
B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 168–182, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Discovering Web Services to Improve Requirements
Specifications: Does It Help?

Konstantinos Zachos, Neil Maiden, and Rhydian Howells-Morris

Centre for HCI Design, City University, London
kzachos@soi.city.ac.uk, n.a.m.maiden@city.ac.uk,

rhydianmorris2002@hotmail.com

Abstract. Service-centric systems pose new opportunities for when engineering
requirements. This paper reports an evaluation of software tools with which to
exploit discovered services to improve the completeness of requirements speci-
fications. Although these tools had been evaluated previously in facilitated in-
dustrial workshops, industrial users had not used the tools directly. In this paper
we report 2 industrial uses and evaluations in which experienced analysts used
the tools directly on 2 real-world requirements projects. Results reveal that ana-
lysts used the tools to retrieve web services that could implement specified re-
quirements, but analysts were less able to improve these requirements in light of
the retrieved services. Results have implications for iterative service discovery
processes and service discovery algorithms.

1 Developing with Web Services

Web and software services are operations that users access via the internet through a
well-defined interface independent of where the service is executed [1]. Service-
centric systems integrate software services from different providers into applications
that discover, compose and monitor these services. Developments in service-centric
computing have been rapid [2], but there has been little reported research to address
how to engineer service-centric systems.

As we have reported previously [3], one consequence of service-centric systems is
that requirements processes might change due to the availability of services. Discov-
ering candidate services can enable analysts to increase the completeness of system
requirements based on available service features. We have researched new tools and
techniques to form service queries from incomplete requirements specifications as
part of the EU-funded SeCSE Integrated Project. Although the effectiveness of these
tools to increase requirements completeness was demonstrated in workshops, in
which stakeholders worked with the tools through facilitators and scribes [4], we still
lacked empirical evidence of whether analysts can use and benefit from these tools
directly. Therefore we made the tools available for use by SeCSE’s industrial partners
on service-centric systems development projects. This paper reports results from the
requirements phases of projects at 2 of these partners – a large multi-national consul-
tancy and a small software house providing applications. Results were used to inves-
tigate 2 research questions about the usefulness of the SeCSE tools:

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 169

Q1. Can the tools retrieve specifications of services compliant with requirements
specified by analysts in service queries?

Q2. Can analysts make requirement specifications more complete using the re-
trieved service specifications?

To answer these 2 questions we collected data about the requirements specified by
analysts, the service specifications retrieved using service queries composed of these
requirements, analysts’ decisions to retain or reject each of these services, changes to
requirements in light of service specifications, and qualitative statements made by
analysts. Q1 was answered using analyst decisions to retain or reject each retrieved
service. Q2 was answered using post-retrieval changes that analysts make to use case
and requirement specifications.

Sections 2 and 3 of this paper describe SeCSE’s service-centric requirements proc-
ess and tools. Section 4 introduces the 2 industrial users of these tools and the evalua-
tion method, and sections 5 and 6 report results from the 2 evaluations. Section 7
answers the 2 research questions and reports some threats to validity. The paper ends
with future work on new software modules to support the specification of require-
ments from retrieved web services.

2 Discovering Services in SeCSE

In previous SeCSE work we had reported an iterative and incremental requirements
process for service-centric systems [5]. Requirements analysts form service queries
from a requirements specification to retrieve services that are related to the require-
ments. Descriptions of these retrieved services are explained to stakeholders, then
used to refine and complete the requirements specification to enable more accurate
service retrieval, and so on.

Relevance feedback, as it is known, has important advantages for the requirements
process. Stakeholders will rarely express complete requirements at the correct levels
of abstraction and granularity to match to the descriptions of available services. Rele-
vance feedback enables service consumers and analysts to specify new requirements
and re-express current ones to increase the likelihood of discovering compliant ser-
vices. Furthermore accurate relevance feedback provides information about whether
requirements can be satisfied by available services, to guide the analysts to consider
build, buy or lease alternatives or to trade-off whether requirements can be met by the
available services.

The process has 2 important features. Firstly, to ensure its industrial uptake, the
process uses established specification techniques based on structured natural lan-
guage. For example, to specify system behaviour the process supports UML use case
specifications. To specify the required properties in a testable form for generating
service monitoring policies it supports the VOLERE requirements shell [6]. As such
the process extends the Rational Unified Process (RUP) without mandating unneces-
sary specification or service querying activities.

Secondly the process uses services that are discovered from service registries to
challenge system boundaries and discover new requirements. For example, if no ser-
vices are found with an initial query, SeCSE provides advice on how to broaden the

170 K. Zachos, N. Maiden, and R. Howells-Morris

query to find services that, though not exactly matching the needs of the future sys-
tem, might provide a useful basis for further specification.

