

Lecture Notes in Computer Science 5029
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Paolo Ferragina Gad M. Landau (Eds.)

Combinatorial
Pattern Matching

19th Annual Symposium, CPM 2008
Pisa, Italy, June 18-20, 2008
Proceedings

13

Volume Editors

Paolo Ferragina
University of Pisa, Dipartimento di Informatica
Largo B. Pontecorvo 3, 56127 Pisa, Italy
E-mail: ferragina@di.unipi.it

Gad M. Landau
University of Haifa, Department of Computer Science
Mount Carmel, Haifa 31905, Israel
E-mail: landau@cs.haifa.ac.il

Library of Congress Control Number: 2008928843

CR Subject Classification (1998): F.2.2, I.5.4, I.5.0, H.3.3, J.3, E.4, G.2.1, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69066-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69066-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12281893 06/3180 5 4 3 2 1 0

Preface

The papers contained in this volume were presented at the 19th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2008) held at the University
of Pisa, Italy, June 18–20, 2008.

All the papers presented at the conference are original research contributions
on computational pattern matching and analysis. They were selected from 78
submissions. Each submission was reviewed by at least three reviewers. The
committee decided to accept 25 papers. The programme also includes three
invited talks by Daniel M. Gusfield from the University of California, Davis,
USA, J. Ian Munro from the University of Waterloo, Canada, and Prabhakar
Raghavan from Yahoo! Research, USA.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The goal
is to derive non-trivial combinatorial properties of such structures and to exploit
these properties in order to either achieve superior performance for the corre-
sponding computational problems or pinpoint conditions under which searches
cannot be performed efficiently. The meeting also deals with problems in compu-
tational biology, data compression, data mining, coding, information retrieval,
natural language processing and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in Paris,
London (UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Pis-
cataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island,
Barcelona and London (Canada). Starting from the third meeting, proceedings
have been published in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264,
1448, 1645, 1848, 2089, 2373, 2676, 3109, 3537, 4009, and 4580. Selected papers
from the first meeting appeared in volume 92 of Theoretical Computer Science,
from the 11th meeting in volume 2 of Journal of Discrete Algorithms, from the
12th meeting in volume 146 of Discrete Applied Mathematics, from the 14th
meeting in volume 3 of Journal of Discrete Algorithms, from the 15th meeting
in volume 368 of Theoretical Computer Science and from the 16th meeting in
volume 5 of Journal of Discrete Algorithms.

The whole submission and review process was carried out with the help of
the EasyChair system. The conference was sponsored by the University of Pisa
and by Yahoo! Research. Special thanks are due to the members of the Program
Committee who worked very hard to ensure the timely review of all the submit-
ted manuscripts, and participated in a stimulating discussion that allowed all of
us to choose the best papers to be presented at the conference.

April 2008 Paolo Ferragina
Gad M. Landau

Organization

Program Committee

Srinivasa Aluru Iowa State University
Lars Arge University of Aarhus
Ricardo Baeza-Yates Yahoo! Research
Edgar Chavez Universidad Michoacana
Ken Church Microsoft Research
Raphael Clifford University of Bristol
Paolo Ferragina (Co-chair) University of Pisa
Roberto Grossi University of Pisa
Tao Jiang University of California, Riverside
Dong K. Kim Hanyang University
Gregory Kucherov CNRS, Lille
Gad M. Landau (Co-chair) Haifa University and Polytechnic University
Stefano Lonardi University of California, Riverside
Bin Ma University of Western Ontario
Veli Makinen University of Helsinki
Yossi Matias Google, Tel Aviv
Alistair Moffat University of Melbourne
Ian Munro University of Waterloo
Gene Myers Howard Hughes Medical Institute
Wojciech Plandowski Uniwersytet Warszawski
Rajeev Raman University of Leicester
Kunihiko Sadakane Kyushu University
Peter Sanders Karlsruhe University
Marinella Sciortino University of Palermo
Dafna Sheinwald IBM, Haifa
Stephane Vialette University of Marne-la-Vallee
Frances Yao City University of Hong Kong
Kaizhong Zhang University of Western Ontario

Steering Committee

Alberto Apostolico University of Padova and Georgia Tech
Maxime Crochemore King’s College
Zvi Galil Tel Aviv University

Organizing Committee

Anna Bernasconi Roberto Grossi
Paolo Ferragina Danny Hermelin

VIII Organization

Fabrizio Luccio Giuseppe Prencipe
Igor Nitto Romano Venturini
Linda Pagli Oren Weimann
Nadia Pisanti

External Referees

Spyros Angelopoulos
Vo Anh
Frederique Bassino
Philip Bille
Marek Biskup
Guillaume Blin
Gerth Brodal
Marie-Pierre Bal
Arturo Carpi
Giuseppa Castiglione
Eric Chen
Shihyen Chen
Joselito Chua
Hagai Cohen
Shane Culpepper
Robert Dabrowski
Reza Dorri-Giv
Arash Farzan
Guillaume Fertin
Johannes Fischer
Gianni Franceschini
Kimmo Fredriksson
Travis Gagie
Mathieu Giraud
Massimiliano Goldwurm
Mark Greve
Franciszek Grzegorek
Sylvie Hamel
Elena Harris
Aram Harrow
Tzvika Hartman
Meng He
Danny Hermelin
Benjamin Jackson
Jesper Jansson
Anantharaman Kalyanaraman
Orgad Keller
Pang Ko

Roman Kolpakov
Robert Krauthgamer
Inbok Lee
Avivit Levy
Weiming Li
Xiaowen Liu
Jingping Liu
Giovanni Manzini
Jrme Monnot
Ashley Montanaro
Hiroyoshi Morita
Gabriel Moruz
Joong Chae Na
Pat Nicholson
Francois Nicolas
Igor Nitto
Igor Nor
Heejin Park
Giulio Pavesi
Christian Storm Pedersen
Gemma Piella
Natasa Przulj
Simon Puglisi
Mathieu Raffinot
Srinivasa Rao
Antonio Restivo
Romeo Rizzi
Wojciech Rytter
Benjamin Sach
Cenk Sahinalp
Abhinav Sarje
Srinivasa Rao Satti
Roded Sharan
Johannes Singler
Ranjan Sinha
Jouni Siren
Vladimir Vacic
Rossano Venturini

Organization IX

Niko Valimaki
Tomasz Wale
Lusheng Wang
Bob Wang
William Webber
Zhan Wu

Xiao Yang
Qiaofeng Yang
Jie Zheng
Jaroslaw Zola
Roelof van Zwol
Yonghui Wu

Sponsoring Institutions

Yahoo! Research
University of Pisa

Table of Contents

Invited Talks

ReCombinatorics: Combinatorial Algorithms for Studying the History
of Recombination in Populations . 1

Dan Gusfield

Lower Bounds for Succinct Data Structures . 3
J. Ian Munro

The Changing Face of Web Search . 4
Prabhakar Raghavan

Contributed Papers

Two-Dimensional Pattern Matching with Combined Scaling and
Rotation . 5

Christian Hundt and Maciej Lískiewicz

Searching for Gapped Palindromes . 18
Roman Kolpakov and Gregory Kucherov

Parameterized Algorithms and Hardness Results for Some Graph Motif
Problems . 31

Nadja Betzler, Michael R. Fellows, Christian Komusiewicz, and
Rolf Niedermeier

Finding Largest Well-Predicted Subset of Protein Structure Models 44
Shuai Cheng Li, Dongbo Bu, Jinbo Xu, and Ming Li

HP Distance Via Double Cut and Join Distance . 56
Anne Bergeron, Julia Mixtacki, and Jens Stoye

Fixed Parameter Tractable Alignment of RNA Structures Including
Arbitrary Pseudoknots . 69

Mathias Möhl, Sebastian Will, and Rolf Backofen

Faster Algorithm for the Set Variant of the String Barcoding
Problem . 82

Leszek G ↪asieniec, Cindy Y. Li, and Meng Zhang

Probabilistic Arithmetic Automata and Their Application to Pattern
Matching Statistics . 95

Tobias Marschall and Sven Rahmann

XII Table of Contents

Analysis of the Size of Antidictionary in DCA . 107
Julien Fayolle

Approximate String Matching with Address Bit Errors 118
Amihood Amir, Yonatan Aumann, Oren Kapah, Avivit Levy, and
Ely Porat

On-Line Approximate String Matching with Bounded Errors 130
Marcos Kiwi, Gonzalo Navarro, and Claudio Telha

A Black Box for Online Approximate Pattern Matching 143
Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat

An(other) Entropy-Bounded Compressed Suffix Tree 152
Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro

On Compact Representations of All-Pairs-Shortest-Path-Distance
Matrices . 166

Igor Nitto and Rossano Venturini

Computing Inverse ST in Linear Complexity . 178
Ge Nong, Sen Zhang, and Wai Hong Chan

Dynamic Fully-Compressed Suffix Trees . 191
Lúıs M.S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira

A Linear Delay Algorithm for Building Concept Lattices 204
Martin Farach-Colton and Yang Huang

Matching Integer Intervals by Minimal Sets of Binary Words with don’t
cares . 217

Wojciech Fraczak, Wojciech Rytter, and Mohammadreza Yazdani

Fast Algorithms for Computing Tree LCS . 230
Shay Mozes, Dekel Tsur, Oren Weimann, and Michal Ziv-Ukelson

Why Greed Works for Shortest Common Superstring Problem 244
Bin Ma

Constrained LCS: Hardness and Approximation . 255
Zvi Gotthilf, Danny Hermelin, and Moshe Lewenstein

Finding Additive Biclusters with Random Background 263
Jing Xiao, Lusheng Wang, Xiaowen Liu, and Tao Jiang

An Improved Succinct Representation for Dynamic k-ary Trees 277
Diego Arroyuelo

Towards a Solution to the “Runs” Conjecture . 290
Maxime Crochemore, Lucian Ilie, and Liviu Tinta

Table of Contents XIII

On the Longest Common Parameterized Subsequence 303
Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein

Author Index . 317

ReCombinatorics: Combinatorial Algorithms for

Studying the History of Recombination in
Populations

Dan Gusfield

Department of Computer Science, University of California,
Davis, CA 95616, USA

gusfield@cs.ucdavis.edu

Abstract. The work discussed in this talk falls into the emerging area of
Population Genomics. I will first introduce the area and then talk about
specific problems and combinatorial algorithms involved in the inference
of recombination from population data.

A phylogenetic network (or Ancestral Recombination Graph) is a gen-
eralization of a tree, allowing structural properties that are not tree-like.
With the growth of genomic and population data (coming for example
from the HAPMAP project) much of which does not fit ideal tree mod-
els, and the increasing appreciation of the genomic role of such phenom-
ena as recombination (crossing-over and gene-conversion), recurrent and
back mutation, horizontal gene transfer, and mobile genetic elements,
there is greater need to understand the algorithmics and combinatorics
of phylogenetic networks.

In this talk I will survey a range of our recent algorithmic, mathemat-
ical and practical results on phylogenetic networks with recombination
and show applications of these results to several issues in Population
Genomics.

Various parts of this work are joint work with Satish Eddhu, Chuck
Langley, Dean Hickerson, Yun S. Song, Yufeng Wu, V. Bansal, V. Bafna
and Z. Ding. All the papers and associated software can be accessed at
http://wwwcsif.cs.ucdavis.edu/∼gusfield/

References

1. Gusfield, D.: Optimal, efficient reconstruction of root-unknown phylogenetic net-
works with constrained recombination. J. Computer and Systems Sciences 70, 381–
398 (2005)

2. Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic
networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail,
S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500,
pp. 217–232. Springer, Heidelberg (2005)

3. Gusfield, D., Bansal, V., Bafna, V., Song, Y.S.: a decomposition theory for phyloge-
netic networks and incompatible characters. J. Computational Biology (December
2007)

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Gusfield

4. Gusfield, D., Eddhu, S., Langley, C.: Optimal efficient Reconstruction of phylo-
genetic networks with constrained recombination. Journal of Bioinformatics and
Computational Biology 2(1), 173–213 (2004)

5. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic
networks. Inf. J. on Computing, Special issue on Computational Biology 16(4),
459–469 (2004)

6. Gusfield, D., Hickerson, D., Eddhu, S.: A fundamental, efficiently computed lower
bound on the number of recombinations needed in a phylogenetic history. Discrete
Applied Math Special issue on Computational Biology (2007)

7. Song, Y., Gusfield, D., Ding, Z., Langley, C., Wu, Y.: Algorithms to distinguish
the role of gene-conversion from single-crossover recombination in the derivation of
SNP sequences in populations. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner,
P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 231–245.
Springer, Heidelberg (2006)

8. Song, Y., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper
bounds on the minimum number of needed recombinations in the evolution of
biological sequences. In: Bioinformatics, Proceedings of the ISMB 2005 Conference,
vol. 21, pp. 413–422 (2005)

9. Wu, Y.: Association mapping of complex diseases with ancestral recombination
graphs: models and efficient algorithms. In: Speed, T., Huang, H. (eds.) RECOMB
2007. LNCS (LNBI), vol. 4453, pp. 488–502. Springer, Heidelberg (2007)

10. Wu, Y., Gusfield, D.: A new recombination lower bound and the minimum per-
fect phylogenetic forest problem. In: Proceedings of the 13th Annual International
Conference on Combinatorics and Computing, pp. 16–26 (2007)

11. Wu, Y., Gusfield, D.: Improved algorithms for inferring the minimum mosaic of a
set of recombinants. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp.
150–161. Springer, Heidelberg (2007)

12. Wu, Y., Gusfield, D.: Efficient computation of minimum recombination with geno-
types (not haplotypes). In: Proceedings of The Computational Systems Biology
Conference (2006)

Lower Bounds for Succinct Data Structures

J. Ian Munro

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

imunro@uwaterloo.ca

Abstract. Indexing text files with methods such as suffix trees and
suffix arrays permits extremely fast search for substrings. Unfortunately
the space cost of these can dominate that of the raw data. For example,
the naive implementation of a suffix tree on genetic information could
take 80 times as much space as the raw data. Succinct data structures
offer a technique by which the extra space of the indexing can be kept,
at least in principle, to a “little oh” with respect to the raw data. This
begs the question of how much extra space is necessary to support fast
substring searches of other queries such as the rank/select problem or
representing a permutation so that both the forward permutation and
its inverse can be determined quickly. We survey some lower bounds on
this type of problem, most notably the work of Demaine and López-Ortiz
and of Golynski.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Changing Face of Web Search

(Abstract)

Prabhakar Raghavan

Yahoo! Research

Abstract. Web search has come to dominate our consciousness as a
convenience we take for granted, as a medium for connecting advertis-
ers and buyers, and as a fast-growing revenue source for the companies
that provide this service. Following a brief overview of the state of the
art and how we got there, this talk covers a spectrum of technical chal-
lenges arising in web search - ranging from spam detection to auction
mechanisms.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Two-Dimensional Pattern Matching

with Combined Scaling and Rotation�

Christian Hundt1,�� and Maciej Lískiewicz2,���

1 Institut für Informatik, Universität Rostock, Germany
christian.hundt@uni-rostock.de

2 Institut für Theoretische Informatik, Universität zu Lübeck, Germany
liskiewi@tcs.uni-luebeck.de

Abstract. The problem of two-dimensional pattern matching invariant
under a given class of admissible transformations F is to find in text
T matches of transformed versions f(P) of the pattern P , for all f in
F . In this paper, pattern matching invariant under compositions of real
scaling and rotation are investigated. We give a new discretization tech-
nique for this class of transformations and prove sharp lower and upper
bounds on the number of different possibilities to transform a pattern
in this way. Subsequently, we present the first efficient pattern matching
algorithm invariant under compositions of scaling and rotation. The al-
gorithm works in time O(m2n6) for patterns of size m2 and texts of size
n2. Our method can also be applied to the image matching problem, the
well known issue in the image processing research.

Keywords: combinatorial pattern matching, digital image matching,
discrete rotations and scalings, discrete algorithms.

1 Introduction

The research in two-dimensional pattern matching (2D-PM, for short) in the
combinatorial setting is strongly motivated by image retrieval with applications
in such areas as optical character recognition, medical imaging, video compres-
sion, computer vision, searching aerial photographs, etc. Thus, in combinatorial
pattern matching two-dimensional patterns P and texts T typically model dig-
ital images. Recently, many efforts have been made in the study of algorithms
finding beside all matches of P in T also the locations of transformed versions
f(P) of P , given that f belongs to a specified class of admissible transformations
F . We call this kind of pattern matching F-invariant, for short. Naturally, the
combinatorial definitions of pattern transformations (like e.g. scaling or rotation
of P) model real digital image transformations.

� Supported by DFG research grant RE 672/5-1.
�� The work on this paper was done during the stay of the first author at the University

of Lübeck.
��� On leave from Instytut Informatyki, Uniwersytet Wroc�lawski, Poland.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 5–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 C. Hundt and M. Lískiewicz

Motivated by the applications in image processing we assume that both P and
T are distorted by noise, e.g., due to the digitalization process. In this case it is
unlikely to find exact occurrences of P or f(P) in T any more. An important
extension of the (exact) F -invariant 2D-PM involved with such a setting is called
robustly F-invariant pattern matching. Now, the task is to find a match M in
text T and a transformation f such that the distance between M and f(P)
is minimized under a given distance measure (in the literature it is also called
approximate matching).

Since robustly F -invariant 2D-PM models matching in applications with digi-
tal images it exhibit a natural and close relation to the so called image matching
problem (IM, for short) the well known issue in the image processing research.
The problem consists in finding for two given digital images A and B an admis-
sible transformation f in F that changes A closest to B.

In this paper we consider both matching problems (2D-PM and IM) for the
class Fsr comprising all compositions of scaling and rotation. This basic subset
of linear transformations applied to 2D-PM has a vast area of applications in
various image processing settings of highly practical importance. In computer
vision, e.g., one searches digital camera images for rotated and scaled versions of
objects with known shape, like latin letters [21]. In video compression, algorithms
for 2D-PM invariant under Fsr can be used to compress sequences of frames
efficiently (see e.g. [27]). In medical imaging (see e.g. [9,25]) IM is applied to
images of one object taken in different times, from different perspectives or
using different medical image devices. In this area Fsr plays an important role
because it simulates distortions which arise from small changes in viewing point
and certain kinds of patient movement.

Despite the high practical relevance, to our knowledge, no efficient matching
algorithms are known both for robustly Fsr-invariant 2D-PM and for IM. For
2D-PM no efficient algorithms are known even for the non-robust (exact) case.
On the other hand the special cases of the matching problems under solely scal-
ings or solely rotations have been a subject of intensive study (see e.g. [8,5,3,4,6]
for scalings, resp. [16,15,2,14,7] for rotations) yielding significant progress in the
construction of efficient algorithms. However, the matching problems under com-
positions of scaling and rotation seem intrinsically harder. The straightforward
approach of combining two algorithms, the first one for matching with scalings
and the second for matching with rotations, does not work. This follows from the
fact that neither the set of all patterns which are obtained by scaling all rotated
patterns nor the set obtained by rotating all scaled patterns does coincides with
the set of patterns obtained by combined scaling and rotation. In contrast to the
continuous compositions of scaling and rotation, the compositions on patterns
are neither commutative nor transitive.

In this paper we give the first efficient algorithm for robustly invariant 2D-PM
under Fsr. Since this is the most general matching problem the algorithm can
also be applied for the simpler exact invariant 2D-PM as well as for IM under
Fsr. Basically, our algorithm solves the problem as follows: firstly it constructs
the data structure for D(P, Fsr), the set of transformed patterns f(P), for all

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 7

f ∈ Fsr; secondly it computes the optimal image matching between P and
all relevant subtexts M of T . To tackle IM under Fsr in turn the algorithm
enumerates incrementally all elements in D(P, Fsr). The main achievement of
this paper is the development of a new method for the discretization of all
real compositions of scaling and rotation which allows to get an efficient data
structure for the set D(P, Fsr). Moreover, sharp lower and upper bounds on
the cardinality of this set are obtained by exploring structural properties of the
discrete space.

Through the rest of this section we give a short overview on previous work and
an informal discussion of our results and techniques. Section 2 contains formal
definitions and preliminaries. In Section 3 we show a relation between D(P, Fsr)
and a certain line arrangement. In Section 4 we provide the new matching algo-
rithm and its analysis. Because of space limitations we omitted all proofs.

1.1 Previous Work

Recently, the studies in combinatorial pattern matching have been concentrated
on 2D-PM invariant under solely scalings or solely rotations. After a series of
improving results, the best known algorithm for 2D-PM with scalings is given by
Amir and Chencinski [6]. It solves the problem in O(mn2) time, where the size
of the text is n2 and the size of the pattern is m2. For 2D-PM with rotations,
the best known algorithm is due to Amir et al. [7] solving the problem in time
O(m2n2). The above algorithms find all exact matches M of transformed P in
T , i.e., M is identical to some scaled pattern s(P) respectively to some rotated
pattern r(P). The best known algorithm for robustly invariant pattern matching
with rotations is due to Frederikson et al. [15] and it works in time O(m3n2).

Apart from algorithmic achievements, improved techniques for the analysis
of 2D-PM have been developed in the last decade. Noticeably, the work [2] was
the first pattern matching paper that heavily builds on the use of combinatorial
geometry. With our paper we continue the research in this direction exploiting
geometrical properties to design efficient and practical algorithms.

In contrast to combinatorial pattern matching the image processing commu-
nity uses rather continuous analysis instead of combinatorial approaches when
studying the IM problem. For an overview and discussion of selected issues in
these field we refer to [10,9,21,25,24,2,18] and the references therein.

Another technique for IM is to use feature based approaches (see e.g. [1,23]).
One extracts salient features (points, lines, regions etc. in the real plane) from
images A and B and subsequently, one tries to find a transformation f which
transforms the geometrical objects of A closest to those of B. But, this ap-
proach relies heavily on the quality of feature extraction and feature match-
ing, two highly non-trivial tasks. Feature matching, e.g., remains difficult even
for points (called also geometric point set matching), the well studied problem
which consists in finding for two given point sets P and Q and some admis-
sible space F a function f ∈ F that transforms P closest to Q (see [19] for a

8 C. Hundt and M. Lískiewicz

survey and [22,26] for some related problems). In fact, the known algorithms for
this problem give only approximate solutions and particularly they do not guar-
antee to find the global optimum, even for such a simple class of transformations
as compositions of rotation and translation [20]. Interestingly, in [20] Indyk et al.
give a discretization technique to reduce the geometric point matching problem
to a combinatorial pattern matching related to that one considered in this paper.

1.2 Our Contributions

In this paper we present a new discretization technique for the space of all
transformed patterns under compositions of scaling and rotation which enables
efficient incremental enumeration for the elements in D(P, Fsr). The proposed
method works in linear time, with respect to the cardinality |D(P, Fsr)|, and
leads to linear time search to find for a given subtext of T the closest element in
D(P, Fsr). We obtain that in worst-case |D(P, Fsr)| is in Ω

(
m2n3

ln m

)
∩ O(m2n4)

for patterns P of size m2 and texts T of size1 n2. We use these results to pro-
vide a fast O(m2n6) time robustly invariant 2D-PM algorithm. The presented
algorithm uses only integer arithmetic which means that no numerical problems
occur due to the use of floating point arithmetic.

In our setting, each (real valued) transformation f in Fsr is a composition of
rotation with an angle φ and scaling with a factor s. The values φ, s are repre-
sented then by an appropriate point in the parameter space R

2. To obtain our
results, we introduce a discretization technique to partition the parameter space
into a finite number of subspaces ϕ1, ϕ2, . . . , ϕt such that for any subspace ϕi

and for all points (p, q), (p′, q′) ∈ ϕi it is true that the transformation f corre-
sponding to (p, q) gives the same pattern as the transformation f ′ corresponding
to (p′, q′). According to the practice in combinatorial geometry the subspaces
ϕ1, ϕ2, . . . , ϕt are called faces.

To obtain the space partition we define a certain set of lines H which cut the
parameter space R

2 into faces ϕ1, ϕ2, . . . , ϕt. Then, to enumerate the patterns in
D(P, Fsr) we simply search the faces of the line arrangement defined by H. For
each face visited during the search we choose one contained point and identify
the corresponding transformation f . By the equivalence between the points in
one face, we can compute with f the pattern f(P), which is associated to all
points of the face. Finally, we get all patterns in D(P, Fsr) by this procedure.
Moreover, we choose an enumeration order on D(P, Fsr) implied by the geo-
metrical incidence between the corresponding faces. This allows that patterns
enumerated successively differ only in few pixels. Such a geometric approach is
new both in combinatorial pattern matching and image matching2.

1 More precisely, in this paper we consider patterns of size (2m + 1) × (2m + 1) and
texts of size (2n + 1) × (2n + 1).

2 In [17] Hagedoorn uses a similar idea of creating an appropriate division of the
parameter space of the underlying transformation class. However, he applies that
technique for a geometrical pattern matching (called Spacial Pattern Matching in
the thesis) and not the combinatorial setting considered in this paper.

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 9

In our algorithm we find the closest match between a pattern P ′ ∈ D(P, Fsr)
with a subtext M of T by solving image matching parallel for all possible trans-
lations of the center of P ′ to a location (t1, t2) of T . Each IM in turn is solved
by the use of the above described enumeration technique. Consequently, our al-
gorithm is general enough for both robustly 2D-PM invariant under Fsr as well
as IM under Fsr. Furthermore, the approach is easily applied to other kinds of
transformations, in particular to solely scalings or solely rotations.

2 Preliminaries

In this paper the pattern P as well as the text T are two-dimensional arrays
of pixels, i.e, of unit squares covering a certain area of the real plane R

2. In
P the pixels are indexed over the set M = {(i, j) | − m ≤ i, j ≤ m} and in
T over N = {(i, j) | − n ≤ i, j ≤ n}. We call M the support of P and N
the support of T . The pixel with index (i, j) has its geometric center point at
coordinates (i, j). Each pixel (i, j) has a color P 〈i, j〉 (T 〈i, j〉 resp.) from a finite
set Σ = {0, 1, . . . , σ} of color values. To simplify the dealing with borders we let
P 〈i, j〉 = ⊥ if (i, j) �∈ M and T 〈i, j〉 = ⊥ if (i, j) �∈ N , where ⊥ is a special color
marking the exterior of P and T . For a given pattern P , text T and pixel index
(t1, t2) ∈ N the distortion Δt1,t2(P, T) between P and T at (t1, t2) is measured
by

∑
δ(P 〈i− t1, j − t2〉, T 〈i, j〉) where δ(a, b) is a function charging mismatches,

for example,

δ(a, b) =
{

0, if a = ⊥ or b = ⊥
|a − b|, otherwise.

Throughout this paper transformations are injective functions f : R
2 → R

2.
Applying a transformation f : R

2 → R
2 to the pattern P we get the two-

dimensional array of pixels f(P) which has support N2 = {(i, j) | − 2n ≤ i, j ≤
2n}. Define for g = f−1 the mapping γg : N2 → Z

2 which determines for any
pixel (i, j) in f(P) the corresponding pixel (i′, j′) in P . We define γg(i, j) =
[g(i, j)], where [(x, y)] := ([x], [y]) denotes rounding all components of a vector
(x, y) ∈ R

2. The color value of pixel (i, j) in f(P) is defined as the color value of
the pixel (i′, j′) = γg(i, j) in P . Hence, we choose the pixel which geometrically
contains the point f−1(i, j) in its square area (for an example see Fig. 1). With
this setting we model nearest-neighbor interpolation, commonly used in the image
processing.

For any pattern P and all sets F we define the set D(P, F) = {f(P) | f ∈ F}.
Then we call the following optimization problem the two-dimensional pattern
matching robustly invariant under F :

Problem 1. For given pattern P with support M and text T with support N ,
find in the set D(P, F) a pattern P ′ and a pixel index (t1, t2) ∈ N minimizing
the distortion Δt1,t2(P

′, T).

If we interprete the pattern P and the text T as digital images A and B, then
the image matching problem under F can be defined as the following restricted
version of robustly 2D-PM:

10 C. Hundt and M. Lískiewicz

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

f

f

f (-1,1)

-1

P:
f(P):

Fig. 1. Pattern P and the transformed f(P). The color value f(P)〈−1, 1〉 is equal to
the value P 〈−1, 1〉 since (−1, 1) is the closest lattice point to f−1(−1, 1).

Problem 2. For given images A and B with support M and N find in the set
D(A, F) an image A′ minimizing the distortion Δ0,0(A′, B).

For the analysis of complexity aspects we will apply the unit cost model for
arithmetic operations. Therefore, we assume that mathematical basic operations
can be done in constant time.

In this paper we are interested in Fsr the transformations combining scaling
and rotation. Any transformation f in Fsr can be uniquely described by3

f(x, y) =
(

s cos φ s sin φ
−s sin φ s cos φ

)
· (x

y)

for some s, φ ∈ R, with s �= 0. The pattern f(P) is defined by f but the pixel
values of f(P) can be computed by the inverse f−1. Notice that according to
our definition for any f ∈ Fsr it is true f−1 ∈ Fsr. Hence, the considered class
of transformations is closed under inversion.

All transformations in the set Fsr can be characterized by the two parameters
p=s cosφ and q=s sinφ. Hence, each such transformation f can be characterized
by a vector (p, q)T in R

2. Notice that (0, 0)T is the only point in R
2 which

corresponds to a non-injective transformation and by this does not characterize
a transformation in Fsr. However, for convenience we will simply ignore this
exception.

For our approach being connected to combinatorial geometry we need some
further definitions: We denote by H a set of linear equations h of the form
h : c1p + c2q = c3. Let (p, q) ∈ R

2. Then we define for each h ∈ H the value
h(p, q) = c1p+c2q−c3. Each equation h describes a line
 = {(p, q) | h(p, q) = 0}
3 For the sake of completeness, the definition is very general. Particularly, it allows

all real scaling factors s �= 0. However, for many practical applications a reasonable
restriction is to assume that s ≥ 1 or that 1/c ≤ s ≤ c, for a given constant c > 1.
The matching algorithms presented in this paper are easily applicable for such cases.

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 11

in R
2. Notice the difference: h is a algebraic expression whereas
 is a subspace

of R
2. Denote by H the set of all lines defined by the equations in H . Now define

for all h ∈ H the following additional subspaces of R
2:

+ = {(p, q) | h(p, q) > 0}, and
− = {(p, q) | h(p, q) < 0}.

For a finite set of equations H = {h1, . . . , ht} consider the following partition of
R

2 into subspaces:

A(H) =

{
ϕ ⊆ R

2

∣∣∣∣∣ ϕ =
t⋂

w=1

sw
w for some s1, . . . , st ∈ {+, −, 0}

}
,

where
w is the line corresponding to hw and
0
w denotes just
w. In literature

the set A(H) is called the line arrangement given by the lines H. See [11] or [13]
for detailed information on line arrangements.

We call the elements of A(H) faces. A face is called a d-face if its dimension
is d, for d ∈ {0, 1, 2}. Thus, a 0-face is a point, a 1-face is a line, half-line or line
segment and 2-face is a convex region on the plane given by the intersection of
a finite number of half-planes. A face ϕ′ is a subface of another face ϕ if the
dimension of ϕ′ is one less than of ϕ and ϕ′ is contained in the boundary of ϕ.
We also say that ϕ and ϕ′ are incident and that ϕ is a superface of ϕ′.

The incidence graph I(H) of A(H) contains a node v(ϕ) for each face ϕ and
v(ϕ) and v(ϕ′) are connected by an edge if the faces ϕ and ϕ′ are incident. The
incidence graph is described in detail in [12] (see also [11]).

3 Exploring the Set D(P, Fsr)

In this section we will present the structure of the set D(P, Fsr) and show how
to estimate the worst case number of contained patterns. We now define the set
Hsr,m,n of equations. For all (i, j) ∈ N2 and k ∈ {−m − 1, . . . , m + 1} let

hijk : ip + jq + 0.5 − k = 0

be equations in Hsr,m,n. Each of the equations hijk ∈ Hsr,m,n describes a line

in R

2 which partitions the parameter space into three parts
+,
 and
−. The
transformed patterns f(P) differ to each other with respect to the color value
of pixel (i, j), depending on which of the three subspaces the point representing
g = f−1 is situated in. The following lemma states this relationship:

Lemma 1. Let hijk ∈ Hsr,m,n and let
x be the line described by hijk. Fur-
thermore, let f ∈ Fsr be a transformation, g = f−1 its inverse and r the point
representing g. Consider γg(i, j) = (i′, j′). Then i′ < k if r ∈
−x and i′ ≥ k if
r ∈
x or r ∈
+

x . Analogously, if we consider hj(−i)k ∈ Hsr,m,n, which describes
the line
y, then j′ < k if r ∈
−y and j′ ≥ k if r ∈
y or r ∈
+

y .

With the help of Hsr,m,n we are now ready to provide the relation between the
set D(P, Fsr) and the set A(Hsr,m,n) of faces in R

2.

12 C. Hundt and M. Lískiewicz

Theorem 1. For the pattern P there exists a surjective mapping

Γm,n : A(Hsr,m,n) → D(P, Fsr).

By the theorem it suffices to estimate the number of faces in A(Hsr,m,n) to get a
bound on the cardinality of D(P, Fsr). Furthermore, the surjective mapping Γm,n

enables a simple method to enumerate the patterns in D(P, Fsr). One simply has
to construct A(Hsr,m,n), traverse its faces ϕ in an appropriate way and each time
compute Γm,n(ϕ) to obtain another transformed pattern of D(P, Fsr). Figure 2
shows the two-dimensional parameter space R

2 partitioned by the lines Hsr,2,2.
The figure shows the set for patterns and texts of all in all 52 pixels. Although
we have m = n = 2 the displayed structure seems already quite complex.

Fig. 2. The parameter space R
2 partitioned by Hsr,2,2 for patterns P and texts T of

52 = 25 pixels. The points in R
2 represents compositions of real scaling and rotation.

For p, p′ ∈ R
2 representing f and f ′ the transformed patterns f(P) and f ′(P) are equal

if p and p′ belong to the same face. The unit circle represents all compositions with
scaling factor s = 1.

After we have exposed the geometrical structure behind D(P, Fsr) we want to
obtain bounds on the cardinality of this set. An impression on this cardinality
is given by |A(Hsr,m,n)|. Due to the surjective mapping Γm,n we know that
D(P, Fsr) cannot contain a larger number of patterns than the number of faces
in A(Hsr,m,n). However, since Γm,n is not bijective it may happen for certain
patterns and texts that D(P, Fsr) is significantly smaller than A(Hsr,m,n). But
it is still worth determining also a lower bound on |A(Hsr,m,n)| because of two
reasons: On the one hand, there may be patterns P for which the cardinality
of D(P, Fsr) and A(Hsr,m,n) are asymptotically equal and on the other hand
it is the case that our algorithm always searches the whole set A(Hsr,m,n) and
thus, a lower bound on the size enables the estimate of a lower bound on the
running time. In the next lemma we show narrow lower and upper bounds on
|A(Hsr,m,n)| using methods from combinatorial geometry:

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 13

Lemma 2. |A(Hsr,m,n)| ∈ Ω
(

m2n3

ln m

)
∩ O(m2n4).

The first achievement of this section is a structural analysis of the set D(P,
Fsr) for given pattern P and text T . Furthermore, by the above lemma we have
a good impression of the worst-case bounds on |D(P, Fsr)|.

4 The 2D-PM Algorithm

To solve the robust 2D-PM we perform a number of image matching tasks. In
fact, Δt1,t2 allows the translation of the center of patterns P ′ ∈ D(P, Fsr) to any
pixel of T by the specification of (t1, t2). In order to solve the IM problem under
Fsr for all patterns in D(P, Fsr) and T we use the mapping Γm,n introduced
in Theorem 1 to enumerate D(P, Fsr). To implement the mapping efficiently
we perform a search of A(Hsr,m,n) and choose for each encountered face one
representative point (p, q) in R

2, which can be encoded by rational numbers
of length O(log(m · n)). The point represents an inverse transformation g, i.e.,
g(x, y) =

(p q
−q p

)
· (x

y). Hence, for f = g−1 the pattern f(P) can be computed
using the mapping γg. Finally, the distortion between f(P) and T at center
of pixel (t1, t2) can be computed easily by the procedure Δt1,t2 . The property
described in Theorem 1 guarantees that in this way all patterns in D(P, Fsr)
will be tested.

However, this straightforward enumeration approach of visiting systemati-
cally all faces ϕ ∈ A(Hsr,m,n) and computing f(P) for some f determined by
the representative point of the corresponding face ϕ is not efficient. The time
complexity of such a method is at least |A(Hsr,m,n)| times O(n2), where the
last term describes the cost of processing the pixels of f(P). However, using our
approach we can improve this complexity by computing f(P) incrementally. It
turns out that the incident faces correspond to very similar patterns. In fact,
Lemma 1 and Theorem 1 imply the following:

Corollary 1. Let ϕ, ϕ′ ∈ A(Hsr,m,n) be two faces in R
2 with ϕ the superface of

ϕ′. Furthermore, let (i, j) ∈ N2. Then the two patterns Γm,n(ϕ) and Γm,n(ϕ′)
can differ at the pixel (i, j), only if there exists k in {−m − 1, . . . , m + 1} such
that the line
 described by hijk or hj(−i)k contains as a subspace the face ϕ′.

By the above corollary it is profitable to enumerate the faces in the order implied
by their incidence to guarantee minimal changes in f(P) when going from one
face to the next one. Using this property our algorithm enumerates D(P, Fsr) in
linear running time with respect to the cardinality of A(Hsr,m,n). The incidence
graph I(Hsr,m,n) described in Section 2 is an appropriate data structure to
describe the faces in A(Hsr,m,n) and their incidences. See e.g. Edelsbrunner [11]
for a detailed survey on line arrangements and the complexity to construct the
graph I(Hsr,m,n). Our algorithm performs the searching of A(Hsr,m,n) by DFS-
traversing the corresponding incidence graph I(Hsr,m,n). This kind of traversal
guarantees the enumeration due to the geometrical incidence.

14 C. Hundt and M. Lískiewicz

4.1 Implementation

In our setting the following additional auxiliary information are stored for ev-
ery node v(ϕ): (1) a representative inverse transformation g(ϕ) and (2) a set
Update(ϕ) of pixel coordinates.

We first define representative coordinates for each face in A(Hsr,m,n). The co-
ordinates of the representative point p(ϕ) of a 0-face ϕ is just the vertex ϕ itself.
Otherwise, if ϕ1, ϕ2, . . . , ϕt are the subfaces of ϕ then p(ϕ) := 1

t

∑t
w=1 p(ϕw).

Now we define g(ϕ) to be the transformation represented by the point p(ϕ). Note
that g(ϕ) can be encoded by rational numbers of length O(log(m · n)) due to its
relation to p(ϕ). We will make an exception for the face ϕ0 containing the point
(0, 0). This face would have p(ϕ0) = (0, 0), which is not allowed. Instead we can
easily choose another point in ϕ0 that can be encoded with O(log(m · n)) bits
to get p(ϕ0) and g(ϕ0).

The sets Update are defined as follows: (1) For all 2-faces ϕ we let

Update(ϕ) := ∅.

(2) If ϕ is a 1-face, i.e., a half-line or a line segment of a line
 ∈ Hsr,m,n, then

Update(ϕ) := {(i, j) | ∃k ∈ {−m − 1, . . . , m + 1} : hijk or hj(−i)k describes
.}.

(3) If ϕ1, . . . , ϕt are the superfaces of a 0-face ϕ, then

Update(ϕ) :=
t⋃

w=1

Update(ϕw).

Our algorithm performs DFS on the graph I(Hsr,m,n) and solves in parallel
the IMs for all (t1, t2) ∈ N . Visiting a node v(ϕ) the algorithm stores for all
(t1, t2) ∈ N the current distortion value Δt1,t2 between f(P) and T for f =
g−1(ϕ). Next, when traversing from ϕ to an incident (sub or super) face ϕ′

the algorithm has to compute incrementally from f(P) the pattern f ′(P) for
f ′ = g−1(ϕ′). According to Corollary 1 it suffice to update only the pixel values,
coordinates of which are elements in Update(ϕ) or Update(ϕ′). For pattern P
and text T we use the algorithm 2D-PatternMatching listed in Figure 3.

4.2 Analysis

As a conclusion of this section we give a bound on the running time of the
robustly 2D-PM algorithm listed in Figure 3.

Theorem 2. The 2D-PM robustly invariant under Fsr can be done in time
O(m2n6).

Notice that the running time of the algorithm is proportional to |A(Hsr,m,n)|
times the number of parallel IM problems solved. Hence, the running time is
bounded from below by Ω

(
m2n5

ln m

)
.

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 15

Algorithm 2D-PatternMatching /* 2D-PM robustly invariant under Fsr */

Input: Pattern P of support M and text T of support N .
Output: Pattern f(P) and pixel (t1, t2) ∈ N , with f = argminf ′∈Fsr

{Δt1,t2(f ′(P), T)}.

1. Procedure SEARCH(v(ϕ)); /* Depth first searching */

2. begin
3. mark node v(ϕ) as seen;

4. for all unseen neighbors v(ϕ′) of v(ϕ) do begin
5. for all (i, j) in Update(ϕ) ∪ Update(ϕ′) do begin
6. for all (t1, t2) in N do Δ[t1, t2] = Δ[t1, t2] − δ(P ′〈i − t1, j − t2〉, T 〈i, j〉);
7. P ′〈i, j〉 = P 〈γg(ϕ′)(i, j)〉;
8. for all (t1, t2) in N do Δ[t1, t2] = Δ[t1, t2] + δ(P ′〈i − t1, j − t2〉, T 〈i, j〉);
9. end;

10. for all (t1, t2) in N do if (Δ[t1, t2] < Δopt) then begin
11. Δopt = Δ[t1, t2]; ϕopt = ϕ′; topt = (t1, t2);
12. end;
13. call SEARCH(ϕ′);
14. for all (i, j) in Update(ϕ) ∪ Update(ϕ′) do begin
15. for all (t1, t2) in N do Δ[t1, t2] = Δ[t1, t2] − δ(P ′〈i − t1, j − t2〉, T 〈i, j〉);
16. P ′〈i, j〉 = P 〈γg(ϕ)(i, j)〉;
17. for all (t1, t2) in N do Δ[t1, t2] = Δ[t1, t2] + δ(P ′〈i − t1, j − t2〉, T 〈i, j〉);
18. end;
19. end;
20. end;

21. begin /* Main() for 2D-PM */

22. construct the incidence graph I(Hsr,m,n);
23. set all nodes in I(Hsr,m,n) as unseen;

24. let ϕid corresponds to the identity mapping;

25. ϕopt = ϕid; Δopt = ∞; P ′ = P;

26. for all (t1, t2) in N do begin
27. Δ[t1, t2] = Δt1,t2 (P, T);
28. if (Δ[t1, t2] < Δopt) then begin
29. Δopt = Δ[t1, t2]; topt = (t1, t2);
30. end;
31. end;
32. call SEARCH(v(ϕid)); /* start incremental enumeration */

33. f := g−1(ϕopt); return f(P) and topt;

34. end.

Fig. 3. The combinatorial pattern matching algorithm solving (2n+1)×(2n+1) image
matching problems. The main procedure prepares only the DFS-search of I(Hsr,m,n).
The search itself is realized recursively by the SEARCH procedure. With each call one
face ϕ becomes seen. Then the neighborhood of ϕ is processed by updating the pixels
which have possibly changed and estimating all new distortions.

16 C. Hundt and M. Lískiewicz

5 Conclusions and Future Work

In this work we have analyzed the two-dimensional pattern matching robustly
invariant under transformations combining scaling and rotation as well as the
image matching problem under the same class of transformations. We introduced
a general polynomial time searching strategy which takes advantage of the set
structure.

To provide precise bounds for the running time of the algorithm we examined
the complexity of the set structure. As the main result we gave narrow bounds
for combined scalings and rotations Ω

(
m2n3

ln m

)
∩ O(m2n4). We conjecture that

the lower bound for the structural complexity of the set of combined scalings
and rotations is Ω(m2n4) which to prove remains future work.

References

1. Bovik, A. (ed.): Handbook of Image and Video Processing. Academic Press, San
Diego, California (2000)

2. Amir, A., Butman, A., Crochemore, M., Landau, G., Schaps, M.: Two-dimensional
pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–187 (2004)

3. Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Information Pro-
cessing Letters 70(4), 185–190 (1999)

4. Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two-dimensional scaled
matching. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748,
pp. 353–364. Springer, Heidelberg (2003)

5. Amir, A., Calinescu, G.: Alphabet independent and dictionary scaled matching.
In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 320–334.
Springer, Heidelberg (1996)

6. Amir, A., Chencinski, E.: Faster two-dimensional scaled matching. In: Lewenstein,
M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200–210. Springer, Hei-
delberg (2006)

7. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with
rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)

8. Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling.
Journal of Algorithms 13(1), 2–32 (1992)

9. Brown, L.G.: A survey of image registration techniques. ACM Computing Sur-
veys 24(4), 325–376 (1992)

10. Cox, I.J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice.
Morgan Kaufmann, San Francisco (2001)

11. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)

12. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)

13. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry, Algorithms and Applications. Springer, Berlin (2000)

14. Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting invariant tem-
plate matching. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp.
39–48. Springer, Heidelberg (2004)

Two-Dimensional Pattern Matching with Combined Scaling and Rotation 17

15. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate
two-dimensional pattern matching allowing rotations. In: Apostolico, A., Takeda,
M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 235–248. Springer, Heidelberg (2002)

16. Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-dimensional string
matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 118–125.
Springer, Heidelberg (1998)

17. Hagedoorn, M.: Pattern matching using similarity measures, PhD thesis, Univ.
Utrecht, ISBN 90-393-2460-3 (2000)

18. Hundt, C., Lískiewicz, M.: On the complexity of affine image matching. In: Thomas,
W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 284–295. Springer, Heidel-
berg (2007)

19. Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proc. 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001), pp. 10–33 (2001)

20. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise:
Combinatorial bounds and algorithms. In: Proc. 10th ACM-SIAM Symposium on
Discrete Algorithms (SODA 1999), pp. 354–360 (1999)

21. Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society
Press, Los Alamitos (1991)

22. Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. In:
Proc. 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 272–280
(2004)

23. Kropatsch, W.G., Bischof, H. (eds.): Digital Image Analysis - Selected Techniques
and Applications. Springer, Berlin (2001)

24. Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorith-
mica 12(3/4), 375–408 (1994)

25. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical
Image Analysis 2(1), 1–36 (1998)

26. Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between
point sets. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), pp. 112–118 (2005)

27. Shi, Y.Q., Sun, H.: Image and video Compression for multimedia engineering. CRC
Press, Boca Raton (2000)

Searching for Gapped Palindromes

Roman Kolpakov1 and Gregory Kucherov2

1 Moscow University, 119899 Moscow, Russia
foroman@mail.ru

2 LIFL/CNRS/INRIA, Parc scientifique de la Haute Borne, 40, Avenue Halley 59650
Villeneuve d’Ascq, France
Gregory.Kucherov@lifl.fr

Abstract. We study the problem of finding, in a given word, all maximal
gapped palindromes verifying two types of constraints, that we call long-
armed and length-constrained palindromes. For both classes, we propose
algorithms that run in time O(n + S), where S is the number of output
palindromes. Both algorithms can be extended to compute biological
gapped palindromes within the same time bound.

1 Introduction

A palindrome is a word that reads the same backward and forward. Palindromes
have long drawn attention of computer science researchers. In word combina-
torics, for example, studies have been made on palindromes occurring in Fi-
bonacci words [Dro95], or in general Sturmian words [DP99, DLDL05]. More
generally, a so-called palindrome complexity of words has been studied [ABCD03].

From an algorithmic perspective, identifying palindromic structures turned
out to be an important test case for different algorithmic problems. For exam-
ple, a number of works have been done on recognition of palindromic words on
different types of Turing machines [Sli73, Gal78, Sli81, BBD+03]. Palindrome
computation has also been an important problem for parallel models of compu-
tation [ABG94, BG95], as well as for distributed models such as systolic arrays
[Col69, vdSSer].

Interestingly, a problem related to palindrome recognition was also consid-
ered in the seminal Knuth-Morris-Pratt paper presenting the well-known string
matching algorithm [KMP77]. The relation between classical string matching
and palindrome detection is not purely coincidental. Both the detection of a
pattern occurrence and the detection of an even prefix palindrome (even palin-
drome occurring at the beginning of the input string) can be solved on the 2-way
deterministic push-down automaton (2-DPDA), and therefore by Cook’s theo-
rem [Coo71], it can be solved by a linear algorithm on the usual RAM model.

Manacher [Man75] proposed a beautiful linear-time algorithm that computes
the shortest prefix palindrome in the on-line fashion, i.e. in time proportional
to its length. Actually, the algorithm is able to compute much more, namely to
compute for each position of the word, the length of the biggest palindrome cen-
tered at this position. This gives the exhaustive representation of all palindromes
present in the word.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 18–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Searching for Gapped Palindromes 19

Words with palindromic structure are important in DNA and RNA sequences,
as they reflect the capacity of molecules to fold, i.e. to form double-stranded
stems, which insures a stable state of those molecules with low free energy.
However, in those applications, the reversal of palindromes should be combined
with the complementarity relation on nucleotides, where c is complementary to
g and a is complementary to t (or to u, in case of RNA). Moreover, biologically
meaningful palindromes are gapped, i.e. contain a spacer between left and right
copies. Those palindromes correspond, in particular, to hairpin structures of
RNA molecules, but are also significant in DNA (see e.g. [WGC+04, LJDL07]).
A linear-time algorithm for computing palindromes with fixed spacer length is
presented in [Gus97]. A method for computing approximate biological palin-
dromes has been proposed e.g. in [PB02].

Results. In this paper, we are concerned with gapped palindromes, i.e. sub-
words of the form vuvT for some u, v, where vT is v spelled in the reverse
order. Occurrences of v and vT are called respectively left and right arm of the
palindrome. We propose algorithms for computing two natural classes of gapped
palindromes. The first class, that we call long-armed palindromes, verifies the
condition |u| ≤ |v|, i.e. requires that the length of the palindrome arm is no less
than the length of the spacer. The second class is called length-constrained palin-
dromes and is specified by lower and upper length bounds on the spacer length
MinGap ≤ |u| ≤ MaxGap, and a lower bound on the arm length MinLen ≤ |v|,
where MinGap, MaxGap, MinLen are constants. Moreover, for both definitions,
palindromes are additionally required to be maximal, i.e. their arms cannot be ex-
tended outward or inward preserving the palindromic structure. For both classes,
our algorithms run in worst-case time O(n+S), where n is the length of the input
word and S is the number of output palindromes, for an alphabet of constant
size. (For length-constrained palindromes, our algorithm is actually independent
on the alphabet size.) We note that because of the variable spacer length, the
above-mentioned algorithm from [Gus97] cannot be efficiently applied to our
problems. Both algorithms can be modified to find biological long-armed and
length-constrained palindromes within the same running time.

2 Basic Definitions

Let wT denote the reversal of w. An even palindrome is a word of the form
vvT , where v is some word. An odd palindrome is a word vavT , where v is a
word, and a a letter of the alphabet. A gapped palindrome is a word of the form
vuvT for some words u, v such that |u| ≥ 2. Occurrences of v and vT are called
respectively left arm and right arm of the palindrome.

In this paper, we will be interested in two classes of palindromes. A gapped
palindrome vuvT is long-armed if |u| ≤ |v|. For pre-defined constants MinGap,
MaxGap (MinGap ≤ MaxGap) and MinLen, a gapped palindrome vuvT is
called length-constrained if it verifies MinGap ≤ |u| ≤ MaxGap and
MinLen ≤ |v|.

20 R. Kolpakov and G. Kucherov

Consider a word w = w[1] . . . w[n] that contains some gapped palindrome
vuvT . Assume v = w[l′..l′′], and vT = w[r′..r′′]. We use notation w[l′ : l′′, r′ : r′′]
for this palindrome. This palindrome is called maximal if its arms cannot be
extended inward or outward. This means that (i) w[l′′ + 1] �= w[r′ − 1], and (ii)
w[l′ − 1] �= w[r′′ + 1] provided that l′ > 1 and r′′ < n.

3 Long-Armed Palindromes

Let w = w[1] . . . w[n] be an input word. For technical reasons, we require that the
last letter w[n] does not occur elsewhere in the word. In this section, we describe
a linear-time algorithm for computing all gapped palindromes occurring in w
which are both maximal and long-armed.

The algorithm is based on techniques used for computing different types of
periodicities in words [KK05, KK00a], namely on (an extension of) the Lempel-
Ziv factorization of the input word and on longest extension functions. The
variant of longest extension functions used here is defined as follows. Assume we
are given two words u[1..n] and v[1..m] and we want to compute, for each position
j ∈ [1..n] in u, the length LP (j) of the longest common prefix of u[j..n] and v.
Assume m ≤ n (otherwise we truncate v to v[1..n]). Then this computation can
be done in time O(n) (see [KK05]). If we have to compute LP (j) for a subset of
positions j ∈ [1..N] for some N ≤ n, then the time bound becomes O(N + m).
Similar bounds apply if we want to compute the lengths of longest common
suffixes of u[1..j] and v.

We now describe the algorithm. First, we compute the reversed Lempel-Ziv
factorization of w = f1f2 . . . fm defined recursively as follows:

– if a letter a immediately following f1f2 . . . fi−1 does not occur in f1f2 . . . fi−1
then fi = a,

– otherwise, fi is the longest subword of w following f1f2 . . . fi−1 which occurs
in (f1f2 . . . fi−1)T .

This factorization can be computed in time O(n log |A|), where A is the alphabet
of w, by building the suffix tree for wT with the Weiner’s algorithm that processes
the suffixes from shortest to longest (i.e. processes the input word from right
to left) [CR94]. For i = 1, 2 . . .m, we construct the suffix tree Ti of the word
(f1f2 . . . fi)T , and compute fi+1 as the longest word that occurs immediately
after f1f2 . . . fi in w and is present in Ti. If no such word exists, fi+1 is defined
to be the letter immediately following f1f2 . . . fi in w. For each i = 1, 2, . . . , m,
denote fi = w[si..ti] (si = ti−1 + 1) and Fi = |fi| = ti − si + 1.

After computing the reversed Lempel-Ziv factorization, we split all maximal
long-armed palindromes into two categories that we compute separately: those
which cross (or touch) a border between two factors and those which occur
entirely within one factor. Formally, for each i = 1, 2 . . .m, we define the set
P (i) of all maximal long-armed palindromes w[l′ : l′′, r′ : r′′] that verify one of
the conditions:

Searching for Gapped Palindromes 21

1. r′′ = ti−1 and l′ > si−1, or
2. ti−1 < r′′ ≤ ti and l′ ≤ si.

Complementary, define Q(i) to be the set of all maximal long-armed palin-
dromes w[l′ : l′′, r′ : r′′] that verify l′ > si and r′′ < ti.

Observe that the set ∪m
i=1P (i) ∪ ∪m

i=1Q(i) contains all maximal long-armed
palindromes in w, and all sets P (i), Q(i) are pairwise disjoint.

3.1 Computing P (i)

Each set P (i) is further split into three disjoint sets P ′(i) ∪ P ′′(i) ∪ P ′′′(i).
P ′(i) ⊆ P (i) is the set of all palindromes w[l′ : l′′, r′ : r′′] which satisfy one of
the conditions:

1. r′′ = ti−1 and l′ > si−1, or
2. ti−1 < r′′ ≤ ti and r′ ≤ si.

P ′(i) are maximal long-armed palindromes with the right arm crossing (or touch-
ing from the right) the border between fi−1 and fi.

P ′′(i) ⊆ P (i) contains all palindromes w[l′ : l′′, r′ : r′′] which verify both
l′ ≤ si and l′′ ≥ ti−1. Palindromes of P ′′(i) have their left arm crossing (or
touching) the border between fi−1 and fi.

Finally, P ′′′(i) ⊆ P (i) contains all palindromes w[l′ : l′′, r′ : r′′] which satisfy
the conditions l′′ < ti−1 and r′ > si. Palindromes of P ′′′(i) are those for which
the border between fi−1 and fi falls inside the spacer.

Computing P ′(i). Let w[l′ : l′′, r′ : r′′] be a palindrome from P ′(i), and
let q = r′ − l′′ − 1 be the spacer length. Then the right arm w[r′..r′′] is a
concatenation of a possibly empty prefix u = w[r′..ti−1] and a possibly empty
suffix v = w[si..r

′′]. Then the left arm w[l′..l′′] is a concatenation of the prefix
vT = w[l′..ti−1 − j] and suffix uT = w[si − j..l′′] where j = 2|u| + q (see Fig. 1
in the Appendix). Moreover, since the palindrome is maximal, v has to be the
longest common prefix of words w[si..n] and w[1..ti−1 − j]T , and u has to be
the longest common suffix of words w[1..ti−1] and w[si − j..n]T . Since the spacer
length q is no more than the arm length |u| + |v|, we have q ≤ |u| + |v|, i.e.
j ≤ 3|u| + |v|.

Lemma 1. |u| < Fi−1.

Proof. If |v| = 0, i.e. r′′ = ti−1, then the lemma follows from the condition
l′ > si−1. If |v| > 0, i.e. r′′ > ti−1, then from |u| ≥ Fi−1 we obtain that the
prefix w[si−1..r

′′] of w[si−1..n] occurs in (f1f2 . . . fi−2)T as a subword of the left
arm of the palindrome, which contradicts the definition of fi−1 = w[si−1..r

′′] as
the longest prefix of w[si−1..n] that occurs in (f1f2 . . . fi−2)T . (If fi−1 is a single
letter that doesn’t occur to the left, then we obviously have |u| = 0.)

From the condition r′′ ≤ ti we also have |v| ≤ Fi and then j ≤ 3|u| + |v| <
3Fi−1 + Fi. For all j < 3Fi−1 + Fi, we compute the longest common prefix

22 R. Kolpakov and G. Kucherov

LP (j) of words w[si..si+1] and w[1..ti−1 − j]T and the longest common suffix
LS(j) of words w[si−1..ti−1] and w[si − j..n]T (see Fig. 1). These computations
can be done in time O(Fi−1 + Fi). Then each palindrome of P ′(i) corresponds
to a value of j which satisfies the following conditions:

1. LP (j) + 3LS(j) ≥ j,
2. if LP (j) = 0 then j < Fi−1,
3. LS(j) < j/2.

Inversely, if j satisfies the above conditions, then there exists a palindrome
w[l′ : l′′, r′ : r′′] for l′ = si − j − LP (j), l′′ = ti−1 − j + LS(j), r′ = si − LS(j),
and r′′ = ti−1 + LP (j). Once conditions 1-3 are verified for some j, the corre-
sponding palindrome is output by the algorithm. The whole computation takes
time O(Fi−1 + Fi).

Computing P ′′(i). Let w[l′ : l′′, r′ : r′′] be a maximal long-armed palindrome
from P ′′(i), and q = r′−l′′−1 be the spacer length. Then the left copy w[l′..l′′] is
a concatenation of a possibly empty prefix u = w[l′..ti−1] and a possibly empty
suffix v = w[si..l

′′]. Then the right arm w[r′..r′′] is a concatenation of the prefix
vT = w[r′..ti−1 + j] and suffix uT = w[si + j..r′′], where j = 2|v| + q. Moreover,
v has to be the longest common prefix of words w[si..n] and w[1..ti−1 + j]T , and
u has to be the longest common suffix of words w[1..ti−1] and w[si + j..n]T (see
Fig. 2). Since the spacer length q has to be no more than the arm length |u|+ |v|,
we have that q ≤ |u| + |v|, i.e. j ≤ |u| + 3|v|.

Similarly to the case of P ′(i), we compute, for each j = 1, 2, . . . , Fi, the
longest common prefix LP (j) of words w[si..ti] and w[si..ti−1 + j]T and the
longest common suffix LS(j) of words w[1..ti−1] and w[si + j..si+1]T . Tables LP
and LS are computed in time O(Fi).

Each palindrome of P ′′(i) corresponds to a value of j verifying the following
conditions:

1. 3LP (j) + LS(j) ≥ j,
2. j + LS(j) ≤ Fi,
3. LP (j) < j/2.

If some j satisfies the above conditions, the algorithm outputs the palindrome
w[l′ : l′′, r′ : r′′] where l′ = si − LS(j), l′′ = ti−1 + LP (j), r′ = si + j − LP (j),
and r′′ = ti−1 + j + LS(j). The computation of P ′′(i) is done in time O(Fi).

Computing P ′′′(i). To compute P ′′′(i), we partition it into disjoint subsets
P ′′′k (i) for k = 1, 2, . . . , �log2 Fi	, where P ′′′k (i) is the set of all palindromes w[l′ :
l′′, r′ : r′′] from P ′′′(i) such that si + �Fi

2k 	 ≤ r′′ < si + � Fi

2k−1 	.

Lemma 2. For any palindrome w[l′ : l′′, r′ : r′′] ∈ P ′′′k (i), we have r′ ≤ si+�Fi

2k 	.

Proof. If r′ > si + �Fi

2k 	, the arm length of the palindrome is no more than �Fi

2k 	,
and then the spacer length is no more than �Fi

2k 	. Then, l′′ ≥ r′ − 1 − �Fi

2k 	 ≥ si

which contradicts the definition of P ′′′(i).

Searching for Gapped Palindromes 23

By the lemma, the right arm of the palindrome is a concatenation of a possibly
empty prefix u = w[r′..ti−1 + �Fi

2k] and suffix v = w[si + �Fi

2k 	..r′′]. Similar to
previous cases, u has to be the longest common suffix of the words w[1..ti−1 +
�Fi

2k] and w[si + �Fi

2k 	− j..n]T , and v has to be the longest common prefix of the
words w[si + �Fi

2k 	..n] and w[1..ti−1 + �Fi

2k 	 − j]T , where j = 2|u| + q and q is the
spacer length of the palindrome (see Fig. 3).

Moreover, u and v satisfy the relations |u| < �Fi

2k 	 and 0 < |v| ≤ � Fi

2k−1 	−�Fi

2k 	.
Thus, q ≤ |u| + |v| < � Fi

2k−1 	, and then j = 2|u| + q < 2�Fi

2k 	 + � Fi

2k−1 	 < 2� Fi

2k−1 	.
On the other hand, from the condition l′′ < ti−1 we have also |u| < j − �Fi

2k 	
which implies j > �Fi

2k 	.
Now, to compute all palindromes from P ′′′k (i) we apply again the same pro-

cedure: for all j such that �Fi

2k 	 < j < 2� Fi

2k−1 	, we compute the longest common
prefix LP (j) of words w[si +�Fi

2k 	..si+� Fi

2k−1] and w[1..ti−1+�Fi

2k 	−j]T , and the
longest common suffix LS(j) of words w[si..ti−1 +�Fi

2k] and w[si +�Fi

2k 	−j : n]T

(Fig. 3). Each palindrome of P ′′′k (i) corresponds then to a value j verifying the
following conditions:

1. LP (j) + 3LS(j) ≥ j,
2. 0 < LP (j) ≤ � Fi

2k−1 	 − �Fi

2k 	,
3. LS(j) < min(�Fi

2k 	, j − �Fi

2k).
If some j satisfies the above conditions, we output the palindrome w[l′ : l′′, r′ :
r′′], where l′ = si + �Fi

2k 	 − j − LP (j), l′′ = ti−1 + �Fi

2k 	 − j + LS(j), r′ =
si + �Fi

2k 	 − LS(j), and r′′ = ti−1 + �Fi

2k 	 + LP (j).
The required functions LP (j) and LS(j) can be computed in time O(Fi

2k),
and then P ′′′k (i) can be computed in time O(Fi

2k). Summing up over k = 1, 2, . . . ,
�log2 Fi	, P ′′′(i) can be computed in time O(Fi).

Thus the total time for computing of P (i) is O(Fi−1 + Fi).

3.2 Computing Q(i)

Recall that Q(i) contains all palindromes w[l′ : l′′, r′ : r′′] which verify si < l′

and r′′ < ti, i.e. occur as a proper subword of factor fi. Since fi has a reversed
copy in f1f2 . . . fi−1, a reverse of each palindrome of Q(i) also occurs in that
copy. Therefore, it can be “copied over” from that location. Technically, this
is done exactly in the same way as in the algorithm for computing maximal
repetitions presented in [KK00b] (see also [KK05]). Recovering each palindrome
of Q(i) is done in constant time. We refer the reader to those papers for details
of this procedure.

3.3 Putting All Together

Each of the sets P ′(i), P ′′(i), P ′′′(i) is computed in time O(Fi−1 + Fi), and
so is P (i). Summing over all i, all involved palindromes are computed in time
O(n). Time computed for all Q(i) is O(n+T), where T is the number of output
palindromes. Since all sets P (i), Q(i) are pairwise disjoint, we obtain the final
result:

24 R. Kolpakov and G. Kucherov

Theorem 1. All maximal long-armed palindromes can be computed in time
O(n + S), where n is the length of the input word and S the number of out-
put palindromes.

4 Length-Constrained Palindromes

Recall that a gapped palindrome vuvT is called length-constrained if MinGap ≤
|u| ≤ MaxGap and MinLen ≤ |v| for some pre-defined constants MinGap,
MaxGap and MinLen. In this section, we are interested to compute, in a given
word, all palindromes that are both length-constrained and maximal.

Note that we do not want to output palindromes that verify length con-
straints but are not maximal. The inward/outward extension of such a palin-
drome may lead to a palindrome that no longer verifies length constraints. For
example, if MinLen = 3, MinGap = 3 and MaxGap = 5, then the palindrome
...a gtt aaca ttg g... verifies length constraints but is not maximal, while its ex-

tension ...a gtta ac attg g... is maximal but does not verify length constraints.

First Step. Consider an input word w = w[1..n]. For a position i, we consider
words W (i+) = w[i..i + MinLen − 1] and W (i−) = (w[i − MinLen..i − 1)T ,
where i+, i− are interpreted as start positions in forward and backward direction
respectively. Consider the set P = {i+, i−|i = 1..n}. For two positions k1, k2 ∈ P ,
define the equivalence relation k1 ≡ k2 iff W (k1) = W (k2). At the first step, we
assign to each position i−, i+ the identifier (number) of its equivalence class
under the above equivalence relation. This assignment can be done in time O(n)
using, e.g., the suffix array for the word w#wT $. A simple traversal of this
suffix array allows the desired assignment: two successive alphabetically-ordered
suffixes belong to the same equivalence class iff the length of their common prefix
is at least MinLen. Deciding whether position i+ or i− should be assigned is
naturally done depending on whether the suffix starts in w or in wT . Further
details are left out. Note that the suffix array can be constructed in time O(n)
independent on the alphabet size [KS03].

Second Step. After the first preparatory step, the second step does the main
job. Our goal is to find pairs of positions i < j such that (i) W (i−) = W (j+)
(arm length constraint), (ii) MinGap ≤ j−i ≤ MaxGap (gap length constraint),
and (iii) w[i] �= w[j − 1] (maximality condition). Each such pair of positions
corresponds to a desired palindrome. The arm length of this palindrome can then
be computed by computing the longest common subword starting at positions
i− and j+ (i.e. the longest common prefix of (w[1..i − 1])T and w[j..n]). This
can be done in constant time using lowest common ancestor queries on the suffix
tree for w#wT $ [Gus97], but can be also done with the suffix array using the
results of [KS03]. The latter solution is independent on the alphabet size.

We are now left with describing how pairs i, j are found. This is done in an on-
line fashion during the traversal of w from left to right. For each equivalence class,
we maintain the list of all “minus-positions” (i1)−, (i2)−, . . . , (ik)− (i1 < i2 <
. . . < ik) scanned so far and belonging to this equivalence class. Moreover, this

Searching for Gapped Palindromes 25

list is partitioned into runs of consecutive list items (i�)−, (i�+1)−, . . . , (i�+k�
)−

such that w[i�] = w[i�+1] = . . . = w[i�+k�
] and w[i�−1] �= w[i�] and w[i�+k�

] �=
w[i�+k�+1] (provided that w[i�−1], w[i�+k�+1] exist in the list).

Furthermore, we maintain a pointer from each run to the next run, so that
we are able to “jump”, in a constant time, from the first item of the current run
to the first item of the next run, avoiding the traversal of the whole run.

The list items can then be implemented by a structure with the following
fields:

position: position i such that i− belongs to the corresponding equivalence class,
NextItem: pointer to the next item in the list,
NextRun: pointer to the first item of the next run (valid only for the first item

of a run).

Assume now we are processing a position j of w. First, we insert j to the list
of the equivalence class of j− and update links NextItem and NextRun accord-
ingly. Then we have to find all positions i from the interval [j − MaxGap..j −
MinGap] such that i− belongs to the equivalence class of j+.

Let C be the identifier of the equivalence class of j+. We need to check, in the
list for C, those positions which belong to the interval [j−MaxGap..j−MinGap].
To efficiently access the corresponding fragment in the list, we remember the
smallest position of the list belonging to the interval [�−MaxGap..�−MinGap]
for the last processed position � < j such that �+ belongs to equivalence class C.
We then start the traversal from this position looking for the positions i falling
into the interval [j − MaxGap..j − MinGap]. This trick allows us to bound the
total time for finding the starting position of segments [j−MaxGap..j−MinGap]
by the total size of all the lists, i.e. by O(n).

For each retrieved position i, we verify if w[i] �= w[j − 1] (maximality con-
dition). If this inequality does not hold, we jump to the first position of the
next run of the list, using the run links defined above, thus avoiding consecutive
negative tests and insuring that the number of those tests is proportional to the
number of output palindromes. The following theorem puts together the two
steps of the algorithm.

Theorem 2. For any predefined constants MinLen,MinGap,MaxGap, all
length-constrained palindromes can be found in time O(n + S).

Proof. The first step is done in time O(n) using suffix array. At the second step,
finding starting positions from intervals [j − MaxGap, j − MinGap] in the list
for class of j+ takes time O(n) overall. Testing the maximality condition and
outputting the resulting palindromes takes time O(S), where S is the number
of output palindromes. Finally, implementing the constant-time computation
of longest common subwords starting at given positions is done in time O(n)
independent of the alphabet size using results of [KS03].

Algorithm 1 in the Appendix presents a pseudo-code of the algorithm. Besides
variables position, NextItem and NextRun defined previously, the algorithm
uses the following variables.

26 R. Kolpakov and G. Kucherov

LeftClass(j): equivalence class of j−,
RightClass(i): equivalence class of i+,
LastItem(C): pointer to the last item in the list for class C,
LastRun(C): pointer to the first item of the current last run in the list for class

C,
PreviousStartItem(C): pointer to the start item in the search interval for the

last processed position �+ of class C, i.e. to the smallest position in the
list for C belonging to the interval [� − MaxGap..� − MinGap]. (To avoid
irrelevant algorithmic details, we assume that such a position always exists.)

NextF irstItem(C): pointer to the first item in the run following the run con-
taining PreviousStartItem(C).

5 Biological Palindromes

Both algorithms presented in Sections 3 and 4 can be extended to biological
palindromes, where the word reversal is defined in conjunction with the comple-
mentarity of nucleotide letters: c ↔ g and a ↔ t (or a ↔ u, in case of RNA). For
example, . . . c acat aca atgt c . . . is a maximal biological gapped palindrome.

The main part of either algorithm is extended in a straightforward way: each
time the algorithm compares two letters, this comparison is replaced by testing
their complementarity.

Some parts of the algorithms deserve a special attention. For the algorithm
of Section 3 for computing long-armed palindromes, the computation of the
reversed Lempel-Ziv factorization extends in a straightforward way too: when
computing the next factor fi+1, one has to use the complementarity relation.
Similarly, the computation of extension functions LP and LS are also extended
straightforwardly.

The algorithm of Section 4 for length-constrained palindromes requires a
straightforward modification of the first step: we now need to compute the suffix
array for w#wT $, where wT stands for the “biological inversion” (i.e. reversal
together with complement). At the second step, the algorithm uses the same
suffix array (or alternatively, the suffix tree for w#wT $) in order to implement
constant-time common subword queries.

6 Concluding Remarks

The algorithm for computing long-armed palindromes from Section 3 can be
generalized to palindromes vuvT verifying condition |u| ≤ c|v| for some constant
c ≥ 1. The resulting complexity is O(cn + S).

An interesting open question is whether one can compute the reverse Lempel-
Ziv factorization in time O(n) independent on the alphabet size.

Acknowledgments. Part of this work was done during the stay of R. Kolpakov
at Inria Lille - Nord Europe, supported by INRIA. R. Kolpakov acknowledges

Searching for Gapped Palindromes 27

the support of the Russian Foundation for Fundamental Research (Grant 08-
01-00863) and of the program for supporting Russian scientific schools (Grant
NSh–5400.2006.1).

References

[ABCD03] Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome com-
plexity. Theor. Comput. Sci. 292(1), 9–31 (2003)

[ABG94] Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palin-
dromes in a string. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.)
STACS 1994. LNCS, vol. 775, pp. 497–506. Springer, Heidelberg (1994)

[BBD+03] Biedl, T., Buss, J., Demaine, E., Demaine, M., Hajiaghayi, M., Vinar, T.:
Palindrome recognition using a multidimensional tape. Theor. Comput.
Sci. 302(1-3), 475–480 (2003)

[BG95] Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a
string in parallel. Algorithmica 14, 355–366 (1995)

[Col69] Cole, S.N.: Real-time computation by n-dimensional iterative arrays
of finite-state machines. IEEE Transactions on Computers 18, 349–365
(1969)

[Coo71] Cook, S.: Linear time simulation of deterministic two-way pushdown au-
tomata. In: Proceedings of the 5th World Computer Congress, IFIP 1971,
Ljubljana, Yugoslavia, August 23-28, 1971, Vol. 1, pp. 75–80 (1971)

[CR94] Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press,
Oxford (1994)

[DLDL05] De Luca, A., De Luca, A.: Palindromes in Sturmian words. In: De Felice,
C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 199–208. Springer,
Heidelberg (2005)

[DP99] Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theoret. Com-
put. Sci. 223, 73–85 (1999)

[Dro95] Droubay, X.: Palindromes in the Fibonacci word. Information Processing
Letters 55(4), 217–221 (1995)

[Gal78] Galil, Z.: Palindrome recognition in real time by a multitape turing ma-
chine. Journal of Computer and System Sciences 16(2), 140–157 (1978)

[Gus97] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, Cambridge
(1997)

[KK00a] Kolpakov, R., Kucherov, G.: Finding repeats with fixed gap. In: Pro-
ceedings of the 7th International Symposium on String Processing and
Information Retrieval (SPIRE), A Coruña, Spain, September 27-29, 2000,
pp. 162–168. IEEE, Los Alamitos (2000)

[KK00b] Kolpakov, R., Kucherov, G.: On maximal repetitions in words. Journal of
Discrete Algorithms 1(1), 159–186 (2000)

[KK05] Kolpakov, R., Kucherov, G.: Identification of periodic structures in words.
In: Berstel, J., Perrin, D. (eds.) Applied combinatorics on words, Encyclo-
pedia of Mathematics and its Applications. Lothaire books, ch.8, vol. 104,
pp. 430–477. Cambridge University Press, Cambridge (2005)

[KMP77] Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM
J. Comput. 6, 323–350 (1977)

28 R. Kolpakov and G. Kucherov

[KS03] Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construc-
tion. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

[LJDL07] Lu, L., Jia, H., Dröge, P., Li, J.: The human genome-wide distribution
of DNA palindromes. Functional and Integrative Genomics 7(3), 221–227
(2007)

[Man75] Manacher, G.: A new linear-time “on-line” algorithm for finding the small-
est initial palindrome of a string. Journ. ACM 22(3), 346–351 (1975)

[PB02] Porto, A.H.L., Barbosa, V.C.: Finding approximate palindromes in
strings. Pattern Recognition 35, 2581–2591 (2002)

[Sli73] Slisenko, A.O.: Recognition of palindromes by multihead turing machines.
In: Orverkov, V.P., Sonin, N.A. (eds.) Problems in the Constructive Trend
in Mathematics VI, Proceedings of the Steklov Institute of Mathematics,
vol. 129, pp. 30–202 (1973)

[Sli81] Slissenko, A.: A simplified proof of real-time recognizability of palindromes
on Turing machines. J. of Soviet Mathematics 15(1), 68–77 (1981); Rus-
sian original. In: Zapiski Nauchnykh Seminarov LOMI, vol. 68, pp. 123–
139 (1977)

[vdSSer] van de Snepscheut, J., Swenker, J.: On the design of some systolic algo-
rithms. J. ACM 36(4), 826–840 (1989)

[WGC+04] Warburton, P.E., Giordano, J., Cheung, F., Gelfand, Y., Benson, G.: In-
verted repeat structure of the human genome: The X-chromosome con-
tains a preponderance of large, highly homologous inverted repeats that
contain testes genes. Genome Research 14, 1861–1869 (2004)

Searching for Gapped Palindromes 29

Appendix

j

q

vu
r’ r’’l’

LP(j)LS(j)

uT

si

v T

t i

l’’

ti−1

LS(j)LP(j)

Fig. 1. Computing palindromes of P ′(i) (Section 3.1)

j

q
r’ r’’l’’l’

u v

LS(j) LP(j)

t si

v T uT

t i

LS(j)LP(j)

i−1

Fig. 2. Computing palindromes of P ′′(i) (Section 3.1)

u v
l’ r’’r’

j

l’’
q

LS(j) LP(j)

hi

hi 2k−1

hi /2k

t it si

v T uT

/

LS(j)LP(j)

i−1

Fig. 3. Computing palindromes of P ′′′(i) (Section 3.1)

30 R. Kolpakov and G. Kucherov

for j ← MinLen + 1 to n do
/* insert position j− to the appropriate list */
begin

C ←− LeftClass(j);
create a new item NewItem to the list of class C;
NewItem.position ←− j;
LastItem(C).NextItem ←− NewItem;
if w[j] �= w[LastItem(C).position] then

LastRun(C).NextRun ←− NewItem;
LastRun(C) ←− NewItem;

end
LastItem(C) ←− NewItem;

end
/* find all maximal length-constrained palindromes with the right

arm starting at position j */
begin

C ←− RightClass(j);
/* find, in the list for class c, the first position greater

than or equal to (j − MaxGap) */
SearchItem ←− PreviousStartItem(C);
while SearchItem.position < j − MaxGap do

SearchItem ←− SearchItem.NextItem;
if SearchItem = NextF irstItem(C) then

NextF irstItem(C) ←− SearchItem.NextRun;
end

end
PreviousStartItem(C) ←− SearchItem;
/* for each position in the list for class c between

(j − MaxGap) and (j − MinGap), check if there exists a
corresponding maximal palindrome */

while SearchItem.position ≤ (j − MinGap) do
if w[SearchItem.position] �= w[j − 1] then

lp ←− length of the longest common prefix of words
w[j + MinLen..n] and
(w[1..SearchItem.position − MinLen − 1])T ;

output the palindrome w[SearchItem.position − MinLen − lp :
SearchItem.position − 1, j : j + MinLen + lp − 1];

SearchItem ←− SearchItem.NextItem;
end
else

if SearchItem is the first item of a run then
SearchItem ←− SearchItem.NextRun;
else SearchItem ←− NextF irstItem(C);

end
end

end
end

Algorithm 1: Step 2 of the algorithm for computing length-constrained palindromes

Parameterized Algorithms and Hardness Results

for Some Graph Motif Problems

Nadja Betzler1,�, Michael R. Fellows2,��, Christian Komusiewicz1,���,
and Rolf Niedermeier1

1 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{betzler,ckomus,niedermr}@minet.uni-jena.de
2 PC Research Unit, Office of DVC (Research), University of Newcastle,

Callaghan, NSW 2308, Australia
Michael.Fellows@newcastle.edu.au

Abstract. We study the NP-complete Graph Motif problem: given a
vertex-colored graph G = (V, E) and a multiset M of colors, does there
exist an S ⊆ V such that G[S] is connected and carries exactly (also
with respect to multiplicity) the colors in M? We present an improved
randomized algorithm for Graph Motif with running time O(4.32|M| ·
|M |2 · |E|). We extend our algorithm to list-colored graph vertices and
the case where the motif G[S] needs not be connected. By way of con-
trast, we show that extending the request for motif connectedness to the
somewhat “more robust” motif demands of biconnectedness or bridge-
connectedness leads to W[1]-complete problems. Actually, we show that
the presumably simpler problems of finding (uncolored) biconnected or
bridge-connected subgraphs are W[1]-complete with respect to the sub-
graph size. Answering an open question from the literature, we further
show that the parameter “number of connected motif components” leads
to W[1]-hardness even when restricted to graphs that are paths.

1 Introduction

With the advent of network biology [1, 15] and complex network analysis in
general, the study of pattern matching problems in graphs has become more
and more important. In this context, the term “graph motif” plays a central
role. Roughly speaking, there are two views of graph (or network) motifs. The
older is the topological view where one basically ends up with certain subgraph
isomorphism problems. For instance, the term “network motif” has been used
to represent patterns of interconnections that occur in a network at frequencies
much higher than those found in random networks [16, 18]. By way of contrast,

� Supported by the DFG, project DARE, GU 1023/1.
�� Supported by the Australian Research Council. Work done while staying in Jena

as a recipient of the Humboldt Research Award of the Alexander von Humboldt
Foundation, Bonn, Germany.

��� Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 31–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 N. Betzler et al.

the second and more recent view on graph motifs takes a more “functional ap-
proach”. Here, topology is of lesser importance but the functionalities of network
nodes (expressed by colors) form the governing principle. This approach has been
propagated by Lacroix et al. [12] and has been followed up by Fellows et al. [9],
defining the following problem.

Graph Motif: Input: A vertex-colored undirected graph G = (V, E) and a
multiset of colors M , with |M | = k. Question: Does there exist an S ⊆ V such
that the induced subgraph G[S] is connected and there is a bijection between
the colors of the vertices in S and M?

The different vertex colors are used to model different functionalities. Al-
though originally introduced in a biological context [9, 12], it is conceivable that
Graph Motif is an interesting problem not only for biological networks, but
also may prove useful when studying complex social or technical networks.

Known Results. Not surprisingly, Graph Motif is a computationally hard
problem. It is NP-complete even if the input multiset M actually is a set and
the input graph is a tree with maximum vertex degree three [9]. Moreover, NP-
completeness has also been shown for the case that M consists of only two colors
and the input graph is restricted to be bipartite with maximum degree four [9].
Given the apparent hardness of Graph Motif, Fellows et al. [9] initiated a
parameterized complexity analysis. Unfortunately, it turned out that Graph

Motif is W[1]-hard for trees when parameterized by the number of different
colors in the motif multiset M . That is, there is no hope to confine the seemingly
inevitable combinatorial explosion to the number of colors. By way of contrast,
there are good news for other parameterizations. First, when parameterized by
the motif size k := |M |, Graph Motif can be solved by a color-coding algorithm
running in O(87k ·k ·n2) time on an n-vertex graph, proving its fixed-parameter
tractability with respect to the motif size [9]1. Finally, Dondi et al. [6] extended
these investigations for Graph Motif by studying the case where the subgraph
induced by the chosen motif vertices needs not be connected.

New Results. Our work makes two sorts of contributions. First, we present
significantly faster algorithms for Graph Motif and two natural variants, now
giving hope for practically useful implementations. In all these cases, the motif
size is the governing parameter. Second, we further chart the range of tractability
of Graph Motif by exploring natural variants that become W[1]-hard (again
with respect to the parameter motif size). More specifically, we achieve the fol-
lowing results. On the positive side, we improve the randomized algorithm of Fel-
lows et al. [9] running in O(87k · k · n2) time and consuming O(4k · n) space to
a new randomized algorithm running in O(4.32k · k2 · m) time and consum-
ing O(2.47k ·n) space on an m-edge graph. Note that both algorithms are based
on the color-coding technique due to Alon et al. [2], which has recently proven

1 Fellows et al. [9] do not explicitly state the running time of the randomized version
of their algorithm. Instead, they demonstrate a running time of O(25k · k · n2) per
trial. Using k colors for color-coding, O(ek) trials are needed to achieve a sufficiently
low error probability, which results in a total running time of O(87k · k · n2).

Parameterized Algorithms and Hardness Results 33

practical usefulness [5, 7, 10, 14]. Both algorithms can be derandomized, but the
current state of the art of derandomization techniques seems prohibitive from a
practical point of view (also see [10]). We extend our fixed-parameter tractabil-
ity results for Graph Motif to two variants: List-colored Graph Motif,
where each chosen vertex may allow for a list of colors that it can match, and
Min-CC Graph Motif, where we specify the number of connected components
the graph motif may have. On the negative side, we also provide several param-
eterized hardness results. First, we investigate the search for somewhat “more
robust” motifs. In other words, we show that if one requires that the found motif
shall not only be connected but biconnected or bridge-connected, then in both
cases the corresponding Graph Motif problem becomes W[1]-complete with
respect to the parameter motif size (actually, even special cases thereof do so).
Since these are the two most simple demands one may pose for more robust
motifs, this shows that the request for connected motifs is already a topology
demand close to the border of tractability and intractability.2 Finally, somewhat
aside, we answer an open question of Dondi et al. [6] by proving that the afore-
mentioned Min-CC Graph Motif problem is W[1]-hard with respect to the
number of components even if the input graph is restricted to be only a path.
Due to the lack of space, some details are deferred to the full version.

Preliminaries. We consider only simple undirected graphs G = (V, E), where
n := |V | and m := |E| throughout the whole work. For a vertex v ∈ V , let
N(v) := {u | {u, v} ∈ E} denote the open neighborhood of v, and let N [v] :=
N(v) ∪ {v} denote the closed neighborhood of v. A coloring of an undirected
graph G = (V, E) is a function c : V → C, where C is a set of colors. Unless
stated otherwise, a motif is a multi-set of colors. In case that the motif is a
set, we call the motif colorful. An occurrence of a motif M in G is a set of
vertices S ⊆ V such that |S| = |M |, G[S] is connected, and there are x vertices
of color c in S iff M contains c exactly x times. Let col(v) denote the color of a
vertex v and col(S) the multiset of colors of the vertices of S. A vertex u in an
undirected graph is called a cut vertex if there are two vertices v, w with v �= u
and w �= u such that every path from v to w contains u. If an undirected
graph G is connected and has no cut-vertex, then G is biconnected. In general,
if a graph G = (V, E) cannot be disconnected by deletion of any set of p − 1
vertices, it is called p-connected. A graph is called p-edge-connected if it cannot
be disconnected by deletion of any set of p − 1 edges. A 2-edge-connected graph
is called bridge-connected.

The color-coding technique yields randomized fixed-parameter algorithms [2].
The main idea is to randomly color the vertices of the graph, and then to solve the
corresponding problem under the assumption that the subgraph that is searched
for obtains a colorful coloring, that is, all of the vertices of the subgraph have
pairwise different colors. This assumption often leads to a problem solvable more

2 Our results also generalize to higher connectivity demands. Even further, they hold
for uncolored graphs, where one searches for a subgraph with the specific connectivity
demand, and the parameter is the number of subgraph vertices.

34 N. Betzler et al.

efficiently. The procedure of coloring and then solving the subsequent problem
on the colored graph is repeated as often as necessary to obtain a sufficiently
low error probability. We say that a randomized algorithm solves a problem with
error probability ε if the probability that it fails to return the correct answer is
at most ε.

Parameterized algorithmics aims at a multivariate complexity analysis of
problems [8, 13]. The hope lies in accepting the seemingly inevitable combi-
natorial explosion for NP-hard problems, but to confine it to a parameter k. A
given parameterized problem (I, k) is fixed-parameter tractable (FPT) with re-
spect to the parameter k if it can be solved within running time f(k) · poly(|I|)
for some computable function f . Downey and Fellows [8] developed a theory of
parameterized intractability by means of devising a completeness program with
complexity classes. The first level of (presumable) parameterized intractability
is captured by the complexity class W[1]. A parameterized reduction reduces a
problem instance (I, k) in f(k) · poly(|I|) time to an instance (I ′, k′) such that
(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and k′ only depends
on k but not on |I|. If for a given parameterized problem L there is a parameter-
ized problem L′ such that L′ is W[1]-hard and there is a parameterized reduction
from L′ to L, then L is also W[1]-hard.

2 Fixed-Parameter Algorithms

Our accelerated algorithm for Graph Motif, as the previous one [9], is based
on the color-coding technique [2]. However, we make use of the following new
observation on colorful motifs.

Lemma 1. Let (G, M) be a Graph Motif instance such that M is colorful.
Then, Graph Motif can be solved in O(3k · m) time.

Proof. We describe a dynamic programming algorithm that finds an occurrence
of M . In the dynamic programming table, entry Dv,C stores the “minimum
score” of a color set C for a vertex v, where a score of 0 means that an occurrence
of C that includes v exists. We initialize the entries of the dynamic programming
table with

Dv,C =

{
0, C = {col(v)},

1, otherwise.

In the recurrence, we look for the combination of subsets of a color set such that
the sum of the entries is minimum:

Dv,C = min
u∈N(v), C′⊂C

{
Du,C\{col(v)},
Dv,C′∪{col(v)} + Dv,(C\C′)∪{col(v)}

}
.

Since the motif M is colorful, we can restrict attention to joining sets of vertices
that have disjoint color sets. Therefore, we never join vertex sets that have
vertices in common. If a colorful motif M occurs in G, then for some v ∈ V ,

Parameterized Algorithms and Hardness Results 35

Dv,M = 0. Furthermore, during the dynamic programming procedure we only
need to consider color sets C that are subsets of M . Therefore, we have O(2k)
entries per vertex, which results in a table size of O(2k ·n). Overall, the first part
of the recursion can be executed in O(2k ·m) time, since for each color set C ⊆ M
and for every vertex v we have to scan once through the adjacency list of v and
for each neighbor the corresponding table entry can be found in constant time.
The second part of the recursion can be executed in O(3k · n) time overall: for
each vertex v the number of combinations that have to be considered is bounded
by O(3k), since we have to consider all possible subsets of M and for each subset
we have to consider all possibilities to split this subset. Overall this amounts
to O(3k) combinations, since there are 3k possibilities to split a subset of size k
into three disjoint subsets (in our case these subsets are M \ C, C′ , and C′′).
For each combination the computation of the recursion can be performed in
constant time. Overall, the running time amounts to O(3k · m). An occurrence
of the motif can be computed by traceback within the same asymptotic running
time bound. ��

The above dynamic programming procedure is basically a simplified version
of the procedure for the related problem of finding a minimum-weight tree of
size k [14]. The main difference is that for Graph Motif, we do not have
additional weights that are associated with the graph vertices.

We now show how to use Lemma 1 in order to obtain an algorithm in case
that the motif is a multiset of colors. The main idea is to use the technique of
color-coding [2] in order to transform any instance that has a multiset of col-
ors as motif into an instance that has a colorful motif. To this latter instance
then Lemma 1 applies. In the following, we describe this transformation in de-
tail. Let M be the motif and let occ(c) denote the number of occurrences of a
color c in M . For each color c with occ(c) ≥ 2 we introduce occ(c) new col-
ors c1, c2, . . . , cocc(c). Then, we randomly recolor each vertex that has color c
with one of the new colors, where the probability for each color is exactly 1/
occ(c) (uniform distribution). Let M ′ be the set of colors that contains the col-
ors that occurred only once in M together with the colors {c1, c2, . . . , cocc(c)} for
every color c with occ(c) ≥ 2. Furthermore, let S be an occurrence of M . We
say that S achieves a colorful recoloring if col(S) is colorful after the recoloring
procedure. Clearly, if S achieves a colorful recoloring, then col(S) = M ′. An
occurrence of M ′ can be found via dynamic programming by Lemma 1. This
procedure of recoloring with subsequent dynamic programming is repeated until
either an occurrence of M is found, or the probability that there is an S that
has not achieved a colorful recoloring is acceptably low.

Proposition 1. Graph Motif can be solved with error probability ε within
O(| ln(ε)| · 8.16k · m) time.

Proof. By Lemma 1, we can find an occurrence of a colorful motif in O(3k · m)
time. Therefore, the total running time of the algorithm is O(t(ε) · 3k · m),
where t(ε) denotes the number of trials that is needed in order to achieve

36 N. Betzler et al.

a colorful recoloring of the vertices of the motif in at least one of the tri-
als with a probability of at least 1 − ε. For each color c ∈ M , the prob-
ability Pc that the occ(c) vertices in S that have color c receive a colorful
recoloring is (occ(c))!/occ(c)occ(c), because each coloring has the same prob-
ability and (occ(c))! colorings of the occ(c)occ(c) possible colorings are color-
ful. Using Stirling’s approximation for factorials we can show that occ(c)!/
occ(c)occ(c) >

√
2 · π · occ(c) · e− occ(c). For two colors c1 and c2 the probabil-

ities Pc1 and Pc2 are independent. Therefore, the probability Pc1∧c2 that the
vertices of both color classes achieve a colorful recoloring is

Pc1∧c2 = Pc1 · Pc2 >
√

2 · π · (occ(c1) + occ(c2)) · e−(occ(c1)+occ(c2)).

The probability PM that an occurrence of M receives a colorful recoloring thus is

PM =
∏

c∈col(M)

Pc >
√

2 · π · k · e−
∑

c∈col(M) occ(c) > e−k.

After t trials the error probability, that is, the probability that a colorful recolor-
ing was not achieved, is (1−PM)t. Therefore, the number of trials t(ε) to achieve
an error probability of at most ε is t(ε) = �| ln(ε)|/ln(1 − PM)� = | ln(ε)| · O(ek).
Hence, the total running time of the algorithm when an error probability of at
most ε is allowed is O(| ln(ε)| · ek · 3k · m) = O(| ln(ε)| · 8.16k · m). ��

Applying two speed-up techniques, we can further improve the running time of
the algorithm. First, as proposed by Hüffner et al. [10], we can increase the num-
ber of colors that are used for color-coding in order to increase the probability
of an occurrence of M to receive a colorful recoloring3. Second, we can speed up
the dynamic programming procedure of Lemma 1 by using the technique of fast
subset convolution. This novel technique was developed by Björklund et al. [3],
who used it to speed up several dynamic programming algorithms including the
algorithm by Scott et al. [14] for computing minimum weight size k trees in
signalling networks.

Let f and g be functions defined on the power set of a finite set N with
|N | = n, that is, f, g : P(N) → I. For any ring over I that defines addition and
multiplication on elements of I, the subset convolution of f and g, denoted by
f ∗ g, is defined for each S ⊆ N as

f ∗ g : P(N) → I, (f ∗ g)(S) =
∑
T⊆S

f(T)g(S \ T).

To calculate the subset convolution means to determine the value of f ∗ g
for all 2n possible inputs, assuming that f and g can be evaluated in constant
time (typically by being stored in a table). A naive algorithm that calculates
each value independently needs O(

∑n
i=0

(
n
i

)
2i) = O(3n) ring operations. The

following result shows a substantial improvement.
3 Increasing the number of colors has been independently examined by Deshpande

et al. [5]. Hüffner et al. [10] derive a better bound on the worst-case running time.

Parameterized Algorithms and Hardness Results 37

Theorem 1 (Björklund et al. [3]). The subset convolution over an arbitrary
ring can be computed with O(2n · n2) ring operations.

Björklund et al. [3] showed how to apply Theorem 1 to also calculate the subset
convolution for the integer min-sum semiring

f ∗ g : P(N) → Z, (f ∗ g)(S) = min
T⊆S

f(T) + g(S \ T)

by embedding it into the standard integer sum-product ring.4 Recall the recur-
rence of the dynamic programming procedure for colorful motifs:

Dv,C = min
u∈N(v), C′⊂C

{
Du,C\{col(v)},
Dv,C′∪{col(v)} + Dv,(C\C′)∪{col(v)}

}
.

The first part of the recurrence can be evaluated in O(2k ·m) time. For the second
part we can use fast subset convolution and can thus compute the recurrence
in O(2k · k2 · n) time, because each ring operation can be performed in constant
time, since the maximum weight that is used for the basic table entries is 1.
Clearly, the graph G has an occurrence of M if there is a table entry Dv,M = 0 in
the final table. The actual occurrence of the motif can be computed in O(2k ·k·m)
time by traceback. In the following theorem, we upper-bound the running time
of the algorithm that is obtained from combining the two described speed-up
techniques.

Theorem 2. Graph Motif can be solved with error probability ε in O(| ln(ε)| ·
4.32k · k2 · m) time.

Proof. Hüffner et al. [10] showed that when using 1.3 · k colors, the number of
trials that is needed to obtain error probability ε is O(| ln(ε)| · 1.752k). However,
this increases the running time of the dynamic programming procedure, since
now the color set has size 1.3 ·k. The modified dynamic programming procedure
then has a running time of O(21.3·k · k2 · m). Overall, the running time amounts
to O(| ln(ε)| · 1.752k · 21.3·k · k2 · m) = O(4.32k · k2 · m). ��
A drawback of using 1.3 · k colors is that the memory requirement increases
from O(2k · m) to O(21.3k · m) = O(2.47k · m). However, it was shown that
the running time improvement is enormous in practice [10]. In some special
cases, we need even less trials to achieve an exponentially low error probabil-
ity. For example, if every color in the motif occurs at most twice, then we have
to use at most two colors per vertex. Furthermore, there can be at most k/2
colors that appear twice in the motif. Using two colors for each color c that
appears twice in M , the two vertices in an occurrence of M that have a color c
receive different colors with probability 1/2. Hence, the probability that a re-
coloring is a colorful recoloring is 2−k/2 = (

√
2)−k. The number of trials needed

to achieve exponentially low error probability then is O((
√

2)k) and the total
running time O((

√
2)k · 2k · k2 · m) = O(2.83k · k2 · m).

4 Björklund et al. [3] also considered the variant where we do not have disjoint sets T
and S\T but allow one element occurring in both sets (as we make use of in the
following).

38 N. Betzler et al.

Two Natural Graph Motif Variants. We extend our randomized algorithm for
the basic Graph Motif problem to two practically interesting problem variants.
The original formulation of Graph Motif allows multiple colors per vertex [12].
This makes sense in a biological context in order to model multiple functionalities
of one element. The input graph can then be formalized as a list-colored graph,
in which a list of colors is attached to every vertex of the graph. In other words,
for a vertex v ∈ V of a list-colored graph, col(v) denotes a set of colors instead
of a single color.

List-colored Graph Motif: Input: A list-colored undirected graph G =
(V, E) and a multiset of colors M . Question: Does there exist a vertex subset S ⊆
V such that the induced subgraph G[S] is connected and there is a bijection f :
S → M such that ∀v ∈ S : f(v) ∈ col(v)?

Unfortunately, we cannot use our above algorithm for List-colored Graph

Motif. The difficulty is that in list-colored graphs we do not have a one-to-one
correspondence between vertices and colors; hence, two disjoint color sets do not
imply two disjoint vertex sets. However, we can apply a different color-coding
procedure, partially resembling the algorithm by Fellows et al. [9].

Theorem 3. List-colored Graph Motif can be solved with error probabil-
ity ε in O(| ln(ε)| · 10.88k · m) time.

Proof. We use color-coding. To avoid ambiguities, we call the random colors
assigned by the color-coding procedure labels, and the term color only refers to
the colors of the list-colored graph. Let L = {l1, l2, . . . , lk} denote a set of k
distinct labels. We randomly assign (uniformly distributed) the labels of L to
the vertices of the graph and solve the problem of finding an occurrence of the
motif M under the assumption that all vertices of the occurrence have received a
different label. Without loss of generality, assume that M is colorful. Otherwise,
we transform M and G as follows: For each color c that occurs occ(c) times, we
add occ(c) new colors to M and completely remove c from G. Furthermore, for
every vertex v in G with c ∈ col(v), we remove c from col(v) and add the occ(c)
new colors to col(v). Let M ′ and G′ be the thus modified motif and graph,
respectively. We now solve the problem of finding an occurrence of M ′ in G′.
Each such occurrence clearly corresponds to an occurrence of M in G.

The problem of finding a colorful occurrence of M that has the labels of L
is solved by dynamic programming. First, we extend our notion of occurrence.
Let F ⊆ (L ∪ M) be a set that contains labels as well as colors. An occurrence
of F is defined as a set of vertices S such that the vertices of S have exactly
the labels of F ∩ L, and there is a bijection f : S → F ∩ M , such that for
each vertex v f(v) ∈ col(v). An entry Dv,F of the dynamic programming table
denotes the “score” of an occurrence of F that contains v. We initialize the table
as follows:

Dv,{c,l} =

{
0, c ∈ col(v) ∧ l = label(v),
1, otherwise.

Parameterized Algorithms and Hardness Results 39

Furthermore, we assign weight 1 to all entries Dv,{c} and D{l}. The recurrence
reads

Dv,F = min
u∈N(v), c∈col(v), F ′⊂F

{
Du,F\{c,label(v)},
Dv,F ′∪{c,label(v)} + Dv,(F\F ′)∪{c,label(v)}

}
.

