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Preface

Following the tradition of previous instances of the MoDELS conference series,
11 workshops and two symposia were hosted in 2007. These satellite events
complemented the main conference by providing room for important subject
areas and enabling a high degree of interactivity.

The selection of the workshops was organized like in former instances of the
MoDELS conference series by a Workshop Selection Committee. The following
well-known experts agreed to serve on this committee:

– Gabor Karsai, Vanderbilt University, USA
– Thomas Kühne, Darmstadt University of Technology, Germany
– Jochen Küster, IBM Research Zurich, Switzerland
– Henry Muccini, University of L’Aquila, Italy
– Sebastian Uchitel, Imperial College London, UK

The workshops provided collaborative forums for particular topics. They enabled
a group of participants to exchange recent and/or preliminary results, to con-
duct intensive discussions, or to coordinate efforts between representatives of a
technical community. They served as forums for lively discussion of innovative
ideas, recent progress, or practical experience on model-driven engineering for
specific aspects, specific problems, or domain-specific needs.

As in previous editions, there were a Doctoral Symposium and an Educa-
tors’ Symposium. The Doctoral Symposium provided specific support for PhD
students to discuss their work and receive useful guidance for the completion of
their dissertation research. The Educators’ Symposium addressed how to edu-
cate students as well as practitioners to move from traditional thinking to an
engineering approach based on models.

These satellite-event proceedings published after the conference include sum-
maries as well as revised versions of up to two best papers from the workshops,
the Doctoral Symposium, and the Educators’ Symposium.

I am grateful to the members of the Selection Committee who did a great job
in reviewing the workshop proposals and selecting the best workshops. In par-
ticular Thomas Kühne (member of the Selection Committee and my predecessor
as Workshop Chair) was of great help to me and eased my work by generously
sharing his experiences from the former year with me.

February 2008 Holger Giese
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Andreas Winter

Designing Syntax Embeddings and Assimilations for Language
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Martin Bravenboer and Eelco Visser

A Comparison of Standard Compliant Ways to Define Domain Specific
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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Aspect-Oriented Modeling 
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Omar Aldawud5, and Tzilla Elrad6 
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2 University of Alabama at Birmingham, USA 

3 University of Duisburg-Essen, Germany 
4 University of Milano, Italy 
5 Lucent Technologies, USA 
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Abstract. This report summarizes the results and discussions from the 11th 
Workshop on Aspect-Oriented Modeling (AOM). The workshop was held in 
conjunction with the International Conference on Model-Driven Engineering, 
Languages, and Systems (MODELS), which was located in Nashville, Tennes-
see, on September 30, 2007. Over 20 researchers and practitioners attended the 
workshop with various backgrounds in aspect-oriented software development 
and software model engineering. The workshop provided a forum for discuss-
ing the state of the art in modeling crosscutting concerns at different stages of 
the software development process: requirements elicitation and analysis, soft-
ware architecture, detailed design, and mapping to aspect-oriented programm-
ing constructs. This workshop summary provides an overview of the accepted 
submissions and summarizes the results of the different discussion groups. 
Papers, presentation slides, and photos from the workshop are available at 
http://www.aspect-modeling.org/. 

1   Introduction 

This brief summary reports on the outcomes of the 11th International Aspect-
Oriented Modeling Workshop. The workshop took place at the Marriott Hotel in 
Nashville, Tennessee, on Sunday, September 30, 2007. The workshop was part of the 
10th International Conference on Model Driven Engineering Languages and Systems 
– (MODELS 2007). A total of 10 position papers were submitted and reviewed by the 
program committee, 7 of which were accepted to the workshop. Over 20 participants 
attended the presentation session and took part in afternoon working group 
discussions. Papers, presentation slides, and further information can be found at the 
workshop website, which is at http://www.aspect-modeling.org/. The website also has 
links to the previous editions of the workshop. 

The rest of this report is structured as follows: Section 2 provides a general 
overview of the motivation, goals, and challenges of aspect-oriented modeling. 
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Section 3 gives a summary of the papers that have been accepted to this workshop. 
Section 4 outlines the results of the discussion groups. Finally, section 5 concludes the 
report. 

2   Overview to Aspect-Oriented Modeling 

Aspect-orientation is a rapidly advancing technology. New and powerful aspect-
oriented programming techniques are presented at many international venues every 
year. However, aspect-oriented software development techniques are often deeply-
rooted in the “intimate essence” of a program, i.e., the syntax and structure of its 
code. As a consequence, developers may easily be overwhelmed with implementation 
details, while loosing track of the intentions and goals of the interacting (formerly 
crosscutting) concerns, as well as of where and how they interact. Aspect-oriented 
modeling has the potential to provide the necessary tool for abstracting from the 
essence of the problem and for taking root in the semantic nature of the interacting 
concerns and their interaction. 

Over the last five years, much research work has been presented at the various 
editions of this workshop, which all aim at helping developers not to get lost in the 
“code space” and its associated accidental complexities. Consolidating that work, 
three important fields of research have emerged that are frequently and recurrently 
tackled by different researchers. 

One major field of research is concerned with finding appropriate modeling 
abstractions for aspect-oriented programming language constructs, such as pointcuts, 
advice, introductions, stateful aspects, aspect-oriented hooks and connectors. The 
options are usually to define a new modeling language or modeling notation, or to 
extend an existing one. The goal is to provide aspect-oriented software developers 
with appropriate means to facilitate the analysis of their problems as well as the 
design of their solutions. The challenge is to find the right level of abstraction so that 
the invented modeling means are suitable for a variety of problems as well as for a 
variety of aspect-oriented implementation techniques (e.g., languages and 
frameworks). 

Another major field of research is concerned with bringing forth the benefits of 
aspect-orientation to the modeling level and, thus, to model-driven development. 
Much work in this field of research is concerned with model transformation, model 
composition, and/or model weaving. One key question is to determine the similarities, 
differences and relationships between these terms and techniques. A frequent issue 
that emerges is to what extent conventional transformation techniques can be used to 
implement aspect-oriented model weavers. The ultimate goal is to free aspect-oriented 
software developers from the need of using aspect-oriented programming languages. 

Yet another field for research that attained much research efforts recently is the 
specification of validation and verification frameworks for aspect-oriented software. 
Key concerns in this field include the detection of conflicts between different aspects, 
the confirmation whether or not aspects affect the correct points in the base 
application, and the disclosure of the presence of crosscutting in software. Some of 
the key questions are focused on the formalisms that should be used, how such 
formalisms can be adopted to aspect-orientation, and how its application can be 
facilitated for the ordinary aspect-oriented software developer. 
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These three core research concerns represent a non-exclusive list. Multiple 
researchers have addressed many other issues. Several of the papers presented at the 
current workshop edition fall into the second category. The workshop discussions 
considered all of these issues and other concerns, as noted in the next two sections. 

3   Summary of Accepted Position Papers 

Jon Whittle from Lancaster University, UK, presented MATA [1], an approach to 
aspect-oriented modeling that can be applied to any modeling language with a well-
defined meta-model. MATA provides expressive composition mechanisms. The 
weaving in MATA is based on graph transformations, and hence any composition 
technique is possible. MATA also provides support for detecting some aspect 
interactions automatically. The MATA tool is implemented as a bridge between IBM 
Rational Software Modeler (RSM) and Attributed Graph Grammar System (AGG). 

Frank Fleurey from IRISA/INRIA in France presented a generic approach for 
automatic model composition [2]. In the approach, the two models that are to be 
composed are first pre-processed, then merged, and finally the resulting model is 
post-processed. The composition is signature-based: if a signature matches, the 
elements are merged and recursively processed; in case there is no match, both 
elements are copied to the target model. He presented a reusable composition 
framework, in which a meta-model is extended to obtain a “composable meta-model”: 
mergeable model elements have to define getSignature operations that allow the 
composition algorithm to match them. Special signatures have to be defined that make 
sense for each model element. 

Hua Xiao from Queens University, Canada, presented an approach to weave 
business requirements into model transformations [3]. He argued that there is a gap 
between the business domain, the concerns of business stakeholders, and the technical 
domain, as considered by the developers. With their work, the authors want to help to 
integrate business requirements into generic design models and implementation 
models. BPEL (Business Process Engineering Language) is too limited to represent 
all requirements specified by the business analysts. The authors use AOM techniques 
to enhance a primary BPEL model with other concerns such as time, cost, resource 
usage, performance, and frequency. A weaver combines the BPEL and aspect models 
to yield a composed model, which is wrapped and can then be fed to a simulation 
engine. After the simulation, the developer can validate the successful achievement of 
business requirements (e.g., compare revenue and cost per request). 

Stefan Van Baelen from the Katholieke Universiteit Leuven, Belgium, presented 
an approach that composes application models and security models [4]. He 
highlighted the fact that security concerns are very spread out through an application 
and cannot easily be isolated in an application layer. He compared the advantages and 
disadvantages of the classical AOP approach, the MDD approach (a security-
independent application model is transformed to a security-aware application model, 
then mapped to an execution platform), and the AOM approach: generate a woven 
model, and then generate OOP code. They also support generation of CeasarJ code. 
Their approach allows the definition of company-wide access policies, which can be 
woven into many applications. At run-time, the application contacts an authorization 
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engine to check access rights. The sample application he showed defined concepts 
with a UML class diagram. Access policy subjects and objects are also represented in 
UML class diagrams, and then “merged” or assigned to each other. 

Jaime Pavlich-Mariscal from the University of Connecticut, USA, presented his 
position paper on how to enhance UML to model custom security aspects [5]. He first 
presented different access control models (RBAC, MAC and DAC), and highlighted 
that UML does not explicitly support any of them. Also, it is not easily possible to use 
capabilities of different access control models in combination. As a result, traceability 
of access control policies is also difficult to achieve. Their approach adds four 
security-specific models, which are then composed with the application model to 
create a security-aware model. Security features that can be modeled include: 
positive/negative permissions, MAC or delegation rules. Model composition is 
achieved by merging meta-models. 

Jörg Kienzle from McGill University, Canada presented an aspect-oriented 
modeling approach for specifying reusable aspect models [6]. His aspect models 
define structure using class diagrams, and behavior using sequence diagrams. The 
weaver, based on existing class diagram and sequence diagram weavers, is capable of 
weaving aspects with other aspects or base models. In his talk, Jörg demonstrated the 
high degree of reusability of the aspect models by modeling the design of 8 inter-
dependent aspects of the AspectOptima case study, an aspect framework that 
implements support for transactions. Based on this experience, he identified several 
modeling language features that seem essential to support reusable aspect modeling. 

Steffen Zschaler from the University of Dresden, Germany, presented a talk 
entitled “Aspect-Orientation for your Language of Choice” [7]. He presented 
Reuseware, a tool based on invasive software composition that makes it possible to 
define fragments of models, where each fragment can define interfaces in forms of 
slots. Later, elements identified as anchors within one model can be bound to the slots 
in another model using queries based on pattern-matching expressions. 

4   Overview of Discussion Topics 

This section offers a summary of the most interesting and significant issues that were 
addressed during the discussion sessions. These issues also emerged during the 
questions and comments in the presentation sessions. 
 

What are the characteristics of a good aspect modeling language? Participants in 
the aspect composition group considered this question and stated that a good aspect 
modeling language would have a rigorous semantic definition with a mixture of 
external and internal behavior descriptions. A question arose in the discussion 
regarding whether the aspect modeling language needed to be similar to the base 
modeling language. If the modeled concern is close to the domain, there may be 
benefits in having the aspect and base modeling languages similar. 
 
Should an aspect modeling language be standardized? There was an overw-
helming consensus that it is too early to have a standardized aspect modeling 
language. At this stage of AOM maturity, standardization may be too restrictive 
because no aspect language fits all concerns. An aspect modeling language that is too 
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general may lose its usefulness. Dedicated formalisms can have specific meaning, 
purpose, and analysis capabilities. 
 
What is the current status of model composition languages to address 
crosscutting concerns? Current model composition languages are very low-level and 
force a model engineer to bind too early in the life cycle. Precise bindings may be 
uncertain at early stages of development (e.g., there may not be clearly defined 
connections between early aspects and aspects in design). There is a need to model 
composition relationships over several abstraction levels. Some of the questions that 
remain to be answered include: Is a simple linear progression through the 
development phases too naïve? How soon should the aspect binding be realized? How 
to manage relationships in aspect models (e.g., new relationships appearing and old 
relationships disappearing)? 
 
What modeling language features enable the creation of reusable aspect models? 
A reusable aspect model should not refer to any base model element directly, or 
prescribe a binding to a particular base model element, or depend on the existence of 
a specific base element. A modeling formalism supporting reuse must provide means 
to define reusable aspect models in a base model independent way. Mappings 
between the reusable aspect model and the base should be established in separate 
bindings. In order to create reusable aspect libraries, the modeling formalism must be 
able to provide a means to describe aspect specifications, as well as the contexts in 
which the reusable aspect can be applied. Ideally, a means for detecting conflicts 
among reusable aspects when they are applied to the same base model should be 
provided as well. 

5   Concluding Remarks 

The workshop continued the tradition of having a very diverse representation of 
participants. The authors came from nine different countries (Argentina, Belgium, 
Canada, France, Germany, Luxembourg, Netherlands, United Kingdom, and the 
United States.); likewise, the organizing and programming committees represented 
eleven countries (Belgium, Canada, France, Germany, Ireland, Italy, Netherlands, 
Portugal, Switzerland, United Kingdom, and the United States.). In addition to the 
geographical diversity, the AOM workshop also attracted participants with wide 
research interests in aspects across the entire spectrum of the development lifecycle. 
As a result, this provided opportunities for a variety of opinions that were well-
informed from the accumulated experience of the participants. 

The workshop provided a forum for presenting new ideas and discussing the state 
of research and practice in modeling various kinds of crosscutting concerns at 
different levels of abstraction. The workshop identified and discussed the impacts of 
aspect-oriented technologies on model engineering to provide software developers 
with general modeling means to express aspects and their crosscutting relationships 
onto other software artifacts. This workshop report is a summary of the activities for 
those who could not attend the workshop and provides an opportunity to gain insights 
to these issues, and to initiate a future research agenda in the field of aspect-oriented 
modeling. 
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Abstract. Analyzing and modelling a software system with separate views is a 
good practice to deal with complexity and maintainability. When adopting such 
a modular approach for modelling, it is necessary to have the ability to 
automatically compose models to build a global view of the system. In this 
paper we propose a generic framework for composition that is independent 
from a modelling language. We define a process for adapting this framework to 
particular modelling language (defined with a metamodel) and illustrate how 
the generic composition has been specialized for class diagrams. 

1   Introduction 

When using aspect-oriented modelling to build the model for a large system, the 
modellers identify different views. They model each view and reason about these 
separate models. They can also perform validation tasks on each model, for example 
using model checking techniques. Once all these models have been correctly built in 
isolation, it is necessary to compose these different models. The composed model can 
be used to  

• check the global consistency of the system's model,  
• better understand the interactions across the composed views 
• analyze interactions to identify conflicts and undesirable emergent behaviours 

When the models are small enough and developed by a single or a couple of 
designers, they can be composed manually. However, in most cases, the models are 
too large to be composed manually and it is necessary to develop an automatic 
composition operator to ensure that all the elements in the model are handled. 
Moreover, an automatic composition operator allows the designer to try different 
solutions for composition that correspond to different decision (e.g., try different 
orders for composition, or different solutions for one view…). 

There exist several solutions to automatically compose models in different 
languages (class diagrams [1, 2], statecharts [3], sequence diagrams [4]…). If there is 
no composition operator for one modelling language, it is necessary to build a 
completely new operator for this language. In the future, there might be more and 
more domain-specific modelling language developed for model-driven development. 
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In that case, we do not want to generate a new algorithm and a new environment for 
each language. It becomes necessary to reuse algorithmic and design knowledge from 
composition operators in other languages.  

In this paper we propose a generic framework for automatic model composition. 
There are two main steps for composition: matching and merging. The matching step 
is specific to a modelling language. It specifies which element in the language can 
match and how they can match. The merge step can be defined independently from 
any language. The framework we propose implements a generic merge operator. It 
defines, how two model elements that match are merged, as well as a mechanism for 
conflict detection. The framework also implements a language to specify composition 
directives as they are defined by Reddy et al. [2] and specifies a clear interface to 
specify a match operator. This framework can then be specialized for a particular 
metamodel in order to add composition capabilities to a particular language.  

In section 2 we discuss the generic framework for model composition. In section 3 
we explain how this framework can be specialized to add composition capabilities to a 
particular metamodel and in section 4 we illustrate this specialization on an example. 

2   A Generic Framework for Model Composition 

This section describes the generic composition algorithm that is implemented in the 
generic composition framework. The composition mechanism implemented in this 
framework is structured in two major steps: 

1 Matching: Identifies model elements that describe the same concepts in 
the different models that have to be composed. 

2 Merging: Matched model elements are merged to create new model 
elements that represent an integrated view of the concepts.   

The merging operator builds a new model from two models. It merges elements 
that match according to the matching operator and creates new elements in the target 
composed model. This operator is independent of a specific domain. It consists in 
going through the set of elements that match in both input models and if they can be 
merged the operator creates a new model element in the output model. If the elements 
can not be merged, a conflict is detected that has to be solved. This happens when 
elements that match based on a subset of their properties (e.g., when merging two 
class diagrams, classes with same names match) can not be merged because of other 
properties that do not match (e.g., if there is one concrete class and one abstract class). 
The whole process of conflict detection and model elements creation is generic.  

The semantics of matching is domain specific. The knowledge for detecting model 
elements that describe the same concept is based on information dependent on the 
meaning of the model. Thus, the matching operation has to be specialized for each 
modelling language. However, in order to interact correctly with the merging 
operator, the matching operator has to have a clear interface.  

The generic framework described in this section implements the behaviour of the 
merging operator and offers a precise interface for the definition of the matching 
operator. The framework can then be specialized by providing specific matching 
operators through this interface.  
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2.1   Generic Framework for Composition 

Figure 1 describes the class diagram of the generic composition framework. It defines 
the interface of a matching operator for a specific metamodel and it implements the 
merging operator that is independent of any metamodel. 

The abstract operation getSignature in MERGEABLE has to be specialized to 
define the algorithm for matching elements. The getSignature operation defines 
the signature of the model elements. This signature is compared with the signature of 
other model elements to check if these elements have to be merged. A default 
comparison is implemented in the equals operation of STRINGSIGNATURE. This 
operation can be specialized in other subclasses of SIGNATURE in order to compare 
signatures which are more complex than simple strings.  

For example, two methods in a class diagram can match because they have the 
same name or because they have the same name and the same parameters. In the first 
case, the getSignature operation will return the name of the methods and the 
default equals is sufficient. In the second case getSignature will return the name 
and the list of parameters and it is necessary to redefine the equals operation. 

The merge operation in class MERGEABLE implements the generic algorithm for 
merging two model elements. The complete algorithm is defined in [5]. If two model 
elements match according to their signature, this operation tries to merge them into a 
new model elements. The algorithm compares the values of each property of the 
elements to merge to detect possible conflict. If no conflict is detected the new model 
element is created, otherwise the conflict must be solved using composition 
directives.  

The class CompositionContext contains the data structures and utility methods that 
are used by the merge operation in order to create the merged elements and keep a 
traceability information between the input models and the composed model. 

 

 

Fig. 1. Generic framework for Composition 

2.2   The Composition Directives 

Modellers can specify composition directives that are used during composition to 
force matches, disallow merges, and to override default merge rules. Two types of 
composition directives are currently supported in the composition metamodel: 
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• Pre-Merge Directives: These directives specify simple model modifications 
that are to be made before the models are merged. These changes will force 
or disallow element matches. These directives can specify renaming model 
elements, removing or adding elements. 

• Post-Merge Directives: These directives specify simple modifications to 
the merged model. For example, it may be the case that a security view 
requires the removal of associations that are present in other views. This 
restriction can be specified as post-merge directives that remove these 
associations from the merged model. 

The language for model directives is domain independent and is part of the generic 
composition framework. The metamodel for this language is shown Figure 2. There 
are two main types of directives: CREATE and CHANGE directives. CREATE directives 
are used to create new model elements. CHANGE directives are used to modify model 
elements. These directives can be used to remove an element from a namespace, set a 
property value associated with an element, and add an element to a namespace. A 
CHANGE directive is associated with a reference to the model element it modifies.  

A SET directive is associated with two instances of ELEMENTREF one is the target 
property and the other is the new value for the property. Elements can be reference by 
(1) a name that is an instance of NAMEREF, (2) their literal value, or (3) a unique 
identifier that is an instance of IDREF. 

 

 

Fig. 2. The composition directives language 

3   Specializing the Framework for a Particular Metamodel 

This section summarizes how to specialize the generic framework to add composition 
capabilities to a metamodel. The framework has been defined in such a way that it can 
be specialized for any metamodel that conforms to EMOF. The specialization process 
is described in Figure 3. 
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Fig. 3. Adding composition capabilities in a metamodel 

To specialize the generic composition framework, for a metamodel M, it is 
necessary to define a composition strategy. This strategy specifies which elements of 
the metamodel can be merged. This consists in selecting the classes in the metamodel 
that will have composition capabilities, i.e., the classes which instances will be 
composable in models that conform to M. The strategy defines the equality between 
elements, and the signature of these elements. 

The composition strategy is a model with major parts: the classes of the metamodel 
M that are mergeable and how the signatures are computed and the classes that define 
comparison between signatures. The classes of M that are mergeable inherit from 
MERGEABLE in the strategy and they implement the getSignature operation. The 
other classes of the strategy specialize the SIGNATURE class of the generic framework. 
These subclasses specialize the equals operation that defines the equality between 
two model elements. We can notice that the generic framework defines a default 
behaviour for the equals operation. Thus, it is not mandatory to specialize the 
SIGNATURE class. 

Once the strategy is modelled it can be composed with the metamodel M. As a 
result of the composition, the metamodel M is augmented with the classes and methods 
that are necessary to provide composition capabilities. Moreover, the resulting 
metamodel M’ inherits form all the operations implemented in the generic framework 
through inheritance relationships with the MERGEABLE and SIGNATURE classes.  

M’ is obtained using the composition mechanism of Kermeta1 [6]. This 
composition only allows adding operations and classes in a metamodel and ensures 
that every model that conforms to the original metamodel can be viewed as an 
instance of the composed metamodel. Thus the models that conform to M also 
conform to M’ and can be composed thanks to the capabilities added in M’. 
                                                           
1 It can be noticed that the composition operation in Kermeta is a specialization of the generic 

framework presented here. 
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4   An Example for Composing Ecore Models  

In this section we illustrate the specialization of the framework to compose models 
that conform to the Ecore metamodel. Figure 4 shows the Ecore metamodel that is 
very close to the metamodel for class diagrams. The metamodel defines packages that 
are composed of classifiers. There are two types of classifiers: classes or data types. 
The enumeration is the only data type present here. Classes are composed of 
structural features which can be attributes or references to other classes. Classes also 
contain operations which have attributes. This metamodel can be seen as a simplified 
metamodel for class diagrams. 

For the composition of two models that conform to the Ecore metamodel, it is 
necessary to define a specific matching operator. The merging operator is reused from 
the generic framework. Figure 5 shows the model of the composition strategy for 
Ecore models. This model specializes the generic framework to define a specific 
matching operator for Ecore models. 

According to the model in Figure 5, EMODELELEMENT (of the Ecore metamodel) 
inherits from MERGEABLE (from the generic framework). This means that all model 
elements from Ecore have to implement the getSignature operation. However, the 
operation only has to be implemented three times in the case of the Ecore meta-model. 
 

 

 

Fig. 4. The Ecore metamodel 
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A default signature corresponding to their name is associated with all 
ENAMEDELEMENT. This signature is used to match classes, data types, attributes and 
references. For operations and parameters specific signatures have to be defined. Two 
operations will match only if they have the same names, parameters that match and 
the same return type. Two parameters will match only if they have both the same 
name and the same type. 

Both the generic framework presented in the previous section and its specialization 
for adding composition capabilities to the Ecore meta-model have been implemented 
in an open-source tool called Kompose [7]. Kompose was built using the Kermeta 
language and integrated in the Eclipse IDE as a plug-in. A complete demo of the tool  
 

 

Fig. 5. The composition strategy model for Ecore 

package ecore; 
 
require "http://www.eclipse.org/emf/2002/Ecore" 
 
@aspect "true" 
class EModelElement inherits kompose::Mergeable {} 
 
@aspect "true" 
class ENamedElement 
{ 
  method getSignature() : kompose::Signature is do 
    var s : kompose::StringSignature init  
      kompose::StringSignature.new 
    s.sign := name 
    result := s 
  end 
} 

Fig. 6. The composition strategy model for Ecore 
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can be found in [7]. Figure 6 presents an excerpt of the Kermeta listing corresponding 
to the extension depicted in Figure 5. The first line specifies the working package and 
the second line imports the original Ecore meta-model. The class EMODELELEMENT 
is then reopened to add the inheritance relation to class MERGEABLE of  Kompose and 
the class ENAMEDELEMENT is reopened to specify how signatures should be 
computed. These extensions do not break the conformance of existing Ecore models 
and thus allow directly composing them. 

5   Conclusion 

In this paper we detailed a reusable framework for model composition. This 
framework implements a generic model composition operator that can be specialized 
for any specific meta-model. This operator is based on signatures associated with 
model elements for matching objects and uses a generic algorithm for merging 
objects. We have defined a generic composition directive language for the resolution 
of potential composition conflicts. It allows both to adapt input models and to fix the 
composed model. The proposed technique has been implemented as an open-source 
tool using the Kermeta language. 

The main advantage of the proposed approach is to allow easily defining 
composition operators for new modelling languages. This is especially interesting in a 
context where domain specific modelling languages are more and more popular. The 
generic framework is specialized by decorating the meta-model of the language with 
signatures. These signatures allow capturing semantic elements of the modelling 
language in order to produce a meaningful composition operator.  

The principal limitation of the proposed approach is that to be reusable the 
framework only relies on the structure of the models to compose. The signatures are 
the only elements which can be used to take into account some semantics of models to 
compose. Our current experiments show that it is not an issue when working with 
structural models such as class diagrams, database schemas or components model but 
it becomes a clear limitation when working with modelling languages such as 
sequence diagrams.  

To produce a meaningful composition operator for sequence diagrams, the order in 
which events and messages have to be composed is based on the semantics of 
sequence diagrams [8]. Using the current version of our composition framework, the 
only way to implement such a composition operator is to redefine the generic merge 
operation for the classes of the sequence diagram meta-model which contain 
properties that have to be semantically composed. For these classes there is no clear 
benefit from extending the generic framework as the merging algorithm has to be 
fully redefined. 

As a future work to what is presented in this paper we are currently investigating a 
finer-grained redefinition mechanism that allows redefining independently the 
composition strategy for each property of the modelling language meta-model. This 
allows focusing on properties that require special semantic composition and benefit 
from the generic implementation for the others.  
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Abstract. This paper describes MATA (Modeling Aspects Using a Transfor-
mation Approach), a UML aspect-oriented modeling tool that uses graph 
transformations to specify and compose aspects. Graph transformations provide 
a unified approach for aspect modeling. The methods presented here can be 
applied to any modeling language with a well-defined metamodel. This paper, 
however, focuses on UML class diagrams, sequence diagrams and state 
diagrams. MATA takes a different approach to aspect-oriented modeling since 
there are no explicit join points. Rather, any model element can be a join point 
and composition is a special case of model transformation. We illustrate MATA 
on structural and behavioral models for a cell phone example. 

1   Introduction 

Broadly speaking, there have been, to date, two approaches for modeling aspects in 
UML. The essence of the first approach is that two models are composed by 
identifying common elements and applying a generic merge algorithm. This is a 
symmetric form of aspect modeling and common elements are found according to 
some matching criteria, e.g., two classes with the same name are merged. Examples 
of this approach include Theme/UML [1] as well as work by France et al. [2]. The 
essence of the second approach is to reuse, at the modeling level, mechanisms for 
specifying and weaving aspects from aspect-oriented programming. There has been a 
significant amount of research, for example, that identifies a join point model for a 
modeling language and then uses the AspectJ advices of before, after, and around for 
weaving. Examples of this type include [3, 4].  

These two kinds of approaches are not always sufficient. In the first approach, a 
merge algorithm based on general matching criteria will never be expressive enough 
to handle all model compositions. Matching by name, for example, may not work for 
state diagrams. Given two states with the same name, the states may need to be 
merged in one of a variety of ways depending on the application being modeled: (1) 
the two states represent the same thing, which implies making the states equal; (2) the 
two states represent orthogonal behaviors of the same object, which implies enclosing 
the states by a new orthogonal region; (3) one state is really a sub-mode of the other, 
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which implies making one state a substate of the other; (4) the behaviors of the two 
states must be interleaved in a complex way, which implies weaving the actions and 
transitions in a very application-specific way to achieve the desired result. 

Only the first of these can be accomplished based on merge-by-name. Furthermore, 
these are only four of many possible options so it is not generally sufficient to provide 
a number of pre-defined merge strategies. 

In the second approach, specific elements are allowed to be defined as join points 
and others are not. For example, in state diagrams, some approaches define events as 
join points. Others, however, define states as join points. One could even imagine 
more complex join points, such as the pointcut of all orthogonal regions. (This 
pointcut might be used, for example, by an aspect that sequentializes parallel 
behaviors.) Defining only a subset of a model’s elements as join points seems to be 
overly restrictive. In addition, limiting advices to before, after, and around is also 
rather restrictive since it may be desired to weave behavior in parallel, or as a sub-
behavior of a behavior in the base, for example. 

MATA is an aspect-oriented modeling tool that tackles these problems by viewing 
aspect composition as a special case of model transformation. In MATA, composition 
of a base and aspect model is specified by a graph rule. Given a base model, MB, 
crosscut by an aspect model, MA, a MATA composition rule merges MA and MB to 
produce a composed model MAB. The graph rule, r:  LHS → RHS defines a pattern on 
the left-hand side (LHS). This pattern captures the set of pointcuts, i.e., the points in 
MB where new model elements should be added. The right-hand side (RHS) defines 
the new elements to be added and specifies how they should be added to MB. MATA 
graph rules are defined over the concrete syntax of the modeling language. This is in 
contrast to almost all known approaches to model transformation which typically 
define transformations at the meta-level, that is, over the abstract syntax of the 
modeling language. The restriction to concrete syntax is important for aspect 
modeling because a modeler is unlikely to have enough detailed knowledge of the 
UML metamodel to specify transformations over abstract syntax.  

MATA currently supports composition for UML class, sequence and state 
diagrams. In principle, however, it is easy to extend MATA to other UML models (or, 
indeed, other modeling languages as long as a metamodel for the language exists) 
because the idea of using graph rules is broadly applicable. The focus in this paper is 
on the MATA tool and so the presentation will be by example. Details can be found 
elsewhere. [5] describes MATA’s expressive pointcut mechanisms for state diagrams. 
[6] describes an application of MATA to composition in software product lines. 

2   The MATA Language 

MATA considers aspect composition as a special case of graph transformation. In 
general, a graph consists of a set of nodes and a set of edges. A typed graph is a graph 
in which each node and edge belongs to a type. Types are defined in a type graph. An 
attributed graph is a graph in which each node and edge may be labeled with 
attributes where each label is a (value, type) pair giving the value of the attribute and 
its type. The UML metamodel can naturally be represented as a type graph. Each 
metaclass becomes a node in the type graph and each meta-association becomes an 
edge in the type graph. A UML model, therefore, can be represented as an instance of 
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this type graph and a graph rule, defined over the type graph, will transform the UML 
model into another model that also conforms to the type graph (i.e., another UML 
model). In this way, existing graph theory can be used to transform UML models. 

Class
name: String

Attribute
name: String

*0..1

class1
attr1 : class3

1
type

ownedAttr

|X

class2
attr2 : class4

|X
new : class3

(a) Type Graph

(b) UML Model

(c) Graph Rule

class1
attr1 : class3
new : class3

class2
attr2 : class4
new : class3

(d) Transformed
UML Model

 

Fig. 1. Graph Rules for UML 

Figure 1 illustrates these concepts, using a simple example that adds an attribute to 
an existing class. (a) is a type graph defining a very simple metamodel for a subset of 
UML class diagrams. (b) is a UML class diagram that will undergo a transformation. 
The result of applying the rule in (c) to this class diagram is given in (d). Note that the 
left-hand side (LHS) of the rule in (c) defines a pattern over which the rule applies. 
Variables are prefixed by ‘|’. Hence, ‘|X’ matches any class. The right-hand side 
(RHS) describes elements that should be added or removed. Any element that 
matches a variable on the LHS and does not appear on the RHS is removed. New 
elements on the RHS are added. The effect of applying the rule in (c) twice is to add 
two new attributes since ‘|X’ matches against both class1 and class2.  

MATA uses graph rules to define aspects. The pattern on the LHS essentially 
defines the pointcuts to match against. The RHS defines new model elements that 
should be added at these pointcuts (or it defines existing model elements that should 
be removed). There are two points of note about the graph rules in MATA.  

Firstly, graph transformations are typically defined over the type graph. For UML 
models, this means that approaches such as FUJABA [7] and others define rules over 
UML’s metaclasses. Whilst this is the most powerful approach, it is very inconvenient 
for a modeler because s/he must have a detailed knowledge of the UML metamodel. 
MATA instead represents graph rules in UML’s concrete syntax, as given in the 
example in Figure 1(c), although minor extensions to the concrete syntax are 
introduced to allow for powerful pointcut expressions and variable expressions.  

Secondly, it is also rather inconvenient to write graph rules using both a LHS and a 
RHS because elements that are unchanged must be repeated on both sides. Hence, 
MATA follows approaches such as VIATRA2 [8] in that the rule is given on one 
diagram. This is done by using a MATA profile which defines three new stereotypes: 
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• <<create>>, which can be applied to any model element, states that an element 
should be created by a graph rule. 

• <<delete>>, which can be applied to any model element, states that an element 
should be removed by a graph rule. 

• <<context>> is used with container elements to avoid elements being affected 
by <<create>> or <<delete>> (see below). 

Figure 2 gives an example MATA graph rule to add parallel behavior in a sequence 
diagram. (a) is the MATA rule itself and (b) shows the application of the rule to a 
particular example. (a) has two parts to it—the pattern to match against and elements 
to add. In this case, the pattern is defined in two ways. Elements without a stereotype 
are matched against. In addition, any elements stereotyped as <<context>> are also 
matched against. This is because the semantics of <<create>> and <<delete>> are 
defined such that if these stereotypes apply to an element, then they also apply to all 
of the element’s immediate neighbors. This is done simply to avoid having to write a 
<<create>> or <<delete>> stereotype for all neighbor elements. For example, in 
Figure 2(a), the immediate neighbors of the par fragment include any messages inside 
the fragment. Hence, <<create>> also applies to messages r and s. To avoid 
<<create>> being applied to p, it is marked with <<context>>. Therefore, the match 
defined in 2(a) is any pair of lifelines with a message p from one lifeline to the other. 
Note that not specifying an instance and type for a lifeline is equivalent to using two 
variables, |x:|X. The effect of applying the rule in Figure 2(a) is to introduce a new 
par fragment around all instances of message p, and this new fragment will have 
messages r and s occur in parallel with p. 

<<create>>

ppar

r
s

<<context>>

(a) MATA rule, R1

a:A b:B
p

q
ppar

r
s

a:A b:B

q

(c) Application of rules R1 and R2

<<create>>

ppar

r
s

<<context>>

(b) MATA rule, R2

b <<context>>

any

R1

R2

b

b

ppar

q
b

a:A b:B

r

s

 

Fig. 2. MATA Rules 
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As stated earlier, the notion of immediate neighbor is used to reduce the number of 
elements that must be stereotyped with <<create>> or <<delete>>. This is purely a 
convenience for the modeler. The definition of immediate neighbor is specific to each 
model element. For a class, its immediate neighbors are all its associations. For a 
state, its immediate neighbors are its transitions and its actions. For a combined 
fragment in a sequence diagram, its immediate neighbors are all model elements 
contained inside the fragment.  

Figure 2 also shows an example how sequence pointcuts can be defined in MATA. 
A sequence pointcut is a match against any number of consecutive model elements—
for example, a sequence of messages, or a sequence of transitions. Sequence pointcuts 
are handled naturally since the approach is based on patterns. In the example, the 
MATA combined fragment any is used to match against a sequence of messages of 
unknown length. So the rule R2 in Figure 2(b) will match any two lifelines with 
messages p and b with any number of messages between p and b. The result of 
applying the rule is shown in Figure 2(c). Note how the result is different than if rule 
R1 is applied. For R2, the pointcut is the sequence of messages p, q, b, and so, these 
messages all appear in the first operand of the par fragment.  

These examples show that expressive pointcut expressions can be naturally 
specified using MATA. Figure 2 only shows examples for sequence diagrams. Similar 
rules for state diagrams can also be specified in the current implementation of MATA.  

3   Extended Example 

This section provides an extended example of MATA that includes both static and 
dynamic models. A cellphone application is used to illustrate how aspects can be 
specified and composed in MATA.  

We will model three use cases for a simple cellphone—Receive a Call, Take a 
Message, and Notify Call Waiting. Following Jacobson and Ng’s use case slice 
approach [4], we consider each use case as an aspect. We use MATA to maintain the 
use case separation throughout the modeling process. This avoids the traditional 
problem in OOAD of multiple dimensions of decomposition—that is, the require-
ments are decomposed in terms of use cases but the design models are captured in 
terms of objects. Maintaining multiple dimensions of decomposition can lead to 
difficulties when updating the requirements and design models.  

We will consider Receive a Call to be the base use case since all cellphones will 
have this functionality. In contrast, Take a Message and Notify Call Waiting might 
not be available for all phones and so are modeled as aspects. (Even if they are 
available for all phones, it is still useful to model them as aspects since this will 
maintain a clear separation of each use case from other use cases.) The base use case 
is modeled in UML whereas the aspect use cases are modeled as MATA models, that 
is, as increments of the base models. Note that the models for the aspect use cases 
refer only to those elements in the base that are needed for the modifications to take 
place. Also, each aspect is modeled independently from the other aspects, that is, it is 
modeled only in terms of the base (although this is not a limitation of MATA).  

Figure 3 shows (simplified) static and dynamic models for the base use case, 
Receive a Call. The phone contains a ringer, a phone component, a display unit and a 
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keypad. Upon receiving an incoming call, the phone notifies the user by displaying 
the caller information on the display unit and sending a ring message to the ringer. 
The user is allowed to either accept the call (then hang up later) or not accept (i.e., 
disconnect) the call.  
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Phone Ringer Display

Display call info

Ring

Pick up

Hang up

Disconnect

Idle

On call

Waiting

Hang up/

Pick up/
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, 

Disconnect/

Phone

Keypad

Display
+Ring()
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(a) Phone System Classes

(b) Receive a Call Scenario

(c) State Diagram for Controller

 

Fig. 3. Models for the Base Use Case 

Figure 4 gives the behavior models for the two aspects, Take a Message and Notify 
Call Waiting. 4(a) is a sequence diagram for Take a Message. If the phone rings for a 
specified amount of time, the call goes to a messaging system. In MATA, this is 
specified by creating a new alt fragment since forwarding to voice mail is an 
alternative scenario to the case where the callee accepts the call. Note that an any 
fragment is used to match against all messages coming after Ring in the base. This is 
needed since once a message is taken, the user should not be able to pick up the call 
or disconnect it. Hence, the alt fragment must be wrapped around all messages in the 
base concerned with call pick up or disconnect.  

In Figure 4(b), the aspect rule matches any two states which have a transition 
between them with an event named Incoming call. The effect of the aspect is to add 
an additional transition capturing the voicemail behavior. When this rule is applied, 
the two states will match against Idle and Waiting in Figure 3(c). The effect is to add 
a transition from Waiting back to Idle. 

Figure 4(c) introduces messages for putting an incoming call on hold when a call is 
already underway. These new messages are only relevant when a call is taking place, 
that is, in between messages Pick Up and Hang Up in the base. Hence, the loop 
fragment is marked with a <<create>> stereotype and this fragment is inserted in 
between Pick Up and Hang Up. Note that, in this case, it would be sufficient to leave 
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out the Hang Up message in 4(c), which, in effect, would insert the new behavior 
after Pick Up. However, we include Hang Up because there may eventually be other 
occurrences of Pick Up which should not be affected by the aspect. 

Figure 4(d) introduces a new state, Waiting for hold prompt, into the base to 
capture the new behavior for the call waiting use case. Note that the two transitions in 
4(d) implicitly have <<create>> stereotypes because they are immediate neighbors of 
the newly created state. 

any

(a) Take A Message Scenario (b) Take A Message States

(c) Notify Call Waiting Scenario (d) Notify Call Waiting States
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Fig. 4. Aspect Models for Take a Message and Notify Call Waiting 

3.1   Interactions between Aspects 

MATA comes with some support for automatically detecting interactions between 
aspects. Since aspects in MATA are graph rules, the technique of critical pair analysis 
(CPA) [9] can be used to detect dependencies and conflicts between rules. CPA 
examines rules in a pair wise fashion and declares a dependency if one rule requires a 
model element introduced by another rule. A conflict is declared if one rule modifies 
the base in such a way that another rule can no longer be applied. Conflicts and 
dependencies usually imply that the rules should be applied in a particular order since 
the result may be different depending on the order. A conflict may also mean that two 
rules that should both be applied cannot be, and therefore, the rules themselves should 
be modified. In any case, CPA provides a degree of automatic feedback to the 
modeler that both provides assistance in ordering rules and provides some assurance 
that the composition is correct. 
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Considering the example again, we can see that there is a dependency between the 
two state diagram rules for Take a Message and Notify Call Waiting. This 
dependency arises because Notify Call Waiting creates a transition with event 
Incoming Call (Figure 4(d)) whereas Take a Message matches against the event 
Incoming Call (Figure 4(b)). Hence, if Take a Message is applied to the base before 
Notify Call Waiting then any incoming call that is received during an existing call 
cannot be sent to voicemail. Figure 5 gives the results of composing the two aspects 
with the base in either order. In 5(a), Take a Message is applied to the base before 
Notify Call Waiting. In 5(b), it is applied after. The difference is that there is an extra 
transition from Waiting for hold prompt to On call in 5(b) which captures the fact that 
an incoming call may be sent to voice mail even when there is currently an active call 
taking place. The difference in the composed state diagrams arises because the rule 
for Notify Call Waiting introduces a new transition with event Incoming call. Hence, 
when the Take a Message rule is applied in 5(b), there are two transitions with event 
Incoming call and so the rule applies twice.   

MATA detects these kinds of dependencies automatically. Ultimately, the modeler 
must decide which order is the correct one, but MATA can at least provide some 
assistance in flagging cases that must be considered more carefully. If there are no 
conflicts or dependencies found by CPA, then the rules can be applied in any order. 
CPA is particularly important when aspects are reused in a different context than 
originally intended since new conflicts and dependencies may then arise 
inadvertently.  
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Fig. 5. Base and Aspect State Diagrams Composed 

4   Tool Implementation 

This section describes the implementation of MATA. MATA is designed as a vendor-
independent tool but currently works on top of IBM’s Rational Software Modeler 
(RSM). Each aspect is modeled as a package. Within this package, the class diagrams, 
sequence diagrams and state diagrams for the aspect are maintained. Users may select 
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a subset of the aspects and the tool generates the composed model for all of these 
aspects and the base. The user may also define an ordering of aspect composition in 
the case that one aspect needs to be composed before another. If an ordering is not 
specified, the tool selects an order nondeterministically. Figure 6 illustrates this 
process. 
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Fig. 6. MATA Tooling 

Since MATA uses graph transformations as the underlying theory, it relies on an 
existing graph rule execution tool to apply graph rules. The graph rule execution tool 
used is AGG [10]. MATA converts a UML base model, captured as an instance of the 
UML2 metamodel by RSM, into an instance of a type graph, where the type graph 
represents a simplified form of the UML2 metamodel. MATA composition rules are 
converted into AGG graph rules and are executed on the base graph automatically. 
The results are converted back into a UML2 compliant model and are displayed in 
RSM. Critical pair analysis is done by AGG and the results are converted into RSM 
so that detected dependencies and conflicts can be understood by the user.  

In principle, MATA could use any existing graph rule execution tool (e.g., 
VIATRA2 or FUJABA) as its underlying engine, but AGG was chosen because of its 
support for critical pair analysis. Although built on top of an existing engine, MATA 
provides some unique features that make it very suitable for aspect modeling and 
composition, namely: (1) graph rules are defined graphically using the concrete 
syntax of UML rather than using metaclasses; (2) MATA supports sequence 
pointcuts, that is, an aspect may match against a sequence of messages or a sequence 
of transitions. This is supported directly in the MATA rule syntax; (3) the stereotype 
<<context>> is unique to MATA; (4) dependencies and conflicts between aspects can 
be detected automatically using critical pair analysis. 
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5   Related Work 

Most research on aspect-oriented modeling has focused on static models (e.g., [1, 2]). 
Some work has addressed behavioral models (e.g., [3, 11-13]). This paper is different 
from previous work in three key respects. Firstly, there are no explicit join points but 
instead composition is viewed as a special case of model transformation. Secondly, 
graph transformations provide a formal foundation for aspect composition. Finally, 
there is support for statically analyzing aspect interactions via critical pair analysis. 

Related work that is closest to ours includes join point designation diagrams 
(JPDDs) [14]. JPDDs are similar to defining patterns using graph rules. The 
advantage of using graph rules is the existence of formal analysis techniques. In 
addition, JPDDs focus on defining join points and are not so much concerned with 
composition. MATA provides a full composition tool in which very expressive 
composition relationships can be specified. This is not possible with JPDDs.  

More generally, model composition has been addressed outside of the AOSD 
community. In particular, [15] investigates how to merge state machines using 
composition relationships and category theory. This is similar in many respects to our 
work but has a different goal in that it addresses how to reconcile state machines 
produced by different development teams. Model composition is also important in 
feature-based approaches to software product lines.  

6   Conclusion and Future Work 

This paper presented a new approach for modeling and composing aspect models 
written in UML. Tool support for MATA is built on top of IBM’s Rational Software 
Modeler. A prototype has been implemented and a number of case studies have been 
modeled with this prototype. MATA uses the graph rule execution tool AGG as a 
back-end for executing graph transformations and performing critical pair analysis.  

There are a number of interesting avenues for further work that would build upon 
MATA. Firstly, base models in MATA are currently completely open, in the sense 
that any base model elements can be accessed by aspect models. This has shown to be 
absolutely essential in some application areas. In particular, for the software product 
line method PLUS [16], which can be handled in MATA by modeling features as 
aspects, models of non-kernel features can be added to models of the kernel in many 
and varied different ways. It would not have been possible to restrict the join point 
model and still allow the case studies from [16] to be modeled faithfully. 

However, it may be desirable for other application areas to restrict the join point 
model so that only certain base model elements can be affected by an aspect. This 
kind of approach would potentially support improved modular reasoning for aspects. 
MATA could support such a technique easily as interfaces could be designed on top 
of the existing language. In any case, we feel that the modeler should be in control of 
whether or not full access is required by the aspects and it is not up to the language 
designer to restrict the join point model for him/her. 

Another area where MATA could potentially be extended is to provide domain-
specific composition operators, built on top of the existing language. A key 
contribution of this paper is that MATA allows all modeling languages to be handled 
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in a uniform way. However, the current composition operators in MATA are quite 
low level because they are at the same level as the underlying modeling language. 
One could imagine defining more abstract operators, for example, in software 
architecture composition, that would be then mapped down to MATA’s operators. 
This would raise the level of discourse of aspect modelers but would retain the strong 
benefits of the MATA foundations. Such a path should be taken with caution, 
however. A great deal of effort has already gone into language design for existing 
modeling languages and it is not completely clear that an additional layer of 
abstraction would be beneficial. 

Along similar grounds, MATA’s composition is purely syntactic currently. This 
means that aspect modelers define aspects based on the syntactic elements of the 
underlying modeling language. Whilst this is in line with current practice in 
modeling, it would be interesting to investigate semantics-based composition 
techniques, similar to those developed for aspect-oriented requirements engineering 
languages [17]. This would allow modelers to specify aspects in terms of semantic 
concepts of the domain rather than syntactic modeling elements. For example, one 
might wish to define the pointcut of all model elements related to access control. The 
techniques in [17] rely on natural language processing techniques to extract semantic 
content from textual requirements documents and it is not clear how such an approach 
could be adapted to analysis and design models. However, it is certainly an open area 
of research that could provide fruitful solutions to the fragile pointcut problem in 
aspect-oriented modeling. 

Finally, we hope that the expressive composition mechanisms provided by MATA 
might have some consequences for aspect-oriented programming. Whilst modeling is 
different from programming, it seems that AOP could also benefit by more expressive 
pointcut languages or more expressive advices. We believe that the rich language in 
MATA might offer some insights as to how such languages should be developed. 
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1   ATEM Workshop Series 

Following the great success of previous editions, ATEM2007 is the 4th edition of the 
ATEM workshop series. The first two editions were held with WCRE in 2003 and 
2004, while the 3rd one was held with MoDELS 2006. ATEM has always been fo-
cused on engineering of language descriptions. In order to cover as many aspects of 
language descriptions important for greater success and adoption of model-driven 
engineering, ATEM has been evolving so as its scope: 

• The first edition was about metamodels and schemas. 
• The second about was metamodels, schemas and grammars. 
• The third edition was about metamodels, schemas, grammars and ontologies. 

Throughout the interaction with the MDE community and based on the papers 
submitted to and topics discussed about in the previous ATEM editions, we have 
decided that ATEM2007 is about language engineering. Thus, the intention of 
ATEM2007 is to further encourage and expand inter-disciplinary work (e.g., natural 
language engineering) on language descriptions that should bring many promising 
opportunities for the area of model-driven engineering. 

If Software Engineering is “the application of a systematic, disciplined, quantifi-
able approach to the development, operation, and maintenance of software” [1], then 
Software Language Engineering (SLE) can be viewed as the application of a sys-
tematic, disciplined, quantifiable approach to the development, use, and maintenance 
of languages in software engineering [2]. SLE is particularly concerned with  

(i) the life cycle of software languages including design, implementation, docu-
mentation, testing, deployment, evolution, recovery, and retirement;  

(ii) the treatment of language descriptions as software artifacts, akin to programs, 
subject to tailored engineering principles and methods such as modularization, 
refactoring, refinement, composition, versioning, and analysis;  
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(iii) programming support and engineering principles for transformations (or map-
pings, translations, conversions) between different software languages or dif-
ferent manifestations of the same software language such as those in X/O/R 
mapping;  

(iv) the management of coupling and cohesion in software systems caused by the 
invasive use of languages;  

(v) consistency management for the uses of languages in software systems;  
(vi) language integration for interrelated uses of software languages. 

ATEM 2007 aimed a providing a forum to discuss software language engineering 
from various perspectives to facilitate a broad knowledge of methods and techniques 
and enable an integrated use of these.  

2   ATEM 2007 Workshop  

The objective of ATEM2007 was to bring together researchers from different com-
munities to study the use of various language descriptions and technical spaces in 
order to further expand frontiers of their synergetic use in model-driven engineering.  

The intended audience of the workshop was researchers and practitioners using 
various language descriptions (e.g., metamodels, models, ontologies, grammars, and 
schemas) for forward/reverse engineering, recovery, and reengineering in model-
driven software development.  

2.1   Scope 

The importance of language descriptions, which include models, schemas, grammars, 
and ontologies, is generally acknowledged by the model-driven engineering commu-
nity, but, as yet, the study of these artifacts lacks a common umbrella. Language en-
gineering (in the context of software engineering) promotes language descriptions to 
first class citizens, just like programs, data, and models based on the systematic, pro-
grammatic (e.g., rule-based) analysis and manipulation of these language descriptions. 
The typical ATEM paper studies language descriptions in the context of engineering 
of software systems and languages.  

The language engineering view is generally consistent with MDE; it is specifically 
aligned with approaches for grammar engineering, Domain Specific Language (DSL) 
engineering, software factories, ontology engineering, schema engineering and oth-
ers. To have a deeper focus on the language engineering perspective of MDE, 
ATEM2007 pays attention to the fact that language descriptions that are used in de-
veloping software systems can be defined in different ways and used to define for 
different software artifacts (e.g., source code, binaries, databases contents, database 
schemas, UML diagrams, XML files, XML schemas, software architecture descrip-
tions, passive or active web pages, versioned repositories, configuration files, service 
descriptions, XML style sheets, user interfaces descriptions, RDF or OWL ontologies, 
natural text documents, and SQL, XQuery, RDQL queries), but still they have to be 
used together in integrated software development and software evolution. Thus, we 
need ways that enable us to take advantage of all these various language descriptions 
when engineering, re-engineering, recovering, and testing software systems. Since 
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most of language descriptions have rather different technological, research and cul-
tural origins, the synergic use is rather a complex task that requires join efforts of 
different communities. 

2.2   Program 

From 27 submitted papers, 13 papers were accepted to be presented in Nashville, TN. 
The papers accepted were into two main categories: full and short papers. All papers 
accepted as full papers showed important approaches and applications of language 
engineering by various techniques and led to interesting and fruitful discussions dur-
ing the workshop. Short papers presented either work in process or discussed contro-
versial issues in the field or describe interesting or thought-provoking ideas that are 
not yet fully developed. Out of 13 accepted papers, 5 were accepted as full papers, 
and 8 as short papers, which were presented into four workshop sessions based 
grouped around the following topics: foundations, domain-specific languages, trans-
formations and modeling techniques, and data mapping/migration. 

Besides the peer-reviewed paper presentations, the program included a panel.  

2.2.1   Selected Papers 
This workshop proceedings of the ACM/IEEE 10th International Conference on 
Model Driven Engineering, Languages and Systems (MODELS 2007) contains two 
summarized versions of the full papers presented at ATEM 2007: 

• A Comparison of Standard Compliant Ways to Define Domain Specific Lan-
guages by Ingo Weisemoeller and Andy Schuerr investigates various approaches to 
define DSLs, focusing on architectural description languages as an example. 

• Designing Syntax Embeddings and Assimilations for Language Libraries by 
Martin Bravenboer and Eelco Visser overviews the design space and research 
questions in language library realization, in particular, the identification of research 
issues for realizing an independently extensible language library framework.  

2.2.2   Full Papers 
The full papers, not summarized in this proceedings, include: 

• A Language Description is More than a Metamodel by Anneke Kleppe proposes 
a framework for defining software languages by emphasizing the fact that a lan-
guage’s concrete syntax and semantics are as important as abstract syntax (i.e., 
metamodel), which currently a common misconception in model-driven engineer-
ing of languages.  

• Metamodel-based UML Notations for Domain-specific Languages by Achim D. 
Brucker and Juergen Doser presents a metamodel-based approach for specifying 
UML notations for domain-specific modeling languages. 

• Zhi# - Programming Language Inherent Support for Ontologies by Alexander 
Paar proposes a novel compiler framework that facilitates the cooperative usage of 
external type systems based on the XML Schema and OWL languages with C#. 
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2.2.3   Short Papers  
The short papers presented at ATEM 2007 include:  

• Making Modeling Languages Fit for Model-Driven Development by Thomas 
Kühne argues that a modeling language that aspires to be used in a model-driven 
development context must fulfill more requirements than traditional notations that 
have been primarily used for solution sketching. 

• Towards Semantic Integration of Multiple Domain-Specific Languages Using 
Ontological Foundations by Henrik Lochmann and Matthias Bräuer presents an 
approach that facilitates the integration of domain-specific languages on a semantic 
level by mapping language constructs to concepts in an upper ontology. 

• Prototyping Domain-Specific Languages for Wireless Sensor Networks by 
Daniel A. Sadilek proposes a language engineering approach that allows rapid pro-
totyping of domain-specific languages. 

• CoCloRep: A DSL for Code Clones by Robert Tairas, Shih-Hsi Liu, Frederic 
Jouault, and Jeff Gray describes an investigation into the development of CoClo-
Rep, a domain-specific language for the representation of code clones. 

• Model-based Aspect Weaver Construction by Suman Roychoudhury, Frederic 
Jouault, and Jeff Gray describes an approach that combines model engineering 
with program transformation techniques to construct aspect weavers for general-
purpose programming languages. 

• An Algebraic Approach for Composing Model Transformations in QVT by 
Claudia Pons presents a software tool supporting the algebraic formalization for 
composing model transformations in QVT. 

• Text-based Modeling by Hans Groenniger by Holger Krahn, Bernhard Rumpe, 
Martin Schindler, and Steven Voelkel discusses the advantages of text-based mod-
eling over commonly used graphical representations. 

• Biological Data Migration Using a Model-Driven Approach by Abel Gomez 
Llana, Jose A. Carsi, Artur Boronat, Isidro Ramos, Claudia Taeubner, and Silke 
Eckstein shows how model-driven software development can be applied in the bio-
informatics field by expressing biological data structures by means of models. 

2.2.4   Proceedings 
All papers presented at ATEM 2007, are published in [1] and all of them are online 
available at both the publisher’s website and the workshop’s website:  
http://planetmde.org/atem2007/. 

2.2.5   Panel 
ATEM 2007 featured a panel on Grand Challenges in Software-Language Engi-
neering that involved panelist from different technical spaces to discuss the future of 
software language engineering: Ralf Lämmel (moderator), Anneke Kleppe, Thomas 
Kühne, Eelco Visser, Krzysztof Czarnecki, and Dragan Gašević. The panel is video 
recorded and the video clip of the panel is available at ATEM 2007 website: 
http://planetmde.org/atem2007/. 
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3   Beyond ATEM 2007 

There are several activities planned to further stimulate the exchange of research 
results in software language engineering. 

First, we decided to scale the ATEM workshop series up into a new series of con-
ferences entitled – International Conference on Software Language Engineering 
(SLE). The steering committee of the MODELS conference series has kindly ac-
cepted our proposal to host SLE 2008 as two days long conference at ACM/IEEE 11th 
International Conference on Model Driven Engineering, Languages and Systems 
(MODELS 2008) that will be held in Toulouse in France in the period September 28 – 
October 3, 2008. The SLE 2008 conference will be organized by joining the forces 
with the community organizing the International Workshop on Language Descrip-
tions, Tools and Applications (LDTA).  

Second, the editorial board of IEEE Transactions on Software Engineering kindly 
accepted our proposal to organize a special issue dedicated to Software Language 
Engineering to be published in May-June Issue of 2009 [2]. This call for papers has 
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scope of software language engineering to be explored in the special issue 
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Abstract. Language libraries extend regular libraries with domain-specific no-
tation. More precisely, a language library is a combination of a domain-specific
language embedded in the general-purpose host language, a regular library im-
plementing the underlying functionality, and an assimilation transformation that
maps embedded DSL fragments to host language code. While the basic archi-
tecture for realizing language libraries is the same for all applications, there are
many design choices to be made in the design of a particular combination of li-
brary, guest language syntax, host language, and assimilation. In this paper, we
give an overview of the design space for syntax embeddings and assimilations for
the realization of language libraries.

1 Introduction

Software libraries provide reusable data structures and functionality through the built-
in abstraction facilities of a programming language. While functionally complete, the
interface through regular function or method calls is often not appropriate for effi-
ciently and understandably expressing programs in the domain of the library. Lan-
guage libraries extend regular libraries with domain-specific notation. More precisely, a
language library is a combination of a domain-specific language embedded in a general-
purpose host language, a regular library for the underlying functionality, and an assim-
ilation transformation that maps embedded DSL fragments to host language code.

In recent years case studies of language libraries have been conducted for a num-
ber of host languages and types of applications, including concrete object syntax for
meta-programming [3,24], embedding of domain-specific languages in general purpose
languages (MetaBorg) [11,6], and syntax embeddings for preventing injection attacks
(StringBorg) [7]. While there is a common architecture underlying all these language
libraries, there are many design choices to be made in filling in the parameters to the
architecture. For example, a recent innovation is type-based disambiguation of syntax
embeddings [26,10], which uses the type system of the host language to disambiguate
quoted code fragments, thus allowing a more lightweight syntax.

In this paper, we present an overview of the design space for syntax embeddings and
assimilations for the realization of language libraries. The contribution of this paper is
an overview of the state-of-the-art, providing insight in the design space, and research
questions in language library realization, in particular, the identification of research
issues for realizing an independently extensible language library framework. In the next
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section we give an overview of the various types of applications of language libraries
illustrated with examples. In the remaining sections we discuss technical considerations
and trade-offs in the realization of language libraries.

2 Applications of Language Libraries

In this section we consider different types of applications, which are characterized by
the target of assimilation. We distinguish four types of language libraries; libraries for
transformation, generation, string generation, and DSL embedding. We consider each
of these categories in turn and show typical examples. Figure 1 gives an overview of
some libraries that we have realized.

host language
guest lang. Stratego Java Perl PHP

Stratego T
Tiger T

ATerm T T
C G(T)

Java G(T) G
XML G(T) G
SQL S S S
Shell S S S
XPath S S S
Swul D
Regex D

Fig. 1. Examples of realized embed-
dings with host languages in columns
and embedded languages in rows. The
letters indicate the type of embedding
with G = generation, T = transforma-
tion, S = string generation, D = DSL
embedding.

Transformation of structured data is typi-
cally used for program transformation, but also
for transformation of other structured data, such
as XML documents. Direct manipulation of the
structures through their API can lead to tedious
coding in which the natural structures are hard
to recognize. Syntax embeddings can be used
to provide concrete syntax for patterns used to
match and construct code fragments [24]. The
target of assimilation in these applications is an
API for analysing and constructing abstract syn-
tax trees. For example, consider the following
Stratego rewrite rule that defines the desugaring
of the sum construct in terms of a for loop with
an auxiliary (fresh) variable:

DefSum :
|[ sum x = e1 to e2 ( e3 ) ]| ->
|[ let var y := 0

in (for x := e1 to e2
do y := y + e3); y end ]|

where y := <newname> x

The terms between |[ and ]| are quotations of
Tiger code patterns that are used both to pattern match and to compose code. For ex-
ample, the left-hand side |[ sum x = e1 to e2 (e3) ]| of the rewrite rule is as-
similated to the term pattern Sum(Id(x), e1, e2, e3), where x, e1, e2, and e3 are
meta-variables, i.e. variables that match subterms when the rule is applied. (newname
is used to create a fresh variable in order to avoid accidental capture of free variables.)

A similar idea can be used with Java as host language. While Stratego natively sup-
ports terms for representing abstract syntax trees, Java requires such structures to be
defined using objects. A syntax embedding of terms in Java (JavaATerm) can be used to
make analysis and construction of term structures in Java programs easier. For example,
the following is a code fragment from a transformation from an ATerm representation
of bytecode files to a BCEL representation of bytecode:

private void addInstructions(ATerm code) {
ATerm optlocals = null, optstack = null;
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ATerm is = null, excs = null;
match code with
Code(MaxStack(optstack), MaxLocals(optlocals)
, Instructions([...] and is)
, ExceptionTable([...] and excs)
, Attributes(_));

The embedding provides (among other things) concrete syntax for term patterns and
the match <expr> with <term> construct, which is assimilated to statements that
implement the matching by analyzing the ATerm argument against the declared pattern.

An important requirement for the use of syntax embeddings in transformations is
that the structure of the quoted pattern coincides with the structure of the program to
which it is applied. This does not hold in scenarios where the abstract syntax tree of a
program is heavily analyzed, modified, and/or attributed before being transformed. For
example, abstract syntax trees for C and Java require static semantic analysis before
they can be properly transformed.

Code generation involves the composition of programs from templates based on
input such as a DSL program or user input. Construction of large pieces of code using
string concatenation is tedious and error-prone. Templates are not checked statically
for well-formedness and meta characters need to be escaped. Furthermore, a textual
representation does not allow further processing. Use of an API provides a structured
representation, but is not suitable for encoding (large) templates. Syntax embeddings
allow encoding templates in the concrete syntax of the language, but at the same time
producing structured code. Embedded code fragments are assimilated to API calls for
constructing structured data (such as ASTs). The API does not need to support trans-
formation of patterns derived from concrete syntax. For example, the back-end of the
Stratego compiler uses rules such as

TranslateStrat(|S,F) :
|[ s1 < s2 + s3 ]| ->
stm|[ { ATerm ~id:x = t;

~stm:<translate-strat(|Next,F’)>s1
~stm:<translate-strat(|S,F)>s2
~id:F’ : t = ~id:x;
~stm:<translate-strat(|S,F)>s3 } ]|

where x := <new>; F’ := <new>

to implement schemes for translating Stratego to C. In this example two languages
are embedded in the host language; the left-hand side of the rule is a Stratego code
fragment, while the right-hand side is a C code fragment. The right-hand side template
uses recursive calls to generate code for the subterms of the left-hand side pattern.
The results are integrated by anti-quotations such as ~stm:t and ~id:t that convert
a Stratego term into the right syntactic sort. Note that quotations and antiquotations
are tagged with syntactic sorts such as stm|[ and ~id:, this is necessary to avoid
ambiguities in parsing.

The same technique is used for other host languages. For example, the following
fragment shows a Java method generating Java code represented using the Eclipse JDT.

public CompilationUnit run(ClassDescriptor cd) {
CompilationUnit result = |[
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import java.util.*;
public class #[ cd.getName() ] {

#[ attributes(cd) ]
}

]|;
return result;

}

Note that unlike in the Stratego case, the (anti)quotations are not tagged; this informa-
tion can be deduced from the types of the host language (e.g., CompilationUnit) [10].

String generation is commonly used in libraries supporting domain-specific lan-
guages such as XML, XPath, regular expressions, and SQL to provide an interface
that uses character strings to communicate programs in these language. For example, a
method execQuery from an SQL library might take a string containing an SQL query
as argument, such as

execQuery("SELECT * FROM Users where username = \’" + name + "\’");

Insertion of run-time data (e.g., user input) is done by composing queries using string
concatenation from constant parts and dynamic parts provided by variables. The ap-
proach suffers from a number of problems. First, strings are not statically guaranteed
to be well-formed, which may lead to run-time errors. Second the approach requires
escaping of meta-symbols (such as the quotes in the example above), which can lead to
tedious and obfuscated code. Worst of all, the approach leads to software that is prone to
injection attacks, where ill-formed user input may lead to breakdown or security com-
promises. For example, insertion of the string ’ OR 1=1-- in the query above would
lead to dumping a list of all users.

These problems can be avoided by using syntax embeddings instead of string con-
catenation [7]. By quoting a query, as in the following code fragment

SQL.QueryExpr q = <| SELECT * FROM Users WHERE username = $str{arg} |>;
execQuery(q);

the query is syntactically checked at compile-time, no spurious escaping is needed, and
insertion of run-time data is guaranteed to be properly escaped to avoid injection at-
tacks. Embedded queries are assimilated to calls to methods in a syntax API, which
provides for each production in the syntax definition a corresponding method. This en-
sures that well-formedness of queries is verified by the type system of the host language.

Domain-specific language (DSL) embedding is concerned with providing better
notation for programming in a certain domain, and are typically designed around an
existing library. The DSL abstracts over normal usage of the library, and assimilation
is to sequences of library calls. For example, JavaRegExp is a DSL built on top of the
Java regular expression library. In the first place it provides a syntax for quoting regular
expressions without spurious escaping, similar to the string generation examples above.
Building on this basic embedding, JavaRegExp provides a DSL for defining and com-
bining string rewrite rules in Java. For example, the following code fragment defines
several string rewrite rules for escaping HTML special characters, their composition
with a choice operator <+, and the application of the rules to the contents of a string in
variable input:
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regex amp = [/ & /] -> [/ &amp; /];
regex lt = [/ < /] -> [/ &lt; /];
regex gt = [/ > /] -> [/ &gt; /];
regex escape = amp <+ lt <+ gt;
input ~= all(escape);

Another example in this category is JavaSwul, an embedding in Java of a dedicated
language for creating Swing user-inteface widgets, following the hierarchical structure
of the class hierarchy of Swing [11,6].

3 Syntax Embedding and Assimilation

Fig. 2. Components for syntax embedding and assimila-
tion. Solid arrows denote data-flow, dashed arrows pa-
rameters of tools in the chain.

Language libraries are realized by
means of syntax embeddings and
assimilations as illustrated by the
architecture diagram in Figure 2.
An implementation typically con-
sists of four components, i.e. a
parser, typechecker, assimilator,
and pretty-printer. Together these
components transform programs
in the extended language to pro-
grams in the host language only.
Each of the components is para-
meterized with data that are spe-
cific for the syntax embedding at
hand. The parser is parameterized
with the syntax of the extended
language. This requires syntax definitions for the host language and the guest lan-
guage, and a definition of how guest language fragments are inserted in host language
programs. The parser converts a textual representation of a program in the combined
language to a tree structure that is suitable for further processing. Type rules extend the
typechecker of the host language to check extended programs. This component is op-
tional. Having an extensible typechecker avoids type error messages expressed in terms
of assimilated programs. The assimilator transforms embedded guest language frag-
ments to an implementation in the host language. The assimilator is parameterized with
a set of assimilation rules that define the translation schemes for the guest language.
For certain applications the assimilation rules may be generic in the guest language. A
pretty-printer converts the tree structure produced by the assimilator to text, which can
be fed to a host language compiler or interpreter. Pretty-printing can be avoided if trans-
formations are expressed directly on parse trees, rather than abstract syntax trees. An-
other option is not to produce a textual representation of the assimilated program at all,
but instead link assimilation into the host language compiler. This is done for example
in Stratego, where assimilation of concrete object syntax is built into the compiler [24].
Finally, the assimilator may generate code that makes calls to an API corresponding to
the guest language (the ‘run-time system’ for the embedding).
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3.1 Syntax Embedding

module TinySQL exports
lexical syntax

[A-Za-z]+ -> Id 1

[A-Za-z0-9\ \"\-\;] -> Char
"\’" ("\’\’" | Char)* "\’" -> CharString 2

context-free syntax
"SELECT" Id* "FROM" Id Where?-> Query 3

"WHERE" Expr -> Where 4

Expr "=" Expr -> Expr {left} 5

CharString -> Expr
Id -> Expr

Fig. 3. Syntax definition for a tiny subset of SQL

A syntax embedding is an ex-
tension of the syntax of the
host language with the syn-
tax of a guest language. Such
an extension is achieved by
an extension of the grammar
of the host language, which
introduces the language con-
structs of the guest language
at specific places in the host
language. To illustrate the ba-
sic principles of syntax embed-
dings, we use an embedding of
SQL in PHP using SDF [23], a
modular syntax definition formalism for defining the lexical as well as context-free syn-
tax of language in a single formalism. Figure 3 shows the syntax definition for a tiny
subset of SQL, the guest language of this example. We omit the syntax definition of
the host language. The module TinySQL defines the lexical and context-free syntax of a
stylized subset of SQL in reversed EBNF notation, namely simple queries 3 with where
clauses 4, equivalence expressions 5, identifiers 1 and character strings with escaped
quotes 2.

module SQL-in-PHP imports PHP TinySQL 6 exports
context-free syntax

"<|" Query[[SQL]] "|>" -> Expr[[PHP]] 7

"${" Expr[[PHP]] "}" -> Expr[[SQL]] 8

"$str{" Expr[[PHP]] "}" -> CharString[[SQL]] 9

Fig. 4. Embedding of syntax for SQL in syntax for Java

The syntax of
TinySQL is embedded
in PHP by creating a
new SDF module (Fig-
ure 4) that imports the
syntax definitions of PHP
as well as TinySQL 6

and defines how the lan-
guages are combined, i.e.
where TinySQL can be used in PHP and vice versa. The productions of this module
use parameterized non-terminals, e.g. Expr[[PHP]] and Expr[[SQL]], which are used to
indicate the language of the non-terminal. The first production 7 of SQL-in-PHP defines
the quotation of SQL queries, i.e. that they can be used as PHP expressions between
the quotation tokens <| and |>. The second 8 and third 9 productions define the anti-
quotations of this embedding, which allow an SQL expression or character string to be
constructed by an arbitrary PHP expression. In this way, queries can be composed dy-
namically. From this combined syntax definition a parser is generated, which is used to
parse PHP programs that use the SQL syntax extension. After that, the resulting parse
tree or abstract syntax tree is transformed to a plain PHP program by an assimilation.

