

Lecture Notes in Computer Science 5025
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Barbara Paech Colette Rolland (Eds.)

Requirements Engineering:
Foundation for
Software Quality

14th International Working Conference, REFSQ 2008
Montpellier, France, June 16-17, 2008
Proceedings

13

Volume Editors

Barbara Paech
Universität Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg
Germany
E-mail: paech@informatik.uni-heidelberg.de

Colette Rolland
Université Paris 1, Panthéon Sorbonne
90 Rue de Tolbiac, 75013 Paris
France
E-mail: Colette.Rolland@univ-paris1.fr

Library of Congress Control Number: 2008928136

CR Subject Classification (1998): D.2.1, D.2, F.3, K.6.1, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69060-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69060-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12281411 06/3180 5 4 3 2 1 0

Preface

The 14th Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2008) will be held in the beautiful city of Montpellier,
France, June 16–17, 2008.

The main topic was fitness of requirements engineering. Our economic pro-
ductivity and well-being in every-day life strongly hinges on information technol-
ogy, and thus software quality. In most systems, quality is determined through
the development process. With the spread of service-oriented and autonomic
systems, software quality is continuously negotiated and adapted at run-time.
Requirements Engineering sets the stage for quality, both at development- and
run-time. In spite of the constant emergence of new technologies and develop-
ment paradigms, basic issues such as effective communication between stakehold-
ers or correctness, consistency and completeness of large requirements documents
are the dominant issues in industry.

Seventeen papers written by authors from 13 different countries address these
topics, with particular focus on elicitation, innovative systems and empirical
studies, as well as industrial experiences and maturing research. Within these
themes, the work presented spans a wide range of application domains such as
public health, aeronautics and the automotive industry. It also involves a variety
of requirements engineering techniques, from the most established (such as use
cases or feature models) to the most innovative (such as search-based software
engineering or negotiation constellations).

As in the previous years, the proceedings serve as a record of REFSQ 2008,
but also present an excellent snapshot of the state of the art of research and prac-
tice. As such, we believe it is of interest to the whole requirements engineering
community, from students embarking on their PhD to experienced practition-
ers, researchers and teachers interested in emerging knowledge, techniques and
methods.

March 2008 Barbara Paech
Colette Rolland

Patrick Heymans
Anne Persson

Organization

REFSQ is run by an Organizing Committee of two Program Co-chairs and two
Organizational Co-chairs appointed by a permanent advisory board. REFSQ
2008 was co-located with CAiSE 2008.

Advisory Board

Eric Dubois (CRP Henri Tudor, Luxembourg)
Andreas L. Opdahl (University of Bergen,

Norway)
Klaus Pohl (University of Duisburg-Essen,

Germany)

Organizing Committee

Program Co-chairs Colette Rolland (Université Paris 1 Panthéon
Sorbonne, France)

Barbara Paech (University of Heidelberg,
Germany)

Organizational Co-chairs Patrick Heymans (University of Namur,
Belgium)

Anne Persson (University of Skövde,
Sweden)

Program Committee

I. Alexander
T. Alspaugh
A. Aurum
C. Baron
D.M. Berry
J. Börstler
S. Brinkkemper
P.-J. Charrel
L. Chung
A. Davis
E. Dubois
C. Ebert
G. Fanmuy
A. Finkelstein

V. Gervasi
J.-P. Giraudin
M. Glinz
M. Goedicke
J. Gordijn
T. Gorschek
A. Herrmann
P. Heymans
A. Hickey
J. Huang
M. Jarke
M. Jirotka
S. Jones
N. Juristo

E. Kamsties
J. Krogstie
R. Laleau
S. Lauesen
J. Leite
M. Lemoine
L. Liu
P. Loucopoulos
N. Madhavji
N. Maiden
R. Matulevicius
D.M. Moody
J. Natt och Dag
C. Ncube

VIII Organization

B. Nuseibeh
A. Olive
A.L. Opdahl
A. Persson
K. Pohl
C. Potts
N. Prakash
J. Ralyte
B. Ramesh

L. Rapanotti
B. Regnell
M. Rossi
A. Russo
C. Salinesi
K. Sandahl
P. Sawyer
K. Schneider
A. Silva

G. Sindre
I. Sommerville
J. Stirna
R. Wieringa
C. Wohlin
E. Yu
D. Zowghi

Table of Contents

REFSQ 2008

REFSQ 2008 International Working Conference on Requirements
Engineering: Foundation for Software Quality . 1

Barbara Paech and Colette Rolland

Process Improvement in Requirements Management: A Method
Engineering Approach . 6

Sjaak Brinkkemper, Inge van de Weerd, Motoshi Saeki, and
Johan Versendaal

Enhancing Elicitation Technique Selection Process in a Cooperative
Distributed Environment . 23

Hakim Bendjenna, Nacereddine Zarour, and Pierre-Jean Charrel

Negotiation Constellations – Method Selection Framework for
Requirements Negotiation . 37

Samuel Fricker and Paul Grünbacher

DESCRY: A Method for Evaluating Decision-Supporting Capabilities
of Requirements Engineering Tools . 52

Beatrice Alenljung and Anne Persson

Inventing Requirements: Experiences with an Airport Operations
System . 58

Neil Maiden, Cornelius Ncube, and James Lockerbie

A Stakeholder Model for Interorganizational Information Systems 73
Luciana C. Ballejos, Silvio M. Gonnet, and Jorge M. Montagna

Search Based Requirements Optimisation: Existing Work and
Challenges . 88

Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman

Connecting Feature Models and AUTOSAR: An Approach Supporting
Requirements Engineering in Automotive Industries 95

Wolfram Webers, Christer Thörn, and Kurt Sandkuhl

Using a Creativity Workshop to Generate Requirements for an Event
Database Application . 109

Claudia Schlosser, Sara Jones, and Neil Maiden

Can We Beat the Complexity of Very Large-Scale Requirements
Engineering? . 123

Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk

X Table of Contents

Macro-level Traceability Via Media Transformations 129
Orlena C.Z. Gotel and Stephen J. Morris

Towards Simulation-Based Quality Requirements Elicitation:
A Position Paper . 135

Roland Kaschek, Christian Kop, Vladimir A. Shekhovtsov, and
Heinrich C. Mayr

Classifying Assumptions Made during Requirements Verification of
Embedded Systems . 141

Jelena Marinčić, Angelika Mader, and Roel Wieringa

Integrating Portfolio Management and Simulation Concepts in the
ERP Project Estimation Practice . 147

Maya Daneva

Can Patterns Improve i* Modeling? Two Exploratory Studies 153
Markus Strohmaier, Jennifer Horkoff, Eric Yu, Jorge Aranda, and
Steve Easterbrook

Discovering Web Services to Improve Requirements Specifications:
Does It Help? . 168

Konstantinos Zachos, Neil Maiden, and Rhydian Howells-Morris

Mobile Discovery of Requirements for Context-Aware Systems 183
Norbert Seyff, Florian Graf, Paul Grünbacher, and Neil Maiden

When to Adapt? Identification of Problem Domains for Adaptive
Systems . 198

Kristopher Welsh and Pete Sawyer

Author Index . 205

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 1–5, 2008.
© Springer-Verlag Berlin Heidelberg 2008

REFSQ’08 International Working Conference on
Requirements Engineering: Foundation for Software

Quality

Barbara Paech1 and Colette Rolland2

1 University of Heidelberg, Im Neuenheimer Feld 326, D-61920 Heidelberg
paech@informatik.uni-heidelberg.de

2 Centre de Recherche en Informatique, Université Paris1 Panthéon Sorbonne,
90 Rue de Tolbiac, 75013 Paris, France

Colette.Rolland@univ-paris1.fr

Abstract. The 14th Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ’08) will be held in the beautiful city of
Montpellier, France on the 16th and 17th June 2008. This introduction gives an
overview of the conference and its program.

1 Introduction

Requirements Engineering – Foundation for Software Quality (REFSQ) is the unique
requirements engineering (RE) event having an explicit mission to promote the many
roles of quality in RE. After 11 successful years as a workshop it evolved in 2006 into
a working conference with attendance opened beyond the accepted paper authors.
Last year for the first time a keynote was invited and the proceedings were published
for the first time as Springer Lecture Notes in Computer Science. This year the overall
format is essentially retained. Sjaak Brinkkemper will give the invited keynote. There
will be parallel sessions, but based on the experience with 27 accepted papers last
year, more time is given again this year for the individual paper presentations. This is
important to keep the highly interactive and participatory nature of the conference.
With the help of the largest program committee ever, 17 out of 50 submissions have
been accepted representing again a healthily selective acceptance rate of 34%.

2 The Program

While REFSQ is open to all papers focusing on quality in RE, it has a specific topic
each year. This year the topic was fitness of RE. Our economic productivity and well-
being in every-day life strongly hinges on information technology, and thus software
quality. In most systems, quality is determined through the development process.
With the spread of service-oriented and autonomic systems, software quality is
continuously negotiated and adapted at run-time. Requirements Engineering sets the
stage for quality, both at development- and run-time. In spite of the constant

2 B. Paech and C. Rolland

emergence of new technologies and development paradigms, basic issues such as
effective communication between stakeholders or correctness, consistency and
completeness of large requirements documents are the dominant issues in industry.
Thus, RE has to accommodate for many different processes and products adapted to
these diverse situations.

The seventeen papers presented provide an excellent snapshot of the state of the art
of research and practice in RE. They were grouped into the following sessions:

2.1 Fitness

The papers in the first session of the conference focus on the specific topic, in
particular the assessment of fitness in terms of RE techniques and RE tool selection.
All approaches give experience-based guidance for this assessment. In Elicitation
Technique Selection Process in Cooperative Distributed Environment: Why is it
Different? Hakim Bendjenna1, Nacereddine Zarour and Pierre-Jean Charrel extend
existing work on elicitation technique selection to handle stakeholder conflicts and to
take into account more stakeholder characteristics like the language. Samuel Fricker

and Paul Grünbacher, in Negotiation Constellations – Method Selection Framework
for Requirements Negotiation, address for the first time the problem of negotiation
technique selection. The idea is to base the selection on negotiation constellations
which capture the negotiation characteristics of the software organization and of the
negotiating parties, and differentiate negotiation tactics and methods. In the position
paper DESCRY: An Evaluation Method for Assessing Decision-supporting
Capabilities of RE Tools, Beatrice Alenljung and Anne Persson propose 9 criteria for
evaluating RE tools wrt. decision support.

2.2 Requirements Elicitation

As in the previous year, a number of papers focused on elicitation. In Inventing
Requirements: Experiences with an Airport Operation System Neil Maiden, Cornelius
Ncube and James Lockerbie report on the combination of creativity techniques and
use cases. For the first time they could evaluate in detail the impact of the creativity
techniques. Luciana Ballejos, Silvio Gonnet and Jorge Montagna describe A
Stakeholder Model for Inter-organizational Information Systems. This model allows
capturing quantitatively different roles and their interests in and influences on the
system. It is illustrated in the context of a public health care system. In a project
involving many stakeholders, it is also important to quantitatively explore the benefits
and drawbacks of requirements. In the position paper Search Based Requirements
Optimisation: Existing Work & Challenges Yuanyuan Zhang, Anthony Finkelstein,
and Mark Harman present a vision for solving this problem with search-based
methods. These methods offer several advantages like robustness and sensitivity
analysis, but also induce some challenges such as scalability and the definition of the
fitness function.

2.3 Industrial Experience of RE

Several papers in the conference report industrial experience. The papers in this session
present detailed insight into the challenges of real life RE. In Connecting Feature

 REFSQ’08 International Working Conference on Requirements Engineering 3

Models and AUTOSAR: An Approach Supporting Requirements Engineering in
Automotive Industries, Wolfram Webers, Christer Thörn, and Kurt Sandkuhl discuss
challenges for suppliers in the automotive domain. While AUTOSAR provides a
standard for the exchange of requirements between OEM and supplier, the suppliers
still face the problem of relating requirements documents of different customers to the
assets of their product line. The paper presents a case study to bridge this gap based on
feature models. In Using a Creativity Workshop to Generate Requirements for an
Event Database Application, Claudia Schlosser, Sara Jones and Neil Maiden present
lessons learned by performing a creativity workshop. On the one hand a detailed
description of the workshop is given, and on the other hand the outcome in terms of
number and quality of the generated requirements is analyzed. The last paper of this
session, Can We Beat the Complexity of Very Large-Scale Requirements Engineering?,
pinpoints a notorious problem of RE in industry: the size of the documents. The
authors, Björn Regnell, Richard Svensson and Krzysztof Wnuk, define different scales
and then focus on very large scale RE concerning over 10.000 requirements with
strong interdependencies. Based on their experiences the authors propose sustainable
requirements architectures, effective requirements abstraction and emergent quality
prediction as most promising future RE research topics.

2.4 Innovative Systems

This session collects the papers dealing with the question how RE needs to be adapted
to innovative systems. Web services are the focus of Discovering Web Services to
Improve Requirements Specifications: Does It Help? by Konstantinos Zachos, Neil
Maiden and Rhydian Howells-Morris. The paper investigates the usefulness of
requirements-based tools supporting the specification of queries and the search in
service registries. In In-situ Discovery of Requirements for Mobile and Context-
aware Systems: How Scenario-based Approaches Can Help?, the authors, Norbert
Seyff, Florian Graf, Paul Grünbacher and Neil Maiden, explore how RE tools based
on ubiquitous technology can support the RE for ubiquitous systems. The lessons
learned from the usage of such tools for the validation of scenarios give rise to a
number of requirements for ubiquitous RE tools, such as on-site usage, unobtrusive
use and detection of context change. Furthermore, research challenges are derived.
Context dependencies are also the focus of When to Adapt? Identification of Problem
Domains for Adaptive Systems by Kristopher Welsh and Pete Sawyer. In their
position paper the authors argue that dynamically adaptive systems are needed
especially in case of context-dependent variation in the acceptable trade-offs between
non-functional requirements.