We calculate the score for sets F ⊆ M of increasing cardinality. Note that
by initializing the entries Dv,{c} and Dv,{l} with 1, we make sure that a score
of 0 of an “occurrence” of F can only be achieved when there is a one-to-one
correspondence between labels and colors of the occurrence. Therefore, if there
is a v ∈ V such that Dv,L∪M = 0, then there is an occurrence of L ∪ M in G.
An actual occurrence then can be computed by traceback.

For the running time consider the following.Clearly |L∪M | = 2·k.The recursion
is similar to the recursion in theproof ofTheorem 2.Hence,we canalso apply subset
convolution and obtain a running time of O(22·k ·(2 ·k)2 ·m) = O(4k ·k2 ·m) for the
dynamic programming procedure. The number of trials that is needed to obtain a
good labelling with probability at least 1 − ε is O(| ln(ε)| · ek). The total running
time thus amounts to O(| ln(ε)| · ek · 4k · k2 · m) = O(10.88k · k2 · m). ��

Our second variant of Graph Motif has been introduced by Dondi et al. [6],
who proposed a generalization of Graph Motif in which it is no longer de-
manded that the motif is connected.

Min-CC Graph Motif: Input: A vertex-colored undirected graph G =
(V, E), a multiset of colors M with |M | = k, and a nonnegative integer d.
Question: Does there exist an S ⊆ V such that G[S] has at most d components,
and there is a bijection between the colors of the vertices in S and M?

Clearly, Graph Motif is Min-CC Graph Motif with d = 1. Among other
results, Dondi et al. [6] showed that the algorithms for Graph Motif by Fellows
et al. [9] can be adapted to solve Min-CC Graph Motif. We can also modify
our Graph Motif algorithm to solve Min-CC Graph Motif.

Theorem 4. Min-CC Graph Motif can be solved with error probability ε
in O(| ln(ε)| · 4.32k · k2 · m) time.

3 Parameterized Hardness Results

Lacroix et al. [12] motivated the study of (variants) of the Graph Motif prob-
lem by considerations comparing “topological motifs” with “functional motifs”.
The Graph Motif problem only poses a minimal demand on the motif topol-
ogy by requiring connectedness. The natural question arises what happens if we
ask for somewhat “more robust” motifs, replacing the connectedness demand by
demands for biconnectivity, bridge-connectivity and the like. As we will show in
this section, these seemingly small steps towards topologically more constrained
motifs already lead to W[1]-completeness. Finally, the only time considering a
parameter other than motif size, we answer an open question of Dondi et al. [6]

40 N. Betzler et al.

G : G′ :

Fig. 1. An example of the transformation of a Clique instance with k = 3 into a
Biconnected Subgraph instance with k′ = 15. White vertices in G′ belong to V1,
black vertices to V2.

by showing that the parameter “number of connected components” in a graph
motif leads to a W[1]-hard problem.

Biconnected Graph Motif: Input: A vertex-colored undirected graph G =
(V, E) and a multiset of colors M . Question: Does there exist an S ⊆ V such
that the induced subgraph G[S] is biconnected and there is a bijection between
the colors of the vertices in S and M?

We will show that Biconnected Graph Motif is W[1]-complete when pa-
rameterized by the size of the motif M . In fact, we prove an even stronger result.
Consider the special case that M contains only one color c, |M | = k, and that
all vertices in G have color c. Then, the remaining problem to find a biconnected
subgraph of size exactly k is denoted as:

Biconnected Subgraph: Input: An undirected graph G = (V, E) and a non-
negative integer k. Question: Does there exist an S ⊆ V of size k such that the
induced subgraph G[S] is biconnected?

Note that looking for a biconnected subgraph of size at least k is solvable in linear
time [17]. However, restricting the size of the biconnected subgraph to exactly k
makes the problem surprisingly hard. We prove the parameterized hardness by
reduction from the Clique problem, which is known to be W[1]-complete [8]
with respect to the size of the clique searched for.

Clique: Input: An undirected graph G and a nonnegative integer k. Question:
Is there a complete subgraph of size k in G?

Theorem 5. Biconnected Subgraph is W[1]-complete with respect to k.

Proof. To show the W[1]-hardness, we give a parameterized reduction from
Clique to Biconnected Subgraph. Let (G, k) be a Clique instance. We
construct a graph G′ from G by replacing every edge e of G with a simple
path pe that has

(
k
2

)
+ 1 internal new vertices. The vertex set of G′ can be

partitioned into two vertex sets V1 and V2, where V1 contains the vertices that
correspond to vertices of the original graph G and V2 contains the new internal
path vertices. An example of this reduction is shown in Figure 1.

We prove in the following that G has a clique of size k iff G′ has a biconnected
subgraph of size k′ = k +

(
k
2

)
· (

(
k
2

)
+ 1). If G has a clique C of size k, then

the subgraph that is induced by the k vertices of C and by the vertices on
the

(
k
2

)
paths that were created from the

(
k
2

)
clique edges of C in G has size

exactly k +
(
k
2

)
· (

(
k
2

)
+ 1). Clearly, this subgraph is also biconnected.

Parameterized Algorithms and Hardness Results 41

It remains to show that if G′ has a biconnected subgraph of size k′ = k +
(
k
2

)
·

(
(
k
2

)
+1), then G has a clique of size k. Let G′ have a biconnected subgraph G′[S]

of size k. If S contains one vertex of a path pe, then it must contain all vertices
from pe, because otherwise G′[S] would not be biconnected. Hence, the number
of vertices k′ in S can be expressed as k′ = a + b · (

(
k
2

)
+ 1), where a = |S ∩ V1|

and b denotes the number of paths in G′ that correspond to edges of G.
We distinguish two main cases. In the first case, let a = k. Then, G′[S] must

contain exactly
(
k
2

)
paths that correspond to edges in G. Let e = {u, v} be

an edge of G, and let A := S ∩ V1. Since G′[S] is biconnected, if a path pe is
contained in S, then {u, v} ⊆ A. Since G′[S] contains exactly

(
k
2

)
paths consisting

of vertices from V2 and each path must connect two vertices of A, all vertices
of A are pairwise connected via a path of length

(
k
2

)
. Hence, the subgraph G[A]

must be a size-k clique since it contains exactly k vertices and exactly
(
k
2

)
edges.

We now consider the case a �= k and show that in this case, either a+b ·
((

k
2

)
+

1
)

�= k +
(
k
2

)
·
((

k
2

)
+ 1

)
= k′ or G′[S] cannot be biconnected. Clearly, if b =

(
k
2

)
,

then

a + b ·
((

k

2

)
+ 1

)
= a +

(
k

2

)
·
((

k

2

)
+ 1

)
�= k +

(
k

2

)
·
((

k

2

)
+ 1

)
= k′.

Therefore, we can assume that b �=
(
k
2

)
. In the following, we list all remaining

cases and show that either a + b ·
(
k
2

)
�= k′ or G′[S] is not biconnected.

Case 1: b >
(
k
2

)
.

a + b ·
((

k

2

)
+ 1

)
≥ a +

((
k

2

)
+ 1

)
·
((

k

2

)
+ 1

)
> k +

(
k

2

)
·
((

k

2

)
+ 1

)

Case 2.1 : b <
(

k
2

)
and a <

(
k
2

)
.

a + b ·
((

k

2

)
+ 1

)
<

(
k

2

)
+

((
k

2

)
− 1

)
·
((

k

2

)
+ 1

)
< k +

(
k

2

)
·
((

k

2

)
+ 1

)

Case 2.2 : b <
(

k
2

)
and a ≥

(
k
2

)
.

In this case, G′[S] cannot be biconnected: S consists of at least a ≥
(
k
2

)
ver-

tices from V1 and less than
(
k
2

)
paths that correspond to edges of G. Therefore,

at least one of the
(
k
2

)
vertices from V1 is connected to at most one path. By

construction, vertices in V1 may only be adjacent to vertices in V2. Hence, G′[S]
is not biconnected.

Summarizing, G has a clique of size k iff G′ has a biconnected subgraph of
size k ·

(
k
2

)
·(

(
k
2

)
+ 1). The reduction can be clearly performed in polynomial time.

We omit the proof for containment in W[1]. ��

A second natural way to heighten the robustness demands for Graph Motif

is to search for bridge-connected motifs. We define Bridge-Connected Sub-

graph in complete analogy to Biconnected-Connected Subgraph, simply

42 N. Betzler et al.

replacing the demand for biconnectivity by the demand for bridge-connectivity.
The reduction from Clique as used in the proof of Theorem 5 works also for
bridge-connected subgraphs.

Theorem 6. Bridge-Connected Subgraph is W[1]-complete with respect
to k (number of subgraph vertices).

Further, we can generalize the hardness results to graph motifs of higher con-
nectivity. To this end, consider the following problem.

p-(Edge) Connected Subgraph: Input: An undirected graph G and a
nonnegative integer k. Question: Does there exist an S ⊆ V of size k such that
the induced subgraph G[S] is p-(edge) connected?

Theorem 7. p-(Edge) Connected Subgraph is W[1]-complete with respect
to k (number of subgraph vertices).

The following theorem answers an open question of Dondi et al. [6].

Theorem 8. Min-CC Graph Motif restricted to paths is W[1]-hard with re-
spect to the parameter “number of components”.

Proof. (Construction) We reduce from the W[1]-complete Perfect Code [4]
problem: Given an undirected graph G = (V, E) and a positive integer k, is
there is a size-k-subset V ′ ⊆ V such that for every vertex v ∈ V there is exactly
one vertex in N [v] ∩ V ′. Given a Perfect Code instance (G = (V, E), k),
we construct a Min-CC Graph Motif instance consisting of a path P and
a motif M . It asks for the existence of a solution consisting of k connected
components. The vertex set of P consists of |N [v]| vertices with color cv for
every v ∈ V , n−1 “separator” vertices with color s each, and 2 ·n “end” vertices
with color e each. Now, we describe the order of the vertices in the path P . For
this, let a “subpath” of P denote a connected path that is part of P . Then,
for every vertex v ∈ V there is a subpath containing |N [v]| vertices colored
by {cw | w ∈ N [v]} in an arbitrary order. At both ends of every subpath we add
an end vertex with color e. Finally, we connect all subpaths in an arbitrary order
such that two neighboring subpaths are connected through a separator vertex
with color s. The motif set M consists of 2 ·k times the color e and {cv | v ∈ V }.

We omit to show that G has a perfect code of size k iff the there are k
subpaths P1, . . . , Pk such that there is a bijection between the colors of their
vertices and the colors of M . ��

4 Conclusion

Graph Motif and its variants are natural graph-theoretic pattern matching
problems with prospective applications. Our positive algorithmic results should
support implementation and experimental work, similarly to previous positive
experiences with color-coding based graph algorithms [5, 7, 10, 11, 14]. It is par-
ticularly interesting whether the recently introduced subset convolution tech-
nique [3], which so far has been studied purely from a theoretical point of view,
also yields a significant speed-up in practice.

Parameterized Algorithms and Hardness Results 43

Acknowledgments. We are grateful to Jiong Guo (hinting to Theorem 8) and
Frances Rosamond for helpful comments.

References

[1] Alm, E., Arkin, A.P.: Biological networks. Curr. Opin. Struc. Biol. 13(2), 193–202
(2003)

[2] Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
[3] Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast

subset convolution. In: Proc. 39th STOC, pp. 67–74. ACM, New York (2007)
[4] Cesati, M.: Perfect code is W[1]-complete. Inform. Process. Lett. 81, 163–168

(2002)
[5] Deshpande, P., Barzilay, R., Karger, D.R.: Randomized decoding for selection-and-

ordering problems. In: Proc. NAACL HLT 2007. Association for Computational
Linguistics, pp. 444–451 (2007)

[6] Dondi, R., Fertin, G., Vialette, S.: Weak pattern matching in colored graphs:
Minimizing the number of connected components. In: Proc. 10th ICTCS. WSPC,
vol. 4596, pp. 27–38. World Scientific, Singapore (2007)

[7] Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A
tool for querying protein interaction networks. In: Speed, T., Huang, H. (eds.)
RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)

[8] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[9] Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines
for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351.
Springer, Heidelberg (2007)

[10] Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to
facilitate signaling pathway detection. In: Proc. 5th APBC. Advances in Bioinf.
and Comput. Biol., vol. 5, pp. 277–286. Imperial College Press (2007); Extended
version to appear in Algorithmica

[11] Hüffner, F., Wernicke, S., Zichner, T.: FASPAD: fast signaling pathway detection.
Bioinformatics 23(13), 1708–1709 (2007)

[12] Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Reaction motifs in metabolic networks.
In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 178–
191. Springer, Heidelberg (2005)

[13] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

[14] Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting
signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–
144 (2006)

[15] Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24, 427–433 (2006)

[16] Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional
regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

[17] Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comp. (1),
146–160 (1972)

[18] Wernicke, S.: Efficient detection of network motifs. IEEE ACM T. Comput.
Bi. 3(4), 347–359 (2006)

Finding Largest Well-Predicted Subset

of Protein Structure Models

Shuai Cheng Li1, Dongbo Bu1,3, Jinbo Xu2, and Ming Li1

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
{scli,dbu,mli}@cs.uwaterloo.ca

2 Toyota Technological Institute at Chicago, USA
j3xu@tti-c.org

3 Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract. 1 How to evaluate the quality of models is a basic problem
for the field of protein structure prediction. Numerous evaluation criteria
have been proposed, and one of the most intuitive criteria requires us to
find a largest well-predicted subset — a maximum subset of the model
which matches the native structure [12]. The problem is solvable in O(n7)
time, albeit too slow for practical usage. We present a (1 + ε)d distance
approximation algorithm that runs in time O(n3 log n/ε5) for general
protein structures. In the case of globular proteins, this result can be
enhanced to a randomized O(n log2 n) time algorithm with probability
at least 1 − O(1/n). In addition, we propose a (1 + ε)-approximation
algorithm to compute the minimum distance to fit all the points of a
model to its native structure in time O(n(log log n + log 1/ε)/ε5). We
have implemented our algorithms and results indicate our program finds
much more matched pairs with less running time than TMScore, which
is one of the most popular tools to assess the quality of predicted models.

1 Introduction

Quite a number of protein structure prediction methods are available, and each
method produces a large number of models for a given sequence. Evaluation
of the quality of these models is a difficult and fundamental subject which has
been intensively studied in structural bioinformatics, and is still under active
research [12]. Among the proposed techniques, Root Means Square Deviation
(RMSD) is the most popular one [4]. However, using RMSD has a few short-
comings. For example, RMSD fails to identify the quality of a model when only
a substructure is predicted correctly. RMSD was first proposed to handle noisy
data in which the error is small, and does not perform well when the overall
structures have a large distance. RMSD is also not equivalent between targets
of different lengths. For example, the quality of a model of 10 residues with an
RMSD of 3Å is considered bad, while the quality of a model of 100 residues with
an RMSD of 3Å is considered an accurate model. To overcome these difficulties,
1 We have implemented a package named ApproxSub. The source code is available

upon requests.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 44–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finding Largest Well-Predicted Subset of Protein Structure Models 45

measurements such as MaxSub [12], Global Distance Test (GDT), Local/Global
Alignment (LGA) [14] and TMScore [15] have been proposed. For a more com-
prehensive review, we refer readers to [10]. Most of these methods use RMSD as
a subroutine, and are heuristic.

Though intensive studies have been conducted to attack the similarity evalua-
tion problem, most of the proposed methods are heuristic and do not have theo-
retical performance bound. In [12], the problem is formulated as to compute the
largest ‘well-predicted’ subset (LWPS) to overcome the shortcomings of RMSD.
The evaluation criteria by LWPS is elegant and intuitive, but it was believed
this problem was NP-hard and heuristic approaches are proposed [12,10]. We
provide a tool in this paper to address this problem more directly. The problem
is actually polynomial solvable by the techniques from the field of computational
geometry called largest common point sets under approximate congruence, with
a distance threshold d (d-LCP) (under bottleneck matching measure). We also
propose a O(n3 log n/ε5) time algorithm to solve the (1 + ε)d distance approxi-
mation problem for general protein structures. In the case of globular proteins,
this result can be enhanced to a randomized O(n log2 n) time algorithm with
probability at least 1−O(1/n). In addition, we propose a (1+ ε)-approximation
algorithm to compute the minimum distance to fit all the corresponding points
of a model and its native structure in time O(n(log log n+ log 1/ε)/ε5). Further-
more, our algorithms are simple to implement.

2 Preliminaries

2.1 Problem Definition and Notations

A protein structure A consists of an ordered set of n points in three-dimensional
(3D) space, i.e., A = (a1, a2, . . . , an), ai ∈ R

3. Biologically, each point represents
a Cα atom. These 3D coordinates have some special characteristics. For example,
A is bounded within a sphere of radius RA. It is known that for general proteins,
RA = O(n) and for globular proteins, RA = cn1/3, for some constant c [9].
For notation simplicity, we omit the leading constant of RA for globular protein
structure. The distance between any two points (Cα atoms) in a protein structure
cannot be too small due to steric clashes. Furthermore, the distance between any
two non-consecutive points is no less than 4Å. The distance between any two
consecutive points is about 3.8Å. Due to such distance constraints, the maximum
number of points that can be encapsulated in a given sphere with radius r is
proportional to the volume of the sphere. For notation simplicity, we use r3 and
the number of points that can be encapsulated in the sphere exchangeably, when
the context is clear.

Given a set of indices M ′ and a point set P = {p1, . . . , pn}, denote P [M ′] =
{pi|i ∈ M}.

The predicted model B of the protein consists of an ordered set of n points,
i.e., B = {b1, b2, . . . , bn}. We assume B has the geometry properties of protein
structure. Given a threshold d and a rigid transformation I, if |ai − I(bi)| ≤ d,
we say ai matches bi, or bi fits into ai under I. Denote MI = {i||ai −I(bi)| ≤ d}

46 S.C. Li et al.

and MI is referred to as a match set. We also refer to A[MI] and B[MI] as the
match set when the context is clear.

We now define the problems that will be studied in this paper:

Largest Well-predicted Subset Problem. Given a protein structure A, a
model B and a threshold d, the largest well-predicted subset problem, or LWPS
(A, B, d), is to identify a maximum match set Mopt ⊆ {1, 2, . . . , n} and a cor-
responding rigid transformation Iopt (a rotation and translation) [12,10]. d is
called the bottleneck distance. Denote Aopt = A[Mopt] and Bopt = B[Mopt]

Also, we are interested in solving the minimum bottleneck distance problem.

Minimum Bottleneck Distance Problem. Given a protein structure A and
a model B, find the smallest distance dopt and a corresponding rigid transfor-
mation Iopt such that ∀i, 1 ≤ i ≤ n, |ai − Iopt(bi)| ≤ dopt.

With a careful examination of the algorithm for d-LCP in [3,5], one can see
that the LWPS problem has a polynomial time solution in O(n7), which contra-
dicts to the claim in [12] that the problem is NP-hard.

Theorem 1 ([5]). The largest well-predicted subset can be solved in O(n7) time
under general transformations.

In this paper, we are interested in the following types of approximation
algorithms:

1. Distance Approximation for LWPS(A, B, d). Find a transformation T to
bring a subset B′ ⊆ B of size at least Bopt such that ∀bi ∈ B′, ||ai−T (bi)|| ≤
(1 + ε)d, ε is some constant.

2. Bottleneck Distance Approximation. Find a transformation T , such that
∀bi ∈ A, ||ai − T (bi)|| ≤ (1 + ε)dopt, ε is some constant.

3 A Discretization of the Rigid Transformation

We now start with basic notations. The d-sphere of a point p is the sphere of
radius d centered at p. Given a point p and a point set P , p′ form a radial point
in P with respect to p iff p′ is the furthest point in P from p. Points p, p′ ∈ P
is a radial pair 〈p, p′〉 of P iff p′ is a radial point w.r.t. p. (Note that 〈p, p′〉 is a
radial pair of P does not imply that 〈p′, p〉 is a radial pair of P .)

A rigid transformation consists of a rotation and a translation. In this paper,
we consider how to approximate a rigid transformation T on a point set P
by considering T as being composed of the following two components: (1) an
initial transformation T that transforms an arbitrary chosen radial pair 〈p1, p2〉
in P into their positions under T , i.e. T (p1) = T (p1) and T (p2) = T (p2); (2) a
rotation R around the axis along

−−−−−−−−→
T (p1)T (p2) such that ∀p ∈ P , R(T (p)) = T (p).

Let T be an initial transformation, as in (1), of T on a given point set P , and
let 〈p1, p2〉 be the radial pair in P on which T is derived. Suppose we are able to
find an approximation T ′ for T such that T ′(p1) ≈ T (p1) and T ′(p2) ≈ T (p2),
then we claim that there exists a rotation R around the axis along

−−−−−−−−−→
T ′(p1)T ′(p2),

that transforms every point p ∈ T ′(P) to some point near T (p). Formally,

Finding Largest Well-Predicted Subset of Protein Structure Models 47

Lemma 1. Given a point set P , rigid transformations T and T ′, let 〈p1, p2〉
be a radial pair of P , if |T (p1) − T ′(p1)| ≤ ε and |T (p2) − T ′(p2)| ≤ ε, then
there exists a rotation R around the axis along

−−−−−−−−−→
T ′(p1)T ′(p2), such that ∀p ∈ P ,

||R(T ′(p)) − T (p)|| ≤ 3ε.

Proof. Denote p′1 = T ′(p1) and p′2 = T ′(p2). With two points fixed, the only
degree of freedom for a rigid transformation T ′ on P are rotations around the axis
along

−−→
p′1p
′
2. Therefore, we just need to show that there exists a transformation T ′′

which transforms T (P) such that T ′′(T (p1)) coincides with p′1, and T ′′(T (p2))
coincides with p′2, and ∀p ∈ P , ||T ′′(T (p)) − T (p)|| ≤ 3ε.

We consider T ′′ as follows, in two steps. First, we translate T (P) with trans-
lation t such that T (p1) coincides with T ′(p1) and let T (P) − t be the 3D point
set of T (P) with translation t. Second, we rotate T (P) − t with rotation axis as
the line which passes though p′1 and is orthogonal to the plane defined by points
p′1, T (p2) − t and p′2, with rotation angle as the angle formed by T (p2) − t, p′1
and p′2, where p′1 is the vertex. Denote this rotation as R′′ and the rotation angle
as α. It can be verified that p′1 = T ′′(T (p1)) and p′2 = T ′′(T (p2)). With rotation
R′′, we move T (p2) − t to coincide with p′2.

By translation t, we know that ∀p ∈ P , ||T (p)−(T (p)−t)|| = ||t|| = ||T (p1)−
p′1|| ≤ ε. As ||T (p2)−T ′(p2)|| ≤ ε, we have ||(T (p2)− t)−p′2|| ≤ 2ε. Consider the
angle formed by T (p) − t, p′1 and R(T (p) − t), p ∈ P , where p′1 is the vertex, we
know that (1) the angle formed by points p′1, T (p)− t and R(T (p)− t) with p′1 as
the vertex is at most α; and (2) ||p1 − p|| ≤ ||p1 − p2||. By these two properties,
we have ||(T (p) − t) − R(T (p) − t)|| ≤ ||(T (p2) − t) − p′2|| ≤ 2ε. Therefore, by
triangle inequality we have ||T ′′(p) − T (p)|| ≤ 3ε. The statement holds.
�

3.1 Match a Radial Pair Approximately

If we know a radial pair 〈bi, bj〉 of Bopt matches to a pair 〈ai, aj〉 of A, then we
have ||ai − Topt(bi)|| ≤ d and ||aj − Topt(bj)|| ≤ d. Thus we can discretize the
(1 + ε)d-spheres of ai and aj with a grid of side length 1/3εd, and exhaustively
try every grid pair for possible positions of bi and bj. This will result in an error
at most εd according to Lemma 1.

As shown in Fig 1, we partition the (1 + ε)d sphere of ai with 3D grids of
side length 1/3εd. The number of grid points to partition the (1 + ε)d sphere of
ai is bounded by O((d + ε)3/(1/3εd)) = O(1/ε3). Here we can try all the grid
positions for bi.

Once we have fixed bi at a grid point, all the possible positions for bj fitting
into the (1 + ε)-sphere aj form a sphere cap centered at bi with radius ||bj − bi||
and contained in the (1 + ε)d sphere of aj . The spherical cap has an area of
O(d2). We partition the sphere cap with grids of resolution size 1/ε. This can
be approximated by creating the smallest cube which encapsulates the sphere
(the one the sphere cap belongs to) and create grids of side length O(1/ε) of
the six faces of the cube. Then we can use the grid on the cube to partition
the sphere cap — a common trick used in computation geometry to round the

48 S.C. Li et al.

Fig. 1. Approximating Topt(bi) and Topt(bi). First, we match a radial axis to approx-
imated positions (the grid points), then we rotate B around this radial axis to find a
maximum match. A and B both consists of four points in this example. We match bi to
ai approximately. Then we discretize the possible directions for 〈bi, bj〉. Last, we rotate
B around 〈bi, bj〉 to find a maximum match.

directions [1]. Note that we do not need to create the grid explicitly. It is easy
to show that only O(1/ε2) grid points are necessary to partition the sphere cap.

Combining with Lemma 3, to be shown later, we have the following result.

Lemma 2. If we know a radial pair 〈bi, bj〉 of Bopt matching to a pair 〈ai, aj〉
of A, there are O(1/ε5) possible choices to transform 〈bi, bj〉 such that at least
one of the transformations results in error at most εd for each b ∈ B from their
optimal positions.

Note that we do not know which pair of points is a radial pair of Bopt. However,
this can be overcome by enumerating all the possible O(n2) combinations, as we
next discuss.

3.2 Exact Algorithm for Restricted Rotation Axis

Suppose all the points of B must be rotated around a given axis, we want to
identify an angle θ ∈ [0, 2π) such that the number of matched pairs is maximized.
If we represent the interval [0, 2π) as a unit circle, then it is not difficult to see
that the angle that moves bi into the (1 + ε)d-sphere of ai form an arc of the
circle. Totally, there are O(n) arcs. Each arc consists of two endpoints, and the
circle is subdivided into O(n) circular intervals. Each of these intervals consists of
a set of equivalent rotation angles and we can simply pick up an angle contained
in the interval to represent the the interval. The problem is equivalent to that

Finding Largest Well-Predicted Subset of Protein Structure Models 49

of finding a point on the circle covered by the maximum number of arcs and it
can be solved by the algorithm used in [2,6] with a plane-sweep approach.

Lemma 3. The LWPS(A, B, d) problem can be solved in time O(n log n) when
rotations are allowed only on a given rotation axis.

3.3 Distance Approximating of the LWPS Problem

As we do not know which pair is a radial pair of Bopt, we enumerate all the
possible cases. Totally there are O(n2) possible cases. For two pairs 〈bi, bj〉 and
〈ai, aj〉, we have O(1/ε5) ways to match them. For each discretizaion we need
time O(n log n) to find the best match by Lemma 3. Therefore we have the
following result.

Theorem 2. The LWPS(A, B, d) can be solved in time O(n3 log n/ε5) with a
(1 + ε)d distance approximation algorithm.

4 An Efficient Randomized Algorithm for Globular
Protein Structure

The distance approximation algorithm proposed in Section 3.3 has a time com-
plexity of O(n3 log n), which is still inefficient. If we know a radial pair 〈bi, bj〉
of Bopt, then we can solve the problem in time O(n log n/ε5). This observation
inspires us to improve the algorithm by identifying a radial pair 〈bi, bj〉 or some
pair good enough to approximate a radial pair. This section presents an efficient
method to identify such a pair with high probability for meaningful models of
globular proteins.

A model is meaningful if the TMScore is greater than 0.4 [15]. Here TMScore
is defined as:

TM(A, B) = 1/n
∑
i∈M ′

1
1 + (di/d)2

where di is the Euclidean distance between ai and bi under the transformation,
d has a similar meaning as in present paper, which is a predefined threshold,
and M ′ is a subset of [1, n].

Immediately, we can prove that M ′ has a size of at least 0.4n. A careful
analysis of the TMScore paper will show that M ′ has a subset of at least 0.1n
matched pairs with distance less than d for a meaningful match. Therefore, the
following assumption is reasonable:

Assupmption 1. A meaningful prediction B of structure A has |LWPS(A, B,
d)| ≥ αn, for some constant α.

We call a pair of points bi and bj a pseudo radial pair if |bi − bj | ≥ (1/2αn)1/3.
We create grids of side length 1/3(1/2α)1/3εd, recall that for globular proteins

50 S.C. Li et al.

RB = n1/3. If we use pseudo radial pairs as a radial pair, the error introduced
at each point in the match set is less than:

3
n1/3

(1/2αn)1/3 × 1/3(1/2α)1/3εd = εd

Therefore, we can make the following statement:

Lemma 4. Given a globular protein P , rigid transformations T and T ′, let
〈p1, p2〉 be a pseudo radial pair of P , if |T (p1)−T ′(p1)| ≤ ε and |T (p2)−T ′(p2)| ≤
ε, then there exists a rotation R around the axis along

−−−−−−−−−→
T ′(p1)T ′(p2), such that

∀p ∈ P , ||R(T ′(p)) − T (p)|| ≤ 3cε, where c is some constant.

The proof is omitted. Thus any pseudo radial pair gives us a (1 + ε) distance
approximation algorithm.

Theorem 3. There exists a probabilistic (1 + ε)d distance approximation algo-
rithm for LWPS for globular proteins of meaningful models with probability at
least 1 − O(1/n) in time O(n log2 n/ε5).

We first prove that there exist enough radial pairs.

Lemma 5. Bopt contains at least 1/2|Bopt|2 pairs bi and bj such that |bi −bj| ≥
(1/2αn)1/3.

Proof. The number points confined in the ball centered at p with radius
(1/2αn)1/3, p ∈ P is bounded by 1/2αn. This implies that the number of points
in Bopt has a distance at least (1/2αn)1/3 is at least |Bopt| − 1/2αn. Thus the
statement holds.
�
Since there are at least 1/2(αn)2 pseudo radial pairs, randomly sampling 1/
α2 log n� pairs from B yields a randomized distance approximate algorithm.
Note that each pair has a probability 1/2(α/n)2

1/2n(n−1) = O(1) of being a pseudo radial
pair. Given that there are 1/α2 log n� pairs, the probability that none of them
is a pseudo radial pair is 1−O(1/n). In addition, calculation for each pair needs
time O(n log n/ε5), thus the total time complexity is O(n log2 n/ε5).

5 Approximating the Bottleneck Distance

In some cases, we need to compute the minimum distance d∗ such that each
point bi in B can fit into the corresponding d∗-sphere of ai, ai ∈ A. Techniques
in [2] can be used to attack this problem; however, these techniques suffer from
high time complexity. We present in this section an efficient one.

First, we investigate the problem if we have some d′ such that d′ ≤ dopt ≤ 2d′.
We have the following fact:

Lemma 6. If d′ ≤ dopt < 2d′, we can approximate dopt with ratio (1 + ε) in
time O(n log 1/ε

ε5).

Proof. We subdivide interval [d′, 2d′] into intervals of length 0.5εd′ (assume 1 is
divisible by 0.5ε). Totally there are 2/ε such intervals. For each interval λi =
[d′(1 + 0.5iε), d′(1 + 0.5(i + 1)ε)] (0 ≤ i ≤ 2/ε − 1), we build grids of side

Finding Largest Well-Predicted Subset of Protein Structure Models 51

length 1/3εd′ for (1 + 0.5(i + 1)ε)d′-sphere of ai, 1 ≤ i ≤ n. Then we check if
there is a transformation specified by such grids to fit all the points. For two
consecutive intervals λi and λi+1, if there is a feasible solution for interval i+ 1,
and it is infeasible for interval i + 1, then we know that d′(1 + 0.5iε) ≤ dopt ≤
d′(1 + 0.5(i + 2)ε)+ εd′. This yields us an (1 + ε)dopt algorithm immediately. We
can use a binary search to find such i, and we need O(log 1/ε) search operations.

In addition, for each search operation, it will be expensive if we employ the
enumerating techniques proposed in the previous sections. Instead, we notice
that any radial pair of B can be used as we want to fit all the points. Totally,
there are O(1/ε5) possible choices for a given radial pair. Given a rotation axis,
the angle to fit bi into ai can be modelled as an arc on a circle as previously,
and we just need to check if there is a point on the circle covered by n arcs, this
can be done in O(n).

Thus each search operation can be performed in time O(n/ε5).
�

Now the remaining difficulty is to find a d′ meeting the requirement d′ ≤ dopt <
2d′. We make use of RMSD to achieve this goal. RMSD can be computed in
linear time [4]. RMSD is defined as the minimal root mean square distance over
all the possible transformation I, i.e.,

RMSD(A, B) = min
I

√∑n
i=1 ||ai − I(bi)||2

n

Let D = RMSD(A, B), according to the definition of RMSD, we can prove:

Lemma 7. D ≤ dopt ≤ √
nD

Proof. First, we prove that D ≤ dopt. Suppose D > dopt, and let I ′ be the

transformation to obtain dopt, then we have:
√∑

n
i=1 ||ai−I′(bi)||2

n <

√∑
n
i=1 d2

opt

n =
dopt. This contradicts the definition of RMSD.

Second, we prove dopt ≤
√

nD, let I∗ be the transformation to obtain the
RMSD distance:

d2
opt ≤ n

max
i=1

{||ai − I∗(bi)||2} ≤
n∑

i=1

||ai − I∗(bi)||2 = nD2

�

We subdivide interval [D, n1/2D] into intervals [2i × D, 2i+1 × D], 0 ≤ i ≤
1/2 logn−1 (assume 1/2 logn is an integer, WLOG). For each interval, we build
grids of side length 1

32i ×Dε and sphere of radius 2i+1 ×D+2i ×Dε. If there is a
feasible solution under such grids, then we know that dopt ≤ 2i+1 × D + 2i × Dε.
We can perform a binary similar as previous to find such i.

Thus we have the following results:

Theorem 4. The bottleneck distance can be approximated with ratio (1+ ε)dopt

in time O(n(log log n + log 1/ε)/ε5).

52 S.C. Li et al.

6 Results

We have implemented the algorithm in Section 3.3 and named as ApproxSub.
The program has been implemented carefully to avoid redundant computations.
First, given pairs 〈bi, bj〉 and 〈ai, aj〉, let di,j = |bj − bi| − |aj , ai|. If |di,j | < 2d
or |di,j | > 2d, we simply preclude 〈bi, bj〉 as a radial pair candidate, as it is
impossible for bi match ai and bj match aj simultaneously. Second, given a
radial pair candidate 〈bi, bj〉, we compute an upper bound for all the O(ε5) axis
under pair 〈bi, bj〉 by employing the approximation algorithm in [6]. If the bound
is smaller than the best solution that we have found so far, we do not need to
explore any further for pair 〈bi, bj〉. Third, we try to explore the pairs which
probably yield us the best solution first. We have employ some other rules to
accelerate our program, such that it is practical and efficient.

MaxSub and TMScore are two popular programs used for protein quality
assessment. Our program are not directly comparable to MaxSub and TMScore.
However, the number of matched pairs is used as one of indicators to show the
quality of the models in both methods. We compare against this indicator.

We compare our method to the MaxSub and TMScore of finding number of
matched pairs. To compare with MaxSub, we use the default setting for MaxSub
with a distance threshold 3.5Å. We set d = 3.2Å and εd = 0.3Å for ApproxSub.
To compare with TMScore, we use the default settings for TMScore, with dis-
tance threshold 5.0Å (which is used to compute the RAW TMScore). We set
d = 4.5Å and εd = 0.5Å in ApproxSub, such that any matched pairs has a dis-
tance no more than 5.0Å. We normalize the matched pairs by dividing it by n.

We use the six proteins 1fc2, 1enh, 2gb1, 2cro, 1ctf and 4icb to evaluate
the AppproxSub. These six proteins are commonly used to test the quality of
structural prediction methods based on fragment assembly [13,8,7]. We randomly
picked up 1000 models generated by ROSETTA [13]. Fig. 2 shows the results.
Fig.2(a) is the comparison between ApproxSub and MaxSub. Each point stands
for a model, x is the ratio of matched pairs by MaxSub, and y is the ratio of
matched pairs by ApproxSub. Fig.2(b) is the comparison between ApproxSub
and TMScore. Both figures display that ApproxSub found much more matched
pairs. Also we notice that MaxSub and TMScore are poor to find matched pairs
when the ratio of matched pairs are higher than 60%. This is mainly due to the
heuristic nature of the two methods, and in which, they extend the match by
superimposing a local fragment of A and B first. This may trap them at a local
minimum.

Time efficiency is the main concern for PTAS as the leading constant is gen-
erally large. The MaxSub is implemented in TMScore. So we just compare the
running time against TMScore, since TMScore and MaxSub have the same run-
ning time if we use the package from [15]. The setting is the same as previous,
except we use more models of various lengths that generated by prediction meth-
ods for CASP7 targets[11]. Totally, there are 92 targets. We use 100 models for
each target, and take the average running time for comparison. The reason that

Finding Largest Well-Predicted Subset of Protein Structure Models 53

(a) ApproxSub vs. MaxSub

(b) ApproxSub vs. TMScore

Fig. 2. Ratio of Matched Pairs

we choose CASP7 targets rather than the above six proteins is due to that
CASP7 target provides enough length variation of the proteins.

Fig. 3(a) shows the running time of ApproxSub against TMScore. The x-
coordinate is the length for protein structures. The y-coordinate is the CPU
time in seconds. Our program is significantly faster.

54 S.C. Li et al.

(a) ApproxSub vs. TMScore

Fig. 3. Running time of ApproxSub vs. MaxSub

7 Discussion

We have implemented our algorithms, it is efficient and practical. Our package
can be used to qualify the heuristic approaches, and to identify all the well-
predicted sub-structures. Furthermore, our package has a theoretical bound.

Our techniques can also be applied to protein structure alignment problems.
However, it will yield theoretical results rather than practical tools due to high
time complexity.

References

1. Agarwal, P.K., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees
and related problems in higher dimensions. Comput. Geom. Theory Appl. 1(4),
189–201 (1992)

2. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and sym-
metries of geometric objects. In: SCG 1987: Proceedings of the third annual sym-
posium on Computational geometry, pp. 308–315. ACM Press, New York (1987)

3. Ambühl, C., Chakraborty, S., Gärtner, B.: Computing largest common point sets
under approximate congruence. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879,
pp. 52–64. Springer, Heidelberg (2000)

4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets.
IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

5. Choi, V., Goyal, N.: A combinatorial shape matching algorithm for rigid protein
docking. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 285–296. Springer, Heidelberg (2004)

6. Choi, V., Goyal, N.: An efficient approximation algorithm for point pattern match-
ing under noise. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 298–310. Springer, Heidelberg (2006)

Finding Largest Well-Predicted Subset of Protein Structure Models 55

7. Hamelryck, T., Kent, J.T., Krogh, A.: Sampling Realistic Protein Conformations
Using Local Structural Bias. PLoS Computational Biology 2(9), e131 (2006)

8. Kolodny, R., Koehl, P., Guibas, L., Levitt, M.: Small libraries of protein fragments
model native protein structures accurately. J. Mol. Biol. 323, 297–307 (2002)

9. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial
time. Proc. Natl. Acad. Sci. 101, 12201–12206 (2004)

10. Lancia, G., Istrail, S.: Protein structure comparison: Algorithms and applications.
In: Mathematical Methods for Protein Structure Analysis and Design, pp. 1–33
(2003)

11. Moult, J., Fidelis, K., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment
of methods of protein structure prediction (casp):round 6. Proteins: Struct. Funct.
Genet. 61, 3–7 (2005)

12. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: Maxsub: an automated measure
for the assessment of protein structure prediction quality. Bioinformatics 16(9),
776–785 (2000)

13. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of Protein Ter-
tiary Structures from Fragments with Similar Local Sequences using Simulated
Annealing and Bayesian Scoring Functions. J. Mol. Biol. 268 (1997)

14. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucl.
Acids Res. 31(13), 3370–3374 (2003)

15. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein struc-
ture template quality. Proteins: Structure, Function, and Bioinformatics 57(4),
702–710 (2004)

HP Distance Via Double Cut and Join Distance

Anne Bergeron1, Julia Mixtacki2, and Jens Stoye3

1 Dépt. d’informatique, Université du Québec à Montréal, Canada
bergeron.anne@uqam.ca

2 International NRW Graduate School in Bioinformatics and Genome Research,
Universität Bielefeld, Germany

julia.mixtacki@uni-bielefeld.de
3 Technische Fakultät, Universität Bielefeld, Germany

stoye@techfak.uni-bielefeld.de

Abstract. The genomic distance problem in the Hannenhalli-Pevzner
theory is the following: Given two genomes whose chromosomes are lin-
ear, calculate the minimum number of inversions and translocations that
transform one genome into the other. This paper presents a new distance
formula based on a simple tree structure that captures all the delicate
features of this problem in a unifying way.

1 Introduction

The first solution to the genomic distance problem was given by Hannenhalli and
Pevzner [6] in 1995. Their distance formula, called the general HP distance, re-
quires preprocessing steps such as capping and concatenation and involves seven
parameters. In the last decade, different authors pointed to problems in the
original formula and in the algorithm given by Hannenhalli and Pevzner. Their
algorithm was first corrected by Tesler [9]. In 2003, Ozery-Flato and Shamir [8]
found a counter-example and modified one of the parameters of the distance for-
mula. Very recently, another correction was presented by Jean and Nikolski [7].
Unfortunately, the last two recent results have not resulted in simpler presenta-
tions of the material, nor are they implemented in software tools yet. The only
available tool is GRIMM implemented by Glenn Tesler [10].

In contrast to this rather complicated distance measure, Yancopoulos
et al. [11] presented a general genome model that includes linear and circu-
lar chromosomes and introduced a new operation called double cut and join (or
shortly DCJ) operation. In addition to inversions and translocations, the DCJ
operation also models transpositions and block-interchanges. Beside the simple
distance computation, the sorting algorithm is also basic and efficient [4].

In this paper we will show how the rearrangement model considered in the
HP theory can be integrated in the more general DCJ model. Specifically, the
HP distance can be expressed as

dHP = dDCJ + t

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 56–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

HP Distance Via Double Cut and Join Distance 57

where t represents the extra cost of not resorting to unoriented DCJ operations.
The extra cost can easily be computed by a tree data structure associated to a
genome.

The next section recalls the results on the DCJ distance. In Section 3, we
establish the conditions under which the two distances are equal. The general
case is treated in Section 4, where we introduce the basic concepts and the tree
needed for the computation of the HP distance, and we give a new proof and
formula for the Hannenhalli-Pevzner theorem. Section 5 presents the conclusion.

2 The Double Cut and Join (DCJ) Model

Let A and B be two linear multi-chromosomal genomes on the same set of N
genes. A linear chromosome will be represented by an ordered sequence of signed
genes, flanked by two unsigned telomere markers:

(◦, g1, . . . , gn, ◦).

An interval (l, . . . , r) in a genome is a set of consecutive genes or telomere markers
within a chromosome; the set {l, −r} is the set of extremities of the interval –
note that ◦ = −◦. An adjacency is an interval of length 2, an adjacency that
contains a telomere marker is called a telomere. Each gene g is the extremity
of two adjacencies, one as +g, and one as −g, in both genomes A and B. This
remark yields the following basic construct:

Definition 1. The adjacency graph AG(A, B) is a graph whose vertices are the
adjacencies of genomes A and B. Each gene g defines two edges, one connecting
the two adjacencies of genome A and B in which g appears as extremity +g, and
one connecting the two adjacencies in which g appears as extremity −g.

Since adjacencies that are telomeres have only one gene, the vertices of the
adjacency graph will have degree one or two, thus the graph is a union of
paths and cycles. Paths of odd length, called odd paths, connect telomeres of
different genomes, and paths of even length, the even paths, connect telom-
eres of the same genome. For example, the adjacency graph of the genomes
A = {(◦, 3, 2, 1, 4, ◦), (◦, 6, 5, ◦)} and B = {(◦, 1, 2, 3, 4, ◦), (◦, 5, 6, ◦)} has two
odd paths, one cycle and two even paths:

� � � � � � � �
{◦,−3} {3,−2} {2,−1} {1,−4} {4,−◦} {◦,−6} {6,−5} {5,−◦}

� � � � � � � �

{◦,−1} {1,−2} {2,−3} {3,−4} {4,−◦} {◦,−5} {5,−6} {6,−◦}
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

A DCJ operation applied to two adjacencies of the same genome disconnects
the incident edges of the adjacency graph, and reconnects them in one of the

58 A. Bergeron, J. Mixtacki, and J. Stoye

possible other ways. The DCJ distance between genomes A and B, dDCJ (A, B),
is the minimum number of DCJ operations necessary to transform genome A
into genome B. We have:

Theorem 1 ([4]). Let A and B be two genomes defined on the same set of N
genes, then we have

dDCJ(A, B) = N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A, B).
An optimal sorting sequence can be found in O(N) time.

A DCJ operation that reduces the DCJ distance by 1 is called DCJ-sorting.
Using Theorem 1, we have the following property of DCJ-sorting operations,
using the fact that a DCJ operation acts on at most two paths or cycles, and
produces at most one new path or cycle:

Corollary 1. A DCJ-sorting operation acts on a single path or cycle, or on two
even paths of the adjacency graph.

Some DCJ operations can create intermediate circular chromosomes, even if both
genomes A and B are linear, and we will want to avoid them in the HP model.
The following definition is a generalization of a classical concept in rearrangement
theory, oriented operations:

Definition 2. A DCJ-sorting operation is oriented if it does not create circular
chromosomes.

For two linear genomes, oriented operations are necessarily inversions, translo-
cations, fusions or fissions. These operations are also called HP operations, and
the HP distance between two genomes dHP (A, B) is the minimum number of HP
operations needed to transform genome A into genome B. Since DCJ operations
are more general than HP operations, we always have the following lower bound:

Proposition 1. For two linear genomes A and B, we have that dDCJ(A, B) ≤
dHP (A, B).

3 Components and Oriented Sorting

In this section, we introduce the notion of components. They roughly correspond
to the classical concept of components, but in the context of adjacency graphs,
we prove that they are unions of paths and cycles.

3.1 Basic Definitions

Definition 3. Given two genomes A and B, an interval (l, . . . , r) of genome A
is a component relative to genome B if there exists an interval in genome B:

a) with the same extremities,
b) with the same set of genes, and
c) that is not the union of two such intervals.

HP Distance Via Double Cut and Join Distance 59

Example 1. Let

A={(◦, 2, 1, 3, 5, 4, ◦), (◦, 6, 7, −11, −9, −10, −8, 12, 16, ◦), (◦, 15, 14, −13, 17,◦)},

B ={(◦, 1, 2, 3, 4, 5, ◦), (◦, 6, 7, 8, 9, 10, 11, 12◦), (◦, 13, 14, 15, ◦), (◦, 16, 17, ◦)}.

The components of genome A relative to genome B are: (◦, 2, 1, 3), (3, 5, 4, ◦),
(◦, 6), (6, 7), (−11, −9, −10, −8), (7, −11, −9, −10, −8, 12), (◦, 15, 14, −13) and
(17, ◦).

Note that components of length 2 are the same adjacencies in both genomes,
possibly up to flipping of a chromosome. These are called trivial components.

Two components are nested if one is included in the other and their extremities
are different. As the following lemma shows, two components cannot share a
telomere:

Lemma 1. If (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components, then r1 =
r2, and if (l1, . . . , l2, . . . , ◦) and (l2, . . . , ◦) are two components then l1 = l2.

Proof. Suppose that (◦, . . . , r1) and (◦, . . . , r1, . . . , r2) are two components. Since
the corresponding intervals in genome B, (◦, . . . , r1) and (◦, . . . , r2), share the
same gene content, the interval (r1, . . . , r2) shares the same gene content in both
genomes, thus (r1, . . . , r2) is a component, and (◦, . . . , r1, . . . , r2) is the union of
two components, a contradiction. The other statement has a similar proof. ��
It is further known that two components can not properly overlap on two or more
elements. We thus have the following generalization of a statement from [5]:

Proposition 2. Two components are either disjoint, nested, or overlap on ex-
actly one gene.

Proposition 2 implies that components can be partially ordered by inclusion, and
that overlapping components will have the same parent. An adjacency properly
belongs to the smallest component that contains it.

Definition 4. The adjacency graph of a component C is the subgraph of the
adjacency graph of genomes A and B induced by the adjacencies that properly
belong to C.

An important property of the adjacency graph is the following:

Proposition 3. The adjacency graph of a component is a union of paths and
cycles of the adjacency graph of genomes A and B.

Proof. Let C = (l, . . . , r) be a component. Since it has the same gene content
and the same extremities as the corresponding interval in genome B, all edges
of the adjacency graph that are within the interval (l, . . . , r) in genome A will
also be within the interval (l, . . . , r) in genome A. Thus all these edges form a
union of paths and cycles of the adjacency graph of genomes A and B.

Each component that is nested in C is also a union of paths and cycles of the
adjacency graph of genomes A and B, and none of them contains an adjacency
that properly belongs to C. We can thus remove them without compromising the
connectivity of the adjacency graph of C. ��

60 A. Bergeron, J. Mixtacki, and J. Stoye

3.2 Oriented Sorting

Since orientation of genes is relative, we can always assume that all genes in
a chromosome of genome B are positive and in increasing order. The proper
adjacencies of a component C = (l, . . . , r) induce a block partition in the cor-
responding chromosomes of genomes A and B. If we label the blocks in the
chromosome of genome B with numbers from 1 to k, the corresponding blocks
of the chromosome in genome A will be a signed permutation (p1, . . . , pk) of
these integers {1, . . . , k}. We will call this permutation – or it reverse – the
permutation associated to the component C.

Consider for example the following two genomes

A = {(◦ 5, 1, 3, −2, 4, 6, −10, 9, 8,−7, 11 ◦)}
B = {(◦ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ◦)}

The associated components can easily be seen in the following diagram:

5 1 3 -2 4 6 -10 9 8 -7 11

The component (◦, . . . , 6) consists of three blocks: the gene 5, the block (1, . . . , 4)
and the gene 6. Thus, the permutation associated to the component (◦, . . . , 6) is
(2, 1, 3). For the other three non-trivial components, the associated permutations
are (1, 3, −2, 4), (−4, 3, 2, −1) and (1, −2, 3).

When the permutation associated to a component has both positive and neg-
ative signs, then it is well known from the sorting by inversion theory that
the component can be optimally sorted by DCJ-sorting inversions. Components
whose associated permutations have only positive elements can sometimes be
optimally sorted by DCJ-sorting inversions. For example, consider the pair of
genomes:

A = (◦, 4, 3, 2, 1, ◦) and B = (◦, 1, 2, 3, 4, ◦),

whose associated permutation is (4, 3, 2, 1). Its DCJ distance is 4, and it can be
optimally sorted by inverting each of the four genes. However, we have:

Lemma 2. If all elements of the permutation associated to a component have
the same sign, then no inversion acting on one of its paths or cycles can create
a new cycle.

Proof. By eventually flipping the chromosome, we can assume that all the ele-
ments of the permutation are positive. Suppose that an inversion is applied to
two adjacencies (+i, +j) and (+k, +l) in a single path or cycle of the compo-
nent, and that this creates a new cycle. The new adjacencies will be (+i, −k)
and (−j, +l), where at most one of +i and +l can be a telomere. If both of
these new adjacencies belong to the same path or cycle, there was no creation
of a new cycle. Suppose that the adjacency (+i, −k) belongs to the new cycle,
then all other adjacencies of this cycle existed in the original component, and are
composed of positive elements. This, however, is impossible by the construction
of the adjacency graph. ��

HP Distance Via Double Cut and Join Distance 61

Definition 5. A component is oriented if there exists an oriented DCJ-sorting
operation that acts on vertices of its adjacency graph, otherwise it is unoriented.

Oriented components are characterized by the following:

Proposition 4. A component is oriented if and only if either its associated
permutation has positive and negative elements, or its adjacency graph has two
even paths.

Proof. If the associated permutation has positive and negative elements, then
there is at least one change of signs between blocks labeled by consecutive in-
tegers. There thus exists an inversion that creates an adjacency in genome B,
thus a new cycle, and the inversion is DCJ-sorting. If there are two even paths,
then one must be a path from genome A to genome A, and the other must be a
path from genome B to genome B. An inversion in genome A that acts on one
adjacency in each path creates two odd paths, thus is DCJ-sorting.

In order to show the converse, suppose that all elements of the associated
permutation are positive, and all paths are odd. By Corollary 1, a DCJ-sorting
operation must act on a single path or cycle. This operation cannot be a translo-
cation or a fusion since all paths and cycles of a component are within a chro-
mosome. This operation cannot be an inversion, since inversions that create new
cycles are ruled out by Lemma 2, inversions acting on a single odd path cannot
augment the number of odd paths, and inversions acting on cycles never create
paths. Finally, this operation cannot be a fission: a fission acting on a cycle cre-
ates an even path; and a fission acting on an odd path must circularize one of
the chromosome parts in order to be DCJ-sorting, otherwise it would be split
into an even path and an odd path. ��
Proposition 4 implies that, in the presence of unoriented components, we have
dDCJ(A, B) < dHP (A, B), since all DCJ-sorting operations will create circu-
lar chromosomes. On the other hand, well known results from the Hannehalli-
Pevzner theory show that, when all components admit a sorting inversion, then
it is possible to create a new cycle at each step of the sorting process with HP
operations, without creating unoriented components. The same type of result
can be obtained in this context, and we give it in the Appendix. Thus we have:

Theorem 2. Given two linear genomes A and B, dHP (A, B) = dDCJ(A, B) if
and only if there are no unoriented components.

4 Computing the General HP Distance

In this section we will show that, given the DCJ distance dDCJ , one can express
the Hannenhalli-Pevzner distance dHP in the form

dHP = dDCJ + t,

where t represents the additional cost of not resorting to unoriented DCJ oper-
ations. First, we describe how to destroy unoriented components in Section 4.1
and after that, in Section 4.2, we compute the additional cost from the inclusion
and linking tree of the unoriented components.

62 A. Bergeron, J. Mixtacki, and J. Stoye

4.1 Destroying Unoriented Components

Destroying unoriented components is done by applying a DCJ operation either
on one component in order to orient it, or on two components in order to merge
them, and possibly others, into a single oriented component. By using the nesting
and linking relationship between components, one can minimize the number of
operations necessary to destroy unoriented components.

When two components overlap on one element, we say that they are linked.
Successive linked components form a chain. A chain that cannot be extended to
the left or right is called maximal. We represent the nesting and linking relations
between components of a chromosome in the following way:

Definition 6. Given a chromosome X of genome A and its components relative
to genome B, define the forest FX by the following construction:

1. Each non-trivial component is represented by a round node.
2. Each maximal chain that contains non-trivial components is represented by

a square node whose (ordered) children are the round nodes that represent
the non-trivial components of this chain.

3. A square node is the child of the smallest component that contains this chain.

Now, we define a tree associated to the components of a genome by combining
the forests of all chromosomes into one rooted tree:

Definition 7. Suppose genome A consists of chromosomes {X1, X2, . . . , XK}.
The tree T associated to the components of genome A relative to genome B is
given by the following construction:

1. The root is a round node.
2. All trees of the set of forests {FX1 , FX2 , . . . , FXK } are children of the root.

The round nodes of T are painted according to the following classification:

1. The root and all nodes corresponding to oriented components are painted
black.

2. Nodes corresponding to unoriented components that do not contain telom-
eres are painted white.

3. Nodes corresponding to unoriented components that contain one or two
telomeres are painted grey.

The tree associated to the components of the genomes A and B of Example 1 is
shown in Fig. 1. Note that grey nodes are never included into other components.

The following two propositions are general remarks on components and are
useful to show how to destroy unoriented components.

Proposition 5. A translocation acting on two (unoriented) components cannot
create new (unoriented) components.

Proposition 6. An inversion acting on two (unoriented) components A and
B creates a new component D if and only if A and B are included in linked
components.

HP Distance Via Double Cut and Join Distance 63

�

������

������
���

�×

(◦, . . . , 3)

���
�×

(3, . . . , ◦) �(7, . . . , 12)

�(−11, . . . ,−8)

�(◦, . . . ,−13)

Fig. 1. The tree T associated to the genomes A and B of Example 1 has two grey
leaves, one white leaf and one black leaf

Now, we have all necessary results to get rid of unoriented components. The fol-
lowing two propositions are straightforward generalizations of well-known results
from the inversion theory [2]. We will start by looking at one single unoriented
component.

Proposition 7. If a component C is unoriented, any inversion between adja-
cencies of the same cycle or the same path of C orients C, and leaves the number
of cycles and paths of the adjacency graph of C unchanged.

Orienting a component as in Proposition 7 is called cutting the component. Note
that this operation leaves the DCJ distance unchanged, and does not create new
components.

It is possible to destroy more than one unoriented component with a DCJ
operation acting on two unoriented components. The following proposition de-
scribes how to merge several components, and the relations of this operation to
paths in the tree T .

Proposition 8. A DCJ operation acting on adjacencies of two different unori-
ented components A and B destroys, or orients, all components on the path from
A to B in the tree T , without creating new unoriented components.

If the DCJ operation acts on two odd paths, thus on grey components, then
merging the two components can be done without changing the number of odd
paths, and the DCJ distance is unchanged. If the DCJ operation involves at least
one cycle, then merging two components decreases the number of cycles by one,
and the DCJ distance will increase by 1 in the resulting pair of genomes.

4.2 Unoriented Sorting

Let T be the tree associated to the components of genome A relative to genome
B, and let T ′ be the smallest subtree of T that contains all the unoriented
components, that is, the white and grey nodes.

Definition 8. A cover of T ′ is a collection of paths joining all the unoriented
components, such that each terminal node of a path belongs to a unique path.

64 A. Bergeron, J. Mixtacki, and J. Stoye

A path that contains two or more white or grey components, or one white and
one grey component, is called a long path. A path that contains only one white
or one grey component, is a short path.

The cost of a cover is defined to be the sum of the costs of its paths, where the
cost of path is the increase in DCJ distance caused by destroying the unoriented
components along the path. Using the remarks following Propositions 7 and 8,
we have:

1. The cost of a short path is 1.
2. The cost of a long path with just two grey components is 1.
3. The cost of all other long paths is 2.

An optimal cover is a cover of minimal cost. Define t as the cost of any optimal
cover of T ′. We first establish that t is the difference between the two distances,
using the following terminology:

Definition 9. Given genomes A and B, we call a DCJ operation applied to
genome A

– proper, if it decreases dDCJ(A, B) by one, i.e. Δ(C + I/2) = 1,
– improper, if dDCJ(A, B) remains unchanged, i.e. Δ(C + I/2) = 0, and
– bad, if it increases dDCJ(A, B) by one, i.e. Δ(C + I/2) = −1.

Theorem 3. If t is the cost of an optimal cover of T ′, the smallest subtree of
T that contains all the unoriented components of genome A relative to genome
B, then:

dHP (A, B) = dDCJ(A, B) + t.

Proof. First, we will show that dHP (A, B) ≤ dDCJ(A, B)+t. Consider any cover
of the tree T ′. Let

– ww be the number of long paths with only white components,
– wg be the number of long paths with white and grey components,
– gg be the number of long paths with only grey components,
– w be the number of short paths with one white component,
– g be the number of short paths with one grey component.

Clearly, we have that the cost t′ of this cover is t′ = 2ww + 2wg + gg + w + g.
Suppose that the adjacency graph AG(A, B) has C cycles and I odd paths.

Applying ww+wg bad DCJ operations and gg+w+g improper DCJ operations
yields a genome A′. Since each bad DCJ operation merges two cycles or one cycle
and a path, the number of cycles in AG(A′, B) is C − ww − wg. Note that the
number of odd paths remains unchanged. Therefore, by Theorem 2, we have that

dHP (A, B) ≤ dHP (A′, B) + ww + wg + gg + w + g

= N − (C +
I

2
) + 2ww + 2wg + gg + w + g

= dDCJ(A, B) + t′.

HP Distance Via Double Cut and Join Distance 65

Thus, since the above equation is true for any cover, we have: dHP (A, B) ≤
dDCJ(A, B) + t.

The fact that dHP (A, B) ≥ dDCJ(A, B) + t is a consequence of the fact that
an optimal sorting with HP operation necessarily induces a cover of T ′ since all
unoriented components are eventually destroyed. ��

It remains to establish a closed formula for t. A first easy but significant result
on the size of t is the following lower bound. Let w be the number of white leaves
and g be the number of grey leaves in T ′. Since destroying a white leaf costs at
least 1 and destroying a grey leaf costs at least 1/2, and t is an integer, we have:

w +
⌈g

2

⌉
≤ t.

It is quite remarkable, as was observed in the original paper on HP distance [6],
that this bound is at most within one rearrangement operation from the optimal
solution.

A branch in a tree is called a long branch if it has two or more unoriented
components. A tree is called a fortress if it has an odd number of leaves, all of
them on long branches. A standard theorem of the sorting by inversion theory
states that the minimal cost to cover a tree that is not a fortress is �, the number
of leaves of the tree, and � + 1 in the case of a fortress [2].

We have first:

Theorem 4. Let w be the number of white leaves and g be the number of grey
leaves in T ′, the smallest subtree of T that contains all the unoriented components
of genome A relative to genome B. If the root of T ′ has more than one child
with white leaves, then the minimal cost of a cover of T ′ is:

t = w + � g
2� if the smallest subtree T ′′ that contains all the white leaves

of T ′ is not a fortress, or g is odd,
t = w + � g

2� + 1 otherwise.

Proof. If the subtree T ′′ is not a fortress then it admits a cover of cost w, and
pairing the maximum number of grey nodes yields a cover of T ′ costing w+ � g

2�.
If the subtree T ′′ is a fortress, then one of its white leaves is not paired with
another leaf since the number of leaves is odd. A cover of T ′ can be obtained by
pairing this white leaf with a grey leaf, which exists if g is odd. The resulting
cost will be again w + � g

2� which equals the lower bound and thus the cover is
optimal.

If the subtree is a fortress and g is even, we can construct a cover costing
(w+1)+g/2, using the cover of the fortress and pairing the grey nodes. To show
that this cost is minimal, suppose that k grey nodes are paired with k white
nodes, the remaining white and grey paired separately. If k is even, then the cost
of such a cover would be (w−k+1)+(g−k)/2+2k, which is greater than or equal
to (w+1)+g/2. If k is odd, then the cost of this cover is (w−k)+(g−k+1)/2+2k,
which is again greater than or equal to (w + 1) + g/2. ��

66 A. Bergeron, J. Mixtacki, and J. Stoye

When all the white leaves belong to a single child of the root, the situation is
more delicate. Define a junior fortress as a tree with an odd number of white
leaves, all of them on long branches, except one that is alone on its branch, called
the top of the fortress. We have the following:

Theorem 5. Let w > 0 be the number of white leaves and g > 0 be the number
of grey leaves in T ′, the smallest subtree of T that contains all the unoriented
components of genome A relative to genome B. If the root of T ′ has only one
child c with white leaves then the minimal cost of a cover of T ′ is:

t = w + � g
2� if g is odd and the subtree Tc that is rooted at c

is neither a fortress nor a junior fortress,
t = w + � g

2� + 1 otherwise.

Proof. Suppose first that g = 1, then the only grey leaf either belongs to Tc or
not. In the first case, this grey leaf must be the child c implying that Tc is not
a junior fortress. If Tc is not a fortress, then there exists a cover with minimal
cost equal to the number of leaves of Tc, which is given by w + � g

2�, since g = 1.
If Tc is a fortress, then the minimal cost of a cover is w + � g

2� + 1.
In the other case, i.e. the grey leaf does not belong to Tc, then if Tc is a

fortress or a junior fortress, the whole tree T ′ is a fortress with w + � g
2� leaves,

yielding a cost of w + � g
2� + 1. Otherwise, if Tc is neither a fortress nor a junior

fortress, then T ′ can not be a fortress, and hence can be destroyed with cost
w + 1 = w + � g

2�.
The same argumentation holds for any g > 1 if g is odd.
Now, we consider the case g = 2. If Tc is a fortress, two of the white leaves in

Tc can be paired with the two grey leaves outside Tc at cost 4. This eliminates
the two grey leaves, two of the long white branches, and the branch containing
c. The remaining w − 2 long branches are paired at cost w − 2. Together, this
gives a cover of cost 4 + w − 2 = w + � g

2� + 1. This is optimal since the cost of
T ′ is the same as for Tc. If Tc is not a fortress, we do not need to pair white and
grey leaves. Tc can be covered with cost w + 1 and the g grey leaves are paired
with cost � g

2�, giving again a total cost of w + � g
2� + 1.

If g > 2 and g is even, it is always possible to pair the grey leaves, as long
as there are more than two left, and then apply the case g = 2. This gives the
same cost w + � g

2� + 1. ��
For example, the genomes A and B of Example 1 have N = 17 genes. The
adjacency graph AG(A, B) has C = 3 cycles and I = 6 odd paths. After removing
the dangling black leaf, the tree T ′ has g = 2 grey leaves and w = 1 white leaf
(see Fig. 1). Therefore, by Theorem 5, we have t = 2 and thus

dHP (A, B) = N − (C +
I

2
) + t = 17 − (3 + 3) + 2 = 13.

5 Conclusion

In this paper, we have given a simpler formula for the Hannenhalli-Pevzner
genomic distance equation. It requires only a few parameters that can easily be

HP Distance Via Double Cut and Join Distance 67

computed directly from the genomes and from simple graph structures derived
from the genomes. Traditionally used concepts that were sometimes hard to
access, like weak-fortresses-of-semi-real-knots, are bypassed.

References

1. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory.
In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117.
Springer, Heidelberg (2001)

2. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and
fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

3. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput.
Biol. 13(2), 567–578 (2006)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

5. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its appli-
cations to genome comparison. In: Warnow, T., Zhu, B. (eds.) COCOON 2003.
LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

6. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592. IEEE
Press, Los Alamitos (1995)

7. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal
capping. Inf. Process. Lett. 104, 14–20 (2007)

8. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangements. J. Bioinf.
Comput. Biol. 1(1), 71–94 (2003)

9. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J.
Comput. Syst. Sci. 65(3), 587–609 (2002)

10. Tesler, G.: GRIMM: Genome rearrangements web server. Bioinformatics 18(3),
492–493 (2002)

11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

A Proof of Theorem 2

Components whose both extremities are genes, often called real components, are
well studied in the context of sorting a single chromosome with the same flanking
genes [1]. We have the following:

Proposition 9 ([1]). An oriented real component has an oriented DCJ-sorting
operation that does not create new unoriented components.

Components that contain one or two telomere are called semi-real.

Proposition 10. An oriented semi-real component whose associated permuta-
tion is oriented can be sorted with oriented DCJ-sorting operations.

68 A. Bergeron, J. Mixtacki, and J. Stoye

Proof. We will show that such components can be embedded in oriented real
components with the same DCJ distance. Then, we can sort the component
with oriented DCJ-sorting operations. The basic idea is the following: if the
component has one telomere, add an extra gene 0 or k to the associated permu-
tation. This transforms the – only – odd path into a cycle and preserves the DCJ
distance. If the component has two telomeres – it spans a whole chromosome –
flip the chromosome as necessary in order to “close” each odd path into a cycle.
It is then easy to show that the DCJ distance is preserved. ��

Proposition 11. A semi-real component whose adjacency graph has even paths
can be sorted with oriented DCJ-sorting operations.

Proof. First, note that the semi-real component C = (l, . . . , r) has two even
paths. Consider the permutation (p1, . . . , pk) associated to component C. If the
permutation is oriented, then it is possible to sort the component with oriented
DCJ-sorting operations by Proposition 10.

Now, if the permutation is unoriented, then all genes p1 to pk have the same
sign. There exist two possible fissions: fission F1 creating telomere (k, ◦) and
fission F2 creating (◦, 1). It can be shown that one of these two fissions does not
create new unoriented components. ��

Definition 10. A DCJ operation creating the adjacency (a, b) of B, where a and
b are genes, is called interchromosomal, if (a, x) and (y, b) belong to different
chromosomes in A.

1. If x 	= ◦ and y 	= ◦, the DCJ operation is a translocation.
2. If x = ◦ or y = ◦, the DCJ operation is a semi-translocation.
3. If x = ◦ and y = ◦, the DCJ operation is a fusion.

The next proposition is the key, it says that for any interchromosomal DCJ op-
eration that creates an unoriented component there always exists an alternative
interchromosomal DCJ-sorting operation that does not. This statement, already
proven in the context of sorting by translocations in [3], can be shown similarly
for the general case.

Proposition 12. Given two linear genomes A and B, if an interchromosomal
DCJ operation creates an unoriented component, then there exists another in-
terchromosomal DCJ-sorting operation that does not.

Theorem 2. Given two linear genomes A and B, dHP (A, B) = dDCJ(A, B) if
and only if there are no unoriented components.

Proof. The “if” part comes from the fact that we can sort a genome without
unoriented components with DCJ-sorting operations (Propositions 10, 11, 12),
adding the fact that semi-real components whose graphs have even paths can
be “destroyed” by fissions. The “only if” part comes from the fact that if there
are unoriented components, then dDCJ (A, B) < dHP (A, B), since we showed in
Proposition 4 that all DCJ-sorting operations create circular chromosomes in
these cases. ��

Fixed Parameter Tractable Alignment of RNA

Structures Including Arbitrary Pseudoknots

Mathias Möhl1,�, Sebastian Will2,�, and Rolf Backofen2

1 Programming Systems Lab, Saarland University, Saarbrücken, Germany
mmohl@ps.uni-sb.de

2 Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universität,
Freiburg, Germany

{will,backofen}@informatik.uni-freiburg.de

Abstract. We present an algorithm for computing the edit distance of
two RNA structures with arbitrary kinds of pseudoknots. A main benefit
of the algorithm is that, despite the problem is NP-hard, the algorith-
mic complexity adapts to the complexity of the RNA structures. Due to
fixed parameter tractability, we can guarantee polynomial run-time for
a parameter which is small in practice. Our algorithm can be considered
as a generalization of the algorithm of Jiang et al. [1] to arbitrary pseu-
doknots. In their absence, it gracefully degrades to the same polynomial
algorithm. A prototypical implementation demonstrates the applicabil-
ity of the method.

Keywords: RNA alignment, pseudoknots, fixed parameter tractability.

1 Introduction

Over the last years, numerous discoveries attribute to RNA a central role that
goes far beyond being a messenger and comprises regulatory as well as catalytic
functions [2]. The turn of focus from purely sequence based analysis, as largely
applied for DNA and proteins, to structure based analysis, as required for RNA,
imposes a challenge to bioinformatics.

For this reason, RNA sequence/structure alignment is a rich and active field
of research [1,3,4,5,6]. Almost all current approaches rely on the assumption
that the pseudoknot-free representation of RNA structures suffices to obtain
reasonable alignments. This is justified, algorithmically, since this restriction al-
lows for an efficient treatment, as well as biologically, since the function of an
RNA-molecule is mainly determined by its pseudoknot-free, secondary structure,
which is usually more conserved than its sequence. Recent findings at least ques-
tion the assumption that pseudoknots can be neglected. Today, it is known that
many natural RNA molecules not only contain pseudoknots, but that these pseu-
doknots have diverse and important functions in the cell [7] and are therefore
highly conserved [8]. Moreover, the concrete alignment of the pseudoknot region

� These authors contributed equally.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 69–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 M. Möhl, S. Will, and R. Backofen

is of major interest, since pseudoknots often occur at the functional centers of
RNAs.

Many problems associated with the prediction or alignment of structures
with arbitrary pseudoknots are NP-hard [1,9]. To overcome the limitation to
pseudoknot-free structures, but still maintain a complexity that is affordable
in practice, one has several alternatives. A first approach is to consider only a
restricted class of pseudoknots, which allows a polynomial algorithm [10,11,12].
Second, there are heuristic approaches which are usually fast, but which are not
guaranteed to find the optimal structure or do not give a performance guarantee,
or both [6]. Here we will follow a third direction, namely to design an algorithm
that can align arbitrary pseudoknots, always computes optimal structures and
nevertheless has a performance guarantee in terms of fixed parameter tractabil-
ity. Whereas polynomial runtime cannot be guaranteed in general for NP-hard
problems, unless P=NP, fixed parameter tractability allows to guarantee poly-
nomial runtime if some parameter, which is usually small on practical instances,
is considered as constant.

We present an algorithm that computes the optimal alignment of two RNA
structures with respect to their edit distance. The parameter determining the
exponential runtime depends on how complex the crossing stems are arranged
and is small in practice. As a nice property, the algorithm gracefully degrades
to the algorithm of Jiang et al. [1] for the simpler class of structures handled by
their algorithm.

Related Work. Most of the algorithms for RNA sequence structure alignment
are not able to align pseudoknots [13,5,3,1].

Among the algorithms supporting pseudoknots, there are several grammar-
based approaches for motif finding, which try to align a sequence with given
structure to a sequence with unknown structure (usually a genomic sequence)
[14,15]. In these approaches, the class of supported pseudoknots depends on the
expressivity of the underlying grammar formalism.

Concerning the alignment of two pseudoknotted structures, Evans [9] de-
veloped a fixed parameter tractable algorithm that computes the longest arc
preserving common subsequence of two sequences with arbitrary kinds of pseu-
doknots. This problem is related to edit distance. However, on input classes
where our algorithm guarantees polynomial run-time due to the fixed parame-
ter, the run-time of Evan’s algorithm is not polynomially bounded.

Another algorithm by Evans [12] finds the maximum common ordered sub-
structure of two RNA structures in polynomial time (more precisely in O(n10)
time and O(n8) space, where n denotes the length of the sequences), but only
for a restricted class of pseudoknots.

Bauer et al. [6] give an algorithm based on integer linear programming with
Lagrangian relaxation that aligns two sequences with arbitrary pseudoknots. As
a heuristic approach, it works usually well in practice but gives no guarantees
on performance and may even fail to yield optimal results.

Furthermore, there is a fixed parameter tractable algorithm by Blin et al. [16]
for protein design involving RNA, which shares an important idea with our

Fixed Parameter Tractable Alignment of RNA Structures 71

approach, namely the bipartitioning of the complete set of base pairs into an
efficiently tractable subset and the remaining “hard” base pairs (in our case,
pairs of base pairs).

2 Preliminaries

An arc-annotated sequence is a pair (S, P), where S is a string over the set of
bases {A, U, C, G} and P is a set of arcs (l, r) with 1 ≤ l < r ≤ |S| representing
bonds between bases, such that each base is adjacent to at most one arc, i.e.
∀(l, r) �= (l′, r′) ∈ P : l �= l′ ∧ l �= r′ ∧ r �= l′ ∧ r �= r′. We denote the i-th symbol
of S by S[i]. For an arc p = (l, r), we denote its left end l and right end r by pL

and pR, respectively.
For an arc-annotated sequence (S, P), an arc p ∈ P is called crossing if there

is an arc p′ ∈ P such that pL < p′L < pR < p′R or p′L < pL < p′R < pR. In
the first case, p is called right crossing, in the second case left crossing; p and p′

form a pseudoknot. An arc-annotated sequence (S, P) containing crossing arcs is
called crossing, otherwise non-crossing or nested.

For two arc annotated sequences (S1, P1) and (S2, P2), we define χ, ψ1, ψ2:

χ(i, j) := if S1[i] �= S2[j] then 1 else 0,

ψk(i) := if ∃j : (i, j) ∈ Pk or (j, i) ∈ Pk then 1 else 0 (for k = 1, 2).

An alignment A of two arc-annotated sequences (S1, P1) and (S2, P2) is a set
A ⊆ [1..|S1|]× [1..|S2|] of alignment edges such that for all (i, j), (i′, j′) ∈ A holds
1.) i > i′ implies j > j′ and 2.) i = i′ if and only if j = j′. For an alignment A
and i, i′, j, j′ such that neither (i, j) nor (i′, j′) cuts any alignment edge (formally
A∩[i..i′]×[1..|S2|] = A∩[1..|S1|]×[j..j′]), we define the subalignment A(i, i′; j, j′)
of A by A∩ [i..i′]× [j..j′]. An arc pair is a pair of arcs a = (p1, p2) ∈ P1 ×P2. We
call a = (p1, p2) realized by A if and only if (pL

1 , pL
2), (pR

1 , pR
2) ∈ A, i.e. when the

arcs p1 and p2 are matched by A. The set OA(A; i, i′; j, j′) of open arc pairs of a
subalignment A(i, i′; j, j′) in A is the set of arc pairs (p1, p2) that are realized by
A and where either pL

1 < i ≤ pR
1 ≤ i′ and pL

2 < j ≤ pR
2 ≤ j′ or i ≤ pL

1 ≤ i′ < pR
1

and j ≤ pL
2 ≤ j′ < pR

2 . In Fig. 1a), we show realized arc pairs and a subalignment;
its set of open arc pairs is {(A, D), (C, F)}.

AAAGAAUAAU−UUACGGGACCCUAUAAA
CGAGA−UAACAUU−CGGG−CCC−AUAAA

arc match

arc breaking

arc altering
arc removing

base deletion

arc mismatch

base mismatch

a) b)

AUAAA−CUGAGGGA−CU
−GAACAUUA−GGGAGUU

A B C

D E F

Fig. 1. a) Realized arc pairs (A,D), (B,E), and (C,F). (A,D) and (C,F) are open for
the highlighted subalignment. b) Edit operations (cf. [1]).

72 M. Möhl, S. Will, and R. Backofen

Each alignment has an associated cost based on an edit distance with two
classes of operations. The operations are illustrated in Fig. 1b). Base operations
(mismatch and insertion/deletion) work solely on positions that are not incident
to an arc. Base mismatch replaces a base with another base and has associated
cost wm. A base insertion/deletion removes or adds one base and costs wd.
The second class consists of operations that involve at least one position that is
incident to an arc. An arc mismatch replaces one or both of the bases incident
to an arc. It costs wam

2 if one base is replaced or wam if both are replaced.
An arc breaking removes one arc and leaves the incident bases unchanged. The
associated cost is wb. Arc removing removes one arc and both incident bases and
costs wr. Finally, arc altering removes one of the two bases that are incident to
an arc and costs wa.

An alignment A has a corresponding minimal sequence of edit operations.
The cost of A is defined as the sum of the cost of these edit operations.

3 A Fixed Parameter Tractable Algorithm

The algorithm we present computes the minimum cost alignment of two arc
annotated sequences (S1, P1) and (S2, P2) containing arbitrary pseudoknots. In
terms of Jiang et al. [1], we solve Edit(crossing,crossing) for their class of
reasonable scoring schemes. These schemes are restricted by wa = wb

2 + wr

2 .
The central idea of the algorithm is to partition the set of arc pairs P1 × P2

into a set NC of “non-crossing” arc pairs and a set of “crossing” arc pairs CR =
P1 × P2 − NC such that the algorithm can interleave a polynomial alignment
method for the arc pairs in NC with an exponential method for the arc pairs in
CR. The exact requirement for such a partition is made precise in the definition
of “valid partition”.

The immediate result is a fixed parameter tractable algorithm whose parame-
ter is loosely understood as the number of arc pairs in CR that cover a common
base match. The presented algorithm further reduces this factor substantially
by precomputing the alignment of stems of arcs in CR.1

3.1 Partition into Crossing and Non-crossing Arc Pairs

Two arcs p and p′ of a sequence cross, iff pL < p′L < pR < p′R or p′L < pL <
p′R < pR. To generalize this from arcs to arc pairs, we define the left and right
end point of an arc pair as

↖(p1, p2) = (pL
1 , pL

2) and ↘(p1, p2) = (pR
1 , pR

2),

respectively. On those points we consider the partial order ≺ defined as (x1, y1) ≺
(x2, y2) if and only if x1 < x2 and y1 < y2.

1 In principle, the idea can be extended from stems to arbitrary non-crossing sub-
structures that are, like stems, closed by an inner and an outer arc. At the cost of
precomputation this lowers the exponential factor of the algorithm further.

Fixed Parameter Tractable Alignment of RNA Structures 73

A B
C

D
F

E

G

H

I

J

Fig. 2. Visualization of the arc pairs of two sequences. The first sequence has arcs A
to E, the second sequence arcs G to J. To maintain readability, only some of the arc
pairs are visualized.

Two arc pairs a and a′ cross, iff ↖ a ≺ ↖ a′ ≺ ↘ a ≺ ↘ a′ or ↖ a′ ≺ ↖
a ≺ ↘a′ ≺ ↘a. Figure 2 represents arc pairs as rectangles in the plane whose
dimensions correspond to the two sequences. If two arc pairs cross, the rectangles
partially overlap, but note that the converse implication does not hold. In Fig. 2
for example, (D, I) and (E, J) cross, whereas (D, I) and (E, G) do not cross.

Definition 1 (valid partition). A (bi-)partition of P1 × P2 into NC and CR
is valid if and only if for all a, a′ ∈ NC it holds that a and a′ do not cross.

A valid partition of P1 × P2 can be lifted from a partition of the arcs of P1 and
P2 by choosing appropriate sets CR1 ⊆ P1 and CR2 ⊆ P2 such that P1 − CR1
and P2 − CR2 are non-crossing and set CR = CR1 × CR2. However, this does
not work for arbitrary non-crossing sets P1 −CR1 and P2 −CR2. For example, in
Fig. 2 choosing CR = {A, B, E} × {I} is not valid, since it contains none of the
two crossing arc pairs (A, G) and (D, I). Valid partitions are obtained, if CR1
and CR2 contain all left crossing edges.

Lemma 1 (sufficient criterion for a partition). The partition of P1 × P2
into CR = { p1 ∈ P1 | p1 is left crossing } × { p2 ∈ P2 | p2 is left crossing } and
NC = P1 × P2 − CR is valid.

The claim holds since for two arbitrary crossing arc pairs one of them is in CR:
for arc pairs a, a′ with ↖ a ≺ ↖ a′ ≺ ↘a ≺ ↘ a′ the two arcs of a′ are left
crossing. Analogously, a valid partition is obtained, if CR1 and CR2 contain all
right crossing arcs.

Since our algorithm handles arc pairs in NC more efficient than arc pairs in
CR, the partition into NC and CR is crucial for the runtime. A good partition
should be minimal in the sense that it becomes invalid, if any element is re-
moved from CR. Finding the best partition among these local minima involves
balancing several parameters, since not only the cardinality of CR influences the
complexity. Thinking of the arc pairs in CR as rectangles (as indicated in Fig. 2),

74 M. Möhl, S. Will, and R. Backofen

Fig. 3. Stem pair (aO, aI) = ((pO1, pO2), (pI1, pI2)), which covers the dotted arc pair

both the area of the rectangles and the number of rectangles that overlap in a
common point influence the runtime.

The partition according to Lem. 1 is not yet aware of these aspects and some-
times does not lead to a local minimum. As an example, in Fig. 2 we would have
CR = {D, E}×{I, J}, but (E, J) can safely be added to NC, since it only crosses
with (D, I) ∈ CR. The fact that no other arc pair containing arc E or J can
be removed from CR indicates that this is a general limitation of partitions of
arc pairs that are lifted from partitions of arcs. Instead of using these partitions
directly, they could serve as a starting point for further optimization at the level
of arc pairs with techniques like stochastic local search or genetic algorithms.

In the following we assume a valid partition of the arc pairs into CR and NC.

3.2 Precomputation of Stem Pairs

In order to align whole stems in one step, we group arc pairs in CR into pairs of
stems. We define a stem Q in P (for P ∈ {P1, P2}) as a set of arcs {p1, . . . , pk} ⊆
P with pL

1 < · · · < pL
k < pR

k < · · · < pR
1 such that no end of arcs in P − Q is in

one of the intervals [pL
1 ..pL

k] or [pR
k ..pR

1]. In Fig. 2, for example, {A, B} is a stem,
but {A, B, C} is not, since the left end of D is between the right endpoints of B
and C. Note that, according to this notion, stems are allowed to include bulges
and internal loops and do not need to be maximal.

The stem pair of two stems Q1 ⊆ P1 and Q2 ⊆ P2 is characterized by the
pair (aO, aI) of arc pairs, where aO = (pO1, pO2) is the pair of the outermost
arcs and aI = (pI1, pI2) is the pair of the innermost arcs of Q1 and Q2, i.e. Qk

consists of the arcs Pk ∩ [pL
Ok..pL

Ik] × [pR
Ik..pR

Ok] (k = 1, 2) (cf. Fig. 3). The stem
pair covers an arc pair a iff a ∈ Q1 ×Q2. A stem pair is realized in an alignment
A if and only if aO and aI are realized in A.

We write the set of all stem pairs (aO, aI) where {aO, aI} ⊆ CR as STCR.2

A stem pair (aO, aI) is open for a subalignment A(i, i′; j, j′) in A if and only if
aO and aI are open for A(i, i′; j, j′) in A. The set of maximal open stem pairs of
A(i, i′; j, j′) in A is the smallest set M of open stem pairs of A(i, i′; j, j′) in A
such that each a ∈ OA(A; i, i′; j, j′) is covered by a stem pair in M .

2 We assume that the arc pairs of a stem pair are either completely contained in CR or
completely contained in NC, since minimal partitions (as well as partitions according
to Lem. 1) satisfy this property.

Fixed Parameter Tractable Alignment of RNA Structures 75

S′(i, i′; j, j′; aI) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(i + 1, i′; j, j′; aI) + wd + ψ1(i)(
wr
2 − wd) (gap)

S′(i, i′; j + 1, j′; aI) + wd + ψ2(j)(
wr
2 − wd) (gap)

S′(i, i′ − 1; j, j′; aI) + wd + ψ1(i
′)(wr

2 − wd) (gap)

S′(i, i′; j, j′ − 1; aI) + wd + ψ2(j
′)(wr

2 − wd) (gap)

S′(i + 1, i′; j + 1, j′; aI) + χ(i, j)wm + (ψ1(i) + ψ2(j))
wb
2 (align bases)

S′(i, i′ − 1; j, j′ − 1; aI) + χ(i′, j′l)wm + (ψ1(i
′) + ψ2(j

′))wb
2 (align bases)

if ((i, i′), (j, j′)) ∈ CR

S′(i + 1, i′ − 1; j + 1, j′ − 1; aI) + (χ(i, j) + χ(i′, j′))wam
2 (align arcs)

Fig. 4. Recursion equation to compute S′ items

For each (aO, aI) ∈ STCR, we precompute the cost to align the respective
stem pair as the value of an item S(aO, aI). More precisely, for aO = (pO1, pO2)
and aI = (pI1, pI2), the value of S(aO, aI) is the cost to align S1[pL

O1] . . . S1[pL
I1]

to S2[pL
O2] . . . S2[pL

I2] and simultaneously S1[pR
I1] . . . S1[pR

O1] to S2[pR
I2] . . . S2[pR

O2].
In this sense, an S item describes the cost of two subalignments that are not
independent of each other due to arcs in CR.

The computation of S items is based on temporary items S′(i, i′; j, j′; aI)
that correspond to S(((i, i′), (j, j′)); aI) if ((i, i′), (j, j′)) is an arc pair, but are
not limited to this case. S′(i, i′; j, j′; ((ia, i′a), (ja, j′a))) is invalid if i > ia, i′ <
i′a, j > ja or j′ < j′a. The alignment of the innermost arc is computed as
S′(i, i′; j, j′; ((i, i′), (j, j′))) = (χ(i, j) + χ(i′, j′))wam

2 and step by step enlarged
with the recursions given in Fig. 4, where implicitly recursive cases relying on
invalid items are skipped.

By the recursion for S′, only the arc pair aI is guaranteed to be realized in
the precomputed optimal stem alignments. However, we want to consider in the
core dynamic programming algorithm only items S(aO, aI) where aI and aO are
realized, in order to avoid ambiguity in the recursion. Therefore, we define items
where aO is not realized as invalid. In consequence, cases referring to these items
are skipped in the core algorithm.

3.3 Core of the Algorithm

The main part of the algorithm recursively computes costs of subalignments.
The recursions are given in Fig. 6 and an illustration is provided in Fig. 5.

The subalignment costs are represented by items D(i, i′; j, j′|M) where i, i′, j,
and j′ specify the range of the subalignment and M ⊆ STCR is its set of maximal
open stem pairs. The precise semantics is that the value of D(i, i′; j, j′|M) is
the minimal cost among all subalignments A(i, i′; j, j′) of all alignments A that
satisfy (a) M is the set of maximal open stem pairs of A(i, i′; j, j′) in A and (b) for
all (aO, aI) ∈ M the precomputed subalignment corresponding to S(aO, aI) is
a subalignment of A. A helpful intuition of M in the D items is that one end

76 M. Möhl, S. Will, and R. Backofen

Fig. 5. Illustration of the recursion for computing items D(i, i′; j, j′|M). The red dotted
arcs represent the set of open stem pairs M . Case (4) recurses to D(i, i1 − 1; j, j1 − 1|M1)
and D(i1 + 1, i′ − 1; j1 + 1, j′ − 1|M2). There, the green dotted arcs represent the set of
stem pairs shared between the two alignment fragments (i.e. M1 ∩M2) and the red dotted
arcs represent the remaining elements of M1 ∪ M2, which make up M . Cases (5) and (6)
show concrete stem pairs in light red (in M) and light green (not in M), respectively.

of the stem pairs in M is aligned and the other half is required to be aligned
outside of the range (i, i′; j, j′).

The semantics is reasonable only for a restricted class of items, which we call
valid items. D(i, i′; j, j′|M) is valid if i′ ≥ i−1, j′ ≥ j−1, and there is an alignment
A such that M is the set of maximal open stem pairs of A(i, i′; j, j′) in A.

Given the semantics of D items, the cost of the entire alignment is the value
of D(1, |S1|; 1, |S2| |∅). It is computed following the recursion in Fig. 6 with base
cases D(i, i − 1; j, j − 1|∅) = 0 (for all i, j). Implicitly, in each recursive step the
cases involving invalid items are skipped.

We will take a closer look at the cases of the recursion. First note that for
CR = ∅, only items of the form D(i, i′; j, j′|∅) are valid. Then, the cases (5) and
(6) are always skipped and the recursion degenerates to the recursion of Jiang
et al. [1], shown in Fig. 7, where the items D(i, i′; j, j′|∅) directly correspond to
matrix entries DP (i, i′; j, j′).3

In the absence of crossing arcs, the recursion in Fig. 7 is correct since the
case distinction is exhaustive and each case assigns the correct cost. To see this
assume an optimal alignment A with a subalignment A(i, i′; j, j′) without open
arc pairs. Considering the positions i′ and j′, there are exactly the following
cases directly corresponding to the recursion. (1) i′ is not aligned in A. If i′ is

3 Note that the restrictions i > i1, j > j1 in case 4 of the recursion in Fig. 7 is implicit
in our recursion by skipping cases with invalid items; here D(i, i1 − 1; j, j1 − 1|M1)
is invalid.

Fixed Parameter Tractable Alignment of RNA Structures 77

D(i, i′; j, j′|M) = min
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(i, i′ − 1; j, j′|M) + wd + ψ1(i
′)(wr

2 − wd) (1)

D(i, i′; j, j′ − 1|M) + wd + ψ2(j
′)(wr

2 − wd) (2)

D(i, i′ − 1; j, j′ − 1|M) + χ(i′, j′) · wm + (ψ1(i
′) + ψ2(j

′))wb
2 (3)

if there exist some i1, j1 with ((i1, i
′), (j1, j

′)) ∈ NC

min

⎧⎪⎨
⎪⎩

D(i, i1 − 1; j, j1 − 1|M1)
+D(i1 + 1, i′ − 1; j1 + 1, j′ − 1|M2)

+(χ(i1, j1) + χ(i′, j′))
wam

2

∣∣∣∣∣∣∣
M1, M2 ⊆ STCR, where
M = (M1 ∪ M2) − (M1 ∩ M2)

⎫⎪⎬
⎪⎭

(4)

if there exists some (aO, aI) ∈ M with

↖aO = (i1, j1) ∧ ↖aI = (i′, j′) or ↘aI = (i1, j1) ∧ ↘aO = (i′, j′)

D(i, i1 − 1; j, j1 − 1|M − {(aO, aI)}) + S(aO,aI)
2 (5)

min

⎧⎨
⎩

D(i, i1 − 1; j, j1 − 1|M ∪ {(aO, aI)})
+

S(aO, aI)

2

∣∣∣∣∣∣
(aO, aI) ∈ STCR, where
↘aO = (i′, j′) and
↘aI = (i1, j1)

⎫⎬
⎭ (6)

Fig. 6. Recursion equation to compute D items

DP (i, i′; j, j′) = min⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DP (i, i′ − 1; j, j′) + wd + ψ1(i
′)(wr

2 − wd) (1)

DP (i, i′; j, j′ − 1) + wd + ψ2(j
′)(wr

2 − wd) (2)

DP (i, i′ − 1; j, j′ − 1) + χ(i′, j′) · wm + (ψ1(i
′) + ψ2(j

′))wb
2 (3)

if there exist some i < i1, j < j1 with ((i1, i
′), (j1, j

′)) ∈ P1 × P2

DP (i, i1 − 1; j, j1 − 1) + DP (i1 + 1, i′ − 1; j1 + 1, j′ − 1) (4)

+(χ(i1, j1) + χ(i′, j′))wam
2

Fig. 7. Recursion equation for the algorithm of Jiang et al.

not adjacent to an arc this is due to a base deletion with cost wd. Otherwise,
the arc is either removed or altered, which causes cost wr/2. (2) j′ is not aligned
in A, analogously. (3) (i′, j′) ∈ A, but A realizes no arc pair involving (i′, j′).
All adjacent arcs are broken, each causing cost wb/2. If S1[i′] and S2[j′] mis-
match this causes additional cost wm. (4) (i′, j′) ∈ A and A realizes an arc pair
((i1, i′), (j1, j′)) with right end (i′, j′). Then, the cost of the whole arc pair is
charged and the subalignment is decomposed into a subalignment before the arc
pair and the subalignment inside the arc pair.

Note that due to the assumption that A(i, i′; j, j′) has no open arc pairs the
case where (i′, j′) ∈ A and A realizes an arc pair with left end (i′, j′) can not
occur. Furthermore, all cases only decompose into subalignments without open

78 M. Möhl, S. Will, and R. Backofen

arc pairs. In particular in case (4), the two subalignments can not have open arc
pairs since such arc pairs would be open arc pairs of both subalignments and
then cross the arc pair ((i1, i′), (j1, j′)).

The key to understand the recursion in Fig. 6 (illustrated in Fig. 5) is that it
maintains the decomposition of the algorithm of Jiang et al. as much as possible
in the presence of crossing arc pairs. Then, Jiang’s case (4) is no more exhaustive
and has to be extended to consider all cases where the recursive subalignments
contain open arc pairs. To achieve this, we make the open arc pairs explicit via
the additional component M of our items. In principle, it suffices to directly
represent the set of open arc pairs in M . For efficiency reasons, we combine
open arc pairs into open stem pairs in order to keep the sets M small. As a
direct consequence of making the open stem pairs explicit, we can exhaustively
minimize over all alternatives in case (4). In particular, these include the cases
where M1 and M2 contain open stem pairs that are not contained in M , namely
those where M1 ∩ M2 �= ∅.

For cases (1) to (3), M is invariant since no arc pairs are realized in these
cases. In consequence, the generalization of these cases is straightforward.

In order to make our case distinction exhaustive for CR �= ∅, we need addi-
tional cases (5) and (6) that cover the situations where an arc pair a in CR has
left or right end in (i′, j′) (recall that only the arc pairs in NC are handled in
case (4)). There are two such cases: either a is open in A(i, i′; j, j′) or not. In the
first case, the maximal open stem pair that covers a is contained in M and hence
uniquely determined. We can therefore decompose into (the respective subalign-
ment of) this maximal open stem pair and the remaining subalignment, where
this stem pair is no more open (case (5)). In the second case, we minimize over
all possible maximal open stem pairs that cover a. Each time, we decompose
again into (the respective subalignment of) this maximal open stem pair and
the remaining subalignment, where now the stem pair is open in this remaining
subalignment (case (6)). Note that we distribute the cost of the precomputed
stem pairs equally among the two subalignments. This is correct, since it is
guaranteed that each alignment contains either both subalignments or none of
them. Further note that, when descending in the recursion, open stem pairs are
introduced via cases (4) or (6) and are removed again via case (5).

When the cost of the alignment is determined, the actual alignment can be
constructed by the usual backtracing techniques.

3.4 Complexity

Let n be max(|S1|, |S2|), let s and s′ be the maximal number of arcs and bases
in a crossing stem, respectively. For an item S(aO, aI) we have O(n2s2) possible
instances: for aO, we can freely choose among the O(n2) arc pairs in CR and for
aI we have O(s2) possible choices, since the arcs of aO and aI must belong to the
same stems. Analogously, for the S′ items we need O(n2s′4) space. Since each
of these items can be computed in constant time, the time complexity coincides
with the required space.

Fixed Parameter Tractable Alignment of RNA Structures 79

An item D(i, i′; j, j′|M) has O(n4) possible instances of i, i′, j, j′, but analo-
gously to the algorithm of Jiang et al. [1] only O(n2) of them need to be main-
tained permanently. To measure the number of instances of M , we need the
notion of the crossing number of a point (x, y) ∈ [1..|S1|] × [1..|S2|], defined as
C(x, y) = |{ (aO, aI) ∈ STMAX

CR | ↖aI ≺ (x, y) ≺ ↘aI }|, where STMAX
CR denotes

the subset of STCR that only contains pairs of maximal stems (with respect to set
inclusion). We denote the maximal crossing number with k. Since each maximal
stem pair has O(s4) fragments, there are at most O((s4)C(i,j)+C(i′j′)) = O(s8k)
possible instances of M for fixed i, j, i′, j′.4 Hence we need to compute O(n4s8k)
D items and maintain O(n2s8k) of them in memory at the same time.

The computation of a D item needs only for the recursive alternatives (4) and
(6) of Fig. 6 more than constant time. In alternative (6), iteration over all O(s2)
possible instances of aI is necessary and in alternative (4) we need to iterate over
all possible instances of M1 and M2. Since M2 is uniquely determined by M and
M1, there are O(s8k) of these instances. The computation of all the O(n4s8k)
D items hence requires O(n4s8k · s8k) = O(n4s16k) time.

If at least one of two sequences does not contain pseudoknots, the only minimal
partition is CR = ∅ and NC = P1 × P2. In this case the algorithm gracefully
degrades to the one of Jiang et al. [1] requiring O(n4) time and O(n2) space.

4 Practical Evaluation

We implemented a prototype of the algorithm in C++ to evaluate its appli-
cability in practice. With the prototype, we computed pairwise alignments of
some RNA structures of the tmRNA database [17]. For our evaluation we have
chosen the longest tmRNA sequence (Mycobacteriophage Bxz1, MB), the short-
est sequence (Cyanidium caldarium, CC), the sequence that contains the largest
crossing stems (Ureaplasma parvum, UP), and a nested version (UPnest) of the
latter, where we removed all left crossing arcs.

We were able to compute the pairwise alignments of these sequences with
1 GB of memory with one exception using 2 GB. Table 1 shows that the runtime
scales well with the complexity of the involved pseudoknots. As we suggested, the
exponential factor k is small on all instances. Whereas alignments of sequences
with large pseudoknots take several hours, sequences with small pseudoknots
can be aligned in a few minutes. In contrast, sequence length has a much smaller
impact on runtime, as in particular the alignments with UPnest show.

For the results in Table 1 we partitioned into NC and CR according to the left
crossing stem criterion (see Lem. 1). However, the runtime can depend heavily
on the partition into NC and CR. For example the alignment of Ureaplasma
parvum and Mycobacteriophage Bxz1 took less than three hours if we chose CR
to contain the pairs of left crossing arcs, but more than 6 hours if we chose
the right crossing arcs instead. Notably, in this case the better partitioning can
be identified in advance by comparing the parameters k and s; k is equal for
4 This is a coarse estimate, that counts many invalid requirement sets, in particular

those, where some stem pairs cannot be realized in the same aligment.

80 M. Möhl, S. Will, and R. Backofen

Table 1. Runtime of the alignments (on a single Xeon 5160 processor with 3.0 GHz)
and the properties of the aligned structures (n=sequence length, s=max. number of
arcs in crossing stem, pk=number of pseudoknots, k=fixed parameter of the algorithm)
for left crossing partitioning

aligned sequences n s k pk memory runtime

UP / UP 413/413 10/10 1 4/4 ≤ 2 GB 726m 52s
UP / MB 413/437 10/7 1 4/2 ≤ 1 GB 172m 53s
UP / CC 413/254 10/2 1 4/1 ≤ 1 GB 11m 51s

UP / UPnest 413/413 10/0 0 4/0 ≤ 1 GB 4m 43s

MB / MB 437/437 7/7 1 2/2 ≤ 1 GB 43m 20s
MB / CC 437/254 7/2 1 2/1 ≤ 1 GB 3m 56s

MB / UPnest 437/413 7/0 0 2/0 ≤ 1 GB 3m 27s

CC / CC 254/254 2/2 1 1/1 ≤ 1 GB 1m 11s
CC / UPnest 254/413 2/0 0 1/0 ≤ 1 GB 2m 6s

UPnest/UPnest 413/413 0/0 0 0/0 ≤ 1 GB 4m 21s

both cases, s is 10/7 for the left crossing and 12/12 for the right crossing case.
This comparison indicates that a more sophisticated partitioning into crossing
and nested arc pairs, e.g. greedy or stochastic local optimization, may result in
significant speed-ups in practice.

