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Abstract. The problem of finding the longest common subsequence
(LCS) of two given strings A1 and A2 is a well-studied problem. The
constrained longest common subsequence (C-LCS) for three strings A1,
A2 and B1 is the longest common subsequence of A1 and A2 that con-
tains B1 as a subsequence. The fastest algorithm solving the C-LCS
problem has a time complexity of O(m1m2n1) where m1, m2 and n1 are
the lengths of A1, A2 and B1 respectively. In this paper we consider two
general variants of the C-LCS problem. First we show that in case of two
input strings and an arbitrary number of constraint strings, it is NP-hard
to approximate the C-LCS problem. Moreover, it is easy to see that in
case of an arbitrary number of input strings and a single constraint, the
problem of finding the constrained longest common subsequence is NP-
hard. Therefore, we propose a linear time approximation algorithm for
this variant, our algorithm yields a 1/

√
mmin|Σ| approximation factor,

where mmin is the length of the shortest input string and |Σ| is the size
of the alphabet.

1 Introduction

The problem of finding the longest common subsequence (LCS) of two given
strings A1 and A2 is a well-studied problem, see [3,6,7,1]. The constrained longest
common subsequence (C-LCS) for three strings A1, A2 and B1 is the longest
common subsequence of A1 and A2 that contains B1 as a subsequence. Tsai [10]
gave a dynamic programming algorithm for the problem which runs in O(n2m2k)
where m, n and k are the lengths of A1, A2 and B1 respectively. Improved
dynamic programming algorithms were proposed in [2,4] which run in time
O(nmk). Approximated results for this C-LCS variant presented in [5].

Many problems in pattern matching are solved with dynamic programming
solutions. Among the most prominent of these is the LCS problem. These so-
lutions are elegant and simple, yet usually their running times are quadratic or
more, i.e. they are not effective in the case of multiple strings. It is a desirable
goal to find algorithms which offer faster running times. One slight improvement,
a reduction of a log factor, is the classical Four-Russians trick, see [9]. However,
in general, faster algorithms have proven to be rather elusive over the years (and
perhaps it is indeed impossible).
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The classical LCS problem has many applications in various fields. Among
them applications in string comparison, pattern recognition and data compres-
sion. Another application, motivated from computational biology, is finding the
commonality of two DNA molecules. Closely related, Tsai [10] gave a natural
application for the C-LCS problem: in the computation of the commonality of
two biological sequences it may be important to take into account a common
specific structure.

1.1 Our Contribution

We propose to consider two general variants of the C-LCS problem. First, we
prove that in case of two input strings and an arbitrary number of constraint
strings, it is NP-hard to approximate the C-LCS problem. In addition, we obtain
the first approximation algorithm for the case of many input strings and a single
constraint. Our algorithm yields a 1/

√
mmin|Σ| approximation factor, where

mmin is the length of the shortest input string and |Σ| is the size of the alphabet.
The running time of our algorithm is linear.

2 Preliminaries

Let A1 = 〈a11 , a12 , . . . , a1m1〉, A2 = 〈a21 , a22 , . . . , a2m2〉, . . ., Ak = 〈ak1 , ak2 ,
. . . , akmk

〉 and B1 = 〈b11 , b12 , . . . , b1n1〉, B2 = 〈b21 , b22 , . . . , b2n2〉, . . ., Bl = 〈bn1

, bn2 , . . . , b1nl
〉 be an input of the C-LCS problem. The longest constrained sub-

sequence (C-LCS, for short) of A1, A2, . . ., Ak and B1, B2, . . ., Bl is the longest
common subsequence of A1, A2, . . ., Ak that contains each of B1, B2, . . ., Bl as
a subsequence. The approximation version of the C-LCS problem is defined as
follows. Let OPTclcs be the optimal solution for the C-LCS problem and APPclcs

the result of the approximation algorithm APP such that:

- APPclcs is a common subsequence of A1, A2, . . ., Ak.
- B1, B2, . . ., and Bl are subsequences of APPclcs.