3.2 Assimilation

The assimilation phase provides the actual implementation of the embedded syntax
of the domain-specific language. In this phase the embedded language constructs are
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removed from the source program by a translation to the host language, using any neces-
sary translation scheme. The implementation of the assimilation phase largely depends
on the application for which the embedded language is intended. The complexity of the
implementation depends on the particular combination of the embedded language and
the host language. The design of the assimilation is influenced by the requirements to
make embeddings (a) easy to understand, (b) composable, and (c) analyzable.

Assimilate : 10

ArrayType(type ) -> e|[ _ast.newArrayType(e ) ]|
where e := <Assimilate> type

Assimilate : 11

Field(e ,y ) -> |[
{| FieldAccess x = _ast.newFieldAccess() ;

x .setExpression(e1 ); x .setName(e2 );
| x |}

]|
where <newname> "expr" => x ;
[e1 ,e2 ] := <map(Assimilate)> [e ,y ]

Assimilate = 12

?AntiQuote(<assimilate-strat>)

assimilate-strat = 13

alltd(?Quote(<Assimilate>))

Fig. 5. Assimilation of Java in Java

Assimilation rules are
the basic transformation
steps of the assimilation
that have a pattern of guest
code at their left-hand side
and produce a pattern of
host code at their right-
hand side. In our exam-
ples the assimilation rules
are implemented in the
Stratego program transfor-
mation language. Figure 5
illustrates two assimilation
rules for the embedding
of Java in Java. The first
rule 10 assimilates an array
type by generating invoca-
tions of the Eclipse JDT
API for the representation
of Java programs in Java.
The second rule 11 assimi-
lates a field access by creating a FieldAccess object and invoking some methods on
it for initialization. The assimilation rules are applied by an assimilation strategy 13,
which traverses the program and applies the rules where necessary. Most assimilation
strategies have the same structure: they traverse the program topdown and apply the as-
similation rules if a quotation is found. If an anti-quotation is found 12, then assimilation
is stopped and the assimilation strategy is invoked recursively.

4 Design Issues

There are many variation points in the realization of syntax embedding and assimilation
for a language library. In this section we give an overview of the main issues. An in
depth discussion of the issues and the range of solutions and their relative advantages
and disadvantages is beyond the scope of this paper.

4.1 Syntax Embedding

The grammar formalism that is used for defining the syntax embeddings should allow
modular extension of grammars. A modular grammar formalism implies support for
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the full class of context-free grammars, since that is the only class that is closed under
composition. In particular, grammar classes such as LL and LR, which are supported by
conventional parser generators are not adequate. Similarly, the lexical syntax is usually
defined using a collection of regular expressions. However, the class of regular gram-
mars is also not closed under composition. Solutions to composition of lexical syntax
that are used in practice are: (1) Ignoring the problem, which entails that the lexical
syntax of host and guest language are merged, e.g. keywords of one become keywords
of the other. Used in Bali, from the pioneering AHEAD/JTS tool set [3] (see [11] for
a discussion). (2) Use lexical states to distinghuish the context in which a program
fragment should be interpreted. In language libraries for program generation such as
Meta-AspectJ [26] and JavaJava [10] with explicit quotation symbols this is a possible
solution (3) Control the state of the lexical analyzer from the parser. While this a major
complication of the interface between the scanner and the parser and seems to be rather
unpopular in practice, it has recently been applied in the Silver extensible compiler sys-
tem [22]. (4) Let the scanner produce all possible interpretations of tokens. This is only
possible if the token boundaries of the host and guest languages are exactly the same,
which is often not the case. (5) Integrate lexical syntax and context-free syntax in the
same formalism as is realized in the syntax definition formalism SDF, which imple-
mented by using scannerless parsing This means that a separate lexical analysis phase
is omitted and the parser operates directly on the individual characters of a source file.
This is the only solution that can gracefully deal with combinations of languages.

Requiring support for the full class of context-free grammars reduces the number of
parsing algorithms that can be used. Currently, the best studied algorithms for parsing
possibly ambiguous context-free grammars are generalized-LR [21,18] and Earley [12]
parsing. Scannerless parsing [19], which is an important feature for syntax embedding,
has been integrated with generalized-LR in the implementation of SDF [23]. Known is-
sues with (S)GLR are the poor quality of error messages and the absence of error recov-
ery. Packrat parsing [13] is another candidate for parsing syntax embeddings. Packrat
parsers are used to parse languages defined by parsing expression grammars, which are
closed under composition, intersection and complement. Scannerless packrat parsers
are available and have been shown to perform very well [14] compared to current GLR
parser implementations. Unfortunately, packrat parsers are not able to produce all pos-
sible alternatives for ambiguities.

When the basic requirements for modularly combining grammars are met, there are
additional modularity features a grammar formalism should have to support syntax
embeddings. A notion of namespaces is needed to manage the scope of definitions in
grammars to be combined. The host and guest language grammar may use the same
non-terminal, which will become a single syntactic category when combined. To keep
such non-terminals separated and to control exactly which non-terminals are identi-
fied, a namespace or renaming mechanism is necessary. A related issue is that the set
of identifiers that should be considered as reserved keywords depends on the context.
For example, class is a keyword in Java, but not in SQL. Also the rules for layout
(whitespace and comments) are different depending on the context. For example, // is
a comment symbol in Java, but an operator in XPath. In a declarative syntax definition
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of AspectJ [8], the notion of grammar mixins was introduced to deal with these issues
(except for modular layout). The parameterized sorts and modules of SDF, along with
a mixin generator, were used to implement grammar mixins. A proper language design
for grammar mixins is needed.

In code and string generation, quotations and anti-quotations are often highly am-
biguous if the quotations of the various guest non-terminals all use the same syntax.
There are three solutions to this problem. (1) The number of quotations can be re-
stricted. For example, if the embedding allows the quotation of a list of statements as
well as a single one, then a quotation of a single statement will always be ambiguous. In
some applications, having only a quotation for the list of statements might be sufficient.
(2) The quotations and anti-quotations can be explicitly tagged with their syntactic type,
basically introducing different quotation symbols for every quotable non-terminal. This
solves the ambiguity problem, but the user now needs to know when and how to use
these tags. Furthermore, the tags obfuscate the code and often feel redundant to the user.
In some cases explicit tagging can be made less unattractive by using keywords from
the guest language. For example, the anti-quotation of an optional where clause of an
SQL query can be tagged using WHERE?, which looks like the keyword WHERE from SQL.

"WHERE" "?" "${" E "}" -> Where[[SQLCtx]]?

(3) The ambiguities can be preserved by parsing the ambiguous source file to a parse
forest. The ambiguity can then be dealt with at a later phase (for instance, by leveraging
the type system of the host language [10]), or can even be ignored if the exact repre-
sentation is irrelevant. For the user this is by far the most attractive solution, since the
embedding is not restricted and no knowledge about the ambiguities is required.

Having a single extension of a host language available is useful, but many applica-
tions require multiple extensions to be available in a single source file. For example, in
web applications, the main application domain of StringBorg, XML, SQL, Javascript,
and Shell, are often used together. Extensions should preferably not be deployed as
closed extensions of the host language, but rather as separate plugins that can be selected
by the user and combined on the fly by the system. This requires independent extensi-
bility of the host language, that is truly modular implementations of language libraries.

4.2 Assimilation

The scope of a transformation [25] indicates the parts of the source and target program
that are involved in the transformation. Scope has a major impact on the complexity
of assimilations. We distinguish the following types of scopes. (1) Local-to-local as-
similations map guest code fragments directly to host code fragments, which are at the
exact same place in the abstract syntax tree as the original guest code. Local-to-local
rules are easy to implement, since the rules are all independent and do not influence
the assimilation strategy. (2) Local-to-global assimilations do not just locally replace
guest code fragments, but in other places in the abstract syntax tree as well. These as-
similations are typically needed when fragments to be generated cannot be expressed
locally. For example, executing statements, declaring new methods, or introducing im-
port declarations. (3) Global-to-local assimilations need context information from the
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original program for a local assimilation, such as the current package, class, method,
or even type information. (4) Global-to-global assimilations need context information
from the source program and also produce global host code. Dynamic rewrite rules [9]
are typically used to implement context-sensitive transformations, that is all but those
with local-to-local scope.

To avoid name capture, assimilation rules should be hygienic, that is, generated
names should all be unique. This can be achieved easily with a gensym-like mecha-
nism that guarantees generation of unique names.

If the embedding is part of a family of embeddings that all implement a similar as-
similation, the assimilation may be generic in the guest language. For example, the
representation of object programs in Stratego is directly based on the syntax defini-
tion of the object language, thus the transformation from the guest code to Stratego is
implemented generically [24]. In some cases the assimilation can even largely be host
language independent [7].

If the host language can be typechecked statically, then it is useful to typecheck
before assimilation, to keep the error reports as close to the original source as possible.
This requires extension of the typechecker of the host language with type rules for the
guest language.

5 Related Work

Syntax Embedding. Macro systems usually restrict the syntax that can be introduced.
For an extensive review of the relationship to JSE [1], Maya [2], Metafront [5], JTS [3],
and camlp4 [20] we refer to [11] and [10]. There are a number of parser generators
that could be applied for the parsing of syntax embeddings. Harmonia’s Blender [4]
and Cardelli’s extensible syntax have been discussed in detail in [11]. Packrat pars-
ing [13,14] has been discussed in Section 4.1. The Polyglot parser generator [17] sup-
ports modular adaptation of LR-grammars, which has been discussed in [7].

Furthermore, there is a wide range of applications that apply a form of syntax embed-
ding. In these particular applications (Template-Haskell, MetaOCaml, Meta-AspectJ,
SafeGen, etc.) the parsing problem is often reduced because the host language is em-
bedded in itself or development time for parsing this combination of languages is ac-
ceptable. Hence, no general method for language libraries is required, though they could
profit from such a facility. Recently, support for quoting expressions has been intro-
duced in C#. C# does not introduce a syntax for quotation, but infers quotations from
the type of variables and parameters. One of the main purposes of this facility is to use
C# expressions to express query expressions, e.g. SQL, without introducing syntax (see
also [7]).

Assimilation. Macro systems usually only allow a straightforward local-to-local map-
ping from the introduced syntax to the host language. Our assimilation rules and strate-
gies allow local-to-global and global-to-local transformations, which is somewhat re-
lated to the desire for macros to reach out and touch somewhere [15], one of the
ideas leading to AspectJ. Macro systems that allow context-free grammars as macro
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arguments often provide more advanced facilities for transformations. For example,
Metafront [5] associates transformations to all productions and additionally guarantees
termination of the transformation.

Open Compilers. Open compilers such as Polyglot [17] are not designed to facilitate
DSL embedding in particular. Instead, they are designed for the introduction of new
language features that invade the language, such as new types, optimizations, concur-
rency features, etc. The requirements for a system that supports the implementation of
syntax embedding and assimilation by non-compiler experts are rather different. More
experience with extensions is needed to give definite answers on the requirements.

Methodology. In [16] the authors state that work is needed on DSL development
methodologies, since the use of a DSL can provide major benefits, but the develop-
ment of DSLs often raises many questions without clear answers or resources on the
right decisions to make. Though our work chooses a particular approach to DSL devel-
opment, our analysis of the design space in this area contributes to the discussion on
methodologies. Also, a major focus of our work is to make the implementation of exten-
sions as easy as possible by not imposing technical constraints on the syntax embedding
and assimilation.

Domain-Specific Embedded Languages. The term domain-specific embedded (or in-
ternal) language (DSEL/EDSL) is often used for a DSL defined within the host lan-
guage, that is, without syntactically extending the host language. DSELs are popular in
languages that have a flexible syntax, such as Haskell (user-definable infix operators)
and Ruby. In the case of Ruby, there is extensive support for introspection, interces-
sion, code generation, evaluation and bindings, which reduces the need for interpreting
the DSL. The heavy use of run-time code generation is largely cultural (since similar
functionality is available in languages such as Perl and Python) and due to seemingly
irrelevant details, such as multi-line string literals. Considering the syntax, the main dis-
advantages of embedded domain-specific language approaches is that the syntax cannot
be clearly defined separately, but has to be crafted carefully, based on the constraints
imposed by the host language.
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Abstract. Domain specific languages are of increasing importance for
today’s software development processes. Their area of application ranges
from process modeling over architecture description and system design to
behavioral specification and simulation. There are numerous approaches
for the definition and implementation of DSLs. Among others, the OMG
offers UML profiles as a lightweight extension of a predefined multi-
purpose language and MOF as a metamodeling language, which can be
used to define DSLs from scratch. This contribution investigates var-
ious approaches to define DSLs, focusing on architectural description
languages as an example. Besides the usage of UML profiles and the def-
inition of an entirely new language with MOF, the adaption of the UML
based on a metamodel extension is also considered. As a consequence
of the shortcomings depicted for the different approaches, we suggest to
combine UML profiles and metamodeling in order to compensate their
weaknesses and take advantage of their benefits.

1 Introduction

Nowadays the usage of domain specific languages (DSLs) is of growing impor-
tance in software development processes. Languages like BPMN [13], ACME [5]
or MATLAB/Simulink [19] offer support for various phases of the software de-
velopment process. Most of them are built up from scratch, often by means of
a proprietary metamodeling language. As a matter of fact this results in high
efforts, when building tools based on these languages. The Object Management
Group (OMG) has, therefore, introduced profiles as a mechanism to describe
lightweight extensions of the Unified Modeling Language [16,17] (UML) as well
as the Meta Object Facility [14] (MOF) as a meta modeling language to provide
standard methods for the definition of domain specific languages.

From the coexistence of different standards for the definition of DSLs arises
the question for which languages UML profiles are appropriate and in which cases
we need to define a heavyweight extension or specify a new metamodel. On the
one hand, UML is wide spread and well known, and commercial tool support
is available at least for editing UML diagrams. Constraints on the models can

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 47–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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be defined in the Object Constraint Language [15] (OCL), for which support is
currently available in some research projects [3] and in a few commercial tools.
On the other hand, customized languages do not only offer potentially greater
expressive power than profiles, and allow the usage of domain specific modeling
elements. Their users also benefit from the availability of code generators, which
results in lower efforts to build analysis tools and editors with a customized
concrete syntax. Besides that, a customized language may be smaller and easier
to learn than is UML.

The following sections deal with various approaches to define a DSL for soft-
ware architectures and architecture families. As we primarily address users of
UML, we focus on profiles and MOF as metamodeling techniques. Indeed we
accept to run the risk of omitting the advantages of other languages, but this
makes it much easier to bring together the benefits of metamodeling and profiles,
since we already have MOF-QVT [11] as a standard for model-to-model trans-
formations, which we want to use to combine profiles and metamodeling in the
future. Altogether, we distinguish between three approaches of metamodeling:

– The description of a lightweight extension of the UML by using profiles and
the equivalent extension of the UML metamodel. (Section 3)

– Using inheritance to extend the UML metamodel fragment that deals with
components, thus introducing subclasses of the metaclasses defined in the
UML 2.1 specification. (Section 4)

– The specification of a metamodel for MVC architectures in MOF. (Section 5)

For each approach we will consider the models and the metamodel of both the
MVC design pattern and the architecture of the “Java Pet Store” (cf. section 2).
We will then survey each approach with respect to the clarity of the correspond-
ing metamodels and their semantics, usability for modelers and metamodelers,
ease of defining constraints, and tool support.

2 Running Example

Each approach to define DSLs will be discussed based on the example of a
language for software architectures. In particular, we will focus on the formal
description of architectural guidelines and how to provide tool support for the
automated checking of these guidelines. As an example for a concrete software
architecture the Java Pet Store 1.1 web application, Sun’s sample application
for J2EE technology, will be used. It has been designed according to the Model
View Controller (MVC) design pattern, and a detailed textual description of
the architectural concepts [20] is available. Thus we have sufficient information
about its architectural concerns without being biased due to the usage of a
certain modeling language. Figure 1 shows an excerpt from the architecture in
a notation based on UML component diagrams.

The basic idea of the MVC design pattern is to decouple a system into three
areas of responsibility, each of which is improved in terms of extensibility, main-
tainability and replacability. We want to ensure architectures preserve this sep-
aration of concerns by demanding that each component of a system may only
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Fig. 1. Simplified architecture model of the Java Pet Store

provide interfaces of the same area of responsibility as the component. Addi-
tionally, we will distinguish between critical, stable, and unstable components,
and define whether the usage of a component is strict, in which case the used
component must be at least as stable as the one that uses it.

3 Using UML Profiles

Profiles have been introduced by the OMG to allow users to adapt the UML to
their personal needs. According to the UML Superstructure specification [17],
profiles are not supposed to extend the UML metamodel. Thus they are concep-
tually interchangeable between tools, using XMI [12] as data format, though this
results in technical difficulties in practice, because most commercial tools do not
completely comply to the standard. However, although the specification states
that the UML metamodel is not extended by profiles, it describes metamodels
that are equivalent to a given profile. There has been a considerable amount of
publications on the modeling of architectural styles with UML profiles before,
most of which deal with UML 1.x (cf. section 6).

A sample profile for the distinction between model, view or controller elements
is shown on the left side of figure 2. To keep the example small, the separation
into the three areas of responsibility is limited to Interfaces and Components. The
right side of the same figure shows an extension of the UML metamodel that is
equivalent to the profile according to the UML Superstructure specification [17].

For the specification of the desired stability of a Component we introduce the
stereotype Importance, which provides an attribute of the Stability enumeration
type. An abstract stereotype Responsibility that generalizes the three stereotypes
Model, View, and Controller has been defined for the decoupling of the system



50 I. Weisemöller and A. Schürr
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Fig. 2. A UML profile for MVC architectures and its MOF equivalent

into areas of responsibility. This should ensure that only one of the stereotypes
can be applied to each instance of the extended metaclasses. In fact this depends
on the mapping of inheritance between stereotypes to the metamodel. It relies
on the creation of an extension Responsibility link each time a substereotype is
applied. This is what commercial tools like Enterprise Architect in fact pretend
to do, but the UML specification does not clarify how to handle inheritance of
stereotypes. Therefore, the creation of associations for the concrete classes with
properties base Interface, base Component, extension model, extension View and
extension Controller must also be taken into consideration. If these associations
are marked as subsets of the one shown in the figure, the application of only
one stereotype would be ensured for the above reason. If a tool behaves different
in this point, this may force the user to introduce appropriate constraints and
make model interchange by means of XMI difficult or even impossible.

Figure 3 shows a small example of inheritance between an abstract and a con-
crete stereotype (A) and possible mappings to an equivalent MOF model (B–C).
It must be pointed out that none of them can be applied by a tool directly, since
this cannot modify its own metamodel at runtime. Instead, appropriate behavior
must be ensured by other means, but the implementation is left up to the tool
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Fig. 3. Generalization of stereotypes (A) and mappings to a MOF model (B–D)
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developers. Getting back to the figure, we see that Mapping B is the one applied
in figure 2, introducing a single association in the MOF model. This ensures ex-
actly one subtype of SuperST (only SubST is available in the example) is applied
to each instance of MyClass. Mapping C introduces an additional association be-
tween each substereotype and the extended class, but this association does not
subset the one between the superclass and the extended class. If the superclass
is abstract and the stereotype is required (as in the example), there are three
possible ways to reflect the application of SubST to a MyClass instance. The
first one is to set only the extension SuperST property, in which case the other
association is useless. The second way is to set only the extension SubST prop-
erty, which results in a violation of the 1 multiplicity of the extension SuperST
association end, though we would expect this to result in a valid model. The
third possibility is to create two links (one for each association), which will re-
sult in a violation of the 1 multiplicity of the extension SuperST association end
in case multiple substereotypes are applied to an element. The mapping shown
in figure 3 D is only affected by the latter problem, since the application of an
instance of SubST to an instance of MyClass results in a link in both associations
due to the subsets property of the extension SubST association end.

For the remainder of this section we will assume that the extension of classes
by stereotypes is mapped to the metamodel as shown in figures 2 and 3 B. Based
on this, the following constraint can be added to Responsibility to ensure that all
Interfaces and their providing Components are of the same responsibility:

context Component inv: self.provided->forAll(i |
i.extension_Responsibility.getMetaClass() =
self.extension_Responsibility.getMetaClass())

As you will have noticed, the provided property and getMetaClass() method
are not defined in our profile, but are available from the UML metamodel respec-
tively the MOF reflection. Moreover we want to specify whether a Usage relation
between Components is strict, i.e. whether it may point from a component of a
certain level of stability to a less stable one. Therefore, we introduce a stereotype
Strict, which extends the Usage metaclass, and attach this constraint to it:

context Usage inv: Stability.ownedLiteral->indexOf(
self.client.extension_Importance.stability)

>= Stability.ownedLiteral->indexOf(
self.supplier.extension_Importance.stability)

Finally, let us look at the appliance of this profile to the concrete architecture
(figure 4). We will restrict this to the EJB Tier Controller, since the effect on
other components is basically the same. The concrete syntax for our extended
metamodel is defined by the UML specification. A minor issue is the presentation
of the stability tag in a note, where an additional attribute for the EJB Tier
Controller would be preferable.

Altogether, modeling of architectural styles based on UML profiles is quite
an extensive approach. It requires an OCL expression for the rather simple con-
straint on relationships between components and interfaces. All constraints are
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rather complicated since we have to navigate between stereotypes and the ex-
tended classes, and there are some ambiguities concerning inheritance between
stereotypes. The advantage of UML profiles, besides reusability of the UML
metamodel, is the variety of existing tools we can use to describe architectures
now. Support for UML profiles is provided by a series of commercial products,
though not all of them do support UML 2 yet. These tools allow the definition
of profiles as well as their appliance to a model, thus being usable as an editor
not only for UML, but also for DSLs defined by means of UML profiles. Unfor-
tunately, the validation of OCL constraints does not work properly in general.

4 Extending the UML Metamodel

This section addresses heavyweight extensions of the UML by means of a MOF
tool. This differs from the approach described in section 3, for which a UML tool
supporting profiles is sufficient. Unfortunately, the definition of a metamodel ex-
tension is not that easy. If the creation, deletion and modification of arbitrary
elements was allowed, it might be “extended” to any other metamodel. To our
knowledge there is no generally accepted definition of a metamodel extension.
However, the OMG suggests to use the package merge concept from the UML
Infrastructure [16, pp 162ff] for this. Therefore, we limit extensions of a meta-
model to the merge of an arbitrary package into the outermost package of the
original metamodel.

Based on this, one obvious way to distinguish between interfaces provided by
model, view and controller components is to introduce subclasses for Component
and Interface from the UML metamodel. Unfortunately, we cannot make existing
metaclasses abstract to ensure only the subclasses are instantiated. This is due
to the definition of package merge: “For all matching classifier elements: if both
matching elements are abstract, the resulting element is abstract, otherwise,
the resulting element is non-abstract”, which implies that a non-abstract UML
metaclass remains non-abstract in our extended metamodel. Therefore, we have
to attach the constraints shown in figure 5 to Component and Interface to ensure
no instances of them can be created. The new subclasses do not necessarily have
additional attributes, but they allow us to redefine associations and introduce
constraints for our needs to describe MVC architectures.

As with UML profiles, we will try to express that an interface of a specific type
must be provided by a component of the same type. Therefore, we introduce an
association between each subclass of Component and the corresponding subclass



A Comparison of Standard Compliant Ways to Define DSLs 53

Component

ModelComponent ViewComponentControllerComponent

Interface

ModelInterface ViewInterfaceControllerInterface

+/required

+/provided

*

*

inv: not
self.oclIsTypeOf
(Component)

inv: not 
self.oclIsTypeOf
(Interface)

{redefines provided} {redefines provided}

{redefines provided}

«enumeration»
Stability

CRITICAL
STABLE
UNSTABLE

+ stability: Stability

ComponentUsage

+ strict: Boolean

inv: self.strict implies
self.client->forAll(c: Component|
self.supplier->forAll(s: Component|
Stability.ownedLiteral->indexOf(s.stability)
<= Stability.ownedLiteral->indexOf(c.stability)))

UML::Classes::
Dependencies::

Usage

{subsets supplier}
{redefines supplier}

{subsets supplierDependency}
{redefines supplierDependency}

{subsets client}
{redefines client}

{subsets clientDependency}
{redefines clientDependency}

UML::Components::
PackagingComponents::

Component

UML::Classes::
Interfaces::

Interface

Fig. 5. Excerpt from the UML metamodel extended by subclasses

of Interface, which redefines the association between the superclasses as shown
in figure 5. We can also define several categories of stability in an enumeration
and add a new attribute of this type to a subclass of Component. Additionally,
we introduce a subclass ComponentUsage of the Usage relation from the UML
metamodel and add the attribute strict to it. The association ends between
this class and Component redefine those from the UML metamodel. Thus all
usages of components must be properly modeled by an instance of the new
ComponentUsage class. The following constraint ensures a component does not
depend on a less stable one if the strict attribute is set:

inv: self.strict implies self.client->forAll(c: Component|
self.supplier->forAll(s: Component|
Stability.ownedLiteral->indexOf(s.stability)
<= Stability.ownedLiteral->indexOf(c.stability)))

Each component and interface in a model must now be represented by an
instance of one of the new subclasses instead of Component and Interface from the
original UML metamodel. The association refinements and the constraints make
sure components provide only interfaces of appropriate types and do not strictly
depend on less stable components. The concrete architecture will basically look
the same as the one shown in Figure 1, except that a concrete syntax for the
new subclasses and relation needs to be introduced.
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The FrontController component from our sample architecture provides a view
interface which offers frequently used pages, e.g. login or error screens. This vio-
lates the association refinements specified above, so a tool based on our extended
metamodel would have prevented a software architect from creating this model.
Instead, he might have introduced an additional view component, which gets
status information from the FrontController and creates status screens from it.

As we see, the formulation and check of some basic constraints can be ac-
complished in an UML metamodel extended by inheritance. On the other hand,
elements from the original metamodel which have become unnecessary are still
present in the extended metamodel. The most serious problem is the loss of com-
patibility to existing UML tools. So, in order to apply this approach, one would
have to modify an existing or write a new tool according to the new metamodel.

5 Defining a New Metamodel

The last approach discussed in this contribution is the specification of domain
specific languages from scratch by means of a metamodeling language. In con-
trast to an increasing number of proprietary metamodeling languages, the Meta
Object Facility [14] (MOF) has been introduced by the OMG to describe mod-
els of metadata in a format independent of platform and manufacturer. A small
number of tools supporting the specification of models using MOF [1] or its less
expressive subset EMOF is available. In this section, the adequacy of MOF for
the specification of DSLs will be discussed.

Figure 6 shows a simple metamodel to distinguish between model, view and
controller components or interfaces. It is similar to the extended UML meta-
model discussed in section 4, but there are some differences due to the fact that
we did not start with a predefined metamodel: First of all, the subsystems of
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Fig. 6. A MOF model for the MVC design pattern
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an architecture are no longer referred as components, but as Modules. When
building a metamodel from scratch, arbitrary names can be given to the model
elements, which allows the usage of identifiers specific to the users organisa-
tion for instance. Second, the superclasses Module and Interface can be abstract
classes, so we do not have to define a constraint to ensure they cannot be in-
stantiated. Third, the provided property of a Module is the derived union of its
subsets (which may be determined by a different derivation rule in turn), instead
of the derivation rule taken over from the UML into our extended metamodel.

viewHelper:
ViewModule registerListeners:

ModelInterface

businessModel:
ModelModule

providedrequired

dependsOn

stability = STABLE stability = CRITICAL

Fig. 7. An excerpt from the architecture model of the Pet Store

Since we have not introduced any notation, an excerpt from the architecture
of our sample application is shown as an object diagram in figure 7. To be able
to build a graphical editor for DSLs, a concrete syntax needs to be defined;
frameworks for building editors and tools based on MOF or EMOF models are
currently being developed by several organisations, e.g. [10]. The figure shows
the coupling of the model and the view subsystem, which is realized by the reg-
isterListeners interface. Due to the usage of this interface the viewHelper module
depends on businessModel, which requires the businessModel to be at least as
stable as the viewHelper. The corresponding constraint from the metamodel is
fulfilled in the example, so this is a valid model.

As we have seen, the most important advantage of building a new metamodel
are the extensive possibilities to adapt it to our needs and preferences. The
association concepts of MOF provide a more precise and convenient way to
specify relationships. Besides that, the elements can be defined in a way that
makes the OCL constraints more compact than in UML profiles. Basic support
for MOF based metamodeling is available as well as support for building tools
on top of these metamodels. Nevertheless, building tools is still a complex and
extensive task. Moreover, the introduction of a new language may require more
practice than the extension of UML by means of profiles, which requires neither
an entirely new concrete syntax nor new tools for the introduction of domain
specific modeling elements.

6 Related Work

Several publications address the definition of DSLs, many of which deal with
extensions of the UML or the specification of a new DSL by means of MOF.

Dong and Yang suggest to use UML profiles to describe architectural styles
in [4], but they focus on the visualization of patterns in system design rather
than consistency checking, though a few examples of constraints are given.
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A publication of Henderson-Sellers and Gonzalez-Perez [7] investigates the
differences between stereotypes in UML 1 and UML 2 and points out some
issues about their specification from a set theoretical point of view. However, it
contains some serious flaws. For instance, the authors state that “the Stereotype
metaclass in UML 2.0 is a subtype of Class, so only classes can be stereotyped”,
where the first has nothing to do with the latter (and it should be mentioned
that “classes” in this sense are more than classes in class diagrams), or they
point out the “inability of stereotypes to express behavior”, although this does
obviously not hold for stereotypes which extend behavioral constructs.

The authors of [6] use a framework for model-to-model transformations to
map domain specific languages to UML. As discussed in the previous sections of
this contribution, they state that code generation and automated model analysis
usually come along with the introduction of DSLs, whereas UML is primarily
used as a target language for the visualization of models. However, their ap-
proach does not make use of UML profiles yet, but is focused on basic UML
instead.

Besides these scientific projects there are a few commercial, proprietary
meta-case-tools available [8], which in general lack interoperability, because they
do not comply to a standard meta modeling language, and modularization
concepts.

7 Conclusions

Our comparison of various approaches to define domain specific languages has
shown the benefits and drawbacks of UML profiles and metamodeling. Profiles
are supported by current CASE tools, but the concepts to refine associations
are rather weak in comparison to those of a metamodeling language. They also
suffer from a lack of flexibility, which makes the specification of constraints for
consistency and integrity checking more complicated than necessary. In addition
to these issues, there are some uncertainties about how to map profiles to an
equivalent metamodel. Domain specific languages built up from scratch or as a
heavyweight extension of the UML are better suited for these purposes, but they
require high effort on tool building to be really usable for model editing.

Table 1. Overview of approaches to specify DSLs

UML profiles UML extension New Metamodel
Expressive power - + +

Flexibility - o +

Clarity of semantics - + +

Simple constraints - o +

Model Notation - - +

Tool support + - -
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8 Future Work

From the benefits and drawbacks of the approaches discussed in the previous
sections follows the desire to combine the advantages of UML profiles and meta-
modeling. More precisely, a way to define DSLs and make them usable without
building entirely new tools is required. For this purpose, we suggest to define a
mapping from a limited set of domain specific languages to UML profiles and
vice versa, which will make the use of commercial CASE tools as editors possi-
ble, but enable us to revert to the possibilities provided by metamodeling tools
for integrity and consistency checking of the models. For the definition of a DSL
and adaption of existing tools to this language we want to perform the following
steps as shown in figure 8:

UML Profile

Standard
UML Tool

Triple Graph 
Grammar

Translator

MOF/OCL
Metamodel

MOF Tool
MOFLON

Fig. 8. Combination of UML profiles and metamodel based technologies

1. The abstract syntax of a DSL is defined in a MOF-compliant metamodel-
ing tool like MOFLON [1]. OCL constraints may be used to define static
semantics of models described in the DSL.

2. A UML Profile is used to define the concrete syntax of the new language
with constructs similar or identical to those used by UML.

3. An implementation of QVT based on Triple Graph Grammars [9,18] is used
to translate the stereotyped UML model into an instance of the metamodel
and vice versa.

The combination of UML profiles and metamodel based technologies is sup-
posed to be a systematic replacement for extensive usage of profiles [2], reducing
the effort of implementations to ensure the proper use of such profiles.
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Abstract. The workshop Model Driven Development of Advanced User
Interfaces (MDDAUI ) aims at integrating results from the area of human-
computer interaction and user interface modeling with the concepts of
model-driven engineering. This paper provides a summary on the third
edition of MDDAUI held as part of the MoDELS 2007 conference in
Nashville, USA. In particular, it presents the results of the two group
discussions of the workshop.

1 Workshop Topic

The user interface of an application is often one of the core factors determining
its success. While model-based user interface development is an important line
of research in the human-computer-interaction (respectively human-machine-
interaction) community, model-driven application development is an important
area in the software engineering community. This workshop aims at integrat-
ing the knowledge from both domains, leading to a model-driven development of
user interfaces. Thereby, the focus of the workshop is on advanced user interfaces
corresponding to the current state-of-the-art in human-computer-interaction,
such as multimedia or context-sensitive user interfaces or multimodal interaction
techniques.

The workshop builds up on the results of the previous editions in 2005 [1]
and 2006 [2]. While the first two editions mainly provided an overview of the
topic, the current edition aims at addressing more advanced topics in this area,
including usability of the approaches, their integration with informal techniques
like visual design and prototyping, and a better utilization of concepts from
model-driven engineering, e.g., more flexible transformations leading to better
adapted user interfaces. The research area is still evolving as new user interface
technologies and paradigms are coming along and model-driven technologies are
becoming more mature.

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 59–64, 2008.
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2 Submissions, Participants, and Program

Interested participants were invited to submit a paper of four pages length in
double-column format. We mainly asked for technical papers presenting concrete
solutions that consider the concepts of model-driven engineering, e.g., specified in
terms of a concrete metamodel. We received fourteen submissions and accepted
nine of them as the result of an intensive peer-review process by the programme
committee. Five papers were selected to be presented as long presentations and
four for short presentations at the workshop. Workshop participants basically
came from two different groups: Some were frequent participants of the MoDELS
conference who have a strong background in model-driven development while
others were mainly based in the area of human-computer interaction (or human-
machine interaction).

The workshop took one day during the MoDELS conference. In the morning
sessions all accepted papers were presented; according to the foregoing selection
process either in a long presentation or a short presentation. After each talk there
was some discussion and in addition there was time for additional discussion
and general questions at the end of each session. In the afternoon the topics for
group discussions were selected and participants joined one of the two discussion
groups. The detailed program can be found on the workshop Web page [4].
Official proceedings including all accepted papers are available electronically [3].

3 Workshop Discussions

After paper presentations two discussion groups were formed around the follow-
ing topics:

– Usability of Model-Driven UI Development for the Developers
– Combination of Modeling Techniques

At the end of the workshop, both groups presented their discussion results which
are summarized in the following.

3.1 Usability of Model-Driven UI Development for the Developers

A core issue in user interface development is usability: The user interfaces re-
sulting from a user interface development process must be usable, and the de-
velopment process should ensure usability as much as possible. In addition, the
development tools and methods itself should be usable as well. This, in turn, will
improve the usability of the developed user interfaces. The discussion summa-
rized here focuses on the usability of a model-driven user interface development
process.

A specific characteristic of user interface development is the participation of
different experts, like graphic designers, interaction designers, and programmers.
The integration of these experts is one of the main benefits models can provide
in user interface development. The discussion group aimed at further specifying
the role of models in user interface development. Finally, the following statement
was found adequate:



Third International Workshop on MDDAUI 61

Models shall act as a kind of bridge between input from various people
involved in UI development (end users, domain experts, UI developers,
management people, etc.) to integrate all this knowledge and to transfer
it into the software engineering process.

Participants agreed that currently no modeling language completely satisfies
in covering all aspects of all the different experts. Moreover, it was considered
likely that a “universal” language of this kind, covering all possible situations
and projects, will be too complex to be used in practice. An attractive solu-
tion may come from domain-specific user interface modeling languages (DSUL)
and corresponding tools. It was mentioned that the required meta-tools for this
approach are not easy to handle, and probably the definition of a DSUL for a
specific project, company or domain may be expert work or a consultancy task.

In order to actually be accepted by user interface developers, such a model-
ing approach has to offer significant practical advantages. From the comparison
with other technologies, which were around for some time before having been
embraced by the developer community (code version management, IDEs), it be-
comes clear that a successful tool must leverage reuse of previous work. Things to
be reused in the user interface context are, among others: patterns, anti-patterns,
usability heuristics, usability metrics, interface components, etc. In particular,
reuse here includes knowledge about the usability of user interfaces.

Furthermore, it has to be taken into account that the people who will actually
work with a modeling tool are quite heterogeneous, as mentioned above. Each of
these user groups will have a specific view on a model. So for instance, end users
and domain experts can be involved best if the tool comprises a facility to carry
out prototyping experiments or to incorporate the results of such experiments.
For modeling experts, tools for creating abstractions from actual interaction
sequences will be most important. For user interface developers, the tool shall
provide detailed technical information; maybe even on code level. In order to
keep all these views consistent under modifications in various views, techniques
like those known as “round-trip engineering” from CASE tools are desirable.

3.2 Combination of Modeling Techniques

In model-driven user interface development, a large spectrum of different ap-
proaches exists. Although there are many commonalities between these ap-
proaches, they are often isolated from each other. However, there is variability
between them because of their distinguished focus or the particular application
domain. For example, some of them support context-sensitive user interfaces, col-
laborative applications, mixed interactive systems, multimedia user interfaces,
etc.

This discussion aims at a better understanding of the relationships between
the different models and concepts in user interface modeling. The resulting ben-
efits can be in first place a better general understanding. In longer terms, it
might also be possible—considering the concepts of model-driven engineering—
to provide operations on the different metamodels in user interface development
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to support a seamless spectrum of user interfaces to be developed. For exam-
ple, a user interface can be multimedia and context-sensitive. In the ideal case,
modeling support for such a user interface can be provided by reusing and com-
bining modeling concepts (metamodels) for these two aspects. The combination
of metamodels probably has to be performed manually, but a general overview
on the landscape of existing modeling concepts can strongly help the modeling
experts to identify and reuse the required concepts. It should be mentioned that
basically it would also be possible to construct an overall metamodel for user
interface development which already covers all possible aspects of user interfaces,
but in practice this would be a very hard and error-prone task.

In the discussion we identified the following issues as the starting point:

– Identify relevant dimensions to structure the models.
– Identify relationships between user interface models.
– Identify relationships from user interface models to other kinds of models (of

the software engineering domain) in application development.

Initially, two dimensions were identified to be most relevant for structuring
the user interface metamodels:

Semantic aspects: The aspects of the user interface represented by a specific
metamodel; i.e., the kind of information in the model. Examples are the
user tasks to be supported by a user interface or its dynamic behavior. A
specific aspect of the user interface can be represented by different model-
ing concepts, i.e., different metamodels. For example, the user tasks can be
represented by ConcurTaskTrees, or MAD. Discourse Models do not directly
represent user tasks but can (partially) replace task models as they also spec-
ify the purpose of the user interface but on a different level of abstraction.
The dialogue or interaction to be performed by the user interface can be
specified for example using Statecharts or Petri Nets.

Level of abstraction: The level of abstraction on which a metamodel repre-
sents the respective aspects of the system. Usually, the level of abstraction
is related to the position of the model within the development process: In
early stages the user interface will be modeled in a more abstract way while
models specifying the final implementation must be very concrete. However,
the concrete temporal order of models within a development process depends
on the chosen process. In particular, it might be possible that some very con-
crete information is already available at an early stage of the development.
In this case, it can be useful to be able to specify it immediately.

Figure 1 provides a first attempt to arrange some typical user interface models
within these two dimensions. Two kinds of relationships are specified:

Contributes to: A (meta-)model contributes to another (meta-)model, i.e., the
target model is created based on information from the foregoing model. In
particular, this can mean that the target model is derived by a transforma-
tion from the source model. For example, the Abstract Presentation and the
Dialogue are usually created based on a Task model.
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Semantics
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Interaction
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User

Platform

Environment

Contributes to

Refers to

Fig. 1. A first sketch towards a schema structuring common metamodels in user inter-
face modeling and their relations

Refers to: If a model refers to another, existing model, this means that some
model elements in the former model contain references to model elements
specified in another, the latter model. For example, the Dialogue usually
refers to the Domain model as for example interactive user interface elements
usually trigger some operations from domain classes.

The models in the presented schema basically can be applied to the develop-
ment of any kind of user interface. Some domains require models for additional
information, e.g.:

– user interfaces for mixed interactive systems require specification of physical
objects,

– user interfaces for multimedia applications require specification of media
objects.

4 Conclusion

The area of model driven engineering is continously evolving and, as the work-
shop discussions show, the area of user interface modeling can directly profit from
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these advances. This does not only concern better tool support but also the
foundations. Currently, well-defined metamodels allow comparing and reusing
user interface modeling concepts. Tunability of transformations can be used as
mechanism to ensure the usability of developed user interfaces. In the future, ad-
vanced concepts of model driven engineering, like model weaving, might be used
for more flexible integration of different concepts for advanced user interfaces,
like for user interfaces supporting collaboration, multimedia, and mixed-reality.

Acknowledgements. We thank the workshop participants for their high qual-
ity contributions as well as the program committee members for their valuable
reviews.
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Abstract. Novel interactive systems such as Augmented Reality are promising 
tools considering the possibilities they offer, but no real development methods 
exist at the moment to help designers in their work. We present in this paper a 
design method for tightly coupling early interaction design choices and soft-
ware design solutions. Based on an existing model used for abstract UI design, 
our work introduces a second model dedicated to the software UI specification 
and the model-based process used to derive one from the other. To achieve this, 
we present here a framework based on domain-specific models and transforma-
tions to link them and thus support the development process. 

Keywords: Mixed Interactive Systems, Model-Driven Engineering, Domain-
Specific Languages, Metamodeling, Model Transformations, Design Process. 

1   Introduction 

In the past 10 years, a new HCI trend has emerged: traditional “Window, Icon, Menu, 
Pointing device” interfaces tend to be replaced by new forms of interaction that in-
volve physical artifacts, easily manipulated by users. Augmented Reality systems, for 
example, are interactive systems in which the realization of a physical task is enriched 
by the presence of digital data and/or services. Tangible User Interfaces and ubiqui-
tous systems are other forms of interactive systems which merge physical and digital 
worlds. Because they deal with similar concepts and techniques, we group these  
approaches under the single term: Mixed Interactive Systems (MIS). To support the 
development of such systems, MIS frameworks have been developed and adopt bot-
tom-up or top-down approaches. Each of them brings consequent advances at differ-
ent levels of abstraction of the design [7], but interlacing them remains difficult to  
accomplish, thus limiting the coverage of the development process. 

As the use of MIS increases, enhancing the robustness, efficiency and quality of 
these systems is required. In this sense, elaborating a convenient development process 
becomes necessary. To cover the different steps of such a process, our approach pro-
motes the results gathered in the early design phases and bridges the gap between the 
abstraction levels of these results and the implementation. To do so, we articulate 
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models to progress along the development process and adopt an MDE approach, thus 
introducing a Domain-Specific Language [1] for MIS. 

2   MIS Engineering Framework 

Common processes for HCI development include four phases: requirements gather-
ing, design, implementation and evaluation. Figure 1 presents how our tools cover the 
first three phases.  

Following interviews and observations, task modeling is one of the major tools 
used to support the requirements gathering. Task models are used to characterize the 
sequence of sub-tasks with their type (i.e., user’s activities, system’s activities or in-
teractive activities), the domain objects involved and the events triggered, and to 
structure these sub-tasks in a hierarchical form corresponding to the global system 
task.  

The design phase can be decomposed into two separate steps: UI design and the re-
lated software specification. The former step is concerned with user interaction as-
pects. It may be linked to requirements gathering by combining users’ observation, 
brainstorming or focus-groups to collect user needs, and an interaction model to or-
ganize them according to the specificities of MIS [4]: domain objects description, user 
abilities, physical and digital artifacts, forms of interaction. During the latter step, de-
sign aspects related to the software architecture are considered, using a model dedi-
cated to the description of MIS architectures. 

The next step is the implementation of the system by using component-based plat-
forms improving flexibility and adaptability. 

Finally an evaluation can be carried out in different ways such as user experiments 
or ergonomic inspection. 

Software 
Architecture 

Modeling 

Mixed Interaction 
Modeling 

Component-based 
Implementation 

Task 
Modeling 

Focus-Group 

 

Fig. 1. MIS domain-specific process 

At each step, a set of existing models, notations and tools exists: task model in the 
requirements gathering, dialog and interaction models in the UI design, software ar-
chitecture and system objects models in the software specification. In this context, ra-
ther than modifying the different models involved in order to articulate their usage, 
we describe a DSL to support this process. Indeed, the current state of the design  
approach is consistent with two major aspects that are well addressed by an MDE  
approach:  
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• Multiple models are required in each phase of the development process and one 
role of MDE is to “promote models to primary artifacts that drive the whole devel-
opment process” [1]. MDE will facilitate their articulation and permit the elicita-
tion of coherence rules. 

• The MIS domain, with regards to its applications in our every day life, produces 
emergent systems. Elaborating methods for developing them requires to evaluate 
the adequacy of models and to support their evolution when required. The MIS 
domain is in a phase of empiricism and begins to develop theories; MDE will be a 
powerful support of this evolution. 

3   Two Domain-Specific Models 

The core of the MIS Domain-Specific Language is based on two models: 

• ASUR [4], a model which describes the user’s interaction with a Mixed Interactive 
System. It can be used by itself or as mentioned before, in combination with a fo-
cus-group. 

• ASUR-IL [4], a complementary model that have been introduced to cover the  
description of the software decomposition and structure. Its aim is to prepare the 
implementation step by producing a coherent architecture, promoting the forms of 
interaction chosen in a technological perspective. 

After an overview of the ASUR metamodel in the next section, we present the 
ASUR-IL metamodel to enable the collaboration of our two domain-specific models. 

3.1   ASUR Overview 

For a given task, the role of ASUR is to support the description of the physical and 
digital entities that make up a mixed interactive system and the boundaries among 
them. ASUR components are adapters (AIn, AOut) that bridge the gap between both 
digital and physical worlds, digital tools (STool) or concepts (SInfo, SObject), the user (U) 
and physical artifacts that are used as tools (RTool) or objects of the task (RObject). 

Components can be interconnected by several kinds of relationships. The most im-
portant one, data exchange, is used to describe the kind of data that is transmitted. In 
the physical part, the relationships represent the information channels between com-
ponents, and in the digital part the way the system treats them. The representation 
link is used to express the fact that two components are two representations (one digi-
tal and one physical) of the same concept: this link is characterized in terms of behav-
ior and rendering. Finally, real associations express the physical proximity of two 
physical components and triggers represent an action of one component on another. 
On the basis of previous works in the domain, design-significant aspects have been 
identified and added to the model as objects attributes: ASUR characteristics improve 
the specification of components (perception/action sense, location, etc.) and relation-
ships (type of language, point of view, dimension, etc.). By analyzing the characteris-
tics of each element, the model supports the predictive analysis of two properties: 
continuity and compatibility of interactions. 
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To illustrate ASUR (Figure 2), let us consider a system for 3D object modeling. 
This system offers, among other features, a dedicated physical artifact for translating, 
scaling and rotating the 3D object during its edition. This tool embeds a marker for 
video-based detection of its position and a pressure sensor for switching between each 
mode (translation, scale and rotation). The physical tool is modeled in ASUR as an 
RTool, manipulated by the user. The 3D object is the main digital concept of the task 
and is modeled as an SObject. The second digital concept is the interaction mode and is 
typed as an STool. Two adapters for input (AIn) collect data (marker detection and pres-
sure sensor) to control each digital concept. These are in turn connected to one AOut 
for visual output: the mode is rendered as textual data and the 3D object in a 3D 
scene. 

 

Fig. 2. ASUR model of the 3D object modeler example 

3.2   ASUR-Implementation Layer: Towards the Implementation Phase 

For each ASUR model, i.e. a given mixed interactive task, an ASUR-IL model is as-
sociated. The main contribution of this model is to identify the software components 
and relationships required to implement this specific task. Only the components  
involved in the interaction part of the system are described. The description of func-
tional parts of the system is out of ASUR-IL scope. This model is also the frontier be-
tween Platform Independent Model (PIM) and Platform-Specific Model (PSM): it  
describes the software components involved in the task and their communications, the 
next step being the transfer to a PSM where each ASUR-IL component will be asso-
ciated to existing software component or new ones. 

An ASUR-IL model is an assembly of components which contains two kinds of 
sub-assemblies: adapters and entities. Each of them is related to ASUR components 
(ASUR adapters  ASUR-IL adapters, ASUR system components  ASUR-IL  
entities). Each sub-assembly regroups several components with specific roles in the 
architecture (devices, APIs, models, controllers, and views). ASUR-IL adapters for 
input or output, corresponds to the adapters in the ASUR model and group devices 
and software libraries (APIs), used to connect physical and digital worlds. Devices are 
used to capture/render data from/to the physical world. They can translate physical 
phenomenon into digital data and vice versa. APIs permit to combine several comput-
ing facilities to obtain required data: for example, ARToolKit is a specific toolkit for 
Augmented Reality, which grabs a video frame and produces 3D coordinates of the 
recognized markers. Therefore adapters compose the system part which is likely to be 
reused: a software implementation of an adapter can either exist and satisfy the 
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ASUR modeling, or be developed on the basis of a combination of existing devices 
and APIs. 

ASUR-IL entities are the other kind of sub-assemblies that make up an ASUR-IL 
model. They correspond to the digital concepts that are involved during interaction 
and which are identified in ASUR as STool, SObject or SInfo. They are triplets of three 
ASUR-IL components called models, views and controllers, inspired by the MVC de-
composition [8]. Controllers interpret the physical phenomena and translate data from 
adapters into commands on model parts. Models are the entry point to the functional 
core. They are an abstraction of it, enabling the dialog with the application core. Fi-
nally, views are in charge of the computation required to reflect the state of each digi-
tal concept on each output adapter connected. 

Finally, the relationships named data flows connect each component by using the 
interfaces port. The correctness of the data flow between two components is ensured 
by the value given to the attribute data type of each port. 

The ASUR-IL model (Figure 3) that describes the 3D object modeler cited in the 
previous section is composed of 13 components. A first adapter collects the pressure 
level on the tool using only one device component. A second one produces a 4x4 ma-
trix for position and orientation of a marker, captured by a camcorder device and 
computed by the ARToolKit API. The last adapter is in charge of rendering the digital 
concepts, using a screen device connected to a window API. To render each concept, 
two API components are added: a text field and a 3D canvas. 

The two ASUR-IL entities follow the MVC decomposition. For example, the 3D 
object is composed of one model which contains the object’s characteristics (position, 
size, etc.). One controller transforms a 4x4 matrix into a scale/rotation/translation fac-
tor. Finally, one view is in charge of inserting the object into the 3D scene by using 
3D primitives. The second entity, the interaction mode, follows the same decomposi-
tion: one model containing the three states, one controller to convert one level of 
pressure into one of these three values and a view to express the current mode as a 
string of characters. 

 

Fig. 3. ASUR-IL model of the 3D object modeler example 

3.3   MIS Design Support 

ASUR has its own editor: GuideMe [6]. It is a graphical editor which can export dia-
grams as XML files. After its metamodel was defined [3], a second version of the editor 
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was developed using EMF to separate graphical editing from model manipulation. As 
mentioned above, ASUR and ASUR-IL are two models required at different steps of a 
MIS design process. Other models could also be required such as task models for re-
quirements gathering or system models for functional core specification. To support the 
integration of our two models and further evolution, we adopt an MDE approach and 
choose to instrument it with tools from the Eclipse Modeling Project (EMP [5]). This 
enables the creation of dedicated tools for each model with EMF, GMF, and others. 
Therefore each model can be edited using the corresponding plug-ins in Eclipse  
(cf. Figure 4). 

Using these tools, the designer can manipulate the two models easily. The main 
challenge is now to link them by model transformations to rapidly observe the conse-
quences of modifying the description of the interactive situation modeled with ASUR 
on the software architecture described with ASUR-IL. The next section presents the 
transformation between ASUR and ASUR-IL and finally introduces the transforma-
tion between ASUR-IL and a software component model: WComp [2]. 

Eclipse 
GuideMe Plugins 

ASUR 
EMF .codegen 
        .edit 

GMF .diagram 

ASUR-IL 
EMF .codegen 

        .edit 

GMF .diagram 

ASUR2IL 
ATL 

WComp 
 

Fig. 4. Tools integration 

4   Domain Transformations 

In order to implement domain transformations, the Atlas Transformation Language 
(ATL) was chosen. One of the main reasons is that ATL is now fully integrated with 
the Eclipse Modeling Project [5] and so ensures complete coherence between the dif-
ferent tools. ATL also provides some precious characteristics for the manipulation of 
our models: transformation rule inheritance (as class inheritance in object-oriented 
language) and three ways to define a rule: using a declarative paradigm, an imperative 
or a mixed one. A model-2-text engine (JET) is also used to produce the PSM for the 
WComp platform, from the PIM ASUR-IL. The metamodel of the software compo-
nent model WComp is currently only expressed as code in the platform itself. Thus at 
the moment, only platform-specific code generation is supported in the framework. 
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4.1   ASUR2ASUR-IL: Software Modeling Initialization 

The goal of this transformation is to prepare the construction of a component-based 
architecture. ASUR identifies several digital concepts and describes their roles in the 
interaction: this is the left-hand side of the transformation. On the right-hand side, 
ASUR-IL is in charge of describing the different kinds of software components in-
volved in the interactive part of the system, with adequate ports and data flows be-
tween them. Practically, the principles of the correspondence between these two parts 
are well-known, but verbally or textually expressed and not formalized. With ATL, 
these rules are expressed using a transformation specification language and thanks to 
the transformation engine, are applied on the models. 

Each ATL rule follows roughly the same behavior: the type of each ASUR compo-
nent plus the characteristics of the relationships between them are identified, and the 
satisfying rules are applied. It consists, for example, in creating for each ASUR adap-
ter, an ASUR-IL adapter (Figure 5-1) that contains one default device and some APIs 
that account for the kind of interaction modalities described in the ASUR model. The 
rules include imperative code to interconnect components (Figure 5-3) and to factor-
ize common processes. When ASUR digital components are transposed into ASUR-
IL (Figure 5-2), they potentially trigger the creation of multiple views and controllers 
after models have been created: one controller per modality used to interact on the 
digital component, one view per modality used to reflect its state. 

This transformation is the starting point of the software architecture design. From 
the characterization of a mixed interactive situation with ASUR, it produces the basis 
of the software architecture. It offers to rapidly design the software components struc-
ture of a concrete system before starting its implementation. This combination sup-
ports the designers during design phases, by linking abstract UI design and software 
UI specification. Following the transformation, designers can extend the specification  
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by additional design decisions, such as the instantiation of other APIs or devices  
considering some technical limitations. 

Based on this software specification, the next step is defining a platform-specific 
model of the system. We present in the next section another transformation process to 
support this final transition. 

4.2   ASUR-IL2WComp: Platform-Specific Model Definition 

Assuming, that during ASUR-IL editing the designers carefully identified each com-
ponent of the system, they now must be transposed to the platform model. The cur-
rently chosen platform is WComp [2] which is dedicated to rapid prototyping of 
wearable and ubiquitous interactive systems. Considering these purposes, this plat-
form allows the creation of assemblies of components with a small granularity and the 
runtime adaptation to the platform context (i.e., low battery level, devices discon-
nected, etc.). Its flexibility and its simplicity are the major reasons that motivated its 
use. 

The definition of this transformation is on-going work using the model-2-text en-
gine of EMF: JET. It will build the bridge from the PIM (ASUR-IL) to the PSM (an 
assembly of WComp components), with two goals: 

• Creation of software components. It consists in: 
− describing the data manipulated and the associated interfaces (Figure 5-4),  
− identifying an existing software component in a repository (Figure 5-6) that con-

tains previously developed components or standard APIs and devices, 

• Management of the assembly of components (Figure 5-5) to establish the connec-
tions between each component in accordance with the ASUR-IL model. 

The code required for implementing new components that will be generated by the 
transformation includes the definition of constructors, interfaces and the common files 
to generate ready-to-use libraries for the platform. Finally, the assembly correspond-
ing to the system will be expressed as an XML file, in accordance with an XML 
schema specific to the WComp platform. The generated XML file contains the kind 
of components to instantiate and the communication channels between each interface. 

Once the definition of this set of transformations is complete, our work will pro-
vide MIS designers with a range of tools from interaction design to implementation. It 
will help to rapidly experiment with designed interactive situations from the ASUR 
results to the WComp assembly of components dedicated to MIS. To illustrate the 
kind of process it will create, we next describe our tools on a case study. 

5   TUI for Museum Exhibitions 

The goal of this case study is to design innovative interactive situations in the context 
of museum exhibitions. Our task is to design solutions promoting knowledge trans-
mission and entertainment in a science museum for particular themes: in this case the 
evolution of species. By using this approach, we can rapidly experiment with ad-
vanced interaction and adapt them to other themes by reusing components. 
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Fig. 6. Schema of the mixed interactive system 

The current project aims at proposing visitors to discover species evolution by ela-
borating an evolution tree based on phylogenetic criteria. Adopting MIS in that con-
text offers the opportunity to keep the visitors away from technologies as much as 
possible, by letting them manipulate physical objects: visitors thus remain focused on 
the content and are not impressed or afraid of the use of technologies such as mouse, 
keyboard, complex 3D devices, etc. Using MIS also increases the visitor’s experience 
by adding digital rendering (video, 3D, sound, etc.). To elaborate the evolution tree, 
the user manipulates physical representations of species (a frog, a crocodile, etc.) to 
add them to the tree which is rendered by video on the interactive space with related 
phylogenetic criteria (Figure 6). 

The first solution (Figure 7) uses marker-based detection to capture tangible objects 
(species) and visual rendering to report the data. These two facets of the interaction are 
described by three adapters on the ASUR model. The first one, marker-detection,  
is able to determine the position and orientation of each physical component represent-
ing species. The second one is capable of visually rendering the state of each digital 
component of the system. Another adapter for output is used for displaying the evolu-
tion tree to the rest of the audience using a large display. When describing with ASUR 
the task of inserting a species in the tree, an ASUR system component is identified to 
depict the digital object that includes the characteristics of the selected species. A sec-
ond system component is required to depict the digital information related to the  
hierarchical classification of the species: this is a second digital concept manipulated in 
this task. These two digital concepts are thus connected to the three ASUR adapters: 
these relationships express the fact that information captured by the adapter for input 
(the camcorder) will affect the two digital concepts and that these two digital concepts 
are also affecting the adapters for output (namely the video-projection and the  
large-display). 

Figure 8 shows the ASUR-IL model resulting from the asur2asur-il transformation. 
Each adapter has been translated into an ASUR-IL adapter, combining a default  
device connected to one API component which will be used to adapt the data emitted 
or needed by each device. In this case, the localization of each physical object  
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Fig. 7. ASUR model for evolution-tree construction 

 

Fig. 8. Asur2asur-IL transformation result 

representing one species will be made using a camcorder, producing a picture used by 
the API ARToolkit to obtain the 3-dimensional coordinates. 

For each ASUR digital component, an ASUR-IL entity is created with the correct 
amount of controllers and views depending on the number of modalities used during 
the interaction. In this case, only one controller and one view are necessary for the in-
teraction with the species, and only one view is used to render the evolution tree 
(same modality on each adapter: video-projection and large-display). The core behav-
ior of each digital concept will be implemented in the model components, and the in-
teraction with them will be coded into controllers for input and views for output. 

To illustrate the dependencies between the two models, we focus on the case where 
the system also provides vocal feedback when selecting a species. This way, the user 
gets a description of the selected species. It results (Figure 9) in the addition of an AOut 
in the ASUR model, an adapter for output corresponding to Voice synthesis, and its 
translation to the ASUR-IL model. The transformation will produce another view 
component for the species because of the two modalities used. 

Once the architecture is designed, the next step is to use the ASUR-IL model for 
the implementation of the system on the WComp platform, a .NET platform using C# 
code. This transformation will generate component skeletons, such as interfaces, con-
structors and parameters, to be loadable into the platform. This is the behavior for  
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Fig. 9. Model evolution 

novel components. The other choice is to specify a component that has already been 
developed and is described in a repository. Following this step of choosing or generat-
ing components, an XML file will be generated containing the assembly description 
of the system, used by WComp to run it. In the example, the components for AR-
Toolkit API and camera device but also the frame component based on the device for 
video-projection, have been yet developed. Finally only entities and PiccoloCanvas 
components must have to be developed on the platform WComp. 

6   Conclusion and Future Work 

This work is a step toward the definition and instrumentation of a design process for 
Mixed Interactive Systems. This process will permit us to increment on the designed 
solution until obtaining a convenient degree of usability. The advances presented 
here, ASUR-IL model and related transformations, offer rapid navigation between the 
abstract design of innovative interaction techniques, expressed with ASUR, their con-
crete specification, expressed in ASUR-IL, and the final realization corresponding  
to their implementation by a WComp assembly. The Domain-Specific Language  
developed is an efficient tool for promoting the characteristics issued from the user-
centered design into the crucial phase of implementation. As this approach uses mod-
els as primary artifacts, thanks to the MDE tools, each level of abstraction defined in 
the development process embeds properties standing for the usability of the interac-
tive system. 

The ASUR model defines some properties related to the quality of the interaction 
between a user and a mixed environment. Our goal is to integrate them throughout the 
entire process, to finally evaluate their evolution during each cycle of the process. 
Further work will aim at identifying additional properties, relevant at the software de-
sign level (ASUR-IL) such as computing time or hardware constraints, and structur-
ing their impacts on the remaining design steps of our process. It will increase the 
ability to evaluate the quality of each interactive situation. 

Another perspective is to study the feasibility of reverse transformations between 
each step and their impact on the higher levels of abstraction. A modification of a 
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WComp assembly (choosing one device instead of another) could be evaluated at the 
ASUR level to determine the consequences of such choices. 

Finally, we focus here on specific models for MIS. To make possible the develop-
ment of concrete systems, other aspects could be included: collaboration with business 
models for the connection with the functional core, interactive modalities ontology to 
support the choice of specific devices and APIs, and also description of the behavior of 
the components using dialog models for example (State charts, Petri nets, etc.). 

As already mentioned, the MDE approach is very helpful to articulate and trans-
form models. However, it appears that designing MIS may rely on a lot of models and 
maintaining the coherence among all of them may be difficult. The management of 
this combination of models and transformations needs to be investigated to better as-
sess the usability of the MDE approach for a MIS development process.  
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Abstract. User-interface design is still a time consuming and expensive
task to do, but recent advances allow generating them from interaction
design models. We present a model-driven approach for generating user
interfaces out of interaction design models. Our interaction design models
are discourse models, more precisely models of classes of dialogues. They
are based on theories of human communication and should, therefore, be
more understandable to humans than programs implementing user inter-
faces. Our discourse models also contain enough semantics to transform
them automatically into user interfaces for multiple devices and modal-
ities. This paper presents a two-step transformation approach with an
intermediate user interface model. By showing specific transformation
rules, we concentrate on a major part of the first step, transforming
discourse models to structural user interface models.

1 Introduction

In previous work [7], we have already been able to automatically generate usable
user interfaces (UIs), even for multiple devices and for real-world applications.
We generated such UIs from models, but since these models included finite-state
machinery they were more in the spirit of abstract UIs (abstracting from the
interaction modality) rather than high-level interaction design.

More recently, in the OntoUCP1 project, we wanted to work with models that
are more understandable to humans and possibly more easily to build. Therefore,
we studied several theories of human communication from various fields. Based
on insights from some of these theories, we focus on high-level specifications of
discourse in the form of models. These models specify discourse in the sense
of dialogues, where monologues are embedded and connected. According to the
reference framework [3], these discourse models are located at the “task and
concepts” level.

From our previous work, we inherit the use of communicative acts (and ref-
erences to domain knowledge). Communicative acts are derived from Speech
1 OntoUCP (A Unified Communication Platform both for Machine-Machine and

Human-Machine Interaction based on Ontologies), partially funded by the FIT-IT
Program of the Austrian FFG as project number 809254/9312. We also acknowledge
the (financial) support of the PSE division of Siemens AG Österreich.

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 77–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Act Theory [13] and express intentions in the sense of desired effects on the
environment.

By integrating communicative acts with some results from Rhetorical Struc-
ture Theory (RST) [10] and Conversation Analysis [9], we developed a new
discourse metamodel [1,5]. The metamodel defines what the discourse models
should look like in our approach.

So, we strive for high-level modeling of discourse, including dialogues. Such a
discourse model is inspired by human communication and serves as an interaction
design for a traditional information system. Currently we do not support the
generation of UIs with direct manipulation.

From such an interaction design, user interfaces for several devices are to
be generated automatically. Since we knew already how to generate them from
a kind of abstract UI model, we strived for generating UI models from our
new interaction design models. In general, this involves partitioning of a given
discourse tree, which is described in [1].

The remainder of this paper is organized in the following manner. First, we
explain our model-driven transformation approach on the basis of self-defined
metamodels. Then we focus on concrete transformation rules for mapping a
discourse model to a structural UI model. Finally, we briefly discuss our approach
as compared to related work.

2 Overall Approach

Our approach to fully automated UI generation is a two-step process. Model-to-
model and model-to-code transformations are necessary to transform a discourse
model to structural UI models, and further to multiple UIs for diverse platforms.
In the following, we present the first step (see Figure 1) and explain the input
(discourse model), the output (structural UI models) and the transformation
rules for the model-to-model transformations.

Our discourse models use a self-defined Domain Specific Language (DSL) for
specifying the classes of possible dialogues or interactions between the human
and the machine. The abstract syntax of the DSL is based on the conceptual
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Structural UI Model
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M2M Transformation
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Fig. 1. The model-to-model transformation step
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metamodel shown in Figure 2, which illustrates the concepts used. Every dis-
course is composed of a tree, where leaf nodes are Communicative Acts and inner
nodes are Rhetorical Relations based on RST. The UML class diagram shown
in Figure 2 is not as restrictive as our interpretation, since it would allow the
creation of more general kinds of graphs than tree structures. The association
class Adjacency Pair is needed to model Inserted Sequences.

The Communicative Acts are used to model the intention of a communication
and refer to elements of the domain of discourse. Figure 3 shows a selection of the
most important Communicative Acts used in our approach. Two corresponding
Communicative Acts, like Offer and Accept, form a sequence, which is called
Adjacency Pair. The Adjacency Pairs build up the dialogue structure.

The Rhetorical Relations are used to connect Communicative Acts or, again,
Rhetorical Relations with each other. They represent the dependencies between
single interactions of dialogues. Examples for Rhetorical Relations are Condition,
Joint and Background. The Condition relation is used to model dependencies
between adjacency pairs in the way that one branch (satellite) has to be exe-
cuted and its Boolean expression fulfilled before the other (nucleus) can start.
The Joint Relation is used to group Communicative Acts of the same type. No
presentation order is presumed. The Background Relation is used to express
that the satellite branch contains background information related to the nucleus
branch.

Figure 4a shows a small part of an online shop discourse model, which we use
as a running example throughout the paper. The example describes an interac-
tion between the user and the online shop with the purpose of demanding the
customer to select one product category and supporting her with background
information to ease her choice. The nucleus branch N of the Background re-
lation conveys the main interaction sequence. The online shop system offers a
list of product categories to the user. The user accepts one of them. During the
offering process the satellite branch S provides background information about
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Fig. 3. Selection of communicative act taxonomy

the product categories to the user. This part of an online shop discourse model
gets transformed to the structural UI model shown in Figure 4b by applying
the rules Light Background, Adjacency Pair, Offer-Accept and Informing to the
corresponding discourse model elements in the listed order. Details on each rule
are described in section 3.

The structural UI model is basically a tree representing the UI structure in-
dependently of any toolkit (e.g., Web, Java Swing, etc.). It is not completely
independent of the target device, however, since the device’s real-estate is taken
into account for building up the UI structure. Still, our structural user interface
model is completely independent of the considered UI toolkit. This tree struc-
ture will be transformed to a toolkit-specific (final) UI. The concepts used in
such a structural UI model are specified in the structural UI metamodel shown
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(a) Subtree of an online shop discourse.
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(b) Resulting structural UI model.