Finally note that the efficiency could be improved further by heuristic opti-
mizations as utilized in many existing alignment tools. For example, skipping the
computation of items that are unlikely to contribute to the optimal alignment
can significantly reduce computation time.

5 Conclusion

We have presented an algorithm that is able to align RNA structures with arbi-
trary pseudoknots using a general edit distance for reasonable scoring schemes.
The algorithm is fixed parameter tractable and our prototypical implementation
shows its applicability in practice.

A central insight due to our method is that pseudoknots can be effectively
handled by partitioning the RNA structure into a set of “easy” and “difficult”
interactions. Then, expensive, exponential computation can be restricted to the
“difficult” part, whereas state-of-the art polynomial methods can be applied to
the “easy” part. Furthermore, since for alignment the dynamic programming
recursions operate on pairs of sequences even more effective partitionings can be
obtained on the level of arc pairs instead of lifting partitions on single arcs.

The idea of partitioning and making this level of abstraction explicit in the
algorithm offers possibilities for further optimization. First, since the concrete
partition strongly impacts the run-time, optimizing the partition is worth inves-
tigating. Second, one obtains heuristic versions of our algorithm by filtering out
unlikely arc pairs.

Acknowledgments. We thank Marco Kuhlmann and the anonymous reviewers
for useful comments. M. Möhl is funded by the German Research Foundation.

Fixed Parameter Tractable Alignment of RNA Structures 81

References

1. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. J. Comput. Biol. 9(2), 371–388 (2002)

2. Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Sci-
ence 298(5602), 2296–2297 (2002)

3. Siebert, S., Backofen, R.: MARNA: multiple alignment and consensus struc-
ture prediction of RNAs based on sequence structure comparisons. Bioinformat-
ics 21(16), 3352–3359 (2005)

4. Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA
alignments by pruning of the dynamical programming matrix. PLoS Comput.
Biol. 3(10), 1896–1908 (2007)

5. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding
RNA families and classes by means of genome-scale structure-based clustering.
PLoS Comput. Biol. 3(4), 65 (2007)

6. Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure align-
ment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8,
271 (2007)

7. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions.
PLoS Biol. 3(6), 213 (2005)

8. Theimer, C.A., Blois, C.A., Feigon, J.: Structure of the human telomerase RNA
pseudoknot reveals conserved tertiary interactions essential for function. Mol.
Cell 17(5), 671–682 (2005)

9. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: CPM
1999: Proceedings of the 10th Annual Symposium on Combinatorial Pattern
Matching, London, UK, pp. 270–280. Springer, Heidelberg (1999)

10. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

11. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5,
104 (2004)

12. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time.
In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 223–232.
Springer, Heidelberg (2006)

13. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-
quence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

14. Matsui, H., Sato, K., Sakakibara, Y.: Pair stochastic tree adjoining grammars for
aligning and predicting pseudoknot RNA structures. Bioinformatics 21(11), 2611–
2617 (2005)

15. Dost, B., Han, B., Zhang, S., Bafna, V.: Structural alignment of pseudoknotted
RNA. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.
(eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 143–158. Springer, Heidelberg
(2006)

16. Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for
protein similarity search under mRNA structure constraints. In: Kratsch, D. (ed.)
WG 2005. LNCS, vol. 3787, pp. 271–282. Springer, Heidelberg (2005)

17. Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., Wower, J.: tmRDB (tmRNA
database). Nucleic Acids Res. 31(1), 446–447 (2003)

Faster Algorithm for the Set Variant of
the String Barcoding Problem

Leszek Gąsieniec1, Cindy Y. Li2,�, and Meng Zhang3,�

1 Department of Computer Science, University of Liverpool, Liverpool, UK
L.A.Gasieniec@liverpool.ac.uk

2 Histocompatibility and Immunogenetics Laboratory, National Blood Service, Bristol, UK
Ying.Li@nbs.nhs.uk

3 College of Computer Science and Technology, Jilin University, Changchun, China
zhangmeng@jlu.edu.cn

Abstract. A string barcoding problem is defined as to find a minimum set of
substrings that distinguish between all strings in a given set of strings S . In a
biological sense the given strings represent a set of genomic sequences and the
substrings serve as probes in a hybridisation experiment. In this paper, we study
a variant of the string barcoding problem in which the substrings have to be cho-
sen from a particular set of substrings of cardinality n. This variant can be also
obtained from more general test set problem, see, e.g., [1] by fixing appropri-
ate parameters. We present almost optimal O(n|S| log3 n)-time approximation
algorithm for the considered problem. Our approximation procedure is a modifi-
cation of the algorithm due to Berman et al. [1] which obtains the best possible
approximation ratio (1 + ln n), providing NP �⊆ DTIME(nlog log n). The im-
proved time complexity is a direct consequence of more careful management of
processed sets, use of several specialised graph and string data structures as well
as tighter time complexity analysis based on an amortised argument.

1 Introduction

The string barcoding problem, discussed by Rash and Gusfield [9], is used for identi-
fication of genomic sequences (targets), such as viruses or bacteria, from among a set
of known targets. Applications of this technique range from efficient pathogen identifi-
cation in medical diagnosis to monitoring of microbial communities in environmental
studies [2]. The wide range of applications lead to the same methodological problem
which is to determine the presence or absence of one target in a biological sample.
Targets identification is performed by synthesising the Watson-Crick complements of
the probes on a microarray [5], then hybridising to the array the fluorescently labelled
DNA extracted from the unknown target. Under the assumption of perfect hybridisation
stringency, the hybridisation pattern can be viewed as a string of 0′s and 1′s where 1 rep-
resents a probe hybridises to a target. This 0/1 pattern is referred to as a barcode of the
target. For unambiguous identification, probes must be selected such that each genomic

� This work was done while Cindy Y. Li was a PhD student and Meng Zhang was a research
visitor at University of Liverpool.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 82–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Faster Algorithm for the Set Variant of the String Barcoding Problem 83

sequence has a distinct barcode. The problem is to compute a minimal set of probes that
distinguishes the target in the sample during performed hybridisation experiment.

Borneman et al. [2] were among the first to study the string barcoding problem. They
proposed two efficient algorithms based on simulated annealing and Lagrangian relax-
ation for selecting a minimal probe set to be used in the oligonucleotide fingerprinting
of rDNA clones by hybridisation experiments on DNA microarrays. However, the run-
ning time of these algorithms does not scale well with the number and the length of
the genomic sequences mainly because of its requirement of large memory space. The
string barcoding problem has been popularised by Rash and Gusfield [9]. In their paper,
they proposed an integer programming approach to express the minimisation problem
and represented strings by using suffix trees. They also stated that the constrained ver-
sion of string barcoding, where the maximum length of each probe is bounded by a
constant with the alphabet size at least 3, is NP-hard. They also stated the approxima-
bility of string barcoding as an open problem. In [8], Lancia and Rizzi showed that the
string barcoding problem is as hard to approximate as the set cover. Furthermore, they
showed that the constrained version of string barcoding with probes of bounded length
is also hard to approximate. Finally they proved that both constrained and unconstrained
string barcoding are NP-complete even for binary alphabets. Klau et al. [7] presented
an approach to select a minimal probe set for the case of non-unique probes in the pres-
ence of a small number of multiple targets in the sample. Their approach is based on
Integer Programming mixed with a branch-and-cut algorithm. Their preliminary imple-
mentation is capable of separating all pairs of targets optimally in a reasonable time
and achieves a considerable reduction on the numbers of probes needed compared to
previous greedy algorithms. DasGupta et al. [4,3] proposed a greedy algorithm for ro-
bust string barcoding. Their method enabled probe selection based on whole genomic
sequences of hundreds of microorganisms of up to bacterial size on well-equipped work
station. Berman et al. [1] proposed an O(n2|S|) time approximation algorithm for test
set problem (TS) with approximation ratio (1+lnn). The approximability results in [1]
holds for general test set problems which includes the set variant of the string barcoding
as a special case. The algorithm proposed in [1] is a greedy procedure where the test set
to be added at each step is determined by a certain entropy function.

Our Results. In this paper, we improve the time complexity O(n2|S|) of the approxi-
mation algorithm for the test set problem proposed by Berman et al. [1], which solves
also the variant of the string barcoding problem adopted here. Our algorithm works in
almost optimal time O(n|S| log3 n) in view of the input size Ω(|S|n) (the input is very
often expressed as the binary matrix with |S| rows and n columns, where the entry
(i, j) set to 1 (0) means that substring j (does not) belongs to string i, see Table 1).
The improved time complexity is a direct consequence of more careful management of
processed sets, use of several specialised graph and string data structures and tighter
time complexity analysis based on an amortised argument.

The paper is organised as follows. We present first short description of the studied
variant of the string barcoding problem, see Section 2.1. Further in Section 2.2, we pro-
vide basic notation and definitions used later in the paper. In Section 2.3, we highlight
implementation differences between our algorithm and its counterpart from [1]. This
is followed by detail description of specialised data structures used by our algorithm,

84 L. Gąsieniec, C.Y. Li, and M. Zhang

see Section 2.4. The analysis of the time complexity based on amortised argument is
presented in Section 2.5. The conclusion and discussion of further work is available in
Section 3.

2 The Problem and the Method

We start this section with a short introduction to the set variant of the string barcoding
problem.

2.1 String Barcoding Problem

Given a set of |S| genomic sequences (targets), S = {s1, s2, ..., s|S|}. The objective is
to find as small as possible set of elements (probes) T = {p1, p2, ..., pm} from a given
set of substrings of strings in S, such that, for any pair of strings si, sj ∈ S, there is
at least one probe p ∈ T where p is a substring of si or sj , but not both of them. We
say T distinguishes S if this property holds. The hybridisation pattern can be viewed as
a string of m zeros and ones, referred to as the barcode of each target sequence in S.

Let S be the set of targets {AGGT , ACCTGA, TGGAT , GCA, CGCGATT ,
GTTAC}. Then, the set T = {AC, C, GA} gives a set of valid barcodes (shown in
Table 1) for the input sequences in S.

Table 1. Targets and probes: an entry (si, pj) has value 1 if and only if pj hybridises to si

AC C GA

AGGT 0 0 0
ACCTGA 1 1 1
TGGAT 0 0 1
GCA 0 1 0
CGCGATT 0 1 1
GTTAC 1 1 0

2.2 Notation and Definitions

We use [i..j] to denote the set of consecutive integers {i, i + 1, ..., j − 1, j} and P (T)
to denote the power set of a set T ⊆ [0..n − 1]. The complement [0..n − 1] \ T of T
is denoted by T . The cardinality of a set T is represented by |T |. We say that a set T
distinguishes two elements x, y ∈ [0..n − 1] where x �= y, if |{x, y} ∩ T | = 1.

Definition 1 (Test set problem TS)
INSTANCE: (n, S) where S ⊆ P ([0..n − 1]).
VALID SOLUTION: A collection T = {T0, T1, ..., T|T |−1} ⊆ S such that for every pair
of distinct integers x, y ∈ [0..n − 1], there exists T ∈ T that distinguishes x and y.
OBJECTIVE: minimise |T |.

Faster Algorithm for the Set Variant of the String Barcoding Problem 85

Example 1: Let n = 3 and S = {{0}, {1}, {0, 1}}. Then, T = {{0}, {0, 1}} is a valid
solution since {0, 1} distinguishes 0 from 2 (|{0, 2} ∩ {0, 1}| = 1) as well as 1 from 2
(|{1, 2} ∩ {0, 1}| = 1) while {0} distinguishes 0 from 1 (|{0, 1} ∩ {0}| = 1).

Definition 2 (Equivalence relation
T≡). Assume that T is a collection of subsets of the

set [0..n − 1]. An equivalence relation
T≡ is defined on [0..n − 1] and the collection

T , where for any i, j ∈ [0..n − 1], i
T≡ j if and only if ∀T ∈ T , either {i, j} ⊆ T or

{i, j} ∩ T = ∅. The equivalence relation
T≡ partitions [0..n − 1] into m equivalence

classes, where the lth equivalence class is denoted by E(T , l), for l = 0, 1, ..., m − 1
and let E(T)={E(T , 0), E(T , 1), ..., E(T , m − 1)}.

Note that each non-trivial equivalence class E(T , l) of
T≡ is a product of the form T ∗0 ∩

T ∗1 ... ∩ T ∗|T |−1, where T ∗k = Tk or T ∗k = Tk, for k = 0, 1, ..., |T | − 1.

Definition 3 (Entropy function HT , adopted from [1]). The entropy function HT is
defined as HT = log2(Π

m−1
l=0 |E(T , l)|!) where m is the number of equivalence classes

in E(T).

Example 2: Let T = {T0}, where T0 = {2, 3, 4} and n = 8. Then, E(T , 0) = T0 =
{2, 3, 4}, E(T , 1) = T0 = {0, 1, 5, 6, 7}. So, E(T) = {{2, 3, 4}, {0, 1, 5, 6, 7}} and
HT = log2((3!)(5!)) ≈ 9.492.

Example 3: Let T = {T0, T1} where T0 = {2, 3, 4}, T1 = {1, 3, 5, 7} and n = 8.
Then, E(T , 0) = T0 ∩ T1 = {3}, E(T , 1) = T0 ∩ T1 = {2, 4}, E(T , 2) = T0 ∩ T1 =
{1, 5, 7}, E(T , 3) = T0∩T1 = {0, 6}. We get, E(T) = {{3}, {2, 4}, {1, 5, 7}, {0, 6}}
and HT = log2((1!)(2!)(3!)(2!)) ≈ 4.585.

Definition 4 (Combination of equivalence relations ⊗). A combination of two equiva-

lence relations
T≡ and

T ′

≡ on the set [0..n−1] is defined as E(T)⊗E(T ′) = E(T ∪T ′).

Definition 5 (Basic block). A basic block B(i, l) is a set of consecutive integers [(i −
1) × n/2l..i × n/2l − 1], where 1 ≤ i ≤ 2l and 0 ≤ l ≤ log n.

2.3 Two Algorithms

In this paper, we propose asymptotically more efficient implementation of the algo-
rithm due to Berman, DasGupta and Kao [1] for the TS problem. As mentioned earlier,
Berman et al. [1] proposed an O(n2|S|) time approximation algorithm for TS with
the approximation ratio (1 + lnn). In each round of their algorithm, where rounds
correspond to consecutive iterations of loop while in Algorithm 1, they compute com-
binations E(T) ⊗ E({Tj}) for all Tj ∈ S \ T . They also select Tj that minimises
the entropy function HT ∪{Tj} and then move Tj (from S \ T) to the collection T .
Since for each remaining Tj , a naive computation of E(T) ⊗ E({Tj}) and HT ∪{Tj}
takes time Ω(n), and since for most of rounds, |S \ T | = Ω(|S|), each round requires
time Ω(n|S|). Algorithm 1 is executed in at most n − 1 rounds because n integers
can be separated by at most n − 1 sets from S in the worst case. Therefore, the total

86 L. Gąsieniec, C.Y. Li, and M. Zhang

Algorithm 1. Berman, DasGupta and Kao [1]
1: T = ∅;
2: while HT �= 0 do
3: select a Tj ∈ S \ T that minimises HT ∪{Tj};
4: T = T ∪ {Tj};
5: end while

complexity of Algorithm 1 is O(n2|S|). Note also that in Algorithm 1, no structural
information about E(T) ⊗ E({Tj}) and the entropy HT ∪{Tj} is kept for future use in
later rounds (apart from Tj that minimises the entropy function).

In our paper, the main idea is to store and to utilise information about all previously
computed combinations E(T) ⊗ E({Tj}) together with the history of their entropy
computation (see Algorithm 2). This is to reduce the overall time complexity. Let T (i−
1) be the selected set that minimises the entropy function at the end of round i − 1. Let
T (i) = {T (0), T (1), ..., T (i−1)} represent the collection of sets selected as part of the
solution in rounds 0, 1, ..., i. Since we keep records on all combinations E(T (i − 1))⊗
E({Tj}) obtained in round i−1, later during round i, we can compute E(T (i)∪{Tj})
applying E(T (i − 1) ∪ {Tj}) ⊗ E(T (i − 1) ∪ {T (i − 1)}) rather than via direct
computation of E(T (i)∪{Tj}) as it is done in Berman et al. algorithm. We introduce a
new concept of hierarchical data structure (see Section 2.4) that allows to represent and
manipulate equivalence classes E(T (i) ∪ {Tj}) and E(T (i) ∪ {T (i − 1)}) efficiently.
Moreover, we make use of a directed acyclic graph to compute the history of the entropy
values (see Section 2.4).

2.4 Data Structures

We introduce a hierarchical data structure H to represent, compare and process ef-
ficiently a dynamic collection of sets C of small integers, i.e., subsets of [0..n − 1].
Initially C = S, and later it contains all (including intermediate) subsets of [0..n − 1]

Algorithm 2. Our algorithm
1: T (0) = ∅;
2: for j = 1, 2, ..., |S| do
3: Compute E({[0..n − 1]} ∪ {Tj});
4: end for
5: T (0) = Tj such that Tj minimises H{Tj};
6: for (i = 1; HT (i−1) �= 0; i + +) do
7: /* i is the number of current round */
8: T (i) = T (i − 1) ∪ {T (i − 1)};
9: for j = 1, 2, ..., |S| do

10: Compute E(T (i)∪{Tj}) by applying E(T (i−1)∪{Tj})⊗E(T (i−1)∪{T (i−1)});
11: end for
12: T (i) = Tj such that Tj minimises HT (i)∪{Tj};
13: end for
14: return T (i − 1);

Faster Algorithm for the Set Variant of the String Barcoding Problem 87

...

L0

L1

L2

L3

Llog n

B(1, 0)

B(1, 1) B(2, 1)

B(1, 2) B(2, 2) B(3, 2) B(4, 2)

B(i, log n)

Fig. 1. Binary tree representation of a set

corresponding to all considered equivalence classes generated by Algorithm 2. The new
data structure allows equality tests on two sets from the collection to be performed in
constant time. Moreover, single element insertions to and deletions from any set from
the collection are implemented in poly-logarithmic time.

Binary Tree Representation of a Set. In principle, each set S in C is represented by
a binary tree structure Ds (of pointers) defined as follows. In each tree, there are ex-
actly log n + 1 levels enumerated from 0 (root level) to log n (leaf level). At the level l
there are 2l nodes. Each internal node v in the tree is the parent of two children, the
left child l(v) and the right child r(v). Moreover, each node of the tree representing S
stores information about the content of S projected on a specific basic block, chosen ac-
cording to the following rule. The root of the tree stores information about the content
of S projected on B(1, 0). And later if a parent node v on level l stores the information
about the content of S projected on B(i, l), then l(v) and r(v) store information about
the contents of S projected on B(2i − 1, l + 1) and B(2i, l + 1) respectively. For ex-
ample, the leaves store information about the content of set S projected on consecutive
basic blocks B(1, log n), B(2, log n), . . . , B(i, log n), . . . , B(n, log n) which are either
empty sets or singletons (see Figure 1).

Hierarchical Data Structure for a Collection of Sets. The nodes of binary tree struc-
tures representing sets from the collection C whose contents refer to the same basic
block correspond to each other and we say that they belong to the same group. The bi-
nary tree structures representing sets in C are stored in the hierarchical data structure H
in a compact form, where two corresponding nodes (associated with the same basic
block) in different trees with the same content (the same subset of [0..n − 1]) are rep-
resented by a single node in H (see Figure 2). In order to create H (from the trees) and
further manipulate it efficiently, we propose a new application of the naming method
(for definition see, e.g., [6]).

Naming Method. The naming method adopted here requires application of a system
of counters and balanced binary search trees. Each group of nodes based on a specific
basic block B(i, l), for 0 ≤ i ≤ n−1 and 0 ≤ l ≤ log n, requires a separate counter Ci,l

(that is used to generate new names within the group of nodes) and a balanced binary

88 L. Gąsieniec, C.Y. Li, and M. Zhang

Tree Di

Tree Dj

Tree Dk

Tree Dl

B(i, l)

Fig. 2. Hierarchical data structure for a collection of sets

search tree Ti,l (that keeps all used names in the group of nodes indexed by the pair of
children’s names). In each tree of the collection embedded in H, the nodes get integer
names, level by level, starting from the lowest level log n.

The counters are initialised to value 0 and the balanced binary search trees are set
to be empty. At the bottom level (logn), the i-th leaf, for any 0 ≤ i ≤ n − 1, in the
tree representing S (embedded in H) is given name 0 if {i} ∩ S = ∅ and 1 other-
wise. Above that, at each consecutive higher level 1 ≤ l ≤ log n in every tree Ds,
for all S ∈ C, and at every internal node v ∈ Ds associated with some B(i, l), we
first check whether the pair of names (N(l(v)), N(r(v))) already occurs as the pair of
names of children of some corresponding node w in some other tree Ds′ . This can be
done in time O(log n) by searching for the pair (N(l(v)), N(r(v))) as the key in the
balanced binary search tree Ti,l. If the pair (N(l(v)), N(r(v))) does not occur as the
key in Ti,l, we increase the counter Ci,l by 1 and assign its new value as the name of v,
i.e., N(v) = + + Ci,l. Moreover we insert to Ti,l a new record with the content N(v)
and the key (N(l(v)), N(r(v))). This is also done in time O(log n). Otherwise, if there
already exists a node w such that (N(l(v)), N(r(v))) = (N(l(w)), N(r(w))), v adopts
the name of w, i.e., N(v) = N(w), and v is represented by the node w in H.

Lemma 1. The initialisation of the hierarchical structure H takes time O(n|S| log n).

Proof. The nodes in the hierarchical structure H get integer names, level by level, start-
ing from the lowest level log n. As explained above, the computation of a single name
including manipulation of respective data structure in H requires time O(log n). At each
level l for 0 ≤ l ≤ log n, there are at most 2l|S| nodes to be named. Thus, to generate
names of nodes at level l in H requires time O(2l|S| log n). In conclusion, the initial
computation of the names of all nodes in H is done in time O(

∑l=log n
l=0 2l|S| log n),

which is O(n|S| log n).

Faster Algorithm for the Set Variant of the String Barcoding Problem 89

Set Operations. In our amortised analysis argument provided in section 2.5, we use
three operations performed on sets from the dynamic collection C. Namely, equality
test Eq(S, S′) for the contents of two sets S, S′ ∈ C, i.e., whether S = S′, deletion
operation Delete(S, x) that removes x from S, i.e., S = S \ {x} and insertion op-
eration Insert(S, x) that adds x to S, i.e., S = S ∪ {x}. When we perform equality
test Eq(S, S′) on two sets from C, we only need to compare the names of nodes rep-
resenting sets S and S′ in H. This can be done in constant time. When we remove an
element x from a set S (Delete(S, x)), we change the name from 1 to 0 of the appro-
priate node v representing x in S located at the bottom level in H and then we update
the names of all nodes on the path from the node v to the node representing the whole
set S at the top level of H. Since there are O(log n) names to be changed at different
levels in H and the computation of the name of a node in H requires time O(log n)
as explained in Section 2.4, the deletion operation takes time O(log2 n). The insertion
operation (Insert(S, x)) is implemented analogously (where we change name from 0
to 1 at the bottom level of H) to the deletion operation. As a result, we get the following
lemma.

Lemma 2. The structure H provides a mechanism for O(1)-time equality test for two
sets in C and O(log2 n)-time single element removal from and insertion to a set in C.

Efficient Cross-examination of Equivalence Classes. Note that in any advanced
round i of Algorithm 2 each equivalence relation E(T (i − 1) ∪ {Tj}) may poten-
tially have Ω(n) equivalence classes. Thus a naive cross-examination with all classes
in E(T (i−1)∪{T (i−1)}) (see line 10 in Algorithm 2) may lead to Ω(|S|n) compar-
isons during each round. And since the number of rounds may be as large min(|S|, n)
we would see no improvement in the time complexity in comparison with the algorithm
presented in [1].

 [] [] [] []
][[] [] [] []][

[] [] [] [][] []][.

E(T (i− 1) ∪ {Tj})

E(T (i− 1))

E(T (i− 1) ∪ {T (i− 1)})

E1 = E(T (i − 1), 1) E2 = E(T (i − 1), 2) Ec = E(T (i − 1), c)

E
L(j)
1 E

R(j)
1 EL(j)

c ER(j)
c

EL
1 ER

1 EL
2 ER

2 EL
c ER

c

. . .

. . .

. . .

Fig. 3. Cross-examination of equivalence classes

In order to reduce the number of cross-examined equivalence classes we provide an-
other data structure SL (structured list of equivalence classes) based on unique names
of classes available in the hierarchical structure H and defined as follows. Assume
that during round i we have an equivalence relation E(T (i − 1)) formed of c equiva-
lence classes E1 = E(T (i − 1), 1), . . . , Ec = E(T (i − 1), c), s.t., each class Ex =
E(T (i − 1), x) is potentially split into two classes EL

x and ER
x (possibly empty) in

E(T (i)) = E(T (i − 1) ∪ {T (i − 1)}) (see Figure 3). Also each equivalence relation

E(T (i−1)∪{Tj}) potentially bears two subclasses E
L(j)
x and E

R(j)
x (possibly empty)

for each E(T (i − 1), x) ∈ E(T (i − 1)). We assume that at the beginning of round i

90 L. Gąsieniec, C.Y. Li, and M. Zhang

[0..n − 1] [0..n − 1] [0..n − 1]

R1
Rj R|S|

T1 T1 Tj Tj T|S| T|S|

round i

round i + 1

Fig. 4. Compute entropy function by using
→
G. Express link is shown by dash line.

the structure SL is formed of c lists L1, L2, .., Lc, s.t., each Lx contains all different
pairs of subclasses (multiplicities are discarded to avoid dummy cross-examinations) of
Ex present both in E(T (i − 1) ∪ {T (i − 1)}) and in each E(T (i − 1) ∪ {Tj}). On
the conclusion of round i each list Lx associated with Ex in SL is split (if needed) into
two lists associated with two equivalence classes EL

x and ER
x , where each of these lists

contains now all pairs of different subclasses in new E(T (i) ∪ {Tj}). Finally note that
since every cross-examination of two different pairs of sub-classes results in creation of
new equivalence classes (at least one split) the number of all cross-examined pairs can
be bounded by O(|S| · n). The total cost of all handling the structured list of equiva-
lence classes has to be multiplied by the factor of O(log2 n) which refers to access to
and location of new equivalence classes in the hierarchical structure H. This results in
the total complexity O(|S|n log2 n).

Entropy Function Calculation. The entropy function is computed dynamically on the

basis of a directed acyclic graph
→
G (see Figure 4) gradually expanded during consec-

utive rounds of Algorithm 2. We keep at each node in
→
G the name and the size of the

equivalence class it represents. At the end of round i, for 0 ≤ i ≤ n − 1, all values
of the entropy function HT (i)∪{Tj}, for all Tj ∈ S \ T (i), are calculated. The set Tj

which minimises HT (i)∪{Tj} is selected as T (i). The use of
→
G allows to reduce the

overall cost (on the top of handling the hierarchical structure H) of computation of the
entropy function to O(|S|n). We prove later that this cost is linear in the total number
of splits of equivalence classes E(T (i) ∪ {Tj}) represented by nodes in H through out
consecutive rounds of Algorithm 2.

Recall that in a directed graph, nodes without successors are called sinks, and nodes

with no predecessors are called source nodes. The acyclic graph
→
G is created and

Faster Algorithm for the Set Variant of the String Barcoding Problem 91

maintained as follows. At the top level of
→
G, see Figure 4, we place |S| nodes labelled

by Rj , for 1 ≤ j ≤ |S|, where each node represents the whole range [0..n − 1] before

any of Tj ∈ S is introduced. These nodes will be the only sinks in
→
G throughout the

duration of the algorithm. In round 0, each set Rj is partitioned into Tj and Tj (the
complement of Tj). The nodes labelled by the names of Tj and Tj become temporary

sources. They are inserted into
→
G as predecessors of the sink labelled by Rj . The en-

tropy function H{Rj}∪{Tj} = H{Tj} is calculated directly on the basis of information
available in newly generated nodes (the sizes of Tj and Tj) and its value H{Tj} is stored
at the sink labelled by Rj , for 1 ≤ j ≤ |S|. A set Tj which minimises H{Tj} is selected
as T (0).

Later, at the beginning of round i, each source node in
→
G is labelled by the name of

some equivalence class E ∈ E(T (i − 1) ∪ {Tj}) represented by some node in H. We
also have T (i − 1) which is calculated during round i − 1. Note that if E �⊆ T (i − 1)
and E ∩ T (i − 1) �= ∅ (intersection of E and T (i − 1) is non-trivial), the source node
labelled by the name of E becomes a successor of two new nodes. We also say that E
is split. The two new nodes are labelled by the names of two new equivalence classes
E∩T (i−1), E∩T (i − 1) ∈ E(T (i))⊗E({Tj}). If any two newly obtained equivalence
classes Ej ∈ E(T (i) ∪ {Tj}) and Ej′ ∈ E(T (i) ∪ {Tj′}), for j �= j′, have the same

content, they are represented by the same node in
→
G called a branching node. We colour

all branching nodes as well as all sinks to black, see Figure 4. All other nodes in
→
G

remain white. Moreover, we create a collection of express links such that every (black
or white) node v is connected via express link to the first black nodes w on a directed
path leading to any Rj reachable from v. The following lemma holds.

Lemma 3. A structure of all nodes connected via express links from any node v in
→
G

forms a tree rooted in v with all Rjs reachable from v as leaves where the number of
leaves subsumes of the number of internal nodes.

Proof. By the construction, every node v is connected via some express link to the first
black node w which can either be a branching node or a sink. Moreover, the directed
express path rooted from v will finally reach some sink labelled by Rj . This holds due
to the fact that the set represented by v must be a subset of some range [0..n− 1] which

is a sink in
→
G. Therefore, the structure of all nodes connected via express links from

any node v forms a tree where v is the root and all Rjs reachable from v are the leaves.

Assume that a node v in
→
G is connected to x sinks which are the leaves in the spanning

tree of v. There are at most x − 1 branching nodes in the spanning tree of v.

The value HT (i)∪{Tj} computed in round i only needs to be updated when a temporary
source v connected to Rj is split into two new nodes. Let the size of v be s and the sizes
of the two new nodes be s1 and s2, respectively. Recall the definition of the entropy
function, when a split happens, HT (i)∪{Tj} = s1!s2!

s! HT (i). The fraction s1!s2!
s! can be

delivered to the sink via the spanning tree of v. In such a way, HT (i)∪{Tj} can be
calculated efficiently and the set Tj which minimises HT (i)∪{Tj} is selected as T (i).

92 L. Gąsieniec, C.Y. Li, and M. Zhang

[2 4 5 7 8 9] [0 1 3 6]

[0 1 2 4 5 8 9] [3 6 7].

β β′

α α′

Fig. 5. Two different pairs of equivalence classes

Lemma 4. Let C(i) be the number of splits of equivalence classes in round i. The

maintenance cost (on the top of manipulation of H) of
→
G in round i is O(C(i)).

Proof. Assume that a node v (corresponding to some equivalence class) in
→
G is con-

nected to x (the number of equivalence relations containing v as a class) sinks. When v
gets split, x sinks have to be informed and updated. By Lemma 3, this is done in
time O(x) due to the presence of express links in the spanning tree spanned on at

most x−1 branching nodes. Therefore, the maintenance cost of
→
G in round i is O(C(i)).

Corollary 1. Since the total number of splits in all sets Rj is no more than |S|(n −
1) the on-line maintenance of all current values of the entropy function is done at
cost O(|S|n).

2.5 Amortised Analysis

We show here that the total cost of our string barcoding procedure is O(n|S| log3 n).
Assume that during round i two different pairs of equivalence classes (α, α′) and

(β, β′), where α = EL
x and α′ = ER

x form a split of a class Ex = E(T (i − 1), x)
(in E(T (i − 1)) caused by T (i − 1) and β = E

L(j)
x and β = E

R(j)
x form a split

of the same class Ex caused by T (j), are available in the list Lx (see Figure 5). As
the result of cross-examination we obtain new four sets αβ = α ∩ β, αβ′ = α ∩ β′

α′β = α′ ∩ β, and α′β′ = α′ ∩ β′ that form two new pairs of equivalence classes
(αβ, αβ′) and (α′β, α′β′) to be considered during the next round. Assume also that
|α′| ≤ |α| (note that information about the sizes of α and α′ can be either kept in the
hierarchical structure H or it could be computed on line from the size of a superclass
formerly split into α and α′). Our algorithm takes all elements (one by one) from α′ and
searches for their occurrences in β and β′. When an element is located in β it is moved
to the set α′β otherwise it is moved from β′ to α′β′. When this process is finished
whatever is left in β becomes αβ and whatever remains in β′ becomes αβ′. The split
operation is completed.

In our amortised analysis argument we would like to trade in tested elements from
α′ for the total cost of our string barcoding procedure. Thus in round i the equivalence
classes in all E(T (i) ∪ Tj) overlapping with Ex will be updated at the uniform cost
|α′|, for each Tj outside of T (i). And this is happening only when α′ is non-empty,
otherwise no cost is charged (there will be no pair (α, α′) in Lx) since there will be no

Faster Algorithm for the Set Variant of the String Barcoding Problem 93

immediate split of classes β and β′ in E(T (i − 1) ∪ Tj). Also when (α, α′) = (β, β′)
no split is required, and indeed in this case both pairs appear as one in Lx. Since we
always charge the cost of a split to a smaller set α′ (i.e., |α′| ≤ |α|) every element in
each E(T (i−1)∪Tj) will be charged at most log n times during the whole execution of
Algorithm 2. Note also that the search in β and β′ for each charged element takes time
O(log2 n). This is done with a help of the hierarchical structure H and the procedures
Delete() and Insert(), see section 2.4. This means that the total charge across all (|S|)
equivalence relations E(T (i − 1) ∪ Tj) can be limited to O(|S|n log3 n).

Theorem 1. Algorithm 2 is O(|S|n log3 n)− time string barcoding approximation pro-
cedure with the approximation ratio O(1 + log n).

Proof. The time complexity follows from the amortised argument presented above. The
O(1 + log n) approximation ratio is ensured by the algorithm presented in [1], i.e.,
our string barcoding procedure does not change sets selected to the final solution. Our
primary focus was on improved performance of the selection process.

3 Conclusion

In this paper, we improve on the time complexity O(n2|S|) of the approximation al-
gorithm for the set variant of the string barcoding problem proposed by Berman et al.
in [1]. Our algorithm works in almost optimal time O(n|S| log3 n) in view of the fact
that the size of the input to the studied problem is of size Ω(|S|n). Note also that the
time improvement presented here applies also to other test set problems considered
in [1].

Among problems to be still addressed is efficient design of fault-tolerant (more ro-
bust) barcodes in which every pair of strings must separated by two (or more) probes
available in the pool of precomputed probes.

References

1. Berman, P., DasGupta, B., Kao, M.Y.: Tight approximability results for test set problems in
bioinformatics. Journal of Computer and System Sciences 71(2), 145–162 (2005)

2. Borneman, J., Chrobak, M., Vedova, G.D., Figueroa, A., Jiang, T.: Probe selection algorithms
with applications in the analysis of microbial communities. Bioinformatics 17, 39–48 (2001)

3. DasGupta, B., Konwar, K.M., Mandoiu, I.I., Shvartsman, A.A.: Dna-bar: distinguisher selec-
tion for dna barcoding. Bioinformatics 21(16), 3424–3426 (2005)

4. DasGupta, B., Konwar, K.M., Mandoiu, I.I., Shvartsman, A.A.: Highly scalable algorithms
for robust string barcoding. International Journal of Bioinformatics Research and Applica-
tions 1(2), 145–161 (2005)

5. Gerhold, D., Rushmore, T., Caskey, C.T.: DNA chips: promising toys have become powerful
tools. Trends Biochem. Sci. 24(5), 168–173 (1999)

6. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings,
trees and arrays. In: Proc. 4th Symposium on Theory of Computing (STOC), pp. 125–136
(1972)

94 L. Gąsieniec, C.Y. Li, and M. Zhang

7. Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique
probe selection using Integer Linear Programming. Bioinformatics 20, 186–193 (2004)

8. Lancia, G., Rizzi, R.: The approximability of the string barcoding problem. Algorithms for
Molecular Biology 1(12), 1–7 (2006)

9. Rash, S., Gusfield, D.: String Barcoding: Uncovering Optimal Virus Signatures. In: Proc.
6th Annual International Conference on Research in Computational Molecular Biology (RE-
COMB), pp. 254–261 (2002)

Probabilistic Arithmetic Automata and Their

Application to Pattern Matching Statistics

Tobias Marschall and Sven Rahmann

Bioinformatics for High-Throughput Technologies
at the Chair of Algorithm Engineering,

Computer Science Department, TU Dortmund,
D-44221 Dortmund, Germany

{tobias.marschall,sven.rahmann}@tu-dortmund.de

Abstract. We present probabilistic arithmetic automata (PAAs), which
can be used to model chains of operations whose operands depend on
chance. We provide two different algorithms to exactly calculate the dis-
tribution of the results obtained by such probabilistic calculations. Al-
though we introduce PAAs and the corresponding algorithm in a generic
manner, our main concern is their application to pattern matching sta-
tistics, i.e. we study the distributions of the number of occurrences of a
pattern under a given text model. Such calculations play an important
role in computational biology as they give access to the significance of
pattern occurrences. To assess the practicability of our method, we ap-
ply it to the Prosite database of amino acid motifs and to the Jaspar
database of transcription factor binding sites. Regarding the latter, we
additionally show that our framework permits to take binding affinities
predicted from a physical model into account.

1 Introduction

Biological sequence analysis is often concerned with the search for structure in
long strings like DNA, RNA or amino acid sequences. Frequently, “search for
structure” means to look for patterns that occur very often. An important point
in this process is to define sensibly a notion of “very often”. One option is to
consult the statistical significance of an event: Suppose we have found a certain
pattern n times in a given sequence. What is the probability of observing n
or more matches just by chance? To answer this question we have to specify
the meaning of “by chance” and define an appropriate null model. In the most
simple case of independent, uniformly distributed characters, all strings of the
same length m have equal probabilities of occurrence. Then, the posed question
turns out to be of purely combinatorial nature and can be rephrased as follows:
How many strings of length m exist that contain n or more instances of the given
pattern? For many applications, however, this simple model is not sufficient. In
DNA, for example, the GC-content often differs considerably from 50%, making
a uniform model inappropriate. Then, one has to employ at least an i. i. d.1 model
1 independent, identically distributed.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 95–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 T. Marschall and S. Rahmann

(also known as Bernoullian model), which is defined by a distribution over an
alphabet. Should the application require an even more elaborate model, the most
common choice is a Markov model that allows the probability of each character
to depend on a finite history.

Given a suitable null model, a procedure to compute the significance of a
pattern is a powerful tool in the context of motif discovery, as it allows the
comparison of different patterns regardless of their structure and length.

There are many different types of patterns that are relevant in computational
biology, such as single strings, sets of strings, Prosite patterns2, consensus strings
together with a distance measure and a distance threshold, abelian patterns,
position weight matrices in connection with a threshold, etc. All these pattern
types may be seen as a way to describe a finite set of strings. Thus, all these
patterns may be expressed in the form of deterministic finite automata (DFAs)
that recognize the respective string set. As our method is based on this DFA
representation, it is very general and flexible regarding the pattern type.

Besides specifying a pattern, one has to decide how overlaps are to be handled.
We refer to the used strategy as counting scheme. The easiest case is to disallow
overlaps at all; we call this scheme non-overlapping count. Consequently, we
define the overlapping count to be the number of substrings that match the given
pattern. In the case of a set of strings without any restrictions, this scheme makes
counting more complicated as some words may be substrings of others. Many
authors neglect the problem—at least partly—by simply counting the positions
where at least one pattern ends, which we name match position count.

Related Work and New Results. The topic of statistics of words on random
texts has been studied extensively. An overview is provided in the book by
Lothaire [2]; Chapter 6 (“Statistics on Words with Applications to Biological
Sequences”), which is particularly interesting to us, is based on the overview
article by Reinert et al. [3].

In most approaches developed until now, a generating function is derived
for the sought quantity. Then, typically using symbolic Taylor expansion, the
concrete values can be computed. This procedure is, for instance, described by
Régnier [4], who gives formulas for mean, variance and higher statistical moments
of the exact occurrence count distribution. Her framework is general enough
to admit Markovian sources as well as finite sets of patterns to be treated in
the overlapping as well as in the non-overlapping case. Closely related is the
approach of Nicodème et al. [5], who present an algorithmic chain to compute
the distribution of the match position count for regular expressions.

Lladser et al. [6] recently reviewed the field. Their main concern is to bring
together involved concepts in a consistent and rigorous manner. They make the
connection to the classical field of automata theory and pattern matching explicit
and therefore speak of probabilistic pattern matching. Furthermore, they describe
the relation between finite automata and Markov chains in terms of the Markov
chain embedding technique.
2 Like used in the Prosite database (see Hulo et al. [1]). A syntax description can be

found under http://www.expasy.org/tools/scanprosite/scanprosite-doc.html.

http://www.expasy.org/tools/scanprosite/scanprosite-doc.html

PAAs and Their Application to Pattern Matching Statistics 97

In this article, we introduce the concept of probabilistic arithmetic automata
and demonstrate how it paves the way for a dynamic programming approach
to exact pattern matching statistics. The notion of probabilistic arithmetic au-
tomata can be seen as a generalization of Markov additive chains which were
used by Kaltenbach et al. [7] for fragment statistics of cleavage reactions. An-
other dynamic programming approach was recently presented by Zhang et al.
[8]. They use it to compute exact p-values for position weight matrices describing
transcription factor binding sites (TFBS).

For finite string sets, our framework is able to handle overlaps of words of
different lengths accurately. We are not aware of any previous work permitting
that; all those mentioned above use the match position count instead. The pre-
sented approach is fast and flexible, as we show by examples from computational
biology. Especially in the application to statistics of TFBS, the generality of our
framework proves itself advantageous; effortlessly we can take binding affinities
obtained from a physical model into account.

2 Probabilistic Arithmetic Automata

In this section, we define probabilistic arithmetic automata (PAAs). They later
allow us to establish a well-grounded connection between a pattern set and its
statistics on random texts.

Definition 1 (Probabilistic Arithmetic Automaton). A probabilistic
arithmetic automaton is a tuple

(
Q, T, q0, N, n0, E, θ = (θq)q∈Q, π = (πq)q∈Q

)
,

where

– Q is a finite set of states,
– T : Q × Q → [0, 1] is a transition function with

∑
q∈Q T (p, q) = 1 for all

p ∈ Q, i.e.
(
T (p, q)

)
p,q∈Q

is a stochastic matrix,
– q0 ∈ Q is called start state,
– N is a finite set called value set,
– n0 ∈ N is called start value,
– E is a finite set called emission set,
– each θq : N × E → N is an operation associated with the state q,
– each πq : E → [0, 1] is a distribution associated with the state q.

At first, the automaton is in its start state q0, as for a classical deterministic finite
automaton (DFA). In a DFA, the transitions are triggered by input symbols. In
a PAA, however, the transitions are purely probabilistic; T (p, q) gives the chance
of going from state p to state q. Note that the tuple (Q, T, δq0) defines a Markov
chain on state set Q with transition matrix T , where δq0 is the Dirac distribution
assigning probability 1 to {q0} as the initial distribution. Besides the similarity
to Markov chains, this part of the definition may also be seen as a special case of
probabilistic automata3 (see [9] for an introduction to probabilistic automata).
3 Probabilistic automata have two features that we do not need here. Firstly, they

allow non-deterministic choices, and, secondly, each transition is associated with an
action.

98 T. Marschall and S. Rahmann

While going from state to state, a PAA performs a chain of calculations on
a set of values N . In the beginning, it starts with the value n0. Whenever a
state transition is made, the entered state, say state q, generates an emission
according to the distribution πq. The current value and this emission are then
subject to the operation θq, resulting in the next value.

Notice that the Markov chain (Q, T, δq0), together with the emission distrib-
utions π = (πq)q∈Q, defines a hidden Markov model (HMM). In the context of
HMMs, however, the focus usually rests on the sequence of emissions, whereas
we are interested in the value resulting from a chain of operations on these
emissions.

Let us introduce some notation. Let (Yk)k∈�0 denote the automaton’s state
process, i.e. �(Yk = q) is the probability of being in state q after k steps. Ana-
logously, we write (Zk)k∈�0 and (Vk)k∈�0 to denote the sequence of emissions
and the sequence of values resulting from the performed operations, respectively.
Using this terminology, we can describe the value process formally:

V0 ≡ n0 , (1)
Vk = θYk

(Vk−1, Zk) . (2)

Example 1 (Dice). To illustrate the definition, let us examine a simple dice ex-
periment. Suppose you have a bag (or urn) containing three dice, a 6-faced, a
12-faced, and a 20-faced die. Now a die is drawn from the bag, rolled, and put
back. This procedure is repeated m times. In the end one may, for example, be
interested in the distribution of the maximum number observed. Using a PAA,
we can model each die as a state. Then, all transition probabilities would be
1/3 and the emissions would be uniform distributions over the number of faces
of the respective dice (the dice are assumed to be fair). As we are interested in
the maximum, each state’s operation would be to choose the maximum. Note
that it would also be possible to associate individual operations with each state
(each dice), for instance: “sum up all numbers from the 6- and 12-faced dice and
subtract the numbers seen on the 20-faced die”.

3 Computing the State-Value Distributions of PAAs

Having introduced the definition a PAA, we now take the next step and present
two algorithms to compute the distribution of results. In other words, we seek
to calculate the distribution L(Vm) of the random variable Vm for a given m.
The idea is to compute the joint distribution L(Ym, Vm) and then to derive the
sought distribution:

�(Vm = v) =
∑
q∈Q

�(Ym = q, Vm = v) . (3)

For the sake of a shorter notation, we define pk(q, v) := �(Yk = q, Vk = v).

PAAs and Their Application to Pattern Matching Statistics 99

3.1 Basic Algorithm

We now briefly discuss a simple algorithm to compute the distribution
L(Ym, Vm). Following the semantics introduced in Section 2, we can form the
recurrence equation

pk+1(q, v) =
∑
q′∈Q

∑

(v′,e)∈θ−1
q (v)

pk(q′, v′) · T (q′, q) · πq(e) , (4)

where θ−1
q (v) denotes the inverse image set of v under θq.

We start with the distribution p0 and calculate the subsequent distributions
by applying Equation (4) until we obtain the desired pm. A straightforward im-
plementation of Equation (4) results in a pull-strategy; that means each entry
in the table representing pk+1 is calculated by “pulling over” the required prob-
abilities from table pk. Note that this approach makes it necessary to calculate
θ−1 in a preprocessing step. In order to avoid this, we may implement a push-
strategy, meaning that we iterate over all entries in pk rather than pk+1 and
“push” the encountered summands over to the appropriate places in table pk+1;
in effect, we just change the order of summation.

In the course of the computation, we have to store two distributions, pk and
pk+1, at a time. Once pk+1 is calculated, pk can be discarded. Since each table
has a size of |Q| × |N |, the total space consumption is O(|Q| · |N |). To perform
a transition from pk to pk+1, we have to evaluate Equation (4) exactly |Q| · |N |
times. We sum over θ−1

q (v) for all v ∈ N , but θ−1
q (v1) and θ−1

q (v2) are disjoint
for v1 �= v2 and

⋃
v∈N θ−1

q (v) = N × E. Therefore, we get a runtime of O(|Q|2 ·
|N | · |E|) for one transition and, hence, a total runtime of O(m · |Q|2 · |N | · |E|)
to calculate pm.

3.2 Doubling Technique

In case of a large m, executing the above algorithm is cumbersome. In this
section, we present an alternative algorithm that is favorable for large m. To
derive this algorithm, we consider the conditional probability

U (k)(q1, q2, v1, v2) = �
(
Yi+k = q2, Vi+k = v2

∣∣Yi = q1, Vi = v1
)
. (5)

Note that this definition does not depend on i, because transition as well as emis-
sion probabilities do not change over “time” (a property called homogeneity).
Once U (m) is known, we can simply read off the desired distribution L(Ym, Vm):

�(Ym = q, Vm = v) = U (m)(q0, q, n0, v) . (6)

In the following, we show how U (k) can be computed. For k = 1, we get

U (1)(q1, q2, v1, v2) = T (q1, q2) ·
∑
e∈E:

θq2(v1,e)=v2

πq2(e) . (7)

100 T. Marschall and S. Rahmann

From this starting point, we can calculate U (k1+k2) from U (k1) and U (k2) for any
k1, k2 ∈ � by summing over all possible intermediate states and values:

U (k1+k2)(q1, q2, v1, v2) =
∑
q′∈Q

∑
v′∈N

U (k1)(q1, q
′, v1, v

′) · U (k2)(q′, q2, v
′, v2) . (8)

Equation (8) is a generalization of the Chapman-Kolmogorov Equation for ho-
mogeneous Markov chains.

The transition from U (k1) and U (k2) to U (k1+k2) takes O(|Q|3 · |N |3) time, as
follows immediately from Equation (8). On the other hand, one transition suffices
to get U (2k) out of U (k). Thus, we can compute all U (2b) for 0 ≤ b ≤ �log(m)�
in �log(m)� steps, which in turn can be combined to U (m) in at most �log(m)�
steps. Hence, we get a total runtime of O(log m · |Q|3 · |N |3).

4 Pattern Matching Statistics

In this section, we discuss the application of probabilistic arithmetic automata
to pattern matching statistics. We see how a deterministic finite automaton
together with a text model, either i. i. d. or Markovian, can be transformed into
a PAA for the overlapping count.

4.1 Sets of Generalized Strings

Generalized strings are finite sequences of sets of characters over an alphabet
Σ, for example [abc][ac][ab] (which matches aaa, ccb but not aba). We now
explain the construction of PAAs from finite sets of generalized strings for i. i. d.
text models.

The first step is to construct a non-deterministic finite automaton (NFA) for
the given set of generalized strings. To be more precise, we need to construct a
NFA that recognizes all strings ending with an instance of a generalized string
from the given set. The NFA corresponding to one generalized string is just a
linear chain of states with a start state plus one state for each position, where
the start state is additionally equipped with a self-transition. The NFA for the
set of generalized strings can be constructed by simply merging all individual
start states into one common start state.

The next step towards a PAA is to build a DFA. In order to obtain it, we em-
ploy the subset construction, a classical procedure that is for example explained
in the book by Navarro and Raffinot [10]. Although, in the worst case, it results
in an exponential increase in the number of states, this method is feasible in
many practical cases, as we demonstrate shortly.

Before we come to that point, let us complete the construction of a PAA. We
define it to operate on the same state set Q as the DFA. The transition function
T can then be derived from the text model and the DFA’s transition function by
“replacing” all characters with their probability. Let us state this transformation

PAAs and Their Application to Pattern Matching Statistics 101

precisely. Let δ : Q × Σ → Q denote the transition function of the DFA and pσ

the occurrence probability of each character σ ∈ Σ, then T is defined by

T : (q, q′) 	→
∑

σ∈{σ′∈Σ:δ(q,σ′)=q′}
pσ . (9)

This technique is called Markov chain embedding by Lladser et al. [6].
Let us specify the emission distribution πq of each state q. We use it to model

the number of matches to count upon entering state q. Since this number does not
depend on chance, the emissions are deterministic. By the subset construction,
there corresponds a set Bq of NFA states to each state q. Due to the construction
of the NFA, the number of final states in Bq equals the number of matching
substrings that end when q is entered; so q emits this number with probability 1.

Assume we have observed the given pattern P (a set of generalized strings)
n times in a text of length m. Therefore, we wish to compute the probability of
finding n or more occurrences of P in a random text of length m. To achieve
this, we choose the value set N = {0, . . . , n} and the operation

θq(v, e) :=

{
v + e if v + e ≤ n ,
n otherwise ,

(10)

for all q ∈ Q. Thus, the value n has the meaning “n or more matches observed”.
Before turning the DFA into a PAA, one may wish to minimize it. Using an

algorithm by Hopcroft [11], a classical DFA can be minimized in O(|Q| log |Q|)
time, where Q is the set of states (see Knuutila [12] for a tutorial-like introduction
and an in-depth analysis of this algorithm). Hopcroft’s algorithm can be adapted
by using the partition induced by the different emissions as an initial partition,
i.e. states with the same emission are grouped together.

Runtime. The runtime bounds given in the general analysis in Section 3 can be
tightened for this concrete application. Let us first examine the basic algorithm
from Section 3.1. Firstly, observe that now the emissions are deterministic, that
means we only have to consider one possible emission per state, reducing the
runtime by a factor of O(|E|). Secondly, note that by Equation (9) the transition
matrix contains at most |Q| · |Σ| non-zero entries, allowing us to further speed up
the evaluation of Equation (4). In total, we get a runtime of O(m · |Q| · |Σ| · |N |).

The doubling algorithm presented in Section 3.2 can also be simplified. This
time, we exploit a property of the operations θq, which are simple additions in
our case. Thus, U (k)(q1, q2, v1, v2) = U (k)(q1, q2, v3, v4) if v2 −v1 = v4 −v3, which
means that we can fix v1 = 0 and thereby save a factor of |N |. This results in a
total runtime of O(log m · |Q|3 · |N |2).

Prosite Patterns. Prosite is a database of biologically meaningful amino acid
motifs (see Hulo et al. [1]). Release 20.17 contains 1319 patterns, 16 of which
refer to the start or ending of a sequence. Those entries were ignored, leaving a
database of 1303 patterns.

Prosite patterns can be seen as generalized strings with the extension that, for
each position, a “multiplicity range” can be specified. In the pattern A-x(2,3)-C,

102 T. Marschall and S. Rahmann

for example, an A is followed by either two or three arbitrary characters followed
by a C. We translate every Prosite pattern into a set of generalized strings. The
above example would result in the two patterns A-x-x-C and A-x-x-x-C. This
set can then be dealt with as explained above.

We implemented the algorithms in Java and ran them on a customary PC4.
Unfortunately, for 42 patterns (3.2%) the computation did not succeed due to
memory limitations. This can happen if either the Prosite pattern translates into
too many generalized strings or if the DFA resulting from the subset construction
grows too large.

For 1236 of the 1261 remaining patterns, the subset construction was com-
pleted within 2 seconds while the computation took 69.9 seconds for the “worst
pattern”. The resulting automata were then minimized using Hopcroft’s algo-
rithm. Many automata, however, already were minimal or close to minimal; for
1209 automata the minimized automaton was larger than half the size of the
original automaton. The majority of resulting minimal automata were of rea-
sonable size. We obtained 1198 automata with less than 10000 states, among
which 1036 had less than 500 states.

To give an impression of the runtimes to be expected, consider the pat-
tern C-x-H-R-[GAR]-x(7,8)-[GEKVI]-[NERAQ]-x(4,5)-C-x-[FY]-H from the
Prosite database. It results in an automaton with 462 states. Assuming n = 50
(number of occurrences) and m = 1000 (text length), computing the distribution
of the occurrence count took 1 second.

4.2 Finite String Sets

Assume that the pattern is given in the form of an enumerated set of strings.
Obviously, this is a special case of a set of generalized strings. In this situation,
however, the intermediate step of constructing a NFA is unnecessary. Instead, an
Aho-Corasick automaton (Aho and Corasick [13]), which essentially is a DFA,
can be built directly. It can be constructed in linear time by either using the
algorithm given in the original paper or by employing a recent elegant algorithm
based on the suffix tree of the reverse strings (Dori and Landau [14]). The latter
has the advantage that the runtime does not depend on the alphabet size. The
emissions (number of matches) of the states can directly be read off the Aho-
Corasick automaton’s output function.

Transcription Factor Binding Site Statistics. Transcription factors are
proteins that play an important role in gene regulation. By binding to special
DNA regions, they influence the transcription of DNA to RNA and, thereby,
the expression of genes. Due to their significance for gene regulation, represen-
tations of the corresponding DNA binding sites have been studied extensively;
an overview is provided by Stormo [15]. These transcription factor binding sites
(TFBSs) are now commonly represented by position weight matrices (PWMs).
Frequently, one wishes to compute the significance of a high number of occur-
rences of a PWM, for instance in a given promoter region. This raises the question
4 Intel Core 2 Duo 2.66GHz, 4GB RAM, running Linux.

PAAs and Their Application to Pattern Matching Statistics 103

of when to consider a substring to be an occurrence of the PWM. In this sec-
tion, we base our considerations on a threshold, while in Section 4.3, we present
a threshold-free approach.

Recently, new approaches—which are also based on a threshold—have been
proposed. On the one hand, Pape et al. [16] introduce a method to approximate
the significance of PWM occurrences. On the other hand, Zhang et al. [8] describe
a dynamic programming algorithm to solve the problem exactly.

In our framework, we can calculate the distribution of the occurrence count
by enumerating all patterns above a threshold and using them to build an Aho-
Corasick automaton. As explained above, this automaton can then be trans-
formed into a PAA.

In order to assess the practicability, we consulted Jaspar (see Sandelin et al.
[17]), a database containing 138 position frequency matrices (PFMs). All PFMs
were converted into PWMs using the method of Rahmann et al. [18]. We con-
trolled the threshold by fixing the probability of false positives on a random
text of length 500 at α = 0.01. In other words, we set the threshold such that
the probability to get one or more matches just by chance is (at least approx-
imately) α. Using this threshold and assuming a uniform distribution on the
alphabet of nucleotides, we computed the distribution of the occurrence count
(up to 100 occurrences) for the binding sites found in the Jaspar database. It
can be computationally demanding to enumerate all strings above the threshold.
In some cases, the memory requirement could not be met and the calculation
was aborted. For 126 of all 138 PFMs, however, the computation was completed
successfully and took 10.0 seconds on average and 9 minutes in the worst case.

4.3 Probabilistic String Sets

Above, we discussed the matching statistics of string sets given in one form or
another. Now we generalize the notion of a string set and define a probabilistic
string set by associating a weight between 0 and 1 with each string in the set.
This mechanism is useful in computational biology as it allows to model the
chance that a protein binds to a specific sequence.

TFBS Statistics Accounting for Binding Affinities. Recently, Roider et al.
[19] presented a procedure to predict a transcription factor’s affinity to a sequence
based on a physical model. Based on their implementation5, we can estimate the
probability that a TF binds to a particular sequence. Then, we can modify the
emission distributions of the PAA accordingly. That means, a state correspond-
ing to a binding site instance emits the match count 1 with the probability given
by the affinity and 0 with the remaining probability.

Again, we assessed the practicability on the Jaspar database. For every PWM,
we generated the 1000 best-scoring strings, calculated their binding probability,
constructed a PAA and computed the distribution of the occurrence count (again
up to 100 occurrences and on a random text of length 500). The calculations
took 11.6 seconds on average and 63 seconds in the worst case.
5 See http://www.molgen.mpg.de/∼manke/papers/TFaffinities.

http://www.molgen.mpg.de/~manke/papers/TFaffinities

104 T. Marschall and S. Rahmann

It arises the question, if the choice of 1000 strings is appropriate. The binding
probability of the string with the lowest binding probability pmin may give us a
hint. In our case, pmin is below 0.001 for 60 of the 138 matrices and below 0.01
for 86 matrices. These numbers can be improved at the cost of longer runtimes.
We propose to study the influence of the number of strings on the obtained
distributions in future work.

4.4 Further Generalizations

Markovian Text Models. So far, we only considered i. i. d. text models, but
the generalization to Markovian models can be done without much effort.

For a first-order model, the distribution of a character depends on the last
character. Equation (9) could be modified accordingly if all incoming edges of
each DFA state were labeled with the same character, i.e. if from δ(q1, σ1) =
δ(q2, σ2) it followed that σ1 = σ2. This property, however, can easily be estab-
lished by the following procedure: If a state has incoming edges labeled with k
different characters, duplicate the state k − 1 times (along with the outgoing
edges) and reroute the incoming edges such that those labeled with different
character end in different clones of the original state. For n-th-order models,
repeat this procedure until for each state the n last characters are known.

Note that the computational expense is especially low for Aho-Corasick au-
tomata. By construction, each state corresponds to a prefix of a string from the
string set. Therefore, for a k-th-order model, only the states corresponding to
states whose distance to the root node is lower than k potentially have to be
duplicated. For all other states, a sufficiently long history is already known.

Different Counting Schemes. Regarding the counting scheme, we already
dealt with the most complicated case of the overlapping count. If one wishes
to disallow overlaps, the automaton can be modified accordingly. We just have
to change the outgoing transitions of each accept state qa to act like the start
state, i.e. δ′(qa, σ) = δ(qs, σ) for all σ ∈ Σ. To get the match position count, all
emissions of values larger than 1 just have to be changed to emit 1.

Inhomogeneous PAAs. We defined the transition function T to be constant
over “time”, which is reflected in Equation (4), where T does not depend on
k. In the basic algorithm of Section 3.1, however, such a dependency can be
incorporated straightforwardly.

One application of an inhomogeneous PAA lies in the field of motif discovery.
Assume that the motif with the lowest (or at least a low) p-value has been found,
let us call it “best motif”. When seeking the “second best motif”, one is likely to
obtain a variant of the best motif that matches essentially at the same positions.
Now it is an option to judge the second motif according to a modified text model.
In this model, the character distribution is changed at those positions where the
first motif matches. There, Dirac distributions are used such that the chance of
finding the former motif at this position is 1. This text model only gives small
p-values for new motifs, rather than for variants of the best motif.

PAAs and Their Application to Pattern Matching Statistics 105

Another application is the calculation of the binding count distribution for
a TF on a particular sequence. Here, we remove all randomness from the text
model and assign probability 1 to the given sequence. The only random choices
are done by the emission distributions, which are chosen according to the binding
affinity as explained in Section 4.3.

5 Discussion

We have introduced the abstract concept of probabilistic arithmetic automata
and have presented two generic algorithms to compute the joint distribution
of states and values. The algorithms constitute different trade-offs between the
factors governing the runtime. While the basic algorithm is applicable in most
cases, the doubling technique is favorable for long texts and relatively small state
and value spaces.

The notion of PAAs blends into the landscape of existing concepts like proba-
bilistic automata, Markov chains, hidden Markov models and, last but not least,
Markov additive chains (Kaltenbach et al. [7]). A strength of PAAs lies in their
flexibility. In this paper, we have discussed various applications. As we showed,
our method is applicable to the majority of motifs from the Prosite database.
In contrast to existing methods, the proposed one is able to handle overlaps
accurately.

Another possible application is the calculation of TFBS statistics. Concerning
this matter, we examined two approaches. On the one hand, we did statistics
based on the enumeration of all words with a PWM score above a threshold.
This approach is similar to that of Zhang et al. [8], who also developed a dynamic
programming algorithm. Their approach is comparable in space and time con-
sumption, but lacks the flexibility of our method. It is unclear if different count-
ing schemes or probabilistic emissions could be incorporated into their method.
Another advantage of our concept lies in its roots in theoretical computer sci-
ence; we can take advantage of well-studied methods like DFA minimization or
the subset construction. The latter allows us to handle pattern sets, for example
based on generalized strings, whose enumeration would not be feasible.

Besides the threshold-based approach, we demonstrated that our model al-
lows for more advanced TFBS statistics. As we showed, it is possible to take
binding affinities derived from a physical model into account. To the best of our
knowledge, this has not been done before.

A promising direction of future research seems to be the application of PAAs
to field of motif discovery. Fast and exact significance calculations seem to be a
helpful tool as they allow the comparison of sets of motifs with different structure
and length.

References

1. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-
Genevaux, P., Pagni, M., Sigrist, C.: The PROSITE database. Nucleic Acids Re-
search 34(S1), D227–230 (2006)

106 T. Marschall and S. Rahmann

2. Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, Cambridge (2005)

3. Reinert, G., Schbath, S., Waterman, M.S.: Probabilistic and statistical properties
of words: An overview. Journal of Computational Biology 7(1-2), 1–46 (2000)

4. Régnier, M.: A unifed approach to word occurrence probabilities. Discrete Applied
Mathematics 104, 259–280 (2000)

5. Nicodème, P., Salvy, B., Flajolet, P.: Motif statistics. Theoretical Computer Sci-
ence 287, 593–617 (2002)

6. Lladser, M., Betterton, M.D., Knight, R.: Multiple pattern matching: A Markov
chain approach. Journal of Mathematical Biology 56(1-2), 51–92 (2008)

7. Kaltenbach, H.M., Böcker, S., Rahmann, S.: Markov additive chains and applica-
tions to fragment statistics for peptide mass fingerprinting. In: Ideker, T., Bafna, V.
(eds.) Joint RECOMB 2006 Satellite Workshops on Systems Biology and on Com-
putational Proteomics. LNCS (LNBI), vol. 4532, pp. 29–41. Springer, Heidelberg
(2007)

8. Zhang, J., Jiang, B., Li, M., Tromp, J., Zhang, X., Zhang, M.Q.: Computing exact
p-values for DNA motifs. Bioinformatics 23(5), 531–537 (2007)

9. Stoelinga, M.: An introduction to probabilistic automata. In: Rozenberg, G. (ed.)
EATCS bulletin, vol. 78 (2002)

10. Navarro, G., Raffinot, M.: Flexible pattern matching in strings. Cambridge Uni-
versity Press, Cambridge (2002)

11. Hopcroft, J.: An n log n algorithm for minimizing the states in a finite automaton.
In: Kohavi, Z., Paz, A. (eds.) The theory of machines and computations, pp. 189–
196. Academic Press, New York (1971)

12. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoretical Computer Sci-
ence 250, 333–363 (2001)

13. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM 18(6), 333–340 (1975)

14. Dori, S., Landau, G.M.: Construction of Aho Corasick automaton in linear time
for integer alphabets. Information Processing Letters 98(2), 66–72 (2006)

15. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformat-
ics 16(1), 16–23 (2000)

16. Pape, U.J., Grossmann, S., Hammer, S., Sperling, S., Vingron, M.: A new sta-
tistical model to select target sequences bound by transcription factors. Genome
Informatics 17(1), 134–140 (2006)

17. Sandelin, A., Alkema, W., Engström, P.G., Wasserman, W.W., Lenhard, B.: JAS-
PAR: an open access database for eukaryotic transcription factor binding profiles.
Nucleic Acids Research 32(1) (2004) (Database Issue)

18. Rahmann, S., Müller, T., Vingron, M.: On the power of profiles for transcription
factor binding site detection. Statistical Applications in Genetics and Molecular
Biology (Article 7), 2(1) (2003)

19. Roider, H., Kanhere, A., Manke, T., Vingron, M.: Predicting transcription factor
affinities to DNA from a biophysical model. Bioinformatics 23(2), 134–141 (2007)

Analysis of the Size of Antidictionary in DCA

Julien Fayolle

LRI; Univ. Paris-Sud, CNRS, F-91405 Orsay, France
julien.fayolle@lri.fr

http://www.lri.fr/~fayolle

Abstract. We analyze the lossless data compression scheme using an-
tidictionary. Its principle is to build the dictionary of a set of words
that do not occur in the text (minimal forbidden words). We prove here
that the number of words in the antidictionary, i.e., minimum forbidden
words, behaves asymptotically linearly in the length of the text under a
memoryless model on the generation of texts. The linearity constant is
explicited. We use methods from analytic combinatorics.

1 Introduction

Data compression using anti-dictionaries (DCA) was introduced by Crochemore,
Mignosi, Restivo, and Salemi in 1999 [3,4]. It focuses on words that do not occur
in the text T . There is an infinite number of words that do not occur in a finite
text, so the authors use minimal forbidden words (MFW for short) [2] to obtain
a finite set of words. A word w is forbidden for a text T if it does not occur in
the text. A word w is a minimal forbidden word for T if it does not occur in
T and all its factors do occur. The MFWs are also called antifactors. The DCA
algorithm relies on the fact that text are written on a binary alphabet. DCA has
been used by Ota and Morita [12] to compress an electrocardiogram. The output
is 10% smaller than that of a Lempel-Ziv-like algorithm. They also proved in [11]
that the number of MFWs is bounded by the size of the dictionary of the text.

In this paper, texts are generated on a binary alphabet A = {0, 1} by a
memoryless source model, meaning the letter emitted at a given time does not
depend on the preceding letters. The letter 0 is emitted with probability p and
1 with probability q. We suppose that p ≥ q. For a pattern w, the occurrence
probability pw is the probability that the source emits the pattern w. A source
is said to be periodic if log p/ log q is rational, otherwise it is aperiodic.

For a pattern w of length k its prefix of length k −1 is noted wL and its suffix
of length k − 1, wR. The letter ᾱ is the letter that is not α e.g., 0̄ = 1.

The parameter S is defined as the size of the antidictionary (or the number of
MFWs). For a text T , S(T) is the number of MFWs in the text T . Our goal is to
obtain the asymptotic behavior of En(S), the mean of S over texts of length n:

En(S) = En

(∑
w∈A�

[[w ∈ MFW]]

)
=

∑
w∈A�

Pn(w ∈ MFW), (1)

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 107–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 J. Fayolle

where [[.]] is Iverson’s notation for the indicator function and Pn(w ∈ MFW)
is the probability of texts of length n for which w is an MFW.

In Sect. 2 the DCA algorithm is presented. We are interested by the asymp-
totic behavior of En(S). The sum

∑
w∈A� Pn(w ∈ MFW) is split in three sums

depending on the length of the patterns. The sum over the patterns of small
(resp. intermediate, long) lengths is denoted by S(n) (resp. I(n), L(n)). For a
text T of length n, patterns of small length (hereafter small patterns) are defined
as those of length smaller than ks(n) := aCq log n and patterns of long length
(hereafter long patterns) are those of length larger than kl(n) := bCp log n for
a < 1, b > 1, and Cr = − 1

log r . The sums S(n) and L(n) are asymptotically
sublinear as shown in Sect. 3. For intermediate pattern, the asymptotic behav-
ior of I(n) is harder to derive. We introduce an approximate model in Sect. 4
consisting of two hypotheses. The asymptotic behavior of the contribution of
intermediate patterns under the approximate model is obtained in Section 5 for
a symmetric memoryless model. The result is stated for a biased model. In Sect.
6, we show that the asymptotic behavior under the approximate model matches
the asymptotic behavior of I(n) under the exact model up to a sublinear term.
Full details of the computations are available in Chap. 4 of Fayolle [7].

Theorem. Under a memoryless biased model on the generation of texts, the
mean size of the antidictionary i.e., the number of minimal forbidden words
over all texts of length n behaves asymptotically as

En(S) = K
n

h
+

n

h
ε(n) + o(n)

for a periodic source, and as

En(S) = K
n

h
+ o(n)

for an aperiodic source, where ε(x) is a function fluctuating around zero of very
small amplitude (roughly 10−5),

h = −p log p − q log q is the entropy of the source, and,

K := 2h + (1 − p2) log(1 − p2) + (1 − q2) log(1 − q2) + 2(1 − pq) log(1 − pq).

2 Description of DCA

In this section, we describe the compression and decompression in DCA. Three
phases are distinguished: construction of the trie containing the antidictionary
for the text T , compression, and decompression.

The construction of the trie containing the MFWs for the binary text T is
performed in linear time. First the suffix tree of the text T is built in linear time
(with the use of suffix links). Let u = αv be a node with no left child (resp. no
right child) in the suffix tree of Fig. 1 then u0 (resp. u1) does not occur in the
text T . If the node v (this node is reached following a suffix link from u) has a

Analysis of the Size of Antidictionary in DCA 109

v

u

Fig. 1. The left child of u is empty and the left child of v exists, hence u0 is an MFW

left child (resp. right) then v0 (resp. v1) occurs in the text and thus u0 (resp. u1)
is an MFW for T (an MFW is marked by a leaf in the tree). The tree structure
is modified accordingly and branches that do not lead to a leaf are cut off.

Morita and Ota described in [11] an algorithm AD2D to go from the trie built
on MFWs (the antidictionary) to the suffix tree of the text.

The compression phase is based on a simple idea: if at a given position in the
text the next letter can not be 0 then it must be 1 (since the alphabet is binary).
Suppose the text T [0 . . . i] has been compressed, if there is a suffix v of T [0 . . . i]
such that v0 (resp. v1) is an MFW then the letter T [i + 1] is 1 (resp. 0). The
letter T [i + 1] carries redundant information with the antidictionary and is not
included in the compressed text. (Otherwise the letter is included.)

Decompression uses the antidictionary, the compressed text, and the length
of the initial text. Suppose the text has been decompressed up to position i, if
there is a suffix v of the text T [0 . . . i] such that v0 (resp. v1) is an MFW, then
the letter T [i+1] is forced to be 1 (resp. 0). The decompression is linear in time.
The length is used to indicate the end of the decompression.

3 Patterns of Small and Long Lengths

In this section, we show that the asymptotic contributions of patterns of small
S(n) and long L(n) lengths to the mean size of antidictionary are sublinear.

A small pattern occurs often in a text, so the probability that w does not occur
is small and decreases exponentially with n. Furthermore the number of small
patterns is polynomial, hence the contribution of small patterns to En(S) is

S(n) :=
ks(n)∑
k=1

∑
w∈Ak

Pn(w ∈ MFW) ≤ M2ks(n) exp((p − 1)n1−a), (2)

where M is a positive constant. The decay of the exponential implies S(n) is o(1).
A pattern w of length k is an MFW for a text if the pattern u(w) = u :=

w2 · · · wk−1 occurs at least twice in the text (once with an occurrence of wL, and
once with an occurrence of wR). For a long pattern w, the pattern u is roughly
of the same length as w hence it also qualifies as long pattern. A long pattern
occurs rarely in a text hence the probability that u occurs at least twice in the

110 J. Fayolle

text is small. Yet there are an infinite number of long patterns. The probability
to have at least two occurrences of u in a text of length n is bounded by

Pn(Nu ≥ 2) ≤ npu

(
1

cu(1)
− 1 +

npu

cu(1)

)
, (3)

where Nu is the parameter counting the number of occurrences of the pattern
u in the text (with overlaps) and cu(1) is the value in 1 of the autocorrelation
polynomial of u. The autocorrelation polynomial of a pattern w is defined as

cw(z) =
|w|−1∑
j=0

cjz
j,

where cj is 1 if the suffix of length |w| − j and the prefix of length |w| − j of
w match, and zero otherwise. For long patterns, the quantity npu tends to zero
and the difference between 1 and 1

c(1) is controled. For kl(n) = bCp log n, L(n)
is O(n1−b/2).

4 Approximate Model

In this section, we introduce an approximate model under which the contribu-
tion of patterns of intermediate lengths i.e., neither small nor long, to En(S)
is computed. The approximate model is defined for any pattern, not only those
of intermediate lengths. The model consists in two hypotheses H1 and H2. A
pattern w is of intermediate length if its length k ranges within ks(n) and kl(n).

If a pattern w of length k is an MFW for a text T then wL and wR each
occur at least once in T . Hence there are at least two occurrences of the pattern
u(w) = u = w2 · · · wk−1.1 We note α = w1 and β = wk the end letters of w. The
extensions of u are the four patterns built by adding a letter at each end of u.

We count texts with the following constraints on extensions of u: no occurrence
of αuβ (no occurrence of w), at least one occurrence of αuβ̄ (occurrences of wL

without w occurring), and at least one occurrence of ᾱuβ (occurrences of wR

without w occurring). The correlation of patterns is hard to deal with and usually
has a small impact on means (see for instance the impact of autocorrelation on
mean size and path length [10,6,8]). To ensure that none of the extensions of
u overlap, the approximate model states that the occurrences of u are at least
two letters apart from one another. Let Nu be the set of texts with at least two
occurrences of u and for which the occurrences of u are separated by at least
two letters from one another. Hence the first hypothesis (H1):

Hypothesis 1. The probability of texts of length n for which w is an MFW is
approximated by the probability of texts of length n for which w is an MFW and
in which any two occurrences of u(w) are separated by at least two letters.

1 If wL = wR then w = αk, and the pattern u = αk−2 also occurs at least twice.

Analysis of the Size of Antidictionary in DCA 111

Definition 1. Let u be a pattern, the parameter Ñu is defined for texts as: If
any two occurrences of u are separated by at least two letters in the text T then
Ñu counts the number of occurrences of the pattern u in the text. Otherwise, i.e.,
if two occurrences of u overlap in T , the parameter is zero.

For a text T , a pattern u, and an integer j ≥ 2, Ñu(T) = j means there are j
occurrences of u in the text T and each occurrence of u is at least two letters
apart from any other.

The second hypothesis is common to model number of occurrences of events:

Hypothesis 2. On texts of length n, Ñu is Poisson of parameter npu:

∀j ∈ N, ∀u ∈ A�, Pn(Ñu = j) =
(npu)j

j!
exp(−npu). (4)

Under these hypotheses the probability that a pattern w is an MFW is:

Pn(w ∈ MFW)
H1= Pn({w ∈ MFW} ∩ Nu) =

∑
j≥2

Pn(w ∈ MFW|Ñu = j)Pn(Ñu = j)

H2=
∑
j≥2

Pn(w ∈ MFW | Ñu = j)
(npu)j

j!
exp(−npu).

(5)

The sum is on j’s greater than 2 since u must occur at least twice for w to be
an MFW. Under the approximate model, the mean size of the antidictionary is:

E(n) :=
∑
k≥2

∑
w∈Ak

∑
j≥2

Pn(w ∈ MFW | Ñu = j)
(npu)j

j!
exp(−npu). (6)

5 Asymptotic Contribution under the Approximate
Model

In this section, the asymptotic behavior of the contribution of intermediate pat-
terns to E(n) is obtained under the approximate model presented in Sect. 4.

The sum E(n) is the contribution for pattern of all lengths (k ≥ 2). The
contribution for intermediate patterns is the sum over lengths between ks(n)
and kl(n). Both the summand and the summation indices depend on n therefore
we can not obtain the asymptotic behavior of this sum directly. We circumvent
this dependency problem with a threefold approach: first an explicit expression
for E(n) is obtained, then the asymptotic behavior of E(n) is computed and
thirdly the contributions of small and long patterns to E(n) is shown to be
asymptotically sublinear. By a subtraction we get the asymptotic behavior of E .

The asymptotic behavior is derived under a symmetric memoryless model. The
same method is used to derive the asymptotic behavior of the contribution of
intermediate patterns under a biased memoryless model but details are omitted.

112 J. Fayolle

5.1 Combinatorics

We use a combinatorial approach to obtain an explicit expression for the prob-
ability Cj,w := Pn(w ∈ MFW | Ñu = j), the probability on texts of length n
that w is an MFW knowing there are j occurrences of u = u(w) each separated
one from another by at least two letters. In the memoryless model, Cj,w depends
only on the end letters α and β of w.

Let us suppose that u occurs twice, there are 16 possibilities for the four letters
adjacent to each of the two occurrence of u. In a memoryless symmetric model,
each 4-uple of letters is equiprobable. The word w is an MFW if the letters
adjacent to the first (resp. second) occurrence of u need create an occurrence
of wL (resp. wR) without any occurrence of w or an occurrence of wR (resp.
wL) without any occurrence of w. Hence the two possibilities are the pairs of
adjacent letters ((α, β̄), (ᾱ, β)) and ((ᾱ, β), (α, β̄)) therefore C2,w = 1

8 .
In the general case where u occurs j times (j ≥ 2), there are 2j letters adjacent

to the occurrences of u, hence 22j choices of adjacent letters, each with the same
probability. The word w is an MFW if the letters adjacent to each occurrence of
u are such that wL and wR each occur at least once and w does not occur in the
text. The probability Cj,w is a coefficient of the exponential generating function
counting the pairs of adjacent letters for each occurrence of u with the constraint
to have at least one pair (α, β̄), at least one pair (ᾱ, β), and no pair (α, β):

∑
j≥2

Cj,w

j!
zj = (exp(zpαpβ̄) − 1)(exp(zpᾱpβ) − 1) exp(zpᾱpβ̄).

For a symmetric source, one has

Cj,w =
1
4j

(
3j − 2j+1 + 1

)
.

In the symmetric case, one has pu = 2−(k−2) and it leads to

E(n) :=
∑
k≥2

∑
w∈Ak

∑
j≥2

Cj,w
(npu)j

j!
exp(−npu)

=
∑
k≥2

2k
(

exp
(
− n

2k

)
− 2 exp

(
−2

n

2k

)
+ exp

(
−3

n

2k

))
.

5.2 Computation

In this section the asymptotic behavior of the sum E(n) is obtained with the
use of Mellin transform. The Mellin transform is an analytic tool relating the
asymptotic behavior of a function f and complex information of its transform f�

(see Flajolet, Gourdon, and Dumas [9] for an overview of the Mellin transform).
The Mellin transform E� of E is defined within the strip 〈−2, −1〉 and is

E�(s) =
∑
k≥2

2kΓ (s)2ks(1 − 2.2−s + 3−s) = Γ (s)
22(s+1)

1 − 2s+1 (1 − 2.2−s + 3−s). (7)

Analysis of the Size of Antidictionary in DCA 113

An analysis of the poles and the residues of E�(s) shows that the asymptotic
behavior of the sum E is

(3 log2(3) − 4)n +
n

log 2
ε(n) + o(1), (8)

where

ε(n) :=
∑

m∈Z�

Γ

(
−1 +

2imπ

log 2

)
3(3−

2imπ
log 2 − 1)n

2imπ
log 2

is a function of small modulus (about 10−5) oscillating around zero.

5.3 Bounding the Contribution of Small and Long Patterns

In this section, the asymptotic behavior of the contribution of small and long
patterns to the sum E(n) is derived. The contribution of the small patterns under
the approximate model behaves asymptotically as o(1) and the long patterns as
O(

√
n) for a bound kl(n) = 1.5Cp log n. For other reals b > 1 in the definition of

kl(n), the contribution remains sublinear.
The contribution of small patterns is

ks(n)∑
k=2

2kf
(n

2k

)
,

where f(z) = exp(−z) − 2 exp(−2z) + exp(−3z). Since the lengths of these
patterns are smaller than ks(n) = aCq log n, the quantity n/2k tends to infinity
and is lower-bounded by n1−a.

For long patterns, the quantity n/2k tends to zero. The dominant term in the
Taylor expansion of f(x) when x tends to zero is x2. Hence the contribution of
long patterns behaves as

∑
k≥kl(n)

2kf
(n

2k

)
	

∑
k≥kl(n)

2k
(n

2k

)2
= n2

∑
k≥kl(n)

2−k = O(
√

n) (9)

The asymptotic contribution of the small and long patterns to the sum E(n)
are O(

√
n), thus

Proposition 2. The contribution of intermediate patterns to E(n), i.e., the con-
tribution of intermediate patterns to the size of the antidictionary under the
approximate model and for a symmetric memoryless source is asymptotically

(3 log2 3 − 4)n +
n

log 2
ε(n) + O(

√
n), (10)

where

ε(n) :=
∑

m∈Z∗

Γ

(
−1 +

2imπ

log 2

)
3

(
3−

2imπ
log 2 − 1

)
n

2imπ
log 2

is a function oscillating around zero of very small amplitude (about 10−5).

114 J. Fayolle

5.4 Result under a Memoryless Biased Model

The asymptotic behavior of E(n) for a memoryless biased (p, q) source is linear.
It is obtained using the same method as for a symmetric source (see preceding
sections). Nevertheless, under a biased model, different letters have different
probabilities so there are four different sums (instead of one) depending on the
end letters of w. Furthermore, in the symmetric model the probability pu depends
only on the length fo the pattern u; under a biased model, the letters composing
the pattern u do matter. Lastly Mellin analysis is more technical.

Once the asymptotic behavior of E(n) is obtained, we show the contribution
of small and long patterns is O(

√
n) for a bound kl(n) := 1.5Cp log n. Hence

Proposition 3. The contribution of intermediate patterns to E(n) under a
memoryless biased model behaves asymptotically as

n

h
[2h + (1 − p2) log(1 − p2) + (1 − q2) log(1 − q2) + 2(1 − pq) log(1 − pq)]

+
n

h

∑
k∈Z∗

n−sk−1Γ (sk)
[[

p−2sk − 2p−sk + (1 − q2)−sk
]
+

[
q−2sk − 2q−sk + (1 − p2)−sk

]

+ 2
[
(pq)−sk − q−2sk − p−2sk + (1 − pq)−sk

]]
+ O(

√
n),

for a periodic memoryless biased source and

n

h
[2h+(1−p2) log(1−p2)+ (1− q2) log(1− q2)+2(1−pq) log(1−pq)]+O(

√
n),

for an aperiodic memoryless biased sources. The constant h := −p log p − q log q
is the entropy of the source and sk = −1 + 2ikπ

log p−log q for k ∈ Z
�.

6 Validation of the Hypotheses

In this section we prove that the contribution of intermediate patterns to E(n)
under the approximate model (i.e., with Hypotheses H1 and H2) differs from
I(n) by a O(n1−δ) term for a δ > 0 depending on ks(n).

The impact of Hypothesis H1 on the contribution of intermediate patterns is

kl(n)∑
k=ks(n)

∑
w∈Ak

Pn(w ∈ MFW) − Pn({w ∈ MFW} ∩ Nu). (11)

The two probabilities differ only on texts with at least two occurrences of u
that are separated by less than two letters i.e., either overlapping occurrences,
or adjacent, or separated by one letter. This set of texts is denoted by Xu. The
sum over intermediate patterns of the probability of texts from Xu is O(n1−δ).

Hypothesis H2 (Ñu is Poisson of parameter npu) modifies I(n) by a O(n1−δ)
term. The difference between the contributions under Hypothesis H1 (sum of
Pn({w ∈ MFW} ∩ Nu)) and under the approximate model (H1 and H2) is

Analysis of the Size of Antidictionary in DCA 115

kl(n)∑
k≥ks(n)

∑
w∈Ak

∑
j≥2

Cj,w

⎡
⎢⎢⎢⎣Pn(Ñu =j) − Pn(Nu =j)︸ ︷︷ ︸

S1(j,w)

+ Pn(Nu = j) − (npu)j

j!
e−npu

︸ ︷︷ ︸
S2(j,w)

⎤
⎥⎥⎥⎦,

where Nu is a parameter counting the number of occurrences of u in a text. This
sum is split in two sums of general terms Cj,wS1(j, w) and Cj,wS2(j, w). In the
first sum, the probabilities differ only on texts from the set Xu. The contribution
of those texts for intermediate patterns has already been dealt with. In the second
sum, the Stein-Chen method (see Barbour, Holst, and Janson [1] for details) is
used to estimate the distance between the distributions of Nu and a Poisson
distribution.

7 Conclusion

In Sect. 3 we showed that the contribution of small and long patterns to En(S) is
asymptotically sublinear. Then in Sect. 5 we proved that, under an approximate
model, the contribution of intermediate patterns is asymptotically linear. Finally
in Sect. 6 we showed that the contribution of intermediate patterns under the
approximate model does not differ from the contribution of intermediate patterns
to En(S) by more than a O(n1−β) term (for β > 0), hence

Theorem 4. Under a memoryless biased model for the generation of texts, the
mean size of the antidictionary En(S), i.e., the number of minimal forbidden
words, over all texts of length n behaves asymptotically as

K
n

h
+

n

h
ε(n) + o(n)

for a periodic source, and as
K

n

h
+ o(n)

for an aperiodic source, where ε(x) is a function fluctuating around zero of am-
plitude 10−5,

K := 2h + (1 − p2) log(1 − p2) + (1 − q2) log(1 − q2) + 2(1 − pq) log(1 − pq),

and h = −p log p − q log q.

Takahiro Ota ran experiments on the size of the antidictionary on texts of length
3000. His results match the formula of Theorem 4 with a margin of error of 0.6%
for a p (p ≥ q) between 0.5 and 0.9. If p is closer to 1, the error increases but
remains satisfactory: 5% for p = 0.9.

The study of the performances of DCA is far from complete. Several research
directions arise: first obtaining the variance and the distribution of the number
of words in an antidictionary. The length of MFWs is of interest, for instance

116 J. Fayolle

to estimate the mean time to find a suffix in the compression step of DCA. In
the original paper Crochemore et alii consider an antidictionary with patterns of
bounded length; informations on the length would help set an optimal threshold.
Questions like what is the length of the compressed text, i.e., how many letters
are removed in the compression step, and what is the size of the data structure
storing the MFWs provide additional informations on the behavior of the algo-
rithm. Crochemore et alii have shown that DCA attains a compression rate close
to the entropic ratio for balanced sources. We are interested in a generalization
of this result with tools from analytic combinatorics.

The analysis should be extended from a memoryless probabilistic model for
the generation of texts to more general sources (Markovian, dynamical source).

Crochemore and Navarro [5] developed the notion of almost antifactors, words
with very little occurrence in the text. A version of DCA encodes the occurrences
of each almost antifactor in a file of exceptions, but in the compression phase
these almost antifactors are considered as true antifactors. Experiments show
this improves the compression ratio. A complete analysis will help characterize
the threshold on the number of occurrences between almost antifactors that
make the compression more efficient and those that do not.

Acknowledgements

The author thanks Hiroyoshi Morita for introducing him to the problem and
Takahiro Ota for providing simulations. This work was done during my Ph.D.
and i also thank my advisor Philippe Flajolet for discussing the issue and pro-
viding helpful advices.

References

1. Barbour, A.D., Holst, L., Janson, S.: Poisson approximation. The Clarendon Press
Oxford University Press, New York (1992) (Oxford Science Publications)

2. Béal, M.-P., Mignosi, F., Restivo, A.: Minimal forbidden words and symbolic dy-
namics. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046. Springer,
Heidelberg (1996)

3. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Text compression using an-
tidictonaries. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 261–270. Springer, Heidelberg (1999)

4. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Data compression using an-
tidictonaries. In: Storer, J. (ed.) Proceedings of the I.E.E.E., Lossless Data Com-
pression, pp. 1756–1768 (2000)

5. Crochemore, M., Navarro, G.: Improved antidictionary based compression. In:
SCCC 2002, Chilean Computer Science Society, pp. 7–13. I.E.E.E. CS Press
(November 2002)

6. Fayolle, J.: An average-case analysis of basic parameters of the suffix tree. In:
Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds.) Mathematics and
Computer Science. Proceedings of a colloquium organized by TU, Wien, Vienna,
Austria, pp. 217–227. Birkhäuser, Basel (2004)

Analysis of the Size of Antidictionary in DCA 117

7. Fayolle, J.: Compression de données sans perte et combinatoire analytique. PhD
thesis, Université Paris VI (2006)

8. Fayolle, J., Ward, M.D.: Analysis of the average depth in a suffix tree under a
Markov model. In: Proceedings of the 2005 International Conference on the Anal-
ysis of Algorithms (2005), DMTCS. Proceedings of a colloquium organized by
Universitat Politècnica de Catalunya, Barcelona, Catalunya, June 2005, pp. 95–
104 (2005)

9. Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: Harmonic
sums. Theoretical Computer Science 144, (1–2), 3–58 (1995)

10. Jacquet, P., Szpankowski, W.: Autocorrelation on words and its applications: anal-
ysis of suffix trees by string-ruler approach. Journal of Combinatorial Theory. Series
A 66(2), 237–269 (1994)

11. Morita, H., Ota, T.: An upper bound on size of antidictionary. In: Proceedings of
SITA 2004 (2004)

12. Ota, T., Morita, H.: One-path ECG lossless compression using antidictionaries.
IEICE Trans. Fundamentals (Japanese Edition) J87-A 9, 1187–1195 (2004)

Approximate String Matching with Address Bit

Errors

Amihood Amir1,2,�, Yonatan Aumann1, Oren Kapah1,
Avivit Levy3,��, and Ely Porat1

1 Department of Computer Science, Bar Ilan University,
Ramat Gan 52900, Israel

{amir,aumann,kapaho,porately}@cs.biu.ac.il
2 Department of Computer Science, Johns Hopkins University,

Baltimore, MD 21218
3 CRI, Haifa University, Mount Carmel, Haifa 31905, Israel

avivitlevy@gmail.com

Abstract. A string S ∈ Σm can be viewed as a set of pairs S = {(σi, i) :
i ∈ {0, . . . , m − 1}}. We consider approximate pattern matching prob-
lems arising from the setting where errors are introduced to the location
component (i), rather than the more traditional setting, where errors are
introduced to the content itself (σi). In this paper, we consider the case
where bits of i may be erroneously flipped, either in a consistent or tran-
sient manner. We formally define the corresponding approximate pattern
matching problems, and provide efficient algorithms for their resolution,
while introducing some novel techniques.

1 Introduction

1.1 Background

Consider a text T = t0 · · · tn−1 and pattern P = p0 · · · pm−1, both over an
alphabet Σ. Traditional pattern matching regards T and P as sequential strings,
provided and stored in sequence (e.g. from left to right). Therefore, an implicit
in the conventional approximate pattern matching is the assumption that there
may indeed be errors in the content of the data, but the order of the data
is inviolate. However, some non-conforming problems have been gnawing at the
walls of this assumption. Some examples are:

Text Editing: The swap error, motivated by the common typing error where
two adjacent symbols are exchanged [11,2], does not assume error in the
content of the data, but rather, in the order. The data content is, in fact,
assumed to be correct. The swap error seemed initially to be akin to the other
Levenshtein errors, in that it could be added to the other edit operations and
solved with the same dynamic programming [11]. However, when isolated, it

� Partly supported by ISF grant 35/05.
�� This work is part of A. Levy’s Ph.D. thesis.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 118–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate String Matching with Address Bit Errors 119

turned out to be surprisingly simple to handle [3]. This scarcely seems to be
the case for indels or mismatch errors. We stress that the main importance
of this work is in the theoretical understanding of the combinatorics involved
since spell-checking is an easier practical solution to the problem.

Computational Biology: During the course of evolution areas of genome may
be shifted from one location to another. Considering the genome as a string
over the alphabet of genes, these cases represent a situation where the differ-
ence between the original string and resulting one is in the locations rather
than contents of the different elements. Several works have considered specific
versions of this biological setting, primarily focusing on the sorting problem
(sorting by reversals [5,6], sorting by transpositions [4], and sorting by block
interchanges [7]).

Bit Torrent and Video on Demand: The inherently distributed nature of
the web is already causing the phenomenon of transmission of a stream of
data in tiny pieces from different sources. This creates the problem of putting
scrambled data back together again.

Computer Architecture: In computer architecture, it is by no means taken
for granted that when seeking a word from a given address, no errors will
occur in the address bits [9]. This problem is relevant even when reading a
buffer of consecutive words since these words are not necessarily consecutive
in the disk or in an interleaved cache1.

Therefore, the traditional view of strings is becoming, at times, less natural. In
such cases, it is more natural to view the string as a set of pairs (σ, i), where i
denotes a location in the string, and σ is the value appearing at this location.
Given this view of strings, we reconsider the problem of approximate pattern
matching. Practically, the content Hamming error and the address error are
both solved via error correcting codes. However, from a theoretical point of
view, it would be interesting to consider searching where address errors are not
corrected at all. What are the types of uncorrected address errors that can still
be reasonably handled by a search application? Is the address error similar to
content error from a pattern matching point of view? Can it be solved by the
same means?

Motivated by these questions a new pattern matching paradigm – pattern
matching with address errors – was proposed by [1]. In this model, the pattern
content remains intact, but the relative positions (addresses) may change. Effi-
cient algorithms for several different natural types of rearrangement errors are
presented in [1]. These types of address errors are inspired by biology, i.e. pattern
elements exchanging their locations due to some external process.

In this paper we suggest another broad class of address errors inspired by
computer architecture. Specifically, we consider errors which arise from a process
of flipping some or all of the bits in the binary representation of [0..m − 1].
Such address errors may arise in situations where the text and the pattern are
generated by two different systems, which may use different naming conventions.
1 Practically, these problems are solved by means of redundancy bits, checksum bits,

error detection and correction codes, and communication protocols.

120 A. Amir et al.

Alternatively, address errors may result from failures in the wires of the address
bus (the wires connecting the CPU and the memory which are used to transmit
the address of operands), or failure in the transmitted address bits. Finally,
address errors may actually not constitute an error, but rather represent different
legitimate ways to order the given set of elements. Following [1], in this paper
we do not consider content errors at all, since our aim to to analyze whether
there is novelty in the address error scheme.

1.2 The Problem Definition

Consider a string S ∈ Σm. Using the alternate view of strings described above
we write S = {(σ, i) : i ∈ {0, 1}log m}. We consider two types of errors in the bits
of the i entries:

Flipped bits: there exists a subset of bit positions F ⊆ {0, . . . , log m−1}, such
that in each i, all bits in positions f ∈ F are flipped (i.e. 1 is turned into a
0 and visa versa).

For example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)} and
F = {1}, the resulting string is S′ = 3412 = {(1, 10), (2, 11), (3, 00), (4, 01)}.

Faulty bits: there exists a subset of bit positions F ⊆ {0, . . . , log m − 1}, such
that in each i, the bits in positions f ∈ F may be flipped, and may not.

For example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)} and
F = {1}, the resulting string may be S′ = {(1, 10), (2, 01), (3, 10), (4, 01)}
(the bit was flipped for 1 and 4 but not for 2 and 3).

Note that in this case the resulting set is actually a multi-set, and may
not represent a valid string, as some locations may appear multiple times,
while others not at all.

We consider approximate pattern matching problems associated with each of
the above types of errors. Specifically, given a pattern P and text T , we wish to
find:

– the smallest set F such that if the bits of F are consistently flipped, then P
has a match in T . We call this problem the flipped bits problem.

– the smallest set F such that if the bits of F may be transiently flipped, then
P has a match in T . We call this problem the faulty bits problem.

We prove (omitted proofs will be given in the full paper):

– For pattern and text of size m, the flipped bits problem can be solved in
O(m log m) steps.

– For pattern and text of size m, the faulty bits problem can be solved deter-
ministically in O(mlog2 3|Σ|) steps and randomly in O(m log m) steps.

– For pattern and text of size m, the faulty bits problem can be deterministi-
cally approximated to a constant c > 1 in O(|Σ| mlog 3

logc−1 m
).

– For text and pattern of sizes n and m, respectively, m power of 2, the faulty
bits problem can be solved deterministically in O(|Σ|nmlog m) steps.

Approximate String Matching with Address Bit Errors 121

2 Flipped Bits Errors

In this section we consider the flipped bits problem. In this setting, one or more
of the bit positions may exhibit a faulty behavior whereby the bit at this position
is consistently flipped. Given two strings P, T ∈ Σm, the distance between the
two is the least number of flipped bits positions that can explain the differences
between the two, and ∞ if no such set of position can explain the difference.
Formally,

Definition 1. For an index k ∈ [0..m − 1],2 we view k as a binary string, i.e.
k = k[0] · · ·k[log m − 1] ∈ {0, 1}log m (w.l.o.g. m is a power of 2). Consider
F ⊆ [0.. logm − 1]. The bit flip transformation induced by F , denoted fF , is a
function fF : {0, 1}logm → {0, 1}logm, such that for any k and i

fF (k)[i] =
{

1 − k[i] i ∈ F
k[i] i �∈ F

i.e. the value of fF (k) is flipped at bits of F and identical on other bits.
For strings P, T ∈ Σm we say that T is a F -flip-bits match of P if for all

k ∈ {0, 1}logm, T [k] = P [fF (k)]. The flip-bit distance between P and T is the
cardinality of the smallest F such that T is an F -flip-bits match of P . If no such
F exists, then the distance is ∞.

Note that there are 2log m possible faulty sets F . Checking each possibility sepa-
rately takes O(m), so a naive algorithm takes time O(m2) per position. We show
how to reduce this to O(m log m log |Σ|). We begin with an efficient solution for
the case Σ = {0, 1}, and then use it to obtain an efficient solution for general
alphabets.

Let k, j ∈ {0, 1}logm, denote k ⊕ j to be the result of the bitwise XOR of the
two, i.e. for each i, (k ⊕ j)[i] = k[i] ⊕ j[i] (where ⊕ is the XOR operation, i.e.
addition over Z2). For strings T, P ∈ Z

m, define the binary convolution of the
two to be a vector, also of size m, T ⊗ P ∈ Z

m, such that for all k ∈ {0, 1}log m:
(T ⊗ P)[k] =

∑
j∈{0,1}log m T [j] · P [k ⊕ j].

Lemma 1. For a set F ⊆ 0.. logm − 1, let χF ∈ {0, 1}logm be the characteristic
vector of F . Consider binary P and T , both of size m, and let αP be the number
of ones in P and αT be the number of ones in T . Then, T is an F -flip-bits match
of P iff αT = αP and (T ⊗ P)[χF] = αT .

Proof. For any index j, T [j] · P [χF ⊕ j] = 1 iff both T [j] = 1 and P [χF ⊕ j] =
P [fF (j)] = 1. Thus, (T ⊗P)[χF] counts the number of ones in T that are mapped
to ones in P under the transformation fF . Since, (T ⊗ P)[χF] = αT , then all
ones in T are mapped to ones in P . But, αT = αP , so also all zeros in T are
mapped to zeros in P .