To support the iterative and incremental requirements process we implemented the
SeCSE service discovery environment. The next section describes this environment.

3 SeCSE’s Service Discovery Environment

The environment has 4 modules: (i) service registries; (ii) UCaRE, a module to
document requirements and generate service queries; (iii) EDDiE, the service discov-
ery engine, and; (iv) the Service Browser module for reviewing and selecting re-
trieved services. We describe these 4 modules in turn.

3.1 SeCSE’s Service Registries

The environment discovers services from federated SeCSE service registries that store
both the service implementation that applications invoke and one or more facets that
specify different aspects of each service. Current service registries such as UDDI are
inadequate for discovering services using criteria such as cost, quality of service and
exception handling. Therefore SeCSE has defined 6 facets of a service – signature,
description, operational semantics, exception, quality-of-service, cost/commerce, and
testing [7] – that specify features that are important when discovering services. Each
facet is described using an XML data structure. The environment uses the description
and quality-of-service facets of each service. Figure 1 shows part of the service de-
scription facet of one service retrieved in 1 of the 2 reported evaluations. The quality-
of-service facet is used to refine selection once services are discovered. SeCSE’s
service registries are implemented using eXist, an Open Source native XML database
featuring index-based XQuery processing, automatic indexing.

Name: ViaMichelinFindNearByPOIwebservice
Service goal: ServiceGoal: The FindNearbyPOI Web Service allows you to search a list of
POI matching specified criteria located around a central point

Short service description: The "FindNearbyPOI" Web Service allows searching for a certain
number of ad-dresses or locations closest 'as the crow flies' to a particular address or place of
interest within a user-definable search radius. Then displaying any detailed poi information is

possible. For example, it can look for car dealers closest to a given location or find competitors
that are closest to your sales points and, as a result, analyze catchment areas that are the
least well served

Fig. 1. Example of part of one service with SeCSE’s description facet

3.2 The UCaRE Requirements Module

Analysts express requirements for new applications using UCaRE, a web-based .NET
application. UCaRE supports tight integration of use case and requirements specifica-
tions – a requirement expressed using VOLERE can describe a system-wide require-
ment, a requirement on the behavior specified in one use case, or a requirement on the
behavior expressed in one use case action. UCaRE allows analysts to create service
queries directly from use case and requirements specifications.

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 171

At the start of the requirements process, analysts work with stakeholders to de-
velop simple use case précis that describe the required behaviour of a new system.
Figure 2(a) shows a use case précis expressed in UCaRE, taken from one of the re-
ported evaluations, to specify how a user shall use an on-line ticket searching applica-
tion. A second précis also used in the evaluation is reported in a readable form in
Figure 3. Figure 2(b) shows a requirement, also from these partners, associated with
the précis expressed using the UCaRE VOLERE shell. Larger versions of the screen-
shots in Figure 2 are available at [8]. Requirements also used in the evaluation are
reported in readable form in Figure 3.

The analyst then uses the simple tick-box feature shown in Figure 2(c) to select at-
tributes of use cases and requirements to include in a service query. Each service
query is formed of one or more elements of a pre-defined type such as a requirement
description or rationale, or a use case précis, pre-condition or action. UCaRE maps
these element types to service query elements to deliver the seamless integration of
service querying with requirements specification, as described at length in [3]. The

a

b

c

Fig. 2. Specification of a use case (a) and requirement (b) in UCaRE, and selection of use case
and requirements attributes to generate service queries (c)

Precis: All users can search events and tickets by use of search function. She can search

event and ticket on base of event date or event name or event place or interpreter
(band, sport team, etc.) name. She can specify also type of event. If search result is
more then one, they are displayed like list. Number of list rows on page can be lim-

ited by application variable.
AR: Must be available during local office hours.
FR: For registered and logged user must be possibility to book or purchase tickets di-

rectly from list.

Fig. 3. A simple use case précis and requirements for the ticket searching application used in
one of the industrial evaluations, which are used to formulate queries and discover services

172 K. Zachos, N. Maiden, and R. Howells-Morris

analyst then refines each generated service query using the names and locations of
registries to search, the maximum number of services to retrieve, and the parts of
speech (e.g. noun, verb and adjective) in the service query text to search on.

An analyst using UCaRE can generate one or more service queries from the speci-
fication of a system. Each query is a structured XML file containing structured natural
language statements. Because these statements are derived from requirements and use
cases, each is potentially ambiguous and incomplete. EDDiE, the service discovery
engine, was designed to handle this ambiguity and incompleteness.

3.3 The EDDiE Module

The purpose of EDDiE is to discover descriptions of candidate services using the
service description facet with queries composed of information such as that in Figures
2 & 3. Other requirement types and service facets such as quality-of-service and cost
fulfil important roles during service selection once discovered using the Service
Browser module.