Fig. 4. Online shop example showing a part of its discourse (a) and the resulting
structural UI model (b) of its model-to-model transformation
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conceptually in Figure 5. It only shows the parts that are important to our run-
ning example. The most important concept of the metamodel is the Widget class.
It is specialized into four functional categories: OutputWidgets, InputWidgets,
ListWidgets and Panels. The OutputWidgets present information to the user in
different ways like text and images and the InputWidgets gather information
from the user. Nevertheless, InputWidgets also convey information to the user
like defaults, current values and type and quantity of required information.

The main issue that we address in this paper is how to transfer models as
exemplified in Figure 4a to structural user interface models at the abstract widget
level as in Figure 4b. In particular, it means a transformation from a mainly
declarative model of a discourse to the toolkit-independent structure of a user
interface.

The general principle behind our approach is that the structural UI model
is made up of “presentation” units that are made visible when the logic of the
interaction with the user so requires. Once this principle is established, our
problem can be specified as follows:

– Given a discourse tree with communicative acts as leafs, generate the possible
set of presentation units, and the transitions between these presentation
units. Since each presentation unit has to be a coherent discourse itself, it
corresponds to a subtree of the overall discourse tree. As such, we call this
problem the discourse tree partitioning problem. This problem and a solution
to it is described in [1].

– Given a presentation unit as a discourse subtree, generate a structural UI
model based on heuristic rules. Since this effectively “pre-renders” a dis-
course tree into a structural UI model, we call this problem the pre-rendering
problem.
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Fig. 6. The transformation process

In the structural UI model, a complete tree or subtree with a Panel as its root
element represents a presentation unit. Hence, a complete structural UI model
can, in general, be a forest consisting of possibly several trees. Trees in the
structural UI model that are alternatives, i.e., trees on the same level resulting
from discourse partitioning or Joint relations, will be linked in the structural
UI model via a Choice element as shown in the metamodel in Figure 5. The
Choice element is used to specify alternative presentation units, which can be
used to fill in the same space. Our example in Figure 4a represents exactly one
presentation unit that corresponds to the tree shown in Figure 4b.

Figure 6 illustrates that the transformation of one presentation unit is fulfilled
by mapping elements of the discourse metamodel to elements of the structural UI
metamodel. Both metamodels are based on the Ecore2 meta-metamodel. Trans-
formation languages like ATL3 (ATLAS Transformation Language) or MOLA4

(MOdel transformation LAnguage), which is used in this paper to graphically
specify the transformation rules, support this transformation approach. At the
same time a state machine is generated from the discourse model which con-
trols the sending and receiving of Communicative Acts. This latter generation
is beyond the scope of this paper, however.

3 Pre-rendering Rules for Transforming to a Structural
UI Model

After having introduced the general transformation principles, we concentrate on
the pre-rendering problem and introduce concrete rules for mapping a discourse
model to a structural UI model. They are specific to certain structural patterns

2 Essential MOF like core meta model of the Eclipse Modeling Framework
(http://www.eclipse.org/emf/)

3 http://www.eclipse.org/m2m/atl/
4 http://mola.mii.lu.lv/

http://www.eclipse.org/emf/
http://www.eclipse.org/m2m/atl/
http://mola.mii.lu.lv/
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occurring in the discourse models. We have found many such patterns during our
modeling experience, and we continue to find new ones. Due to limited space,
we only exemplify five rules which we believe illustrate the principle.

Heavy Background Rule: Figure 7 shows a rule for a “Heavy Background”
relation, which associates a nucleus subtree with a “large” satellite subtree, i.e.
a subtree that has a large number of nodes compared to the nucleus subtree
and can lead to clutter if rendered in its entirety. The “nuclear” part is rendered
directly since, as per the definition of RST nucleus, it is the most important part
to convey, but if there is no space for its background information, the background
information is rendered in a separate presentation unit. A link to the latter is
presented together with the “nuclear” part, so an appropriate widget for a link
(e.g., hyperlink, button) will be generated by the transformation process. Also,
the action of the respective button can be generated to activate the separate
presentation unit corresponding to the background.

Light Background Rule: Figure 8 shows another rule specific to the Back-
ground RST relation. The satellite is rendered on the right side of the presenta-
tion unit, while the nucleus occupies the left area, as an “aside”. In accordance
to the rule above, the “most nuclear part” takes the interface space that is of
highest surface and most central to the user focus. Following this principle fur-
ther, the layout management of the presentation unit will always give precedence
to the “nuclear” side, e.g., when the window is resized by the user. This rule is
used in our example to generate the basic tree structure of Figure 4b, i.e., this
rules generates the root panel and places the transformation results of the pre-
rendering of the nucleus and satellite subtrees next to each other by a flow layout
manager. The Light Background Rule can also be localized (adapted), e.g., for
cultures that write from right to left, where it may be more suitable to place
the satellite at the left side. A system-wise style configuration can also render
light backgrounds to the top and to the left, like it is, e.g., customary when the
concrete user interface will be an HTML page. However, even there the space
allocation and re-allocation in case of resizing will prioritize the nuclear part.

Figure 9 illustrates the formalized Light Background Rule in MOLA, composed
of the following elements. The outer bold rectangle symbolizes a for-each loop.
The rounded rectangle inside represents the actual rule that will be repeated for
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each matched element. The small boxes inside the rule represent different kinds
of classes, depending on their borderline style. When the thickness of the border
line is regular, they represent a “normal” class. A bold border lined box repre-
sents a loop variable. A dashed lined box border represents a class that will be
created by the transformation rule. The small black circle represents the starting
point of the rule. The double rounded circle represents the end point of the rule. In
particular, the Light Background rule iterates over all Background RST relations.
Whenever a Background relation connects a nucleus tree and a satellite tree, the
rule matches. In this case, a root Panel element of the structural UI model is gen-
erated. Next the execution is handed over to the rule responsible for the nucleus
and subsequently to the rule transforming the satellite. Both rules get the panel
as a parameter, so that they can add their results to the panel.

Adjacency Pair Rule: Each adjacency pair is transformed to a Panel element
of the structural UI model containing widgets according to the related commu-
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Fig. 10. Adjacency Pair Rule

nicative acts. In our example, the first panel on the second level in Figure 4b
results from the application of the Adjacency Pair Rule to the Offer-Accept
adjacency pair.

Figure 10 illustrates the formalized Adjacency Pair Rule in MOLA. It iterates
over all Adjacency Pairs of the Discourse Model and creates a Panel element
each. It also creates an association to the parent panel which the rule gets as a
parameter. In our example, the Adjacency Pair Rule adds the created panel to
the root panel of Figure 4b.

Offer-Accept Rule: Each Offer -Accept adjacency pair is transformed either
to a Button or to a ListWidget element containing Buttons, depending on the
cardinality of the content offered. Because our example online shop can offer
more than one product category, the ListWidget element is needed to model
an undefined number of categories. Since the acceptance of an Offer requires a
user action, a Button element is embedded in the ListWidget in Figure 4b. As a
result, the subtree of the ListWidget is repeated according to the actual number
of product categories in the final UI.

Figure 11 illustrates the formalized Offer-Accept Rule in MOLA. It iterates
over all Offers that are associated with an Accept via an Adjacency Pair. The
parameter container of type panel represents the parent panel and allows the
rule to add the generated widgets to the panel. Depending on the type of the
communicative act’s content, one of two alternative rules is selected. If the con-
tent is a kind of List (consisting of more than one element) a ListWidget and
a Button are generated. In all other cases only a Button is generated in the
structural UI model.

Informing Rule: Each Informing communicative act is transformed either to a
Label element or to a ListWidget element containing a Label element, depending
on the cardinality of the content. This rule assumes that the information will be
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Fig. 11. Offer-Accept Rule

forwarded in textual form, otherwise, e.g., a PictureBox or AudioPlayer element
will be used. In the online shop example, information is conveyed for each product
category and, therefore, a ListWidget containing Labels is generated.

If a communicative act is not part of an adjacency pair, as it is the case with
the Informing in Figure 4a, a Panel element is also created as a container for
the communicative act.

More detailed information about the automatic generation that is used as a
basis for this approach can be found in [6,7].

4 Related Work

Model-based UI design methods developed and published in the nineties in-
cluding OVID [12], and Idiom [14] focus on creating different kinds of models,
like user’s conceptual models, task models and interaction models. Unlike our
approach, which is model-driven, all the mentioned approaches above are model-
based. That is, they allow expressing an interactive system by task, concept
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and/or abstract models in a first step and use them in an informal process or in
a sequence of systematic steps to construct a user interface.

In contrast, UI Frameworks like XUL5 (XML User Interface Language) are
able to generate UIs automatically but they rely on UI models at the abstract
widget level, which is on a lower level than our discourse models.

An advanced approach to specifying multi-device user interfaces based on
task models instead of discourse models is presented in [11]. Its basic approach
is to start modeling tasks and to generate user interfaces for diverse devices
according to specific device characteristics. In contrast to our approach, some
of the transformations between models are done semi-automatically or manu-
ally. A major difference between task models and our discourse models is that
task models express richer temporal dependencies whereas our discourse models
specify causal dependencies, too. The semantic mapping of task models to dialog
models based on UML State Machines is explained in [4]. A similar approach is
used to generate the UI behavior from our discourse models.

Florins et al. describe in [8] transformation rules for pagination of UIs on
different levels. Partitioning our discourse models into presentation units in the
first transformation step provides important guidance for pagination [1].

Botterweck shows in [2] a model-driven approach that starts on the abstract
UI level, but contains rich procedural UI descriptions together with UI elements.
Thus, it requires UI modeling as well as dialogue modeling.

5 Conclusion

In this paper, we present a new approach to generating structural user inter-
face models by applying model-driven transformations to discourse models. Our
discourse models are derived from results of human communication theories,
cognitive science and sociology and are used for specifying interaction design
of human-computer interaction of information systems. Thus, they contain ad-
ditional metainformation, like the intention of an interaction, which allows us
to define sophisticated pre-rendering rules to transform the discourse models to
structural UI models. Our transformation takes already device constraints into
account to generate a UI structure well suited for the target device, but the re-
sulting UI models are still independent of UI toolkits. Taking this together with
our previous work on automatically generating UIs from abstract models, this
paves the way for automatic generation of UIs from our new interaction design
models.
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6. Falb, J., Popp, R., Röck, T., Jelinek, H., Arnautovic, E., Kaindl, H.: Using com-
municative acts in interaction design specifications for automated synthesis of user
interfaces. In: Proceedings of the 21th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2006), Piscataway, NJ, USA, pp. 261–264.
IEEE Computer Society Press, Los Alamitos (2006)
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Abstract. This paper reports on the Model Size Metrics (MSM) workshop held 
as satellite event of the MODELS 2007 conference. The focus of the workshop 
is to develop metrics for use in model-centric software development. As a 
starting point for discussion we focused on size. The workshop aim was to 
bring together researchers in this area, share experiences and discuss future 
directions. This paper summarizes the presentations that were given and the 
highlights of the discussion that followed and summarizes open issues for future 
work. 

Keywords:  Models, Metrics, Size, Model-driven architecture (MDA), UML. 

1   Introduction 

A standardized method for determining sizing concepts for software models that 
allows the effective base lining and comparison of model concepts is a crucial need 
within the MODELS community. Such metrics enable the effective estimation and 
quality management of model development. Additionally measuring the model size is 
important to provide context information for empirical studies using models.  

One of the most commonly used measures of source code program size is the 
source lines of code (SLOC) metric. However, the concept of lines of code does not 
readily apply to modeling languages such as UML and SDL. Furthermore, software 
models are heterogeneous in nature (consisting of several different types of 
diagrams), can exist at varying levels of abstraction and can be created using different 
modeling styles. As a result, researchers face many challenges when trying to define 
the size of a software model. The first workshop on this topic was held in 2006 [1]. 

1.1   Presentations 

The workshop received eight submissions. From these submissions four papers were 
selected for presentation at the workshop. The workshop was attended by a mix of 
practitioners and researchers. During the workshop ample time was spent on 
discussions. The papers presented are listed below. Out of these four, two papers were 
selected for inclusion in these proceedings (papers no. 2 and no. 3). 
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1. Counts count by M. Monperrus, J. Champeau, B. Hoeltzener (ENSIETA, 
Brest, France) 

2. Measuring the Level of Abstraction and Detail of Models in the context of 
MDD by Jens von Pilgrim (FernUniversität in Hagen, Germany) 

3. On the Relation between Class Count and Modelling Effort by Ariadi 
Nugruho (Leiden University, Netherlands), Christian Lange (Technische 
Universiteit Eindhoven, Netherlands) 

4. Effort distribution in model based development by Werner Heijstek (Leiden 
University, Netherlands) and Michel Chaudron (Technische Universiteit 
Eindhoven and Leiden University, Netherlands) 

 

The first paper was presented by Monperrus. He argued that basic count metrics, such 
as ‘number of classes’, are undervalued in current research on metrics for models. He 
proposed several arguments in support of this statement:  

• Count metrics are needed for defining more complex metrics 
• More elaborate metrics do not necessarily guarantee better results 
• Count metrics are adopted in industrial practice 
• Counting is a fully fledged modeling goal 

The paper goes on to discuss what types of entities of a model should be counted and 
lists several requirements for the definition and automation of measures for counting. 

The second presentation was by Von Pilgrim who discussed his approach for 
measuring ‘level of abstraction’ and ‘level of detail’ in order to assess efficiency of 
transformation chains in model-driven development. The notion of efficiency that is 
proposed is the amount of work that is needed for updating the models if the platform 
changes. Von Pilgrim bases his approach on “General Model Theory” by Stachowiak 
[2] and works towards defining a syntactic size and a semantic size of a model. The 
ratio between these is an indicator for the level of abstraction. Even though the 
approach cannot provide absolute numbers on level of abstraction, it is possible to use 
these metrics for relative comparison of models. 

The third presentation, by Lange, explored the existence of a relation between the 
number of classes as a size measure of a model and the effort required for 
constructing a model. The data is based on two controlled experiments: in both 
experiments M.Sc.-level students are asked to design a UML model of a system given 
a description of the requirements. The first finding is that there is a large variation in 
the size of the models that is produced by different students for the same system. The 
second finding is that no significant correlation was found between the size of a 
model and the effort spent on constructing the model. This suggests that the number 
of classes is not a good predictor for the amount of effort needed for constructing a 
model. The differing number of classes may be explained by the following factors: 

• Models may be used for different purposes like understanding what needs to 
be built, or detailed description for the implementation. For such different 
purposes, designers target different levels of abstraction, completeness and 
detail. 

• Different designers have different styles in modeling: some focus on repre-
senting the required functionality, others on the architectural structure. 
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• Disproportion: Complex parts of a system are described in more detail than 
‘easy’ parts.  

• Experience: Experienced engineers create models with more classes than 
novice engineers. 

 

The fourth paper, presented by Chaudron, discussed the ratio of effort spent on 
modeling compared to the effort spent on other disciplined in RUP-based software 
development projects. Also, it studied the distribution of effort over the RUP 
disciplines over time. This presentation included graphs that were based on around 20 
RUP-based projects.  One finding that was considered surprising given the prominent 
role of UML in RUP projects was that only a small amount of time was spent on 
modeling. Another finding was that the trend in the ‘RUP Humps’ picture is quite 
realistic, but in practice effort distribution has much more spikes. 

Summarizing, the workshop raised more questions than answers. This indicates 
that this is an emerging field with opportunities for research and empirical studies.  

There will not be one universal notion of size in model-based development. The 
large variation in uses and purposes of models requires that more context information 
(such as constraints, assumptions) need to be taken into account when defining size 
measures for models. One particular factor that was identified in the discussions was 
to relate size to the level of abstraction of a model. This raises the issue of how to 
characterize the level of abstraction of a model. 

Another parameter that was considered to be of influence on the size of the model 
is the target level of quality. This may influence completeness of the model. Based on 
the experience of the workshop participants, the choice of what to model and what not 
to model is influenced by factors such as domain knowledge, complexity of 
subsystem, criticality/risk of subsystem. In general, such factors should be taken into 
account when investigating how model-size is related to other quantities such as 
requirements size and implementation size, as well as for quality and productivity 
measurement. 

2   Issues Identified for Future Work and Future Workshops 

We list some of the issues identified in the workshop as directions of collaboration 
and future work: 

• How to measure the level of abstraction of models 
• Empirical studies in general and in particular: Case studies on the use of model 

size metrics (measurement of size throughout development, size measurement in 
estimation; metrics driven process improvement) 

• One of the main difficulties in empirical studies remains obtaining access to 
industrial UML models and related data such as associated implementation, 
effort, defects. Hence collecting and sharing of UML models and case study data.  

• One suggestion to ease the sharing of data was to develop an ‘anonymization 
tool’ that transforms names of entities in a model such that the model can not be 
traced back to the organization from which it originates. However, in order to 
allow interesting analyses of a model it would be desirable that such an 
anonymization tool would maintain some properties of names of entities such as: 
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• names of patterns 
• identical subterms in the names of different entities 
• characteristical metrics properties 

It was observed that no UML models have been found in the open source 
community. 

2.1   Future Workshops 

The workshop ended with a discussion on the future of MSM. There was consensus 
that the scope of the workshop should be broadened, such that it would also include 
some context that would give a purpose for interpreting metrics, such as: Economics 
of Modeling, Estimation and Measurement.  
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Abstract. The knowledge of size of models can be very useful to per-
form many kinds of estimations such as effort, cost, and productivity in
software development. However, to the best of our knowledge there is no
universally accepted model size measure available to date. In this paper
we investigate the usefulness of class-count as a size measure of mod-
els (represented with the UML). Using empirical data collected from two
student experiments we validate this measure by assessing its correlation
with effort spent in modeling. The results show that merely using class-
count might not provide sufficient and accurate estimation of modeling
effort. Furthermore, we identify some factors that hinder class-count as
a good estimate of modeling effort.

Keywords: UML, Model Size, Modeling Effort, Experiment.

1 Introduction

The size of a system has long been considered as an important attribute for
measurement practice in software engineering. The most popular size measure
of a system might be the SLOC (Source Lines of Code) that is still used in many
measurement activities nowadays. By knowing the size of a system software
engineers or project managers can calculate many other attributes related to
the system or project such as productivity. As an example, a programmer’s
productivity can be measured from the number of lines of code he writes per day.
However, the SLOC measure has been criticized as a measure of productivity,
because it encourages a verbose style of programming. Another interesting use
of size measure is its application to determine modules’ or components’ error
proneness. For instance, some believed that there is an optimal size of a system’s
modules or components – the ‘Goldilocks Conjecture’. It is believed that when
a module’s or a component’s size is below or above the optimal size it will
be more prone to error [1]. Although many computer scientists object to this
hypothesis, yet this shows how size measure is very easy to use – and misused –
in measurement practices.
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With the emergence of model-driven software development, measurements are
no longer solely applied to source code. As a model of a system is generally ex-
pected to be realized in the actual system, measuring the models of a system
might give important information about some attributes of the actual system.
This non-conventional measurement approach has the advantage of better pre-
diction, prevention, and control over the quality of the system since the early
stages of software development.

In the UML, class diagrams are used to depict the static structure of a system.
In describing the dynamic behaviors of the system, each class will be represented
by one or more instantiations that interact with instantiations of other classes
in sequence diagrams or collaboration diagrams. The main motivation of using
class-count as an estimate of modeling effort lies in the assumption that there
is a relation between the way the structure and the behaviour of a system are
modelled. Hence, we presume that this will subsequently influence the effort
required in the modeling activity.

Additionally, the choice of using class-count as a measure was also due to
the frequent usage of class diagrams in practice. A recent survey reported in
[2] revealed that class diagram, use case diagram, and sequence diagram were
ranked as the three mostly used UML diagram types. Having these factors in
mind, in this paper we explore the usefulness of class-count as an estimate of
modeling effort. In a controlled experiment with students we investigated the
relation between class-count and the effort spent in modeling.

This paper is organized as follows. In Section 2 we provide some related work
in this research area. Section 3 describes the experiments and how they were
conducted. In Section 4 we discuss the results of the experiments and finally
conclusions and future work are provided in Section 5.

2 Related Work

Effort estimation is an important activity in software development projects. The
ability to estimate the effort required in developing a system will help project
managers to plan, monitor, and assess the productivity of a software development
process. However, effort estimation is no simple task. When it comes to accurate
effort estimations, experience shows that even an average of 32% estimation
error rate can be considered outstanding [3]. Furthermore, the use of Function
Points in [3] to solve estimation problems in fact resulted in an average of 100%
estimation error rate.

Most methods of effort estimation require an estimate of the size of software
systems [4], which imply that accurately estimating the size of a system is ex-
tremely important. In this respect, many studies have been done to develop size
estimates of software. Many of the previous studies on software size estimation
were mainly based on the notion of Function Points (FPs) [5]. In [4] and [6]
the size estimation of object-oriented systems was performed by mapping some
object-oriented concepts into function point concepts. From this mapping an es-
timation of the system size is then calculated. Other similar approaches can be
seen in [7] and [8].
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More recent work on system size estimation can be found in [9]. An approach
called Class Point approach was proposed to estimate system-level size. The
Class Point approach combines OO measures, which take into account specific
aspects of each class such as complexity.

This work is different from the above-mentioned studies in that we focus on
size estimate of software models (as represented with UML). Furthermore, we
limit our attention to class-count in UML models and investigate its relation
with the effort spent in modeling. In this paper we also underline some im-
portant issues with respect to the use of class-count as a basis of model size
measurements.

3 Empirical Data

The empirical data used in this paper originates from student experiments con-
ducted at the TU/e (Technische Universiteit Eindhoven). The recent experiment,
hereafter referred to as Experiment A, involved 12 post-master students who
have sufficient knowledge and experience in system specification and design. Of
the 12 participants, seven participants had one or two UML courses in the past
and five participants hold UML certifications. Nevertheless, only two students
have industrial experience with UML. Although the participants seem to have
moderate industrial experience with UML, their knowledge and current educa-
tion/training focus have made them eligible for participating in the experiment.

In Experiment A we asked the participants to develop a UML model of a Car
Navigation System based on a written requirement specification. This require-
ment specification was high level and was given on one page of A4 (the materials
can be found in [10]). Given this requirement specification, each participant was
given four hours to create a UML model of the system using Rational Rose Re-
alTime 7. Hence, the delivered models are based on the same set of requirements
and the same amount of effort was spent during their creation. We are interested
to find out whether the size in terms of class-count is similar for these models,
given that the we controlled the aforementioned context factors. The results and
the analysis are discussed in Section 4.

In addition to the main findings obtained from Experiment A, we also provide
supporting findings from a student experiment discussed in [11] – hereafter re-
ferred to as Experiment B. The experiment was quite similar in that it also asked
35 teams of three master students (in total 106 students participated) to develop
UML models based on certain requirements. Experiment B was originally con-
ducted to investigate the influence of modeling conventions on (syntactic) model
quality and modeling effort. To this aim three treatments were applied in creating
the UML models, namely: no modeling conventions, with modeling conventions,
and tool-supported modeling conventions. In this experiment we use the deliv-
ered models for analyzing the relationship between modeling effort and size. The
experiment materials are available in [12].
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4 Is There a Correlation between Class-Count and
Modeling Effort?

In this section we discuss whether there is a correlation between class-count
and the effort spent in modeling. However, we must note a few points with
regard to the resulting classes in Experiment A and B. First, we found that
the resulting classes are in a high level of abstraction. The classes represent
key abstractions of the system and they are technology-independent — as such
we found no framework classes being modeled. Second, the level of abstraction
used also implies that the models are non-executable. We should keep these as
a context in understanding the findings discussed in the rest of this paper.

4.1 Class-Count Varies Across Models

The result from Experiment A, as shown in Figure 1, shows that in the given
time limit (4 hours) the participants delivered models with a varying size. The
class-count varied from 7 up to 23. We can also see that most of the models
created have between 11 and 16 classes. There were two participants that created
seven classes and only one participant that created 23 classes. The median of
the class-count is 13.

The variability of the class-count reveals that although the same requirements,
time, and tool were provided to the participants, the resulting models were quite
varied in size. One explanation behind this result might be that there are other
confounding factors that influence class-count – thus requirement, time, and tool
support may only explain the variability of class-count to some degree. In the
next section we explore whether there is a correlation between class-count and
modeling effort.

Fig. 1. Frequency distribution of class-count across models
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4.2 No Significant Correlation Is Found

To clarify the result discussed previously, we perform a correlation analysis be-
tween class-count and the effort spent in modeling from the data set of Experi-
ment B. However, since in the experiment there were treatments applied to three
groups of the participants, we first had to make sure that the treatments had
no effects on the variables we want to assess – that is, class-count and the time
spent on modeling. To this aim we performed independent t-tests for the two
variables amongst the three different groups. The result confirmed that one of
the treatments, i.e., tool-supported modeling conventions, had significant effects
on the time spent on modeling. Thus we must exclude the teams that received
this treatment before continuing with the correlation analysis. Additionally, we
omitted two influential outliers from the data, which might affect the results of
the analysis.

Fig. 2. Scatter plot showing the relation between class-count and effort in modeling

The scatter plot in Figure 2 shows the correlation between class-count and
the time spent in modeling (in person hours). It shows that the data points
are relatively dispersed, which might indicate the absence of significant trend
between both variables.

Since the assumption of normality in the data is rejected, we performed Spear-
man correlation analysis between class-count and modeling effort. The result of
the analysis is shown in Table 1.

The spearman’s correlation coefficient in Table 1 shows that there’s no sig-
nificant correlation between Class-count and the effort spent in modeling. As
suggested in [13], with 22 participants a significant correlation at p < 0.05 is
obtained when the correlation coefficient equals to 0.422.

The correlation analysis has revealed that there is no significant correlation
between class-count in a model and the effort spent in creating the model. To
get the explanations of this phenomenon, we performed deeper analysis on the
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Table 1. Spearman correlation coefficient between class-count and the effort spent in
modeling

Effort(hours)

Class-count .302
Significance (2-tailed) .171

UML models (especially the class diagrams). The result of the analysis has led
us to believe that the main explanation of the absence of significant correlation
between class-count and modeling effort is because class-count is not an accurate
measure of model size. In particular this is due to the fact that many factors
can influence class-count in a model. In the following section we discuss those
factors further.

5 Why Class-Count Is Not a Good Estimate of Modeling
Effort?

The main finding discussed in the previous section has shown that there is no
significant correlation between the number of classes in a model and the effort
spent in modeling. In this section we discuss the phenomenon based on deeper
analysis of the data from Experiment A.

5.1 Designer’s Approaches in Modeling

Deeper analysis of the class diagrams reveals that the participants’ approaches
in modeling might have strong influence on the resulting class diagrams. By
analyzing the number of classes, attributes, and methods we can categorize the
models into three categories, namely: 1) functionality-driven; 2) architecture-
driven; and 3) a combination of both. The characteristics of these categories are
described as follows.

– The participants with the functionality-driven approach tend to focus on the
required functionality in creating classes. This type of participants generally
creates only a few classes, but with complete role and functionality assigned
to the classes (i.e., in terms of class attributes and methods). As a result, the
classes are low in number, but have many attributes and methods defined.

– The participants with the architecture-driven approach tend to focus on ar-
chitectural considerations in developing classes. The structure of the classes
is given high importance to gain some benefits such as reusability and main-
tainability. Participants with this type of interest generally do not specify all
class functionality explicitly. Thus, the number of class attributes and class
operations created are relatively low.

– The participants that have both concerns in mind tend to focus on both
functionality and architectural aspects of the classes. As a result, the number
of classes, class attributes, and class operations are generally high.
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Fig. 3. Scatter plot showing the relation of class-count with method-count and
attribute-count

The above points show that designers may have different approaches in mod-
eling classes. In this respect, we have witnessed that different approaches tend
to result in different number of classes, attributes, and methods in the models.

The scatter plot in Figure 3 visualizes the relation of class-count with method-
count and attribute-count of UML models in Experiment A. The diamonds and
squares represent attribute-count and method-count, respectively. The upper
regression line fits the method-count data points while the regression line un-
derneath fits the attribute-count. We can see that the results, although not
statistically significant (with these data points, class-count only contributes six
percent and five percent to the variability of method-count and attribute-count
respectively) support the trend we have discussed previously. Nevertheless, this
is an indication that class-count in models may vary depending on the designer’s
approach in modeling.

5.2 The Level of Abstraction Used in Modeling

The level of abstraction in modeling is generally related to the distance of the
created models from the actual implementation. Models with a high level of
abstraction only specify a system in a ballpark view. In this level of abstrac-
tion many details are omitted because they might not be relevant to the main
concerns in the current level of abstraction. On the other hand, models with a
low level of abstraction have a very close similarity to the intended implemen-
tation. As a consequence model with low level of abstraction are generally large
and very detailed. Nevertheless, depending on the situation designers can apply
more than one level of abstraction in their models.

The notion of level of abstraction in modeling as discussed above adds to the
difficulty in using class-count as a size measure. As we have mentioned above,
designers can use different levels of abstraction in modeling the same system –
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not to mention the fact that they can also switch from one level of abstraction to
another. This has become the main hurdle of using class-count as a measure of
size because we simply cannot compare attributes of models that have different
levels of abstraction. Models with higher levels of abstraction have fewer classes
than those with lower levels of abstraction.

From the class diagrams created in Experiment A we did not see the use
of different levels of abstraction. Most of the diagrams can be categorized as
analysis models – they address only the key elements of the system. Nevertheless,
although the same level of abstraction was used in the modeling, the level of
detail used may be different – the next section discusses this notion of level of
detail in modeling.

5.3 The Practice of Proportion in Modeling

We define proportion in modeling as the use of details in models that is pro-
portional to certain aspects of a system such as complexity or importance of
components. When designers model a system regardless of this consideration
they generally tend to model all parts of a system at an equal level of detail
– hence being disproportionate in modeling. However, practices in the industry
reveal that this has seldom been the case [14]. Figure 4 shows how the drive of
being simplistic, the drive of being comprehensive, and time constraint influence
designer’s decisions in modeling.

We have learnt from a case study conducted in the industry that designers
generally try to develop models as simple as possible [15]. In order to keep the
model simple, designers must make decisions concerning which parts of the sys-
tem need to be modeled or which parts of the system need greater details. When
simplicity is opted, designers will generally focus on modeling system components
that are important or complex. For these types of components more detail might
be applicable. However, the readers of the models (e.g., programmer, client, etc.)
might request more comprehensive models. Thus, in the end designers must take
into account all these factors so that models with appropriate level of detail can
be delivered.

Fig. 4. The factors behind proportion in modeling
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It must be clear at this point that the notion of proportion in modeling also
hinders the validity of class-count as a measure of model size. The main argument
is that class-count does not take into account the properties of each class such as
attributes and operations, which reflect the level of detail used in modeling the
classes. Hence, although two models with 100 classes are identical in terms of
class-count, they might require different effort in the modeling process because
they have different levels of detail. The data presented in Figure 5 illustrates
the situation. We took a sample of 12 class diagrams created in Experiment B,
which have class-count ranging from 30 to 38. Although the class-counts are quite
similar, the class attributes and methods can be quite varied in number. This
phenomenon can also be observed from the result of Experiment A as presented
in Figure 3. However, please also note that here we do not see the trend as
discussed previously in Section 5.1, which might due to the fact that there was
no time-limit applied in Experiment B.

Fig. 5. Method-count and attribute-count amongst models with similar class-count

5.4 Designer’s Knowledge and Experience

We investigated whether the participant’s expertise affects class-count in the
models. To this aim we perform another correlation analysis between the partic-
ipants’ knowledge background and experiences. We use the data obtained from
the participant characterization questionnaire in Experiment A. In the ques-
tionnaire we asked a couple of multiple-answer questions related to participants’
knowledge and experience in the following areas:

– Object oriented design
– Object-oriented programming
– UML
– Different UML diagram types (i.e., use case, class, and sequence diagram)
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Fig. 6. Scatter plot showing the relation between participant’s background scores and
class-count

For each question, a higher point indicates higher knowledge/experience in
a particular area. Figure 6 shows the scatter plot of the relation between the
participants’ total score and class-count in the models. Please note that there
are only 11, instead of 12, data points shown in the scatter plot. This is simply
because there are two identical data points.

Further analysis with spearman’s correlation analysis reveals the correlation
as shown in Table 2. Please note that we also use spearman’s correlation analysis
because the assumption of normality of the data is rejected.

The result in Table 2 shows that there is a positive correlation between the
participant’s knowledge/experience score and class-count in the models. This
correlation might indicate that the participants with higher scores of knowl-
edge/experience in the aforementioned areas tend to create more classes than
those with lower scores. This result actually raises another interesting question:
why do the participants with better knowledge/experience tend to produce more
classes? Is it because the knowledge and experience make them more produc-
tive? Or is it because the knowledge and experience make them aware of some
‘best practices’ in modeling, which result in better structured class diagrams (of-
ten also means more classes)? Answering these questions would require further
analysis of the UML models and is beyond the scope of this paper.

Table 2. Spearman correlation coefficient between participant’s knowledge/experience
and class-count

Participant background score

Class-count .580*
Significance .048

* indicates correlation significant at 0.05 level (2-tailed)
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Please also note that the productivity of an individual participant can be
influenced by many factors including knowledge and experience in modeling.
In this respect, we assumed that the influence of other factors might not be
significant, hence we did not take further measures to control other factors that
might have influence on individual productivity in modeling.

6 Conclusions and Future Directions

In this paper we investigated the relation between the number of classes (class-
count) in models and the effort (time) spent in modeling. The analysis of em-
pirical data leads to the conclusion that there is no significant relation between
class-count in models and the effort spent in modeling. We conclude that the
main reason behind this is because class-count is not a good measure of model
size, which is mainly due to the fact that different factors have influence on
class-count in a model. In this respect we identified the following influential
factors:

– Designers’ approaches in modeling
– The level of abstraction used in modeling
– The practice of proportion in modeling
– Designer’s knowledge and experience

Additionally, from an analysis of the class diagrams we found an interesting
observation with respect to designers’ approaches in modeling. We identified
the following approaches: 1) Architecture-driven; 2) Functionality-driven; 3) An
approach that put emphasis on both architectural and functional aspects. These
approaches seemed to have influence not only on class-count in the models, but
also on the number of class attributes and methods.

Based on the exploratory observations of this study, we propose directions for
future work to provide a better understanding of measuring model size. Future
work should address the relation between the structural view and other views.
Additionally, the factors that potentially influence the model size that were
identified in this paper should be addressed in more specific studies.
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Abstract. In model driven development (MDD),models are transformed
automatically into other models. This leads to transformation chains. The
goal of MDD is to set up efficient transformation chains, i.e. adding seman-
tics first and platform detail later. When the platform is changed, only the
later, platform specific models have to be replaced. This paper constructs
metrics for measuring and comparing the models obtained through trans-
formations in MDD processes, in order to help to set up the more efficient
transformation chains.

1 Introduction

In model driven development (MDD), models are transformed automatically into
other models and code. This leads to transformation chains, in which the models
are connected via transformations. Usually, abstract (and platform independent)
models are used to define the system’s semantics. These abstract models are then
transformed automatically to more concrete (and platform specific) models, in
which platform detail is added as required. Finally, code is generated from these
concrete models. If the platform is changed, only platform specific models have
to be redefined while the first, more abstract models can be reused. This leads
to a higher productivity compared to manual coding if the transformation chain
is configured well. That is, we have to ensure that semantics is added first and
platform detail later.

As suggested by the Goal Question Metrics approach (GQM, [1]), we define
a goal.

Goal: Set up or improve an efficient transformation chain. Here “efficient” means
that semantics is defined in early, abstract models, while platform detail is added
later in more concrete, platform specific models.

Figure 1 illustrates this goal. The figure is taken from [4] and slightly modified.
The whole issue is also discussed in [6] which also contains a very similar figure
[6, p. 32]. The arrows labeled “manually” and “automatically” are introduced
in section 3. 1

1 Unlike the figures in [4,6] the y axis is reversed in order to visualize the raised level
of abstraction.

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 105–114, 2008.
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Fig. 1. Transformation chains, adapted from [4]

The figure shows two transformation chains (A and B). The x axis indicates
the platform detail (in [4], the term “metamodel” is used), the y axis the ab-
straction. That is, abstract and platform independent models are located top
left, while concrete and platform specific models are located bottom right. If
the platform is changed (indicated with the vertical line at x, i.e. models at the
right side of this line have to be ported to a new platform), we can observe that
transformation chain A is more efficient than chain B, since in case of chain A
only a very small amount of semantics has to be added (a), while in case of
chain B much more semantics has to be added again (b). The goal is to define
transformation chains such as A. We can now pose some questions in order to
refine the goal. This paper tries to develop metrics for answering the following
questions.

Questions
Is a model M1 more abstract than model M2? Does model M1 contain more
platform details than model M2? Do we define most of the semantics in early
models? Where do we define most of the platform detail?

This paper is organized as follows. In the next section, we will introduce
different definitions of model. We then develop metrics in order to answer our
questions in section 3. Section 4 proposes an additional transformation before
actually measuring a model, which is implicitly used in section 5 which presents
a sample to illustrate the calculation of the proposed metrics. Section 6 describes
related work, followed by the conclusion and directions for future work in the
last section.

2 Model Definitions

What is a model? Models can be defined as mathematical structures. Since
this definition is too general to work with, models are defined here as graphs
G = (V, E) with vertices V and edges E or labeled graphs G = (V, E, l) with
labels l. In MDD, these graphs have to be valid according to a meta model, that is
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the elements of the graph are associated to elements of the meta model. A formal
definition of models as graphs according to meta models can be found in [2].

In his “General Model Theory”[8] Stachowiak defines models using three
features:

Mapping feature: A model is always a model of some original, in which the
original can be a model itself.

Reduction feature: A model does not reflect all attributes of the original.
Pragmatic feature: Models are assigned to an original by some subject
(human or machine).

While defining a model as a graph specifies the syntax of the model, Sta-
chowiak’s features define the semantics. We combine both definitions by intro-
ducing an interpretation working on “attributes”. We use the term “attribute”
here in a very abstract way, they are defined as pure semantics here. But, se-
mantics cannot be expressed without symbols. So we use the interpretation to
express attributes by elements of the graph.

Definition 1. Attributes and Graphs of a Model
An interpretation I : V ∪ E → A of a model is a mapping of vertices V and
edges E to attributes A, such that for all attributes α ∈ A

Vα ∪ Eα → α,

(Vα ∪ Eα)\{x} →/ α ∀x ∈ Vα ∪ Eα

in which Vα ⊆ V, Eα ⊆ E.
In the following, for a model Mk we write Ak to refer to its attributes.

Definition 1 maps minimal subsets of nodes and vertices to attributes, that is
no element of Vα ∪ Eα must be removed.

The “original” in Stachowiak’s first feature can be a model itself. In a trans-
formation chain, this feature is transitive, i.e. if M1 is a model of M2, and M2
is a model of M3, then M1 is also a model of M3. Eventually all models of a
transformation chain are models of the system under construction. How does
a subject assign a model to an original – in MDD this is done by automatic
transformations. Stachowiak introduces a function called “icostructural image”.
This function maps subsets of the orignal attributes to subsets of the model
attributes.2

3 Metrics

For answering our questions, we are interested in abstraction and (platform)
detail. The first metric we define here is the semantic size of a model. We define
2 Since we defined attributes differently to Stachowiak, here this assignment is a func-

tion mapping graph elements to attributes; still a subject has to interpret a model,
that is define subsets of the graph elements representing an attribute.
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this metric simply as the cardinality of the attribute set. While the graph reflects
certain properties defined by the metamodel, attributes were defined as “pure”
semantics. For example an UML association between two classes requires the two
classes, the association, and – this is usually not visible in diagrams – several
properties “gluing” these parts together. This “structural glue” is not present in
the attribute set. We will use this first metric as an indicator for the abstraction
level of a model.

Definition 2. [Semantic Size of a Model] The semantic size of a model M is
defined here as the number of its attributes A, i.e.

sem(M) = |A|

For sem(M1) we also write sem1 or |A1|.

The second metric defined is simply the size of the graph. Since the graph con-
tains the “structural glue”, we not only count the semantics when counting the
nodes and edges of a graph, but the (platform) detail, too. We use this second
metric for measuring the platform detail of a model.

Definition 3. [Size of a Model] The size of a model M is defined here as the
sum of the vertices of the model graph, its edges and the graph itself. That is

size(M) = |V | + |E| + 1

in which V and E are the vertices and edges of the graph of the model. For
size(M1) we also write size1.

We add 1 to the number of vertices and edges in order to count the graph itself.
Besides, we use this formula later as a denominator in a fraction and this way
we avoid division by zero problems.

In a first approach we state that a model M1 is more abstract than a model
M2, if it omits more attributes, i.e. if it defines less attributes. We can also say
that a model M1 contains less platform detail than a model M2, if it contains less
“structural glue”, i.e. if less graph elements represent the attributes expressed
by the model. It is almost impossible to actually define the attributes, at least it
requires additional effort. In order to develop a metric, we need to use the data
present in the models and the transformation chain.

So we have a closer look at transformations. A model transformation trans-
forms a model M1 into a model M2. We expect a transformation to preserve
semantics. In [10], Steimann proposes the following consideration: An automatic
transformation preserves semantics or it adds semantics.3 If it adds semantics,
it must do this randomly, since otherwise adding new semantics would be based
on information found in the model which leads to preserving semantics. Usually
we do not want a transformation to add semantics randomly, thus we assume
here that a transformation preserves semantics. According to figure 1 this means
3 The case of reducing semantics should not be considered here.
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that a transformation can “move” a model only horizontal; semantics can only
be added manually. This is indicated by the two arrows in figure 1.

As a matter of fact, a completely different point of view can be taken, too. We
can also state that it is the transformation which adds semantics, and a model
itself does not contain any semantics (this position can be found for example in
[9]). If we take this position, which is of course reasonable, we can only measure
syntactical properties of a model without a transformation.

How can we solve this issue? The answer is already given here by definition 1.
An “interpretation” is a special kind of transformation, and it is used here as
an transformation mapping syntactical elements to semantics. Then, a transfor-
mation in a transformation chain cannot add semantics. Figure 2 illustrates this
process using a commutative diagram. It shows a transformation chain (with
models M1 to Mn) and their interpretations.

M1
t1−−−−→ M2

t2−−−−→ . . .
tn−1−−−−→ Mn

interpretation

�
�
�

�
�
�

�
�
�

A1 −−−−→ A2 −−−−→ . . . −−−−→ An

Fig. 2. Transformation and Interpretation

It is important to note that “attributes” and the attribute sets A cannot be
defined explicitly. They are used here as a theoretical construct for distinguishing
between platform and the semantics.

We now use a simple transformation chain for the following considerations.
To distinguish between automatic transformations and manual editing, we write
“→” for transformation and “�” for manual enrichment. Let a model M1 be
automatically transformed into a model M2. According to the first model de-
finition, the models are graphs, i.e. G1 = (V1, E1) and G2 = (V2, E2). But
these models also represents attribute sets A1 and A2. If model M1 is auto-
matically transformed to model M2, no additional attributes could have been
added by the transformation. If the transformation preserves semantics (what
we assume here), after the transformation A1 = A2 must be true. During
the development process, model M2 is enriched manually, i.e. M2 � M ′

2 with
A′

2 = A2 ∪ Aman = A1 ∪ Aman (Aman are the attributes added manually). In a
transformation chain, both models are expected to be models of the same sys-
tem (or original). But M1 is also a model of M2. That is, the manually added
attributes Aman are omitted in M1.

The following table summarizes the transformation chain and the terms de-
fined above:

M1 → M2 � M ′
2

A1 A1 = A2 Aman A′
2 = A1 ∪ Aman

sem1 = |A1| sem2 = sem1 semman sem′
2 = sem1 + semman

size1 size2 |Vman| + |Eman| size′2 = size2 + |Vman| + |Eman|
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Because of definition 1 we know that the elements of the graph and the at-
tributes are somehow related. Even if we cannot define the interpretation map-
pings exactly, we can calculate how many elements of the graph are average
needed to represent a single attribute, or vice versa, how much semantics is
stored in a single graph element. We call this the “ratio of abstraction and de-
tail”:

Definition 4. [Ratio of Abstraction and Detail] The ratio of abstraction and
detail of a model M is defined here as the semantic size of a model divided by
its size. That is

rad(M) =
sem(M)
size(m)

=
|A|

|V | + |E| + 1

While we can measure the size of the models (as defined above), we cannot
measure the semantic size nor the platform detail. In a transformation chain
M1 → M2 � M ′

2 → . . . � M ′
n, M1 was not generated by a transformation.

We assume that a special domain specific language was used to create that
model, and thus we minimize the necessary glue elements. We simply assume
|A1| = |V1| + |E1|, i.e.

sem1 = |A1| = size1 − 1 (1)

We further assume that the ratio of abstraction and detail of a model is
constant during manual enrichment. That is, the language used to formulate a
model (i.e. its metamodel), determinates this ratio, and since we do not change
the metamodel, the ratio is expected to stay constant. Thus we can say

rad(M2) = rad(M ′
2) ⇒ |A1|

size2
=

|A′
2|

size′2
(2)

That is, we can calculate the semantic size of M2, i.e. the number of its
attributes, by solving (2) for |A′

2|:

sem′
2 = |A′

2| =
|A1|size′2

size2
(3)

We can apply equation 3 for all manually edited models M ′
i , i > 1 in our

transformation chain. All automatically created models Mi, i > 1 are expected
to have the same semantics as their source models. Thus, we can approximate
the semantic size of all models in the transformation chain.

4 Measuring as a Transformation Chain

In the example in section 5, we will count the vertices and edges as illustrated in
the diagrams. That is, when we count the vertices of a class diagram, we simply
count the number of drawn rectangles. Of course, class models are much more
complicated according to the UML meta model. While we use this simplification
here for keeping the example simple, the “simplification” itself can be used for
real models, too.
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Model
normalize−−−−−−−→
obfuscate

Model Graph
measure−−−−−→ Metric
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�
�instance of

Meta Model Simple Graph IR

Fig. 3. Measuring as transformation chain

In terms of MDD, “measuring” can interpreted as a transformation chain.
Figure 3 illustrates a sample transformation chain for measuring a model.

The transformation chain is drawn from left to right: First, a model is trans-
formed into a graph here. This is the simplification step, which is in general
optional, of course. Then the model, here the simplified graph of the model, is
measured. The result is a metric which is usually a number, often normalized to
the interval [0 . . . 1], that is the ”meta model” of the metric is IR.

The first transformation introduced here can be used for two purposes. Firstly
it can be used for simplifying and normalizing a model as it is implicitly done
in the next section. Secondly it can be used for obfuscating a model but still
perform metrics on it.

5 Example

We will demonstrate the metrics developed above using a well-known transfor-
mation chain. In [3,7] use case models are transformed to class models during
the analysis. The resulting class models are also known as robustness diagrams,
using the stereotypes boundary, control, and entity. We use a similar approach
in the example here.

Figure 4 shows two transformation chains C1 : M1 → M2 → M3 and C2 :
M1 → M∗

2 → M3. The light elements (of the models M2, M∗
2 , and M3) were

created automatically by transformations, the bold elements (of the models M ′
2,

M∗
2
′, and M ′

3) indicate manually added elements. If we distinguish between trans-
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Fig. 4. Transforming use cases models to class models
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formed (symbol →) and edited (�) models, we can write the model chains as
follows: C1 : M1 → M2 � M ′

2 → M3 � M ′
3 and C2 : M1 → M∗

2 � M∗
2
′ →

M3 � M ′
3.

Both chains start with model M1, a very simple use case model with one actor
and two use cases. In the first chain, a boundary-control pair is created for each
actor and use case (M2). In the second chain, a single class is created for each ac-
tor and use case (M∗

2 ). Finally, M3 is created, that is some GUI components are
created and each component is managed by a controller. While the user has to
define all elements in M1, in M2 and M∗

2 only the entity classes are to be attached
to the appropriate classes. In M3 some policy classes are added to the controllers.

We now evaluate which transformation chain is more efficient according to
our goal stated in the introduction. We do this by measuring sem and size of
each model. We start with transformation chain C1. The following table lists the
steps we take in order to measure this chain:

Model Description Result
M1 count 3 vertices and 2 edges (def. 3) size1 = 6
M1 calculate semantic size (eq. 1) sem1 = 5
M2 count 6 vertices and 7 edges (def. 3) size2 = 14
M2 M2 is automatically transformed from M1 sem2 = 5
M ′

2 count 8 vertices and 11 edges (def. 3) size′2 = 20
M ′

2 calculate semantic size (eq. 3) sem′
2 = 5 ∗ 20/14 = 7.14

... ... ...

All other models in this chain and chain C2 are measured this way. Figure 5
shows the result of this measurement, the y-Axis is reversed for visualizing the
level of abstraction.

The dark lines connect the manually enriched models M1 − M ′
2 − M ′

3 and
M1 −M∗

2
′−M ′

3, the light lines the complete transformation chain. We can easily
see that the second transformation chain C2 (dotted line) is more efficient than

M1

M2' M3

M2

M3

M3'

M2'*

M2*

(platform) detail   size

abstraction  – (semantic size)

Fig. 5. Visualized and measured sample transformation chains
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C1 (solid line). So, according to our goal, we might choose C2 when setting up
the development process.

6 Related Work

In [5] Lange proposed several dimensions for measuring the size of a model. Both
metrics defined here can be identified as absolute sizes. The ratio between these
two sizes is a relative size because we can interpret the attributes of a model
as a new model, thus the ratio is a ratio of two absolut sizes. It would be an
interesting approach to replace the size metric used here with a more functional
one, such as function or object points as suggested by Lange.

Stachowiak also develops certain metrics in [8] based on “abundant” and
“preteriated” attributes and other terms developed in his general modeling the-
ory. Abundant attributes are attributes of the model but not of the original,
preteriated attributes are attributes of the original but not of the model. While
Stachowiak’s features of a model are often found in computer science literature,
his whole (and formalized) model theory is mostly ignored.

7 Conclusion and Future Work

In this paper we presented two metrics to measure the size and semantic size of a
model. These metrics answer questions about the abstraction level and platform
detail of models in order to solve the goal of setting up efficient transformation
chains. The measurement shows that even if it is not possible to explicitly count
or retrieve the semantic content of a model, it is still possible to compare several
models. The metrics were demonstrated using a simple example and we were actu-
ally able to measure and visualize a MDD process and compare different processes.

We still have to evaluate our metrics in greater projects with more transforma-
tions. In “longer” transformation chains comparing two chains might not be as
easy as in the simple example used here and we have to develop further efficiency
criteria, e.g. by measuring the area below the transformation chain graphs4. We
are also developing a tool and a meta model to implement the first transforma-
tion as described in section 4. We try to use a parametrized transformation for
mapping a model to a weighted graph which then can be used for measuring.
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Abstract. The objective of the MOTHIS workshop was to discuss
model-based methods for the design of Health Information Systems (HIS)
offering a revolutionary new way for the interaction between medical
patients and Health Care Providers. Although healthcare, like other
information-intensive industries, has developed and deployed standards-
based, secure information infrastructures it is still dependent upon paper
records and fragmented, error-prone approaches to service delivery. The
primary concern is that security and privacy need to be organically inte-
grated into HIS architectures. The workshop brought together computer
scientists, medical experts, and legal policy experts to discuss research
results in the development and application of model-based methods for
representing, analyzing and integrating, architectures, privacy and se-
curity policies, computer security mechanisms, web authentication, and
human factors engineering.

1 Introduction

The first International Workshop on the Model-Based Design of Trustworthy
Health Information Systems (MOTHIS) was held in conjunction with the 10th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MoDELS’07) in Nashville, Tennessee on September 30th, 2007.
The objective of MOTHIS was to discuss model-based methods for the design of
Health Information Systems (HIS) offering a revolutionary new way for the inter-
action between medical patients and health care providers. Many information-
intensive industries have developed and deployed standards-based, secure IT
infrastructures. In contrast, the healthcare industry remains, for the most part,
dependent on paper records and fragmented, error-prone approaches to service
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delivery. One of the main concerns is that security and privacy need to be organ-
ically integrated into HIS architectures. In the United States, there are various
state and federal laws governing the protection of health information. In par-
ticular, the Privacy and Security Rules of the Health Insurance Portability and
Accountability Act (HIPAA) sets a national baseline that requires all health care
organizations to implement protections at physical, technical, and administra-
tive levels to monitor and document access to identifiable health information.
HIPAA also provides patients the right to access their medical records, request
corrections to those records, and request a log of disclosures of their personal
health information. The optimal design of HIS that protects patient confiden-
tiality and respect the rights of health care providers is an unresolved challenge.
The protection of patient rights and health information is a global problem and,
thus, similar privacy and security regulations have been adopted in various coun-
tries around the world. MOTHIS intended to foster innovation and international
cooperation to attack these challenge.

Approximately thirty people attended MOTHIS from industry and academia.
In addition to two regular sessions, a keynote address and an industry session
comprised the program. For the detailed program and the online proceedings,
visit http://mothis.isis.vanderbilt.edu.

2 Workshop Summary

Professor Daniel Masys, the Chair of the Department of Biomedical Informatics
at the Vanderbilt University Medical Center delivered the keynote address, in
which he presented his vision for informatics of 21st century health care. He
identified key elements of a future scenario, including: 1) enabling patients to
contribute to their online health records; 2) providing patients with access to
large volumes of health-related information online, which is tailored to their
health status; 3) facilitating health care providers to act as coaches and con-
sultants to their patients; 4) personalizing medical diagnoses and treatments to
a patient’s genomic and metabolic variations; and 5) deploying agile evidence-
based care with automated, patient-specific alerts. The enabling technologies re-
quired to implement this vision are only partially available at the present time.
While ubiquitous (mostly wireless) telecommunications are widely accessible,
other components are lagging. These include web portals as secure bi-directional
conduits for communication and documentation of care, clinical decision support
systems via automated event monitors, and reliable voice recognition.

The industry session was comprised of two talks. First, Tyrone Grandison
and John Davis from the IBM Almaden Research Center presented their work
on the impact of industry constraints on model-driven data disclosure controls.
They argued that healthcare data disclosure models have been created with
the goal of meeting specific standard properties or principles, such as confiden-
tiality, integrity, availability, limited disclosure, limited retention, and limited
use. However, it is often the case that these models need to be augmented with
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domain-specific factors at design time. They proposed a set of constraints that
could be considered when designing security and privacy models.

In the second industry talk, Peter Miller, the director of the Vanderbilt
HealthTech Laboratory presented a novel approach to help manage clinical work-
flows. He described a tool to derive customized and individualized clinical patient
care plans from evidence-based clinical guidelines/protocols. He demonstrated
how they designed a model-based approach that could be easily retargeted by
building on a powerful existing technology base. The tool will allow clinicians
both to create and customize a plan and to monitor the execution of the plan. The
model-based approach permits the use of simulation to test that complex pro-
tocols are correctly formulated and do not contain clinically undesirable paths.

The regular workshop papers covered a wide range of topics. Alam et al.
presented work on modeling and enforcing advanced access control policies. As
one of the best papers, a revised version follows this summary. Similarly, the
manuscript of Christov et al., also included in this volume, summarizes their
experiences in defining and analyzing medical processes.

In current Patient Care Reports (ePCR) systems, software components are
developed without taking into account the specifics for different categories of
patients or information needs of different emergency management agencies re-
sulting in extensive alteration of user interfaces, business objects and the data
layer. Shenvi et al. presented a domain-specific modeling approach to generating
context-specific ePCRs automatically.

Mathe et al. introduced a model-based design technique to rapidly develop,
simulate, and deploy HIS prototypes. Their design environment allows archi-
tects to create formal system models and, from these, automatically generate
executable code on top of a Service Oriented Architecture framework.

Agreiter et al. proposed a practicable and efficient solution for leveraging oper-
ating system-level and application-level security mechanisms to realize security-
critical applications and services for mobile applications in healthcare scenarios.

Kaviani et al. used model-driven engineering to develop service-oriented HISs.
The approach relies on a modeling technique based on Web rules and enables
the representation of business processes and policies in a unified framework.
The system supports the development of tools for a formal analysis of existing
services and their policies by using rule-based reasoning engines.

Finally, Lopez et al. argued that the introduction of HISs often requires the
reengineering of the business processes used to deliver care. The authors proposed
a notion of equivalence over secure business processes based on the notion of goal-
equivalence. To this end, they presented a reasoning method for passing from a
modeling language that captures the functional, security and trust requirements
of HISs and their operational environments, to business processes specifications
and vice versa.
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Abstract. This paper describes our experiences in defining the processes asso-
ciated with preparing and administrating chemotherapy and then using those 
process definitions as the basis for analyses aimed at finding and correcting de-
fects. The work is a collaboration between medical professionals from a major 
regional cancer center and computer science researchers. The work uses the Lit-
tle-JIL language to create precise process definitions, the PROPEL system to 
specify precise process requirements, and the FLAVERS system to verify that 
the process definitions adhere to the requirement specifications.  The paper de-
scribes how these technologies were applied to successfully identify defects in 
the chemotherapy process. Although this work is still ongoing, early experi-
ences suggest that this approach can help reduce medical errors and improve 
patient safety. The work has also helped us to learn about the desiderata for 
process definition and analysis technologies, both of which are expected to be 
broadly applicable to other domains. 

1   Introduction: The Problem and Our Proposed Approach 

Medical errors cause approximately 98,000 patient deaths each year [1] in the United 
States. US Institute of Medicine (IOM) reports have suggested that the delivery of 
healthcare must fundamentally change to address medical errors (e.g., see [1, 2]). In 
particular, these studies suggest that many serious medical errors result from system 
rather than individual failures, leading the IOM to advocate the development of 
healthcare systems that directly address patient safety. In particular, the IOM report 
states, “what is most disturbing is the absence of real progress… in information tech-
nology to improve clinical processes [italics ours]” ([3], pg. 3).  Thus, we have begun 
to investigate the application of software engineering process definition and analysis 
research to help reduce errors and improve safety in medical processes.  In this paper, 
we use the term “guideline” (or “process/care guideline”) to refer to an informal, 
mostly natural language, description of a medical process. And, we use the term 
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“process definition” to refer to a precise description of a process that is created using 
a formal language with rigorously-defined semantics. 

Our preliminary research (e.g., [4]) showed that many current medical processes 
are described only at a high-level of generality and are often not defined completely 
and precisely. Because of this, healthcare providers can find themselves in situations 
that are not directly addressed by the processes they learned, and thus they may be 
unsure whether their actions conform to recommended care guidelines. In addition, 
aspects of current process descriptions are frequently vague, ambiguous, or inconsis-
tent, allowing different providers to have different understandings of their specifics.   
Such descriptions may lead workers to believe they are following recommended 
guidelines when, in fact, their care has deviated, increasing the possibility of error.  

In the work described here, software engineering researchers and medical experts 
developed precise, rigorous definitions of medical processes that capture both the 
standard and exceptional situations that can arise. The process definitions also capture 
the inherent concurrency and multi-tasking undertaken by busy healthcare providers, 
as well as details of the use of resources to perform the processes. Our investigations 
have indicated that there are somewhat different goals for defining and analyzing 
processes in different areas of medical practice, thus suggesting applying somewhat 
different approaches. For example, blood transfusion is primarily concerned with 
identification issues and emergency care is focused on improved patient flow.   

In chemotherapy there seems to be an overriding concern for the identification and 
removal of process defects that create hazards to patient health and safety. These 
concerns suggest the value of at least two complementary engineering approaches, 
namely fault tree analysis and finite-state verification, each applied to a precise defi-
nition of safety-critical processes. Analysis of fault trees promises to indicate serious 
ramifications of incorrect performance of process steps [5, 6], while finite-state veri-
fication (e.g., [7, 8]) promises to identify sequences of tasks that, even if performed 
perfectly, could lead to safety violations [9]. In this initial work, we focused on the 
latter. This paper describes efforts to evaluate the effectiveness of defining medical 
processes using a rigorously defined language, formally encoding the requirements 
for that process, carrying out finite-state verification of the processes to detect de-
fects, and then improving the processes by defect removal. In the next section we pre-
sent the Little-JIL process definition language and provide examples of how it was 
used to define a chemotherapy process. Section 3 describes our experiences, and Sec-
tion 4 overviews related work. Section 5 suggests some future research directions. 

2   An Example:  Chemotherapy Preparation and Administration 

Chemotherapy is the use of chemical substances to treat disease. In its modern-day 
use, it refers primarily to the administration of cytotoxic drugs to treat cancer.  Che-
motherapy medications are typically highly toxic, and thus it is of overriding impor-
tance to be sure that the right patient receives the right medications in the right  
dosages at the right times. To assure this, elaborate processes are carried out that inte-
grate the efforts of such diverse medical personnel as doctors, nurses, pharmacists, 
and clerical workers. Chemotherapy processes aim to speed the flow of treatment,  
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while assuring that errors do not occur.  Checks are in place to guard against commit-
ting such errors. Preliminary examination of these processes suggested that they are 
large and complex, and their growing complexity makes it increasingly difficult to be 
sure they provide sufficient protection against the commission of errors.   

Our work began by defining some example chemotherapy processes.  Earlier work 
in defining processes in such other domains as software development, scientific data 
processing [10], and e-government [11] suggested that a powerful process definition 
language would be needed.  We chose to use the Little-JIL process definition lan-
guage because our previous experience suggested that semantic features of this lan-
guage were likely to be effective in defining processes in the chemotherapy domain. 

2.1   Principal Features of Little-JIL 

Little-JIL [12, 13] was originally developed to define software development proc-
esses. A Little-JIL process definition has three components, an artifact collection, a 
resource repository, and a coordination specification. The artifact collection contains 
the items that are the products of the process.  The resource repository specifies the 
agents and capabilities that support performing the activities. The coordination speci-
fication ties these together, specifying which agents and supplementary capabilities 
perform which activities on which artifacts at which time(s).   

A Little-JIL coordination specification has a visual representation, but is precisely 
defined (using finite-state automata), which makes it amenable to definitive analyses. 
Among the features of Little-JIL that distinguish it from most process languages are 
its 1) use of abstraction to support scalability and clarity, 2) use of scoping to make 
step parameterization clear, 3) facilities for specifying parallelism, 4) capabilities for 
dealing with exceptional conditions, and 5) clarity in specifying iteration.  

A Little-JIL coordination specification consists of hierarchically decomposed 
steps, where a step represents a task to be done by an assigned agent. Figure 1 shows 
the iconic representation of a single step with some of its features. Each step has a 
name and a set of badges to represent control flow among its substeps, its interface 
(specifying its input/output artifacts and the resources it requires), the exceptions it 
handles, etc. A step with no substeps is a leaf step.  It represents an activity performed 
by an agent, without any process guidance.  A full description of Little-JIL is pro-
vided in [13].  Below we present some Little-JIL features, focusing on those used in 
the example presented in this paper. 

Resources and Agents—Each Little-JIL step 
interface (iconically represented by the filled 
circle above the step name) specifies the types of 
resources required to support execution of the 
step. Some examples of resources are infusion 
suites and medical records. Each step has one 
specially designated resource, called its agent, 
which is assigned responsibility for the perform-
ance of the step. Little-JIL agents may be hu-
mans, groups of humans or automated devices. 

Fig. 1. A Little-JIL step icon 
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Substep Decomposition—Little-JIL steps may be decomposed into two kinds of sub-
steps, ordinary substeps and exception handlers.  Ordinary substeps define how each 
step is executed and connected to its parent through edges annotated by specifications 
of the artifacts that flow between parent and substep. Exception handlers define how 
exceptions thrown by the step’s descendants are handled.   

Step sequencing—A non-leaf step has a sequencing badge (an icon on the left of the 
step bar; e.g., the right arrow in Figure 1) that defines the order of substep execution. 
Little-JIL has four step kinds. The example depicted in Figure 2 uses two, the sequential 
step (right arrow), indicating that substeps execute from left to right and the parallel 
step (equal sign), indicating that substeps execute in any (possibly interleaved) order, 
although the order may be constrained by such factors as the lack of needed resources.  

Channels—Channels are named entities that act like buffers, directly connecting spe-
cifically identified source step(s) with specifically identified destination step(s). This 
construct helps define how streaming data is handled and can also be used to syn-
chronize concurrently executing steps.   

Exception Handling—A Little-JIL step can throw an exception when some aspect of 
step execution fails. This triggers execution of a matching exception handler defined 
at an ancestor of the step throwing the exception.  Figure 2 shows an exception han-
dler consider alternative treatment (connected to the X in the root step bar), which is 
triggered when one of the children of the root step throws a matching exception. 

2.2   An Example Using Little-JIL to Define a Chemotherapy Process 

Figures 2 and 3 are diagrams that depict part of a Little-JIL definition of a chemother-
apy process. Figure 2 is the top-level diagram of the process and thus represents  
it at a high level of abstraction. The entire Little-JIL process definition has more  
than 250 steps and thus cannot be shown in its entirety here. Elicitation of the  
 

 

Fig. 2. A coordination diagram of Little-JIL chemotherapy process 
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Fig. 3. The task decomposition of transcribe and place consult note in patient’s record 

process required two semesters of weekly meetings between process developers and 
medical professionals. Most of the time there were two graduate students (and at least 
one faculty member) meeting with two or three medical professionals. The medical 
professionals comprised different combinations of two physicians, one pharmacist, 
three nurses, and a medical assistant. The part of the process definition that is de-
picted here is concise but representative of many interesting issues that arise in defin-
ing and analyzing the full process. 

Note that the diagrams in this paper do not include all the information needed for a 
complete Little-JIL process definition. A diagram is created using the Little-JIL visual 
editor, which allows the developer to suppress visualization of process details for the 
sake of clarity. Thus, Figures 2 and 3 do not display full details of the resources and 
artifacts declarations in each step but just represent them by the circle icon located 
above the step bar.  

Figure 2 indicates that the process definition is decomposed into two substeps exe-
cuting in parallel (note the equal sign in the step bar). In the full process definition, each 
substep is further decomposed down to the level of leaf steps for which the process  
definer is unable to provide, or uninterested in providing, process detail and guidance.  

Figure 2 also shows that the root step chemotherapy process has a substep consider 
alternative treatment that acts as an exception handler (note the “X” sign on the che-
motherapy process step bar to which the step consider alternative treatment is con-
nected). In the step perform consultation and assessment in Figure 2, the doctor may 
determine that the patient's pathology report does not indicate cancer. In this case, the 
Pathology Report Does Not Indicate Cancer exception is thrown (the decomposition 
of the perform consultation and assessment step is not shown due to space limita-
tions). The exception propagates up the step decomposition tree until it reaches a 
matching handler. Thus, control is transferred to the exception handler step consider 
alternative treatment and appropriate action is taken. 

The first substep, prepare for and administer first cycle of chemotherapy, of the 
root step chemotherapy process is decomposed into six substeps to be executed in 
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sequence (note the arrow pointing to the right in the step bar). The six substeps of 
prepare for and administer first cycle of chemotherapy are the major stages of the 
chemotherapy process. Although the agent assignments are not given in this diagram, 
perform consultation and assessment is done by a Medical Doctor (MD); perform 
initial review of patient records by a Practice Registered Nurse (RN) and a Triage 
Medical Assistant; perform pharmacy task by a Pharmacist; perform patient teaching 
by a Nurse Practitioner; perform final tasks (day before chemo) by a Pharmacist and a 
Clinic RN; and the first day of chemo is done again by a Pharmacist and a Clinic RN. 

While step sequencing specifications provide strong control over the order of step 
execution, Little-JIL also enables specification of flexibility in execution sequencing 
through such constructs as a channel. In this example, a channel is used to specify that 
an MD cannot dictate the consult note before evaluating the patient’s condition. But, 
since the consult note is primarily used for billing and legal purposes and does not 
directly affect the patient’s treatment, the doctor may choose to dictate the consult 
note right after evaluating the patient or later, while the tasks in prepare for and ad-
minister first cycle of chemotherapy are already underway. This step sequencing 
flexibility is captured precisely by the coordination diagram in Figure 2, which shows  
that the dictate consult note step can potentially execute in parallel with the step pre-
pare for and administer first cycle of chemotherapy. At the same time, the “consulta-
tion channel” imposes the additional restriction that the MD cannot dictate the consult 
note before evaluating the patient’s condition – the step dictate consult note takes a 
parameter from the “consultation channel” (declared at the root step so that it is visi-
ble, hence usable, by all of its descendants) and thus cannot start until perform patient 
consultation (not shown for lack of space), which is a substep of perform consultation 
and assessment, completes and writes a parameter to the “consultation channel. 

Figure 3 decomposes the substep transcribe and place consult note in patient’s re-
cord of the root step chemo process. Note that the process depicted by the diagram in 
Figure 3 provides further details of the handling of the consult note. Figure 2 specifies 
that transcribe and place consult note in patient’s record is the second substep of the 
sequential step create and process consult note. This, means that transcribe and place 
consult note in patient’s record cannot start until the step dictate consult note has 
completed. This sequencing mechanism is a faithful representation of the real world 
situation. In this process, the doctor dictates the consult note on the phone. The doc-
tor’s message is recorded and triggers the tasks of the transcriber, who is external to 
the clinic. The transcriber listens to the message, transcribes the consult note, emails it 
to the doctor’s secretary and so on. 

Another interesting aspect of the diagram in Figure 3 is the diverse set of agents 
that execute the steps – Transcriber, Secretary, Medical Doctor, and Medical Records 
Clerk. Thus, the timely manner in which the step transcribe and place consult note in 
patient’s record is performed depends on the availability of all those agents. In a later 
section, we will see that the time of completion of the transcribe and place consult 
note in patient’s record step relative to the time of completion of other steps in the 
process is important for satisfying some of the properties of the process. 

2.3   Using PROPEL and FLAVERS Analysis to Look for Process Defects 

In this section, we present a short, simplified example of the application of finite-state 
verification to the chemotherapy process definition. Finite-state verification techniques 
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algorithmically check all possible paths through a model of a system to determine 
whether any execution of the system can violate a specified system property.  In the 
work described here, we have used the FLAVERS [8] finite-state verifier, although 
other tools (e.g., [14]) could have been used.  Our model of the system is an annotated 
control flow graph derived from the Little-JIL process definition. For our purposes, a 
property is a specification of the requirements for some aspect of the behavior of the 
system. Thus, the property is a specification against which a system is to be verified. 
For example, a property might state that a certain event cannot occur until after some 
other event occurs. Our work focuses on developing such properties with the help of 
domain experts (chemotherapy medical professionals in this example), eliciting a proc-
ess definition from domain experts, and finally comparing the process definition 
against the properties. If a property is violated, we change the process (assuming the 
property is correctly specified) and verify the modified process against the property. 
We iterate the above procedure until the process satisfies the property and thus the 
process is improved. 