2.5 Maturing Research

The position papers in this session present first ideas on innovative RE techniques.
The authors of the first paper, Orlena Gotel and Stephen Morris, discuss Macro-Level
Traceability via Media Transformations. The idea is to retain the transformation steps
between different media such as transcription of an interview or structuring of
informal text into use cases. This eases the traceability between up-stream RE and
down-stream RE. The second position paper, Towards Simulation-Based Quality

4 B. Paech and C. Rolland

Requirements Elicitation: A Position Paper, by Roland Kaschek, Christian Kop,
Vladimir Shekhovtsov and Heinrich Mayr proposes the simulation of business
processes to support elicitation of quality requirements. One key idea is to simulate
the environment of the system. A formal model of the system and the environment is
also important in the third paper, Classifying Assumptions Made During Requirements
Verfication of Embedded Systems, by Jelena Marincic, Angelika Mader and Roel
Wieringa. One major challenge is to make sure that the formal models correspond
with the intended systems. This paper argues that the confidence in this
correspondence is enhanced by retaining the assumptions made, and furthermore that
a classification of these assumptions can help to guide the modeling process.

2.6 Empirical Studies

The two papers in this session do not focus on the presentation of new techniques, but
rather on their empirical evaluation. Maya Daneva evaluates data from two industrial
sites in Integrating Portfolio Management and Monte Carlo Simulation Concepts in
ERP Project Estimation Practice: a Case Study. A case study and an experiment are
the basis of Can Patterns improve i* Modeling? Two Exploratory Studies by Markus
Strohmaier, Jennifer Horkoff, Eric Yu, Jorge Aranda, and Steve Easterbrook. In this
context patterns are reusable i* models. The collected data does not support the
expected reduction of effort or complexity, but shows improved model coverage.

3 Concluding Remarks

Table 1 gives a breakdown of the national affiliations of the accepted papers’ authors.
It shows how many papers have one or more authors affiliated with a particular
country, not the number of authors from each country. Some papers are co-authored
by pan-national teams, so the sum of the numbers in table 1 exceeds the number of
papers accepted. This year, the strongest contribution came from UK, while last
year’s winner, Germany, is at the lower end.

Table 1. REFSQ’08 Author Affiliations by Country

Country Papers (co-)authored
Algeria 1
Argentina 1
Austria 4
Canada 1
France 1
Germany 1
New Zealand 1
Sweden 3
Switzerland 1
The Netherlands 2
The Ukraine 1
United Kingdom 7
United States 1

 REFSQ’08 International Working Conference on Requirements Engineering 5

We are writing this before REFSQ’08 has taken place. All readers who are
interested in an account of the discussions that took place during the conference and
the subsequent conclusions should consult the post-conference summary which we
intend to publish in the ACM SIGSOFT Software Engineering Notes.

Acknowledgements

REFSQ’08 is very much a collaborative effort involving many people. First of all, we
would like to thank Eric Dubois, Andreas Opdahl and Klaus Pohl who served on the
REFSQ Advisory Board, and Patrick Heymans and Anne Persson, this year’s
organisational co-chairs.

We would also like to thank the members of the program committee who acted as
anonymous reviewers and provided valuable feedback to the authors:

Ian Alexander, Thomas Alspaugh, Aybüke Aurum, Claude Baron, Daniel M.
Berry, Jürgen Börstler, Sjaak Brinkkemper, Pierre-Jean Charrel, Lawrence Chung,
Alan Davis, Éric Dubois, Christof Ebert, Gauthier Fanmuy, Anthony Finkelstein,
Vincenzo Gervasi, Jean-Pierre Giraudin, Martin Glinz, Michael Goedicke, Jaap
Gordijn, Tony Gorschek, Andrea Herrmann, Patrick Heymans, Ann Hickey, Jane
Huang, Matthias Jarke, Marina Jirotka, Sara Jones, Natalia Juristo, Erik Kamsties,
John Krogstie, Régine Laleau, Søren Lauesen, Julio Leite, Michel Lemoine, Lin Liu,
Peri Loucopoulos, Nazim H. Madhavji, Neil Maiden, Raimundas Matulevičius,
Daniel M. Moody, Johan Natt och Dag, Cornelius Ncube, Bashar Nuseibeh, Antoni
Olive, Andreas Opdahl, Anne Persson, Klaus Pohl, Colin Potts, Naveen Prakash,
Jolita Ralytė, Bala Ramesh, Lucia Rapanotti, Björn Regnell, Matti Rossi, Alessandra
Russo, Camille Salinesi, Kristian Sandahl, Peter Sawyer, Kurt Schneider, Andres
Silva, Guttorm Sindre, Ian Sommerville, Janis Stirna, Roel Wieringa, Claes Wohlin,
Eric Yu and Didar Zowghi.

Finally, we are very grateful to Andreas Classen for web, logo and document
design, to Germain Saval for his prompt maintenance of the website, to Doris Keidel-
Müller for her support in reviewing the layout of the papers, and to Willi Springer for
all his help and hard work during the whole of the REFSQ’08 life-cycle – even on
weekends.

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 6 – 22, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Process Improvement in Requirements Management:
A Method Engineering Approach

Sjaak Brinkkemper1, Inge van de Weerd1, Motoshi Saeki2, and Johan Versendaal1

1 Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

{s.brinkkemper,i.vandeweerd,j.versendaal}@cs.uu.nl
2 Department of Computer Science

Tokyo Institute of Technology, Tokyo, Japan
saeki@cs.titech.ac.jp

Abstract. Method Engineering and Requirements Engineering are two research
fields that can benefit from another. To increase process maturity in systems
development, we propose an approach for incremental method evolution that
combines capability-based and problem-based methods. With this method, we
can assemble new methods, based on the process need of an organization. We
show how this approach can be implemented using Computer Aided Method
Engineering (CAME) technology. In addition, we demonstrate the utility of the
Product Software Knowledge Infrastructure by showing an example of the
insertion of cost-value prioritization as a method increment in software product
management. This shows how isolated innovations in the Requirements
Engineering domain can be embedded in software development practices.

Keywords: method engineering, requirements engineering, software process
improvement, incremental method evolution, root cause analysis, computer
aided method engineering, CAME.

1 Method Engineering and Requirements Engineering

The research areas of Method Engineering and Requirements Engineering share a
common interest, as they both aim at promoting process improvements in software
and systems developments. Method Engineering works from the perspective of
generic method descriptions, usually called meta-models and possibly supported by
tooling, that allow for the roll-out of uniform high-quality methods in the perspective
of full means for situational adaptation of the method to the circumstances at hand.

Requirements Engineering research focuses on all techniques for the proper
description and handling of the specifications of a systems development process, or as
Nuseibeh and Easterbrook formulate more formally, the process of discovering the
software system’s purpose, by identifying stakeholders and their needs, and
documenting these in a form that is amenable to analysis, communication, and
subsequent implementation [1]. In the scientific work of requirements engineering we
see all kinds of innovative approaches being proposed related to the elicitation,
modeling and analysis, communicating, validating and evolution of requirements.

Process Improvement in Requirements Management: A Method Engineering Approach 7

This paper aims at establishing a cross-fertilization of the two perspectives by
showing how requirements engineering techniques can be embedded into a systems
development method supported by method engineering principles. We demonstrate
this by inserting a cost-value requirements prioritization technique, developed by
Karlsson and Ryan [2], into the requirements management methods of a product
software company [3].

1.1 Methods for Product Software Development

Product software is a worldwide industry, yet this domain has not been subject of
much scientific research. The last years, this is changing however. There have been
several studies on all product software, focusing on product software as a research
domain [4], product development [5] [6], management of software products [3] [7],
requirements management [8], release planning [9] [10], product line engineering [11]
[12], product delivery [13], and so on.

Xu and Brinkkemper [4] summarize a number of specific characteristics of
developing product software. An important difference is, for example, that the
production costs do not depend on the number of copies sold. Therefore, product
software companies that are selling millions of copies can have up to 99% gross profit
margins for its product sales [4]. On the other hand, the majority of the product-
development project are late or over budget. Also, the requirements of the entire
market must be held into account. This means that a software product should be
developed so that it can run on different hardware and software platforms. All these
characteristics make product software development a highly complex business, in
which process failures have a huge impact on performance.

Furthermore, as is depicted in Figure 1, the success of a software product in the
market has consequences for the internal functioning of the company. From a start-up
creating a first release product by a relatively simple process, the growing company is

Fig. 1. Incremental method evolution in a product software company

8 S. Brinkkemper et al.

shipping subsequent releases and product enhancements by utilizing a product
development approach that should be incrementally adapted to the changing
conditions.

Several software process improvement approaches have been proposed to improve
software development processes [14] [15]. These approaches are usually capability-
based, i.e. based on the current capabilities of a company an advice is given which
entails the implementation of capabilities on a higher maturity level. However, the
increments in these approaches are often too large and general, instead of local and
situational. For example, SEI has done a survey among 1,804 organizations, which
indicates that the median time, to move from one CMM level to another, ranges from
thirteen to twenty-four months [16].

In this research, we want to extend the capability-based process improvement with
root-cause analysis, in order to give a more accurate analysis of the actual problem.
We implement our approach in the Product Software Knowledge Infrastructure
(PSKI) [17] [18], which, when fully materialized, can help to increase the maturity of
a company’s processes. For scoping reasons we limit our research to the software
product management domain.

1.2 Research Approach

This research project is carried out following the design research methodology for
performing research in information systems as described by [19] and [20]. Research
in design science is done through the processes of building and evaluating artifacts
[19] [20]. According to Hevner et al. [19], the fundamental questions in design-
science research are: "What utility does the new artifact provide?" and "What
demonstrates that utility?" In addition, they provide seven guidelines on performing
design-science that have been followed during this research. The first guideline
Hevner at al. propose is that “design-science research must produce a viable artifact in
the form of a construct, a model, a method, or an instantiation”. The artifact in this
research is the Product Software Knowledge Infrastructure (PSKI), or to be more
specific, the functional architecture of the PSKI. The second guideline is problem
relevance, which Hevner at al describe as “the objective of design-science research is
to develop technology-based solutions to important and relevant business problems”.
The business problem lies in the fact that product software market is growing and that
there is a need for methodical support, in order to increase the maturity of product
software organizations. By developing the PSKI, we offer a technology-based
solution to this problem. The other guidelines comprise: design evaluation, research
contributions, research rigor, design as a search process, and communication of
research. The page length of this paper limits us to describing each guideline in detail.

In earlier work [17], we described our vision on this issue and introduced the PSKI,
our main new artifact. Subsequently, in [18], we identified and formalized general
method increments that were found in an exploratory case study. In addition, we
formalized common process needs, by developing a root-cause map for software
product management and by identifying the root causes and process alternatives that
are related to them. Finally, a first prototype of a method base for software product

Process Improvement in Requirements Management: A Method Engineering Approach 9

management is developed1, based on the reference framework for software product
management [3].

In this research we want to elaborate on the process improvement approach that will
be implemented in the PSKI and its functional architecture of the PSKI. We evaluate
this by using scenarios to demonstrate its utility. In Section 2, we will describe the
realization of the PSKI, by elaborating on the requirements and functional architecture.
Section 3 explains the technical realization of integrating the PSKI with a CAME tool.
In section 4, we will give a scenario of a method increment, advised and assembled by
the PSKI. Then, in Section 5, we give an overview of related literature. Finally, in
section 6, we will describe the conclusions and further research.

2 Realization of the Product Software Knowledge Infrastructure

In this section we will first describe the rationale of the software improvement
approach we use. Then we describe the functional architecture of the PSKI and show
a typical scenario.

2.1 A Combined Process Improvement Approach

We propose the distinction between two types of process improvement approaches:
the capability based and problem-based approach. The capability-based approach is
based on the assumption that a company’s capabilities should grow in maturity in
order to increase performance. By assessing the organization’s current capabilities,
the maturity level can be determined and recommendations of implementing
capabilities on a higher maturity level can be made. Examples of capability-based
approaches are CMM [14] and SPICE [15]. Secondly, the problem-based approach
uses the mechanism of solving the underlying problems, or root causes, that cause a
certain process to under perform. An example of a problem-based approach is RCA,
which has been applied to process improvement and incident prevention in software
and non-software industries; see for example [21].

In literature, some critique exists on capability-based approaches. For example, a
capability-based approach is can be encountered as too superficial for small
companies [22]. In addition, these kinds of process improvement approaches are often
difficult to implement. In [23], it was found that CMMi, is often not adopted by
organizations because the following reasons: the organization was small; the services
were too costly, and the organization had no time to implement the process
improvements. From our experience, we also found that capability-based approaches
often are too superficial for the specific nature of product software companies. More
over, we do not want to force companies to a company-wide process improvement
program. On the other hand, following a complete problem-based approach would be
too inefficient, due to the extensive analysis process that needs to be done. Therefore,
we propose the combined process improvement approach, in which we complement
the capability-based approach with problem-based aspects. When comparing this
approach to the existing capability-based approaches such as SPICE and CMM, we
envision the following advantages: 1) the maturity levels can be determined per
process, which makes it possible to implement very small process improvements;

1 http://www.softwareproductmanagement.org/

10 S. Brinkkemper et al.

Fig. 2. Process improvement approach

2) the capability-based approach is extended with a problem-based approach to be
able to determine the more complex problems that underlay a unsatisfactory process.
In Figure 2, we illustrate this approach.