The EDDiE algorithm has the 4 key components. In the first the service query is
divided into sentences, then tokenized and part-of-speech tagged and modified to
include each term’s morphological root (e.g. displayed to display, and tickets to
ticket). Secondly, the algorithm applies procedures to disambiguate each term by
defining its correct sense and tagging it with that sense defined in the WordNet online
lexicon [9] (e.g. defining a ticket to be a a commercial document showing that the
holder is entitled to something (as to ride on public transportation or to enter a public
entertainment rather than a list of candidates nominated by a political party to run for
election to public offices). Thirdly, the algorithm expands each term with other terms
that have similar meaning according to the tagged sense using WordNet, to increase
the likelihood of a match with a service description (e.g. the term ticket is synony-
mous with the term order or voucher which is also included in the query). This query
expansion enables the algorithm to retrieve service specifications for service queries
that share no common terms. In the fourth component the algorithm matches all ex-
panded and sense-tagged query terms to a similar set of terms that describe each can-
didate service, expressed using the service description facet, in the SeCSE service
registry. Query matching is in 2 steps: (i) XQuery text-searching functions to discover
an initial set of services descriptions that satisfy global search constraints; (ii) tradi-
tional vector-space model information retrieval, enhanced with WordNet, to further
refine and assess the quality of the candidate service set. This two-step approach
overcomes XQuery’s limited text-based search capabilities. The algorithm returns a
set of retrieved service specifications and match scores ranked according to the se-
mantic distance to the service query.

The EDDiE algorithm is described at length in [3].

3.4 The Service Browser Module

The Service Browser presents retrieved services to analysts and stakeholders. Services
that attain a minimum threshold of match value are presented in a ranked order. The
analyst can view all properties of the service description facet and corresponding use

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 173

Fig. 4. The Service Browser module, showing retrieved services, their specifications and match
scores

case and requirement properties to enable understanding and selection. The analyst
can also filter the services according to compliance or otherwise with non-functional
requirements included in the service query. A screenshot showing candidate services
retrieved for queries in one evaluation is depicted in Figure 4. A larger version of the
screenshot in Figure 4 is available at [10].

Previously SeCSE’s service discovery environment had been tested with industrial
users for its usability and core functionality [11]. It was also evaluated successfully in
a half-day workshop at FIAT’s research centre to discover requirements for new
automotive applications [4]. However, the FIAT analysts did not use the tool directly.
In the remainder of this paper we report the next phase of evaluation, in which ana-
lysts used the environment on their own to specify requirements and retrieve candi-
date service specifications.

4 The Industrial Users and Evaluation Method

The 2 industrial users – both members of the SeCSE project – were CA and KD
Software. CA is one of the world's largest IT management software providers. It un-
dertakes core systems integration roles for clients seeking secure, service-oriented
architectures. KD Software is an independent software developer in the Czech Repub-
lic that develops business systems using service-centric techniques.

Two experienced analysts – 1 from the UK office of CA and 1 from the Czech of-
fice of KD Software – undertook the evaluations. Both had extensive analytic experi-
ence and were familiar with UML. Both worked remotely at their offices, accessing
SeCSE tools on servers based in London using thin web clients through their

174 K. Zachos, N. Maiden, and R. Howells-Morris

organizations’ firewalls. The CA analyst received initial on-site training with the tools
whereas the KD Software analyst learned to use the tools independently using SeCSE
user guides. The SeCSE tools searched 4 federated service registries located in Italy
and Spain. They contained 154 service specifications for applications including
weather reporting, flight booking and route planning taken from existing public UDDI
registries and generated by service providers in SeCSE. Each service description was
written by the original service provider and not modified prior to use.

The CA analyst specified requirements for a travel cost estimation application for
CA consultants to use. The KD Software specified requirements for an outline ticket
searching application. The analysts worked independently of each other, but under-
took the same 6-step evaluation method. Each step is described in turn:

1. The application was analyzed using UML use case diagrams to generate use
case specifications of the required behaviour of the application;

2. One or more use case specifications for use cases described in the diagrams
were entered directly by each analyst into UCaRE, and requirements were en-
tered using the VOLERE requirements shell;

3. Each analyst used UCaRE functions to generate one or more service queries
per use case specification defined in UCaRE during the second step;

4. Each analyst used EDDiE to retrieve services from SeCSE service registries
using the service queries generated in the previous step. KD Software had
specified and published one web service, called KDTicketDataDelivery2a, in
the service registries which the analyst aimed to discover in the evaluation. CA
had not published any service specifications, hence the evaluation investigated
whether an uncontrolled set of available services could be used to support
CA’s requirements process;

5. Each analyst used the Service Browser to understand the service specifications
retrieved from the registries and select those relevant to the generated queries;

6. Each analyst experimented with changes to use case and requirements specifi-
cations in light of the discovered services, documenting changes in use case
and requirements specified in UCaRE. Each analyst could then repeat steps 3-6
again until the evaluation was complete.

