
Constrained LCS: Hardness and Approximation

Zvi Gotthilf1, Danny Hermelin2, and Moshe Lewenstein1

1 Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel
{gotthiz,moshe}@cs.biu.ac.il

2 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905, Israel

danny@cri.haifa.ac.il

Abstract. The problem of finding the longest common subsequence
(LCS) of two given strings A1 and A2 is a well-studied problem. The
constrained longest common subsequence (C-LCS) for three strings A1,
A2 and B1 is the longest common subsequence of A1 and A2 that con-
tains B1 as a subsequence. The fastest algorithm solving the C-LCS
problem has a time complexity of O(m1m2n1) where m1, m2 and n1 are
the lengths of A1, A2 and B1 respectively. In this paper we consider two
general variants of the C-LCS problem. First we show that in case of two
input strings and an arbitrary number of constraint strings, it is NP-hard
to approximate the C-LCS problem. Moreover, it is easy to see that in
case of an arbitrary number of input strings and a single constraint, the
problem of finding the constrained longest common subsequence is NP-
hard. Therefore, we propose a linear time approximation algorithm for
this variant, our algorithm yields a 1/

√
mmin|Σ| approximation factor,

where mmin is the length of the shortest input string and |Σ| is the size
of the alphabet.

1 Introduction

The problem of finding the longest common subsequence (LCS) of two given
strings A1 and A2 is a well-studied problem, see [3,6,7,1]. The constrained longest
common subsequence (C-LCS) for three strings A1, A2 and B1 is the longest
common subsequence of A1 and A2 that contains B1 as a subsequence. Tsai [10]
gave a dynamic programming algorithm for the problem which runs in O(n2m2k)
where m, n and k are the lengths of A1, A2 and B1 respectively. Improved
dynamic programming algorithms were proposed in [2,4] which run in time
O(nmk). Approximated results for this C-LCS variant presented in [5].

Many problems in pattern matching are solved with dynamic programming
solutions. Among the most prominent of these is the LCS problem. These so-
lutions are elegant and simple, yet usually their running times are quadratic or
more, i.e. they are not effective in the case of multiple strings. It is a desirable
goal to find algorithms which offer faster running times. One slight improvement,
a reduction of a log factor, is the classical Four-Russians trick, see [9]. However,
in general, faster algorithms have proven to be rather elusive over the years (and
perhaps it is indeed impossible).

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 255–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 Z. Gotthilf, D. Hermelin, and M. Lewenstein

The classical LCS problem has many applications in various fields. Among
them applications in string comparison, pattern recognition and data compres-
sion. Another application, motivated from computational biology, is finding the
commonality of two DNA molecules. Closely related, Tsai [10] gave a natural
application for the C-LCS problem: in the computation of the commonality of
two biological sequences it may be important to take into account a common
specific structure.

1.1 Our Contribution

We propose to consider two general variants of the C-LCS problem. First, we
prove that in case of two input strings and an arbitrary number of constraint
strings, it is NP-hard to approximate the C-LCS problem. In addition, we obtain
the first approximation algorithm for the case of many input strings and a single
constraint. Our algorithm yields a 1/

√
mmin|Σ| approximation factor, where

mmin is the length of the shortest input string and |Σ| is the size of the alphabet.
The running time of our algorithm is linear.

2 Preliminaries

Let A1 = 〈a11 , a12 , . . . , a1m1〉, A2 = 〈a21 , a22 , . . . , a2m2〉, . . ., Ak = 〈ak1 , ak2 ,
. . . , akmk

〉 and B1 = 〈b11 , b12 , . . . , b1n1〉, B2 = 〈b21 , b22 , . . . , b2n2〉, . . ., Bl = 〈bn1

, bn2 , . . . , b1nl
〉 be an input of the C-LCS problem. The longest constrained sub-

sequence (C-LCS, for short) of A1, A2, . . ., Ak and B1, B2, . . ., Bl is the longest
common subsequence of A1, A2, . . ., Ak that contains each of B1, B2, . . ., Bl as
a subsequence. The approximation version of the C-LCS problem is defined as
follows. Let OPTclcs be the optimal solution for the C-LCS problem and APPclcs

the result of the approximation algorithm APP such that:

- APPclcs is a common subsequence of A1, A2, . . ., Ak.
- B1, B2, . . ., and Bl are subsequences of APPclcs.

