
H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 206–211, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Second International Workshop on Models@run.time

Nelly Bencomo1, Robert France2, and Gordon Blair1

1 Computing Department, Lancaster University., InfoLab21,
Lancaster, UK, LA1 4WA

2 Computer Science Department, Colorado State University
Fort Collins, CO, USA, 80523-1873

{nelly,gordon}comp.lancs.ac.uk, france@cs.colostate.edu

Abstract. The second edition of the workshop Models@run.time was co-
located with the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems. The workshop took place in the lively
city of Nashville, USA, on the 2nd of October, 2007. The workshop was
organised by Nelly Bencomo, Robert France, and Gordon Blair and was
attended by at least 25 people from 7 countries. This summary gives an
overview of the presentations and lively discussions that took place during the
workshop.

Keywords: model-driven engineering, reflection, run-time systems.

1 Introduction

Research on model-driven software development has mainly focused on the use of
models at design, implementation, and deployment stages of development. This work
has produced relatively mature techniques and tools that are currently being used in
academia and industry. However, the use of model-driven approaches for validating
and monitoring run-time behaviour can also produce significant benefits. A key
benefit is that models can be used to provide a richer semantic base for runtime
decision-making related to system adaptation and other runtime concerns. For
example, models can be used to help determine when a system should move from a
consistent architecture to another consistent architecture. Model-based monitoring and
management of executing systems can also play a significant role as we move towards
implementing the key self-* properties associated with autonomic computing (i.e.
self-management, self-optimization, self-healing, and self-protection)[3].

Goal

The goal of this workshop was to understand the relationship between models
produced during development and models used to support and enable run-time
monitoring and adaptation of software. Key research topics of the workshop were (1)
to study how models produced during development can be effectively leveraged
during run-time, (2) how model-driven approaches can be applied to managing and
monitoring the execution and operation of systems, (3) to what extent can model-
driven engineering be used to tame the complexity of developing and managing

 Second International Workshop on Models@run.time 207

adaptive software. This is the second in a series of MODELS workshops on this topic.
The workshop successfully brought together researchers from different communities
including researchers working on model-driven software engineering, software
architectures, computational reflection, adaptive systems, autonomic and self-healing
systems, and requirements engineering. At least twenty-five people attended from
France, Germany, Norway, South Korea, The Nertherlands, UK and the US.

The call for papers invited submissions on a number of focus topics including:
relevance and suitability of different model-driven approaches to monitoring and
managing systems during run-time, compatibility (or tension) between different
model-driven approaches, the role of reflection in maintaining the causal connection
between models and run-time systems, experience related to the use of run-time
models to adapt software systems, and the management and modelling of runtime
variability using models.

In response to the call for papers, nine (9) papers were submitted, of which (6)
papers were accepted. Each submitted paper was reviewed by at least 3 program
committee members. After discussions two papers were selected as the best papers.
The decision took into account the relevance of the papers to the goals of the
workshop, the impact on the discussion and results, and the quality of the papers and
presentations. These two papers were extended and improved taking into account the
discussions and conclusions of the workshop and are published in this proceeding.

2 Workshop Format

The workshop was designed to facilitate focused discussion on the use of models
during run time. It was structured into presentation and work (discussion) sessions.
The opening presentation was given by Nelly Bencomo and Robert France. Nelly set
the context of the workshop describing the general goal and presented the results of
the 1st edition of the workshop in MODELS’06 [2] and the related workshop M-
ADAPT (Model-driven Software Adaptation) at ECOOP’07 [1]. Robert continued by
describing the specific goals of the second edition of the workshop and stating key
questions to kick off the discussion and call for the inspiration and motivation needed
during the rest of the day. After the opening presentation, the paper sessions followed.
There were 6 papers divided in 3 sessions.

The workshop was structured into presentations during the morning and discussion
sessions in the afternoon. During the presentation session, papers were presented by
two speakers, the first speaker was an author of the paper and the second speaker
(reader) was an independent reader. Second readers provided another view on the
contents of the paper, placing it in relation to the workshop topics and research
questions.

To ensure effectiveness of the format of the workshop, presentations were limited
to 25 minutes, 15 minutes presentation by the first speaker, 5 minutes by the second
reader and 5 minutes for questions. Presentation sessions were cochaired by Oystein
Haugen and Arnor Solberg. After the presentations, specific research interests and
questions were discussed. The partial results of this discussion were used to split the
participants into two groups to allow focused debate and dialogue during the
afternoon. The workshop was closed by a final discussion, including an evaluation of

208 N. Bencomo, R. France, and G. Blair

the workshop itself made by the attendees. Details of the sessions are provided in
Sections 3 and 4 below. The workshop proceeded smoothly, with all attendees keenly
contributing through constructive and friendly debate. Attendees enjoy and praised
the idea of the second readers.