2 For integers i, j, we denote by [i..j] the set of integers from i to j. Thus, [0..m − 1]
is the set {0, 1, . . . , m − 1}.

122 A. Amir et al.

Thus, in order to find the flip-bit distance between P and T we compute the en-
tire vectors T ⊗ P . We then seek all locations k for which (T ⊗ P)[k] = αT , and
among these k’s, find the one with the minimum weight (i.e. least number of 1’s).

It thus remains to explain how to efficiently compute the binary convolution.
The convolution can easily be computed in O(m2) time. We explain how to
compute it in O(m log m) time.

For a vector v ∈ Z
t (t power of 2), define two vectors v+, v− ∈ Z

t/2, as follows.
For each k ∈ {0, 1}log t−1, v+[k] = v[0k] + v[1k] and v−[k] = v[0k] − v[1k]. The
key lemma for the computation is:

Lemma 2. For any v, w ∈ {0, 1}t, and k ∈ {0, 1}log t−1:

(v ⊗ w)[0k] = (v+⊗w+)[k]+(v−⊗w−)[k]
2 , (v ⊗ w)[1k] = (v+⊗w+)[k]−(v−⊗w−)[k]

2 .

Thus, in order to compute T ⊗ P , our algorithm recursively computes T + ⊗ P+

and T−⊗P−, and then uses lemma 2 in order to compute the convolution T ⊗P .
In each recursion level we need to compute O(m) values, each taking O(1) time.
Thus, we get a recursive recurrence time(m) = 2 · time(m/2) + cm, for a total
time(m) = O(m log m). We obtain:

Theorem 1. The flipped bit problem can be solved in O(m log m) time for binary
text and pattern of size m.

For a general alphabet, the same techniques as in [8] can be used to handle with
only one convolution. Hence,

Theorem 2. The flipped bit problem can be solved in O(m log m) time for text
and pattern of size m and alphabet Σ.

Remark. The above algorithm can also be viewed as a form of Fast Fourier
Transform over Z2 (rather than over the complexes). We omit the details.

3 The Faulty Bits Problem

This section studies the faulty bits problem. In this model a faulty position
inconsistently produces errors. It may sometimes hold the correct value and
sometimes the wrong one. Given two strings, the objective is to find the least
number of faulty positions that explain the differences between the two. We
begin by formally defining the faulty bits distance problem.

3.1 Problem Definition

Let Σ be a finite alphabet. Let P, T ∈ Σm be two strings of length m, such that
P is the query string and T is the stored string. Denote P = p[0]p[1] · · · p[m − 1]
and similarly for T . Consider F ⊆ {0, . . . , log m − 1}, and suppose that the
address bits carrying bits in the set F are faulty. We now formulate the criterion
that determines if the stored string T matches the query string P , assuming that
the bits of F are faulty.

Approximate String Matching with Address Bit Errors 123

Consider an address k, and let k = k[0]k[1] · · ·k[log m − 1] be the binary
representation of k. Let [k]F be the set of all the addresses � such k[i] = �[i] for
all i �∈ F , i.e. k and � agree on all bits not in F . Note that [k]F is an equivalence
class, so [�]F = [k]F if � ∈ [k]F . Then, if the address bits in F are faulty, a value
intended to location k can end up in any location � ∈ [k]F . Thus, we obtain the
following criterion for a match of T to the query string P while using the faulty
bits of F :

Definition 2. For strings P and T and set F ⊆ {0, . . . , log m − 1} we say that
T is an F -faulty-bit match of P if for each equivalence class [k]F : for each
σ ∈ Σ

|{� : � ∈ [k]F , P [�] = σ}| = |{� : � ∈ [k]F , T [�] = σ}|

The Optimization Problem. Given any of the above match conditions and strings
P and T , we wish to find the set F of minimal cardinality such that T is an
F -faulty-bit match of P . We call this the faulty-bits problem.

3.2 A Deterministic Algorithm

For each equivalence class [k]F and σ ∈ Σ let

bucket(P, [k]F , σ) = {� : � ∈ [k]F , P [k] = σ}

the elements of P with locations in [k]F that have value σ. Similarly,

bucket(T, [k]F , σ) = {� : � ∈ [k]F , T [�] = σ}

the elements of T with locations in [k]F that have value σ. The criteria for an
F -faulty-bit match is that for all k : |bucket(P, [k]F , σ)| = |bucket(T, [k]F , σ)|
for all σ. Thus, it remains to explain how to compute the sizes of the buckets.

For any fixed F , all buckets can be computed in a total of O(m) steps, with
a single pass over the strings T and P . Thus, for a given F , the condition
can be tested in O(m) steps. There are 2log m = m different possible sets F ,
which provides a naive O(m2) algorithm. We now show how to reduce this to
O(mlog 3|Σ|).

For an address k and index i ∈ {0, . . . , log m − 1}, let k(i) be the address
which has the same representation as k except for the i-th bit which is flipped.
Then, it is easy to see that for any i, σ and X ∈ {T, P}, bucket(X, [k]F , σ) =
bucket(X, [k]F−{i}, σ) ∪ bucket(X, [k(i)]F−{i}, σ). That is, the bucket with
faults at F can be obtained as the union of buckets with one less fault, and
fixing the two possible values for this bits. In particular,

|bucket(X, [k]F , σ)| = |bucket(X, [k]F−{i}, σ)| + |bucket(X, [k(i)]F−{i}, σ)|
(1)

Note that for F = ∅,

|bucket(X, [k]F , σ)| =
{

1 X [k] = σ
0 X [k] �= σ

(2)

124 A. Amir et al.

Thus, combining (2) and (1), we obtain that for any σ all sizes of all buckets can
be computed in an inductive fashion, with O(1) steps per bucket.

For a given σ, the overall total number of buckets – for all fault patterns F , is
the overall total number of equivalence classes [k]F for all F . Each equivalence
class can be identified with a string w ∈ {0, 1, ∗}logm such that w[i] = ∗ denotes
a bit in F and the other w[i]’s are fixed as in k. Thus, the number of equivalence
classes is: |{w ∈ {0, 1, ∗}logm}| = 3log m = mlog 3. We thus obtain:

Theorem 3. The faulty-bits problem can be solved in O(|Σ|mlog 3) time.

3.3 A Randomized Algorithm

We now describe how to solve the faulty-bits problem in O(m log m) time for
unbounded alphabet using formal polynomials and the Schwartz-Zippel Lemma
[13,14]. A pseudo-code of the algorithm is given in Fig. 1. Every fault pattern F
can be regarded as a log m-length mask with values in {∗, +}, where ∗ specifies
that this bit is faulty therefore its specific value is insignificant, and + specifies
that this bit is non-faulty and its specific value is significant. Given an m-length
array A (T or P) and a mask M , we inductively define a formal polynomial
PM (A) as follows (Lemma 3 describes the explicit form of the polynomial).

The Definition of the Formal Polynomial . For i = 0, let j be any index of the
array A, then PM (Aj) = XA[j], where Aj is a sub-array of A of length 1.

Faulty-Bit Randomized Algorithm

Input: P ∈ Σm, T ∈ Σm

1 Assign a random value r(σ) ∈ {1, . . . , m3} to every σ ∈ Σ.
2 for j = 0 to m − 1 do

3 P (0)[j] ← r(P [j])

4 T (0)[j] ← r(T [j])
5 for i = 0 to log m − 1 do
6 Assign a random value ri ∈ {1, . . . , m3}.
7 for j = 0 to m−1

2 do

8 P (i+1)[j] ← P (i)[j] + P (i)[j + 2i]

9 T (i+1)[j] ← T (i)[j] + T (i)[j + 2i]

10 P (i+1)[j + 2i] ← P (i)[j] + ri · P (i)[j + 2i]

11 T (i+1)[j + 2i] ← T (i)[j] + ri · T (i)[j + 2i]
Output:
12 for j = 0 to m − 1 do

13 if P (log m)[j] = T (log m)[j] then
14 Report “there is an F match of P and T ,

where F is the set of indices of 0-bits in the binary
representation of j”

Fig. 1. A butterfly design of the faulty bit randomized algorithm

Approximate String Matching with Address Bit Errors 125

Let PM (Aj) be the polynomials for sub-arrays of size 2i (the indices j have
length log m − i) and define the polynomials PM (Aj′) for sub-arrays of size 2i+1

(the index j′ has length log m− i−1, and the indices j are j′0 and j′1). Consider
M [i + 1], the i + 1 bit of the mask M , then:

PM (Aj′) =
{

PM (Aj′0) + Xi+1 · PM (Aj′1), if M[i+1]=+
PM (Aj′0) + PM (Aj′1), if M[i+1]=*

Lemma 3. Given an array A and a log m-bit mask M , define

fM (i) =
{

0, if M[i]=*
1, if M[i]=+

Then, PM (A) =
∑m−1

j=0 XA[j] ·
∏log m

i=1 X
j[i−1]·fM (i)
i

Lemma 4. Given two arrays A and B and a log m-bit mask M . Let FM = {k ∈
{0, . . . , log m − 1}|M [k + 1] = ∗} (i.e., the set of assumed faulty-bits according
to the mask M), then PM (A) ≡ PM (B) iff A is an FM -faulty-bit match of B.

Theorem 4. The faulty-bits problem can be solved in O(m log m) time with high
probability.

4 Approximate Faulty Bits Problem

In this section we describe a scheme to reduce the cost of the deterministic
algorithm while paying in some loss of precision. The general idea is to avoid
checking all possible subsets F with a guarantee that the deviation of the result-
ing F from the minimal F is bounded. The following is the crucial observation
enabling such a scheme.

Observation 1. Let F ⊆ {0, . . . , log m−1} such that T is an F -faulty-bit match
of P and let F ′ ⊆ {0, . . . , log m−1} such that F ⊂ F ′, then T is an F ′-faulty-bit
match of P .

Let F ⊆ {0, . . . , log m − 1}, and F ′ ⊆ {0, . . . , log m − 1} such that F ⊂ F ′, we
call F ′ an ancestor of F , and F a descendent of F ′. Our algorithm then, for
any k ∈ {1, . . . , log m}, checks only a part (that depends on k) of the subsets F
of size k. By the observation, if we missed a subset F of size k such that T is
an F -faulty-bit match of P (these are the only interesting subsets that we care
about missing) then we can still detect an F ′-faulty-bit match between T and
P , but with the loss of minimality, since |F ′| > |F |. The important property is
that the greater the precision we are willing to lose is, the greater is the number
of ancestors F ′ that by Observation 1 are an F ′-faulty-bit match between T and
P . Since the number of such F ′ is exactly the number of choices to fix k of the
i members of F ′ to be the k members of F , the next lemma follows.

Lemma 5. Given F ⊆ {0, . . . , log m − 1} of size k, 0 ≤ k < i ≤ log m, the
number of ancestors F ′ of size i of F is (i

k).

126 A. Amir et al.

Denote by |Lk| the number of subsets of size k. Given a function f : N �→ N,
we define the following scheme for subsets to be checked by the algorithm of
section 3.2:

f-scheme
For k = 1 to log m

2 − 1
Randomly choose |Lk|

f(k) subsets from all subsets of size k.

Lemma 6. Given a function f , and a subset F of size k, for any i ≥ k denote
α = (i

k)
f(i) . Then, under the f -scheme the probability that there is no ancestor of

F with size i is at most exp−α.

By taking f(k) = kc in the f -scheme we get theorem 5.

Theorem 5. There exists a deterministic algorithm for the faulty-bits problem
that, for any constant c ∈ N, c > 1, runs in O(|Σ| mlog 3

logc−1 m
) time and returns a

subset F that is greater than the minimum by at most c.

Remark. Using standard de-randomization techniques the explicit structure of
the deterministic scheme can be found (see [12]).

5 The Faulty Bits Problem with Text Longer Than
Pattern

In this section we show how to solve a variant of the minimum faulty-bits match
problem where, the stored string T is of length n and the query string P is of
length m, where m < n. Denote by T (i) the m-long string starting at position
i in T . We wish to find for each position i in the stored string T , the set F
of minimal cardinality such that T (i) is an F -faulty-bit match of P . Using the
algorithms from section 3 for each position in T separately give an O(|Σ|nmlog 3)
deterministic algorithm or an O(nm log m) randomized algorithm. For the case
that m is a power of 2, we show how to construct an O(|Σ|nm log m) determinis-
tic algorithm. The algorithm is based on a core algorithm which, given a specific
set F ⊆ [0.. log m−1] and binary pattern and text, finds all locations i, such that
T (i) is an F -faulty-bit match of P in O(n log m) steps. Since there are 2log m = m
possible sets F , we obtain a solution for the binary case in O(nm log m) steps.
This translates into an O(|Σ|nm log m) algorithm for a general alphabet Σ, by
counting each symbol separately.

General Structure. Consider a binary alphabet and a set F . We find all locations
i, such that T (i) is an F -faulty-bit match of P using a variant of the Karp-Miller-
Rosenberg [10] string matching algorithm. The KMR-algorithm solves the exact
matching problem by a process of parallel renaming of pairs, quadruplets, etc.
for the pattern and for each text location, until each text location gets a name
representing the m-length string that starts at this location. Locations with

Approximate String Matching with Address Bit Errors 127

name equal to the pattern name are matches. The key observations that allow
to use the KMR algorithm are:

– The pairing process used in the KMR algorithm need not be done in the stan-
dard order of bits (from right to left), but can rather be done in any order.

– The KMR algorithm can be adapted to the faulty-bit case as follows. In
the renaming process, give the names based on the number of occurrences
of each symbol, rather than the exact order. For the binary case the name
given to a sub-string is simply the number of ones therein. We call this count
renaming. This provides that a sub-string can be converted to another by
faulty-bits iff they have the same count. Clearly, this renaming only works
for the case that all bits are faulty.

Our algorithm employs a KMR-like structure in two phases. In the first phase
we use the count-renaming convention according to the bits of F . In the second
phase, using the names from the first phase as the starting point, we rename using
the standard KMR process according to the remaining bits. The details follows.

The Algorithm. A pseudo-code of the algorithm is provided in Fig. 2. Let P ∈
{0, 1}m, T ∈ {0, 1}n, F = (f1, f2, . . . , fk) ⊆ [0.. log m − 1] and G = [0.. logm −
1] − F . Denote G = (g1, . . . , gd). The algorithm processes the pattern and then
the text in the same way. The processing has two phases. In the first phase there
are |F | steps, where in each step we consider another faulty bit from F . When
the bit fi is considered to be faulty, we add to each position in the string from
the previous step the entry with a shift of 2fi (lines 4-6,15-17). The guarantee
of this phase is given in Lemma 7. In the second phase there are log m − |F |
steps, where in each step we consider another non-faulty bit from G. For the bit
gi′ , where i′ = i − |F | we rename every pair of positions (in the string from the
previous step) with shift 2gi′ (lines 7-12,18-25). The guarantee of this phase is
given in Lemma 8. Theorem 6 follows.

Lemma 7. For i = 1, . . . , |F |, and j = 0, . . . , n − 1, t(i)[j] = |{T [j′] = 1 :
∀k �∈ {f1, . . . , fi}, (j′ − j)[k] = 0}| (i.e. t(i)[j] is the number of elements T [j′]
which are equal to 1, and such that in the binary representation of j′ − j, all
bits not of F are 0), and for j = 0, . . . , m − 1, p(i)[j] = |{P [j′] = 1 : ∀k �∈
{f1, . . . , fi}, (j′ − j)[k] = 0}|.
Denote by l = (l1, . . . , li) the list of bit indices in F ∪ {g1, . . . , gi′} (where i′ =
i−|F |) ordered from the least to most significant. Let l(j) be the number resulting
from the assignment of the binary representation of j to the bits of l and 0 to the
bits of G − l. Denote by P (j)|2i the 2i-long substring of P starting at location j
having the values P [j]P [j + l(1)], P [j + l(2)], . . . , P [j + l(2i − 1)], and similarly
T (j)|2i .

Lemma 8. For i = |F | + 1, . . . , log m and all j1, j2, p̂(i)[j1] = t̂(i)[j2] iff T (j2)|2i

is an F -faulty-bit match of P (j1)|2i .

Theorem 6. The faulty-bits problem where m < n, m is a power of 2, can be
solved in O(|Σ|nm log m) time by a deterministic algorithm.

128 A. Amir et al.

F -faulty-bit match Algorithm

Input: P ∈ {0, 1}m, T ∈ {0, 1}n, F = (f1, f2, . . . , fk) ⊆ [0.. log m − 1]

Pattern Processing
1 G ← [0.. log m − 1] − F . Denote G = (g1, . . . , gd).
2 for j = 0 to m − 1 do

3 p(0)[j] ← P [j]
4 for i = 1 to |F | do
5 for j = 0 to m − 1 do

6 p(i)[j] ← p(i−1)[j] + p(i−1)[j + 2fi] (whenever both are defined)
7 for i = |F | + 1 to log m do
8 i′ ← i − |F |
9 for j = 0 to m − 1 do

10 p̂(i)[j] ← 〈p(i−1)[j], p(i−1)[j + 2gi′]〉 (whenever both are defined)

11 Let h(i) be any function h(i) : {p̂(i)[j]} → [1..m]

(h(i) is the renaming function).

12 For all j, p(i)[j] ← h(i)(p̂(i)[j])

Text Processing
13 for j = 0 to n − 1 do

14 t(0)[j] ← the number of text elements with address j which are 1
15 for i = 1 to |F | do
16 for j = 0 to n − 1 do

17 t(i)[j] ← t(i−1)[j] + t(i−1)[j + 2fi] (whenever both are defined)
18 for i = |F | + 1 to log m do
19 i′ ← i − |F |
20 for j = 0 to n − 1 do

21 t̂(i)[j] ← 〈t(i−1)[j], t(i−1)[j + 2gi′]〉 (whenever both are defined)

22 if the t̂(i)[j] appeared as one of the values p̂(i)[j′] then

23 t(i)[j] ← h(i)(p̂(i)[j′]) (use the same renaming as for p)
24 else

25 t(i)[j] ← ⊥

Output
26 for j = 0 to n − m do

27 if t(log m)[j] = p(log m)[0] then
28 Report “there is an F match at location j”

Fig. 2. The faulty bit algorithm for text longer than pattern

6 Conclusions

The main contributions of this paper are:

1. A new and flexible model that encompasses the growing number of address
errors in pattern matching problems.

Approximate String Matching with Address Bit Errors 129

2. Evidence that address errors are indeed conceptually and algorithmically
different from the traditional content errors.

3. Some novel techniques, such as FFT over Z2, that have never been used in
pattern matching and rarely in the theoretical algorithms community, and a
non-conventional form of the KMR algorithm.

We believe that both [1] and this paper are just the tip of the iceberg in pattern
matching with address errors. Other reasonable types of address errors, rear-
rangements or extensions to the proposed address bit errors could and should
be considered. As the current set of problems necessitates techniques some of
which are new to the classical string matching, it also gives hope for new research
directions in the field of pattern matching.

References

1. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: Rearrangement distances. In:
Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (SODA) (2006)

2. Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching.
Information and Computation 181(1), 57–74 (2003)

3. Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Information
Processing Letters 83(1), 33–39 (2002)

4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. on Discrete Mathe-
matics 11, 221–240 (1998)

5. Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg, D.S., Meyers,
G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)

6. Carpara, A.: Sorting by reversals is difficult. In: Proc. 1st Annual Intl. Conf. on
Research in Computational Biology (RECOMB), pp. 75–83. ACM Press, New York
(1997)

7. Christie, D.A.: Sorting by block-interchanges. Information Processing Letters 60,
165–169 (1996)

8. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proc. 34st Annual Symposium on the Theory of Computing (STOC), pp.
592–601 (2002)

9. Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach,
3rd edn. Morgan Kaufmann, San Francisco (2002)

10. Karp, R., Miller, R., Rosenberg, A.: Rapid identification of repeated patterns in
strings, arrays and trees. In: Symposium on the Theory of Computing, vol. 4, pp.
125–136 (1972)

11. Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction prob-
lem. J. of the ACM, 177–183 (1975)

12. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
Cambridge (1995)

13. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. of the ACM 27, 701–717 (1980)

14. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EU-
ROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg
(1979)

On-Line Approximate String Matching with

Bounded Errors

Marcos Kiwi1,�, Gonzalo Navarro2,��, and Claudio Telha3,���

1 Departamento de Ingenieŕıa Matemática, Centro de Modelamiento Matemático
UMI 2807 CNRS-UChile

www.dim.uchile.cl/∼mkiwi
2 Department of Computer Science, University of Chile

gnavarro@dcc.uchile.cl
3 Operations Research Center, MIT

ctelha@mit.edu

Abstract. We introduce a new dimension to the widely studied on-line
approximate string matching problem, by introducing an error threshold
parameter ε so that the algorithm is allowed to miss occurrences with
probability ε. This is particularly appropriate for this problem, as approx-
imate searching is used to model many cases where exact answers are not
mandatory. We show that the relaxed version of the problem allows us
breaking the average-case optimal lower bound of the classical problem,
achieving average case O(n logσ m/m) time with any ε = poly(k/m),
where n is the text size, m the pattern length, k the number of errors
for edit distance, and σ the alphabet size. Our experimental results show
the practicality of this novel and promising research direction.

1 Introduction

In string matching one is interested in determining the positions (sometimes just
deciding the occurrence) of a given pattern P on a text T , where both pattern
and text are strings over some fixed finite alphabet Σ of size σ. The lengths
of P and T are typically denoted by m and n respectively. In approximate
string matching there is also a notion of distance between strings, given say by
d : Σ∗ × Σ∗ → R. One is given an additional non-negative input parameter
k and is interested in listing all positions (or just deciding the occurrence) of
substrings S of T such that S and P are at distance at most k. In the “on-line”
or “sequential” version of the problem, one is not allowed to preprocess the text.

Since the 60’s several approaches were proposed for addressing the approxi-
mate matching problem, see for example the survey by Navarro [5]. Most of the
work focused on the edit or Levenshtein distance d, which counts the number

� Gratefully acknowledges the support of CONICYT via FONDAP in Applied Math-
ematics and Anillo en Redes ACT08.

�� Funded in part by Fondecyt Grant 1-050493, Chile.
��� Gratefully acknowledges the support of CONICYT via Anillo en Redes ACT08 and

Yahoo! Research Grant ”Compact Data Structures”.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 130–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On-Line Approximate String Matching with Bounded Errors 131

of character insertions, deletions, and substitutions needed to make two strings
equal. This distance turns out to be sufficiently powerful to model many relevant
applications (e.g., text searching, information retrieval, computational biology,
transmission over noisy channels, etc.), and at the same time sufficiently simple
to admit efficient solutions (e.g., O(mn) and even O(kn) time).

A lower bound to the (worst-case) problem complexity is obviously Ω(n) for
the meaningful cases, k < m. This bound can be reached by using automata,
which introduce an extra additive term in the time complexity which is expo-
nential in m or k. If one is restricted to polynomially-bounded time complexities
on m and k, however, the worst-case problem complexity is unknown.

Interestingly, the average-case complexity of the problem is well understood.
If the characters in P and T are chosen uniformly and independently, the average
problem complexity is Θ(n(k + logσ m)/m). This was proved in 1994 by Chang
and Marr [2], who gave an algorithm reaching the lower bound for k/m < 1/3−
O(σ−1/2). In 2004, Fredriksson and Navarro [3] gave an improved algorithm
achieving the lower bound for k/m < 1/2 − O(σ−1/2). In addition to covering
the range of interesting k values for virtually all applications, the algorithm was
shown to be highly practical.

It would seem that, except for determining the worst-case problem complexity
(which is mainly of theoretical interest), the on-line approximate string match-
ing problem is closed. In this paper, however, we reopen the problem under a
relaxed scenario that is still useful for most applications and admits solutions
that beat the lower bound. More precisely, we relax the goal of listing all posi-
tions where pattern P occurs in the text T to that of listing each such position
with probability 1 − ε, where ε is a new input parameter.

There are several relevant scenarios where fast algorithms that make errors
(with a user-controlled probability) are appropriate. Obvious cases are those
where approximate string matching is used to increase recall when searching
data that is intrinsically error-prone. Consider for example an optical charac-
ter recognition application, where errors will inevitably arise from inaccurate
scanning or printing imperfections, or a handwriting recognition application, or
a search on a text with typos and misspells. In those cases, there is no hope
to find exactly all the correct occurrences of a word. Here, uncertainty of the
input translates into approximate pattern matching and approximate searching
is used to increase the chance of finding relevant occurrences, hopefully without
introducing too many false matches. As the output of the system, even using a
correct approximate string matching technique, is an approximation to the ideal
answer, a second approximation might be perfectly tolerable, and even welcome
if allows for faster searches.

A less obvious application arises in contexts where we might have a priori
knowledge that some pattern is either approximately present in the text many
times, or does not even approximately occur. Some examples are genetic markers
that might often appear or not at all, some modisms that might appear in several
forms in certain type of texts, some typical pattern variants that might appear
in the denomination of certain drugs, people names, or places, of which typically

132 M. Kiwi, G. Navarro, and C. Telha

several instances occur in the same text. Further, we might only be interested
in determining whether the pattern occurs or not. (A feature actually available
in the well known grep string searching utility as options -l and -L, and also
the approximate string searching utilities agrep and ngrep.) In this context, a
text with N approximate pattern occurrences will be misclassified by the inexact
algorithm with very low probability, εN .

Another interesting scenario is that of processing data streams which flow so
fast that there is no hope for scanning them exhaustively (e.g. radar derived
meteorological data, browser clicks, user queries, IP traffic logs, peer-to-peer
downloads, financial data, etc.). Hence even an exact approximate search over
part of the data would give only partial results. A faster inexact algorithm could
even give better quality answers as it could scan a larger portion of the data,
even if making mistakes on it with controlled probability.

The new framework proposed in this work comes from the so-called testing and
property testing literature where the aim is to devise sublinear time algorithms
obtained by avoiding having to read all of the input of a problem instance. These
procedures typically read a very small fraction of the input. For most natural
problems the algorithm must use randomization and provide answers which in
some sense are approximate, or wrong with some probability. See the many
surveys on the topic, e.g. [7,8].

1.1 Main Contributions

We focus in particular on the so-called filtering algorithms [5, § 8]. These al-
gorithms quickly discard areas of the text that cannot approximately match
the pattern, and then verify the remaining areas with a classical algorithm. In
practice, filtering algorithms are also the fastest approximate string matching
algorithms. They also turn out to be natural candidates to design probabilistic
variants in this paper.

In Section 3.1 we describe a procedure based on sampling q-grams motivated
by the filtering algorithm of Ukkonen [9]. For a fixed constant t > 0 and k <
m/ logσ m, the derived algorithm has an average case complexity of O(tn logσ m/
m) and misses pattern occurrences with probability ε=O((k logσ m/m)t). Note
that the time equals Yao’s lower bound for exact string matching (k = 0). In
contrast, Ukkonen’s original algorithm takes O(n) time. In Section 3.2 we de-
scribe an algorithm based on Chang and Marr’s [2] average-optimal algorithm.
For fixed t > 0, we derive an O(tn logσ m/m) average-time approximate match-
ing algorithm with error ε = O((k/m)t). Note that the latter achieves the same
time complexity for a smaller error, and that it works for any k < m, whereas
the former needs k < m/ logσ m.

The discrepancy between both algorithms inherits from that of the original
classical algorithms they derive from, where the original differences in time com-
plexities has now translated into their error probabilities. It is important to stress
that both algorithms beat the average-complexity lower bound of the problem
when errors are not allowed, Ω(n(k + logσ m)/m), as they remove the Ω(kn/m)
term in the complexity (the k/m term now shows up in the error probability).

On-Line Approximate String Matching with Bounded Errors 133

The aforementioned average case complexity results are for random text, but
hold even for fixed patterns. Our analyzes focus exclusively on Levenshtein dis-
tance d, but should be easily adapted to other metrics.

In Section 4 we present some experimental results that corroborate the the-
oretical results of Section 3 and give supporting evidence for the practicality of
our proposals. In particular, the experiments favor the technique of Section 3.1
over that of Section 3.2, despite the theoretical superiority of the latter.

2 Model for Approximate Searching Allowing Errors

In this section we formalize the main concepts concerning the notion of ap-
proximate matching algorithms with errors. We adopt the standard convention
of denoting the substring Si . . . Sj of S = S1 . . . Sn by Si..j and refer to the
number of characters of S by the length of S which we also denote by |S|.
We start by recalling the formal definition of the approximate string matching
problem when the underlying distance function is d. Henceforth, we abbreviate
d-Approximate String Matching as d-ASM.

Problem d-Approximate String Matching

Input Text T ∈ Σ∗, pattern P ∈ Σ∗ and parameter k ∈ N.
Output S = S(T, P, k) ⊆ {1, . . . , n} such that j ∈ S if and only if there is

an i such that d(Ti..j , P) ≤ k.

When the text T and pattern P are both in Σ∗, and the parameter k is
in N we say that (T, P, k) is an instance of the d-ASM problem, or simply
an instance for short. We henceforth refer to S(T, P, k) as the solution set of
instance (T, P, k). We say that algorithm A solves the d-ASM problem if on
instance (T, P, k) it outputs the solution set S(T, P, k). Note that A might be a
probabilistic algorithm, however its output is fully determined by (T, P, k).

For a randomized algorithm A that takes as input an instance (T, P, k), let
A(T, P, k) be the distribution over sets S ⊆ {1, . . . , n} that it returns.

Henceforth we denote by X ← D the fact that the random variable X is chosen
according to distribution D. For a set C we denote the probability that X ∈ C
when X is chosen according to the distribution D by Pr [X ∈ C; X ← D] or
PrX←D [X ∈ C]. Also, we might simply write PrX [X ∈ C] or Pr [X ∈ C] when
it is clear from context that X ← D. The notation generalizes in the obvious way
to the case where X is a random vector, and/or when instead of a probability
one is interested in taking expectation.

We say that randomized algorithm A solves the d-ASM problem with (ε, ε′)-
error provided that on any instance (T, P, k) the following holds:

Completeness: if i ∈ S(T, P, k), then Pr [i ∈ S′; S′ ← A(T, P, k)] ≥ 1 − ε,
Soundness: if i �∈ S(T, P, k), then Pr [i ∈ S′; S′ ← A(T, P, k)] ≤ ε′,

where the two probabilities above are taken only over the source of randomness
of A.

134 M. Kiwi, G. Navarro, and C. Telha

When ε′ = 0 we say that A has one–sided ε-error or that it is one–sided for
short. When ε = ε′ = 0 we say that A is an errorless or exact algorithm.

We say that randomized algorithm F is a d-ASM probabilistic filter with α-
error or simply is an α-filter for short, provided that on any instance (W, P, k)
the following holds: if d(Pi..j , W) ≤ k for some pattern substring Pi..j , then
Pr [F(W, P, k) = Check] ≥ 1 − α, where the probability is taken over the source
of randomness of F . If a filter does not return Check we assume without loss of
generality that it returns Discard.

The notion of an α-filter is crucial to the ensuing discussion. Roughly said, a
filter F will allow us to process a text T by considering non-overlapping consec-
utive substrings W of T , running the filter on instance (W, P, k) and either: (1)
in case the filter returns Check, perform a costly approximate string matching
procedure to determine whether P approximately occurs in T in the surround-
ings of window W , or (2) in case the filter does not return Check, discard the
current window from further consideration and move forward in the text and
process the next text window. The previously outlined general mechanism is the
basis of the generic algorithm we illustrate in Fig. 1 and describe below. The

Text T
Current window W

Discard
Apply filter to next windowFilter F

Check

Approximate search

Fig. 1. Generic algorithm d-Approximate String Matching algorithm

attentive reader would have noticed that when defining probabilistic filters we
substituted the notation T for texts by W . This is done in order to stress that
the probabilistic filters that we will talk about access the text T by sequentially
examining substrings of T which we will refer to as windows. These windows will
typically have a length which is independent of n, more precisely they will be of
length O(m).

We now precisely describe the central role played by probabilistic filters in the
design of d-ASM algorithms with errors. First, from now on, let w denote 	(m−
k)/2
. Henceforth let W1, . . . , Ws be such that T = W1 . . . Ws and |Wp| = w (pad
T with an additional character not in Σ as necessary). Note that s = �n/w� and
Wp = T(p−1)w+1..pw. Given any probabilistic filter F and an exact algorithm E
we can devise a generic d-ASM algorithm with errors such as the one specified
in Algorithm 1.1

We will shortly show that the generic algorithm G is correct. We also would like
to analyze its complexity in terms of the efficiencies of both the probabilistic filter
1 For A ⊆ Z we use the standard convention of denoting {a + x : x ∈ A} by a + A.

On-Line Approximate String Matching with Bounded Errors 135

Algorithm 1. Generic d-Approximate String Matching with Errors
1: procedure G(T, P, k) � T ∈ Σn, P ∈ Σm, k ∈ N
2: S ← ∅
3: w ← �(m − k)/2�
4: s ← 	n/w

5: for p ∈ {1, . . . , s} do
6: if F(Wp, P, k) = Check then � Where Wp = T(p−1)w+1..pw

7: S ← S ∪
(
(pw − m − k + 1) + E(Tpw−m−k+1..(p−1)w+m+k−1, P, k)

)
8: return S

F and the exact algorithm E . However, we first need to introduce the complexity
measures that we will be looking at. Let TimeA(T, P, k) ∈ N ∪ {+∞} be the
expected time complexity of A on the instance (T, P, k), where the expectation
is taken over the random choices of A. We also associate to A the following
average time complexity measures:

AvgA(n, P, k) = ExT [TimeA(T, P, k)] ,
AvgA(n, m, k) = ExT,P [TimeA(T, P, k)] .

Let MemA(T, P, k) ∈ N ∪ {+∞} be the maximum amount of memory required
by A on instance (T, P, k), where the maximum is taken over all possible se-
quences of random bits on which A may act, and let

MemA(n, P, k) = max
T∈Σn

MemA(T, P, k),

MemA(n, m, k) = max
T∈Σn,P∈Σm

MemA(T, P, k).

We similarly define RndA(T, P, k), RndA(n, P, k), and RndA(n, m, k), but with
respect to the maximum number of random bits used by A. Also, the same
complexity measures can be defined for probabilistic filters and exact algorithms.

Theorem 1. Suppose m > k. Let F be an α-filter and let E be the standard
deterministic O(kn) dynamic programming algorithm for the d-ASM problem.
Let w = 	(m − k)/2
, s = �n/w�, and W ⊆ Σw. Then, the generic algorithm G
is a d-ASM algorithm with one-sided α-error such that

AvgG(n, P, k) ≤ s · AvgF(w, P, k)
+s · O (mk) · (PrW←Σw [W ∈ W] + maxW �∈W Pr [F(W, P, k)=Check]) + O(s).

Also, MemG(n, P, k) = MemE(3w + 4k + 2, P, k) (ignoring the space required
to output the result), and RndG(n, P, k) = O(n

m−k) · RndF(w, P, k).

Proof. First, let us establish completeness of G. Assume i ∈ S(T, P, k). Let p+1
be the index of the window to which the character Ti belongs. As any occurrence
has length at least m−k, Wp is completely contained in the occurrence finishing
at i, and thus Wp must be at distance at most k of a substring of P . It follows
that F(Wp, P, k) = Check with probability at least 1 − α, in which case line 7 of

136 M. Kiwi, G. Navarro, and C. Telha

the algorithm will run an exact verification with E over a text area comprising
any substring of length m + k that contains Wp. Since m + k is the maximum
length of an occurrence, it follows that i will be included in the output returned
by G. Hence, with probability at least 1−α we have that i is in the output of G.

To establish soundness, assume i �∈ S(T, P, k). In this case, i will never be
included in the output of G in line 7 of the algorithm.

We now determine G’s complexity. By linearity of expectation and since
TimeE(O(m), m, k) = O(mk), we have

AvgG(n, P, k) =
s∑

p=1

(ExT [TimeF(Wp, P, k)] + O(mk) · PrT [F(Wp, P, k) = Check] + O(1))

= s · AvgF (w, P, k) + O(mk) ·
s∑

p=1

PrT [F(Wp, P, k) = Check] + O(s) .

Conditioning according to whether Wp belongs to W , we get for any W that

PrT [F(Wp, P, k)=Check] ≤ PrW←Σw [W ∈ W]+ max
W �∈W

Pr [F(W, P, k)=Check] .

The stated bound on AvgG(n, P, k) follows immediately. The memory and ran-
domized complexity bounds are obvious. ��
The intuition behind the preceding theorem is that, given any class W of “in-
teresting” windows, if we have a filter that discards the uninteresting windows
with high probability, then the probability that the algorithm has to verify a
given text window can be bounded by the sum of two probabilities: (i) that of
the window being interesting, (ii) the maximum probability that the filter fails
to discard a noninteresting window. As such, the theorem gives a general frame-
work to analyze probabilistic filtration algorithms. An immediate consequence
of the result is the following:

Corollary 1. Under the same conditions as in Theorem 1, if in addition

PrW←Σw [W ∈ W] = max
W �∈W

Pr [F(W, P, k) = Check] = O
(
1/m2) ,

then AvgG(n, P, k) = O(s · AvgF (w, P, k)). This also holds if E is the classical
O(m2) time algorithm.

The previous results suggests an obvious strategy for the design of d-ASM al-
gorithms with errors. Indeed, it suffices to identify a small subset of windows
W ⊆ Σw that contain all windows of length w that are at distance at most k
of a pattern substring, and then design a filter F such that: (1) the probability
that F(W, P, k) = Check is high when W ∈ W (in order not to miss pattern oc-
currences), and (2) the probability that F(W, P, k) = Check is low when W �∈ W
(in order to avoid running an expensive procedure over regions of the text where
there are no pattern occurrences).

The next result is a simple observation whose proof we omit since it follows
by standard methods (running A repeatedly).

On-Line Approximate String Matching with Bounded Errors 137

Proposition 1. Let A be a randomized algorithm that solves the d-ASM prob-
lem with (ε, ε′)-error.

– Let α ≤ ε = ε′ < 1/2 and N = O(log(1/α)/(1−2ε)2). Then, there is
a randomized algorithm A′ that solves the d-ASM problem with (α, α)-
error such that AvgA′(n, P, k) = N · AvgA(n, P, k), MemA′(n, P, k) =
MemA(n, P, k)+O(log N), and where RndA′(n, P, k) = N ·RndA(n, P, k).

– If A is one-sided, then there is a randomized algorithm A′solving the d-ASM

problem with (εN , 0)-error such that AvgA′(n, P, k) = N · AvgA(n, P, k),
MemA′(n, P, k) = MemA(n, P, k) +O(log N), and RndA′(n, P, k) = N ·
RndA(n, P, k).

3 Algorithms for Approximate Searching with Errors

In this section we derive two probabilistic filters inspired on existing (errorless)
filtration algorithms. Note that, according to the previous section, we focus on
the design of the window filters, and the rest follows from the general framework.

3.1 Algorithm Based on q-Gram Sampling

A q-gram is a substring of length q. Thus, a pattern of length m has (m− q +1)
overlapping q-grams. Each error can alter at most q of the q-grams of the pattern,
and therefore (m− q +1− kq) pattern q-grams must appear in any approximate
occurrence of the pattern in the text. Ukkonen’s idea [9] is to sequentially scan
the text while keeping count of the last q-grams seen. The counting is done
using a suffix tree of P and keeping the relevant information attached to the
m−q+1 important nodes at depth q in the suffix tree. The key intuition behind
the algorithms design is that in random text it is difficult to find substrings of the
pattern of length q > logσ m. The opposite is true in zones of the text where the
pattern approximately occurs. Hence, by keeping count of the last q-grams seen
one may quickly filter out many bad pattern alignments.

We now show how to adapt the ideas mentioned so far in order to design
a probabilistic filter. The filtering procedure randomly chooses several indices
i ∈ {1, . . . , |W | − q + 1} and checks whether the q-gram Wi..i+q−1 is a pattern
substring. Depending on the number of q-grams that are present in the pattern
the filter decides whether or not to discard the window. See Algorithm 2 for a
formal description of the derived probabilistic filter Q-PE-Fc,ρ,q, where c and ρ
are parameters to be tuned later. Using the filter as a subroutine for the generic
algorithm with errors described in Algorithm 1 gives rise to a procedure to which
we will henceforth refer to as Q-PE.

Let W be the collection of all windows in Σw for which at least β of its
q-grams are substrings of the pattern. Let w′ = w − q + 1 be the number of
q-grams (counting repetitions) in a window of length w. Finally, let p denote the
probability that a randomly chosen q-gram is a substring of the pattern P , i.e.

p =
1
σq

· |{Pi..i+q−1 : i = 1, . . . , m − q + 1}| .

138 M. Kiwi, G. Navarro, and C. Telha

Algorithm 2. Probabilistic filter based on q-grams
1: procedure Q-PE-F c,ρ,q(W,P, k) � W ∈ Σw, P ∈ Σm, k ∈ N
2: ctr ← 0
3: for i ∈ {1, . . . , c} do
4: Choose ji uniformly at random in {1, . . . , |W | − q + 1}
5: if Wji..ji+q−1 is a substring of P then ctr ← ctr + 1
6: if ctr > ρ · c then return Check else return Discard

The following result shows that a window chosen randomly in Σw is unlikely
to be in W .

Lemma 1. Let β ≥ pw′. Then, PrW←Σw [W ∈ W] ≤ exp
(

− 24(β − pw′)2

25q(β + 2pw′)

)
.

Proof. For i = 1, . . . , w′ let Yi be the indicator variable of the event “Wi..i+q−1
is a substring of P” when W is randomly chosen in Σw. Clearly, Ex [Yi] =
p. Moreover, W ∈ W if and only if

∑w′

i=1 Yi ≥ β. Unfortunately, a standard
Chernoff type bound cannot be directly applied given that the Yi’s are not
independent. Nevertheless, the collection {Y1, . . . , Yw′} can be partitioned into q
families according to i mod q, each one an independent family of variables. The
desired result follows applying a Chernoff type bound for so called q-independent
families [4, Corollary 2.4]. ��

Lemma 2. If W �∈ W, then

Pr [Q-PE-Fρ,c,q(W, P, k) = Check] ≤ exp
(

ρc − cβ

w′

) (
β

ρw′

)ρc

.

Proof. Let Xji denote the indicator of whether Wji..ji+1−1 turns out to be a
substring of the pattern P in line 5 of the description of Q-PE-Fρ,c,q. Note that
the Xji ’s are independent, each with expectation at most β/w′ when W �∈ W .
The claim follows by a standard Chernoff type bound from the fact that:

PrW←Σw [Q-PE-Fρ,c,q(W, P, k) = Check] = Pr

[
c∑

i=1

Xji ≥ ρ · c
]

,

where the probabilities are taken exclusively over the sequence of random bits
of the probabilistic filter. ��

Lemma 3. If kq ≤ w′(1 − ρ), then Q-PE-Fρ,c,q is an α-filter for

α ≤ exp
(

(1−ρ)c − ckq

w′

) (
kq

w′(1−ρ)

)c(1−ρ)

.

Proof. Let W ∈ Σw. Assume d(Pi..j , W) ≤ k for some pattern substring Pi..j .
Then, at least w′ − kq of W ’s q-grams are substrings of P . Defining Xji as in
Lemma 2 we still have that the Xji ’s are independent but now their expectation

On-Line Approximate String Matching with Bounded Errors 139

is at least 1− kq/w′. The claim follows by a standard Chernoff type bound from
the fact that:

Pr [Q-PE-Fρ,c,q(W, P, k) = Discard] = Pr

[
c∑

i=1

Xji ≤ ρ · c
]

,

where the probabilities are taken exclusively over the sequence of random bits
of the probabilistic filter. ��

Theorem 2. If k < (m − 2 logσ m)/(1 + 4 logσ m), then Q-PE is a d-ASM

algorithm with one-sided error ε = O((k logσ m/m)t) for any constant t > 0,
running in average time AvgQ-PE(n, P, k) = O(tn logσ m/m).

Proof. The result follows from Theorem 1 and Corollary 1.
Choose q = 2�logσ m�, so p ≤ m/σq ≤ 1/m. Taking β = Θ(log2 m) where the

hidden constant is sufficiently large, we have by Lemma 1 that PrW←W [W ∈ W]
= O(1/m2). By Lemma 2 and taking ρ = 1/2 and c a sufficiently large constant,
we get that Pr [Q-PE-Fρ,c,q(W, P, k) = Check] = O(1/m2) when W �∈ W .

Now, let k∗ = w′(1 − ρ)/q and observe that k < k∗ satisfies the hypothesis of
Lemma 3. Choose c(1−ρ) ≥ t and note that kq/((1−ρ)w′) = 4k logσ m/(m−k−
2 logσ m). Lemma 3 thus implies that Q-PE-Fρ,c,q has O((k logσ m/m)t)-error.

Clearly AvgQ-PE-Fρ,c,q
(w, P, k) = TimeQ-PE-Fρ,c,q

(W, P, k) = O(cq) =
O(t logσ m). ��

3.2 Algorithm Based on Covering by Pattern Substrings

In 1994 Chang and Marr [2] proposed a variant of SET [1] with running time
O(n(k + logσ m)/m) for k/m ≤ 1/3 − O(σ−1/2). As in SET, Chang and Marr
consider blocks of text of size (m−k)/2, and pinpoint occurrences of the pattern
by identifying blocks that approximately match a substring of the pattern. This
identification is based on splitting the text into contiguous substrings of length

 = t logσ m and sequentially searching the text substrings of length
 in the
pattern allowing errors. The sequential search continues until the total number
of errors accumulated exceeds k. If k errors occur before (m−k)/2 text characters
are covered, then the rest of the window can be safely skipped.

The adaptation of Chang and Marr’s approach to the design of probabilistic
filters is quite natural. Indeed, instead of looking at
-grams sequentially we just
randomly choose sufficiently many non-overlapping
-substrings in each block.
We then determine the fraction of them that approximately appear in the pat-
tern. If this fraction is small enough, then the block is discarded. See Algorithm 3
for a formal description of the derived probabilistic filter CM-PE-Fc,ρ,�,g. Us-
ing the filter as a subroutine for the generic algorithm with errors described in
Algorithm 1 gives rise to a procedure to which we will henceforth refer to as
CM-PE.

Remark 1. Note that asm(S, P) of Algorithm 3 can be precomputed for all val-
ues of S ∈ Σ�.

140 M. Kiwi, G. Navarro, and C. Telha

Algorithm 3. Probabilistic filter based on covering by pattern substrings
1: procedure CM-PE-F c,ρ,�,g(W, P, k) � W ∈ Σw, P ∈ Σm, k ∈ N
2: ctr ← 0
3: for i ∈ {1, . . . , c} do
4: Choose ji uniformly at random in {1, . . . , �w/��}
5: if asm(W(ji−1)�+1..ji�, P) ≤ g � asm(S,P) = mina≤b d(S, Pa..b)
6: then ctr ← ctr + 1
7: if ctr > ρ · c then return Check else return Discard

The analysis of Algorithm 3 establishes results such as Lemmas 1-3, but con-
cerning CM-PE-Fρ,c,�,g. We can derive the following (proof omitted due to lack
of space):

Theorem 3. If k < m/5, then CM-PE is a d-ASM algorithm with one sided
error ε = (4k/(m − k))t, for any constant t > 0. Its average running time is
AvgQ-PE(n, P, k) = O(tn logσ m/m).

4 Experimental Results

We implemented the algorithms of Sections 3.1 and 3.2. We extracted three real-
life texts of 50MB from Pizza&Chili (http://pizzachili.dcc.uchile.cl): English
text, DNA, and MIDI pitches. We used patterns of length 50 and 100, randomly
extracted from the text, and some meaningful k values. Each data point is the
average over 50 such search patterns, repeating each search 15 times in the case

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 50, k= 5

DNA
English

MIDI

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 50, k= 8

English
MIDI

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 100, k= 10

English
MIDI

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 100, k= 16

English
MIDI

Fig. 2. Experimental results for Q-PE. Straight horizontal lines correspond to the
errorless version. The y axis represents the number of character inspections times 1024.

On-Line Approximate String Matching with Bounded Errors 141

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 50, k= 5

English
MIDI
DNA

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 50, k= 8

English
MIDI
DNA

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 100, k= 10

English
MIDI
DNA

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

N
um

. C
ha

ra
ct

er
s

Error (%)

m= 100, k= 16

English
MIDI
DNA

Fig. 3. Experimental results for CM-PE. Straight horizontal lines correspond to the
errorless version. The y axis represents the number of character inspections times 1024.

of the probabilistic algorithms. We measured the average number of character
inspections and the average percentage of missed occurrences.

We used the following setup for the algorithms. For q-gram algorithms (Sec-
tion 3.1), we used q = 4. Our preliminary results show that ρ = 0.7 is a good
choice. For covering by pattern substrings (Section 3.2), we used ε = 0.2 and
ρ = 0.3. In our algorithms, we only moved parameter c in order to change the
accuracy/time trade-off. We compared our algorithms with the corresponding
errorless filtering algorithms.

Figure 2 shows the experimental results for the q-gram based procedure, and
Fig. 3 for the covering by pattern substrings process. The errorless version of
the q-grams algorithm inspects all text characters. In contrast, our q-gram based
procedure achieves less than 1% error rate and looks at up to 6 times less char-
acters on English and MIDI corpora. For our second algorithmic proposal, the
result of the comparison against the errorless version is not as good. Neverthe-
less, we emphasize that it beats the average-optimal (errorless) algorithm by a
wide margin, specifically it inspects about half the characters with 15% errors
on the English corpus.

5 Final Comments

In this paper we have advocated considering a new dimension of the approximate
string matching problem, namely the probability of missing an approximate oc-
currence. This relaxation is particularly natural for a problem that usually arises
when modeling processes where errors have to be tolerated, and it opens the door

142 M. Kiwi, G. Navarro, and C. Telha

to novel approaches to approximate string matching which break the average-
case lower bound of the original problem. In particular, we have shown that
much faster text scanning is possible if one allows a small probability of missing
occurrences. We achieved O(n logσ m/m) time (which is the complexity of exact
string matching, k = 0) with error probability bounded by any polynomial in
k/m. Empirically, we have shown that our algorithms inspect a fraction of the
text with virtually no mistakes.

We have just scratched the surface of this new area. In particular, we have not
considered filtration algorithms that use sliding instead of fixed windows. Sliding-
window algorithms have the potential of being more efficient (cf. Fredriksson
and Navarro’s variant [3] with the original Chang and Marr’s average-optimal
algorithms [2]). It is not hard to design those variants, yet analyzing them is more
challenging. On the other hand, it is rather simple to extend our techniques to
multiple ASM. We also applied the techniques to indexed algorithms, where
the text can be preprocessed [6]. Several indexes build on sequential filtration
algorithms, and thus adapting them is rather natural.

Finally, it is interesting to determine the average complexity of this relaxed
problem, considering the error probability ε in the formula. This would give
an idea of how much can one gain by allowing errors in the outcome of the
search. For example, our algorithms break the Ω(nk/m) term in the problem
complexity, yet a term poly(k/m) appears in the error probability. Which are
the best tradeoffs one can achieve?

References

1. Chang, W., Lawler, E.: Sublinear approximate string matching and biological ap-
plications. Algorithmica 12(4-5), 327–344 (1994)

2. Chang, W., Marr, T.: Approximate string matching and local similarity. In: Pro-
ceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, pp.
259–273. Springer, Heidelberg (1994)

3. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics (article 1.4) 9 (2004)

4. Janson, S.: Large deviations for sums of partly dependent random variables. Random
Structure & Algorithms 24(3), 234–248 (2004)

5. Navarro, G.: A guided tour to approximate string matching. ACM Computing Sur-
veys 33(1), 31–88 (2001)

6. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for approx-
imate string matching. IEEE Data Engineering Bulletin 24(4), 19–27 (2001)

7. Ron, D.: Property Testing. In: Handbook of Randomized Computing, volume II of
Combinatorial Optimization, vol. 9. Springer, Heidelberg (2001)

8. Rubinfeld, R., Kumar, R.: Algorithms column: Sublinear time algorithms. SIGACT
News 34(4), 57–67 (2003)

9. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theoretical Computer Science 92, 191–211 (1992)

A Black Box for Online Approximate Pattern

Matching

Raphaël Clifford1, Klim Efremenko2, Benny Porat3, and Ely Porat3

1 University of Bristol, Dept. of Computer Science, Bristol, BS8 1UB, UK
clifford@cs.bris.ac.uk

2 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan and Weizman
Institute, Dept. of Computer Science and Applied Mathematics, Rehovot, Israel

klimefrem@gmail.com
3 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel

bennyporat@gmail.com, porately@cs.biu.ac.il

Abstract. We present a deterministic black box solution for online ap-
proximate matching. Given a pattern of length m and a streaming text
of length n that arrives one character at a time, the task is to report the
distance between the pattern and a sliding window of the text as soon as
the new character arrives. Our solution requires O(Σ

log2 m
j=1 T (n, 2j−1)/n)

time for each input character, where T (n, m) is the total running time of
the best offline algorithm. The types of approximation that are supported
include exact matching with wildcards, matching under the Hamming
norm, approximating the Hamming norm, k-mismatch and numerical
measures such as the L2 and L1 norms. For these examples, the re-
sulting online algorithms take O(log2 m), O(

√
m log m), O(log2 m/ε2),

O(
√

k log k log m), O(log2 m) and O(
√

m log m) time per character re-
spectively. The space overhead is O(m) which we show is optimal.

1 Introduction

Fast approximate string matching is a central problem of modern data intensive
applications. Its applications are many and varied, from computational biology
and large scale web searching to searching multimedia databases and digital
libraries. As a result, string matching has to continuously adapt itself to the
problem at hand. Simultaneously, the need for asymptotically fast algorithms
grows every year with the explosion of data available in digital form.

A great deal of progress has been made in finding fast algorithms for a va-
riety of important forms of approximate matching. One of the most studied is
the Hamming distance which measures the number of mismatches between two
strings. Given a text t of length n and a pattern p of length m, the task is to
report the Hamming distance at every possible alignment. O(n

√
m log m) time

solutions based on repeated applications of the FFT were given independently
by both Abrahamson and Kosaraju in 1987 [1, 17]. Particular interest has been
paid to a bounded version of this problem called the k-mismatch problem. Here
a bound k is given and we need only report the Hamming distance if it is less

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 143–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 R. Clifford et al.

than or equal to k. If the number of mismatches is greater than the bound,
the algorithm need only report that fact and not give the actual Hamming dis-
tance. In 1985 Landau and Vishkin gave a beautiful O(nk) algorithm that is not
FFT based which uses constant time LCA operations on the suffix tree of p and
t [18]. This was subsequently improved to O(n

√
k log k) time by a method based

on filtering and FFTs again [4]. Approximations within a multiplicative factor
of (1+ ε) to the Hamming distance can also be found in O(n/ε2 log m) time [15].

The problem of determining the time complexity of exact matching with don’t
cares has also been well studied over many years [13, 15, 16, 12, 6], culminating in
two related deterministic O(n log m) time solutions. This has been accompanied
by recent advances for the problem of k-mismatch problem with don’t cares [10,
9] as well as a surge in interest in provably fast algorithms for distance calculation
and approximate matching between numerical strings. Many different metrics
have been considered, with for example the L1 distance [5, 7, 3] and less-than
matching [2] problems both being solvable in O(n

√
m log m) time and a bounded

version of the L∞ norm which was first discussed in [8] and then improved in
[7, 19] requiring O(δn log m) time.

In almost every one of these cases and in many others beside, the algorithms
make extensive use of the fast Fourier transform (FFT). The property of the
FFT that is required is that in the RAM model, the cross-correlation,

(t ⊗ p)[i] def=
m∑

j=1

pjti+j−1, 0 ≤ i ≤ n − m + 1,

can be calculated accurately and efficiently in O(n log n) time (see e.g. [11],
Chapter 32). By a standard trick of splitting the text into overlapping substrings
of length 2m, the running time can be further reduced to O(n log m).

Although the FFT is a very powerful and successful tool, it also brings with
it a number of disadvantages. Perhaps most significant of these in this context
is that the cross-correlation computation using the FFT is very much an offline
algorithm. It requires the entire pattern and text to be available before any search
can be performed. Of course, it is not only the FFT that causes this difficulty.
For example, the only fast algorithm for the k-mismatch algorithm which does
not employ the FFT uses constant time LCA queries [18]. As it is not known
how to perform the necessary preprocessing of a suffix tree to compute the LCA
online, this algorithm suffers from the same limitations as those that depend on
the FFT.

In many situations such as when monitoring Internet traffic or telecommu-
nications networks this model of computation may not be feasible. It is not
sufficient simply that a pattern matching algorithm runs fast. It should also re-
quire considerably less space than the input and update at least as quickly as the
new data are arriving while still maintaining an overall time complexity which
is as close as possible to the full offline algorithm. One approach to handle this
situation is the data streaming model where it is assumed that it is not possible
to ever store all the data seen and in some variants that only one pass over the
data is ever allowed. This very successful model has been the source of a great

A Black Box for Online Approximate Pattern Matching 145

deal of attention in recent years (see [14] and [20] for background on data stream
computation), however the techniques developed have largely been randomised
whereas our interest is in deterministic solutions.

Our main contribution is a black box for converting offline approximate match-
ing algorithms into efficient online ones. That is, it ensures that the approximate
matching algorithm accomplishes its task for the ith input character without re-
quiring the i + 1th. The method is deterministic and bounds the worst case
running time per input character as well as ensuring that the overall running
time is within a log factor of the best known offline algorithm. It is an important
feature of our method that its running time is not amortised. This is because
when processing streaming data it may not be realistic to wait for long periods
of time between individual input characters.

Our technique can be applied to a wide class of approximate matching algo-
rithms overcoming one of the main restrictions on their use in data streaming
applications. A particularly useful subset that we focus on in this paper includes
problems whose distance function Δ is defined so that Δ(x, y) = Σm

j=1Δ(xj , yj),
for strings x and y and |x| = |y| = m. In other words, distance functions between
two strings where the distance is simply measured as the sum of the distances
between individual symbols. Many of the most common and widely studied ap-
proximate matching problems fall into this category including exact matching
with wildcards, matching under the Hamming norm, k-mismatch and matching
under the L2 and L1 norms. As a result, we provide fast deterministic online
algorithms for each one of these problems.

The overall structure of the paper is as follows. In Section 2 we summarise the
main results of the paper. In Section 3 we present the main black box solution
and in Section 4 we discuss space lower bounds. Finally we conclude with some
open problems in Section 5.

2 Our Results

Our black box approach converts an offline approximate matching algorithm
into efficient online algorithm. Let T (n, m) be the total running time of the best
known offline approximate matching algorithm for the problem being considered.
The main results we present are as follows:

– We show how offline approximate matching algorithms can be turned into
online algorithms with strict bounds on the computation time per input
character. The main idea is to split the pattern into O(log m) subpatterns of
successively halving length and to perform searches in parallel on carefully
chosen partitions of the text. The partitions are chosen so that the work
needed to compute the distance to a sliding window of the text is started
O(m) characters before it is needed.

Specifically, for each subpattern of length m′, we start the approximate
matching algorithm m′/2 characters before its result is required. This work
is carried out in parallel (by time slicing for example) with searches involv-
ing a subset of the remaining subpatterns. An auxiliary array of size O(m)

146 R. Clifford et al.

is sufficient to keep track of the cumulative counts of the distances found
so far. The online algorithm takes O(Σlog2 m

j=1 T (n, 2j−1)/n) time per input

character. As Σ
log2 m
j=1 T (n, 2j−1) ≤ T (n, m) log(m), this gives a near opti-

mal deterministic solution to a wide class of online approximate matching
problems.

– A small adjustment to the algorithm allows us to report the distance to a
sliding window in the text in constant time after a new character arrives.
Although the computation time per character is unchanged, we are able to
move the majority of the work for future symbols until after a new symbol
has been processed. This provides a solution for online approximate matching
in a model where instant answers are needed once new data arrives.

– Applications of our black box method to exact matching with wildcards,
matching under the Hamming norm, approximating the Hamming norm, k-
mismatch and matching under the L2 and L1 norms result in algorithms that
take O(log2 m), O(

√
m log m), O(log2 m/ε2), O(

√
k log k log m), O(log2 m)

and O(
√

m logm) time per character respectively.
– Finally we argue that the space requirements for the online approximate

matching problem are optimal in the deterministic setting under the as-
sumption that the offline matching algorithm requires O(m) space. This
follows immediately from an Ω(m) communication complexity lower bound
for computing “sum-type” functions between strings.

3 The Black Box for Online Approximate Matching

The black box we present will make repeated calls to an offline approximate
pattern matching algorithm which we call offline-pm. In order to simplify some
of the explanation, we assume that the running time T (n, m) of offline-pm can
be expressed as nT ′(m) with T ′(m) ∈ O(m). This assumption is reasonable as
the types of pattern matching problem we consider can all be solved naively
in O(nm) time. As a result of this simplification we have O(n/mT (cm, m)) =
O(T (n, m)) for constant c > 1. We will also at times refer to a call to offline-pm
as a search for the sake of brevity.

The basic idea of our black box is to split the pattern into O(log m) consecutive
subpatterns each having half the length of the previous one. In this way P1 =
p[1, . . . , m/2] and subpattern Pj has length m2−j for 1 ≤ j ≤ log2(m). Plog2(m)+1
is set to be the last character of the pattern. We then run offline-pm for each
subpattern against the whole of the text. The distances found can then be added
to an auxiliary array C. Specifically, for any subpattern starting at position j
of the pattern, its distance to a substring starting at position i of the text will
be added to the count at C[i − j + 1]. At the end of this step C will contain
Δ(p, t[i, . . . , i + m − 1]) for every location i in t.

This algorithm will call offline-pm O(log m) times and requires O(n) extra
space for the auxiliary array. The space requirement can be reduced to O(m)
by partitioning the text. For any subpattern of length m′, we partition the text
into n/(m′ − 1) overlapping substrings of length 2m′, each with an overlap of

A Black Box for Online Approximate Pattern Matching 147

length m′ with the previous partition. If we run offline-pm on each partition
separately, the total time complexity over the whole text for each subpattern
is O((n/m)T (2m, m)) = O(T (n, m)). The distances for each subpattern can be
added to the auxiliary C in the same way as before. However, now we only need
store one auxiliary array of size m at most.

This space reduced algorithm can easily be made online by a lazy execution
of the searches performed. For each subpattern Pj there is a list of locations
associated with it which marks out the start and end of its associated partitions
of the text. These locations do not have to be stored explicilty as they are easily
computable as they are needed. For example, for P1 = p[1, . . . , m/2], the first
partition is t[1, . . . , m] , the second is t[m/2, 3m/2] and so on. When the ith
character is read in from the text, offline-pm can now perform the searches for
all the subpatterns which have a partition finishing at position i. This online
algorithm runs in O(Σlog2 m

j=1 T (n, 2j−1)) time and O(m) extra space. However
the solution is not yet satisfactory as we might potentially have to wait for
more than T (m, m/2) time after a new character arrives before we are able to
compute the distance to the new sliding window. As an example, when the mth
character of t is read in, the first search involving P1 commences for the partition
t[1, . . . , m], thereby delaying the computation of Δ(p, t[1, . . . , m]) unacceptably.
Our aim is to ensure that the maximum computation time per character is
limited to O(Σlog2 m

j=1 T (n, 2j−1)/n).

Bounding the Maximum Time per Character
We can bound the maximum time per character by performing more work earlier
on. Instead of splitting the text into partitions of size 2m′ per subpattern, we
change the partition size to 3m′/2. The overlap between partitions is maintained
at m′ to ensure no matches are missed.

If the ith character of the text is read in, searches will now be performed for
all subpatterns which have a partition of the text ending at position i. The result
of a search involving a subpattern will now not be needed until the i + m′/2th
character is read in. That is m′/2 characters after the relevant search has been
performed. In this way, whenever a new character is read in, the results for all
the subpatterns needed to compute the distance to the new sliding window are
already known, except for the last character of the pattern. This last comparison
can be carried out in constant time. Figure 1 shows the partitioning of the text for
the first subpattern P1 and the start and finish times of the searches performed.

In order to guarantee the desired upper bound for the amount of work carried
out per character, we need to spread the work out evenly over the time it takes
to input the text. For each subpattern, the work for a particular search does
not have to be completed until m′/2 characters after it starts and so we can set
this work to be performed over the period between reading in the ith and the
i + m′/2th character. As an example, the first search for P1 starts when t[3m/4]
is read in and completes at the time that t[m] is. P2 will on the other hand start
to calculate its contribution to Δ(p, t[1, . . . , m]) when t[7m/8] is read in. The
result from these searches and from all the other subpatterns, will be scheduled

148 R. Clifford et al.

Fig. 1. Partitioning of the text for subpattern P1 = p[1, . . . , m/2]

to complete by the time t[m] arrives. As there will be a number of searches
scheduled to work in this period we will need to perform the work in parallel by
time slicing. To guarantee the bound on the work per character without requiring
any internal knowledge of offline-pm, we only require an upper bound for the
running time of offline-pm for a subpattern of length m′ which we then divide
by m′/2. This gives the amount of work to carry out per input character.

Algorithm 1 gives an overview of the whole process.

Input: Pattern p, a the streaming text t and offline-pm
Output: Δ(p, t[i − m + 1, . . . , i]) for each i ≥ m of streaming text
Initialisation;

Split p into log2 m subpatterns Pj of length m/2j , for 1 ≤ j ≤ log2 m;
For each Pj , calculate its partition start and end points;

foreach symbol t[i] read in do
Add Δ(p[m], t[i]) to C[i − m + 1];
Wait for results of offline-pm searches due to end at position i;
Output C[i − m + 1];
Start offline-pm searches for each subpattern Pj which has a partition ending
at i;

end

Algorithm 1. Black box algorithm for online pattern matching

By making a small adjustment to the scheduling of the work we can also guar-
antee that all but a constant amount of the work needed to compute Δ(p, t[i−m+
1, . . . , i]) will have been completed before the ith character is read in. Although
no change is made to the total work per character, the ability to control at which
point work is carried out can have applications when data arrives in bursts. For
example, if there is some pause in the data stream before new characters arrive.
The following Theorem summarises the main result.

Theorem 1. Algorithm 1 solves the online approximate problem in O(Σlog2 m
j=1

T (n, 2j−1)/n) time per input character and O(m) space. Further, with a small

A Black Box for Online Approximate Pattern Matching 149

modification it can report the distance to a new sliding window in constant time
after a text symbol arrives.

Proof. The total time taken by Algorithm 1 is O(T (n, m′)) per subpattern of
length m′ making a total of O(Σlog2 m

j=1 T (n, 2j−1)) time overall for all subpat-
terns. The work performed by the calls to offline-pm is evenly spread over the
whole length of the text. Therefore, the total amount of work per character is
O(Σlog2 m

j=1 T (n, 2j−1)/n).
The space required for the auxiliary array is O(m). We also have to consider

the space overhead of offline-pm as there can be O(log m) searches running
simultaneously. Under the assumption that each individual search requires O(m)
space, the total space requirement is less than Σ

log2 m
j=1 (c2j−1) = O(m) overall.

In order to output Δ(p, t[i − m + 1, . . . , i]) in constant time after t[i] is read
in we need only ensure that a search is completed m′/2 − 1 (rather than m′/2)
characters after the end of a partition. In this way, when the ith character is
read in only Δ(p[m], t[i]) will remain to be computed. This modification does
not affect the time complexity of the algorithm overall. ��
We can now apply our black box to a number of well known matching problems,
giving the following time complexities per input character.

Corollary 1. Algorithm 1 applied to the fastest known offline pattern match-
ing algorithms for the Hamming norm, k-mismatch and matching under the
L2 and L1 norms gives online algorithms that take O(log2 m), O(

√
m log m),

O(
√

k log k log m), O(log2 m) and O(
√

m log m) time per character respectively.

4 Space Lower Bound for Deterministic Online
Approximate Matching

It would seem desirable to reduce the space requirements even further in order
to increase the practicality of processing data streams. Unfortunately, there is
an Ω(m) communication complexity lower bound for “sum-type” functions [21]
which covers the additive distance functions we have been most interested in.
The space lower bound for any deterministic approximate pattern matching
algorithm follows directly from the communication complexity lower bound by
a standard argument that we briefly summarise. Assuming the communication
complexity lower bound, the proof of the space lower bound is by contradiction.
If Alice can preprocess the pattern to use o(m) space and then starts her online
pattern matching algorithm, she could then transfer a snapshot of the current
state to Bob who could then carry on running the algorithm on his string. Bob
would then find the distance to his string having received only o(m) items of
data, thereby giving the desired contradiction.

5 Discussion

The method we have developed is applicable to a wide class of previously offline
approximate matching algorithms. By choosing a black box approach we have

150 R. Clifford et al.

not investigated whether particular pattern matching algorithms might be more
easily converted to efficient online algorithms without any extra time cost. Also,
although we have shown that the space required by our approach is optimal for
a wide range of problems, an interesting question is whether randomisation can
allow us to solve the same problems with only o(m) space as the communication
complexity bounds will no longer hold.

Acknowledgements

The authors would like to thank Inbok Lee and Ashley Montanaro for their
helpful comments on a draft of this paper.

References

[1] Abrahamson, K.: Generalized string matching. SIAM journal on Computing 16(6),
1039–1051 (1987)

[2] Amir, A., Farach, M.: Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation 118(1), 1–11 (1995)

[3] Amir, A., Lipsky, O., Porat, E., Umanski, J.: Approximate matching in the L1

metric. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS,
vol. 3537, pp. 91–103. Springer, Heidelberg (2005)

[4] Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with
k mismatches. J. Algorithms 50(2), 257–275 (2004)

[5] Atallah, M.J.: Faster image template matching in the sum of the absolute value
of differences measure. IEEE Transactions on Image Processing 10(4), 659–663
(2001)

[6] Clifford, P., Clifford, R.: Simple deterministic wildcard matching. Information
Processing Letters 101(2), 53–54 (2007)

[7] Clifford, P., Clifford, R., Iliopoulos, C.S.: Faster algorithms for δ,γ-matching and
related problems. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 68–78. Springer, Heidelberg (2005)

[8] Clifford, R., Iliopoulos, C.: String algorithms in music analysis. Soft Comput-
ing 8(9), 597–603 (2004)

[9] Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k-mismatch with don’t
cares. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 151–162. Springer, Heidelberg (2007)

[10] Clifford, R., Porat, E.: A filtering algorithm for k-mismatch with don’t cares. In:
Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 130–136.
Springer, Heidelberg (2007)

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

[12] Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard
matching. In: Proceedings of the Annual ACM Symposium on Theory of Com-
puting, pp. 592–601 (2002)

[13] Fischer, M., Paterson, M.: String matching and other products. In: Karp, R.
(ed.) Proceedings of the 7th SIAM-AMS Complexity of Computation, pp. 113–
125 (1974)

A Black Box for Online Approximate Pattern Matching 151

[14] Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
In: External memory algorithms, pp. 107–118. American Mathematical Society,
Boston (1999)

[15] Indyk, P.: Faster algorithms for string matching problems: Matching the convo-
lution bound. In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pp. 166–173 (1998)

[16] Kalai, A.: Efficient pattern-matching with don’t cares. In: Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 655–656 (2002)

[17] Kosaraju, S.R.: Efficient string matching (1987) (manuscript)
[18] Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theo-

retical Computer Science 43, 239–249 (1986)
[19] Lipsky, O., Porat, E.: Approximate matching in the L∞ metric. In: String Pro-

cessing and Information Retrieval, 12th International Symposium (SPIRE 2005).
LNCS, pp. 331–334. Springer, Heidelberg (2005)

[20] Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA 2003:
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, p. 413 (2003)

[21] Tamm, U.: Communication complexity of sum-type functions invariant under
translation. Inf. Comput. 116(2), 162–173 (1995)

An(other) Entropy-Bounded

Compressed Suffix Tree

Johannes Fischer1, Veli Mäkinen2,�, and Gonzalo Navarro1,��

1 Dept. of Computer Science, Univ. of Chile
{jfischer|gnavarro}@dcc.uchile.cl

2 Dept. of Computer Science, Univ. of Helsinki, Finland
vmakinen@cs.helsinki.fi

Abstract. Suffix trees are among the most important data structures
in stringology, with myriads of applications. Their main problem is space
usage, which has triggered much research striving for compressed repre-
sentations that are still functional. We present a novel compressed suffix
tree. Compared to the existing ones, ours is the first achieving at the
same time sublogarithmic complexity for the operations, and space us-
age which goes to zero as the entropy of the text does. Our development
contains several novel ideas, such as compressing the longest common
prefix information, and totally getting rid of the suffix tree topology, ex-
pressing all the suffix tree operations using range minimum queries and
a new primitive called next/previous smaller value in a sequence.

1 Introduction

Suffix trees are probably the most important structure ever invented in stringol-
ogy. They have been said to have “myriads of virtues” [2], and also have myriads
of applications in many areas, most prominently bioinformatics [13]. One of the
main drawbacks of suffix trees is their considerable space requirement, which is
usually close to 20n bytes for a sequence of n symbols, and at the very least 10n
bytes [17]. For example, the Human genome, containing approximately 3 bil-
lion bases, could easily fit in the main memory of a desktop computer (as each
DNA symbol needs just 2 bits). However, its suffix tree would require 30GB to
60GB, too large to fit in normal main memories. Although there has been some
progress in managing suffix trees in secondary storage [15] and it is an active
area of research [16], it will always be faster to operate in main memory.

This situation has stimulated research on compressed representations of suffix
trees, which operate in compressed form. Even if many more operations are
needed to carry out the operations on the compressed representation, this is
clearly advantageous compared to having to manage it on secondary memory.
A large body of research focuses on compressed suffix arrays [22], which offer a

� Funded by the Academy of Finland under grant 119815.
�� Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,

Grant ICM P05-001-F, Mideplan, Chile.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 152–165, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An(other) Entropy-Bounded Compressed Suffix Tree 153

reduced suffix tree functionality. Especially, they miss the important suffix-link
operation. The same restrictions apply to early compressed suffix trees [21,12].

The first fully-functional compressed suffix tree is due to Sadakane [26]. It
builds on top of a compressed suffix array [25] that uses 1

ε nH0 + O(n log log σ)
bits of space, where H0 is the zero-order entropy of the text T1,n, σ is the size of
the alphabet of T , and 0 < ε < 1 is any constant. In addition, the compressed
suffix tree needs 6n+o(n) bits of space. Most of the suffix tree operations can be
carried out in constant time, except for knowing the string-depth of a node and
the string content of an edge, which take O(logε n) time, and moving to a child,
which costs O(logε n log σ). One could replace the compressed suffix array they
use by Grossi et al.’s [11], which requires less space: 1

ε nHk+o(n log σ) bits for any
k ≤ α logσ n, where Hk is the k-th empirical entropy of T [19] and 0 < α < 1 is
any constant. However, the O(logε n) time complexities become O(log

ε
1−ε
σ n log σ)

[11, Thm. 4.1]. In addition, the extra 6n bits in the space complexity remain,
despite any reduction in the compressed suffix array. This term can be split into
2n bits to represent (with a bitmap called Hgt) the longest common prefix (LCP)
information, plus 4n bits to represent the suffix tree topology with parentheses.
Many operations are solved via constant-time range minimum queries (RMQs)
over the depths in the parentheses sequence. An RMQ from i to j over a sequence
S[1, n] of numbers asks for rmqS(i, j) := argmini≤�≤jS[�].

Russo et al. [24] recently achieved fully-compressed suffix trees, that is, requir-
ing nHk + o(n log σ) bits of space (with the same limits on k as before), which
is essentially the space required by the smallest compressed suffix array, and
asymptotically optimal under the k-th entropy model. The main idea is to sam-
ple some suffix tree nodes and use the compressed suffix array as a tool to find
nearby sampled nodes. The most adequate compressed suffix array for this task
is the alphabet-friendly FM-index [6]. The time complexities for most operations
are logarithmic at best, more precisely, between O(log n) and O(log n log log n).
Others are slightly costlier, e.g. moving to a child costs an additional O(log log n)
factor, and some less common operations are as costly as O((log n log log n)2).

We present a new fully-compressed suffix tree, by removing the 6n term in
Sadakane’s space complexity. The space we achieve is not as good as that of
Russo et al., but most of our time complexities are sublogarithmic. More pre-
cisely, our index needs nHk(2 log 1

Hk
+ 1

ε + O(1)) + o(n log σ) bits of space. Note
that, although this is not the ideal nHk, it still goes to zero as Hk → 0, unlike
the incompressible 6n bits in Sadakane’s structure. Our solution builds on two
novel algorithmic ideas to improve Sadakane’s compressed suffix tree.

1. We show that array Hgt, which encodes LCP information in 2n bits [26],
actually contains 2R runs, where R is the number of runs in ψ [22]. We show
how to run-length compress Hgt into 2R log n

R +O(R)+o(n) bits while retaining
constant-time access. In order to relate R with nHk, we use the result R ≤
nHk + σk for any k [18], although sometimes it is extremely pessimistic (in
particular it is useful only for Hk < 1, as obviously R ≤ n). This gives the
nHk(2 log 1

Hk
+ O(1)) upper bound to store Hgt (and the real space is always

≤ 2n bits).

154 J. Fischer, V. Mäkinen, and G. Navarro

2. We get rid of the suffix tree topology and identify suffix tree nodes with
suffix array intervals. All the tree traversal operations are simulated with RMQs
on LCP (represented with Hgt), plus a new type of queries called “Next/Previous
Smaller Value”, that is, given a sequence of numbers S[1, n], find the first cell
in S following/preceding i whose value is smaller than S[i].1 We show how to
solve these queries in sublogarithmic time while spending only o(n) extra bits of
space on top of S. We believe this operation might have independent interest,
and the challenge of achieving constant time with sublinear space remains open.

2 Basic Concepts

The suffix tree S of a text T1,n over an alphabet Σ of size σ is a compact trie
storing all the suffixes Ti,n where the leaves point to the corresponding i values
[2,13]. For convenience we assume that T is terminated with a special symbol,
so that all lexicographical comparisons are well defined. For a node v in S, π(v)
denotes the string obtained by reading the edge-labels when walking from the
root to v (the path-label of v [24]). The string-depth of v is the length of π(v).

Definition 1. A suffix tree representation supports the following operations:

– Root(): the root of the suffix tree.
– Locate(v): the suffix position i if v is the leaf of suffix Ti,n, otherwise null.
– Ancestor(v, w): true if v is an ancestor of w.
– SDepth(v)/TDepth(v): the string-depth/tree-depth of v.
– Count(v): the number of leaves in the subtree rooted at v.
– Parent(v): the parent node of v.
– FChild(v)/NSibling(v): the alphabetically first child/next sibling of v.
– SLink(v): the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ

for a ∈ Σ.
– SLink

i(v): the iterated suffix-link of v; (node w s.th. π(w) = β if π(v) = αβ
for α ∈ Σi).

– LCA(v, w): the lowest common ancestor of v and w.
– Child(v, a): the node w s.th. the first letter on edge (v, w) is a ∈ Σ.
– Letter(v, i): the ith letter of v’s path-label, π(v)[i].
– LAQs(v, d)/LAQt(v, d): the highest ancestor of v with string-depth/tree-

depth ≥ d.

Existing compressed suffix tree representations include a compressed full-text
index [22,25,11,6], which encodes in some form the suffix array SA[1, n] of T ,
with access time tSA. Array SA is a permutation of [1, n] storing the pointers
to the suffixes of T (i.e., the Locate values of the leaves of S) in lexicographic
order. Most full-text indexes also support access to permutation SA−1 in time
O(tSA), as well as the efficient computation of permutation ψ[1, n], where ψ(i) =
SA−1[SA[i] + 1] for 1 ≤ i ≤ n if SA[i] �= n and SA−1[1] otherwise. ψ(i) is
1 Computing NSVs/PSVs on the fly has been considered in parallel computing [3], yet

not in the static scenario.

An(other) Entropy-Bounded Compressed Suffix Tree 155

computed in time tψ, which is at most O(tSA), but usually less. Compressed
suffix tree representations also include array LCP[1, n], which stores the length
of the longest common prefix (lcp) between consecutive suffixes in lexicographic
order, LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| for i > 1 and LCP[1] = 0. The access
time for LCP is tLCP.

We make heavy use of the following complementary operations on bit arrays:
rank(B, i) is the number of bits set in B[1, i], and select(B, j) is the position of
the j-th 1 in B. Bit vector B[1, n] can be preprocessed to answer both queries in
constant time using o(n) extra bits of space [20]. If B contains only m bits set,
then the representation of Raman et al. [23] compresses B to m log n

m + O(m +
n log log n

log n) bits of space and retains constant-time rank and select queries.

3 Compressing LCP Information

Sadakane [26] describes an encoding of the LCP array that uses 2n+o(n) bits. The
encoding is based on the fact that values i+LCP[i] are nondecreasing when listed
in text position order: Sequence S = s1, . . . , sn−1, where sj = j + LCP[SA−1[j]],
is nondecreasing.

To represent S, Sadakane encodes each diff(j) = sj−sj−1 in unary: 1 0diff(j),
where s0 = 0 and 0d denotes repetition of 0-bit d times. This encoding, call it U
(similar to Hgt [26]), takes at most 2n bits. Thus LCP[i] = select(U, j+1)−j−1,
where j = SA[i], is computed in time O(tSA).

Let us now consider how to represent U in a yet more space-efficient form,
i.e., in nHk(2 log 1

Hk
+ O(1)) + o(n) bits, for small enough k. The result follows

from the observation (to be shown below) that the number of 1-bit runs in U is
bounded by the number of runs in ψ. We call a run in ψ a maximal sequence of
consecutive i values where ψ(i) − ψ(i − 1) = 1 and TSA[i−1] = TSA[i], including
one preceding i where this does not hold [18]. Note that an area in ψ where the
differences are not 1 corresponds to several length-1 runs. Let us call R ≤ n the
overall number of runs.

We will represent U in run-length encoded form, coding each maximal run of
both 0 and 1 bits. We show soon that there are at most R 1-runs, and hence at
most R 0-runs (as U starts with a 1). If we encode the 1-run lengths o1, o2, . . . and
the 0-run lengths z1, z2, . . . separately (cf. Sect. 3.2 in [5]), it is easy to compute
select(U, j) by finding the largest r such that

∑r
i=1 oi < j and then answering

select(U, j) = j +
∑r

i=1 zi. This so-called searchable partial sums problem is
easy to solve. Store bitmap O[1, n] setting the bits at positions

∑r
i=1 oi, hence

max{r,
∑r

i=1 oi < j} = rank(O, j − 1). Likewise, bitmap Z[1, n] representing
the zi’s solves

∑r
i=1 zi = select(Z, r). Since both O and Z have at most R 1’s,

O plus Z can be represented using 2R log n
R + O(R + n log log n

log n) bits [23].
We now show the connection between runs in U and runs in ψ. Let us call

position i a stopper if i = 1 or ψ(i) − ψ(i − 1) �= 1 or TSA[i−1] �= TSA[i]. Hence ψ
has exactly R stoppers by the definition of runs in ψ. Say now that a chain in ψ
is a maximal sequence i, ψ(i), ψ(ψ(i)), . . . such that each ψj(i) is not a stopper
except the last one. As ψ is a permutation with just one cycle, it follows that in

156 J. Fischer, V. Mäkinen, and G. Navarro

the path of ψj [SA−1[1]], 0 ≤ j < n, we will find the R stoppers, and hence there
are also R chains in ψ [10].

We now show that each chain in ψ induces a run of 1’s of the same length in
U . Let i, ψ(i), . . ., ψ�(i) be a chain. Hence ψj(i)−ψj(i−1) = 1 for 0 ≤ j < �. Let
x = SA[i − 1] and y = SA[i]. Then SA[ψj(i − 1)] = x + j and SA[ψj(i)] = y + j.
Then LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| = |lcp(Tx,n, Ty,n)|. Note that Tx+LCP[i] �=
Ty+LCP[i], and hence SA−1[y + LCP[i]] = ψLCPi is a stopper, thus � ≤ LCP[i].
Moreover, LCP[ψj(i)] = |lcp(Tx+j,n, Ty+j,n)| = LCP[i]−j ≥ 0 for 0 ≤ j < �. Now
consider sy+j = y+j+LCP[SA−1[y+j]] = y+j+LCP[ψj(i)] = y+j+LCP[i]−j =
y + LCP[i], all equal for 0 ≤ j < �. This produces � − 1 diff values equal to 0,
that is, a run of � 1-bits in U . By traversing all the chains in the cycle of ψ we
sweep S left to right, producing at most R runs of 1’s and hence at most R runs
of 0’s. (Note that even an isolated 1 is a run with � = 1.) Since R ≤ nHk + σk

for any k [22], we obtain the bound nHk(2 log 1
Hk

+ O(1))+ O(n log log n
log n) for any

k ≤ α logσ n and any constant 0 < α < 1. Although our somewhat crude upper
bounds do not show it, our representation is asymptotically never larger than
the original Hgt.

4 Next-Smaller and Prev-Smaller Queries

In this section we consider queries next smaller value (NSV) and previous smaller
value (PSV), and show that they can be solved in sublogarithmic time using only
a sublinear number of extra bits on top of the raw data. We make heavy use of
these queries in the design of our new compressed suffix tree, and also believe
that they can be of independent interest.

Definition 2. Let S[1, n] be a sequence of elements drawn from a set with a
total order � (where one can also define a ≺ b ⇔ a � b ∧ b �� a). We define
the query next smaller value and previous smaller value as follows: NSV(S, i) =
min{j, (i < j ≤ n ∧ S[j] ≺ S[i]) ∨ j = n + 1} and PSV(S, i) = max{j, (1 ≤ j <
i ∧ S[j] ≺ S[i]) ∨ j = 0}, respectively.

The key idea to solve these queries reminds that for findopen and findclose oper-
ations in balanced parentheses, in particular the recursive version [9]. However,
there are several differences because we have to deal with a sequence of generic
values, not parentheses.

We will describe the solution for NSV, as that for PSV is symmetric. For
shortness we will write NSV(i) for NSV(S, i). We split S[1, n] into consecutive
blocks of b values. A position i will be called near if NSV(i) is within the same
block of i. The first step when solving a NSV query will be to scan the values
S[i + 1 . . . b · �i/b], that is from i + 1 to the end of the block, looking for an
S[j] ≺ S[i]. This takes O(b) time and solves the query for near positions.

Positions that are not near are called far. We note that the far positions
within a block, i1 < i2 . . . < is form a nondecreasing sequence of values S[i1] �
S[i2] . . . � S[is]. Moreover, their NSV values form a nonincreasing sequence
NSV(i1) ≥ NSV(i2) . . . ≥ NSV(is).

An(other) Entropy-Bounded Compressed Suffix Tree 157

A far position i will be called a pioneer if NSV(i) is not in the same block of
NSV(j), being j the largest far position preceding i (the first far position is also
a pioneer). It follows that, if j is the last pioneer preceding i, then NSV(i) is in
the same block of NSV(j) ≥ NSV(i). Hence, to solve NSV(i), we find j and then
scan (left to right) the block S[�NSV(j)/b − b + 1 . . .NSV(j)], in time O(b), for
the first value S[j′] ≺ S[i].

So the problem boils down to efficiently finding the pioneer preceding each po-
sition i, and to storing the answers for pioneers. We mark pioneers in a bitmap
P [1, n]. We note that, since there are O(n/b) pioneers overall [14], P can be
represented using O(n log b

b) + O(n log log n
log n) bits of space [23]. With this rep-

resentation, we can easily find the last pioneer preceding a far position i, as
j = select(P, rank(P, i)). We could now store the NSV answers for the pio-
neers in an answer array A[1, n′] (n′ = O(n/b)), so that if j is a pioneer then
NSV(j) = A[rank(P, j)]. This already gives us a solution requiring O(n log b

b) +
O(n log log n

log n) + O(n log n
b) bits of space and O(b) time. For example, we can have

O(n
log log n) bits of space and O(log n log log n) time.
We can do better by recursing on the idea. Instead of storing the answers ex-

plicitly in array A, we will form a (virtual) reduced sequence S′[1, 2n′] containing
all the pioneer values i and their answers NSV(i). Sequence S′ is not explicitly
stored. Rather, we set up a bitmap R[1, n] where the selected values in S are
marked. Hence we can retrieve any value S′[i] = S[select(R, i)]. Again, this can
be computed in constant time using O(n log b

b + n log log n
log n) bits to represent R [23].

Because S′ is a subsequence of S, it holds that the answers to NSV in S′

are the same answers mapped from S. That is, if i is a pioneer in S, mapped
to i′ = rank(R, i) in S′, and NSV(i) is mapped to j′ = rank(R,NSV(i)), then
j′ = NSV(S′, i′), because any value in S′[i′ + 1 . . . j′ − 1] correspond to values
within S[i+1 . . .NSV(i)−1], which by definition of NSV are not smaller than S[i].
Hence, we can find NSV(i) for pioneers i by the corresponding recursive query
on S′, NSV(i) = select(R,NSV(S′, rank(R, i))). We are left with the problem
of solving queries NSV(S′, i).

We proceed again by splitting S′ into blocks of b values. Near positions in S′

are solved in O(b) time by scanning the block. Recall that S′ is not explicitly
stored, but rather we have to use select on R to get its values from S. For far
positions we define again pioneers, and solve NSV on far positions in time O(b)
using the answer for the preceding pioneer. Queries for pioneers are solved in a
third level by forming the virtual sequence S′′[1, 2n′′], n′′ = O(n′/b) = O(n/b2).

We continue the process recursively for r levels before storing the explicit
answers in array A[1, n(r)], n(r) = O(n/br). We remark that the P � and R�

bitmaps at each level � map positions directly to S, not to the reduced sequence
of the previous level. This permits accessing the S�[i] values at any level � in
constant time, S�[i] = S[select(R�, i)]. The pioneer preceding i in S� is found
by first mapping to S with i′ = select(R�, i), then finding the preceding pioneer
directly in the domain of S, j′ = select(P �, rank(P �, i′)), and finally mapping
the pioneer back to S� by j = rank(R�, j′).

158 J. Fischer, V. Mäkinen, and G. Navarro

Let us now analyze the time and space of this solution. Because we pay O(b)
time at each level and might have to resort to the next level in case our posi-
tion is far, the total time is O(rb) because the last level is solved in constant
time. As for the space, all we store are the P � and R� bitmaps, and the fi-
nal array A. Array A takes O(n log n

br) bits. As there are O(n/b�) elements in
S�, both P � and R� require O(n

b� log(b�) + n log log n
log n) bits of space (actually P �

is about half the size of R�). The sum of all the P � and R� takes order of∑
1≤�≤r

(
n
b� log(b�) + n log log n

log n

)
= O

(
n log b

b + r n log log n
log n

)
.

We now state the main result of this section.

Theorem 1. Let S[1, n] be a sequence of elements drawn from a set with a
total order, such that access to any S[i] and any comparison S[i] ≺ S[j] can
be computed in constant time. Then, for any 1 ≤ r, b ≤ n, it is possible to
build a data structure on S taking O(n log b

b + rn log log n
log n + n log n

br) bits, so that
queries NSV and PSV can be solved in worst-case time time O(rb). In particular,
for any f(n) = O(log n

log log n), one can achieve O(n
f(n)) bits of extra space and

O(f(n) log log n) time.

Proof. The general formula for any r, b has been obtained thruoghout this section.
As for the formulas in terms of f(n), let us set the space limit to O(n

f(n)). Then
n log b

b
= O(n

f(n)) implies b = Ω(f(n) log f(n)). Also, n log n
br = O(n

f(n)) implies r ≥
log log n+log f(n)−O(1)

log b
. Hence rb ≥ b

log b
(log log n + log f(n) − O(1)). Thus it is best to

minimize b. By setting b = f(n) log f(n), we get rb = f(n) log f(n)
log f(n)+log log f(n) (log log n +

log f(n) − O(1)) = Θ(f(n)(log log n + log f(n))). The final constraint is r n log log n
log n

=

O(n
f(n)), which, by substituting r = log log n+log f(n)

log b
and since b = Ω(f(n) log f(n)),

yields the condition f(n) = O(log n
log log n

). Thus log log n + log f(n) = O(log log n). ��

Note that, if one is willing to spend 4n+ o(n) bits of extra space, the operations
can be solved in constant time. The idea is to reduce PSV and NSV queries to
O(1) findopen and findclose operations in balanced parentheses [9]. For NSV,
for 1 ≤ i ≤ n + 1 in this order, write a ’(’ and then x ’)’s if there are x cells
S[j] for which NSV(j) = i. The resulting sequence B is balanced if a final ’)’ is
appended, and NSV(i) can be obtained by rank(B, findclose(B, select(B, i))),
where a 1 in B represents ’(’. PSV is symmetric, needing other 2n + o(n) bits.

5 An Entropy-Bounded Compressed Suffix Tree

Let v be a node in the (virtual) suffix tree S for text T1,n. As in previous works
[1,4,24], we represent v by an interval [vl, vr] in SA such that SA[vl, vr] are ex-
actly the leaves in S that are in the subtree rooted at v. Let us first consider
internal nodes, so vl < vr. Because S does not contain unary nodes, it follows
from the definition of LCP that at least one entry in LCP[vl +1, vr] is equal to the
string-depth h of v; such a position is called h-index of [vl, vr]. We further have

An(other) Entropy-Bounded Compressed Suffix Tree 159

vl vr x y

NSV
PSV

h h−1

RMQ

k

(x+1,y)

ψ ψ

Fig. 1. Left: Illustration to the representation of suffix tree nodes. The lengths of the
bars indicate the LCP values. All leaves in the subtree rooted at v = [vl, vr] share
a longest common prefix of length at least h. Right: Schematic view of the SLink

operation. From v, first follow ψ, then perform an RMQ to find an (h−1)-index k, and
finally locate the defining points of the desired interval by a PSV/NSV query from k.

LCP[vl] < h, LCP[i] ≥ h for all vl < i ≤ vr, and LCP[vr + 1] < h. Fig. 1 (left)
illustrates. We state the easy yet fundamental

Lemma 1. Let [vl, vr] be an interval in SA that corresponds to an internal node
v in S. Then the string-depth of v is h=LCP(k), where k=rmqLCP(vl + 1, vr).

For leaves v = [vl, vl], the string-depth of v is simply given by n − SA[vl] + 1.

5.1 Range Minimum Queries in Sublinear Space

As Lemma 1 suggests, we wish to preprocess LCP such that rmqLCP can be
answered in sublogarithmic time, using o(n) bits of additional space. A well-
known strategy [7,26] divides LCP iteratively into blocks of decreasing size n >
b1 > b2 > · · · > br. On level i, 1 ≤ i ≤ r, compute all answers to rmqLCP that
exactly span over blocks of size bi, but not over blocks of size bi−1 (set b0 = n

for handling the border case). This takes O(n
bi

log(bi−1
bi

) log(bi−1)) bits of space
if the answers are stored relative to the beginning of the blocks on level i − 1,
and if we only precompute queries that span 2j blocks for all j ≤ �log(bi−1

bi
)�

(this is sufficient because each query can be decomposed into at most 2 possibly
overlapping sub-queries whose lengths are a power of 2).

A general range minimum query is then decomposed into at most 2r +1 non-
overlapping sub-queries q1, . . . , q2r+1 such that q1 and q2r+1 lie completely inside
of blocks of size br, q2 and q2r exactly span over blocks of size br, and so on. q1
and q2r+1 are solved by scanning in time O(br),2 and all other queries can be
answered by table-lookups in total time O(r). The final answer is obtained by
comparing at most 2r + 1 minima.

The next lemma gives a general result for RMQs using o(n) extra space.

2 The constant-time solutions [26,7] also solve q1 and q2r+1 by accessing tables that
require Θ(n) bits.

160 J. Fischer, V. Mäkinen, and G. Navarro

Lemma 2. Having constant-time access to elements in an array A[1, n], it is
possible to answer range minimum queries on A in time O(f(n)(log f(n))2) using
O(n

f(n)) bits of space, for any f(n) = Ω(log[r] n) and any constant r, where

log[r] n denotes r applications of log to n.

Proof. We use r+1 = O(1) levels 1 . . . r+1, so it is sufficient that n
bi

log2 bi−1 = O(n
f(n))

for all 1 ≤ i ≤ r + 1, where b0 = n. From the condition n
b1

log2 b0 = O(n
f(n)) we get

b1 = Θ(f(n) log2 n) (the smallest possible bi values are best). From n
b2

log2 b1 = O(n
f(n))

we get b2 = Θ(f(n) log2 b1) = Θ(f(n)(log f(n)+ log log n)2). In turn, from n
b3

log2 b2 =

O(n
f(n)) we get b3 = Θ(f(n) log2 b2) = Θ(f(n)(log f(n)+log log log n)2). This continues

until br+1 = Θ(f(n) log2 br) = Θ(f(n)(log f(n) + log[r+1] n))2 = Θ(f(n) log2 f(n)). ��

5.2 Suffix-Tree Operations

Now we have all the ingredients for navigating in the suffix tree. The operations
are described in the following; the intuitive reason why an RMQ is often followed
by a PSV/NSV-query is that the RMQ gives us an h-index of the (yet unknown)
interval, and the PSV/NSV takes us to the delimiting points of this interval.
Apart from tSA, tLCP, and tψ , we denote by trmq and tpnsv the time to solve,
respectively, RMQs or NSV/PSV queries (both on LCP from now on, hence they
will be multiplied by tLCP).

Root/Count/Ancestor: Root() returns interval [1, n], Count(v) is simply
vr −vl +1, Ancestor(w, v) is true iff wl ≤ vl ≤ vr ≤ wr . These take O(1) time.

SDepth(v)/Locate(v): According to Lemma 1, SDepth(v) can be computed
in time O(trmq · tLCP) for internal nodes, and both operations need time O(tSA)
for leaves. One knows in constant time that v = [vl, vr] is a leaf iff vl = vr.

Parent(v): If v is the root, return null. Else, since the suffix tree is compact,
the string-depth of Parent(v) must be either LCP[vl] or LCP[vr +1], whichever
is greater [24]. So, by setting k = if LCP[vl] > LCP[vr + 1] then vl else vr + 1,
the parent interval of v is [PSV(k),NSV(k) − 1]. Time is O(tpnsv · tLCP).

FChild(v): If v is a leaf, return null. Otherwise, because the minima in [vl, vr]
are v’s h-indices [7], the first child of v is given by [vl,rmq(vl + 1, vr) − 1],
assuming that RMQs always return the leftmost minimum in the case of ties
(which is easy to arrange). Time is O(trmq · tLCP).

NSibling(v): First move to the parent of v by w = Parent(v). If vr = wr ,
return null, since v does not have a next sibling. If vr +1 = wr, v’s next sibling
is a leaf, so return [wr, wr]. Otherwise, return [vr + 1,rmq(vr + 2, wr) − 1]. The
overall time is O((trmq + tpnsv) · tLCP).

SLink(v): If v is the root, return null. Otherwise, first follow the suffix links
of the leaves vl and vr, x = ψ(vl) and y = ψ(vr). Then locate an h-index of the
target interval by k = rmq(x + 1, y); see Lemma 7.5 in [1] (the first character
of all strings in {TSA[i],n : vl ≤ i ≤ vr} is the same, so the h-indices in [vl, vr]

An(other) Entropy-Bounded Compressed Suffix Tree 161

appear also as (h − 1)-indices in [ψ(vl), ψ(vr)]). The final result is then given by
[PSV(k),NSV(k) − 1]. Time is O(tψ + (tpnsv + trmq) · tLCP)). See Fig. 1 (right).

SLink
i(v): Same as above with x = ψi(vl) and y = ψi(vr). If the first Letter

of x and y are different, then the answer is Root. Otherwise we go on with k as
before. Computing ψi can be done in O(tSA) time using ψi(v) = SA−1[SA[v] + i]
[24]. Time is thus O(tSA + (tpnsv + trmq) · tLCP).

LCA(v, w): If one of v or w is an ancestor of the other, return this ancestor
node. Otherwise, w.l.o.g., assume vr < wl. The h-index of the target interval is
given by an RMQ between v and w [26]: k = rmq(vr + 1, wl). The final answer
is again [PSV(k),NSV(k) − 1]. Time is O((trmq + tpnsv) · tLCP).

Child(v, a): If v is a leaf, return null. Otherwise, the minima in LCP[vl +1, vr]
define v’s child-intervals, so we need to find the position p ∈ [vl + 1, vr] where
LCP[p] = mini∈[vl+1,vr] LCP[i], and TSA[p]+LCP[p] = Letter([p, p], LCP[p] + 1) =
a. Then the final result is given by [p,rmq(p + 1, vr) − 1], or null if there is
no such position p. To find this p, split [vl, vr] into three sub-intervals [vl, x −
1], [x, y − 1], [y, vr], where x (y) is the first (last) position in [vl, vr] where a
block of size br starts (br is the smallest block size for precomputed RMQs,
recall Sect. 5.1). Intervals [vl, x − 1] and [y, vr] can be scanned for p in time
O(trmq · (tLCP + tSA)). The big interval [x, y − 1] can be binary-searched in time
O(log σ·tSA), provided that we also store exact median positions of the minima in
the precomputed RMQs [26] (within the same space bounds). The only problem
is how these precomputations are carried out in O(n) time, as it is not obvious
how to compute the exact median of an interval from the medians in its left and
right half, respectively. However, a solution to this problem exists [8, Sect. 3.2].
Overall time is O((tLCP + tSA) · trmq + log σ · tSA).