The approximation ratio of the APP algorithm will be the smallest ratio between
|APPclcs| and |OPTclcs| over all possible input strings A1, A2, . . ., Ak and B1,
B2, . . ., Bl.

Clearly, not every instance of the C-LCS problem must have a feasible solution,
i.e. there is no common subsequence of all input strings that contains every
constraint string as a subsequence. It can be seen in figure 1 that the left instance
is an example of a non-feasible C-LCS instance, while for the right instance
”bcabcab” is a feasible constrained common subsequence.

3 Arbitrary Number of Constraints

In this section we prove that given two input strings and an arbitrary number of
constrains the problem of finding the C-LCS is NP-hard. In addition, we show
that it is NP-hard to approximate C-LCS for such instances.

Constrained LCS: Hardness and Approximation 257

A1

A2

B1

B2

B3

b c

b

a c

c a

c a c c a bb

b

b

aa

bc a

c

b a

a a b a A1

A2

B1

B2

bac

c a a

ab

aab

b b cc a b

c bbc

c

a c ab

Fig. 1. Non feasible and feasible C-LCS instances

Theorem 1. The C-LCS problem in case of an arbitrary number of constraints
is NP-complete.

Proof: We prove the hardness of the problem by a reduction from 3-SAT.

Given a 3-SAT instance with variables x1, x2, . . . , xk and clauses c1, c2, . . . , cl, we
construct an instance of C-LCS with two input strings and k + l − 1 constraints.

The alphabet of A1 and A2 is the set of clauses c1, c2, . . . , cl and a set of
separators {s1, s2, . . . , sk−1} separating between the variables.

We construct A1 as follows. For each variable xi we create a substring Xi

by setting all the clauses satisfied with xi = true followed by all the clauses
satisfied with xi = false (we set the clauses in a sorted order). We then set
A1 to be X1s1X2s2 . . . sk−1Xk, the Xi substrings separated by the appropriate
separators.

We similarly construct A2. We create a substring X
′

i by setting all the clauses
satisfied with xi = false followed by all the clauses satisfied with xi = true (we
set the clauses in a sorted order). We then set A2 to be X

′

1s1X
′

2s2 . . . sk−1X
′

k,
the X

′

i substrings separated by the appropriate separators.
Let c1, c2, . . . , cl and s1, s2, . . . , sk−1 be the group of constraints. Note that,

all of them are of length one.
See figure 2 as an example of our constriction from the following 3-SAT in-

stance to a C-LCS instance that contains two input strings and k + l − 1 con-
straints (all of length one):

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x4)

Lemma 1. A 3-SAT instance can be satisfied iff there exists a C-LCS of length
≥ k + l − 1.

Proof: For simplicity, we assume that there are no clauses that contains both
xi and x̄i.

(⇒) Suppose a 3-SAT instance can be satisfied.
Let X be an assignment on the variables satisfying the 3-SAT instance. Let

Y be the variables assigned true values of X and Z be the variables assigned

258 Z. Gotthilf, D. Hermelin, and M. Lewenstein

S1

S2

S3

B5

B6

B7

A1

C2 S1C1 C2 C3C1C4 C4S2 C3 C4 C1 S3 C2C3

C1 S1C4 C1 C2C3C2 C1 C4 C2S3C3 C3C4S2

C2

C3

C4

C1

A2

B2

B3

B4

B1

Fig. 2. Construction example

false values. For each variable xi ∈ Y , let {cij , . . . , cir} be the clauses which are
satisfied by setting xi to true.