The process starts with determining the maturity level that the company should
have, based on the situational factors of the company. For example, a company with
500 employees should be on a higher maturity level than a company with six
employees. Secondly, the actual maturity levels per process are retrieved by
performing a capability assessment. By inventorying which capabilities are mastered
per process, the maturity level can be calculated. In addition, the user is asked
whether the result of the concerned process is satisfactory or unsatisfactory. For each
unsatisfactory process then, the maturity level as it should be (based on situational
factors) and the actual maturity level are compared. If the actual maturity level is
lower than the maturity level based on situational factors, then the process is labeled
as immature and a process improvement is necessary. The process improvement is
carried out by assembling a method fragment related to the capability on a higher
maturity level. If the actual level is equal to or higher than the desired level, then the
process is labeled as complex, and a root-cause analysis is carried out to find the
underlying problems. The process improvement is carried out by assembling a
method fragment, related to the found root causes.

2.2 Functional Architecture

Starting from [17], the following components in the PSKI (see Figure 3) can be
identified: a web-based interface to communicate with the user; an assessment base,

Process Improvement in Requirements Management: A Method Engineering Approach 11

Fig. 3. Functional architecture of the PSKI

to store the assessment questions and answers; the assessment administrator, which
can be used to add questions to the assessment base; and the CAME tool in which the
method fragments are stored.

The main components of the PSKI are the assessment base and the CAME tool. In
the assessment base, the PSKI stores assessment questions, answers, situational
factors and capabilities. We distinguish two types of questions: situation questions
that identify which situational factor apply to a company or product line and
capability questions that assess which capabilities a company possesses. The second
component is the CAME tool, which consists of a method base, in which method
fragments their information are stored; a PDD editor, with which the method engineer
can define the meta-modeling language that is used for administrating the methods;
and the method administrator that is used by the method engineer to add methods to
the method base. The method fragments that are stored in the method base consist of

12 S. Brinkkemper et al.

activities and deliverables. Each method fragment is labeled with a capability level
and linked to zero or more values of situational factors.

2.3 Illustrative Example: ERPComp

To illustrate the utility of the PSKI, we use a running example, which concerns an
organization that develops ERP systems (ERPComp). ERPComp is 3 years old and
currently has 50 employees. The user in this case is the product manager of the
organization, who uses the PSKI because his organization has several problems: a) the
releases are often not delivered in time, and b) the stakeholders are not satisfied with
the implemented requirements.

Figure 4 illustrates the current requirements management process of ERPComp in
PDD notation [24]. The diagram shows a snapshot of the method at a certain time n,
say method increment #0. It covers the requirements management activity of a
company, and has two sub activities: Gather requirements, resulting in a REQUIREMENT

and Write release definition, resulting in a RELEASE DEFINITION, which are both carried out
by the product manager.

Fig. 4. Snapshot of increment #0

2.4 A Typical Scenario in the PSKI

In Figure 5, we show again the functional architecture of the PSKI enriched with the
process that is followed when interacting with the PSKI. We will elaborate on this
process by using the ERPComp example. Note that in this case, the capability-based
approach is followed, as indicated in Figure 5. By following the solid arrows, the
activities concerning the problem-based approach (Present root cause map and Store
root causes) are skipped.

The scenario depicted in Figure 5 describes a sequence of the following activities:

PSKI: Present situational questions
 PSKI presents a form with a predefined set of situational assessment questions.
User: Answer situational questions
 The product manager answers situational questions:

Process Improvement in Requirements Management: A Method Engineering Approach 13

1. What is the age of your organization (in years)? <1 1-5 5-10 >10

2. In which sector does your organization operate? Large-sized enterprises

3. What is the size of the development team? 1-4 5-9 10-20 >20
…
8. What is the number of product lines? 1 2-4 5-8 >9

9. Which platform is used to develop your product on? .NET

Fig. 5. Capability-based PSKI scenario

PSKI: Store situational profile
 PSKI stores the answers to the situational questions as a situational user profile

in the assessment base. Also, based on this profile, the desired maturity level is
obtained. In this case, based on the age of the organization (3 years) and the
sector in which the organization operates, the PSKI determines the maturity
level at 4 (of 12, see Section 3.2).

PSKI: Present capability questions
 Based on the answers to the situational questions, PSKI selects a subset from

the capability questions, namely those questions that have the same type as
indicated in by the user in his situational answers. This means that only ques-
tions that are applicable for large-sized organizations, with multiple products,
developed on a .NET platform, are selected. Examples of these questions are:

14 S. Brinkkemper et al.

1. Does your organization perform requirements prioritization per release? yes no

2. Is there a prioritized requirements list? yes no

3. Is the prioritized requirements list properly available for other stakeholders? yes no
4. Is there a Product Manager responsible for the requirements prioritization per

release? yes no

User: Answer capability questions
The product manager answers the capability questions.

PSKI: Compare capability answers with situational profile
 PSKI stores the answers to the capability assessment questions as a capability

profile in the assessment base. When comparing the capability profile with the
desired maturity level, the PSKI finds the following:

Process Right capabilities in place? Result satisfactory?
Requirements gathering Yes Yes
Requirements validation No No
Requirements prioritization No No

In case the product manager would have found the requirements gathering process
unsatisfactory, although the process was at the right maturity level, the PSKI would
present the root cause map of this process. However, due to limited space, we will not
elaborate on such an example. The remaining steps are therefore:

PSKI: Create method fragment query
 PSKI creates method fragment query, which retrieves those method fragments

that are linked to the capabilities that should be implemented, in this case the
level-3 capabilities of the Requirements validation and Requirements
prioritization processes.

PSKI: Present suitable answers
 PSKI displays all matching method fragments. Below, we depict an example of

two method fragments for the Requirements prioritization process.

1. Requirements prioritization via a stakeholder voting round
Description: The product manager schedules a meeting in which each stakeholder

gives his top x of requirements that need to be implemented in the next release. The
requirements with the most votes will be implemented.

Roles: Product manager, involved stakeholders
Deliverables: REQUIREMENTS LIST with prioritized REQUIREMENTS

2. Requirements prioritization via the cost-value approach
Description: In the cost-value approach, the relative costs and relative values of each

requirement are estimated. Then, they are plotted on a cost-value diagram, which
shows which requirements will generate the highest value and the lowest costs.
Based on this diagram, the product manager prioritizes the requirements.

Roles: Product manager, product group, customers, software engineer
Deliverables: COST-VALUE DIAGRAM, prioritized REQUIREMENTS

Process Improvement in Requirements Management: A Method Engineering Approach 15

User: Select method fragments
The product manager selects method fragments that are perceived as useful.

PSKI: Assemble new method
PSKI assembles the selected method fragment into the existing method
fragments of the company.

PSKI: Present method with implementation alternatives
 PSKI presents method accompanied by a number of different implementation

alternatives.
User: Select implementation alternative

The product manager selects suitable implementation alternative
PSKI: Compile method advice
 PSKI compiles method advice is compiled, according to the selected imple-

mentation alternative. In case the user has selected root causes, an advice is
added on how to solve these.

PSKI: Present method advice
PSKI presents the method advice to the product manager.

3 Method Improvement Based on Situational Capability Matching

In this section, we elaborate on the retrieving process of method fragments from the
method base. Instead of building the method base ourselves, we use an existing tool,
namely MetaEdit+. MetaEdit+ is an integrated modeling and meta-modeling
environment for domain-specific languages [25] [26]. In MetaEdit+, we have realized
our PDD notation as a meta-model. Now, it is possible to create, store and manipulate
method fragments as PDDs. A screenshot of MetaEdit+ can be found at the end of
this paper, in Figure 10.

3.1 Method Fragment Structure

A method fragment consists of a process fragment and a deliverable fragment.
Method fragments can contain multiple activities and multiple deliverables. Also,
constructs like branches, joining and forking of activities and aggregated deliverables
can be modeled, as shown in Figure 8 and 9 and described in [24]. The structure of a
generic method fragment is depicted in Figure 6.

Fig. 6. Generic method fragment structure

The name of an activity in a method fragment is a composition of one or more
verbs, possibly an adjective and a noun, e.g. Prioritize [verb] requirements [noun].
Furthermore, an activity is carried out by a role, e.g. Product Manager [role].

The structure of method fragments is used in the generation of capability questions
for the capability assessment. We distinguish two types of capability questions:
standard questions, which can be generated from the stored activities, deliverables and

16 S. Brinkkemper et al.

capabilities; and comprehensive questions, which are especially useful for assessing
capabilities at a higher level. Based on the activities, deliverables and capabilities, we
can derive the capability assessment questions. Each capability is related to three
basic assessment questions, namely:

1. Does your organization perform the [capability]?
2. Is there a [deliverable]?
3. Is the [deliverable] properly available for other stakeholders?
4. Is there a [role] responsible for the [capability]?

In section 2.3, three capability assessment questions were listed. These were the
assessment questions for capability A: Requirements prioritization per release,
namely:

1. Does your organization perform requirements the prioritization per release?
2. Is there a prioritized requirements list?
3. Is the prioritized requirements list properly available for other stakeholders?
4. Is there a Product Manager responsible for the requirements prioritization per

release?

In ERPComp, the product manager answers ‘no’ to all questions, since there is no
requirements prioritization process in place.

3.2 Maturity Matrix for Software Product Management

To assess the state of the SPM function in an organization, we developed the SPM
maturity matrix. This maturity matrix is inspired by on the DYA architecture maturity
model [27] and the Test Process Improvement model [28]. We distinguish 16 SPM
processes in the maturity matrix that originate from the reference framework for SPM
[3] and 11 maturity levels. The number of maturity levels is determined by the
implementation dependencies of the capabilities. In Table 1, we show an excerpt of
the matrix, covering three processes. Each process has its own path to maturity,
indicated by the letters A, B, C and D. Every letter represents a capability, which we
define as the demonstrable ability and capacity to perform a certain process at a
certain level. The position of the letters shows the preferred order in which the
capabilities need to be implemented to reach a certain maturity level. 10 is the lowest
maturity level and 12 is the highest maturity level. Suppose that a company should be
on maturity level 4, based on its situational factors. This means that for Requirements

prioritization, capabilities A and B should be implemented; for Requirements
validation, capability A should be implemented; and for Requirements gathering,
capabilities A and B should be implemented.

Table 1. Excerpt of the maturity matrix for Software Product Management

Process Maturity level 1 2 3 4 5 6 7 8 9 10 11 12
Requirements prioritization A B C D
Requirements validation A B C D
Requirements gathering A B C D

Process Improvement in Requirements Management: A Method Engineering Approach 17

In ERPComp, the desired maturity level that is deducted from the situational user
profile is level 3. We will elaborate on two processes in the SPM maturity matrix,
namely requirements prioritization and requirements validation. Please note that
although the capability structure of the requirements prioritization and requirements
organizing processes are the same, this may vary in other processes.

In the requirements prioritization process we distinguish four capabilities:

A. Requirements prioritization per release
B. Requirements prioritization as an ongoing process
C. Requirements prioritization as an ongoing process, over multiple product lines
D. Requirements prioritization as a chain-wide process

Currently, no prioritization process is in place. Looking at the matrix, we see that
level-3 companies should have capability A (Requirements prioritization per release)
implemented.

For the requirements validation process, also four capabilities are distinguished:

A. Requirements validation per release
B. Requirements validation as an ongoing, automated process,
C. Requirements validation as an ongoing process, over multiple products
D. Requirements validation as a chain-wide process

Currently, there is no validation at all. A level-3 organization should master
capability A: Requirements validation per release.

4 Method Increment Example

In this section, we illustrate a process improvement by a capability-based method
increment. The snapshot of increment #0, that we showed in Figure 4, is created in
MetaEdit+. This means that not only visual information is stored, but also extra
information, depending on the variables that we added to the different concepts.

Fig. 7. Method fragment linked to 'Requirements prioritization per release'

18 S. Brinkkemper et al.

As described in section 3.1, the organization should implement two method
increments. The first method increment concerns the capability ‘Requirements
prioritization per release’. As described in section 2.4, two method fragments are related
to this capability. In this case, the user chooses the method fragment ‘Requirements
prioritization via the cost-value approach’, as is depicted in Figure 7. The cost-value
approach is proposed in [2] an evaluated in [29] as a method for requirements
prioritization in market-driven software product development.

In Figure 8, we illustrate the method fragment related to the capability ‘Requirements
validation per release’.

Fig. 8. Method fragment linked to 'Requirements validation per release'

Write release definition
Product manager

Gather requirements
Product manager

COST-VALUE
DIAGRAM

Req. nr
Date

Estimate relative values

Estimate relative costs

Review candidate requirements

Plot cost-value diagram

Decide on prioritization

REQUIREMENT

Req. nr .
Label
Description
Reviewed?
Relative value
Relative cost
Priority

COST-VALUE
DIAGRAM

Req. nr
Date

is plotted on

1

1..*

Product manager

Product manager , customers

Software engineer

Product manager

Product manager

Discuss release definition with board
Product manager

RELEASE
DEFINITION

Author
Date

RELEASE
DEFINITION

Author
Date

1..*

0..1

[approved]

[else]

Fig. 9. Snapshot of increment #1

Process Improvement in Requirements Management: A Method Engineering Approach 19

Fig. 10. Assembly of the improved method in MetaEdit+

The fragment does not have the standard form of activity – deliverable, but the
activity results in a decision, indicated by a branch. The Product manager discusses
the RELEASE DEFINITION with the board. If the board approves it, the release can be
implemented. If not, the RELEASE DEFINITION has to be rewritten.

In Figure 9, we illustrate the snapshot of the improved method. It includes the
method increments described in Figure 7 and 8. The roles of the activities are filled in
based on the situational information that was provided during the situational assessment.

Finally, we want to show how we created the method fragments we presented in
this paper. In Figure 10 we show a screenshot of MetaEdit+, in which a new method
is modeled. Looking at the scenario we explained in Section 2.4, we can position this
activity, although it is not automated yet, in the step ‘Assemble new method’. In the
future, this activity will be automated.