Letter(v, i): If i = 1 we can easily solve the query in constant time with very lit-
tle extra space. Mark in a bitmap C[1, n] the first suffix in SA starting with each
different letter, and store in a string L[1, σ] the different letters that appear in
T1,n in alphabetical order. Hence, if v = [vl, vr], Letter(v, 1) = L[rank(C, vl)].
L requires O(σ log σ) bits and C, represented as a compressed bitmap [23], re-
quires O(σ log n

σ + n log log n
log n) bits of space. Hence both add up to O(σ log n +

n log log n
log n) bits. Now, for i > 1, we just use Letter(v, i) = Letter(ψi−1(vl), 1),

in time O(min(tSA, i · tψ)). We remark that L and C are already present, in some
form, in all compressed text indexes implementing SA [11,25,6].

TDepth(v): Tree-depth can be maintained while performing some traversal op-
erations such as FChild, Child, Parent, LAQt, but not others.

However, there is also a direct way to support TDepth, using nHk(2 log 1
Hk

+
O(1))+o(n) further bits of space. The idea is similar to Sadakane’s representation
of LCP [26]: the key insight is that the tree depth can decrease by at most 1 if we
move from suffix Ti,n to Ti+1,n (i.e., when following ψ). Define TDE[1, n] such
that TDE[i] holds the tree-depth of the LCA of leaves SA[i] and SA[i−1] (similar
to the definition of LCP). Then the sequence (TDE[ψk(SA−1[1])]+ k)k=0,1,...,n−1
is nondecreasing and in the range [1, n], and can hence be stored using 2n+o(n)

162 J. Fischer, V. Mäkinen, and G. Navarro

bits. Further, the repetitions appear in the same way as in Hgt (Sect. 3), so the
resulting sequence can be compressed to nHk(2 log 1

Hk
+ O(1)) + o(n) bits using

the same mechanism as for LCP. The time is thus O(trmq · tLCP). For leaves we
can do in O(tSA) time by TDepth(v) = 1 + max(TDE[SA[v]], TDE[SA[v + 1]]).

LAQs(v, d): Let u = [ul, ur] = LAQs(v, d) denote the (yet unknown) result.
Because u is an ancestor of v, we must have ul ≤ vl and vr ≤ ur. We further
know that LCP[i] ≥ d for all ul < i ≤ ur. Thus, ul is the largest position in [1, vl]
with LCP[ul] < d. So the search for ul can be conducted in a binary manner
by means of RMQs: Letting k = rmq(�vl/2�, vl), we check if LCP[k] ≥ d. If so,
ul cannot be in [�vl/2�, vl], so we continue searching in [1, �vl/2� − 1]. If not,
we know that ul must be in [�vl/2�, vl], so we continue searching in there. The
search for ur is handled symmetrically. Total time is O(log n · trmq · tLCP).

LAQt(v, d): The same idea as for LAQs can be applied here, using the array
TDE instead of LCP, and RMQs on TDE. Time is also O(log n · trmq · tLCP).

6 Discussion

The final performance of our compressed suffix tree (CST) depends on the com-
pressed full-text index used to implement SA. Among the best choices we have
Sadakane’s compressed suffix array (SCSA) [25], which is not so attractive for
its O(n log log σ) extra bits of space in a context where we are focusing on using
o(n) extra space. The alphabet-friendly FM-index (AFFM) [6] gives the best
space, but our CST over AFFM is worse than Russo et al.’s CST (RCST) [24]
both in time and space. Instead, we focus on using Grossi et al.’s compressed
suffix array (GCSA) [11], which is larger than AFFM but lets our CST achieve
better times than RCST. (Interestingly, RCST does not benefit from using the
larger GCSA.) Our resulting CST is a space/time tradeoff between Sadakane’s
CST (SCST) [26] and RCST. Within this context, it makes sense to consider
SCST on top of GCSA, to remove the huge O(n log log σ) extra space of SCSA.

GCSA uses |GCSA| = (1 + 1
ε)nHk + O(n log log n

logσ n) bits of space for any
k ≤ α logσ n and constant 0 < α < 1, and offers times tψ = O(1) and tSA =
O(logε n log1−ε σ). On top of |GCSA|, SCST needs 6n + o(n) bits, whereas
our CST needs nHk(2 log 1

Hk
+ O(1)) + o(n) extra bits. Our CST times are

tLCP = tSA, whereas trmq and tpnsv depend on how large is o(n). Instead, RCST
needs |AFFM | + o(n) bits, where |AFFM | = nHk + O(n log log n

logσ n) + O(n log n
γ)

bits, for some γ = ω(logσ n), to maintain the extra space o(n log σ). AFFM offers
times tψ = O(1 + log σ

log log n) and tSA = O(γ(1 + log σ
log log n)). In addition, RCST uses

o(n) = O(n log n
δ) bits for a parameter δ = ω(logσ n).

An exhaustive comparison is complicated, as it depends on ε, γ, δ, σ, the
nature of the o(n) extra bits in our CST, etc. In general, our CST loses to RCST
if they use the same amount of space, yet our CST can achieve sublogarithmic
times by using some extra space, whereas RCST cannot. We opt for focusing on
a particular setting that exhibits this space/time tradeoff. The reader can easily
derive other settings. We focus on the case σ = O(1) and all extra spaces not

An(other) Entropy-Bounded Compressed Suffix Tree 163

Table 1. Comparison between ours and alternative compressed suffix trees. The column
labeled ‘General’ assumes tψ ≤ tSA = tLCP. All other columns further assume σ = O(1),
and that the extra spaces is O(n

logε′
n
).

Operation Our suffix tree Other suffix trees
General over GCSA [11] SCST [26] RCST [24]

Root,Count, 1 1 1 1
Ancestor

Locate tSA logε n logε n log1+ε′
n

SDepth tSA · trmq logε+ε′
n(log log n)2 logε n log1+ε′

n

Parent tSA · tpnsv logε+ε′
n log log n 1 log1+ε′

n

FChild tSA · trmq logε+ε′
n(log log n)2 1 log1+ε′

n

NSibling tSA(trmq + tpnsv) logε+ε′
n(log log n)2 1 log1+ε′

n

SLink,LCA tSA(trmq + tpnsv) logε+ε′
n(log log n)2 1 log1+ε′

n

SLink
i tSA(trmq + tpnsv) logε+ε′

n(log log n)2 logε n log1+ε′
n

Child tSA(trmq + log σ) logε+ε′
n(log log n)2 logε n log1+ε′

n log log n

Letter tSA logε n logε n log1+ε′
n

TDepth tSA · trmq

(∗) logε+ε′
n(log log n)2 1 log2+2ε′

n

LAQs tSA · trmq · log n log1+ε+ε′
n(log log n)2 Not supp. log1+ε′

n

LAQt tSA · trmq · log n (∗) log1+ε+ε′
n(log log n)2 1 log2+2ε′

n
(∗) Our CST needs other nHk(2 log 1

Hk
+ O(1)) + o(n) extra bits to implement TDepth and LAQt.

related to entropy limited to O(n
logε′

n
) bits, for constant 0 < ε′ < 1 (so f(n) =

logε′
n in Thm. 1 and Lemma 2). Thus, our times are trmq = logε′

n(log log n)2

and tpnsv = logε′
n log log n. RCST’s γ and δ are O(log1+ε′

n). Table 1 shows
a comparison under this setting. The first column also summarizes the general
complexities of our operations, with no assumptions on σ nor extra space except
tψ ≤ tSA = tLCP, as these are intrinsic of our structure.

Clearly SCST is generally faster than the others, but it requires 6n + o(n)
non-compressible extra bits on top of |CSA|. RCST is smaller than the others,
but its time is typically O(log1+ε′

n) for some constant 0 < ε′ < 1. The space of
our CST is in between, with typical time O(logλ n) for any constant λ > ε + ε′.
This can be sublogarithmic when ε+ε′ < 1. To achieve this, the space used in the
entropy-related part will be larger than 2(1 + log 1

Hk
)nHk. With less than that

space our CST is slower than the smaller RCST, but using more than that space
our CST can achieve sublogarithmic times (except for level ancestor queries),
being the only compressed suffix tree achieving it within o(n) extra space.

Still, we remark that our scheme is not so attractive on large alphabets. If
σ = Θ(nβ) for constant β, then our extra space includes a term Θ(n log log n),
just as in the CST, while the latter is clearly faster.

Acknowledgments. JF wishes to thank Volker Heun and Enno Ohlebusch for
interesting discussions on this subject.

164 J. Fischer, V. Mäkinen, and G. Navarro

References

1. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993)

4. Cole, R., Kopelowitz, T., Lewenstein, M.: Suffix trays and suffix trists: structures
for faster text indexing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 358–369. Springer, Heidelberg (2006)

5. Delpratt, O., Rahman, N., Raman, R.: Engineering the louds succinct tree rep-
resentation. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS, vol. 4007, pp.
134–145. Springer, Heidelberg (2006)

6. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM TALG (article 20) 3(2) (2007)

7. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

8. Fischer, J., Heun, V.: Range median of minima queries, super cartesian trees, and
text indexing (2007) (manuscript),
www.bio.ifi.lmu.de/∼fischer/fische101range.pdf

9. Geary, R., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theoretical Computer Science 368, 231–246 (2006)

10. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007)

11. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

12. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM J. on Computing 35(2), 378–407 (2006)

13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

14. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th FOCS, pp.
549–554 (1989)

15. Kärkkäinen, J., Rao, S.: Full-text indexes in external memory. In: Meyer, U.,
Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS,
vol. 2625, ch.7, pp. 149–170. Springer, Heidelberg (2003)

16. Ko, P., Aluru, S.: Optimal self-adjusting trees for dynamic string data in secondary
storage. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
184–194. Springer, Heidelberg (2007)

17. Kurtz, S.: Reducing the space requirements of suffix trees. Software: Practice and
Experience 29(13), 1149–1171 (1999)

18. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic J. of Computing 12(1), 40–66 (2005)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. of the ACM 48(3),
407–430 (2001)

20. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

www.bio.ifi.lmu.de/~fischer/fische101range.pdf

An(other) Entropy-Bounded Compressed Suffix Tree 165

21. Munro, I., Raman, V., Rao, S.: Space efficient suffix trees. J. of Algorithms 39(2),
205–222 (2001)

22. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys (article 2) 39(1) (2007)

23. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)

24. Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. In: Proc. 8th
LATIN 2008. LNCS, vol. 4957, pp. 362–373. Springer, Heidelberg (2008)

25. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
of Algorithms 48(2), 294–313 (2003)

26. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems (to appear, 2007), doi:10.1007/s00224-006-1198-x

On Compact Representations of

All-Pairs-Shortest-Path-Distance Matrices�

Igor Nitto and Rossano Venturini

Department of Computer Science, University of Pisa
{nitto,rossano}@di.unipi.it

Abstract. Let G be an unweighted and undirected graph of n nodes,
and let D be the n × n matrix storing the All-Pairs-Shortest-Path dis-
tances in G. Since D contains integers in [n] ∪ +∞, its plain storage
takes n2 log(n + 1) bits. However, a simple counting argument shows
that (n2 − n)/2 bits are necessary to store D. In this paper we investi-
gate the question of finding a succinct representation of D that requires
O(n2) bits of storage and still supports constant-time access to each
of its entries. This is asymptotically optimal in the worst case, and far
from the information-theoretic lower-bound by a multiplicative factor
log2 3 � 1.585. As a result O(1) bits per pairs of nodes in G are enough
to retain constant-time access to their shortest-path distance. We achieve
this result by reducing the storage of D to the succinct storage of labeled
trees and ternary sequences, for which we properly adapt and orchestrate
the use of known compressed data structures.

1 Introduction

The study of succinct data structures has recently attracted a lot of interest in
the research arena. A data structure is called succinct [9] when its space is close to
the information-theoretic lower bound, and all of its operations can be supported
without any slowdown with respect to the corresponding plain (un-succinct) data
structure. The term “close to” (the information-theoretic lower bound) usually
means either “equal plus some low-order terms”, or “up to a constant factor
from” (the information-theoretic lower bound), where the constant is pretty
much close to 1. Nowadays there exist succinct versions of various data structures
and data types: bitmap vectors [4,16,17], dictionaries [8], strings [14], (un)labeled
trees [3,5,10], binary relations and graphs [12,1], etc.. In this paper we contribute
to the design of new succinct data structures by investigating the field of compact
representations of All-Pairs-Shortest-Path-Distance matrices of unweighted and
undirected graphs. Formally, let G be an unweighted and undirected graph of n
nodes, and let D be the n × n matrix that stores in its entry D[u, v] the length
of the shortest path connecting node u to node v in G (or +∞ when u and v

� This work has been partially supported by the Italian MIUR grants PRIN Main-
Stream and Italy-Israel FIRB “Pattern Discovery Algorithms in Discrete Structures,
with Applications to Bioinformatics”, and by the Yahoo! Research grant on “Data
compression and indexing in hierarchical memories”.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 166–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 167

are not connected). D is called the matrix of All-Pairs-Shortest-Path distances
in G (or distance matrix, for brevity) and it is typically stored in O(n2) memory
words, thus taking n2 log(n + 1) bits in total.1

Various authors have investigated the problem of designing succinct graph
encodings for supporting the retrieval of either the adjacency list of a node (see
[12,13] and references therein), or the approximate distance between node pairs
in various types of graphs (see [19,18] and references therein). When exact dis-
tances are needed, it is still open whether it is possible to deploy the intrinsic
structure of matrix D to devise a representation which uses o(n2 log n) bits and is
as much close as possible to the information-theoretic lower bound of n2/2 bits.2

In our paper we show how to match asymptotically the above lower bound, by
providing a succinct storage scheme for D which achieves a bit-space complexity
that is far from the information-theoretic minimum by a multiplicative factor
log2 3 � 1.585, and is still able to retrieve in constant time any node-pair distance
in G. We remark that the interest in space-efficient representations of shortest
path distances for such a simple (undirected and unweighted) graphs is driven by
applications in the field of graph layouts via Multi-Dimensional Scaling [15]. Here
the distance matrix is deployed to produce a layout of the graph in the plane that
closely preserves the shortest-path metric. Technically, our paper is based on an
algorithmic reduction (detailed in Theorem 2) which turns the storage of D into
the succinct storage of (ternary) labeled trees and (ternary) sequences, for which
we properly adapt and orchestrate known compressed data structures. Using this
algorithmic scheme we obtain two results: a simple compact representation of D
requiring (log2 3)n2+o(n2) bits of storage and O(1) access time to any of its entry
(Corollary 2), and a more sophisticated one which reduces the space complexity
to (1

2 log2 3)n2 + o(n2) bits (Corollary 3) without slowing down the access time.

2 Some Basic Facts

We assume the standard RAM model with memory words of Θ(log n) bits, where
n is the number of nodes in G.

Let S[1, n] be a sequence drawn from the alphabet Σ = {a1, . . . , aσ}. For each
symbol ai ∈ Σ, we let ni be the number of occurrences of ai in S. Let {Pi =
ni/n}σ

i=1 be the empirical probability distribution for the sequence S. The zero-
th order empirical entropy of S is defined as: H0(S) = −

∑σ
i=1 Pi log Pi. Recall

that |S|H0(S) provides an information-theoretic lower bound to the output size
of any compressor that encodes each symbol of S with a fixed codeword.

The Wavelet Tree [7] is an elegant and powerful data structure that supports
rank/select primitives over sequences drawn from arbitrarily large alphabets,
and achieves entropy-bounded space occupancy.
1 Throughout this paper we assume that all logarithms are taken to the base 2, when-

ever not explicitly indicated, and we assume 0 log 0 = 0.
2 This lower bound comes from the observation that there is a one-to-one correspon-

dence between unweighted undirected graphs and their distance matrices. Thus the
number of n × n distance matrices is 2n(n−1)/2.

168 I. Nitto and R. Venturini

Theorem 1. Given a sequence S[1, n] drawn from an arbitrary alphabet Σ, the
Wavelet Tree built on S takes nH0(S)+o(n) bits to support the following queries
in O(log |Σ|) time:
– Retrieve character S[i];
– Rankc(S, i): compute the number of times character c ∈ Σ occurs in S[1, i];
– Selectc(S, i): compute the position of the i-th occurrence of character c ∈ Σ

in S.

In addition to rank/select primitives, the design of our compact representations
will need to support fast prefix sums over integer sequences drawn from poten-
tially large (integer) alphabets. We therefore state the following result which is
an easy consequence of [11]:

Lemma 1. Let S[1, n] be a sequence drawn from the integer alphabet Σ =
{−l, . . . , 0, . . . , l}. There exists an encoding of S that takes n �log (2l + 1)� +
o(n log l) bits and supports prefix-sum queries in O(1) time.

An essential fact in our technique will be also the availability of a storage scheme
for a string S which is space succinct and is able to decode in O(1) time any
short substring of S having length logarithmic in n. To this aim, we use the
following result which is an easy corollary of [6].

Corollary 1. Given a sequence S[1, n] drawn from a constant-size alphabet Σ,
there is a succinct data structure that stores S in n log |Σ|+o(n) bits and supports
the retrieval in constant time of any substring of S of length O(log n) bits.

In the rest of this paper, we will also make use of the following two strong
structural properties of the distance matrix D:

Symmetry: D[u, v] = D[v, u]
Triangle inequality: |D[u, v] − D[w, v]| ≤ D[u, w]

where u, v, w are any triplets of nodes in the graph G. Note that the triangle
inequality has been rewritten in a form that will help future references and intu-
itions. We finally notice that we can safely assume the graph G to be connected.
Otherwise we can associate every connected-component of G with its distance
matrix and then assign proper node labels in a way that takes constant-time to
check whether two nodes are in the same connected component. The additional
storage for these labels is O(n log n) = o(n2) bits, thus resulting bounded above
by the other terms occurring in the space bounds of our representation.

3 From Matrix D to Labeled (Spanning) Trees of G

In this section we show how to reduce the problem of succinctly representing
the distance-matrix D into the problem of finding a succinct data structure that
encodes a (ternary) labeled tree and supports in constant time a kind of path-
sum query over its structure. To explain how this algorithmic reduction works,
we introduce some useful notation and terminology.

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 169

0 1 1 2 3 3 4
1 0 1 1 2 2 3
1 1 0 2 3 3 4
2 1 2 0 1 1 2
3 2 3 1 0 1 1
3 2 3 1 1 0 2
4 3 4 2 1 2 0

D

R
1 2 4 5

G

3 6 7

4

2

1 3

5

6 7

T [1] 0

-1 1

-1 0 0 1

rT 3 2 5 1 8 9 11

LT [1] 0 -1 -1 1 0 0 1 1 0 0 1 -1 -1 0

↑
rT [u]

︸ ︷︷ ︸
sum = 1

v

u

Fig. 1. (Top) A graph G and its distance-matrix D. (Bottom) An example of labeled
tree T [1], relative to node 1 ∈ G, and the associated arrays LT [1] and rT [1]. According to
Lemma 3 the sum of the labels on π(6) is equal to the prefix-sum in LT [1][1, rT [1][6]] =
LT [1][1, 9] which correctly returns the value 1.

Let T be a spanning tree of the graph G and root T at anyone of its nodes,
say r. Given that G is connected, T spans all n nodes of G. For each node u of
T (and thus of G), we denote with:

– �(u) an integer label in {−1, 0, 1}, associated to u;
– pre(u) the rank of u in the preorder visit of T (i.e., integer in [n]).
– π(u) the downward path in T which connects r to u.
– f(u) the father of node u in T , and with f i(u) the ith ancestor of u in T

(where f0(u) = u).

Among all the possible ternary labellings � of T , we consider the ones induced
by the pairwise distances in G. Specifically, for any node v ∈ T we define a
labeling �v such that �v(u) = D[u, v]−D[f(u), v], where u ∈ T . This is a ternary
labelling because of the triangle inequality and the adjacency of u and f(u) in
G. The labeled tree resulting by the ternary labelling �v applied to T is hereafter
denoted by T [v]. An illustrative example is given in Fig. 1.

The labeled tree T [v] offers an interesting property:

Lemma 2 (Path-sum Query). For any node u, the sum of the labels on the
downward path π(u) in T [v] is equal to D[u, v] − D[r, v].

170 I. Nitto and R. Venturini

Proof. Note that this is actually a telescopic sum:
∑

w∈π(u)

�v(w) =
∑

i=0,...,|π(u)|−1

D[f i(u), v] − D[f i+1(u), v] = D[u, v] − D[r, v]. �

As an example, consider again Fig. 1 and sum the (ternary) labels on the
downward path π(6) in T [1]. The result is 0 + 1 + 0 = 1 which is equal to
D[6, 1] − D[4, 1] = 3 − 2 = 1.

Lemma 2 can be actually rephrased by saying that the computation of the dis-
tance D[u, v] between any pair of nodes u, v ∈ G, boils down to sum the value
D[r, v] to the result of the path sum-query over π(u) in T [v]. This is the key
idea underlying the theorem below which details our reduction from the suc-
cinct storage of matrix D to the succinct storage of a set of path-sum query
data structures built upon the labeled trees T [v], for all nodes v ∈ G.

Theorem 2. Let T be a tree of n nodes, E(T) be an encoding of T ’s structure,
and let � be a labelling of T ’s nodes over the ternary alphabet {−1, 0, 1}. Suppose
that there exists a succinct data structure D(E(T), �) that occupies S(n) bits to
store � and answers path-sum queries over the labeled tree �(T) in T (n) time.

Then the distance matrix D of an unweighted undirected graph G of n nodes
can be encoded in at most nS(n)+ |E(T)| + o(n2) bits, and the distance between
any pair of nodes in G can be computed in T (n) + O(1) time.

Proof. Let T be the spanning tree of G rooted at node r. For each node v ∈ T , we
define the labeling �v as detailed above, namely: for any node u, we set �v(u) =
D[u, v] − D[f(u), v]. We call T [v] the tree T labeled with �v. We then represent
the distance matrix D of graph G via the following three data structures:

– The array R[1, n] which stores the shortest-path distance between r and
every other node in G. Namely, R is the r-th row of matrix D.

– The data structures D(E(T), �v), for any node v.
– The tree encoding E(T) of T which allows the constant-time retrieval of the

location of �v(u) inside D(E(T), �v), for any node-pair u, v.

The first two data structures occupy |E(T)| + o(n2) bits. The n path-sum
data structures require nS(n) bits, because v ranges over all n nodes in T . The
claimed space bounds therefore follows.

To compute D[u, v] we execute a path-sum query on D(E(T), �v) and retrieve
the sum of the labels along the path π(u) in T [v]. From Lemma 2, this sum
equals D[u, v] − D[r, v], so that it suffices to add the value R[v] = D[r, v] to get
the final result. Therefore, any distance query takes T (n) time to compute the
path-sum plus O(1) arithmetic and table-lookup operations. 	

4 Path-Sum Queries Boil Down to Prefix-Sum Queries

Theorem 2 allows us to shift our attention to the design of an efficient data
structure that supports path-sum queries over (ternary) labeled trees. Here we go

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 171

one step further and show that finding such a data structure boils down to finding
an encoding of a ternary sequence that supports fast prefix-sum computations.

Let T be an n-node tree and let � be a ternary labeling of its nodes. We visit
T in preorder and build the following two arrays (see Fig. 1):

– LT [1, 2n] is the ternary sequence obtained by appending the integer label
�(u) when the pre-visit of node u starts, and the integer label −�(u) when
the pre-visit of node u ends (i.e., its subtree has been completely visited).

– rT [1, n] is the array that maps T ’s nodes to their positions in LT . Hence rT [u]
stores the preorder-time instant of u’s visit. This way, LT [rT [u]] = �(u).

The sequence LT has the following, easy to prove, property (see Figure 1):

Lemma 3. Let T be an n-node tree labeled with (positive and negative) integers.
For any node u, the sum of the labels on path π(u) in T can be computed as the
prefix-sum of the integers in LT [1, rT [u]].

Theorem 2 and Lemma 3 provide us with all the algorithmic machinery we
need to succinctly encode the distance matrix D. What we really need now
are succinct data structures to perform constant-time prefix-sum queries over
integer sequences (namely LT [v], for all v ∈ G), and suitable succinct encodings
of the tree T (namely E(T)). The following two sections will detail two possible
solutions, one very simple and already asymptotically optimal, the other more
sophisticated and closer to the information-theoretic lower bound.

5 Our First Solution

The labeled trees we are interested in succinctly encodings, are the ternary-
labeled trees T [v] introduced in the proof of Theorem 2, as a result of the ternary
labeling �v. Given T [v], the corresponding sequence LT [v] is drawn from the
ternary alphabet {−1, 0, 1}. In order to compute efficiently the prefix-sum queries
over LT [v], we use the wavelet tree data structure (see Theorem 1). This way, the
prefix-sum query over LT [v][1, rT [u]] can be computed by counting (i.e., ranking)
the number of −1 and 1 in the queried prefix of LT [v]. By Theorem 1, this
counting takes constant time and the space required to store the wavelet tree is
2(log 3)n + o(n) bits (since |Σ| = 3 and H0(S) ≤ log |Σ|).

We are therefore ready to detail our first simple solution to the succinct en-
coding of D. For each node v ∈ T , we consider the labeling �v, the resulting
labeled tree T [v], and the corresponding ternary sequence LT [v]. We then set
the tree encoding E(T) = rT and build D(E(T), �v) as the wavelet tree of the
ternary sequence LT [v]. By plugging these data structures into Theorem 2, and
exploiting Lemmas 2–3, we obtain:

Theorem 3. Let G be an undirected and unweighted graph of n nodes, and let
D be its n × n matrix storing all-pairs-shortest-path distances. There exists a
succinct representation of D that uses at most 2n2(log 3)+ o(n2) bits, and takes
constant-time to access any of its entries.

172 I. Nitto and R. Venturini

For a running example of Theorem 3 we refer the reader to Fig. 1. Assume that
we wish to compute D[6, 1] = 3. According to Lemma 2, we need to compute the
path-sum over π(6) in T [1], which equals to D[6, 1] − D[4, 1] = 1, and then add
to this value R[1] = D[4, 1] = 2 (given that T ’s root is node 4). By Lemma 3,
the path-sum computation boils down to the prefix-sum of LT [1][1, rT [6]], which
correctly gives the result 1.

In Section 1, we noted that the information-theoretic lower bound for storing
the distance matrix D is n2

2 bits. Therefore the solution proposed in Theorem 3
is asymptotically space- and time-optimal in the worst case, and far from such
lower bound of a multiplicative factor 4 log 3 � 6.34. This simple approach proves
that a succinct encoding taking O(1) bits per pairwise-distance of G and O(1)
time per distance computation does exist.

A non-trivial issue is now to reduce the amount of bits spent to encode every
entry of D, by exploiting some structural properties of G and T , in order to come
as much close as possible to the lower bound 0.5. A first step in this direction
is obtained by exploiting the symmetry of matrix D, and thus storing just the
suffix LT [v][1, rT [v]] for every ternary sequence LT [v]. This way, when we query
D[u, v], if pre(u) ≤ pre(v) we proceed as detailed above (because rT [u] ≤ rT [v]).
Otherwise, we swap the role of u and v, and proceed as before. Using this simple
trick we halve the space complexity and obtain:

Corollary 2. There exists a representation for D that uses at most n2(log 3)+
o(n2) bits, and takes constant-time to access any one of its entries.

6 Our Second Solution

In this section we show how to further halve the space complexity by deploying
the structure of T . We proceed in two steps. First, we exhibit a path-sum data
structure for an n-node ternary labeled tree that takes (log 3)n + o(n) bits and
supports path-sum queries in O(1) time (Theorem 4). The core of this technique
is a well-known approach to the decomposition of arbitrary trees in suitable
subtrees, called macro-micro tree partitioning (see e.g. [2]). Second, we deploy
again the “symmetry in D”, and get our final result (Corollary 3).

Let T be a tree labeled over {−1, 0, 1}, and set μ = �(log n)/4�. A node v ∈ T
is called a jump node, if it has at least μ descendants in T but every child of
v has strictly less than μ descendants. A node v is called a macro node, if it
has at least one jump node among its descendants. The root is assumed to be
a macro node. Any other node of T that is neither jump nor macro is called a
micro node. Note that all descendants of micro nodes are micro nodes too, so
that we define a micro-tree as any maximal subtree of micro nodes in T .

Let Q1, . . . , Qt be the sequence of micro-trees in T ordered by preorder rank
of their roots, and let T ∗ be the subtree of T induced by its macro and jump
nodes. Of course, trees T ∗, Q1, . . . , Qt form a partition of T (see Figure 2). Since
every micro node has at most μ descendants, the size of each micro tree is upper
bounded by μ. This decomposition is usually called macro-micro partition of T .

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 173

�

� � branching
�� jump
� unary

Q1

Q2

Q3

Q4 Q5

Fig. 2. Macro-micro tree partition

In this section we will show how to deploy this decomposition to further reduce
the space-encoding of D.

Let us concentrate on the subtree T ∗, formed by jump and macro nodes. Note
that jump nodes form the leaves of this tree, and are O(n/ log n) in number. The
macro nodes are internal in T ∗ and can be then divided into branching nodes, if
they have at least two children in T ∗, or unary nodes. The number of branching
nodes is upper bounded by the number of leaves in T ∗ (i.e., jump nodes), and
thus it is O(n/ log n). To deal with long chains of unary nodes in T ∗, we sample
them by taking one out of �log n� consecutive nodes in any maximal unary path
of T ∗. This way we sample O(n/ log n) unary nodes. The set of nodes formed by
jump nodes, branching nodes, and sampled unary nodes is called breaking nodes,
and has size O(n/ log n). By definition, the distance between any non-breaking
node and its closest breaking ancestor in T ∗ is at most �log n�.

Given the notion of breaking nodes, we define TF as the tree T ∗ contracted to
include only the breaking nodes: i.e., u has parent u′ in TF iff u, u′ are breaking
nodes and u′ is the lowest breaking ancestor of u in T ∗. Since we wish to execute
path-sum queries over T ∗ by deploying TF , we need to reflect the contraction
process onto the tree labeling too. This is done as follows. We label every node
u ∈ TF with the integer �F (u) =

∑
w∈π(u′,u) �(w), where u′ is the father of u in

TF , π(u′, u) is the path in T ∗ connecting u to its father u′, and � is the labeling of
T (and thus of T ∗). Given the sampling over the unary macro-nodes, and since
� is assumed to be a ternary labeling, the label �F (u) is an integer less than
�log n� (in absolute value). At this point, we note that the path-sum leading to
any breaking node u can be equally computed either in T or in TF .

To apply Theorem 2, we need a succinct path-sum data structure that we
design here based on the macro-micro decomposition of the ternary labeled tree
T . Specifically, let us assume that we wish to answer a path-sum query on a
node u ∈ T , we distinguish three cases depending on whether u is micro or not.

1. Node u is non-micro and breaking. As observed above, we can compute the
path-sum over π(u) by acting on the contracted tree TF .

174 I. Nitto and R. Venturini

2. Node u is non-micro and non-breaking. Since u is not a node of TF , we pick z
as the lowest breaking ancestor of u in T ∗. Hence z ∈ TF . The path π(u) lies
in T ∗ and can then be decomposed into two subpaths: one connecting T ’s
root r to the breaking node z, and the other being a unary path connecting
z to u (and formed by all non-breaking nodes). The first path-sum can
be executed in TF , whereas the other path-sum needs some specific data
structure over the unary paths of T ∗ (formed by non-breaking nodes).

3. Node u is micro. Let rj be the root of its enclosing micro-tree Qj . The
parent of rj , say f(rj), is a jump node (and thus f(rj) ∈ TF), by definition.
Therefore the path π(u) can be decomposed in two subpaths: one lies in TF

and connects its root r to f(rj), the other lies in Qj and connects rj to u.
Consequently, the first path-sum can be executed in TF , whereas the other
path-sum can be executed in Qj .

We are therefore left with the design of succinct data structures to support
constant-time path-sum queries over the contracted tree TF , the unary paths in
T ∗, and the micro-trees Qjs. We detail their implementation below.

Path-sum over the TF . Given the labeled tree TF , we build the integer se-
quence LTF and the array rTF , similarly as done in Section 4. Since there are
O(n/ log n) breaking nodes, |LTF | = O(n/ log n) and its elements are in the range
[− logn, + log n]. Now we define K as the data structure of Theorem 1 built on
sequence LTF (here l = O(log n)), thus taking O(n log log n/ logn) = o(n) bits.
By Lemma 3, the path-sum query involving a breaking node in TF can then be
answered in constant time using K and rTF .

Path-sum over the unary paths in T ∗. We serialize the unary paths in T ∗

according to the pre-order visit of this tree. Let us denote by PT ∗ the resulting
sequence of ternary labels of those (serialized) nodes. Notice that PT ∗ is similar
in vein to LT ∗ , but it avoids the double storage of the node labels. Nonetheless
path-sum queries over unary paths of T ∗ can still be executed as prefix-sum
queries over PT ∗ ; but with the additional advantage of saving a factor 2 in the
space complexity. More specifically, any path-sum query over a unary path in
T ∗ actually boils down to a range-sum query over the sequence PT ∗ , because
the paths are unary and node labels are written in PT ∗ according to a pre-
visit of T ∗. Additionally, a range-sum query over PT ∗ can be implemented as
a difference of two prefix-sum queries over the same sequence. As a result, we
build a wavelet tree on PT ∗ (see Theorem 1) taking (log 3)|PT ∗ | + o(|PT ∗ |) bits
of space (since |Σ| = 3 and H0(PT ∗) ≤ log |Σ|). Given this wavelet tree and
an array preT ∗ [1, n], which stores the rank of the macro-nodes in the preorder
visit of T ∗, the path-sum queries over the unary paths in T ∗ can be answered in
constant time.

Path-sum over the micro-trees. Here we exploit the fact that micro-trees are
small enough, so that we can explicitly store the answer to all possible path-sum
queries over all of them in succinct space. We note that any path-sum query
over a micro-tree Q can be uniquely specified by a triple 〈Q, �(Q), i〉, where Q
denotes the micro-tree structure, �(Q) denotes the ternary labeling of Q, and i

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 175

is the pre-order rank in Q of the queried node (hence i ≤ μ). We then build a
table C that tabulates all possible path-sum queries over micro-trees, indexed
by triplets 〈Q, �(Q), i〉. To access C, we need an encoding for the triplet: i.e., we
encode the Q’s structure via any succinct tree encoding of at most 2μ bits (see
e.g. [9,12]), and encode �(Q) via the string PQ which consists of no more than μ
ternary labels (obtained by visiting in pre-order Q, see above). Consequently, C
consists of 22μ×3μ×μ entries, each storing an integer smaller than μ in absolute
value. Table C thus takes less than O(n log n log log n) bits. As a result, a path-
sum query over a micro-tree Q can be answered in constant time, provided that
we have constant-time access to its micro-tree encoding and labeling. To this
aim, we store all structural encodings of the Qi’s in one string, thus taking O(n)
bits overall. Also, we create the string S�, obtained by juxtaposing the encodings
of the labellings �(Qi) (i.e., the strings PQi), for all micro-trees Qi of T . Note
that S� depends on the labeling � of T . Finally we compress and index S� via
the succinct data structure of Corollary 1. This way, we can retrieve any �(Qi)
in constant time, taking a total of |S�| log 3 + o(|S�|) bits.

To complete the description of our solution we just need to store some other
auxiliary arrays which take O(n log n) = o(n2) bits overall:

– the array encoding the node type– (non)micro, breaking.
– the array of parent-pointers of T ’s nodes (useful to execute path-sums in

micro-trees);
– the arrays storing for each micro node the root of its micro-tree and its

pre-order rank inside it (useful to execute path-sums in micro-trees).
– the array storing for each unary non-breaking node the top node in its maxi-

mal unary path (useful to execute path-sums of non-micro and non-breaking
nodes).

At this point, we are left with the orchestration of all data structures sketched
above in order to provide a succinct data structure for performing path-sum
queries over the ternary labeled tree T , and then apply Theorem 2. We indeed
use the above macro-micro tree decomposition on T (and its labeling �) and
define:

– the succinct data structures D(E(T), �), as the combination of data structure
K built on TF , the wavelet tree built on PT ∗ , and the compressed indexing
of S�. These data structures take (log 3)(|PT ∗ |+ |S�|)+ o(|PT ∗ |+ |S�|+n) =
(log 3)n + o(n) bits.

– the encoding E(T) as the combination of the table C, the encodings of the
micro-tree structures, and all other auxiliary arrays, for a total of o(n2) bits.

We then plug this data structure to Theorem 2, and get the following result:

Theorem 4. There exists a representation for D that uses at most n2(log 3) +
o(n2) bits, and takes constant-time to access any of its entries.

Proof. The space bound has been proved above. The time bound derives from
the three-cases analysis made above and the use of D(E(T), �) data structure
which guarantees constant-time prefix-sum queries. 	

176 I. Nitto and R. Venturini

The previous solution does not deploy the symmetry-idea sketched at the end
of Section 5. We then apply it to further halve the above space occupancy:

Corollary 3. There exists a representation for D that uses at most n2(log 3
2) +

o(n2) bits, and takes constant-time to access any of its entries.

7 Conclusion and Open Problems

We have studied the problem of succinctly encoding the All-Pair-Shortest-Path
matrix of an n-node unweighted and undirected graph. We have designed com-
pact representations which are asymptotically time- and space-optimal, and re-
sult close to the information-theoretic lower bound by a small constant factor.

We leave two interesting open problems. The first one concerns with (dis)
proving the existence of a succinct data structure that achieves n2/2+o(n2) bits
of space occupancy and supports distance-queries in constant time. The second
question deals with the design of a solution whose space complexity depends
on the number m of edges in the graph G, and still guarantees constant time
to compute exactly the shortest-path distance between any pair of its nodes.
In fact, in the case of sparse graphs, the information-theoretic lower bound is
2m log n

m − Ω(m) n2 bits. Such a solution would be of big practical relevance
in applications that manage very sparse large graphs.

Acknowledgments. The authors wish to thank Paolo Ferragina for useful com-
ments and his help in improving the exposition of this paper.

References

1. Barbay, J., He, M., Munro, J.I., Srinivasa Rao, S.: Succinct indexes for string,
bynary relations and multi-labeled trees. In: Proc. 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA) (2007)

2. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Benoit, D., Demaine, E., Munro, I., Raman, R., Raman, V., Rao, S.: Representing
trees of higher degree. Algorithmica 43, 275–292 (2005)

4. Brodnik, A., Munro, I.: Membership in constant time and almost-minimum space.
SIAM Journal on Computing 28(5), 1627–1640 (1999)

5. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. 46th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 184–193 (2005)

6. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372(1), 115–121 (2007)

7. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 841–850
(2003)

8. Gupta, A., Hon, W.K., Shah, R., Vitter, J.S.: Dynamic rank/select dictionaries
with applications to XML indexing. Technical Report Purdue University (2006)

On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices 177

9. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 549–554 (1989)

10. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered
trees. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2007)

11. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comput.
Sci. 387(3) (2007)

12. Munro, I., Raman, V.: Succinct representation of balanced parentheses, static trees
and planar graphs. In: Proc. of the 38th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 118–126 (1997)

13. Munro, I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Computing 31, 762–776 (2001)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1)
(2007)

15. Working Group on Algorithms for Multidimensional Scaling. Algorithms for
multidimensional scaling. DIMACS Web Page, http://dimacs.rutgers.edu/
Workshops/Algorithms/AlgorithmsforMultidimensionalScaling.html

16. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing 31(2), 353–363 (2001)

17. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: Proc. 13th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 233–242 (2002)

18. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993–1024 (2004)

19. Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192
(2001)

http://dimacs.rutgers.edu/Workshops/Algorithms/AlgorithmsforMultidimensionalScaling.html
http://dimacs.rutgers.edu/Workshops/Algorithms/AlgorithmsforMultidimensionalScaling.html

Computing Inverse ST in Linear Complexity

Ge Nong1,�, Sen Zhang2, and Wai Hong Chan3,��

1 Computer Science Department, Sun Yat-Sen University, P.R.C.
issng@mail.sysu.edu.cn

2 Dept. of Math., Comp. Sci. and Stat., SUNY College at Oneonta, U.S.A.
zhangs@oneonta.edu

3 Department of Mathematics, Hong Kong Baptist University, Hong Kong
dchan@hkbu.edu.hk

Abstract. The Sort Transform (ST) can significantly speed up the block
sorting phase of the Burrows-Wheeler transform (BWT) by sorting only
limited order contexts. However, the best result obtained so far for the
inverse ST has a time complexity O(N log k) and a space complexity
O(N), where N and k are the text size and the context order of the
transform, respectively. In this paper, we present a novel algorithm that
can compute the inverse ST in an O(N) time/space complexity, a linear
result independent of k. The main idea behind the design of the linear
algorithm is a set of cycle properties of k-order contexts we explored for
this work. These newly discovered cycle properties allow us to quickly
compute the longest common prefix (LCP) between any pair of adjacent
k-order contexts that may belong to two different cycles, leading to the
proposed linear inverse ST algorithm.

1 Introduction

Since the Burrows-Wheeler transform (BWT) was introduced in 1994 [1], it
has been successfully used in a wide range of data compression applications.
Inspired by the success of the BWT, many variants have also been proposed by
the research community during the past decade. Among them, one noticeable is
the Sort Transform (ST) that was introduced in 1997 by Schindler [2,3], which
can speed up the block sorting phase of the BWT by sorting only a portion of the
rotating matrix. The main idea of the ST is to limit sorting to the first k columns
only, instead of the full matrix sorted by the BWT. Specifically, given the same
rotating matrix as defined in the BWT, the k-order ST will lexicographically sort
all the rows of the matrix according to their k-order contexts first; in case that
there are any two identical k-order contexts, the tie will be resolved by preserving
the relative order between them in the original rotating matrix, i.e., the sorting
in ST is stable. With only a relatively small adjustment to the sorting size of
the matrix, the ST can be expected to perform much faster than the BWT, yet
� Nong was partially supported by the National Natural Science Foundation of P.R.C.

(Project No. 60573039).
�� Chan was partially supported by the Faculty Research Grant (FRG/06-07/II-28),

HongKongBaptistUniversity and theCERG(HKBU210207),RGC,HongKongSAR.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 178–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Inverse ST in Linear Complexity 179

retaining high compression ratios. Schindler has built a fast compression software
called szip [2] using the ST.

Problem
A major tradeoff caused by the ST’s partial sorting scheme is that the inverse
ST is more complex than the inverse BWT. This is because although each of
the unlimited context is unique, the uniqueness of any limited order context
considered by the partial sorting scheme in ST can no longer be guaranteed. To
deal with the duplicated k-order contexts, Schindler proposed a hash table based
approach in which the text retrieval has to rely on a hash table driven context
lookup and the context lookup has to rely on the complete restoration of all the
k-order contexts [4], resulting in an O(kN) time/space complexity for inverting
the ST of a size-N string. Noticing that neither the full restoration of contexts
nor the hash-based context lookup is required by the inverse BWT, we have
proposed an auxiliary vectors based framework [5,6,7], which is similar to that
used for the inverse BWT [1], but different from any possible hash table based
approaches suggested by Schindler [4], Yokoo [8] and Bird [9]. This framework
requires only O(N) space complexity, however, the time complexity of our pre-
vious solutions remains to be superlinear. The time complexity achieved in [5]
is O(kN), which we have recently reduced to O(N log k) in [6,7]. Nevertheless,
all the time complexities of the existing solutions for the inverse ST involve the
context order k, one way or another. In contrast, the inverse BWT has a lin-
ear time/space complexity of O(N). Therefore, the question of our particular
interest here is whether the inverse ST is linear computable.

Answer
We present here a positive answer to this question by introducing a novel algo-
rithm that explores a set of properties about longest common prefixes (LCPs)
and cycles in the k-order contexts to compute the inverse ST for any context
order k ∈ [1, N]. The new algorithm has a linear time/space complexity O(N),
independent of k.

Section 2 introduces some basic definitions and general notations. Our linear
inverse ST algorithm is developed and analyzed in section 3.

2 Preliminary

A text S of length N is denoted as x1x2x3...xN−1$, where each character xi ∈ Σ,
i ∈ [1, N −1] and Σ is the alphabet. The last character $ of the text is a sentinel,
which is the unique lexicographically greatest1 character in S. (Appending a
sentinel to the original text has been used in many previous publications; readers
may refer to papers [10,11] for more details.) Given S, according to the cyclic
rotation scheme, we call S[i] the immediate preceding character of S[i+1] where
i ∈ [1, N−1], and S[N] the immediate preceding character of S[1]. Cyclic rotating
S a total number of N times, we obtain the original matrix M0 for computing
the ST of S.
1 Symmetrically, the sentinel can be assumed as the smallest.

180 G. Nong, S. Zhang, and W.H. Chan

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i p p i $ m i s s i s s
i s s i s s i p p i $ m
i s s i p p i $ m i s s
i $ m i s s i s s i p p
m i s s i s s i p p i $
p i $ m i s s i s s i p
p p i $ m i s s i s s i
s i s s i p p i $ m i s
s i p p i $ m i s s i s
s s i s s i p p i $ m i
s s i p p i $ m i s s i
$ m i s s i s s i p p i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. The matrix M2 for the 2-order ST, where the last column is the transformed
text

Definition 1. (The original matrix M0). The N × N symmetric matrix origi-
nally constructed from the texts obtained by rotating the text S. Specifically, the
first row of the matrix M0 is assigned to be S, denoted by S1; and for each of
the remaining rows, a new text Si is obtained by cyclically shifting the previous
text Si−1 one column to the left.

Each row in M0 is a text, where the first k characters is called the k-order con-
text of the last character, for k ∈ [1, N]. When k = N , the k-order context is also
called the unlimited order context; or else a limited order context. Lexicograph-
ically sorting all the rows of M0, we get a new matrix Mk, which last column
is the ST of S. For an example of the ST, we give in Fig. 1 the matrix M2 for
S =

[
m i s s i s s i p p i $

]
. By taking the transpose of the last column of M2

and locating the row position of the orginal text S which is 5 in this case, the
transform result can be denoted as a couplet (

[
s m s p $ p i s s i i i

]
, 5).

For presentation simplicity, we introduce the following notations. Let Z[Nr,
Nc] represent a two-dimensional array Z consisting of Nr rows and Nc columns.
To specify an array’s subscript range in each dimension, we use the notation of
a : b. For example, Z[a : b, c : d] represents a 2-D sub-array of Z[Nr, Nc] covering
the rows from a to b and the columns from c to d, where 1 ≤ a ≤ b ≤ Nr and
1 ≤ c ≤ d ≤ Nc. In case a = b and/or c = d, the simpler forms of Z[a, c : d] or
Z[a : b, c] are used instead, respectively. From Mk, we define Fk = Mk[1 : N, 1]T

and Lk = Mk[1 : N, N]T , i.e. the transposes of the first and the last columns,
respectively, where k ∈ [1, N]. When k = N , the simpler forms of M , F and L
can be used for Mk, Fk and Lk instead, respectively.

3 The Linear Inverse ST Algorithm

3.1 Basis

Let’s define two vectors to establish an one-to-one mapping among the characters
of Fk and Lk, as below.

Computing Inverse ST in Linear Complexity 181

Definition 2. (Pk and Qk). Pk and Qk are two size-N row vectors, where the
former satisfies
{

Fk[Pk[i]] = Lk[i], for i ∈ [1, N];
Pk[i] < Pk[j], for (1 ≤ i < j ≤ N and Lk[i] = Lk[j]) or (Lk[i] < Lk[j]).

and the later satisfies
{

Lk[Qk[i]] = Fk[i], for i ∈ [1, N];
Qk[i] < Qk[j], for 1 ≤ i < j ≤ N and Fk[i] = Fk[j].

Pk maps the index of each character of Lk to its index at Fk, and Qk maps the
index of each character at Fk to its index at Lk. Furthermore, Pk and Qk are
reciprocal to each other, i.e. Qk[Pk[i]] = i and Pk[Qk[i]] = i. When k = N , the
simpler forms of P and Q can be used for Pk and Qk instead. The solution for the
inverse BWT [1] is re-stated in Fig. 2, where S is restored by backward retrieval
using the vector P to iteratively retrieve the immediate preceding character
S[i − 1] for each known S[i], utilizing the following properties.

Property 1. Given L, F can be obtained by sorting all the characters of L.

Property 2. In both F and L, the relative orders of any two identical characters
are consistent.

Property 3. Given L[i] = S[j], we have S[j − 1] = L[P [i]] for j ∈ [2, N], and
S[N] = L[P [i]] for j = 1.

3.2 Algorithm Framework

We previously proposed in [5,7] an auxiliary vector based framework to inverse
ST using no hashing table. The most complex part in that framework is com-
puting the k-order context switch vector D, which is defined as following.

To denote the k-order contexts in Mk, we define the k-order context vector
CTk, which is a size-kN vector with each CTk[i] denoting the k-order context
of Lk[i], i.e. CTk[i] = Mk[i, 1 : k], where i ∈ [1, N]. From CTk, we further define
the k-order context switch vector D as below.

IBWT(char *L, int start, int n) {
// restore n characters starting from L[i]
j=start;
for(i=n; i>0; i--) {
S[i]=L[j]; // restore the ith character.
j=P[j]; //update index for backward retrieving the preceding character.

}
return S;
}

Fig. 2. Algorithm for the inverse BWT

182 G. Nong, S. Zhang, and W.H. Chan

Definition 3. (k-order context switch vector D). A size-N row vector with each
D[i], i ∈ [1, N] defined as

D[i] =
{

0, for CTk[i] = CTk[i − 1];
1, for CTk[i] �= CTk[i − 1].

For CTk, we say there is a k-order context switch from row i−1 to row i if k-order
context is new if either it is the first context (when i=1) or it is different from that
at the (i−1)th row (for i ∈ [2, N]). Suppose that D has been known, we need the
following two size-N vectors Ck and Tk to use with D together to restore S from
Lk, in a fashion of backward retrieval. Ck is called the counter vector, which is
a size-N vector recording the occurrence of each unique k-order context at its
first position in the Mk. If Ck[i] > 0, the k-order context at the ith row is new
and is repeated for Ck[i] times starting from the ith row consecutively up to the
(i + Ck[i] − 1)th row; otherwise, the k-order context at the ith row repeats the
one at the previous row. Tk is called the index vector, which is a size-N vector
pointing to the starting row of each unique k-order context. Mk[Tk[i], 2 : k] is
the (k − 1)-order context of the character Lk[i], where i ∈ [1, N]. Given Lk[i],
Tk tells that starting from the Tk[i]th row in Mk, there are Ck[Tk[i]] consecutive
rows sharing the same k-order context with Lk[i] being the first character.

The complexity of calculating D constitutes the bottleneck of the whole frame-
work. We have previously shown the best result for computing D from L requires
an O(N log k) time complexity [7] and using a space O(N). In the next sub-
section, we will present an even more efficient linear algorithm, which has a
time/space complexity of O(N), independent of the context order k.

3.3 Computing D in O(N) Time/Space

We first show the relationship between the vector D and the lengths of the longest
common prefixes (LCPs) between any two adjacent rows in Mk[1 : N, 1 : k], then
present a linear algorithm that can compute D in a k-independent time/space
complexity of O(N) by exploring the cycle and the LCP properties. Let lcp(i, j)
denote the longest common prefix (LCP) between CTk[i] and CTk[j], where
i, j ∈ [1, N]. Further, let Height be a size-N vector, where Height[i] denotes
the height of Lk[i] that equals to the length of the LCP between the two k-order
contexts of CTk[i − 1] and CTk[i], i.e. Height[i] = ‖lcp(i − 1, i)‖ (‖ · ‖ is the
cardinality operator for a set, returning the set’s size.).

Lemma 1. Given Mk, the following items regarding D and Height are
equivalent.

– D[i] = 0 (as opposed to D[i] = 1);
– Height[i] = k (as opposed to Height[i] ∈ [0, k)).

From the above lemma, it is easy to see that once the vector Height is available,
D can be easily computed in O(N) by traversing Height once. Intuitively, this

Computing Inverse ST in Linear Complexity 183

implies that we can convert the problem of solving D to finding an efficient
solution for the computation of Height.

Cycle of Characters
Now, we introduce the definition of cycle, which builds the foundation for devel-
oping our algorithm to compute the vector Height in linear time/space.

Definition 4. Cycle α(i): the list of characters consisting of a subset of the
characters in Lk, satisfying

α(i) =
{

α(i)[1]=Lk[i] = Lk[Qk[j]], for α(i)[‖α(i)‖] = Lk[j];
α(i)[x + 1] = Lk[Qk[j]], for α(i)[x] = Lk[j] and x ∈ [1, ‖α(i)‖ − 1];

Given α(i), calling the function IBWT (Lk, i, ‖α(i)‖) will backward retrieve all
the characters in α(i) one by one with a period length of ‖α(i)‖. In this sense, we
term α(i) a cycle. From the definition of cycle, we immediately see this property.

Property 4. Any two cycles are disjoint.

Finding All Cycles
Because of the existence of cycles, we want to discover all the cycles from Lk first
and then we use them to compute the heights for all characters in Lk in a linear
complexity of O(N). To achieve this goal, we introduce three one-dimension size-
N arrays X0, X1 and Y to store all the cycles. An algorithm for finding all the
cycles from Lk in O(N) time/space is given below.

1. Initially, mark all items of Lk as unvisited.
2. Traverse Lk once from left to right. For each unvisited item Lk[i], retrieve the

cycle α(i) using Qk in O(α(i)) time, and mark all the characters in this cycle
as visited. All the characters of the found cycle α(i) are consecutively stored
into X0. To help separate two neighbor cycles stored in X0, we maintain the
relative head and tail positions of each cycle by X1. The array X1 contains
two different kinds of values: non-negative values and negative values. If
X1[i] ≥ 0, X0[i + X1[i]] is the end character of the cycle; otherwise, X0[i +
X1[i]] is the head character of the cycle. To show where the characters in
X0 comes from Lk, the array Y is used to map each character in Lk to its
position in X0, i.e. Lk[Qk[i]] = X0[Y [i]]. Doing in this way, extracting all
the cycles from Lk and compute the arrays X0, X1 and Y can be done in a
total time/space complexity of O(N).

Let the immediate predecessor of Si in M0 be Si−1 for i ∈ [2, N], and SN for
i = 1, respectively. To generalize these definitions, in M0, we call the jth row
the xth generation successor of the ith row and the ith row the xth generation
predecessor of the jth row, if the jth row is x rows cyclically below the ith row.
Let Qx

k be the power notation of Qk, which maps each row in Mk to its xth
generation successor (recalling that Qk is the vector mapping each row in Mk

to its immediate successor), for instance, Q3
k[i] = Qk[Qk[Qk[i]]]. Similarly, we

can define P x
k [i] to map row i in Mk to its xth generation predecessor. From the

definitions of CTk, Lk, Qk, Pk and cycle, we observed these properties.

184 G. Nong, S. Zhang, and W.H. Chan

Property 5. For any k ∈ [1, N], i ∈ [1, N], we have (1) Q
‖α(i)‖
k [i] = P

‖α(i)‖
k [i] = i;

and (2) CTk[i] = [Lk[Qk[i]], Lk[Qk[Qk[i]]], ..., Lk[Qk
k[i]]];

Property 6. The k-order context of Lk[i] is the first k characters of the string
made up of the unlimited repetitions of cycle α(Qk[i]).

Property 6 describes a relationship between the context of a character in Lk and
the cycle that the character belongs to. According to the definition of cycle, we
have α(Qk[i]) = [Lk[Qk[i]], Lk[Qk[Qk[i]]], ..., Lk[Q‖α(Qk[i])‖

k [i]]; from Property 5,
we have CTk[i] = [Lk[Qk[i]], Lk[Qk[Qk[i]]], ..., Lk[Qk

k[i]]]. Comparing CTk[i] and
α(i), this property is immediately true because the cycle α(Qk[i]) will repeat
itself in CTk at each position j ∈ [1, k] satisfying (j − 1)%‖α(Qk[i])‖ = 0, where
% is the integer modulo operator. Once we have all the cycles extracted from Lk

and have them saved in the three arrays X0, X1 and Y , retrieving the character
that is l character(s) cyclic far away from the character X0[i] is a simple algebra
problem, which can be trivially done in time O(1). In other words, for any
given character Lk[i], using X0, X1 and Y , we can retrieve the character that
is l character(s) cyclic away from it in the original text S in time O(1), where
l ∈ [0, k − 1].

Computing Heights for a Cycle
We establish a theorem for inductive computing the heights of all the characters
in a cycle, as below.

Theorem 1. Height[Qk[i]] ≥ Height[i] − 1 for any k ∈ [1, N], i ∈ [1, N] and
Height[i] ≥ 1.

Proof. Given that Height[i] = ‖lcp(i − 1, i)‖ ≥ 1, according to the definition of
Qk, we have Qk[i−1] < Qk[i] and it is trivial to see that Height[j] ≥ Height[i]−1
for any j ∈ [Qk[i − 1], Qk[i]].

Given the notations in this paper and Theorem 1, we can derive from [12] the
linear algorithm GetHeight 2 in Fig. 3 for computing the LCPs for the characters
in a single cycle, where Pos is a size-N vector with each Pos[i] giving the position
index of Lk[i] in the original text S, i.e. S[Pos[i]] = Lk[i]. However, neither S
nor Pos is known, for how to retrieve S is the ultimate goal of the problem in
our hands. To solve this problem, we can utilize X0, X1 and Y to do the same
job instead. Notice that in GetHeight, there is h < k, which implies that both
S[Pos[j]+h] and S[Pos[j −1]+h] in line 6, as well as Height[Pos[j]] in line 10,
always can be retrieved/maintained in O(1) time using X0, X1 and Y . In order
words, we can derive another logically equivalent alternative for GetHeight that
can do the same job without knowing S and Pos. (Details are omitted here due
to space limit.)

The complexity of GetHeight is dominated by the execution time of line 8
in the inner loop. If we comment out lines 11-12, it is obvious that GetHeight
2 Please notice that GetHeight can not be used to compute the LCPs for any two

characters belonging to two different cycles! How to compute the LCPs for any two
characters in two different cycles is the critical part of our solution.

Computing Inverse ST in Linear Complexity 185

GetHeight(int start, int n) {
1 j=start; h=0;
2 for(i=1; i<=n; i++)
3 {
4 while(h<k) // k-order LCP is at most k.
5 {
6 if(j==1 || S[Pos[j]+h]!=S[Pos[j-1]+h])
7 break;
8 h++;
9 }
10 Height[Pos[j]]=h; // save the LCP for the char S[Pos[j]].
11 if(h>0)
12 h--; // decrease for computing the LCP of the succeeding char.
13 j=Qk[j]; // update the index of the succeeding char.
14 }
15 return Height;
}

Fig. 3. Algorithm for computing the heights for all the characters in a single cycle
α(start)

has a time complexity of O(k), for h can be increased one at a time for at most
k times by line 8. By adding lines 11-12 back to GetHeight, it can trigger at
most n more times running of line 8. This is because line 12 can be executed at
most n time, and each running of line 12 can enable one more running of line
8, therefore at most n times running of line 8 can be introduced to the running
time complexity. As the combined consequence of line 8 and lines 11-12, the total
time complexity of GetHeight is O(k + n), which is k-dependent.

Theorem 2. For any cycle α(i), i ∈ [1, N], the heights of all characters in α(i)
can be computed in a time complexity of O(k + ‖α(i)‖).

Proof. The correctness of this theorem comes directly from the above analysis
for the time complexity of GetHeight, for n = ‖α(i)‖ in this case.

From the above result, we know that for each cycle β stored in X0, we can
compute the heights of all characters in β in a time complexity of O(k + ‖β‖).
Hence, the total time complexity of computing the heights for all the characters
in all cycles is

∑
βi

(k + ni), where ni = ‖βi‖, which can be decomposed into
two parts as below: one for the cycles not longer than ck and another for those
longer than ck, where c > 0,

O(
∑

ni≤ck

(k + ni)) + O(
∑

nj>ck

(k + nj)).

For a cycle longer than ck, k in the complexity can be safely ignored from
O(

∑
nj>ck(k+nj)), resulting in O(

∑
nj>ck(k+nj)) = O(

∑
nj>ck nj) = O(Nck),

where Nck is the total number of characters in all cycles longer than ck
(cf. Property 4). However, for a cycle not longer than ck, k in the complexity can

186 G. Nong, S. Zhang, and W.H. Chan

not be ignored, because the complexity is O(
∑

ni≤ck(k + ni)) = O(
∑

ni≤ck k),
which is a function of k. To exclude k from the complexity, we need to explore
more properties of cycles.

Lemma 2. For a cycle β longer than ck, where c > 0 is a constant, the heights
of all its characters can be computed in a time complexity of O(‖β‖).

Proof. According to Theorem 2, we can compute the heights for all characters
in the cycle β with a time complexity of O(k + ‖β‖). Given that ‖β‖ > ck, we
have O(k + ‖β‖) = O(‖β‖).

Computing Heights for All Cycles
Let CH0 denote the subset of the characters in all the cycles longer than ck,
where c > 0 is a constant. In addition, let CH1 denote the subset of the characters
in Lk, satisfying that for each Lk[i] ∈ CH1, Lk[i−1] is in CH0, where i ∈ [2, N].
Following the definitions of CH0 and CH1, it is trivial to derive from Lemma 2
the below lemma about the complexity of computing the heights of all characters
in CH0 ∪ CH1 .

Lemma 3. The heights of all characters in CH0 ∪ CH1 can be computed in a
time complexity of O(‖CH0‖ + ‖CH1‖).

Proof. Referring to the algorithm GetHeight in Fig.3, at line 6, the charac-
ter S[Pos[j] + h] is compared with S[Pos[j − 1] + h] to compute the height of
Lk[i]. Similarly, if we revise Line 6 to be “if(j==N || S[Pos[j]+h]!=
S[Pos[j+1]+h])”, i.e. to compare S[Pos[j] + h] with S[Pos[j + 1] + h] instead
of S[Pos[j − 1]+h], the algorithm GetHeight can compute the heights of all the
characters in CH1. Hence, according to Lemma 2, the heights of all characters
in set CH0 ∪CH1 can be computed in a time complexity of O(‖CH0‖+‖CH1‖).

Having solved the issue of computing the heights of all the characters in the set
CH0 ∪ CH1 in a linear time complexity, the only pending problem is how to
compute the heights of all the other remaining characters in the set {Lk[i]|i ∈
[1, N]} − {CH0 ∪ CH1} in a linear time complexity independent of k. For this
purpose, we establish the below theorems and lemmas.

Theorem 3. For any i ∈ [2, N], CTk[i] = CTk[i − 1], ‖α(i)‖ ≤ �k/2	 and
‖α(i − 1)‖ ≤ �k/2	, we have α(i) = α(i − 1).

Proof. Without loss of generality, let’s suppose ‖α(i−1)‖ ≥ ‖α(i)‖. We continue
the proof as follows:

1. Given the condition for the theorem in question, we have that Mk[i, 1 :
‖α(i)‖] = Mk[i − 1, 1 : ‖α(i)‖] and Mk[i, ‖α(i − 1)‖ + 1 : ‖α(i − 1)‖ +
‖α(i)‖] = Mk[i − 1, ‖α(i − 1)‖ + 1 : ‖α(i − 1)‖ + ‖α(i)‖]. Because that
Mk[i − 1, 1 : ‖α(i)‖] = Mk[i − 1, ‖α(i − 1)‖ + 1 : ‖α(i − 1)‖ + ‖α(i)‖],
we have Mk[i, 1 : ‖α(i)‖] = Mk[i, ‖α(i − 1)‖ + 1 : ‖α(i − 1)‖ + ‖α(i)‖].

Computing Inverse ST in Linear Complexity 187

Hence, the preceding character of Mk[i, 1] is Mk[i, ‖α(i − 1)‖], i.e. Lk[i] =
Mk[i, ‖α(i − 1)‖] = Mk[i − 1, ‖α(i − 1)‖] = Lk[i − 1]. Given Lk[i] = Lk[i − 1]
and CTk[i] = CTk[i − 1], we further have CTk[Pk[i]] = CTk[Pk[i − 1]], i.e.
the two k-order contexts at rows Pk[i] and Pk[i − 1] in Mk are equivalent.

2. From the above analysis (in this proof) and Property 5, we see Lk[P ‖α(i)‖
k [i]]

= Lk[i] as well as Lk[P ‖α(i)‖
k [i−1]] = Lk[i−1]. Furthermore, for any character

Lk[j] ∈ α(i), we have Lk[j − 1] ∈ α(i − 1), Lk[j] = Lk[j − 1] and CTk[j] =
CTk[j − 1]. Hence, α(i) and α(i − 1) are two equivalent cycles.

The above theorem says that for any two characters i and i − 1 in Lk, if the
k-order contexts of the two characters are equal and both cycles α(i) and α(i−1)
are not longer than �k/2	, then the two cycles must be equivalent.

Lemma 4. For any i ∈ [2, N], if ‖α(L[i − 1])‖ ≤ �k/2	 and ‖α(L[i])‖ ≤ �k/2	,
then CTk[i − 1] = CTk[i] only if the lengths of the two cycles α(i − 1) and α(i)
are equal.

Proof. Given the condition, in case that CTk[i − 1] = CTk[i], from Theorem 3,
we have α(i − 1) = α(i), which implies that ‖α(i − 1)‖ = ‖α(i)‖ .

Lemma 4 suggests that if two cycles α(i) and α(i − 1) are not longer than �k/2	
and their lengths are different, we can immediately determine that the two k-
order contexts of Lk[i] and Lk[i − 1] are different in a complexity of O(1), as
stated below.

Corollary 1. For any two cycles α(i − 1) and α(i) not longer than �k/2	, i ∈
[2, N], we have CTk[i − 1] �= CTk[i] if the lengths of two cycles are different.

Proof. According to Lemma 4, provided that the two cycles are not longer than
�k/2	, the two k-order contexts of Lk[i] and Lk[i−1] can be identical only if the
lengths of the two cycles are equal. Hence, if the two cycles α(i − 1) and α(i)
have different lengths, we must have CTk[i − 1] �= CTk[i].

The above corollary says that if the lengths of two cycles α(i) and α(i − 1) are
not longer than �k/2	 and different, then the k-order contexts of Lk[i − 1] and
Lk[i] are different too.

Corollary 2. For any i ∈ [2, N], CTk[i] = CTk[i − 1], ‖α(i)‖ ≤ �k/2	 and
‖α(i − 1)‖ ≤ �k/2	, we have CTk[j] = CTk[j − 1] and α(j) = α(j − 1) for any
character Lk[j] ∈ α(i).

Proof. Given CTk[i] = CTk[i − 1], ‖α(i)‖ ≤ �k/2	 and ‖α(i − 1)‖ ≤ �k/2	, from
the proof of Theorem 3, we know that Lk[i] = Lk[i − 1] and α(i) = α(i − 1).
Further, according to Property 6, we have CTk[Pk[i]] = CTk[Pk[i − 1]]. Because
that when k ∈ [1, N] and Lk[i] = Lk[i − 1], there must be Pk[i − 1] = Pk[i] − 1.
Hence, from Theorem 3 again, we have that CTk[Pk[i]] = CTk[Pk[i]−1] and both
cycles α(Pk[i]) and α(Pk[i] − 1) are equal and not longer than �k/2	. Repeating
the induction in the same way, we have that for any character Lk[j] ∈ α(i), we
have CTk[j] = CTk[j − 1] and α(j) = α(j − 1).

188 G. Nong, S. Zhang, and W.H. Chan

The above corollary says that for any Lk[i] belonging to a cycle not longer
than �k/2	, if the cycle α(i − 1) is also not longer than �k/2	, and the two k-
order contexts of Lk[i] and Lk[i − 1] are equivalent, then for any character Lk[j]
belonging to the cycle α(i), the context of Lk[j] must equal to that of Lk[j − 1].

Corollary 3. For i ∈ [2, N], CTk[i] �= CTk[i − 1], ‖α(i)‖ ≤ �k/2	 and ‖α(i −
1)‖ ≤ �k/2	, we have CTk[j] �= CTk[j − 1] for any character Lk[j] ∈ α(i) seeing
‖α(j − 1)‖ ≤ �k/2	.

Proof. We prove it by contradiction. Suppose that there exists a character Lk[j]
∈ α(i) seeing CTk[j] = CTk[j − 1] and ‖α(j − 1)‖ ≤ �k/2	. Because ‖α(j)‖ =
‖α(i)‖ ≤ �k/2	, from Corollary 2, we have that for any Lk[x] ∈ α(j), there must
be CTk[x] = CTk[x−1]. This contradicts to the assumption CTk[i] �= CTk[i−1]
of this corollary, where Lk[i] ∈ α(j).

The above corollary says that for any Lk[i] in a cycle not longer than �k/2	, if
the cycle α(i − 1) is also not longer than �k/2	 and the k-order contexts of Lk[i]
and Lk[i − 1] are different, then for any character Lk[j] ∈ α(i) and α(j − 1) is
not longer than �k/2	, the two k-order contexts of Lk[j] and Lk[j − 1] must be
different too.

Theorem 4. For any cycle β not longer than �k/2	, the values in D for all
characters in set η = {L[j] ∈ β|j ∈ [2, N] and ‖α(j − 1)‖ ≤ �k/2	} can be
computed in a complexity of O(‖β‖).

Proof. For each character Lk[j] in β, there are two cases with respect to the
length of cycle α(j − 1): longer than �k/2	 or not. The former case is for the
characters in CH1 (cf. Lemma 3), thus has been considered there. As for the later
case, according to Theorem 3 and Corollary 1, we need at most O(‖β‖), instead
of O(k + ‖β‖), steps to compare all the characters in the two contexts of Lk[j]
and Lk[j − 1] to determine if they are equal or not when ‖α(j)‖ = ‖α(j − 1)‖.
Based on the comparison result, from Corollary 2 and 3, we can extend the result
to all the other characters in η with at most ‖β‖ − 1 steps, where each step has
a complexity of O(1). Hence, we complete the proof.

Making the Solution
Now, we apply the analysis results established in the previous subsections to
build a solution for computing D in linear time/space. The key idea is to de-
compose the problem of computing D[i] for each Lk[i], i ∈ [1, N], into two
sub-problems, depending on whether α(i) is longer than �ck	. In particular, we
choose the constant c = 1/2 in our algorithm design. The algorithm consists of
the following 3 steps:

1. Compute Pk and Qk from Lk, which can be done in O(N) time.
2. Find all cycles from Lk using Pk and Qk, and record by X0, X1 and Y , which

can be done in O(N) time.
3. Now, let’s initialize all the items of Lk as unvisited and then traverse Lk

once. For each unvisited Lk[i], we mark all the characters in α(i) as visited

Computing Inverse ST in Linear Complexity 189

in O(α(i)) time. Further, according to whether α(i) is longer than ck (which
can be determined in time O(1) using X0, X1 and Y) or not, we do according
to the following two cases:
– The cycle α(i) is longer than ck. We calculate D[i] for any character

Lk[i] in the cycle together with D[i + 1] for Lk[i + 1]. The total time for
this step is well bounded by the number of characters in all the cycles
longer than ck (cf. Lemma 3), thus bounded by O(N).

– For any Lk[j] with α(j) not longer than ck, depending on whether the
cycle α(j −1) is longer than ck or not, we further consider two subcases.
(1) True. This has been considered in the previous case for the characters
in cycles longer than ck.
(2) False. We will look into the lengths of both cycles α(j) and α(j − 1).

• If the two cycles’ lengths are different from each other, we can de-
termine that the two contexts CT [j] and CT [j − 1] must not equal
to each other (cf. Corollary 1), in a time complexity O(1). To prop-
agate the same result to all the other characters in the cycle whose
corresponding values in vector D have not been computed (cf. Corol-
lary 3), the time complexity is O(‖α(j)‖).

• If both cycles α(j) and α(j − 1) have the same length, to compute
D[j], we only need to consider a length up to the size of the cycle
α(j) (cf. Property 6), instead of the context order k. Once D[j] has
been computed, the same value of D[j] can be populated to the other
characters in cycle α(j) whose corresponding values in vector D have
not been computed (cf. Corollary 2 and 3), in a time complexity
O(‖α(j)‖).

Because all cycles are disjoint, the aggregated number of all characters
in all such kinds of cycles is bounded by O(N), the time complexity for
this case is thus bounded by O(N).

Hence, the total time complexity counted for this case is O(N).

The algorithm described above can always compute D within O(N) time
complexity, no matter what kind of combination of cycles we have. The space
complexity is obvious O(N), for only a constant number of size-N arrays are
required. As a result of the above analysis, we have the following theorem to
state the linearity of our algorithm for computing D as well as the inverse ST
for any given Lk.

Theorem 5. Given Lk, we can restore the original text of S in O(N) time/space
for any k ∈ [1, N].

The presented algorithm has been coded in C and validated, which is available
upon request.

Acknowledgment

The authors wish to thank the anonymous reviewers for this paper and its
under-review journal version, for their constructive suggestions and insightful
comments that have helped improve the presentation of this paper.

190 G. Nong, S. Zhang, and W.H. Chan

References

1. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report SRC Research Report 124, Digital Systems Research Center,
California, USA (May 1994)

2. Schindler, M.: The sort transformation, http://www.compressconsult.com
3. Schindler, M.: A fast block-sorting algorithm for lossless data compression. In:

Proceedings of DCC 1997, p. 469 (1997)
4. Schindler, M.: Method and apparatus for sorting data blocks. Patent in United

States (6199064) (March 2001)
5. Nong, G., Zhang, S.: Unifying the Burrows-Wheeler and the Schindler transforms.

In: Proceedings of DCC 2006, March 2006, p. 464 (2006)
6. Nong, G., Zhang, S.: An efficient algorithm for the inverse ST problem. In: Pro-

ceedings of DCC 2007, p. 397 (2007)
7. Nong, G., Zhang, S.: Efficient algorithms for the inverse sort transform. IEEE

Transactions on Computers 56(11), 1564–1574 (2007)
8. Yokoo, H.: Notes on block-sorting data compression. Electronics and Communica-

tions in Japan (Part III: Fundamental Electronic Science) 82(6), 18–25 (1999)
9. Bird, R.S., Mu, S.C.: Inverting the burrows-wheeler transform. Journal of Func-

tional Programming 14(6), 603–612 (2004)
10. Manzini, G.: The Burrows-Wheeler transform: theory and practice. In: Kuty�lowski,

M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 34–47.
Springer, Heidelberg (1999)

11. Balkenhol, B., Kurtz, S.: Universal data compression based on the Burrows-
Wheeler transformation: theory and practice. IEEE Transactions on Comput-
ers 49(10), 1043–1053 (2000)

12. Kasai, T., Lee, G., Arimura, H., et al.: Linear-time longest-common-prefix com-
putation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

http://www.compressconsult.com

Dynamic Fully-Compressed Suffix Trees

Lúıs M.S. Russo1,3,�, Gonzalo Navarro2,��, and Arlindo L. Oliveira1

1 INESC-ID / IST, R. Alves Redol 9, 1000 Lisboa, Portugal
aml@algos.inesc-id.pt

2 Dept. of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

3 Dept. of Computer Science, University of Lisbon, Portugal
lsr@di.fc.ul.pt

Abstract. Suffix trees are by far the most important data structure
in stringology, with myriads of applications in fields like bioinformatics,
data compression and information retrieval. Classical representations of
suffix trees require O(n log n) bits of space, for a string of size n. This is
considerably more than the n log2 σ bits needed for the string itself, where
σ is the alphabet size. The size of suffix trees has been a barrier to their
wider adoption in practice. A recent so-called fully-compressed suffix
tree (FCST) requires asymptotically only the space of the text entropy.
FCSTs, however, have the disadvantage of being static, not supporting
updates to the text. In this paper we show how to support dynamic
FCSTs within the same optimal space of the static version and executing
all the operations in polylogarithmic time. In particular, we are able to
build the suffix tree within optimal space.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing prob-
lems. Their many virtues have been described by Apostolico [1] and Gusfield [2].
The combinatorial properties of suffix trees have a profound impact in the bioin-
formatics field, which needs to analyze large strings of DNA and proteins with
no predefined boundaries. This partnership has produced several important re-
sults, but it has also exposed the main shortcoming of suffix trees. Their large
space requirements, together with their need to operate in main memory to be
useful in practice, renders them inapplicable in the cases where they would be
most useful, that is, on large texts.

The space problem is so important that it originated a plethora of research
results, ranging from space-engineered implementations [3] to novel data struc-
tures that simulate suffix trees, most notably suffix arrays [4]. Some of those
space-reduced variants give away some functionality in exchange. For exam-
ple suffix arrays miss the important suffix link navigational operation. Yet, all
� Supported by the Portuguese Science and Technology Foundation by grant

SFRH/BPD/34373/2006 and project ARN, PTDC/EIA/67722/2006.
�� Partially funded by Millennium Institute for Cell Dynamics and Biotechnology,

Grant ICM P05-001-F, Mideplan, Chile.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 191–203, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 L.M.S. Russo, G. Navarro, and A.L. Oliveira

these classical approaches require O(n log n) bits, while the indexed string re-
quires only n log σ bits (we write log for log2), n being the size of the string
and σ the size of the alphabet. For example the human genome requires 700
Megabytes, while even a space-efficient suffix tree on it requires at least 40 Gi-
gabytes [5], and the reduced-functionality suffix array requires more than 10 Gi-
gabytes. This is particularly evident in DNA because logσ = 2 is much smaller
than log n.

These representations are also much larger than the size of the compressed
string. Recent approaches [6] combining data compression and succinct data
structures have achieved spectacular results for the pattern search problem. For
example Ferragina et al. [7] presented an index that requires nHk + o(n log σ)
bits and counts the occurrences of a pattern of length m in time O(m(1 +
(logσ log n)−1)). Here nHk denotes the k-th order empirical entropy of the string
[8], a lower bound on the space achieved by any compressor using k-th order
modeling. As that index is also able of reproducing any text substring, its space
is asymptotically optimal in the sense that no k-th order compressor can achieve
asymptotically less space to represent the text.

It turns out that it is possible to use this kind of data structures, that we
will call compressed suffix arrays (CSAs)1, and, by adding a few extra struc-
tures, support all the operations provided by suffix trees. Sadakane presented
the first compressed suffix tree (CST) [5], adding 6n bits on top of the CSA.
Recently Russo et al. [9] achieved a fully-compressed suffix tree (FCST), which
works over the smallest existing CSA [7], adding only o(n log σ) bits to it. Hence
the FCST breaks the Θ(n) extra-bits space barrier and retains asymptotic space
optimality.

Albeit very interesting as a first step, the FCST has the limitation of being
static, and moreover of being built from the uncompressed suffix tree. CSAs
have recently overcome this limitation, starting with the structure by Chan et
al. [10]. In its journal version this work included the first dynamic CST, which
builds on Sadakane’s (static) CST [5] and retains its Θ(n) extra space penalty.
On the other hand, the smallest existing CSA [7] was made dynamic within the
same space by Mäkinen et al. [11], which was recently improved by González et
al. [12] so as to achieve logarithmic time slowdown. In this paper we make the
FCST dynamic by building on this latter dynamic CSA. We retain the optimal
space complexity and polylogarithmic time for all the operations.

A comparison between Chan et al.’s CST and our FCST is shown in Ta-
ble 1. Our FCST is not significantly slower, yet it requires much less space (e.g.
one can realistically predict 25% of Chan et al.’s CST space on DNA). For the
table we chose the smallest existing dynamic CSA, so that we show the time
complexities that can be obtained within the smallest possible space for both
CSTs.

All these dynamic structures, as well as ours, indeed handle a collection of
texts, where whole texts are added/deleted to/from the collection. Construction
in compressed space is achieved by inserting a text into an empty collection.

1 These are also called compact suffix arrays, FM-indexes, etc., see [6].

Dynamic Fully-Compressed Suffix Trees 193

Table 1. Comparing compressed suffix tree representations. The operations are defined
along Section 2. Time complexities, but not space, are big-O expressions. We give the
generalized performance (assuming Ψ, t, Φ ≥ log n) and an instantiation using δ =
(logσ log n) log n. For the instantiation we also assume σ = O(polylog(n)), and use the
dynamic FM-Index variant of González et al. [12] as the compressed suffix array (CSA),
for which the space holds for any k ≤ α logσ(n) − 1 and any constant 0 < α < 1.

Chan et al. [10] Ours

Space in bits |CSA| + O(n) + o(n)
= nHk + O(n) + o(n log σ)

|CSA| + O((n/δ) log n)
= nHk + o(n log σ)

SDep Φ = (logσ log n) log2 n Ψδ = (logσ log n) log2 n

Count/ Ancestor log n = log n 1 = 1
Parent log n = log n (Ψ + t)δ = (logσ log n) log2 n

SLink Ψ = log n (Ψ + t)δ = (logσ log n) log2 n

SLink
i Φ = (logσ log n) log2 n Φ + (Ψ + t)δ = (logσ log n) log2 n

Letter / Locate Φ = (logσ log n) log2 n Φ = (logσ log n) log2 n

LCA log n = log n (Ψ + t)δ = (logσ log n) log2 n

FChild/ NSib log n = log n (Ψ + t)δ + Φ log δ + (log n) log(n/δ)
= ((logσ log n) log2 n) log log n

Child Φ log σ = (log log n) log2 n (Ψ + t)δ + Φ log δ + (log n) log(n/δ)
= ((logσ log n) log2 n) log log n

WeinerLink t = log n t = log n

Insert(T) /
Delete(T)

|T |(Ψ + t)δ
= |T |(logσ log n) log2 n

|T |(Ψ + t)δ = |T |(logσ log n) log2 n

2 Basic Concepts

Fig. 1 illustrates the concepts in this section. We denote by T a string; by Σ the
alphabet of size σ; by T [i] the symbol at position (i mod n) (so the first symbol
is T [0]); by T.T ′ concatenation; by T = T [..i − 1].T [i..j].T [j + 1..] respectively
a prefix, a susbtring and a suffix; by Parent(v) the parent node of node v;
by TDep(v) its tree-depth; by Ancestor(v, v′) whether v is an ancestor of v′;
by LCA(v, v′) the lowest common ancestor.

The path-label of a node v in a labeled tree is the concatenation of the
edge-labels from the root down to v. We refer indifferently to nodes and to their
path-labels, also denoted by v. The i-th letter of the path-label is denoted as
Letter(v, i) = v[i]. The string-depth of a node v, denoted by SDep(v), is the
length of its path-label. Child(v, X) is the node that results of descending from
v by the edge whose label starts with symbol X , if it exists. The suffix tree of T
is the deterministic compact labeled tree for which the path-labels of the leaves
are the suffixes of T . We assume that T ends in a terminator symbol $ that does
not belong to Σ. The generalized suffix tree of a collection C of texts is the
tree that results from merging the respective suffix trees. Moreover each text is
assumed to have a distinct terminator. For a detailed explanation see Gusfield’s
book [2]. The suffix-link of a node v �= Root of a suffix tree, denoted SLink(v),
is a pointer to node v[1..]. Note that SDep(v) of a leaf v identifies the suffix of T

194 L.M.S. Russo, G. Navarro, and A.L. Oliveira

1 2 3 4 5 60

0 1234 56A:

b
a
b

b
$ $ $ $ $ $ $

b
aa

b
a
b

a
b

b

b

b

Fig. 1. Suffix tree T of string
abbbab, with the leaves numbered.
The arrow shows the SLink be-
tween node ab and b. Below it we
show the suffix array. The portion
of the tree corresponding to node
b and respective leaves interval is
within a dashed box. The sampled
nodes have bold outlines.

b

a

b

b

b

a

b$

a b
0

1

3

4

5

6

2

Fig. 2.
Reverse
tree T R

1 2
i: 01 234 56 7890 12 345 67 8901

((0)((1)(2))((3)(4)((5)(6))))

B: 1 0 0 0 101101 0 0 1
(0 1 2 (3)(4) 5 6)

i: 0 1 23 4 5

B: 1 0 0 0 1101101 0 0 11
(0 1 2 ((3)(4) 5 6))

i: 0 12 34 5 67

Fig. 3. Parentheses representa-
tions of trees. The parentheses
on top represent the suffix tree,
those in the middle the sampled
tree, and those on the bottom the
sampled tree when b is also sam-
pled along with the B bitmap.
The numbers are not part of the
representation; they are shown
for clarity. The rows labeled i:
give the index of the parentheses.

starting at position n−SDep(v) = Locate(v). For example T [Locate(ab$)..] =
T [7 − 3..] = T [4..] = ab$. The suffix array A[0, n − 1] stores the Locate

values of the leaves in lexicographical order. Note that in a generalized suffix
tree Locate must also identify the text to which the suffix corresponds. When
we use arithmetic expressions involving A and A−1 they are computed within
a given text, i.e. they do not jump to another text. Moreover for simplicity we
use only one text in our example and hence omit the text identifier. The suffix
tree nodes can be identified with suffix array intervals: each node corresponds to
the range of leaves that descend from v. The node b corresponds to the interval
[3, 6]. Hence the node v will be represented by the interval [vl, vr]. Leaves are also
represented by their left-to-right index (starting at 0). For example by vl − 1 we
refer to the leaf immediately before vl, i.e. [vl−1, vl−1]. With this representation
we can Count in constant time the number of leaves that descend from v. The
number of leaves below b is 4 = 6 − 3 + 1. This is precisely the number of times
that the string b occurs in the indexed string T . We can also compute Ancestor

in O(1) time: Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr.

3 Static Fully-Compressed Suffix Trees and Our Plan

In this section we briefly explain the static FCST we build on [9]. The FCST
consists of a compressed suffix array, a δ-sampled tree S, and mappings between
these structures. We also give the road map of our plan to dynamize the FCST.

Compressed Suffix Arrays (CSAs) are compact and functional represen-
tations of suffix arrays [6]. Apart from the basic functionality of retrieving

Dynamic Fully-Compressed Suffix Trees 195

A[i] = Locate(i) (within a time complexity that we will call Φ = Ω(log n)),
state-of-the-art CSAs support operation SLink(v) for leaves v. This is called
ψ(v) in the literature: A[ψ(v)] = A[v] + 1, and thus SLink(v) = ψ(v), let
its time complexity be Ψ = Ω(log n). The iterated version of ψ, denoted ψi,
can usually be computed faster than O(iΨ) with CSAs. This is achieved as
ψi(v) = A−1[A[v]+ i], let us assume that the CSA can also compute A−1 within
O(Φ) time. CSAs might also support the WeinerLink(v, a) operation [13]: for a
node v the WeinerLink(v, X) gives the suffix tree node with path-label X.v[0..].
This is called the LF mapping in CSAs, and is a kind of inverse of ψ, let its time
complexity be t = Ω(log n). Consider the interval [3, 6] that represents the leaves
whose path-labels start by b. In this case we have that LF(a, [3, 6]) = [1, 2], i.e.
by using the LF mapping with a we obtain the interval of leaves whose path-
labels start by ab. We extend of LF to strings, LF(X.Y, v) = LF(X,LF(Y, v)).

CSAs also implement Letter(v, i) for leaves v. The easiest case is the first
letter of a given suffix, Letter(v, 0) = T [A[v]]. This corresponds to v[0], the
first letter of the path-label of leaf v. Dynamic CSAs implement v[0] in time
O(log n). In general, Letter(v, i) = Letter(SLink

i(v), 0) is implemented in
O(Φ) time. CSAs are usually self-indexes, meaning that they replace the text:
they can extract any substring, of size
, of the indexed text in O(Φ +
Ψ) time.

In this paper we will use a dynamic CSA for this part [12], which implements
these operations with logarithmic slowdown to its static version [7]. The dynamic
CSA actually handles a collection of texts, where insertions and deletions of
whole texts T are carried out in time O(|T |(Ψ + t)).

The δ-Sampled Tree exploits the property that suffix trees are self-similar,
SLink(LCA(v, v′)) = LCA(SLink(v),SLink(v′)) whenever the expressions are
well defined. This means, roughly, that the tree structure below SLink(v) con-
tains the tree structure below v. Because of this regularity it is possible to store
only a few sampled nodes instead of the whole suffix tree. A δ-sampled tree S,
from a suffix tree T of Θ(n) nodes, chooses O(n/δ) nodes such that, for each
node v, node SLink

i(v) is sampled for some i < δ. Such a sampling can be
obtained by choosing nodes with SDep(v) ≡δ/2 0 such that there is another
node v′ for which v = SLink

δ/2(v′). For such a sampling Lemma 1 holds, where
LCSA(v, v′) is the lowest common sampled ancestor of v and v′:

Lemma 1. Let v, v′ be nodes such that SLink
r(LCA(v, v′)) = Root, and let

d = min(δ, r + 1). Then
SDep(LCA(v, v′)) = max0≤i<d{i + SDep(LCSA(SLink

i(v),SLink
i(v′)))}.

By itself however this property leads to an entangled loop of operations, because
LCA depends on SLink and SLink(v) = LCA(ψ(vl), ψ(vr)) depends on LCA.
Using CSAs and observing that LCA(v, v′) = LCA(min{vl, v

′
l}, max{vr, v

′
r}) we

can simplify this equation to SDep(LCA(v, v′)) = max0≤i<d{i +SDep(LCSA(
ψi(min{vl, v

′
l}), ψi(max{vr, v

′
r})))}.

Therefore the kernel operations can be computed as:

SDep(v) = SDep(LCA(v, v)) = max0≤i<d{i + SDep(LCSA(ψi(vl), ψi(vr)))}
LCA(v, v′) = LF(v[0..i − 1],LCSA(ψi(min{vl, v

′
l}), ψi(max{vr, v

′
r})))

196 L.M.S. Russo, G. Navarro, and A.L. Oliveira

from which SLink is obtained as well. The i in the last equation is the one
that maximizes SDep(LCA(v, v′)). Operation Parent(v) is easily computed
on top of LCA. These operations take time O((Ψ + t)δ), except that SDep

takes O(Ψδ).
Note that we have to solve LCSA. This requires to solve LCAS , that is, LCA

queries on the sampled tree S, and also to map nodes to sampled nodes using
operation LSA (see later). The sampled tree also needs to solve ParentS and
store SDepT . The rest is handled by the CSA.

For the dynamic version, we first show how the suffix tree T changes upon
insertion and deletion of texts T to the collection. Then we show how to maintain
the sampling properties of S under those updates of the (virtual) T . This will
require some more data to be stored in the sampled nodes. Finally, we will make
use of a dynamic parentheses representation for the sampled tree, which will
already give us LCAS and ParentS , as well as a way to associate data to
nodes and insert/delete nodes. Note that we just have to show how to provide
this basic tree functionality, as the remaining operations are obtained as in the
static version.

To support TDep, however, they add other O(n/δ) nodes to the sampling,
such that for any node v the node Parent

j(v) is sampled, for some 0 ≤ j <
δ. We have not found a way to efficiently maintain this second sampling in
a dynamic scenario. As a consequence, our dynamic FCST does not support
operation TDep nor those that require it [9]: LAQt and LAQs. The basic
navigation operations FChild and NSib also require TDep, but we will present
a different idea that solves them together with Child and a generalization of it,
using just the CSA.

Mapping Between the CSA and the Sampled Tree. For every node v of
the sampled tree we need to obtain the corresponding interval [vl, vr]. On the
other hand, given a CSA interval [vl, vr] representing node v of T , the lowest
sampled ancestor LSA(v) gives the lowest sampled tree node containing v. With
LSA we can compute LCSA(v, v′) = LCAS(LSA(v),LSA(v′)).

In this paper we introduce a new method to implement these mappings that
is efficient and simpler than the one presented in the static version [9].

4 Updating the Suffix Tree and Its Sampling

In this section we explain how to modify a suffix tree to reflect changes caused
by inserting and removing a text T to/from the suffix tree.

The CSA of Mäkinen et al. [11], on which we build, inserts T in right-to-left
order. It first determines the position of the new terminator2 and then uses LF

2 This insertion point is arbitrary in that CSA, thus there is no order among the texts.
Moreover, all the terminators are the same in the CSA, yet it can be easily modified
to handle different terminators.

Dynamic Fully-Compressed Suffix Trees 197

to find the consecutive positions of longer and longer suffixes, until the whole
T is inserted. This right-to-left method perfectly matches with Weiner’s algo-
rithm [13] to build the suffix tree of T : it first inserts suffix T [i + 1..] and then
suffix T [i..], finding the points in the tree where the node associated to the new
suffix is to be created if it does not already exist. The node is found by using
Parent until the WeinerLink operation returns a non-empty interval. This
requires one Parent and one WeinerLink amortized operation per symbol
of T . This algorithm has the important invariant that the intermediate data
structure is a suffix tree. Hence, by carrying it out in synchronization with the
CSA insertion algorithm, we can use the current CSA to implement Parent

and WeinerLink.
To maintain the property that the intermediate structure is a suffix tree,

deletion of a text T must proceed by first locating the node of T that corresponds
to T , and then using SLinks to remove all the nodes corresponding to its suffixes
in T . We must simultaneously remove the leaves in the CSA (Mäkinen et al.’s
CSA deletes a text right-to-left as well, but it is easy to adapt to use Ψ instead
of LF to do it left-to-right).

We now explain how to update the sampled tree S whenever nodes are inserted
or deleted from the (virtual) suffix tree T . The sampled tree must maintain, at all
times, the property that for any node v there is an i < δ such that SLink

i(v) is
sampled. The following concept from Russo et al. [14] is fundamental to explain
how to obtain this result.

Definition 1. The reverse tree T R of a suffix tree T is the minimal labeled
tree that, for every node v of T , contains a node vR denoting the reverse string
of the path-label of v.

We note we are not maintaining nor sampling T R, we just use it as a conceptual
device. Fig. 2 shows a reverse tree. Observe that since there is a node with path-
label ab in T there is a node with path-label ba in T R. We can therefore define
a mapping R that maps every node v to vR. Observe that for any node v of
T , except for the Root, we have that SLink(v) = R−1(Parent(R(v))). This
mapping is partially shown in Figs. 1 and 2 by the numbers. Hence the reverse
tree stores the information of the suffix links. By Height(vR) we refer to the
distance between v and its farthest descendant leaf. For a regular sampling we
choose the nodes for which TDep(vR) ≡δ/2 0 and Height(vR) ≥ δ/2. This
is equivalent to our sampling rules on T (Section 3): Since the reverse suffixes
form a prefix-closed set, T R is a non-compact trie, i.e. each edge is labeled by a
single letter. Thus, SDep(v) = TDep(vR). The rule for Height(vR) is obviously
related to that on SLink(v) by R. See Fig. 2 for an example of this sampling.

Likewise, stating that there is an i < δ for which SLink
i(v) is sampled is the

same as stating that there is an i < δ for which TDep(Parent
i(vR)) ≡δ/2 0 and

Height(Parent
i(vR)) ≥ δ/2 . Since TDep(Parent

i(vR)) = TDep(vR) − i,
the first condition holds for exactly two i’s in [0, δ[. Since Height is strictly
increasing the second condition holds for sure for the largest i. Notice that since
every sampled node has at least δ/2 descendants that are not sampled, this
means that we sample at most �4n/δ� nodes from a suffix tree with ≤ 2n nodes.

198 L.M.S. Russo, G. Navarro, and A.L. Oliveira

Notice that whenever a node is inserted or removed from a suffix tree it never
changes the SDep of the other nodes in the tree, hence it does not change any
TDep in T R. This means that whenever the suffix tree is modified the only
nodes that can be inserted or deleted from the reverse tree are the leaves. In T
this means that when a node is inserted it does not break a chain of suffix links;
it is always added at the beginning of such a chain. Weiner’s algorithm works
precisely by appending a new leaf to a node of T R.

Assume that we are using Weiner’s algorithm and decide that the node X.v
should be added and we know the representation of node v. All we need to do
to update the structure of the sampled tree is to verify that if by adding (X.v)R

as a child of vR in T R we increase the Height of some of ancestor, in T R, that
will now become sampled. Hence we must scan upwards in T R to verify if this
is the case. Notice that we already carry out this scanning as a side effect of
computing SLink(v), which also gives us the required SDep information. Also,
we do not need to maintain Height values. Instead, if the distance from (X.v)R

to the closest sampled node (v′)R is exactly δ/2 and TDep((v′)R) ≡δ/2 0, then
we know that v′ meets the sampling condition and we sample it.

Deleting a node (i.e. a leaf in T R) is slightly more complex and involves some
reference counting. This time assume we are deleting node X.v, again we need to
scan upwards, this time to decide whether to make a node non-sampled. However
SDep(v)−SDep(v′) < δ/2 is not enough, as it may be that Height(v′R) ≥ δ/2
because of some other descendant. Therefore every sampled node v′ counts how
many descendants it has at distance δ/2. A node becomes non-sampled only when
this counter reaches zero. Insertions and deletions of nodes in T must update
these counters, by increasing/decreasing them whenever inserting/deleting a leaf
at distance exactly δ/2 from nodes.

Hence to Insert or Delete a node requires O((Ψ + t)δ) time, plus the
time to manipulate the structure that holds the topology of S: we need to
carry out insertions/deletions of nodes, while maintaining information associ-
ated to them (SDep, reference counts). Section 5.2 shows that those opera-
tions do not dominate the time O((Ψ + t)δ) needed to maintain the sampling
conditions.

5 Dynamic Fully-Compressed Suffix Trees

In this section we present the compact data structures we use and create to
handle our dynamic structures: the CSA, the sampled tree, and the mappings.

5.1 Dynamic Compressed Suffix Arrays

To maintain a dynamic CSA we use the following result by González et al. [12],
which is an improvement upon those of Mäkinen et al. [11]:

Theorem 1. A dynamic CSA over a collection C of texts can be stored
within nHk(C) + o(n log σ) bits, for any k ≤ α logσ(n) − 1 and any constant
0 < α < 1, supporting all the operations with times t = Ψ = O(((logσ log n)−1 +

Dynamic Fully-Compressed Suffix Trees 199

1) log n), Φ = O((logσ log n) log2 n), and inserting/deleting texts T in time
O(|T |(t + Ψ)).

Note that for a collection with p texts it is necessary to store the positions of the
texts in A. This requires O(p log n) bits but it is not an issue unless the texts
are very short [11].

Therefore, the problem of maintaining a dynamic CSA is already solved, ex-
cept that we promised to support operation ChildT (and some derivatives) di-
rectly on the CSA. Indeed, ChildT (v, X) can be easily computed in O(Φ log n)
time by binary searching for the interval of v = [vl, vr] formed by those v′ where
Letter(v′,SDep(v) + 1) = X . Similarly, FChild(v) can be determined by
computing X = Letter(vl,SDep(v) + 1) and then ChildT (v, X). To compute
NSib(v) the process is similar: If Parent(v) = [v′l, v

′
r] and v′r > vr, then we

compute X = Letter(v′r +1,SDep(v) + 1) and do ChildT (v, X). All the time
complexities are thus dominated by that of ChildT .

Now we show how ChildT can be computed in a more general and efficient
way. The generalized branching for nodes v1 and v2 consists in determining the
node with path-label v1.v2 if it exists. A simple solution is to binary search the
interval of v1 for the sub-interval of the v′’s such that ψm(v′) ∈ v2, where m =
SDep(v1). This approach requires O(Φ log n) time and it was first considered
using CSA’s by Huynh et al. [15]. Thus we are able to generalize ChildT (v, X),
which uses v2 as the sub-interval of A of the suffixes starting with X .

This general solution can be improved by noticing that we are using SLink
i

at arbitrary positions of the CSA for the binary search. Recall that SLink
i is

solved via A and A−1. Thus, we could sample A and A−1 regularly so as to
store their values explicitly. That is, we explicitly store the values A[jδ] and
A−1[jδ] for all j. To solve a generalized branching, we start by building a table
of ranges D[0] = v2 and D[i] = LF(v1[m − i..m − 1], v2), for 1 ≤ i < δ. If
m < δ the answer is D[m]. Otherwise, we binary search the interval of v1,
accessing only the sampled elements of A. To determine the branching we should
compute ψm(jδ) = A−1[A[jδ] + m] for some jδ values in v1. To use the cheaper
sampled A−1 as well, we need that A[jδ] + m be divisible by δ, thus we instead
compute ψm′

for m′ = �(A[jδ]+m)/δ�δ −A[jδ]. Hence instead of verifying that
ψm(jδ) ∈ v2, we verify that ψm′ ∈ D[m − m′]. After this process we still have
to binary search an interval of size O(δ), which is carried out naively.

The overall process requires time O(Φ + (Ψ + t)δ) to access the last letters
of v1 and build D, plus O((log n) log(n/δ)) for binary searching the samples;
plus O(Φ log δ) for the final binary searches. We have assumed O(log n) time to
access the sampled A and A−1 values in a dynamic scenario, whereas in a static
scenario3 it would be O(1).

