V'sem

Model Vsem

Model V"sem

read

write
Check-in

Check-out

Tool
adaptors

Back-end

Repository

Modeling
Environment

conforms to

conforms to
ATL

Transformation

MetamodelMetamodel View Definition
Metamodel

Semantic View 
Definitions

Semantic
Views

Syntactical
View

Conflict
Resolution

Conflict
Detection ComparisonConflict 

Detection

Model V*syn

Ecore

Model Vsyn

Fig. 2. Conceptual design of SMoVer

basis of the approach is the metamodel which describes the syntax of the models
to be versioned. Additionally, to be able to provide semantic conflict detection, a
metamodel representing a certain view of interest has to be defined. On basis of
those metamodels, a transformation can be specified such that rules of a model
transformation relate the elements of the metamodel (abstract syntax) to which
the original model conforms to and the elements of the metamodel representing
the definition of the view of interest , the so-called semantic view. As a conse-
quence of the transformation realizing a semantic mapping, conflict detection
can be carried out on both, model and semantic view (cf. Fig. 2). Conflicts that
are determined purely upon the comparison of model versions are syntactic con-
flicts whereas a semantic conflict is detected between the representations of the
model versions in a semantic view. The actual detection of conflicts in both the
original model and the view works analogous to the graph-based detection of
structural conflicts.

Compared to the definitions of semantics for programming languages [7] the
translational approach, by means of semantic view definitions, is similar to a
translational semantics specifications. In a translational approach, which can be
considered as a special case of denotational semantics, constructs of one language
map onto constructs of another, usually simpler language such as machine in-
structions. Similarly, in SMoVer, a translation into a semantic view that defines
a certain facet of interest is proposed for the purpose of conflict detection.

In the following example (cf. Fig. 3) Sally & Harry are working concurrently
on a WSBPEL [8] model. Therefore, a language developer previously defined the
metamodel and the according IDs and update strategies in SMoVer. Addition-
ally (s)he also set up a semantic view definition which purpose is to detect static
semantic conflicts due to addition of “Activities” in a “Sequence” on the same
position whereby the model versions cannot be merged because it is not clear
which “Activity” comes first. This conflict could also be detected in the syntax
if the update strategy REFS:C is considered but then all concurrent insert oper-
ations of “Activities” in a “Sequence” would be reported as a conflict whereas
probably most of them are no actual conflicts. Therefore the language developer
created a view of interest for this circumstance which allows to find the actual



Models in Conflict – Towards a Semantically Enhanced VCS 299

Activity

has

next

0..1

0..*

VsemV'sem

contains

Simplified WSBPEL Metamodel

Process
name:EString

Sequence
name:EString

name:EString

has

0..1

Semantic View Definition Metamodel

REF
REFS:D

REF
REFS:D

REF
REFS:D

Transformation

Process
name:EString

Activity
name:EString

Sequence

0..*
has

0..*

REF
REFS

REF
REFS

VsynV'syn

Process

Sequence
Receive
Assign
ReplyOut

Process

Sequence
Receive
Assign

V"syn

Process

Sequence
Receive
Assign
ReplyFin

Model Versions in Syntactical View

Sequence

Receive

Assign

Sequence

Receive

Assign

ReplyOut

Sequence

Receive

Assign

ReplyFin

V"sem

Model Versions in Semantic View

Fig. 3. Conflict detection example

conflicts more accurately than in the syntax. Hence, as shown in Fig. 3, Sally
& Harry both insert an “Activity” on the end of the “Sequence” whereas a sta-
tic semantic conflict arises (Con={Assign(REFS:CC)}) in the semantic view by
applying the before mentioned conflict detection algorithm.

However, various view definition possibilities exist for which a categorization is
proposed according to three semantic aspects important for versioning, namely:
Equivalent concepts, static semantics and behavioral semantics. Through the def-
inition of “equivalent concepts”, which allow the expression of identical meaning
in different ways to achieve convenient modeling and readability, falsely indi-
cated conflicts can be avoided. Through the definition of static semantics, which
describe static characteristics of a model (like inheritance, constraints [9], or re-
lationships), additional “static semantic conflicts” can be detected. In contrast,
through the definition of behavioral semantics, with which the ability arises to
detect concurrent changes of the behavior of a model artifact (e.g., by using
dependency graphs [2,4,10] or by transforming the model in a different modeling
language [11]), additional “behavioral semantic conflicts” emerge.

5 SMoVer - Realization Status

In the following subsections, the realization status of the aforementioned goals
are laid out to evince the stated hypotheses.

5.1 Concepts and Techniques

Considering the main purpose of SMoVer in providing accurate conflict reports
and the previously defined characteristics of the system, the following concepts
and techniques for the check-in phases can be identified.