5 Related Literature

In [30], it is stated that there is a scarcity of requirements engineering-related software
process improvement initiatives in the literature. In addition, in [31] and [32], the
authors state that existing software process improvement approaches leave a gap
regarding requirements engineering. Therefore, they propose a practice-based

20 S. Brinkkemper et al.

approach to requirements engineering process improvement. Also other studies have
been done to process improvement in requirements engineering. For example, [33]
describes a requirements engineering process improvement programme, based on
lessons learned from the implementation of a requirements engineering approach for
packaged software. The authors in [34] also point out that the requirements phase of
software development is in need of further support. They propose the Requirements
Capability Maturity Model (R-CMM) as a first step in the solution to this problem.

Product software developers use methods and techniques in all phases of the
development process, which are often supported by different software tools. These
software tools range from simple text editors to complex tools for generating code
from design specifications. Not only techniques on a low level can be automated, but
also methods, which focus more on the high-level activities and deliverables of a
process, can be automated. In the nineties of the previous century, this lead to a new
research discipline, namely Method Engineering [35] [36] [37], which comprises the
design, construction and adaptation of methods, techniques and tools for the
development of ISs. Tools were being designed to support the method engineering
process, which are called computer-aided method engineering (CAME) tools [26].
Many CAME tools have been developed in the last years, some for research purposes
and some for commercial purposes. Their appliances vary from domain-specific
modeling, to configuration management and situational method engineering.

6 Conclusions and Further Research

In this research, we proposed an approach for incremental method evolution that
provides means by which innovative requirements engineering techniques can be
inserted into systems development methods based on method engineering principles.
This vision on process improvement combines a capability-based approach with
problem-based aspects. We showed how this approach can be implemented in the
PSKI by elaborating on the functional architecture. In addition, we explained the
utility of the PSKI by giving an example of a method increment, i.e. cost-value
requirements prioritization in software product management. This generic approach
defines structure and relations of capabilities and method fragments, and generates
capability questions automatically. Finally, we showed how method increments can
be generated based on the situational and capability assessment answers.

We are currently working on the development of the PSKI and filling it with
situational factors, capabilities and method fragments. In the future, we will use case
studies to test the infrastructure at product software companies of different sizes and in
different sectors, in order to test the mapping between situational factors, maturity
capabilities and method fragments. We are confident that this paper shows how method
engineering and requirements engineering research can benefit from each other.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of
the Conference on the Future of Software Engineering, ICSE 2000, pp. 35–46. ACM, New
York (2000)

Process Improvement in Requirements Management: A Method Engineering Approach 21

2. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE
Software 14, 67–74 (1997)

3. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: Proceedings of the 14th
IEEE International Requirements Engineering Conference, pp. 319–322 (2006)

4. Xu, L., Brinkkemper, S.: Concepts of product software. European Journal of Information
Systems 16, 531–541 (2007)

5. MacCormack, A.: Product-Development Practices that Work: How Internet Companies
Build Software. MIT Sloan Management Review 42, 75–84 (2001)

6. Hietala, J., Kontio, J., Jokinen, J.P., Pyysiainen, J.: Challenges of software product
companies: results of a national survey in Finland. In: Proceedings of the 10th IEEE
International Symposium on Software Metrics, pp. 232–243 (2004)

7. Ebert, C.: The impacts of software product management. Journal of Systems and
Software 80, 850–861 (2007)

8. Regnell, B., Höst, M., Natoch Dag, J.N., Beremark, P., Hjelm, T.: An Industrial Case
Study on Distributed Prioritisation in Market-Driven Requirements Engineering for
Packaged Software. Requirements Engineering 6, 51–62 (2001)

9. van den Akker, M., Brinkkemper, S., van Diepen, G., Versendaal, J.: Flexible Release
Planning Using Integer Linear Programming. In: Proceedings of the 11th International
Workshop on Requirements Engineering for Software Quality, Essener Informatik
Beitrage, Band 10, pp. 13–14 (2005)

10. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE
Software 22, 47–53 (2005)

11. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

12. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE
Software 19, 58–65 (2002)

13. Jansen, S., Ballintijn, G., Brinkkemper, S., van Nieuwland, A.: Integrated development and
maintenance for the release, delivery, deployment, and customization of product software:
a case study in mass-market ERP software. J. Softw. Maint. Evol.: Res. Pract. 18, 133–151
(2006)

14. Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.: The capability maturity model:
guidelines for improving the software process. Addison-Wesley Longman Publishing,
Boston (1995)

15. El Emam, K., Drouin, J.N., Melo, W.: SPICE: the theory and practice of software process
improvement and capability determination. IEEE Computer Society Press, Los Alamitos
(1998)

16. Process Maturity Profile Software CMM 2005 End-Year Update (2006) (retrieved March 22,
2008), http://www.sei.cmu.edu/appraisal-program/profile/pdf/SW-CMM/ 2006marSwCMM.pdf

17. van de Weerd, I., Versendaal, J., Brinkkemper, S.: A product software knowledge
infrastructure for situational capability maturation: Vision and case studies in product
management. In: Proceedings of the Twelfth Working Conference on Requirements
Engineering: Foundation for Software Quality, Luxembourg, pp. 97–112 (2006)

18. van de Weerd, I., Brinkkemper, S., Versendaal, J.: Concepts for Incremental Method
Evolution: Empirical Exploration and Validation in Requirements Management. In:
Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,
pp. 469–484. Springer, Heidelberg (2007)

19. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Quarterly 28, 75–105 (2004)

22 S. Brinkkemper et al.

20. March, S.T., Smith, G.F.: Design and natural science research on information technology.
Decision Support Systems 15, 251–266 (1995)

21. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
Proceedings of the 22nd international conference on Software engineering, pp. 428–437
(2000)

22. Demirors, O., Demirors, E.: Software process improvement in a small organization:
Difficulties and suggestions. In: Gruhn, V. (ed.) EWSPT 1998. LNCS, vol. 1487, pp. 1–12.
Springer, Heidelberg (1998)

23. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80(6),
883–895 (2007)

24. van de Weerd, I., Brinkkemper, S.: Meta-Modeling for Situational Analysis and Design
Methods. Handbook of Research on Modern Systems Analysis and Design Technologies
and Applications, Information Science Reference, Hershey PA (2008)

25. Tolvanen, J.: MetaEdit+: integrated modeling and metamodeling environment for domain-
specific languages. In: OOPSLA 2006, pp. 690–691. ACM, New York (2006)

26. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.)
CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

27. Steenbergen, M., Brinkkemper, S., van den Berg, M.: An Instrument for the Development
of the Enterprise Architecture Practice. In: Proceedings of the 9th International Conference
on Enterprise Information Systems, pp. 14–22 (2007)

28. Koomen, T., Pol, M.: Test Process Improvement: A Step-by-step Guide to Structured
Testing. Addison-Wesley Longman Publishing, Boston (1999)

29. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for
Market-driven Software Product Development. Software Process: Improvement and
Practice 11, 7–19 (2006)

30. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An Industrial Case Study of
Immediate Benefits of Requirements Engineering Process Improvement at the Australian
Center for Unisys Software. Empirical Softw. Eng. 9, 45–75 (2004)

31. Sawyer, P., Sommerville, I., Viller, S.: Requirements process improvement through the
phased introduction of good practice. Software Process Improvement and Practice 3, 19–
34 (1997)

32. Niazi, M.K.: Software Process Improvement: A Road to Success. In: Proceedings of the
Seventh Australian Workshop on Requirements Engineering, pp. 125–139 (2002)

33. Regnell, B., Beremark, P., Eklundh, O.: A Market-driven Requirements Engineering
Process: Results from an Industrial Process Improvement Programme. Requirements
Engineering 3, 121–129 (1998)

34. Beecham, S., Hall, T.: Defining a Requirements Process Improvement Model. Software
Quality Journal 13(3), 247–279 (2005)

35. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Inf. and Softw. Techn. 38, 275–280 (1996)

36. Kumar, K., Welke, R.J.: Methodology Engineering: a proposal for situation-specific
methodology construction. In: Challenges and strategies for research in systems
development, pp. 257–269. John Wiley & Sons, Inc., New York (1992)

37. Rolland, C., Prakash, N.: A proposal for context-specific method engineering. In:
Proceedings of the IFIP TC8, WG8. 1/8.2 working conference on method engineering on
Method engineering: Principles of method construction and tool support: principles of
method construction and tool support, pp. 191–208 (1996)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 23–36, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enhancing Elicitation Technique Selection Process in a
Cooperative Distributed Environment

Hakim Bendjenna1,2,3, Nacereddine Zarour2, and Pierre-Jean Charrel3

1 University Center of Tebessa, Computer Science Department,
Tebessa, Algeria

bendjenna@univ-tebessa.dz
2 LIRE Laboratory, Computer Science Department, University of Constantine

Constantine, Algeria
nasro-zarour@umc.edu.dz

3 Toulouse University and Institut de Recherche en Informatique de Toulouse
Toulouse, France

charrel@univ-tlse2.fr

Abstract. Requirements elicitation is a key stage in the successful designing of
the computerized information system of a distributed organization. Few works
have been focusing on how a requirements analyst selects one of the existing
requirements elicitation techniques, notably in a distributed cooperative
environment. However, the elicitation technique selection process creates
significant communication, coordination, cultural and processes diversity
challenges which impact the effectiveness of all the requirements engineering
process and, further, product quality. This paper presents a decision making
process that allows a requirements analyst to choose an elicitation technique in
a cooperative distributed environment based on stakeholders' preferences,
linguistic knowledge and priorities.

Keywords: requirements engineering, requirements elicitation, elicitation
technique selection, distributed environment.

1 Introduction

Information systems and their embedded software are currently taking place in
heterogeneous environments where people, information and working processes are
distributed. Work is often cooperative and involves multiple actors who are the
stakeholders of many kinds of requirements.

Requirements engineering is one of the early processes of the system development
life cycle and it involves stakeholders in an iterative process of problem analysis,
requirements elicitation, specification and validation [24], [26].

Requirements elicitation may be the most important area of requirements
engineering and possibly of the entire software process [22]. It is generally accepted
that errors produced at the requirements stage, if undetected until a later stage of
software development, can be very costly [22], [25]. However, software engineers
spend too little time in performing this important task [25].

24 H. Bendjenna, N. Zarour, and P.-J. Charrel

Many issues related to the requirements elicitation process have been extensively
analyzed in literature (see for instance [13] or [26] for survey). Most of these issues
stress communication between stakeholders [23], which is critical during the
requirements elicitation stage. Communication becomes even more difficult in a lot of
present decentralized software projects whose stakeholders are distributed in several
regions of the world. It generates new issues, like language and culture difference,
time difference between sites [8].

Computer-Supported Cooperative Work (CSCW) and Cognitive Informatics are
two research fields interested in communication issues. The former studies human
behaviour within groups, and aims to focus on providing groupware tools, i.e.
technologies which improve communication between stakeholders distributed along
distant locations. The latter, as an interdisciplinary area, combines several disciplines,
such as informatics, computing, software engineering, and cognitive sciences [7].

Our paper follows recent works related to these research areas. In particular,
Hickey and Davis [17] presented a general model of the elicitation process which
involves a selection phase among all requirements elicitation methodologies and
techniques. Following, Aranda et al. [2] introduced some concepts from cognitive
psychology, which help to evaluate the so-called "cognitive style" of the stakeholders,
in order to propose a model which supports stakeholders’ personal preferences in
geographically distributed situations.

They extended their model [3] by adding features of distributed environments (e.g.
time difference) and knowledge about stakeholders' preferences (e.g. knowledge level
of a common language, stakeholders' characteristics). However, they underline in [2]
and [3] that further work is needed to solve conflicts when stakeholders’ preferences
seem to be opposite.

At most one elicitation technique must be applied for all stakeholders in an
iteration of the elicitation process. The primary research question investigated in the
present paper is: In a distributed cooperative environment, when the preferences of
two or more stakeholders are at variance, (i.e. their comfort feeling with an
elicitation technique is opposite) what is the appropriate elicitation technique that an
analyst must choose? Or, in other words: How the analyst chooses an elicitation
technique corresponding to the preferences of one stakeholder rather than the
other(s)?

We argue that the answer to this question must lean upon stakeholders' characteris-
tics, linguistic knowledge, priorities, and finally analyst’s preferences.

The remainder of this paper is organized as follows. Section 2 outlines require-
ments elicitation and elicitation technique selection in the requirements process.
Section 3 describes the process model we propose to select the elicitation techniques.
Two motivating examples are illustrated in Section 4. Section 5 summarizes related
works on requirements in a cooperative distributed environment. The last section
summarizes the results of this paper and outlines hints for future works.

2 Elicitation Technique Selection

Requirements elicitation is generally performed using an elicitation methodology
which involves a series of techniques. These methodologies and techniques aim to

 Enhancing Elicitation Technique Selection Process 25

assist analysts in understanding requirements [21]. Though some analysts think that
one methodology or one technique is sufficient to all situations, several works [21],
[18] early showed these methodologies and techniques depend on the situation.

Several requirements elicitation techniques are used in distributed environment, such
as question and answer methods, interviews, brainstorming, use cases, storyboards, pro-
totyping, and questionnaire [20]. But, why an analyst decides using one technique or
another? According to [18], there are four main reasons:

• it is the only one the analyst knows;
• it is the analyst's favourite technique, so she/he uses it for all situations;
• the analyst follows a methodology which advocates a particular technique;
• the analyst thinks (intuitively) the technique is the most effective in that situation.

This suggests that it is possible to improve the success of the product by selecting
the elicitation technique, according to the current situation. These techniques are
comparable and it is possible to improve the way techniques are selected [20].