In our analysis, properties are encoded as finite-state automata (FSA) and represent 
constraints on the sequences of events that could occur during executions of the proc-
ess. The FSA in Figure 4 represents the property “Before Chemotherapy Can Be Ad-
ministered to a Patient, that Patient's Consult Note Needs to Be Put in that Patient's 
Record.” The events in this property are put consult note in patient's record and ad-
minister chemo. The event put consult note in patient's record is bound to the step file 
consult note in patient's record in Figure 3. The event administer chemo is bound to 
the step administer chemo drug which is a part of the subprocess decomposition of 
the step first day of chemo in Figure 2.  

At the start of execution of the process, the automaton in Figure 4 is assumed to be 
in its start state q0 (indicated by the triangle to the left of state q0). Execution of put 
consult note in patient's record causes the FSA to transition from state q0 to state q1. 

 

Fig. 4. An FSA corresponding to the chemotherapy property “Before Chemotherapy Can Be 
Administered to a Patient, that Patient’s Consult Note Needs to Be Put in that Patient’s Re-
cord.” A transition labeled with ANY EVENT means that the transition is taken if any event 
from the alphabet of the FSA occurs. The ERROR STATE is a trap state, i.e. it is a non-
accepting state, such that once the automaton enters that state, it remains in it regardless of 
what other events occur. 
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Then if administer chemo is encountered during execution of the process, the FSA 
transitions from state q1 to state q2. The state q2 is an accepting state (indicated by a 
doubled circle). Thus, put consult note in patient's record followed by administer 
chemo is a valid sequence of events in the chemotherapy process. On the other hand, 
if administer chemo occurs before put consult note in patient's record (the transition 
from state q0 to state q3 in the FSA shown in Figure 4), the automaton ends up in an 
ERROR state (q3) indicating that this causes the property to be violated. Also note 
that if consult note is put in patient's record does not occur at all, then the automaton 
will remain in its start state q0, which is also an accepting state thus indicating that the 
property is satisfied.  

In our project, automata such as the one in Figure 4, were generated by the PROPEL 
(PROPerty ELucidator) system [15, 16]. PROPEL facilitates the elucidation of proper-
ties by providing three different representations of a property—a question tree view, a 
disciplined English view, and a finite-state automaton view—and assuring that the 
three views automatically remain synchronized with each other. The different views 
aim to bridge the gap between the natural language in which the properties are elicited 
from domain experts and the rigorous, but usually not trivial to specify correctly, 
mathematical formalism of the finite-state automaton used by the verification tool 
FLAVERS.  Each view also explicitly indicates subtle choices that need to be made 
and questions that need to be answered in order to specify a property, such as whether 
certain events must always occur or whether other events can occur multiple times.  
For the example chemotherapy process, there are dozens of important safety and legal 
properties to be verified. Our experiments indicate that PROPEL is adept at supporting 
the definition of such properties. 

Having defined the process in Little-JIL and created the property automaton using 
PROPEL, we then used the finite-state verifier FLAVERS to check whether the process 
satisfies the property on all possible paths of execution. If it does not, i.e. if a process 
execution can drive the property automaton to a non-accepting state, then FLAVERS 
reports the violation and produces a trace of the process execution that leads to the 
property violation. The verification example in this paper may appear relatively 
straightforward, given the simple property, but we note that it entails considerable 
challenges. The fact that the root step chemotherapy process is parallel requires that 
FLAVERS explore all possible execution interleavings of the substeps, creating a 
very large space of alternatives to be explored.  The use of channels further compli-
cates the verification. The fact that the chemotherapy process is of a significant size 
(more than 250 steps) makes the verification state space very large. FLAVERS em-
ploys optimization techniques and thus can usually cope with the verification of prop-
erties of processes whose size is similar to that of this chemotherapy process. 

In fact, FLAVERS reported that this chemotherapy process example can violate the 
property presented in Figure 4, and it produced a trace of a valid execution of the 
process where administer chemo drug occurs before file consult note in patient's re-
cord completes. Although a channel imposes some synchronization between the par-
allel activities in the process, the verifier detected that concurrent execution can allow 
at least one execution sequence that leads to a property violation. Thus, this result 
identified a process defect, but it also raises an interesting question about whether 
legal and privacy issues (such as the requirement that a consult note must be in the 
patient's chart before administration of chemotherapy) may have received much less 



126 S. Christov et al. 

attention than medical safety issues and thus may not be fully addressed by standard 
medical processes.  

3   Experience and Evaluation 

Working with the chemotherapy process suggests that our approach can lead to im-
provements in the processes. We were able to identify process defects and raise issues 
resulting in defect elimination. The medical professionals involved in the project have 
found benefit in this work.  They are even considering using the formal process defi-
nition as the basis for training documents and guidelines for medical staff. 

The very task of eliciting details from the medical professionals about the chemo-
therapy process and capturing those details formally in Little-JIL lead to the discovery 
of many of the problematic aspects in the process. One of the first observations after 
interviewing several different medical professionals was that the terminology used for 
the chemotherapy process guidelines contained some inconsistencies. For example, 
words like “verify”, “confirm”, “check”, “match”, and “consistent” were used loosely.  
The same word used at different times or in different contexts often had different 
meanings, even when used by the same individual. Since many of the critical errors 
that may occur in a process like chemotherapy may arise from neglecting small details 
(e.g. not checking to see if the patient height or weight measurements on which the 
chemotherapy dose is based are sufficiently up-to-date), we had to develop a precise 
naming template that disambiguated the use of different terms. Thus, our experience 
suggests that the effort of defining and analyzing complex medical processes can 
benefit if some kind of ontological structure of the domain knowledge is present. 

We also found that process guidelines usually contain adequate details when de-
scribing common, standard scenarios. However, process guidelines did not provide 
enough details, or often any details, for handling many non-typical cases. For exam-
ple, there were places in the process where an agent confirms the correctness of some 
information and, if the confirmation succeeds, the agent continues on with the rest of 
the defined tasks. However, if the confirmation fails, then in many cases the process 
lacked specific instructions detailing how the agent should proceed. In some cases, we 
noted that different agents were handling the exception differently depending on per-
sonal style, level of experience, and the individual approach of other medical profes-
sionals involved in the recovery from the failure. While modeling the process with 
Little-JIL, the rich exception handling semantics of the language forced us to think 
about exceptional scenarios and ask specific questions about the exact process to be 
executed following the throwing of an exception, the agents involved in resolving that 
exception, and the place in the process to which control gets transferred once the ex-
ception has been handled. Questions like “What do you do when the check you make 
fails?” and “Which task do you proceed with and which tasks do you need to redo 
when you have resolved the problem?” typically triggered discussions among the 
medical professionals that resulted in more complete and rigorous specification of 
how to deal with these exceptional cases, thus improving the process overall. 

The resource and artifact modeling capabilities of Little-JIL also led to interesting 
questions during the interviewing stage that exposed some deficiencies in the process. 
For example, the chemotherapy process relies heavily on a paper copy of a treatment 
plan, which is an artifact created at the earlier stages of the process and then verified 
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independently and signed by medical professionals. However, doctors enter changes 
to a treatment plan electronically, which sometimes leads to inconsistencies between 
the current electronic version and the paper copy that circulates among the medical 
professionals. The artifact model of Little-JIL and the need to precisely describe and 
distinguish between paper and electronic records led to the discovery of such issues. 

The expressive power of Little-JIL proved to be useful for the definition of the 
process in the chemotherapy case study. The powerful exception handling mecha-
nisms in the language enabled the process definition to reflect the real world process 
more accurately. The capabilities the language provides for modeling resources (both 
agent and non-agent) and artifacts were an important part of the specification of the 
process. The synchronization mechanism and channel support for specifying direct 
communication between steps was also useful in this process definition. Hierarchy 
and abstraction were beneficial in helping to keep down the size of the chemotherapy 
process and the many different levels of abstraction at which it was defined. 

The graphical notations in Little-JIL facilitated the communication of computer 
science concepts to the medical professionals. We usually tried to present the process 
to the medical professionals in textual, natural language form, but we were often 
asked to show the Little-JIL diagrams as they provide clearer understandings. Al-
though we believe that it is most likely that the Little-JIL definitions will be written 
by computer scientists or medical informatics specialists, our experiences suggest that 
medical professionals, with a little training, can become comfortable reading Little-
JIL process definitions. 

The task of interviewing domain experts and specifying precisely the high level 
goals and requirements that the medical process needs to meet, proved to be benefi-
cial. We worked on identifying properties at a higher level of abstraction, a level at 
which the property’s events are not tightly coupled to concrete steps in the process  
definition, but rather are used to capture universal safety and legal goals that need to 
be satisfied no matter how the process is implemented. This approach introduced a 
different perspective and helped medical professionals view the process in a new 
light. Instead of focusing only on “what is being done”, the process was approached 
by asking questions like “Why is this done?” and “What goal is met by this sequence 
of steps?” Such types of questions also helped expose deficiencies in the process and 
triggered discussions about how to address them. While considering the motivation 
behind parts of the process and the objectives that certain sequences of steps are try-
ing to achieve, the medical professionals often identified steps that were either mis-
placed or missing from the process guidelines.  Thus, property elicitation itself played 
an important role in enhancing the process. 

PROPEL was of great value in facilitating the correct specification of properties. 
Previous experience indicated that specifying a property in a mathematical formalism, 
like a finite-state automaton or a temporal logic, is often not trivial and subtleties are 
often not captured easily or correctly.   For example, consider the requirement that if 
patient height and weight data (used to determine correct dosage) are “stale” (i.e. the 
measurements are not recent enough), then height and weight must be remeasured 
before administration of chemotherapy.  A correct formal specification of this must 
address such issues as whether the data can become stale several times and, if so, 
whether a single remeasurement is sufficient, whether the data always becomes stale, 
whether remeasurement is necessary if chemotherapy is not administered for some 
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reason, etc. In addition to the finite-state automaton view of a property, PROPEL pro-
vides a natural language template, where users select phrases, and a question tree 
view that explicitly asks questions, like the ones above. All three of these views are 
equivalent and assist the user in capturing the subtleties of the property. 

So far our efforts have focused on capturing the chemotherapy process in Little-JIL 
and specifying properties using PROPEL. Our initial use of FLAVERS focused on 
verifying relatively simple properties, and most of them were satisfied. In most of the 
cases when the verifier detected a violation, it was due to an omission or error in the 
process definition or property specification. However, the example in the previous 
section shows that our verification approach could identify real violations and pin-
point weaknesses in the process. We expect that when we begin to analyze more 
complicated properties over larger processes that hide potential concurrency, our ap-
proach will lead to the discovery of more defects in the process. 

We note that as the size of the process under verification increases, so does the 
state space that needs to be explored. Large processes, like the chemotherapy one, 
with inherent parallelism and complex exception handling specifications, stress the 
importance of utilizing verifiers that scale well. At this point, our work indicates that 
the performance of the FLAVERS system seems to be capable of acceptable scaling. 
For example, the verification of the property presented in Fig. 4 took less than ten 
seconds of computing time running on a standard desktop computer. 

4   Related Work 

There has been some recent work using process definition and analysis to improve 
medical processes.  For example, the Protocure II project [17] has goals that are quite 
similar to ours in that  medical protocols are formally specified and verified. As part 
of that project,  a protocol for jaundice and its properties were modeled in the Asbru 
language [18]. The protocol that was analyzed consists of 40 plans (where the plans 
seem to be similar to Little-JIL steps), whereas the chemotherapy process that we 
analyzed consists of over 250 steps. The Little-JIL process definition supports more 
detailed representation of the process, including support for exceptions and complex 
agent interactions. The Protocure researchers also encountered ambiguous use of 
medical terms, incomplete information, and inconsistencies that may support different 
conclusions.  In another study that was also part of the Protocure II project [19], the 
Asbru model of the jaundice protocol and its properties were verified using the SMV 
model checker. 

Noumeir has also pursued similar goals, but using a notation like UML to define 
processes [20].  Others (e.g., [21]), view medical processes as workflows and use a 
workflow-like language to define processes and drive their execution.  But, we note 
that these projects seem to place less emphasis on analysis. 

There have been other approaches to improving medical safety as well, but much 
of the emphasis of this work has been targeted towards quality control measures [22], 
error reporting systems [23], and process automation in laboratory settings [24], such 
as those where blood products are prepared for administration.  In other work, Bayes-
ian belief networks have been used as the basis for discrete event simulations of 
medical scenarios and to guide treatment planning (e.g., [25]). 
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Many languages and diagrammatic notations have been used to define processes.  
Some incorporated use of a procedural language [26].  Others used rules [27] and 
modified Petri Nets [28] to define processes.  More recently, the workflow [29] and 
electronic commerce [30] communities are pursuing similar research. None of these 
approaches, however, seem able to support process definitions that are both clear and 
precise enough. Main failings of these approaches include inadequate specification of 
exception handling, weak facilities for controlling concurrency, lack of resource man-
agement, and inadequate specification of artifact flows.  

There has also been considerable work on the analysis of code and models of sys-
tems.  Finite-state verification, or model checking (e.g., [7], [8], [14]), approaches 
construct a finite model that represents all possible executions of the system and then 
analyze that model algorithmically to detect executions that violate a particular prop-
erty specified by the analyst.  A major concern of these techniques is controlling the 
size of the state-space model, while maintaining analytic precision. Our team has ana-
lyzed and evaluated various finite-state verification approaches [31], and developed 
verifiers such as FLAVERS [8] and INCA [32].   Our work seems to be among the 
first that has applied FSV approaches to process definitions [9]. 

5   Conclusion 

The finite-state verification approach presented in this paper supports checking 
whether or not a process satisfies certain properties, but it assumes that all agents in-
volved in the process perform their tasks without errors. However, human errors do 
occur in medical processes and thus complementary forms of analysis are also useful. 
Thus, for example, we have used a blood transfusion process definition as the basis 
for the automatic generation of a fault tree representation of this process and have 
used the fault tree to identify single points of failure in the process, thereby reducing 
its vulnerability to failure [6]. Similarly, our studies of delays in a hospital Emergency 
Department (ED) have underscored the potential for resource management to improve 
efficiency in the ED’s processes [33].   In response, we are developing technologies to 
create discrete event simulations from process definitions in order to support reason-
ing about how to improve efficiency through better resource management.  

In conclusion, we observe that this work has shown considerable promise and has 
suggested extensions in several directions.  We propose to pursue further research in 
this domain.  We expect that this research will provide further insights into how proc-
ess definition and analysis technology can help improve the safety and efficiency of 
the processes in this critical domain.  
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Abstract. This contribution gives an overview of various access control strate-
gies in use in healthcare scenarios and shows how a variety of policies can be
modeled based on a single security policy model for usage control, UCON. The
core of this contribution consists of the specialization of the SECTET-Framework
for Model Driven Security for complex healthcare scenarios based on UCON.
The resulting Domain Architecture comprises a Domain Specific Language for
the modeling of policies with advanced security requirements, a target architec-
ture for the enforcement of these policies and model-to-code transformations.

1 Introduction

The Electronic Health Record (EHR) stands for a concept aiming at the digital integra-
tion of healthcare information currently scattered over paper-based archives, databases
and healthcare systems distributed accross multiple security domains. As a matter of
fact, the status-quo comes at great costs to national economies, paired with an un-
satisfactory level of service quality, possibly even leading to fatal errors resulting in
erroneous treatment or wrong medication (e.g., [22,28,15]).

Trying to systematically resolve these system-inherent weaknesses, a growing num-
ber of countries are working towards the realization of national EHR systems (e.g.,
[15,12]). By now, leveraging the popularity of standards related to web services –
based on the paradigm on Services Oriented Architectures – these inititiatives have set
the implementation of powerful infrastructures supporting inter-operability for trans-
organizational healthcare services (e.g., [11]) at the top of their agenda.

Problem Statement. In a fully digitized world, patients will be concerned about retain-
ing legal rights over their medical records. Organizations processing patient records
will have to account for the preservation of data security and privacy. Although these
responsibilities are codified in an impressive array of directives (e.g., HIPAA [26], EU
Directive [31], PIPEDA [27]), an information-intensive industry delivering security-
critical healthcare services needs to put a special emphasis on security concerns [6,3].
By now security requirements are dealt with cryptographic primitives (e.g., encryption,
digital signatures) and architectural solutions (e.g., firewalls etc.). Confidentiality to pa-
tient data is enforced through access control mechanisms[33]. However, actual security
concerns in healthcare scenarios go way beyond merely guaranteeing data confidential-
ity. A broader notion of security would have to address issues related to usage control
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(e.g., number of times a user is allowed to view a document), issues of particular im-
portance to the healthcare industry (e.g., rights delegation, emergency access [34]), and
would have to account for legal concerns (e.g., 4-Eyes-Principle [38,37]).

Contribution. Research has started in several areas (e.g., privacy [14], distributed ac-
cess [4], trust management [40] and identity management [8]). However, the treatment
of domain specific security aspects in healthcare is still in its infancy. This contribution
explores advanced security requirements in healthcare systems and proposes a high
level policy modeling approach based on UCON – a security model unifying a broad
array of security concepts like Discretionary, Mandatory and Role Based Access Con-
trol, as well as Trust and Digital Rights Management [13]. The conceptual solution for
policy modeling is realized with SECTET – a framework for Model Driven Security
[9]. We propose an extension to the SECTET-Framework towards a Domain Architec-
ture comprising a Domain Specific Language for modeling the security-critical health-
care scenarios, a Target Architecture for the enforcement of security requirements and
model-to-code transformations.

Organization. Section 2 gives an overview of the state-of-the-art of research and ref-
erence implementations related to access control in healthcare scenarios. Section 3 in-
troduces the three building blocks of the SECTET – Domain Architecture. In Section
4 we propose extensions to the SECTET - Framework with motivating scenarios. We
conclude with a sketch of our research agenda in Section 5.

2 Access Control in Healthcare

2.1 State-of-the-Art

We first analyze the capabilities of of different access control paradigms and discuss
their applicability to healthcare scenarios. Comprehensive analyses can be found in
[21]. We then motivate our choice of the UCON Model – the conceptual underpinning
of our modeling approach.

Discretionary Access Control (DAC). In DAC based systems, users are considered
to be the owners of the resources. This enables them to grant access rights to other
users [21]. This notion of Resource Ownership makes the DAC model unsuitable for
exclusive use in healthcare systems as the medical data is created by users of various
collaborating partners and none of those can claim ownership of the data.

Mandatory Access Control (MAC). In MAC based systems, users and their rights
are administered by a central authority. Security labels are assigned to data elements
at very fine-granular levels, thereby expressing their security sensitivity. They can be
used to realize User Managed Access Control [7] with shifting some of the controls to
the user by requiring the user’s consent for data access. However, inter-organizational
healthcare scenarios involve many actors accessing resources scattered over multiple
domains and the centralized administration in MAC is incompatible with SOA-based
Systems which advocate loose coupling with decentralized control.
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Role Based Access Control (RBAC). Users in RBAC [32] systems are assigned Roles,
holding Permissions, specifying access rights to Objects. The basic RBAC model can
not meet the dynamic security requirements necessitating runtime checks of mutable at-
tributes (e.g., a principal may access a document only between 9.00 a.m. to 5.00 p.m.).
Although RBAC was extended to cope with dynamic behavior based on contextual con-
straints (e.g., time, location, purpose etc. [20]), the shortcomings of RBAC are twofold.
Firstly, the model lacks expressiveness with respect to dynamically changing subject
attributes (e.g., the physician gets unrestricted access to the affected patient’s medical
data in the context of emergency). Secondly, it does not cater for the notion of continuity
in access control (e.g., facilitating revocation of access rights once granted).

Usage Control (UCON). UCON is a comprehensive policy model for usage control.
It extends traditional access control models in two respects [30]. 1. Continuity of access
decision means that the decision to access an object is not only verified before but also
during access and may result in the revocation of permissions, whenever conditions are
not met. Policy conditions in UCON consist of subject, object and system attributes.
2. Mutability of attributes refers to subject, system or object attributes changing as
side-effects of resource access. This may additionally result in a change in ongoing
or subsequent access decisions.

Policy statements in UCON consist of authorizations, obligations and conditions
(cf. Figure 1). Authorizations refer to predicates based on subject or object attributes.
Obligation actions are directives to a subject to perform additional actions before or dur-
ing an access. Whereas the predicates based on environment attributes such as system
time, device type etc. are categorized as Conditions. Authorizations, oBligations and
Conditions are collectively referred to as the building blocks of UCONABC . UCON
conditions can be used to express static constraints (e.g., duration, purpose) as well
as dynamic constraints (e.g., number of times to access a resource, location-dependent
access).

Fig. 1. Elements of the UCON Policy Model
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2.2 Advanced Use Cases in Healthcare

Advanced healthcare scenarios impose complex security requirements. In this section
we introduce some of them, thereby motivating our development for an elaborate policy
model. Some of these use cases already stand as candidates for near future integration
into “Integrating the Healthcare Enterprise (IHE)”-projects [1], whereas others repre-
sent more an educated guess based on discussions with experts on what the healthcare
industry may be needing in a couple of years.

Dynamic Access Control. In many healthcare scenarios, permissions to execute health-
care services cannot be assigned statically. Instead, these are associated with a set of Dy-
namic Constraints. Such constraints refer to subject, system or object attributes and are
evaluated at runtime. An example of such dynamic constraints in healthcare is the status
of physician: “A physician can modify any medical record for which she is designated
as primary physician”.

Delegation of Rights (DR). DR allows a user to delegate her rights to other legiti-
mate users of the system in specific situations with defined limitations. For example,
in patient referral, the primary physician delegates her rights to the specialist. In other
scenarios the patient himself can grant access to the specialist using the delegated rights
of the primary physician[23]. DR may be further restricted: the rights of the delegatee
may depend on additional information such as her legal status, credentials, purpose and
duration etc.

Break-Glass Policy (BGP). BGP is an authorization scheme granting access in case
of emergency. An attending physician needs to bypass routine access control restric-
tions to guarantee timely treatment without any delay due to administrative or technical
complexities (e.g., [34,20]).

4-Eyes-Principle. The 4-Eyes-Principle is a form of Multiple Authorization. It requires
two users with a common interest to enter the system simultaneously. This principle
supports monitoring of the data access, e.g., when one user accesses data the other user
monitors it (e.g., [37]). In healthcare scenarios, the 4-Eyes-Principle requires the patient
to be present when a physician accesses her records. The physician’s access is logged
during the visit by some trusted Proxy Service. Enforcement of the 4-Eyes-Principle is
usually performed indirectly and supported with storing the access record into logging
database for future auditing. Logging and auditing capabilities permit the patient to set
her privacy preferences based on access history and identify any potential abuse.

Usage Control (UC). UC is an extension of access control because it does not only
control the data access but also how the accessed data may or may not be used or
distributed afterwards. In a healthcare scenario a usage requirement could state that
“Access to a medical record is allowed for 5 times only and should last for at most 48
hours, after its first access”.
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3 SECTET - A Domain Architecture for Model Driven Security

SECTET is a framework for Model Driven Security which supports the design, imple-
mentation and management of secure inter-organizational workflows in a peer-to-peer
environment (i.e. without central control) based on the paradigm of Service
Oriented Architectures. Due to its genericity, the SECTET-Framework covers a large
set of component-based applications from domains such as e-government, e-health,
e-educa-tion etc. Various case studies from healthcare and e-government provided the
opportunity to apply the framework in real life scenarios [2,5,9,10,19]. Security criti-
cal inter-organiza-tional workflows are modelled using a Domain Specific Language.
Models are transformed into executable artefacts configuring a web services based
Target Architecture. We subsequently briefly describe the three building blocks of the
framework.

3.1 The SECTET-Domain Specific Language (DSL)

The SECTET- DSL is based on UML 2.0 and aims at the integration of security re-
quirements into models of inter-organizational workflows at a level of abstraction ap-
propriate to bridge the gap between domain experts and business analysts on one side
and software architects on the other side. Security requirements are modelled at the
design level and integrated as security patterns into the business requirement models.
The basic SECTET modeling approach is based on two orthogonal views: the Interface
View and the Workflow View. The models of the Workflow View depict the message ex-
change protocol between the cooperating partners with a focus on security requirements
such as confidentiality, integrity and non-repudiation [9]. In the models of the Interface
View, each partner is modeled as a node offering services with a given data type and
access control requirements. The models are rendered with the help of SECTET-DSL
[17] which consists of two sub languages: SECTET-UML and SECTET-PL.

SECTET-UML is a UML profile for modeling security-critical inter-organizational
workflows. In its current state the framework supports the basic security requirements
(Confidentiality, Integrity, and Non-repudiation), dynamic access constraints, rights del-
egation and Qualified Signature [16]. Dynamic access constraints are modeled with
SECTET-PL – a predicative language in OCL style [35,25].

3.2 Target Architecture (TA)

The TA represents the runtime environment for the local, executable workflows and
their back-end services at partner nodes [18]. The Global Workflow is considered as
a virtual workflow emerging from the composition of all Local Workflows. The TA
is based on the data-flow model of XACML [39]. Its components implement a set of
XML- and web services technologies and standards. We differentiate between service
and security components (cf. Fig. 2).

Service Components. A workflow engine (3), based on an XML-based workflow Lan-
guage like BPEL, orchestrates the sequence of local web services (6) as specified in the
Local Workflow Model. The engine bundles the services to a composition that may be
offered as a service of its own.
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Fig. 2. Target Architecture at Peer Nodes

Security Components. The workflow engine (3) and the web services (6) in the back-
end are wrapped by security components (1), (2), (4), and (5). The policy enforcement
point (PEP) (1) is the single point of entry into the domain and is responsible for im-
plementing requirements related to message security and non-repudiation with external
world. It checks signatures and decrypts incoming requests or responses, and signs
outgoing requests or responses and encrypts them as specified in the global workflow
model. For details of security components and interactions refer to [18].

3.3 Model Transformation and Code Generation

Model transformation has two purposes (for an in-depth account on MOF-QVT based
transformation in the SECTET-framework, please refer to [17]). 1. Mapping Global to
Local Workflows. Those parts of the Global Workflow Model that correspond to inter-
faces that local process nodes should implement are translated into stubs of executable
process code (BPEL-, WSDL-, and XSD-files). 2. Generation of Security Artefacts.
The security requirements in the models are translated into executable XACML 3.0
artefacts configuring the policy decision point in the Target Architecture at every peer
node. We extend XACML with functions to cope with security specific semantics of the
SECTET-Security Policies (e.g., subject.map() cf. Sec. 4.2).

4 Extending the SECTET-Domain Architecture

4.1 SECTET-DSL – Sample Healthcare Policy

In this Section, we discuss the SECTET-Domain Architecture extensions and then model
a sample healthcare security policy (cf. Sec. 4.1)for the the advanced requirements (Sec.
4.2) and present the DSL’s structure (Sec. 4.3).

Healthcare Policy Model. Figure 3 shows an example healthcare security policy. The
modeling of such a policy is supported by the framework after including the extensions
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Fig. 3. UML Profile for Sample Healthcare Policy

at the three levels of the Domain Architecture. Subsequently we describe the policy’s
main security concepts.

Subjects. The entity Physician stereotyped <<role>>, indicates its type as de-
fined in the SECTET- Role Model. The model defines roles and hierarchies such as
Physician, Nurse, Pharmacist etc. (Nr. 1 in Figure 4)

Objects. The entity PatientRecord stereotyped as <<document>> indicates the
element is taken from the SECTET- Document-Model (Nr. 2 in Figure 4). The stereo-
types <<document>> and <<role>> are SECTET references to the UCON concepts
of subject and object respectively. The relation is defined at the metamodel level (as de-
scribed in Sec. 4.3).

Setting the Context. The entity Visit in Figure 3 is stereotyped <<event>>. This
means that the role Physician can access the resource PatientRecord during
an event of Visit. The policy model connects the entity PatientRecord with the
entity Physician through the entity Visit of metatype Event as defined in the
SECTET- Event Model (Nr. 3 in Figure 4).

Specifying Dynamic Constraints. Example dynamic constraints are captured in boxes
in Figure 3. They are specified using SECTET-PL, according to the following structure:

context Entity E

perm[rolei] : pcondExpi

...
proh[rolej] : ncondExpj

...;
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Fig. 4. Sub-models of the SECTET Interface View

The permit rule perm[rolei] : pcondExpi describes the condition pcondExpi under
which role rolei is permitted to access entity E, and is evaluated before an access.
The prohibit rule proh[rolej ] : ncondExpj describes the condition ncondExpj under
which role rolej is prohibited to access entity E. The prohibition rules correspond to the
UCON concept of access decision continuity. The rules are repeatedly verified during
an access session, which means that, if conditions defined within the prohibitions are
true, the corresponding access is revoked.

4.2 Advanced Use Cases Modelled in HealthcareDSL

Referring to the sample policy model in Figure 3, this section shows how advanced
security policies based on UCON are modelled with SECTET.

4-Eyes-Principle. The 4-Eyes-Principle is formalized through a constraint referring
attributes of the entity Visit. The permit rule stipulates the presence of both the
physician and the patient. The prohibition makes sure that, in absence of either role,
the corresponding access right is revoked – even during an ongoing session though
initially granted. The constraints attached to the entity PatientRecord states that
user consent is needed for access. This is realized by calling the external function
userConsent. We note that a patient can give conditional consent as well, which
may incorporate the attributes of the physician and/or usage control requirements.

Dynamic Access Control. The constraint attached to the entity PatientRecord
specifies that the subject designation should be of type HeartSpecialist, if the
medical record is of type HeartSurgery.

The special construct subject.map maps the caller’s identity to a specific role.
This function – stereotyped <<external>> – is an example of an extension to the
XACML language supported by the TA at runtime. This stereotype indicates a technical
instruction and is not to be transformed to an XML schema resulting in an executable
policy. It refers to the security infrastructure and instructs it to verify a certain rela-
tionship between the caller of the web service and a particular element of the policy
model (e.g., map). The identification variables (e.g. subject) associated with these
external functions distinguish different types of callers, e.g., subject.map(T) al-
lows the connection of the calling actor with her internal representation to the business
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logic enabling permissions such as “the actor has access to her own data”. In our case,
the technical role PhysicianRole is mapped to the entity Physician using the
subject.map construct. The variable reference ph corresponds to an instance of the
Physician in the Document Model.

Break Glass Policy. The entity EmergencyVisit of type Event specializes the
class Visit. The associated constraint formalizes the break glass policy using the ex-
ternal obligation operation audit. The policy states that, in case of emergency access,
all actions of the requester should be audited. The audit is an external function in the
form of an obligation and returns a Boolean value.

Rights Delegation. A physician referring a patient to the specialist delegates her rights
to access the patient’s record. This is modeled with the stereotype <<delegation
OfRights>>. The patient’s Visit is the main event in the healthcare system, where
the physician accesses the data. Event is a meta-concept and Visit is an instance
of the Event. Visit is specialized on the basis of the context. For example, if the
context is Emergency, then the instance is EmergencyVisit. The Access to data
is logged with the Log entity for any Audit/Accountability in the future.

4.3 The Structure of the SECTET-DSL

We extend the DSL by integrating UCON-concepts at the meta-model level. UCON-
elements such as subject and object are related to elements from SECTET-models (e.g.,
Document-, Role-, Access-Model).

Conceptual Framework. We base our conceptual understanding of the problem on the
definition of three related Domains: the Problem Domain, the Security Domain and the
Application Domain. The Problem Domain is specifically defined by the architectural
structure of the application context. Very often a healthcare application differs from a
typical e-tendering, e-commerce or e-government scenario by exhibiting a set of spe-
cific architecural patterns. For example, we noticed that most scenarios in e-government
were defined in terms of documents flowing from one security-domain to the next
without central co-ordination. The original SECTET-framework – designed to mainly
support scenarios from e-government – accordingly supported solutions for a Prob-
lem Domain defined as “security-critical inter-organizational workflows”. However, in
healthcare, specifically in IHE-based scenarios, the problem revolves more around mod-
eling distributed patient records and related security issues. This requires some adapta-
tion of the original SECTET-Framework.

The Problem Domain relates an Application Domain – here defined as Distributed
Healthcare Systems – to a Security Domain capturing industry specific concerns about
security as Security Policies (e.g., emergency access, 4-eyes-principle and patient pri-
vacy). Security Policies in turn are realized by a specific Security Model – which in our
case is UCON. The Security Domain defines security concerns through abstract Security
Requirements which are enforced by concrete Security Policies (Figure 5). The Appli-
cation Domain introduces the specific application context to which Security Policies
refer (Figure 5).
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Fig. 5. Security Domain Relating Security Requirements to Policies and Security Models

The Metamodels. The SECTET-Domain Model in Figure 5 uses the MOF framework
for the integration of business requirements with access requirements at the meta-level.
Taking the pattern of 4-Eyes-Principle as an example, we can see that it realizes
a policy for Access Control- in the context of one or more healthcare scenarios –
modeled as specialization of an RBAC Policy and includes an EventRef. The lat-
ter is associated to a UCON Right and conditionally refers to one or more of the three
UCON concepts, Authorization, Obligation, and Condition. In our case,
referring back to the sample policy in Figure 3, Authorization, Obligation,
and Condition are specified with the help of OCL-style expressions using SECTET-
PL. Elements of other metamodels are referenced through proxy classes, thereby link-
ing them semantically. For example, RoleRef references a LocalRole from the
Role Metamodel,DocRef references a DocumentRecord from the Document Meta-
model, and EventRef references an Event from the Event Metamodel.

4.4 SECTET–Target Architecture Extension

In order to support advanced security policies based on UCON, the SECTET TA is
extended in two respects.

Firstly, XACML 3.0 [39] – the standard for the generated configuration files – needs
substantial extension to support the concept of access decision continuity as defined in
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UCON. In our approach, the policies and the decision engine account for that by sup-
porting the notion of system states. Up until now UCON is a formalized security model
lacking any reference implementation. Accordingly, the PDP of the Target Architec-
ture is extended with a state machine. A first prototype realizing the UCON-model with
XACML is scheduled for March 2008.

Secondly, Trusted Computing technologies [36] are integrated into the TA in order
to enforce a specific category of policies related to usage control. An Operating System
Specific Policy Model (OSSPM) was introduced to bridge the gap between application
level and hardware level security controls. The OSSPM is also generated out of the
models. The reason for this vertical extension of the reference architecture is that exist-
ing approaches to enforce complex security requirements based on software alone have
inherent weaknesses. The seurity policies specified using the SECTET-DSL are trans-
formed to executable, platform specific policies such as XACML and to operating sys-
tems specific policies such as SELinux. For this reason we have proposed an extension
to the SELinux security context with one more type of attribute called profile [24].

5 Further Research

We pursue research along the following three strands of activity:

Modeling. At the model level, several features such as UCON’s mutability of subject
and object attributes will be integrated generically as UML profiles into the SECTET

framework and tailored to the specific needs of various industry scenarios.

Transformations. Additionally, a new component called SELinux policy generator
added to SECTET-Framework will be implemented with OpenArchitectureWare’s
XPAND language [29].

Target Architecture. The Architecture is extended along the two dimensions: horizon-
tally by additional architectural components enforcing security and vertically by lever-
aging security primitives of the operating system (e.g., SELinux) and hardware layer
(e.g., Trusted Computing).
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1 Introduction

Model Driven Engineering (MDE) approaches extensively use models and auto-
matic model transformations to handle complex software development. A plethora
of software artifacts, tools, environments and modeling languages need to be de-
veloped to make MDE a reality. Consequently, there is a crucial need for effective
V&V techniques in the context of MDE. Moreover, the novelty of MDE gives rise
to questions concerning its impact on traditional V&V techniques, and how they
can leverage this new paradigm.

The aim of the workshop on model-driven engineering, verification and vali-
dation was to offer a forum for researchers and practitioners who are developing
new approaches to V&V in the context of MDE. Several interesting questions
crosscut V&V and MDE, such as:

– Is the model resulting from a transformation correct with respect to the
expected safety, security, time, and structural constraints?

– Is the result of a transformation really what the user intended?
– Does the implementation, which is generated after several model transfor-

mations, conform to the initial requirements?
– What models can be used for validation or verification?

This workshop solicited papers related to the following topics:

– Application of MDE to validation and verification.
– V&V techniques for MDE activities, such as refinement, abstraction, struc-

turing, model transformations, and code generation.
– V&V at the model level: techniques for validating models or generating test

cases from models. These include reviews, checking adherence with modeling
guidelines, simulation, model-checking, and model-based testing.

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 145–150, 2008.
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– Impact analysis of model changes on validation: Changes in a model can
impact the results of previous validation activities.

– Automation and tool support for V&V in MDE.
– Case studies and experience reports.

The workshop had three parts, a keynote address, presentation of position pa-
pers, and a discussion among the workshop attendees. In this report, Section 2
presents summaries of the keynote address and the eight papers selected for pre-
sentations. Section 3 presents a summary of the discussion. Section 4 concludes
the report.

2 Presentations

2.1 Keynote Address — Betty H. C. Cheng

The keynote address was on “Modeling and Formally Analyzing Dynamically
Adaptive Software” and focussed on analysis techniques for safe adaptations.
Modeling adaptive systems requires understanding the requirements and vali-
dating requirements in a real setting. This can be challenging because of unantici-
pated or difficult to obtain environmental conditions that trigger the
adaptations. Adaptive systems are typically developed in an iterative fashion.
There can be conflicting adaptations, especially when there are multiple adap-
tations to be performed. Trade-off analysis needs to be performed to select from
multiple and often conflicting adaptations. More research needs to be done on
adaptation patterns that can be reused in multiple adaptive systems. The use of
aspect-oriented techniques is proposed to handle concurrent adaptations. Vali-
dation and testing of adaptive systems becomes challenging because a number
of new issues need to be addressed, such as (1) simulating environmental and
system requirements for adaptation, and (2) the differences and variety in mech-
anisms used to perform adaptation.

2.2 Paper Summaries

The program committee selected eight papers out of 23 submissions. The papers
were grouped into two categories:

– Model-based testing
– Validation in MDE

Model-based testing

[1] Model-Based Testing of the ERTMS System with SysML and MARTE —
Souha Kamoun and Pierre Boulet: Powerful test specification methodologies are
needed to ensure efficient functional verification of safety critical systems such
as the European Railway Traffic Management System (ERTMS). ERTMS is a
complex railway signaling system featuring hundreds of functional requirements.
The paper presents a model-based test generation technique for ERTMS. The
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technique uses Systems Modeling Language (SysML) as the modeling language,
which is extended with annotations from the UML profile, Modeling and Analysis
of RealTime and Embedded systems (MARTE) for efficient modeling and the
verification of timeliness and probabilistic behavior of ERTMS.

The paper proposes a technique to capture textual requirements by a formal
model and the automatic generation of test scenarios. The requirements dia-
gram captures the textual specifications and the activity diagram serves as the
test model. Test scenarios are specified by sequence diagrams which result from
the transformation of activity diagrams. The automation of the test generation
process provides several benefits to the testers in terms of the time saved and
lowered costs.

[2] Novel Approach to Model-Based Acceptance Testing — Ruth Breu, Joanna
Chimiak-Opoka, and Chris Lenz: This paper presents an approach to creating
model-based acceptance tests. The authors claim that a framework for executable
acceptance tests like Fit/Fitnesse provides valuable concepts for specifying tests
at the business level but does not exploit the potential given by the information
contained in the requirements specification. The paper presents basic concepts,
meta-models and a running example of an executable test framework which
specifies tests in the language of the requirements specification and thus paves
the way for a formal relationship between acceptance tests and the requirements
specification. The approach separates the dynamic and static aspects of the tests
in a rigorous manner.

[3] Automatic Test Generation from Coupled UML Models using Input Parti-
tions — Stephan Weißleder and Bernd-Holger Schlingloff: Partitions of input
ranges for boundary testing are automatically derived from coupled models con-
sisting of UML state machines, class diagrams, and OCL expressions. The paper
presents a test generation algorithm and its implementation, and a case study
that compares the implementation to Rhapsody’s ATG.

[4] Automatic Generation of Test-Cases Using Model Checking for SL/SF Mod-
els — Ambar A. Gadkari, Swarup Mohalik, K.C. Shashidhar, Anand Yeolekar,
J. Suresh, and S. Ramesh: This paper describes the authors’ experience in test
generation using model checking for the Simulink/Stateflow (SL/SF) models of
two automotive controller examples. Model checking based test generation is
non-trivial since the SL/SF models need to be first translated into a formal
language to serve as an input for the model checker tool. Moreover, to handle
the size and complexities of industrial designs, the translation must make use of
various abstractions, yet preserve the semantics of the original model relevant
for test generation. The paper presents an outline of the scheme used for trans-
lating the SL/SF models into a formal language called SAL. Preliminary results
indicate that model checking based test generation in conjunction with suitable
model abstractions can yield better results in terms of coverage and efficiency of
test cases as compared to the conventional approaches based on simulation and
random data generation.
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Validation in MDE

[5] Analysis of Model Transformations via Alloy — Kyriakos Anastasakis, Be-
hzad Bordbar, and Jochen M. Küster: A model transformation automates the
translation of models between a source and a target language. To analyze model
transformations, the authors consider a model transformation specification to
be a special kind of model allowing it to be subjected to existing model analysis
techniques. The paper presents a systematic method of representing declarative
model transformations in a formalism called Alloy. The Alloy analyzer is used
to conduct a fully automated analysis of a model transformation specification
represented in Alloy. The approach is illustrated with the help of an example
model transformation occurring in business process modeling.

[6] Using MDE for Generic Comparison of Views — Bas Graaf and Arie van
Deursen: The paper investigates the application of technologies for model driven
engineering to check the conformance of two software models. This involves
model-based comparison and visualization of the results. To generalize the ap-
proach, reflection, metamodel generalization, and higher-order transformations
are used. The approach is applied to investigate the extent to which the im-
plementation of an academic example system does not violate the constraints
defined by its architectural specification.

[7] Data Verification using Model-Driven Architecture — M. Price, S. Demur-
jian, H. Sen, M. Saleem, and S. Berhe: Model Driven Architecture (MDA)
promotes a process that separates platform-independent abstractions from
software-specific implementations, allowing an abstraction to be reused for multi-
ple implementations. As part of designing a submarine, data requirements of var-
ious applications need to be reconciled in an integrated design and manufacturing
process. As a result, there is a critical need to verify data artifacts that share a
common abstraction basis while differing in forms (alternate measurement sys-
tems), document structures (documents conforming to different schemas), and
orders (XML schemas with similar content and alternate arrangements). A data
verification framework is proposed to semi-automate the comparison of data from
specific implementations that (1) employs UML as an independent abstraction
from which an Excel XML template is generated as a common format, (2) utilizes
XSLT/XQuery to translate application-specific data into Excel XML instances
to create spreadsheets from this common abstraction, and (3) reconciles the re-
sulting instances by executing a differencing script on the generated Excel XML
instances to compare/contrast the data from specific implementations as viewed
from the UML abstraction.

[8] Putting Performance Engineering into Model-Driven Engineering: Model-
Driven Performance Engineering — Mathias Fritzsche and Jendrik Johannes:
Late identification of performance problems can lead to significant additional
development costs. Therefore, it is necessary to address performance in sev-
eral development phases by performing a performance engineering process. The
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paper presents a process that combines MDE and performance engineering called
Model-Driven Performance Engineering (MDPE). The paper also presents the
authors’ preliminary experiences with MDPE.

3 Discussion

The workshop participants discussed several V&V challenges. Currently many
techniques are being proposed for MDE and they are all generally in their in-
fancy. Standardizing MDE techniques may make it easier to address V&V chal-
lenges in MDE.

There is a need for creating modeling languages with formal semantics because
they would lend themselves to different types of analyses. However, there was
also a view that if models become too formal, developers will tend not to use
them. Restrictive languages like Domain Specific Modeling Languages (DSMLs)
may make it easier to use formal techniques.

From the paper presentations, it was clear that more and more research is
focussed on using software requirements for test case generation. Three out of
four papers on model-based testing (1, 2 and 4) highlighted that one major re-
maining challenge for model-based test generation is how to take requirements
into account. Although many test generation approaches focus on design models,
it is also important to consider higher level models, such as requirements mod-
els, for automatic test generation. First, this allows validating the conformance
between the system under test and the initial requirements. Second, this allows
updating the test cases when requirements change during design, development,
or maintenance.

Testing model transformations is a challenging area. The first challenge that
was discussed was how to specify a transformation. Currently it is not clear
how a model transformation can or should be specified. The authors of paper 5
proposed a solution based on a declarative version of the transformation in Alloy,
which allows them to perform a number of verification tasks on the specification.
However, in most cases, the declarative transformation itself is executable and
is used as the transformation. Thus, in those cases, there is no abstraction that
can be used as a specification for verification or test generation.

The second challenge that was discussed was the evolution of transforma-
tions. Model transformations are developed with the intent to be reused in sev-
eral projects. However, in most cases they are reused with slight modifications.
These changes can correspond to changes in the metamodels and to changes in
the targeted platform. Thus, the transformation remains the same for the most
part except a few details that must be validated before the transformation can
be performed. Thus, regression testing and efficient test selection becomes an
important challenge for model transformation testing. It is not clear today if
existing regression test selection techniques can be used or adapted for testing
model transformations.
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4 Conclusions

In summary, this workshop, the fourth in a successful series, has highlighted both
the prominent role and future challenges of V&V in model-driven engineering.
On the problem side, not too surprisingly, model transformations, one corner-
stone of model-driven engineering, require special attention in terms of V&V
approaches. On the solution side, as witnessed by as many as one half of the
accepted contributions, model-based testing appears as a particularly promising
technology that offers many fascinating avenues of research. The breadth of sub-
missions indicates that the field of V&V in model-driven engineering is a highly
active field for researchers and practitioners.

We would like to thank all the program committee members, reviewers, and
participants for a successful workshop. We look forward to the next workshop,
to take place in March 2008.
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Abstract. In this paper, we deal with model-based automatic test gen-
eration. We show how to use UML state machines, UML class diagrams,
and OCL expressions to automatically derive partitions of input para-
meter value ranges for boundary testing. We present a test generation
algorithm and describe an implementation of this algorithm. Finally, we
discuss our approach and compare it to commercial tools.

1 Introduction

Modeling languages like the Unified Modeling language (UML) [7] are widely
used for system development. They are supported by many tools, some of which
also provide model-based automatic generation of test suites [10,22,25]. This is
advantageous compared to conventional test suite generation because the au-
tomation increases the efficiency of the test generation process.

We argue that the current approaches neglect the generation of input parti-
tions. Therefore, we present an approach that is focused on the generation of in-
put partitions from UML state machines and UML class diagrams. It derives test
input value partitions from expressions of both diagrams, e.g. transition guards
or pre-/postconditions of the Object Constraint language (OCL) [6]. The corre-
sponding test suite is focused on detecting errors that result from differences be-
tween constraints in the model and constraints in the system under test (SUT).

The quality of test suites created with partition testing and boundary testing
depends on satisfied coverage criteria and on the adequate selection of partition
boundaries. Usually, the latter is done manually. Therefore, the boundary selec-
tion is error-prone and there is a high probability that the test effectiveness is
low. In contrast to manual selection of input value boundaries, we derive them
automatically from OCL expressions of system models. We statically analyze the
interdependence of OCL expressions within the system model and transform the
model into a transition tree and investigate the tree’s paths. We demonstrate our
approach by the example of a sorting-machine. Compared to other approaches,
the contribution of this paper is a method to generate test cases by evaluating
OCL expressions in postconditions, which are not restricted to equations.

The paper is organized as follows. Sections 2 and 3 contain preliminaries for
this paper and the used example system models. Section 4 contains the inter-
mediate transition tree. The test generation approach is described in Section 5.
Sections 6 to 8 contain evaluation, related work, and summary.
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2 Preliminaries

In this section, we introduce the running example of a sorting machine and
describe the use of partition testing and boundary testing.

2.1 Example: The Sorting-Machine

Here, we briefly introduce our reoccuring example of a sorting-machine. The
context of this machine is a post office where incoming items are wrapped up. Due
to this packing, the original width of the object is doubled by foam plus two extra
size units for each side of a plastic box (m width = (object .width + 2 ) ∗ 2 ). The
height is handled likewise. If wrapped-up items violate the necessary sizes for the
standard shipping container, extra containers are needed. Our sorting-machine’s
task is to sort incoming items depending on the size after their wrapping so that
they fit into given transport containers.

Fig. 1 shows the state machine and class diagram of such a sorting-machine.
The sorting is fragmented into the postcondition of recognize() and in the guard
conditions of the outgoing transitions of state object recognized.

2.2 Partition Testing and Boundary Testing

Partition testing and boundary testing are well-known testing techniques and
are often used together: partitioning test input parameters into value domains
is a prerequisite of focussing tests on the corresponding domain boundaries. As
examples for partition testing we consider control systems for nuclear reactors,
Geo-information systems, or sorting machines. In such cases, the exact values of
boundaries (sticks in reactors, global position of elements, measures of objects)
are important. The corresponding test cases have to contain values that check
even small violations of the derived test input parameter boundary values. We
deal with the automatic test generation for such kind of applications.

Fig. 1. State machine and class diagram for a sorting-machine
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3 The UML Models: Class Diagram and State Machine

Our test generation approach uses UML class diagrams, UML state machines,
and OCL to generate test code. A formalization of UML and OCL has been
given in [6,7]. Subsequently, we recall the definitions that are most important
for our purpose. For an example, consider the sorting-machine given in Fig. 1.

Class Diagram. A class diagram cd = (CLS ,REL) consists of classes CLS and
relations REL between classes. The right part of Fig. 1 shows boxes depicting
classes and arrows depicting relations between them. A class c ∈ CLS contains a
set of attributes AT and a set of operations OP : c = (AT ,OP). Each operation
op ∈ OP has an optional precondition op.pre and an optional postcondition
op.post . The condition op.pre must be met before the op’s execution, op.post
defines the condition that is met after op’s execution.

State Machine. A state machine sm contains a set of regions REG , which in
turn contain a set of vertices VERT and a set of transitions TRS : sm = (REG),
REG = (VERT ,TRS). On the left side of Fig. 1, arrows denote transitions,
which connect vertices. Each vertex v ∈ VERT may possess a name v .sn, a set
of incoming transitions v .INC , a set of outgoing transitions v .OUT , and an
invariant v .inv . Each transition t ∈ TRS has a source vertex t .sv ∈ VERT , a
target vertex t .tv ∈ VERT , an event t .ev , a guard t .guard , and an effect t .ef . We
interpret events ev solely as call events, since in most object-oriented languages
events are realized by operation calls. A guard is a Boolean expression without
side-effects. The effect ef is of type Behavior - in our approach, an operation
call of the associated class (see Fig. 1). The example in Fig. 1 does not comprise
parallelism and, therefore, contains just one region.

Conditions. The conditions COND are Boolean OCL expressions contained
in state machines or class diagrams. They consist of basic predicates like arith-
metic conditions, which are connected by Boolean operators. The elements of the
predicates are used to navigate along association relations between classes. In
Fig. 1, the folded boxes contain OCL expressions. The attached lines show their
assignment to effects of transitions. Furthermore, OCL provides expressions on
operation calls and collections. To check the test result, OCL expressions are
evaluated at run time with respect to the created objects and attributes.

Coupled Models. As shown in Fig. 1, we use models consisting of a pair
of state machine and class diagram. We call such pairs coupled models. They
are connected by references from transitions to operation calls. The constraints
of both models are evaluated together. Navigation along inheritance relations
helps reusing state machines. According to Liskov’s substitution principle [15],
properties of a class also hold for its subclasses. State machines are behavioral
properties of a class. Thus, they can be reused in the subclass of a class (this time
referencing the operations and the attached OCL expressions of the subclass).
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4 Test Case Tree

In this section, we define a finite tree for test case generation. It contains all
necessary information to derive test sequences and test input boundary values. It
simplifies the evaluation because all constraints are ordered according to control
flow information. This approach also allows to use another source model if an
appropriate model transformation is defined.

A Test Case Tree tct consists of nodes NOD and directed arcs ARC :
tct = (NOD ,ARC ). Some nodes reference a state in the state machine. They are
called anchor nodes ANOD . Furthermore, each n ∈ tct .NOD references incom-
ing arcs n.IN , outgoing arcs n.OUT , and contains parameter ranges n.RANGE :
n = (IN ,OUT ,RANGE). n.RANGE maps each input event parameter used on
the path from the root to n to a range of values. Each combination of representa-
tives of these value ranges applied to the current input event sequence parameters
results in reaching n. We focus on the boundary values. The tree’s root is a node
sroot ∈ tct .ANOD with sroot .IN = ∅. For all other states as ∈ NOD it holds
that |as .IN | = 1 . All leaves l are elements of ANOD and satisfy l .OUT = ∅. The
arcs of the tree arc ∈ tct .ARC possess a precondition arc.pre ∈ COND (default:
true), a postcondition arc.post ∈ COND (default: true), and an event arc.ev
parameterized with instances of primitive or abstract data types.

An example for the general structure of a test case tree is shown in Fig. 2.
The tree contains seven nodes connected by arcs. Each arc contains a transition
event, a transition guard, an operation’s precondition, or its postcondition. Each
path leads from sroot to a leaf. All nodes on a path are ordered. So, m ∈ tct .ARC
is a preceding arc of arc n ∈ tct .ARC iff n can be reached from m and n �= m .

Each Test Case corresponds to a path from sroot to a leaf l ∈ ANOD . The
input for a test case is a parameterized operation call sequence corresponding
to the event sequence of the selected path and one representative of each input
parameter range l .RANGE . Expected and actual system behavior are compared
by evaluating the conditions along the path from sroot to l .

Each test case has to satisfy all expressions along its corresponding path. Each
arc of the tree contains just one expression. This allows to form the disjunctive
normal form (DNF) of the contained expressions and split up the containing
arc into several arcs corresponding to the resulting conjunctions. Since this re-
places all complex Boolean expressions with conjunctions, the evaluation of all
expressions of one path is simplified. We describe the generation algorithm of
l .RANGE in Step 2 of section 5.2.

Fig. 2. General structure of a test case tree
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5 Test Generation

This section describes the test generation algorithm. First, a coupled model
is transformed into a test case tree. Then, test input partitions are derived
by categorizing and transforming OCL expressions of the tree. Afterwards, the
algorithm generates concrete test input values from these partitions.

5.1 Classification of Variables in OCL Expressions

In this section, we present a classification of OCL expressions, which is par-
tially similar to the one used in the Leirios methodology [14]. Predicates in
LTG/UML are either active or passive: Only active predicates can alter the
value of attributes, the passive ones can only read. Leirios claims that their
tool LTG/UML [24] can evaluate OCL expressions like pre-/postconditions or
transition guards. They use an operational interpretation of equations in OCL
postconditions. In contrast, our approach is not restricted to equations but can
also evaluate inequations. In future work, we will aim at evaluating more com-
plex operations on collections in OCL postconditions. Additionally, Leirios de-
fines new interpretations for OCL constraints. For instance, in active contexts
of a postcondition the mere equation X = Y is interpreted as an assignment of
the value of Y to X, which can lead to confusions. The OCL specification [6]
does not provide such an interpretation. A corresponding assignment would be
X = Y @pre. In our approach, we stick to the OCL specification without addi-
tional interpretations. To recognize the variables that can change and those that
can not, we provide a classification of the variables in OCL expressions.

Since we focus on the values of input variables, our classification differs from
the one of Leirios: our atomic classification units are variables var . They are
part of an atomic predicate, which is in turn the context predicate of var . Each
predicate consists of variables, relations between them, and operations on them.
We classify the system model’s variables (attributes, input parameters, or con-
stants) and introduce dependent and independent variables. As in LTG/UML,
we assume that variables not stated in postconditions are unchanged.

Subsequently, we define kinds of variables and their mutual relations.

Definition 1 (Independent and Dependent Variables). An independent
variable is either an event input parameter or a constant class attribute. Its value
is constant. A dependent variable is a non-constant class attribute.

We state that a variable var is active or passive depending on var ’s context
predicate. If the context predicate of var is a postcondition and no @pre is
attached to var then the value of var can be changed - it is active. In all other
cases, the value of var can not be changed - var is passive. Fig. 3 shows the
corresponding classification.

Using Definition 1, we are able to describe the dependency between the OCL
expressions along a given path. If an arc a ∈ tct .ARC contains a condition con-
sisting amongst others of a variable var , then a is said to contain var .
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Fig. 3. Active and passive variables

Definition 2 (Next Preceding Arc). Assume, an arc a1 ∈ tct .ARC contains
a dependent passive variable var. Then, the next preceding arc a2 ∈ tct .ARC of
a1 w.r.t. var is a1’s preceding arc that is closest to a1 and contains var as an
active variable. The value of the active variable var at the next preceding arc
corresponds to the value of var at a1.

Definition 3 (Defined Variables). Independent variables are defined. Active
variables are defined if all remaining variables contained in its context predicate
are defined. Each dependent passive variable depvar contained in a condition
cond ∈ COND used in an arc a2 ∈ tct .ARC is defined iff the next preceding arc
a1 ∈ tct .ARC of a2 w.r.t. depvar exists and the corresponding active variable is
defined.

A condition cond used in an arc a2 is defined iff each variable in cond is
defined. The set consisting of cond and all conditions of all next preceding arcs
w.r.t. each dependent variable along the path from the root to a2 is the defined
condition set of cond.

These definitions exclude the existence of two active variables in one atomic
condition. Obviously, variables can be defined in atomic conditions connected by
conjunctions, respectively. Consequently, the presented definitions are applicable
to conjunctions. All conditions in DNF are only connected by conjunctions.
Hence, expressing OCL conditions in DNF is necessary for their evaluation.

Theorem 1 (Reducible Variables). In a defined condition set of a condition,
each included dependent variable can be reduced to independent variables.

Proof. A variable var is defined iff var ’s context predicate of the next pre-
ceding arc nparc w.r.t. var contains only passive defined variables besides the
corresponding active variable var . These variables are dependent or indepen-
dent. Since all variables are defined (Definition 3), such defined variables initvar
can only be dependent as long as there is a next preceding arc w.r.t. initvar .
Otherwise, initvar ’s context predicate in nparc contains only independent vari-
ables. Each outgoing arc oarc ∈ sroot .OUT has no next preceding arc, because
sroot .IN = ∅. Consequently, oarc contains no dependent passive initialized vari-
ables. Since all paths are of finite length, all dependent variables of an defined
condition set depend directly or indirectly on independent variables. ��
For instance, in a postcondition X > X@pre + Z@pre, the values of X and
X@pre are different if Z@pre ≥ 0 . Roughly speaking, we consider X and X@pre
as different variables with different values. X is initialized iff X@pre and Z@pre
are also initialized, which in turn depends on their next preceding arcs. In the
following, we assume that all variables are initialized.
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5.2 Creating the Test Case Tree

The presented algorithm is similar to existing transformation approaches pre-
sented in [2]. Within each step of the transformation, the algorithm evaluates
the OCL expressions of the test case tree tct . We split up the transformation
in two steps: the creation of the test case tree tct in Step 1 and the creation of
input value partitions in Step 2.

Step 1. The algorithm starts at the root sroot of tct and at the state S1 after
the initial pseudostate of the state machine (see Fig. 4). For each t ∈ S1 .OUT ,
we insert a node n1 into tct .NOD and an arc arc1 into tct .ARC , so that
arc1 ∈ sroot .OUT and arc1 ∈ n1 .IN . The triggering event of t and t ’s guard
are attached to arc1 : arc1 .ev = t .ev ; arc1 .pre = t .guard . Subsequently, we in-
sert the new node n2 and the state s into tct .ST and add the arcs arc2 and
arc3 into tct .ARC , so that arc2 ∈ n1 .OUT , arc2 ∈ n2 .IN , arc3 ∈ n2 .OUT ,
and arc3 ∈ s .IN . The conditions of t ’s effect t .ef are assigned to arc2 and
arc3 : arc2 .pre = t .ef .pre and arc3 .post = t .ef .post . We copy sroot .RANGE to
n1 .RANGE , n2 .RANGE , and s .RANGE and let s refer to t ’s target vertex t .tv .

Subsequently, we transform the added expressions into DNF and split up
the test case tree corresponding to the resulting conjunctions (see Fig. 5). This
is reasonable because a path selection is similar to a disjunction. Dealing just
with conjunctions simplifies the evaluation process, because we do not have to
consider dependencies between expressions like in conditioned constraints. For
instance, in if (A) then B else C endif we have to evaluate the value of A before
knowing whether to consider B or C. Fig. 4 shows the creation process for one
transition. It terminates if the transformed transitions form a circle. Although
this process seems to be similar to simple unfolding, the test case tree makes the
test generation algorithm in Step 2 independent of UML. It could be reused for
other formalisms.

Fig. 4. Creation of the test case tree for one transition of the coupled model

Fig. 5. Exemplary transforming an expression in DNF and adapting the test case tree
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Fig. 6. Part of the test case tree for the sorting machine

Fig. 7. Stepwise transformation of the evaluated condition

Step 2. In this step, we evaluate the expressions of each arc ∈ tct .ARC that
was just inserted into the test case tree. Starting from arc’s condition cond ,
we compute the initialized condition set of cond . We use this condition set to
transform the condition cond until it just contains independent variables. The
postconditions of cond ’s initialized condition set are used as the corresponding
transformation rules.

The test generation process identifies the active variables in these postcon-
ditions. The values of active variables depend on the values of passive ones.
Consequently, the conditions on dependent variables can be expressed as con-
ditions on independent variables (see Fig. 3). This results in partitions of the
value ranges of input parameters.

In the example in Fig. 1, we consider a short path from idle via object in-
serted to object evaluated. We insert the postcondition of Selector::recognize()
and evaluate it using the postcondition of Selector::detectItem(). We split up
the postcondition of Selector::recognize() in DNF conjunctions and just consider
the case that m height@pre < 20 is true. Fig. 6 shows a part of the correspond-
ing test case tree. The algorithm transforms m height@pre < 20 by using the
postcondition of the next preceding arc as transformation rule (see Fig. 7).

The transformed condition contains new restrictions for the value ranges of
the input parameter object .height to reach the corresponding target node. Such
new conditions are intersected with n.RANGE , which was created in Step 1.

Creating the Test Cases. To create test cases from the test case tree tct , we
iterate over all leaf nodes l ∈ tct .ANOD. For each leaf l , we create a test input
sequence corresponding to a path from tct ’s root to l and parameterize each
event with representatives of the value range l .RANGE . We use the boundary
testing method [19] to select these representatives: e.g., boundary values, next
inner values, and random values from within the value range. The result is a test
suite that satisfies boundary-based coverage criteria [13]. Expected and actual
system behavior are compared by evaluating all conditions available along the
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path. The resulting test cases comprise just the deducible input partitions of the
variables in our system model (see completeness in [23]).

6 Evaluation of ParTeG

The described algorithm is implemented in the prototype ParTeG (Partition
Test Generator) [18]. This tool is capable of handling arithmetic and Boolean
operations within OCL expressions. The SUT is on the level of source code. In
the current version, the generated test code is a JUnit test suite.

We use the example in Fig. 1 to compare ParTeG with Rhapsody’s ATG
and Leirios’ Test Designer, which are popular tools in the field of automated
test generation. We compare all generated test suites via mutation analysis. For
that, we first define mutation operators to inject errors in the SUT. After that,
we compare the generated test suites of all tools by the amount of killed mutants.
At the end of this section, we discuss advantages and limitations of ParTeG.

Mutation Operators. Since we use mutation testing to compare the generated
test suites, the selection of the mutation operators is critical for the quality of the
comparison. We put emphasis on the recognition of changes to the OCL expres-
sions. Consequently, our mutation operators change such expressions in the SUT.
We define two mutation operators that exchange relation symbols (≤ for < and
≥ for >) respectively shift the boundaries of the conditions by small values like
2 or 6. We combine both mutation operators and receive 24 distinct, identifiable
mutants (3 inequations with 9 mutants each: 4 for shifting boundaries, 5 for also
changing the relation symbol; 3 mutants overall are not distinguishable from the
original). For instance, mutating the inequation m height@pre < 20 results in
the mutated conditions of the SUT that are shown in Fig. 8.

Comparison to Commercial Tools. We modeled the example of Fig. 1 in
Rhapsody’s ATG, in Leirios’ Test Designer, and in ParTeG. The latter two
support all OCL expressions needed for this example. Since ATG is restricted
to the domain of C++ and does not support pre-/postconditions of OCL, we
added all expressions as implementation code to the model.

Rhapsody’s ATG generated 4 loop-free test cases that cover all transitions
but killed only 10 out of 24 mutants (see Fig. 9). Leirios Test Designer also
generated 4 loop-free test cases that cover all transitions and killed 10 of 24
mutants. Interestingly, both sets of killed mutants differ from each other.

Fig. 8. Mutated conditions in the SUT
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Fig. 9. Results of the comparison

ParTeG’s implementation can generate test suites that satisfy different test
criteria like State Coverage [24] and Multi-Dimensional [12]. With minimal
configuration, ParTeG created 5 loop-free test cases overall that killed all 24
mutants. Manual inspection showed that the generated test suite contains no
redundant test cases. For this example, ParTeG killed all mutants with the min-
imum number of loop-free test cases. Higher effectiveness could be reached by,
e.g., concatenating all test cases.

Discussion. The above result shows the prospective strengths of our approach.
Furthermore, there are many interesting points to discuss. For instance, the
effect of a triggered transition can trigger other transitions. Since all events of
state machines are handled in a pool, the triggered event can simply be added to
this pool. Furthermore, the relative completeness of pre-/postconditions strongly
influences the quality of the generated test suite. As any other model-based ap-
proach, our apporoach can only transform expressions into input value partitions
if the model comprises the corresponding dependencies. Another important as-
pect is the effectiveness of our approach. The selected coverage criterion plays an
important role for the overall costs: satisfying All-One-Loop-Paths is definitely
more costly than satisfying All-States. Furthermore, it seems reasonable to com-
bine boundary-based coverage criteria with transition-based coverage criteria.
The size of the modeled systems is another important aspect. Until now, we
have not performed larger case studies. The generation of test suites that satisfy
criteria like All-One-Loop-Paths for state machines with many parallel regions
can exceed the available memory. On the one hand, this might be a problem of
ParTeG’s memory management. However, for future versions of ParTeG we are
planning further improvements. On the other hand, this seems to be a problem
related to the selected coverage criterion: we are currently investigating the im-
pact of the coverage criterion on the size and fault detection capabilities of the
test suite. Since there is no proof that coverage criteria have an impact on the
number of identified faults, the effect of coverage criteria needs to be examined.

7 Related Work

References to model-based testing and partition testing can be found in [1,2,24].
Hierons et al. [9] use conditioned slicing to check given input partitions. Dai et
al. [5] use partition testing and rely on the user to provide input partitions. Our
approach differs in that we create input partitions instead of relying on prede-
fined ones. Legeard, Peureux and Utting [13] develop a method for automated
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boundary testing from the textual languages Z and B based on set-oriented con-
straint technology. They execute all operations with all input boundary values
on each reachable boundary state. In contrast, our approach uses the languages
UML and OCL. It is based on transformations instead of constraint solving.

OCL is object of many studies [17,26]. It can be used for contract-based design,
for which Traon [23] also defines vigilance and diagnosibility but does not use
it for test case generation. Hamie et al. [8] consider OCL in the context of state
machines and classes. Our approach analyzes OCL expressions to automatically
generate test input value partitions.

Formalisms from outside the UML (e.g., extended finite state machines [3,4])
also support automatic test generation but are not designed for object-oriented
systems. Offutt and Abdurazik [16] generate test cases from state machines.
However, they focus on single transitions and random source state initialization
paths. Sokenou [20] alters the initialization by using sequence diagrams. Further-
more, she translates OCL constraints of the model into Java code to use them as
a test oracle. Our algorithm deviates in that we also evaluate OCL constraints
and use them to derive test input value partitions.

To derive test cases, we create an intermediate control-flow tree: the test case
tree. In [11], Kansomkeat and Rivepiboon introduce a Test Flow Graph gener-
ated from a UML statechart diagram. Their generated test suites satisfy state
coverage and transition coverage. In contrast, our tree also contains conditions
from class diagrams; the nodes contain input value boundaries. This allows to
generate test suites that also satisfy boundary-based coverage criteria.

Many commercial tools support testing. The Conformiq Test Generator [25]
supports parallelism and concurrency in UML state machines but input values
are created manually. The algorithm of the tool AETG [21] also depends on
user-defined values and boundaries. In contrast, we derive input partitions au-
tomatically. The tool Rhapsody ATG [22] is based on UML state machines. It
generates and executes test cases with respect to coverage criteria like MC/DC.
The tool LTG/UML [24] from Leirios [14] evaluates OCL expressions to generate
test cases. It interprets equations in postconditions as assignments, which allows
to perform a symbolic execution of the model. In contrast to that, our approach
is not restricted to active equations but can also evaluate active inequations in
OCL postconditions. In future work, we also aim at evaluating more complex ac-
tive OCL expressions in OCL postconditions. To our knowledge, no commercial
tool creates test cases by explicitely deriving input partitions from conditions.

8 Conclusion and Future Work

In this paper, we used UML state machines and class diagrams to derive test
input partitions automatically. We pointed out the importance of partition test-
ing when dealing with numeric data, named application fields, and showed the
potential of our approach with a prototype. In the future, we will evaluate a
broader range of constraints in OCL postconditions, and we will use our method
in the domain of Geo-information systems. We will also examine the satisfied
coverage criteria of the generated test suite and, if necessary, define new ones.
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Abstract. Late identification of performance problems can lead to sig-
nificant additional development costs. Hence, it is necessary to address
performance in several development phases by performing a performance
engineering process. We show that Model-Driven Engineering (MDE)
specifics can be utilised for performance engineering. Therefore, we pro-
pose a process combining MDE and performance engineering called
Model-Driven Performance Engineering (MDPE).

Additionally we present our first experiences in application of MDPE
concepts.

1 Introduction

Usability of software applications is highly dependent on how the resulting soft-
ware system performs and if the resulting software fulfils performance related
requirements. A software’s performance, which is defined as “the degree to which
an application or component meets its objectives for timelines” [1], is however
seldom analysed before the actual system is implemented and performance of
the running system can be measured.