Each analyst undertook all 6 steps. The 6 steps provide reference steps during the
descriptions of the 2 evaluations reported in the next 2 sections.

5 Results from the CA Evaluation

The CA travel cost estimation application was specified to support its consultants who
travel to client sites then bill their time and expenses. The use case diagram for the
application contained 15 use cases and 3 actors. The primary actor in the model was
the consulting manager, who seeks to achieve goals such as create draft description of
work, establish price, agree project terms and conditions, search for consultants, and
review projects.

Several of the use cases in the diagram were expanded into use case specifications
entered into UCaRE. One such use case specification, Estimate expense, is shown in
Figure 5. The problem statement outlined the existing problem. The précis described
the required behaviour using unstructured text. The author also specified 4

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 175

Use Case ID Estimate Expense
Actors Consultant search, Consulting Manager
Problem
statement

As part of the Consultant search function the Consulting manager needs to Estimate
expenses. For this to be as accurate as possible the consulting manager has to get
details of distance, travel mode and accommodation requirements costs. All of these
costs.

Precis When the consulting manager is matching consultant to company he needs to establish
accurate costs to enable him to negotiate and agree a job price with the customer.
Estimate expense works on distance of skilled consultant from the customer, what
mode of travel is being used, what the contract says about travel expenses and what
accommodation on site is required.

Functional
Requirements

Response time should be < 1 minute.

Non-Functional
Requirements

All costs to be calculated in US Dollars but values to be displayed in local currency
based on that days interbank rate.
Must be available during local office hours.
Travel type must be shortest time of travel for consultant unless that gives a dispro-
portionate cost increase.

Added Value Currently done manually with online mapping and some rule of thumb measures.
Justification Accurate estimate generate confidence and correct pricing of jobs
Triggering
event

Sales notification of a contract negotiation that includes consultancy costs.

Preconditions Draft description of work is available. DOW has been reviewed by the customer and
agreed in principle.

Assumptions Consultants are appropriately skilled for the work. Choice of travel mode is at the
consultants discretion, discounted travel is not appropriate for the work.

Normal Course 1. Draft description of work review complete.
2. Distance between consultant and customer is calculated.
3. Cost of daily travel is estimated.
4. Mode of transport is decided.
5. Accommodation is accepted or rejected.
6. Total cost calculated.

Fig. 5. The Estimate expense use case specification from the CA application

requirements – 1 functional and 3 non-functional – on the behaviour specified in the
use case. A post-study review revealed that the specified functional requirement
should be a performance requirement and at least one of the non-functional require-
ments can be interpreted as a functional one, so service discovery took place using
incorrectly typed requirements. The use case normal course was composed of 6 ac-
tions that describe the required behaviour of the new expense estimating application.

During step 2 of the process the CA analyst commented that UCaRE was robust
but necessitated the user guide to specify use cases. He also commented that there was
no discernible difference in tool performance between access from the server site and
remotely at CA offices, but remote access suffered from some Internet lag.

During step 3 the CA analyst successfully generated service requests and queries
from the use case specification. The service query retrieved 14 candidate service
specifications from the registries containing the 154 service specifications. Table 1
lists the names of the retrieved services in match order and the CA analyst’s decisions
to retain or reject each service using the Service Browser module.

During step 5 of the process the CA analyst retained 6 and rejected 7 of the 14 re-
trieved services to invoke in the future travel cost estimation application. An 8th was
also rejected but identified as potentially useful to a related CA application. Over half
of the services retrieved by EDDiE were deemed to be incorrect by the analyst for the
specified service query.

176 K. Zachos, N. Maiden, and R. Howells-Morris

Table 1. Ranked services retrieved by EDDiE fror the CA Estimate expense use case specifica-
tion, and the decision to retain or reject each of the services

Discovered Service Name Decision to retain or reject service
Weblogwebservice - Rejected -
AdressMeister + Retained +
Webservice search - Rejected -
XigniteCurrencies + Retained +
FoldCalc - Rejected -
XgniteEdgar Rejected, but could be

useful in another application
QuoteAndMarketData - Rejected -
ThirdPartyCallTLAB - Rejected -
SendSMSTLAB + Retained +
Mobile7NavigationKit + Retained +
CreditCardVerifyer - Rejected -
XnavigationCEFRIEL + Retained +
TimeServiceCEFRIEL + Retained +
EmailVerifier - Rejected -
XigniteDataSet - Rejected -

There was no relationship between the services retained and the EDDiE ranking of
these services. Short descriptions of the 6 retained services and the reasons for retain-
ing them are reported in Table 2.