The approximation ratio of the APP algorithm will be the smallest ratio between
|APPclcs| and |OPTclcs| over all possible input strings A1, A2, . . ., Ak and B1,
B2, . . ., Bl.

Clearly, not every instance of the C-LCS problem must have a feasible solution,
i.e. there is no common subsequence of all input strings that contains every
constraint string as a subsequence. It can be seen in figure 1 that the left instance
is an example of a non-feasible C-LCS instance, while for the right instance
”bcabcab” is a feasible constrained common subsequence.

3 Arbitrary Number of Constraints

In this section we prove that given two input strings and an arbitrary number of
constrains the problem of finding the C-LCS is NP-hard. In addition, we show
that it is NP-hard to approximate C-LCS for such instances.
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Fig. 1. Non feasible and feasible C-LCS instances

Theorem 1. The C-LCS problem in case of an arbitrary number of constraints
is NP-complete.

Proof: We prove the hardness of the problem by a reduction from 3-SAT.

Given a 3-SAT instance with variables x1, x2, . . . , xk and clauses c1, c2, . . . , cl, we
construct an instance of C-LCS with two input strings and k + l − 1 constraints.

The alphabet of A1 and A2 is the set of clauses c1, c2, . . . , cl and a set of
separators {s1, s2, . . . , sk−1} separating between the variables.

We construct A1 as follows. For each variable xi we create a substring Xi

by setting all the clauses satisfied with xi = true followed by all the clauses
satisfied with xi = false (we set the clauses in a sorted order). We then set
A1 to be X1s1X2s2 . . . sk−1Xk, the Xi substrings separated by the appropriate
separators.

We similarly construct A2. We create a substring X
′

i by setting all the clauses
satisfied with xi = false followed by all the clauses satisfied with xi = true (we
set the clauses in a sorted order). We then set A2 to be X

′

1s1X
′

2s2 . . . sk−1X
′

k,
the X

′

i substrings separated by the appropriate separators.
Let c1, c2, . . . , cl and s1, s2, . . . , sk−1 be the group of constraints. Note that,

all of them are of length one.
See figure 2 as an example of our constriction from the following 3-SAT in-

stance to a C-LCS instance that contains two input strings and k + l − 1 con-
straints (all of length one):

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x4)

Lemma 1. A 3-SAT instance can be satisfied iff there exists a C-LCS of length
≥ k + l − 1.

Proof: For simplicity, we assume that there are no clauses that contains both
xi and x̄i.

(⇒) Suppose a 3-SAT instance can be satisfied.
Let X be an assignment on the variables satisfying the 3-SAT instance. Let

Y be the variables assigned true values of X and Z be the variables assigned
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Fig. 2. Construction example

false values. For each variable xi ∈ Y , let {cij , . . . , cir} be the clauses which are
satisfied by setting xi to true.

We construct a valid C-LCS as follows. Add to the C-LCS the c′ij
s from Xi

and X
′

i . Clearly they cannot cross each other as they are ordered. Likewise for
x

′

i ∈ Z we do the same. Moreover, we select s1, s2, . . . , sk−1. Note that, since xi

is either true or false we will have:

1. No internal crossings within Xi and X
′

i .
2. No crossing over the separators.

Obviously, since all clauses are satisfied (by some variable) they appear within
the LCS. Since also s1, s2, . . . , sk−1 appear, all the C-LCS constraints are satis-
fied. Therefore, |C − LCS| ≥ l + k − 1.

(⇐) Note that all constraints must be satisfied. Hence, s1, s2, . . . , sk−1 appears
in the C-LCS. Therefore, any clause ci appearing in the C-LCS must be within
a given Xi, X

′

i . Thus, there cannot be an inconsistency of the xi assignments.
Because the clauses c1, c2, . . . , cl are constraints, they must appear in the C-LCS.

Therefore, the assignment of x1, x2, . . . , xk must satisfy the 3-SAT instance,
since every clause must be satisfied in the C-LCS instance. 
�
The following theorem derived from our reduction.

Theorem 2. The C-LCS problem in case of an arbitrary number of constraints
cannot be approximated.