3 Session Summaries

The 6 papers were divided into the following three categories according to their topics
and contributions:

Error detection and Self Healing
- "A Modeling Framework for Self-Healing Software Systems", by Michael Jiang, Jing
Zhang, David Raymer, and John Strassner, second reader: Jules White
- "Model-Based Run-Time Error Detection", by Jozef Hooman, and Teun Hendriks,
second reader: James Hill

Monitoring and Verification
- "System Monitoring using Constraint Checking as part of Model Based System
Management", by Christian Hein, Tom Ritter, and Michael Wagner, second reader:
Matthias Gutheil
- "AMOEBA-RT: Run-Time Verification of Adaptive Software", by Ji Zhang, Betty
Cheng, and Heather Goldsby, second reader: Jozef Hooman

Techniques and Approaches
- "Coherent Support for Models at Run-Time through Orthogonal Classification", by
Atkinson Colin and Matthias Gutheil, second reader: Olivier Barais
- "Control-theory and models at runtime", by Pierre-Alain Muller and Olivier Barais,
second reader: Aniruddha Gokhale

Robert and Nelly took notes of specific questions and topics raised during the
presentations. After the presentations, individual questions made by the participants
were gathered. Following the questions stated by the attendees and the notes taken by
Robert and Nelly, discussions groups were established. Attendees left the room to
start the exchange of ideas over meals.

4 Discussions

After lunch each group came into the room and shared ninety minutes of lively
discussions. Both groups addressed different topics. The first group discussed the
infrastructure needed to support the use of models during runtime. The second group
focused on theoretical concepts and languages needed to define and work with
models during runtime. Slides summarizing the reports were produced by the leader
discussant of each breakout session (Oystein Haugen and Jules White respectively).
As the two breakout groups reassembled to summarize their work it is worthy of note
that the ideas of the paper “Control theory and models at runtime” by Muller and
Barais had influence on both discussion groups.

 Second International Workshop on Models@run.time 209

Summary of discussion in the “Infrastructure Group”

The discussions in this group focused on what support is needed to effectively support
the use of models during runtime. As a first step, the ways in which models were used
in the papers presented at the workshop were discussed. The papers presented at the
workshop mainly focused on verification (Zhang et al., Hein et al.), error detection
and correction (Hooman et al.), and self-healing (Jiang et al.). In this context, runtime
models specify the expected behaviours of the running application. These techniques
use a "supervisor component" which observes the system in order to detect any
deviation from its expected behaviour. Any deviation reveals a failure in the running
application. If the objective is verification or error detection, the failure is reported to
the user. In the case of self-healing, the supervisor automatically adapts the running
application.

Philippe Lahire, one of the participants, suggested that a model@runtime is a
model that is coupled with a controller that uses information from a running system to
perform some control on the running system. The controller can be viewed as a
separate model or can be considered to be part of the runtime model. The
functionality provided by a controller is linked to the type of information captured in
the runtime model, which, in turn, is tied to the type of adaptation supported by the
model. He suggested that it would be useful to classify the properties that a runtime
model must have to support particular types of adaptations (e.g., self-healing, self-
protection) in the context of particular types of systems (e.g., information, embedded,
distributed systems).

The discussions also led to the identification of other uses of runtime models. For
example, runtime models can be used to support adaptation to environment changes,
runtime updating of system components, or the graceful degradation of some
functionalities. For each kind of adaptation, specific runtime models have to be
defined. For example, in the case of adaptation to a changing environment, the models
have to capture the variation points of the application and define rules to choose the
appropriate variants according to the information coming from the environment. In
the case of runtime updates of components, the model could capture the dependencies
between running components and rules to safely upgrade them.

Given that there are various purposes for models at runtime (and corresponding
types of models), the discussions then focused on identifying a common infrastructure
to support the use of runtime models. The papers presented at the workshop (and the
examples that came up in the discussions) all included a "supervisor component"
around the runtime model. This component is called "runtime awareness" in the work
of Hooman et al. and identified as the Observer/Controller pair in the control theory
analogy proposed by Muller et al.. The supervisor component monitors data coming
from the running application, makes decisions based on the observations and
performs required adaptations on the running application. The supervisor thus consists
of three activities: Observe, Decide, and Adapt.

For observation, the supervisor needs access to data coming from the running
system. These data can be the inputs and outputs of the system but access to system
internal data or environment information might also be required. For decision-
making, the supervisor processes the information collected by observation using a
decision model. This model defines appropriate responses for specific behaviours of

210 N. Bencomo, R. France, and G. Blair

the system. If needed, the decision can either lead to a user notification or trigger an
adaptation of the running application.