Table 2. Retained services and the CA analyst’s rationale for their retention as relevant to the
CA application

Service Name Service Description Rationale for retention
AdressMeister Address Meister is a web-service for postal ad-

dress verification and correction. It provides
current, high-quality address data and verification
logic without the cost and complexity of maintaining
the nation's address database in-house. The service
can be used by e-businesses to verify the ad-
dresses provided to them on their websites.

Verifying if the ad-
dress is correct of
both consultant and
customer.

XigniteCurrencies This web service provides real-time currency data
(foreign exchange rate) for more than 170 curren-
cies. Convert the US dollar amount to other curren-
cies using real-time currency exchange rates re-
turned by this currency web service

All internal currencies
in USD, therefore
currency conversion is
required

SendSMSTLAB This WS allows sending and monitoring SMS with a
very simple interface. The Consumer can ask to
send an SMS text to a list of addresses through
the GSM network. After requiring SMS sending
The Consumer can ask to the Provider to outline the
delivery status of his request.

Communication of
authorisation to con-
sultant

Mobile7NavigationKit ROUTE 66 Mobile 7 determines its position using an
advanced high sensitive wireless GPS receiver,
guiding the user with turn-by-turn voice instruc-
tions and on-screen directions to its destination. A
new navigation display has been developed providing
users with all vital travel information on a single
clear screen of their smartphone including 3D map
display, turn arrows and navigation guidance, as well
as the ability to dial points of interest directly
from the map.

Used to calculate
distance between
consultant and cus-
tomer locations

XnavigationCEFRIEL Especially useful for car drivers. You may want to
know the duration in time of your trip, given the
geographical positions of the departure and arrival
places.

Required for estimating
journey costs/time

TimeServiceCEFRIEL This service computes the difference in time of
two given moments.

Used in many places,
for delivering time
differences, e.g how
long has the negotiation
been progressing

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 177

The reasons given by the CA analyst demonstrate the usefulness of the retrieved
services for estimating expenses. The AdressMeister service could be invoked to
verify client addresses, the XigniteCurrencies service was needed to compute costs in
a single currency, invoking the SendSMSTLAB service would deliver a means of
communicating system outputs to the consultant, the Mobile7NavigationKit service
would calculate distances between locations deemed pivotal to the application, the
XnavigationCEFRIEL service could be invoked to compute the travel time – also
pivotal to the application, and the TimeServiceCEFRIEL service would provide im-
portant timing data to the application.

During step 6 of the process the CA analyst used the specifications of the 6 re-
trieved services to generate 2 new requirements and improve a 3rd one in UCaRE.
Table 3 lists the 2 new requirements and changed third one, along with the rationale
for these requirements provided by the CA analyst.

Table 3. New and changed requirements generated from relevant feedback from the 6 retained
services retained within the Service Browser

Type of Edit Requirement Description Rationale
New requirement Web based access for the remote use by

consulting manager
Consulting manager may have to
authorise travel when travelling
themselves

New requirement The application must present 2 alterna-
tive methods of travel, Lowest cost and
shortest time

Lowest cost requirement is not
the only requirement, see
changed requirement below

Changed require-
ment

Travel type modified so that the travel
is short only if it is cost effective

Removed requirement for lowest
cost travel.

After the evaluation we examined the granularity of the specified requirements and

retrieved web services. Both new and original requirements were coarser grain than
retrieved web services that implemented atomic functions that, if invoked, were insuf-
ficient on their own to satisfy a requirement. Therefore EDDiE was able to retrieve
web services that were finer-grain than the requirements in the service queries, but
this difference in granularity might have impacted on further requirements generation.

Using the revised use case and requirement specifications the CA analyst returned
to step 3 of the process and generated a new service query. EDDiE returned the same
14 service specifications in the same order, although some of the MatchValues were
slightly different to the MatchValues returned for the original service query. Because
of this second result, the CA analyst concluded the evaluation. After the evaluation he
reported that he was unable to use the Service Browser to review the service specifi-
cations and their similarities with requirement and use case attributes in the service
query effectively, and this made service selection activities difficult.

6 Results from the KD Software Evaluation

During steps 1 and 2 the KD analyst used the SeCSE tools to specify 10 use cases and
the associated requirements on the ticketing selection application, then discover services
from registries (steps 3 & 4) that were then browsed, selected (step 5) and used to revise
the use cases and requirements (step 6). One of these use case specifications is reported
in Figure 6. The specification reveals evidence that the KD analyst had also attributed
the wrong type to some of the requirements used to generate service queries.