In a loosely coupled context, the implementation of the algorithm for the
comparison phase should be a metamodel independent approach to derive model



300 K. Altmanninger

differences. Therefore, the decision has been made to compare model elements
using IDs for each element in order to detect model modifications [12]. The
representation of changes is grouped in creation, deletion, and changes like in
related work [13]. Moreover, the proposed comparison phase considers a detailed
categorization of update strategies (cf. Section 4) with which it is possible to
fine-grain the kind of modification and therefore also to provide a more detailed
conflict report in the succeeding phase of the check-in process.

As mentioned in the previous section and in preceding works [12,14] the con-
flict detection phase is realized by a determination of conflict sets between three
versions of a model artifact. Therefore the first work in this context [12] describes
the techniques and strategies needed for conflict detection. The second one [14]
gives an overview on how to define and work with multiple semantic view de-
finitions exemplified by a specific modeling language and categorizes them in
three semantic aspects for which semantic view definitions can be utilized. Ad-
ditionally it is demonstrated that the proposed conflict detection process allows
fine-tuning of the conflicts reported and an increase in effectiveness by reducing
falsely indicated syntactic conflicts, by detecting undiscovered semantic conflicts
and by more precisely defined semantic conflicts than reported in the syntax.
Therefore, from a purely conceptual point of view, the activities needed to be
covered by this phase are completed.

For the conflict resolution phase, two main conceptual decisions have to be
made about the following two challenges. Firstly, how the semantic conflicts can
be efficiently traced back from the semantic view and being reported in the syn-
tactical representation and secondly, how the conflicts can be visualized in the
VCS to fully support the model developer during the resolution process. Regard-
ing the second activity “visualization”, it has to be investigated if the VCS can
make use of the concrete syntax of models during this phase and how this con-
crete syntax can be preserved in the system for specific modeling environments.

5.2 Implementation

In order to define the abstract syntax of a modeling language and a desired
semantic view definition, a metamodeling architecture is needed. The “Eclipse
Modeling Framework” (EMF)5 provides Ecore, which is a simplified version of
the OMG’s metamodeling standard “Meta Object Facility” (MOF) that consti-
tutes the M3 layer, has been chosen. EMF covers persistence support with an
XMI serialization mechanism and a reflective API for manipulating EMF mod-
els. The creation of a semantic view from a model artifact is realized through
the “Atlas Transformation Language” (ATL) [15], which is a QVT-like model-to-
model transformation language. Accordingly, the top of Fig. 2 shows the usage
of this metamodeling stack in the context of the implementation architecture.

The comparison of the concurrently edited model versions with their common
ancestor version is carried out on a generic graph representation of the respec-
tive models and views. For this purpose, the EMF reference implementation of

5 http://www.eclipse.org/modeling/emf/



Models in Conflict – Towards a Semantically Enhanced VCS 301

“Service Data Objects” (SDO)6 is used. SDO is a general framework to realize
standardized access to potentially heterogeneous data sources such as databases,
XML files or models serialized in XMI. SDO allows to create “datagraphs” from
EMF models, which are convenient for comparison purposes as SDO’s mecha-
nism to establish the difference between two graphs. These so called “change
summaries” are used in SMoVer to store modifications between versions, which
are then used by the actual conflict detection mechanism. Hence, the underly-
ing algorithm implements the comparison strategies mentioned in Section 4 and
establishes the relevant sets of conflicting elements. Both, the comparison and
merge component of the implementation are therefore carried out with Java on
top of SDO, EMF and ATL for model transformations in the semantic view(s)
and to produce a consistent merged model version.

Summing up, currently not implemented because no concepts and techniques
have been defined yet are the tracing back of the computed semantic conflicts in
the syntax and visualization techniques which will be focused on in the future.

5.3 Evaluation

For evaluating the feasibility of the approach it is planned to apply a series
of case studies firstly, on the effectiveness of the loosely coupled semantically
enhanced check-in phases applicable on various modeling languages and secondly,
on the power of expressiveness of semantic view definitions in order to be able
to identify semantic conflicts.

To start with, for the loosely coupled check-in phases it will be investigated
how effective they are compared to other loosely coupled and tightly coupled
VCS for models (cf. Section 6). In a first step, the evaluation is conducted on
basis of a syntactic comparison and conflict detection techniques and in a sec-
ond step with the help of semantic view definitions in order to derive semantic
conflicts for exploring the approache’s limitations utilized on a specific modeling
language. On basis of this comparison between SMoVer and other loosely and
tightly coupled VCS, a comprehensive statement about the effectiveness of the
approach for a specific modeling language can be made. Nevertheless, an evalua-
tion conducted on one specific modeling language is not sufficient. Because differ-
ent modeling languages have different power of expressiveness, several modeling
languages have to be analyzed for view definition possibilities. The knowledge
derived from this evaluation is an overview for which modeling languages this
semantically enhanced approach is more (eventually UML) or less (e.g., some
DSLs) valuable.