According to this idea, Hickey and Davis [17] proposed a general model of an
iterative elicitation process, based on the following principle: at iteration i, the
elicitation technique is selected by means of the following selector function σ:

σ (Ri, Si, χ (T)) {t} (1)

Where:

• χ (T) is a given set of characteristics of all elicitation techniques T;
• {t} is a set of elicitation techniques which can be applied in situation Si (i.e.

characteristics of problem and solution domain and the project) when the current
state of requirements is Ri (i.e. the collection of requirements which have already
been elicited);

χ (T) captures inherent features of elicitation techniques, such as their ability to
help the analyst to: reduce ambiguity, resolve conflicts, converge towards a solution,
raise new issues and so on. These characteristics are static and identical for all
projects.

Selector function σ identifies the best possible match between the characteristics of
the techniques and the current state of the requirements and situation. For example, if
the requirements are unclear, techniques that reduce ambiguity may be helpful (e.g.
the prototyping technique).

Then, another selector function π computes the best technique ti as an intersection
between the suggested techniques {t} and the analyst's preferences P:

π ({t}, P) ti (2)

Aranda et al. [2], based on Hickey and Davis [17] work, proposed a model which
links stakeholders’ learning preferences to the requirements elicitation technique
which would be the most suitable according to those preferences. They focus on
instruments issued from the field of psychology called Learning Styles Models. The
new Selector function π* is not only based on the analyst’s preferences but also on the
preferences of all the stakeholders who participate in this iteration of the requirements
elicitation process.

26 H. Bendjenna, N. Zarour, and P.-J. Charrel

Fig. 1. The iterative process of requirements elicitation in a distributed environment [3]

Aranda et al. [3] also proposed a model based on an iterative process for elicitation
techniques selection, in a distributed environment (cf. figure 1).

In this process σ* is a selector function defined as follows:

σ *(Ri, Si, χ (T), Ti, Li) {t} (3)

Where:

• χ (T) is a given set of characteristics of all elicitation techniques T;
• Ti (time difference) indicates the level at which synchronous communication is

possible between the sites which must interact. Ti Є {no-overlap, little-overlap,
half-overlap, much-overlap, full-overlap};

• Li (knowledge of a common language) indicates the fluency of communication.
Li Є {low, low-intermediate, intermediate, high-intermediate, high};

• {t} is a set of elicitation techniques that can be applied in situation Si when the
current state of requirement is Ri according to restrictions Ti and Li.

Then, another selector function π** computes a suitable technique as follows:

π ** ({t}, (PS1, ws1), (PS2, ws2) … (PSk, wsk) … (PSn, wsn)) ti (4)

Where:

• PSk is the set of techniques that fit the k-th stakeholder’s preferences;
• wsk is the weight of the preferences (i.e. how strong they are?);
• ti Є {t} | ti Є PSk and wsk = max (ws1,… , wsn);

ti is an appropriate elicitation technique for the current i-th situation and for the
stakeholder whose personal preferences are the strongest.

The stakeholders’ preferences techniques are obtained from stakeholders’
characteristics, which result from Felder-Silverman's Learning Styles Model (LSM)

 Enhancing Elicitation Technique Selection Process 27

classification [15]. LSMs are used to analyse relationships between students and
teachers. They classify students according to their behaviour when they learn a given
task. Aranda et al. [3] considered an analogy between the roles in LSMs and the
stakeholders in an elicitation process. For example, the requirements analyst learns
form users, and vice versa. This model classifies people as follows (see [1], [2], [3]
for details):

• Sensing / Intuitive. Sensing people have rather learning facts, while Intuitive people
prefer discovering possibilities and relationships.

• Visual / Verbal. Visual people remember better what they see, while Verbal people
prefer explanations.

• Active / Reflective. Active people understand and remember information when they
do something, while Reflective people have rather thinking solely first.

• Sequential / Global. Sequential people understand easier when following a step by
step procedure, while Global people try to get the rough features, to find
connections and discover solutions in novel ways, even if they are not always able
to explain them.

Every stakeholder is classified according to a multiple-choice test (available on the
WWW1). This test affects them a rank for each subcategory. A stakeholder may fit
into several categories, depending on the circumstances: she/he may be sometimes
reflective and sometimes active. Their preference for one category has a value the
measure of which is strong, moderate, or mild. A stakeholder is classified as a
member of a group, only if a strong preference can be measured for him.

One of the open issues is to solve conflicts when stakeholders' preferences seem to
be opposite [3].

3 A Process Model for Elicitation Technique Selection in a
Cooperative Distributed Environment

3.1 Motivations to Improve the Selection Process

According to us, the process model presented in [3] can be improved from the four
following arguments [5]:

1. The model does not cope with the situation where stakeholders’ preferences are
opposite.

2. A stakeholder can be classified as a member of a group only if she/he has strong
preferences, while the weight of preferences (wsk) used in function π**, can be
strong, moderate or mild.

3. The requirements analyst is treated in function π** like other stakeholders, while
she/he holds a key position within the elicitation process. So, it will be better to
consider her/him separately.

4. The language used by a stakeholder is a critical factor which directly impacts the
requirements elicitation process, since language barriers affect knowledge transfer

1 see http://www.engr.ncsu.edu/learningstyles/ilsweb.html

28 H. Bendjenna, N. Zarour, and P.-J. Charrel

to and from the analyst. In order to provide the analyst with more information, by
considering the set of languages known by each stakeholder participating in a
particular iteration of the elicitation process, the role of the language parameter can
be extended.

Driven by these arguments, we propose to improve the process presented in [3].

3.2 The Proposed Process Model

In the proposed process model (cf. Figure 2), the analyst is able to select an elicitation
technique in a cooperative distributed environment based on the following features.

Stakeholder’s Classification. We only take into account stakeholders who have
strong preferences. It is important to stress here, as shown in section 2, that a
stakeholder can be classified in a category only if she/he has strong preferences. Thus,
it is needless to consider her/his preferences if she/he has moderate or slightly
preferences (because the analyst does not actually know if this stakeholder will feel
more comfortable with this elicitation technique).

As Aranda et al. [3], we use Felder-Silverman model [15] which classifies stakeholders
as follows: Sensing / Intuitive, Visual / Verbal, Active / Reflective and Sequential /
Global. We respectively relate them to the coefficients

+C11 /+ C12, +C21 /+C22, +C31 /+ C32, +C41 /+C42 (5)

+C12, +C22, +C32, and +C42 are respectively the coefficients of the opposites
subcategories of those related to +C11, +C21, +C31, and +C41, we respectively note
them: -C11, -C21, -C31 and -C41.

For example, if subcategories are: Sensing, Verbal, Active and Global for one
particular stakeholder, we represent them with (+C11, -C21, +C31, -C41).

Stakeholder’s Linguistic Knowledge. Stakeholders' linguistic knowledge contains
the set of languages known by each stakeholder. We represent this feature by means
of the following structure:

{languagei (Ul.level, S.level, Ur.level, W.level)}i=1..n (6)

Where:

• {languagei}i=1.n is the set of all the n known languages (e.g. English, Chinese…);
• Ul, S, Ur, and W are performed actions: Understand_when_listening, Speak,

Understand_when_reading and Write respectively;
• level is the knowledge level about the corresponding couple (languagei, performed

action):
• level Є {f, m, s} for Fluently, Moderately and Slightly respectively.

For example, a stakeholder understands when listening fluently; speaks moderately;
understands when reading slightly and writes slightly English language. This is
represented by:

English (Ul.f, S.m, Ur.s, W.s) (7)

 Enhancing Elicitation Technique Selection Process 29

So, the use of the questionnaire technique (we suppose that the questionnaire is
written in English) that requires questions reading and responses writing is not
adequate to this stakeholder because of her/his poor ability (knowledge) to read and
write English language. The analyst would rather use interview technique in this
situation (i.e. the actions Understand_when_listening and Speak have a higher priority
than Understand_when_reading and Write actions).

Ri Si Ti χ(T)

σ **

Stakeholders'
linguistics knowledge

{t}

L ***

C

Analyst’s
preferences

{t -}

Stakeholders'
classification

Stakeholders'
priorities

NO

Apply ti

ti

End of process

YES

All requirements
are obtained?

Obtain Ri+1, Si+1

Fig. 2. The different phases of the proposed process

Stakeholder’s Priority. Stakeholder’s priority value is attributed by the analyst; it
depends on stakeholder’s role in the elicitation process and/or her/his role in the
organization (e.g. complexity of her/his task, whether or not there is another
stakeholder who can replace her/him in the elicitation process, i.e. share with her/him
the same task, etc). This value is the weight of stakeholder’s preferences techniques
and linguistic knowledge. The stakeholder's priority is classified from 1 to 5: 1 (very
low), 2 (low), 3 (medium), 4 (high), 5 (very high).

In this process, selector function σ ** is defined as follows:

σ ** (Ri, Si, χ(T),Ti) {t} (8)

30 H. Bendjenna, N. Zarour, and P.-J. Charrel

Where:

• χ(T) is a given set of characteristics of all elicitation techniques T.
• Ti is the degree of overlapping between the different sites: it indicates the possible

level of synchronous interaction between the sites. Ti Є {no-overlap, little-overlap,
half-overlap, much-overlap, full-overlap}. For example, if Ti = full-overlap, then
the analyst cannot use a technique which requires a synchronous collaboration
between participants, like Brainstorming, but she/he can use the Questionnaire
technique.

• {t} is a set of elicitation techniques which can be applied in situation Si when the
current state of requirement is Ri according to Ti.

The proposed extension π*** of function π** have the following parameters:

stakeholders' classification, priorities, and linguistic knowledge.
Function π*** is decomposed into two sub-functions π***

C and π***
L (cf. Fig. 2):

• π***
C returns the common classification categories, for stakeholders having strong

preferences in the current iteration of the elicitation process, by considering their
priorities’ values;

• π***
L returns the common linguistic knowledge, for all stakeholders participating in

this iteration of the elicitation process, by considering also their priorities’ values.

The first sub-function π***

C is defined as follows:

π***
C ((±C11/0, ±C21/0, ±C31/0, ±C41/0), SP1), … , (±C11/0, ±C21/0, ±C31/0,

±C41/0), SPn))
= SP1 *(±C11/0, ±C21/0, ±C31/0, ±C41/0) + …+ SPn *(±C11/0, ±C21/0, ±C31/0,
±C41/0)

 (9)

= (SP1 *(±C11/0) +…+ SPn*(±C11/0), SP1 *(±C21/0) +…+ SPn *(±C21/0), SP1
*(±C31/0) + …+ SPn *(±C31/0), SP1 *(±C41/0) + …+ SPn *(±C41/0)) (10)

= (c1*(±C11/0), c2*(±C21/0), c3*(±C31/0), c4*(±C41/0))

(11)

Where:

• SPk is the k-th stakeholder’s priority ;
• ±Ckj is a coefficient related to k-th stakeholder’s subcategory classification, 0

indicates that this stakeholder has not strong preferences in this category;
• cl = ∑ SPj, j=1..n where n is the number of stakeholders having strong preferences

in the ith iteration of the elicitation process, for each l = 1..4.

Remark 1. The greater cl in the quadruple (11), the more the elicitation techniques
related to the subcategory attached to cl are taken into account and vice versa.

The second sub-function π***

 L is defined as follows:

π***
L ({Ls1}, SP1), …, ({Lsk}, SPk) , …, ({Lsn}, SPn)) (12)

 Enhancing Elicitation Technique Selection Process 31

Where:

• Lsk is the set of languages that can be used by the k-th stakeholder followed by the
quadruple which defines the level of language’s knowledge;

• SPk is the k-th stakeholder’s priority value.

SPk is multiplied by each quadruple’s element that represents the set of languages
known by k-th stakeholder. For a language known by more than one stakeholder, we
compute the sum of identical elements of the quadruple associated to this language.
The result is returned to π*** function.

Now, function π*** can be defined as follows:

π *** ({t}, (11), (12)) {t -} (13)

Where:

• (11) is the result of function π***
C;

• (12) is the result of function π*** L;
• {t} is the set of techniques which results from the function σ **;
• {t -} = {t} ∩ {techniques related to the subcategory having the coefficient ±Ci1

attached to cl = max (c1, c2, c3, c4) Λ according to restrictions imposed by (12)}.

Finally the analyst applies function π defined by Hickey and Davis [17], in order to
choose one elicitation technique from the set {t-} of techniques returned by function
π***. This technique will be applied in the present iteration of the elicitation process.

Function π indicates the priority granted to the analyst at the end of the process.
Function π let her/him make the final decision to select one elicitation technique.

Function π is defined as follows:

π ({t -}, P) ti (14)

Where:

• P is the set of analyst’s preferences techniques;
• {t -} is the set of techniques which result from the function π***;
• ti is the elicitation technique that is applied in step i of the elicitation process;
 ti Є {t -} ∩ P.

Remark 2. The goal of the proposed process is to select only one elicitation technique
at the ith iteration of the elicitation process (as Hickey and Davis [17] and Aranda
et al. [2], [3] proposed) in a cooperative distributed environment because:

• The analyst often needs to bring together all stakeholders participating in this
iteration of the elicitation process and so she/he uses the same elicitation technique
(e.g. Brainstorming, Workshop, focus group,…).

• The use of the same elicitation technique facilitates the task of the analyst.

Remark 3. If all stakeholders have not strong preferences or if they have opposite
preferences with the same priority (i.e. the result of π***C is (0, 0, 0, 0)), the analyst

32 H. Bendjenna, N. Zarour, and P.-J. Charrel

chooses the elicitation technique from the set of techniques {t} according only to
restrictions of linguistic knowledge π***L.

4 Two Motivating Examples

4.1 Example 1

In the first example, let us consider the results of the test applied to two stakeholders
S1 and S2 situated in two distant sites. Stakeholders’ characteristics are respectively
(Sensing, Verbal, Reflective, 0) for S1 and (Intuitive, Visual, Active, Global) for S2
(according to Felder-Silverman classification).

Let us note that:

• S1's preference is not strong in the fourth category (the fourth quadruple element =
0);

• S1 and S2 have three opposite preferences (Sensing / Intuitive, Verbal / Visual, and
Reflective / Active).