In fact in a dynamic scenario we do not store exactly the A[jδ] values; instead
we guarantee that for any k there is a k′ such that k − δ < k′ ≤ k and A[k′] is
sampled, and the same for A−1. Still the sampled elements of A and the m′ to use
can be easily obtained in O(log n) time. Those sampled sequences are not hard to
maintain. For example, Mäkinen et al. [11, Sec. 7.1 of journal version] describes
3 This speedup immediatly improves the results of Huynh et al. [15].

200 L.M.S. Russo, G. Navarro, and A.L. Oliveira

how to maintain A−1 (called SC in there), and essentially how to maintain A
(called SA in there; the only missing point is to maintain approximately spaced
samples in A, which can be done exactly as for A−1).

5.2 Dynamic Sampled Trees

The sampled tree contains only O(n/δ) nodes. As such it could be stored with
pointers using only O((n/δ) log n) bits. Instead we use a dynamic parentheses
data structure given by Chan et al. [10], which already supports LCA.

Theorem 2. A list of O(n/δ) balanced parentheses can be maintained in O(n/δ)
bits supporting the following operations in O(log n) time:

– FindMatch(u), finds the matching parenthesis of u;
– Enclose(u), finds the nearest pair of matching parentheses that encloses u;
– DoubleEnclose(u, u′), finds the nearest pair of parentheses that encloses

both u and u′;
– Insert(u, u′), Delete(u, u′), inserts or deletes the matching parentheses

located at u, u′.

The Enclose primitive computes ParentS in the sampled tree. Likewise the
DoubleEnclose primitive computes the LCAS operation. In Section 5.3 we
explain how to update the parentheses sequence when a node becomes sampled
or non-sampled (i.e. , how to maintain the mapping with the CSA). Operations
Rank and Select on the sequence of parentheses S can also be used to store in-
formation on the nodes, by mapping between the parentheses sequence and their
preorder values and vice versa: Rank′(′(S, i) gives the preorder number of the
node identified by the opening parenthesis at S[i], while Select′(′(S, j) identi-
fies the j-th node (in preorder) in S. Rank and Select over the parentheses
bitmap can be handled using the following theorem.

Theorem 3 ([11]). A bitmap of n bits supporting Rank, Select, Insert and
Delete in O(log n) time can be maintained in nH0 + O(n/

√
log n) bits.

Eachnode ofS must also store its SDep. This is not complicatedbecause the SDep

of the nodes of T does not change, at least using Weiner’s algorithm.Thuswe main-
tain a balanced tree where the SDep values can be read, inserted, and deleted, at
the positions given by Rank′(′(S, i). When a node becomes sampled/non-sampled
we insert/delete in this sequence. A similar mechanism is used to store the refer-
ence counts used for the sampling; in this case the stored values can be modified as
well. Thus O(log n) time suffices for simulating the tree operations on S.

5.3 Mapping from CSA to the Sampled Tree and Back

The lowest sampled ancestor LSA is the way to map from the CSA to S. LSA

is computed by using an operation Reduce(v), that receives the numeric rep-
resentation of leaf v and returns the position, in the parentheses representation
of the sampled tree, where that leaf should be. Consider for example the leaf
numbered 5 in Fig. 3. This leaf is not sampled, but in the original tree it appears
somewhere between leaf 4 and the end of the tree, more specifically between

Dynamic Fully-Compressed Suffix Trees 201

parenthesis ’)’ of 4 and parenthesis ’)’ of the Root. We assume Reduce returns
the first parenthesis, i.e. Reduce(5) = 4. In this case since the parenthesis we
obtain is a ’)’ we know that LSA should be the parent of that node. Hence we
compute LSA as follows:

LSA(v) =
{

Reduce(v) , if S[Reduce(v)] = ′(′

Parent(Reduce(v)) , otherwise

We present a new way to compute Reduce in O(log n) time and o(n) bits
(cf. [9]). We use a bitmap B initiated with n bits all equal to 0. Now for every
node v = [vl, vr] we insert a 1 at Select0(B, vl) and after Select0(B, vr), which
yields a bitmap with n + O(n/δ) bits. In our example it is 1000101101001, see
Fig. 3. Hence we have the following relation Reduce(v) = Rank1(B,Select0(
B, v + 1)) − 1. We do not store B uncompressed, but rather using Theorem 3,
which requires only O((n/δ) log n) bits as there are few 1’s in B. When a node
[vl, vr] becomes sampled we insert matching parentheses at S[Reduce(vl)] and
after S[Reduce(vr)]. Also, it is necessary to insert the new 1’s in B as before.
Fig. 3 illustrates the effect of sampling b = [3, 6].

Updating S when a sampled node v becomes non-sampled is easy, as we can
obtain the parentheses u, u′ to delete. We must also delete the corresponding
1’s in B; note that the relative position of a 1 in a run of 1’s is irrelevant.
Therefore Reduce can be computed in O(log n) time. According to our previous
explanation, so can LSA and LCSA, for leaves.

To map in the other direction, each node in the sampled tree must know
its corresponding interval [vl, vr]. This is also easy to obtain from B. Let u
be the position in S of the opening parenthesis that identifies sampled node
v. The corresponding closing parenthesis is u′ = FindMatch(u). Now vl =
Rank0(B,Select1(B, u + 1)) and vr = Rank0(B,Select1(B, u′ + 1)) − 1.

6 Putting All Together

The following theorem summarizes our result.

Theorem 4. It is possible to represent the suffix tree of a dynamic text collection
within the space and time bounds given in Table 1. The space and the variables
Ψ , Φ, t, can be instantiated to the values of Theorem 1 for δ = ω(logσ n), or to
another dynamic CSA supporting ψ, A, A−1, LF, and T [A[v]], in times O(Ψ),
O(Φ), O(Φ), O(t), and O(log n), respectively, provided texts are inserted in right-
to-left order and deleted in left-to-right order within the given time bounds.

We note that Theorem 4 assumes that �log n� is fixed, and so is δ. This assump-
tion is not uncommon in dynamic data structures, even if it affects assertions
like that of pointers taking O(log n) bits. The CSA used in Theorem 1 can han-
dle varying �log n� within the same worst-case space and complexities, and the
same happens with Theorem 3, which is used for the mapping bitmap B. The
only remaining part is the sampled tree. We discuss now how to cope with it
while retaining the same space and worst-case time complexities.

202 L.M.S. Russo, G. Navarro, and A.L. Oliveira

We use δ = �log n�·�logσ�log n��, which will change whenever �log n� changes
(sometimes will change by more than 1). Let us write δ = Δ(
) =
�logσ
�. We
maintain
 = �log n�. As S is small enough, we can afford to maintain three
copies of it: S sampled with δ, S− with δ− = Δ(
 − 1), and S+ sampled with
δ+ = Δ(
 + 1). When �log n� increases (i.e. n doubles), S− is discarded, the
current S becomes S−, the current S+ becomes S, we build a new S+ sampled
with Δ(
 + 2), and
 is increased. A symmetric operation is done when �log n�
decreases (i.e. n halves due to deletions), so let us focus on increases from now
on. Note this can occur in the middle of the insertion of a text, which must be
suspended, and then resumed over the new set of sampled trees.

The construction of the new S+ can be done by retraversing all the suffix
tree T deciding which nodes to sample according to the new δ+. An initially
empty parentheses sequence and a bitmap B initialized with zeros would give
the correct insertion points from the chosen intervals, as both structures are
populated. To ensure that we consider each node of T once, we process the
leaves in order (i.e. v = [0, 0] to v = [n − 1, n − 1]), and for each leaf v we
also consider all its ancestors [vl, vr] (using ParentT) as long as vr = v. For
each node [vl, vr] we consider, we apply SLink at most δ+ times until either
we find the first node v′ = SLink

i([vl, vr]) which either is sampled in S+, or
SDep(v′) ≡δ+/2 0 and i ≥ δ+/2. If v′ was not sampled we insert it into S+, and
in both cases we increase its reference count if i = δ+/2 (recall Section 4).

All the δ+ suffix links in T are computed in O(δ+(Ψ + t)) time, as they form a
single chain. Therefore the solution maintains the current complexities, yet only
in an amortized sense.

Deamortization can be achieved by the classical method of interleaving the
normal operations of the data structure with the construction of the new S+.
By performing a constant number of operations on the new S+ for each inser-
tion/deletion operation over C, we can ensure that the new S+ will be ready in
time. The challenge is to maintain the consistency of the traversal of T while
texts are inserted/deleted.

As we insert a text, the operations that update T consist of insertion of leaves,
and possibly creation of a new parent for them. Assume we are currently at node
[vl, vr] in our traversal of T to update S+. If a new node [v′l, v

′
r] we are inserted

is behind the current node in our traversal order (that is, v′r < vr, or v′r = vr and
v′l > vl), then we consider [v′l, v

′
r] immediately; otherwise we leave this for the

moment when we will reach [v′l, v
′
r] in our traversal. Recall from Section 4 that

those new insertions do not affect the existing SDeps nor suffix link paths, and
hence can be considered independently of the current traversal process. Similarly,
deleted nodes that fall behind the current node are processed immediately, and
the others left for the traversal to handle it.

If
 decreases while we are still building S+, we can discard it even before
having completed its construction. Note that in general discarding a tree when

changes involves freeing several data structures. This can also be done progres-
sively, interleaved with the other operations.

Dynamic Fully-Compressed Suffix Trees 203

7 Conclusions

We presented the first dynamic fully-compressed representation of suffix trees
(FCSTs). Static FCSTs broke the Θ(n) bits barrier of previous representations
at a reasonable (and in some cases no) time complexity penalty, while retaining
a surprisingly powerful set of operations. Dynamic FCSTs permit not only man-
aging dynamic collections, but also building static FCSTs within optimal space.
Hence the way is open to practical implementations of this structure, which can
run in main memory for very large texts.

We also gave some relevant results for the static case, as we improved or
simplified the operations Reduce and Child. A challenge for future work is to
obtain operations TDep, LAQt, and LAQs, which we were not able to maintain
in a dynamic scenario.

Acknowledgments. We are grateful to Veli Mäkinen and Johannes Fisher for
pointing out the generalized branching problem to us.

References

1. Apostolico, A.: Combinatorial Algorithms on Words. In: The myriad virtues of
subword trees. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

2. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge, UK (1997)

3. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw. Pract. Exper. 33(11), 1035–1049 (2003)

4. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

5. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41, 589–607 (2007), http://dx.doi.org/10.1007/s00224-006-1198-x

6. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
2 (2007)

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algor. 3(2), 20 (2007)

8. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

9. Russo, L., Navarro, G., Oliveira, A.: Fully-Compressed Suffix Trees. In: LATIN.
LNCS, vol. 4957, pp. 362–373. Springer, Heidelberg (2008)

10. Chan, H.-L., Hon, W.-K., Lam, T.-W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM Trans. Algorithms 3(2) (2007)

11. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp.
307–318. Springer, Heidelberg (to appear in ACM TALG, 2006)

12. González, R., Navarro, G.: Improved dynamic rank-select entropy-bound struc-
tures. In: LATIN. LNCS, vol. 4957, pp. 374–386. Springer, Heidelberg (2008)

13. Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. on Switching and
Automata Theory, pp. 1–11 (1973)

14. Russo, L., Oliveira, A.: A compressed self-index using a Ziv-Lempel dictionary. In:
Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209,
pp. 163–180. Springer, Heidelberg (2006)

15. Huynh, T.N.D., Hon, W.-K., Lam, T.W., Sung, W.-K.: Approximate string match-
ing using compressed suffix arrays. Theor. Comput. Sci. 352(1-3), 240–249 (2006)

http://dx.doi.org/10.1007/s00224-006-1198-x

A Linear Delay Algorithm for Building Concept

Lattices

Martin Farach-Colton and Yang Huang�

Department of Computer Science, Rutgers University, Piscataway, NJ 08854
farach@cs.rutgers.edu, yahuang@cs.rutgers.edu

Abstract. Concept lattices (also called Galois lattices) have been ap-
plied in numerous areas, and several algorithms have been proposed to
construct them. Generally, the input for lattice construction algorithms is
a binary matrix with size |G||M | representing binary relation I ⊆ G×M
. In this paper, we consider polynomial delay algorithms for building con-
cept lattices. Although the concept lattice may be of exponential size,
there exist polynomial delay algorithms for building them. The current
best delay-time complexity is O(|G||M |2). In this paper, we introduce
the notion of irregular concepts, the combinatorial structure of which al-
lows us to develop a linear delay lattice construction algorithm, that is,
we give an algorithm with delay time of O(|G||M |). Our algorithm avoids
the union operation for the attribute set and does not require checking if
new concepts are already generated. In addition, we propose a compact
representation for concept lattices and a corresponding construction algo-
rithm. Although we are not guaranteed to achieve optimal compression,
the compact representation can save significant storage space compared
to the full representation normally used for concept lattices.

1 Introduction

Concept lattices have proved useful in many areas, such as knowledge represen-
tation [13], information retrieval [3], web document management [4,8], software
engineering [16] and bioinformatics [6,11]. Of particular importance in these ap-
plications is the structure of the lattice, i.e. the Hasse diagram of the concept
lattices. For example, the immediate predecessors and successors of a concept
are used in browsing web documents [8] or to infer the class hierarchy of a pro-
gram [16]. The edge information of Hasse diagrams can be used to compare two
concept lattices in which gene expression information has been coded [6].

A concept lattice can be briefly defined as follows. Given a binary relation
between an object set and an attribute set, a concept is a pair of object set A
and attribute set B, denoted as (A, B), where A contains all objects sharing
every attribute in B and B contains all attributes shared by every object in A.
A concept lattice is the partially ordered set of all concepts, in which the order

� Yang Huang is currently at NCBI/NLM/NIH, 8600 Rockville Pike, Room 8N811I,
Bethesda, MD 20894. This work was done when he was at Rutgers University.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 204–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Linear Delay Algorithm for Building Concept Lattices 205

is defined using subset order on object sets (which is equivalent to containment
order on attribute sets).

In real-world applications, we often find that it is necessary to construct a
concept lattice from large amount of input data. It is known that the number of
concepts in a concept lattice can be exponential in the size of the input binary
matrix. The problem of deciding the number of concepts has been shown to be
#P-complete [19].

Constructing a concept lattice is a type of enumeration problem. Algorithms
for enumeration problems are typically measured both by total time complexity
and delay-time complexity [12]. The running time of algorithms with polynomial
total time is a polynomial in the size of the input and output. Polynomial delay
time means that there is a polynomial in the input size that bounds the time
to the first entity outputted as well as the delay between any two consecutive
output entities. An algorithm with polynomial delay-time complexity has total
polynomial running time, which is the polynomial delay time multiplied by the
output size. Algorithms with polynomial delay time are often preferred because
they allow us to predict the time to get the next entity. They allow the procedure
of entity processing to follow immediately. They also allow to generate a subset
of entities without generating others.

Related Work. The problem of generating the set of concepts is closely related
to two other important problems: generating all maximal bipartite cliques in a
given bipartite graph Gb = (V1, V2, E) and generating all frequent closed item-
sets in a transaction database [21]. Note that generating all maximal bipartite
cliques or all frequent closed itemsets is not enough for generating a concept
lattice since a concept lattice requires the partial order among all concepts be
recovered. A maximal bipartite clique corresponds to a concept if we consider Gb

as a representation for the matching relation between two parts of Gb’s vertices.
A frequent closed itemset corresponds to a concept whose object set size is larger
than a certain threshold. Eppstein [7] showed that the number of all maximal
bipartite cliques is O(|V (G)|) in a graph with bounded arboricity and gave a
linear total time algorithm, where V (G) is the vertex set of G. An algorithm for
generating all maximal bipartite cliques in any bipartite graph was designed by
Makino and Uno [14]. It takes O(Δ2) polynomial delay, where Δ is the maxi-
mum degree of Gb. Given |V1| = |G| and |V2| = |M |, then Δ = max(|G|, |M |).
CLOSET+ [18], CHARM [20] and LCM2 [17] are among state-of-the-art algo-
rithms for generating the set of frequent closed itemsets.

However, though many algorithms are available for generating the set of con-
cepts and some of them are quite fast, few algorithms compute the edge structure
of the lattice. Bordat’s algorithm [2] uses a trie to store and retrieve concepts
with delay-time complexity O(|G||M |2), where G is the input object set and M
is the input attribute set. Without loss of generality, we will assume |G| ≥ |M |.
Depending on the value of Δ, the delay-time complexity of Makino and Uno’s
algorithm [14] may be better than O(|G||M |). However, it can not be bound by
O(|G||M |) in the worst case. The best polynomial delay-time complexity of algo-
rithms for constructing a concept lattice in terms of |G| and |M | is O(|G||M |2).

206 M. Farach-Colton and Y. Huang

Godin et al. [10] proposed an incremental algorithm that dynamically updates
the structure of the concept lattice as new rows or columns are added to the
input matrix. The algorithm by Nourine and Raynaud [15] has the best known
total time complexity O(|G||M ||B|), where B is the set of all concepts. But it
is not a polynomial delay algorithm. Recently, Choi [5] proposed an efficient
concept lattice construction algorithm with complexity O(

∑
a∈ext(C) |cnbr(a)|),

where ext(C) is the object set of the concept C and cnbr(a) is a reduced attribute
set of a. However, it seems to us that the condition used in the algorithm, which
is to check if a newly generated pair of object set and attribute set is a con-
cept, is not sufficient. Berry et al. [1] suggested constructing concept lattices
by searching non-dominating maxmods in a co-bipartite graph. The complexity
is O(|G||M |) per concept plus O(|G||M |2) per traversed maximal chain of the
lattice.

Our Results. In this paper, we propose a concept lattice construction algo-
rithm with delay O(|G||M |), which is linear in the size of the input matrix.
Though the total time complexity of our algorithm, O(|G||M ||B|), ties with that
of Nourine and Raynaud, our algorithm is a polynomial delay algorithm, which
their algorithm is not. By introducing the set of irregular concepts, we ensure
that when we compute the union of several attribute sets they are disjoint. Our
algorithm also avoids the operation to check if a newly generated pair of ob-
ject set and attribute set is a concept or if it is going to be subsumed, as most
previous algorithms do.

The usual way to represent a concept is by a pair of its object set and attribute
set, which contain a lot of redundant information. We call this the full represen-
tation. The space required for storing the full representation of all concepts is
O(|G||B|). We propose a compact representation for concept lattices, in which
we represent a concept in terms of the set difference between its object/attribute
set and the one in one of its predecessors. In the optimal case, a compact rep-
resentation only requires O(|B|) space for all concepts, which reaches the lower
bound. Given the compact representation of a concept lattice, we can easily re-
cover the full representation in linear time. We modify our algorithm for the full
representation to construct a compact representation.

From now on, we will refer to concept lattices as lattices from time to time
when the context is clear. The remaining of the paper is organized as follows: We
introduce the basics of lattices in section 2. In section 3 we present some charac-
terization for lattices. We introduce our algorithm for the full representation in
section 4 and the modified version for the compact representation in section 5.
Finally, we conclude in section 6 and discuss some future research direction.

2 Preliminary

In this section we will give a brief overview for lattices. For a complete intro-
duction, please refer to the book [9]. Many of our notations follow the ones used
in the book. Given a context (G, M, I) where G is the object set and M is the

A Linear Delay Algorithm for Building Concept Lattices 207

attribute set, a binary matrix R is used to represent the relation I ⊆ G×M , i.e.
Ri,j = 1 if (gi, mj) ∈ I where gi ∈ G and mj ∈ M and Ri,j = 0 otherwise. For
gi ∈ G, we define g′i = {mj|Ri,j = 1}. Furthermore, for an object set A ⊆ G,
we denote A′ = ∩gi∈Ag′i. Dually, we define m′j = {gi|Ri,j = 1} for mj ∈ M and
B′ = ∩mj∈Bm′j for B ⊆ M . With the above notation we are ready to define the
concept.

Definition 2.1. The concept is a pair (A, B) where A ⊆ G, B ⊆ M , A = B′

and B = A′. A is called extent and B is called intent of the concept.

For a concept C = (A, B), we denote A as ext(C) and B as int(C). We call a set
A closed if A = A′′. The extent and intent of a concept are closed sets. It can be
seen that a closed object set A or a closed attribute set B uniquely determines
a concept (A, A′) or (B′, B).

A partial order � is defined on B, the set of all concepts:

Definition 2.2. If ext(C) ⊆ ext(D) (int(D) ⊆ int(C)), then C � D. C is called
successor of D and D is called predecessor of C.

Please note that definition of predecessors and successors in a concept lattice
may be somewhat counter-intuitive. However, this way successors will be placed
in a lower lever, below its predecessors, in the diagram representing a concept
lattice. The diagram will be shown next. According to the definition, a concept
is a predecessor and a successor of itself. In particular, if C is a successor of D
other than D itself and ∀E such that C � E � D implies E = C or E = D, then
C is an immediate successor of D and D is an immediate predecessor of C.

Definition 2.3. The partially ordered set L(G, M, I) = 〈B, �〉 is called concept
lattice or Galois lattice.

The diagram representing a partially ordered set is called Hasse diagram, where
a vertex represents a concept, and two concepts are connected by an edge if one
concept is an immediate successor of the other. We show a lattice example in
the Figure 1.

Later we will need the definition of the infimum.

Definition 2.4. The infimum of a subset S of a partially ordered set (P, �),
denoted as ∧S, is an element l of P such that

1. ∀x ∈ S, l � x, and
2. for any p ∈ P such that ∀x ∈ S, p � x, it holds that p � l.

3 Some Characterization of Lattices

In this section, we will present some characterization of lattices, which will help
us design the lattice construction algorithm. Due to the limit of space, all the
proof is omitted.

208 M. Farach-Colton and Y. Huang

1 2 3 4

a × ×
b × × ×
c × ×
d × ×

(abc,1) (bd,24)

(ac,13)

(abcd, ø)

(ø, 1234)

(b,124)

(b)(a)

Fig. 1. (a) A binary matrix representing I , where the entry corresponding to gi and
mj is x iff (gi, mj) ∈ I . G = {a, b, c, d} and M = {1, 2, 3, 4}. (b) The Hasse diagram of
the lattice constructed from (G, M, I). The lattice is represented in full representation.

We need the following known result:

Proposition 3.1. [9] For a concept C ∈ B in the lattice L, C and all of its
successors forms a concept lattice, denoted by LC.

In the following, we will first define regular and irregular concepts. Then we will
present a lemma on the concept C and its irregular successors.

Suppose D is a concept in the lattice LC , and denote the set of its immediate
predecessors that are successors of C by IP CD. In addition, suppose IP CD = {Di|i ∈
[1..n]}, we denote the set

⋃n
i=1 int(Di), the union of the intent of concepts in

IP CD, by int(IP CD).

Definition 3.1. If int(D) = int(IP CD), D is called regular concept of C. If
int(D) ⊃ int(IP CD), D is called irregular concept of C.

Note that an irregular concept D of C is not necessarily meet-irreducible in LC ,
where D is meet-irreducible if D = ∧{E , F} ⇒ D = E or D = F , because D can
have more than one immediate predecessor in LC .

Any immediate successor of C is an irregular concept of C. We denote the
set of all C’s irregular concepts by IRC . The following proposition will help us
identify immediate successors of C from IRC .

Proposition 3.2. Given Ci ∈ IRC, it is an immediate successor of C if and
only if there is no Cj ∈ IRC , j = i such that Ci � Cj.

The following lemma shows one of important properties of IRC :

Lemma 3.1. Suppose IRC = {Ci|i ∈ T }, where T is an index set. Given Ci ∈
IRC, let Vi = int(IP CCi

) and let Bi = int(Ci) \ Vi. If i, j ∈ T and i = j, then
Bi ∩ Bj = ∅, and

⋃
i∈T Bi =

⋃
g∈ext(C) g′ \ int(C).

The above lemma indicates that {Bi|i ∈ T } constitutes a partition of⋃
g∈ext(C) g′ \ int(C), which is the set of attributes belonged to some g ∈ ext(C)

but not appearing in int(C). Since Bi ∩ Bj = ∅, Bi = ∅, Bj = ∅ and
Bi ⊆ M, Bj ⊆ M , we have a direct corollary from the lemma:

A Linear Delay Algorithm for Building Concept Lattices 209

(c,3)

(ac,3)

(b,4)

(ad,12) (b,4)

(abcd,)

(b,4)

(d,1) (b,4)

(b,4)

(b)(a)

Fig. 2. (a) Irregular concepts regarding (abcd, ∅), (bd, 3) and (abc, 1). The concepts
pointed by an arrow and connected to (abcd, ∅) ((bd, 3)/(abc, 1)) by dashed lines are
its irregular concepts. Note that the lattice is in the full representation. (b) The same
lattice in a compact representation computed by our algorithm. For each concept, a
directed edge points to its base.

Corollary 3.1. For any concept C, |IRC | ≤ |M |.

Since Bi is still “partial” compared to int(Ci), let us introduce the set
{(ext(Ci), Bi)|Ci ∈ IRC} as PIRC , where Bi is defined as in Lemma 3.1.
Please note that the only difference between PIRC and IRC is that the at-
tribute set in PIRC is not complete yet. To see some examples of PIR,
let C = (abcd, ∅), C1 = (bd, 3) and C2 = (abc, 1) in Figure 2 (a).
Then PIRC = {(bd, 3), (abc, 1), (acd, 4), (bc, 2)}. PIRC1 = {(b, 1), (d, 4)}. And
PIRC2 = {(b, 3), (bc, 2), (ac, 4)}.

For a concept in LC , the following corollary makes it easy to identify its
predecessors in PIRC .

Corollary 3.2. Given C, ∀(Ai, Bi) ∈ PIRC, ∀D � C, if int(D) ∩ Bi = ∅, then
D � E, where E = (Ai, A

′

i).

Since IRC contains all C’s immediate successors, we will be able to generate the
sublattice LC if we can generate IRC . Actually we can obtain IRC by augmenting
the attribute set Bi in PIRC in a certain way. The theorem that will be shown
next provides the basis for the processing.

Given Cj ∈ IRC = {Ci|i ∈ T }, where T is an index set, we define an
equivalence relation ∼j on the set T \ {j}. i ∼j k if ext(Ci) ∩ ext(Cj) =
ext(Ck) ∩ ext(Cj) = ∅ for i, k ∈ T \ {j}. Let the resulting equivalence classes
on T be [j1], [j2], . . . , [jr]. For each equivalence class [jh], h ∈ [1..r], let us denote
Ajh

= ext(Ci) ∩ ext(Cj), i ∈ [jh] and Bjh
=

⋃
i∈[jh] Bi.

When we proceed to our main theorem in this section, the following proposi-
tion will become useful:

Proposition 3.3. {Bjh
|h ∈ [1..r]} constitutes a partition of

⋃
g∈ext(Cj) g′ \

(int(C) ∪ Bj), where [j1], [j2], . . . , [jr] are equivalent classes defined above.

Theorem 3.1. If Cj ∈ IRC is an immediate successor of C, then PIRCj =
{(Ajh

, Bjh
)|h ∈ [1..r]}.

210 M. Farach-Colton and Y. Huang

It is easy to extend the theorem to the case that Cj ∈ IRC is not an immediate
successor of C.

Corollary 3.3. If Cj ∈ IRC is not an immediate successor of C, then PIRCj ∪
{(ext(Cj), int(Cj) \ (int(C) ∪ Bj))} = {(Ajh

, Bjh
)|h ∈ [1..r]}.

4 Algorithm for the Full Representation

We will present a lattice construction algorithm which generates a lattice in the
full representation. The input for the algorithm is a binary matrix R with |G|
rows and |M | columns representing the relation I between the object set G and
the attribute set M , where Ri,j = 1 if and only if (gi, mj) ∈ I.

4.1 Overview

The algorithm builds the lattice while traversing it in depth first search (DFS).
Each node will represent a concept. Suppose the node C, is already visited. And
suppose PIRC is already generated, each element of which is put in a child node
of C. These child nodes are sorted in the ascending order by the size of the
object set in each child node. Though the intent of those concepts represented
by the child nodes is not complete yet, we will still represent the nodes by Cj .
Note that the following conditions are met: Each shadow child node, which will
be introduced below, of C contains (Aj , sj) where sj = |Bj |, (Aj , Bj) ∈ PIRC ;
All unvisited child nodes are of form (Aj , Bj) ∈ PIRC. When the algorithm
visits a child node Cj = (Aj , Bj) for the first time, it begins to traverse the
sublattice LCj . It will first generate PIRCj as Cj’s child nodes, which contains
all immediate successors of Cj . To do so, the algorithm uses GeneratePIR(Cj,
C) and SearchEquiClass(Cj, C) to generate PIRCj as Theorem 3.1 indicates. In
GeneratePIR, we generate two kinds of child nodes using intersection on extents.
One is marked as unvisited and the other is marked as shadow. There is no need
to call GeneratePIR for a shadow node since its corresponding concept, say F ,
and all F ’s successors have already been generated at that time because of DFS
traversal. As we will see, a shadow node will never enter the stack. The shadow
nodes are used to prevent generating a concept more than once without losing
track of its immediate successors. Each shadow node has a pointer pointing to
the corresponding concept in the lattice.

After the child nodes of Cj are generated, the algorithm uses SearchEquiClass
to find equivalence classes [jr] , where each class corresponds to Cj or a member
in IRCj . If a class contains a shadow node, it means that the concept corre-
sponding to the class is already visited. If not, it means that the corresponding
concept is unvisited yet. In both cases, we remove the child nodes under Cj for
memory reuse. By Proposition 3.2, we check if there exists an equivalence class
with |Ajh

| = |Aj | to determine if Cj is an immediate successor of C or not. By
Proposition 3.3, when we generate Bjh

and (Aj)
′

no actual union operation is
required since Bis are disjoint. After constructing LCj by repeatedly calling Gen-
eratePIR and SearchEquiClass, the algorithm will then visit C’s next unvisited
child node which is right after Cj in the child node list of C.

A Linear Delay Algorithm for Building Concept Lattices 211

4.2 Implementation

The pseudo-code of GeneratePIR(Cj, C) and SearchEquiClass(Cj, C) is shown
by Algorithms 1 and 2, respectively.

In GeneratePIR, we generate a shadow node (Aj ∩ Ai, si) under Cj when Ci

is a shadow node. To obtain a pointer to the concept for (Aj ∩ Ai, si), we can
either build a trie or a hash table for the object sets of concepts generated so far
to facilitate the search. Note that if we are only going to generate all concepts,

Algorithm 1. GeneratePIR(Cj, C)
for each child node Ci �= Cj of C do

if Ci = (Ai, Bi) is unvisited then
put an unvisited node (Aj ∩ Ai, Bi) under Cj ;
put a shadow node (Aj ∩ Ai, |Bj |) under Ci; {This is a shadow node for (Aj ∩
Ai, (Aj ∩ Ai)

′).}
else if Ci = (Ai, si) is a shadow node and Ai has not intersected with Aj then

put a shadow node (Aj ∩ Ai, si) under Cj ;
end if

end for
mark Cj as visited;

Algorithm 2. SearchEquiClass(Cj, C)
group Cj = (Aj , Bj)’s child nodes according to their object set to find equivalence
classes [jh], h ∈ [1..r];
if |Ajh | == |Aj | for the largest |Ajh | then

A
′
j = Bjh ∪ (int(C) ∪ Bj);

else
A

′
j = int(C) ∪ Bj ;

mark Cj as an immediate successor of C;
end if
for each equivalence class [jh] where |Ajh | �= |Aj | do

if all child nodes (Ajh , Bi) of Cj are unvisited then
remove all (Ajh , Bi) from Cj ’s child node list;
put an unvisited node (Ajh , Bjh) under Cj ; {This node represents a new con-
cept.}

else
remove all (Ajh , si) and (Ajh , Bi) from Cj ’s child node list;
s =
�

(Ajh
,si)

si +
�

(Ajh
,Bi)

|Bi|;
put a shadow node (Ajh , s) under Cj ; {Suppose the node is the shadow of E =
(Ajh , (Ajh)′).}
if s + |A′

j | = |(Ajh)′| then
mark E as an immediate successor of Cj ;

end if
end if

end for
sort Cj ’s child nodes by their object set size in the ascending order;

212 M. Farach-Colton and Y. Huang

Algorithm 3. Construct a lattice in the full representation
generate PIRU as U ’s child nodes;
sort U ’s child nodes by their object set size in the ascending order;
initialize an empty stack S;
push((E , U), S) where E is the first node in U ’s sorted child node list;
while S is not empty do

(Cj , C) = pop(S);
GeneratePIR(Cj , C);
SearchEquiClass(Cj , C);
if there is an unvisited node Ck after Cj among C’s child nodes then

push((Ck, C), S);
end if
push((E , Cj), S) where E is the first unvisited node among Cj ’s child nodes;

end while

we do not need pointers in shadow nodes or a trie or a hash table for the object
sets. To find the equivalence classes in SearchEquiClass yet, for Cj, we build a
trie for object sets of its child nodes and put node ids in the leaves of the trie.
Then we are able to find the equivalence classes of child nodes by just checking
leaves of the trie.

With GeneratePIR and SearchEquiClass ready, we present our lattice con-
struction algorithm in Algorithm 3, where the supremum of the lattice is U .

At the beginning of Algorithm 3, we scan the input matrix once to ob-
tain U = (G, G′) and (Aj , mj) for each j ∈ [1..|M |], where mj is the at-
tribute shared by each member of the object set Aj . For the object sets
Aj ⊂ G, j ∈ [1..|M |], we build a trie for them and find equivalence classes
just as we did in SearchEquiClass. This way we obtain PIRU as the child nodes
of U . Then we construct the remaining of the lattice by processing each node
once with GeneratePIR and SearchEquiClass, when we traverse the lattice in
DFS with the stack S. In DFS, only unvisited nodes will be pushed into S.

4.3 Algorithm Analysis

We will show that our algorithm correctly constructs the lattice and the delay-
time complexity is O(|G||M |).

Lemma 4.1. After the completion of the algorithm, For each concept, its extent
and intent are correctly computed and its immediate successors are correctly
marked in its child nodes.

The lemma can be proved by applying Theorem 3.1 and Corollary 3.3 in Gen-
eratePIR and SearchEquiClass to check the correctness of ext(Cj), int(Cj), and
PIRCj .

The complexity analysis of the algorithm is shown by the following result:

Theorem 4.1. The algorithm correctly builds the lattice with O(|G||M |) delay
time.

A Linear Delay Algorithm for Building Concept Lattices 213

The sketch of the proof can be outlined as follows: The initialization, one run
of GeneratePIR and one run of SearchEquiClass all take time O(|G||M |). At
the beginning of each iteration of while loop, a new concept is obtained by
popping it from the stack. During each iteration of while loop, GeneratePIR and
SearchEquiClass are executed once. So it takes O(|G||M |) time to complete one
iteration.

As for the space required to store shadow nodes, we can analyze it as follows:
Each shadow node needs space O(|G|). The size of the maximal chain in the
lattice is at most |G|. At each level of the chain, the algorithm will incur at
most O(|M |2) shadow nodes. When the algorithm reaches the bottom of the
chain, the size of space is maximized, which is O(|G|2|M |2). Other previously
used shadow nodes are already recycled in SearchEquiClass. So we only need
O(|G|2|M |2) space for storing shadow nodes.

5 Algorithm for the Compact Representation

We will define the compact representation for lattices and modify the above
algorithm to construct the lattice in a compact representation.

5.1 Compact Representation

Usually a lattice is represented in the full representation as in Figure 2 (a). It is
easy to see there is much redundant information in this representation. Suppose
(A1, B1) is a successor of (A2, B2) and A1 ⊂ A2. Given (A2, B2), we can represent
the concept (A1, B1) as (A2 \ A1, B1 \ B2). Following this idea, we define the
compact representation of the lattice L as follows:

Definition 5.1. For each concept C = (A1, B1) in L, the compact representa-
tion of C regarding D = (A2, B2) is (A2 \ A1, B1 \ B2), where C � D. D is called
C’s base.

We denote such a compact representation of C as (CRD(ext(C)), CRD(int(C))).
In Figure 2 (b), we show a concept lattice in a compact representation.

Note that the compact representation is not unique and depends on how we
choose the base for each concept. As long as we keep the identity of the base for
each concept, we are able to recover the full representation from the compact
one, in which we only need to perform two set operations for each concept in a
top-down manner.

5.2 Implementation

First, let us consider the compact representation for extents. In [22] a technique
using set difference, called diffset, was applied to speed up computation of closed
itemsets. The diffset can be used to compute the compact presentation for extents
as well.

Suppose nodes Ci and Cj are two successors of C. We restate an observation
by Zaki et al. as follows:

214 M. Farach-Colton and Y. Huang

Proposition 5.1. [22] Suppose F = ∧{Ci, Cj}. For Ci and Cj, if neither of
them is an immediate successor of the other, then

CRCj (ext(F)) = CRC(ext(Ci)) \ CRC(ext(Cj)).
If Ci is an immediate successor of Cj, i. e. F = Ci, then
CRCj (ext(F)) = CRC(ext(Cj)) \ CRC(ext(Ci)).

To generate a compact representation, we will modify the algorithms for the full
representation. In the beginning of Algorithm 3, we will represent the concepts
in IRU in a compact representation with their base to be U . Note that there is no
base for U . In GeneratePIR(Cj, C), suppose Cj = (CRC(ext(Cj)), Bj) and Ci =
(CRC(ext(Ci)), Bi) and they are two child nodes under C. Moreover, suppose F =
∧{Ci, Cj}. We only need to do the following: We will put CRCj (ext(F)) into the
node under Cj , and put CRCi(ext(F)) into the node under Ci. The computation
of CRCj (ext(F)) and CRCi(ext(F)) will use CRC(ext(Cj)) and CRC(ext(Ci)).
Details about the computation will be provided later. In SearchEquiClass(Cj,
C), at the beginning we compute int(Cj) and thus generate the concept Cj .
To compute Cj ’s compact representation, C is set as its base. CRC(ext(Cj)) is
already obtained in previous run of GeneratePIR. And CRC(int(Cj)) = Bj . In
addition, the operation related to the size of object sets needs to be modified.
For example, child nodes should be sorted in descending order by the size of the
compact representation of their extents.

Actually, the diffset technique can be improved to make it more efficient to
compute extents in a compact representation with the help of shadow nodes. Sup-
pose there are 3 child nodes Ci, i ∈ [1..3] under a node. |ext(C3)| is the smallest
among the three extents. Furthermore, suppose D = ∧{C1, C3}, D∗ = ∧{C2, C3}
and E = ∧{C1, C2}. When we visit the node C3, we will put a shadow node
corresponding D containing CRC1(ext(D)) under C1 and a shadow node corre-
sponding D∗ containing CRC2(ext(D∗)) under C2. We may continue to apply
Proposition 5.1 to compute CRCj (ext(E)) (j is 1 or 2) by using CRC(ext(C1))
and CRC(ext(C2)). However, since |CRC1(ext(D))| ≤ |CRC(ext(C1))| and
|CRC1(ext(D∗))| ≤ |CRC(ext(C2))|, we are interested in how to compute
CRCj (ext(E)) (j is 1 or 2) more efficiently with the help of two shadow nodes.
As the following lemma shows, when D = D∗, which often occurs during lattice
construction, we can completely avoid using CRC(ext(C1)) and CRC(ext(C2)).

Lemma 5.1. Suppose D = ∧{C1, C3} = ∧{C2, C3}, where Ci, i ∈ [1..3] are con-
cepts, |ext(C3)| ≤ |ext(C1)| and |ext(C3)| ≤ |ext(C2)|. If E = ∧{C1, C2}, then

CRC1(ext(E)) = CRC1(ext(D)) \ CRC2(ext(D)),
CRC2(ext(E)) = CRC2(ext(D)) \ CRC1(ext(D)).

Clearly, the complexity for constructing the compact representation for a lattice
is the same as the one for constructing the full representation.

6 Conclusion and Future Direction

Because of many applications of lattices in various areas, it has become an im-
portant question to construct lattices efficiently. Previously, the best delay-time

A Linear Delay Algorithm for Building Concept Lattices 215

complexity is O(|G||M |2) for lattice construction algorithms. In this paper, we
propose a linear delay algorithm for constructing a lattice with the input matrix
of size |G||M |. Other advantages of the algorithm include that it does not need
the union operation for computing intents of concepts. And it does not check
against all generated concepts to see if a new pair of object set and attribute
set is a new concept or will be subsumed. In addition, we propose to represent
concept lattices in a compact representation, which eliminates redundant infor-
mation in the full representation. The algorithm for the full representation is
modified with improved diffset technique to build a compact representation for
lattices.

The lower bound of delay-time complexity for lattice construction algorithms
is still unknown. Our future work will focus on finding this lower bound and
designing new algorithms to match the bound. With the efficient lattice con-
struction algorithm we also like to apply lattices in more areas.

References

1. Berry, A., Bordat, J.-P., Aigayret, A.: Concepts can’t afford to stammer. In: INRIA
Proceedings of the International Conference, Journées de l’Informatique Messine
(JIM 2003) (2003)

2. Bordat, J.-P.: Calcul pratique du treillis de galois dune correspondance. Mathma-
tique, Informatique et Sciences Humaines 24, 31–47 (1986)

3. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its appli-
cation to browsing retrieval. Machine Learning 24, 95–122 (1996)

4. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.
Wiley, Chichester (2004)

5. Choi, V.: Faster algorithms for constructing a concept (galois) lattice (2006),
http://arxiv.org/pdf/cs.DM/0602069

6. Choi, V., Huang, Y., Lam, V., Potter, D., Laubenbacher, R., Duca, K.: Using
formal concept analysis for microarray data comparison. In: Proceedings of the
5th Asia Pacific Bioinformatics Conference, pp. 57–66 (2006)

7. Eppstein, D.: Arboricity and bipartite subgraph listing algorithm. Information
Processing Letters 54, 207–211 (1994)

8. Everts, T.J., Park, S.S., Kang, B.H.: Using formal concept analysis with an incre-
mental knowledge acquisition system for web document management. In: Proceed-
ings of the 29th Australasian Computer Science Conference, pp. 247–256 (2006)

9. Ganter, B., Wille, R.: Formal concept analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

10. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on galois (concept) lattices. Computational Intelligence 11, 246–267 (1995)

11. Huang, Y., Farach-Colton, M.: Lattice based clustering of temporal gene-expression
matrices. In: Proceedings of the 7th SIAM International Conference on Data Min-
ing (2007)

12. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27, 119–123 (1988)

13. Kalfoglou, Y., Dasmahapatra, S., Chen-Burger, Y.: Fca in knowledge technologies:
Experiences and opportunities. In: Proceedings of 2nd International Conference on
Formal Concept Analysis, pp. 252–260. Springer, Heidelberg (2004)

http://arxiv.org/pdf/cs.DM/0602069

216 M. Farach-Colton and Y. Huang

14. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Proceedings of 9th Scand. Workshop on Algorithm Theory, pp. 260–272 (2004)

15. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information
Processing Letters 71, 199–204 (1999)

16. Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In:
Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 99–110 (1998)

17. Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm ver. 2: Efficient mining algo-
rithms for frequent/closed/maximal itemsets. In: IEEE ICDM Workshop on Fre-
quent Itemset Mining Implementation (2004)

18. Wang, J., Han, J., Pei, J.: Searching for the best strategies for mining frequent
closed itemsets. In: Proceedings of the 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 344–353 (2004)

19. Yang, G.: The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In: Proceedings of the 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 344–353 (2004)

20. Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transaction on Knowledge and Data Engineering 17, 462–
478 (2005)

21. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proceed-
ings of 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 1–7 (1998)

22. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 326–335 (2003)

Matching Integer Intervals by Minimal Sets of

Binary Words with don’t cares�

Wojciech Fraczak1,3, Wojciech Rytter2,4, and Mohammadreza Yazdani3

1 Dépt d’informatique, Université du Québec en Outaouais, Gatineau PQ, Canada
2 Inst. of Informatics, Warsaw University, Warsaw, Poland

3 Dept. of Systems and Computer Eng., Carleton University, Ottawa ON, Canada
4 Department of Mathematics and Informatics, Copernicus University, Torun, Poland

Abstract. An interval [p, q], where 0 ≤ p ≤ q < 2n, can be considered
as the set X of n-bit binary strings corresponding to encodings of all
integers in [p, q]. A word w with don’t care symbols is matching the set
L(w) of all words of the length |w| which can differ only on positions
containing a don’t care. A set Y of words with don’t cares is matching
X iff X =

⋃
w∈Y L(w). For a set X of codes of integers in [p, q] we

ask for a minimal size set Y of words with don’t cares matching X. Such
a problem appears in the context of network processing engines using
Ternary Content Addressable Memory (TCAM) as a lookup table for
IP packet header fields. The set Y is called a template in this paper,
and it corresponds to a TCAM representation of an interval. It has been
traditionally calculated by a heuristic called “prefix match”, which can
produce a result of the size approximately twice larger than the minimal
one. In this paper we present two fast (linear time in the size of the input
and the output) algorithms for finding minimal solutions for two natu-
ral encodings of integers: the usual binary representation (lexicographic
encoding) and the reflected Gray code.

1 Introduction and Motivation

The Ternary Content Addressable Memory (TCAM), [1,2], is a type of associa-
tive memory with a highly parallel architecture which is used for performing
very fast (constant time) table look up operations. The problem of interval rep-
resentation by TCAM appears in network processing engines where the header
fields of each IP packet (e.g., source address, destination address, port number,
etc.) should be matched under strict time constraints against the entries of an
Access Control List (ACL) [3,4,5]. Often, an ACL is represented by a TCAM.
Each entry of the ACL defines either a single value or an interval of values for
the fields of the packet header. If an ACL entry defines only single values for
all header fields, then it can be directly and very efficiently represented using a
single TCAM rule. However, if the ACL entry defines some non-trivial intervals

� The research of the second author was supported by the grant of the Polish Ministery
of Science and Higher Education N 206 004 32/0806.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 217–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

218 W. Fraczak, W. Rytter, and M. Yazdani

for some header fields of the packet, then it may need more than one TCAM
rule [6,7].

The problem of finding a minimal TCAM-like representation, here called tem-
plate, of an interval corresponds to the problem of finding a minimal set of words
over three letter alphabet {0, 1, ∗} (where ∗ plays a role of don’t care) covering
the interval.

In this paper we show that in the case of lexicographic and reflected Gray
encodings the problem can be solved very efficiently. We present two fast (linear
time in the size of the input and the output) algorithms for finding minimal
solutions.

2 Definition of the Problem

A template (a TCAM array) is defined as a two dimensional array of cells, where
each cell carries one of the three values 0, 1, or ∗. Each row of this array is called
a rule. Examples of templates are shown in Figure 1.

a)

1 0001
2 001∗
3 01∗∗
4 10∗∗
5 110∗
6 1110

b)

1 0∗∗1
2 10∗∗
3 ∗10∗
4 ∗∗10

c)

1 01∗∗
2 1∗0∗
3 ∗0∗1
4 ∗∗10

d)

1 0∗1∗
2 10∗∗
3 ∗1∗0
4 ∗∗01

e)

1 01∗∗
2 1∗∗0
3 ∗01∗
4 ∗∗01

Fig. 1. Templates for interval [1, 14], where the integers are represented in the standard
unsigned binary encoding over 4 bits. The first table corresponds to the template
generated by the “prefix match” heuristics. The next four tables show all minimal
canonical templates.

Observation. The template corresponds to a boolean formula in disjunctive
normal form, in which variable xi determines whether the i-th bit is one or zero
(negation of xi). For example the last TCAM array in Figure 1 corresponds to
the boolean formula:

(¬x1 ∧ x2) ∨ (x1 ∧ ¬x4) ∨ (¬x2 ∧ x3) ∨ (¬x3 ∧ x4).

A rule of width n is a sequence r = e1e2 . . . en, where ei ∈ {0, 1, ∗} for i ∈
{1, . . . , n}. It defines the following non-empty language L(r):

L(r) def= L(e1)L(e2) . . . L(en),

where L(0) def= {0}, L(1) def= {1}, and L(∗) def= {0, 1}. For example, L(0*1) = {0}·
{0, 1} · {1} = {001, 011}. A template R consisting of k rules r1, r2, . . . , rk will be
written as R = (r1, r2, . . . , rk).. The language of R = (r1, r2, . . . , rk) is the union
of the languages defined by its rules, i.e., L(R) def= L(r1) ∪ L(r2) ∪ . . . ∪ L(rk).

Matching Integer Intervals by Minimal Sets of Binary Words 219

Let E : {0, 1}n ↪→ {0, 1, . . . , 2n − 1} be an encoding of integer values by n-bit
strings. Any subset X ⊆ {0, 1, . . . , 2n − 1} can be represented by a template R
of width n. More precisely, R represents X iff E−1(X) = L(R). For two integers
x, y, we denote by [x, y] the set {x, x + 1, . . . , y} and call it an interval. A set of
binary strings X of length n is an interval-set of E if E(X) is an interval.

The problem of finding a minimum size template R (i.e., a template with
the minimum number of rules) for a given set X is known to be NP-hard (as it
corresponds to the problem of finding a minimal disjunctive normal form for a
Boolean expression). However, in this paper we are interested in sets of binary
strings which correspond to the encodings of the numbers in a given interval. A
given interval can be represented by several templates. For example, Figure 1
shows 5 templates for the interval [1, 14] in the case of the lexicographic 4-bit
encoding.

3 Notation and Preliminary Results

Let R = (r1, r2, . . . , rk) and R′ = (p1, p2, . . . , pm) be two templates of the same
width d, i.e., ri, pj ∈ {0, 1, ∗}d for i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , m}, and
w ∈ {0, 1, ∗}n be a rule of length n. We define:

R + R′ def= (r1, r2, . . . , rk, p1, p2, . . . , pm)

w · R def= (wr1, wr2, . . . , wrk) .

Intuitively, the template R+R′ is the union of R and R′, thus its width remains
d and the number of its rules is k + m. The template w · R is of width d + n and
each of its rules is the concatenation of w with a rule of R.

For a ∈ {0, 1}, by a we will denote the complement of a, i.e., 0 def= 1 and
1 def= 0. We define a full tree of height n as a perfect binary tree of height
n such that each pair of sibling edges are labeled 0 and 1. The assignment
of labels to the edges (two alternatives per each internal node) can be chosen
arbitrarily. Let Tn be a full tree of height n. The label w ∈ {0, 1}n of the
path from the root to i-th leaf defines the n-bit encoding of number i, with
0 corresponding to the furthest left leaf of the tree. In this way, Tn defines a
bijection Tn : {0, 1}n ↪→ {0, 1, . . . , 2n − 1}, which we call dense-tree encoding.
The lexicographic encoding (i.e., standard unsigned binary encoding) and the
binary reflected Gray encoding [8,9] are two important examples of dense-tree
encodings. They are presented in Figure 2 in the forms of full trees. In the context
of a dense-tree encoding Tn, a set X ⊆ {0, 1}n defines both the set Tn(X) of
integers and a subset of leaves of Tn. X can be represented by a skeleton tree
(see Figure 3). The skeleton tree of X is obtained from Tn by removing all edges
which are not leading to the leaves of X and turning all full sub-trees into leaves.

By ∅ and • we will represent the empty tree and the single node tree, respec-
tively. Let S be a tree and w ∈ {0, 1}∗. By S.w we will denote the corresponding
sub-tree of S; the root of S.w is the last vertex of the unique path starting from
the root of S and labeled by w.

220 W. Fraczak, W. Rytter, and M. Yazdani

0

0

0

0 0 0 0 0 0 0 0

1

1

1 1 1 1

1

1 1 1 1 1 1 1 1

0 0 0

0

0

0

0

0

1

1

1 1

1 1

01 0

01

1

0 0

0

10 1 0 1 0 1 1 0

1 0

10 2 3 4 5 6 7 8 9 10 1314 151112 10 2 3 10 14 1511 13124 5 6 7 8 9

Lex4 Gray4

Fig. 2. Two 4-bit dense-tree encodings: the lexicographic encoding (Lex4) and the
reflected Gray encoding (Gray4). Notice that in the case of Gray every pair of sibling
sub-trees are labeled symmetrically.

double chainchain

x y

interval tree for [x↪ y] and its skeleton tree

Fig. 3. The skeleton tree for an interval [x, y], a chain, and a double-chain

Let X ⊆ {0, 1}n. A rule r is called an X-limited rule if L(r) ⊆ X . An X-
limited rule r is said to be X-essential if there is no other X-limited rule r′

such that L(r) ⊆ L(r′). In the context of two-level logic minimization, an X-
essential rule is called a “prime implicant” of X (see [10]). Any coverage of X
by a template with k rules can be turned into a coverage by k X-essential rules.
Therefore, it is quite natural to consider only X-essential rules in the process of
finding a minimal template for X ; representation of a set by essential rules will
be called a canonical representation.

We say that a skeleton tree S is a chain, if every vertex of S has at most
one non-leaf child. A double-chain is a skeleton tree with at most one vertex
v having two non-leaf children and such that all ancestors of v have only one
child. Examples of a chain and a double-chain are illustrated in Figure 3. The
skeleton tree of any interval in a dense-tree encoding is either a chain or a double-
chain. A chain is called left chain (resp., right chain) if every right (resp., left)
child is a unique child or it is a leaf. Intuitively, a left-chain CL defines interval
[x, 2n − 1], and a right-chain CR interval [0, y], where n is the width of the
dense-tree encoding, and x, y ∈ {0, 1, . . . , 2n − 1}. We say that CL and CR are
complementary chains if the intervals they define cover all values, i.e., if and
only if x ≤ y + 1.

Lemma 1. [11] Let the skeleton tree of X ⊆ {0, 1}n in a dense-tree encoding
Tn be a chain C with k leaves. There exists a unique minimal canonical template
for X, denoted by ChainTempln(C), with k rules, which can be computed in time
O(kn).

The minimal canonical template representation of a chain C can be calculated
as follows:

Matching Integer Intervals by Minimal Sets of Binary Words 221

– ChainTempln(∅) = (), i.e., the empty template;
– ChainTempln(•) = (∗n), i.e., the single rule consisting of n star symbols.

Otherwise, i.e., when C /∈ {∅, •}:

ChainTempln(C) =

⎧⎪⎪⎨
⎪⎪⎩

1 · ChainTempln−1(C.1) if C.0 = ∅
0 · ChainTempln−1(C.0) if C.1 = ∅
∗ · ChainTempln−1(C.1) + 0(∗n−1) if C.0 = •
∗ · ChainTempln−1(C.0) + 1(∗n−1) if C.1 = •

If the skeleton tree of a given interval is a chain C, we can directly use Lemma 1
to calculate its unique minimal canonical template independently of the dense-
tree encoding Tn.

4 Intervals in the Lexicographic Encoding

Let CL, CR be left and right chains, respectively. Denote by Merge(CL, CR) the
interval skeleton tree which results by creating a new root and connecting CL

to the left child and CR to the right child of the root (see S′ in Figure 6).
The recursive algorithm LexTempl(S, n), presented above, returns a minimal

canonical template for an interval represented by its skeleton tree S in the Lexn

encoding. It employs a top-down-reduction approach by reducing the problem of
finding a minimal template for a skeleton tree of height k to a problem of find a
minimal template for a skeleton tree of height k − 1.

The algorithm consists of 5 parts which correspond to the treatment of 5
different types of interval skeleton trees described below (see also Figure 4):

ξ0 – Chains;
ξ1 – Double-chains whose roots have only one child;
ξ2 – Double-chains whose roots have two children and two grandchildren;
ξ3 – Double-chains whose roots have three grandchildren;
ξ4 – Double-chains whose roots have four grandchildren.

Let us consider an interval I = [19, 61] within Lex6 encoding.

Lex6(010011) = 19 and Lex6(111101) = 61

CD
CR

ξ2ξ1 ξ3 ξ4

CRCLCL CR CL

Fig. 4. Double-chains of types ξ1, ξ2, ξ3, and ξ4. The double-chain CD, left chain CL,
and right chain CR are non-empty. Notice that in some cases the chains cannot be trivial
(i.e., a single node tree). For example, in ξ4 both chains CL and CR are non-trivial.

222 W. Fraczak, W. Rytter, and M. Yazdani

The history of the execution of LexTempl(S, 6), where S is the interval skeleton
tree for I, is presented in Figure 5. The final result of the computation is shown
in the rightmost column of the table and consists of 6 rules.

Correctness of the algorithm is checked by analysing all five steps of the
algorithm.

ALGORITHM LexTempl (S,n)

1. if S is a chain then return ChainTempln(S);

2. if v = root(S) has one child z and the edge v → z has label a ∈ {0, 1}
then return a · LexTempl (S.a, n − 1), where S.a is the tree rooted at z;

3. k := number of grandchildren of the root;
let L, R be the leftmost and rightmost grandchildren of v, and CL, CR the left
and the right chains rooted in L and R, respectively;

if k = 2 then return 01 · ChainTempln−2(CL) + 10 · ChainTempln−2(CR);

4. S′ := Merge(CL, CR); R′ := LexTempl(S′, n − 1);
Split rules of R′ w.r.t. the first symbol, i.e., R′ = 0 · R′

0 + 1 · R′
1 + ∗ · R′

∗;

if k = 3 and L is a right child then

return 01 · R′
0 + 1∗ · R′

1 + ∗1 · R′
∗ + (10∗n−2);

if k = 3 and L is a left child then

return 0∗ · R′
0 + 10 · R′

1 + ∗0 · R′
∗ + (01∗n−2);

5. (k = 4) R := 0∗ · R′
0 + ∗1 · R′

1 + ∗∗ · R′
∗ + (10∗n−2);

if (CL, CR) are complementary then return R else return R + (01∗n−2);

Lemma 2. Let I and I ′ be two intervals corresponding to the skeleton trees S
and S′ of Figure 6, respectively. A minimal template for I has at least k rules
more than a minimal template for I ′, where k ≥ 1 is the height difference between
S and S′.

Proof. Let R be a minimal canonical template for I and RC be the set of those
rules in R which enter into the chains CL and CR (i.e., rules that intersect with
0k1∗∗ · · · ∗ or with 1k+1∗∗ · · · ∗). The rules of RC can be turned into a template
for I ′ by replacing k + 1 initial symbols of each rule with one of 0, 1, or ∗.

If k = 1, then the I-essential rule 10∗∗ · · · ∗ cannot be covered by other I-
essential rules. Therefore a minimal template for I has exactly one rule more
than a minimal template for I ′. For k > 1, since CR is not a single node tree
(i.e., at least 111 · · ·1 /∈ CR), no inner node of S at level k, except the parents of
CL and CR, can be covered by rules from RC . More precisely, no string which
has both a 0 and a 1 in its k first bits, 0 at position k + 1, and then only 1 in all
positions bigger than k + 1, can be covered by rules from RC .

Matching Integer Intervals by Minimal Sets of Binary Words 223

S′′′′↪ 1 S′′′↪ 3 S′′↪ 4 S′↪ 5 S↪ 6

1
01

1

10

1

1

0 1

0

10

1

1

0

0 1

1

0

10

1
1

1
1

1

10

1
0

0
0

ξ0: i.e.,
chain

ξ2:
R =
01R′ + 10(∗)

ξ4 (non-compl.):
R = 0∗R′

0 + ∗1R′
1 +

∗∗R′
∗+(01∗2)+(10∗2)

ξ4 (complementary):
R = 0∗R′

0 + ∗1R′
1 +

∗∗R′
∗ + (10∗3)

ξ3 (L is right child):
R = 01·R′

0+1∗·R′
1+

∗1 · R′
∗ + (10∗4)

R 1 1 1 011
2 10∗

1 0∗11
2 ∗10∗
3 01∗∗
4 10∗∗

1 0∗∗11
2 0∗1∗∗
3 ∗10∗∗
4 ∗∗10∗
5 10∗∗∗

1 01∗∗11
2 01∗1∗∗
3 1∗0∗∗∗
4 ∗110∗∗
5 ∗1∗10∗
6 10∗∗∗∗

R0 ∅ 1 11 1 ∗11
2 1∗∗

1 ∗∗11
2 ∗1∗∗

R1 1 ε 1 0∗ 1 0∗∗ 1 0∗∗∗

R∗ ∅ ∅ 1 10∗ 1 10∗∗
2 ∗10∗

Fig. 5. The history of the algorithm LexTempl for interval I = [19, 61] with Lex6

encoding, presented in terms of skeleton trees together with intermediate templates.
The skeleton trees from the first row of the table correspond to the arguments of
recursive calls (from right to left). The second row describes the type of the skeleton
tree argument as well as the formula which is used to calculate the template in which
R′ = 0 · R′

0 + 1 · R′
1 + ∗ · R′

∗ corresponds to the result of the sub-recursive call. For
convenience, all intermediate results R are presented explicitly (third row) and in form
of R0, R1, and R∗ (remaining rows). For example, R′

0 in the formula of column 3 (for
recursive call S′′, 4), refers to the template written in column 2 (call S′′′, 3) row 4 (R0).

k

1 1

CR

0 1

CR
CLCL

S

S′

Fig. 6. Two skeleton trees S and S′ from Lemma 2

In [11], it was shown that a minimal template representation of Ik = [1, 2k−2]
in Lexk needs exactly k rules. Thus, we need at least k rules outside of RC to
cover all those k-level inner nodes. �

Step 1. For skeleton trees of type ξ0, i.e., chains, we use the solution provided
by Lemma 1.

Step 2. The case of a skeleton tree of type ξ1 is simple since there is the
one-to-one correspondence between all templates for (the interval of) S and all

224 W. Fraczak, W. Rytter, and M. Yazdani

templates for (the interval of) S.a, where a is the label of the unique edge of the
root of S.

Proposition 1 (Skeleton trees of type ξ1). Let S be an interval skeleton
tree in Lexn such that for some a ∈ {0, 1}, S.a = S′ �= ∅ and S.a = ∅. R is a
minimal canonical template for S′ encoded on n − 1 bits if and only if aR is a
minimal canonical template for S on n bits.

Step 3. For the skeleton trees of type ξ2 we have:

Proposition 2 (Skeleton trees of type ξ2). Let S be an interval skeleton
tree in Lexn such that S.00 = S.11 = ∅, S.01 = CL �= ∅, and S.10 = CR �= ∅. If
RL is a minimal canonical template for CL on n − 2 bits and RR is a minimal
canonical template for CR on n − 2 bits, then R = 01RL + 10RR is a minimal
canonical template for S encoded on n bits.

Proof. Every rule in a template for S starts by 01 or 10. Therefore, any template
covering S can be written as 01RL + 10RR, where RL and RR cover CL and
CR, respectively. �

Step 4. If a skeleton tree S is of type ξ3 then either S.00 = ∅ or S.11 = ∅. Since
these two cases are very similar, in the following proposition we consider only
one case, S.00 = ∅, which corresponds to the graphical representation of ξ3 in
Figure 4. Due to Lemma 2, for k = 1, we have the following fact.

Proposition 3 (Skeleton trees of type ξ3). Let S be an interval skeleton
tree in Lexn such that S.00 = ∅, S.01 = CL �= ∅, S.10 = •, and S.11 = CR �= ∅.
Also let S′ = Merge(CL, CR), i.e., S′ is an interval skeleton tree in Lexn−1, such
that S′.0 = CL and S′.1 = CR. If R′ = 0R′0 +1R′1 +∗R′∗ is a minimal canonical
template for S′, then

R = 01R′0 + 1∗R′1 + ∗1R′∗ + 10(∗n−2)

is a minimal canonical template for S.

Step 5. In case of skeleton trees of type ξ4, i.e., when all four grandchildren
of the root are non-empty, we distinguish two cases; the chains rooted in the
leftmost grandchild and the rightmost grandchild (i.e., chains CL and CR in ξ4
of Figure 4) are complementary or are not.

Proposition 4 (Skeleton trees of type ξ4). Let S be an interval skeleton
tree in Lexn such that S.00 = CL �= ∅, S.01 = •, S.10 = •, and S.11 = CR �= ∅.
Also suppose that S′ = Merge(CL, CR) is an interval skeleton tree in Lexn−1
with a minimal canonical template R′ = 0R′0 + 1R′1 + ∗R′∗. If CL and CR

are complementary chains then a minimal canonical template for S is R =
0∗R′0 + ∗1R′1 + ∗∗R′∗+10(∗n−2). Otherwise a minimal canonical template for S
is: R = 0∗R′0 + ∗1R′1 + ∗∗R′∗ + 10(∗n−2) + 01(∗n−2).

Proof. If CL and CR are complementary, then the construction in Figure 7 shows
that template R = 0∗R′0 + ∗1R′1 + ∗∗R′∗ + 10(∗n−2) covers S, whenever 0R′0 +

Matching Integer Intervals by Minimal Sets of Binary Words 225

B
A

BA
AB

S

CR

0
0 0

1
11

S′

CL
0 1

CR

CL

Fig. 7. Skeleton trees S′ = Merge(CL, CR) and S of Proposition 4 in case when CL

and CR are complementary. Intervals corresponding to left chain CL and right chain
CR are represented by trees A and B, respectively.

1R′1 + ∗R′∗ covers S′ and the number of rules in R is one more than that of R′.
Besides Lemma 2 guarantees that no smaller template can cover S. Notice that
another symmetric construction for R is also possible: R = ∗0R′0 + 1∗R′1 +
∗∗R′∗ + 01(∗n−2).

If CL and CR are non-complementary, then 01∗ · · · ∗ (resp., 10∗ · · · ∗) is an
S-essential rule which cannot be covered by other S-essential rules. Therefore,
10∗ · · · ∗ and 01∗ · · · ∗ have to be in any canonical solution for S. Notice that
in case when CL and CR are non-complementary, there are four variants for
construction of a minimal canonical template for S from a minimal canonical
template for S′:

R = αR′0 + βR′1 + ∗∗R′∗ + 10(∗n−2) + 01(∗n−2),
for α ∈ {∗0, 0∗} and β ∈ {∗1, 1∗}

Theorem 1. The algorithm LexTempl computes in time O(n + K) a minimal
canonical template for an interval in the n-bit lexicographic encoding, where K
is the total size (in bits) of the generated template.

Proof. The algorithm obviously runs in O(n + K). Correctness follows from
Lemma 1 (for step 1), and Propositions 1, 2, 3, 4 (for all other steps). �

5 Intervals in the Reflected Gray Encoding

Unlike for the lexicographic encoding, not every sub-tree of the reflected Gray
dense-tree encoding Grayn is a reflected Gray dense-tree encoding. However,
every pair of sibling sub-trees of the dense tree representing Grayn are the mirror
copies of each other, Grayk and its mirror copy Grayk, 1 ≤ k < n.

Let n be the number of bits. We denote by x′ = 2n −1−x the mirror image of
x. Suppose that I = [x, y] is an interval and y < 2n. We say that I is reciprocal if
x = y′. If I is reciprocal, then there is a w ∈ {0, 1}n−1 such that x = Grayn(0w)
and y = Grayn(1w). (The same holds for Grayn where 0 and 1 are interchanged.)

Lemma 3. Let I = [x, y] be a reciprocal interval with x = Grayn(0w) and
y = Grayn(1w). Let R be a minimal canonical template for the interval I ′ =
[Grayn−1(w), 2n−1 − 1]. The template ∗R is a minimal canonical template for
the interval I. (See Figure 8.)

226 W. Fraczak, W. Rytter, and M. Yazdani

CR

x y2n−1

CL

Fig. 8. Illustration of Lemma 3; y is the mirror image of x with respect to the root of
the tree (x′ = y & y′ = x). If R is a minimal template for left-chain CL then it is also
a minimal template for CR, and ∗R is a minimal template for the whole tree.

Our algorithm for calculating a minimal canonical template for intervals in Gray
encoding relies on Lemma 3; it divides a given non-reciprocal interval into two
overlapping sub-intervals where one of the intervals is reciprocal and the other
one is a chain. We consider one case, the others are analogous.

ALGORITHM GrayTempl (S, n) (the case of S from Figure 9)

1. u := right child of the root;

v := LCA(x, y′); α := PATHL(v); w := left child of v;

let C1, C2 be the chains rooted at u, w, respectively;

let a be the label of the edge v → w; and d1, d2 be as shown in Figure 9;

2. R1 := ChainTempln−1(C1); R2 := ChainTempln−|α|−1(C2);

3. R := ∗R1 + α ∗ R2;

4. if d1 ≤ d2 then return R else return R + α a ∗ . . . ∗;

The algorithm GrayTempl generates a minimal canonical template for an interval
[x, y] which has the skeleton tree S as shown in Figure 9. In this skeleton tree y′

is the mirror image of y in the left sub-tree and y′ > x. LCA(x, y′) denotes the
lowest common ancestor of x and y′, which is calculated by taking the greatest
common prefix of x and y′ in Grayn. PATHL(v) is the label of the path from the
root of S to node v, where every symbol of a left-going edge is replaced by ∗.

Observation. Let Iv be the interval covered by the subtree (chain) rooted at
the right child of v. If d1 ≤ d2 (equivalently if C2, C3 are complementary) then
R covers the whole interval, otherwise we need to add one extra rule 0αa∗ . . . ∗
which covers a non empty gap between ∗R1 and 0α∗R2.

Correctness is based on the fact that the templates for C1 and C2 cover disjoint
intervals. Consequently we need at least |R1| + |R2| rules. In case d1 > d2 one
extra rule is needed. The rigorous proof is omitted in this version.

Theorem 2. The algorithm GrayTempl computes in time O(n+K) a minimal
canonical template for an interval in the n-bit reflected Gray encoding, where K
is the total size (in bits) of the generated template.

Matching Integer Intervals by Minimal Sets of Binary Words 227

yy′
x

root

C2

v′

S

C1

C3

d2 d1

u
α

a
v

a a
w

Fig. 9. The structure of the skeleton tree S for a non-reciprocal interval in Gray. C1

is the subtree (a chain) rooted at u, C2 is the chain rooted at w and C3 is the chain
rooted at the left child of v′. We have: d1 ≤ d2 iff C2, C3 are complementary chains.

1

0

0

0

0

0

1

1 1

0

1
0

0

0

0

0

1 1

0

1

w

1

2 19 244

yy′

u

v

16

C2

x

Fig. 10. An example of the structure related to the algorithm for the interval [2, 244].
The mirror branches are from the root to y and its mirror image y′, they have the same
path-labels.

Example: We show how the algorithm works for the interval [2, 244], see
Figure 10. We have:

– d2 = 15 − 2 + 1 = 14 and d1 = 19 − 16 + 1 = 4, i.e., d1 < d2;
– C2 = S(w) and C1 = S(u);
– α = 000;
– ChainTempl (C1) = R1 = {01∗∗∗∗∗, 001∗∗∗∗, 00111∗∗, 0011010};
– ChainTempl (C2) = R2 = {1∗∗∗, 01∗∗, 001∗}.

Consequently, GrayTempl(S, 8) = ∗R1 + 000 ∗R2.

References

1. Kempke, R., McAuley, A.: Ternary CAM memory architecture and methodology.
US Patent 5, 841–874 (August 1996)

2. Kohonen, T.: Content-Addressable Memories. Springer, New York (1980)

228 W. Fraczak, W. Rytter, and M. Yazdani

3. Davis, G., Jeffries, C., Lunteren, J.: Method and system for performing range rule
testing in a ternary content addressable memory. US Patent 6, 886,073 (April 2005)

4. Jeong, H.J., Song, I.S., Kwon, T.G., Lee, Y.K.: A multi-dimension rule update in
a tcam-based high-performance network security system. In: AINA 2006: Proceed-
ings of the 20th International Conference on Advanced Information Networking
and Applications. AINA 2006, Washington, DC, USA, vol. 2, pp. 62–66. IEEE
Computer Society, Los Alamitos (2006)

5. Srinivasan, V., Varghese, G., Suri, S., Waldvogel, M.: Fast and scalable layer four
switching. In: SIGCOMM 1998: Proceedings of the ACM SIGCOMM 1998 con-
ference on Applications, technologies, architectures, and protocols for computer
communication, pp. 191–202. ACM, New York (1998)

6. Lakshminarayanan, K., Rangarajan, A., Venkatachary, S.: Algorithms for advanced
packet classification with Ternary CAMs. In: SIGCOMM, pp. 193–204 (2005)

7. Liu, H.: Efficient mapping of range classifier into ternary-cam. In: HOTI 2002:
Proceedings of the 10th Symposium on High Performance Interconnects HOT In-
terconnects (HotI 2002), Washington, DC, USA, p. 95. IEEE Computer Society,
Los Alamitos (2002)

8. Gilbert, E.: Gray codes and paths on the n-cube. Bell Systems Technical Journal 37,
815–826 (1958)

9. Gray, F.: Pulse code communications. US Patent 2,632,058 (March 1953)
10. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.: Logic Mini-

mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Dordrecht
(1984)

11. Fraczak, W., Rytter, W., Yazdani, M.: TCAM representations of intervals of inte-
gers encoded by binary trees. In: Proceedings of IWOCA Conference, Lake Mac-
quarie, Newcastle, Australia (November 2007)

12. Coudert, O.: Two-level logic minimization: an overview. Integr. VLSI J 17(2), 97–
140 (1994)

Matching Integer Intervals by Minimal Sets of Binary Words 229

Appendix

Alternative presentation of algorithm LexTempl

Assume α = (a1, a2, . . . ak) and β = (b1, b2, . . . bk) are binary strings of length
k. Denote by [α]2 the number corresponding to α in binary. Assume p = [α]2 ≤
q = [β]2. The input interval [p, q] is presented in the form (α, β). Denote by
size(α, β) the length of the interval [p, q].

Denote by 1k, 0k the sequence of k ones, and k zeros, respectively. It is
convenient to assume later that we write 0, 1 without indices, the length is
implied by the other string in a corresponding pair.

The chains correspond to pairs of one of the forms

(α,1), (0, β)

The crucial is the notion of complementary interval. The pair α ≤ β is called
complementary iff

size(α,1k) + size(0k, β) ≥ 2k

ALGORITHM LexTempl ′(α, β)

1. if [α, β] is a chain then return ChainTempl(α, β);

2. if (α = a · α′, β = a · β′) for a ∈ {0, 1} then

return a · LexTempl ′(α′, β′);

3. if (α = 01α′, β = 10β′) then return

01 · ChainTempl(α′,1) + 10 · ChainTempl(0, β′);

4. Let α = a1a2 · α′, β = b1b2 · β′;

R′ := LexTempl ′(0 · α′, 1 · β′); Represent R′ as 0R′
0 + 1R′

1 + ∗R′
∗;

if (a1a2 = 01, b1b2 = 11) then return

01 · R′
0 + 1∗ · R′

1 + ∗1 · R′
∗ + 10∗ . . .;

if (a1a2 = 00, b1b2 = 10) then return

0 ∗ ·R′
0 + 10 · R′

1 + ∗0 · R′
∗ + 01∗ . . .;

5. (Now a1a2 = 00, b1b2 = 11;)

R := 0∗R′
0 + ∗1R′

1 + ∗∗R′
∗ + 10∗∗ · · · ∗;

if α′, β′ are complementary then return R else return R + 01∗∗ · · · ∗;

The motivation for presenting the algorithm in terms of skeleton trees was to ease
the proof of correctness. The skeleton tree is showing much better the structure
of the interval from the point of view of constructing a minimal template.

Fast Algorithms for Computing Tree LCS

Shay Mozes1, Dekel Tsur2,�, Oren Weimann3, and Michal Ziv-Ukelson2,∗

1 Brown University, Providence, RI 02912-1910, USA
shay@cs.brown.edu

2 Ben-Gurion University, Beer-Sheva, Israel
{dekelts,michaluz}@cs.bgu.ac.il

3 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
oweimann@mit.edu

Abstract. The LCS of two rooted, ordered, and labeled trees F and
G is the largest forest that can be obtained from both trees by deleting
nodes. We present algorithms for computing tree LCS which exploit the
sparsity inherent to the tree LCS problem. Assuming G is smaller than
F , our first algorithm runs in time O(r · height(F) · height(G) · lg lg |G|),
where r is the number of pairs (v ∈ F, w ∈ G) such that v and w have the
same label. Our second algorithm runs in time O(Lr lg r · lg lg |G|), where
L is the size of the LCS of F and G. For this algorithm we present a novel
three dimensional alignment graph. Our third algorithm is intended for
the constrained variant of the problem in which only nodes with zero or
one children can be deleted. For this case we obtain an O(rh lg lg |G|)
time algorithm, where h = height(F) + height(G).

1 Introduction

The longest common subsequence (LCS) of two strings is the longest subsequence
of symbols that appears in both strings. The edit distance of two strings is the
minimal number of character deletions insertions and replacements required to
transform one string into the other. Computing the LCS or the edit distance
can be done using similar dynamic programming algorithms in O(mn) time
and space, where m and n (m ≤ n) are the lengths of the strings [15, 29].
The only known speedups to the edit distance algorithm are by polylogarithmic
factors [7, 11, 23]. For the LCS problem however, it is possible to obtain time
complexities better than Õ(mn) in favorable cases, e.g. [3,10,16,17,18,25]. This
is achieved by exploiting the sparsity inherent to the LCS problem and measuring
the complexity by parameters other than the lengths of the input strings. In this
paper, we apply this idea to computing the LCS of rooted, ordered, and labeled
trees.

The problem of computing string LCS translates to finding a longest chain
of matches in the alignment graph of the two strings. Many string LCS al-
gorithms that construct such chains by exploiting sparsity have their natu-
ral predecessors in either Hirschberg [16] or Hunt and Szymanski [18]. Given
� The research was supported by the Lynn and William Frankel Center for Computer

Sciences at Ben-Gurion University.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 230–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Algorithms for Computing Tree LCS 231

two strings S and T , let L denote the size of their LCS and let r denote
the number of matches in the alignment graph of S and T . Hirschberg’s al-
gorithm achieves an O(nL + n lg |Σ|) time complexity by computing chains
in succession. The Hunt-Szymanski algorithm achieves an O(r lg m) time com-
plexity by extending partial chains. The latter can be improved to O(r lg lg m)
by using the successor data-structure of van Emde Boas [28]. Apostolico and
Guerra [21] gave an O(mL ·min(lg |Σ|, lg m, lg 2n

m)) time algorithm, and another
algorithm with running time O(m lg n+d lg nm

d) which can also be implemented
to take O(d lg lg min(d, nm

d)) time [13]. Here, d ≤ r is the number of dominant
matches (as defined by Hirschberg [16]). Note that in the worst case both d
and r are Θ(nm), while the parameter L is always bounded by m. When there
are k ≥ 2 input strings, the sparse LCS problem extends to the problem of
chaining from fragments in multiple dimensions [1, 24]. Here, the match point
arithmetic is extended with range search techniques, yielding a running time of
O(r(lg n)k−2 lg lg n).

The problem of computing the LCS of two trees was considered by Lozano
et al. [22] and Amir et al. [2]. The problem is defined as follows.

Definition 1 (Tree LCS). The LCS of two rooted, ordered, labeled trees, is the
size of the largest forest that can be obtained from both trees by deleting nodes.
Deleting a node v means removing v and all edges incident to v. The children of
v become children of the parent of v (if it exists) instead of v.

We also consider the following constrained variant of the problem.

Definition 2 (Homeomorphic Tree LCS). The Homeomorphic LCS
(HLCS) of two rooted, ordered, labeled trees is the size of the largest tree that
can be obtained from both trees by deleting nodes, such that in the series of node
deletions, a deleted node must have 0 or 1 children at the time the deletion is
applied.

Tree LCS is a popular metric for measuring the similarity of two trees and arises
in XML comparisons, computer vision, compiler optimization, natural language
processing, and computational biology [6, 8, 20, 26, 31]. To date, computing the
LCS of two trees is done by using tree edit distance algorithms. Tai [26] gave the
first such algorithm with a time complexity of O(nm · leaves(F)2 · leaves(G)2),
where n and m are the sizes of the input trees F and G (with m ≤ n) and
leaves(F) denotes the number of leaves in F . Zhang and Shasha [31] improved
this result to O(nm · min{height(F), leaves(F)} · min{height(G), leaves(G)}),
where height(F) denotes the height of F . In the worst case, their algorithm
runs in O(n2m2) = O(n4) time. Klein [19] improved this result to a worst-case
O(m2n lg n) = O(n3 lg n) time algorithm and Demaine et al. [12] further im-
proved to O(nm2(1 + lg n

m)) = O(n3). Chen [9] gave an O(nm + n · leaves(G)2 +
leaves(F) ·M(leaves(G))) time algorithm, where M(k) is the time complexity for
computing the distance product of two k × k matrices. For homeomorphic edit
distance (where deletions are restricted to nodes with zero or one child), Zhang
et al. [30] gave an O(mn) time algorithm.

232 S. Mozes et al.

Our Results. We modify Zhang and Shasha’s algorithms and Klein’s algorithm
similarly to the modifications of Hunt-Szymanski and Hirschberg to the classical
O(mn)-time algorithm for string LCS. We present two algorithms for computing
the LCS of two rooted, ordered, and labeled trees F and G of sizes n and m. Our
first algorithm runs in time O(r·height(F)·height(G)·lg lg m) where r is the num-
ber of pairs (v ∈ F, w ∈ G) such that v and w have the same label. Our second
algorithm runs in time O(Lr lg r·lg lg m), where L = |LCS(F, G)|. This algorithm
is more complicated and requires a novel three dimensional alignment graph. In
both these algorithms the lg lg m factor can be replaced by lg lg(min(m, r)) by
noticing that if r < m then there are at least m − r nodes in G that do not
match any node in F so we can delete them from G and solve the problem on
the new G whose size is now at most r. Finally we consider LCS for the case
when only homeomorphic mappings are allowed between the compared trees (i.e.
deletions are restricted to nodes with zero or one child). For this case we obtain
an O(rh lg lg m) time algorithm, where h = height(F) + height(G).

Roadmap. The rest of the paper is organized as follows. Preliminaries and defi-
nitions are given in Section 2. In Section 3 we present our sparse variant of the
Zhang-Shasha algorithm and in sections 4 and 5 we give such variants for Klein’s
algorithm. Finally, in Section 6 we describe our algorithm for the homeomorphic
tree LCS. Due to the space restriction, the proofs are deferred to the full version
of this paper.

2 Preliminaries

For a forest F , the node set of F is written simply as F , as when we speak of
a node v ∈ F . We denote Fv as the subtree of F that contains the node v ∈ F
and all its descendants. A forest obtained from F by deleting nodes is called a
subforest of F . For a pair of trees F, G, two nodes v ∈ F, w ∈ G with the same
label are called a match pair. For the tree LCS problem we assume without loss
of generality that the roots of the two input trees form a match pair (if this
property does not hold for the two input trees, we can add new roots to the
trees and solve the tree LCS problem on the new trees).

The Euler string of a tree F is the string obtained when performing a left-to-
right DFS traversal of F and writing down the label of each node twice: when the
DFS traversal first enters the node and when it last leaves the node. We define
eF (i) to be the index such that both the ith and eF (i)th characters of the Euler
string of F were generated from the same node of F . Note that eF (eF (i)) = i.

For i ≤ j, we denote by F [i..j] the forest induced by all nodes v ∈ F whose
Euler string indices both lie between i and j. A left-to-right postorder traversal
of a tree F whose root v has children v1, v2, . . . , vk (ordered from left to right)
is a traversal which recursively visits Fv1 , Fv2 , . . . , Fvk

, then finally visits v.
For two forests F and G, let LCSR(F, G) (resp., LCSL(F, G)) denote the size

of the largest forest that can be obtained from F and G by node deletions without
deleting the root of the rightmost (resp., leftmost) tree in F or G. If the roots of

Fast Algorithms for Computing Tree LCS 233

the rightmost trees in F and G are not a match pair then we define LCSR(F, G) =
0. Clearly, LCSR(F, G) ≤ LCS(F, G) and LCSL(F, G) ≤ LCS(F, G).

Lemma 1. If F and G are trees whose roots have equal labels then
LCSR(F, G) = LCSL(F, G) = LCS(F, G).

A path decomposition of a tree F is a set of disjoint paths in F such that (1) each
path ends in a leaf, and (2) each node appears in exactly one path. The main
path of F with respect to a decomposition P is the path in P that contains the
root of F . A heavy path decomposition of a tree F was introduced by Harel and
Tarjan [14] and is built as follows. We classify each node of F as either heavy
or light : For each node v we pick the child of v with maximum number of de-
scendants and classify it as heavy (ties are resolved arbitrarily). The remaining
nodes are classified as light. The main path p of the heavy path decomposition
starts at the root (which is light), and at each step moves from the current node
v to its heavy child. We next remove the nodes of p from F , and recursively com-
pute a heavy path decomposition for each of the remaining trees. An important
property of this decomposition is that the number of light ancestors of a node
v ∈ F is at most lg n + 1.

A successor data-structure is a data-structures that stores a set of elements
S with a key for each element and supports the following operations: (1)
insert(S, x): inserts x into S (2) delete(S, x): removes x from S (3) pred(S, k):
returns the element x ∈ S with maximal key such that key(x) ≤ k (4) succ(S, k):
returns the element x ∈ S with minimal key such that key(x) ≥ k. Van Emde
Boas presented a data structure [28] that supports each of these operations in
O(lg lg u) time, where the set of legal keys is {1, 2, . . . , u}.

3 An O(r · height(F) · height(G) · lg lg m) Algorithm

In this section we present an O(r · height(F) · height(G) · lg lg m) time algorithm
for computing the LCS of two trees F and G of sizes n and m and heights
height(F) and height(G) respectively. The relation between this algorithm and
Zhang and Shasha’s O(nm · height(F) · height(G)) time algorithm [31] is similar
to the relation between Hunt and Szymanski’s O(r lg lg m) time algorithm [18]
and Wagner and Fischer’s O(mn) time algorithm [29] in the string LCS world.

We describe an algorithm based on that of Zhang and Shasha using an align-
ment graph. This approach was also used in [4,5,27]. The alignment graph BF,G

of F and G is an edge-weighted directed graph defined as follows. The vertices
of BF,G are (i, j) for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. Intuitively, vertex (i, j) corre-
sponds to LCS(F [1..i], G[1..j]), and edges in the alignment graph correspond to
edit operations. The graph has the following edges:

1. Edges (i−1, j) → (i, j) and (i, j −1) → (i, j) with weight 0 for every i and j.
These edges either connect vertices which represent the same pair of forests,
or represent deletion of the rightmost root of just one of the forests. Both
cases do not change the LCS, hence the zero weight we assign to these edges.

234 S. Mozes et al.

2. An edge for every match pair v ∈ F, w ∈ G, except for the roots of F and G.
Let i and eF (i) be the two characters of the Euler string of F that correspond
to v, where eF (i) < i, and let eG(j) < j be the two characters of the Euler
string of G that correspond to w. We add an edge (eF (i), eG(j)) → (i, j)
with weight LCS(Fv, Gw) to BF,G. This edge corresponds to matching the
rightmost trees of F [1..i] and G[1..j] and its weight is obtained by recursively
applying the algorithm on the trees Fv and Gw. Note that we cannot add
an edge of this type for the match pair of the roots of F and G because we
cannot compute the weight of such edge by recursion.

3. An edge (2n − 1, 2m − 1) → (2n, 2m) with weight 1, which corresponds to
the match between the roots of F and G.

a

b d e

a

b b

d e

a

b

b

e

d

a b b b d d b e e
a

b

b

b

d

d

e

e

b

a

a

2

1
1

1

1

1

1

Fig. 1. An alignment graph of two trees F and G. The horizontal and vertical edges
are of weight 0. Every diagonal edge e corresponds to a match pair, and e’s weight is
the LCS of the two Euler substrings between e’s endpoints.

See Figure 1 for an example. For an edge e = (i, j) → (i′, j′), let tail(e) = (i, j)
and head(e) = (i′, j′). The ith coordinate of a vector x is denoted by xi. For
example, for e above, head(e)2 = j′.

Lemma 2. The maximum weight of a path in BF,G from vertex (1, 1) to vertex
(i, j) is equal to LCS(F [1..i], G[1..j]).

Zhang and Shasha’s algorithm computes the maximum weight of a path from
(1, 1) to (i, j), for every vertex (i, j) of BF,G. By Lemma 2, this gives LCS(F, G)
at the vertex (2n, 2m). If there are only few match pairs, we can do better. Denote
the set of edges in BF,G with nonzero weights by EF,G. Clearly, |EF,G| = r. We
will exploit the sparsity of the edges EF,G by ignoring the edges with weight 0
and the vertices that are not the endpoint of an edge in EF,G. We define the score

Fast Algorithms for Computing Tree LCS 235

of e ∈ EF,G as the maximum weight of a path in BF,G from (1, 1) to head(e)
that passes through e.

Lemma 3. score(e) = LCSR(F [1..head(e)1], G[1..head(e)2]) for every edge e ∈
EF,G.

By Lemmas 1 and 3 we have that LCS(F, G) = score((2n − 1, 2m − 1) →
(2n, 2m)). We now describe a procedure that computes LCS(F, G) in O(|EF,G| ·
lg lg m) time, assuming we have already computed LCS(Fv, Gw) for every match
pair v ∈ F, w ∈ G except for the roots of F and G. This procedure computes
score(e) for every e ∈ EF,G. It uses a successor data-structure S that stores
edges from EF,G, where the key of an edge e is head(e)2. The pseudocode for
the procedure is as follows (we assume that score(NULL) = 0).

1: for i = 1, . . . , 2n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2
4: if score(e) > score(pred(S, j)) then
5: insert(S, e)
6: while succ(S, j +1) �= NULL and score(succ(S, j +1)) ≤ score(e) do
7: delete(S, succ(S, j + 1))
8: for every e ∈ EF,G with tail(e)1 = i do
9: score(e) ← weight(e) + score(pred(S, tail(e)2))

Let e1, e2, . . . be the edges of EF,G according to the order in which they are
processed in line 2. An edge e is t-relevant if e is one of the edges e1, . . . , et.
We say that a path p is t-relevant if all its nonzero weight edges are t-relevant.
Denote by w(t, i, j) the maximum weight of a t-relevant path from (1, 1) to (i, j).
The correctness of the algorithm follows immediately from the following lemma.

Lemma 4. For every t, the score of et is computed correctly by the algorithm.
Moreover, for every t, just after et is processed in lines 2–7, score(pred(S, j)) =
w(t, head(e)1, j) for all j.

To analyze the running time of the algorithm, let us count the number of
times each operation on S is called. Each edge of EF,G is inserted or deleted
at most once. The number of successor operations is the same as the number of
deletions, and the number of predecessor operations is the same as the number
of edges. Hence, the total number of operations on S is O(|EF,G|). Using the
successor data-structure of van Emde Boas [28] we can support each operation
on S in O(lg lg m) time yielding a total running time of O(|EF,G| · lg lg m). By
running the above procedure recursively on every match pair we get that the
total time complexity is bounded by

O

⎛
⎝ ∑

match pair (v,w)

|EFv ,Gw | · lg lg m

⎞
⎠ = O

⎛
⎝lg lg m ·

∑
match pair (v,w)

depth(v) · depth(w)

⎞
⎠

= O (lg lg m · r · height(F) · height(G)) .

236 S. Mozes et al.

4 An O(mr lg r · lg lg m) Algorithm

We begin this section by giving an alternative description of Klein’s algorithm
using an alignment graph. However, as opposed to the alignment graph of [27,4,5]
our graph is three dimensional.

Given a tree F and a path decomposition P of F we define a sequence of
subforests of F as follows. F (n) = F , and F (i) for i < n is the forest obtained
from F (i+1) by deleting one node: If the root of leftmost tree in F is not on the
main path of P then this root is deleted, and otherwise the root of the rightmost
tree in F is deleted. Let xi be the node which is deleted from F (i) when creating
F (i − 1). Let yi be the node of G that generates the ith character of the Euler
string of G. Let Iright be the set of all indices i such that F (i−1) is created from
F (i) by deleting the rightmost root of F (i), and Ileft = {1, . . . , n} \ Iright.

The alignment graph BF,G of trees F and G is defined as follows. The vertices
of BF,G are (i, j, k) for 0 ≤ i ≤ n, 1 ≤ j ≤ 2m, and j ≤ k ≤ 2m. Intuitively,
vertex (i, j, k) corresponds to LCS(F (i), G[j..k]). For a vertex (i, j, k) with i ∈
Iright the following edges enter the vertex.

1. If i ≥ 1, an edge (i − 1, j, k) → (i, j, k) with weight 0. This edge corresponds
to deletion of the rightmost root of F (i). This does not increase the LCS
hence the zero weight.

2. If j ≤ k − 1, an edge (i, j, k − 1) → (i, j, k) with weight 0. This edge ei-
ther connects vertices which represent the same pair of forests, or represent
deletion of the rightmost root in G[j..k]. Both cases do not change the LCS,
hence the zero weight.

3. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is not on the main path of F ,
an edge (i − |Fxi |, j, eG(k)) → (i, j, k) with weight LCS(Fxi , Gyk

). This edge
correspond to matching the rightmost tree in F (i) to the rightmost tree of
G[j..k].

4. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is on the main path of F , an
edge (i − 1, eG(k), k − 1) → (i, j, k) with weight 1. This edge corresponds to
matching xi (the root of F (i) = Fxi) to yk (the rightmost root of G[j..k]).
If we match these nodes then only descendants of yk can be matched to the
nodes of F (i − 1) (since F (i) is a tree). To ensure this, we set the second
coordinate of the tail of the edge to eG(k) (instead of j as in the previous
case), since nodes with indices j′ < eG(k) are not descendants of yk.

Similarly, for i ∈ Ileft the edges that enter (i, j, k) are

1. If i ≥ 1, an edge (i − 1, j, k) → (i, j, k) with weight 0.
2. If j ≤ k − 1, an edge (i, j + 1, k) → (i, j, k) with weight 0.
3. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is not on the main path of

F , an edge (i − |Fxi |, eG(j), k) → (i, j, k) with weight LCS(Fxi , Gyj).
4. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is on the main path of F , an

edge (i − 1, j + 1, eG(j)) → (i, j, k) with weight 1.

The set of all edges in BF,G with nonzero weights is denoted by EF,G. In order
to build BF,G one needs to know the values of LCS(F ′, G′) for some pairs of

Fast Algorithms for Computing Tree LCS 237

subforests F ′, G′ of F, G. These values are obtained by making recursive calls to
Klein’s algorithm on the appropriate subforests of F and G.

Lemma 5. The maximum weight of a path in BF,G from some vertex (0, l, l) to
vertex (i, j, k) is equal to LCS(F (i), G[j..k]).

Klein’s algorithm computes the maximum weight path that ends at each vertex
in BF,G using dynamic programming, and returns the maximum weight of a
path from some vertex (0, l, l) to (n, 1, 2m), which is equal to LCS(F, G). The
path decomposition P is selected in order to minimize the total size of the
alignment graph BF,G and the alignment graphs created by the recursive calls
of the algorithm. Using heavy path decomposition [14], the time complexity of
Klein’s algorithm is O(n lg n · m2).

Now, we present an algorithm for computing the LCS based on the sparsity
of EF,G. Recall that the score of an edge e ∈ EF,G is the maximum weight of a
path in BF,G from some vertex (0, l, l) to head(e) that passes through e.

Lemma 6. Let e be an edge in EF,G and denote head(e) = (i, j, k). If
i ∈ Iright then score(e) = LCSR(F (i), G[j..k]), and otherwise score(e) =
LCSL(F (i), G[j..k]).

Knowing the scores of the edges gives us LCS(F, G) as LCS(F, G) = score((n −
1, 1, 2m − 1) → (n, 1, 2m)). In fact, additional LCS values can be obtained from
the scores:

Lemma 7. For every match pair x ∈ F, y ∈ G such that x is on the main path
of F there is an edge e ∈ EF,G such that LCS(Fx, Gy) = score(e).

A high-level description of the algorithm for computing the LCS of F and G is:

1: Build a path decomposition P of F .
2: for every node x in F in postorder do
3: if x is the first node on some path P ∈ P then
4: Build the set EFx,G.
5: Compute the scores of the edges in EFx,G.
6: Output score((n − 1, 1, 2m − 1) → (n, 1, 2m)).

We will explain how to construct the path decomposition P in step 1 later. For
now note just that P is used when building each of the sets EFx,G in step 4. To
build EFx,G, we need a path decomposition of Fx. We use the path decomposition
that is induced from the path decomposition P . In order to build EFx,G one needs
to know the values of LCS(Fx′ , Gy) for pairs of nodes x′ and y, where x′ is a node
of Fx that is not on the main path of Fx. By Lemma 7, the value of LCS(Fx′ , Gy)
is equal to the score of an edge from EFx′′ ,G where x′′ is the first vertex on the
path p ∈ P that contains x′ (x′′ can equal x′). Since the nodes of F are processed
in postorder, the scores of the edges in EFx′′ ,G are known when building EFx,G.

It remains to show how to compute the scores of the edges in EF,G. The al-
gorithm for computing the scores of the edges uses 4m successor data-structures

238 S. Mozes et al.

S left
1 , . . . , S left

2m and Sright
1 , . . . , Sright

2m . Each of these structures stores a subset of
EF,G. The key of an edge e in some structure Sright

i is head(e)3, and the key of
an edge e in some structure S left

i is head(e)2.

1: for i = 1, . . . , n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2, k ← head(e)3
4: if i ∈ Iright and score(e) > score(pred(Sright

j , k)) then
5: insert(Sright

j , e)
6: while succ(Sright

j , k + 1) �= NULL and score(succ(Sright
j , k + 1)) ≤

score(e) do
7: delete(Sright

j , succ(Sright
j , k + 1))

8: if i ∈ Ileft and score(e) > score(succ(S left
k , j)) then

9: insert(S left
k , e)

10: while pred(S left
k , j−1) �= NULL and score(pred(S left

k , j−1)) ≤ score(e)
do

11: delete(S left
k , pred(S left

k , j − 1))
12: for every e ∈ EF,G with tail(e)1 = i do
13: j ← tail(e)2, k ← tail(e)3
14: score(e) ← weight(e) + max(score(pred(Sright

j , k)), score(succ(S left
k , j)))

We call an edge e with head(e)1 ∈ Iright a right edge. Let e1, e2, . . . be the
edges of EF,G according to the order in which they are processed in line 2.

Lemma 8. The scores of all nonzero weight edges are computed correctly by the
algorithm. Moreover, for every t, just after et is processed in lines 2–11, for all j
and k, score(pred(Sright

j , k)) (resp., score(succ(S left
k , j))) is equal to the maximum

weight of a t-relevant path from some vertex (0, l, l) to (head(e)1, j, k) whose last
nonzero weight edge is a right (resp., left) edge.

Just as in the previous section, using the successor data-structure of van
Emde Boas [28] we have that computing the scores of the edges in EF,G takes
O(|EF,G| lg lg m) time. The time for computing the LCS between F and G is
therefore O(

∑
x∈LP

|EFx,G| lg lg m), where LP is the set of the first nodes of the
paths in P . In order to minimize

∑
x∈LP

|EFx,G|, we build P similar to a heavy
path decomposition but where heavy is determined by number of matches and
not by size. This is done as follows. We begin building the main path. We start
at the root of F and then we repeatedly extend the path by moving to a child w
of the current node that maximizes the number of matches between Fw and G
(ties are broken arbitrarily). After obtaining the main path, we remove its nodes
from F and then recursively build a path decomposition of each of the remaining
trees. The decomposition P that is obtained has the property that for each node
x ∈ F , the number of nodes in LP that are ancestors of x is at most lg r + 1.

Lemma 9.
∑

x∈LP
|EFx,G| ≤ 2mr(lg r + 1).

We have therefore shown an algorithm that computes the LCS of two trees in
O(mr lg r · lg lg m) time.

Fast Algorithms for Computing Tree LCS 239

5 An O(Lr lg r · lg lg m) Algorithm

In this section we improve the algorithm of the previous section. Notice that
in the alignment graph of the previous section each match pair generates up to
O(m) edges (while in the alignment graph of Section 3, each match pair generates
exactly one edge). Therefore, the time of processing a match pair is O(m lg lg m).
We will show how to process each group of edges of a match pair in O(L lg lg m)
time by exploiting additional sparsity properties of the problem.

Formally, we partition the edges of EF,G into groups, where each group is
the edges that correspond to some match pair: For i ∈ Iright let EF,G,i,a =
{e ∈ EF,G head(e)1 = i, head(e)3 = a}, and for i ∈ Ileft let EF,G,i,a = {e ∈
EF,G head(e)1 = i, head(e)2 = a}. The total number of groups EF ′,G,i,a for all
the alignment graphs BF ′,G that are built by the algorithm is at most r(lg r+1).

Consider some group EF,G,i,k for i ∈ Iright. Let s = eG(k). We have that
EF,G,i,k = {e1, . . . , es} where head(ej) = (i, j, k). Denote l1 = score(es) =
weight(es) and l2 = score(e1). By Lemma 6, score(e1) ≥ score(e2) ≥ · · · ≥
score(es). Moreover, for all j, score(ej) ∈ {0, . . . , L} and score(ej)−score(ej+1) ∈
{0, 1}. Therefore, there are indices jl1 = s, jl1+1, . . . , jl2 such that score(ejl

) = l
and score(ejl+1) = l − 1 (if l �= l1) for all l. These indices are called the compact
representation of the scores of EF,G,i,k.