178 K. Zachos, N. Maiden, and R. Howells-Morris

Use Case ID KD UC Ticket Searching
Actors User (Unregistered User, Registered User, Administrator)
Problem
statement

Providing events and ticket information search

Precis All users can search events and tickets by use of search function. She can search
event and ticket on base of event date or event name or event place or interpreter
(band, sport team, etc.) name. She can specify also type of event. If search result is
more then one, they are displayed like list. Number of list rows on page can be limited
by application variable.

Functional
Requirements

FR: Application UI must be standard internet browser.
FR: Ticket data are provided by any Ticket data delivery service.
FR: Ticket data can be searched in own or third party database.
FR: Tickets or events can be searched according to several criteria (ticket database
connection, event name, date, place, event type, etc.).
FR: The search results must be in list form with possibility to limit size (rows number).

Non-Functional
Requirements

NFR: Availability 99,9%
NFR: Delay max.30 second

Added Value Searching functionality is open, it can works with several ticket databases.
Justification User needs information for ticket purchase.
Triggering
event

User needs information for ticket purchase or for event attending planning.

Preconditions Internet access, standard browser, ticket booking application started on web server,
ticket database is accessible.

Assumptions Internet browser software, internet access
Successful end
states

List of events, tickets.
Message “No suitable event or ticket found”.

Unsuccessful
end states

No internet access.
Ticket database is not available.
Too many users work with database (database is busy).

Normal Course User chooses Ticket Search option
FR1: Application must have this option (button or link).

 User chooses Ticket Searching criteria (ticket database connection (it should be in
parameters data), date, event name, maximal ticket price, event place, event type,
max.returned results number, etc.)
FR2: Application must have possibility to fill search criteria.

 System returns list of events or list of tickets for events.
FR3: Application must represent returned data in list or grid format. When user click
on rows in list, details are displayed.
FR4: For registered and logged user must be possibility to book or purchase tickets
directly from list.

Variations If [no connection to internet] then [application cannot run (browser accessibility
message)] (related to Action 1).
If [Registered and Logged User] then [User can continue to book or purchase tickets
(those options are visible)] (related to Action 3).

Alternatives If [no ticket database is available] then [application returns message about data
availability]
If [exotic browser] then [application returns standard info message window and
recommends to change browser]
If [no internet access] then [application returns standard info message window]
If [no ticket data fits to criteria] then [application returns message about and rec-
ommends to change search criteria]

Fig. 6. One example KD Software use case specification – specifying the use case Ticket
searching

The main difference between the KD and CA evaluations was that KD Software
had earlier published one service specification in the registries, called KDTicket-
DataDelivery2a, which could be invoked in the ticketing application. The short de-
scription of the service was:

Service provides ticket data delivery in several formats (list, one con-
crete item, etc.). Service also has operation for data searching.

The KD analyst generated 2 service queries from 2 of the 10 use case specifications
entered into UCaRE. Both were composed of text extracted from the use case name,

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 179

Table 4. Top 10 service specifications retrieved for service queries generated from 2 KD Soft-
ware application use case specifications

Rank Ticket Browsing Use Case Ticket Searching Use Case
1 KDTicketDataDelivery2a ViaMichelinFindNearByPOIwebservice
2 AGENDAMSD KDTicketDataDelivery2a
3 ViaMichelinFindNearByPOIwebservice Weblogwebservice
4 ImageCutOut WebServiceSearch
5 Weblogwebservice XgniteEdgar
6 XgniteEdgar Mobile7NavigationKit
7 EmailVerifier FoldCalc
8 AmazonHistoricalPricingService ImageCutOut
9 Anagram KDfindCarService1
10 CalendarServiceEMIC ABAExpress

actors, précis, problem statement, assumptions, preconditions and triggering event, and
5 or 6 requirements of different types. Both were specified to search using the noun,
verb, adverb and adjective parts-of-speech, but no query expansion was requested be-
cause the KD analyst explained in debriefing sessions that he did not understand the
meanings of the terms synonyms, hyponyms and glosses in the service query.

The top 10 service specifications retrieved for the 2 service queries are reported in
Table 4, ranked by MatchValues computed by EDDiE.

The target service specification - KDTicketDataDelivery2a - was ranked in the top
two by EDDiE for both service queries. In the first query EDDiE retrieved it with full
MatchValue (100). For the second use case that specified ticket searching, EDDiE
also retrieved the ViaMichelinFindNearByPOIwebservice service with full match
value that, according to the KD analyst, had no relation with the generated query. The
description of this service, also taken from the SeCSE service registries, was:

the "FindNearbyPOI" Web Service allows searching for a certain number of
addresses or locations closest 'as the crow flies' to a particular address or
place of interest within a user-definable search radius. Then displaying any
detailed poi information is possible. For example, it can look for car dealers
closest to a given location or find competitors that are closest to your sales
points and, as a result, analyze catchment areas that are the least well served.