We construct a valid C-LCS as follows. Add to the C-LCS the c′ij
s from Xi

and X
′

i . Clearly they cannot cross each other as they are ordered. Likewise for
x

′

i ∈ Z we do the same. Moreover, we select s1, s2, . . . , sk−1. Note that, since xi

is either true or false we will have:

1. No internal crossings within Xi and X
′

i .
2. No crossing over the separators.

Obviously, since all clauses are satisfied (by some variable) they appear within
the LCS. Since also s1, s2, . . . , sk−1 appear, all the C-LCS constraints are satis-
fied. Therefore, |C − LCS| ≥ l + k − 1.

(⇐) Note that all constraints must be satisfied. Hence, s1, s2, . . . , sk−1 appears
in the C-LCS. Therefore, any clause ci appearing in the C-LCS must be within
a given Xi, X

′

i . Thus, there cannot be an inconsistency of the xi assignments.
Because the clauses c1, c2, . . . , cl are constraints, they must appear in the C-LCS.

Therefore, the assignment of x1, x2, . . . , xk must satisfy the 3-SAT instance,
since every clause must be satisfied in the C-LCS instance.
�
The following theorem derived from our reduction.

Theorem 2. The C-LCS problem in case of an arbitrary number of constraints
cannot be approximated.

Proof: By the C-LCS definition and according to Lemma 1, any valid solution for
the C-LCS must satisfy all the constraints (and must be of length ≥ k + l − 1).
Therefore, any approximation algorithm must yield an appropriate solution to the
3-SAT problem. In case that an approximation algorithm fails to find a C-LCS,
we can conclude that the corresponding 3-SAT instance could not be satisfied.
�

Constrained LCS: Hardness and Approximation 259

Note that, our reduction is based on a C-LCS instance in which all the constraints
are of length one.

4 Single Constraint

In this section we consider the case of an arbitrary number of input strings and
a single constraint. It is easy to see that the problem of finding the constrained
longest common subsequence is NP-hard. Therefore, we present an approxima-
tion algorithm for this case. Our algorithm yields a 1/

√
mmin|Σ| approximation

factor within a linear running time (while mmin is the length of the shortest
input string). Let A1, A2, . . . , Ak be the input strings. Throughout this section
we assume a single constraint string exists, denote it by B = 〈b1, b2, . . . , bn〉.

The following result follows from the NP-hardness of the LCS [8] and by
setting B = ε.

Observation 1. Given an arbitrary number of input strings and a single con-
straint, the problem of finding the C-LCS of such instances is NP-hard.

4.1 Approximation Algorithm

Now we present a linear time approximation algorithm. First we give some useful
notations that will be used throughout this subsection.

Let Ai = 〈Ai1 , Ai2 , . . . , Aimi
〉 be an input string of length mi. Denote with

Ai[s, e] the substring of Ai that starts at location s and ends at location e. Denote
by start(Ai, j) the leftmost location in Ai such that b1, b2, . . . , bj is a subsequence
of Ai[1, start(Ai, j)]. Symmetrically, denote by end(Ai, j) the rightmost location
in Ai such that bj , bj+1, . . . , bn is a subsequence of Ai[end(Ai, j), mi]. See Figure 3
as an example of start(Ai, j) and end(Ai, j). For the simplicity of the analysis
assume that start(Ai, 0) + 1 = Ai1 and end(Ai, n + 1) − 1 = Aimi

.
Let OPTclcs be an optimal C-LCS solution. By definition, B must be a sub-

sequence of OPTclcs and a subsequence of every input string Ai (1 ≤ i ≤ k).
Choose an arbitrary embedding of B over OPTclcs (as a subsequence) and

denote with p1, p2, . . . , pn the positions of b1, b2, . . . , bn in OPTclcs. For simplicity
assume p0 + 1 and pn+1 − 1 are the positions of the first and the last characters
of OPTclcs respectively. Note that there may be many possible embeddings of
B over OPTclcs.