Stakeholders' linguistics knowledge is:

• S1 {English (Ul.f, S.m, Ur.f, W.f), French (Ul.m, S.m, Ur.f, W.m)};
• S2 {French (Ul.f, S.f, Ur.f, W.f)}.

According to their roles and tasks, their priority is identical, i.e. 1.

We apply the two sub-functions π***

C and π***
L.

π***
C (((+C11, -C21, -C31, 0), 1), ((-C11, +C21, +C31, -C41), 1))

=1*(+C11, -C21, -C31, 0) + 1*(-C11, +C21, +C31, -C41)
=(1*(+C11) +1*(-C11),1*(-C21) +1*(+C21), 1*(-C31) +1*(+C31), 1*(0) +1*(-C41))
= (0, 0, 0, -C41)

(15)

i.e.

c1 = c2 = c3 = 0, c4 = 1 (16)

π***
L (({English (Ul.f, S.m, Ur.f, W.f), French (Ul.m, S.m, Ur.f, W.m)}, 1),

({French (Ul.f, S.f, Ur.f, W.f)}, 1))

= ({English (1*Ul.f, 1*S.m, 1* Ur.f, 1*W.f), French (1*Ul.m, 1*S.m, 1* Ur.v,
1*W.m,}, {French (1*Ul.f, 1*S.f, 1* Ur.f, 1*W.f)})

= {English (Ul.f, S.m, Ur.f, W.f), French (Ul.(f, m), S.(f, m), 2* Ur.f, W.(f, m)}

(17)

Function π*** may be defined as follows:

π*** ({t}, (15), (17)) = {t -}
= {t} ∩ {elicitation techniques related to the subcategory having the
coefficient - C41 (Global) according to restrictions of linguistic knowledge}

(18)

 Enhancing Elicitation Technique Selection Process 33

The analyst can deduce the two following statements:

• First, she/he must consider the set of techniques related to the subcategory (-C41)
(Global). The explanation is quite logical: stakeholders' S1 and S2 priorities are
identical, and their three first subcategories are opposite. Thus the related
elicitation techniques attached to these subcategories are ignored.

• In the result of function π***
L, the greatest coefficient (i.e. 2 in the present example)

is attached to the element Ur.f related to French language. So, the use of the
questionnaire technique that requires ability in reading questions and writing
responses in a specific language (French in this example) can be visualized by the
analyst.

4.2 Example 2

Let us take another example, where we attach different priorities to the stakeholders,
priority 2 for stakeholder S1 and 1 for stakeholder S2.

The sub-functions π***
C can be defined as:

π ***
C (((+C11, -C21, -C31, 0), 2), ((-C11, +C21, +C31, -C41), 1)))

= 2*(+C11, -C21, -C31, 0) + 1*(-C11, +C21, +C31, -C41)
= (2*(+C11) +1*(-C11), 2*(-C21) +1*(+C21), 2*(-C31) +1*(+C31), 2*(0) +1*(-C41))

= (+C11, -C21, -C31, -C41)

(19)

i.e.

c1 = c2 = c3 = c4 = 1 (20)

So, we can take into account elicitation techniques related to any one of the
subcategories +C11, -C21, -C31 and -C41 (i.e. Sensing, Verbal, Reflective and Global).
Because +C11, -C21, -C31 are related to the stakeholder with the highest priority, then
the use of elicitation techniques related to these subcategories is justified; -C41 is
related to the stakeholder with the lowest priority, but the preferences attached to this
subcategory have not negative influence on the other stakeholder, because she/he is
not Sequential, so the use of elicitation techniques attached to this subcategory is
understandable.

5 Related Works

Much of the research efforts in requirements engineering have been focusing on the
requirements themselves: how to elicit them, analyze them, how to resolve conflicts
and manage them and so on. But in the literature, few works have been focusing on
the selection of an elicitation technique, especially in a distributed environment.

Several studies identified a broad range of challenges related to the requirements
engineering process in a distributed environment. Much of these studies identified
problems related to cultural diversity, process and tools, time difference between
sites, remote communication and knowledge management, and their negative impact
on requirements elicitation, negotiation and specification in a distributed environment
[9], [10], [11], [11], [16], [20], but they did not deal with these challenges.

34 H. Bendjenna, N. Zarour, and P.-J. Charrel

For effective requirements elicitation in a cooperative distributed environment, it is
worth exploring additional issues which impact the product quality and, in particular,
to significantly improve analyst’s ability to select the appropriate elicitation technique
in a given situation of the requirement elicitation process.

As presented in the section 2.3, Hickey and Davis [17] introduced a new model of
requirements elicitation, which defines the underlying basis of an implementation of
the elicitation technique selector function. On the basis of these results Aranda et al.
[2] [3], proposed a process which can be used to select an elicitation technique in a
distributed environment. They introduced new concepts, from cognitive informatics
in order to consider stakeholder’s characteristics, the time difference between
different sites and the level of knowledge of a common language. However this
process (1) does not take into account the case where stakeholders’ preferences are
opposite, and (2) gives a general representation of stakeholders’ linguistic knowledge.

As we early explained, the process we propose aims to facilitate the analyst’s task
in selecting an elicitation technique in a cooperative distributed environment; by
considering the diversity of stakeholders’ priorities, preferences, linguistic knowledge
and time difference between distant sites.

To achieve this goal:

• we attach opposite coefficients to each opposite subcategories;
• we attach a number value to each stakeholder’s priority;
• we introduce a structured representation of the linguistic knowledge level.

6 Concluding Remarks and Further Work

Computer-supported cooperative work and requirements elicitations are two currently
up to date fields of interest. The former comes out of the necessity for companies to
cooperate within an accentuated competitive context. As for the latter, it is based on a
set of techniques provided to an analyst in order to build the first stage of an
information system design. We presented in this paper a process to improve
requirements elicitation, based on a model which helps the analyst to choose easily
and efficiently the elicitation technique adapted to a given situation of the
requirements elicitation process.

The process we propose roughly seems to be a self-inflicted wound. Why to adopt
it, if it gives rise to an apparently gratuitous additional difficulty? The answer is based
on the following empirical evidence:

• A stakeholder feels comfortable with some elicitation techniques, and she/he feels
uncomfortable with others. These preferences are issued from stakeholder’s
characteristics and they allow elaborating a classification of stakeholders.

• In a cooperative environment, either distributed or not, stakeholders' linguistic
knowledge may be different, which affect the global collaboration.

• Stakeholders' roles and tasks are different in their organization within the
requirements process. Then their priorities may be also different, and they must be
taken into account by the analyst when selecting a requirements elicitation
technique.

 Enhancing Elicitation Technique Selection Process 35

• The time difference between distant sites can allow or not an overlap for synchronous
collaboration, which implies the possibility to use or not some elicitation techniques.

In short, the proposed process helps to improve the quality of the requirements
elicitation process, by taking into account that the previous features have a significant
impact on the choice of a requirements elicitation technique in a distributed
cooperative environment.

As an extension to the current work, we plan to perform two actions:

• An implementation of the used functions. This requires the consideration of several
factors like project and solution situations, requirements state and stakeholders’
characteristics.

• Apply the proposed process to more case studies and real-life software projects.

References

1. Aranda, G., Cechich, A., Vizcaíno, A., Castro-Schez, J.J.: Using fuzzy sets to analyse
personal preferences on groupware tools. In: X Congreso Argentino de Ciencias de la
Computación, CACIC 2004, San Justo, Argentina, pp. 549–560 (2004)

2. Aranda, G., Vizcaíno, A., Cechich, A., Piattini, M.: A Cognitive-Based Approach to
Improve Distributed Requirement Elicitation Processes. In: 4th IEEE International
Conference on Cognitive Informatics (ICCI 2005), Irvine, USA (2005)

3. Aranda, G., Vizcaíno, A., Cechich, A., Piattini, M.: A Cognitive Perspective for Choosing
Groupware Tools and Elicitation Techniques in Virtual Teams. In: Gervasi, O., Gavrilova,
M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA
2005. LNCS, vol. 3480, pp. 1064–1074. Springer, Heidelberg (2005)

4. Aranda, G., Vizcaíno, A., Cechich, A., Piattini, M.: Towards a Cognitive-Based Approach
to Distributed Requirement Elicitation Processes. In: Workshop em Engenharia de
Requisitos, Porto, Portugal (2005)

5. Bendjenna, H., Zarour, N., Charrel, P.J.: Elicitation Technique Selection in a Cooperative
Distributed Environment: How analysts make the best decision. In: International
Conference on Rapid Integration of Software Engineering techniques, RISE, Luxembourg,
pp. 32–47 (2007)

6. CHAOS report: Standish group (1995), http://www.standishgroup.com/sample_research/
chaos_1994_1.php

7. Chiew, V., Wang, Y.: From Cognitive Psychology to Cognitive Informatics. In: Second
IEEE International Conference on Cognitive Informatics, ICCI 2003, London, UK, pp.
114–120 (2003)

8. Damian, D., Lanubile, F., Hargreaves, E., Chisan, J.: Workshop Introduction. In: 3rd
International Workshop On Global Softawre Development, Co-located with ICSE 2004,
Edinburgh, Scotland (2004)

9. Damian, D., Zowghi, D.: The impact of stakeholders’ geographical distribution on
managing requirements in a multi-site organization. In: IEEE Joint International
Conference on Requirements Engineering, RE 2002, Essen, Germany, pp. 319–328 (2002)

10. Damian, D.E., Zowghi, D.: An insight into the interplay between culture, conflict and
distance in globally distributed requirements negotiations. In: 36th IEEE Hawaii
International Conference on System Sciences (HICSS 2003), 0-7695-1874-5/03 (2002)

36 H. Bendjenna, N. Zarour, and P.-J. Charrel

11. Damian, D.E., Zowghi, D.: Requirements Engineering challenges in multi-site software
development organizations. Requirements Engineering Journal 8, 149–160 (2003)

12. Damian, D., Hadwin, A., Al-Ani, B.: Instructional design and assessment strategies for
teaching global software development: a framework. In: 28th International Conference on
Software Engineering, Shangai, China, pp. 685–690 (2006)

13. Davis, A.: Software Requirements: Objects, Functions and States. Prentice Hall, Upper
Saddle River, New Jersey (1993)

14. Davis, A., Hickey, A.M.: Requirements Researchers: Do We Practice What We Preach.
Requirements Engineering Journal 7(2), 107–111 (2002)

15. Felder, R., Silverman, L.: Learning and Teaching Styles in Engineering Education.
Engineering Education 78(7), 674–681 (1988)

16. Herbsleb, J., Paulish, D., Bass, M.: Global Software Development at Siemens:Experience
from Nine Projects. In: 27th International Conference on Software Engineering, St. Louis,
Missouri, USA, pp. 524–533 (2005)

17. Hickey, A.M., Davis, A.: Requirements Elicitation and Elicitation Technique Selection: A
Model for Two Knowledge-Intensive Software Development Processes. In: 36th Annual
Hawaii International Conference on Systems Sciences (HICSS), pp. 96–105 (2003)

18. Hickey, A.M., Davis, A.: Elicitation Technique Selection: How Do Experts Do it?
Requirements Engineering 2003, 11th IEEE International Volume, 169–178 (2003)

19. Leffingwell, D., Widrig, D.D.: Managing Software Requirements: A Unified Approach.
Addison Wesley Publishing Co., Reading (2000)

20. LIoyd, W., Rosson, M.B., Arthur, J.: Effectiveness of elicitation techniques in distributed
requirement engineering. In: 10th anniversary IEEE Joint international conference on
requirement engineering RE 2002, Essen, Germany, pp. 311–318 (2002)

21. Macaulay, L.: Requirements Engineering. Springer, Heidelberg (1996)
22. Reubenstein, H., Waters, R.: The Requirements Apprentice: Automated Assistance for

Requirements Acquisition. IEEE Transactions on Software Engineering 17(3), 226–240
(1991)

23. SWEBOK. Guide to the Software Engineering Body of Knowledge. Software Engineering
Coordinating Committee. IEEE Computer Society, Los Alamitos (2004)

24. Thayer, R., Merlin, D.: Software Requirements Engineering, 2nd edn. IEEE Computer
Society, Los Alamitos (1997)

25. Van Buren, J., Cook, D.: Experiences in the Adoption of Requirements Engineering
Technologies, CROSSTALK. The Journal of Defense Software Engineering 11(12), 3–10
(1998)

26. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press (2003) (1st edn. - 1999)
27. Williams, W.: What Do You Mean You Can’t Tell Me If My Project Is in Trouble? In:

First European Conference on Software Metrics (FESMA 1998), Antwerp, Belgium (1998)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 37–51, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Negotiation Constellations – Method Selection
Framework for Requirements Negotiation

Samuel Fricker1,2 and Paul Grünbacher3

1 University of Zurich, Department of Informatics
Binzmuehlestrasse 14, 8057 Zurich, Switzerland

fricker@ifi.uzh.ch
2 ABB Switzerland Ltd., Power Systems

Bruggerstrasse 72, 5400 Baden, Switzerland
samuel.fricker@ch.abb.com
3 Johannes Kepler Universität (JKU),

Institute for Systems Engineering and Automation
4040 Linz, Austria

paul.gruenbacher@jku.at

Abstract. Customers, product managers, project leaders, architects, engineers,
and other stakeholders are negotiating requirements throughout the software
lifecycle. Even-though fundamental for understanding requirements engineer-
ing, negotiation has not been as thoroughly studied as other facets of this engi-
neering discipline. This paper casts requirements engineering into the landscape
of negotiation by describing a framework for selecting tactics and methods for
various negotiation constellations that can be encountered in a software organi-
zation. The framework opens perspectives that are essential for understanding
the behavior of people involved in development projects, for understanding how
development teams and stakeholders create mutually satisfactory solutions, and
for giving tactical advice to practitioners.