The analyst’s decision not to select query expansion types in the service query
prevented EDDiE from generating additional query terms with the same or similar
meaning to original query terms. Therefore EDDiE matched only identical or very
similar terms such as search and display. We conjecture that the match values of the
retrieved services including ViaMichelinFindNearByPOIwebservice would have been
different if query expansion was enabled. This result demonstrated that, for ambigu-
ous and incomplete queries, EDDIE generated false positives during service discovery
alongside true positive discovered services.

During step 6 the KD analyst attempted to edit the use case and requirements
specifications using information in retrieved services. However the changes made by
the KD analyst were simple and did not lead to significant changes to new service
queries or retrieved services. At this point the KD analyst ended the evaluation.

180 K. Zachos, N. Maiden, and R. Howells-Morris

7 Research Questions Revisited

We used data from the 2 evaluations to answer the 2 research questions. The answer to
Q1 – can SeCSE tools retrieve specifications of services that can implement require-
ments specified by analysts in service queries – was yes. In the KD Software evaluation
EDDiE retrieved the target service specification with rank 1 and 2 of 154 with 2 service
queries. This suggests high precision of the EDDiE algorithm in the presence of am-
biguous and incomplete requirements in a real-world project. Failure to use query
expansion increased the relative weighting of syntactic similarities during service dis-
covery and, in the second query, returned one high-ranked but irrelevant service specifi-
cations. In the CA evaluation, for which there were no target service specifications, the
analyst retained 6 of the 14 retrieved services to invoke in the application. This suggests
that the process and environment has the potential to support applications when suffi-
cient numbers of application-independent services are published. That said, our decision
to evaluate the utility of the tools, rather than determine their precision and recall, means
that we do not know whether the algorithm failed to retrieve other service specifications
that might also have been retained by the analyst.

We investigated post-retrieval changes to the use case and requirement specifica-
tions to answer Q2 – can analysts using the SeCSE tools make requirement specifica-
tions more complete. There was little evidence to answer yes. The CA evaluation
added 2 requirements to and changed 1 of the original 6 requirements, and there were
no changes in the KD evaluation. Post-evaluation questions revealed that both ana-
lysts encountered difficulties browsing retrieved services due to complexities in the
service descriptions and similarities with the requirements in the service queries. Poor
expression of non-functional requirements meant that filtering services on quality-of-
service compliance could not be used, and the Service Browser provided little support
to each analyst to understand services. Furthermore UCaRE did not provide support
for service querying that was sensitive to the recent changes to requirement and use
case specifications. Because service-based changes were small in the context of the
use cases specifications, the revised queries did not retrieve new services.

Of course there are numerous threats to the validity of the reported results, and im-
portant ones are reported here. The obvious threat to the validity of conclusions drawn
was the small number of studies and both were participants in the SeCSE project. To
minimize this threat, follow-on studies with more analysts from organizations external
to the project are now taking place, and we will interpret results reported in this paper
in light of the results from these future evaluations. One threat to the internal validity
of the evaluations was that the application requirements and registry services were
(unintentionally) aligned too well – we might not expect such alignment in public,
market-oriented registries. However, results from the CA evaluation do not support
this threat. The domain-independent nature of the services – for verifying addresses,
calculating journey times and computing currency exchanges – made them candidates
for invocation, and the SeCSE software tools retrieved and presented these services
effectively enough to enable the analyst to retain them. A threat to the evaluation’s
construct validity also merits a mention here. Because the analysts were SeCSE part-
ners with a vested interest in the outcome we cannot discount that they were biased to
generate positive results. And one threat to the external validity of the results was our
decision to align SeCSE’s requirements process and service discovery tools with

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 181

UML. Whilst we chose UML for its ubiquity in software development, it does mean
that the evaluation results might be less applicable to projects that adopt workflow
and business process approaches to requirements analysis.

8 Discussion and Future Work

Answers to the 2 research questions investigated in this paper indicate future directions
of research and evaluation in SeCSE. One is the need for precision-and-recall experi-
ments of the EDDiE algorithm and FrEDDiE, a new software module in the environ-
ment that decomposes service queries to increase the likelihood of successful retrieval
with coarse-grain use cases and requirements. Controlled variables in these experi-
ments will be predefined service query attributes such as use case précis and require-
ment descriptions and expansion types such as synonyms and glosses. Application
experts will review retrieved services for their relevance to each query to generate
precision and recall measures for different query attributes and expansion strategies.
We are also extending EDDiE to retrieve other types of services, such as peer-to-peer
(P2P) and grid services, thus leveraging new repositories of software services of differ-
ent types on the Internet. In this extension EDDiE service queries are translated into
the Universal Service Query Language [12] then fired at federations of P2P and grid
service registries compliant with different standards applicable to these service types.
Of course, retrieval of more candidate services from more sources amplifies 2 prob-
lems reported in the evaluations, which was how to understand and select between
retrieved services, then revise requirements and service queries using relevance feed-
back from retained services.