The following lemma and corollaries are instrumental in achieving the desir-
able approximation ratio.

Lemma 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be an
optimal C-LCS, then for any assignment of B over OPTclcs and for every 0 ≤
i ≤ n the following statement holds:

|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| ≥ |OPTclcs[pi + 1, pi+1 − 1]|.

260 Z. Gotthilf, D. Hermelin, and M. Lewenstein

adbbacd db a

a bc b d c a d d b c aA_1

start(A_1,1) start(A_1,2) start(A_1,3)

end(A_1,2) end(A_1,3)end(A_1,1)

A_2 bc

end(A_2,3)end(A_2,2)

start(A_2,1) start(A_2,2) start(A_2,3)
end(A_2,1)

c b aB

Fig. 3. An example of start(Ai, j) and end(Ai, j)

Proof: Let us assume that there is an assignment of B over OPTclcs such that:
|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| < |OPTclcs[pi + 1, pi+1 − 1]|.

Note that, OPTclcs[pi + 1, pi+1 − 1] must be a common subsequence of sub-
strings of A1, A2, . . ., Am. For every j ≤ m, those substrings must start at a
location ≥ start(Aj , i) + 1 and end at a location ≤ end(Aj , i + 1) − 1. This
contradicts the fact that the LCS of the substrings cannot be longer than the
LCS of the original complete strings.
�
The next two corollaries follows from Lemma 2.

Corollary 1. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find the LCS of A1, A2, . . . , Am, then we can ap-
proximate the C-LCS with a 1

n+1 -approximation ratio.

Proof: Choosing the maximal LCS of A1[start(A1, i) + 1, end(A1, i + 1) − 1],
A1[start(A1, i) + 1, end(A1, i + 1) − 1], . . . , Am[start(Am, i) + 1, end(Am, i +
1) − 1] (over 0 ≤ i ≤ n). W.L.O.G. let LCSj be the maximal LCS and let j
be the corresponding index. By Lemma 2 we get that 〈b1, b2, . . . , bj〉 · LCSj ·
〈bj+1, bj+2, . . . , bn〉 ≥ |OPTclcs|

(n+1) , where ’·’ denotes string concatenation.
�

Corollary 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find an approximate LCS of A1, A2, . . . , Am, within
an approximation ratio 1

r , then we can approximate the C-LCS with a 1
r(n+1) -

approximation ratio.

Proof: Using similar arguments to Corollary 1 and according to Lemma 2.
�

Constrained LCS: Hardness and Approximation 261

Now, we give a short description of our algorithm (see Algorithm 1 for details).
The structure of our algorithm is derived from Corollary 2. For every i ≤ n, we
simply compute an approximated LCS between A1[start(A1, i) + 1, end(A1, i +
1)−1], A1[start(A1, i)+1, end(A1, i+1)−1], . . . , Am[start(Am, i)+1, end(Am, i+
1) − 1]. We find the approximate LCS as follows:

For every σ ∈ Σ and for every input string, denote with CAi(σ, e, f) the number
of σ′s in Ai[e, f]. For every i ≤ n, let C[σ, ei, fi] = min(CAi(σ, ei, fi)) and let
C∗(ei, fi) = maxC[σ, ei, fi] over all σ ∈ Σ.

With the use of C[σ, ei, fi] and some additional arrays, the following lemma
can be straightforwardly be seen to be true.

Lemma 3. C∗(ei + 1, fi) and C∗(ei, fi + 1) can be computed from C∗(ei, fi) in
O(k) time, given O(

∑k
i=1 mi) space.

Our algorithm, perform one scan of Ai (1 ≤ i ≤ k), from left to right. We can
use two pointers for every string in order to scan it appropriately.