Proof: By the C-LCS definition and according to Lemma 1, any valid solution for
the C-LCS must satisfy all the constraints (and must be of length ≥ k + l − 1).
Therefore, any approximation algorithm must yield an appropriate solution to the
3-SAT problem. In case that an approximation algorithm fails to find a C-LCS,
we can conclude that the corresponding 3-SAT instance could not be satisfied. 
�
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Note that, our reduction is based on a C-LCS instance in which all the constraints
are of length one.

4 Single Constraint

In this section we consider the case of an arbitrary number of input strings and
a single constraint. It is easy to see that the problem of finding the constrained
longest common subsequence is NP-hard. Therefore, we present an approxima-
tion algorithm for this case. Our algorithm yields a 1/

√
mmin|Σ| approximation

factor within a linear running time (while mmin is the length of the shortest
input string). Let A1, A2, . . . , Ak be the input strings. Throughout this section
we assume a single constraint string exists, denote it by B = 〈b1, b2, . . . , bn〉.

The following result follows from the NP-hardness of the LCS [8] and by
setting B = ε.

Observation 1. Given an arbitrary number of input strings and a single con-
straint, the problem of finding the C-LCS of such instances is NP-hard.

4.1 Approximation Algorithm

Now we present a linear time approximation algorithm. First we give some useful
notations that will be used throughout this subsection.

Let Ai = 〈Ai1 , Ai2 , . . . , Aimi
〉 be an input string of length mi. Denote with

Ai[s, e] the substring of Ai that starts at location s and ends at location e. Denote
by start(Ai, j) the leftmost location in Ai such that b1, b2, . . . , bj is a subsequence
of Ai[1, start(Ai, j)]. Symmetrically, denote by end(Ai, j) the rightmost location
in Ai such that bj , bj+1, . . . , bn is a subsequence of Ai[end(Ai, j), mi]. See Figure 3
as an example of start(Ai, j) and end(Ai, j). For the simplicity of the analysis
assume that start(Ai, 0) + 1 = Ai1 and end(Ai, n + 1) − 1 = Aimi

.
Let OPTclcs be an optimal C-LCS solution. By definition, B must be a sub-

sequence of OPTclcs and a subsequence of every input string Ai (1 ≤ i ≤ k).
Choose an arbitrary embedding of B over OPTclcs (as a subsequence) and

denote with p1, p2, . . . , pn the positions of b1, b2, . . . , bn in OPTclcs. For simplicity
assume p0 + 1 and pn+1 − 1 are the positions of the first and the last characters
of OPTclcs respectively. Note that there may be many possible embeddings of
B over OPTclcs.

The following lemma and corollaries are instrumental in achieving the desir-
able approximation ratio.

Lemma 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be an
optimal C-LCS, then for any assignment of B over OPTclcs and for every 0 ≤
i ≤ n the following statement holds:

|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| ≥ |OPTclcs[pi + 1, pi+1 − 1]|.
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Fig. 3. An example of start(Ai, j) and end(Ai, j)

Proof: Let us assume that there is an assignment of B over OPTclcs such that:
|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| < |OPTclcs[pi + 1, pi+1 − 1]|.

Note that, OPTclcs[pi + 1, pi+1 − 1] must be a common subsequence of sub-
strings of A1, A2, . . ., Am. For every j ≤ m, those substrings must start at a
location ≥ start(Aj , i) + 1 and end at a location ≤ end(Aj , i + 1) − 1. This
contradicts the fact that the LCS of the substrings cannot be longer than the
LCS of the original complete strings. 
�
The next two corollaries follows from Lemma 2.

Corollary 1. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find the LCS of A1, A2, . . . , Am, then we can ap-
proximate the C-LCS with a 1

n+1 -approximation ratio.