6 Related Work

The most closely related graph-based approach considering model versioning
which works in a state-based manner and provides semantic awareness during
the conflict detection process is laid out by Cicchetti et al. [16]. They propose
6 http://www.eclipse.org/modeling/emf/?project=sdo



302 K. Altmanninger

to leverage conflict detection and resolution by adopting design-oriented de-
scriptions endowed with custom conflict specifications. Hence, several conflicting
situations, which can not be captured by a priori structural conflict detection
mechanism can be specified that they refer to as “domain specific conflicts”. The
developers, however, are forced to enumerate all wrong cases in form of weaving
models, which negatively affects the usability and scalability of the approach.
Therefore, in the work of Cicchetti et al., each modification, which is not allowed
to preserve a design pattern and the design pattern itself have to be specified in a
weaving pattern (as they exemplified for the singleton design pattern). Anyway,
the approach of Cicchetti et al. focuses on the detection of previously undis-
covered conflicts in terms of domain specific conflicts only, whereas behavioral
semantic conflicts and the detection of previously falsely indicated conflicts as
provided by SMoVer are not considered. In addition, so far, the work of Cicchetti
et al. is solely applicable on UML models as opposed to SMoVer which is flexible
by being able to deal with all kind of Ecore-based modeling languages.

Another loosely coupled, semantically enhanced approach called SemVersion
is presented by Völkel [17], which is based on RDF, proposing the separation of
language specific features (e.g., semantic difference) from general features (e.g.,
structural difference or branch and merge). To perform the semantic difference,
the semantics of the used ontology language are taken into account. Therefore,
assuming using an RDF Schema as the ontology language and two versions (A
and B) of an RDFS ontology, SemVersion uses RDF Schema entailment on model
A and B and infers all possible triples. Now, a structural difference on A and
B can be calculated in order to obtain the semantic difference. The approach
of Völkel, however, does not consider behavioral semantic conflicts and is not
flexible to operate on any modeling language.

VCSs which detect conflicts solely due to structural comparison of concurrent
edited model versions without incorporating semantics are numerous [18,1,19].
To start with, Alanen & Porres [18] provide state-based difference calculation
and merging algorithms with which the functionality of a VCS for MOF-based
models can be realized. This approach is therefore not tightly coupled to a spe-
cific modeling environment and enables developers the parallel editing of model
artifacts with their preferred tooling. Oliveira et al. [1] presents a graph-based
VCS for versioning UML models called Odyssey-CVS, aiming to support differ-
ent UML-based CASE tools in evolving their artifacts. However, Oliveira et al.
is not flexible in the used modeling language because it can only be applied to
UML models. Similarly the tightly coupled approach of Oda & Saeki [19] and
the commercial tool IBM Rational Software Architect are also limited to UML
models by the IBM Rational Software Architect and additionally ER models by
Oda & Saeki.

7 Future Challenges

Future challenges are numerous but since current researches in this area are
still in the beginning not encountered in context of the outlined thesis presented



Models in Conflict – Towards a Semantically Enhanced VCS 303

in this paper. Firstly, as the proposed VCS is loosely coupled to the modeling
environment XMI is used to exchange models. Because of the fact that differ-
ent modeling environments export different XMI representations, so-called tool
adaptors for a common XMI representation are essential. Secondly, in a longer
prospect, a fully functional semantically enhanced VCS also needs to support
versioning capabilities for huge model artifacts which have associations to other
models in the same context. Therefore functionalities have to be provided to sup-
port versioning beyond one artifact. Thirdly, as metamodels evolve over time, for
industrial settings the defined metamodels in the VCS also need to be defined as
being able to be versioned. Hence, a smoothly technique has to be invented with
which this can be realized considering that all models and according transforma-
tions have to be adapted to the new metamodel version as well. The migration
of instances is in fact a well known problem from the area of schema evolution
[20] e.g., in the field of database systems. Fourthly, an important prerequisite
of a VCS for models are visualization techniques needed for the conflict resolu-
tion process in order to provide the developer with an adequate overview on the
model elements. The challenges which has to be dealt with is how to work with
the concrete syntaxes of the different model environments and how those data
can be versioned in order to satisfy the the demands of developers.