Examples like the development of the Information System for the German
Police called “Inpol-Neu” [2], which was published in the mass-media, show that
addressing performance in a late phase of software development can lead to sig-
nificant additional development effort. ”Inpol-Neu” was planned to go productive
in spring 2001. End of 2001, performance tests for the integrated system indi-
cated that the system was not able to fulfil performance-related requirements.
A reduced version of “Inpol-Neu” went live at 18th August 2003. The example
of “Inpol-Neu” indicates the importance of addressing the performance of an
integrated application throughout the whole development lifecycle.

Earlier performance analysis can be done through performance engineering,
which is not well integrated into most software development processes. This
paper investigates how to improve the integration of performance engineering
into the development process of complex software applications. It argues that by
moving from Code-Centric Development (CCD) to Model-Driven Engineering
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(MDE) many of the causes for poor integration of performance engineering can
be prevented. Based on this observation, it proposes an extension of MDE that
we call Model-Driven Performance Engineering (MDPE).

The paper is structured as follows: Section 2 reviews performance engineer-
ing techniques for CCD and delineates extended possibilities of performance
engineering by utilisation of MDE. Following these observations, we propose a
Model-Driven Performance Engineering (MDPE) process in Section 3. Section 4
summarises first experiences of applying MDPE and introduces a tool architec-
ture for future implementations. Section 5 compares our approach with related
concepts and highlights its unique properties.

2 Background

This section provides a comparison of extending both Code-Centric Development
(CCD) and Model-Driven Engineering (MDE) with performance engineering.

2.1 Extending Code-Centric Development with Performance
Engineering

Different established performance analysis techniques like Queuing Networks
[3], Layered Queuing Networks [4], Queuing Petri Nets [5], and FMC-QE [6] use
formal performance models for performance predictions. Other approaches for
evaluation are simulation-based [7], where models of a system are executed in a
simulation.

It is evident that performance prediction at design time requires analysis
models defining the structure and behaviour of the analysed system, resource
requirements, branch probabilities, and details about factors due to contention
of resources. Semi-formal models are commonly used in CCD, but mainly to
support human understanding, communication, and documentation of a system.
Therefore CCD requires models only to be sufficient to support human interpre-
tation. They are not used as development artefacts for forward engineering from
models to executable code.

In more detail, a semi-formal specification of models makes tool support in
terms of transformations, consistency checks, and repository functionality diffi-
cult. Therefore, models in CCD are not kept in sync after the code is implemented
or the system is refined and are thrown away. Analysis models for performance,
design models, and code have to be developed separately using specific knowl-
edge about performance modelling concepts like the Queuing Theory. Therefore
these approaches are rarely used in industrial projects.

In terms of performance, a “fix it later approach” is commonly used for CCD
as described in [1] and [8]. This can lead to significant correction costs as seen
on the example of “Inpol-Neu”. This is supported by our experience with SAP’s
development lifecycle called Product Innovation Lifecycle (PIL) [9]. SAP’s PIL
mainly addresses performance in early phases of requirement specification and
after integration of already implemented components. Performance predictions
in intermediate stages of the development process are not performed.
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We claim that this is because performance engineering solutions for CCD are
not minimally intrusive in terms of missing automation and of missing formalisa-
tion: it is necessary to explicitly define models for performance engineering. This
requires additional investment and performance engineering expertise that in-
dustry is not willing to provide. The next section argues that the same problems
can be avoided by utilisation of MDE.

2.2 Extending Model-Driven Engineering with Performance
Engineering

In MDE, a formalisation of modelling enables the usage of models as develop-
ment artefacts in forward engineering from models to executable code. Modelling
languages for development models1 are formally defined with the help of meta
modelling languages such as MOF [10]. This makes models machine-readable,
which enables broad tool support as provided by the Eclipse Modelling Frame-
work (EMF) [11] or SAP’s Modelling Infrastructure MOIN [12].

Such tools offer automated transformation between models of different ab-
stractions, between models specifying different view points, or from highly de-
tailed models to platform specific code. Through this, different development
artefacts can be kept in sync, saving effort and shifting effort from coding to
modelling. By using transformations, performance models based on develop-
ment models of different stages of refinement can be generated and performance
engineering for each of these refinement stages becomes possible without much
additional effort. This effort does not focus on modelling itself, but on annotat-
ing of separately defined performance information—like specification of resource
requirements on already existing structural and behavioural models.

Based on these observations, the following section proposes an extended MDE
process: Model-Driven Performance Engineering (MDPE).

3 Model-Driven Performance Engineering (MDPE)

The requirement of a short time to market in combination with an increasing
complexity of software systems calls for a reasonable performance engineering
process that utilise features of MDE as argued in Sect. 2. A solution that provides
a high degree of automation is required to handle big and complex models of
enterprise software. The flexibility in MDE wrt. different levels of abstraction and
models of different domains, calls for a similar flexible solution for performance
engineering. Earlier initial performance feedback with minimal effort should be
supported as well as maximal performance feedback with extended (but still cost-
efficient) effort. Such stepwise feedback should be given at any stage over the
whole development lifecycle. To meet these requirements we propose a solution
which is based on the Software Performance Engineering (SPE) [1] approach
and utilises MDE specifics.
1 We use the term development model in this paper to distinguish between models as

development artefacts and formal performance models.
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SPE integrates different steps of performance engineering repeatedly at differ-
ent stages of the development process. The idea is to generate early performance
feedback; starting at the stage of requirement analysis. SPE is a stepwise process
that distinguishes two kinds of performance models, a Software Execution model
and a System Execution model.

The first one is represented in an execution graph [1]. This graph is a flow
graph extended with resource demands and branching probabilities. It enables
analysis in the absence of delays because of factors due to contention for re-
sources like multiple users. Results of the analysis are the mean, best-case, and
worst-case response time. The System Execution model is based on the Software
Execution model extended with details about contention for resources (like de-
ployment information and multi-user scenarios). The model can be represented
as a Queuing Network [1]. The output of the analysis of this more complex per-
formance model is the prediction of the utilisation of resources and detailed a
performance prediction such as identification of bottle necks. Additionally, SPE
includes the specification of patterns and anti-patterns for software architectures
to minimise poor architectural decisions from a performance perspective [1,13].

Fig. 1 delineates our idea of MDPE which is based on SPE but utilises specifics
of MDE. The proposed process is an extension of MDE which enables SPE-
like performance engineering by utilisation of MDE concepts as described in
Sect. 2. In comparison to related approaches utilising model driven techniques
[14,15,16,17], our approach enables stepwise performance feedback which can be
repeated at different stages of refinement in a MDE process.

In MDPE, performance analysis is performed at each refinement step of the
MDE process. Each time, performance feedback can be produced stepwise. Thus,
we take two orthogonal dimensions of refinement in MDPE into account: One
dimension to refine the performance models, and another dimension to refine
the development models in a traditional MDE process.

Initial automated performance feedback is based on structural information
from development models only (cf. Static Model Analysis in Fig. 1). This feed-
back will include the identification of performance anti-patterns and identifica-
tion of model-based performance metrics to enable comparability of models from
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the performance perspective. An example of a simple model-based performance
metric is the number of actions in a UML activity diagram.

The next analysis steps are based on performance analysis models. These can
be derived from development models by enriching them with additional perfor-
mance related information which requires involvement of the user. Following the
concept of SPE, we distinguish between two kinds of performance models:

The Initial Performance Analysis Model is derived from development mod-
els enriched with the resource demands of actions and probabilities of branches
in behavioural models. The computation of this model is simple. Only resource
demands under consideration of branch probabilities have to be added. This sim-
ple analysis enables Initial Performance Prediction which includes declaration of
the mean, best-case, and worst-case response time. Initial Performance Analysis
Models are conceptually the same as Software Execution Models in SPE.

The Extended Performance Analysis Model is comparable to a System Execu-
tion Model in SPE. It is a further enriched Initial Performance Analysis Model,
annotated with information about contention for resources. The Extended Per-
formance Prediction based on this model enables more precise results. Addition-
ally, resource utilisation can be prognosticated. The price for these more detailed
results is a more complex analysis.

Dependent on the size, characteristics and domains of the modelled system,
different simulative or analytical evaluation techniques will be necessary to take
factors due to contention of resources into account and to minimise possible fail-
ures in performance prediction. Therefore it is planned to evaluate performance
based on Extended Performance Analysis Models by using different concepts
and tools. For the implementation of this approach we require the definition of
a Tool-Independent Performance Analysis Model like KLAPER [19]. This model
will be the basis for several Tool-Specific Performance Analysis Models taking
tool-specific information into account.

The next section describes our first experiences with using MDPE concepts
to identify requirements for an implementation of the proposed process.

4 Initial Experiences and Future Work

To gain experience and to identify the challenges in MDPE, we attempt to di-
rectly derive a Tool Specific Performance Analysis Model from a development
model. Since we target to build on standard (and, if possible, open-source) MDE
tooling, we base our implementation on the Eclipse Modelling Framework (EMF)
[11]. As a concrete Scenario, we choose an UML Activity Diagram as the devel-
opment model and an AnyLogic [20] simulation model as the performance model.
Transformations are formulated in the ATL [21] model transformation language.

These choices have practical reasons: 1) UML is one of the most popular mod-
elling languages and has good tool support for creating models. In the concrete
example we were able to rely on EMF-based open-source tooling only (Eclipse
UML2 Project [22] and TOPCASED editors [23]). 2) AnyLogic is a simulation
tool which supports the creation of graphical representations of simulations and
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do on-the-fly analysis by simulation. This is suitable for first experimentations.
3) ATL was chosen, because it is the standard transformation language for EMF
models.

First, we required means to enrich the UML diagram with performance in-
formation. To this end, we decided to use the UML profile for schedulability,
performance, and time specification (SPT) [24]. In this profile, the stereotype
PStep with a set of tagged values is defined. It can be annotated to a vari-
ety of UML elements. In our experimentation we only used the tagged values
HostExecutionDemand, Repetition, and Probability.

Figure 2 displays an UML activity diagram where all actions have been anno-
tated with a HostExecutionDemand—indicating their mean duration. The initial
node was annotated with a Repetition value for the arrival rate. Each of the
control flows from the decision node are annotated with a Probability value.

Second, we determined that the simplest analysis we could do is “running” the
activity diagram in a simulation. In AnyLogic, we modelled a library of elements
that correspond to activity diagram elements: We defined their semantics with
respect to the simulation and gave graphical representations to make it easy for
the developer to relate the simulation to the original diagram.

The AnyLogic library elements representing actions, decision, initial, and final
nodes can be seen in Figure 3. The bar in front of an action represents the queue
of unprocessed signals at the current simulation timestamp. A bar at a final node
indicates the amount of arrived signals at the current simulation timestamp. An
action that is currently active is filled.

Third, as the most challenging step, a transformation was written in ATL.
It was expected that the transformation is straightforward, since we have made

Fig. 2. An UML activity diagram Fig. 3. A derived AnyLogic transformation
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the required types of UML model elements available in AnyLogic through the
provided library. However, it proved to be non-trivial to provide a complete
transformation. The resulting transformation consists of 750 lines of ATL code,
which are all hand-written. The implementation, together with example models
and a detailed description of the example was released on the ATL Use Cases
web page2.

The simulation model from Figure 3 was created by the transformation with-
out additional efforts. The figure shows the simulation running at a concrete
timestamp (3108 time units have passed). A possible bottleneck of the system
can be observed by monitoring the simulation: the queue in front of the Success
action is growing but never shrinking.

In the following we discuss observations we made by creating this first imple-
mentation and their consequences for an MDPE tool architecture. This archi-
tecture is sketched in Fig. 4 and will be explained in the next sections.
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Fig. 4. MDPE Tool Architecture

4.1 Abstraction

One of the main benefits of MDPE is early performance prediction. That is, run-
ning analysis on abstract system definitions early in the development process.
While such abstract models are machine-readable because they conform syntac-
tically to their metamodel, they are not formal in the sense of having complete
semantics. This raises conceptual and technical issues: On the conceptual side,
we have to assure that we end up with a performance model that is not only
syntactically correct, but also makes sense wrt. the analysis semantics. While
some information gaps are filled with the additional performance information,
these might not always be sufficient to run an analysis. Sometimes, analysis tools
need additional parameters which can be derived by other means (e.g., setting
them to a standard value, when it is considered harmless). Such information

2 http://www.eclipse.org/m2m/atl/usecases
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often cross-cuts the whole performance model. Practically, this is often the case
in the transformation to AnyLogic. As a consequence, static information had
to be repeatedly inserted at different points in the transformation. It would be
desirable to separate this information into model fragments formulated in the
analysis formalism and then weave them into the transformation result using
Aspect-Oriented Modelling techniques (cf. lower right corner of Fig. 4).

4.2 Location and Definition of Performance Information

In the example we applied a profile to add performance information to the UML
model directly. While that is a valid approach when UML is used to do per-
formance modelling3, the UML models handled are development models of our
systems. Thus adding the performance information there pollutes the model with
additional information that is of little value for the ongoing MDE design process.

Thus, this information should be added to the Initial and Extended Perfor-
mance Analysis Models only (cf. Fig. 1). For these models we plan to develop a
metamodel—not from scratch, but based on an existing work. Parts from UML
together with the SPT profile [24] are a promising candidate to build on.

Since one of our aims is to let the software modeller do analysis without con-
sulting performance engineering experts, the provision of performance informa-
tion should be tool-supported and automated as much as possible. Consequently,
we do not plan to provide a graphical editor for our performance models. They
should rather be produced from development models and automatically acquired
or user defined performance data. For the last case we anticipate providing tool-
guidance for developers by providing wizards or similar means (cf. upper middle
of Fig. 4). This user interface should offer extension points to integrate with per-
formance data sources (e.g., collected performance data from experiences in a
company). In some cases, it might be useful to integrate with MDE and analysis
GUIs if possible, since it is an easy way to give better feedback to the user (cf.
upper part of Fig. 4). For instance, observing an actual running simulation in
AnyLogic and getting a visualisation of relations to the development model can
leverage understanding of analysis results for non-performance experts.

4.3 Structural Discrepancies

In the example, the analysis formalism was easily aligned with activity diagrams
(by providing an AnyLogic library). Such correspondences between development
and performance model elements might not always exist. It is not clear if this
is a problem. Missing correspondences might also indicate that useful analysis
can not be done in this combination. Nevertheless, we have to keep this in mind
when designing a tool-independent performance metamodel, because it aims at
combining arbitrary MDE formalisms with arbitrary performance engineering
formalisms. It is clear that not all MDE models are useful for MDPE (e.g.,
static UML class diagrams without attached behaviour). But there is a subset
of MDE formalisms which should be supported.
3 UML can be used for performance modelling by applying one of the standardised

profiles SPT [24] or MARTE [25].
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4.4 Transformation and Synchronisation

Our experience with providing a single ATL transformation has shown that the
definition of the relationships between formalisms is not a trivial task and that
it is difficult to ensure stable and complete transformations using this “single
transformation” approach. Additionally, it is often required to not only trans-
form, but update already transformed models, which is very important when
refining models based on analysis results. Thus, a synchronisation mechanism
is needed. In particular between development and performance analysis models,
since structural changes, caused by analysis results, should reflect automatically
on the design (cf. lower left corner of Fig. 4). Synchronisation between the tool-
independent and tool-dependant performance models is also useful when the
model structure can be changed directly in the analysis tool, which can be done,
for instance, in AnyLogic (cf. lower right corner of Fig. 4). However, the analysis
engines can also be hidden. The results they deliver have to be analysed, for
instance by anti-pattern matching, to propose structural changes to the mod-
eller (cf. upper middle of Fig. 4). Another related issue is versioning of models.
It is required to run subsequent analysis on altered models, compare them, and
choose the best design.

Some issues could be addressed by using additional features of ATL like sev-
eral input and output models and high-level transformations. The ATL based
tool Atlas Model Weaver (AMW) [26] could help with the synchronisation issue,
since it allows the definition of relationships between models and the automatic
generation of ATL transformation for both directions. Application of the Epsilon
Platform [27] that supports several model-managing tasks is also considered. An-
other promising approach is Triple Graph Grammars [28] which offers solutions
to incremental model synchronisation. We are in contact with researchers and
developers of all the mentioned approaches. Some of us are involved in the devel-
opment of the Reuseware Composition Framework [29,30] which is momentarily
extended for aspect-oriented modelling and could also be applied for tasks in
MDPE. It has yet to be decided which transformation and synchronisation tech-
nologies should be used. MDPE is definitely a good application and use-case for
several of these technologies. Thus, our work will also contribute to this area.

5 Related Work

Current ideas in combining MDE and performance engineering are addressing
different aspects. Various authors, e.g. [14,15] propose use of transformations for
generating performance models from annotated UML models in an automatic
way. For instance [17], depicts how to map definitions of composite processes
specified in Business Process Execution Language (BPEL) [31].

In [19] a language, called KLAPER, for performance models is proposed which
is independent of the performance analysis technique like Queuing Petri Nets or
Layered Queuing Models. Such a language simplifies performance evaluation of
the same development models with the help of different performance analysis
techniques.
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In [16] a process that combines Model-Driven techniques and performance
engineering is introduced which is called Software Performance Model-Driven
Architecture (SPMDA). The SPMDA approach enables two kinds of perfor-
mance models which are transformed from two fixed refinement steps into a
Model-Driven Process. According to this, SPMDA does not enable stepwise per-
formance engineering in terms of providing stepwise performance feedback for
each refinement step in the development process.

To enable a minimally intrusive solution, it is not only necessary to automate
generation of performance models, it is also important that a modeller can de-
cide how much effort he invests in performance engineering. Therefore, we require
stepwise performance feedback for each refinement step in a development process
which includes earlier initial (maximal) performance feedback with minimal (ex-
tended) effort as shown for the Code Centric performance engineering approach.

The MDPE approach is based on SPE concepts. As in SPE the approach is
stepwise by combining identification of anti-patterns for performance and differ-
ent kinds of performance models. The approach is also usable for different stages
in a development process to provide performance feedback throughout the whole
development lifecycle. In comparison to SPE a high degree of automation can be
reached because MDPE is based on formal development models with extensive
tool support. This allows, for instance, automated generation of different Tool Spe-
cific Performance Analysis Models to minimise failures in performance prediction.

6 Conclusion

In this paper we proposed to extend Mode-Driven Engineering to Model-Driven
Performance Engineering. This approach utilises Mode-Driven techniques to en-
able stepwise performance feedback. This includes earlier initial (maximal) per-
formance feedback with minimal (extended) effort. The approach is repeatable
at different stages of refinement in a Mode-Driven Engineering process. MDPE
is applicable if behaviour models of the system are available on abstraction levels
where performance data can be defined based on experiences or measurements on
existing systems. As a consequence, the possibility of performing early analysis
could increase the acceptance of behavioural modelling in a MDE process.

We clarified that putting this process into industrial practices requires tools
with high automation. Our first experiments identified requirements for such a
tool architecture which we will continue to evolve and improve. For instance, a
synchronisation mechanism between different development and analysis models
is required to adequately integrate analysis results into the development process.
To define transformations to analysis models, the semantics of the development
models have to be clearer than they often are in traditional MDE processes.
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Abstract. This year’s OCL workshop at the MODELS conference
looked out to usages of OCL outside the direct context of UML or beyond
the capabilities of standard OCL. It was a very interesting and successful
workshop, which apart from the presentation of 10 papers a lively dis-
cussion on various topics surround current usage of OCL was held. Six
main topics recurred throughout the discussions: (1) Means and uses of
transformation to other languages, (2) Support for side-effects and exe-
cutability, (3) Continuing need for OCL, (4) Providing extensions to the
standard, (5) Platform independence of the language, (6) Formality of
the language. This summary report presents the results of the workshop
and the discussions.

1 Introduction

Ocl4All (2007) is the seventh UML/MODELS workshop on the Object Con-
straint Language (OCL). As with its previous editions, this year’s OCL
workshop has been held under a specific theme: Using OCL in an extended
system-modelling context. Since the inception of OCL, the world of modelling
has changed. While the Unified Modelling Language (UML) is still of great im-
portance, many software-development projects use other, often so-called domain-
specific languages for their models. In this situation, OCL must go beyond its
tight connection to UML or it must eventually fail. And, indeed, we see a strong
movement for extensions of OCL that bring it beyond its original concepts both
in its relation to UML and in the basic principles underlying the language. At
the same time, the current OCL 2.0 standard already spans some 230 pages
making it quite hard to ensure consistency both in the standard and in its im-
plementations. Therefore, the OCL community needs to start looking for ways
of systematically modularising and extending the language. The 2007 issue of
the OCL workshop aimed to discuss cases of using OCL outside of UML, prob-
lems encountered and solutions proposed. The workshop was very lively, in a
mixture of presentations and discussions. Out of a submitted 14 papers, 10 were

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 176–181, 2008.
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accepted. The accepted papers have been published in a special edition of Elec-
tronic Communications of the EASST, an on-line journal [1]. In this workshop
summary, we first present a short overview of the papers and then go on to the
main points of discussion and the conclusions reached at the workshop.

2 Workshop Papers

Here, we give a short overview for each paper taken from the abstracts provided
by the authors.

2.1 William Robinson: Extended OCL for Goal Monitoring [2]

Monitoring human-computer interaction aids the analysis for understanding how
well software meets its purpose. In particular, monitoring human-computer inter-
actions with respect to a users goal model helps to determine user satisfaction.
By formalizing a goal model, runtime monitors can be automatically derived.
The REQMON system monitors the satisfaction of goal models. Recently, an
OCL compiler was developed for REQMON. The OCL was extended slightly
to address temporal and real-time constraints. Now, goal models can be repre-
sented in the extended OCL, from which runtime monitors can be compiled. The
resulting REQMON system appears to be easier to use.

2.2 Pierre Kelsen et al.: Specifying Executable Platform-
Independent Models Using OCL [3]

Model-driven architecture aims at describing a system using a platform-indepen-
dent model in sufficient detail so that the full implementation of the system
can be generated from this model and a platform model. This implies that the
platform-independent model must describe the static structure as well as the dy-
namic behavior of the system. We propose a declarative language for describing
the behavior of platform-independent models based on a hybrid notation that
uses graphical elements as well as textual elements in the form of OCL code
snippets. Compared to existing approaches based on action languages it is situ-
ated at a higher level of abstraction and, through a clean separation of modifier
operations and query operations, simplifies the comprehension of the behavioral
aspects of the platform-independent system.

2.3 Ke Jiang et al.: Using OCL in Executable UML [4]

Executable UML allows precisely describing the software system at a higher
level of abstraction. The executable models can be translated to a less abstract
programming language completely or executed directly. Object Constraint Lan-
guage (OCL), as a formal specification language, is a standard published along
with UML. It is primitively used to describe constraints for UML models. In this
paper, we explore some general features of executable UML and propose using
OCL in executable UML. We extend OCL to support actions with side-effect in
order to precisely model behavior. We also discuss some open issues.
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2.4 David Akehurst et al.: OCL: Modularising the Language [5]

The Object Constraint Language (OCL) was originally designed as an ‘add-
on’ to the Unified Modelling Language (UML) in order to facilitate writing
textual constraints complementing the graphical specifications. Since its original
standardisation many extensions have been added to the language and many
more have been proposed. The original structure of the OCL definition has not
been formed, however, with a view of extensibility. Still, OCL can be redesigned
in such a manner that it becomes easy to extend the language. In this paper we
present a modular redefinition of OCL and illustrate how it supports extension.
This new approach to the design of OCL enables you to consistently extend or
customise OCL to your own needs.

2.5 Mirco Kuhlmann et al.: Analyzing Semantic Properties of OCL
Operations by Uncovering Interoperational Relationships [6]

The OCL (Object Constraint Language) as part of the UML (Unified Modeling
Language) is a rich language with different collection kinds (sets, multi-sets,
sequences) and a large variety of operations defined thereon. Without negating
the strong correlation between both fields we can say that these operations have
their origin partly in logic (like the operations forAll and exists) and partly
in computer science, in particular database systems (like the operation select).
Some of these operations may be expressed in terms of other operations. This
paper presents a systematic study of relationships which hold between OCL
features like the mentioned operations. Apart from presenting the relationships
between operations in a conceptual way, the relationships are described by a
formal metamodel allowing systematic and computer supported access to the
operation relationships by querying an underlying formal description.

2.6 David Akehurst et al.: C# 3.0 Makes OCL Redundant! [7]

Other than its ‘platform independence’ the major advantages of OCL over tradi-
tional Object Oriented programming languages has been the declarative nature
of the language, its powerful navigation facility via the iteration operations, and
the availability of tuples as a first class concept. The recent offering from Mi-
crosoft of the “Orcas” version of Visual Studio with C# 3.0 and the Linq library
provides functionality almost identical to that of OCL. This paper examines and
evaluates the controversial thesis that, as a result of C# 3.0, OCL is essentially
redundant, having been superseded by the incorporation of its advantageous
features into a mainstream programming language.

2.7 Milan Milanović et al.: Sharing OCL Constraints by Using Web
Rules [8]

This paper presents an MDE-based approach to interchanging rules between the
Object Constraint Language (OCL) and REWERSE I1 Rule Markup Language



7th International Workshop on Ocl4All: Modelling Systems with OCL 179

(R2ML). The R2ML tends to be a standard rule markup language by following
up the W3C initiative for Rule Interchange Format (RIF). The main benefit
of this approach is that the transformations between languages are completely
based on the languages’ abstract syntax (i.e., metamodels) and in this way we
keep the focus on the language concepts rather than on technical issues caused
by different concrete syntax. In the current implementation, we have supported
translation of the OCL invariants into the R2ML integrity rules. While most of
the OCL expression could be represented in the R2ML and other rule languages,
we have also identified that collection operators could only be partially supported
in other rule languages (e.g., SWRL).

2.8 Florian Heidenreich et al.: A Framework for Generating Query
Language Code from OCL Invariants [9]

The semantical integrity of business data is of great importance for the im-
plementation of business applications. Model-Driven Software Development
(MDSD) allows for specifying the relevant domain concepts, their interrelations
and their concise semantics using a plethora of modelling languages. Since model
transformations enable an automatic mapping of platform independent models
(PIMs) to platform specific models (PSMs) and code, it is reasonable to utilise
them to derive data schemas and integrity rules for business applications. Most
current approaches only focus on transforming structural descriptions of soft-
ware systems while semantical specifications are neglected. However, to preserve
also the semantical integrity rules we propose a Query Code Generation Frame-
work that enables Model-Driven Integrity Engineering. This framework allows
for mapping UML models to arbitrary data schemas and for mapping OCL in-
variants to sentences in corresponding declarative query languages, enforcing
semantical data integrity on implementation level. This supersedes the manual
translation of integrity constraints and, thus, decreases development costs while
increasing software quality.

2.9 Matthias Bräurer et al.: Model-Level Integration of the OCL
Standard Library Using a Pivot Model with Generics Support
[10]

OCL 2.0 specifies a standard library of predefined types and associated oper-
ations. A model-level representation of the library is required to reference its
elements within the abstract syntax model created by an OCL parser. Existing
OCL engines build this model in the implementation code which severely limits
reusability, flexibility and maintainability. To address these problems, we show
how a common pivot model with explicit support for template types can help to
externalize the definition of the standard library and integrate it with instances
of arbitrary domain-specific modeling languages. We exemplify the feasibility of
our approach with a prototypical implementation for the Dresden OCL2 Toolkit
and present a tailored EMF editor for modeling the OCL types and operations.
We limit our discussion to the model level, i.e., we do not consider an implemen-
tation of the standard library for an execution engine.
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2.10 Emine Aydal: Evaluation of OCL for Large-Scale Modelling: A
Different View of the Mondex Smart Card Application [11]

OCL is used to add rigour to UML/MOF models, and in particular can be used
to express behavioural details (e.g., operation pre- and postconditions, class
invariants) of such models. The applicability and utility of OCL can be assessed
by applying it to realistic applications and by investigating its capabilities both
in terms of language characteristics and tool support. With this in mind, in this
paper we model functional requirements for the Mondex Smart Card Application
using UML Diagrams, demonstrate how system invariants as well as operation
pre- and post-conditions are specified in OCL, and explore the degree to which
OCL tool support can be used to create and validate these models. Moreover, we
discuss how these pre- and post-conditions can be validated, in part by discussing
how test cases can be selected from the OCL specifications created.

3 Workshop Discussions

There were a number of recurring topics that occurred throughout the presen-
tations and discussion of the workshop: (1) Transformation to other languages,
(2) Support for side-effects and executability, (3) Is OCL redundant, (4) Pro-
viding extensions to the standard, (5) Platform independence, (6) Is it a formal
language?

The transformation of OCL to other languages was directly raised in two
papers [8,9] regarding the conversion to web rule languages and to SQL. Open
world vs closed world assumptions was a distinguishing point between these two
papers. The SQL paper stayed in a semantics with closed world assumption
whilst the web rule paper switched to open world. OCL uses a closed world
assumption therefore translating to an open world language causes problems in
particular with negations.

There was extensive discussion on whether OCL should support side-effects.
This related to other discussions on making OCL more easily extensible so that
side-effect concepts (amongst others) can be added if required. There was clear
agreement that OCL is currently intended to be side-effect free. The discussion
took two directions, one regarding whether or not it would be useful and the
other on potential problems it would cause. There was no agreement on whether
it would be useful; the main argument for side-effect was the goal of full code
generation, however the counter argument revolved around OCL being declara-
tive and not focusing on implementation. Potential problems were discussed in
the areas of object identity, query operations and local let expressions.

Triggered by paper [7], discussion occurred on the potential redundancy of
OCL in the context of other programming languages such as C# and Ruby,
which support some of the same features. The main two arguments in favour
of OCL were the potential for verification and validation support and the small
size of OCL.

Many papers discussed extensions to OCL [2,3,4] and there was common
agreement that a standard mechanism for enabling these extensions to be clearly
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and easily defined was required. This is related to other discussions and papers on
redefining the OCL standard in a more modular fashion. There were two papers
that discussed the requirements for the OCL standard library to be replaceable
[5,10].

The question of whether OCL is platform independent was discussed. This
related to discussion on translating OCL to other languages and issues about
the standard library. No definitive conclusion was reached.

Finally a long discussion was held on whether OCL is a formal language. The
discussion mainly revolved around the provision of a formal semantics for OCL.
Past work has provided a formal semantics for parts of and different versions of
OCL. The current standard certainly does not provide a full formal semantics.
Thus we agreed that OCL is a semi-formal language as it is currently defined.
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Abstract. OCL 2.0 specifies a standard library of predefined types and
associated operations. A model-level representation of the library is re-
quired to reference its elements within the abstract syntax model created
by an OCL parser. Existing OCL engines build this model in the imple-
mentation code which severely limits reusability, flexibility and main-
tainability. To address these problems, we show how a common pivot
model with explicit support for template types can help to externalize
the definition of the standard library and integrate it with instances of
arbitrary domain-specific modeling languages. We exemplify the feasibil-
ity of our approach with a prototypical implementation for the Dresden
OCL2 Toolkit and present a tailored EMF editor for modeling the OCL
types and operations. We limit our discussion to the model level, i.e.,
we do not consider an implementation of the standard library for an
execution engine.

1 Introduction

The Object Constraint Language (OCL) [1] specifies a standard library of types
and associated operations. This includes primitive types such as Integer or
String, collection types like Set or Bag as well as a number of special types
which are important for the OCL type system (OclAny, OclVoid, and OclType).
Among the predefined operations on these types are arithmetic, boolean and set-
theoretic operations. All types in the standard library are instances of abstract
syntax classes. These are located one level above the type definitions in the four-
layered meta hierarchy of the OMG MOF architecture [2]. Since OCL allows
querying of both metamodels and models, the standard types exist either on the
M2 or the M1 layer.

Now, when building the abstract syntax model from a textual OCL expression,
an OCL parser needs to have access to the elements of the standard library. This
is necessary, for instance, to properly locate operations defined for the implicit
supertype OclAny or to create user-defined collection and tuple types. Existing
OCL engines, such as the current release of the Dresden OCL2 Toolkit [3] or the
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Kent OCL Library [4], usually build an internal representation of the standard
library programmatically, e.g, using the API of a model repository.

Hiding the structure of the standard library inside the implementation code
of the engine triggers a number of problems. First, the reusability of the library
definition is severely impaired, because it is tied to a particular implementa-
tion language and platform. Porting the OCL engine to another programming
language thus requires an entire rewrite of the code that creates the library. Sec-
ond, the flexibility of the “in-code” approach is relatively low, because the model
of the standard library cannot conveniently be validated, altered, extended, or
modularized. This is disadvantageous if the underlying execution platform (i.e.,
an interpreter or code generator) does not support some of the standard library
types and operations. In this case, adapting the library definition on the model
level by removing the corresponding elements would be helpful. Finally, the
implementation of the OCL engine tends to become fairly complex leading to
decreased maintainability. For instance, the Dresden OCL2 Toolkit in its current
release contains a helper class with more than 400 lines of code alone to manage
the model of the standard library.

As an answer to these problems, we propose the novel approach of creating
the OCL standard library as an instance of a so-called pivot model, which can be
viewed as a “universal language covering a certain domain” [5]. In this paper, we
define a pivot model as an intermediate metamodel used for aligning the meta-
models of arbitrary domain-specific modeling languages (DSL) with that of OCL.
By directly supporting generics in this metamodel, modeling all of the template
types and operations in the OCL standard library becomes possible. We have
implemented this approach using the Eclipse Modeling Framework (EMF) [6],
which allowed us to build a highly functional editor for the pivot model and
employ EMF’s default XMI serialization capabilities. Providing the predefined
OCL types within an OCL engine therefore reduces to a simple model file im-
port. Concrete collection types can be created from the corresponding templates
by binding their type parameters with the required element type.

The remainder of this paper is structured as follows: In Sect. 2, we briefly
review the challenges for a model-level integration of the OCL standard library
in the light of two existing OCL engines. We continue by describing the design
of a suitable pivotal metamodel addressing these issues in Sect. 3. In Sect. 4, we
present a practical evaluation of our approach. We highlight the visual editor
used for modeling the standard library and describe an illustrative example. A
brief account of related work is provided in Sect. 5. Finally, Sect. 6 concludes on
our work and shows up further research.

2 Background

Based on observations from two well-known implementations of the OCL stan-
dard, namely the Dresden OCL2 Toolkit and the Kent OCL Library, we can
identify two major challenges for a model-level integration of the standard li-
brary in an OCL engine. In brief, these are:
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1. Operations and parameters in the standard library instantiate the corre-
sponding metaclasses from the UML metamodel [7]. When OCL is inte-
grated with domain-specific modeling languages developed within so-called
language workbenches [8] or via UML profiles, we cannot rely on a common
format for the library any more.

2. The standard library contains template types and operations that are para-
meterized with a type parameter. Most modeling languages do not support
a declarative definition of these generic elements.

In the following, we will discuss these two issues in greater detail.

2.1 OCL for Domain-Specific Modeling Languages

In recent years, the importance of domain-specific languages (DSLs) for describ-
ing systems has increased and a convergence with model-driven approaches such
as the OMG MDA initiative [9] can be witnessed [10]. As a result, the original
scope of OCL being an add-on to UML [11] has widened to support constraints
and queries over object-based modeling languages in general [12].

An obvious solution to these new challenges is the introduction of a pivotal
metamodel that abstracts over the metamodels of arbitrary domain-specific lan-
guages and provides exactly those features required for an integration with OCL.
Both of our reference OCL engines work this way. The Dresden OCL2 Toolkit in
its current version employs a so-called Common Model [13] to adapt the meta-
models of UML 1.5 as well as MOF 1.4, while the Kent OCL Library supports
UML 1.4, Ecore (the metamodel used by EMF), and Java via a central Bridge
model [14].

Unfortunately, both solutions fail to decouple the model of the OCL standard
library from the adapted metamodel. In the Dresden OCL2 Toolkit, the prede-
fined library operations and their parameters are instances of the corresponding
UML or MOF metaclasses, while in the Kent OCL Library they instantiate
metamodel-specific adapter classes. Both approaches demand a programmatic
creation of the standard library types and operations. Consequently, to model
the standard library externally, we need to find a way to instantiate these ele-
ments independently from any adapted metamodel.

2.2 Generics in the OCL Standard Library

The predefined collection types in the standard library are actually template
types with the type parameter T [1, p. 144]. As an example, consider the sum oper-
ation of the OCL Collection type whose return parameter is typed with the el-
ement type of the collection. We say that a concrete type Collection(Integer)
is created from the template Collection(T) by substituting, or binding, T with
the type Integer. Since element types may be nested, there is an infinite num-
ber of collection types which have to be dynamically created when parsing a
particular OCL expression.
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However, not only types can have type parameters. Consider the product
operation of Collection(T) which returns the cartesian product of two collec-
tions: product(c2:Collection(T2)):Set(Tuple(first:T,second:T2)). Note
that the concrete signature of this operation (in particular, its return type) not
only depends on the binding of the type parameter T, but also on the type
of the argument c2. This is an example of a so-called generic operation [15].
Further note that the return type of the product operation is itself a template
type, namely Set(T), whose type parameter T is bound with the generic type
Tuple(first:F, second:S). The actual type of the type parameters F and S is
determined at runtime, based on the binding for T and T2, respectively. In this
case, we call T and T2 type arguments for the generic tuple type.

Finally, some of the predefined operations in the library have return types
that depend on the object they are invoked on. Examples are OclAny::asSet
(returning a singleton set containing the object) and OclAny::allInstances
(returning the set of all instances of a type). Both operations have Set(T) as
their return type, but the concrete binding for T cannot be determined until the
source type of the operation call is known.

To remove the definition of the standard library from the implementation
code and specify it declaratively, a mechanism to model generic types and oper-
ations is required. Moreover, the engine needs to support the binding of generic
elements at runtime to dynamically create concrete types while parsing an OCL
expression.

3 The Design of a Pivot Model with Generics Support

We are currently reengineering the Dresden OCL2 Toolkit to increase its reusabil-
ity and flexibility and to provide the foundations for future research into the in-
tegration of OCL with arbitrary domain-specific languages. To this end, we have
redesigned and reimplemented large parts of the toolkit’s infrastructure [16].
The new architecture features a more flexible model repository adaptation mech-
anism. It is based on a pivot model that results from a careful analysis of previous
approaches (cf. Sect. 2.1) and the Core::Basic package of UML 2.0. So far, we
have integrated both EMF and the Netbeans Metadata Repository [17] and im-
plemented bindings for Ecore, MOF and UML. The main elements of the new pivot
model are shown in Fig. 1.

A comprehensive discussion of the new architecture is outside the scope of this
paper. However, for a better understanding of the following paragraphs we would
like to draw attention to one noteworthy feature that sets it apart from existing
OCL implementations: A layered architecture now eliminates any dependencies
from the pivot model to the OCL metamodel. Thus, the support for model-level
generics, which we will describe below, is only an enabling technology for model-
ing the template types in the OCL standard library. All necessary functionality
is already contained in the implementation of the pivot model metaclasses and
can easily be leveraged for alternative model querying languages.
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Fig. 1. The main elements of the pivot model

Figure 2 summarizes how the pivot model introduces template types and
operations as first-class model entities. The design is loosely based on the generics
support in EMF 2.3 [18] which closely mirrors the generic capabilities of Java
5 [15]. The key idea is to introduce a new abstraction called GenericElement
which classifies elements that may contain one or several TypeParameters.

NamedElement

GenericElement GenericType
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1 typeParameter1

TypedElement
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ComplexGenericType
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unboundType 1

Fig. 2. Generics in the pivot model

The type parameters of a generic element may be bound with a concrete type,
which means that all occurrences of the parameter in the definition of the generic
element are replaced with this type (Fig. 3). In the case of a Type instance, this
will affect all properties and operations (including their parameters) declared for
this type.

In line with other metamodels, the pivot model generalizes properties, oper-
ations and parameters with an abstract metaclass TypedElement that declares
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Fig. 3. Binding the type parameters of generic elements
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Fig. 4. Typed elements and generic types

a reference to a type. Now, as illustrated in Fig. 4, we allow typed elements to
alternatively reference a GenericType. Generic types exist in two flavours (cf.
Fig. 2). A ParameterGenericType simply references a TypeParameter, as in
the case of the return parameter of the sum operation mentioned in Sect. 2.2. A
ComplexGenericType, by contrast, references another Type with unbound type
parameters as well as a number of TypeArguments that will replace the type
parameters during binding. In the example of the product operation, the re-
turn parameter contains a complex generic type referencing the unbound type
Tuple(first:F,second:S) and defining two type arguments T and T2. This ex-
ample shows nicely that type arguments, being typed elements themselves, can
have a generic type as well. Through this design, an unlimited nesting of generic
types becomes possible.

It turns out that supporting generic types for typed elements does not suf-
fice yet. Consider the OCL collection type Sequence(T). This template type
extends Collection(T). Intuitively, binding type parameter T of Sequence(T)
with a concrete type, say String, should result in Sequence(String) extend-
ing Collection(String). Yet, the design developed so far does not cover this
special case. The key observation here is that the two type parameters T are not
the same. In fact, it is perfectly legal to label the type parameter of the sequence
type with S instead of T. Correctly binding both subtype Sequence(S) and su-
pertype Collection(T) requires S to be a TypeArgument of Collection(T).
This intuition leads to the introduction of a new association between Type and
GenericType denoting the generic supertypes of a type (Fig. 5). Then, binding a
type will cause all generic supertypes to be bound as well. If all type parameters
of a generic super type are bound (i.e., it is not generic any more), it can be
safely added to the regular superType reference list (cf. Fig. 1).

Type GenericType
0..*0..1

genericSuperType

0..*0..1

Fig. 5. Generic supertype
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On a side note, it is worth highlighting that in contrast to EMF, our pivot
model does not know the notion of a raw type, i.e., a “fallback” type that is
assumed to exist for any type parameter in an unbound generic type. This is a
direct consequence of our aim to avoid any dependencies from the pivot model
to the OCL metamodel. Otherwise, OclAny as the root of the OCL type sys-
tem would have been a logical choice. To guarantee proper type conformance
checking, we have suitably extended the implementation of the OCL collection
metaclasses instead.

4 Practical Evaluation

The previous section presented the design of a pivot model with explicit support
for generics. Now, we can proceed with showing its application. We have realized
the new infrastructure of the Dresden OCL2 Toolkit as a set of Eclipse plug-ins.
To create implementation classes for the pivot model elements, we employed the
metamodeling and code generation facilities of the Eclipse Modeling Framework.
This yielded the following advantages:

1. Except for some behavioral features that have to be implemented manually,
the pivot model implementation generated by EMF is already fully functional
and can be instantiated. Contrary to previous approaches, we do not depend
on an integration with a particular DSL to create an instance of the OCL
standard library. By realizing the same interfaces, our standard library model
is compatible with any metamodel binding that is created for the pivot
model.

2. The XMI serialization capabilities of EMF enable us to effectively save and
load the standard library which improves reusability.

3. EMF can generate a highly customizable tree editor for a metamodel. In the
next section, we show how a heavily adapted version of the default pivot
model editor allows the user to conveniently view, edit and alter the model
of the standard library.

4.1 Visually Modeling the OCL Standard Library

Figure 6 partly shows the model of the standard library in the adapted pivot
model editor. This model, which contains all types and operations defined in
the OCL 2.0 specification, is part of the new toolkit infrastructure. Users may,
however, replace the default library with a modified version when integrating a
new domain-specific language with the engine. For instance, if a DSL does not
know the concept of an ordered set, the OrderedSet type can be safely removed
from the library model. This ensures that all valid abstract syntax models created
by a parser will indeed execute on the domain-specific target platform.

The look and feel of the pivot model editor resembles that of the EMF Ecore
editor. However, we have simplified the modeling of generics to hide complex-
ity from the user. When creating typed elements (properties, operations, and
parameters), declared type parameters of the containing generic element show
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Fig. 6. The model of the OCL standard library

up in the list of possible types. The editor automatically creates the necessary
ParameterGenericType instance in this case. If a template type is selected (e.g.,
for the c2 parameter of the product operation), a complex generic type and cor-
responding type arguments are added. Similarly, the editor allows to specify the
type arguments when extending generic supertypes.

The root of the model is an instance of a special facade interface called
OclLibrary, which provides the necessary means for an OCL parser to retrieve
the predefined standard library types when building the abstract syntax model
from an OCL expression.

4.2 Binding Template Types during OCL Parsing

In the following, we demonstrate the feasibility of our approach with a simple ex-
ample that involves the binding of generic OCL collection types while parsing an
OCL expression. Figure 7 depicts the model we will base the example scenario on.

Now, consider the following OCL expression which specifies the derived at-
tribute totalBalance in class Person. Note that the second invocation of the

Fig. 7. The example model
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dot operator (accessing the property balance of all elements in the accounts
reference list) represents an implicit collect iterator.

context Person :: totalBalance : int
derive: self .accounts .balance ->sum ()

Parsing this expression triggers the following template type bindings: First,
the type of the property call expression referring to accounts is evaluated to
be OrderedSet(Account). This directly stems from the multiplicity specifica-
tion and declared type of the property. The actual binding of the OrderedSet
template with the element type Account happens in the getOrderedSetType
operation of the OclLibrary facade. As shown in Sect. 3, this solely requires a
call to the bindTypeParameter operation implemented in the Type metaclass of
the pivot model.

Similarly, the type of the collect iterator expression, which returns the list of
individual balance values, results from binding Sequence(T) with Integer. The
engine automatically maps the domain-specific int type to the corresponding
OCL standard library type. As a result, the return type of the sum operation
becomes Integer. To conclude this discussion, Fig. 8 shows the abstract syn-
tax model of the example expression as it is visualized in the DSL-agnostic
model browser that is part of the new toolkit infrastructure. Notice that not
only the Sequence template has been bound, but also its generic supertype
Collection(T).

It is worth highlighting here that the method presented in this paper solely
addresses the static structure of the OCL standard library. To realize the dy-
namic semantics and actually execute the expression in Fig. 8, we still rely on
an instance-level (M0) implementation of the predefined types and operations.
To this end, we have redesigned the existing Java library of the Dresden OCL2
Toolkit to support a flexible integration of arbitrary DSLs via a set of factory
interfaces. In addition, an OCL interpreter based on the new infrastructure has
been developed to complement the components on the model level.

Fig. 8. The abstract syntax model of the example expression
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5 Related Work

To the best of our knowledge, there is no published work that deals with the
model-level integration of the OCL standard library as described in this pa-
per. Akehurst et al. [12] hint at this possibility, but simply suggest to import
a UML package containing the standard library types. Therefore, they do not
address the problems outlined in Sect. 2. However, they propose a mechanism
to detach the implementation of the standard library types and operations on
the instance level. The ideas from this work may complement our approach and
further simplify the integration of different domain-specific languages.

Another technique that aims at aligning OCL with custom domain-specific
languages on the instance level has been presented in [19]. Unfortunately, the
authors employ a custom expression language that is akin but not equal to OCL.
Furthermore, they build on top of a model management framework and execution
engine which does not support a model-level integration of the standard library.

Lastly, the latest release of the Eclipse MDT OCL project [20] features a highly
innovative way of integrating OCL with different modeling languages. Instead
of a pivot model, a generic environment interface defines type parameters for all
metamodeling concepts required by OCL. Unfortunately, this otherwise elegant
approach necessitates a concrete specialization of the entire OCL metamodel as
well as the OCL standard library for each custom DSL binding. The predefined
operations of the standard types have to be created within the implementation
code yielding the disadvantages highlighted in Sect. 1.

6 Conclusions and Future Work

In this paper, we have presented a novel technique for integrating the OCL stan-
dard library on the model level. Contrary to previous approaches, we support a
declarative rather than a programmatic definition of the predefined types and
operations thereby improving reusability, flexibility, and maintainability. In ad-
dition, our method eases the integration of different domain-specific languages
with OCL, because the pivot model provides an intermediate abstraction layer
for a variety of metamodels. Therefore, instantiating elements of the library
model is independent of a particular DSL binding and solely requires a suitable
implementation of the pivot model interfaces. We have demonstrated the feasi-
bility and usefulness of our approach through an example that was realized using
newly developed components of the Dresden OCL2 Toolkit.

We are currently working on porting the tools of the Dresden OCL2 Toolkit to
the new infrastructure. Our aim is to leverage the increased flexibility provided
by our approach for other OCL-based languages defined by the OMG. Examples
are the Query/View/Transformation (QVT) [21] language and the upcoming
Production Rule Representation (PRR) [22] standard. This may open up inter-
esting perspectives for areas as diverse as model transformation and business
rule execution.

Finally, our solution still faces some limitations that are worthwhile to ad-
dress. For instance, our pivot model currently lacks the expressive power to
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model the iterator expressions for the OCL collection types. In fact, detaching
the definition of iterators requires a different approach altogether since the cor-
responding well-formedness rules for the abstract syntax are currently heavily
intertwined with the concrete syntax. Similarly, we have not yet found a sat-
isfying answer to the problem of binding generic operations whose return type
depends on contextual information (e.g., allInstances and asSet in OclAny or
flatten in the collection types). Even though we are able to model the signature
of these operations, we still have to check for them explicitly in the code. Thus,
the implementation of the OCL abstract syntax elements (M2) still contains a
few details of the standard library structure (M1).

Acknowledgment. The authors would like to thank Florian Heidenreich, Chris-
tian Wende and Steffen Zschaler for their fruitful discussions and contributions to
the Dresden OCL2 Toolkit.
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Abstract. OCL is used to add rigour to UML/MOF models, and in par-
ticular can be used to express behavioural details (e.g., operation pre-
and postconditions, class invariants) of such models. The applicability
and utility of OCL can be assessed by applying it to realistic appli-
cations and by investigating its capabilities both in terms of language
characteristics and tool support. With this in mind, in this paper we
model functional requirements for the Mondex Smart Card Application
using UML Diagrams, demonstrate how system invariants as well as op-
eration pre- and post-conditions are specified in OCL, and explore the
degree to which OCL tool support can be used to create and validate
these models. Moreover, we discuss how these pre- and post-conditions
can be validated, in part by discussing how test cases can be selected
from the OCL specifications created.

1 Introduction

The Unified Modeling Language (UML) is accepted as a de facto standard for
software and system modelling. It offers a rich set of notations for modeling
both the static and dynamic aspects of an object-oriented system [5]. The Ob-
ject Constraint Language (OCL), developed by Warmer as a business modeling
language within IBM [10], is a declarative language that can be used to describe
model behaviour, as well as metamodel constraints.

In this paper we present an exemplar of system modelling, using OCL together
with UML. This is carried out for the purposes of evaluating the utility of OCL
for realistic systems modelling. The evaluation is in terms of both the language
and its existing tool support. Moreover, we also consider how the constraints,
pre- and postconditions specified in OCL can be validated, via an overview of
strategies for selecting test cases from models.

The system we model using UML and OCL is the Mondex Smart Card Appli-
cation. We thus commence with an overview of the system under investigation.

1.1 Mondex Smart Card Application

The Mondex Smart Card Application, also known as Mondex Purse, is a global
electronic payment scheme providing digital form of cash and coins. It offers
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immediate transfer of value without signature, PIN or transaction authorization
between card holders in currencies allowed [2].

Mondex is an important step also in the implementation of the Grand Chal-
lenge Programme, i.e., a multi-national, long-term, research programme that
aims to create a substantial and useful body of code that has been verified to
the highest standards [3]. One of the main objectives of this programme is to
populate a repository of formally specified and verified codes that are useful in
practice and serve as examples for the future applications. The first case study
proposed to be included in this repository is the Mechanical Verification of Mon-
dex. Different groups are involved in Mondex Challenge globally and produced
distinct versions of the software by using different modeling/specification lan-
guages. A group at the Massachusetts Institute of Technology used Alloy; the
University of Southampton applied Event-B; a group at the University of Bre-
men used OCL; Escher Technologies chose Perfect Developer; RAISE is used
at the University of the United Nations Macao and the Technical University of
Denmark; and finally Z is used by a group at the University of York [3]. The
work from all these groups was based on the monograph that outlined the spec-
ifications, refinement and proof details of Mondex in Z [4]. It is important to
note that this monograph focused on a subset of the actual requirements, so as
to concentrate on security/mission-critical requirements.

In this study, we have followed a different path than the studies mentioned
above and started by creating the model of the system from informal require-
ments detailed in [2]. By doing so, we covered some of the functional requirements
that were omitted in [4] as well as all the other studies based on this monograph.

The main goal of our study is to test some of the formally verified versions of
Mondex by using model-based testing techniques and tools. Formal verification
brings a significant amount of trust to the produced code, but it is a very long
and rigorous process. Significant amount of time is spent in writing the formal
specifications and verifying the systems correct, therefore it would be beneficial
if the testing time can be reduced by generating effective test cases by using
the models created early in the process. Successful implementation of this study
would also demonstrate the invaluable contribution of model-based testing in a
more formal context.

1.2 Contribution

The main contribution of the paper lies within the complicated details of the
modelling and the validation stage of a real life software application, Mondex
Smart Card Application. We present the difficulties encountered whilst speci-
fying the model behaviour with OCL by using the USE tool. Frame variables,
messaging between objects, derived attributes, constants are some of the con-
cepts we discuss in detail. We also explain how the system invariants and pre-
/post-conditions of operations are handled, and how the system is validated by
using the scenario-based technique. This technique is based on automatic snap-
shots technique introduced by Gogolla et al in [7] and [8]. Automatic snapshots
technique has only been applied to invariants so far.
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In this paper, we also explore the relationship between testing and the use
of OCL, and explain our plans in extending the technique mentioned above to
cover pre-/post-conditions with the aim of test data selection. When achieved,
this new approach may allow testers to carry out the test data selection process
during modelling instead of implementation stage, thus reduce the time for test-
ing and provide a language-independent form for test cases.Whilst explicating
these, we demonstrate how the tool chosen for this study is used and what sort
of improvements are required to make the process more efficient.

In the rest of this report, the modelling stage of the experiment is explained
in Section 2. Section 3 focuses on how scenario-based validation of the model is
carried out in this study and how techniques used in validation can be applied
to test data selection. Finally, Section 4 outlines the lessons learned and provide
concrete suggestions to the issues mentioned throughout the paper.

2 Modelling Mondex Smart Card Application

In this experiment, we have modeled the system by making use of UML diagrams.
We have created use case diagrams, use case scenarios, class and state diagrams
of the system. To strengthen the meaning of our diagrams and to specify the
system constraints as well as pre/postconditions of operations, we used OCL
expressions. Our current system consists of 8 classes, 31 operations, 30 invariants
and 197 pre/postconditions. This number excludes utility classes such as Date
and their associated operations.

In the first phase of modelling, we separated the system into broadly defined
modules that address different functions of the system. Brief descriptions of these
modules are given below.

Payment deals with the functional requirements related to money transfers.
Logging records the transactions and the errors.
Recovery handles the exceptions in case of a failure during a payment.
Currency Management deals with the currency-related features.
Operational Control manages the authentication-related issues.
Data Display and Customisation lets the user to view and customise cer-

tain data held by the Purse.

We then created use case diagrams and complemented each diagram with well-
defined scenarios. Each scenario is also linked to relevant modules and require-
ments. Before creating further UML Diagrams, we searched for modeling tools
that allowed defining the invariants and pre-/post-conditions in OCL. We con-
sidered OCL Compiler by University of Dresden (OCLCUD) which is a tool
that can be used independently as the OCL compiler or as part of the free
UML modeling tool Argo/UML, UML Specification Environment (USE), which
is a tool implemented by Mark Richters in University of Bremen, where the
models, invariants, pre-/post-conditions can be specified textually, and OCL
Compiler, produced by Cybernetic Intelligence GMBH, that analyses OCL ex-
pressions which appear in the UML model. There are other OCL-compatible
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tools such as Octopus by Klasse Objecten; KeY by University of Karlsruhe,
Chalmers University of Technology, Gothenburg, and the University of Koblenz;
OCLE by Babes Bolyai University; ModelRun by BoldSoft(Borland).

Most of the tools listed are capable of syntactic checking of OCL Expressions
and verification of Invariants for a given instance of the model. In addition
to these, they all have additional features addressing different needs such as
generation of Java code from OCL expressions, providing compliancy with MOF,
etc. After careful consideration, we decided to use the tool USE especially due to
its capabilities in generating automatic snapshots of the system and in validating
pre-/post-condition through scenarios. It also allows the creation of re-usable
artifacts through series of commands saved in files.

After having selected the tool, we have defined the class diagram and focused
on the invariants of the system. Table 1 lists some of the invariants and respective
OCL expressions considered during this stage.

Table 1. Examples to Invariants

Inv. Name Invariant Desc.

iCurrList
The currency assigned to a pocket must be included in the currency
list of the purse.
inv iCurrList: avCurrencies->includesAll(pockets.currency)

iTransferLimit
The transfer limit cannot exceed the transfer limit ceiling value.
inv iTransferLimit: self.TransferLimit <= self.TransferLimitCeiling

iNoException
Number of exceptions logs is fixed.
inv iNoException: exceptionlogs->size() <= cNoException

iDefPocket
At a given time, number of the default pockets is at most one.
inv iDefPocket: pockets->select(Default=true)->size() = 1

iNoPocket
Each purse can hold several currencies. Each currency is held in a
different pocket and the number of pockets is fixed for a given purse.
inv iNoPocket: pockets->size() <= cNoPocket

Invariants

The USE tool does not provide a consistency check for the invariants, i.e., there
is no way of verifying whether there are conflicting and inconsistent invariants.
However, one of the features the tool provides is that it can check whether all
the invariants hold for an instance of the model. In addition,the USE tool does
not allow the user to create incorrect bindings between objects. For instance, if
the user attempts to create a link between two objects where no association is
defined or if the link being created conflicts with the multiplicity rules, then the
tool gives immediate warning. The invariant check list is also updated after each
action, and therefore the user gets immediate feedback from the tool about the
current status of the system.

In this study, we created instances of our model where all the invariants are
satisfied. This gave us the confidence that there are no conflicting invariants.
However, we are aware that there may still be restricting invariants, i.e., the
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effect of some invariants may be stronger than others in which case further
refinement may be required. For example, if invariant x states that a > 0∧a < b
and a second invariant reads a < c where c < b, then clearly second invariant
actually restricts the borders defined by the first invariant and the variable a
can only be in the range [0,c] when these two invariants are combined. One may
think that as long as the invariants are satisfied, the restricting invariants would
not cause a problem. However, one of our plans in testing our model is to use the
invariants as our test data selection criterion and clearly the range of variables
is of crucial value in such a process.

After having created the invariants, we have formed a traceability matrix in
order to trace the relation between requirements, modules, use cases, constants
and invariants. The traceability matrix has revealed the requirements that have
been missed out or those that need to be addressed in a later stage.

Pre-/Post-conditions

In the next stage of system modelling, we focused on pre- and post-conditions
of the operations. The states of the system are also taken into account since not
all the operations are allowed in different states of the system. One down side of
the tool used is that it is not possible to use state-related functions such as the
one shown in Version1 below, therefore, in order to introduce the states of the
system to our model, we created a state variable to our main class and checked
the value of this variable each time we needed to check the state of the system,
as shown below.

pre Version1: self.oclInState(Unlocked)
pre Version2: self.LockingState = ’Unlocked’

Another issue encountered at this stage is the distinct set of variables used in
the definition of the pre- and post-conditions, because each operation requires
or restricts the modification of different variables. These variables are also called
the frame variables [5]. Post-conditions must not only describe all the changes
to frame variables, but also make sure that frame variables that do not change
are mentioned as unchanged. This second factor revealed some of the missing
post-conditions. For instance, the fourth and the fifth post-conditions written
for the operation EraseExceptionLog, listed in Table 2, are found as the result
of this consideration.

One of the assumptions taken at this point is that all the variables except
frame variables stayed unchanged during the course of the operation. For the
example given in Table-2, we only mentioned the frame variables in the post-
conditions and did not create post-conditions in the form of a = a@pre for the
rest of the variables. We believe the recognition of this concept in OCL (and
UML) tools would help to prevent the post-condition-related errors caused by
this assumption.

Another point of concern addressed during the determination of post-
conditions has been the messaging issue. OCL provides HasSent (’ ˆ ’) op-
erator to allow communication between operations [6]. This operator is used
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Table 2. Operation : EraseExceptionLog()

context MondexPurse:: EraseExceptionLog(p SequenceNumber : Real) : Boolean

pre EraseExceptionLogPre1:
self. PurseProviderFlag = true

pre EraseExceptionLogPre2:
self.LockingState = ’Unlocked’ or self.LockingState = ’Locked’

pre EraseExceptionLogPre3:
exceptionlogs->select(SequenceNumber = p SequenceNumber)->size()= 1

post EraseExceptionLogPost1:
exceptionlogs->size() = exceptionlogs@pre->size() - 1

post EraseExceptionLogPost2:
exceptionlogs->select(SequenceNumber = p SequenceNumber)->size()= 0

post EraseExceptionLogPost3:
self. NumberOfUnusedExceptions = self. NumberOfUnusedExceptions@pre + 1

post EraseExceptionLogPost4:
self.LockingState = self.LockingState@pre

post EraseExceptionLogPost5:
self.PurseProviderFlag = self.PurseProviderFlag@pre

when an operation x is called during the execution of another operation y and
postcondition of y returns true only if the operation x returns true. The USE
tool does not recognise the HasSent operator, therefore, we extend the frame of
the callee operation by adding the frame of the called operation. Table 3 presents
an example to how HasSent operator is used in our case study.

In this example, the operation ChangePersonalCode returns true if the per-
sonal code is changed and required actions are carried out. However, if at the
end of the operation, the personal code does not seem to have changed,i.e., the
purse user has entered the code incorrectly more than the times allowed, then
the purse is expected to lock itself out by calling ChangeTheStateToLockedOut
and as a result, ChangePersonalCode returns false. In our model, we reflected

Table 3. An example of how HasSent operator is handled

context MondexPurse::ChangePersonalCode() : Boolean

post ChangePersonalCodePost1:
% Personal Code changes, desired affects are applied and operation returns true.
or
(PersonalCode = PersonalCode@pre and

self ˆ ChangeTheStateToLockedOut() and
result = false)

...or
(PersonalCode = PersonalCode@pre and

self. NumberOfIncorrectEntries = self.PersonalCodeAttempts and
self.LockingState = ’LockedOut’ and
result = false)
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this by inserting the post-conditions of ChangeTheStateToLockedOut operation
into the post-conditions of ChangePersonalCode operation. This technique, as
mentioned above, enlarges the frame variables set of ChangePersonalCode by
adding the variables NumberOfIncorrectEntries and PersonalCodeAttempts. In
addition to this, to support the workaround further, in the scenarios written for
the validation of pre-/post-conditions of operations, we created nested calls to
operations, therefore when a new operation is called from within an operation,
the preconditions of called operation are checked automatically.

3 The Validation and Test Data Selection

Pre- and post-conditions determine the accessibility and validity rules for a given
operation. Their contribution to a software development process is invaluable not
only in modeling and implementation phases, but also in testing.

In [9], Korel et al introduced a test data generation technique where the test
case specification is defined in terms of assertion violation. According to [9],
finding an assertion violation may reveal a fault in the program, a faulty pre-
condition or an erroneous assertion. They tackle the problem of finding program
input on which an assertion is violated by reducing it to finding program input
on which a selected statements is executed. In this study, one of our aims is to
use pre- and post-conditions as test data selection criterion early in modelling
phase instead of waiting for the code to be produced in implementation phase.
With this idea in mind, the following section presents how the validation of pre-
and post-conditions is being done in our experiment. We then discuss our plans
in extending these validation activities to test data selection.

Scenario-based Validation of Pre/Post-conditions

The objective of this process is to present that given the right inputs, the system
can enter and exit operations successfully. In other words, the strength of the pre-
and post-conditions are well balanced, so that the access to/exit from operations
are not prevented by too strong pre-/post-conditions. To address this issue, we
make use of the operation execution capability of USE tool. The tool allows the
user to check pre-/post-conditions by calling an operation on an instance of the
model. The pre-conditions are checked when the openter command is executed.
If the pre-conditions are satisfied, the operation is put into call stack. After the
execution of the statements between enter and exit points, the tool checks the
post-conditions and the return value when the opexit command is run. Further
details about these operations are given in [1].

During this experiment, we first formed a base object model of the system
that satisfies all the invariants to ensure that the scenarios are built on top of a
valid state of the system. We then examined the type of commands required in
a scenario and found the following categories:

– Setting/Creation of frame variables/objects/operation parameters
– Access to the operation with the correct list of parameters on a given object
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– Modification/Deletion of frame variables/objects
– Exit the operation with return value

Note that the term scenario is used instead of a snapshot in this study. We
use the term snapshot for a randomly created object model of the system where
as the scenarios are defined in such a way that they serve a purpose. The sce-
narios can also be seen as tuned versions of snapshots that satisfy a property.
Table 4 gives the scenario created to satisfy the pre- and post-conditions of the
EraseExceptionLog() function given in Table 2. As shown in Table 4, we first
created a new exception log record and linked it to Purse1. Other variables re-
lated to state and user of the purse are also set according to the preconditions
of the operation. After entering the operation, the log is erased and the number
of unused exceptions is incremented by one.

Table 4. Scenario for the validation of EraseExceptionLog()

Operation <EraseExceptionLog.cmd>

Setting The
Frame Variables

! create exLog1 : ExceptionLog
! set exLog1.SequenceNumber := 100
...
! insert(Purse1,exLog1) into Exception
! set Purse1.PurseProviderFlag := true
! set Purse1.LockingState := ’Unlocked’
! set Purse1. NumberOfUnusedExceptions := 6

Enter the operation ! openter Purse1 EraseExceptionLog(100)

Modification of
Frame Variables

! destroy Purse1.exceptionlogs->select(SequenceNumber=100)
! set Purse1. NumberOfUnusedExceptions := 7

Exit the operation ! opexit true

The commands in Table 4 are collected in EraseExceptionLog.cmd file. Analo-
gous to this operation, the scenarios for the rest of the operations are also created
as .cmd files and are executed in USE command line. After each execution, the
invariants of the system are also checked in order to avoid any plausible conflict.

The drawback of this process was that we had to find the frame variables set
as well as the right values for these variables to satisfy the targeted assertions.
The next section explains our plans in making this process more automatic by
using the pre/post-conditions as a way of selecting test data for the system.

Test Data Selection

The main purpose of writing pre-/post-conditions is to ensure the correct func-
tioning of the system by checking the status of the system on the entry and exit
point of the operations. Within this context, in this section, we explain our plans
using pre-/post-conditions in the selection of test data with the aim of exercising
the system in crucial points to find faulty situations.
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In [7] and [8], Gogolla et al present how to integrate ASSL (A Snapshot and
Sequence Language) elements to generate scenarios. They also generate test cases
that exercise certain invariants and validation cases that proves that no scenario
can be found that satisfies the negated version of an invariant.

We plan to apply this technique to the pre-/post-conditions of our system.
One big advantage is that there will be scenarios that satisfy a negated version
of a pre-/post-condition and these scenarios will still be valid for the system. For
instance, the user may attempt to run an operation that can not be run in the
current state of the system. In such a case, the pre-condition of the operation
must fail and the system must inform the user of the situation. This is a perfectly
valid scenario that can be generated by negating a pre-condition and introducing
it as a property to be satisfied.

One main difference of our plan in applying the technique outlined in [7] seems
to appear in mapping pre-/post-conditions to the scenarios. Table 5 shows an
example to this mapping in the case of EraseExceptionLog operation.

Table 5. Mapping between Scenario View and Operation View

SCENARIO VIEW OPERATION VIEW

! insert(Purse1,exLog1) into Exception

pre:
exceptionlogs->
select(SequenceNumber =
p SequenceNumber)->size()= 1

! set Purse1.PurseProviderFlag := true pre : self.PurseProviderFlag = true

! set Purse1.LockingState := ’Unlocked’ pre : self.LockingState = ’Unlocked’

! destroy Purse1.exceptionlogs->
select(SequenceNumber = 100)

post : exceptionlogs->size() =
exceptionlogs@pre->size() - 1

post : exceptionlogs->select
(SequenceNumber = p SequenceNumber)
->size()= 0

! set Purse1. NumberOfUnusedExceptions
:= 7

post :
self. NumberOfUnusedExceptions =
self. NumberOfUnusedExceptions@pre+1

The second column presents the Operation View where the pre-/post-conditions
of the operation are defined where as the first column, Scenario View, gives
the statements that match the respective pre-/post-conditions in a scenario. As
shown in Table 5, the mappings concerning value check, such as the ones in the
second and third row, are straightforward. On the other hand, the ones that in-
volve addition or deletion of an association or an object require more thorough
understanding of the semantics which makes the mapping rather complicated.
This issue is further discussed in Section 4.

The following section summarises the lessons learned so far and outlines the
suggestions addressing the improvements of OCL tools, particularly USE tool,
to cater for the requirements mentioned in this paper.
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4 Conclusion

In this paper, we have presented our experience with the USE tool in modeling
and validating Mondex Purse by using UML diagrams and OCL expressions.
We believe that OCL is indispensable for use with UML in describing model
behaviour and finding evidence for model validation. Especially after having
monitored the scenario-execution capabilities for pre-/post-conditions provided
by USE, based on OCL, we see great potential for OCL to be also used in test
data selection context.

Other OCL- and tool-related observations made during this study are listed
below under various subtitles.

Invariants. The invariants are well integrated into the model structure in USE
tool. We believe the existence of a invariant consistency check component in OCL
tools will greatly improve the process of validation by removing the necessity
to create the instances of a model and shorten the process of re-checks when
invariants are modified.

Constants. The constants for a system may be fixed in a later stage of the
development or even during application loading. It would be helpful to be able
to differentiate constants from variables in the modeling stage and to have a user
interface similar to the invariants screen, where system constants are listed.

Derived Attributes. OCL supports the definition of derived attributes, but
this concept is hardly integrated into the tools. To overcome this problem, we
created invariants ensuring the right values of derived attributes. However, to
remove the task of creating extra, invariant-like structures, the tools must handle
the automatic setting/modification of derived attributes.

Frame Variables. We believe that the integration of the concept of frame
variables into OCL tools would enhance the process of pre-/post-condition de-
termination. This is also supported by Kassios on his recent work that focuses
on dynamic frames and dependencies [12]. Implementation and integration of
dynamic frames to current OCL tools may introduce a new era for pre-/post-
condition handling. The idea of including all the variables involved in an oper-
ation also supports the idea of completeness of the pre/post-conditions for an
operation. Once this new scheme is introduced, OCL tools must also guarantee
that variables except the frame variables do not change during the course of an
operation by checking the pre and post states of the objects without the user
intervention.