1 Introduction

Software development is embedded in a complex network of stakeholders that include
roles like customers, development managers, product managers, team leaders, architects,
developers, testers, and maintainers [10]. The interplay between these stakeholders is a
fundamental success factor, as every role brings essential knowledge, capabilities, and
skills that are essential to design great new products.

However, designing appropriate requirements engineering processes for such com-
plex stakeholder networks is still a major challenge [7]. For instance, there are multiple
organizational interfaces at which requirements are engineered: it can be observed that
stakeholders pursue their own objectives by trying to delegate the fulfillment of some
goals while satisfying those of others [33]. This happens not only during early-phase
requirements engineering, but also in design and change management activities
throughout the whole development process [5,11].

The lack of approaches for tailoring requirements engineering to the structure of stake-
holder networks and to the specific negotiations situations between these stakeholders

38 S. Fricker and P. Grünbacher

leads to misunderstandings and conflicts. As a consequence, development effort is wasted
on insignificant features, rather than being invested on features that are most essential for
stakeholder satisfaction.

In response to these challenges posed by complex stakeholder networks, this paper
presents a framework for helping stakeholders to understand their negotiation constel-
lations and for selecting appropriate negotiation tactics and methods. The proper
selection of negotiation tactics and methods enables effective communication and
acknowledgment of requirements, helps exploiting opportunities for stakeholder satis-
faction by creating win-win situations, and establishes trust relationships that are
important for development efficacy and high-impact development results.

Beyond its usefulness for practitioners, we hope that the framework will aid re-
quirements engineering researchers to structure and understand the landscape of nego-
tiation in requirements engineering. The framework references knowledge from the
broad field of negotiation and identifies a number of research opportunities for under-
standing on how to handle requirements adequately in specific stakeholder constella-
tions.

This paper presents the negotiation constellations framework and its implications
on requirements engineering practice and research. The paper is structured as follows:
Section 2 outlines background and related work. Section 3 presents the negotiation
constellation framework. Section 4 illustrates the use of the framework. Section 5
discusses the presented work. Section 6 summarizes and concludes the paper.

2 Background and Related Work

This work has been motivated by challenges identified at ABB. It relates to a case
where product managers coordinate distributed development teams with requirements
that are derived from agreements with diverse stakeholders. Conflicts arise almost
inevitably in such cases as project stakeholders pursue mismatching goals and try
to influence each other [12,19]. For example, in a software product organization goals
need to be considered from the market, partners, customers, users, company manage-
ment, sales & marketing, research & innovation, consultants, development, and
support [1,32]. Successful requirements engineering demands agreement on the
requirements [15].

Key approaches that can be applied to reach such an agreement include analysis of
viewpoints [14], stakeholder and goal modeling [15,33], and negotiation [6,12,16,31].
The negotiation process starts when the stakeholders communicate their goals. It ends
when all have agreed to a specified contract [26].

There are two fundamental ways to manage this negotiation process with regard to
how agreements are established in the stakeholder network. First, the process can be
managed by a requirements engineer who elicits the positions and perspectives of
stakeholders, documents them in a comprehensive goal model, facilitates the resolu-
tion of conflicts, and communicates the obtained global stakeholder agreement.

Second, the negotiation process can emerge out of the activities of stakeholders
that perform the organizational roles they are assigned to. Instead of one large nego-
tiation that involves all stakeholders, negotiation is carried out as a number of

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 39

Company

Steering Committee

Development Team

Market Segment

Market Segment

Developer
Developer

Developer

Customer

Customer

Customer

Customer

Line Manager
R&D ManagerM&S Manager

Supplier

Project Leader
and Architect

SupplierProduct Manager

Fig. 1. Exemplary contract model of a software organization. Ellipses represent hierarchically
nested groups of people or individuals. Arrows represent contracts that are agreed upon.

small-scale activities that are performed rather independently. This leads to a number
of agreements between different stakeholders [7]. An example of such distributed
negotiations is illustrated by the contract model shown in Fig. 1.

Independent of the process flavor, questions about the tactical approach and meth-
odology appear in these different negotiation constellations. Requirements engineers
needs to understand how to perform win-win negotiations, how to reach value-
creating results, and how to deal with group dynamics. Stakeholders need to under-
stand their role in the negotiation process and what they can and should do to achieve
their objectives by influencing other stakeholders. Hence, the following issues need to
be addressed:

- Correctly conceptualizing the negotiation constellation,
- Understanding the advantages and limitations of the constellation,
- Knowing the negotiation tactics and methods appropriate for the constellation,
- Identifying those stakeholders that need to be involved in negotiation, and
- Selecting and pursue the most appropriate negotiation approach.

The knowledge in the negotiation constellations framework assists stakeholders
with these questions and provides negotiation advice. It also is used to improve re-
quirements engineering processes by capturing, organizing and making available
good negotiation practices and experiences.

The negotiation constellations framework is similar to reference models like CMMI
for software process improvement [13], and the good practice guide for requirements
engineering improvement [29]. It focuses, however, on requirements negotiation and
adds criteria for selecting tactics and methods that are based on the situations in which
they are applied. In contrast to other reference models, the negotiation constellations
framework also supports capturing and structuring experience to support learning
software organizations [28].

40 S. Fricker and P. Grünbacher

3 Negotiation Constellations

Understanding negotiation constellations is essential for efficiently finding good agree-
ments among stakeholders. This section elaborates how the negotiation constellation
framework advises practitioners and supports requirements engineering process im-
provement by describing its structure and use.

Negotiation is an interpersonal decision-making process to find a mutually accept-
able agreement to a conflict [16,31]. Agreements can contain the planned realization
of needs and objectives, the use of capabilities, the guarantee of financial or other
backing, or the provision of knowledge [8].

A negotiation constellation is characterized by a number of facets that influence
the selection of negotiation methods. Key facets include the characteristics of the
negotiating parties, the relationships between these parties, and the negotiation object
[31]. Other facets include the geographical distance between the parties [6] and their
expected conflict behavior [30].

The negotiation constellations framework describes a taxonomy of negotiation
constellations and provides specific advice for negotiation tactic, methodology, and
experience for a given negotiation constellation. The framework was shaped to be
relevant, simple, specific, and orthogonal. It contains knowledge that is useful for
advising practitioners in a software development context. The number of taxonomic
units is intentionally kept small. The decision criteria are simple and can be applied
intuitively. The advice is given at a coarse level of granularity that still allows differ-
entiating negotiation approaches. The number of fields in which the same negotiation
tactics and techniques are found is minimized, however without compromising speci-
ficity.

The negotiation constellations framework has been defined with the following re-
search process in collaboration with practitioners. Situations have been identified that
require applying different negotiation tactics and techniques. These situations were
then exemplified with stereotypical descriptions of software development organiza-
tions and relationships between various organizational roles. Finally, negotiation,
requirements engineering and software engineering literature was studied to identify
tactics and methods that adequately address the negotiation situations.

Subsection 3.1 describes commonalities of negotiation situations in a software engi-
neering context. Subsection 3.2 describes the taxonomy of negotiation constellations.
Subsections 3.3 and 3.4 describe tactical and methodological advice.

3.1 Common Negotiation Characteristics in Software Organizations

Negotiation has been studied in many different contexts, including product sales,
employment contracts, personal affairs, politics, and peace keeping. Negotiation oc-
curs 1) to agree on how to share or divide limited resources such as money, time and
staff; 2) to create something new that neither party could do on its own; or 3) to re-
solve a conflict between parties. By choosing options other than negotiation, people
may fail to achieve their goals, get what they need, or manage conflicts as smoothly
as they might like to [16].

Negotiation in a software organization is special because a number of factors in the
negotiation context are predetermined. This significantly reduces the variability of

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 41

general negotiation situations and allows simplifying the negotiation constellation
framework. The factors that are specific to software organizations concern the nego-
tiation object, conflict management, and opportunities for renegotiations.

Bargaining over a single issue like a price is rare. Instead, people seek win-win re-
sults that occur when a mutually acceptable solution is sought. Win-win negotiation
involves a number of issues that are negotiated together. For instance, a customer
may want to reduce the price of a software solution or service, but this is typically
negotiated together with other contractual elements like the scope of the solution or
service. In other circumstances, people negotiate a set of concerns and objectives such
as needs, requirements, and design decisions.

A number of conflict resolution styles are differentiated in negotiation, depending
on the negotiators interest in his own outcome and in the other negotiator’s outcome
[27]. This dual-concerns model is illustrated in Fig. 2.

high

high

Yielding

Avoiding

low

low

C
on

ce
rn

 a
bo

ut
 o

th
er

’s

 o
ut

co
m

e

Concern about own outcomes

Compromising

Dominating

Problem-
Solving

Fig. 2. Dual-concerns model of negotiation behavior [27]. The grey area highlights the conflict
resolution style in a software organization centered on problem solving or compromising.

The conflict resolution style that should preferably be adopted in a software or-
ganization is problem solving, or compromising when consensus cannot be reached
[23]. The issues that are negotiated in a software organization are complex: a synthe-
sis of ideas is needed to come up with mutually satisfactory solutions, and time is
available for such problem solving. Resources, skills and knowledge are possessed by
different parties. Hence, commitment is needed from these other parties for successful
implementation, with one party alone not being able to solve the negotiated problems.
Yielding to another party should not be done because the issues negotiated are impor-
tant, in the responsibility of the negotiators, and ultimately connected to their career.
For the same reason, avoiding the other party is inappropriate. Finally, the other party
should not be dominated because the negotiated issues are too complex and the nego-
tiation partners have high degree of competence in their areas.

In software organizations, a number of opportunities for renegotiation are institu-
tionalized. For example, change management processes are established to

42 S. Fricker and P. Grünbacher

account for imperfect design and technology evaluation and planning. Hence, agree-
ments are not carved in stone and may be changed. Still, the negotiators should be
concerned about their reputation, because excessive and late use of renegotiation may
severely weaken their position as an accepted negotiation partner.

The generic negotiation tactic in a software organization is integrative negotiation:
be prepared, create value, and claim your share of the created value [31].

During preparation a negotiator1 assesses his aspirations, his best alternative to a
negotiated agreement (BATNA), and his reservation point at which he would stop the
negotiations. He tries to elicit the same information from the negotiations partners by
possibly revealing his aspirations, but without disclosing his BATNA and reservation
point. In addition, he takes the situational factors into consideration that are described
by the negotiation constellations framework.

Value creation can be achieved with creative conflict resolution. Good ideas can be
identified when the negotiators trust each other, share information, and adjust the
negotiation issues. Value can be created by capitalizing on differences in the valuation
or preferences for goals, the forecast of the future, risk attitudes, time preferences, and
capabilities. For example, a product marketing manager wanting to realize a number
of product features may be faced with different design ideas by a development team
of how such features can be implemented. The negotiation will cover a stage where
the design ideas are created and evaluated by these parties.

In the late stage of a negotiation, the negotiators increasingly claim value. A negotia-
tor claims value by a steadily improving its BATNA, anchoring the negotiation in the
area of its aspirations, and planning for a sequence of concessions. To support value
claiming, he can appeal to a number of facets to fairness, including equality, where all
should get equal shares, equity, where the share is proportional to the party’s contribu-
tion, and need, where share is proportional to the party’s need.

Fig. 3 presents a model that explains the interrelationships of creating and claiming
value in multi-issue negotiations [24].

increasing value to
negotiator

claim value

Pareto-efficient frontier

increasing value to
negotiating partner

create value

Fig. 3. Conceptualization of creating and claiming value [16]. Maximal value is created when a
point on the Pareto-efficient frontier is reached.

1 For legibility reasons, we use the term ‘he’, but mean both sexes.

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 43

3.2 Characterization of the Negotiating Parties

To select appropriate negotiation tactics and methods, a negotiator needs to know his
and his negotiation partner’s constitutions. Fig. 4 shows the taxonomy of such consti-
tutions, which is fundamental to the negotiation constellation framework.

Relationship among
group members

Multiplicity
demonstrated during

negotiation

Negotiating
Party

Single
Party

Person
highly

cohesive
group

Multiple
Parties

homoge
neous
group

differentia
ted group

collabora
ting group

Fig. 4. Constitutions of negotiating parties shown with ‘is-a-kind-of’-refinements

A single party is a person or a highly cohesive group of people. A single party has
one set of aspirations, one BATNA, one reservation point, and one voice at the nego-
tiation table. No internal fragmentation exists: there is neither intrapersonal conflict of
the person nor interpersonal conflict in the cohesive group of people.

Typical roles of individual people in a software organization are line manager,
product marketing manager, project manager, or architect. Examples of groups of
people that appear as a single party at a negotiation table are a company in the role of
a customer or supplier, management of a company when negotiating with employees,
and a development team when negotiating with stakeholders.

The differentiation between a person or a highly cohesive group of people is not
further used in the negotiation constellations framework. Both should use the same
negotiation tactics and processes during a negotiation. It is likely, however, that in the
course of software development, a group may recognize that it is not as cohesive as
perceived initially. This can lead to a different negotiation situation and may require
switching the mode of negotiation.

Multiple parties are a group of people that appears at one side of the negotiation
table. In contrast to the single party, the constitution of the group is important. The
group can consist of single parties or again other groups. The multi-party group is
characterized by at least one of the following properties: the group members pursue
different objectives, have different BATNA and reservation points, and have individ-
ual voices at the negotiation table. Since group members are differentiated, agree-
ments made at the primary negotiation table should be ratified.

Typical examples of multiple parties are companies that make up a market, soft-
ware users, management, a steering committee when negotiating with a project man-
ager, an architecture team when negotiating with a product marketing manager, and a
project team when negotiating with its project manager.