8 Conclusion

In this paper an optimistic, loosely coupled and flexible VCS called SMoVer,
which is extensible to incorporate the semantics needed for the conflict detec-
tion process between model versions, is presented. By means of transforming a
model into a semantic view, conflicts due to equivalent concepts can be elim-
inated and hidden static and behavioral semantic aspects can be explicated.
Therefore, various semantic view definitions can be established, consequently all
of them covering a different semantic aspect. The conflict detection algorithm
is applicable on the syntax and all semantic views in the same way. Hence, the
joint use of semantic view definitions expressing certain semantic aspects of a
modeling language and the employment of graph-based comparison techniques
on models and views allows for an accurate conflict detection between versions
of model artifacts. This is archived by reducing falsely indicated conflicts and
by finding additional semantic conflicts.

References

1. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a flexible version control sys-
tem for UML model elements. In: Proc. of the 12th Int. Workshop on Software
Configuration Management (SCM), ACM Press, New York (2005)

2. Thione, G.L., Perry, D.E.: Parallel changes: Detecting semantic interferences. In:
Proc. of the 29th Annual Int. Computer Software and Applications Conf (COMP-
SAC), vol. 1, pp. 47–56. IEEE Computer Society, Los Alamitos (2005)

3. Westfechtel, B.: Structure-oriented merging of revisions of software. In: SCM, pp.
68–79 (1991)



304 K. Altmanninger

4. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449–462 (2002)

5. Bendix, L., Larsen, P.N., Nielsen, A.I., Petersen, J.L.S.: CoEd – a tool for versioning
of hierarchical documents. In: Magnusson, B. (ed.) ECOOP 1998 and SCM 1998.
LNCS, vol. 1439, Springer, Heidelberg (1998)

6. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

7. Slonneger, K., Kurtz, B.: Formal Syntax and Semantics of Programming Lan-
guages: A Laboratory Based Approach. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

8. OASIS: Web services business process execution language (WSBPEL) standard
version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

9. Object Management Group (OMG): OCL 2.0 specification (June 2005)
10. Shao, D., Khurshid, S., Perry, D.E.: Evaluation of semantic interference detection

in parallel changes: an exploratory experiment. In: Proc. of the 23rd IEEE Int.
Conf. on Software Maintenance, Paris, France (2007)

11. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and
object life cycles. In: Proc. of the 1st Workshop on Quality in Modeling (2006)

12. Altmanninger, K., Bergmayr, A., Kotsis, G., Reiter, T., Schwinger, W.: Models in
conflict – detection of semantic conflicts in model-based development. In: Proc. of
the 3rd Int. Workshop on Model-Driven Enterprise Information Systems (MDEIS),
pp. 29–40. INSTICC Press (2007)

13. Toulmé, A.: Presentation of EMF compare utility. In: Eclipse Modeling Symposium
(2006)

14. Altmanninger, K., Bergmayr, A., Kotsis, G., Schwinger, W.: Semantically enhanced
conflict detection between model versions in SMoVer by example. In: Int. Workshop
on Semantic-Based Software Development in conjunction with the Int. Conf. on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2007)

15. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL – eclipse support for model
transformation. In: Proc. of the Eclipse Technology eXchange Workshop (eTX) of
the European Conf. on Object-Oriented Programming (ECOOP) (2006)

16. Cicchetti, A., Rossini, A.: Weaving models in conflict detection specifications. In:
Proc. of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea,
pp. 1035–1036. ACM Press, New York (2007)

17. Völkel, M.: D2.3.3.v2 SemVersion – versioning RDF and ontologies (2006), http://
www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ id=1163

18. Alanen, M., Porres, I.: Version control of software models. In: Yang, H. (ed.) Ad-
vances in UML and XML-Based Software Evolution, Idea Group Publishing (2005)

19. Oda, T., Saeki, M.: Generative technique of version control systems for software
diagrams. In: Proc. of the 21st IEEE Int. Conf. on Software Maintenance (2005)

20. Roddick, J.F., de Vries, D.: Reduce, reuse, recycle: Practical approaches to schema
integration, evolution and versioning. In: Roddick, J.F., Benjamins, V.R., Si-said
Cherfi, S., Chiang, R., Claramunt, C., Elmasri, R.A., Grandi, F., Han, H., Hepp,
M., Lytras, M., Mǐsić, V.B., Poels, G., Song, I.-Y., Trujillo, J., Vangenot, C. (eds.)
ER Workshops 2006. LNCS, vol. 4231, pp. 209–216. Springer, Heidelberg (2006)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1163
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1163

	Models in Conflict – Towards a Semantically Enhanced Version Control System for Models
	Introduction
	Problem Identification
	Research Hypotheses and Goal of the Approach
	SMoVer - Conceptual Design
	SMoVer - Realization Status
	Concepts and Techniques
	Implementation
	Evaluation

	Related Work
	Future Challenges
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