To improve the algorithm of the previous section, instead of processing in-
dividual edges, we will process groups. For each group, we will compute the
compact representation of its scores. The time to process each group will be
O(L lg lg m) so the total time complexity will be O(Lr lg r · lg lg m).

We define two dimensional arrays A1, . . . , An, where Ai[j, k] is the maximum
weight of path from some vertex (0, l, l) to (i, j, k). By Lemma 5, every array Ai

has the following properties.

1. Each row of Ai is monotonically increasing.
2. Each column of Ai is monotonically decreasing.
3. The difference between two adjacent cells in Ai is either 0 or 1.
4. Each cell of Ai is an integer from {0, . . . , L}.

The properties above are the same as the properties of the dynamic programming
table for string LCS. Following the approach of [16], we define the l-contour of Ai

(for 1 ≤ l ≤ L) to be the set of all pairs (j, k) such that Ai[j, k] = l, Ai[j+1, k] < l
(or j = 2m), and Ai[j, k − 1] < l (or k = 1). By properties (1) and (2) of Ai we
have that for two pairs (j, k) and (j′, k′) in the l-contour of Ai we have either
j < j′ and k < k′, or j > j′ and k > k′.

The algorithm processes each i from 1 to n. Again, iteration i consists of two
stages: (1) updating the l-contours according to the groups EF,G,i,a for all a (2)
computing the compact representation of the scores for each group EF,G,i′,a such
that the edges e ∈ EF,G,i′,a satisfy tail(e)1 = i. We next explain each of the two
stages in detail.

Computing the l-contours of Ai for all l is done by updating the l-contours
of Ai−1 that were computed in the previous iteration. The l-contour of Ai for the

240 S. Mozes et al.

current value of i is kept using two successor data-structures S1
l and S2

l . The
key of a pair (j, k) in S1

l is j, while the key of (j, k) in S2
l is k.

Suppose that i ∈ Iright (handling i ∈ Ileft is similar). In order to compute the
l-contours of Ai, we process the groups EF,G,i,k for all k. Consider some fixed
EF,G,i,k, and let jl1 , jl1+1, . . . , jl2 be the compact representation of the scores of
EF,G,i,k (which was computed in a prior iteration of the algorithm). Updating
the l-contours according to the scores of the edges in EF,G,i,k is done by:

1: for l = l1, . . . , l2 do
2: if pred(S2

l , k) = NULL or pred(S2
l , k)1 < jl then

3: p ← (jl, k)
4: insert(S1

l , p)
5: insert(S2

l , p)
6: while succ(S2

l , k + 1) �= NULL and succ(S2
l , k + 1)1 ≤ jl do

7: p ← succ(S2
l , k + 1)

8: delete(S1
l , p)

9: delete(S2
l , p)

It remains to describe stage (2), which computes the compact representation
of the scores of some group EF,G,i′,k′ such that the edges e ∈ EF,G,i′,k′ satisfy
tail(e)1 = i. Suppose that i′ ∈ Iright and denote EF,G,i′,k′ = {e1, . . . , es} where
ej = (i, j, k) → (i′, j, k′). All the edges in EF,G,i′,k′ have the same weight w.
Suppose that xi′ is not on the main path of F . Clearly, score(ej) = w + Ai[j, k].
Therefore the compact representation of the scores of EF,G,i′,k′ can be computed
using S2

1 , . . . , S2
L:

1: jw ← s
2: for l = 1, . . . , L do
3: if pred(S2

l , k) �= NULL then jl+w ← pred(S2
l , k)1

If xi′ is on the main path of F then score(e1) = · · · = score(es) = 1 + Ai[s, k],
and computing the compact representation of the scores is done similarly. The
computation of the compact representation of the scores of a group EF,G,i′,j′

with i ∈ Ileft is done similarly using the structures S1
1 , . . . , S1

L.
We have established the following theorem:

Theorem 1. The tree LCS problem can be solved in time O(Lr lg r · lg lg m).

6 An O(rh lg lg m) Algorithm for Homeomorphic Tree
LCS

In this section we address the homeomorphic tree LCS problem. For this problem
we obtain an O(rh lg lg m) time algorithm, where h = height(F) + height(G).
We start by describing an O(nm) non-sparse algorithm for the problem, based
on the constrained edit distance algorithm of Zhang [30]. Here, the computation
of HLCS(F, G) is done recursively, in a postorder traversal of F and G. For
every pair of nodes v ∈ F and w ∈ G we compute score(v, w) which is equal

Fast Algorithms for Computing Tree LCS 241

to HLCS(Fv, Gw). The computation of score(v, w) is based on the previously
computed scores for all children of v and w as follows. Let c(u) denote the
number of children of a node u and let u1, . . . , uc(u) denote the ordered sequence
of the children of u. Then

score(v, w) = max
{

max
i≤c(v)

{score(vi, w)}, max
i≤c(w)

{score(v, wi)}, α(v, w) + 1
}

,

where α(v, w) is defined as follows. If (v, w) is not a match pair then α(v, w) =
−1. Otherwise, α(v, w) is the maximum weight of a non-crossing bipartite
matching between the vertices v1, . . . , vc(v) and the vertices w1, . . . , wc(w), where
the weight of matching vi with wj is score(vi, wj). Computing α(v, w) takes
O(c(v) · c(w)) time using dynamic programming on a c(v) × c(w) table.

In order to obtain a sparse version of this algorithm, there are two goals to be
met. First, rather than computing score(v, w) for all nm node pairs, we will only
compute the scores for match pairs. Second, we need to avoid the O(c(v) · c(w))
time complexity of the dynamic programming algorithm for computing α(v, w)
and replace it with sparse dynamic programming. For every match pair (v, w)
we have

score(v, w) = max
{
max

v′
{score(v′, w)}, max

w′
{score(v, w′)}, α(v, w) + 1

}
,

where maxv′ is maximum over all proper descendants v′ of v that have the same
label as v, and maxw′ is defined similarly. Computing the two maxima above
for all match pairs is done as follows. First, we initialize score(v, w) = 0 for
all match pairs (v, w). After computing score(v, w) for some match pair (v, w),
we perform score(v̂, w) ← max{score(v̂, w), score(v, w)} and score(v, ŵ) ←
max{score(v, ŵ), score(v, w)}, where v̂ and ŵ are the parents of v and w, re-
spectively. Thus, for some match pair (v, w), after processing all match pairs
(v′, w′) where v′ is a descendant of v and w′ is a descendant of w, we have
that score(v, w) is equal to max {maxv′{score(v′, w)}, maxw′{score(v, w′)}}, so
it remains to compute α(v, w).

To compute α(v, w), define Pv,w to be the set of all pairs (vi, wj) such that
score(vi, wj) > 0. Applying a sparse dynamic programming approach to the
computation of α(v, w) exploit the fact that Pv,w can be much smaller than
c(v) · c(w). However, note that just querying all pairs of children of v and w to
check which ones have a positive score would already consume O(c(v) · c(w))
time. But, given the set Pv,w, the cost of computing α(v, w) is O(|Pv,w | lg lg m)
instead of O(c(v)·c(w)). Thus, in the rest of this section we show how to efficiently
construct the sets Pv,w.

Our approach is based on the observation that, even before the scores are
computed, a key subset of the match pairs of Fv and Gw can be identified
that have the potential to eventually participate in Pv,w. For every i ≤ c(v)
and j ≤ c(w), let Ŝv,w,i,j be the set of all match pairs (x, y) such that x is a
descendant of vi and y is a descendant of wj , and let Sv,w,i,j be the set of all
match pairs (x, y) ∈ Ŝv,w,i,j for which there is no match pair (x′, y′) �= (x, y) in
Sv,w,i,j such that x′ is an ancestor of x and y′ is an ancestor of y.

242 S. Mozes et al.

The following lemma shows that Pv,w can be built from the sets Sv,w,i,j .

Lemma 10. Let (v, w) be a match pair. Let vi be a child of v and wj be a child
of w such that (vi, wj) is not a match pair. Then, score(vi, wj) is equal to the
maximum score of a pair in Sv,w,i,j, or to 0 if Sv,w,i,j = ∅.

While it is possible to build the sets Sv,w,i,j, it is simpler to build sets S′v,w,i,j

such that Sv,w,i,j ⊆ S′v,w,i,j ⊆ Ŝv,w,i,j. From the proof of Lemma 10 we have
that score(vi, wj) is also equal to the maximum score of a pair in S′v,w,i,j, or to
0 if S′v,w,i,j = ∅. We build the sets S′v,w,i,j as follows. For each match pair (x, y)
of F, G we build a list Lx of all proper ancestors v of x such that v is the lowest
proper ancestor of x with label equal to label(v) (the list Lx is generated by
traversing the path from x to the root while maintaining a boolean array that
stores which characters were already encountered). We also build a list Ly of
all proper ancestors w of y such that w is the lowest proper ancestor of y with
label equal to label(w). For every v ∈ Lx and every proper ancestor w of y with
label(w) = label(v), we add the pair (x, y) to S′v,w,i,j where vi is the child of v
which is on the path from v to x, and wj is the child of w which is on the path
from w to y. Similarly, for every w ∈ Ly and every proper ancestor v of x with
label(v) = label(w), we add the pair (x, y) to S′v,w,i,j.

Lemma 11. S′v,w,i,j ⊇ Sv,w,i,j for all match pairs (v, w) and all i and j.

Theorem 2. The homeomorphic tree LCS problem can be solved in
O(rh lg lg m) time, where h = height(F) + height(G).

References

1. Abouelhoda, M.I., Ohlebusch, E.: Chaining algorithms for multiple genome com-
parison. J. of Discrete Algorithms 3(2-4), 321–341 (2005)

2. Amir, A., Hartman, T., Kapah, O., Shalom, B.R., Tsur, D.: Generalized LCS.
In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 50–61.
Springer, Heidelberg (2007)

3. Apostolico, A., Guerra, C.: The longest common subsequence problem revisited.
Algorithmica 2, 315–336 (1987)

4. Backofen, R., Hermelin, D., Landau, G.M., Weimann, O.: Normalized similarity of
RNA sequences. In: Proc. 12th symposium on String Processing and Information
Retrieval (SPIRE), pp. 360–369 (2005)

5. Backofen, R., Hermelin, D., Landau, G.M., Weimann, O.: Local alignment of RNA
sequences with arbitrary scoring schemes. In: Lewenstein, M., Valiente, G. (eds.)
CPM 2006. LNCS, vol. 4009, pp. 246–257. Springer, Heidelberg (2006)

6. Bille, P.: A survey on tree edit distance and related problems. Theoretical computer
science 337, 217–239 (2005)

7. Bille, P.: Pattern Matching in Trees and Strings. PhD thesis, ITU University of
Copenhagen (2007)

8. Chawathe, S.: Comparing hierarchical data in external memory. In: Proc. 25th
International Conference on Very Large Data Bases, Edinburgh, Scotland, U.K,
pp. 90–101 (1999)

9. Chen, W.: New algorithm for ordered tree-to-tree correction problem. J. of Algo-
rithms 40, 135–158 (2001)

Fast Algorithms for Computing Tree LCS 243

10. Chin, F.Y.L., Poon, C.K.: A fast algorithm for computing longest common subse-
quences of small alphabet size. J. of Information Processing 13(4), 463–469 (1990)

11. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM J. on Computing 32, 1654–
1673 (2003)

12. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

13. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
i: linear cost functions. J. of the ACM 39(3), 519–545 (1992)

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. of Computing 13(2), 338–355 (1984)

15. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Com. ACM 18(6), 341–343 (1975)

16. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. of
the ACM 24(4), 664–675 (1977)

17. Hsu, W.J., Du., M.W.: New algorithms for the LCS problem. J. of Computer and
System Sciences 29(2), 133–152 (1984)

18. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Commun. ACM 20(5), 350–353 (1977)

19. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bi-
lardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

20. Klein, P.N., Tirthapura, S., Sharvit, D., Kimia, B.B.: A tree-edit-distance algo-
rithm for comparing simple, closed shapes. In: Proc. 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 696–704 (2000)

21. Levenstein, V.I.: Binary codes capable of correcting insetrions and reversals. Sov.
Phys. Dokl. 10, 707–719 (1966)

22. Lozano, A., Valiente, G.: On the maximum common embedded subtree problem
for ordered trees. In: Iliopoulos, C.S., Lecroq, T. (eds.) String Algorithmics, pp.
155–170. King’s College Publications (2004)

23. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances.
J. of Computer and System Sciences 20(1), 18–31 (1980)

24. Myers, G., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic
time. In: Proc. 6th annual ACM-SIAM symposium on Discrete algorithms (SODA),
pp. 38–47 (1995)

25. Rick, C.: Simple and fast linear space computation of longest common subse-
quences. Information Processing Letters 75(6), 275–281 (2000)

26. Tai, K.: The tree-to-tree correction problem. J. of the ACM 26(3), 422–433 (1979)
27. Touzet, H.: A linear tree edit distance algorithm for similar ordered trees. In:

Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp.
334–345. Springer, Heidelberg (2005)

28. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

29. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. of the
ACM 21(1), 168–173 (1974)

30. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition 28(3), 463–474 (1995)

31. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. of Computing 18(6), 1245–1262 (1989)

Why Greed Works for Shortest Common

Superstring Problem

Bin Ma

Department of Computer Science
University of Western Ontario
London, ON, Canada N6A 5B7

bma@csd.uwo.ca

Abstract. The shortest common superstring problem (SCS) has been
widely studied for its applications in string compression and DNA se-
quence assembly. Although it is known to be Max-SNP hard, the simple
greedy algorithm works extremely well in practice. Previous researchers
have proved that the greedy algorithm is asymptotically optimal on ran-
dom instances. Unfortunately, the practical instances in DNA sequence
assembly are very different from random instances.

In this paper we explain the good performance of greedy algorithm
by using the smoothed analysis. We show that, for any given instance
I of SCS, the average approximation ratio of the greedy algorithm on a
small random perturbation of I is 1 + o(1). The perturbation defined in
the paper is small and naturally represents the mutations of the DNA
sequence during evolution.

Due to the existence of the uncertain nucleotides in the output of a
DNA sequencing machine, we also proposed the shortest common su-
perstring with wildcards problem (SCSW). We prove that in worst case
SCSW cannot be approximated within ratio n1/7−ε, while the greedy
algorithm still has 1 + o(1) smoothed approximation ratio.

1 Introduction

For n given strings s1, s2, . . ., sn, the shortest common superstring (SCS)
problem asks for a shortest string s that contains every si as a substring.
SCS finds applications in data compression [7,8] and in DNA (and other bi-
ology sequence) assembly [12,15,13]. Recently SCS has been extensively stud-
ied [4,9,19,10,5,11,18,1], largely due to its application in DNA assembly, where
many overlapping short segments of DNA “reads” (substrings) need to be put
together to construct the original DNA sequence. 1

SCS is known to be Max-SNP hard, even for binary strings with equal lengths
[20]. Therefore, it does not admit a PTAS. The best known approximation algo-
rithm has ratio 2.5 [18]. There is a very simple greedy algorithm that repeatedly
1 SCS can only model the small-scale DNA sequencing. The existence of long repeats

in eukaryotic genomes makes SCS an inappropriate model for the whole genome
sequencing.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 244–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Why Greed Works for Shortest Common Superstring Problem 245

merges two maximum overlapping strings into one until there is only one string
left. It was conjectured that this simple greedy algorithm has approximation
ratio 2 [9], and the ratio was proved to be 4 and 3.5, respectively in [4] and
[11]. In practice, this greedy algorithm works extremely well and it was reported
that the average approximation ratio is below 1.014 [14]. It was proved that for
random instances several greedy algorithms, including the one mentioned above,
are asymptotically optimal [6,21]. In fact, because random strings do not overlap
very much, the concatenation of the strings is not much longer than the shortest
common superstring. As a result, a simple greedy algorithm will perform well
on random instances. However, this is not a proper explanation to the good
performance of the simple greedy algorithm in practice, because the practical
instances arising from DNA assembly are not random and the input strings have
significant overlaps.

Here we aim to explain the phenomenon that the greedy algorithm is a good
approximation in practical cases, by adopting the smoothed analysis introduced
in [17,16]. Average analysis studies the average behavior of an algorithm over all
instances of a problem, and therefore the result heavily depends on a probabilis-
tic distribution assumption of the instance space. However, smoothed analysis
studies the algorithm’s average behavior on each “local region” of the instance
space. If the algorithm has good average performance on each local region, then
for any reasonable probabilistic distribution on the whole instance space, the al-
gorithm should perform well. For discrete problems, a local region can be viewed
as a subset of instances generated by reasonable and small perturbations of a
given instance. Clearly, smoothed analysis is in between of the worst case analy-
sis and the average analysis. For a more complete review of smoothed analysis,
we refer the readers to [16].

In Section 3, we will introduce a type of small and reasonable perturbations
on instances of SCS; and prove that, for any given instance, the average approx-
imation ratio of the greedy algorithm on the small perturbations of the instance
is better than 1 + o(1). The result clearly explain why the greedy algorithm
performs well in practical instances.

Because SCS is in Max-SNP hard, in worst case analysis it is not possible
to approximate SCS arbitrarily well in polynomial time (unless P=NP). Our
result shows the opposite in smoothed analysis. To our knowledge, this is the
first time to demonstrate that a problem’s lower bound complexity in terms of
approximation can be different in worst case analysis and in smoothed analysis.

For DNA assembly, the DNA reads generated by a DNA sequencing machine
often contain some undetermined nucleotides, which can be any of the four types
A, C, G, and T. The conventional SCS problem does not model these undetermined
nucleotides correctly. Therefore, in Section 4 we propose the shortest common su-
perstring with wildcards (SCSW) problem, where the undetermined nucleotides
are modeled as wildcards. We will prove that in worst case SCSW cannot be ap-
proximated within ratio n1/7−ε. However, the smoothed analysis will again show
that the simple greedy algorithm has smoothed approximation ratio 1+ o(1) for
SCSW.

246 B. Ma

2 Notations

Let s be a string over alphabet Σ. |s| denotes the length of s. s[i] denotes the
i-th letter of s. Therefore, s = s[1]s[2] . . . s[|s|]. Let s[i..j] denote the substring
s[i]s[i + 1] . . . s[j].

A string with wildcards is a string over alphabet Σ∗ = Σ ∪ {∗}, where ∗
indicates a wildcard. Given two strings s and t with or without wildcards, s
matches t if (1) |s| = |t|, and (2) {s[i], t[i]} ⊂ Σ ⇒ t[i] = s[i] for i = 1, . . . , |s|.

Let s and t be two strings. If there is a suffix of s that is equal to a prefix of t,
we say that s overlaps with t, or equivalently, there is an overlap between s and
t. Notice that under this definition the fact that s overlaps t does not necessarily
mean that t also overlaps s. Let s and t be two strings with wildcards, s overlaps
with t if there are a suffix of s and a prefix of t that match each other.

Let s be a string. Let s1 = s[j1..j′1], . . ., sn = s[jn..j′n] be substrings of s. s is
called an original string of the SCS instance I = {s1, s2, . . . , sn}. If si and sk are
such that ji ≤ jk ≤ j′i ≤ j′k, we say that si overlaps sk in the original string s.
Oik = s[jk..j′i] is called the original overlap between si and sk. |Oik| is called the
length of the original overlap. Notice that under this definition, unless ji = jk

and j′i = j′k, at most one of |Oik| and |Oki| can be greater than zero.

3 Smoothed Analysis of SCS

3.1 The Practical SCS Instances

For DNA assembly, all the short DNA reads are substrings from the original
DNA. An instance of SCS is therefore generated as follows: Given a string s,
select n substrings s1, s2, . . . , sn as the instance of SCS. We further require that
s1, s2, . . . , sn cover all positions of s. Otherwise, s can be replaced by deleting
the uncovered positions.

For clarity of the presentation we assume all substrings si have the same
length m. A discussion of instances with substrings with different lengths can be
found in Section 5.

We denote such an instance as I = I(s, m, (j1, . . . , jn))), where ji is the start-
ing position of si in s. That is,

I = {s1 = s[j1..j1 + m − 1], . . . , sn = s[jn..jn + m − 1]}.

A perturbed instance of I is defined to be I ′ = I(s′, m, (j1, . . . , jn)), where m
and ji (i = 1, . . . , n) remain unchanged and s′ is obtained by uniform-randomly
mutate each letter of s with a small probability p > 0. Therefore

I ′ = {s′1 = s′[j1..j1 + m − 1], . . . , s′n = s′[jn..jn + m − 1]}.

Figure 1 illustrates an example. If the original instance I represents a DNA
sequencing experiment, then the perturbed instance I ′ represents the same ex-
periment on a mutated DNA sequence, assuming all of the reads are taken from
the same locations.

Why Greed Works for Shortest Common Superstring Problem 247

Fig. 1. An illustration of an SCS instance. The input strings s1, s2 and s3 are all
substrings of the original string s. An exemplary perturbation changed the dot positions
of s. As a result, all of the corresponding positions in s1, s2 and s3 are changed together.

In the rest of the paper we assume that m = Ω(log n). We note that the
proof of Max-SNP hardness of SCS in [20] was based on instances with this
restriction. We will prove that even for a very small p = 2 log(nm)

εm , for any given
original instance I, the average approximation ratio of the greedy algorithm on
the perturbed instances I ′ is at most 1 + 3ε.

Because of the Max-SNP hardness of SCS, consider I to be a hard instance of
SCS where the greedy algorithm does not approximate well. Our result indicates
that the hardness of the instance can be destroyed by a very small perturbation.
As today’s natural DNA sequences are all evolved from their ancestral sequences
by random mutations, our result explains why the greedy algorithm works well
in practical instances of SCS.

3.2 Smoothed Analysis of the Greedy Algorithm

The simplest greedy algorithm for closest superstring problem is to repeatedly
merge two strings with the longest overlap, until there is only one string left. In
this section we provide the smoothed analysis of this simple greedy algorithm.

Let I =I(s, m, (j1, . . . , jn)) be an instance of SCS and I ′=I(s′, m, (j1, . . . , jn))
be the perturbed instance as described above. Let S′o denote the optimal solution
of the perturbed instance I ′. Let S′g denote the solution of I ′ computed by the
greedy algorithm. Our task is to upper bound the weighted average of |S′g|/|S′o|
over all perturbations of the given instance.

Let si = s[ji..ji +m− 1] and s′i = s′[ji..ji +m− 1]. From the definition of the
perturbation, for any non-empty original overlap between si and sj in s, there is
an overlap between s′i and s′j with the same length |Oij |. This overlap is called
a consistent overlap. All the other overlaps between s′i and s′j are then called
inconsistent overlaps.

A major difference between the consistent overlaps and inconsistent overlaps
is that consistent overlaps are guaranteed by our perturbation, whereas the fol-
lowing lemma shows that an inconsistent overlap is rarely long.

Lemma 1. Let p < 1
2 be the mutation probability in the perturbation. For any

i, j, the probability that s′i and s′j has an inconsistent overlap of length k is no
more than (1 − p)k.

Proof. First of all, the probability of having a length-k inconsistent overlap is

P = Pr(s′i[m − k + l] = s′j [l] for 1 ≤ l ≤ k).

248 B. Ma

Because of the perturbation and p ≤ 1
2 , for each l,

Pr(s′i[m − k + l] = s′j [l]) ≤ 1 − p.

If the events s′i[m− k+ l] = s′j [l] are independent for different l, then the lemma
is proved.

The trouble is that for different l and l′, s′j [l] and s′i[m − k + l′] can be from
the same position of the original string s. Hence the independence does not hold.
However, for an inconsistent overlap, it is easy to see that at least one of the
following two facts is true:

1. the mutation at s′j [1] is independent from s′i[m − k + 1..m];
2. the mutation at s′j [k] is independent from s′i[m − k + 1..m].

Without loss of generality, we assume the second fact is true. Then

Pr(s′i[m − k + l] = s′j [l] for 1 ≤ l ≤ k)
≤ (1 − p) × Pr(s′i[m − k + l] = s′j [l] for 1 ≤ l ≤ k − 1)

By applying the above reasoning recursively, we can prove that Pr(s′i[m−k+l] =
s′j [l] for 1 ≤ l ≤ k) ≤ (1 − p)k. ��

Let Pij be the maximum inconsistent overlap length between a suffix of s′i and
a prefix of s′j .

Lemma 2. Let ε > 0 be a small number and p ≥ 2 log(nm)
εm . Then when m is a

sufficiently large number,

Pr (Pij < εm for all i, j) ≥ 1 − ε

m log(nm)
.

Proof. From Lemma 1, for any given i and j,

Pr (Pij ≥ εm) ≤
m∑

k=�εm�
Pr (There is a length k inconsistent overlap)

≤
m∑

k=�εm�
(1 − p)k

≤ p−1 × (1 − p)�εm�

≤ p−1 ×
(

1 − 2 log(nm)
εm

)�εm�

≤ p−1 × 2 × e−2 log(nm) (1)

≤ ε

n2m log(nm)
.

Here Inequality (1) is because (1 − x)1/x → e−1 when x → 0.

Why Greed Works for Shortest Common Superstring Problem 249

Therefore,

Pr (Pij ≥ εm for some i, j) ≤ n2 × ε

n2m log(nm)
=

ε

m log(nm)
.

The lemma is proved. ��

Lemma 3. If Pij < εm for all i �= j, then the approximation ratio of the greedy
algorithm is at most 1

(1−ε)2 .

Proof. Let S′o and S′g be defined as before. Because of the definition of pertur-
bation, s′ is a solution of the perturbed instance. Therefore, |S′o| ≤ |s′| = |s|.
Next, let us lower bound |S′o|.

In S′o, denote the non-empty overlap between the suffix of s′i and the prefix of
s′j by O′ij . O′ij is either consistent or inconsistent. Clearly, if both O′ij and O′jk

are consistent, and O′ik is non-empty, then O′ik is also consistent. Define i ≺ j if
and only if there is a sequence i1 = i, i2, . . . , ik = j such that O′ilil+1

is consistent
for l = 1, . . . , k − 1. Define i ≡ j if either i ≺ j or j ≺ i. Then clearly ≡ is an
equivalence relation.

Therefore, s′1, . . . , s
′
n are classified into k groups of equivalence classes T1,

T2, . . ., Tk, under the ≡ relation. By overlapping the strings in Ti together using
the consistent overlaps, each Ti naturally defines a string ti, which is a substring
of both s′ and S′o. Because the length of inconsistent overlap, Pij < εm for all
i �= j, the overlap length of a pair of ti and tj is also less than εm. Consequently,

|S′o| ≥
k∑

i=1

|ti| − (k − 1)εm ≥ (1 − ε)
k∑

i=1

|ti| ≥ (1 − ε)|s′| = (1 − ε)|s|. (2)

Next let us examine the relationship between |s| and |S′g|. The perturbation
does not destroy the original overlap between si and sj in s. Therefore, the
maximum overlap length between s′i and s′j is at least |Oij |. On the other hand,
Pij < εm for all i �= j. As a result, for every i and j such that Oij ≥ εm, a
greedy algorithm will always assemble s′i and s′j in the same way as si and sj

being assembled in s.
Assume assembling all pairs of si and sj for Oij ≥ εm gives us several longer

strings t1, t2, . . ., tk. Then

|S′g| ≤
k∑

i=1

|ti|.

Without loss of generality, assume that ti is before ti+1 in S′g. Because all
Oij ≥ εm have been assembled, the overlap between ti and ti+1 is shorter than
εm. Therefore,

|s| ≥
k∑

i=1

|ti| − (k − 1)εm > (1 − ε)
k∑

i=1

|ti| ≥ (1 − ε)|S′g|. (3)

The theorem is the direct consequence of (2) and (3). ��

250 B. Ma

The following is our main theorem.

Theorem 1. For any given small ε > 0, let the perturbation probability be p ≥
2 log(nm)

εm . Then for sufficiently large m, the expected ratio of the greedy algorithm
on the perturbed instances is (1 + 3ε).

Proof. Let pgood = Pr (Pij < εm for all i, j). Then with probability pgood,
Lemma 3 is true.

Lemma 2 says that pgood ≥ 1 − ε
m log(nm) . Moreover, in [11], the greedy algo-

rithm was proved to have worst-case approximation ratio 3.5. Therefore,

E(ratio) ≤ (1 − pgood) × 3.5 + pgood × 1
(1 − ε)2

≤ ε

m log(nm)
× 3.5 + 1 × 1

(1 − ε)2

≤ (1 + 3ε). �
Remark. Our proof can actually allow ε = o(1). This shows that a problem in
Max-SNP hard can have arbitrarily good smoothed approximation ratio.

Remark. Our perturbation is very small comparing to the instance size. With
perturbation probability p = 2 log(nm)

εm , each length-m substring is only expected
to change O(log(nm)) letters.

4 Shortest Common Superstring with Wildcards

For DNA assembly, the DNA reads (substrings) are generated with a sequencing
machine. Very often, these reads contain undetermined nucleotides because the
sequencing machine has very low confidence to determine the type of nucleotides
at those locations. For example, in read “...TAAAACAANNANTTCCGAAGA...” each
letter N indicates an uncertain nucleotide which can be any of A, C, G, or T. When
these reads are put together, those uncertain letters should behave like wildcards
that match any letters. Hence, we propose the following variant of SCS.

Shortest Common Superstring with Wildcards (SCSW). Given n strings
s1, s2, . . ., sn over alphabet Σ∗ = Σ ∪ {∗}, where ∗ is a wildcard that matches
any single letter, find the shortest string s such that for each i, si matches a
substring of s.

Clearly, the SCS problem is a special case of SCSW. Because SCS belongs to
Max-SNP hard, so does SCSW. In this section, we first prove a much stronger
hardness result for SCSW. Then we demonstrate that when the wildcards (the
sequencing errors) are distributed randomly, the greedy algorithm still has the
smoothed approximation ratio 1 + o(1).

To prove the inapproximability, we reduce the minimum chromatic number
problem to SCSW.

Minimum Chromatic Number Problem. Given an undirected graph G =
〈V, E〉, find a partition of V into disjoint sets V1, V2, . . ., Vk such that each Vi is
an independent set and k is minimized.

Why Greed Works for Shortest Common Superstring Problem 251

The following property about the minimum chromatic number problem was
proved in [3].

Lemma 4 ([3]). The minimum chromatic number problem cannot be approxi-
mated in polynomial time within ratio |V |1/7−ε unless P=NP.

Theorem 2. The shortest common superstring with wildcards problem cannot
be approximated in polynomial time within ratio n1/7−ε unless P=NP.

Proof. Suppose G = 〈V, E〉 is an instance of the minimum chromatic number
problem. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We construct an
instance of SCSW as follows.

Let the alphabet Σ = {A, T, G, C} and the wildcard be N. Each vi corresponds
to a string ti with length m. For each k = 1, 2, . . . , m,

ti[k] =

⎧
⎨
⎩
A, if ek = (vi, vj) and i < j,
T, if ek = (vj , vi) and j < i,
N, otherwise.

For example, if m = 7 and v3 has three adjacent edges e2 = (v1, v3), e4 = (v3, v5),
and e5 = (v3, v6), then t3 = NTNAANN. Such a construction ensures that ti and tj
match each other if and only if (vi, vj) /∈ E.

Let X = GmnCmn be a length 2mn string. Let si = XtiX (i = 1, . . . , n) be
the instance of the SCSW.

Suppose the minimum chromatic number instance has the optimal solution
V = V1 ∪ V2 ∪ . . . ∪ VK . We construct a solution of SCSW as follows. For each
j = 1, . . . , K, suppose Vj = {vi1 , . . . , vil

}. Let Tj be a length-m string obtained
by “fusing” ti1 , . . . , til

together. More specifically, put ti1 , . . . , til
into different

rows as follows
ti1 : ...NTNANNN...
ti2 : ...NNTNNNN...
· · ·
til

: ...NNNNANT...

Because Vj is an independent set, from the construction of each ti, one can easily
see that each column has at most one letter that is not the wildcard N. If there is
such a letter at the k-th column, let Tj[k] be that letter. Otherwise, let Tj[k] be
any letter. Then Tj is a length-m string that is matched by each of ti1 , . . . , til

.
Because V = V1 ∪V2 ∪ . . .∪VK , it is easy to see that S = XT1XT2X . . . TKX

is a solution of the SCSW with length 2mn+m(2n+1)K. Therefore, the length
of the shortest common superstring is at most 2mn + m(2n + 1)K.

On the other hand, suppose SCSW has a solution (not necessarily optimal).
Because of the existence of X = GmnCmn in each si, the solution must have the
form S = XT1XT2X . . . TkX , where each Tj is a length-m string that is matched
by some ti, and each ti must match one of the Tj (j = 1, . . . , k). Because of the
construction of ti, if both ti and ti′ are matched by Tj, then there is no edge
connecting vi and vi′ in graph G. Therefore, by letting V ′j = {vi|ti matches Tj},

252 B. Ma

V ′j is an independent set and V = V ′1 ∪ V ′2 ∪ . . . ∪ V ′k. Let Vj = V ′j \ ∪j−1
i=1 V ′i . We

get a solution for the minimum chromatic number problem.
Therefore, from a solution of the constructed instance with length 2mn+m(2n+

1)k, we can also construct in polynomial time a solution of the original instance
with chromatic number k. From the above discussion, it is easy to verify that the
reduction is an L-reduction. Because of Lemma 4, the theorem is proved. ��

Although the worst case analysis shows that SCSW has very high complexity
in terms of approximation. We show that the greedy algorithm works well on
average case using smoothed analysis. Here we assume an instance is generated
by first generating an SCS instance I = I(s, m, (j1, . . . , jn)) = {s1, . . . , sn}, and
then turn some positions of each si to be the wildcard letter.

The greedy algorithm for SCS can be straightforwardly adopted to find a
solution of SCSW. The only difference is that the definitions of overlap are
different in SCS and SCSW (see Section 2).

A perturbation to this instance I is done in three steps:

1. For each letter in s, change it with a small probability p to get s′. This step
represents the DNA sequence mutation during evolution;

2. Generate I ′ = I(s′, m, (j1, . . . , jn)) = {s′1, . . . , s
′
n}; and

3. For each s′i, each letter is changed to the wildcard letter with probability
q, independently. This step represents the sequencing error in the DNA se-
quencing machine.

Theorem 3. For any small number ε > 0, for p ≥ 2 log(nm)
εm and a constant

0 ≤ q < 1, the expected ratio of the greedy algorithm on the perturbed instances
is 1 + 3ε

1−q .

Proof. The proof is very similar to the proof of Theorem 1. We similarly de-
fine the concepts of consistence and inconsistence. Because the wildcards are
independently assigned with probability q, for each position of string s′i[j], the
probability of that it is neither a wildcard nor si[j] is p(1 − q). Similarly to
Lemma 1, we can show that an inconsistent overlap of length k happens with
probability no more than (1 − p(1 − q))k. The rest of the proof just follows all
the proofs after Lemma 1 in Section 3.2. ��

5 Discussion

We proposed a natural perturbation model for the shortest common superstring
problem (SCS), and proved that the greedy algorithm has average ratio 1+ o(1)
over the perturbations of any given instance. Because the average is taken over
the perturbations of any given instance, the result is stronger than showing the
average ratio is 1 + o(1) over all the instances. This smoothed analysis explains
why the greedy algorithm performs well in practice, regardless the Max-SNP
hardness of SCS. This shows that the hard instances of SCS are very “unstable”,
a small perturbation on the instance will destroy the hardness.

Why Greed Works for Shortest Common Superstring Problem 253

Due to the uncertain letters in the output of a DNA sequencing machine, we
proposed the shortest common superstring with wildcards problem (SCSW). We
proved that this variant is much harder than SCS in terms of approximation.
However, we showed that when the uncertain letters are drawn randomly, the
smoothed analysis for SCS still works. As a result, the simple greedy algorithm
still has 1 + o(1) smoothed approximation ratio.

Another variant of SCS studied in the literature is the shortest approximate
common super string problem, where the common superstring need to contain a
substring within certain Hamming distance to each input string [21,2]. We claim
that our smoothed analysis still works when the allowed errors are bounded by
p′m for p′ much smaller than the perturbation probability p. This is because a
similar result as Lemma 1 still holds. Here we omit the proof.

It is noteworthy that our algorithmic results do not need the alphabet to be
finite; whereas the hardness result only needs an alphabet of size 4.

All the proofs in the paper assumed that the input strings si have the same
length m = Ω(log n). When the input strings have different lengths, one can
easily see that by changing m to be the minimum length of all input strings,
all the results still hold when m = Ω(log n). In fact, as long as most of the
input strings have length Ω(log n), the contribution of the very short strings to
the length is negligible and our results still hold. Because in practice very short
strings are not a problem, the exact bound for the allowed number of short
strings is omitted here.

Acknowledgment

The work was supported in part by NSERC, Canada Research Chair, China NSF
60553001, National Basic Research Program of China 2007CB807900,
2007CB807901, and was partially done when he visited Prof. Andrew Yao at
ITCS at Tsinghua University. The author thanks Dr. Shanghua Teng for valu-
able discussions.

References

1. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring
problem. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp.
87–101. Springer, Heidelberg (1996)

2. Rebäı, A.S., Elloumi, M.: Approximation algorithm for the shortest approximate
common superstring problem. In: Proc. 12th Word Academy of Science, Engineer-
ing and Technology, pp. 302–307 (2006)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, pcps and non-approximability -
towards tight results. SIAM Journal on Computing 27, 804–915 (1998)

4. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear Approximation of
Shortest Superstrings. Journal of the Association for Computer Machinery 41(4),
630–647 (1994)

5. Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short super-
strings. Journal of Algorithms 24(2), 340–353 (1997)

254 B. Ma

6. Frieze, A.M., Szpankowski, W.: Greedy algorithms for the shortest common super-
string that are asymptotically optimal. Algorithmica 21(1), 21–36 (1998)

7. Gallant, J., Maier, D., Storer, J.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20, 50–58 (1980)

8. Storer, J.: Data Compression: Methods and Theory. Addison-Wesley, Reading
(1988)

9. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing short-
est common superstrings. Theoretical Computer Science 57, 131–145 (1988)

10. Turner, J.: Approximation algorithms for the shortest common superstring prob-
lem. Information and Computation 83, 1–20 (1989)

11. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Information
Processing Letters 93, 13–17 (2005)

12. Li, M.: Towards a DNA sequencing theory. In: Proc. of the 31st IEEE Symposium
on Foundations of Computer Science, pp. 125–134 (1990)

13. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences, and
Genomes. Chapman and Hall, Boca Raton (1995)

14. Romero, H.J., Brizuela, C.A., Tchernykh, A.: An experimental comparison of ap-
proximation algorithms for the shortest common superstring problem. In: Proc.
Fifth Mexican International Conference in Computer Science (ENC 2004), pp. 27–
34 (2004)

15. Shapiro, M.B.: An algorithm for reconstructing protein and RNA sequences. Jour-
nal of ACM 14(4), 720–731 (1967)

16. Spielman, D.A., Teng, S.-H.: Smoothed analysis: Motivation and discrete models.
In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp.
256–270. Springer, Heidelberg (2003)

17. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of ACM 51(3), 385–463 (2004)

18. Sweedyk, Z.: 2.5-approximation algorithm for shortest superstring. SIAM Journal
on Computing 29(3), 954–986 (2000)

19. Teng, S.H., Yao, F.: Approximating shortest superstrings. In: Proc. 34th IEEE
Symposium on Foundations of Computer Science, pp. 158–165 (1993)

20. Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring
problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 793–800. Springer, Heidelberg (2005)

21. Yang, E.H., Zhang, Z.: Shortest common superstring problem: average case analy-
sis for both exact and approximate matching. IEEE Transactions on Information
Theory 45(6), 1867–1886 (1999)

Constrained LCS: Hardness and Approximation

Zvi Gotthilf1, Danny Hermelin2, and Moshe Lewenstein1

1 Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel
{gotthiz,moshe}@cs.biu.ac.il

2 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905, Israel

danny@cri.haifa.ac.il

Abstract. The problem of finding the longest common subsequence
(LCS) of two given strings A1 and A2 is a well-studied problem. The
constrained longest common subsequence (C-LCS) for three strings A1,
A2 and B1 is the longest common subsequence of A1 and A2 that con-
tains B1 as a subsequence. The fastest algorithm solving the C-LCS
problem has a time complexity of O(m1m2n1) where m1, m2 and n1 are
the lengths of A1, A2 and B1 respectively. In this paper we consider two
general variants of the C-LCS problem. First we show that in case of two
input strings and an arbitrary number of constraint strings, it is NP-hard
to approximate the C-LCS problem. Moreover, it is easy to see that in
case of an arbitrary number of input strings and a single constraint, the
problem of finding the constrained longest common subsequence is NP-
hard. Therefore, we propose a linear time approximation algorithm for
this variant, our algorithm yields a 1/

√
mmin|Σ| approximation factor,

where mmin is the length of the shortest input string and |Σ| is the size
of the alphabet.

1 Introduction

The problem of finding the longest common subsequence (LCS) of two given
strings A1 and A2 is a well-studied problem, see [3,6,7,1]. The constrained longest
common subsequence (C-LCS) for three strings A1, A2 and B1 is the longest
common subsequence of A1 and A2 that contains B1 as a subsequence. Tsai [10]
gave a dynamic programming algorithm for the problem which runs in O(n2m2k)
where m, n and k are the lengths of A1, A2 and B1 respectively. Improved
dynamic programming algorithms were proposed in [2,4] which run in time
O(nmk). Approximated results for this C-LCS variant presented in [5].

Many problems in pattern matching are solved with dynamic programming
solutions. Among the most prominent of these is the LCS problem. These so-
lutions are elegant and simple, yet usually their running times are quadratic or
more, i.e. they are not effective in the case of multiple strings. It is a desirable
goal to find algorithms which offer faster running times. One slight improvement,
a reduction of a log factor, is the classical Four-Russians trick, see [9]. However,
in general, faster algorithms have proven to be rather elusive over the years (and
perhaps it is indeed impossible).

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 255–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 Z. Gotthilf, D. Hermelin, and M. Lewenstein

The classical LCS problem has many applications in various fields. Among
them applications in string comparison, pattern recognition and data compres-
sion. Another application, motivated from computational biology, is finding the
commonality of two DNA molecules. Closely related, Tsai [10] gave a natural
application for the C-LCS problem: in the computation of the commonality of
two biological sequences it may be important to take into account a common
specific structure.

1.1 Our Contribution

We propose to consider two general variants of the C-LCS problem. First, we
prove that in case of two input strings and an arbitrary number of constraint
strings, it is NP-hard to approximate the C-LCS problem. In addition, we obtain
the first approximation algorithm for the case of many input strings and a single
constraint. Our algorithm yields a 1/

√
mmin|Σ| approximation factor, where

mmin is the length of the shortest input string and |Σ| is the size of the alphabet.
The running time of our algorithm is linear.

2 Preliminaries

Let A1 = 〈a11 , a12 , . . . , a1m1〉, A2 = 〈a21 , a22 , . . . , a2m2〉, . . ., Ak = 〈ak1 , ak2 ,
. . . , akmk

〉 and B1 = 〈b11 , b12 , . . . , b1n1〉, B2 = 〈b21 , b22 , . . . , b2n2〉, . . ., Bl = 〈bn1

, bn2 , . . . , b1nl
〉 be an input of the C-LCS problem. The longest constrained sub-

sequence (C-LCS, for short) of A1, A2, . . ., Ak and B1, B2, . . ., Bl is the longest
common subsequence of A1, A2, . . ., Ak that contains each of B1, B2, . . ., Bl as
a subsequence. The approximation version of the C-LCS problem is defined as
follows. Let OPTclcs be the optimal solution for the C-LCS problem and APPclcs

the result of the approximation algorithm APP such that:

- APPclcs is a common subsequence of A1, A2, . . ., Ak.
- B1, B2, . . ., and Bl are subsequences of APPclcs.

The approximation ratio of the APP algorithm will be the smallest ratio between
|APPclcs| and |OPTclcs| over all possible input strings A1, A2, . . ., Ak and B1,
B2, . . ., Bl.

Clearly, not every instance of the C-LCS problem must have a feasible solution,
i.e. there is no common subsequence of all input strings that contains every
constraint string as a subsequence. It can be seen in figure 1 that the left instance
is an example of a non-feasible C-LCS instance, while for the right instance
”bcabcab” is a feasible constrained common subsequence.

3 Arbitrary Number of Constraints

In this section we prove that given two input strings and an arbitrary number of
constrains the problem of finding the C-LCS is NP-hard. In addition, we show
that it is NP-hard to approximate C-LCS for such instances.

Constrained LCS: Hardness and Approximation 257

A1

A2

B1

B2

B3

b c

b

a c

c a

c a c c a bb

b

b

aa

bc a

c

b a

a a b a A1

A2

B1

B2

bac

c a a

ab

aab

b b cc a b

c bbc

c

a c ab

Fig. 1. Non feasible and feasible C-LCS instances

Theorem 1. The C-LCS problem in case of an arbitrary number of constraints
is NP-complete.

Proof: We prove the hardness of the problem by a reduction from 3-SAT.

Given a 3-SAT instance with variables x1, x2, . . . , xk and clauses c1, c2, . . . , cl, we
construct an instance of C-LCS with two input strings and k + l − 1 constraints.

The alphabet of A1 and A2 is the set of clauses c1, c2, . . . , cl and a set of
separators {s1, s2, . . . , sk−1} separating between the variables.

We construct A1 as follows. For each variable xi we create a substring Xi

by setting all the clauses satisfied with xi = true followed by all the clauses
satisfied with xi = false (we set the clauses in a sorted order). We then set
A1 to be X1s1X2s2 . . . sk−1Xk, the Xi substrings separated by the appropriate
separators.

We similarly construct A2. We create a substring X
′

i by setting all the clauses
satisfied with xi = false followed by all the clauses satisfied with xi = true (we
set the clauses in a sorted order). We then set A2 to be X

′

1s1X
′

2s2 . . . sk−1X
′

k,
the X

′

i substrings separated by the appropriate separators.
Let c1, c2, . . . , cl and s1, s2, . . . , sk−1 be the group of constraints. Note that,

all of them are of length one.
See figure 2 as an example of our constriction from the following 3-SAT in-

stance to a C-LCS instance that contains two input strings and k + l − 1 con-
straints (all of length one):

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x4)

Lemma 1. A 3-SAT instance can be satisfied iff there exists a C-LCS of length
≥ k + l − 1.

Proof: For simplicity, we assume that there are no clauses that contains both
xi and x̄i.

(⇒) Suppose a 3-SAT instance can be satisfied.
Let X be an assignment on the variables satisfying the 3-SAT instance. Let

Y be the variables assigned true values of X and Z be the variables assigned

258 Z. Gotthilf, D. Hermelin, and M. Lewenstein

S1

S2

S3

B5

B6

B7

A1

C2 S1C1 C2 C3C1C4 C4S2 C3 C4 C1 S3 C2C3

C1 S1C4 C1 C2C3C2 C1 C4 C2S3C3 C3C4S2

C2

C3

C4

C1

A2

B2

B3

B4

B1

Fig. 2. Construction example

false values. For each variable xi ∈ Y , let {cij , . . . , cir} be the clauses which are
satisfied by setting xi to true.

We construct a valid C-LCS as follows. Add to the C-LCS the c′ij
s from Xi

and X
′

i . Clearly they cannot cross each other as they are ordered. Likewise for
x

′

i ∈ Z we do the same. Moreover, we select s1, s2, . . . , sk−1. Note that, since xi

is either true or false we will have:

1. No internal crossings within Xi and X
′

i .
2. No crossing over the separators.

Obviously, since all clauses are satisfied (by some variable) they appear within
the LCS. Since also s1, s2, . . . , sk−1 appear, all the C-LCS constraints are satis-
fied. Therefore, |C − LCS| ≥ l + k − 1.

(⇐) Note that all constraints must be satisfied. Hence, s1, s2, . . . , sk−1 appears
in the C-LCS. Therefore, any clause ci appearing in the C-LCS must be within
a given Xi, X

′

i . Thus, there cannot be an inconsistency of the xi assignments.
Because the clauses c1, c2, . . . , cl are constraints, they must appear in the C-LCS.

Therefore, the assignment of x1, x2, . . . , xk must satisfy the 3-SAT instance,
since every clause must be satisfied in the C-LCS instance.
�
The following theorem derived from our reduction.

Theorem 2. The C-LCS problem in case of an arbitrary number of constraints
cannot be approximated.

Proof: By the C-LCS definition and according to Lemma 1, any valid solution for
the C-LCS must satisfy all the constraints (and must be of length ≥ k + l − 1).
Therefore, any approximation algorithm must yield an appropriate solution to the
3-SAT problem. In case that an approximation algorithm fails to find a C-LCS,
we can conclude that the corresponding 3-SAT instance could not be satisfied.
�

Constrained LCS: Hardness and Approximation 259

Note that, our reduction is based on a C-LCS instance in which all the constraints
are of length one.

4 Single Constraint

In this section we consider the case of an arbitrary number of input strings and
a single constraint. It is easy to see that the problem of finding the constrained
longest common subsequence is NP-hard. Therefore, we present an approxima-
tion algorithm for this case. Our algorithm yields a 1/

√
mmin|Σ| approximation

factor within a linear running time (while mmin is the length of the shortest
input string). Let A1, A2, . . . , Ak be the input strings. Throughout this section
we assume a single constraint string exists, denote it by B = 〈b1, b2, . . . , bn〉.

The following result follows from the NP-hardness of the LCS [8] and by
setting B = ε.

Observation 1. Given an arbitrary number of input strings and a single con-
straint, the problem of finding the C-LCS of such instances is NP-hard.

4.1 Approximation Algorithm

Now we present a linear time approximation algorithm. First we give some useful
notations that will be used throughout this subsection.

Let Ai = 〈Ai1 , Ai2 , . . . , Aimi
〉 be an input string of length mi. Denote with

Ai[s, e] the substring of Ai that starts at location s and ends at location e. Denote
by start(Ai, j) the leftmost location in Ai such that b1, b2, . . . , bj is a subsequence
of Ai[1, start(Ai, j)]. Symmetrically, denote by end(Ai, j) the rightmost location
in Ai such that bj , bj+1, . . . , bn is a subsequence of Ai[end(Ai, j), mi]. See Figure 3
as an example of start(Ai, j) and end(Ai, j). For the simplicity of the analysis
assume that start(Ai, 0) + 1 = Ai1 and end(Ai, n + 1) − 1 = Aimi

.
Let OPTclcs be an optimal C-LCS solution. By definition, B must be a sub-

sequence of OPTclcs and a subsequence of every input string Ai (1 ≤ i ≤ k).
Choose an arbitrary embedding of B over OPTclcs (as a subsequence) and

denote with p1, p2, . . . , pn the positions of b1, b2, . . . , bn in OPTclcs. For simplicity
assume p0 + 1 and pn+1 − 1 are the positions of the first and the last characters
of OPTclcs respectively. Note that there may be many possible embeddings of
B over OPTclcs.

The following lemma and corollaries are instrumental in achieving the desir-
able approximation ratio.

Lemma 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be an
optimal C-LCS, then for any assignment of B over OPTclcs and for every 0 ≤
i ≤ n the following statement holds:

|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| ≥ |OPTclcs[pi + 1, pi+1 − 1]|.

260 Z. Gotthilf, D. Hermelin, and M. Lewenstein

adbbacd db a

a bc b d c a d d b c aA_1

start(A_1,1) start(A_1,2) start(A_1,3)

end(A_1,2) end(A_1,3)end(A_1,1)

A_2 bc

end(A_2,3)end(A_2,2)

start(A_2,1) start(A_2,2) start(A_2,3)
end(A_2,1)

c b aB

Fig. 3. An example of start(Ai, j) and end(Ai, j)

Proof: Let us assume that there is an assignment of B over OPTclcs such that:
|LCS(A1[start(A1, i)+1, end(A1, i+1)−1], A2[start(A2, i)+1, end(A2, i+1)−1],
. . . , Am[start(Am, i) + 1, end(Am, i + 1) − 1])| < |OPTclcs[pi + 1, pi+1 − 1]|.

Note that, OPTclcs[pi + 1, pi+1 − 1] must be a common subsequence of sub-
strings of A1, A2, . . ., Am. For every j ≤ m, those substrings must start at a
location ≥ start(Aj , i) + 1 and end at a location ≤ end(Aj , i + 1) − 1. This
contradicts the fact that the LCS of the substrings cannot be longer than the
LCS of the original complete strings.
�
The next two corollaries follows from Lemma 2.

Corollary 1. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find the LCS of A1, A2, . . . , Am, then we can ap-
proximate the C-LCS with a 1

n+1 -approximation ratio.

Proof: Choosing the maximal LCS of A1[start(A1, i) + 1, end(A1, i + 1) − 1],
A1[start(A1, i) + 1, end(A1, i + 1) − 1], . . . , Am[start(Am, i) + 1, end(Am, i +
1) − 1] (over 0 ≤ i ≤ n). W.L.O.G. let LCSj be the maximal LCS and let j
be the corresponding index. By Lemma 2 we get that 〈b1, b2, . . . , bj〉 · LCSj ·
〈bj+1, bj+2, . . . , bn〉 ≥ |OPTclcs|

(n+1) , where ’·’ denotes string concatenation.
�

Corollary 2. Let B = 〈b1, b2, . . . , bn〉 be the constraint string and OPTclcs be
an optimal C-LCS. If we can find an approximate LCS of A1, A2, . . . , Am, within
an approximation ratio 1

r , then we can approximate the C-LCS with a 1
r(n+1) -

approximation ratio.

Proof: Using similar arguments to Corollary 1 and according to Lemma 2.
�

Constrained LCS: Hardness and Approximation 261

Now, we give a short description of our algorithm (see Algorithm 1 for details).
The structure of our algorithm is derived from Corollary 2. For every i ≤ n, we
simply compute an approximated LCS between A1[start(A1, i) + 1, end(A1, i +
1)−1], A1[start(A1, i)+1, end(A1, i+1)−1], . . . , Am[start(Am, i)+1, end(Am, i+
1) − 1]. We find the approximate LCS as follows:

For every σ ∈ Σ and for every input string, denote with CAi(σ, e, f) the number
of σ′s in Ai[e, f]. For every i ≤ n, let C[σ, ei, fi] = min(CAi(σ, ei, fi)) and let
C∗(ei, fi) = maxC[σ, ei, fi] over all σ ∈ Σ.

With the use of C[σ, ei, fi] and some additional arrays, the following lemma
can be straightforwardly be seen to be true.

Lemma 3. C∗(ei + 1, fi) and C∗(ei, fi + 1) can be computed from C∗(ei, fi) in
O(k) time, given O(

∑k
i=1 mi) space.

Our algorithm, perform one scan of Ai (1 ≤ i ≤ k), from left to right. We can
use two pointers for every string in order to scan it appropriately.

Algorithm 1. Linear Time Approximation Algorithm
Occ ← 0;1

bLoc ← 0;2

for j ← 0 to n do3

/* 1 ≤ i ≤ k */
if |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]| > Occ then4

Symbol ← The corresponding symbol of the above C∗ ;5

Occ ← |C∗[start(Ai, j) + 1, end(Ai, j + 1) − 1]|;6

bLoc ← j;7

return B[1, bLoc] · 〈SymbolOcc〉 · B[bLoc + 1, n];8

Time and Correctness Analysis:
Let Cout be the output string of the Algorithm 1, note that:

1) Cout is common subsequence of A1, A2, . . . , Am.
2) Cout contains B as a subsequence.

Thus, Cout is a feasible solution.
The running time is linear. The computation of C∗[start(Ai, j)+1, end(Ai, j+

1)−1] is a process of 2(Σk
i=1|mi|) updates operations (we insert and delete every

character of the input strings exactly once). Moreover, according to Lemma 3,
we can perform k update operations in O(k) time. Thus, the total running time
remains linear.

Lemma 4. Algorithm 1 yields an approximation ratio of 1√
mmin|Σ|

.

Proof: We divide the proof into three cases. If n ≤
√

mmin

|Σ| −1, then according to

Lemma 2 and since the approximate LCS provide a 1/Σ approximation ratio, the

262 Z. Gotthilf, D. Hermelin, and M. Lewenstein

length of the C-LCS returned by Algorithm 1 is at least |OPTclcs|/
√

mmin|Σ|.
Therefore, it is sufficient to prove that Algorithm 1 also yields an approximation
ratio of 1√

mmin|Σ|
in case that n >

√
mmin

|Σ| − 1.

Note that, if n ≥
√

mmin

|Σ| any valid solution for the C-LCS must also provide

an approximation ratio of 1√
mmin|Σ|

. Moreover, if OPTclcs > n, we can see that

Algorithm 1 returns at least one extra character over B. Thus, in case that√
mmin

|Σ| − 1 ≤ n <
√

mmin

|Σ| , our algorithm also yields an approximation ratio of
1√

mmin|Σ|
.
�

5 Open Questions

A natural open question is whether there are better approximation algorithms for
the single constraint C-LCS problem, which improves the above approximation
factor ? Another interesting question is regarding the existence of a lower bound
for this C-LCS variant.

References

1. Aho, A.V., Hirschberg, D.S., Ullman, J.D.: Bounds on the Complexity of the
Longest Common Subsequence Problem. Journal of the ACM 23(1), 1–12 (1976)

2. Arslan, A.N., Egecioglu, Ö.: Algorithms For The Constrained Longest Common
Subsequence Problems. International Journal of Foundations of Computer Sci-
ence 16(6), 1099–1109 (2005)

3. Bergroth, L., Hakonen, H., Raita, T.: A Survey of Longest Common Subsequence
Algorithms. In: Proc. SPIRE 2000, pp. 39–48 (2000)

4. Chin, F.Y.L., De Santis, A., Ferrara, A.L., Ho, N.L., Kim, S.K.: A simple algorithm
for the constrained sequence problems. Information Processing Letters 90(4), 175–
179 (2004)

5. Gotthilf, Z., Lewenstein, M.: Approximating Constrained LCS. In: Ziviani, N.,
Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 164–172. Springer, Hei-
delberg (2007)

6. Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM 18(6), 341–343 (1975)

7. Hirschberg, D.S.: Algorithms for the Longest Common Subsequence Problem. Jour-
nal of the ACM 24(4), 664–675 (1977)

8. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-
quences. Journal of the ACM 25(2), 322–336 (1978)

9. Masek, W.J., Paterson, M.: A Faster Algorithm Computing String Edit Distances.
Journal of Computer and System Sciences 20(1), 18–31 (1980)

10. Tsai, Y.-T.: The constrained longest common subsequence problem. Information
Processing Letters 88(4), 173–176 (2003)

Finding Additive Biclusters with Random Background
(Extended Abstract)

Jing Xiao1, Lusheng Wang2, Xiaowen Liu3, and Tao Jiang4

1 Department of Computer Science and Technology, Tsinghua University
����������	
�����������������

2 Department of Computer Science, City University of Hong Kong, Hong Kong
�����	������������

3 Department of Computer Science, University of Western Ontario, London, Ontario, Canada
N6A 5B7

������������	�
�����

4 Department of Computer Science and Engineering, University of California, Riverside

�����	��������

Abstract. The biclustering problem has been extensively studied in many
areas including e-commerce, data mining, machine learning, pattern recognition,
statistics, and more recently in computational biology. Given an n � m matrix
A (n � m), the main goal of biclustering is to identify a subset of rows (called
objects) and a subset of columns (called properties) such that some objective
function that specifies the quality of the found bicluster (formed by the subsets
of rows and of columns of A) is optimized. The problem has been proved or
conjectured to be NP-hard under various mathematical models. In this paper,
we study a probabilistic model of the implanted additive bicluster problem,
where each element in the n � m background matrix is a random number from
[0� L � 1], and a k � k implanted additive bicluster is obtained from an error-free
additive bicluster by randomly changing each element to a number in [0� L � 1]
with probability �. We propose an O(n2m) time voting algorithm to solve the
problem. We show that for any constant Æ such that (1 � Æ)(1 � �)2

�
1
L � 0,

when k � max
�

8
�

�
n log n� 8 log n

c � log(2L)
�
, where c is a constant number, the

voting algorithm can correctly find the implanted bicluster with probability at
least 1� 9

n2 . We also implement our algorithm as a software tool for finding novel
biclusters in microarray gene expression data, called VOTE. The implementation
incorporates several nontrivial ideas for estimating the size of an implanted
bicluster, adjusting the threshold in voting, dealing with small biclusters, and
dealing with multiple (and overlapping) implanted biclusters. Our experimental
results on both simulated and real datasets show that VOTE can find biclusters
with a high accuracy and speed.

Keywords: bicluster, Cherno� bound, polynomial-time algorithm, probability
model, computational biology, gene expression data analysis.

1 Introduction

Biclustering has proved extremely useful for exploratory data analysis. It has important
applications in many fields, e.g., e-commerce, data mining, machine learning, pattern

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 263–276, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

264 J. Xiao et al.

recognition, statistics, and computational biology [24]. Data arising from text analysis,
market-basket data analysis, web logs, microarray experiments etc. are usually arranged
in a co-occurrence table or a matrix, such as word-document table, product-user table,
cpu-job table, or webpage-user table. Discovering a large bicluster in a product-user
matrix indicates, for example, which users share the same preferences. Biclustering has
therefore applications in recommender systems and collaborative filtering, identifying
web communities, load balancing, discovering association rules, etc.

Recently, biclustering becomes an important approach to microarray gene expression
data analysis [5]. The underlying bases for using biclustering in the analysis of gene
expression data are (i) similar genes may exhibit similar behaviors only under a subset
of conditions, not all conditions, and (ii) genes may participate in more than one
function, resulting in a regulation pattern in one context and a di�erent pattern in
another. Using biclustering algorithms, one may obtain subsets of genes that are co-
regulated under certain subsets of conditions.

Given an n�m matrix A, the main goal of biclustering is to identify a subset of rows
(called objects) and a subset of columns (called properties) such that a pre-determined
objective function which specifies the quality of the bicluster (consisting of the found
subsets of rows and columns) is optimized.

Biclustering is also known under several di�erent names, e.g., “co-clustering”, “two-
way clustering”, and “direct clustering”. The problem was first introduced by Hartigan
in the 70’s [8]. Since then, it has been extensively studied in many areas. Several
objective functions have also been proposed for measuring the quality of a bicluster.
Almost all of them have been proved or conjectured to be NP-hard [16,19].

Let A(I� J) be an n � m(n � m) matrix, where I � �1� 2� � � � � n� is the set of rows
and J � �1� 2� � � � �m� is the set of columns. Each element ai� j of A(I� J) is an integer in
[0� L � 1] indicating the weight of the relationship between object i and property j. For
subset I� � I and subset J� � J, A(I�� J�) denotes the bicluster of A(I� J) that contains
only the elements ai� j satisfying i � I� and j � J�. When a bicluster contains only a
single row i and a column set J�, we simply use A(i� J�) to represent it. Similarly, we
use A(I�� j) to represent the bicluster with a row set I� and a single column j. There are
several ways to model the relationship between objectives (or genes) [24].

Constant model: A bicluster A(I�� J�) is an error-free constant bicluster if for each
column j � J�, for all i � I�, ai� j � c j, where c j is a constant for any column j.

Additive model: A bicluster A(I�� J�) is an error-free additive bicluster if for any pair
of rows i1 and i2 in A(I�� J�), ai1� j � ai2� j � ci1�i2 , where ci1�i2 is a constant for any pair of
rows i1 and i2.

The additive model is a general model of biclusters that covers several other popular
models as its special cases. See [17] for a detailed discussion on various models
of biclusters. This model has many applications and has been extensively studied
[2,11,13,15,16,17,19,20,21,24]. In this paper, we will focus on the additive model.
In particular, we study a probabilistic model of implanted additive biclusters that has
recently been used in the literature for evaluating biclustering algorithms [15,20].

The probabilistic additive model: Our probabilistic model for generating the implanted
bicluster and background matrix is as follows. Let A(I� J) be an n � m matrix, where

Finding Additive Biclusters with Random Background 265

each element ai� j is a random number in [0� L� 1] generated independently. Let B be an
error-free k� k additive bicluster. The additive bicluster B� with noise is generated from
B by changing each element bi� j, with probability �, into a random number in [0� L� 1].
We then implant B� into the background matrix A(I� J) and randomly shu�e its rows
and columns to obtain a new matrix A�(I� J). For convenience, we will still denote the
elements of A�(I� J) as ai� j’s.

From now on, we will consider matrix A�(I� J) as the input matrix. Let IB � I and
JB � J be the row and column sets of the implanced bicluster in A�. The implanted
bicluster is denoted as A�(IB� JB).

The implanted additive bicluster problem: Given the n � m matrix A�(I� J) with an
implanted additive bicluster as described above, find the implanted additive
bicluster B�.

Based on the above probabilistic model, we propose an O(n2m) time voting algorithm
for finding the implanted bicluster. We show that for any constant Æ such that (1 �
Æ)(1 � �)2 � 1

L � 0, when n � m3 and k � max
�

8
�

�
m log m�

8 log m
c � log(2L)

�
, where

c � min� (1��)Æ2k
2L �

(1�2�)2

8L �
(L�2)2

12L3 �, the voting algorithm can correctly find the implanted
bicluster with probability at least 1 � 9m�2. We also implement our algorithm into
a software tool, called VOTE. In order to make tool applicable in a real setting, the
implementation has to incorporate several nontrivial ideas for estimating the size of an
implanted bicluster, adjusting the threshold in voting, dealing with small biclusters,
and dealing with multiple and overlapping biclusters. Our extensive experiments
on both simulated and real datasets show that VOTE can find implanted additive
biclusters with high accuracy and eÆciency. More specifically, VOTE has a comparable
performance�accuracy as the best programs compared in [20,15], but much faster
speed.

We note in passing that a closely related problem of finding an implanted clique�
distribution in a random graph has been studied in the graph theory community [1,6,12].
In [12], Kucera claimed that when the size of the implanted clique is at least
�(

�
m log m), where m is the number of vertices in the input random graph, a simple

approach based counting the degrees of vertices can find the clique with a high
probability. Alon et al. gave an improved algorithm that can find implanted cliques
of sizes at least �(

�
m) with a high probability [1]. Feige and Krauthgamer gave an

algorithm that can find implanted cliques of similar sizes in semi-random graphs [6].
It is easy to see that this problem of finding implanted cliques is a special case of our
implanted bicluster problem, where the input matrix is binary and all the elements in the
bicluster matrix are 1’s. We observe that while it may be easy to modify Kucera’s simple
degree-based method to work for implanted constant biclusters under our probabilistic
model, it is not obvious that the above results would directly imply our results on
implanted additive biclusters.

In the rest of the paper, we first present the voting algorithm and analyze its
theoretical performance on the above probabilistic model. We then describe the
implementation of VOTE, and the experimental results. Due to the page limit, the proofs
will be omitted in this extended abstract but will be provided in the full paper.

266 J. Xiao et al.

2 The Three Phase Voting Algorithm

We start the construction of the algorithm with some interesting observations. Recall
that B is an error-free k � k additive bicluster and A� is the random input matrix with a
noisy additive bicluster B� implanted.

Observation 1. Consider the k rows in B. There are at least k
L rows that are identifical.

That is, there exists a row set IC � IB with 	IC 	 � k
L such that A�(IC� JB) is a constant

bicluster with noise.

Consider a row i1 � IB and a column j1 � JB. For each row i2 � IB, ci1�i2 � ai1� j1 � ai2� j1
is an integer in [ai1� j1 � L � 1� ai1� j1]. Based on the value ci1�i2 , we can partition IB into
L di�erent row sets Id

B � �i2	i2 � IB & ci1�i2 � d�, d � ai1� j1 � L � 1� � � � � ai1� j1 . Let IC be
one of the row sets with the maximum cardinality, 	IC 	 � maxd 	Id

B	. Then, A(IC� JB) is a
constant bicluster and 	IC 	 � k

L . Let 	IC 	 � l.
Our algorithm has three phases. In the first phase of the algorithm, we want to find

the row set IC in A�(I� J). In order to vote, we first convert the matrix A�(I� J) into a
distance matrix D(I� J) containing the same sets of rows and columns, and then focus
on D(I� J).

Distance matrix: Given an n�m matrix A�(I� J), we can convert it into a distance matrix
based on a row in the matrix. Let i� � I be any row in the matrix A. We refer to row
i� as the reference row. Define di� j � ai� j � ai�� j. In the transformation, we subtract the
reference row i� from every row in A�(I� J). We use D(I� J) to denote the n�m distance
matrix containing the set of rows I and the set of columns J with every element di� j. For
a row i � I and a column set J� � J, the number of occurrences of u, u � [�L�1� L�1],
in D(i� J�) is the number of elements with value u in D(i� J�), denoted by f (i� J�� u) �
	�di� j	di� j � u & j � J��	. The number of occurrences of the element that appears the most
in D(i� J�) is f �(i� J�) � maxu f (i� J�� u). Similarly, for a row set I� � I and a column
j � J, the number of occurrences of u in D(I�� j) is the number of elements with value u
in D(I�� j), denoted by f (I�� j� u). The number of occurrences of the element that appears
the most in D(I�� j) is f �(I�� j) � maxu f (I�� j� u).

Observation 2. Suppose that we use a row i� � IC as the reference row. For each row i1
in IC, the expectation of the number of 0’s in row i1 of D(I� J) is at least m�k

L � (1� �)2k.
For each row i2 in IB � IC, the expectation of the number of 0’s in row i2 of D(I� J) is at
most m�k

L � 2�k
L . For each row i3 in I � IB, the expectation of the number of 0’s in row i3

of D(I� J) is at most m�k
L � k

L .

Based on the observation, if the reference row i� is in IC , we can find the rows with
the most 0’s in the distance matrix to obtain a row set I0 by using the following voting
method.

The first phase voting
1. for i � 1 to n do
2. compute f (i� J� 0).
3. select rows i such that f (i� J� 0) � m

L � 4
�

m log m to form I0.

Finding Additive Biclusters with Random Background 267

When m and k are suÆciently large and � is suÆciently small, we can prove that,
with a high probability, the row set I0 is equal to IC . The proof will be given in the next
section.

In the second phase voting of the algorithm, we attempt to find locate the column set
JB of the implanted bicluster. It is based on the following observation.

Observation 3. For a column j1 in JB, the expectation of the number of occurrences of
the element that appears the most in D(IC� j1) is (1 � �)	IC 	. For a column j2 in J � JB,
the expectation of the number of occurrences of an element u in D(IC� j1) is 1

L 	IC 	.
With a high probability (and again assuming that � is suÆciently small), the number
of occurrences of the element that appears the most in the columns of JB is greater
than the number of occurrences of the element that appears the most in the columns
of J � JB. That is, for two columns j1 � JB and j2 � JB, with a high probability,
f �(I0� j1) � �I0 �

2 � f �(I0� j2). Based on the property, we can use voting to find a column
set J1.

The second phase voting
1. for j � 1 to m do
2. compute f �(I0� j).
3. select columns j such that f �(I0� j) � �I0 �

2 to form J1.

We can prove (in the next section) that, with a high probability, J1 is equal to the
implanted column set JB.

Similarly, the third phase voting of the algorithm is designed to locate the row set IB

of the implanted bicluster. But, before the voting, we need correct corrupted columns
of the distance matrix D(I� J) caused by the elements of the reference row i� that
were changed during the generation of B�. Recall that f �(I0� j) � maxu f (I0� j� u). Let
f (I0� j� u j) � f �(I0� j). For every j � J1, if u j � 0, then the element ai�� j was changed
when B� was generated (assuming J1 � JB), and we can thus correct each element di� j

in the jth column of the matrix D(I� J) by subtracting u j from it.
In the following, let us assume that the entries in the submatrix D(I� JB) have been

adjusted according to the correct reference row i� as described above. The following
observation holds.

Observation 4. For a row i1 in IB, the expectation of the number of occurrences of the
element that appears the most in D(i1� JB) is at least (1 � �)k. For a row i2 in I � IB,
the expectation of the number of occurrences of the element that appears the most in
D(I2� jB) is k

L .

We can thus find a row set I1 in A�(I� J1) as follows.

The third phase voting
1. for i � 1 to n do
2. compute f �(i� J1).
3. select rows i such that f �(i� J1) � �J1�

2 to form I1.

We can prove (in the next section) that, if 	I1	 � k, with a high probability, I1 is
equal to the implanted column set IB. Therefore, a voting algorithm based on the above

268 J. Xiao et al.

The Three Phase Voting Algorithm

Input: An n × m matrix A′(I, J), an integer k, noise level θ, and L.
Output: A bicluster A′(I1, J1).
1. for each row i∗ ∈ I, do

2. construct the n × m distance matrix D(I, J) from A′(I, J) with reference row i∗.
3. find a row set I0 by using the first phase voting.
4. if |I0| ≥ k

L , then

5. find a column set J1 by using the second phase voting.
6. correct the corrupted columns in submatrix D(I, J1).
7. find a row set I1 by using the third phase voting.
8. if |I1| ≥ k and |J1| ≥ k, output A′(I1, J1) and return.

Fig. 1. The three phase voting algorithm

procedures, as given in Figure 1, can be used to find the implanted bicluster with a high
probability. Since the time complexity of the steps 2 - 7 of the algorithm is O(nm) and
these steps are repeated n times, the time complexity of the algorithm is O(n2m).

3 Analysis of the Algorithm

In this section, we will prove that, with a high probability, the above voting algorithm
correctly outputs the implanted bicluster.

Recall that in the submatrix A�(IB� JB), each element was changed with probability
� to generate B� from B. We will show that, with a high probability, there exists a row
i � IC such that row i has at least (1� Æ)(1� �)k unchanged elements in A�(i� JB) for any
0 � Æ � 1.

In the analysis, we need the following two lemmas from [18,14].

Lemma 1. [18] Let X1� X2� � � � � Xn be n independent random binary (0 or 1) variables,
where Xi takes on the value of 1 with probability pi, 0 � pi � 1. Let X �

�n
i�1 Xi and

� � E[X]. Then for any 0 � Æ � 1,

(1) Pr(X � (1 � Æ)�) �
�

eÆ

(1�Æ)(1�Æ)

��
,

(2) Pr(X � (1 � Æ)�)
 e� 1
2 �Æ

2
.

Lemma 2. [14] Let Xi,1
 i
 n, X and � be defined as in Lemma 1. Then for any
0 � � � 1,

(1) Pr(X � � � �n)
 e� 1
3 n�2

,
(2) Pr(X � � � �n)
 e� 1

2 n�2
.

These two lemmas will be used to establish the next lemma.

Lemma 3. For any 0 � Æ � 1, with probability at least 1 � e� 1
2L (1��)k2Æ2

, there exists a
row i � IC that has at least (1 � Æ)(1 � �)k unchanged elements in A�(i� JB).

Suppose that there is a row i� � IC with (1� Æ)(1� �)k unchanged elements in A�(i� JB).
Now, let us consider the distance matrix D(I� J) with the reference row i�. We now show

Finding Additive Biclusters with Random Background 269

that, with a high probability, the rows in IC have more 0’s than those in I � IC in matrix
D(I� J). That is, with a high probability, our algorithm will find the row set IC in the first
phase voting.

Lemma 4. Let i� � IC be the reference row with (1 � Æ)(1 � �)k unchanged elements in
A�(i�� JB), and D(I� J) the distance matrix as described above. When 	 � (1�Æ)(1��)2�
1
L � 0 and k � 8

�

�
m log m, with probability at least 1�m�7 � nm�5, f (i� J� 0) � m

L �
�
2 k

for all i � IC, and f (i� J� 0) � m
L �

�
2 k for all i � I � IC.

The above lemma shows that, when a row i� with (1 � Æ)(1 � �)k unchanged elements
in A�(i� JB) is selected as the reference row, and m and k are large enough, I0 � IC with
a high probability. Next, we prove that, with a high probability, our algorithm will find
the implanted column set JB.

Lemma 5. Suppose that the row set I0 found in the first phase voting of Algorithm 1 is

indeed equal to IC. With probability at least 1�ke�
(1�2�)2

8L k �L(m�k)e�
(L�2)2

12L3 k , the column
set J1 found in the second phase voting of Algorithm 1 is equal to JB.

Similarly, we can prove that, with a high probability, our algorithm will find the
implanted row set IB.

Lemma 6. Suppose that the column set J1 found in the second phase voting of

Algorithm 1 is indeed equal to JB. With probability at least 1 � ke�
(1�2�)2

8 k � 2L(n �
k)e�

(L�2)2

12L2 k, the row set I1 found in the third phase voting of Algorithm 1 is equal to IB.

Finally, we can prove that, with a high probability, no columns or rows other than those
in the implanted bicluster will be output by the voting algorithm.

Lemma 7. With probability at least 1�Ln(m�k)e�
(L�2)2

12L3 k�2Ln(n�k)e�
(L�2)2

12L2 k, no columns
or rows of A�(I� J) other than those in A�(IB� JB) will be output by the Algorithm 1.

Based on Lemmas 3, 4, 5, 6 and 7, we can show that, when m and k are large enough, the
three phase voting algorithm can find the implanted bicluster with a high probability.
Let c be a constant such that c � min� (1��)Æ2k

2L �
(1�2�)2

8L �
(L�2)2

12L3 �. In most applications, we
may assume that n � m3. Then, we have the following theorem.

Theorem 1. When n � m3, 	 � (1�Æ)(1��)2� 1
L � 0 and k � max

�
8
�

�
m log m�

8 log m
c

� log(2L)
�
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 � 9m�2.

If we replace m by n in the above analysis, the same proof shows that

Corollary 1. When 	 � (1 � Æ)(1 � �)2 � 1
L � 0 and k � max

�
8
�

�
n log n� 8 log n

c

� log(2L)
�
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 � 9n�2.

In the practice of microarray data analysis, the number of conditions m is much smaller
than the number of genes n. Thus, Theorem 1 allows the parameter k to be smaller (i.e.

270 J. Xiao et al.

it works for smaller implanted biclusters) than Corollary 1, although it assumes a
slightly more complicated condition (n � m3) and has a slightly worse success
probability.

4 The Implementation of the Voting Algorithm

The voting algorithm described in Section 2 is originally based on the probabilistic
model for generating the implanted additive bicluster. Many assumptions have been
used to prove its correctness. To deal with real data, we have to carefully resolve the
following issues.

Estimation of the bicluster size. In the voting algorithm, we assume that the size k
of the implanted bicluster is part of the input. However, in practice, the size of the
implanted bicluster is unknown. Here we develop a method to estimate the size of the
bicluster. We first set k to be a large number such that k � 	JB	. Let q be the maximum
number of rows such that f (i� J� u) � (m�k)Pr(di� j � u)�k among all u � [�L�1� L�1].
Our key observation here is that if k is greater than 	JB	, then q will be smaller than 	IB	.
If k is smaller than 	JB	, then q will be greater than 	IB	. Thus, we can gradually decrease
the value of k while observing that the value of q increases accordingly. The process
stops when q � 2k.

To set the initial value of k such that k � 	JB	, we set k � 3 � maxu(Pr(di� j � u)) � m.
This worked very well in our experiments.

Dealing with retangular biclusters. Many interesting biclusters in the practice
of microarray gene expression data are non-square. To deal with such rectangular
biclusters, where 	IB	 � 	JB	, we first try to obtain a square bicluster in the first phase
voting (assuming 	IB	 � 	JB) and then use the k rows in I0 for the second phase
voting. The third phase voting may in fact generate a rectangular bicluster with unequal
numbers of rows and columns.

Adjusting the threshold used in the first phase voting for a real input matrix. In
Step 3 of the first phase voting, we use the threshold f (i� J� 0) � m

L � 4
�

m log m to
select rows to form I0. This is based on the assumption that in the random background
matrix, di� j � 0 with probability 1

L . In order for the algorithm to work for any input
data, we consider the distribution of numbers in the whole input matrix. We calculate
the probability Pr

�
di� j � l

	
for each l � [�L � 1� L � 1] in the input matrix. In Step 3 of

the first phase voting, we choose all the rows such that f (i� J� u) � (m�k)Pr(di� j � u)�k.
In this way, we were able to make our algorithm to work well for real microarray data
where the background did not seem to follow some simple uniform�normal distribution.

When 	Ic	 is too small for voting. Recall that Ic is the set of the rows identical to the
reference row I� in the implanted bicluster. In other words, the set Ic contains all the
rows i with di� j � 0 for j � JB. The expectation of 	Ic	 is k

L . When k is small and L
is large, 	Ic	 (and thus I0) could be too small for the voting in the second phase to be
e�ective. To enhance the performance of the algorithm, we consider the set Iu

B for each
u � [�L � 1� L � 1] as defined in the beginning of Section 2, and approximate it using

Finding Additive Biclusters with Random Background 271

a set Iu
0 in the algorithm just like how we approximated the set IC � I0

B by the set I0 in
the first phase voting. Thus, the second phase voting becomes:

The second phase voting
1. for j � 1 to m do
2. compute f (Iu

0 � j� u) for each u � [�L � 1� L � 1].
3. select columns j such that

�L�1
u��L�1 f (Iu

0 � j� u) � (
�L�1

u��L�1 	Iu
0)
2 to

form J1.

Dealing with multiple and overlapping biclusters. In microarray gene expression
analysis, a real input matrix may contain multiple biclusters of interest, some of which
could overlap. We could easily modify the voting algorithm to find multiple implanted
biclusters by forcing it to go through all the n rounds (i.e. considering each of the n rows
as the reference row) and recording all the biclusters found. If the two biclusters found
in two di�erent rounds overlap (in terms of the area) by more than 25% of the area of
the smaller biclcuster, then we consider them as the same bicluster.

5 Experimental Results

We have implemented the above voting algorithm in C�� and produced a software,
named VOTE. In this section, we will compare VOTE with some well-known biclus-
tering algorithms in the literature on both simulated and real microarray datasets. The
tests were performed on a desktop PC with P4 3.0G CPU and 512M memory running
Windows operating system.

To evaluate the performance of di�erent methods, we use a measure (called match
score) similar to the score introduced in Prelić et al. [20]. Let M1� M2 be two sets of
biclusters. The match score of M1 with respect to M2 is given by

S (M1� M2) �
1

	M1	

A(I1 �J1)�M1

max
A(I2 �J2)�M2

	I1 � I2	 � 	J1 � J2	
	I1 I2	 � 	J1 J2	

�

Let Mopt denote the set of implanted biclusters and M the set of the output biclusters of
a biclustering algorithm. S (Mopt� M) represents how well each of the true biclusters is
discovered by a biclustering algorithm.

5.1 Simulated Datasets

Following the method in [15,20], we consider an n � m background matrix A. Let
L � 30. We generate the elements in the background matrix A such that the data
fits the standard normal distribution with the mean of 0 and the standard deviation of
1. To generate an additive b � c bicluster, we first randomly generate the expression
values in a reference row (a1� a2� � � � � ac) according to the standard normal distribution.
To obtain a row (ai1� ai2� � � � � aic) in the additive bicluster, we randomly generate a
distance di (based on the standard normal distribution) and set ai� j � a j � di for
j � 1� 2� � � � � c. After we obtain the b � c additive bicluster, we add some noise by

272 J. Xiao et al.

Table 1. Parameter settings for di�erent biclustering methods

Method Type of Bicluster Parameter Setting
BiMax Constant minimum number of genes and chips: 4
ISA Constant�Additive tg � 2�0� tc � 2�0� seeds � 500
CC Constant Æ � 0�5� � � 1�2
CC Additive Æ � 0�002� � � 1�2
RMSBE Constant�Additive � � 0�4� � � 0�5� � � �e � 1�2
OPSM Additive l � 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

M
at

ch
 S

co
re

Noise Level

VOTE RMSBE OPSM CC ISA

Fig. 2. Performance on small additive biclus-
ters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

30405075100

M
at

ch
 S

co
re

Bicluster Size

VOTE RMSBE

Fig. 3. Performance on biclusters of di�erent
sizes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

M
at

ch
 S

co
re

Overlap Degree

VOTE RMSBE OPSM CC

Fig. 4. Performance on overlapping biclusters

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.00 0.05 0.10 0.15 0.20 0.25

M
at

ch
 S

co
re

Noise Level

20* 50$
20*40

20*30
20*20

30*20
40*20

50*20

Fig. 5. Performance on rectangular biclusters

randomly selecting � � b � c elements in the bicluster and changing their values to a
random number (according to the standard normal distribution). Finally, we insert the
obtained bicluster into the background matrix A and shu�e the rows and columns. We
compare our program, VOTE, with several well-known programs for biclustering from
the literature including ISA, CC, OPSM, and RMSBE [3,5,9,10,15]. The parameter
settings of di�erent methods are listed in Table 1.

Testing the performance on small biclusters. First, we test how well the programs are
able to find small implanted additive biclusters. Let n � m � 100 and b � c � 15 � 15,

Finding Additive Biclusters with Random Background 273

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e

Number of Rows

VOTE RMSBE

Fig. 6. Speeds of the programs

α
α
α
α
α

=0.001%
=0.1%
=0.5%
=1%
=5%

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

VOTE MSBE OPSM BiMax ISA Samba CC

Pr
op

or
tio

n
of

 B
ic

lu
st

er
s

pe
r

Si
gn

if
ic

an
ce

 L
ev

el

Biclustering Algorithms

Fig. 7. Proportion of biclusters significantly
enriched by a GO category. Here, � is the
adjusted significance score of a bicluster.

and consider implanted biclusters generated with di�erent noise levels � in the range of
[0� 0�25]. Figure 2 shows that VOTE and RMSBE outperform CC, OPSM and ISA with
on all noise levels.

Testing the performance on biclusters of di�erent sizes. Since RMSBE has the best
performance among the existing programs considered here, we compare VOTE with
RMSBE on di�erent bicluster sizes. In this test, the noise level is set as � � 0�2.
The sizes of the implanted (square) biclusters vary from 30 � 30 to 100 � 100 and the
background matrix is of size 500 � 500. As illustrated in Figure 3, VOTE outperforms
RMSBE when the size of the square bicluster is greater than 40, while RMSBE is more
powerful in finding small biclusters.

Finding multiple biclusters. To test the ability of finding multiple biclusters, we
first generate two b � b additive biclusters with o overlapped rows and columns.
The parameter o is called the overlap degree. The background matrix size is fixed
as 100 � 100. Both the background matrix and the biclusters are generated as before.
To find multiple biclusters in a given matrix, some methods, e.g., CC, needs to mask
the previously discovered biclusters with random values. One of the advantages of the
approaches based on a reference row, e.g., VOTE and RMSBE, is that it is unnecessary
to mask previously discovered biclusters. We test the performance of VOTE, RMSBE,
CC and OPSM on overlapping biclusters by using 20�20 additive biclusters with noise
level � � 0�1 and overlap degree o ranging from 0 to 10. The results are shown in
Figure 4. We can see that both VOTE and RMSBE are only marginally a�ected by
the overlap degree of the implanted biclusters. VOTE is slightly better than RMSBE,
especially when o increases.

Finding rectangular biclusters. We generate rectangular additive biclusters with
di�erent sizes and noise levels. The row and column sizes of the implanted biclusters
range from 20 to 50. The noise level � is from the range [0� 0�25]. The background
matrix is of size 100 � 100. The results are shown in Figure 5. We can see that the

274 J. Xiao et al.

performance of VOTE is not a�ected by the shapes of the rectangular biclusters. Since
RMSBE can only find near square biclusters, we compare the performance of VOTE
with that of an extension of RMSBE. Comparing Figure 5 with the test results given in
[15], our algorithm is better in finding rectangular biclusters.

Running time. To compare the speeds of VOTE and RMSBE, we consider background
matrices of 200 columns. The number of rows ranges from 1000 to 6000. The size of
the implanted bicluster is 50 � 50. The running time of VOTE and RMSBE is shown
in Figure 6. In the test, we let RMSBE randomly select 10% rows as the reference
row and 50 columns as the reference column. We can see that VOTE is much faster
than RMSBE. Moreover, for the real gene expression data of S. cerevisiae provided by
Gasch et al. [7], our algorithm runs in 66 seconds and RMSBE (randomly selecting 300
genes as the reference row and 40 conditions as the reference column) runs in 1230
seconds.

5.2 Real Dataset

Similar to the method used by Tanay et al. [22] and Prelić et al [20], we investigate
whether the set of genes discovered by a biclustering method shows significant
enrichment with respect to a specific GO annotation provided by the Gene Ontology
Consortium [7]. We use the web tool funcAssociate of Berriz et al. [4] to evaluate
the discovered biclusters. FuncAssociate first uses Fisher’s exact test to compute the
hypergeometric functional score of a gene set, then it uses the Westfall and Young
procedure [23] to compute the adjusted significance score of the gene set. The analysis
is performed on the gene expression data of S. cerevisiae provided by Gasch et al.
[7]. The dataset contains 2993 genes and 173 conditions. We set L � 30, filter out the
biclusters with over 25% overlapped elements, and output the largest 100 biclusters. The
running time of VOTE on this dataset is 66 seconds. The adjusted significance scores
(adjusted p-values) of the 100 biclusters are computed by using FuncAssociate. Here,
we compare the significance scores for RMSBE, OPSM, BiMax [20], ISA, Samba [22],
and CC obtained from Figure 7 in Liu et al. [15]. The result is summarized in Figure 7.
We can see that 92% of discovered biclusters by VOTE are statistically significant, i.e.
with 	
 5%. Moreover, the performance of VOTE in this regard is comparable to that
of RMSBE and is better than those of the other programs compared in [15].

6 Conclusion

Based on a simple probabilistic model, we have designed a three phase voting algorithm
to find implanted additive biclusters. We proved that when the size of the implanted
bicluster is �(

�
m log m), the voting algorithm can correctly find the implanted bicluster

with a high probability. We have also implemented the voting algorithm as a software
tool, VOTE, for finding novel biclsuters in real microarray gene expression data. Our
extensive experiments on simulated datasets demonstrate that VOTE performs very well
in terms of both accuracy and speed. Future work includes testing VOTE on more real
datasets, which could be a bit challenging since true biclusters for most gene expression
datasets are unknown.

Finding Additive Biclusters with Random Background 275

Acknowledgments

JX’s research is supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901, LW’s research is supported by a grant from City
University of Hong Kong [Project No. 7001996], and TJ’s research is supported by NSF
grant IIS-0711129, NIH grant LM008991-01, National Natural Science Foundation of
China grant 60528001, and a Changjiang Visiting Professorship at Tsinghua University.

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a Large Hidden Clique in a Random Graph.
Random Structures and Algorithms 13(3-4), 457–466 (1998)

2. Barkow, S., Bleuler, S., Prelić, A., Zimmermann, P., Zitzler, E.: BicAT: a biclustering analysis
toolbox. Bioinformatics 22(10), 1282–1283 (2006)

3. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression
data: the order-preserving submatrix problem. In: Proceedings of Sixth International
Conference on Computational Molecular Biology (RECOMB), pp. 45–55. ACM Press, New
York (2002)

4. Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Charactering gene sets with
FuncAssociate. Bioinformatics 19, 2502–2504 (2003)

5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th
International Conference on Intelligent Systems for Molecular (ISMB 2000), pp. 93–103.
AAAI Press, Menlo Park (2000)

6. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semirandom
graph. Random Structures and Algorithms 16(2), 195–208 (2000)

7. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein,
D., Brown, P.O.: Genomic expression programs in the response of yeast cells to enviormental
changes. Molecular Biology of the Cell 11, 4241–4257 (2000)

8. Hartigan, J.A.: Direct clustering of a data matrix. J. of the American Statistical
Association 67, 123–129 (1972)

9. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular
organization in the yeast transcriptional network. Nature Genetics 31, 370–377 (2002)

10. Ihmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large-scale gene
expression data. Bioinformatics 20(13), 1993–2003 (2004)

11. Kluger, Y., Basri, R., Chang, J., Gerstein, M.: Spectral biclustering of microarray data:
coclustering genes and conditions. Genome Research 13, 703–716 (2003)

12. Kucera, L.: Expected complexity of graph partitioning problems. Disc. Appl. Math. 57, 193–
212 (1995)

13. Li, H., Chen, X., Zhang, K., Jiang, T.: A general framework for biclustering gene expression
data. Journal of Bioinformatics and Computational Biology 4(4), 911–933 (2006)

14. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–
171 (2002)

15. Liu, X., Wang, L.: Computing the maximum similarity biclusters of gene expression data.
Bioinformatics 23(1), 50–56 (2007)

16. Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. In:
Proceedings of the Fifteenth Annual Symposium on Combinatorial Pattern Matching, pp.
102–116 (2004)

276 J. Xiao et al.

17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey.
IEEE�ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

18. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, Cam-
bridge (1995)

19. Peeters, R.: The maximum edge biclique problem is NP-complete. Disc. Appl. Math. 131(3),
651–654 (2003)

20. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L.,
Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for
gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

21. Shamir, R., Maron-Katz, A., Tanay, A., Linhart, C., Steinfeld, I., Sharan, R., Shiloh, Y.,
Elkon, R.: EXPANDER - an integrative program suite for microarray data analysis. BMC
Bioinformatics 6, 232 (2005)

22. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene
expression data. Bioinformatics 18, suppl. 1, 136–144 (2002)

23. Westfall, P.H., Young, S.S.: Resampling-based multiple testing. Wiley, New York (1993)
24. Yang, J., Wang, W., Wang, H., Yu, P.: Æ-clusters: capturing subspace correlation in a large

data set. In: Proceedings of the 18th International Conference on Data Engineering, pp. 517–
528 (2002)

An Improved Succinct Representation for

Dynamic k-ary Trees

Diego Arroyuelo�

Dept. of Computer Science, University of Chile
darroyue@dcc.uchile.cl

Abstract. k-ary trees are a fundamental data structure in many text-
processing algorithms (e.g., text searching). The traditional pointer-based
representation of trees is space consuming, and hence only relatively small
trees can be kept in main memory. Nowadays, however, many applications
need to store a huge amount of information. In this paper we present a
succinct representation for dynamic k-ary trees of n nodes, requiring 2n+
n log k + o(n log k) bits of space, which is close to the information-theore-
tic lower bound. Unlike alternative representations where the operations
on the tree can be usually computed in O(log n) time, our data structure
is able to take advantage of asymptotically smaller values of k, supporting
the basic operations parent and child in O(log k + log log n) time, which is
o(log n) time whenever log k = o(log n). Insertions and deletions of leaves
in the tree are supported in O((log k + log log n)(1 + log k

log (log k+log log n)))
amortized time. Our representation also supports more specialized oper-
ations (like subtreesize, depth, etc.), and provides a new trade-off when
k = O(1) allowing faster updates (in O(log log n) amortized time, versus
the amortized time of O((log log n)1+ε), for ε > 0, from Raman and Rao
[21]), at the cost of slower basic operations (in O(log log n) time, versus
O(1) time of [21]).

1 Introduction and Previous Works

In this paper we study the problem of the succinct representation of dynamic
k-ary trees, or cardinal trees, or simply tries, i.e. trees such that the children of
a node are sorted and labeled with a symbol drawn from the alphabet {1, . . . , k}.
We assume that k is fixed, yet we note it as a variable in our analysis: think for
example of a trie representing information about a text on an (large) alphabet.

A succinct data structure requires space close to the information-theoretic
lower bound (besides lower-order additive terms). Since the number of different
k-ary trees with n nodes is 1

kn+1

(
kn+1

n

)
, the information-theoretical lower bound

for the number of bits to represent a k-ary tree is C(n, k) = log
(1

kn+1

(
kn+1

n

))
(log x means �log2 x� in this paper) which, assuming that k is a function of n,
is C(n, k) ≈ 2n + n log k − o(n + log k) bits. In most succinct representations of
k-ary trees, the first term stands for the encoding of the tree structure, and the
second term for the space required to code the labels of the edges.
� Supported in part by Yahoo! Research Latin America and Fondecyt Grant 1-080019.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 277–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

278 D. Arroyuelo

Besides requiring little space, succinct data structures in general support op-
erations as efficiently as their non-space-efficient counterparts. In the case of
trees, we are interested in succinct representations that can be navigated in the
usual way, as many compact representations cannot be navigated [15]. We are
interested in the following operations: parent(x), which gets the parent of node
x; child(x, i), which gets the i-th child of node x; child(x, α), which gets the child
of node x labeled by symbol α ∈ {1, . . . , k}; depth(x), which gets the depth
of node x in the tree; degree(x), which gets the number of children of node x;
subtreesize(x), which gets the size of the subtree of node x; preorder(x), which
gets the preorder number of node x; and isancestor(x, y), which tells us whether
node x is an ancestor of node y. In the context of dynamic trees, the representa-
tion should support operations insert and delete as well, which respectively allow
us to add new nodes and delete existing nodes from the tree.

We consider the standard word RAM model of computation, in which every
word of size w = Θ(log n) bits can be accessed in constant time. Basic arithmetic
and logical operations can be computed in constant time. Unless stated, we will
assume that all navigations start from the root of the tree, and that insertions
and deletions occur at leaves, which is usual in many applications [19,21].

The pointer-based representation of a tree requires O(n log n) bits for the tree
structure, which is space consuming and hence only small trees can be kept in
a fast memory. Typical examples where this matters are that of DOM trees for
XML documents, and suffix trees [1] for full-text search applications.

Starting with the work of Jacobson [13], a number of succinct representations
have been defined for static trees [18,5,20,10,14,8], each providing a different set
of operations and complexities. The case of succinct representation of dynamic
trees has been studied only for binary trees by Munro et al.[19] and Raman and
Rao [21]; the latter work provides a representation requiring 2n + o(n) bits, and
supports basic navigation operations in worst-case constant time, while updates
in the tree can be performed in O((log log n)1+ε) amortized time, for any constant
ε > 0. The efficient representation of succinct dynamic k-ary trees was posed as
an open problem by Munro et al. [19], as adapting these representations for
dynamic k-ary trees by transforming the tree into binary gives poor results:
basic navigation operations like parent and child now become O(k) in the worst
case, which is not so advantageous if k is not a constant, as in many applications.

Another alternative to represent a dynamic k-ary tree succinctly is to use the
dynamic data structure for balanced parentheses of Chan et al. [7] to represent
the Depth-First Unary Degree Sequence (dfuds) [5] of the tree. Thus, the basic
update and navigation operations are supported basically in O(log n) time; how-
ever, the time complexity of those operations depends on n, the number of nodes
in the tree, rather than on k, the alphabet size. Then, this structure cannot take
advantage of asymptotically smaller values of k.

In this paper we present an improved succinct representation for dynamic k-
ary trees, which is faster than both Raman and Rao [21] and Chan et al. [7]’s
solutions. Our data structure requires 2n + n logk + o(n log k) bits of space, and
supports operations parent(x) and child(x, i) in O(log k + log log n) worst-case

An Improved Succinct Representation for Dynamic k-ary Trees 279

time, which is o(log n) whenever log k = o(log n) holds. Updates are supported
in O((log k + log log n)(1 + log k

log (log k+log log n))) amortized time. We are also able

to compute operation child(x, α) in O((log k + log log n)(1 + log k
log (log k+log log n)))

worst-case time. For the particular case where k = O(1) (for example, binary
trees), our representation provides a new trade-off, supporting basic operations in
O(log log n) time (versus O(1) time of [21]) and updates in O(log log n) amortized
time (versus O((log log n)1+ε) amortized time of [21], for any constant ε > 0).

Our basic approach to solve the problem is similar to existing approaches
[19,21]: we divide the tree into small blocks which are easier to update upon
tree modifications. However, in the case of k-ary trees we have to face additional
problems: structuring inside blocks, defining the adequate block size in order to
require o(n) bits for the inter-block pointers, supporting block overflows (which
cannot be carried out by using table lookups [19,21], since our blocks are large
enough so as to be used to index a table), etc.

Besides the fact that dynamic k-ary trees is a fundamental data structure, our
work is also motivated by previous works [3,2] on compressed full-text indexes,
in particular Lempel-Ziv compressed indexes. The results of this paper will help
us to improve the construction time of Lempel-Ziv indexes [3], and will be a base
to define a dynamic compressed full-text index on that of [2].

2 Preliminary Concepts

Data Structures for rank and select Queries. Given a sequence S[1..n]
over an alphabet {1, . . . , k} and given any c ∈ {1, . . . , k}, we define operation
rankc(S, i) as the number of cs up to position i of S. Operation selectc(S, j) yields
the position of the j-th c in S. In the dynamic case we also want to insert/delete
symbols into/from the sequence. The data structure of González and Navarro [11]
supports all the operations (including insert and delete) in O(log n(1 + log k

log log n))
worst-case time, requiring nH0(S)+o(n log k) bits of space, where H0(S) denotes
the 0-th order empirical entropy of S [17].