The answers to the 2 research questions also provide empirical foundations for
further development of the SeCSE service discovery environment, particularly in light
of our answer to research question Q2. One priority is to improve the usability of the
Service Browser module. To make it more usable we responded to post-review com-
ments from the 2 analysts and developed an off-line version of the module in Micro-
soft Excel. Analysts can now download all data about service queries, specifications
of retrieved services, match values and mappings between terms to interactive spread-
sheets, to review the data off-line and manipulate it in other forms more supportive of
comprehension and selection tasks.

The low number of requirements generated by both analysts when reviewing the
retrieved web services contrasts with the higher number of requirements generated
from services during facilitated workshops [4]. This difference indicates the need to
improve tool support for analysts during this step. To this end we are developing one
new software module and adding new features to a second to support service under-
standing and selection. The Service Browser module does not provide analysts with
explicit support for generating or editing requirements in the UCaRE module. Instead
the analyst is expected to flip between the 2 modules in a single web browser win-
dow, using problem analysis and requirements writing skills to document new or
changed requirements in UCaRE. Therefore we designed a new software module to
generate candidate new requirements descriptions from service specification text
highlighted as relevant by the analyst. This new module will use mappings between
terms computed by EDDiE in use case and requirement specification and retrieved
service specifications to generate candidate descriptions of new requirements struc-
tured using requirements writing guidelines [13]. The analyst then selects between

182 K. Zachos, N. Maiden, and R. Howells-Morris

and edits the candidate requirements in UCaRE and links it to the service specifica-
tion for traceability purposes. Of course, if successful, this requirements auto-
generation module could be applied to other sources of requirement-related data such
as software product descriptions.

Finally we are also adding a new feature to UcaRE to support the iterative and in-
cremental SeCSE requirements process. In both evaluations the 2 analysts were un-
able to retrieve further service specifications because requirements changes from
relevance feedback were small in the context of the original requirement specifica-
tion. The new feature will allow an analyst to generate service queries that only in-
clude requirement and use case information that is new since the last service
query(ies) were fired. We predict that the feature will enable focused searching and
service retrieval, a prediction that we will investigate empirically in future user stud-
ies with the SeCSE service discovery environment.

Acknowledgements

SeCSE is funded by the EU 511680 Integrated Project.

References

1. Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology Driven Archi-
tectures and Potential Uses of the Semantic Web in Software Engineering. W3C (2005)

2. Margaria, T.: Service in the Eye of the Beholder. IEEE Computer 40(11), 33–37 (2007)
3. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.: Discovering Web Services To Specify

More Complete System Requirements. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg (2007)

4. Zachos, K., Maiden, N.A.M.: Discovering Services to Support Creative Thinking during
Early Requirements Processes. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749. Springer, Heidelberg (2007)

5. Jones, S.V., Maiden, N.A.M., Zachos, K., Zhu, X.: How Service-Centric Systems Change
the Requirements Process. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 13–14. Springer, Heidelberg (2005)

6. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley-
Longman (1999)

7. Sawyer, P., Hutchinson, J., Walkerdine, J., Sommerville, I.: Faceted Service Specification.
In: Proceedings SOCCER (Service-Oriented Computing: Consequences for Engineering
Requirements) Workshop, at RE 2005 Conference, Paris (2005)

8. http://vega.soi.city.ac.uk/~cc559/REFSQ2008Figure2.jpg
9. Miller, K.: Introduction to WordNet: an On-line Lexical Database Distributed with Word-

Net software (1993)
10. http://vega.soi.city.ac.uk/~cc559/REFSQ2008Figure4.tiff
11. Deliverable A2.D10 - Evaluation of service discovery environments, v2.0, SeCSE Techni-

cal Report, available at secse.eng.it (2007)
12. SODIUM, Service-Oriented Development In a Unified fraMework, IST-FP6-004559

(2007), http://www.atc.gr/sodium
13. Alexander, I.F., Stevens, R.: Writing Better Requirements. Addison-Wesley, Reading

(2002)

	Discovering Web Services to Improve Requirements Specifications: Does It Help?
	Developing with Web Services
	Discovering Services in SeCSE
	SeCSE’s Service Discovery Environment
	SeCSE’s Service Registries
	The UCaRE Requirements Module
	The EDDiE Module
	The Service Browser Module

	The Industrial Users and Evaluation Method
	Results from the CA Evaluation
	Results from the KD Software Evaluation
	Research Questions Revisited
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