Adaptation in this context, consists of changing the running system at runtime. It is
not required for all systems and it cannot always be automated. In some cases, for
example, error detection, debugging and verification, the user is notified and is
responsible for modifying the system.

Summary of discussion in the “Concepts and Languages Group”

To start their discussions, this group considered it was pertinent to define what a
model at runtime means. The group came up with the following definition: “an
abstraction at a higher level of representation than code that is used to derive
adaptation through monitoring and feedback mechanisms.”

Using this concept, several use cases for models were identified.

- Model-based recovery
- System management
- Models for feedback
- Models for manipulating variability
- Determining what instrumentation to generate
- Models as an interface to a system rather than code manipulation

The group also concluded that current technologies like interceptors, AOP,
constraint logic programming, control theory, and model checking techniques are
useful to support the use of runtime models. This means that there is no need to
come with new technologies in a short term.

Reflection was, as in the first edition of this workshop, stated as a capability
needed when dealing with models to monitor and drive the execution of systems. In
this sense, runtime models would be used to manipulate the system itself using
introspective and intercession capabilities. It was discussed that the concept of meta-
level would perhaps be interpreted in a different way in the context of models at
runtime. Until now, meta-programming and reflection have been studied mainly at the
coding level. At this point an open research question arised: what would be the
parallel at the modelling level? The comparison would seem to be allowing the meta-
model to change at runtime in order to adapt to new requirements or quality of service
specifications. The above would require the meta-model to be continuously evaluated
and understood during execution. This was contrasted with the current approach
where a meta-model is interpreted somehow statically with no updates once the
system starts. It was also pointed out that performance is an issue to take into account
when using reflection. The ideas expressed by Pierre-Alain and Olivier paper about
control theory seems to fit nicely with what was discussed.

As the two breakout groups reassembled to summarize their work and exchange
reached conclusions, it was interesting to see how both groups identified dynamic
software adaptation as a significant research area where the use of models at runtime
can be useful. In this context, models can be used to (i) manipulate the system itself,
e.g., adding a component to the model has the effect of changing the underlying code;
and (ii) verify the behaviour of the system during execution (using for example
reflection).

 Second International Workshop on Models@run.time 211

Final Remarks

A general wrap-up discussion was held at the end of the workshop. The organizers
asked for feedback on the workshop and a number of useful ideas were suggested.
Attendees confirmed that they were very pleased with the papers, presentations and
discussions carried out during the workshop. The inclusion of second readers was
considered successful and useful. It was concluded that the research community
should be encouraged to continue the study the issues related to models at runtime
and its relevance for the development of seld-adaptive systems. It was suggested that
the organizers should consider the presentation of small demos that show the use of
models at runtime in a possible next edition of this workshop. The workshop was
closed with a warm “thank you” from the organizers to all participants for a
successful workshop. After the workshop finished many of the attendees went for a
well deserve dinner to continue talking.

Acknowledgments. We would also like to thank the members of the program
committee who acted as anonymous reviewers and provided valuable feedback to the
authors: Betty Cheng, Fabio M. Costa, Federal University of Goias, Brazil, Van Den
Berg Aswin, John C. Georgas, Gang Huang, P.F.Linington, Andrey Nechypurenko,
Eugenio Scalise, Rui Silva Moreira, Arnor Solberg, Marten van Sinderen, Thaís
Vasconcelos Batista, Jules White. We also would like to thank Aniruddha Gokhale,
Oystein.Haugen, Jim Hill. We specially thank to Philippe Lahire, Jeff Gray, Franck
Fleurey, and Heather Goldsby for the feedback and ideas provided for this summary.
Last but not least, the authors of all submitted papers are thanked for helping us
making this workshop possible.

References

1. Blair, G., Bencomo, N., France, R., Cebulla, M.: Proceedings of the First Workshop on
Model-driven Adaptation (M-ADAPT 2007) at ECOOP 2007, Bericht Nr. 2007 - 10 (2007)

2. Blair, G., Bencomo, N., France, R.: Summary of the Workshop Models@run.time at
MoDELS 2006. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006.
LNCS, vol. 4199, Springer, Heidelberg (2006)

3. Kephart Jeffrey, O., Chess David, M.: The Vision of Autonomic Computing. In: IEEE
Computer, pp. 41–50. IEEE Computer Society Press, Los Alamitos (2003)

	Second International Workshop on Models@run.time
	Introduction
	Workshop Format
	Session Summaries
	Discussions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