HasSent ( ˆ )Operator. As mentioned in Section 2, HasSent operator is
used when an operation x is called during the execution of another operation y
and postcondition of y returns true only if the operation x returns true. This
operator is beneficial for both keeping track of function flow and for checking the
pre-/post-condition consistency between two operations. Especially to reveal the
infeasible/unreachable functions, the addition of this feature to OCL tools has
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utmost importance. We believe the tool developers can make use of the Inline
function concept in implementing this operator in OCL tools.

Pre-/Post-conditions and Scenarios. It is our belief that the technique in-
troduced for finding scenarios for invariants in [7] and [8] has great potential for
adjustment to pre-/post-conditions in the context of test data selection. How-
ever, there are several issues that needs careful consideration.

As observed in Table 5, mapping from Operation View to Scenario View is
not a trivial task in many cases. In fact, there is a third layer where Pascal-like
ASSL procedures are used in generating several objects, links by using loops,
and a fourth layer where these procedures, invariants and scenarios are actually
executed. Figure 1 is a simplified version of a deployment diagram given in [7].

Fig. 1. Deployment Diagram for USE

In the components given in Figure 1, we can observe three syntactically dif-
ferent languages. The .use file contains the definition of classes, associations,
invariants, pre-/post-conditions. The definition of classes and associations are
specific to USE tool, but the definition of invariants and pre-/post-conditions
are written in OCL. The .invs file also contains invariants written in OCL.
These invariants do not hold for all the states of the system, but are necessary
in generating scenarios with specific properties. The .assl files provide the pro-
cedure definitions used in generating n number of objects that may be linked to
other objects. Finally, the .cmd file provides the means of communicating with
the tool by loading/reading other files and is specific to USE.

Although these components seem to target different objectives, their function-
alities overlap. For instance, in ASSL, if an instance of the association payment-
logs will be created between the objects MondexPurse1 and PaymentLog1, the
syntax reads Insert(paymentlogs,[MondexPurse1],[PaymentLog1], where as the
same effect would be produced if the following command is run in USE Com-
mand line: !insert(MondexPurse1,PaymentLog1) into paymentlogs. We believe
that it is crucial to minimise such syntactical differences between semantically-
similar languages especially if they are used in collaboration with each other.
The alternative and the ideal solution would be to create a uniform integrated
language that is compliant with UML, OCL and other related OMG standards.



Evaluation of OCL for Large-Scale Modelling: A Different View 205

In addition, assertion-accepting programming languages such as Spec# and
JML toolset can also be taken into account in formalising the scenario descrip-
tion language. These languages are used in implementation level, but it would
definitely be beneficial for model-based software development and testing if this
level of compliancy and compatibility between the scenario description language
(ASSL and USE commands in our case), constraint language (OCL) and mod-
eling language (UML) can be achieved in the modeling stage.

Last words. As mentioned in [11], besides improved tool support and a clear and
concise language description, OCL would benefit from more convincing examples
and application scenarios. We believe our experience and findings will help to
shed light to future users of UML and OCL, as well as tool developers, and we
will continue to report further observations on the matter.
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Abstract. The second edition of the workshop Models@run.time was co-
located with the ACM/IEEE 10th International Conference on Model Driven 
Engineering Languages and Systems. The workshop took place in the lively 
city of Nashville, USA, on the 2nd of October, 2007. The workshop was 
organised by Nelly Bencomo, Robert France, and Gordon Blair and was 
attended by at least 25 people from 7 countries. This summary gives an 
overview of the presentations and lively discussions that took place during the 
workshop.  

Keywords: model-driven engineering, reflection, run-time systems. 

1   Introduction 

Research on model-driven software development has mainly focused on the use of 
models at design, implementation, and deployment stages of development.  This work 
has produced relatively mature techniques and tools that are currently being used in 
academia and industry. However, the use of model-driven approaches for validating 
and monitoring run-time behaviour can also produce significant benefits. A key 
benefit is that models can be used to provide a richer semantic base for runtime 
decision-making related to system adaptation and other runtime concerns. For 
example, models can be used to help determine when a system should move from a 
consistent architecture to another consistent architecture. Model-based monitoring and 
management of executing systems can also play a significant role as we move towards 
implementing the key self-* properties associated with autonomic computing (i.e. 
self-management, self-optimization, self-healing, and self-protection)[3]. 

Goal 

The goal of this workshop was to understand the relationship between models 
produced during development and models used to support and enable run-time 
monitoring and adaptation of software. Key research topics of the workshop were (1) 
to study how models produced during development can be effectively leveraged 
during run-time, (2) how model-driven approaches can be applied to managing and 
monitoring the execution and operation of systems, (3) to what extent can model-
driven engineering be used to tame the complexity of developing and managing 
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adaptive software. This is the second in a series of MODELS workshops on this topic. 
The workshop successfully brought together researchers from different communities 
including researchers working on model-driven software engineering, software 
architectures, computational reflection, adaptive systems, autonomic and self-healing 
systems, and requirements engineering. At least twenty-five people attended from 
France, Germany, Norway, South Korea, The Nertherlands, UK and the US. 

The call for papers invited submissions on a number of focus topics including: 
relevance and suitability of different model-driven approaches to monitoring and 
managing systems during run-time, compatibility (or tension) between different 
model-driven approaches, the role of reflection in maintaining the causal connection 
between models and run-time systems, experience related to the use of run-time 
models to adapt software systems, and the management and modelling of runtime 
variability using models. 

In response to the call for papers, nine (9) papers were submitted, of which (6) 
papers were accepted. Each submitted paper was reviewed by at least 3 program 
committee members. After discussions two papers were selected as the best papers. 
The decision took into account the relevance of the papers to the goals of the 
workshop, the impact on the discussion and results, and the quality of the papers and 
presentations. These two papers were extended and improved taking into account the 
discussions and conclusions of the workshop and are published in this proceeding. 

2   Workshop Format 

The workshop was designed to facilitate focused discussion on the use of models 
during run time. It was structured into presentation and work (discussion) sessions. 
The opening presentation was given by Nelly Bencomo and Robert France. Nelly set 
the context of the workshop describing the general goal and presented the results of 
the 1st edition of the workshop in MODELS’06 [2] and the related workshop M-
ADAPT (Model-driven Software Adaptation) at ECOOP’07 [1]. Robert continued by 
describing the specific goals of the second edition of the workshop and stating key 
questions to kick off the discussion and call for the inspiration and motivation needed 
during the rest of the day. After the opening presentation, the paper sessions followed. 
There were 6 papers divided in 3 sessions.  

The workshop was structured into presentations during the morning and discussion 
sessions in the afternoon. During the presentation session, papers were presented by 
two speakers, the first speaker was an author of the paper and the second speaker 
(reader) was an independent reader. Second readers provided another view on the 
contents of the paper, placing it in relation to the workshop topics and research 
questions.  

To ensure effectiveness of the format of the workshop, presentations were limited 
to 25 minutes, 15 minutes presentation by the first speaker, 5 minutes by the second 
reader and 5 minutes for questions. Presentation sessions were cochaired by Oystein 
Haugen and Arnor Solberg.  After the presentations, specific research interests and 
questions were discussed. The partial results of this discussion were used to split the 
participants into two groups to allow focused debate and dialogue during the 
afternoon. The workshop was closed by a final discussion, including an evaluation of 
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the workshop itself made by the attendees. Details of the sessions are provided in 
Sections 3 and 4 below. The workshop proceeded smoothly, with all attendees keenly 
contributing through constructive and friendly debate. Attendees enjoy and praised 
the idea of the second readers. 

3   Session Summaries 

The 6 papers were divided into the following three categories according to their topics 
and contributions:  

 
Error detection and Self Healing 
- "A Modeling Framework for Self-Healing Software Systems", by Michael Jiang, Jing 
Zhang, David Raymer, and John Strassner, second reader: Jules White  
- "Model-Based Run-Time Error Detection", by Jozef Hooman, and Teun Hendriks, 
second reader: James Hill  
 
Monitoring and Verification 
- "System Monitoring using Constraint Checking as part of Model Based System 
Management", by Christian Hein, Tom Ritter, and Michael Wagner, second reader: 
Matthias Gutheil   
- "AMOEBA-RT: Run-Time Verification of Adaptive Software", by Ji Zhang, Betty 
Cheng, and Heather Goldsby, second reader: Jozef Hooman   
 
Techniques and Approaches 
- "Coherent Support for Models at Run-Time through Orthogonal Classification", by  
Atkinson Colin and Matthias Gutheil, second reader: Olivier Barais 
- "Control-theory and models at runtime", by Pierre-Alain Muller and Olivier Barais, 
second reader: Aniruddha Gokhale   

 
Robert and Nelly took notes of specific questions and topics raised during the 
presentations. After the presentations, individual questions made by the participants 
were gathered. Following the questions stated by the attendees and the notes taken by 
Robert and Nelly, discussions groups were established. Attendees left the room to 
start the exchange of ideas over meals. 

4   Discussions 

After lunch each group came into the room and shared ninety minutes of lively 
discussions. Both groups addressed different topics. The first group discussed the 
infrastructure needed to support the use of models during runtime. The second group 
focused on theoretical concepts and languages needed to define and work with 
models during runtime. Slides summarizing the reports were produced by the leader 
discussant of each breakout session (Oystein Haugen and Jules White respectively). 
As the two breakout groups reassembled to summarize their work it is worthy of note 
that the ideas of the paper “Control theory and models at runtime” by Muller and 
Barais had influence on both discussion groups. 
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Summary of discussion in the “Infrastructure Group” 
 

The discussions in this group focused on what support is needed to effectively support 
the use of models during runtime. As a first step, the ways in which models were used 
in the papers presented at the workshop were discussed. The papers presented at the 
workshop mainly focused on verification (Zhang et al., Hein et al.), error detection 
and correction (Hooman et al.), and self-healing (Jiang et al.). In this context, runtime 
models specify the expected behaviours of the running application. These techniques 
use a "supervisor component" which observes the system in order to detect any 
deviation from its expected behaviour. Any deviation reveals a failure in the running 
application. If the objective is verification or error detection, the failure is reported to 
the user. In the case of self-healing, the supervisor automatically adapts the running 
application. 

Philippe Lahire, one of the participants, suggested that a model@runtime is a 
model that is coupled with a controller that uses information from a running system to 
perform some control on the running system. The controller can be viewed as a 
separate model or can be considered to be part of the runtime model. The 
functionality provided by a controller is linked to the type of information captured in 
the runtime model, which, in turn, is tied to the type of adaptation supported by the 
model. He suggested that it would be useful to classify the properties that a runtime 
model must  have to support particular types of adaptations (e.g., self-healing, self-
protection) in the context of particular types of systems (e.g., information, embedded, 
distributed systems). 

The discussions also led to the identification of other uses of runtime models. For 
example, runtime models can be used to support adaptation to environment changes, 
runtime updating of system components, or the graceful degradation of some 
functionalities. For each kind of adaptation, specific runtime models have to be 
defined. For example, in the case of adaptation to a changing environment, the models 
have to capture the variation points of the application and define rules to choose the 
appropriate variants according to the information coming from the environment. In 
the case of runtime updates of components, the model could capture the dependencies 
between running components and rules to safely upgrade them. 

Given that there are various purposes for models at runtime (and corresponding 
types of models), the discussions then focused on identifying a common infrastructure 
to support the use of runtime models. The papers presented at the workshop (and the 
examples that came up in the discussions) all included a "supervisor component" 
around the runtime model. This component is called "runtime awareness" in the work 
of Hooman et al. and identified as the Observer/Controller pair in the control theory 
analogy proposed by Muller et al.. The supervisor component monitors data coming 
from the running application, makes decisions based on the observations and 
performs required adaptations on the running application. The supervisor thus consists 
of three activities: Observe, Decide, and  Adapt.  

For observation, the supervisor needs access to data coming from the running 
system. These data can be the inputs and outputs of the system but access to system 
internal data or environment information might also be required. For decision-
making, the supervisor processes the information collected by observation using a 
decision model. This model defines appropriate responses for specific behaviours of 
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the system. If needed, the decision can either lead to a user notification or trigger an 
adaptation of the running application. 

Adaptation in this context, consists of changing the running system at runtime. It is 
not required for all systems and it cannot always be automated. In some cases, for 
example, error detection, debugging and verification, the user is notified and is 
responsible for modifying the system. 
 

Summary of discussion in the “Concepts and Languages Group” 
 

To start their discussions, this group considered it was pertinent to define what a 
model at runtime means. The group came up with the following definition: “an 
abstraction at a higher level of representation than code that is used to derive 
adaptation through monitoring and feedback mechanisms.”  

Using this concept, several use cases for models were identified. 

- Model-based recovery 
- System management  
- Models for feedback  
- Models for manipulating variability  
- Determining what instrumentation to generate 
- Models as an interface to a system rather than code manipulation 

The group also concluded that current technologies like interceptors, AOP, 
constraint logic programming, control theory, and model checking techniques are 
useful to support the use of runtime models. This means that  there is no need to 
come with new technologies in a short term. 

Reflection was, as in the first edition of this workshop, stated as a capability 
needed when dealing with models to monitor and drive the execution of systems. In 
this sense, runtime models would be used to manipulate the system itself using 
introspective and intercession capabilities. It was discussed that the concept of meta-
level would perhaps be interpreted in a different way in the context of models at 
runtime. Until now, meta-programming and reflection have been studied mainly at the 
coding level. At this point an open research question arised: what would be the 
parallel at the modelling level? The comparison would seem to be allowing the meta-
model to change at runtime in order to adapt to new requirements or quality of service 
specifications. The above would require the meta-model to be continuously evaluated 
and understood during execution. This was contrasted with the current approach 
where a meta-model is interpreted somehow statically with no updates once the 
system starts. It was also pointed out that performance is an issue to take into account 
when using reflection. The ideas expressed by Pierre-Alain and Olivier paper about 
control theory seems to fit nicely with what was discussed. 

As the two breakout groups reassembled to summarize their work and exchange 
reached conclusions, it was interesting to see how both groups identified dynamic 
software adaptation as a significant research area where the use of models at runtime 
can be useful. In this context, models can be used to (i) manipulate the system itself, 
e.g., adding a component to the model has the effect of changing the underlying code; 
and (ii) verify the behaviour of the system during execution (using for example 
reflection). 
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Final Remarks 

A general wrap-up discussion was held at the end of the workshop. The organizers 
asked for feedback on the workshop and a number of useful ideas were suggested. 
Attendees confirmed that they were very pleased with the papers, presentations and 
discussions carried out during the workshop. The inclusion of second readers was 
considered successful and useful. It was concluded that the research community 
should be encouraged to continue the study the issues related to models at runtime 
and its relevance for the development of seld-adaptive systems. It was suggested that 
the organizers should consider the presentation of small demos that show the use of 
models at runtime in a possible next edition of this workshop. The workshop was 
closed with a warm “thank you” from the organizers to all participants for a 
successful workshop. After the workshop finished many of the attendees went for a 
well deserve dinner to continue talking.  
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Abstract. Increasingly, software must dynamically adapt its behavior in re-
sponse to changes in the supporting computing, communication infrastructure,
and in the surrounding physical environment. Assurance that the adaptive soft-
ware correctly satisfies its requirements is crucial if the software is to be used
in high assurance systems, such as command and control or critical infrastruc-
ture protection systems. Adaptive software development for these systems must
be grounded upon formalism and rigorous software engineering methodology to
gain assurance. In this paper, we briefly describe AMOEBA-RT, a run-time mon-
itoring and verification technique that provides assurance that dynamically adap-
tive software satisfies its requirements.

1 Introduction

Increasingly, software must adapt its behavior in response to changes in the support-
ing computing, communication infrastructure, and in the surrounding physical environ-
ment [1]. As such, extensive work has been done to develop adaptation mechanisms
and infrastructure to enable dynamic adaptation at run time [1]. In addition, a number
of research projects have been investigating software engineering techniques to support
dynamic adaptation [2, 3, 4, 5, 6, 7]. Assurance that the adaptive software correctly sat-
isfies its requirements is crucial if the software is to be used in high assurance systems,
such as command and control or critical infrastructure protection systems. We previ-
ously introduced the Adapt-operator extended Linear Temporal Logic (A-LTL) [8] to
formally specify adaptation properties for adaptive software. We consider adaptive soft-
ware to be a system comprising a number of steady-state programs and adaptations
among these steady-state programs. Specifically, a steady-state program is a non-
adaptive program suited for a specific set of environmental conditions, and an adap-
tation is a transition from one steady-state program (the source program) to another
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steady-state program (the target program). 1 For our approach, the developer specifies
the adaptation properties, designs the steady-state programs and the adaptations among
these steady-state programs, and then executes the adaptive system. In this paper, we
describe AMOEBA-RT a run-time monitoring and verification technique to verify that
dynamically adaptive software adheres to A-LTL and LTL properties.

Our objective is to provide assurance that an adaptive system adheres to its criti-
cal adaptation properties that can be expressed in A-LTL and LTL. Model checking
is an attractive means to verify that every possible path through a system adheres to
functional properties. Recent research efforts have demonstrated the use of static model
checking to verify critical properties in adaptive software [7, 9]. We previously devel-
oped the AMOEBA model checker [10] that modularly verifies A-LTL and LTL adap-
tation properties in adaptive software, thereby, significantly reducing the complexity
of model checking of adaptive software. However, as the scale and thus complexity
of adaptive programs increase, model checking techniques encounter the state explo-
sion problem, where the size of the program’s state space is far greater than that which
can be effectively analyzed. Thus, even modular static model checking techniques are
insufficient to provide assurance that a complex adaptive program adheres to its adap-
tation properties. Run-time verification [11, 12, 13, 14] is an attractive complement to
static verification. Run-time verification monitors executions of a software system and
uses a model checker to verify that the behavior of a software system adheres to a set
of formal specifications, including temporal logic properties. Since only one execution
path is examined at a time, assurance is provided and yet the state explosion problem
is effectively avoided. Currently, to the best of our knowledge, there does not exist a
run-time model checker that verifies adaptation properties specified in A-LTL and LTL.

In this paper, we introduce AMOEBA-RT, an A-LTL and LTL run-time model
checker for adaptive software. In AMOEBA-RT, the run-time state information of
an adaptive program is collected and analyzed at run time for adherence to the for-
mal specifications. To that end, the adaptive software program is instrumented using
an aspect-oriented approach [15] to collect run-time state information. As such, the
aspect-oriented approach is non-invasive, meaning that the source code for the adaptive
software is not directly altered. At run-time, the instrumented code sends the collected
state information to a run-time model checking server that runs as a separate process
in parallel. The run-time model checking server uses an automaton-based approach to
determine whether the state information received from the adaptive program satisfies
the adaptation properties specified in A-LTL and LTL.

AMOEBA-RT has been used to verify and detect execution errors in a number of
adaptive components in wireless communication and distributed data processing appli-
cations, including an adaptive Java pipeline program [10]. The remainder of the paper
is organized as follows. In Section 2 we provide background information on the adapt-
operator extended LTL, three commonly-used adaptation semantics, and the analysis of
adaptation properties. In Section 3, we briefly introduce the AMOEBA-RT architecture.

1 These definitions provide an abstract specification of adaptive system behavior. The adaptive
system may be realized through a variety of adaptation mechanisms, such as those mentioned
in [1]. Additionally, control theory may be used to implement the adaptive system provided
that all of the adaptations and steady-state programs have been identified prior to deployment.
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In Section 4, we illustrate the run-time verification using the adaptive Java pipeline
example. Lastly, Section 5 summarizes the paper and discusses future work.

2 Specifying Adaptation Properties

This section describes the formal specification language used to specify adaptation
properties, A-LTL, and illustrates how A-LTL can be used to specify commonly oc-
curring adaptation semantics. AMOEBA-RT can then check for adherence to these
adaptation properties at run-time.

To specify adaptation requirements, we previously proposed A-LTL (Adapt operator-

extended LTL) [8], an extension to LTL with the adapt operator (
Ω
⇀). Informally, a

software program satisfying “φ
Ω
⇀ψ” (read as φ adapts to ψ with adaptation constraint

Ω) means that the program initially satisfies φ, and at a certain state A, it fulfills all the
obligations demanded by φ and stops being constrained by φ, and in the next state B,
starts to satisfy ψ, where φ and ψ are two temporal logic formulae. The state sequence
(A, B) satisfies Ω, where Ω is an LTL formula evaluated on a sequence of two states.
Formal details of A-LTL may be found elsewhere [8].

Based on results presented in the literature [16,17,18] and our own experience [19],
we summarize three commonly-used semantics for adaptation. We assume that the lo-
cal properties of the source program and the target program have both been specified
in LTL. We specify the adaptation from the source program to the target program with
A-LTL. For some adaptations, the source/target program behavior may need to be con-
strained during the adaptation process. For example, a source program may need to stop
receiving incoming packets in order to clear the data buffer.

We assume the adaptive system has moderate computational reflection capabil-
ity [20], i.e., it is aware of its adaptation and the currently running steady-state pro-
gram. This capability can be achieved by simply introducing flag propositions in the
program to identify its current steady-state program or adaptation status. We assume
that a decision maker system component is available to translate environment changes
into specific adaptation requests. Our specification technique describes the expected
program behavior in response to these requests. We use an atomic proposition AREQ to
represent the receipt of an adaptation request from the decision maker.

In the following, we summarize three commonly occurring basic adaptation seman-
tic interpretations from the literature [16,17,18,19] specified in terms of A-LTL. There
are potentially many other adaptation semantics. In all three adaptation semantics, we
denote the source and the target programs local properties as SSPEC and TSPEC, respec-
tively. If applicable, the restriction condition during adaptation is RCOND . We assume
that the flag propositions are included in the program specifications. We use the term
fulfillment states to refer to the states where all the obligations of the source program are
fulfilled (i.e., SSPEC is satisfied), thus making it safe to terminate the source behavior
and ensuring that the system does not become inconsistent. We illustrate these seman-
tics using a GSM-oriented audio streaming encoding and decoding protocol, which is a
signal processing-based forward error correction protocol. There are two participants in
this protocol, the sender and the receiver. Each participant has two encoding/decoding
programs: GSM(1,2), which should be used when loss rate is low, and GSM(1,3), which
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should be used when loss rate becomes high. The global invariant is that all packets
should be encoded using GSM. An extended version of this example is presented in [9].

One-Point Adaptation. Under one-point adaptation semantics, after receiving an
adaptation request AREQ, the program adapts to the target program TSPEC at a certain
point during its execution. The prerequisite for one-point adaptation is that the source
program SSPEC should always eventually reach a fulfillment state during its execution.

(SSPEC∧♦AREQ) Ω
⇀TSPEC . (1)

Formula 1 states that the program initially satisfies SSPEC . After receiving an adap-
tation request, AREQ, it waits until the program reaches a fulfillment state, i.e., all
obligations generated by SSPEC are satisfied. Then the program stops being obligated
to satisfy SSPEC and starts to satisfy TSPEC . This adaptation semantics is explicitly
or implicitly applied by most approaches (e.g., [16, 17, 19]) to deal with simple cases
that do not require constraining the source behavior or overlapping the source and tar-
get behavior. For example, once the loss rate becomes high, the sender and receiver
immediately adapt from GSM(1,2) to GSM(1,3).

Guided Adaptation. Under guided adaptation semantics, after receiving an adapta-
tion request, the program first constrains its source program behavior by a restriction
condition, RCOND, and then adapts to the target program when it reaches a fulfillment
state. This semantics is suitable for adaptations whose source programs do not guaran-
tee reaching a fulfillment state within a given amount of time. The restriction condition
should ensure that the source program will finally reach a fulfillment state.

�
SSPEC∧(♦AREQ

Ω1⇀RCOND)
�Ω2⇀TSPEC. (2)

Formula 2 states that initially SSPEC is satisfied. After an adaptation request, AREQ,
is received, the program should satisfy a restriction condition RCOND (marked with
Ω1⇀). When the program reaches a fulfillment state of the source, the program stops

being constrained by SSPEC , and starts to satisfy TSPEC (marked with
Ω2⇀). The hot-

swapping technique introduced by Appavoo et al [16] and the safe adaptation proto-
col [19] use the guided adaptation semantics. For example, once the loss rate becomes
high, the sender waits until its buffer is empty (the restriction condition) and then trans-
fers from GSM(1,2) to GSM(1,3). The receiver transfers from GSM(1,2) to GSM(1,3)
when it receives the first packet encrypted using GSM(1,3).

Overlap Adaptation. Under overlap adaptation semantics, the target program behavior
starts before the source program behavior stops. During the overlap of the source and
the target behavior, a restriction condition is applied to safeguard the correct behavior
of the source and target programs. This adaptation semantics is appropriate for the case
when continuous service from the adaptive system is required. The restriction condition
should ensure that the source program reaches a fulfillment state.

��
SSPEC∧(♦AREQ

Ω1⇀RCOND)
�Ω2⇀true

�

∧
�
♦AREQ

Ω1⇀
�
TSPEC∧(RCOND

Ω2⇀true)
��

. (3)
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Formula 3 states that initially SSPEC is satisfied. After an adaptation request, AREQ,
is received, the program should start to satisfy TSPEC and also satisfy a restriction con-

dition, RCOND (marked with
Ω1⇀). When the program reaches a fulfillment state of the

source program, the program stops being obliged by SSPEC and RCOND (marked with
Ω2⇀). The graceful adaptation protocol introduced by Chen et al [17] and the distributed
reset protocol introduced by Kulkarni et al [18] use the overlap adaptation semantics.
For example, once the loss rate becomes high, the sender immediately transfers from
GSM(1,2) to GSM(1,3). However, the receiver executes both GSM(1,2) to GSM(1,3)
in parallel until all of the packets encoded using GSM(1,2) have been processed.

3 Run-Time Model Checking

Run-time model checking has been proposed as a means to gain the verification bene-
fit of model checking while avoiding the state explosion problem. In general, run-time
verification monitors the run-time behavior of a software system and checks its confor-
mance to a requirements specification defined as a temporal logic property [21]. During
the execution of the software, an execution trace is generated and analyzed by a model
checker to verify its conformance to the formal specification. A common implemen-
tation of run-time model checkers [11, 12, 13, 21, 14] is to use a property automaton
running in parallel with the adaptive software. Given a formal specification, the prop-
erty automaton is constructed in such a way that it accepts exactly the set of executions
that satisfy the specification.

In this paper, we propose AMOEBA-RT, which extends the AMOEBA model
checker [10] with support for run-time verification of adaptation properties A-LTL and
LTL. AMOEBA-RT is designed to gain the verification benefit of model checking for
complex adaptive systems, while avoiding the state explosion problem. Specifically,
AMOEBA-RT provides a means to continuously monitor and verify the behavior of a
software system either during development or after the system has been deployed. When
an error is detected, the software may either file an error report, or attempt to repair the
error automatically. AMOEBA-RT has two primary capabilities: First AMOEBA-RT
uses an aspect-oriented technique to produce execution traces by instrumenting and
monitoring the executing adaptive software. Second, AMOEBA-RT uses a run-time
model checker to verify that the adaptive software adheres to its adaptive properties. In
the following, we provide additional details about each capability.

3.1 Run-Time Monitoring

AMOEBA-RT instruments the adaptive system to achieve run-time monitoring. Fig-
ure 1 depicts the overall architecture of AMOEBA-RT. The instrumented code collects
information about the run-time state of the adaptive software and transmits the informa-
tion to the run-time model checking server. The instrumentation is achieved using As-
pectJ [15], an aspect-oriented extension to the Java programming language. In AspectJ,
each crosscutting concern is defined in an aspect comprising pointcuts and advice. A
pointcut identifies a set of points (named join points) in a program, such as invocations
of a certain function, assignments to a certain variable, etc. An advice comprises the
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type of the advice (before, after, or around), a set of pointcuts, and a code segment. A
before/after advice causes the AspectJ compiler to insert the code segment before/after
every join point in the program matched by the pointcuts. An around advice causes the
AspectJ compiler to replace the join points matched by the pointcuts with the code seg-
ment. Our AMOEBA-RT instrumentation defines pointcuts around method calls that
indicate a change in run-time state and uses advice to collect the state information and
transmits it to the run-time model checking server. Currently, the developer must iden-
tify the relevant method calls and define pointcuts and advice for each adaptation.

Our approach is non-invasive in that the AspectJ compiler compiles the Java source
files and an aspect file specifying the instrumentation, and then generates instrumented
Java bytecode files. The Java bytecode files are then executed on a general JVM. During
run-time, the instrumentation code collects run-time state information and sends the
information to the run-time model checking server in sequence. When the adaptive
program terminates, an end of execution message (‘EOE’) is attached to the end of the
sequence and sent to the run-time model checking server.

3.2 Run-Time Analysis

As depicted in Figure 1, the AMOEBA-RT run-time model checking server checks
the conformance of the sequence of state information received from the instrumented
code with the adaptation requirements specified in A-LTL/LTL. Specifically, the model
checker uses a property automaton running in parallel with the adaptive software. Given
an A-LTL/LTL specification, the A-LTL interpreter generates a property automaton,
which is an automaton that accepts exactly the set of executions that satisfy the A-
LTL/LTL specification. Therefore, the model checker accepts the execution trace gener-
ated by the executing adaptive software if and only if the trace satisfies the specification.

AMOEBA-RT constructs a property automaton for the property being verified by
extending the logic rewrite rules introduced by Bowman and Thompson [22]. In the
property automaton, each node comprises two fields, ‘p’ and ‘q,s’ where p is a propo-
sitional logic formula indicating the condition satisfied by the node itself, and q is an
A-LTL formula indicating the property that must be satisfied by its next states. The next

AspectJ compiler: 
Weave instrumentation 

script into adaptive Java
program

instrumented 
bytecode

A−LTL interpreter: Parse 
A−LTL spec and generate

property automaton

Run−time model
checker: Simulate state

sequence using the
property automaton

Developer
Verification 

result

Run−time Model 
Checking Server

Adaptation spec
in A−LTL

Adaptive Java 
program

State
sequence

automaton
Property

Instrumentation 

instrumentation 
AspectJ

JVM: Execute 

script

bytecode

Fig. 1. The dataflow diagram for AMOEBA-RT verification
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nodes t1, t2, · · · , tk of a node s are non-overlapping, i.e., the p values of these nodes
are logically disjoint. Therefore, the property automata constructed are deterministic,
i.e., we can always choose the appropriate next node based on the conditions in the
current state. If a run-time execution path is accepted by the property automaton, then
it satisfies the specification. In this way, the property automaton serves to verify a given
execution sequence at run-time.

Formally, a property automaton is a tuple (S, S0, T, P, N), where: S is a set of states.
S0 is a set of initial states where S0 ⊆ S. T : S → 2S maps each state to a set of next
states. P : S → proposition represents the propositional conditions that must be satis-
fied by each state. N : S → formula represents the conditions that must be satisfied
by all the next states of a given state.

Given a set of A-LTL/LTL formula Φ, we generate a property automaton PROP (Φ)
with the following features: For each member φ ∈ Φ, create an initial state s ∈
S0 such that P (s) = true, N(s) = φ. Let pe, pi, and qi be propositional for-
mulae. For each state s ∈ S, let the partitioned normal form [22] of N(s) be
(pe∧empty)∨

∨
i(pi∧©qi), then it has a successor s′i ∈ S for each pi field with

P (s′i) = pi and N(s′i) = qi. The (pe∧empty) part of the partitioned normal form
depicts the condition when a sequence is empty, where empty ≡ ¬©true [22], and
pe is a proposition that must be true when the state is the last state. In the

∨
i(pi∧©qi)

part of the formula, the propositions pi partitions true (i.e., the propositions pi are mu-
tually exclusive), and qi is the corresponding condition that must hold when pi holds in
the current state.

A path of a property automaton is an infinite sequence of states s0, s1, · · · such that
s0 ∈ S0, sn ∈ S, and si, si+1 ∈ T , for all i (0 ≤ i < n). We say a path of a property
automaton s0, s1, · · · , simulates an execution path of a program s′1, s

′
2, · · · , if P (si)

agrees with s′i for all i (0 < i). We say a property automaton accepts an execution
path from initial state s ∈ S0, if there is a path in the property automaton starting from
s that simulates the execution path. It can be proved [10] that the property automa-
ton constructed above, from initial state s ∈ S0, accepts exactly the set of executions
that satisfy N(s).2 Thus, we are able to use the property automaton to verify that an
execution path satisfies Φ.

Implementation. We implemented this approach as the AMOEBA-RT prototype.
Specifically, AMOEBA-RT uses the property automaton to simulate the sequence of
run-time states in parallel with the adaptive software. The simulation process works
as follows: AMOEBA-RT uses a variable curstate to denote the current state of the
property automaton, where curstate is initialized with the initial state of the property
automaton. Upon receipt of a condition cond from the instrumentation, AMOEBA-RT
invokes a moveNext(cond) method of the property automaton that operates as
follows:

– If cond = EOE and curstate is an accepting state, then return success.
– If cond = EOE and curstate is not an accepting state, then return failure.
– If cond 
= EOE and curstate has a next state that agrees with the condition cond,

then move curstate to the next state and return success.
2 We ignore the eventuality constraint [23] (a.k.a self-fulfillment [24]) at this point. However,

later steps will ensure eventuality to hold in our approach.
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– If cond 
= EOE and curstate does not have a next state that agrees with the condi-
tion cond, then return failure.

If the property automaton returns success at the end of an execution trace, then the
execution trace adhered to the A-LTL property. Otherwise, if a violation of the property
automaton is encountered, the run-time model checking server returns failure, and the
state sequence (i.e., a counter-example) is recorded in a bug report. The bug report may
first be used to alert a human operator that the system requires immediate attention [12].
Second, the bug report is analyzed by the developers. If the bug report describes valid
behavior, then the property must be corrected. If the bug report describes incorrect
system behavior, such as an invalid adaptation, then the developer must modify the
system itself, e.g., by disallowing the invalid adaptation.

Run-time verification occurs at run time. The overhead incurred by the instrumenta-
tion code includes the evaluation of monitored state conditions and the transmission of
these conditions to the run-time model checking server. Its effect on the performance of
the run-time adaptive system depends on the density of the instrumentation points, the
number of conditions to be monitored at each point, and the encoding of the conditions
to be transmitted. In our experiments, the performance overhead incurred by run-time
verification is largely imperceptible (< 1%).

4 An Illustrative Example

In some multi-threaded Java programs, such as proxy servers, data are processed and
transmitted from one thread to another in a pipelined fashion. The Java pipeline is
implemented using a pair of piped I/O classes, which can be synchronous (i.e., the
pipeline waits for a response) or asynchronous (i.e., the pipeline continues to receive
data) functions. Previously [25] we have studied optimization techniques and proposed
an asynchronous Java pipeline design to be run on a multi-processor machine. By elim-
inating synchronization overhead, the asynchronous version gains a speed up rate of
4.83 over the synchronous implementation when the CPU load is low [25]. However,
when the CPU load is high, the synchronous implementation performs better. The data
transmission is achieved by accessing shared buffers. A sync buffer and an async buffer
are used for the synchronous and asynchronous pipeline components, respectively. Pre-
viously, we have constructed an adaptive version of the Java pipeline classes where the
system can monitor CPU workload and use an adaptation decision maker to select the
optimal implementation for specific run-time conditions.

We specify the adaptation requirements for the adaptive Java pipeline program in A-
LTL as follows. Before adaptation, the system (i.e., the source program) is required to
input data from the synchronized pipeline in response to the outputs. That is, for each
output data x in the synchronous mode, the system must eventually input data x. In
LTL:

�(SyncOutput(x)→♦SyncInput(x)). (4)

The program behavior after adaptation can be specified in a similar manner. The system
(i.e., the target program) is required to input data from the asynchronous pipeline in
response to the outputs. In LTL:
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�(AsyncOutput(x)→♦AsyncInput(x)). (5)

For both the synchronous and asynchronous pipelines, when an output event occurs,
an input obligation is generated. In other words, if the output is generated, then there
should be a subsequent input event to read the generated output, thus discharging the
input obligation. Formulae (4) and (5) state that an execution must fulfill all input oblig-
ations before it terminates.

In the adaptation from the source program to the target program, we allow the
write operation of the asynchronous pipeline to overlap with the read operation of the
synchronous pipeline. Therefore, we apply the overlap adaptation semantics introduced
in Section 2 to the specification of the adaptation. During the overlapped period, the re-
striction condition is that the synchronous pipeline should not output data, and the asyn-
chronous pipeline should not input data. The requirement for the adaptation from the
source to the target can be specified using the overlap adaptation semantics as follows:

(((�(SyncOutput→♦SyncInput)∧(♦AREQ

Ω
⇀�¬SyncOutput))

Ω
⇀true)

∧(♦AREQ

Ω
⇀(�(AsyncOutput→♦AsyncInputs)∧(�¬AsyncInput

Ω
⇀true)))). (6)

This formula states that the system should adapt from the source program (in the syn-
chronous mode) to the target program (in the asynchronous mode) in response to the
adaptation request AREQ. The source and target programs overlap. During the over-
lapped period, the source must not output data, and the target must not input data. The
output obligation generated in the synchronous mode must be fulfilled before the adap-
tation completes.

4.1 Instrumentation and Model Checking

To monitor the run-time execution conditions of the adaptive Java pipeline program,
we use aspect-oriented programming to insert instrumentation code into the adaptive
system. Currently, the AspectJ script for instrumentation is generated manually; future
work will explore automated support.

In this example, the “instrumentation concern” is encapsulated in an
Instrumentation aspect, saved in a file named Instrumentation.aj.
Specifically, we define a pointcut Main to identify the main()method of the adaptive
Java pipeline program. Figure 2 (a) depicts the before advice we defined for the Main
pointcut. Specifically, at the very beginning of the entire program, we insert code to
initialize the property automaton in the run-time model checking server by sending
an A-LTL formula to the server. The AmoebaChecker class implements a stub that
is responsible for the communication with the model checking server. Its constructor
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3       "((([](SyncOutput ><>SyncInput) /\\ (<>AREQ _>[] !SyncOutput)) _>true)
2     AmoebaChecker.checker = new AmoebaChecker ("192.168.1.101", 2211, 

4       /\\ (<>AREQ _> ([] (AsyncOutput > <> AsyncInput) /\\
5       ([]!AsyncInput _> true ))))" );  }

1  before() : sync_output() { checker.nextState ("SyncOutput"); };

1  after() :Main { AmoebaChecker.checker.terminate(); }

1  public pointcut sync_output() : withincode (*sync.PipedInputStream.receive(..))
2  && get (byte[] buffer ); 

(a)

(b)

(c)

(d)

1  before() :Main() {

Fig. 2. Instrumentation Code

method takes three parameters: The first two parameters specify the IP address and the
port number for the model checking server, respectively. The third parameter specifies
the A-LTL property to be verified. Figure 2(b) depicts the after advice we defined
for the Main pointcut. Specifically, at the very end of each execution, we insert code
to send an ‘‘EOE’’ message to the run-time model checking server to terminate the
model checking.

Second, we use pointcuts to identify the locations of the adaptive Java pipeline pro-
gram at which the sync shared buffer and the async shared buffer are accessed and
therefore should be instrumented. Figure 2 (c) illustrates the pointcut definition for the
SyncOutput message. Line 1 defines that the pointcut is within the receive()
method of the async piped input and sync piped input classes. Line 2 defines that the
pointcut is at the location where the buffer is accessed. When the buffers are ac-
cessed for read/write, an input/output message will be generated and sent to the run-
time model checking server through network communication. Figure 2(d) shows the
advice definition for SyncOutput. This code defines that it is a before advice for the
sync output pointcut. Before each access to the sync buffer, the advice inserts in-
strumentation code that invokes the nextState() method of the checker, which
sends the SyncOutput message to the run-time model checking server.

We executed the instrumented adaptive Java program and verified the program
against the overlap adaptation requirement in Formula (6) using AMOEBA-RT. To
demonstrate that the model checker is actually effective in detecting errors, in a second
experiment, we deliberately introduced some errors in the adaptive system. Specifically,
we observed the obligation fulfillment is ensured by the buffer empty check in the sync
piped input component, which is manifested as “if” statements at a number of locations
in the code. We removed one of these “if” statements from the sync piped input com-
ponent. This time, AMOEBA-RT detected violations of the property in Formula (6) in
some of the random executions. As a response to the violations, AMOEBA-RT recorded
the execution paths in a bug report that is currently processed offline. The bug reports
documents counter-examples, that is, the paths of execution that lead to a property vi-
olation. The bug report in the above experiment showed that during those execution
paths, the property was indeed violated.
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5 Conclusions

In this paper, we introduced AMOEBA-RT, a run-time verification approach for adap-
tive software. AMOEBA-RT provides a means to continuously monitor and verify the
post-release behavior of a software system. When an error is detected, the software may
either file an error report, or attempt to repair the error automatically.

There are numerous possible directions for future work. First, we are investigat-
ing the use of counter-examples generated by AMOEBA-RT as input to the decision-
making process for adaptation. Ideally, the adaptive system would be able to detect
property violations and then adapt to repair itself. Second, currently our restriction con-
ditions are safety conditions. We are considering additional types of restriction condi-
tions, such as non-functional requirements. Additionally, we are interested in enabling
a developer to visualize the run-time execution path of the adaptive system on the
design models [26]. We envision that this capability could be used to better under-
stand the relationship between environmental conditions and adaptation, as well as the
need for additional steady-state systems. Finally, we are exploring how AMOEBA and
AMOEBA-RT can be used to guide the automatic generation of steady-state programs
using digital evolution [27].
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Abstract. The reliability of high-volume products, such as consumer
electronic devices, is threatened by the combination of increasing com-
plexity, decreasing time-to-market, and strong cost constraints. As an
approach to maintain a high level of reliability and to avoid customer
complaints, we present a run-time awareness concept. Part of this concept
is the use of models for run-time error detection. We have implemented a
general awareness framework in which an application and a model of its
desired behaviour can be inserted. It allows both time-based and event-
based error detection at run time. This method, coupled to local recovery
techniques, aims to minimize any user exposure to product-internal tech-
nical errors, thereby improving user-perceived reliability.

Keywords: reliability, error detection, embedded systems, models, run-
time verification.

1 Introduction

Modern consumer electronics devices, such as TVs or smart phones, contain vast
amounts of intelligence encoded in either software or dedicated hardware. Hun-
dreds of engineers develop and improve these “computers in disguise” for global
markets but facing plenty of local variations. Complexity and open connectiv-
ity make it exceedingly difficult to guarantee total product correctness under
all operating conditions. The final aim of our work is to improve user-perceived
reliability of these devices by run-time awareness, i.e., allow a device to correct
at run time important, user-noticeable, failure modes. This paper presents an
approach to provide run-time error detection as a first step towards awareness.

The work described here is part of the Trader project in which academic and
industrial partners collaborate to optimize the reliability of high-volume prod-
ucts, such as consumer electronic devices. The main industrial partner of this
project is NXP Semiconductors (formerly Philips Semiconductors), with a fo-
cus on audio/video equipment (e.g., TVs and DVD players). NXP provides the
problem statement and relevant case studies which are taken from the TV do-
main. A current high-end TV is a very complex device which can receive analog
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and digital input from many possible sources and using many different coding
standards. It can be connected to various types of recording devices and in-
cludes many features such a picture-in-picture, teletext, sleep timer, child lock,
TV ratings, emergency alerts, TV guide, and advanced image processing. Simi-
lar to other domains, we see a convergence to additional features such as photo
browsing, MP3 playing, USB, games, databases, and networking. Correspond-
ingly, the amount of software in TVs has seen an exponential increase from 1
KB in 1980 to 24 MB in current high-end TVs. Also the hardware complexity is
increasing rapidly to support, for instance, real-time decoding and processing of
high-definition (HD) images for large screens, large data streams, and multiple
tuners. Correspondingly, a TV is designed as a system-on-chip with multiple
processors and dedicated hardware accelerators, to meet stringent real-time re-
quirements of, for instance, HDTV-quality input at rates up to 120 Hz.

In addition, there is a strong pressure to decrease time-to-market, i.e., the in-
creasing complexity of products has to be addressed in shorter innovation cycles.
To realize many new features quickly, components developed by others have to be
incorporated. This includes so-called third-party components, typically realizing
audio and video standards, but also in-house developed components supplied by
other business units. Moreover, there is a clear trend towards the use of down-
loadable components, to increase product flexibility and to allow new business
opportunities (selling new features, games, etc.).

Given these trends, the complexity of hardware and software, and the large
number of possible user settings and types of input, exhaustive testing is im-
possible. Moreover, the product has to tolerate certain faults in the input (e.g.,
deviations from coding standards or bad image quality). Hence, it is extremely
difficult to continue producing products at the same reliability level. The cost
of non-quality, however, is high, because it leads to many returned products, it
damages brand image, and reduces market share.

The main goal of the Trader project is to prevent faults in high-volume prod-
ucts from causing customer complaints. Hence, the focus is on run-time error
detection and correction, minimizing any disturbance of the user experience of
the product. The main challenge is to realize this without increasing development
time and, given the domain of high-volume products, with minimal additional
hardware costs and without degrading performance.

This paper is structured as follows. In Sect. 2 the main approach is described.
We list the main research questions in Sect. 3. Section 4 contains current results.
In Sect. 5 we discuss related work. Concluding remarks can be found in Sect. 6.

2 Approach

In observing failures of current products, it is often the case that a user can
immediately observe that something is wrong, whereas the system itself is com-
pletely unaware of the problem. Inspired by other application domains, such as
the success of helicopter health and usage monitoring [1], the main approach in
Trader is to give the system a notion of run-time awareness that its customer-
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perceived behavior is (or is likely to become) erroneous. In addition, the aim
is to provide the system with a strategy to correct itself in line with customer
expectations. The concept of run-time awareness and correction as pursued by
the Trader project is depicted in Fig. 1.
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Fig. 1. Adding awareness at run time

We list the main ingredients of our run-time awareness approach, giving ex-
amples from the TV-domain:

– Observation: observe relevant inputs, outputs and internal system states. For
instance, for a TV we may want to observe keys presses from the remote con-
trol, internal modes of components (dual/single screen, menu, mute/unmute,
etc), load of processors and busses, buffers, function calls to audio/video out-
put, sound level, etc.

– Error detection: detect errors, based on observations of the system and a
model of the desired system behaviour. For a TV, this could be done using
a state machine which describes mode changes in response to remote control
commands. An alternative is to use a model of expected load and memory
usage and compare this with the actual system behaviour.

– Diagnosis : in case of an error, find the most likely cause of the error, e.g.
using architectural models of the system. Examples are diagnosis techniques
that record data about executed parts of the system and the (non)occurrence
of errors or techniques that use architectural models that include faulty
behaviour. These techniques can be applied at various levels of granularity,
from fine-grained fault-localization in blocks of C-code to course-grained
diagnoses of large components.
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– Recovery: correct erroneous behaviour, based on the diagnosis results and
information about the expected impact on the user. Possible corrections
include restarting particular components, resetting internal modes/variables,
rescheduling software components, etc.

The approach depicted in Fig. 1 can be applied to the complete system, but
run-time awareness can also be added hierarchically and incrementally to parts
of the system, e.g., to third-party components.

An important part of our approach is the use of models at run time. These
models need not be complete descriptions of the full system behaviour; they
could concentrate on a high-level abstract view of part of the system behaviour,
depending on what is most useful in view of user-perceived reliability. To be able
to detect and correct errors before the user notifies them, models will usually
also describe certain aspects of internal system behaviour, such as the maximum
load or memory usage in certain modes or crucial internal variables.

We briefly mention the current status of a number of research activities under
the umbrella of the Trader project that contribute to run-time awareness:

– Observation: To observe relevant aspects of the system, hardware-related
work in Trader currently aims at exploiting mechanisms already available
in hardware, such as the on-chip debug and trace infrastructure. Software
behaviour is observed by code instrumentation using aspect-oriented tech-
niques, partly based on results from the ESI-project Ideals [2]. A specialized
aspect-oriented framework called AspectKoala [3] has been developed on top
of the component model Koala which is used at NXP to modularize the TV
software.

– Error detection: Various techniques for error detection are investigated such
as hardware-based deadlock detection and range checking. An approach
which checks the consistency of internal modes of components turned out
to be successful to detect teletext problems due to a loss of synchronization
between components [4].

– Diagnosis : The diagnoses techniques developed within Trader are based on
so-called program spectra [5]. The first applications in the TV domain are
encouraging and the technique is currently refined by using it for debugging.

– Recovery: To allow independent recovery of parts of the system, a frame-
work for local recovery has been developed [6]. A few first experiments in
the multimedia domain show that, after some refactoring of the system, in-
dependent recovery of parts of the system is possible without large overhead.
Another part of the recovery research concentrates on task migration. This
includes, for instance, the migration of tasks from one processor to another
to improve image quality in case of overload situations (e.g., due to intensive
error correction on a bad input signal).

In addition, there are controlled experiments with TV users to capture user-
perceived failure severity, that is, to get an indication of the level of user-irritation
caused by a product failure. In the remainder of this paper we focus on model-
based error detection, and refer to [7] for more information on other research
within Trader.
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3 Research Questions

We list a number of research questions concerning the embedding of error de-
tection in concrete industrial products. In Sect. 3.1 we address the problem of
getting suitable models. Section 3.2 discusses the use of these models for run-time
error detection.

3.1 Modeling

There are several questions related to the models to be used at run time:

– Which part of the system has to be modeled? For a complex price-sensitive
device such as a TV, it is cost-inhibitive to check the complete system be-
haviour at run time. Hence, a choice has to be made based on the likelihood
of errors and the impact on the user. Moreover, it is relevant to take into
account which errors can be treated by the diagnosis and the recovery parts
of the awareness framework.

– Which models are most suitable for run-time error detection? For instance,
which type of models is convenient and what is the right level of abstraction?
Although we focus on user-perceived behaviour, some architectural modeling
will be relevant to enable early detection of errors, i.e., before a user observes
a failure.

– How to obtain suitable models? Typically, in the area of embedded sys-
tems, the number of models available in industry is limited. The required
overall system behaviour is usually not modeled and models have to be re-
constructed using a lot of implicit domain knowledge (comparable to the
experiences described Sect. 4 of [8]).

– How to increase the confidence in the model; how to evaluate model quality
and fidelity?

3.2 Using Models at Run Time

The use of models at run time for error detection raises a number of questions:

– How to obtain the relevant observations from the system? Note that this
involves both hardware and software parts of the system. Typically, there
are several processors and state information is often distributed. Hence, a
question is how to get a consistent snapshot of the global state of the system.

– How to avoid detecting non-existing errors? The concept is to compare sys-
tem observations (e.g., output, states, load) with the values specified in the
model of desired system behaviour, henceforth also called the specification
model. False errors might occur due to a number of reasons such as i) the
use of an incorrect model, ii) an incorrect implementation of the model, iii) a
comparison at a wrong moment in time when the system is not stable. This
leads to the questions mentioned in the following points.

– How to preserve model semantics in the implementation at run time?
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– When to compare system observations with the model? When the system is
unstable, e.g., it is performing an action which takes some time, comparison
may lead to wrong results. How to decide when the system is in a stable
state? Is it possible to get notifications from the system or should stabil-
ity be deduced indirectly, e.g., by observing return values or changing data
structures? Should comparison be done time-driven, event-driven, or by a
combination?

– When to report an error exactly? Should system and specification match
exactly, or is a certain tolerance allowed? How much difference is allowed?
Should a single deviation lead to an error or are a few consecutive deviations
needed before an error is generated?

Observe that many of these questions are related. For instance, the decision
what to model depends on the type of errors one wants to detect, which errors
are recoverable, and what can be observed about the system in an effective way
(without too much costs or performance loss). In our context, an important
factor is also the user perception of which failures are irritating and which type
of recovery is acceptable for users.

4 Results on Model-Based Error Detection

We present the current results of the Trader project on model-based error detec-
tion. First, in Sect. 4.1, we discuss work on obtaining a model of desired system
behaviour, related to the questions in Sect. 3.1. Next, in Sect. 4.2, we present
a framework for run-time model-based error detection to obtain more insight in
the issues mentioned in Sect. 3.2.

4.1 Experiences with Modeling Desired System Behaviour

Since the TV domain is our source of inspiration and the focus is on user-
perceived reliability, the first aim was to make a model that captures the user
view of a particular type of TV in development. The model should capture the
relation between user input, via the remote control, and output, via images on
the screen and sound. Such a model did not exist. Neither could it be derived
easily from the TV requirements, which, in common industrial practice, were
distributed over many documents and databases.

Concerning the control behaviour of the TV, a few first experiments indicated
that the use of state machines leads to suitable models. But it also revealed that
it was very easy to make modeling errors. Constructing a correct model was
more difficult than expected. Getting all the information was not easy, and many
interactions were possible between features. Examples are relations between dual
screen, teletext and various types of on-screen displays that remove or suppress
each other. Hence, we aim at executable models to allow quick feedback on the
user-perceived behaviour and to increase the confidence in the fidelity of the
model. In addition, we exploit the possibilities of formal model-checking and
test scripts to improve model quality.
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Fig. 2. Simulation of model of TV behaviour

Besides the control behaviour, a TV also has a complex streaming part with
a lot of audio and video processing. Typically, this gets most attention in the
requirements documentation. We would like to model this on a more abstract
level, with emphasis on the relation with the control part.

These considerations led to the use of Matlab/Simulink [9]. The Stateflow tool-
box of Simulink is used for the control part and the Image and Video Processing
toolbox for the streaming part. A snapshot of a simulation is depicted in Fig. 2.
The Simulink model is shown in the middle, at the top, with on the left a (blue)
Stateflow block called “TVbehaviour” and on the right, an image processing
block called “Video”. The Stateflow block is a hierarchical and parallel state di-
agram. It is partly shown on the bottom, where the active states are dark (blue).
External events are obtained by clicking on a picture of a remote control, shown
on the left. Output is visualized by means of Matlab’s video player and a scope
for the volume level, shown on the bottom right side in Fig. 2.

The visualization of the user view on input and output of the model turned
out to be very useful to detect modeling errors and undesired feature interac-
tions. Since the model was changed frequently, we experimented with the tool
Reactis [10] to generate test scripts to check conformance after model changes.
This tool can also be used to validate model properties. Related functionality is
provided by the Simulink Design Verifier.

4.2 A Framework for Run-Time Model-Based Error Detection

To foster quick experimentation with the use of models at run time inside real
industrial products, e.g. a TV where the control software is implemented on top
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of Linux, we have developed a Linux-based framework for run-time awareness.
A particular System Under Observation (SUO) can be inserted, needing only
minimal adaptations to provide certain observations concerning input, output,
and internal states to the awareness monitor. The specification model of the
desired system behaviour is included by using the code generation possibilities
of Stateflow. Hence, it is easy to experiment with different specification models.
The awareness part also contains a comparator that can be adapted to include
different comparison and detection strategies.

Before implementing the framework, it has been modeled in Matlab/Simulink
to investigate the main concepts. A high-level view is depicted in Figure 3,
illustrating the comparison of the volume level. To simulate the comparison

Fig. 3. Model of model-based error detection

strategy, we also made a second model for the SUO, this time a more detailed
architectural model which also includes timing delays to simulate the execution
time of internal actions. A few observations based on simulations are listed below:

– Our initial specification models had to be adapted to include best-case and
worst-case execution times. To capture uncertainties in the system behav-
iour, we added intermediate states to represent that the system might be in
transition from one mode to another.

– Part of the comparison strategy is included in the specification model, to
be able to use domain knowledge about processing delays and intermediate
states. To this end, the specification generates events to start and to stop
the comparison (modeled by the ”compare” signal in Fig. 3).

– The comparator should not be too eager to report errors; small delays in
system-internal communication might easily lead to differences during a
short amount of time. Hence, current comparators only report an error if
differences persist during a certain amount of time or occur a consecutive
number of times. A trade-off has to be made between taking more time to
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avoid false errors and reporting errors fast to allow quick repair. This also
influences the frequency with which comparisons take place (modeled by the
”ComparePulse” in Fig. 3).

The design of the awareness framework is shown in Fig. 4. The SUO and the
awareness monitor are separate processes communicating via Unix domain sock-
ets. The SUO has to be adapted slightly, to send messages with relevant input
and output (which may also include internal states) to Input and Output Ob-
servers. The Stateflow Coder of Simulink is used to generate C-code from a
Stateflow model of the desired behaviour. This code is included in the Stateflow
Model Implementation component and executed by the Model Executor. Based
on event notifications from the Input Observer, the Model Executor provides in-
put to the code of the model. It also receives output from the model. Information
about relevant input and output is stored in the Configuration component.

The Comparator compares model output with system output which is ob-
tained from the Output Observer. For each observable value, the user of the
framework can specify (1) a threshold for the allowed maximal deviation be-
tween specification model and system, and (2) a limit for the number of con-
secutive deviations that are allowed before an error will be reported. Another
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Fig. 4. Design of awareness framework in Linux



234 J. Hooman and T. Hendriks

parameter is the frequency with which time-based comparison takes place. This
can be combined with event-based comparison by specifying in the specification
model when comparison should take place and when not (e.g., when the system
is in an unstable state between certain modes). The Model Executor obtains
this information from executing the implementation of the model and uses it to
start and stop the Comparator. The Controller initiates and controls all compo-
nents, except for the Configuration component which is controlled by the Model
Executor.

5 Related Work

Traditional fault-tolerance techniques such as Triple Modular Redundancy and
N-version programming are not applicable in our application domain of high-
volume products, because of the cost of the required redundancy. Related work
that also takes cost limitations into account can be found in the research on fault-
tolerance of large-scale embedded systems [11]. They apply the autonomic com-
puting paradigm to systems with many processors to obtain a healing network.
Similar to our approach is the use of a kind of controller-plant feedback loop,
state machines, and simulation in Simulink/Stateflow. Related work on adding a
control loop to an existing system is described in the middleware approach of [12]
where components are coupled via a publish-subscribe mechanism. A method to
wrap COTS components and monitor them using specifications expressed as a
UML state diagrams is presented in [13]. The analogy between self-controlling
software and control theory has already been observed in [14]. Garlan et al [15]
have developed an adaptation framework where system monitoring might invoke
architectural changes. Using performance monitoring, this framework has been
applied to the self-repair of web-based client-server systems.

Other related work consists of assertion-based approaches such as run-time
verification [16]. For instance, monitor-oriented programming [17] supports run-
time monitoring by integrating specifications in the program via logical anno-
tations. In our approach, we aim at minimal adaptation of the software of the
system, to be able to deal with third-party software and legacy code. More-
over, we also monitor timing properties which are not addressed by most tech-
niques described in the literature. Closely related in this respect is the MaC-RT
system [18] which also detects timeliness violations. Main difference with our
approach is the use of a timed version of Linear Temporal Logic to express re-
quirements specifications, whereas we use executable timed state machines to
promote industrial acceptance and validation.

Our approach to model-based error detection is also related to on-the-fly test-
ing techniques which combine test generation and test execution [8,19]. The
main difference is that these testing techniques generate input to the system
based on the model, whereas we consider normal input during system operation
and forward this input to the awareness component. Hence, our approach is more
related to so-called passive testing. An additional difference is that testing meth-
ods concentrate on testing the input/output interface, whereas our focus is on
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fast error detection (preferably before output failures occur) which often leads
to the monitoring of internal implementation details such as internal variables
or load.

6 Concluding Remarks

Clearly, we have not yet answered all research questions mentioned in Sect. 3.
Concerning the modeling questions of Sect. 3.1 we have mainly followed the
well-known state machine approach to model the control behaviour of embed-
ded systems. To increase both the industrial acceptance and the confidence in
the correctness of the models, model execution and an intuitive visualization of
input/output behaviour turned out to be essential. Convenient tool support has
been obtained by using Matlab/Simulink/Stateflow which allows efficient code
generation from models.

To investigate the questions in Sect. 3.2 about the use of models at run time,
we developed a framework which allows quick experiments with run-time aware-
ness. Currently, the framework is used for awareness experiments with the open
source media player MPlayer [20]. It was easy to insert both the MPlayer and an
abstract high-level Stateflow model of its desired behaviour in the framework,
without degrading the performance of the MPlayer. Although some injected er-
rors could be detected, more work is needed to investigate which types of errors
can be detected, how false errors can be avoided, and how the approach scales
to larger models. Moreover, we also intend to investigate the use of more archi-
tectural information in the model to detect errors earlier, before they affect the
user-perceived behaviour.

Current work also includes connections with diagnosis and recovery tech-
niques. The first results indicate that more research is needed to clarify the
relation between the types of errors that can be detected and those that can
be corrected by the local recovery techniques developed within Trader. More-
over, future work will address issues concerning the synchronization between
the techniques, e.g., to avoid error detection during recovery and to ensure a
re-synchronization between system and model after recovery.

Acknowledgments. Many thanks goes to Chetan Nair for his work on the
implementation of the awareness framework in Linux. The members of the Trader
project are gratefully acknowledged for many fruitful discussions on reliability
and the awareness concept. We thank the anonymous reviewers for many useful
comments and suggestions for improvement.
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Abstract. The comprehensive use of models in design has created a set
of challenges beyond that of supporting one isolated design task. In par-
ticular, the need to combine, couple, and integrate models at different
levels of abstraction and in different formalisms is posing a set of specific
problems that the field of Computer Automated Multi-Paradigm Model-
ing (CAMPaM) is aiming to address. This paper summarizes the results
of the 2nd Workshop on Multi-Paradigm Modeling: Concepts and Tools.

1 Introduction

Computational modeling has become the norm in industry to remain competitive
and be successful [23]. As such, Model-Based Design of, for example, embedded
software has enterprise-wise implications and modeling is not limited to isolated
uses by a single engineer or team. Instead, it has reached a proliferation much
akin to large software design, with requirements for infrastructure support such
as version control, configuration management, automated processing, etc.

The comprehensive use of models in design has created a set of challenges
beyond that of supporting one isolated design task. In particular, the need to
combine, couple, and integrate models at different levels of abstraction and in
different formalisms is posing a set of specific problems that the field of Computer
Automated Multi-paradigm Modeling (CAMPaM) is aiming to address [16,22].

The essential element of multi-paradigm modeling is the use of explicit mod-
els throughout. This leads to a framework with models to represent the syntax
of formalisms used for modeling, models of the transformations that represent
the operational semantics, as well as model-to-model transformations for inter-
formalism transformation [12]. These models are then used to facilitate genera-
tive tasks in a language engineering, such as evolving a domain-specific modeling
formalism as its requirements change, but also in a tool engineering space, such
as automatic generation of integrated development environments. Moreover, an
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explicit model of a model transformation allows analyses such as termination
characteristics, consistency, and determinism [4].

Thus, CAMPaM addresses two orthogonal problem directions:

1. Multi-Formalism Modeling [21], concerned with the coupling of, and trans-
formation between, models described in different formalisms. In Figure 1, a
part of the “formalism space” is depicted in the form of a formalism trans-
formation graph (FTG). The different formalisms are shown as nodes in
the graph. The arrows denote a homomorphic relationship “can be mapped
onto”. The mapping consists of transforming a model in the source formalism
into one in the target formalism preserving certain pertinent properties.
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Fig. 1. The Formalism Transformation Graph (FTG)

The specification of a composite system may include the coupling of
heterogeneous components expressed in different formalisms. For the analysis
of its properties the composite system must be assessed by looking at the
whole multi-formalism system. Components may have to be transformed to a
common formalism, which can be found in the FTG [21]. Formalisms can be
meta-modelled and the transformations denoted by the arrows of the FTG
can be modelled as model transformations.

In contrast, in the co-simulation approach [6], each component is sim-
ulated with a formalism-specific simulator. Interaction because of compo-
nent coupling is resolved at the trajectory (simulation data) level. Questions
about the overall system can only be answered at the level of input/output
(state trajectory). It is no longer possible to answer symbolic, higher-level
questions which could be answered within the formalisms of the individual
components.

2. Model Abstraction, concerned with the relationship between models at differ-
ent levels of abstraction. Models described in either the same or in different
formalisms can be related through the abstraction relationship, and its dual,
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refinement. A foundation for the notion of abstraction, is the information
contained in a model M , defined as the different questions (properties) P =
I(M) that can be asked concerning the model (|P | and p, p′ ∈ P : p �= p′).
These questions either result in true or false (M |= p or M �|= p).

A relation between two models M1 and M2 can have the character of
an abstraction, refinement, or equivalence relative to a non-empty set of
questions (properties) P .
– In case of an equivalence, it is required that for all p ∈ P holds: M1 |=

p ⇐⇒ M2 |= p. This is written M1 =P M2.
– If M1 is an abstraction of M2 with respect to P it holds for all p ∈ P :

M1 |= p ⇒ M2 |= p. This is written M1 �P M2.
– Furthermore, M1 is said to be a refinement of M2 iff M1 is an abstraction

of M2. This is written M1 �P M2.
Further discussion of this is included in the summary of the 1st Workshop
on Multi-Paradigm Modeling: Concepts and Tools in 2006 [7].

To address the problems from the use of multiple formalisms and multiple levels
of abstraction, meta-modeling and model transformation are used. Meta-Modeling
[23] is based on the explicit modeling of modeling formalisms. Formalisms are
described as models using meta-formalisms that are expressive enough to describe
other formalisms’ syntax and semantics. Examples are the Entity Relationship
formalism and UML class diagrams. Model transformation is based on the explicit
modeling of model transformations.

2 The Workshop

The objective of the workshop was to provide a forum to discuss the concepts as
well as the tool building aspects required for multi-paradigm modeling. It was
oriented to researchers and practitioners working in the modeling, simulation
and analysis of complex systems, dealing with multiple paradigms in a model-
driven manner. This includes tool vendors, academic researchers which address
tool building as well as users of these tools.

This year workshop included five research paper presentations and one invited
talk by Gabor Karsai (ISIS/Vanderbilt University) entitled “Multi-paradigm
Modeling: Some past projects, lessons learned, and research challenges”. The pre-
sentation addressed how the model-based engineering of large-scale embedded
information systems often necessitates the use of different, heterogeneous model-
ing paradigms. Multiple-aspect, multi-paradigm, domain-specific models capture
not only the physical and functional views of the hardware and the software ar-
chitecture, but they should also represent interactions among different physical
domains, as well as non-functional aspects such as faults and their effects, safety
properties, and many others. The presentation highlighted the experience from
four different projects in the past fifteen years, where multi-paradigm model-
ing had to be used to solve complex design and operational problems. Various
examples were given for the modeling paradigms used in specific engineering
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systems. The research issues discussed included the problems of interacting en-
gineering domains, the integration of models and their modeling languages, and
the semantics of modeling paradigms and their precise specification.

The papers were presented in two sessions, both chaired by Pieter Mosterman.
The first session was entitled MPM Concepts and Applications and included
three papers:

– “ModHel’X: A Component-Oriented Approach to Multi-Formalism Model-
ing”, by C. Hardebolle and F. Boulange [9]. In this paper, the authors address
two important issues: to provide support for the specification of the seman-
tics of a modeling formalism, and to allow the specification of the interactions
between parts of a model described using different modeling formalisms. For
this purpose, they present the ModHel’X system, which focuses on model
execution, including simulation, code generation and real-time execution.

– “From UML State Charts to DEVS State Machines using XML”, by J.L.
Risco-Mart́ın, S. Mittal, B. Zeigler and J.M. de la Cruz [18]. In this contri-
bution, the authors present an integrated approach towards using UML state
machines transformed as DEVS [24] models. The transformation mechanism
is available as an upcoming standard, State Chart XML (SCXML) that pro-
vides a generic execution environment based on CCXML and Harel State
tables. The transformation is ilustrated by taking a UML state machine and
augmenting it with information during the process using SCXML to make it
DEVS capable. The obtained DEVS models are indeed Finite Deterministic
DEVS, able to be encoded as a W3C XML schema.

– “ApplyingMulti-ParadigmModeling toMulti-PlatformMobileDevelopment”,
by L. Lengyel, T. Levendovszky and C. Hassan [14]. In this work, the authors
introduce some CAMPaM ideas in their meta-modeling and model transfor-
mation framework, the Visual Modeling and TransformationSystem (VMTS).
The concepts are illustrated with an example in model-based development for
mobile platforms.

The second session was entitled MPM Tools, and included two papers:

– “Towards Parallel Model Transformations”, by G. Mezei, H. Charaf, T. Lev-
endovszky [15]. In this contribution, the authors tackle the problem of effi-
ciency of graph transformation by proposing the execution of model trans-
formations in parallel. The paper presents algorithms to find and apply steps
of the transformations in parallel, and an implementation is given the Visual
Modeling and Transformation System (VMTS).

– “Domain-specific Model Editors with Model Completion”, by S. Sen, B.
Baudry and H. Vangheluwe [20]. In this paper, the authors propose an in-
tegrated software system capable of generating recommendations for model
completion of partial models built in arbitrary domain-specific model editors.
The automatic completion is powered by a Prolog engine whose input is a
constraint logic program derived from the specification (meta-model with
constraints) of the modeling language to which the partial models belong.
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3 Working Group Results

The workshop included two working group discussion sessions.

3.1 Consistency

This working group consisted of K. Cerans, B. Latronico, D. Matheson, E. Syr-
iani, and H. Vangheluwe. The discussion focused on model consistency.

In the development of complex systems, multiple views on the system-to-be-
built are often used. These views typically consist of models in different for-
malisms. Different views usually pertain to various partial aspects of the overall
system. In a multi-view approach, individual views are (mostly) less complex
than a single model describing all aspects of the system. As such, multi-view
modeling, like modular, hierarchical modeling, simplifies model development.
Most importantly, it becomes possible for individual experts on different as-
pects of a design to work in isolation on individual, possibly domain-specific
views without being encumbered with other aspects. These individual experts
can work mostly independently, thereby considerably speeding up the develop-
ment process. This approach does however have a cost associated with it. As
individual view models evolve, inconsistencies between different views are often
introduced and those need to be corrected.

Ensuring consistency between different views requires periodic concerted ef-
forts from the model designers involved. In general, the detection of inconsis-
tencies and recovering from them is a tedious, error-prone and manual process.
Automated techniques can alleviate the problem and this has been investigated
in the Concurrent Engineering community over the last two decades [2]. These
solutions were often based on some form of constraint propagation between the
different views. Al-Anzi and Spooner [1] give a classification of inconsistencies
that may occur in the context of Concurrent Engineering. Easterbrook et. al [3]
introduce the notion of ViewPoints and describe how consistency between them
can be checked. In the Software Engineering community, the consistency between
different views of a design has also been studied extensively [5,8].