Algorithm 1. Linear Time Approximation Algorithm
Occ ← 0;1

bLoc ← 0;2

for j ← 0 to n do3

/* 1 ≤ i ≤ k */
if |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]| > Occ then4

Symbol ← The corresponding symbol of the above C∗ ;5

Occ ← |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]|;6

bLoc ← j;7

return B[1, bLoc] · 〈SymbolOcc〉 · B[bLoc + 1, n];8

Time and Correctness Analysis:
Let Cout be the output string of the Algorithm 1, note that:

1) Cout is common subsequence of A1, A2, . . . , Am.
2) Cout contains B as a subsequence.

Thus, Cout is a feasible solution.
The running time is linear. The computation of C∗[start(Ai, j)+1, end(Ai, j+

1)−1] is a process of 2(Σk
i=1|mi|) updates operations (we insert and delete every

character of the input strings exactly once). Moreover, according to Lemma 3,
we can perform k update operations in O(k) time. Thus, the total running time
remains linear.

Lemma 4. Algorithm 1 yields an approximation ratio of 1√
mmin|Σ| .

Proof: We divide the proof into three cases. If n ≤
√

mmin

|Σ| −1, then according to

Lemma 2 and since the approximate LCS provide a 1/Σ approximation ratio, the

262 Z. Gotthilf, D. Hermelin, and M. Lewenstein

length of the C-LCS returned by Algorithm 1 is at least |OPTclcs|/
√

mmin|Σ|.
Therefore, it is sufficient to prove that Algorithm 1 also yields an approximation
ratio of 1√

mmin|Σ| in case that n >
√

mmin

|Σ| − 1.

Note that, if n ≥
√

mmin

|Σ| any valid solution for the C-LCS must also provide

an approximation ratio of 1√
mmin|Σ| . Moreover, if OPTclcs > n, we can see that

Algorithm 1 returns at least one extra character over B. Thus, in case that√
mmin

|Σ| − 1 ≤ n <
√

mmin

|Σ| , our algorithm also yields an approximation ratio of
1√

mmin|Σ| .
�

5 Open Questions

A natural open question is whether there are better approximation algorithms for
the single constraint C-LCS problem, which improves the above approximation
factor ? Another interesting question is regarding the existence of a lower bound
for this C-LCS variant.

References

1. Aho, A.V., Hirschberg, D.S., Ullman, J.D.: Bounds on the Complexity of the
Longest Common Subsequence Problem. Journal of the ACM 23(1), 1–12 (1976)

2. Arslan, A.N., Egecioglu, Ö.: Algorithms For The Constrained Longest Common
Subsequence Problems. International Journal of Foundations of Computer Sci-
ence 16(6), 1099–1109 (2005)

3. Bergroth, L., Hakonen, H., Raita, T.: A Survey of Longest Common Subsequence
Algorithms. In: Proc. SPIRE 2000, pp. 39–48 (2000)

4. Chin, F.Y.L., De Santis, A., Ferrara, A.L., Ho, N.L., Kim, S.K.: A simple algorithm
for the constrained sequence problems. Information Processing Letters 90(4), 175–
179 (2004)

5. Gotthilf, Z., Lewenstein, M.: Approximating Constrained LCS. In: Ziviani, N.,
Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 164–172. Springer, Hei-
delberg (2007)

6. Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM 18(6), 341–343 (1975)

7. Hirschberg, D.S.: Algorithms for the Longest Common Subsequence Problem. Jour-
nal of the ACM 24(4), 664–675 (1977)

8. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-
quences. Journal of the ACM 25(2), 322–336 (1978)

9. Masek, W.J., Paterson, M.: A Faster Algorithm Computing String Edit Distances.
Journal of Computer and System Sciences 20(1), 18–31 (1980)

10. Tsai, Y.-T.: The constrained longest common subsequence problem. Information
Processing Letters 88(4), 173–176 (2003)

	Constrained LCS: Hardness and Approximation
	Introduction
	Our Contribution

	Preliminaries
	Arbitrary Number of Constraints
	Single Constraint
	Approximation Algorithm

	Open Questions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