Proof: Choosing the maximal LCS of A1[start(A1, i) + 1, end(A1, i + 1) − 1],
A1[start(A1, i) + 1, end(A1, i + 1) − 1], . . . , Am[start(Am, i) + 1, end(Am, i +
1) − 1] (over 0 ≤ i ≤ n). W.L.O.G. let LCSj be the maximal LCS and let j
be the corresponding index. By Lemma 2 we get that 〈b1, b2, . . . , bj〉 · LCSj ·
〈bj+1, bj+2, . . . , bn〉 ≥ |OPTclcs|

(n+1) , where ’·’ denotes string concatenation. 
�

Corollary 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find an approximate LCS of A1, A2, . . . , Am, within
an approximation ratio 1

r , then we can approximate the C-LCS with a 1
r(n+1) -

approximation ratio.

Proof: Using similar arguments to Corollary 1 and according to Lemma 2. 
�
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Now, we give a short description of our algorithm (see Algorithm 1 for details).
The structure of our algorithm is derived from Corollary 2. For every i ≤ n, we
simply compute an approximated LCS between A1[start(A1, i) + 1, end(A1, i +
1)−1], A1[start(A1, i)+1, end(A1, i+1)−1], . . . , Am[start(Am, i)+1, end(Am, i+
1) − 1]. We find the approximate LCS as follows:

For every σ ∈ Σ and for every input string, denote with CAi(σ, e, f) the number
of σ′s in Ai[e, f ]. For every i ≤ n, let C[σ, ei, fi] = min(CAi(σ, ei, fi)) and let
C∗(ei, fi) = maxC[σ, ei, fi] over all σ ∈ Σ.

With the use of C[σ, ei, fi] and some additional arrays, the following lemma
can be straightforwardly be seen to be true.

Lemma 3. C∗(ei + 1, fi) and C∗(ei, fi + 1) can be computed from C∗(ei, fi) in
O(k) time, given O(

∑k
i=1 mi) space.

Our algorithm, perform one scan of Ai (1 ≤ i ≤ k), from left to right. We can
use two pointers for every string in order to scan it appropriately.

Algorithm 1. Linear Time Approximation Algorithm
Occ ← 0;1

bLoc ← 0;2

for j ← 0 to n do3

/* 1 ≤ i ≤ k */
if |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]| > Occ then4

Symbol ← The corresponding symbol of the above C∗ ;5

Occ ← |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]|;6

bLoc ← j;7

return B[1, bLoc] · 〈SymbolOcc〉 · B[bLoc + 1, n];8

Time and Correctness Analysis:
Let Cout be the output string of the Algorithm 1, note that:

1) Cout is common subsequence of A1, A2, . . . , Am.
2) Cout contains B as a subsequence.

Thus, Cout is a feasible solution.
The running time is linear. The computation of C∗[start(Ai, j)+1, end(Ai, j+

1)−1] is a process of 2(Σk
i=1|mi|) updates operations (we insert and delete every

character of the input strings exactly once). Moreover, according to Lemma 3,
we can perform k update operations in O(k) time. Thus, the total running time
remains linear.

Lemma 4. Algorithm 1 yields an approximation ratio of 1√
mmin|Σ| .

Proof: We divide the proof into three cases. If n ≤
√

mmin

|Σ| −1, then according to

Lemma 2 and since the approximate LCS provide a 1/Σ approximation ratio, the
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length of the C-LCS returned by Algorithm 1 is at least |OPTclcs|/
√

mmin|Σ|.
Therefore, it is sufficient to prove that Algorithm 1 also yields an approximation
ratio of 1√

mmin|Σ| in case that n >
√

mmin

|Σ| − 1.

Note that, if n ≥
√

mmin

|Σ| any valid solution for the C-LCS must also provide

an approximation ratio of 1√
mmin|Σ| . Moreover, if OPTclcs > n, we can see that

Algorithm 1 returns at least one extra character over B. Thus, in case that√
mmin

|Σ| − 1 ≤ n <
√

mmin

|Σ| , our algorithm also yields an approximation ratio of
1√

mmin|Σ| . 
�

5 Open Questions

A natural open question is whether there are better approximation algorithms for
the single constraint C-LCS problem, which improves the above approximation
factor ? Another interesting question is regarding the existence of a lower bound
for this C-LCS variant.
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