For the sake of the discussions, a working definition of consistency was pro-
posed: A set of models M is consistent with respect to a set of consistency
constraints C over M if all constraints in C are satisfied. M is inconsistent when
at least one of the constraints in C is not satisfied. Consistency constraints may
pertain to syntax as well as to semantics of models. In the former case, the con-
straints may pertain to the structure of models or to values of model attributes.
In the case of semantics, the consistency constraints are defined over the se-
mantic domain. This implies that models may have to be simulated to check
consistency.

Whereas checking consistency constraints over a set of models can be done in
isolation, often one starts from a consistent set of models and then incrementally
makes changes to some of the models (usually one at a time). In this case, incon-
sistencies should be detected and where possible, modifications to (other) models
in M must be made to maintain consistency. As such, changes in one model are
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propagated to other models. Which changes need to be made is determined by
the consistency constraints. It is noted that a consistency check of a set of models
in isolation can sometimes be performed by incrementally constructing the set
from an empty set, keeping consistency at each intermediate step.

Triple Graph Grammars (TGGs) [19] were proposed as a reasonable start-
ing point for automating consistency checking and enforcement, at least at a
structural level (and initially, only for two models). In TGGs, two meta-model
graphs are connected via a correspondence graph. This declarative model allows
for checking consistency of the models, both with the meta-models and with each
other. Furthermore, a collection of unidirectional change propagation rules can
be inferred from the TGG model [10]. Related work has demonstrated this and
has shown how conflict situations can be detected [11]. Furthermore, potential
rules to resolve a conflict can be presented to the user for manual intervention. At
the level of attribute relationships, a declarative specification would be desirable
and Modelica (www.modelica.org) was suggested as a starting point.

3.2 Simulation

This working group consisted of C. Hardebolle, T. Levendovszky, P.J. Moster-
man, and J.L. Risco-Mart́ın.

The discussion focused on models of time for the execution of models that are
designed using different formalisms. A concrete application example is formed
by the networked power window control system that is sketched in Fig. 2. In the
example a bus, depicted by a double straight line at the bottom, connects three
controllers; a window controller, a lights controller, and a mirror controller. These
three controllers may be implemented by different microcontrollers. To connect
the controllers to the physical part of the system, actuators and sensors are
employed. This is illustrated for the power window system where the controller
actuates the window by a dc motor and obtains feedback measurements from a
current sensor [17].

In the design of such a networked embedded system, a number of different for-
malisms are routinely employed. For example, the physics of the window move-
ment includes the dynamics because of the window mass, the lift mechanism,
and friction coefficients, and may be best modeled using differential equations,
either as a system of ordinary differential equations (ODE) or as a system of

window

dc motor current
sensor

window
controller

lights
controller

mirror
controller

Fig. 2. A networked power window control system
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Fig. 3. State trajectories

differential and algebraic equations (DAE). This is schematically presented in
Fig. 3(a), which shows a behavior that varies continuously with respect to time.

The behavior of the controller, on the other hand, often is implemented as
periodic using a given sample time to determine the period. The controller may
implement a number of tasks that may execute with different periods. This is
illustrated in Fig. 3(b), where the sample time is represented by the distance in
time between the dashed lines. Two tasks are shown, one at the bottom with a
period of two and one at the top with a period of three.

The window controller may obtain its setpoint commands (i.e., whether to
move the window up, down, or not at all) from a user operated switch that is
located elsewhere in the vehicle. The commands are then communicated over a
network that is also utilized by other control systems. To study the effects of
the network and to determine the quality of service, the events at which data is
transferred across the network are modeled. This is depicted in Fig. 3(c) by events
that occur at points in time that may be arbitrarily spaced. This illustrates how
over certain intervals of time, the event density may be high, whereas at other
times the event density may be low.

The discussion centered around three different types of temporal semantics of
models

– continuous-time, ẋ(t) = f(x(t), u(t), t(t))
– discrete-time, x(tk + h) = f(x(tk), u(tk), tk)
– discrete-event, x(tk + hk) = f(x(tk), u(tk), tk)

This classification has been discussed in detail by Zeigler, Kim, and Praehofer [24]
The working group concentrated specifically on the efficient generation of behav-
iors of the separate computational systems in isolation and in combination.

Continuous-time systems are typically executed by discretizing the continuous
trajectory by using a numerical integration routine, embodied by a solver. The
discretized points in time are indicated in Fig. 3(a) by the circles along the
continuous trace. To efficiently execute an ODE, a specific solver has to be
selected based on the characteristics of the behavior that the ODE embodies.

Discrete-time systems that represent embedded control can often be executed
based on a static schedule, for example derived to be rate-monotonic. This results
in little overhead in determining when a period starts (e.g., by doing an integer
comparison) but the sample time that is employed may result in scheduled points
in time at which no changes in the system occur. This is illustrated in Fig. 3(b)
by the first sample hit where no change in either of the two tasks occurs.
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To avoid such superfluous sample time hits, an event calendar can be imple-
mented which allows very efficient handling of variable event densities such as in
discrete-event systems. In Fig. 3(c) it is illustrated how for a discrete-event system
values in between two events may be considered irrelevant. This in contrast with
the zero-order hold that is typically applied in discrete-time systems.The event cal-
endar to handle such variable event density consists of a data structure that has to
very efficiently order new events based on their future time of occurrence. Similarly,
scheduled events that are retracted have to be found with low time complexity.

This leads to three different types of execution engines, each with their re-
spective benefits and drawbacks. Where a continuous-time execution engine can
efficiently determine the step size based on differential equations, the integration
mechanism is overly complex for determining the sample time hits in a discrete
time system. A static schedule is more efficient, even in the face of superfluous
sample time hits. However, in case of discrete-event systems, the sample time
would have to be chosen arbitrarily small, which would result in excessive su-
perfluous events whilst still resulting in error in the exact event time. While for
discrete-event systems an event calendar is more efficient, such a heavy-weight
data structure is excessively complex for executing a discrete-time system. Like-
wise, the static scheduling as implemented for discrete-time systems is often not
applicable for continuous-time simulation as it would result in a fixed time-step
of the numerical integration. A notable exception is real-time simulation where
such a fixed time-step is a necessity.

The discussion then was directed towards potential solutions to obtain the best
of each of the separate execution technologies without arriving at a conclusive
assessment of the best approach.
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Abstract. We present ModHel’X, an approach to multi-formalism mod-
eling which addresses two important issues in this field: (a) providing
support for the specification of the semantics of a modeling formalism,
and (b) allowing the specification of the interactions between parts of a
model described using different modeling formalisms. ModHel’X is based
on the concept of Model of Computation and focuses on the execution
of models, considered as the computation of one possible behavior of the
model. The structural elements of a modeling language are described by
specializing the meta-model of ModHel’X whereas its semantics, i.e. the
corresponding model of computation, is described by specializing the pre-
defined stages of a generic execution model. Using the same mechanisms,
designers can specify the semantic adaptation that is suitable at each in-
terface between heterogeneous parts of their model. Finally, ModHel’X
comes with an execution engine which is able to interpret heterogeneous
models for simulation.

1 Introduction

Complex systems are inherently heterogeneous because of the diverse nature of
their numerous parts: hardware, software, digital, analog, reused or specifically
designed IPs (Intellectual Properties), etc. Modeling such systems requires mul-
tiple modeling formalisms, adapted to the nature of each part of the system, the
aspect on which the model focuses (functionality, time, power consumption. . . )
and to the level of abstraction at which the system, or one of its parts, is stud-
ied. As emphasized by [1], having a global model of such a system all along the
design process is necessary in order to answer questions about properties of the
whole system, and in particular about its behavior. Such a model is said to be
multi-formalism [2].

Different aspects of multi-formalism modeling (or heterogeneous modeling)
have been studied: mathematical foundations [3], tools for validation [4] or sim-
ulation [5]. A central problem is to establish the meaning of the composition of
heterogeneous parts of a model and to ensure their correct inter-operation when
using the model to answer questions about the designed system [6].
� This work has been performed in the context of the Usine Logicielle project of the
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We believe that the first step to be taken for solving this problem is to provide
means for the precise specification of the semantics of the modeling formalisms
that we want to use. Indeed, except for a few mathematically founded languages,
the semantics of a modeling language is often described using natural language,
what may lead to ambiguities and to diverse interpretations by different tools
along the design chain. When combining different modeling languages in a model,
ambiguities in the semantics of one of them make it impossible to define the
overall semantics of the model. In this context, semantic variations as found in
UML are acceptable only if the variation used is explicitly stated. In ModHel’X,
we propose a set of tools for allowing the executable specification of the semantics
of a modeling formalism without referring to any model instance (i.e. at the meta-
modeling level [2]). In order to facilitate the combination of multiple modeling
languages in models, our approach relies on component-oriented and hierarchical
modeling [7]. The encapsulation principle is a major advantage for heterogeneous
modeling since its purpose is to hide the internal mechanisms of the components.
In this context, hierarchy is a structural way of combining the heterogeneous
parts of a model, as well as a simple abstraction mechanism.

The second step to obtain a meaningful multi-formalism model of a system
is to provide support for the specification of the semantic adaptation between
model parts that use different modeling formalisms. An important constraint is
that no model part should be modified to become compatible with the other parts
of the multi-formalism model. This is particularly important when the model
parts are provided by different technical teams or by suppliers for instance.
In ModHel’X, the adaptation mechanism is decoupled from the model parts
which are being integrated. A second issue is that the semantic adjustment
between heterogeneous parts of a model depends not only on the formalisms
at stake but also on the system which is modeled. Usual adaptation patterns
between modeling formalisms often exist, but they are not unique and may
need parameter adjustments since they represent default adaptations which do
not necessarily fit directly a particular context. For example, integrating a model
part which focuses on the notion of time with another which does not, may imply
to customize the adaptation which is realized on the notion of time so that it
is coherent with the expected behavior of the system. ModHel’X permits the
description of adaptation patterns and allows the designer to choose the most
suitable one in a given model. These descriptions may be reused in different
contexts, and parameters allow their adaptation to specific applications.

The remainder of the paper is organized as follows. In Section 2 we review
some of the related work and motivate our approach. Section 3 details and
illustrates the main principles of ModHel’X. We discuss some specific aspects
of our approach in Section 4, before concluding.

2 Existing Multi-Formalism Approaches and Motivations

In meta-modeling approaches such as Kermeta [8], the abstract syntax of a mod-
eling language is described as a meta-model. The elements of this meta-model
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have methods whose semantics is defined in an imperative language. Each model-
ing language has a different meta-model in Kermeta. In the context of heteroge-
neous modeling, the definition of the combination of several modeling languages
using such approaches implies either the definition of a meta-model which is the
union of all the meta-models of the involved languages, or the definition of trans-
formations from each meta-model to a meta-model chosen among them. Defining
a union meta-model seems neither reasonable nor scalable since it implies the
modification of the meta-model and of the associated model transformations each
time an additional modeling language is taken into consideration. The second
method is much more interesting since it is more flexible: the target meta-model
can be chosen according to the question that must be answered about the sys-
tem. Such an approach is implemented in the ATOM3 tool [9]. However, the
way the different heterogeneous parts of the model are “glued” together does
not seem to be addressed by this approach, nor by other approaches based on
model transformation [10,11] which have other advantages otherwise. In par-
ticular, in [11], it is stated that it is possible to formally define the semantics
of a modeling language by defining a mapping to an already formally defined
modeling language.

Another approach for defining the semantics of a modeling language, is to
define the constructs of the language in a fixed abstract syntax – or meta-model
– which is component oriented (as in [7]) and to consider that the semantics
of the language is given by its “Model of Computation” (MoC). Such an ap-
proach is implemented in Ptolemy [1]. A model of computation (called “domain”
in Ptolemy) is a set of rules for interpreting the relations between the compo-
nents of a model. In this approach, the meta-model is the same for each language
and what defines the semantics of the language is the way the elements of this
meta-model are interpreted by the corresponding MoC. Heterogeneous models
are organized into hierarchical layers, each one involving only one MoC. Thanks
to this architecture, MoCs (i.e. modeling languages) are combined in pairs at the
boundary between two hierarchical levels. The main drawback of the Ptolemy
approach is that the way MoCs are combined at a boundary between two hier-
archical levels is fixed and coded into the Ptolemy kernel. This implies that a
modeler has either to rely on the default adaptation performed by the tool, or
to modify the design of parts of its model (by adding adaptation components)
in order to obtain the behavior he expects.

The approach we propose is based on the concept of model of computation
(MoC) as defined in [1]. Our MOF meta-model, which is inspired by the ab-
stract syntax of Ptolemy, contains special constructs for making the interactions
between heterogeneous MoCs explicit and easy to define. In order to interpret
a model in ModHel’X, it is necessary to describe its structure using our meta-
model. Then, we define an interpretation of the elements of our meta-model
which matches the semantics of the original language. Such an interpretation is
what we call a Model of Computation. The interpretation of a model according
to a MoC gives the same behavior as the interpretation of the original model
according to the semantics of its modeling language. The same concepts used
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to define MoCs are used to define how different MoCs are “glued” together in
heterogeneous models, at the boundary between two hierarchical layers. The
execution engine of ModHel’X relies on the precise specification of the models
of computation and of their interactions to determine without ambiguity the
behavior of multi-formalism models.

Like Ptolemy, BIP (Behavior, Interaction, Priority) [4] also takes advantage
of a hierarchical and component-oriented abstract syntax. It provides formally
defined mechanisms for describing combinations of components in a model using
heterogeneous interactions. BIP does not consider components as black boxes
and has access to the description of their behavior. This allows the formal ver-
ification of properties on the model. It is important to note that, in BIP, the
description of the interactions between components is made at the M1 level.

The “42” approach [12] seems closer to ours. Based on the synchronous para-
digm, 42 generates the code of the MoCs (called “controllers”) from the contracts
of the components (described using automata), the relations between their ports
and additional information related to activation scheduling. The strength of this
approach lies in the description of the behavioral contract of components. How-
ever, such a description may not be available (in the case of an external IP
for instance) or may not be easy to establish, in the case of continuous time
behaviors for example.

Metropolis [13] also relies on the concept of model of computation, but it fo-
cuses on MoCs related to process networks. It originates from trace algebras [14]
and is closely related to the tag semantics approaches [3,15]. In Metropolis, the
modeling of the function is separated from the modeling of the architecture. A
mapping mechanism is provided to produce platform specific models. Metropolis
includes tools for verification, simulation and synthesis.

3 Modeling Heterogeneous Systems with ModHel’X

3.1 Black Boxes and Snapshots

In ModHel’X, we adopt a component-oriented approach in which we consider
components as black boxes, called blocks, in order to decouple the internal model
of a component from the model of the system in which it is used. Therefore, the
behavior of a block is observable only at its interface: nothing is known about
what is happening inside the block, and in particular whether the block is even
computing something at a given moment.

In addition, instead of “triggering” the behavior of a block, we only observe
its interface. When we need to observe a block, we ask it to provide us with a
coherent view of its interface at this moment. A block can therefore be active
even when we do not observe it. This is a key point in our approach because
it allows us to embed asynchronous processes in a model without synchronizing
them: we simply observe them at instants suitable for the embedding model.
The behavior of a block or a model is therefore a sequence of observations.
An observation of a model is defined as the combination of the observations
of its blocks according to a MoC. This definition holds at all the levels of a
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hierarchical model. The observation of the top-level model, i.e. the model of the
overall system, is a snapshot [16] which defines the exact state of the interface
of each block at a given instant. We detail the way a snapshot is obtained using
the rules expressed by a MoC in Section 3.4.

3.2 Time

The notions of time used in different models of computation are varied (real
time, logical clocks, partial order on signal samples, etc.), and ModHel’X must
support all of them. Moreover, in an heterogeneous model, different notions of
time are combined and each part of the model may have its own time stamp in
a given snapshot. Therefore, the succession of snapshots is the only notion of
time which is shared by all MoCs and which is predefined in ModHel’X. On this
sequence of instants, each MoC can define its own notion of time.

A snapshot of a model is made whenever its environment (i.e. the input data)
changes, but also as soon as any block at any level of the hierarchy needs to be
observed, for instance because its state has changed. To this end, each component
of an heterogeneous model can give constraints on its own time stamp at the
next snapshot. For instance, in a timed automaton, a time out transition leaving
the current state must be fired even if no input is available. This can be achieved
by requiring, when entering this state, that the next snapshot occurs before the
timeout expires. This feature is a major departure from the Ptolemy approach,
where the root model drives the execution of the other layers of the hierarchy.

Times in two MoCs may be synchronized by the interaction pattern at
the boundary of two hierarchical levels. Thus, time constraints can propagate
through the hierarchy up to the top level model.

3.3 A Generic Meta-model for Representing the Structure of
Models

The generic meta-model that we propose, shown on Figure 1, defines abstract
concepts for representing the structural elements of models. Since our goal is to
support the widest possible range of modeling languages, the concepts that we
define can seem very similar to concepts found in other modeling approaches, in
particular component-oriented ones. Each of the concepts of our meta-model can
be specialized in order to represent notions that are specific to a given modeling
language, but their semantics is given by the MoCs which interprets them.

In the structure of a model, blocks are the basic units of behavior. Pins define
the interface of models and blocks. The interactions between blocks are repre-
sented by relations between their pins. Relations are unidirectional and do not
have any behavior: they are interpreted according to the MoC in order to deter-
mine how to combine the behaviors of the blocks they connect. For instance, a
relation can represent a causal order between two blocks as well as a communi-
cation channel.

In Modhel’X, data is represented by tokens. The concept of token can be
specialized for each model of computation. For instance, in a discrete event
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Fig. 1. Generic meta-model for representing the structure of models

model, tokens may have a value and a time-stamp, while in a data-flow model,
they carry a value only. The type of the value which is carried by a token is not
taken into account by the MoC, which is only in charge of delivering the tokens
by interpreting the relations between the blocks.

The behavior of a block can be described either using a formalism which is
external to our framework (e.g. in C or Java), yielding an atomic block, or by a
ModHel’X model. To handle the latter case, we have introduced a special type of
block called an interface block, which implements hierarchical heterogeneity: the
internal model of an interface block may obey a MoC which is different from the
MoC of the model in which the block is used. Interface blocks are a key notion in
our framework since they are in charge of adapting the semantics of their inner
and outer models of computation. They allow the explicit specification of the
interactions between different MoCs.

3.4 An Imperative Semantics for MoCs and Their Interactions

Computing a snapshot of an heterogeneous model requires to compute the ob-
servation of all its parts, which may use different MoCs i.e. different notions
of time, control or data. The issue of the consistency of such an observation is
similar to the definition of the state of a distributed system [16]. In ModHel’X,
we have chosen to define a model of computation as an algorithm for computing
observations of the model to which it is associated. For each observation, the
algorithm asks the blocks of the model to update the state of their interface.
The results of the update (output data) are propagated to other blocks by prop-
agation operations. We want our execution engine to be deterministic, therefore
we observe the blocks sequentially. To ensure the consistency of the computed
behavior with the control and concurrency notions of the original model, the
MoC must include scheduling operations which determine the order in which to
update the blocks.

Figure 2 represents the generic structure of our algorithm. This structure is a
fixed frame which “standardizes” the way MoCs can be expressed in ModHel’X,
but the contents of its elements is left free. Therefore, for each MoC, the seman-
tics of the operations of this algorithm has to be described, using an imperative
syntax, in order to define the scheduling and propagation “policies” specific to
the MoC (non necessary operations can be left empty). The left part of the fig-
ure shows the loop which computes the succession of snapshots in the execution
of the model. In the computation of a snapshot, the computation of an obser-
vation of one block brings into play the scheduling and propagation operations
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Fig. 2. Generic execution algorithm Fig. 3. Update on an interface
block and its internal model

mentioned above and is called a step (represented on the right part of Figure 2
under the name computeOneStep). The algorithm loops on successive steps until
the snapshot is entirely determined (i.e., for most MoCs, when the state of all
the outputs of the executed model is known). A given block may be updated
several times in this loop, what allows the use of non-strict [17] blocks for the
computation of fixed point behaviors. Therefore, ModHel’X supports MoCs in
which cyclic dependencies are allowed.

The execution of a model traverses the hierarchy thanks to the delegation of
the operations of interface blocks to their internal model. Snapshots are realized
only at the top level, which represents the whole system. An internal model is
only asked to provide a coherent view of its behavior when its interface block
is updated. The update operations of interface blocks and models are shown on
Figure 3. The adaptIn and adaptOut operations of an interface block allow the
modeler to specify explicitly how the semantics of the internal and the exter-
nal MoCs are adapted before and after the update of its internal model. This
may include the adaptation of data, time or control. The startOfUpdate and
endOfUpdate operations in the update of a model are used respectively to take
new inputs from the interface block into account, and to provide it with newly
determined outputs. The observation of a model may be partial (if it models
a non-strict component). The loop which computes the observation must stop
when the further operation indicates that no more outputs can be determined.

3.5 Implementation and Validation

We have experimented our approach in a prototype based on the Eclipse EMF
framework [18]. We use the ImperativeOCL [19] language, an imperative exten-
sion of OCL, for describing the semantics of the operations of our algorithm. No
interpreter being available for the moment, we translate it into Java. We have
successfully implemented several MoCs, such as Finite State Machines (FSM),
Discrete Events (DE) and *charts [20]. We are developing a library of MoCs in
order to further the validation of our approach. We are currently working on the
UML Statecharts and the Synchronous Dataflow (SDF) MoCs.
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The use of ImperativeOCL for specifying the semantics of the operations of
our algorithm is not a definitive choice. We have observed that ImperativeOCL
specifications are too verbose and do not allow the designer to work at a suit-
able level of abstraction. Moreover, ImperativeOCL’s semantics is not well de-
fined yet, mainly because it includes complex object-oriented constructs that are
irrelevant to our particular application. We are exploring other options includ-
ing model transformation languages and pre/post conditions such as found in
Hoare’s logic.

3.6 Example of a Multi-Formalism Model in ModHel’X

To illustrate our approach, and in particular the semantic adaptation between a
timed and an untimed MoC, we consider a simple hierarchical and heterogeneous
model of a coffee machine which works as follows: first the user inserts a coin,
then he presses the “coffee” button to get his coffee after some preparation time.

In this model, we take into account the date of the interactions between the
user and the machine: insert a coin, push a button, deliver the coffee. Therefore,
we use the Discrete Events (DE) MoC, which is implemented, for instance, by
SimEvents (The MathWorks) or VHDL. We represent our user by an atomic
block, whose behavior is written in Java. We model the coffee machine as an au-
tomaton (with UML Statecharts for instance), because at this stage of the design
process, we focus on the logic of its behavior. We consider here a simple version
of this MoC called FSM (Finite State Machines), which is similar to the one
presented in [8]. Figure 4 shows the global model resulting from the combination
of the DE and FSM models. Such a combination is a classical example, which is
well addressed by tools like Ptolemy. However, we will see that it is possible to
handle the interactions between DE and FSM differently with ModHel’X.

The representation of the structure of the DE model in ModHel’X is straight-
forward. The representation of the FSM model is more involved because a tran-
sition may have two associated behaviors: the evaluation of its guard and its
action. Since blocks are the basic units of behavior in ModHel’X, a transition is
represented using a block for its guard linked to a block for its action. Relations
between guards represent the states.

In DE, when a snapshot is taken, the current time is determined according
to the time stamps of the input events and on the time constraints produced by
the blocks. At each computation step, we consider the blocks which have posted

Fig. 4. Global model of the coffee machine and coffee machine automaton
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a time constraint for the current time and the blocks which are the target of
events. We update a minimal element of these blocks according to a topolog-
ical sort in order to respect causal dependencies. Listing 1.1 shows the code
of the initSchedule operation for the DE MoC. This is the only scheduling
operation for this MoC, the others (pre, inter and postSchedule) being left
empty.

DE and FSM share the notion of event. However, FSM has no notion of time
attached to events. So, when a DE event enters FSM, the interface block has
to remove its time stamp to make it look like an FSM event. When an FSM
event enters DE, the interface block has to give it the “right” time stamp. An
acceptable way to proceed is to give it the same time stamp as the most recent
incoming event (in particular, this is what is done by Ptolemy). We provide
an interaction pattern which realizes this adaptation. However, for our coffee
machine, this behavior does not model the serving delay, which is an important
characteristic of the model. Therefore, we add a ServingDelay parameter to the
coffee machine and we modify the pattern so that the time stamp of the served
event is the sum of the time stamp of the coffee event and the ServingDelay
(see the adaptOut operation on Listing 1.2.

Listing 1.1. DEMoC::initSchedule(m:Model)

// Search for blocks having produced a constraint at the current time
OrderedSet(Block) blocklist := self . constraints
→select(c:Constraint |c.constraintTime=self .currentTime)→collect(c:Constraint |c.author) ;

if ( blocklist →notEmpty()){ // If blocks have produced constraints at the current time...
self . topologicalSort ( blocklist , m.structure) ; // Topological sort on these blocks
self . currentBlock := blocklist →first() ; // Choose the first one to update
// Then remove the corresponding constraint
self . constraints := self . constraints →reject(b:Block|b=self. currentBlock) ;

}else{ // ... else, search for blocks that have to receive events
blocklist := self . activeEventList →collect(e:Event|e. destinationPin . isInputForBlock )
if ( blocklist →notEmpty()){ // If there are blocks to update

self . topologicalSort ( blocklist , m.structure) ; // Topological sort on these blocks
self . currentBlock := blocklist →first() ; // And choose the first one to update

}
}

Listing 1.2. CoffeeMachine::adaptOut()

self .model. structure .pinsOut→select(pInt:Pin|pInt .storedTokens→notEmpty())
→forEach(pInt:Pin){ // Check all the output pins of the internal model

self .pinsOut→forEach(pExt:Pin){ // If FSM events have been produced by the internal model. . .
pExt.storedTokens→append( // . . . they become DE events on the outputs of the block

new DEEvent( // . . . with time stamps = last stored time stamp + serving delay
self .tLastDEevt + self .parameters→select(name="servingDelay")));

}
pInt .storedTokens→clear(); // FSM events are cleared

}
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4 Discussion

4.1 Intended Workflow and Required Effort for Using ModHel’X

There are two prerequisites to the use of the ModHel’X framework. First, an ex-
pert of a modeling language has to describe the structural and semantic elements
of this language using our meta-model and our imperative syntax. Since our goal
is not to replace existing modeling tools, this expert also defines transformations
from the original meta-model of the language to our generic meta-model. This
is the difficult part of the work because the semantics of modeling tools is often
known intuitively, through the experience we have of the tools. Second, for each
pair of MoCs that may interact in heterogeneous models, experts should define
interaction patterns, which model standard ways of combining models that obey
these MoCs. The interaction policy actually used in a particular model will be
a specialization of one of these patterns, tuned using parameters.

These steps represent the main effort needed to benefit from the ModHel’X
approach. The first step is done once and for all for each modeling language. It
is necessary to define at least one semantic adaptation policy for each pair of
MoCs that one intends to use together. However, there is no need to define such a
policy for any pair of MoCs, first because there may be no sense in making some
MoCs interact, second because even when they are used together in a model
of a system, some models of computation never interact directly. The number
of useful combinations of MoCs is therefore much lower than the number of
combinations that are theoretically possible for N MoCs.

4.2 Supported Models of Computation

Considering that a given structure of model can be interpreted as an automaton
or as a discrete event model depending on the MoC which is associated to it can
seem somewhat extreme. However, this choice has proven to be powerful since
a tool like Ptolemy supports, on this basis, paradigms as different as finite state
machines, ordinary differential equations or process networks.

In the same way, ModHel’X can support a large range of models of compu-
tation. This includes MoCs for continuous behaviors, which are approximated
by the computation of a series of discrete observations. ModHel’X also supports
models of computation that allow cyclic dependencies in models. Such dependen-
cies are solved by iterating toward a fixed point, as in the Synchronous Reactive
domain of Ptolemy. The fixed point is reached only if all blocks are monotonous
according to a partial order defined by the model of computation. Last, even
if the execution engine of ModHel’X is deterministic (it is designed to compute
one of the possible behaviors of a model), non deterministic MoCs are supported
but require the use of pseudo-random functions in their specification.

4.3 Comparison between ModHel’X and Ptolemy

Ptolemy was our main source of inspiration, but we have extended it on sev-
eral aspects. One of our main contributions is the explicit specification of the
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interactions between MoCs (see Section 3.4). Moreover, our approach is based
on the observation of blocks and not on the triggering of actors. Thanks to this
change of paradigm and to the introduction of time constraints, the execution
of a ModHel’X model is not necessarily driven by its root level. Indeed, a block
at any level of the hierarchy of the model can produce a constraint on the time
stamp of its next observation, what will force the execution machine to compute
a snapshot at this time, even if no new input is available for the model. Finally,
the definition of our abstract syntax as a MOF meta-model allows us to rely on
model transformation tools from the MDE community to exchange models with
other tools in the design chain.

5 Conclusion

We have presented an approach to multi-formalism modeling that (a) provides
support for the specification of the semantics of a modeling formalism through
the concept of model of computation, and (b) allows the definition of the in-
teractions between heterogeneous parts of a model through a special modeling
construct and using an imperative syntax. This approach relies on the black-box
and the snapshot paradigms to compute the observable behavior of a model by
combining the behaviors observed at the interface of its components. A generic
meta-model for representing the structure of hierarchical heterogeneous models
has been proposed. On this basis, models of computation are described by giv-
ing a specific semantics to the operations of a generic algorithm which computes
series of snapshots of models which conform to the proposed meta-model.

We are currently developing the MoC library of our prototype in order to
further the validation of our approach. The rigid structure of the execution algo-
rithm of ModHel’X is a first step toward the definition of MoCs in a fixed frame
with formal semantics. However, for the moment, our imperative syntax is still
too close to Java to have a formal semantics. Therefore, ModHel’X cannot be
used for model-checking or demonstrating properties. We are currently studying
several possibilities for replacing ImperativeOCL with a more concise and for-
mal language. Moreover, we are considering the use of a formal framework for
founding the semantics of our execution algorithm.
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Abstract. Today, integrated development environments such as Eclipse
allow users to write programs quickly by presenting a set of recommen-
dations for code completion. Similarly, word processing tools such as
Microsoft Word present corrections for grammatical errors in sentences.
Both of these existing systems use a set of constraints expressed in the
form of a grammar to restrict/correct the user. Taking this idea further,
in this paper we present an integrated software system capable of gener-
ating recommendations for model completion of partial models built in
arbitrary domain specific model editors. We synthesize the model editor
equipped with automatic completion from a modelling language’s declar-
ative specification consisting of a meta-model and constraints on it along
with a visual syntax. The automatic completion feature is powered by
a Prolog engine whose input is a constraint logic program derived from
some models. The input logic program is obtained by a model transfor-
mation from models in multiple languages: the meta-model (as a class
diagram), constraints on it (as constraint logic clauses), and a partial
model (in the domain specific language). The Prolog engine solves the
generated logic program and the solution(if there is one) is returned to
the model editor as a set of recommendations for properties of the par-
tial model. We incorporate automatic completion in the generative tool
AToM3 and use SWI-Prolog for constraint representation and satisfac-
tion. We present examples using an illustrative visual language of Finite
State Machines.

1 Introduction

Generative modelling tools such as AToM3 (A Tool for Multiformalism Meta-
modelling) [3],GME(Generic Modelling Environment)[5], GMF (Eclipse Graphi-
cal Modelling Framework)[4] can synthesize a domain specific visual model editor
from a declarative specification of a domain specific modelling language. A
declarative specification consists of a meta-model, a set of constraints on all pos-
sible instances (or models) of the meta-model, and a visual syntax that describes
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how language elements(objects and relationships) manifest in the model editor.
The designer of a model uses this model editor to construct a model on a can-
vas. This is analogous to a using an integrated development environment(IDE)
to enter a program or a word processor to enter sentences. However, IDEs such
as Eclipse present recommendations for completing a program statement when
possible based on its grammar and existing libraries [2]. Similarly, Microsoft
Word presents grammatical correction recommendations if a sentence does not
conform to natural language grammar. Can we extrapolate similar technology
for partial models constructed in a model editor for a domain specific modelling
language(DSML)?

The major difficulty for providing completion capabilities in model editors is to
integrate heterogeneous sources of knowledge in the computation of the possible
solutions for completion. The completion algorithm must take into account the
concepts defined in the meta-model for the DSML, the constraints expressed on
this meta-model and the partial model built by a domain expert. The difficulty
is that these three sources of knowledge are obviously related(they refer to the
same concepts) but are expressed in different languages, sometimes in different
files, and in most cases by different people and at different moments in the
development cycle as they are separable concerns.

In this paper, we propose an automatic transformation from all these sources
of knowledge to a constraint logic program (CLP).The generated program can
then be fed in a Prolog engine that provides the possible solutions for completing
the model. Our transformation is integrated in the software tool AToM3. The
meta-model for a DSML is built directly in AToM3’s model editor using its class
diagram formalism. The constraints on this meta-model are defined with Prolog
in a separate file. Using this information and a description of the concrete visual
syntax(specified in an icon editor) for a modelling language, AToM3 synthesizes
a visual model editor for the DSML. The partial model can be built and edited
in the generated model editor and the designer can ask for recommendations for
possible completions.

An overview of our methodology is presented in Section 2. In Section 3 we
present how domain specific modelling languages are specified and model edi-
tors for them are synthesized in MDE using meta-models, constraints and visual
syntax. We also present in Section 3 an example of a partial model and a com-
plete model in our chosen domain. Using the meta-model,constraints, and partial
model we present the transformation to a constraint logic program in Section 4.
We present examples of model completion recommendations generated for par-
tial models in Section 5. We conclude in Section 6 with limitations of our work
and we layout future directions.

2 Methodology Overview

Synthesis of model editors elicit the involvement of several different experts and
users. We identify the involvement of language designers, domain experts or users
of a DSML, visual syntax designers for automatic synthesis of model editors.
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Fig. 1. Steps Taken by a DSML Designer to Synthesize a Model Editor in AToM3

– Language Designers interact with the domain experts to specify the concepts
in a DSML in the form of a meta-model which is an AToM3 class diagram
1 (meta-model from now on). Next, the designer specifies a set of Prolog
clauses on the properties defined in the meta-model. We use SWI-Prolog for
constraint representation.

– Visual Syntax Designers construct annotated icons that represent the dif-
ferent concepts in the meta-model. The icon for a class may be annotated
with its property values. In Figure 1 we summarize how the meta-model,
constraints,and visual syntax is used to synthesize a model editor for a
DSML.

– Domain Experts and Users build models in the model editor that is syn-
thesized from the meta-model, constraints, and visual syntax specifications.
They also help the language designer define the concepts in the meta-model.

A domain expert uses the synthesized model editor to build models. He cre-
ates a model by inserting objects and building relationships between objects.
He/she also sets values for properties. The model is simply a graph or a partial
model until it conforms to its modelling language by satisfying all the constraints
imposed on the modelling language. Manually performing such a task can be ex-
tremely tedious and sometimes impossible due to the size of the domains of
model properties and complexity of constraints.

To automate the completion of a partial model we introduce a model trans-
formation to construct a generative algorithm from the knowledge provided in
the meta-model and constraints. The algorithm takes apartial model asinput
1 AToM3 class diagram is a subset of UML class diagram for meta-modelling and has

sufficient expressiveness for bootstrapping.
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Fig. 2. Model Completion Outline

andgene rates a constraintlogicprogram. This transformation is integrated into
AToM3 so that it can be used for completion of models in any domain specific
language.

Logic programming tool developers have built Prolog compilers [6] that
can perform computer algebra and constraint satisfaction on an input con-
straint logic program. Such a Prolog compiler is invoked by AToM3 and the
synthesized CLP is solved and the results (if they exist) are returned to the
model editor as recommendations. We use SWI-Prolog [6] for compiling the con-
straint logic program. In Figure 2 we outline how we complete partial models in
AToM3.

Now that we have outlined our overall methodology we go ahead and study
each aspect of the methodology in detail leading to examples that illustrate the
working of the idea. We illustrate our methodology using the guiding example
of a Finite State Machine (FSM) modelling language.

3 Specifying a Domain Specific Modelling Language

In this section we explain the steps taken to declaratively specifying a domain
specific modelling language. We use Finite State Machines (FSM) as a running ex-
ample for a modelling language. A FSM modelling language is a visual language
with circles representing states and directed arrows representing transitions be-
tween states. To define a modelling language and to generate visual model editor
from it requires three inputs:

1. A Meta-model as an AToM3 class diagram
2. A Set of Prolog Constraints on the meta-model
3. A Visual Syntax

We briefly describe these in the following sub-sections.
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3.1 Meta-model

A model consists of objects and relationships between them. The meta-model of
the modelling language specifiesthetypes of all the objects and theirpossibleinter
relationships. The type of an object is referred to as a class. The meta-model
for the FSM modelling language is presented in Figure 3. The classes in the
meta-model are State and Transition.

In this paper we use the class diagram formalism in AToM3 for specifying a
meta-model. The class diagram formalism can specify itself and hence exhibits
the property of bootstrapping. We use the visual language notation of class dia-
grams to specify the meta-model for the FSM modelling language in Figure 3.

Fig. 3. The Finite State Machine Meta-model

Each class in the meta-model has properties. A property is either an attribute
or a reference. An attribute is of primitive type which is either Integer, String, or
Boolean. For instance, the attributes of the class State are isInitial and isFinal
both of which are of primitive type Boolean. An example domain of values for
the primitive attributes is given in Table 1. The String variable can be a finite set
consisting of a null string, and finite length strings that specify a set of strings. In
this paper, we consider a finite domain for each attribute. The domain is specified
in the meta-model and all the models that are instances of the meta-model know
of the domain for each attribute.

Describing the state of a class of objects with only primitive attributes is
not sufficient in many cases. Modelling many real-world systems elicits the need
to model complex relationships such as modelling that an object contains an-
other set of objects or an object is related to another finite set of objects. This set

Table 1. Domains for Primitive Datatypes

Type Domain

Boolean {0, 1}
Integer {MinInt, .., MaxInt}
String {”a”, ”b”, “c”, ”event1”, .., }
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of related objects is constrained by a cardinality. When a class is related to
another class, the related classes refer to each other via references. For instance,
in Figure 3 the classes State and Transition refer to each other via references
annotated with uni-directional relationships. The cardinality constraints are also
annotated with the relationship.

Apart from attributes and references, objects can inherit properties from other
classes. The attributes and references of a class called a super class are inherited
by derived classes. Similarly a derived class inherits the references in the super
class. There is no inheritance in our FSM meta-model, nevertheless we consider
transformation of inheritance relationships in the transformation presented in
Section 4.

3.2 Constraints on Meta-model

Constraints on a meta-model are not always conveniently specified using dia-
grams. They are better expressed in a textual constraint language who’s seman-
tics has no side-effect (does not change the state of an object or structure of
the model) on the meta-model or its instances (models). The OMG standard
for constraint specification is Object Constraint Language (OCL) however in our
current work we use constraint logic programming clauses in the form of Prolog
statements. These constraints are initially specified on meta-model properties.
The transformation generates a set of constraints on a lists of properties (those
influencing the constraint) in the partial model.

We use the CLP bounds library to specify constraints on properties with finite
domain. There are several predicates in the standard Prolog library. For instance,
one of the constraints for the FSM modelling language is:

– atLeastOneFinalState Variables: listOfisFinal is the list of all isFinal attributes
for all states in the model. Prolog Constraint: sum(listOfisFinal,¿=,1) Expla-
nation: The attribute isFinal is a boolean and the list of isFinals contains the
values of all attributes in the partial model. The constraint ensures that the
sum of the isFinals is greater than or equal to 1. This enforces the constraint
that there is at least one Final state.

Other constraints include exactly one initial state, and a unique label for a
state object. To define constraints for arbitrary DSMLs we point the reader
to the SWI-Prolog referencemanual [6]. The language and the libraries have
been developed for two decades and we have a large repository of constraints
to work with including facility to use a foreign language to define an arbitrary
boolean function. Prolog has powerful mechanisms such as domain reduction. For
instance, constraint alldifferent(listOfVariables) ensures the automatic reduction
in the domain of variables in listOfVariables such that the each variable in the list
has a domain with values notinthedomain of the others. Thetextual specification
of constraints is typically specified in an different file from the class diagram
meta-model itself.
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3.3 Visual Syntax

The final step(in specifying a DSML for synthesizing a model editor) we take is to
specify the concrete visual syntax of the class of objects in the meta-model. The
visual syntax specifies what an object looks like on a 2D canvas. An icon editor
in AToM3 is used to specify the visual syntax of the classes in the meta-model.

An icon editor is used to specify the visual syntax of meta-model concepts
such as classes and relationships. The icon for State is a circle annotated with
three of its attributes(isFinal, isInitial, and label). The connectors in the diagram
are points of connection between State objects and Transition objects.

The visual syntax can also by dynamically changed based on the properties of
the model for example. In an iconic visual modelling language such FSM the first
step taken in specifying a visual syntax is drawing an icon that represents a class
of objects. If needed it is annotated with text and its properties. Connectors are
added to the visual object so that it can be connected to other objects if they
are related.

4 Transformation from Declarative Specification and a
Partial Model to CLP

We present the transformation of the different parts of a partial model to a CLP
using the meta-model and constraints asinput. The essential idea to generate
CLPs constitutes the following steps:

1. Create variables to represent properties of a partial model
2. Define a domain on these variables.
3. Define constraints on these variables.
4. Finally, insert the label(SetOfVariables) clause toperformback-trackingsearch.

We associate a finite domain for each variable in the constraint logic program
(CLP) hence, making it a constraint logic program in finite domain (CLP(FD)).We
use the clp bounds library in SWI-Prolog to express domains and constraints in
CLP(FD). We generate a conjunction of constraints in Prolog. The conjunction is
given by a “,” operator. Finally, we insert the label predicate at the end of the pro-
gram to perform back-tracking to find the value assignment/labeling of variables
so as to generate completions for the partial model.

4.1 Transforming an Object

We now discuss how objects in a partial model are transformed to CLP. We
illustrate this with a concrete example to enhance the reader’s understanding.
Consider the object shown in Figure 4. It is a State object. The attributes of a
State object are isFinal, isInitial, currentState, and label. Each attribute also has
a domain. The attributes isFinal, isInitial and currentState in the State object
has a boolean domain of [0, 1]. The label attribute has an integer domain of
[0, 1, 2, .., MaxNumberOfStates].
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Fig. 4. (a) Object (example of a State object (b) Generated CLP code (c) Five Prolog
solutions for each variable

In the transformation first each attribute has a unique identity which is given
by OwningObjectName attributeName. This unique ID is used to create a variable
and is added to a list of variables in the CLP. If Model is the set of variables in
the partial model. Then the variable State0 isFinal is included in this list:

Model=[..., State0 isFinal,...],

Next, we associate a domain with a variable already included in the list of
model variables. This is done using the member Prolog predicate. For instance,
the domain for the variable State0 isFinal is manifested in Prolog as follows:

member(State0 isFinal,[0,1])

We obtain the domain information for an attribute from the meta-model of
the modelling language.

The CLP code generated for a State object is shown in Figure 4 (b). Solving
the Prolog program gives a set of arrays with the result for the value assignment
of each variable. This is shown in Figure 4 (c).

4.2 Transforming an Association

Next, we consider the transformation of an association in partial model to Pro-
log clauses. Consider the associations in Figure 5 (a). Two State objects are
connected by two Transition objects. The existence of these relationships is
determined by boolean existence variables such as Transition0 exists and Transi-
tion1 exists. In general, these variables are synthesized for all association in the
partial model. We obtain the cardinality constraint for each association from
the meta-model. In the partial model we look for all associations with the same
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Fig. 5. (a) Association between State objects and a Transition (b) Generated CLP
code (c) Cardinality constraint determines the value of an existence variable

source and destination object. We impose a cardinality constraint on all associ-
ations with the same source and destination. We synthesize two Prolog clauses
to impose the cardinality constraint on a list of existence variables for the asso-
ciations with the same source and destination. The example in Figure 5 (a) has
its code generated in Figure 4 (b).

The cardinality constraints are imposed as sum of existence variables as
follows:

sum([Transition0 exists,Transition1 exists],>=,0),
sum([Transition0 exists,Transition1 exists],=<,100),

The solution obtained for completing the partial model is shown in Figure 5 (c).

4.3 Generating Constraints

Finally, we insert constraints defined on the meta-model. A constraint C is ex-
pressed on properties p1,p2,...pN of a meta-model MM. In a partial model we
identify all properties that are constrained by C and generate a list of variables
(those already generated as described in Sections 4.1 and 4.2).

For instance, to ensure that every State object in the partial model has a
unique label we generate the following constraint which is added as a conjunction
to the constraints already generated:

all different([State0 label,State1 label,..])

The all different clause ensures that he value of each element in the list it
receives as input is unique.
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5 A Running Example

In this section, we present an example of a partial model that we use to generate
model completion recommendations. In Figure 6 we present a partial model with
two generated recommendations. For the same partial model we performed more
tests. We generate 5 model completion recommendations. We randomly shuffle
the domain constraints in the generated CLP. The shuffling changes the priority
order in which values for properties are chosen by Prolog and has an effect on the
result of model completion. We do not study this variability in detail. However,
we present the time taken for generating 5 recommendations in Table 2.

For our example the time taken to generate a solution for the modelis reason-
ably acceptable with an average of 2.5 seconds. A large portion ofthe time taken
involves pre-processing of the problem by the Prolog compiler. The rest of the
time is taken to find value assignments for constraint satisfaction.

Fig. 6. A Partial Model and Two Proposed Recommendations
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Table 2. Generated Recommendations

Recommendation CPU Time

1 1.3

2 0.55

3 3.34

4 3.50

5 3.72

6 Conclusion

In this paper we present a framework for generating model completion recom-
mendations in model editors. We illustrate our approach with the simple exam-
ple of the FSM modelling language. At present we specify the meta-model as
an AToM3 class diagram (which is subset of UML class diagrams with sufficient
facility for bootstrapping). Constraints on the meta-model aredirectly specified in
Prolog. We also demonstrate, using a reasonably complex example, the working
of our approach. However, there is room for several improvements.

Currently we only support constraint satisfaction of constraints from the
metamodel and constraints of the modelling language. We wish to extend this by
introducing user-specific objective functions and other constraints such as model
transformation pre-conditions. This could lead to synthesis of interesting models
for tasks such as model transformation testing and design space exploration. It
would also be interesting to see how constraints from multiple paradigms can
co-exist in the same environment and how they can be solved to get meaningful
results.

Also, we start from a partial model with a fixed number of objects. In other
words the dimensionality given by the object space is fixed. We plan to separate
the notion of object space andproperty spaceto allowthe synthesis of objectsthat
add to a partial model before we go ahead and find values for proper ties as
explained in this article.

Finally, we plan to use high-level constraints to formally communicate knowl-
edge between modelling domains(multi-paradigm modelling) or scientific knowl-
edge in general.
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Abstract. Introduction of Model Driven Development (MDD) raises new 
challenges in software quality management related to shifting the focus to 
models from text documents and code. The goal of this workshop was to gather 
researchers and practitioners interested in the emerging issues of quality in the 
context of MDD and to provide a forum for discussions of emerging issues 
related to software quality in MDD. An intended outcome of the workshop was 
an initial elaboration of a unified quality model for models. The paper reports 
activities performed in the workshop and the main results achieved throughout 
the workshop as well as during the follow-up activities. The workshop was 
divided into two parts: presentation part, where paper contributions were 
presented and discussed, and working part, where a guided discussion was 
conducted aimed at elaboration of a common quality model. The working part 
was preceded by an introductory presentation setting up a frame for the 
discussion, followed by concise position statements of the participants, and 
discussion towards formulation of a common quality model. As a follow-up 
activity, the contributions from the working part were combined into a common 
quality model published as a technical research report and highlighted in the 
paper. Future research directions and planned activities are also outlined.  

1   Introduction 

Model Driven Development (MDD) introduces changes to the known and accepted 
perception of software quality. In short, software quality is often defined as the degree 
to which the software conforms to stakeholder needs, product requirements, and 
product-component (internal) requirements. This notion of quality is valid in 
modeling too, but as models are used in more contexts than code (e.g., for domain 
analysis, architectural work, design documentation) quality concepts need to be 
extended to accommodate also for these uses. That models are graphical, and 
sometimes purposefully incomplete or semantic-free, also bring out quality aspects 
not present in the context of software development rooted in a view on software as 
code. 

The goal of this workshop is to gather practitioners and researchers working in the 
area of modeling to discuss issues of quality in modeling. Several presentations 
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during the workshop show that this is an important topic and that a significant effort 
needs to be put before arriving at a mature quality framework/model for quality in 
modeling.     

2   Presentations 

The first half of the workshop contained presentations of position papers. The topics 
of the presentations included such aspects as: 

• quality assessment of models used at several companies,  
• an overview of available quality frameworks which can be applied for models, 
• a critical appraisal of design patterns in UML models,  
• implementing a family of model consistency checkers, and  
• alternative models for the design review activity.  

The discussions around these papers reflected the topics of the workshop – how to 
define the common quality model for models and modeling.  

3   Working Session on Quality Model 

In the same spirit as the presentations, the second part of the workshop contained a 
working session with the purpose of establishing a common quality model. The 
existing work of Pareto and Boquist [1] was the starting point for the discussions and 
the origin of the idea.  

The session was prepared in advanced: the participants were asked to answer a set 
of questions and present their views during the workshop. The questions were: 

 
• Q1 What qualities of models and modelling matter? 
• Q2 How do they relate? 
• Q3 How can they be measured? 
 

Each question was accompanied with instructions that detailed the intention with 
the question and provided formats for answering the question. In the instructions for 
Q1, participants were asked to produce a list of quality attributes and to classify these 
as belonging to either of the following general areas of quality (based on the quality 
framework of ISO91261):  

• Project quality relating to how well an organization executes the software process 
that involves modelling.  

• Process quality relating to how well the software development process supports 
modelling (i.e. how well does the process state who should use which models when 
for what)? 

 

                                                           
1 For historical reasons, the framework deviates slightly from ISO9126 in that it distinguishes 

process from project qualities. We do not regard this as significantly affecting the outcome .  
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• Product quality relating to “technical” properties of the model itself; these may be 
”white box” properties or ”black box” properties. 

• Quality in use relating to how well users of models can achieve their goals in some 
particular contexts of use. 

 

Contributions varied in nature. Some were rearrangements of past research results 
within the bounds of the given framework, other brought poorly understood quality 
areas much in need for research, e.g., the need for abstraction metrics, and the need 
for a notion of unified modelling elements.  

4   The Common Model 

The post workshop activities (refer to Pareto [2] for details), resulted  in the set of 
quality attributes shown in Figure 1.  

As this outcome of the working session shows, there are almost 50 distinguishable 
qualities that researchers in model quality are concerned with.  

 

Fig. 1. Modeling Related Quality Attributes 
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The discussions during the working session provided the initial quality model, and 
also outlined several new research directions. The initial model, however, seems to 
reflect general trends in software engineering, for example raising the issue how to 
“measure” the level of abstraction of a model or how to provide units for 
normalization (similar to the notion of Line of Code) of models.  

5   Research Directions 

The development of a common quality model for MDD requires further empirical 
studies and theoretical work. From the discussions around the quality model one 
could notice that there are still “white spots” in this field. One of these is the notion of 
a size of the model – how to measure it and how to reason about it. Another is the 
issue of the complexity and consistency of models.  

An important research direction is the evaluation and definition of quality 
characteristics in the context of MDD. The sample of respondents in the workshop 
represents only a subset of researchers and practitioners interested in the area of 
modeling. Although this is the correct (and necessary) starting point, it requires 
extending the sample to capture other aspects of perceived quality. This, nevertheless, 
once again calls for empirical studies in the area.  

It seems that the next natural step for the workshop is to focus on operationalizing 
quality characteristics in order to make them usable for industry with minimal effort 
(i.e. not demanding customizations of quality models and definitions of quality 
metrics). This operationalization could improve the acceptance of quality related 
methods in industry and make their use more wide-spread.  

We also intend to continue with the set-up including working sessions in the next 
workshops as it was appreciated by the participants.   
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Abstract. This paper presents some related work on quality frameworks and 
requirements for evaluating them. It also discusses characteristics of model-
driven engineering that are important when building a quality framework, such 
as its use of models in several stages of development and maintenance, 
generation of other artifacts from models and its multi-abstraction level 
approach that requires consistency and traceability. We present a 7-step process 
on how to define a quality framework that is adapted to model-driven 
engineering, and which integrates quality engineering with quality evaluation. 
As an example, the framework is applied on transformation quality. We 
maintain that the transformation process and transformation mapping should be 
discussed separately, as they require different approaches, and suggest quality 
goals, quality-carrying properties to achieve the quality goals and methods for 
evaluating these properties. 

Keywords: Model-driven engineering, quality, transformation, metrics. 

1   Introduction 

More attention is paid to the quality aspects in Model-Driven Engineering (MDE) 
along with the growing importance of modeling in software development. Some 
challenging issues (especially for complex or large systems and special domains) are 
the increasing complexity that we need to understand and handle, the need for reliable 
systems and approaches that can verify and preserve quality requirements, as well as 
the dynamic adaptation and management of systems using transformations at runtime.  
Our research on the “Quality in MDE” project in SINTEF (http://quality-mde.org/) 
focuses on developing a quality framework applicable for MDE that includes quality 
goals, means or quality-carrying properties to achieve them, and evaluation methods. 
The research questions include:  

1. What quality aspects are important in MDE? Are there any differences in quality 
goals and activities when using MDE compared to other approaches? 

2. How can quality goals be achieved and evaluated? 
3. How can MDE improve the quality of developed software? 
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This paper gives some answers to the above questions and defines an initial 
framework for defining and evaluating quality in MDE. It further discusses the quality 
of transformations as an example of applying the framework. This paper is a revised 
and shortened version of a paper presented at the 2nd workshop on Quality in Model-
ing co-located with MODELS 2007 and we refer to the workshop version for more 
discussions on the requirements of quality frameworks. 

The paper is organized as follows. Section 2 presents some definitions of software 
quality, the different purposes of modeling, work on quality frameworks and 
characteristics of MDE that are important when defining a quality framework. Section 3 
presents our quality framework and Section 4 applies it on the transformation quality. 
The paper is concluded in Section 5. 

2   Background 

2.1   Definitions of Quality and Relation to Modeling Purposes 

According to IEEE, software quality as an attribute is (1) the degree to which a 
system, component, or process meets specified requirements, and (2) the degree to 
which a system, component, or process meets customer or user needs or expectations 
[10]. ISO 9126-1 defines quality as a set of features and characteristics of a product or 
service that bear on its ability to satisfy stated or implied needs [11]. Evaluating 
quality based on the goals or needs is also emphasized by Claxton and McDougal 
who write that assessing the quality of anything – models included – has two parts. 
One comes from measuring the right things, in the right way, with the right 
yardsticks. But the heart of quality comes from the second aspect; judging something 
based on its intended function and purpose [2]. So the search for quality (in modeling) 
starts by asking, “What’s the purpose of a model?” as models are in fact developed 
for various purposes.  

Kühne classifies models as being either descriptive (capture some knowledge; e.g. 
requirements or domain analysis) or prescriptive (aka specification models; used as 
blueprints of a possible or imaginary system) [13]. In other words, a model can exist 
later or earlier than its original. Hesse thinks that in the software engineering field, a 
model often plays a double role: describing a part of an application domain and 
prescribing a piece of software for that domain [8]. Daniels defines three kinds of 
models based on their purposes [4]: 

• Conceptual models describe a situation of interest in the world, such as a business 
operation or factory process. 

• Specification models define what a software system must do, the information it 
must hold, and the behavior it must exhibit. They assume an ideal computing 
platform. 

• Implementation models describe how the software is implemented, considering all 
the computing environment’s constraints and limitations. 

Different types of models have of course different quality goals, where a “quality 
goal” is defined as a clear definition of what quality means to a stakeholder and that 
can be measured in a meaningful way. For example, conceptual models should be 
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understandable for external stakeholders but not necessarily detailed. However, it is 
not often straightforward to define quality goals for each purpose of modeling or 
aspect, because: 

• Some quality goals are in conflict with one another. For example using the same 
modeling language for different models reduces the need for learning new 
languages. On the other hand, we want to use different modeling features in each 
model (for example, the implementation model has to take the programming 
environment into account [4]) and using the same modeling language might 
therefore not be appropriate. Paige et al. believe that users may profit from using 
different languages for different purposes and combining them [21]. 

• Some quality goals crosscut models or activities. For example, if our conceptual 
model contains the concept of customer, our software will contain direct 
representations of customers, and our software customers will have similar 
attributes to their real-world counterparts. We want this correspondence because it 
improves traceability between requirements and code, and because it makes the 
software easier to understand [4]. 

Thus any research on quality in MDE should take into account the various 
modeling purposes, relations of purposes to quality goals and the dependencies or 
conflicts between them. In MDE, models are refined progressively and transformed to 
new models or code. In [19], we discussed that the quality of models depends on the 
quality of modeling language(s) used, the quality of tools used for modeling, the 
knowledge of developers of the problem in hand and their experience of modeling 
languages and tools, the quality of the modeling processes and the quality assurance 
techniques applied to discover faults or weaknesses. We also add the quality of 
activities performed on the models such as transformations to the above list, and 
discuss it in more details throughout this paper.  

2.2   What Characterizes Model-Driven Engineering? 

The characteristics of MDE that are important when defining a quality framework are: 

• Use of models in several stages of software development: Models are used from 
early development phases to testing, simulation and code generation. Models are 
often incomplete, imprecise and inconsistent early in the software development 
life-cycle and get gradually more precise and complete. Models can be non-
executable or executable (even early analysis models can be executable). 

• Models on different levels of abstraction and from different viewpoints: An 
example is the OMG MDA’s viewpoints of Computational Independent Models 
(CIM), versus Platform Independent Models (PIM) and Platform Specific Models 
(PSM) [20]. Relations between these models are important when evaluating them 
for some quality characteristics. For example, refined models have additional 
classes and methods that can increase complexity metrics. Another example is 
structural models vs. behavioral models. This is a characteristic of e.g. UML and 
not necessarily all modeling languages. The multi-view and multi-abstraction level 
development approach means that each of the diagrams and abstraction levels 
might require specific quality goals and metrics. Lange describes this for the model 
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size metrics that varies on various diagrams and abstraction levels [15]. Mellor and 
Balcer refer to several challenging issues that inevitably arise from the multi-view 
and multi-notational approach of UML in MDE [18]:  
o Consistency: The models of various views need to be syntactically and 

semantically compatible with each other (i.e., horizontal consistency). 
o Transformation and evolution: a model must be semantically consistent with its 

refinements (i.e., vertical consistency).  
o Traceability: A change in the model of a particular view should lead to 

corresponding consistent changes in the models of other views.  
o Integration: Models of different views may need to be seamlessly integrated 

before software production.  
• Activities are performed on models by tools: Models undergo transformations and 

refinements. Many activities have models as input, output, or both. The quality of 
such activities can preserve, improve or reduce the quality of models. Model 
transformation is applied by tools, and during a transformation output models are 
supplied with information not present in the input model. Examples are domain-
specific information or the platform concept during the PIM to PSM 
transformation. Models should therefore be complete and precise but not include 
unnecessary or redundant information [23]. 

• Generation of code and other artifacts from models: This means that evaluating the 
quality of models is more important in MDE than in traditional software 
development, where the code is mostly evaluated for quality. 

• Developing Domain Specific Languages (DSLs) and models: DSLs have existed 
for a while and Domain Specific Modeling Languages are also getting more 
popular as a means to increase productivity and tailor the development 
environment to a domain. Selecting any approach for developing a DSL such as 
defining a metamodel or a UML profile needs knowledge of language and tool 
design and appropriate quality guidelines. 

Thus a quality framework in MDE should take into account the role of models, 
languages, tools, transformations and their appropriateness for the domain and 
modeling purposes. Model-driven Quality Assurance (MDQA) is often defined as the 
automatic quality assurance that is based on models such as using system models for 
testing and verification (see e.g., http://www.mdqa.org/).  In this paper, we suggest 
the notion of Model-Driven Quality Engineering (MDQE) meaning taking advantage 
of MDE to prevent and discover quality defects as early as possible in the software 
development lifecycle. MDE lends itself to quality engineering because of two 
reasons. First, models are primary software artifacts in MDE and several other 
artifacts are generated from models. Thus developing high quality models improves 
the quality of e.g., test cases and code that may be fully or partly generated from 
models. Second, quality engineering is enhanced by the extensive use of tools in 
transforming models to other models or code. Tools can analyze and monitor models 
for various characteristics. An example is discussed by Haesen and Snoeck in relation 
with consistency checking which can be done by analysis (an algorithm detects 
inconsistencies between deliverables), by monitoring (meaning that a tool has a 
monitoring facility that checks every new specification), and by construction or by 
generation (meaning that a tool generates one deliverable from another and 
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guarantees semantic consistency) [7]. Another example is using tools for checking 
rules or constraints during modeling or transformations as proposed in [1]. Rules and 
constraints can also be defined on metamodels. 

2.3   Related Work on Quality Frameworks 

In this section, we present some work on quality frameworks that either address the 
quality of models or quality in MDE, or may be used in building such a framework 
for MDE.  

ISO/IEC 14598 International Standard (Standard for Information technology - 
Software product evaluation - Part 1: General overview) defines the term quality 
model as “the set of characteristics and relationships between them, which provides 
the basis for specifying quality requirements and evaluating quality”. ISO 9126 is an 
example of a widely used software quality model [11]. We use the term quality 
framework in our work to avoid any confusion between quality model and model 
quality.  

Dromey proposes a five step approach in constructing a quality model [5]: 

1. Identify a set of high-level quality attributes for the product like reliability or 
maintainability.  

2. Identify the product components. Examples are modules, requirements or relations. 
3. Identify and classify the most significant, tangible, quality-carrying properties for 

each component. These are properties that result in manifestation of the high-level 
quality attributes. 

4. Propose a set of axioms for linking product properties to quality attributes. This is 
not an easy task and the links cannot always be empirically verified. 

5. Evaluate the model, identify its weaknesses and refine it. 

To identify high-level quality attributes, one may ask: 

• What are the most important usages of this product? 
• What kind of defects we want to avoid for these usages? 

Trendowicz and Punter discuss quality models for software product lines [25]. The 
activities during development of a quality model or framework are shown in Figure 1. 
The definition of goals, characteristics and sub-characteristics should be done 
iteratively and involve the stakeholders.  This procedure goes on for as long as there 
is a set of measurable sub-characteristics defined. A sub-characteristic is measurable 
when it is possible to attach it to a particular component of a product line and define 
one or more corresponding metrics (which can be quantitative, qualitative evaluation 
or a combination of both); thus similar to the tangible quality-carrying properties in 
the Dromey’s process. Reviewing should guarantee that the quality model is feasible 
and not too complex. The final step is actually execution. They further write that 
quality models should be flexible (to be tailored to a specific organization and 
project), reusable and transparent (clear insight into their rationale as well as the 
meaning of the characteristics and relations among them).  



280 P. Mohagheghi and V. Dehlen 

 

Fig. 1. Activities during development of quality models as defined in [25] 

A framework that is applied on conceptual models is first presented by Lindland  
et al. [16] and later extended by Krogstie et al. and applied for evaluating the quality 
of modeling languages (see for example [12]). Lindland et al. divided quality goals 
into syntactic (adherence to the language rules or syntax), semantic (relevance to the 
problem domain and containing statements that are correct and relevant) and 
pragmatic (understandability of a model by stakeholders).The framework separates 
quality goals from means to achieve them. For example having formal syntax in a 
language is a means to achieve syntactic quality. Means are similar to quality-carrying 
properties in the Dromey’s process. Solheim and Neple have simplified and adapted 
this framework to MDE [23]. They further identify transformability and maintain-
ability as two quality goals that are important in MDE, which are in turn decomposed 
into several characteristics. 

Lange and Chaudron identify two primary use of models; either development or 
maintenance [14]. They further define some purposes of modeling for each phase 
(e.g., analysis and prediction are done in the development phase) and relate some 
quality characteristics to each purpose. These characteristics are further related to 
metrics that are mainly on the detailed design level. Of other work on the quality of 
models we can mention [2] on the quality of data models (a data model is a model 
describing parts of business) and [26] on the quality of UML 2.0 models.  

In addition to models, modeling languages has been subject of research, as in [6, 
12 and 21]. The three works have some language quality requirements in common 
such as having minimal set of concepts that are precisely defined, uniqueness of 
concepts and understandability, while they complement each other in other aspects. 
Another difference is when they are applied. Paige et al. [21] recommend their 
principles for designing modeling languages, while Krogstie et al. [12] and Grossman 
[6] have defined criteria for evaluating modeling languages. 

Putting all the related work together provides requirements for quality frameworks 
and a list of quality goals for some aspects such as models and languages, while other 
aspects such as processes, activities and tools are less studied. There is also a need for 
more empirical studies and evaluation of the frameworks.   
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3   Defining a Quality Framework for MDE 

In the previous section we presented some work on quality frameworks, MDE 
characteristics, and on the quality of models and modeling languages. In this section, 
we present a process for defining a quality framework in MDE which is illustrated in 
Figure 2.  

Identify
target objects

Identify 
quality gaols/ 

sub-goals

Specify 
evaluation method / metrics 

Identify quality-carrying properties 
& 

product /project characteristics

quality 
evaluation

quality 
engineering

Execute 

Review links

links

 

Fig. 2. Steps in developing a quality framework for MDE; specifying both quality engineering 
and quality evaluation 

We define the steps as: 

1. Identify quality goals. Examples of quality goals are maintainability, reuse or 
increased productivity. Identifying quality goals should involve all stakeholders 
and reflect the purposes of modeling and the priorities of the project.  

2. Identify target objects that can impact the quality goals. Proper target objects can 
be the software development approach or process, models, metamodels, languages, 
tools, transformations or the quality assurance techniques.  

3. Identify the quality-carrying properties of the target objects and the product or 
project characteristics that they help to achieve. For example the possibility to 
generate code from models is a quality-carrying property of the modeling tool that 
reduces the amount of manual coding and provides more consistent code. 
Identifying the quality-carrying properties is based on several aspects such as: 
o Purpose of the target object. 
o Lifecycle phase (stages of development, maintenance or run-time). 
o Isolated or in relation with other objects: it may be a need to integrate models / 

languages/ tools/ activities with other models / languages/ tools / activities, or 
they may need to exchange data. Integration may require consistency, 
portability, traceability, compatibility etc. 

o Scale of the project. 
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o Domain-specific or general. 
o Lifetime (long-living or not): lifetime has impact on the need for training, 

documentation, or maintainability.  
 As discussed by Trendowicz and Punter [25], relations should also be identified. 
4. Specify how to evaluate the quality-carrying properties and characteristics; e.g., 

measuring quantitatively by metrics or subjective evaluation, inspections using 
checklists or interviewing the users. Specify links that validates that the right thing 
is measured. 

5. Specify association links between the quality-carrying properties and the quality 
goals. For example, including domain knowledge in a domain specific code 
generator may reduce the number of certain defect types and thus improve software 
quality. This should be validated by analyzing the number and the type of defects.  

6. Review and evaluate the framework in practice for characteristics such as 
completeness, orthogonality, parsimony, reusability, flexibility, transparency, 
relevance and possibility to be adopted. 

7. Execute: Execution covers the implementation of quality-carrying properties and 
evaluation. 

The process can support a hierarchical model of goals and quality-carrying proper-
ties as well. For example, transformations as a target object may be decomposed to 
the transformation process and the transformation rules as discussed in the next 
section. 

The differences of the process in Figure 2 and the Dromey’s process described in 
Section 2.3 are introducing target objects in the MDE context, adding the evaluation 
step and the requirements for evaluating the quality framework. We also work on 
identifying the quality-carrying properties and the product / project characteristics that 
MDE can support; i.e., MDQE.  

4   Quality of Transformations 

4.1   Motivation 

A key point in MDE is the transformation of models. This approach has been proven 
useful both during the development and the maintenance of software systems, 
allowing refinements, new views or system code to be generated from models. 
Transformations automate tasks that are either too tedious or complex for most 
developers to consistently and reliably implement [9]. One can – and should – 
therefore engineer and evaluate the quality of the transformation itself. For instance, it 
is important that the output model maintains the properties of the input model, e.g. the 
transformation produces consistent models [17 and 24].  

Other reasons for considering the quality of transformations are due to reuse and 
runtime concerns. Just like software components and services should be reused when 
building new systems, so should transformations be reused when developing new 
transformations. A relevant example of a transformation repository is the ATL 
Transformation zoo, which is a part of the Eclipse project1. Having access to quality 
                                                           
1 http://www.eclipse.org/m2m/atl/atlTransformations/ 
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criteria for transformations would allow meaningful comparison of transformation 
quality according to a set of chosen quality metrics. When using transformation at 
runtime, additional quality attributes come into play. In some systems, e.g. safety-
critical ones, response times are usually important and, thus, the transformations have 
to adhere to constraints on timeliness. Also, during runtime adaptation it is even more 
important that the transformations maintain consistency and reliability among system 
configurations.  

4.2   Applying the Quality Framework 

The quality framework for MDE presented in Figure 2 suggests starting with 
identifying quality goals and target objects.  Improving software quality and increase-
ing the productivity of software developers are the high-level quality goals which may 
be achieved by the transformation activity in MDE as the high-level target object. 
Further, one may discuss the quality of transformations itself. This section suggests 
target objects for transformation quality. 

Kühne writes that a transformation is information on a mapping from one model to 
another, created by a transformation engineer, for the transformation engine, in order 
to automate a transformation process [13]. So a transformation can be regarded as a 
model that describes a transformation function. Hesse, on the other hand, writes that 
although a transformation can be modeled if one wants to do so, the static model of a 
transformation should not be confused with its dynamic original [8]. In his view, 
transformations are processes and not models. These views show how transformations  
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Transformation
language

Metamodel Metamodel

Transformation
mapping

Output modelInput model Transformation
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Conforms to Conforms to

Conforms to
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Fig. 3. A transformation is described by its transformation mapping. It takes a model as input 
and produces a different model as output (we can also view code as a model). Each model – the 
transformation mapping included – conforms to a metamodel. 
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have both a dynamic and a static part. To us, a transformation denotes the process, 
while a transformation specification, model or mapping refers to the description of 
this process. In our opinion, these parts are equally relevant when considering quality, 
and they require different approaches. 