Data Structures for Searchable Partial Sums. Throughout this paper
we will need data structures for searchable partial sums [12]. Given an array
A[1..n′] of n′ integers, these data structures allow one to retrieve A[i] and support
operations Sum(A, i), which computes

∑i
j=1 A[j]; Search(A, i), which finds the

smallest j′ such that Sum(A, j′) � i; Update(A, i, δ), which sets A[i] ← A[i] + δ;
Insert(A, i, e), which adds a new element e to the set between elements A[i − 1]
and A[i]; and Delete(A, j), which deletes element A[j].

Such an ADT is traditionally implemented through a red-black tree TA such
that the leaves of the tree are the elements of A. Each internal node of TA stores a
parent pointer, one bit indicating whether the node is the left or right child of its
parent, the number nl of elements (leaves) in the left subtree, and the sum sl of
the values in the leaves of its left subtree. The space required is O(n′ log n′) bits.
To compute the operations we navigate the tree using the information stored
in each node. The tree can be also navigated from leaves to root, in order to

280 D. Arroyuelo

compute the sum up to a given position in A (leaf of TA) without necessarily
knowing the position j′, but just the corresponding leaf of TA. Thus, all the
operations can be supported in O(log n′) time.

Data Structures for Balanced Parentheses. Given a sequence P of 2n bal-
anced parentheses, we want to support the following operations. findclose(P, i):
given an opening parenthesis at position i, finds the matching closing parenthe-
sis; findopen(P, j): given a closing parenthesis at position j, finds the matching
opening parenthesis; excess(P, i): yields the difference between the number of
opening and closing parenthesis up to position i in P ; enclose(P, i): given a
parenthesis pair whose opening parenthesis is at position i, yields the opening
parenthesis corresponding to the closest matching pair enclosing i.

Munro and Raman [18] showed how to implement all these operations in
constant time and using 2n+o(n) bits. They also showed one of the applications
of sequences of balanced parentheses: the succinct representation of general trees.

In the dynamic case, the parentheses sequence can change over time, by in-
serting/deleting a new pair of matching parenthesis into/from the sequence. The
data structure of Chan et al. [7] supports all of the operations, including inser-
tions and deletions, in O(log n) time and requires O(n) bits of space. The space
can be dropped to 2n + o(n) bits of space if we represent the parentheses as a
binary string of length 2n, which is then represented using the dynamic data
structure of Mäkinen and Navarro [16], requiring overall 2n+ o(n) bits and sup-
porting rank and select on the parentheses in O(log n) worst-case time, as well
as the insertion and deletion of new elements in O(log n) worst-case time. Since
both solutions are similar, we add the extra index of [7] to this data structure
in order to be able to compute the parenthesis operations, including updates, in
O(log n) worst-case time and using o(n) extra bits of space.

Lemma 1. There exists a representation for a dynamic sequence of 2N balanced
parentheses using 2N + o(N) bits of space and supporting operations findclose,
findopen, excess, enclose, rank), select), insert, and delete, all of them in O(log N)
worst-case time.

Succinct Representation of Trees. There are a number of succinct repre-
sentations of static trees, such as louds [13], balanced parentheses [18], dfuds

[5], ordinal trees [10], and the ultra succinct representation of [14], requiring
2n + o(n) bits and allowing different sets of operations.

In particular, the dfuds [5] representation supports all of the static-tree op-
erations, including child(x, i), child(x, α), degree, and depth (the latter using the
approach of Jansson et al. [14]) in constant time. To get this representation [5]
we perform a preorder traversal on the tree, and for every node reached we write
its degree in unary using parentheses. What we get is almost a balanced paren-
theses representation: we only need to add a fictitious ‘(’ at the beginning of the
sequence. A node of degree d is identified by the position of the first of the d+1
parentheses representing the node.

In order to support child(x, α) on the dfuds representation we store the se-
quence S of edge labels according to a dfuds traversal of the tree. In this way,

An Improved Succinct Representation for Dynamic k-ary Trees 281

the labels of the children of a given node are all stored contiguously in S. We
represent S with a data structure for rank and select [9]. Let p be the position
of node x within the dfuds sequence D, and let p′ = rank((D, p) be the posi-
tion in S of the symbol for the first child of x. Let nα = rankα(S, p′ − 1) and
i = selectα(S, nα + 1). If i lies within positions p′ and p′ + degree(x) − 1, the
child we are looking for is the (i − p′ + 1)-th child of x, which is computed in
constant time as child(x, i − p′ + 1); otherwise x has not a child labeled α. This
approach, which is also used by Barbay et al. [4], is different to the original one
[5], yet ours is easier to be dynamized by using the data structures of [11].

For succinct dynamic binary trees, the representation of Munro et. al. [19]
requires 2n + o(n) bits, and they allow updates in O(log2 n) amortized time,
operations parent and child in O(1) time, and subtreesize in O(log2 n) time. Ra-
man and Rao [21] improve the update time to O((log log n)1+ε) amortized. More
specialized operations are also supported in constant time.

3 Improved Succinct Dynamic k-ary Trees

Given a static succinct representation of a tree, as for example dfuds, if we
want to insert a new node at any position in the tree, we must rebuild the
corresponding sequence from scratch. The methods for succinct representation
of dynamic binary trees [19,21] can be adapted to represent dynamic k-ary trees
by transforming the tree into a binary one. However, the cost of basic navigation
operations such as parent and child now becomes O(k) in the worst case, while
the insertion cost remains the same, O((log log n)1+ε) amortized time.

Another alternative is to represent the dfuds of the k-ary tree with the data
structure of Lemma 1, and the edge labels by a dynamic data structure for rank
and select [11]. Thus, the basic navigation operations are supported in O(log n)
time (child(x, α) is supported in O(log n(1 + log k

log log n)) time if we use [11]). The
overall space requirement is 2n + n log k + o(n log k) bits. Notice that the time
complexity of these navigation operations is related to n, the number of nodes
in the tree, rather than to k, the alphabet size. Thus, this data structure cannot
take advantage of asymptotically smaller values of k, e.g. k = O(polylog(n)).

In this section we present a succinct representation for dynamic k-ary trees,
which is faster both than representing the k-ary tree using a data structure
for dynamic binary trees [19,21] and than representing dfuds with the data
structure of Lemma 1 whenever log k = o(log n) holds.

3.1 Basic Tree Representation

To allow efficient navigation and modification of the tree, we incrementally di-
vide it into disjoint blocks, as in previous approaches [3,19,21]. Every block
represents a connected component of N nodes of the whole tree, such that
Nmin � N � Nmax, for given minimum and maximum block sizes Nmin and
Nmax, respectively. We arrange these blocks in a tree by adding inter-block point-
ers, and thus the entire tree is represented by a tree of connected components.

282 D. Arroyuelo

For each internal node x of the tree there are two cases: node x is inter-
nal to a block p or x is a leaf of block p (but not a leaf of the whole tree).
The latter nodes form what we call the frontier of a block, and every such
node x stores an inter-block pointer to a child block q where the representa-
tion of the subtree of node x starts. We duplicate node x by storing it as a
fictitious root of q, such that every block is a tree by itself. Therefore, every
such node x in the frontier of a block p has two representations: (1) as a leaf
in block p; (2) as the root node of the child block q. Note that the former
point enforces that sibling nodes are all stored in the same block, and the lat-
ter point enforces that every node is stored in the same block as its children.
This property will be useful to simplify the navigation on the tree, as well as
ensuring that a block can always be partitioned in the right way upon block
overflows.

We have reduced the size of the problem, as insertions (or deletions) only need
to update the block where the insertion is carried out, and not the whole tree.
As every block is a tree by itself, we can represent them by using any succinct
tree representation, which makes this representation very flexible. We can use
dfuds [5] to get constant-time navigation inside a block. Yet, this is a static
representation, and so the update time would be linear in the block size.

Defining Block Sizes. Let us now define the values Nmin and Nmax, the min-
imum and maximun block size respectively. Since inter-block pointers should
require o(n) bits overall, a pointer of O(log n) bits must point to a block of size
Ω(log2 n) nodes, and therefore Nmin = Θ(log2 n). On the other hand, a block
p should have room to store at least the potential k children of the root of the
block (recall that sibling nodes must be stored all in the same block). Also,
we must define Nmax in such a way that when we insert a node in a block of
maximal size Nmax (i.e., the block overflows), we can split the block into two
blocks, each of size at least Nmin. By defining Nmax = Θ(k log2 n), in the worst
case (i.e., the case where the new created block has the smallest possible size)
the root of the block has its k possible children, the subtree of each such child
having Θ(log2 n) nodes. Thus, upon an overflow, any of such subtrees of size
at least Nmin can be copied to a new block, requiring overall o(n) bits for the
pointers.

Existing related works [3,19,21] use a static block representation, which is
rebuilt from scratch upon insertions or deletions. In the case of binary trees
[19,21], these total reconstructions are carried out in constant time by using
precomputed tables. However, for k-ary trees the blocks are large enough so as
to be used to index a table. Thus, we use a different approach: we first reduce
the size of the problem by updating smaller subtrees (the blocks), and then we
make these smaller subtrees dynamic to avoid the linear update time.

Let us study now the block layout. Every block p of N nodes, having Nc

child blocks and root node rp is represented by: the tree topology of the block;
a set of Nc pointers PTRp to child blocks; a set of flags Fp indicating the nodes
in the frontier of p; and a pointer to the representation of rp in the parent
block.

An Improved Succinct Representation for Dynamic k-ary Trees 283

Representing the Tree Topology of Blocks. We represent the tree structure
Tp of block p plus the edge labels Sp by using suitable dynamic data structures,
to avoid rebuilding them from scratch upon updates.

The tree structure Tp of each block p is represented by the following data
structure, where operation selectnodep(j) yields the dfuds position of the node
with preorder j inside block p. (From now on we use the subscript p to indicate
operations local to a block p, i.e., disregarding the inter-block structure.)

Lemma 2. There exists a dynamic dfuds representation for a tree Tp of N
nodes requiring 2N + o(N) bits of space and allowing us to compute opera-
tions parentp, childp(x, i), degreep, subtreesizep, preorderp, selectnodep, insertp,
and deletep, all of them in O(log N) worst-case time.

Proof. We represent the dfuds sequence of Tp using the data structure of Lemma
1, requiring 2N + o(N) bits of space. Except for insertp and deletep, operations
on Tp can be computed as defined originally in [5] for the static case, using the
operations provided in Lemma 1 as a base, which take O(log N) time.

For operation insertp, notice that the insertion of a new leaf x will increase the
degree of its parent node y in the tree; this increase is carried out by adding a
new opening parenthesis at the corresponding position within the representation
of y. To represent the new leaf node, on the other hand, we must add a new
closing parenthesis at the corresponding position within Tp. We can show that
this new pair of opening and closing parentheses is a matching pair, and hence
the insertion can be handled by the data structure of Lemma 1. Deletions are
handled in a similar way. (Further details are deferred to the full paper.) ��

The overall space requirement of the tree structure for all the blocks is 2n+o(n)
bits. In our case N = O(k log2 n), so the operations on Tp can be supported in
O(log k + log log n) worst-case time.

We store the symbols labeling the edges of Tp in array Sp, sorted according
to dfuds as in Section 2. We preprocess Sp with a dynamic data structure
for rankα(Sp, i) and selectα(Sp, j) queries [11]. We can now compute operation
childp(x, α) inside block p using the operations provided by the representation
of Tp (i.e., childp(x, i)) and that of Sp (i.e., rankα and selectα), as in Section 2, in
O(log N(1 + log k

log log N)) = O((log k + log log n)(1 + log k
log (log k+log log n))) worst-case

time. The insertion/deletion of a symbol to/from Sp can be carried out within
the same time complexity [11]. The space requirement is N log k + O(N log k√

log N
)

bits of space per block. In the worst case every block has size Nmin, and therefore
the overall space is n log k + O(n log k√

log log n
) = n log k + o(n log k) bits of space.

Representing the Frontier of a Block. We could use a bit vector supporting
rank and select to represent Fp, indicating with a 1 the nodes in the frontier.
However, this would require n + o(n) extra bits, exceeding our space limitation.

The frontier is instead represented by a conceptual increasingly-sorted array
Prep[0..Nc] storing the preorders (within block p) of the nodes in the frontier of
p (i.e., those nodes having an inter-block pointer), except for Prep[0] = 0. Since

284 D. Arroyuelo

the preorder of a node can change upon updates in Tp, we avoid the linear-time
reconstruction of Prep by defining array Fp[1..Nc], which stores the difference
between consecutive preorders in Prep, i.e. Fp[i] = Prep[i] − Prep[i − 1], for
i = 1, . . . , Nc. Array Fp is preprocessed with a data structure for searchable
partial sums (see Section 2), denoting with TFp the balanced tree representing
the searchable partial sums. Since the total number of entries in arrays Fp equals
the number of blocks, the overall extra space requirement is o(n) bits.

The preorder represented by a given Fp[j] (i.e., the conceptual value Prep[j]),
is computed in O(log N) = O(log k + log log n) time by Sum(Fp, j). Then, by
using selectnodep(Sum(Fp, j)) we can get the dfuds position (and hence the
representation) for that node in O(log k + log log n) time.

Representing Inter-block Pointers. In block p we store the pointers to child
blocks in the conceptual array PTRp[1..Nc], increasingly sorted according to the
preorders of the nodes in the frontier of p. Since every pointer is associated to a
node in the frontier of p, we store PTRp[i] along with Fp[i] in the leaves of TFp .

For parent pointers, we store in each block p a pointer to the representation
of the root rp in the parent block q. As the dfuds position of a node can change
upon tree updates, we cannot store absolute parent pointers, which must be
updated in linear worst-case time. Since rp lies within the frontier of q, we store
in p a pointer to the representation of rp in Fq (i.e., a pointer to the leaf of TFq

corresponding to rp). As a result, parent pointers are easily updated as needed,
and we get the absolute parent pointer for block p by first following the pointer
to the leaf of TFq representing rp, and then computing Sum in Fq up to that leaf.

The overall number of pointers equals the number of blocks in the structure,
which is O(n/ log2 n). Thus, the overall space for pointers is o(n) bits.

3.2 Supporting Basic Operations

We define the basic navigation operations for our dynamic data structure.

Operation child. To compute child(x, i), if node x is not a leaf, we use operation
childp(x, i) inside block p, since each node is stored in the same block as its
children. Operation child(x, α) is computed similarly using childp(x, α). If, on
the other hand, node x is a leaf, we check whether x is a leaf of the whole tree
(in whose case operation child gets undefined), or just a leaf of block p (in whose
case we have to follow a pointer to a child block).

We carry out that checking by computing the position j = Search(Fp, preorder
(x)) in Fp for the greatest preorder which is smaller or equal than the preorder
of node x. Then we check whether the preorder represented by Fp[j] (i.e., the
value Prep[j] = Sum(Fp, j)) equals the preorder of node x. In such a case, x is
not a leaf of the whole tree, and then we have to follow the pointer PTRp[j]
to get the child block p′, to finally apply the corresponding childp′ operation
on the root of block p′. Hence, operation child(x, i) is computed in O(log N) =
O(log k+log log n) time, and operation child(x, α) takes O(log N(1+ log k

log log N)) =
O((log k + log log n)(1 + log k

log (log k+log log n))) worst-case time.

An Improved Succinct Representation for Dynamic k-ary Trees 285

Operation parent(x). If x is not the root of block p storing it, the operation
is computed locally by using operation parentp(x), since every non-root node is
stored in the same block as its parent. Otherwise, we first follow the pointer to
the parent block q, and then we compute the position of the representation of
x in the parent block q as selectnodeq(Sum(Fq, j)), assuming that block p is the
j-th child of block q. (As the parent pointer points to a leaf in TFq , we do not
need to know j, but just to use the parent pointers in the searchable partial sum
data structure for Fq.) Finally we apply parentq on the representation of x in
block q, as we are sure that the parent of node x is stored in q (i.e., because
node x cannot be the root of block q, given the properties of our data structure).
Operation parent is therefore computed in O(log N) = O(log k + log log n) time.

Operation insert. Since we insert a new node x in block p, we have to update
the block accordingly. We first insert node x in Tp, using operation insertp of
Lemma 2. Then, we insert in Sp the new symbol s labeling the new edge. Since
the new node increases the preorders of some nodes in block p, every preorder
in Fp whose value is greater or equal to the preorder of x must be increased:
we look for position j = Search(Fp, preorder(x)) in Fp from where the preorders
must be increased, and then we increase F [j] by using operation Update. This
automatically updates all preorders that have changed after the insertion of the
new node. Notice that we are also automatically updating the parent pointers
for the child blocks of p. In this way we avoid the (worst-case) linear update time
of the frontier Fp. The insertion cost according to this procedure is O((log k +
log log n)(1 + log k

log (log k+log log n))) time, because of the time to update Sp.

Block Overflows. When inserting in a block p of maximal size Nmax, we first
divide the block p into two blocks, both of size between Nmin and Nmax, by
selecting a node z in block p whose subtree will be reinserted in a new child
block p′ (including z itself) and then will be deleted from p (leaving node z still
in p). In this way z is duplicated, since it is stored along with its children in p′,
and along with its siblings and parent in p, thus maintaining the properties of
our data structure. Then, the insertion of node x is carried out in the adequate
block, either p or p′, without a new overflow since there is room for a new node
in any of these blocks. When the subtree of node z is reinserted in block p′, we
copy to p′ the portions of arrays Fp and PTRp corresponding to node z, via
insertions in Fp′ and PTRp′ and the corresponding deletions in Fp and PTRp.

After splitting p, we insert a new inter-block pointer in PTRp pointing to
block p′, and we add the preorder of node z in Fp, at the corresponding position
(marking that z lies now within the frontier of p). We add also a parent pointer
in p′, pointing to the leaf corresponding to z in the tree TFp representing Fp. In
this simple way we keep up-to-date all of the parent pointers for the children of
p, since the other pointers do not change after adding a new child block to p.

In order to amortize the insertion cost, the overall reinsertion process must
be carried out in time proportional to the size of the reinserted tree. The work
on Tp, Sp, Fp, and pointers can be done in this time, by using the corresponding
insert and delete operations on them. We must be careful, however, with the

286 D. Arroyuelo

selection of node z, since naively this would take linear time. Thus, we define
a list of candidate nodes Cp for every block p, storing the local preorders of
candidate nodes to be reinserted upon overflow. We represent Cp in the same
way as Fp, in differential form and using a searchable partial sum data struc-
ture.

To maintain Cp we must dynamically sample some nodes of Tp such that, every
time we need to split p, there is at least a candidate subtree to be reinserted in
the new child block. We must also ensure that the overall space for the Cp data
structures is o(n) bits, so we cannot maintain too many candidates.

Thus, every time we descend in the tree we maintain the last node z in
block p such that subtreesizep(z) � Nmin holds. When we find the insertion
point of the new node x, say at block p, before adding z to Cp we first per-
form p1 = Search(Cp, preorderp(z)), and then p2 = Search(Cp, preorderp(z) +
subtreesizep(z)). Then, we add z to Cp whenever: (1) z is not the root of block
p; and (2) it holds that p1 = p2, which means that there is no other candidate
in the subtree of z. If in the descent we find a candidate node z′ which is an
ancestor of z, then after inserting z to Cp we delete z′ from Cp. In this way
we keep the lowest possible candidates, avoiding that the subtree of a candidate
becomes so large, which would not guarantee a fair partition into two blocks of
size between Nmin and Nmax upon overflow.

As a result we ensure that the local subtree size of every candidate is at least
Nmin, and also that given a candidate node z, there are no candidate nodes in
the subtree of z. Thus, we have a candidate node out of (at least) Nmin nodes,
and hence the total space to manage the candidates is o(n). We are also ensuring
that every time a block becomes full we have at least one candite node in Cp

to be reinserted, because there were sufficient insertions in p (to become full) in
order to find at least a candidate in it. This is because of the maximum block
size Nmax = Θ(k log2 n) that we have chosen: this ensures that whenever a block
becomes full, at least one of the children of the block root has size at least Nmin.

The reinsertion cost is proportional to the size of the reinserted subtree; since
we have already paid to insert these nodes for the first time, the insertion cost is
O(log N(1 + log k

log log N)) = O((log k + log log n)(1 + log k
log (log k+log log n))) amortized.

Operation delete. To delete a node x in block p we update the data structure by
using operation deletep. After deleting x, we check whether there is a candidate
node z in Cp which is ancestor of x and whose subtree becomes smaller than Nmin

after deleting x. As there is at most one ancestor of x in Cp, z can be found as
the node represented by Cp[Search(Cp, preorderp(x)) − 1]; the subtraction comes
from the fact that with the search in Cp we find a candidate which is next (in
preorder) to z in Cp. After deleting z from Cp, we try to insert in Cp the last
node z′ found in the descent (before the deletion) whose subtree size is greater
or equal to Nmin, following the same policies as for operation insert.

If we delete x from a block p of size Nmin, then a block underflow occurs. In
such a case, we find the representation of the block root rp in the parent block q,
by using the corresponding parent pointer. From that node we reinsert in q all
of the nodes of block p. Note that in the worst case there will be only one block

An Improved Succinct Representation for Dynamic k-ary Trees 287

overflow in q when reinserting, since block p has less than Nmin nodes, and after
an overflow in q there will be room for at least Nmin new nodes. If p is not a
leaf in the tree of blocks, we reinsert the frontier of p within the frontier of q.

Managing Dynamic Memory. The model of memory allocation is a fun-
damental issue of succinct dynamic data structures, since we must be able to
manage the dynamic memory fast and without requiring so much memory space
due to memory fragmentation. We assume a standard model where the memory
is regarded as an array, with words numbered 0 to 2w − 1. The space usage of
an algorithm at a given time is the highest memory word currently in use by the
algorithm. This corresponds to the so-called MB memory model [21].

We manage the memory of every tree block separately, each in a “contiguous”
memory space. However, tree blocks are dynamic and therefore this memory
space must grow and shrink accordingly. If we use an Extendible Array (EA) [6]
to manage the memory of a given block, we end up with a collection of at most
O(n/ log2 n) EAs, which must be maintained under the operations: create, which
creates a new empty EA in the collection; destroy, which destroys an EA from the
collection; grow(A), which increases the size of array A by one; shrink(A), which
shrinks the size of array A by one; and access(A, i), which access the i-th item
in array A. Raman and Rao [21] show how operation access can be supported
in O(1) worst-case time, create, grow and shrink in O(1) amortized time, and
destroy in O(s′/w) time, where s′ is the nominal size (in bits) of array A to be
destroyed. The space requirement for the whole collection is s+O(a∗w+

√
sa∗w)

bits, where a∗ is the maximum number of EAs that ever existed simultaneously
in the collection, and s is the nominal size of the collection.

To simplify the analysis we store every part of a block in different collection
of EAs (i.e., we have a collection for Tps, a collection for Sps, and so on). The
memory for Sp and Tp inside the corresponding EA is managed as in the original
works [11,16]. For the case of Fp, Cp, etc., we manage the corresponding EA
by using standard techniques to allocate and free dynamic memory. Thus, we
use operation grow on the corresponding EA every time we insert a node in
the tree, operation shrink when we delete a node, and operation create upon
block overflows, all of them in O(1) amortized time. Operation destroy, on the
other hand, is used upon block underflows. Consider the EA collection storing
Sp for every block p of the tree. The block p′ which underflows has size less
than Θ(log2 n), and thus the nominal size for the EA storing Sp′ is less than
Θ(log2 n log k) bits. Therefore operation destroy takes less than Θ(log n log k)
time, which is negligible since we have to reinsert all of the nodes of p′ in the
parent block, at a higher cost. The EAs storing the remaining parts of p′ can be
destroyed even faster.

For the space analysis, it is important to note that every time log n changes,
the tree must be rebuilt from scratch to adapt these changes. This also involves
rebuilding the data structures needed to maintain the collections of EAs. The
amortized cost of update operations over the tree still remains the same. Let n′

be the maximum number of nodes that ever existed in the tree since the last
reconstruction (i.e., the last change of log n). As reconstructions occur when n

288 D. Arroyuelo

is a power of two, then both n and n′ lie between (the same) two consecutive
powers of two, and thus we can prove that n � n′ � 2n holds, which means
n′ = Θ(n). Thus, we can conclude that the maximum number of EAs that we
can have between reconstructions is a∗ = O(n/ log2 n).

The nominal size of the EA collection for Tps is 2n + o(n) bits. Then, this
collection requires 2n + o(n) + O(n

log n + n√
log n

) = 2n + o(n) bits of space [21].
The nominal size of the collection for Sps is n log k+o(n log k), and thus we have
n log k + o(n log k) + O(n

log n + n
√

log k/ log n) = n log k + o(n log k) bits overall.

Therefore we have proved:

Theorem 1. There exists a representation for dynamic k-ary trees using 2n +
n log k + O(n log k√

log log n
) bits of space supporting operations parent and child(x, i) in

O(log k+log log n)worst-case time, operation child(x, α) inO((log k+log log n)(1+
log k

log (log k+log log n))) worst-case time, and operations insert and delete in O((log k +

log log n)(1 + log k
log (log k+log log n))) amortized time.

In the case of binary non-labeled trees [19,21] we have:

Corollary 1. There exists a representation for dynamic binary trees using 2n+
o(n) bits of space and supporting operations parent and child(x, i) in O(log log n)
worst-case time, and operations insert and delete in O(log log n) amortized time.

Thus we improve the O((log log n)1+ε) update time of [21], but at the price of
more expensive navigations ([21] provides O(1) time for these operations).

We leave the definition of more involved operations (like subtreesize, depth,
etc.) for the full paper. Most of them are supported in O(log k + log log n) time.

4 Conclusions and Further Works

We have defined a succinct representation for dynamic k-ary trees (or tries) of n
nodes, requiring 2n+n log k + o(n log k) bits of space and supporting navigation
operations in O(log k + log log n) time, as well as insertion and deletion of leaves
in O((log k+log log n)(1+ log k

log (log k+log log n))) amortized time. Our representation
is able to take advantage of asymptotically smaller values of k, thus improving
the O(log n) time achieved by alternative representation of Lemma 2 whenever
log k = o(log n), which covers many interesting applications in practice.

An interesting future work is to reduce the extra space of O(n log k√
log log n

) =
o(n log k) bits needed by our representation. This comes from the data structure
of [11] used to represent Sp in each block. Also, it would be interesting to reduce
the time of the operations (e.g., to O(log log n

log log log n) time) in the case of small
alphabets, e.g. k = O(polylog(n)) (a particular case is that of binary trees).

Acknowledgments. We thank Jérémy Barbay for proofreading this paper.

An Improved Succinct Representation for Dynamic k-ary Trees 289

References

1. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

2. Arroyuelo, D., Navarro, G.: A Lempel-Ziv text index on secondary storage. In: Ma,
B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 83–94. Springer, Heidelberg
(2007)

3. Arroyuelo, D., Navarro, G.: Space-efficient construction of LZ-index. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1143–1152. Springer, Heidelberg
(2005)

4. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Proc. SODA, pp. 680–689 (2007)

5. Benoit, D., Demaine, E., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

6. Brodnik, A., Carlsson, S., Demaine, E., Munro, J.I., Sedgewick, R.: Resizable arrays
in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R.
(eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48. Springer, Heidelberg (1999)

7. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM TALG 3(2) (article 21) (2007)

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. FOCS, pp. 184–196 (2005)

9. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM TALG 3(2) (article 20) (2007)

10. Geary, R., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. In: Proc. SODA, pp. 1–10 (2004)

11. González, R., Navarro, G.: Improved dynamic rank-select entropy-bound struc-
tures. In: Proc. LATIN (to appear, 2008)

12. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable par-
tial sums. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906,
pp. 505–516. Springer, Heidelberg (2003)

13. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554
(1989)

14. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered
trees. In: Proc. SODA, pp. 575–584 (2007)

15. Katajainen, J., Mäkinen, E.: Tree compression and optimization with applications.
Int. J. Found. Comput. Sci. 1(4), 425–448 (1990)

16. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM TALG (to appear, 2007)

17. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

18. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

19. Munro, J.I., Raman, V., Storm, A.: Representing dynamic binary trees succinctly.
In: Proc. SODA, pp. 529–536 (2001)

20. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. SODA, pp. 233–242 (2002)

21. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 357–368. Springer, Heidelberg (2003)

Towards a Solution to the “Runs” Conjecture

Maxime Crochemore1,2,�, Lucian Ilie3,��,���, and Liviu Tinta3

1 Department of Computer Science, King’s College London, London WC2R 2LS, UK
2 Institut Gaspard-Monge, Université Paris-Est, F-77454 Marne-la-Vallée, France

maxime.crochemore@kcl.ac.uk
3 Department of Computer Science, University of Western Ontario

London, Ontario, N6A 5B7, Canada
{ilie,ltinta}@csd.uwo.ca

Abstract. The “runs” conjecture, proposed by [Kolpakov and Kucherov,
1999], states that the number of occurrences of maximal repetitions
(runs) in a string of length n is at most n. The best bound to date,
due to [Crochemore and Ilie, 2007], is 1.6n. Here we improve very much
this bound using a combination of theory and computer verification. Our
best bound is 1.048n but actually solving the conjecture seems to be now
only a matter of time.

1 The Conjecture

Repetitions in strings constitute one of the most fundamental areas of string
combinatorics with very important applications to text algorithms, data com-
pression, or analysis of biological sequences. The result of a two-decade effort in
the stringology community to find an algorithm to compute all repetitions in a
string in linear time resulted in the paper of Kolpakov and Kucherov [7] that
(i) used previous techniques of Crochemore [1], Main and Lorentz [9], and Main
[8] to construct an algorithm that computes all maximal repetitions (or runs,
see the next section for precise definition) in time proportional to the size of the
output and (ii) proved that the maximum number of runs in a string of length n,
runs(n), is linear, i.e., runs(n) � cn, where c is a constant. Therefore, the cru-
cial contribution of [7] was (ii). However, they could not provide any bound on
the constant c but, based on numerical evidence, stated the following conjecture,
for binary alphabets:

Conjecture 1 (The “runs” conjecture) For any n � 1, runs(n) � n.

Several bounds were proved later, all for arbitrary alphabets, as follows. The first
bound for the number of runs was given by Rytter [11] and is 5n. A more careful
analysis of [11] was done by Puglisi, Simpson, and Smyth [10] to improve the
bound to 3.48n and by Rytter himself for 3.44n. All these papers counted each

� Research supported in part by CNRS.
�� Corresponding author.

��� Research supported in part by NSERC.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 290–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Solution to the “Runs” Conjecture 291

run at the position where they start. A different approach was considered by
Crochemore and Ilie [2] where runs are counted at their center (beginning of the
second period, see later for precise definition). This latter approach is somewhat
counterintuitive as linearly many runs can share the same center as opposed to
logarithmically many with the same beginning. However, a much better bound,
1.6n, was obtained.

Information about the history of the problem can be found in the introduction
of [2] and, more generally, on current problems in string repetitions in the coming
survey [4]. Here we mention only that the only known lower bound is runs(n) �
0.927..n due to Franek, Simpson, and Smyth [5].

Besides the obvious mathematical importance of obtaining better bounds,
they also provide more accurate analysis of the computational complexity of
the algorithms that compute repetitions. In this paper we continue the work
in [2] and improve significantly the bound with a combination of theory and
computer checking. A common feature of the approaches in Crochemore and
Ilie [2] and Rytter [11] is the distinction made between runs with short period
(microruns) and long ones. As mentioned in [2], the procedure that leads to
bounding the number of microruns can be automatized. Using this idea, Giraud
[6] communicated to us that he improved the bound to 1.5n by bounding the
number of microruns with period up to 9 by 0.924n. (Our bound in Table 1 for
this case is 0.85n.)

The rather ad-hoc approach for microruns in [2] was good enough for hand
computation of all the possibilities up to period 9. When attempting to prove the
conjecture using the above idea, a rigorous approach is needed. After the basic
definitions in the next section, the idea from [2] is described in detail in Section
3. What we need is an algorithm for verifying (using a computer) improved
bounds on the number of microruns. Such an algorithm is given in Section 4
but, however, the computational task is totally infeasible. We develop several
powerful heuristics in Section 5 which reduce very much the number of cases
that need to be investigated. The results obtained so far are shown in Section
6. The paper concludes with a brief discussion in Section 7. Some proofs are
omitted due to limited space.

2 Runs

We denote the length of a string w by |w|, its ith letter by w[i], and the factor
w[i]w[i + 1] · · ·w[j] by w[i . . j]. We index w from 0 to |w| − 1, that is, w =
w[0 . . |w| − 1], unless otherwise specified. The string w has period p if w[i] =
w[i + p] whenever both are defined. We say that there is period p at i in w if
w[i − p . . i − 1] = w[i . . i + p − 1], that is, the factor w[i − p . . i + p − 1] exists
and has period p.

A run is a maximal (non-extendable) occurrence of a repetition of exponent
at least two. That means, the interval [i . . j] is a run if

(i) w[i . . j] has period p,
(ii) j − i + 1 � 2p,

292 M. Crochemore, L. Ilie, and L. Tinta

(iii) w[i − 1] �= w[i + p − 1] (if w[i − 1] is defined), w[j + 1] �= w[j − p + 1] (if
w[j + 1] is defined) and

(iv) w[i . . i + p − 1] is primitive, that is, it is not a proper integer power (2 or
larger) of another string.

In such a case we say that there is a run with period p at i+p in w or, briefly, run
p at i + p in w (i + p is the center of the run; see below). Note that “run p at i”
implies “period p at i” but not viceversa. The latter needs only (i) and (ii) above.
For period p at i to be run p at i it requires the primitivity condition at (iv) and
only the first part of (iii), that is, the non-left-extendability: w[i−1] �= w[i+p−1].
Right-extendability, that is, when w[j +1] = w[j −p+1], extends the run to the
right but does not move its center! In fact, we shall always use only the initial
square, w[i − p . . i + p − 1], of a run, as this is the only part we can always count
on and, as explained above, it is enough to define a run p at i.

Here is an example: the string w[0 . . 10] = abbababbaba has a run [2 . . 6] with
period 2 and exponent 2.5, that is, w[2 . . 6] = babab = (ba)2.5. We say that there
is run 2 at 4. For instance, there is period 2 at 5 but it is not a run because it can
be extended by one position to the left. Other runs are [1 . . 2], [6 . . 7], [7 . . 10],
[4 . . 9] and [0 . . 10]. For a run [i . . j] of period p, the positions i, i + p, and j are
its beginning, center, and end respectively.

3 The Idea for Better Bounds

The idea used by Crochemore and Ilie [2] is to count the runs at their centers
(the starting position of the second period) as well as count separately microruns
(runs with “short” period). The following proposition is used in [2] to bound the
number of runs with period p or larger; runs�p(n) denotes the maximum number
of runs with period p or larger in a string of length n.

Proposition 1. For any n and p, runs�p(n) � 6
pn.

The runs with short periods — microruns — are counted as follows. For a given
bound b and maximum period p, the centers of the runs are non-uniformly dis-
tributed and we try to amortize their number as follows. Given a position i,
we try all possible combinations of periods for the runs with centers to the left
of i, until a position i − j is found such that the ratio between the number of
centers inside the interval [i − j . . i] and its length, j + 1, falls below b. Also, at
any moment, the number of centers of runs that have both the center and the
beginning inside the interval should satisfy the corresponding amortizing condi-
tion. In [2], we did this for p = 9, b = 1 but mentioned that it can be done for
any p and b (assuming the bound holds). When successful, this procedure proves
that runs�p(n) � bn. Putting these two bounds together for p = 9 and b = 1,
we obtained in [2] the bound runs(n) � (6/10)n + n = 1.6n. Better bounds
can be obtained by increasing p, and/or decreasing b, however, the computation

Towards a Solution to the “Runs” Conjecture 293

may become very demanding. Our main goal in this paper is to decrease as much
as possible the amount of computation required so that it becomes doable.

4 An Algorithm for Microruns

Recall that microruns are runs with period bounded by a fixed value, which we
henceforth denote by max per. We need to consider all possible combinations of
periods (up to max per) of runs in a string to the left of a given position until the
total number of centers divided by the length of the factor falls below a given
bound b. In [2], for max per = 9 and b = 1, we found 61 possible cases. One such
case looks like this: (∅, {2}, {8}, {1, 3}), where each set contains the periods of
runs having their center at that position. In order to amortize the two centers
with periods 1 and 3, we go, in this case, three positions to the left. The same
combination can be amortized within 2 positions in the case (∅, {5}, {1, 3}) or
only 1 position in the case (∅, {1, 3}).

Such arrays of sets of positive integers will be called histories. Precisely,
given a string s = s[m . . o] and m � i � j � o, we denote historys[i . . j] =
(Hi, Hi+1, . . . , Hj), where Hg={k | run k at g in s}. As an example, if s[0 . . 6] =
aaabaab, then historys[2 . . 5] = (∅, ∅, {3}, {1}). An array h of sets of positive in-
tegers is called a history if h = historys[i . . j], for a string s[m . . o] and m � i �
j � o. In order to amortize the number of microruns, we need to be able to
detect (efficiently) the histories.

We see next how this can be done for an arbitrary array of sets of positive
integers, say h = (H0, H1, . . . , Hk−1). (We call the elements of the sets Hi runs.)
Construct first the leftmost and rightmost position, respectively, where a run
from h can reach, that is,

� = min({i − p | 0 � i � k − 1, p ∈ Hi} ∪ {0})),
r = max({i + p − 1 | 0 � i � k − 1, p ∈ Hi} ∪ {k − 1}).

For example, consider h = (∅, ∅, {3}, {1}). Then � = −1 and r = 4, see Fig. 1.

� r
−2−1 0 1 2 3 4

h ∅ ∅ {3}{1}
| || |

| || |
s a a a b a a b
g {1} ∅ {3}{1}

| || |
| || | | || |

sh 0 0 1 0 0 1
th 0 0 0 1 0 0 1

Fig. 1. For the history h = (∅, ∅, {3}, {1}) = historys[0 . . 3], the string sh, the history
g = historysh

[0 . . k −1], and the string th are shown. The initial squares of the runs are
shown as segments.

294 M. Crochemore, L. Ilie, and L. Tinta

Consider the set S = {�, � + 1, . . . , r} which is {−1, 0, 1, 2, 3, 4} for our exam-
ple. Let ≡s be the smallest equivalence relation that contains the relation R =
{(j−p, j) | i � j � i+p−1, for some 0 � i � k − 1 and p ∈ Hi}. That is, i ≡s j
means that positions i and j should contain the same letters in any string whose
history is h. This is implied by the initial squares of the existing runs in h. For
our example, R = {(2, 3), (−1, 2), (0, 3), (1, 4)} and S|≡s = {{−1, 0, 2, 3}, {1, 4}}.
Consider also a naming function f , that labels the equivalence classes of ≡s with
positive integers; such as f({−1, 0, 2, 3}) = 0 and f({1, 4}) = 1. Construct now
the string sh[� . . r] by sh[i] = f([i]≡s). For our example, sh[−1 . .4] = 001001.
We now have a necessary condition for h to be a history.

Lemma 1. Given an array h of sets of positive integers, if h is a history, then
h ⊆ historysh

[0 . . k − 1] (componentwise inclusion).

The following result is useful for the proof of Lemma 1.

Lemma 2. If h is a history, h = historys[0 . . k − 1], then sh[i] = sh[j] implies
s[i] = s[j], for any � � i, j � r.

Proof. First, both s and sh are defined for i, j in the range [� . . r]. This is by
definition for sh and it has to be true for s too as otherwise some runs would
be in h but not in s. Then, the equality of any two letters of sh comes from
transitivity of some equalities imposed by the runs of h. Since all these runs are
also in s, the statement follows. �

Proof of Lemma 1. Put historysh
[0 . . k − 1] = (S0, S1, . . . , Sk−1) and consider a

string s such that h = historys[0 . . k−1] = (H0, H1, . . . , Hk−1). By contradiction,
assume there exist i and p with p ∈ Hi\Si. By construction, we have period p
at i in sh. Because p �∈ Si, we have that this period is either left-extendable or
not primitive. In the former case we obtain sh[i − 1] = sh[i − p − 1], which, by
Lemma 2, implies s[i − 1] = s[i − p − 1] contradicting the fact that there is run
p at i in s. For the latter case, if sh[i . . i + p − 1] is not primitive, then, also by
Lemma 2, s[i . . i+p−1] is not primitive as well, implying the same contradiction.
The lemma is proved. �
Thus, for an arbitrary array of sets of positive integers h, Lemma 1 says that if
h �⊆ historysh

[0 . . k−1], then h cannot be a history. A very simple example when
this happens is h = ({1}, {1}). The run 1 at 1 cannot exist as it simply extends
the run 1 at 0. On the other hand, if h = historysh

[0 . . k − 1], then h is a history
by definition. The case that remains to be investigated is h � historysh

[0 . . k−1],
as it happens in Fig. 1.

Assume now that h is a history, h = historys[0 . . k − 1] = (H0, H1, . . . , Hk−1),
and that h � historysh

[0 . . k−1]. Consider i and p such that p ∈ Si\Hi. Lemma 2
implies that there is period p at i in s. However, there is no run p at i in s, and
therefore, the period p is either left-extendable or not primitive, or both. Pre-
cisely, there must exist a divisor d of p and a position j � i − p + d such that
there is run d at j in s and this run continues to the right at least until position

Towards a Solution to the “Runs” Conjecture 295

i + p − 1, that is, s[j − d . . i + p − 1] has period d. There are two possibilities:
j < 0 and j � 0. In the former, the period p has subperiod d that extends to
the left in s at least d + 1 positions past position 0. In the latter, there is run
d at j in both s and sh and the period p at i in s has a subperiod d that is
included in the run d at j in s. Either way, we can eliminate the run p at i in
sh by moving its center to the left until either it shifts to the left of position
0 (hence, outside the interval [0 . . k − 1] we care about) or it coincides with an
existing one in sh. Denote the obtained string by th. The transformation done
to construct th from sh uses only equalities that already exist in s. This is an
important observation because those equalities maintain the runs from h in s
and therefore, when we apply those to sh, the runs from h in sh are going to
stay. Only the unwanted centers in the interval [0 . . k − 1] disappear. Therefore,
we have h = historyth

[0 . . k − 1].
For instance, in Fig. 1 we have the run p = 1 ∈ S0\H0. The reason why 1 is

not in H0 is because it extends in s to the left until position −2, which means
that the run containing it has its center at −1, outside the interval [0 . . 3]. The
string th includes this modification. It is one position longer than sh and indeed
h = historyth

[0 . . 3].
However, for an arbitrary array of sets of positive integers, we do not know,

a priori, for each extra run p in sh but not in h which divisor d of p is used (in
a potential string s) to eliminate this run because we are going to work with h
only. We don’t have s and, in fact, s may not even exist, in the case h is not a
history. Therefore, we are going to try all possibilities. Denote by Th the set of
all strings th built as above, considering all possible combinations of divisors of
integers p for which p is a run at some position i, 0 � i � k − 1, in sh but not in
h. Then, h is history if and only if it is historyth

[0 . . k − 1], for some th ∈ Th.
The following lemma summarizes our procedure for deciding whether a given

array of sets of positive integers is a history.

Lemma 3. Given an array h of sets of positive integers, we have:

(i) if h �⊆ historysh
[0 . . k − 1], then h is not a history;

(ii) if h = historysh
[0 . . k − 1], then h is a history;

(iii) if h � historysh
[0 . . k − 1], then h is a history iff there is th ∈ Th such that

h = historyth
[0 . . k − 1].

We are now in position to give our algorithm for verifying that the number of
microruns in any string of length n is bounded by bn. Assume our microruns
have period at most max per. For a history h = (H0, . . . , Hk−1), denote

– Length(h) = k — the number of positions covered by h

– AllRuns(h) =
∑k−1

i=0 card(Hi) — the number of all runs in h

– BRuns(h) =
∑k−1

i=1 card{p ∈ Hi | i − p � 0} — the number of the runs in h
that begin within the range [0 . . k − 1] (this value will be used in a technical
argument in the proof when at the beginning of a string; see below).

296 M. Crochemore, L. Ilie, and L. Tinta

Test(h)

1. if (Length(h) = too large) then
2. Print("not amortized"); Exit() // exit the main program

3. if ((h �= ()) and (BRuns(h)
Length(h) > b)) then

4. Print("not amortized"); Exit()

5. if ((h �= ()) and (AllRuns(h)
Length(h) � b)) then

6. am pos ← max(am pos,Length(h))
7. return()

8. for each H ∈ 2{1,...,max per} do
9. g ← (H, H0, H1, . . . , Hk−1) // append H in front of h

10. if (IsHistory(g)) then
11. Test(g)
12. return()

Fig. 2. The Test function

Lemma 3 will be used in the function IsHistory(h) to test whether h is a
history or not. The function Test(h) in Fig. 2 tries all histories that have h as
a suffix and here is a brief description of it.

In case the number of microruns cannot be amortized because, say, the bound
b is not true, then we stop the whole program when the histories to be tested
become too long (steps 1-2). The condition in step 3 is needed for beginning
of strings as follows. The Test function attempts to amortize the number of
centers of runs and the length of histories is increased until this is achieved.
However, when using this procedure to prove the bound we are looking for,
the beginning of an arbitrary string may appear before the number of runs
is amortized. Therefore, to cover this situation, we amortize at each step the
number of centers of runs which do not extend to the left past the current
position. This condition turns out to be much weaker in practice than the one
for all runs. That means, if we gradually decrease the bound b to the point where
it cannot be amortized, then the program will exit in step 2 and not 4. However,
we do not have a proof of this fact, so we need to check. The overhead imposed
by checking this condition is negligible.

If the condition in step 5 is true, then the amortizing process succeeded for
this branch and we update the number of positions needed to amortize, am pos.
Otherwise, we investigate all histories that add another set of periods in front
of the current one.

The main program is simply calling the Test function with the empty history,
Test(()). If it stops normally, that is, without printing "not amortized", then
it proves that the bound bn on the number of microruns with periods up to
max per holds, as we see next.

Proposition 2. If the function Test(()) terminates normally, then, for all
n � 1, we have runs�max per(n) � bn.

Towards a Solution to the “Runs” Conjecture 297

The problem with the function Test is that there may be too many sets H
of periods to be tried in step 8 for large max per.1 In the next section we are
investigating ways to reduce drastically the number of such sets of periods.

5 Compatible Runs

The main idea in reducing the number of sets of runs to be considered in step 8
of the function Test is that some runs are incompatible with each other, either
at the same position or at different positions. We improve a result from [2] to be
used for this purpose.

Lemma 4. Consider a string s and the periods p and p − �, 0 < � < p. Let h
be the smallest integer such that h� � p (h = �p/�). If s has run p − � at i and
either (a) run p at i + j with j � � − 1, or (b) run p at i − j with j � �, then

(i) � does not divide p;
(ii) s has run p − k� at i, for 2 � k � h − 3 (i.e., all but the shortest two). If

p−(h−2)� is a prime or 4, then s has run p−(h−2)� at i. If p−(h−1)� = 1,
then s has run p − (h − 1)� at i.

The following simple observation is also useful to eliminate certain periods of
runs.

Lemma 5. If s has run p at i, then it cannot have run p at j, for i−p � j � i+p,
j �= i.

Given a run p at i, the function ForbiddenSamePos in Fig. 3 computes the
runs that are forbidden by p at the same position due to Lemma 4(i) with j = 0.
As an example, ForbiddenSamePos(6) = {3, 4, 5, 7, 8, 9, 12}.

ForbiddenSamePos(p)

1. if (p = 1) then return({1, 2})
2. forbidden ← {p − 1, p + 1, 2p}
3. for (each � proper divisor of p) do
4. forbidden ← forbidden ∪ {p − �, p + �}
5. return(forbidden)

Fig. 3. The ForbiddenSamePos function

Next, we pre-compute all possible sets of periods of microruns at the same
position. The correctness follows from Lemma 4. The function RunsSamePos

in Fig. 4 uses two arguments: current, which contains the runs included so
far and available, that is, those runs that are not forbidden by the existing
ones. The sets of periods of runs at the same position is obtained by calling
1 To solve the conjecture, the values of max per that need to be tested exceed 70. That

means an impossible 270 H-sets any time the function reaches step 8.

298 M. Crochemore, L. Ilie, and L. Tinta

RunsSamePos(current, available)

1. if (available = ∅) then return({current})
2. possible sets ← {current}
3. for (each p ∈ available) do
4. can add p ← 1
5. for (all q ∈ current with q < p) do
6. for (each k ∈ GoodKs(p, p − q) do
7. if (p − k(p − q) �∈ current) then can add p ← 0
8. if (can add p = 1) then
9. available2 ← (available ∩ [p + 2 . . max per]) \ ForbiddenSamePos(p)

10. possible sets ← possible sets ∪ RunsSamePos(current ∪ {p}, available2)
11. return(possible sets)

Fig. 4. The RunsSamePos function

RunsSamePos(∅, {1, 2, . . . , max per}). The following notation is useful in con-
nection with Lemma 4:

GoodKs(p, �)= {2, 3, . . . , �p/�	 − 3}
∪ {�p/�	 − 2 if p − (�p/�	 − 2)� is prime or 4}
∪ {�p/�	 − 1 = p−1

� if p − (�p/�	 − 1)� = 1}.

Each of these sets of periods has an effect on the nearby positions, which we
pre-compute as well. The function ForbiddenLeft(H, j), 1 � j � 2 max(H),
shown in Fig. 5, computes the periods that are forbidden at i − j by the set
of period H at i. Note that it does not depend on i. The steps 2-4 are due to
Lemma 5, the steps 5-7 are due to Lemma 4(i), and the steps 8-11 are due to
Lemma 4(ii).

Symmetrically, the effect on the positions to the right are computed by the
function ForbiddenRight(H, j), 1 � j � 2 max(H), whose code is identical
to the one of ForbiddenLeft except for step 10 where j � � is replaced by

ForbiddenLeft(H, j)

1. forbidden ← ∅
2. for (each p ∈ H) do
3. if (j � p) then
4. forbidden ← forbidden ∪ {p}
5. for (each � divisor of p) do
6. if (j � �) then
7. forbidden ← forbidden ∪ {p − �, p + �}
8. for (each q �∈ H with q < p) do
9. for (each � divisor of p − q) do

10. if ((j � �) and (p−q
�

∈ GoodKs(p, �)) and (p + � � max per)) then
11. forbidden ← forbidden ∪ {p + �}
12. return(forbidden)

Fig. 5. The ForbiddenLeft function

Towards a Solution to the “Runs” Conjecture 299

j � �−1. This is due to the difference between (a) and (b) in Lemma 4(ii). Note
that this difference does not affect the periods in the lemma and therefore the
similar condition in step 6 is unchanged.

6 The Improved Algorithm

We include now the improvements in the previous section in our Test function.
The range to be tested is [0 . . N] (N is the previous too large). We start at N
and advance to the left by considering longer and longer histories. If we reach
position 0, then the algorithm terminates without success. At each step we have
some runs that are forbidden as well as some that already exist. Therefore, we
use a two dimensional array, history[− max per . .N + max per][1 . .max per], to
store this information. (The first range exceeds [0 . .N] both ways by max per
positions to be able to store all information required.) We put

history[i][p] =

⎧
⎪⎨
⎪⎩

1 if run p at i exists already,
−1 if run p at i is forbidden,
0 if no value has been assigned.

We shall pass to the function Test the history and current position pos. The
current history being tested is given by the 1’s in the array history[pos+1 . .N].
The length of this history is N − pos.

The improved Test function is given in Fig. 6. Steps 1-5 are similar to what
we had before. In steps 6-17 we restrict the possible values for the runs at the
current position pos according to the theory in the previous section. Two sets,
existing and forbidden, contain periods that must and must not be, respectively,
included among the runs at pos. They are computed from the information already
in history (steps 8-10). We start with all possible sets of runs at the same
position and eliminate all sets that do not obey the restrictions imposed by
existing and forbidden (steps 11-13). In addition, we eliminate the sets whose
ForbiddenRight sets conflict with the information in history (steps 14-17).

We try then the remaining ones in steps 18-32. For each, we update history
in steps 19-29. We copy first the information from the current set in history[pos]
(steps 20-21) and then use the ForbiddenLeft set to impose negative restric-
tions in history (steps 22-24). Small runs included in a single period of larger
runs are copied from the right period to the left to impose some positive restric-
tions in history (steps 25-29).

Finally, the function IsHistory uses information from the previous history
in order to compute the sh and th ∈ Th strings. This is going to be passed as an
union-find data structure graph that is updated by the function UnionFind us-
ing the information from H . The function IsHistory has been described in detail
in the previous section. All runs in a string are computed using the linear-time
algorithm of Kolpakov and Kucherov [7], where the Lempel–Ziv factorization is
computed by the recent algorithm of Crochemore and Ilie [3].

300 M. Crochemore, L. Ilie, and L. Tinta

The main program, TestMicrorunsBound, will simply initialize all ele-
ments of history on 0 and then call Test(history, N, ∅).

Test(history, pos, graph)

1. if
(
(pos = 0) or

(
(pos �= N) and (BRuns(history[pos+1..N])

N−pos
> b)

))
then

2. Print("not amortized"); Exit() // exit the main program

3. if
(
(pos �= N) and (AllRuns(history[pos+1..N])

N−pos
� b)

)
then

4. am pos ← max(am pos,N − pos + 1)
5. return() // amortized: done with current history

// steps 6-17: restrict the possible continuations history[pos]
6. possible sets ← RunsSamePos(∅, {1, 2, . . . , max per})
7. existing ← ∅; forbidden ← ∅
8. for p from 1 to max per do
9. if (history[pos][p] = 1) then existing ← existing ∪ {p}

10. if (history[pos][p] = −1) then forbidden ← forbidden ∪ {p}
11. for (each H ∈ possible sets) do
12. if ((existing \ H �= ∅) or (forbidden ∩ H �= ∅)) then
13. possible sets ← possible sets \ {H}
14. for i from 1 to 2max(H) do
15. for (each p ∈ ForbiddenRight(H, i)) do
16. if (history[pos + i][p] = 1) then
17. possible sets ← possible sets \ {H}

// steps 18-32: try the continuations that are histories
18. for (each H ∈ possible sets) do

// steps 19-29: update history
19. history2 ← history
20. for (each p ∈ H) do
21. history2[pos][p] ← 1
22. for i from 1 to 2max(H)
23. for (each p ∈ ForbiddenLeft(H, i)) do
24. history2[pos − i][p] ← −1
25. for (each p ∈ H) do
26. for i from 1 to p − 2 do
27. for q from 1 to � p−i

2 	 do
28. if history2[pos + i + q][q] = 1 then
29. history2[pos + i + q − p][q] ← 1
30. graph2 ← UnionFind(graph,H)
31. if (IsHistory(history2[pos . . N], graph2)) then
32. Test(history2, pos − 1, graph2)
33. return()

Fig. 6. The improved Test function

7 Results

We tested the program TestMicrorunsBound on the SHARCNET high-speed
clusters (www.sharcnet.ca) and obtained the results in Table 1.

Towards a Solution to the “Runs” Conjecture 301

Table 1. The bounds on the maximum number of runs in a string of length n, runs(n),
obtained using TestMicrorunsBound for the given values of maximum periods of
microruns, max per, and the bound b, that is, runs(n) � 6

max per +1n+ bn. The columns
labeled “solutions” and “amortize” give the number of histories for which amortization
succeeded in step 5 and the highest number of positions needed to amortize, resp.

max per bound b solutions amortize runs(n) �
9 0.85 630 100 1.450n

10 0.85 900 100 1.396n
15 0.89 5275 27 1.265n
20 0.89 34833 97 1.176n
25 0.91 135457 153 1.141n
30 0.91 471339 153 1.104n
35 0.93 1455422 82 1.097n
40 0.93 3907110 84 1.077n
50 0.93 22635894 139 1.048n

8 Conclusion

We are very close to solving the conjecture. In fact, solving the conjecture seems
to be now only a matter of time. We should note however that the bound in the
conjecture, runs(n) � n, may not be the optimal one. For all practical purposes,
the bound n (or even the best one we obtained) is good enough, but the search
for the optimal one will continue. Very likely, different tools will be needed in
finding the optimal bound as approximations, no matter how good, will probably
keep us even asymptotically away from it.

References

1. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inform. Proc. Letters 12, 244–250 (1981)

2. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. (in
press, 2007)

3. Crochemore, M., Ilie, L.: Computing Longest Previous Factor in linear time and
applications. Inform. Process. Lett. 106, 75–80 (2008)

4. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: algorithms and com-
binatorics. Theoret. Comput. Sci. (to appear)

5. Franek, F., Simpson, R.J., Smyth, W.F.: The maximum number of runs in a string.
In: Miller, M., Park, K. (eds.) Proc. 14th Australasian Workshop on Combinatorial
Algorithms, pp. 26–35 (2003)

6. Giraud, M.: Not so many runs in strings. In: Martin-Vide, C. (ed.) Proc. of LATA
2008 (to appear, 2008)

7. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proc. of FOCS 1999, pp. 596–604. IEEE Computer Society Press, Los Alamitos
(1999)

302 M. Crochemore, L. Ilie, and L. Tinta

8. Main, M.G.: Detecting lefmost maximal periodicities. Discrete Applied Math. 25,
145–153 (1989)

9. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

10. Puglisi, S.J., Simpson, J., Smyth, B.: How many runs can a string contain? (sub-
mitted, 2006)

11. Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

12. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)

On the Longest Common Parameterized

Subsequence

Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
{kellero,kopelot,moshe}@cs.biu.ac.il

Abstract. The well-known problem of the longest common subsequence
(LCS), of two strings of lengths n and m respectively, is O(nm)-time
solvable and is a classical distance measure for strings. Another well-
studied string comparison measure is that of parameterized matching,
where two equal-length strings are a parameterized-match if there exists
a bijection on the alphabets such that one string matches the other under
the bijection. All works associated with parameterized pattern matching
present polynomial time algorithms.

There have been several attempts to accommodate parameterized
matching along with other distance measures, as these turn out to be
natural problems, e.g., Hamming distance, and a bounded version of
edit-distance. Several algorithms have been proposed for these problems.

In this paper we consider the longest common parameterized subse-
quence problem which combines the LCS measure with parameterized
matching. We prove that the problem is NP-hard, and then show a cou-
ple of approximation algorithms for the problem.

1 Introduction

The problem of finding the longest common subsequence, denoted as LCS, of two
given strings is one of the classical and well-studied problems in the area of algo-
rithms: given two strings B and C of lengths n and m respectively (throughout
this paper we will assume n ≥ m), we wish to find the longest string that is a
subsequence of both B and C.

For apparent reasons, LCS is one of the most natural measures used to test the
similarity between two strings. While this problem and its variants are interest-
ing theoretically, they are of fundamental practical use in the areas of molecular
biology and code analysis, e.g., where one wishes to test the differences between
two programming language code fragments. To name only one, the well known
UNIX diff command applies LCS as its main tool.

The classic and well-known solution of Wagner and Fischer [19] uses dynamic
programming to solve the problem in time O(nm). It can be generalized to
solve LCS for any fixed number of input strings in polynomial time. Masek and
Paterson [16] improved the running time of the case where n = m to O(n2/ log n),
by using the “four russians” technique. Other solutions—e.g., [10,18,17]—in
which the running time of the solutions are dependent on different parameters
besides the length of the strings, have also been provided.

P. Ferragina and G. Landau (Eds.): CPM 2008, LNCS 5029, pp. 303–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 O. Keller, T. Kopelowitz, and M. Lewenstein

While, as mentioned, the problem for any fixed number of strings can be
solved in polynomial time, Maier [15] showed that LCS on an arbitrary number
of strings is NP-hard (by applying a reduction from vertex cover), and later
Jiang and Li [11] showed that there exists a constant δ > 0 for which there is
not an nδ-approximation algorithm for the problem, unless P = NP. Note that
when the number of input strings is fixed to be 2, almost all LCS variants can
be solved in polynomial time.

Another very important and interesting model for testing similarity between
strings, introduced by Baker [2,3,4,5], is called parameterized matching, or p-
match in short. In this model, two length-n input strings are said to p-match
if (roughly, and will be detailed later) there exists a bijection on the alphabet
symbols which maps the i-th symbol of the first string to the i-th symbol of
the second. As the symbols of the alphabet can be, for example, programming
language code tokens, this model has practical importance in testing whether
two code segments are essentially the same, even when some tokens (e.g., variable
names) have been globally renamed.

In parameterized pattern matching, we get a length-n text and a length-m
pattern and wish to report all locations i in the text where the pattern p-matches
the length-m text substring starting at location i. Extensive amount of work has
been done on this problem: Amir et al. [1] showed an efficient algorithm even
when the alphabet size is O(n), which runs in worst-case O(n log σ) time, where
σ is the size of the parametric alphabet. In [8] they showed how to efficiently
provide an approximate solution, and in [9] they generalized the problem for the
2-dimensional case. In [13,3,4,6] it was aimed at providing parameterized text
indexing, and was shown how to efficiently construct a parameterized suffix tree.
Finally, Ferragina and Grossi [7] showed how to provide for efficient parameter-
ized text indexing even in external memory.

In parameterized pattern matching, we benefit from two facts: the first, that
in each match, consecutive symbols of the text are compared against the pattern,
and the second, that in two locations where the pattern matches the text, the
corresponding bijections need not be the same. It is very natural and tempting to
solve the problem without using these conditions to aid us; by this, we adapt the
p-match model to the LCS problem, thus defining the LCPS problem discussed
in this paper. Such a setting would be very practical in the case where, for
example, two code fragments—an original, and a suspected copy—are being
tested for similarity after the alleged copy has been edited, besides possibly
having its variable names changed. Unfortunately, we show that this problem
is NP-hard. We prove this by a reduction from the problem of 3D-matching
in a graph [12], and then provide a couple of approximation algorithms, which
yield a λ

√
|OPT|-length solution for any constant λ, where OPT is the optimal

solution.
A note must be made about the similarity between LCS and edit-distance [14]:

testing the similarity of two strings via LCS is the equivalent of doing so us-
ing edit-distance when the edit operations allowed are only insertions and dele-
tions. Baker [5] discusses the notion of parameterized edit-distance, in which the

On the Longest Common Parameterized Subsequence 305

operations allowed are insertions, deletions, and p-matches, where the p-match
edit operation replaces a substring in the first string with a substring that p-
matches it which appears in the second. Therefore, the aiding conditions of
parameterized pattern matching still play a role there.

The rest of this paper is organized as follows: in Sect. 2 we provide the formal
definitions of our problems. In Sect. 3 we provide some preliminaries. In Sect. 4
we provide a näıve algorithm for the specific case where the parametric alphabet
is small. In Sect. 5 we prove that the LCPS problem is NP-hard. In Sects. 6 and 7
we provide an approximation for a specific case of the problem called LCMS, and
for the general LCPS, respectively. In Sect. 8 we give our concluding remarks.

2 Problem Definitions

Let S = s1 . . . sn and T = t1 . . . tn be strings over alphabet set Σ ∪Π , such that
Σ ∩ Π = ∅. We say S and T are a parameterized-match (p-match for short) if
there exists a bijection f : Π → Π for which, for each i = 1, . . . , n, it holds that:

1. if si ∈ Σ, then si = ti.
2. if si ∈ Π , then also ti ∈ Π , and f(si) = ti.

For two strings B = b1 . . . bn and C = c1 . . . cm over Σ ∪ Π , We define their
common parameterized subsequence (CPS for short) as a pair of two ascending
sequences I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉 of locations in B and C respec-
tively (i.e., i� ∈ {1, . . . , n} and j� ∈ {1, . . . , m} for each � = 1, . . . , k), such that
BI p-matches CJ , where BI = bi1bi2 . . . bik

and CJ = cj1cj2 . . . cjk
.

The longest common parameterized subsequence problem is defined as follows:

Input: Two strings B = b1 . . . bn and C = c1 . . . cm over alphabet set Σ ∪ Π ,
such that Σ ∩ Π = ∅.
Output: A CPS of maximal length, denoted LCPS.

By CPS we will also denote the decision version of the problem, in which we
ask whether two strings have a common parameterized subsequence of a specified
length. The meaning will be clear from the context.

The specific case of the LCPS problem in which Σ = ∅ (i.e., the only al-
phabet is the parametric alphabet Π) is denoted the longest common mapped
subsequence (LCMS) problem.

3 Preliminaries

Let A be an algorithm (exact or approximate) for the LCPS problem. A(B, C)
returns a pair (I, J) of sequences of indices in B and C respectively. Denote I =
〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉. We define the length of the solution |(I, J)| =
|I| = |J | = k and denote |A(B, C)| = |(I, J)|.

A convenient way of describing the CPS restrictions is by defining the se-
quence graph: given the input strings B and C and two sequences 〈i1, . . . , ik〉 and
〈j1, . . . , jk〉 of locations in B and C respectively, a sequence graph is a directed

306 O. Keller, T. Kopelowitz, and M. Lewenstein

planar graph G = (V, E) in which the vertex set V is the set of location-specific
characters of B and C, set on a grid in the following manner:

1. for each i = 1, . . . , n, bi is set at grid location (i, 1);
2. for each j = 1, . . . , m, cj is set at grid location (j, 0);

and E is defined such that there is an edge from (i�, 1) to (j�, 0) for each � =
1, . . . , k. Formally: E = {((i�, 1), (j�, 0)) | � = 1, . . . , k}.

Remark 1. For convenience, when we refer to some edge written as “(bi, cj)” or
described as “the edge mapping bi to cj”, we mean the specific edge from grid-
point (i, 1) to grid-point (j, 0) (if such exists), and not to any other edge whose
endpoints are two other grid-points labeled with the symbol bi and the symbol
cj , respectively, which might also exist in the graph.

If a sequence graph contains some edge (bi, cj), we say bi is mapped to cj . Two
different edges (bi, cj), (bi′ , cj′) are said to be intersecting if the straight line on
the plane connecting grid-point (i, 1) to grid-point (j, 0) (which corresponds to
(bi, cj)) crosses the straight line connecting (i′, 1) to (j′, 0) (which corresponds
to (bi′ , cj′)). Alternatively: if i′ ≥ i, but j′ ≤ j.

Observation 1. If the sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 are both ascending,
then the sequence graph does not contain intersecting edges.

A sequence graph is said to be a CPS graph if it corresponds to some CPS, i.e.,
to two sequences 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 which comply with the conditions
described in Sect. 2. Notice that there is always a one-to-one correspondence
between a CPS of two strings and a CPS graph.

Let X, Y, Z be three disjoint sets such that |X | = |Y | = |Z| = n, and let
S ⊆ X × Y × Z. In the 3D-matching problem [12], we wish to find a subset
S′ ⊆ S which is a perfect matching of X , Y , and Z, i.e., every element of X , Y ,
and Z is covered by S′ exactly once. In the problem’s decision version, denoted
3DM, when given (X, Y, Z, S), we say (X, Y, Z, S) ∈ 3DM if there exists such
a perfect matching S′ ⊆ S. Notice that we can always assume n < |S| < n3,
otherwise solving the problem is trivial.

4 Solving the Problem for Asymptotically-Small Π

Theorem 1. There exists an algorithm N for the LCPS problem, which solves
the problem in O(|Π |! · nm) time.

Proof. We propose the following “näıve” algorithm: for each possible bijection
f : Π → Π , construct a new string Bf by replacing each symbol bi ∈ Π in B
with f(bi), and find LCS(Bf , C) using [19]. Finally, choose the bijection f for
which LCS(Bf , C) gave a maximal-length result, and recover its corresponding
indices in Bf (and hence, in B) and in C. Clearly, this algorithm is correct. Since
there are |Π |! possible bijections from Π to Π , and [19] runs in time O(nm),
the running time is O(|Π |! · nm). �
Corollary 1. If |Π | = c for some constant c, then the LCPS problem can be
solved in time O(nm).

On the Longest Common Parameterized Subsequence 307

Corollary 2. Assume w.l.o.g. that n ≥ m and let c be a constant. If |Π | ≤
c log n

log log n , then the LCPS problem can be solved in time

O((c log n/ log log n)! · nm) = O
(
2

c log n
log log n log(c log n

log log n)nm
)

= O(nc+1m) . (1)

Remark 2. Note that N also trivially solves the LCMS problem, and therefore
will be used as such later.

5 Finding the LCPS of Two Strings Is NP-Hard

We define the decision version of the LCPS problem: for two strings B and C
and an integer t, we say (B, C, t) ∈ CPS if there exists a solution (I, J) for
LCPS(B, C) such that |(I, J)| ≥ t.

Theorem 2. LCPS is NP-hard. Alternatively: if there exists a polynomial-time
algorithm for LCPS, then P = NP.

Proof. We show that LCPS is NP-hard (or rather, that CPS ∈ NPC) using a
reduction from 3DM:

The Reduction. Given the input-tuple (X, Y, Z, S) for the 3DM problem, where
|X | = |Y | = |Z| = n (note that in this section n denotes the size of X , Y , and Z)
and S = {t1, . . . , ts} ⊆ X×Y ×Z, we choose Σ = ∅ and Π = X∪S∪{∗}. In order
to construct the reduction strings properly, we first require some notation: for a
specific tuple ti = (x, y, z), we denote x(ti) = x, y(ti) = y and z(ti) = z. For some
fixed yi ∈ Y , we define S(yi) = {(x, y, z) ∈ S | y = yi}, i.e., S(yi) is the set of all
tuples in S having yi as their y-coordinate. Denote s(yi) = |S(yi)|. Furthermore,
assume S(yi) = {tr1 , . . . , trs(yi)

}, where the sequence 〈tr1 , . . . , trs(yi)
〉 is S(yi)

sorted in ascending order of x-coordinates. We define the blocks

BB
yi

= x(tr1)x(tr2) . . . x(trs(yi)−1)x(trs(yi)) , (2)

and
BC

yi
= trs(yi)

trs(yi)−1 . . . tr2tr1 . (3)

In other words, in BB
yi

we list the x-coordinates of the tuples in an ascending
order, and in BC

yi
we list the tuples themselves (each tuple serves as a single char-

acter), only this time, in the descending order of their respective x-coordinates.
As we shall see later, the role of BB

yi
and BC

yi
will be to assure that no two tuples

which share the same y-coordinate value will be included in S′, i.e., each yi will
be covered at most once by a tuple in S′. Finally, we define BB

zi
and BC

zi
, using

the same principle, only this time for the z-coordinates.
We now move to construct the strings, each comprised of three segments:

B =

Seg. 1︷ ︸︸ ︷
x(t1) ∗3 . . . ∗3 x(ts)∗3

Seg. 2︷ ︸︸ ︷
BB

y1
∗3 . . . ∗3 BB

yn
∗3

Seg. 3︷ ︸︸ ︷
BB

z1
∗3 . . . ∗3 BB

zn
∗3 , (4)

308 O. Keller, T. Kopelowitz, and M. Lewenstein

and
C = t1 ∗3 . . . ∗3 ts∗3

︸ ︷︷ ︸
Seg. 1

BC
y1

∗3 . . . ∗3 BC
yn

∗3

︸ ︷︷ ︸
Seg. 2

BC
z1

∗3 . . . ∗3 BC
zn

∗3

︸ ︷︷ ︸
Seg. 3

. (5)

Notice that each of the strings contains s + 2n blocks of ∗ symbols—each block
is of length 3—and 3s non-∗ symbols (since each tuple appears exactly once in
each segment of C, and for each such single appearance, the tuple’s x-coordinate
appears once in the respective segment of B). We derive that |B| = |C| =
3(s + 2n) + 3s = 6s + 6n. Finally, we choose t = 3s + 9n < 6s + 6n.

Before showing that this reduction is correct, we require some definitions: for
some sequence graph of B and C, we define an (∗, ∗)-type edge as an edge whose
endpoints are both ∗ symbols, and an (x, t)-type edge as an edge whose endpoint
in B is some x-coordinate value, and whose endpoint in C is some tuple. Likewise
we define an (x, ∗)-type edge and an (∗, t)-type edge. We continue to the following
claim:

Claim. Assume a CPS of B and C is given, and is of length 3s + 9n, and let
f be its corresponding bijection. Then the following statements apply to the
corresponding CPS graph and bijection f :

1. f(∗) = ∗.
2. There are exactly 3n (x, t)-type edges, and exactly 3s+6n (∗, ∗)-type edges.
3. Every ∗ at some location i in B is mapped to its respective ∗ at location i

in C.
4. Each segment of B contributes exactly n (x, t)-type edges. In particular,

Segment 1 of B contributes n (x, t)-type edges, all of them vertical.
5. Each BB

yi
(resp. BB

zj
) block contributes exactly one edge, to a symbol in BC

yi

(resp. BC
zj

).

Proof. We prove each item using the previous ones:

1. Assume by contradiction that f(∗) �= ∗. In this case (as shown by a very
loose analysis), there are (a) at most 3 (∗, t)-type edges (since each unique
tuple ti appears at most 3 times in C, one in each segment), (b) at most
3s (x, ∗)-type edges (since a unique x-coordinate appears at most s times in
each segment of B), and (c) at most 3n (x, t)-type edges (since there are n
distinct x-coordinates, each of them may be mapped to a tuple, and each
unique tuple appears 3 times in C). We derive that this scenario gives us at
most 3 + 3s+ 3n < 3s + 9n edges, which contradicts the fact that the LCPS
is of length 3s + 9n. We conclude that indeed, f(∗) = ∗.

2. From the last item it follows that each x-coordinate xi is mapped by f to
some tuple tj . Since each unique tuple appears exactly 3 times in C, and
there are n distinct x-coordinates, then there are at most 3n (x, t)-type
edges. Now, since the number of (∗, ∗)-type edges is bounded by 3(s + 2n)
(the number of ∗ symbols in each string), we conclude that in order to reach
length 3s + 9n, we require the number of (∗, ∗)-type edges to be exactly
3(s + 2n) = 3s + 6n, and the number of (x, t)-type edges to be exactly 3n.

On the Longest Common Parameterized Subsequence 309

3. Since the number of (∗, ∗)-type edges is 3s + 6n, and no two edges can
intersect each other (since it is a CPS graph), the only way to obtain this
number of edges is by mapping every ∗ at some location i in B to the ∗ at
the respective location i in C.

4. First of all, notice that an (x, t)-type edge emanating from a specific segment
in B cannot go to other than its respective segment in C, otherwise it would
result in the loss of (∗, ∗)-type edges, which would contradict Item 3. In each
segment of B, there are n distinct x-coordinates. In each segment of C, each
unique tuple appears once. Therefore, each segment can contribute at most
n (x, t)-type edges, and must contribute exactly n of those, otherwise we
would not reach the target length. Finally, each non-vertical (x, t)-type edge
emanating from Segment 1 of B would result in the loss of (∗, ∗)-type edges.
We conclude all (x, t)-type edges in Segment 1 of B are vertical and therefore
go to symbols in Segment 1 of C.

5. First notice that an edge emanating from some block BB
yi

cannot go to other
than the block BC

yi
; the opposite would result in losing (∗, ∗)-type edges.

We proceed to show that there is at most a single edge from each block.
Assume by contradiction that there are two edges from BB

yi
to BC

yi
, and let

them be (xa, tc) and (xb, td). Assume w.l.o.g. that xb appears right of xa in
BB

yi
. Since a unique tuple can appear at most once in BC

yi
, then obviously

tc �= td. It follows that also xa �= xb (since f is a proper function). Notice that
x(tc) = xa and x(td) = xb (in words, both edges must be from an x-value to
a tuple having this value as its x-coordinate), otherwise we would lose one of
the n vertical (x, t)-type edges in Segment 1, which always map a value to a
tuple having it as its x-coordinate. However, since xb appears right of xa and
xa �= xb, it follows that in BC

yi
, the tuples for which xb is the x-coordinate

appear left of the tuples for which xa is the x-coordinate. In particular, td is
left of tc in BC

yi
. We conclude that the two edges intersect, which contradicts

the fact that this is a CPS graph. The proof for BB
zj

and BC
zj

is similar. We
have just proved that each BB

yi
(resp. BB

zj
) block contributes at most a single

edge, but since we require n edges from Segment 2 (resp. Segment 3) in order
to obtain the target length, we conclude that each such block contributes
exactly one edge. �

It remains to show that the reduction described is correct:

Claim. (X, Y, Z, S) ∈ 3DM if and only if (B, C, 3s + 9n) ∈ CPS.

Proof. We prove both directions:

(only if) Given a subset S′ ⊆ S, |S′| = n, which covers each element of X , Y ,
or Z exactly once (i.e., S′ is a perfect matching), we determine the respective
I, J sequences by describing a CPS graph: for each i = 1, . . . , 6s + 6n:
1. If bi = ci = ∗, then map bi to ci.
2. Otherwise, ci is some tuple in S. If it also holds that ci ∈ S′, then:

310 O. Keller, T. Kopelowitz, and M. Lewenstein

(a) If i is a location in Segment 1, map bi to ci.
(b) If i is a location in Segment 2, then ci appears as a symbol in the

block BC
y(ci), and therefore x(ci) appears as a symbol bj in BB

y(ci).
Therefore, map bj to ci.

(c) If i is a location in Segment 3, the argument is similar, only this time
with BC

z(ci) and BB
z(ci) respectively.

Claim. The above scheme yields a CPS graph and therefore a CPS of length
3s + 9n.

Proof. First notice that the mappings of the form (∗, ∗) actually define that
f(∗) = ∗ and contribute 3s + 6n edges. Since they are all vertical, they do
not intersect with each other. Since all other edges in Segment 1 are also
vertical (i.e., are of the form (bi, ci)), they do not intersect with the above
edges or each other. In addition, since S′ is a matching, each unique xi value
is mapped to a unique tuple denoted t(xi) having xi it as its x-coordinate
value. Hence it defines by this that f(xi) = t(xi) for i = 1, . . . , n. Since
|S′| = n, we conclude that this has contributed another n edges. Finally, at
each BB

yi
block, we make a single mapping to a value in BC

yi
(because S′ is a

matching, and all tuples in BC
yi

share the same y-coordinate, and in addition
a unique tuple can appear at most once in BC

yi
). Notice that mappings in

these blocks are consistent with mappings in Segment 1, and therefore agree
with the definition of f made before. The argument for BB

zj
and BC

zj
is similar.

Finally, since each BB
yi

or BB
zj

block contributes a single edge, we conclude
that those blocks contributed 2n edges all together, none of them intersects
with other edges. It follows that the constructed graph is a CPS graph with
3s + 9n edges and therefore the claim follows. �

We thus conclude that (B, C, 3s + 9n) ∈ CPS.
(if) Assume that (B, C, 3s + 9n) ∈ CPS, i.e., B, C have a common param-

eterized subsequence of length 3s + 9n, and consider the corresponding
CPS graph and the bijection f . By Item 4 of the first claim, each (x, t)-
type edge in Segment 1 is vertical and therefore agrees with the map-
ping of each unique xi to a unique tuple tj for which x(tj) = xi. Define
S′ = {tj | ∃xi, f(xi) = tj}. Since all tuples sharing the same y-coordinate
(resp. z-coordinate) appear in the same BC

y (resp. BC
z) block, and by Item 5

such block contributes a single edge (which agrees with the mappings de-
fined by the edges in Segment 1, since f is a bijection), we conclude each
unique y-coordinate (resp. z-coordinate) is covered, and furthermore covered
exactly once by S′. We conclude that S′ is a perfect matching and therefore
(X, Y, Z, S) ∈ 3DM. �

3DM ∈ NPC, CPS is trivially in NP, and the above reduction clearly can be
performed in polynomial time. We therefore conclude CPS ∈ NPC. Therefore if
LCPS admits a polynomial-time algorithm, then P = NP. �

On the Longest Common Parameterized Subsequence 311

Algorithm 1: ALCMS
λ (B, C)

calculate the values |ΠB |, |ΠC |;1

πmin ← min{|ΠB |, |ΠC |};2

foreach possible Π ′ ⊆ ΠB and Π ′′ ⊆ ΠC, such that |Π ′| = |Π ′′| = λ2 do3

construct the strings BΠ′ , CΠ′′ ;4

run N (BΠ′ , CΠ′′);5

choose Π ′, Π ′′ which yielded maximal result, and let k be the length of the6

resulting solution;
if k ≥ πmin then7

construct the ascending sequences I = 〈i1, . . . , ik〉 and J = 〈j1, . . . , jk〉 of8

effective locations in BΠ′ and CΠ′′ , respectively, chosen by the näıve
algorithm;

else9

k ← πmin;10

choose an ascending sequence I = 〈i1, . . . , ik〉 such that i� (� = 1, . . . , k) is the11

first (i.e., leftmost) occurrence of the symbol bi� in B;
choose an ascending sequence J = 〈j1, . . . , jk〉 such that j� (� = 1, . . . , k) is12

the first (i.e., leftmost) occurrence of the symbol cj� in C;
return (I, J);13

6 Approximating LCMS

Recall that LCMS is the specific case of the LCPS problem where Σ = ∅. For a
given parameter λ > 0, we provide an O(n2λ2+1m)-time algorithm, ALCMS

λ , for
which, for two strings B and C of lengths n and m respectively, |ALCMS

λ (B, C)| ≥
λ
√

|OPT(B, C)|, where OPT(B, C) denots the optimal solution.
First, some notation: for a string S, let ΠS = {a ∈ Π | a appears in S}. Given

some alphabet set Γ ⊆ Σ∪Π , we denote by SΓ the string S with all symbols not
from Γ deleted, while, for symbols not deleted, preserving their original location
in S. In other words, we keep aside each symbol in SΓ its original location in
S. We will refer to this location as the symbol’s effective location. For our two
strings B and C, let πmin = min{|ΠB|, |ΠC |}. Finally, let OPT(B, C) = (I∗, J∗)
be the optimal solution, and let I∗ = 〈i∗1, . . . , i∗t 〉 and J∗ = 〈j∗1 , . . . , j∗t 〉. We define
π∗ to be the number of distinct symbols which appear in BI∗

(equivalently, in
CJ∗

; by the problem properties, it is the same).

6.1 The Algorithm

Algorithm 1 utilizes the fact that two strategies for the LCMS problem are
available: for the first, notice that both |ΠB| ≥ πmin and |ΠC | ≥ πmin by the
definition of πmin. We can therefore create sequences I, J for which |I| = |J | =
πmin, by mapping the �-th unique symbol which appears in B, to the �-th unique
symbol which appears in C, for � = 1, . . . , πmin. For the second strategy, assume
we know the λ2 symbols most frequent in BI∗

, and the λ2 symbols most frequent
in CJ∗

. Running the näıve algorithm on the two strings, wherein all symbols not

312 O. Keller, T. Kopelowitz, and M. Lewenstein

from the λ2 most frequent are deleted, will yield a solution of length at least
|OPT(B,C)|

π∗/λ2 (since if we partition ΠBI∗ to π∗/λ2 sets, each of size λ2, one of

them must give us length of at least |B
I∗ |

π∗/λ2 = |OPT(B,C)|
π∗/λ2 when running the näıve

algorithm on the strings induced by its symbols only). Since we do not know
ΠBI∗ , we test every possible combination of λ2 symbols in both strings and
choose the combination yielding the maximal result. Finally, our approximation
algorithm chooses the better of the two strategies.

6.2 Analysis

Theorem 3. Given a parameter λ > 0, ALCMS
λ is an O(n2λ2+1m)-time approx-

imation algorithm for LCMS, such that |ALCMS
λ (B, C)| ≥ λ

√
|OPT(B, C)|.

Proof. We provide the approximation factor and the running-time analysis:

Approximation. From the discussion above, the algorithm returns sequences of
length max{πmin,

|OPT(B,C)|
π∗/λ2 }. Notice that:

λ2|OPT(B, C)| = π∗ · |OPT(B, C)|
π∗/λ2 (6)

≤ min{|ΠB|, |ΠC |} · |OPT(B, C)|
π∗/λ2 (7)

= πmin · |OPT(B, C)|
π∗/λ2 , (8)

where (7) is true because π∗ is bounded by min{|ΠB|, |ΠC |} and (8) is true by
definition. We therefore conclude that max{πmin,

|OPT(B,C)|
π∗/λ2 }≥λ

√
|OPT(B, C)|.

Since |ALCMS
λ (B, C)| = max{πmin,

|OPT(B,C)|
π∗/λ2 }, the approximation factor fol-

lows.

Running-Time. Step 1 of the algorithm can be done efficiently by sorting both
strings according to the symbols of the alphabet. Step 11 and Step 12 can be
efficiently executed by (a) leaving only one copy of each unique symbol in the two
sorted strings, and (b) re-sort the sorted strings, this time using the indices as the
keys by which the sorting is done. Since there are

(|ΠB |
λ2

)
≤ nλ2

options for Π ′,
and

(|ΠC |
λ2

)
≤ nλ2

options for Π ′′, and running the näıve algorithm costs O(nm),
we conclude that the running-time is bounded by O(nλ2 ·nλ2 ·nm) = O(n2λ2+1m).

�

7 Approximating LCPS

For a given parameter λ > 0, we provide an O(n4λ2+1m)-time algorithm, ALCPS
λ ,

for which, for two strings B and C of lengths n and m respectively, |ALCPS
λ (B, C)|

≥ min{λ
√

|OPT(B, C)|, 1
2 |OPT(B, C)|}.

On the Longest Common Parameterized Subsequence 313

Algorithm 2: ALCPS
λ (B, C)

construct the strings BΠ , CΠ ;1

(I ′, J ′) ← ALCMS√
2λ

(BΠ , CΠ);2

construct the strings BΣ , CΣ ;3

D ← LCS(BΣ , CΣ); /* assume D = d1 . . . dk */4

if |(I ′, J ′)| ≥ |D| then return (I ′, J ′);5

else6

construct the ascending sequences I ′′ = 〈i1, . . . , ik〉 and J ′′ = 〈j1, . . . , jk〉 of7

effective locations in BΣ and CΣ , respectively, such that bi� = cj� = d�

(� = 1, . . . , k);
return (I ′′, J ′′);8

7.1 The Algorithm

Note that almost all notation remains the same, except that this time, (I∗, J∗)
is the solution returned by OPT(BΠ , CΠ) (instead of OPT(B, C), as before).
Again, I∗ = 〈i∗1, . . . , i∗t 〉 and J∗ = 〈j∗1 , . . . , j∗t 〉. π∗ is defined as before to be the
number of distinct symbols which appear in BI∗

(or equivalently, in CJ∗
).

Algorithm 2 utilizes the fact that this time three strategies for the LCPS
problem are available: while the first two remain the same as before—and thus,
actually work now on BΠ and CΠ—the third corresponds to BΣ and CΣ : we
can simply run the ordinary LCS algorithm on BΣ and CΣ , thus obtaining a
legal CPS. As before, our approximation algorithm will choose the best of the
three.

7.2 Analysis

Theorem 4. Given a parameter λ > 0, ALCPS
λ is an O(n4λ2+1m)-time approx-

imation algorithm for LCPS, such that

|ALCPS
λ (B, C)| ≥ min{λ

√
|OPT(B, C)|, 1

2
|OPT(B, C)|} .

Proof. We provide the approximation factor and the running-time analysis:

Approximation.
√

2λ was used as the parameter when running ALCMS on BΠ

and CΠ , and therefore ALCMS√
2λ

returned a max{πmin,
|OPT(BΠ ,CΠ)|

π∗/2λ2 }-length so-
lution. It follows that the entire ALCPS

λ algorithm returned a solution of length
max{πmin,

|OPT(BΠ ,CΠ)|
π∗/2λ2 , |LCS(BΣ , CΣ)|}. Notice that:

2λ2|OPT(B, C)| ≤ 2λ2|OPT(BΠ , CΠ)| + 2λ2|LCS(BΣ , CΣ)| (9)

= π∗ · |OPT(BΠ , CΠ)|
π∗/2λ2 + 2λ2|LCS(BΣ , CΣ)| (10)

≤ πmin · |OPT(BΠ , CΠ)|
π∗/2λ2 + 2λ2|LCS(BΣ , CΣ)| , (11)

314 O. Keller, T. Kopelowitz, and M. Lewenstein

where (9) is true because |OPT(B, C)| ≤ |OPT(BΠ , CΠ)| + |LCS(BΣ , CΣ)|
(since symbols from Π in the optimal solution cannot contribute more than
|OPT(BΠ , CΠ)|, and likewise, symbols from Σ in the optimal solution cannot
contribute more than |LCS(BΣ , CΣ)|), and (11) is true due to the same expla-
nation of (7–8). We conclude that πmin · |OPT(BΠ ,CΠ)|

π∗/2λ2 + 2λ2|LCS(BΣ , CΣ)| ≥
2λ2|OPT(B, C)| and therefore

max
{

πmin · |OPT(BΠ , CΠ)|
π∗/2λ2 , 2λ2|LCS(BΣ , CΣ)|

}
≥ λ2|OPT(B, C)| . (12)

We can therefore split to cases:

1. If 2λ2|LCS(BΣ , CΣ)| ≥ πmin · |OPT(BΠ ,CΠ)|
π∗/2λ2 , we get that |LCS(BΣ , CΣ)| ≥

1
2 |OPT(B, C)|.

2. Otherwise, πmin · |OPT(BΠ ,CΠ)|
π∗/2λ2 > 2λ2|LCS(BΣ , CΣ)|. Since It follows that

πmin · |OPT(BΠ ,CΠ)|
π∗/2λ2 ≥ λ2|OPT(B, C)|, in this case we finally conclude that

max{πmin,
|OPT(BΠ ,CΠ)|

π∗/2λ2 } ≥ λ
√

|OPT(B, C)|.

Summing up the two cases, we get:

max
{

πmin,
|OPT(BΠ , CΠ)|

π∗/2λ2 , |LCS(BΣ , CΣ)|
}

≥ min
{

λ
√

|OPT(B, C)|, 1
2
|OPT(B, C)|

}
. (13)

Since |ALCPS
λ (B, C)| = max{πmin,

|OPT(BΠ ,CΠ)|
π∗/2λ2 , |LCS(BΣ , CΣ)|}, the approxi-

mation factor follows.

Running-Time. The running-time is dominated by the use of ALCMS√
2λ

as a sub-

procedure. Since it is executed on BΠ and CΠ with
√

2λ as the parameter,
its running-time (and therefore the running-time of the entire algorithm) is
O(n2(

√
2λ)2+1m) = O(n4λ2+1m). �

8 Conclusions

We have defined the very natural LCPS problem, proven its NP-hardness, and
provided approximation algorithms for the general and a more specific case.
The obvious problem remains to devise better approximation algorithms for the
problem, or to prove their nonexistence.

References

1. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994)

2. Baker, B.S.: Parameterized pattern matching by boyer-moore-type algorithms. In:
SODA, pp. 541–550 (1995)

On the Longest Common Parameterized Subsequence 315

3. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci. 52(1), 28–42 (1996)

4. Baker, B.S.: Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. Comput. 26(5), 1343–1362 (1997)

5. Baker, B.S.: Parameterized diff. In: SODA, pp. 854–855 (1999)
6. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.

In: STOC, pp. 407–415 (2000)
7. Ferragina, F., Grossi, R.: The string b-tree: A new data structure for string search

in external memory and its applications. J. ACM 46(2), 236–280 (1999)
8. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM

Transactions on Algorithms 3(3) (2007)
9. Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching.

In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537,
pp. 266–279. Springer, Heidelberg (2005)

10. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subse-
quences. Commun. ACM 20(5), 350–353 (1977)

11. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press (1972)

13. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees
(preliminary version). In: FOCS, pp. 631–637 (1995)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

15. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

16. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

17. Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

18. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)

19. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1),
168–173 (1974)

Author Index

Amir, Amihood 118
Arroyuelo, Diego 277
Aumann, Yonatan 118

Backofen, Rolf 69
Bergeron, Anne 56
Betzler, Nadja 31
Bu, Dongbo 44

Chan, Wai Hong 178
Clifford, Raphaël 143
Crochemore, Maxime 290

Efremenko, Klim 143

Farach-Colton, Martin 204
Fayolle, Julien 107
Fellows, Michael R. 31
Fischer, Johannes 152
Fraczak, Wojciech 217

G ↪asieniec, Leszek 82
Gotthilf, Zvi 255
Gusfield, Dan 1

Hermelin, Danny 255
Huang, Yang 204
Hundt, Christian 5

Ilie, Lucian 290

Jiang, Tao 263

Kapah, Oren 118
Keller, Orgad 303
Kiwi, Marcos 130
Kolpakov, Roman 18
Komusiewicz, Christian 31
Kopelowitz, Tsvi 303
Kucherov, Gregory 18

Levy, Avivit 118
Lewenstein, Moshe 255, 303
Li, Cindy Y. 82
Li, Ming 44
Li, Shuai Cheng 44

Lískiewicz, Maciej 5
Liu, Xiaowen 263

Ma, Bin 244
Mäkinen, Veli 152
Marschall, Tobias 95
Mixtacki, Julia 56
Möhl, Mathias 69
Mozes, Shay 230
Munro, J. Ian 3

Navarro, Gonzalo 130, 152, 191
Niedermeier, Rolf 31
Nitto, Igor 166
Nong, Ge 178

Oliveira, Arlindo L. 191

Porat, Benny 143
Porat, Ely 118, 143

Raghavan, Prabhakar 4
Rahmann, Sven 95
Russo, Lúıs M.S. 191
Rytter, Wojciech 217

Stoye, Jens 56

Telha, Claudio 130
Tinta, Liviu 290
Tsur, Dekel 230

Venturini, Rossano 166

Wang, Lusheng 263
Weimann, Oren 230
Will, Sebastian 69

Xiao, Jing 263
Xu, Jinbo 44

Yazdani, Mohammadreza 217

Zhang, Meng 82
Zhang, Sen 178
Ziv-Ukelson, Michal 230

	Title Page
	Preface
	Organization
	Table of Contents
	ReCombinatorics: Combinatorial Algorithms for Studying the History of Recombination in Populations
	References

	Lower Bounds for Succinct Data Structures
	The Changing Face of Web Search
	Two-Dimensional Pattern Matching with Combined Scaling and Rotation
	Introduction
	Previous Work
	Our Contributions

	Preliminaries
	Exploring the Set D(P, Fsr)
	The 2D-PM Algorithm
	Implementation
	Analysis

	Conclusions and Future Work

	Searching for Gapped Palindromes
	Introduction
	Basic Definitions
	Long-Armed Palindromes
	Computing P(i)
	Computing Q(i)
	Putting All Together

	Length-Constrained Palindromes
	Biological Palindromes
	Concluding Remarks

	Parameterized Algorithms and Hardness Results for Some Graph Motif Problems
	Introduction
	Fixed-Parameter Algorithms
	Parameterized Hardness Results
	Conclusion

	Finding Largest Well-Predicted Subset of Protein Structure Models
	Introduction
	Preliminaries
	Problem Definition and Notations

	A Discretization of the Rigid Transformation
	Match a Radial Pair Approximately
	Exact Algorithm for Restricted Rotation Axis
	Distance Approximating of the LWPS Problem

	An Efficient Randomized Algorithm for Globular Protein Structure
	Approximating the Bottleneck Distance
	Results
	Discussion

	HP Distance Via Double Cut and Join Distance
	Introduction
	The Double Cut and Join (DCJ) Model
	Components and Oriented Sorting
	Basic Definitions
	Oriented Sorting

	Computing the General HP Distance
	Destroying Unoriented Components
	Unoriented Sorting

	Conclusion
	Proof of Theorem 2

	Fixed Parameter Tractable Alignment of RNA Structures Including Arbitrary Pseudoknots
	Introduction
	Preliminaries
	A Fixed Parameter Tractable Algorithm
	Partition into Crossing and Non-crossing Arc Pairs
	Precomputation of Stem Pairs
	Core of the Algorithm
	Complexity

	Practical Evaluation
	Conclusion

	Faster Algorithm for the Set Variant of the String Barcoding Problem
	Introduction
	The Problem and the Method
	String Barcoding Problem
	Notation and Definitions
	Two Algorithms
	Data Structures
	Amortised Analysis

	Conclusion

	Probabilistic Arithmetic Automata and Their Application to Pattern Matching Statistics
	Introduction
	Probabilistic Arithmetic Automata
	Computing the State-Value Distributions of PAAs
	Basic Algorithm
	Doubling Technique

	Pattern Matching Statistics
	Sets of Generalized Strings
	Finite String Sets
	Probabilistic String Sets
	Further Generalizations

	Discussion

	Analysis of the Size of Antidictionary in DCA
	Introduction
	Description of DCA
	Patterns of Small and Long Lengths
	Approximate Model
	Asymptotic Contribution under the Approximate Model
	Combinatorics
	Computation
	Bounding the Contribution of Small and Long Patterns
	Result under a Memoryless Biased Model

	Validation of the Hypotheses
	Conclusion

	Approximate String Matching with Address Bit Errors
	Introduction
	Background
	The Problem Definition

	Flipped Bits Errors
	The Faulty Bits Problem
	Problem Definition
	A Deterministic Algorithm
	A Randomized Algorithm

	Approximate Faulty Bits Problem
	The Faulty Bits Problem with Text Longer Than Pattern
	Conclusions

	On-Line Approximate String Matching with Bounded Errors
	Introduction
	Main Contributions

	Model for Approximate Searching Allowing Errors
	Algorithms for Approximate Searching with Errors
	Algorithm Based on q-Gram Sampling
	Algorithm Based on Covering by Pattern Substrings

	Experimental Results
	Final Comments

	A Black Box for Online Approximate Pattern Matching
	Introduction
	Our Results
	The Black Box for Online Approximate Matching
	Space Lower Bound for Deterministic Online Approximate Matching
	Discussion

	An(other) Entropy-Bounded Compressed Suffix Tree
	Introduction
	Basic Concepts
	Compressing LCP Information
	Next-Smaller and Prev-Smaller Queries
	An Entropy-Bounded Compressed Suffix Tree
	Range Minimum Queries in Sublinear Space
	Suffix-Tree Operations

	Discussion

	On Compact Representations of All-Pairs-Shortest-Path-Distance Matrices
	Introduction
	Some Basic Facts
	From Matrix D to Labeled (Spanning) Trees of G
	Path-Sum Queries Boil Down to Prefix-Sum Queries
	Our First Solution
	Our Second Solution
	Conclusion and Open Problems

	Computing Inverse ST in Linear Complexity
	Introduction
	Preliminary
	The Linear Inverse ST Algorithm
	Basis
	Algorithm Framework
	Computing D in $O(N)$ Time/Space

	Dynamic Fully-Compressed Suffix Trees
	Introduction and Related Work
	Basic Concepts
	Static Fully-Compressed Suffix Trees and Our Plan
	Updating the Suffix Tree and Its Sampling
	Dynamic Fully-Compressed Suffix Trees
	Dynamic Compressed Suffix Arrays
	Dynamic Sampled Trees
	Mapping from CSA to the Sampled Tree and Back

	Putting All Together
	Conclusions

	A Linear Delay Algorithm for Building Concept Lattices
	Introduction
	Preliminary
	Some Characterization of Lattices
	Algorithm for the Full Representation
	Overview
	Implementation
	Algorithm Analysis

	Algorithm for the Compact Representation
	Compact Representation
	Implementation

	Conclusion and Future Direction

	Matching Integer Intervals by Minimal Sets of Binary Words with $don’t cares$
	Introduction and Motivation
	Definition of the Problem
	Notation and Preliminary Results
	Intervals in the Lexicographic Encoding
	Intervals in the Reflected Gray Encoding

	Fast Algorithms for Computing Tree LCS
	Introduction
	Preliminaries
	An O(r height(F) height(G) lglgm) Algorithm
	An $O(mr {\rm lg} r \cdot {\rm lg lg}m)$ Algorithm
	An $O(Lr {\rm lg} r \cdot {\rm lglg} m)$ Algorithm
	An $O(r h {\rm lglg} m)$ Algorithm for Homeomorphic Tree LCS

	Why Greed Works for Shortest Common Superstring Problem
	Introduction
	Notations
	Smoothed Analysis of SCS
	The Practical SCS Instances
	Smoothed Analysis of the Greedy Algorithm

	Shortest Common Superstring with Wildcards
	Discussion

	Constrained LCS: Hardness and Approximation
	Introduction
	Our Contribution

	Preliminaries
	Arbitrary Number of Constraints
	Single Constraint
	Approximation Algorithm

	Open Questions

	Finding Additive Biclusters with Random Background
	Introduction
	The Three Phase Voting Algorithm
	Analysis of the Algorithm
	The Implementation of the Voting Algorithm
	Experimental Results
	Simulated Datasets
	Real Dataset

	Conclusion

	An Improved Succinct Representation forDynamic k-ary Trees
	Introduction and Previous Works
	Preliminary Concepts
	Improved Succinct Dynamic k-ary Trees
	Basic Tree Representation
	Supporting Basic Operations

	Conclusions and Further Works

	Towards a Solution to the “Runs” Conjecture
	The Conjecture
	Runs
	The Idea for Better Bounds
	An Algorithm for Microruns
	Compatible Runs
	The Improved Algorithm
	Results
	Conclusion

	On the Longest Common Parameterized Subsequence
	Introduction
	Problem Definitions
	Preliminaries
	Solving the Problem for Asymptotically-Small Π
	Finding the LCPS of Two Strings Is NP-Hard
	Approximating LCMS
	The Algorithm
	Analysis

	Approximating LCPS
	The Algorithm
	Analysis

	Conclusions

	Author Index