Figure 3 depicts the transformation process which can be regarded as an operator; 
i.e., output model=Trans(input model), with numerous properties. As can be seen, 
there are also additional elements involved in a transformation, which are all 
candidates for target objects. Our main focus, however, is on the transformation 
process and mapping. In Table 1 we view these two dimensions of a transformation as 
the target objects and suggest lower level quality goals with quality-carrying 
properties and evaluation techniques. These suggestions are not considered as 
exhaustive.  

Table 1. Applying the quality framework on the quality of transformations 

Target Object Quality Goal Quality-carrying Property Evaluation 

Effective transformation 
engine [3] 

Measure 
performance Transformation 

process 
High 
performance Select appropriate 

transformation approach [3] 
Measure 
performance 

Preservation 
of consistency 

Enforce consistency by tools 
[7] 

Consistency 
analysis tool, 
measuring 
consistency before 
and after 
transformation 

Reusability 
Modularization, i.e. specialize 
and chain transformations,  
and rule inheritance 

Inspection 

Few number of rules, i.e. 
modularization 

Measure complexity 
in the number or 
size of rules 

Appropriate algorithm 
Measure the 
complexity of 
algorithms 

Simplicity 

Simple output models 
Measure complexity 
and size of the 
output model [22] 

 

Transformation 
model / rules 

 

Compactness 

Generic transformations [27]. 
They contain rules where 
types of some object types are 
variables, allowing a single 
generic rule to handle several 
situations. 

Inspection 
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5   Conclusion and Future Work  

The MDE approach allows us to automate many activities in software development. 
Since models in MDE are expected to get progressively more complete, precise and 
executable during development, they can be used to evaluate and verify the quality of 
design, fix errors and eliminate unwanted complexity, preferably at the early stages of 
software development. We defined a process for defining a quality framework and 
based on existing literature, we provided some initial observations on transformation 
quality related to MDQE. 

However, much work is still needed in all the stages defined in Figure 2. We will 
build further on the quality framework presented here to identify quality goals, 
quality-carrying properties and evaluation methods for aspects that affect the quality 
of models and are relevant for our partners in the MODELPLEX project 
(www.modelplex.org). One of such aspects is identifying quality criteria for Domain-
Specific Languages (DSLs) appropriate for modeling large and complex systems.  
Suggestions for future work on transformations are further analysis of what affects the 
quality of transformations and to gather empirical evidence on associations between 
the proposed quality-carrying properties and the quality of generated software. 
Especially important is the development of tool support for quality engineering, as 
tools are such an important part of MDE. This would support the execution part of the 
MDE quality framework.    
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Abstract. The MoDELS 2007 Doctoral Symposium provided a forum for Ph.D. 
students, conducting research in model-driven software engineering, to discuss 
their goals, methodology and results at an early stage in their research, in a 
critical but supportive and constructive environment. The symposium offered 
an opportunity for the eight student participants to interact with other students 
at a similar stage in their careers and with the mentoring board composed of 
five experts in the software modeling field. The students received practical 
guidance for the completion of the dissertation research and motivation for a 
research career. This summary offers an overview of the activities that occurred 
at the Symposium. 

1   Introduction 

Model-driven software engineering (MDE) is a dynamic new field of research, 
creating a paradigm shift in the way software applications are designed and 
maintained. This paradigm proposes the use of models as the basic building blocks, 
which are used to design and build software. This process is achieved by successively 
applying model transformations until the executable code is obtained. MDE builds on 
ideas and experiences from many different fields to produce the novel research 
needed to drive this paradigm shift. 

The MoDELS 2007 Doctoral Symposium provided a forum for PhD. students, 
conducting research in MDE, to discuss their goals, methodology and results at an 
early stage in their research, in a critical but supportive and constructive environment. 
The symposium offered an opportunity for student participants to interact with other 
students at a similar stage in their careers and with established researchers in the 
software modeling community.  The closed character of this symposium (participation 
on invitation only) was a premise for deep and constructive discussions. 

Each presentation was organized as a mock thesis-defense, with a committee of 5 
mentors providing extensive feedback and advice for completing a successful PhD 
thesis. The research topics presented by student during the symposium covered hot 
topics in the MDE field such as version control for models, modeling language 
semantics, methodologies for developing model transformations, model composition, 
aspects in models, etc. 

This year we received 12 submissions from 6 countries. Submissions were judged 
on originality, overall contribution, technical merit, presentation quality and relevance 
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to the conference topics. The symposium was intended for students who had already 
settled on a specific research topic (closely related to model-driven engineering) and 
had obtained initial results, but still had enough time remaining before their final 
defence so that they might benefit from the symposium experience. Each submission 
was reviewed by two mentors from the Selection Committee. The committee finally 
selected 9 proposals (although one of the students was unable to attend the 
symposium). 

The closing session of the symposium was a panel discussion that was organized in 
conjunction with the Educator’s Symposium. The main topic of the panel was what to 
teach (and learn) in modeling in order to feel the needs for a research career in 
industry and/or academia. 

2   Organization and Committees 

The Symposium was held in conjunction with the ACM/IEEE 10th International 
Conference on Model Driven Engineering Languages and Systems. It was organized 
as a whole- day event on October 1st, 2007 in Nashville (TN), USA. The home page 
of the symposium is at: 

http://sol.info.unlp.edu.ar/models2007ds/ 

Mentoring Committee 

Jordi Cabot (Universitat Oberta de Catalunya, Spain) 
Alexandre Correa (Universidade Federal do Rio de Janeiro, Brazil) 
Ileana Ober (Université Paul Sabatier, Toulouse, France) 
(chair) Claudia Pons (Universidad Nacional de La Plata, Argentina) 
Dániel Varró (Budapest University of Technology and Economics, Hungary) 

Selection Committee 

David Akehurst (University of Kent at Canterbury, UK) 
Thomas Baar (Ecole Polytechnique Fédéral de Lausanne, Switzerland) 
Jean-Michel Bruel (Université de Pau, France) 
Maja D’Hondt (Université des Sciences et Technologies de Lille, France) 
Tom Mens (University of Mons-Hainaut, Belgium)  
Ana Moreira (Universidad Nova de Lisboa, Portugal) 
Ivan Porres (Åbo Akademi University, Findland) 
 
We would like to thank everyone who contributed to the success of the Symposium, 

specially the experts comprising the committees who supported the review process and 
the mentoring activities.  

3   Summary of Student Presentations 

Each student prepared a short paper that was published in the Symposium Proceed-
ings, online at http://CEUR-WS.org/Vol-262. The participating students, along with 
the titles of their presentations and their affiliation, are (in alphabetical order): 
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- Kerstin Altmanninger. Johannes Kepler University, Linz, Austria.  
  Models in Conflict – Towards a Semantically Enhanced Version  
  Control System for Models.  
- Michelle  Crane. Queen's University, Kingston, Ontario, Canada.   
  Slicing the Three-layer Architecture: A Semantic Foundation 
  for Behavioural Specification.  
- Gunter Mussbacher. University of Ottawa, Canada.  
  Aspect oriented User Requirements Notation 
- Hongzhi Liang. School of Computing, Queen’s University, Canada. 
  Scenario integration via the transformation and manipulation 
  of higher-order graphs.  
- Torbjörn Lundkvist.  Åbo Akademi University, Finland.  
  Definition of Visual Language Editors Using Declarative Languages. 
- Jon Oldevik. University of Oslo, Norway. 
  Semantics Preserving Model Composition. 
- Rick Salay. University of Toronto, Canada. 
  Towards a Formal Framework for Multimodeling in Software Engineering.  
- Andres Vignaga. Universidad de Chile, Chile. 
  Methodological Approach to Developing Model Transformations.  
 
This section offers a brief summary of the student presentations. Further informa-

tion can be found in [1].  
 

First presentation: Michelle Crane presented a research proposal whose overall goal 
is to contribute to the definition of a formal semantics for UML, and indeed visual 
behavioral modeling languages in general. Specifically, Michelle’s work aims to 
validate the three-layer semantic architecture, used as a way of explaining the 
behavioral semantics of UML. The validation includes a definition of the semantics of 
UML actions and activities, as well as a prototype interpreter.   

Second presentation: The doctoral work of   Kerstin Altmanninger was focused on 
“Version Control Systems” (VCS). She explained that for a widespread success of the 
model-driven paradigm, appropriate tools such as “Version Control Systems” (VCS) 
are required to adequately support a model-based development process. First attempts 
to model-based versioning, however, perform conflict detection mainly on basis of a 
syntactic representation of models without exploiting their semantics. Consequently, 
Kerstin’s proposal consists in defining an approach towards a semantically enhanced 
VCS, which enables for semantic conflict detection allowing not only a more precise 
conflict detection but also the determination of a conflict’s reason, which can simplify 
the merge process. This is achieved by introducing the concept of semantic views 
which explicate a certain aspect of a modeling language’s semantics relevant for 
conflict detection. 

Third presentation: Rick Salay’s doctoral research is motivated by the fact that the 
relations between models are seldom just generic “mappings” but instead usually 
realize an incremental modeling step of some kind. Thus, we have steps like  
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translations, projections, refactorings, refinements, decompositions, merges, the 
taking of sub-models or aspects, etc. In each case, the relation contains the details of 
how the elements of the component models in the step are related. These details 
constitute the syntactic and semantic aspects of a relation while the modeling step 
enacted by it is its “pragmatic” aspect. In order to provide tool support for modeling 
with many models, a formalism is required that treats model relations and sets of 
interrelated models, including their pragmatic aspects, as first class entities that can be 
typed, characterized using metamodels, reasoned about and manipulated using 
operators. To achieve this Rick proposes an approach with two key facets. Firstly, a 
set of interrelated models can be viewed as a kind of hierarchical model – a 
multimodel. Secondly, relations types can be classified using meta-types 
corresponding to the typical modeling steps that arise in software engineering. 
Together, these provide a unified framework in which to express modeling scenarios 
within software engineering.   

Fourth presentation: Torbjörn Lundkvist discussed his work on how to reduce the 
effort of designing visual interactive editors that can be customized for several 
domain-specific visual languages. In the context of this research work, a high level of 
reuse of configurable general editor components is considered to reduce the effort of 
designing editors for domain specific environments. This research work aims to show 
that this can be achieved by defining a general language independent editor 
architecture that is configured to a specific language notation by the use of declarative 
languages. A declarative language can be used to describe what a system should be 
like, not how to implement it. He believes this brings many benefits, as the 
information expressed in a declarative language can be reused by many different 
components in a tool. The focus of this research work is finding methods that allow 
the definition of a visual language editor based on declarative languages. This 
problem can be decomposed into several related areas, including the definition of 
languages and visual notations, how to edit and manipulate structures expressed in 
these languages, and the definition of query and model transformation languages.   

Fifth presentation: Hongzhi Liang spoke at the Symposium about the integration of 
different models, such as scenarios. He remarked that this integration is an important 
component of the requirements engineer’s work. If manually performed, the 
integration operation is error-prone and time consuming. Thus, an integrated 
computer-aided environment would be desirable. In his work he proposes a 
framework based on mathematical category theory machinery of algebraic operations 
with higher-order graphs that provides formalization and a generic pattern for 
scenario integration. In order to evaluate the proposed framework, Hongzhi has 
instantiated the framework and is currently developing an experimental tool.  

Sixth presentation: The presentation by Andres Vignaga introduced his work on the 
definition of a methodology specifically aimed at developing and evolving model 
transformations. The focus will be set on design and implementation activities; 
however the scope shall include the entire life-cycle. A development process is built 
on best practices collected throughout the experience of the community. For model 
transformations, a collection of best practices is still to be completed. To that end, 
general Software Engineering best practices may serve, at least, as an inspiration. This  
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claim demonstrated to be particularly valid, for example, in model transformation 
testing. However, adapting existing application development methodologies to the 
model transformation domain would result unnecessary restrictive. Andres considers 
more appropriate to come up with a solution that freely combines established 
knowledge of traditional development with research in the model transformation area, 
from an MDE-minded point of view. The solution will be a full-edged process 
expressed as a SPEM model. He proposes a lifecycle based on an iterative and 
incremental model, and structured in phases; at least one for construction and one for 
evolution. The scope of the proposed activities includes requirements, analysis, 
design, implementation, testing and management. Activities will be associated to 
process roles and input and output work products, organized into disciplines, and 
refined into steps. Whenever possible, the proposal shall also provide guidance on 
process elements, especially for activities, steps and work products. Activities and 
steps will be described in detail, and the procedure for generating output work 
products from input work products will be made explicit. Work products, in turn, will 
be precisely described, enabling automatic work product manipulation.  

Seventh presentation: Jon Oldevik discussed his work on Semantics Preserving 
Model Composition. He remarked that separation of concerns (SoC) and 
modularization are well established strategies for managing complex specifications. 
However, although software is designed with SoC in mind, the language mechanisms 
at hand often lead to tangling and scattering of concerns. This has motivated a range 
of language extensions to support concern specification, such as aspects and subjects 
in programming and modeling. The current trend is modularization of cross-cutting 
concerns into units, e.g. aspects that can later be composed by some transformation 
process (composition/merging/weaving). An important issue in this process is how the 
semantics of the models/programs is preserved. The focus of Jon’s work is on 
composition and configuration of software specifications from a modeling 
perspective. Standard mechanisms in modeling (e.g. in UML) provide composition 
and configuration with well understood characteristics. Examples from UML are class 
redefinitions, composite structures, composite states, structured activities, interaction 
decomposition, and package merge. This work goes beyond those by exploring 
modeling and composition of concerns at a collaboration level, focusing on their 
architecture and interaction dimensions. The semantics governing such compositions 
and their results is of particular interest in this regard. Jon proposes to address how 
generative techniques can be used for implementing the compositions and guide 
semantics preservation, and also address what semantics preservation means in 
different modeling and composition contexts.  

Eighth presentation: Gunter Mussbacher introduced a proposal on aspect oriented 
user requirements notation (AoURN). This notation extends the user requirements 
notation (URN) with aspects and thus unifies goal-oriented, scenario based, and 
aspect-oriented concepts in one framework. Minimal changes to URN ensure that 
requirements engineers can continue working with goal and scenario models 
expressed in a familiar notation. At the same time, concerns in goal and scenario 
models, regardless of whether these concerns crosscut or not, can be managed across 
model types. Typical concerns in URN are non-functional requirements (NFRs), use 
cases and stakeholder goals.  As AoURN expresses concern composition rules with 
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URN itself, it is possible to describe rules in a highly flexible way that prove the 
modularity, reusability, scalability, and maintainability of URN models.  Considering 
the strong overlap between NFRs and crosscutting concerns, aspects can help bridge 
the gap between goals and scenarios. 

4   Conclusion 

The fruitful exchange among mentors and students at the Symposium provided 
mutual benefit toward addressing promising research ideas for future exploration. 
After each student presentation, mentors offered words of general advice and 
suggestions regarding all facets of research. Mentors challenged the student to think 
about potential weaknesses in his/her thesis. Apart from the technical advices, the 
following topics were mentioned in the selection reviews and during the symposium, 

- The importance of a literature search. A characteristic of a good literature search 
is that it does more than simply enumerate references; a good literature search 
provides a comparative description that offers a discussion of the advantages and 
disadvantages of the related work. 

- The importance of setting the focus of the thesis.  It was suggested to the students 
that they always be able to define their research problem concisely, as well as the 
associated questions on why the problem is important. The key challenges of the 
problem need to be understood and explained well to others. 

- The importance of the validation of the results. The validation of the results of the 
research is a critical part of evaluating the impact of the contribution and proving the 
merit of the approach to others. 

- The importance of publishing the results. Publishing provides feedback from 
research peers that may be useful to influencing the direction of the dissertation. Also, 
writing throughout the PhD process eases the trouble of having to write a large 
dissertation at the end. Writing helps to provide structure to incubating ideas and also 
offers a historical account of the decisions and rationalizations made along the way.  

 
Additional information can be found in the home page of the symposium, at: 

http://sol.info.unlp.edu.ar/models2007ds/ 
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Abstract. For a widespread success of the model-driven paradigm, ap-
propriate tools such as “Version Control Systems” (VCS) allowing for
consistency maintenance between concurrently edited model versions are
required to adequately support a model-based development process. Ini-
tial attempts for graph-based versioning of model artifacts are either
tightly coupled to the modeling environment, not flexible with respect
to the used modeling language or cannot interpret the model’s seman-
tics. On basis of those characteristics, the goal of the outlined thesis
presented in this paper is to provide mechanisms to detect conflicting
modifications between parallel edited model versions more accurately.
By reducing falsely indicated conflicts and by finding additional semantic
conflicts, the resolution process can be simplified by means of appropri-
ate techniques for comparison, conflict detection, conflict resolution and
merge.

1 Introduction

The shift from code-centric to model-centric software development places models
as first class entities in “Model-driven Software Development” (MDSD) processes.
A major prerequisite for the wide acceptance of MDSD are proper methods and
tools which are available for traditional software development, such as build tools,
test frameworks or “Version Control Systems” (VCS). Considering the latter, op-
timistic VCS which do not rely on pessimistic methods (such as locking) are par-
ticularly essential when the development process proceeds in parallel such that
different developers concurrently modify a model, which may result in concur-
rent, potentially conflicting modifications. Hence, such conflicting modifications
need to be resolved in terms of a model check-in process of the VCS by appro-
priate techniques for model comparison, conflict detection, conflict resolution and
merging.

In case model developers use different modeling environments to edit their
model artifacts and hence the employed modeling tools are not tightly coupled
to the VCS, certain approaches that rely on tracking model modifications (e.g.,
operation-based mechanisms) are not applicable. Instead, a loosely-coupled VCS
for model artifacts has to be provided which operates in a state-based man-
ner. However, in the light of a growing number of “Domain Specific Languages”

H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 293–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(DSLs), a flexible approach, which can be adapted to the used modeling lan-
guage, is desirable since most of the VCS for models (e.g., like the commercial
tool IBM Rational Software Architect1 and Odyssey-VCS [1]) solely concentrate
on versioning UML models.

For dealing with concurrent modifications on models and specifically for the
identification of conflicts, it is necessary not only to consider the logical structure
of models in terms of a graph-based representation but also to “understand”
the model’s semantics. For example, concurrent modifications on a model may
not result in an obvious conflict when syntactically different parts of the model
(e.g., different model elements) were edited. Nevertheless, they may interfere
with each other due to side effects [2], thus yielding an actual conflict, which,
without considering the model’s semantics, would remain hidden. Furthermore,
certain conflicts which would be detected by a structural difference computation
are not necessarily conflicts because in modeling languages often more than
one possibility exists to model a specific case. E.g., in UML activity diagrams,
decision nodes as well as conditional nodes are two equivalent ways to express
alternative branches in a process, which could in fact result in a conflict if two
developers edit a model concurrently by using such different but semantically
equivalent modeling concepts. Valuable conflict reports, however, are essential
for model developers in order to ensure the correctness of the merged version and
consequently to avoid finally merged model artifacts which are not in the model
developers intent. Therefore, in this paper, an optimistic, loosely coupled and
flexible “Semantically enhanced Model Version Control System” (SMoVer)2 is
laid out which is able to provide some “understanding” of the model’s semantics
in order to achieve accurate conflict reports by reducing falsely indicated conflicts
and by finding additional semantic conflicts.

The remainder of this paper is structured as follows: Section 2 identifies the
problems encountered by existing approaches. In Section 3, the research hypothe-
ses are given and the goal of the thesis, presented in this paper, is laid out. In
Section 4, the conceptional design of SMoVer is explained. The actual realization
status of SMoVer is presented in Section 5 and a comparison to existing VCS
is given in Section 6. Finally, Section 7 discusses further prospects beyond the
scope of the outlined thesis and Section 8 gives a conclusion.

2 Problem Identification

The challenges emerging when realizing an optimistic, loosely coupled and flexi-
ble semantically enhanced VCS for model artifacts, for which an accurate conflict
detection process has to be employed, span over the following issues.

Firstly, a check-in process which allows to detect and resolve conflicting modi-
fications between parallel developed model versions [3,4] has to be provided. Sec-
ondly, to realize a loosely coupledVCS, the exchange ofmodel artifacts between the
VCS and the used modeling environments by model developers has to be

1 http://www-306.ibm.com/software/awdtools/architect/swarchitect/
2 http://smover.tk.uni-linz.ac.at/



Models in Conflict – Towards a Semantically Enhanced VCS 295

enabled.Thirdly, techniques for a language independent and therefore flexibleVCS
and finally semantic enrichment techniques and strategies for the VCS’s check-in
process, for a more precise determination and resolution of conflicts, are needed.

Considering the check-in process in more detail, the succeeding challenges
arise. Starting with the first phase of the check-in process, model comparison
should not rely on text- or tree based approaches (like e.g., CVS3, Subversion4

and CoEd [5]) since they do not take the logical structure of models into account
which is required for effective model comparison. Hence, existing graph-based ap-
proaches have to be employed. Furthermore, for the model comparison process
techniques like the use of identifiers (IDs) for model elements or heuristics need
to be considered in order to identify created, deleted and updated elements be-
tween model versions. In the conflict detection phase conflicts should not solely
be identified due to the syntactical structure of models but additionally some
“understanding” about the artifacts to be versioned should be provided to prop-
erly identify conflicts. This is already done by approaches [2,4] in the area of
programming languages. They are, however, typically restricted to specific pro-
gramming languages and therefore cannot immediately be reused in the realm
of models. In addition, these approaches rely on formal semantics whereas ex-
isting modeling languages, such as UML, commonly do not exhibit a formal
description of their semantics not least since being hard and costly to define [6].
Therefore, the conflict detection phase requires a more specific approach where
semantics can be defined particularly for the purpose of detecting conflicts more
precisely. Conflict resolution, however, commands for an appropriate identifi-
cation of the reasons of conflicts, especially when going beyond just supporting
syntactical conflict detection. Hence, conflicts need to be visualized and reported
adequately to model developers. Model merging, finally, must produce a consis-
tent new model which is based on the results of the previous phases and which
can be facilitated by model transformations.

3 Research Hypotheses and Goal of the Approach

To tackle the identified challenges in order to achieve a merged model versions
with the greatest possibility to be in all developers intents, the following hy-
potheses have been defined:

– Model comparison can be successfully achieved by applying existing graph-
based comparison techniques and has to rely on 3-way comparison approaches
comprising the concurrently edited model versions and their common ances-
tor. Therefore, comparison techniques must not solely rely on either using
identifiers or heuristics and need to consider any possible change which can
be undergone by a model element.

– Conflict detection can be conducted on top of the before calculated difference
sets and can not rely on full formal specifications of the semantics underlying

3 http://www.nongnu.org/cvs/
4 http://subversion.tigris.org/
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a model since only certain aspects are relevant. Therefore, conflict detection
can benefit from the definition of semantics allowing to find conflicts more
precisely i.e., by avoiding falsely indicated syntactic conflicts, by finding
previously undiscovered semantic conflicts and by finding more precisely
defined conflicts.

– Conflict resolution can be empowered by reasoning on the semantics of the
conflicts detected. Furthermore, adequate visualization techniques have to
be provided for model developers.

Hence, the goal of the thesis can be reflected in three areas:

– Development of concepts and techniques for establishing an optimistic, loosely
coupled and flexible semantically enhanced VCS which enables finding and
resolving conflicts between model versions more accurate by reducing falsely
indicated conflicts and by detecting additional semantic conflicts.

– Implementation of SMoVer which incorporates the concepts and techniques
established by using state of the art technologies and standards (cf. Subsec-
tion 5.2).

– Evaluation of the quality of the conflict detection and resolution process of
SMoVer. Firstly, on basis of a comparison of the loosely coupled approach
to other loosely coupled and tightly coupled VCSs for models and secondly,
of the power of expressiveness of the technique for semantic enrichment in-
troduced by this approach for different modeling languages.

4 SMoVer - Conceptual Design

In the light of the previously mentioned goals of the approach, SMoVer is pro-
posed. In the following, the conceptual design of the system is explained.

Fig. 1 visualizes a common scenario in a VCS, where two model developers
Sally & Harry create personal working copies of a model (V) out of the repos-
itory ❶. After they modified their personal working copies with their preferred
modeling environment, both want to check-in their version later on to the repos-
itory. However, if Sally commits her changed model (V’) to the repository first,
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the check-in process can proceed since the current revision in the repository is
the direct ancestor of the incoming working copy (Fig. 1, ❷). Harry attempts to
commit his changed model (V”) later whereas he has to apply a 3-way check-in
process because the last revision in the repository is not the one he has checked-
out previously (Fig. 1, ❸). This means, the two model versions of Sally and Harry
have to be compared with respect to their common ancestor version in the repos-
itory, in order to ensure consistency between the parallel edited model versions.
This comparison process, however, is based on a graph-based structural differ-
ence computation between the model versions. The actual comparison of model
elements is based on an ID designated in the metamodel. Conflicts, however,
may origin due to creation, deletion or update of model elements. By inspecting
the structural features, namely the attributes and references of a model element,
one can determine whether the model element as a whole has been updated. In
particular four different update strategies to detect structural changes in a graph
that are of interest for conflict detection are considered:

– Attribute update (ATT): The value of an attribute has been changed.
– Reference update (REFS): The set of referenced model elements has been

changed. For example, new model elements have been created or deleted.
Therefore the following possible combinations can be identified: Create-
Create (CC), Create-Delete (CD), Delete-Create (DC), Delete-Delete (DD).

– Role update (ROL): A model element is referenced or de-referenced by
another model element. Again, the four possible combinations of create and
delete can be enumerated (CC, CD, DC, DD).

– Referenced element update (REF): A referenced model element has
undergone an update (e.g., an attribute, reference or role update).

To make this process of detecting conflicts explicit, the following OCL expres-
sions define the derivation of the corresponding conflict sets. In more detail, the
conflict set (Con) contains all conflicting model elements and is a union of three
further sets that represent update-update (UpdCon), create-create (CrCon) and
update-delete (DelCon) conflicts accordingly. The isUpdated function determines
updated model elements and the function areNotEqual checks for the equality
(as opposed to the identity) of two model elements.

To represent the model’s semantics, so-called semantic view definitions are
introduced in order to make certain semantic aspects explicit. To start with, the

Creates ’=(V ’−V)
Creates ”=(V”−V)
Updates ’=V−>s e l e c t ( e | e . i sUpdated (V,V ’ )
Updates”=V−>s e l e c t ( e | e . i sUpdated (V,V”)
Del e t es ’=(V−V’ )
Del e t es ”=(V−V”)

CrCon =Creates ’−>i n t e r s e c t i o n ( Creates ”)−> s e l e c t ( e | e . areNotEqual (V ’ ,V”))
UpdCon=Updates ’−>i n t e r s e c t i o n (Updates”)−> s e l e c t ( e | e . areNotEqual (V ’ ,V”))
DelCon=(Updates ’−> i n t e r s e c t i o n ( Del e t es ”))−>union (Updates”−> i n t e r s e c t i o n ( Del e t es ’ ) )

Con=UpdCon−>union (CrCon−>union (DelCon ) )

Listing 1.1. OCL constraints for the determination of conflict sets
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Fig. 2. Conceptual design of SMoVer

basis of the approach is the metamodel which describes the syntax of the models
to be versioned. Additionally, to be able to provide semantic conflict detection, a
metamodel representing a certain view of interest has to be defined. On basis of
those metamodels, a transformation can be specified such that rules of a model
transformation relate the elements of the metamodel (abstract syntax) to which
the original model conforms to and the elements of the metamodel representing
the definition of the view of interest , the so-called semantic view. As a conse-
quence of the transformation realizing a semantic mapping, conflict detection
can be carried out on both, model and semantic view (cf. Fig. 2). Conflicts that
are determined purely upon the comparison of model versions are syntactic con-
flicts whereas a semantic conflict is detected between the representations of the
model versions in a semantic view. The actual detection of conflicts in both the
original model and the view works analogous to the graph-based detection of
structural conflicts.

Compared to the definitions of semantics for programming languages [7] the
translational approach, by means of semantic view definitions, is similar to a
translational semantics specifications. In a translational approach, which can be
considered as a special case of denotational semantics, constructs of one language
map onto constructs of another, usually simpler language such as machine in-
structions. Similarly, in SMoVer, a translation into a semantic view that defines
a certain facet of interest is proposed for the purpose of conflict detection.

In the following example (cf. Fig. 3) Sally & Harry are working concurrently
on a WSBPEL [8] model. Therefore, a language developer previously defined the
metamodel and the according IDs and update strategies in SMoVer. Addition-
ally (s)he also set up a semantic view definition which purpose is to detect static
semantic conflicts due to addition of “Activities” in a “Sequence” on the same
position whereby the model versions cannot be merged because it is not clear
which “Activity” comes first. This conflict could also be detected in the syntax
if the update strategy REFS:C is considered but then all concurrent insert oper-
ations of “Activities” in a “Sequence” would be reported as a conflict whereas
probably most of them are no actual conflicts. Therefore the language developer
created a view of interest for this circumstance which allows to find the actual
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Fig. 3. Conflict detection example

conflicts more accurately than in the syntax. Hence, as shown in Fig. 3, Sally
& Harry both insert an “Activity” on the end of the “Sequence” whereas a sta-
tic semantic conflict arises (Con={Assign(REFS:CC)}) in the semantic view by
applying the before mentioned conflict detection algorithm.

However, various view definition possibilities exist for which a categorization is
proposed according to three semantic aspects important for versioning, namely:
Equivalent concepts, static semantics and behavioral semantics. Through the def-
inition of “equivalent concepts”, which allow the expression of identical meaning
in different ways to achieve convenient modeling and readability, falsely indi-
cated conflicts can be avoided. Through the definition of static semantics, which
describe static characteristics of a model (like inheritance, constraints [9], or re-
lationships), additional “static semantic conflicts” can be detected. In contrast,
through the definition of behavioral semantics, with which the ability arises to
detect concurrent changes of the behavior of a model artifact (e.g., by using
dependency graphs [2,4,10] or by transforming the model in a different modeling
language [11]), additional “behavioral semantic conflicts” emerge.

5 SMoVer - Realization Status

In the following subsections, the realization status of the aforementioned goals
are laid out to evince the stated hypotheses.

5.1 Concepts and Techniques

Considering the main purpose of SMoVer in providing accurate conflict reports
and the previously defined characteristics of the system, the following concepts
and techniques for the check-in phases can be identified.

In a loosely coupled context, the implementation of the algorithm for the
comparison phase should be a metamodel independent approach to derive model
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differences. Therefore, the decision has been made to compare model elements
using IDs for each element in order to detect model modifications [12]. The
representation of changes is grouped in creation, deletion, and changes like in
related work [13]. Moreover, the proposed comparison phase considers a detailed
categorization of update strategies (cf. Section 4) with which it is possible to
fine-grain the kind of modification and therefore also to provide a more detailed
conflict report in the succeeding phase of the check-in process.

As mentioned in the previous section and in preceding works [12,14] the con-
flict detection phase is realized by a determination of conflict sets between three
versions of a model artifact. Therefore the first work in this context [12] describes
the techniques and strategies needed for conflict detection. The second one [14]
gives an overview on how to define and work with multiple semantic view de-
finitions exemplified by a specific modeling language and categorizes them in
three semantic aspects for which semantic view definitions can be utilized. Ad-
ditionally it is demonstrated that the proposed conflict detection process allows
fine-tuning of the conflicts reported and an increase in effectiveness by reducing
falsely indicated syntactic conflicts, by detecting undiscovered semantic conflicts
and by more precisely defined semantic conflicts than reported in the syntax.
Therefore, from a purely conceptual point of view, the activities needed to be
covered by this phase are completed.

For the conflict resolution phase, two main conceptual decisions have to be
made about the following two challenges. Firstly, how the semantic conflicts can
be efficiently traced back from the semantic view and being reported in the syn-
tactical representation and secondly, how the conflicts can be visualized in the
VCS to fully support the model developer during the resolution process. Regard-
ing the second activity “visualization”, it has to be investigated if the VCS can
make use of the concrete syntax of models during this phase and how this con-
crete syntax can be preserved in the system for specific modeling environments.

5.2 Implementation

In order to define the abstract syntax of a modeling language and a desired
semantic view definition, a metamodeling architecture is needed. The “Eclipse
Modeling Framework” (EMF)5 provides Ecore, which is a simplified version of
the OMG’s metamodeling standard “Meta Object Facility” (MOF) that consti-
tutes the M3 layer, has been chosen. EMF covers persistence support with an
XMI serialization mechanism and a reflective API for manipulating EMF mod-
els. The creation of a semantic view from a model artifact is realized through
the “Atlas Transformation Language” (ATL) [15], which is a QVT-like model-to-
model transformation language. Accordingly, the top of Fig. 2 shows the usage
of this metamodeling stack in the context of the implementation architecture.

The comparison of the concurrently edited model versions with their common
ancestor version is carried out on a generic graph representation of the respec-
tive models and views. For this purpose, the EMF reference implementation of

5 http://www.eclipse.org/modeling/emf/
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“Service Data Objects” (SDO)6 is used. SDO is a general framework to realize
standardized access to potentially heterogeneous data sources such as databases,
XML files or models serialized in XMI. SDO allows to create “datagraphs” from
EMF models, which are convenient for comparison purposes as SDO’s mecha-
nism to establish the difference between two graphs. These so called “change
summaries” are used in SMoVer to store modifications between versions, which
are then used by the actual conflict detection mechanism. Hence, the underly-
ing algorithm implements the comparison strategies mentioned in Section 4 and
establishes the relevant sets of conflicting elements. Both, the comparison and
merge component of the implementation are therefore carried out with Java on
top of SDO, EMF and ATL for model transformations in the semantic view(s)
and to produce a consistent merged model version.

Summing up, currently not implemented because no concepts and techniques
have been defined yet are the tracing back of the computed semantic conflicts in
the syntax and visualization techniques which will be focused on in the future.

5.3 Evaluation

For evaluating the feasibility of the approach it is planned to apply a series
of case studies firstly, on the effectiveness of the loosely coupled semantically
enhanced check-in phases applicable on various modeling languages and secondly,
on the power of expressiveness of semantic view definitions in order to be able
to identify semantic conflicts.

To start with, for the loosely coupled check-in phases it will be investigated
how effective they are compared to other loosely coupled and tightly coupled
VCS for models (cf. Section 6). In a first step, the evaluation is conducted on
basis of a syntactic comparison and conflict detection techniques and in a sec-
ond step with the help of semantic view definitions in order to derive semantic
conflicts for exploring the approache’s limitations utilized on a specific modeling
language. On basis of this comparison between SMoVer and other loosely and
tightly coupled VCS, a comprehensive statement about the effectiveness of the
approach for a specific modeling language can be made. Nevertheless, an evalua-
tion conducted on one specific modeling language is not sufficient. Because differ-
ent modeling languages have different power of expressiveness, several modeling
languages have to be analyzed for view definition possibilities. The knowledge
derived from this evaluation is an overview for which modeling languages this
semantically enhanced approach is more (eventually UML) or less (e.g., some
DSLs) valuable.

6 Related Work

The most closely related graph-based approach considering model versioning
which works in a state-based manner and provides semantic awareness during
the conflict detection process is laid out by Cicchetti et al. [16]. They propose
6 http://www.eclipse.org/modeling/emf/?project=sdo
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to leverage conflict detection and resolution by adopting design-oriented de-
scriptions endowed with custom conflict specifications. Hence, several conflicting
situations, which can not be captured by a priori structural conflict detection
mechanism can be specified that they refer to as “domain specific conflicts”. The
developers, however, are forced to enumerate all wrong cases in form of weaving
models, which negatively affects the usability and scalability of the approach.
Therefore, in the work of Cicchetti et al., each modification, which is not allowed
to preserve a design pattern and the design pattern itself have to be specified in a
weaving pattern (as they exemplified for the singleton design pattern). Anyway,
the approach of Cicchetti et al. focuses on the detection of previously undis-
covered conflicts in terms of domain specific conflicts only, whereas behavioral
semantic conflicts and the detection of previously falsely indicated conflicts as
provided by SMoVer are not considered. In addition, so far, the work of Cicchetti
et al. is solely applicable on UML models as opposed to SMoVer which is flexible
by being able to deal with all kind of Ecore-based modeling languages.

Another loosely coupled, semantically enhanced approach called SemVersion
is presented by Völkel [17], which is based on RDF, proposing the separation of
language specific features (e.g., semantic difference) from general features (e.g.,
structural difference or branch and merge). To perform the semantic difference,
the semantics of the used ontology language are taken into account. Therefore,
assuming using an RDF Schema as the ontology language and two versions (A
and B) of an RDFS ontology, SemVersion uses RDF Schema entailment on model
A and B and infers all possible triples. Now, a structural difference on A and
B can be calculated in order to obtain the semantic difference. The approach
of Völkel, however, does not consider behavioral semantic conflicts and is not
flexible to operate on any modeling language.

VCSs which detect conflicts solely due to structural comparison of concurrent
edited model versions without incorporating semantics are numerous [18,1,19].
To start with, Alanen & Porres [18] provide state-based difference calculation
and merging algorithms with which the functionality of a VCS for MOF-based
models can be realized. This approach is therefore not tightly coupled to a spe-
cific modeling environment and enables developers the parallel editing of model
artifacts with their preferred tooling. Oliveira et al. [1] presents a graph-based
VCS for versioning UML models called Odyssey-CVS, aiming to support differ-
ent UML-based CASE tools in evolving their artifacts. However, Oliveira et al.
is not flexible in the used modeling language because it can only be applied to
UML models. Similarly the tightly coupled approach of Oda & Saeki [19] and
the commercial tool IBM Rational Software Architect are also limited to UML
models by the IBM Rational Software Architect and additionally ER models by
Oda & Saeki.

7 Future Challenges

Future challenges are numerous but since current researches in this area are
still in the beginning not encountered in context of the outlined thesis presented
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in this paper. Firstly, as the proposed VCS is loosely coupled to the modeling
environment XMI is used to exchange models. Because of the fact that differ-
ent modeling environments export different XMI representations, so-called tool
adaptors for a common XMI representation are essential. Secondly, in a longer
prospect, a fully functional semantically enhanced VCS also needs to support
versioning capabilities for huge model artifacts which have associations to other
models in the same context. Therefore functionalities have to be provided to sup-
port versioning beyond one artifact. Thirdly, as metamodels evolve over time, for
industrial settings the defined metamodels in the VCS also need to be defined as
being able to be versioned. Hence, a smoothly technique has to be invented with
which this can be realized considering that all models and according transforma-
tions have to be adapted to the new metamodel version as well. The migration
of instances is in fact a well known problem from the area of schema evolution
[20] e.g., in the field of database systems. Fourthly, an important prerequisite
of a VCS for models are visualization techniques needed for the conflict resolu-
tion process in order to provide the developer with an adequate overview on the
model elements. The challenges which has to be dealt with is how to work with
the concrete syntaxes of the different model environments and how those data
can be versioned in order to satisfy the the demands of developers.

8 Conclusion

In this paper an optimistic, loosely coupled and flexible VCS called SMoVer,
which is extensible to incorporate the semantics needed for the conflict detec-
tion process between model versions, is presented. By means of transforming a
model into a semantic view, conflicts due to equivalent concepts can be elim-
inated and hidden static and behavioral semantic aspects can be explicated.
Therefore, various semantic view definitions can be established, consequently all
of them covering a different semantic aspect. The conflict detection algorithm
is applicable on the syntax and all semantic views in the same way. Hence, the
joint use of semantic view definitions expressing certain semantic aspects of a
modeling language and the employment of graph-based comparison techniques
on models and views allows for an accurate conflict detection between versions
of model artifacts. This is archived by reducing falsely indicated conflicts and
by finding additional semantic conflicts.

References

1. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a flexible version control sys-
tem for UML model elements. In: Proc. of the 12th Int. Workshop on Software
Configuration Management (SCM), ACM Press, New York (2005)

2. Thione, G.L., Perry, D.E.: Parallel changes: Detecting semantic interferences. In:
Proc. of the 29th Annual Int. Computer Software and Applications Conf (COMP-
SAC), vol. 1, pp. 47–56. IEEE Computer Society, Los Alamitos (2005)

3. Westfechtel, B.: Structure-oriented merging of revisions of software. In: SCM, pp.
68–79 (1991)



304 K. Altmanninger

4. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449–462 (2002)

5. Bendix, L., Larsen, P.N., Nielsen, A.I., Petersen, J.L.S.: CoEd – a tool for versioning
of hierarchical documents. In: Magnusson, B. (ed.) ECOOP 1998 and SCM 1998.
LNCS, vol. 1439, Springer, Heidelberg (1998)

6. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

7. Slonneger, K., Kurtz, B.: Formal Syntax and Semantics of Programming Lan-
guages: A Laboratory Based Approach. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

8. OASIS: Web services business process execution language (WSBPEL) standard
version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

9. Object Management Group (OMG): OCL 2.0 specification (June 2005)
10. Shao, D., Khurshid, S., Perry, D.E.: Evaluation of semantic interference detection

in parallel changes: an exploratory experiment. In: Proc. of the 23rd IEEE Int.
Conf. on Software Maintenance, Paris, France (2007)
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Abstract. Technologies based on aspects and applied at the early stages
of software development allow requirements engineers to better encapsu-
late crosscutting concerns in requirements models. The Aspect-oriented
User Requirements Notation (AoURN) extends the User Requirements
Notation (URN) with aspects and thus unifies goal-oriented, scenario-
based, and aspect-oriented concepts in one framework. Minimal changes
to URN ensure that requirements engineers can continue working with
goal and scenario models expressed in a familiar notation. At the same
time, concerns in goal and scenario models, regardless of whether these
concerns crosscut or not, can be managed across model types. Typical
concerns in URN are non-functional requirements (NFRs), use cases, and
stakeholder goals. As AoURN expresses concern composition rules with
URN itself, it is possible to describe rules in a highly flexible way that
is not restricted by any specific composition language. Aspects can im-
prove the modularity, reusability, scalability, and maintainability of URN
models. Considering the strong overlap between NFRs and crosscutting
concerns, aspects can help bridge the gap between goals and scenarios.
On the other hand, Early Aspects (EA) research can benefit from a stan-
dardized way of modeling concerns with AoURN.

Keywords: Aspect-oriented Requirements Engineering, Aspects, Use
Case Maps, Goal-oriented Requirement Language, User Requirements
Notation.

1 Introduction

By the end of the 1990s, Aspect-Oriented Programming (AOP) [10] allowed
software engineers to better encapsulate, at the implementation level, crosscut-
ting concerns (i.e. aspects) which are notoriously difficult to modularize with a
single dominant modularization technique alone (e.g. with object-oriented con-
cepts). During the last decade, the research community has shifted its emphasis
more to Early Aspects (EA) [8] by investigating ways of addressing crosscut-
ting concerns in requirements and design models. Two of the most common
requirements engineering models are goal-oriented and scenario-based models.
The User Requirements Notation (URN) [2, 16, 17] is the first and currently
only standardization effort that combines goal and scenario models in one lan-
guage. The Aspect-oriented URN (AoURN) [11,12, 13, 14] aims to extend URN
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with aspect concepts to better manage crosscutting concerns in goal and sce-
nario models. AoURN unifies goal-oriented, scenario-based, and aspect-oriented
concepts in one framework.

AoURN consists of Aspect-oriented Use Case Maps (AoUCM), first intro-
duced in [11], and the Aspect-oriented and Goal-oriented Requirement Lan-
guage (AoGRL), first introduced in [13]. A detailed description of AoUCM and
its matching and composition algorithms is available in [12], while AoURN’s
flexible and exhaustive composition rules based on URN itself are discussed
in [13,14]. Qualitative and quantitative assessments of the modularity, reusabil-
ity, scalability, and maintainability of AoURN are available in [12, 14] and [13],
respectively. This paper presents AoURN as a whole for the first time, further
aligning AoUCM and AoGRL with each other, and discusses the relationship of
aspects in goal and scenario models.

In the remainder of this paper, Sect. 2 gives an overview of URN and related
work on EA. Section 3 describes AoURN, while Sect. 4 discusses the relationship
of aspects in goal and scenario models as illustrated by a sample AoURN model.
Section 5 concludes the paper and identifies future work.

2 Background

2.1 User Requirements Notation

The User Requirements Notation (URN) [2, 16, 17], a standardization effort of
the International Telecommunication Union (ITU-T Z.150 Series), contains two
complementary modeling languages for goals and scenarios. The Goal-oriented
Requirement Language (GRL) is a visual modeling notation for business goals
and non-functional requirements (NFRs) of many stakeholders, for alternatives
to be considered, for decisions that were made, and for rationales that helped
make these decisions. GRL supports reasoning about goals and NFRs with the
help of GRL strategies. A strategy describes a particular configuration of alter-
natives in the GRL model. An evaluation mechanism propagates these low-level
decisions regarding alternatives to satisfaction ratings of high-level stakeholder
goals and NFRs. A reusable goal model is called a GRL catalogue.

Use Case Maps (UCMs) are a visual scenario notation that focuses on the
causal flow of behavior optionally superimposed on a structure of components.
UCMs depict the interaction of architectural entities while abstracting from
message and data details. UCMs support the definition of scenarios including
pre- and post-conditions. A scenario describes a specific path through the UCM
model where only one alternative at any choice point is taken. Given a scenario
definition, a traversal mechanism can highlight the scenario path or transform
the scenario into a message sequence chart (MSC). Essentially, the traversal
mechanism turns the scenario definitions into a test suite for the UCM model.

URN links indicated by small triangles can link any two URN model elements.
In particular, links from GRL models to UCM models establish traceability be-
tween goal and scenario models in URN. URN is the first and currently only
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standardization effort to address explicitly, in a graphical way, and in one lan-
guage goals and scenarios, and the links between them. Current tool support
for URN is available with the Eclipse-based jUCMNav tool [15]. Over the last
decade, GRL and UCMs have successfully been used for service-oriented, con-
current, distributed, and reactive systems such as telecommunications systems,
agent systems, e-commerce systems, operating systems, health information sys-
tems, and business process modeling [16].

2.2 Goal-Oriented Requirement Language

The Goal-oriented Requirement Language (GRL) [2, 15, 16] combines the Non-
Functional Requirements (NFR) framework [6] and i* framework [19] to support
reasoning about goal models. The syntax of GRL (Fig. 1) is based on the syntax
of the i* framework. A GRL goal graph is an AND/OR graph of intentional
elements that optionally reside within an actor boundary. An actor represents
a stakeholder of the system. A goal graph shows the high-level business goals
and non-functional requirements of interest to a stakeholder and the alternatives
for achieving these high-level elements. A goal graph also documents rationales
(beliefs) important to the stakeholder.

DependencyContribution

Correlation Decomposition

(b) GRL Links

(a) GRL Elements

Satisficed

Undecided

Weakly
Satisficed Denied

Weakly
Denied

Conflict

(c) GRL Satisfaction Levels

(d) GRL Contributions Types 

Break Hurt Some-

Make Help Some+

<no icon> … Unknown

Actor
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Goal  

Softgoal

Belief

Resource

Task  
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Fig. 1. Basic Elements of GRL Notation

Various kinds of
links connect the
elements in a goal
graph, allowing an
element to be
decomposed into
sub-elements, indi-
cating desired im-
pacts and side
effects of one el-
ement on another
element, and mod-
eling relationships
between actors
(one actor depend-

ing on another actor for something). A more complete coverage of the notation
elements is available in [2, 15].

From the NFR framework, GRL borrows the notion of an evaluation mecha-
nism that supports reasoning about the goal graph. The decisions of stakehold-
ers are typically documented in the goal graph by the assignment of satisfaction
levels (Fig. 1.c) to alternatives (e.g. the chosen alternative is set to Satisficed
whereas all other alternatives are set to Denied). Based on these initial settings
and the various links with various contribution types (Fig. 1.d), the satisfaction
ratings are propagated to higher-level goals and non-functional requirements
of stakeholders. jUCMNav keeps track of these initial settings separate from
goal graphs in strategies. Several strategies can be defined for a goal model, al-
lowing trade-off analyses to be performed by exploring and comparing various
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configurations of alternatives. GRL also takes into account that not all high-level
goals and non-functional requirements are equally important to the stakeholder.
Therefore, jUCMNav supports the definition of evaluation attributes for inten-
tional elements such as priority (high, medium, low, none), which are also taken
into account when evaluating strategies for the goal model [15].

2.3 Use Case Maps

Use Case Maps (UCMs) [2, 4, 16] are ideally suited for the description of func-
tional requirements and, if desired, high-level design. Paths describe the causal
flow of behavior of a system (e.g. one or many use cases). By superimposing paths
over components, the architectural structure of a system can be modeled. In gen-
eral, components describe any kind of structural entity at any abstraction level
(e.g. classes or packages but also systems, actors, sub-systems, objects, aspects,
hardware). As many scenarios and use cases are integrated into one combined
UCM model of a system, it is possible to use UCM specifications as a base for
further analysis. Undesired interactions between scenarios can be detected, per-
formance implications can be analyzed, testing efforts can be driven based on the
UCM model, and various architectural alternatives can be analyzed. For further
information, the reader is referred to the URN Virtual Library [16].
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Fig. 2. Basic Elements of UCM Notation

The basic ele-
ments of the UCM
notation are shown
in Fig. 2. A map
contains any num-
ber of paths and
components (struc-
tural elements).
UCM models can
be decomposed us-
ing stubs which
contain sub-maps
called plug-ins.
Plug-in maps are
reusable units of
behavior and struc-
ture. Plug-in bind-
ings define the con-
tinuation of a path

on a plug-in by connecting in-paths and out-paths of a stub with start and end
points of its plug-ins, respectively. A stub may be static which means that it
can have at most one plug-in, whereas a dynamic stub may have many plug-ins
which may be selected at runtime. A selection policy decides which plug-ins of a
dynamic stub to choose at runtime. A more complete coverage of the notation
elements is available in [2, 4].
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2.4 Overview of Related Work on Early Aspects

As the Aspect-oriented User Requirements Notation (AoURN) [11, 12, 13, 14]
makes use of goal and scenario models, we will briefly review aspect-oriented
approaches to requirements engineering that apply to goal and scenario models.
For a comparison of these approaches to AoURN or an introduction to aspect
concepts, see [11, 12, 13, 14].

In Aspect-Oriented Software Development (AOSD) with Use Cases [5], Jacob-
son and Ng consider a well-written use case a concern. Extension points iden-
tify a step in a use case where an extension may occur. Pointcuts in other use
cases reference such extension points. Aspects allow use cases to be encapsulated
throughout the software development lifecycle.

In Scenario Modeling with Aspects [5], Whittle and Araújo model aspectual
scenarios with sequence-diagram-like interaction pattern specifications (IPS) and
state machine pattern specifications (SMPS). IPS and SMPS define roles which
can be bound to elements in other sequence diagrams and state machines.

In the Aspectual Use Case Driven Approach [5], Araújo and Moreira visualize
how crosscutting non-functional requirements captured with templates are linked
to functional requirements (use case diagrams or sequence diagrams). Activity
pattern specifications (APS) similar to the aforementioned IPS and SMPS are
used. In addition, new use-case relationships allow the impact of one use case on
another to be described (restricting or contributing positively/negatively).

Barros and Gomes [3] apply aspect-orientation to activity diagrams (AD) by
describing ways to merge stereotyped nodes in one AD with nodes in another.
Whittle et al. [18] propose a metamodel-based aspect composition technique
that uses graph transformation formalisms. This approach can be applied to any
model for which a metamodel has been defined. In the UCM community, de Bruin
and van Vliet [7] allow behaviour to be added before and after a UCM by explic-
itly adding “Pre” and “Post” stubs to the UCM. Yu et al. [20] identify aspects in
goal models based on relationships between functional and non-functional goals.
Goal aspects are proposed to address scalability issues but it is pointed out that
the goal aspects’ syntax still requires further research. Alencar et al. [1] identify
aspects in i* models. Their extensions to aspect-oriented concepts, however, do
not fully separate concerns from other concerns. Kaiya and Saeki [9] propose a
pattern-based technique to compose viewpoints. The approach lacks formaliza-
tion and limits its composition to a simple combinatorial approach instead of
more powerful pointcut expressions.

3 Aspect-Oriented User Requirements Notation

The Aspect-oriented User Requirements Notation (AoURN) [11, 12, 13, 14] ex-
tends the User Requirements Notation (URN) by defining a joinpoint model for
the Goal-oriented Requirements Language (GRL) and Use Case Maps (UCMs).
All nodes of GRL graphs or UCMs optionally residing within the boundary of
an actor or component are deemed to be joinpoints (except for purely visual
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elements such as direction arrows). Joinpoints can be matched by pointcut ex-
pressions. Therefore, pointcut expressions for AoURN models can identify any
URN node which in turn can be transformed by the aspect. Joinpoints matched
by a pointcut expression are indicated with small, filled diamonds called as-
pect markers, identifying the insertion points for aspectual behavior in the base
model.

Pointcut expressions are defined on pointcut diagrams (graphs and maps) that
are matched against the rest of the model. Pointcut diagrams are standard URN
diagrams, allowing the requirements engineer to continue working with familiar
models. Pointcut diagrams can also be parameterized for increased matching
power by allowing names of modeling elements to contain wildcards (“*”) and
logical expressions (containing “and”, “or”, and “not”). The goals, behavior, and
structure of aspects are defined on advice diagrams (graphs and maps) which are
loosely coupled to pointcut diagrams, allowing advice diagrams and pointcut
diagrams to be reused independently from each other. Again, advice diagrams
are standard URN diagrams. Flexible composition rules are defined with URN
itself and are therefore as expressive as URN and not restricted by the capabilities
of any particular pointcut language (which for example could only allow standard
before/after/around rules).

A concern is simply an organizational construct that contains all URN dia-
grams required to describe a concern. In the case of an aspect (i.e., a crosscutting
concern), it contains (a) any number of advice diagrams and (b) any number of
pointcut diagrams required to describe the aspect. Note that the order aspects
are applied to an AoURN model can be specified (not discussed here due to
space constraints; see [13]).

Note that in Fig. 3, Fig. 4, and Fig. 5 the aspect markers on the pointcut map,
the long-dash-dot-dotted lines without arrowheads, and the dashed arrows are
not part of the AoURN notation but have been added to the figures to clearly
indicate the connection between the pointcut expression and the base model, the
mapping of the pointcut expression to the base model, and the plug-in bindings
for the UCM model, respectively. Any AoURN tool must retain the mappings
and aspect markers in order to navigate and reason about the AoURN model
in an aspect-oriented way. For example, double-clicking on an aspect marker
presents a list of all matched pointcut expression to the requirements engineer.
Selecting one of them then takes the requirements engineer to the advice diagram
where the relevant portion of the diagram is highlighted.

3.1 Aspect-Oriented and Goal-Oriented Requirement Language

Aspect-oriented GRL (AoGRL) [13] adds support for aspect-oriented modeling
to GRL. Advice graphs are very similar to the notion of GRL catalogues if the
catalogue describes the goal model of only one concern. AoGRL adds the ability
to easily include GRL catalogues multiple times into a GRL model by visually
specifying a pointcut expression on a pointcut graph. All nodes and links in
a pointcut expression are identified by pointcut markers (Fig. 3). Actors are
implicitly included in the pointcut expression when an element of a pointcut
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Fig. 3. Basic Elements of AoGRL Notation

expression resides within the boundary of the actor. For example, the pointcut
graph in Fig. 3 matches against all goal graphs that contain a softgoal Stakeholder
Goal C1 which is an OR decomposition of a softgoal ending with Goal B and has
a correlation with another softgoal, all of which have to reside within an actor.

Pointcut graphs contain not just the pointcut expression, but also other el-
ements not identified with a pointcut marker. These elements either reference
elements in the aspect’s advice graph or are new pointcut-specific elements in-
troduced by the aspect. Connecting these elements with elements of the pointcut
expression defines the composition rule for the aspect. The composition rule is
applied to each joinpoint matched by the pointcut expression. The composition
rule may also state that matched elements should be removed with the help of
the pointcut deletion marker (Fig. 3). Note that the ability to mark elements in
a pointcut expression is the only extension required for the jUCMNav tool in
order to specify AoGRL models. The composition rule in Fig. 3 stipulates that
Task of Aspect and Pointcut Specific Goal are to be connected to Stakeholder Goal
C1 and the matched softgoal, respectively. Furthermore, the correlation between
Stakeholder Goal C1 and the matched softgoal is to be removed. The composed
system is shown on the right side of Fig. 3 as a traditional GRL graph.

3.2 Aspect-Oriented Use Case Maps

Aspect-oriented Use Case Maps (AoUCM) [11, 12, 14] extend UCMs with the
ability to specify pointcut stubs, thus enabling aspect-oriented modeling. Point-
cut stubs (Fig. 4) are structurally the same as dynamic stubs but have a slightly
different semantic meaning (indicated by the P in the dynamic stub symbol).
While dynamic stubs contain plug-in maps that further describe the structure
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and behavior of a system, pointcut stubs contain zero or more pointcut maps
that visually describe pointcut expressions. This is the only semantic change to
traditional UCMs required in order to model aspects with AoUCM. Note that
the ability to mark stubs as a pointcut stub is also the only extension required
for the jUCMNav tool in order to specify AoUCM models.

An advice map (Advice Map in Fig. 4) describes the behavior and structure
of an aspect and differs from a traditional map (Base Model in Fig. 4) only in
that it contains one or more pointcut stubs. For example, the pointcut stub in
Fig. 4 contains a pointcut map that matches against all maps that contain an
OR-fork followed by a responsibility on at least one branch. Start and end points
without labels on a pointcut map are not included in the match but only denote
the beginning and end of the pointcut expression to be matched (therefore they
are shown in gray in Fig. 4). Although not shown here, a pointcut map may
contain UCM components. In fact, any behavioral or structural UCM modeling
element can be used on a pointcut map, allowing a wide array of partial maps
to be matched.

The way a pointcut stub is connected to the rest of the advice map visually
defines the composition rule for the aspect. Pointcut expressions and composition
rules are therefore clearly separated. Figure 4 shows that Advice.before must be
inserted before the joinpoint identified by the expression in the pointcut stub.
Advice.after returning and Advice.after throwing are inserted after the identified
joinpoint in the success case and fail case, respectively. In addition to the simple
before and after composition rules, AoUCM can also easily model around, loop,
concurrency, and interleaving composition rules [14]. The composed system is
shown in a traditional UCM model on the right side of Fig. 4 with the help of
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aspect stubs (regular stubs that are used to insert aspect behavior). For more
details on the visualization of the composed system and the techniques used to
carry out composition in AoUCM see [12].

4 On the Relationship of Goal and Scenario Aspects

AoURN’s ability to encapsulate NFRs as well as use cases in both model types
helps bridge the gap between goal and scenario models. This gap is further
narrowed by URN traceability links between modeling elements of goal and
scenario aspects. Fig. 5 shows a simplified version of the YKeyK model. YKeyK
stands for Your Key Knows, a system that allows drivers to find their car in a
car park by following directions shown on a small display of the car key.

The AoURN model contains three concerns, one each for the Driver, YKeyK,
and Car Park stakeholders, and two aspects, one for the use case UC002 and one
for the Performance NFR. A stakeholder’s concerns (i.e., the goals and alterna-
tives related to a stakeholder) are modeled separately for each stakeholder on
a goal graph (Fig. 5.a to c). The use case aspect contains the UC002 Pointcut
Graph and the UC002 UCMs (Fig. 5.d, f, and h). The NFR aspect contains the
Performance Pointcut Graph and the Performance Catalogue (Fig. 5.e and g).

The use case aspect in the goal model directly crosscuts the three stakeholder
concerns while the performance aspect crosscuts the stakeholder concerns via the
shown use case (as well as other use cases in the complete model). In the goal
model, the use case pointcut expresssion matches the three intentional elements
in Fig. 5.a to c as indicated by the aspect markers, thus adding the use case aspect
to the stakeholder concerns. The performance pointcut expression matches the
two dependencies in Fig. 5.d, thus adding the Handle Response Time task to
the target of the dependency (the goals with the aspect markers in the YKeyK
and Car Park actors of Fig. 5.d). In addition, the Performance Pointcut Graph
stipulates that Performance goals have to be added to the actors in which the
source and target of the dependency reside. Finally, URN links trace the Driver
and YKeyK actors to their UCM components and the three tasks in Fig. 5.d to
elements in their UCMs in Fig. 5.f and h.

The use case aspect in the scenario model contains three UCMs. Search for Car
describes the main purpose of this aspect. The search, however, requires topology
information about the car park which is transmitted when the car enters the car
park. As this information is only required by the search capability but must
take place during the execution of the Enter Car Park use case (not shown due
to space constraints), the required responsibilities are added with the help of an
aspect (Fig. 5.f) to the setup stage after the prepare price list responsibility in
the Enter Car Park use case.

The use case in the YKeyK example shows that an aspect in AoGRL can be
traced to an aspect in AoUCM. Often, use cases are not crosscutting in a scenario
model but rather peers to each other. When modeled in AoGRL, however, use
cases are usually crosscutting. With AoURN, the crosscutting use cases can be
properly encapsulated even in goal models.
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Fig. 5. AoURN Model of YKeyK System

Though not shown in the simplified YKeyK model, the performance aspect
can also be traced to the scenario model. In this case, however, there are many
ways of achieving performance improvements (e.g. caching, concurrency, . . . ).
Each should be modeled as a separate concern in AoUCM. Clearly, there is a
one-to-many relationship between crosscutting concerns in AoGRL and AoUCM.
Cases, however, exist where aspects in AoGRL are not traced to any aspects in
AoUCM and vice versa. AoUCM can model non-functional requirements that
can be expressed as scenarios. AoGRL, however, can model a much larger class
of non-functional requirements. For example, the quality of a software product
may be modeled in an AoGRL graph and it may be decided that inspections
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are the solution for this goal. This solution cannot be modeled in AoUCM (or
UCM for that matter). Similarly, new aspects may appear in AoUCM models
since there is a difference in the abstraction levels of goal models and scenario
models. Whatever the relationship between aspects in goal and scenario models
may be, AoURN aspects can encapsulate crosscutting concerns across the two
model types and URN links allow keeping track of these relationships.

5 Conclusion and Future Work

The Aspect-oriented User Requirements Notation (AoURN) extends the abstract
syntax, the concrete syntax, and the semantics of URN with aspect-oriented
concepts, hence unifying goal, scenario, and aspect concepts in one framework.
AoURN helps clarify the relationship between aspects in goal and scenario mod-
els, allowing clearer management of major concerns in goal models that crosscut
scenario models and vice versa (e.g. non-functional requirements and use cases).
AoURN uses flexible composition rules that are only limited by the expressive-
ness of URN itself (as opposed to a particular composition language). While
some support for aspect-oriented modeling is available in the jUCMNav tool as
a proof of concept, further support for matching and composition is currently
at the prototyping stage and has yet to be officially released in jUCMNav. Such
support will ensure that aspect markers are added to AoURN models and that
AoURN models can be navigated with the help of aspect and pointcut mark-
ers. Furthermore, additional qualitative assessments of AoURN with respect to
desirable properties of aspect-oriented requirements models and quantitative as-
sessments of AoURN based on metrics for aspect-oriented requirements models
adapted for URN and AoURN are required. Finally, the relationship of aspects,
GRL strategies, and UCM scenarios should be clarified and the applicability
of advanced URN research to AoURN should be investigated (e.g. feature in-
teraction, business process modelling, performance analysis, product lines, or
modeling support for inherently existing communication aspects in UCM).

Acknowledgments. This research was supported by NSERC, through its pro-
grams of Discovery Grants and Postgraduate Scholarships, and by ORNEC.

References
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Abstract. Models are an integral part of every engineering discipline, as they 
become in software engineering. Modeling can be done in many ways and with 
different levels of formality. Teaching modeling is as important as the modeling 
itself since it educates the future engineers in good modeling practices. Without 
proper education in modeling software engineering cannot evolve into mature 
engineering discipline. This year's symposium was devoted to invited talks by 
practitioners and researchers who teach modeling and cooperate with industry. 
This document summarizes the symposium and the main discussion points. It 
also outlines the main future research directions in education in modeling.  

1   Introduction 

Model-driven development approaches and technologies for software-based systems, 
in which development is centered round the manipulation of models, raise the level of 
abstraction and thus improve our abilities to develop complex systems. A number of 
approaches and tools have been proposed for the model-driven development (MDD) 
of software-based systems, for example UML, model-driven architecture (MDA), and 
model-integrated computing (MIC). Using models as the primary artifacts in software 
engineering shifts the focus of the existing software engineering methods from code 
to models. As the code is the secondary artifact, techniques for estimations, 
verification and validation techniques, etc. need to be adjusted to take models as 
inputs. In parallel to transitioning from code centric to model driven development, a 
transition can be observed from programming oriented, computer science education, 
to model based software engineering education. Together, these transitions pose new 
requirements on knowledge goals for students, namely placing more focus on the 
learning abstract thinking, designing, and creating modeling languages rather than 
algorithms.  

The educators’ symposium at the MoDELS conference, the premier conference 
devoted to the topic of model-driven engineering of software-based systems, is 
intended as a forum where educators, researchers, practitioners, and trainers can meet 
to discuss model-driven development education from three perspectives: 

- modeling-related content of courses and curricula: describing what should be 
taught to students 
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- pedagogical approaches, theories, and practices: describing how the material 
should be taught to increase students’ learning process  

- use of course materials and technology in the classroom: describing how 
textbooks, modeling tools, and other technology can be used to increase the 
students’ learning process  

Industrial training courses are of particular importance for the community as they 
provide the possibility to interact between academic and industrial teaching methods 
and practices. This kind of contributions is particularly encouraged.  

The leading topic for the symposium in 2007 is transitioning from the traditional, 
programming oriented, curricula/courses to modern, model based, software 
engineering curricula/courses. An important aspect is how modeling courses integrate 
with students’ career paths (e.g. how useful are modeling skills for the students’ 
careers).    

2   Summary 

The main part of the symposium comprised of invited talks and the surrounding 
discussions.  

The first talk was given by Lars Pareto from the IT University of Göteborg in 
Sweden on teaching domain specific modeling to undergraduate students. The speaker 
has an extensive experience in teaching and working closely with industry. In his talk 
he described experiences from teaching Microsoft’s Domains Specific Language 
Toolkit in a software architecture course. The results showed that thanks to their 
background in modeling, the students were able to learn and use in practice domain 
specific modeling much faster than expected (1 week instead of 4).  

The second talk was given by Thomas Kuehne from Darmstadt University of 
Technology in Germany on teaching formal modeling with Alloy. The speaker has an 
extensive experience with meta-modeling and teaching at both graduate and post-
graduate levels. The talk communicated the author’s experiences with teaching formal 
methods using graphical notations and Alloy as a modeling language.  

The third talk was given by Robert France from Colorado State University in 
Colorado, USA on using a common repository of models in education. The talk 
described the initiative undertaken by the Colorado State University to build such a 
common repository – ReMODD.  

The invited talks were complemented with position papers and short papers. The 
papers discussed issues in teaching various levels of formalities to undergraduate 
students. One of the papers was elected as a best paper, which is under publication in 
Information and Software Technology journal. The paper, titled “Students can get 
excited about Formal Methods: a model-driven course on Petri-Nets, Metamodels and 
Graph Grammars”, describes experiences in teaching formalities to students in the 
software engineering curriculum. It is a representative contribution for this year’s 
symposium topic.  

In addition to paper presentations, the symposium contained discussions after each 
talk and a joint panel with the doctoral symposium at the end of the day. The goal of 
the panel was to gather teachers, students, researchers, and industry professionals  
to address the issues important when teaching modeling. Different roles of the 
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participants provided a unique forum to discuss issues important in preparing future 
professionals for effective and efficient use of models. The outcome of the panel 
discussions included such conclusions as: 

• modeling skills are more important than modeling notations,  
• industry-like modeling in education should be essential part of courses and 

curricula, or  
• tools are equally important as modeling processes in education as it is the tools that 

“dictate” the processes in practice. 

It seems that the idea of a joint panel was well-received by the participants of both 
symposia.  

3   Future Directions 

Software engineering is a relatively new field with methods different than in other 
engineering disciplines. The use of models, however, is as important as in other 
disciplines to enforce the required degree of formality in describing software; the 
formality which, to a large extent, can help increase the quality of resulting software 
products.  

Using models in education is a prevailing trend in all modern software engineering 
and computer science curricula. The plethora of methods and tools indicates, though, 
that modeling in software engineering is still in its maturing phase. Therefore it is 
important that the dialogue between researchers, teachers, students, and industry 
professionals is maintained to ensure the proper evolution of the field and bridging the 
gap between academia and industry. Educators’ symposium provides such a 
discussion forum, which in the coming years should evolve into a forum of 
exchanging experiences through invited talks rather than paper presentations. The 
discussions and dialogues contribute to changes in course contents and industry 
expectations from modeling education. The industry also becomes more aware of the 
problems related to sharing industry models with academia in exchange for optimal 
education.  

The goal of the symposium in 2008 will be to find ways for showing benefits of 
modelling in a way that is pedagogically effective and attractive to the students. It 
shall also try to result in recommendations for placing the modelling courses in the 
overall software development educational path, this not being limited to UML 
fundamentals but also focused on showing the importance and place of modelling in 
the overall path from business/environment to code. 
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Gašević, Dragan 28
Gauffre, Guillaume 65
Ghosh, Sudipto 7, 145
Gogolla, Martin 176
Goldsby, Heather J. 212

Görlich, Daniel 59
Gray, Jeff 1

Hafner, Michael 132
Hardebolle, Cécile 247
Hendriks, Teun 225
Hooman, Jozef 225
Hußmann, Heinrich 59

Jayaraman, Praveen 16
Johannes, Jendrik 164

Kaindl, Hermann 77
Kavaldjian, Sevan 77
Kienzle, Jörg 1
Kuzniarz, Ludwik 271
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Lédeczi, Ákos 115
Levendovszky, Tihamér 237

Malin, Bradley 115
Memon, Mukhtiar 132
Mertens, Wilson 118
Mohagheghi, Parastoo 275
Mosterman, Pieter J. 237
Mussbacher, Gunter 305

Nugroho, Ariadi 93

Osterweil, Leon J. 118

Paige, Richard F. 194
Pareto, Lars 271
Pleuß, Andreas 59
Pons, Claudia 287
Pretschner, Alexander 145

Sauer, Stefan 59
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