For the purpose of negotiation tactic and method selection, homogeneous groups,
differentiated groups, and collaborating groups are distinguished. Homogeneous

44 S. Fricker and P. Grünbacher

groups consist of members that have the same aspirations, BATNA and reservation
point, but have individual voices. All members are willing to comply with negotiation
results that are equal for everyone. A typical example is users within a user group.

A member of a differentiated group has, in addition to an individual voice, the de-
sire to be different from the other group members. This leads to different aspirations,
BATNA, and reservations points. Members of such a group are often competing with
each other. A typical example is technology suppliers.

Members of a collaborating group also have individual voices, aspirations,
BATNA, and reservation points. In contrast to the differentiated group, they seek an
agreement that is satisfactory for every member. Rather than being in competition, the
members of a collaborating group have different perspectives on the negotiation topic
and have complementing aspirations, knowledge, networks, and capabilities.

3.3 Micro-level: Negotiation Tactics

The objective of the negotiation constellations framework is to help people in a soft-
ware context to negotiate better. At a micro-level, the framework offers partisan tacti-
cal advice to a negotiator at the possible expense of his negotiation partner. Still, this
advice is fair, because it is open for everyone. At the macro-level the framework of-
fers methodological advice that helps all involved parties.

The tactical negotiation constellation framework differentiates between the nego-
tiator who benefits from the advice and his negotiating partners. Both are involved in
a negotiation that ultimately results in decisions about requirements, project plans,
architectural design, and the like. The framework allows the negotiator to understand
his negotiation constellation in terms of who he is and who the other is, and suggests
tactical actions that strengthen his negotiation position.

The tactical negotiation constellations framework is shown in Fig. 5. The presented
tactical advice is based on standard negotiation textbooks [31].

Homogeneous Differentiated Collaborating
Constituent Constituent Select Coalition

Homogeneous
Principal Agent,
Constituent

Principal Agent,
Constituent

Principal Agent,
Select

Principal Agent,
Coalition

Differentiated

Collaborating
Principal Agent,

Team Negotiation,
Constituent

Principal Agent,
Constituent

Principal Agent,
Select

Coalition,
Intergroup
Negotiation

Yo
ur
se
lf

Single Party

M
ul
tip
le
Pa
rt
ie
s

act as single party

Partner(s)
Single
Party

Multiple Parties

Fig. 5. Tactical advice for different negotiation constellations. Section 4 exemplifies.

The advice can be read out from the negotiation constellations framework by con-
sulting the cell that corresponds to the negotiator’s perception of himself and of his
partner. For example, if the negotiator is a single party, with multiple homogeneous
partners, he can increase the value of what he gets or speed up the negotiations by
influencing the partners through constituents.

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 45

While the provided advice is specific to the constitution of the both negotiators, the
framework shows that some decisions depend only on the constitution of the negotia-
tor, and other decisions on the constitution of the negotiation partner. For example,
homogeneous parties can be influenced with a constituent, independently of the struc-
ture of the primary negotiator. Acting as a single party helps the negotiator who is in
competition with peers, independent of the negotiating partner.

Table 1 explains the tactics suggested by the tactical negotiation constellations
framework. A discussion of the advantages and risks of using the negotiation tactics
can be found in standard textbooks [31].

Table 1. Explanation of negotiation tactics

Tactic Explanation
Constituent The use of peripheral players that have an indirect stake in the

outcome to exert pressure on the other side.
Select Stick to the party with the most promising outcome.
Coalition Exert influence on outcomes by collaborating with a minimal

but sufficient number of partners.
Principal Agent Use an experienced agent to prepare or to run the negotiations

on behalf of yourself.
Team Negotiation Prepare and run the negotiations as a team to increase

creativity and control of the negotiation.
Intergroup Negotiation Control the conflicts that naturally appear in the confrontation

of two or more groups.

3.4 Macro Level: Negotiation Methods

On a macro level, the negotiation constellations framework suggests methods and
processes that maximize the value of the outcome and the satisfaction of the negotia-
tors. The methodological negotiation constellation framework differentiates between
generalized customer and supplier roles that engage in negotiations, without losing
generality compared with the tactical framework. Fig. 6 shows the framework.

Homogeneous Differentiated Collaborating

Handshaking
Plug In

Architectures
COTS Selection

Team
Problem Solving

Homogeneous MD RE Standardization
Survival of
the Fittest

New Product
Development

Differentiated Domain RE Socialist Markets
Competitive
Markets

Product Line
Engineering

Collaborating VORD Governance
Voting,

Consensus...
EasyWinWin

Multiple PartiesSingle
Party

Cu
st
om

er

Single Party

M
ul
tip
le
Pa
rt
ie
s

Supplier

Fig. 6. Methodological advice for different negotiation constellations. Italic entries refer to
approaches from requirements or software engineering. The other entries describe metaphors
for the negotiation constellations.

46 S. Fricker and P. Grünbacher

In addition to the self-assessment and the assessment of the negotiation partners,
the negotiator analyzes the relationship to understand who is in a customer, supplier,
or peer role. If he is in a customer role he places himself on a row, otherwise on a
column. If some negotiators are peers, he and they together form a multiparty.

The method framework reflects in its basic form the state of knowledge. This im-
plies that one, several, or no published methods can be identified for the various nego-
tiation constellations. This advice should evolve by new research results and by the
experiences made by those using it.

For example, for the one customer – one supplier constellation, one well-fitting
method could be identified. The two parties will reach the best results if handshaking
[24] is adopted for negotiation.

For the one customer – differentiated suppliers constellation, several methods
could be identified. As long as the principles underlying these methods are not elabo-
rated from the specific perspective of the negotiation situation, the negotiators have to
select the best-fitting method. Such selection needs to be based on a refined under-
standing of the issues that are negotiated and the capabilities of the candidate meth-
ods. For example, to procure COTS software from candidate suppliers, a customer
will employ one of the many supplier and COTS selection methods [17].

For the differentiated customers – differentiated suppliers constellation, fitting
methods are hard to find. Here the framework only indicates a metaphor for approach-
ing the situation. For example, to describe the behavior of customers in a segmented
market confronted with a number of software suppliers, the laws of competitive mar-
kets apply [21].

Table 2 references methods for those cells of the methodological negotiation con-
stellations framework, for which methods could be identified. These methods repre-
sent the initial recommendations that are evaluated for the given negotiation constella-
tion and adjusted as experience and improved state of knowledge suggest.

Table 2. Methods fitting the various negotiation constellations

Method Short Description
Handshaking The use of implementation proposals to control understand-

ing of communicated requirements [24].
Plug-in Architecture Software design for extensibility by defining consistent

ways and means of third-party software integration [18].
COTS Selection The use of criteria for selecting commercial off-the-shelf

products for system development [3].
MD-RE Market-driven requirements engineering addresses the man-

agement of requirements for a number of customers [25].
Domain-RE Identify and analyze common and variable requirements [20].
Product Line Engineering Develop software for heterogeneous needs [20].
VORD The capture, analysis and resolution of different needs and

ideas with viewpoints [14].
EasyWinWin Multi-party requirements negotiation approach [2].
Team Problem Solving Defining solutions to problems in a team [17].
Standardization Establish a consistent technical specification for a number of

players [22].
New Product Development Coordination of roles for new product development [4].

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 47

4 Framework Use for Tactical and Methodological Advice

This section illustrates the use of the negotiation constellations framework based on
the company described in Fig. 1. The illustration follows a narrative that is inspired
by experienced practice. Careful empirical evaluation, however, is ongoing work.

The narrative and the contract models in Fig. 7 describe how various roles in the
software organization perceive their negotiation context and use the negotiation constel-
lations framework for advice on how to proceed tactically and methodologically. As
such perception is highly personal, the decisions by the players represent just one of
many possible courses of actions.

(I) (II)

(III) (IV)

(V) (VI)

Fig. 7. Negotiation constellations, highlighted as shaded areas, in the organization described in
Fig.1. The negotiation constellation framework provides tactical and methodological advice for
such constellations.

(I) The project leader and architect, a member of the development team, is respon-
sible for establishing architectural decisions that satisfy the needs represented by the
stakeholders product manager and steering committee and for committing developers
to implement the software according to these decisions. In this situation, he is con-
fronted with a number of collaborating customers, the stakeholders, and a number of
suppliers, himself and the developers. The negotiation constellations framework sug-
gests using EasyWinWin as a methodology, building coalitions, and dealing with
intergroup negotiation issues.

(II) The product manager is responsible to understand the company’s markets and
to identify requirements that best address the customers’ needs. In this situation he
may look at the market as a single market segment with homogeneous customer

48 S. Fricker and P. Grünbacher

needs. Here he is well-advised with market-driven requirements engineering as a
methodology.

(III) Alternatively, the product manager may identify multiple market segments
with differentiated groups of customers. In this situation he is better advised to follow
a domain requirements engineering approach for better understanding the variability
of the needs of the different segments.

(IV) At some moment, the product manager has produced a software requirements
specification that he hands over to the project leader and architect of the development
team. The development team sees itself as a number of collaborating people and de-
cides to use the project leader and architect as a principal agent, as suggested by the
tactical negotiation constellations framework. The requirements hand-over situation,
thus, is reduced to a negotiation between two individuals that is best addressed by
handshaking with implementation proposals.

(V) To further progress in the implementation of the software, the project leader
and architect conveys architectural decisions and distributes tasks to individual de-
velopers. Here the advice is again to use handshaking.

(VI) Finally, the project leader and architect sees opportunities to speed up devel-
opment work with components that can be procured from an in-house or from an
external supplier. Here he is confronted with a selection task where he adopts COTS-
selection as a method.

5 Discussion

5.1 Practical Considerations

Section 4 has shown how the negotiation constellations framework can be used to
provide tactical and methodological advice in practical situations. It helps a person or
organization to conceptualize a negotiation constellation, to understand the advan-
tages and limitations of the constellation, to know which tactics and methods are
appropriate, and to identify the stakeholders that should be involved. Hence, the
framework helps to exploit the strengths of the negotiation constellation and to under-
stand its limitations.

As above illustration has shown, negotiation in a software context is not a one-shot
activity. Rather, a sequence of overlapping negotiations is performed in practice.
These negotiations are overlapping in time and in the people that are involved. Skilled
negotiators do not act passively, but proactively try to shape the negotiation constella-
tions in an attempt to strengthen their negotiation position for increasing the chances
to achieve their objectives. The negotiation constellations framework may evolve into
a valuable tool to support such reflections and is a basis for shaping and describing
negotiation strategies.

As people and organizations enact the negotiation tactics and methods, they gain
experiences, which can be reused [28]. The negotiation constellations framework
provides a structure and means for such reuse. When advice has worked well, it is
supplemented with experience data. When tactics or methods have been discovered
that fit the negotiation constellation better in the specific negotiation constellation,
previous advice is replaced by improved advice.

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 49

5.2 Implications on Research and Education

In addition to practical benefit, the negotiation constellations framework opens a
number of perspectives for research and education. The framework provides a struc-
tured approach to transfer knowledge from the field of negotiation into requirements
and software engineering. The table cells refer to specialized negotiation literature
through the named tactics.

The framework organizes knowledge based on simple criteria that are relevant for
practice. It is thus a basis to study the applicability of tactics and methods by compar-
ing the organizational contexts which they apply to.

In the same line, the negotiation constellations framework helps to better under-
stand limitations of current knowledge in requirements engineering. While all cells
are relevant, for some negotiation constellations it is hard to find focused require-
ments or software engineering methods.

Finally, negotiation has the potential to act as a model of how requirements are
communicated and transformed into design decisions. A better understanding of nego-
tiation in the software context will lead to a better understanding of the co-evolution
of requirements and design.

5.3 Limitations

The negotiation constellations framework has been designed for simplicity. This may
be in conflict with the complexity of the real-world situations, where it is intended to
be used. Experienced skillful negotiators act in a much more multi-faceted manner
than the negotiation constellation framework suggests by adjusting to factors like
geographical distance and negotiation style. Also a negotiator is typically embedded
into a complex network of partners, which is not represented by the simple customer-
supplier relationship of the framework. Still the negotiation constellation framework
is a useful starting point for companies that wish to address requirements negotiation
in a systematic manner.

The tactical and methodological advice that is suggested by the negotiation con-
stellations framework is incomplete and requires adaptation to an organization. If
consensus on the superiority of a given negotiation approach is not possible, the nego-
tiation constellations framework needs to be tailored to parts of the company, or even
to a single role. The framework would still be useful for providing advice and captur-
ing experience, but a number of instances will need to be managed.

The fields of negotiation, requirements engineering and software engineering are
evolving. This is an opportunity for the framework to mature, as more specific tactics
and methods are discovered. With the evolving fields, the knowledge that is stored in
the framework can be completed and improved.

The research on the negotiation constellation framework is still in progress. The
limitations highlighted here can only be answered with careful empirical validation.

6 Summary and Conclusions

The negotiation constellations framework aims to contribute to more effective re-
quirements engineering by capturing and structuring tactical and methodological
advice that is tailored to the organizational context of a stakeholder. The framework

50 S. Fricker and P. Grünbacher

can be used for reflecting on the negotiation constellation, identifying other stake-
holders, and obtaining guidelines for reaching agreements that increase the value of
the software being developed. It may also be used for process development by provid-
ing a structure for organizing tactics and methods and to capture experience.

The negotiation constellations framework builds on the tradition of reference mod-
els like CMMI to support tactical decision-making and method selection in the area of
requirements negotiation. In this role, it can help to make essential knowledge from
the field of negotiation accessible to requirements engineers and software profession-
als and to give insights into current requirements engineering knowledge.

The paper presents and exemplifies the structure and use of the negotiation constel-
lations framework in practical situations. It further provides specific references to
tactical and methodological knowledge that can be used as a starting point for soft-
ware professionals that want to address negotiation systematically and for companies
that decide to adopt the framework as part of their process improvement.

Future work should cover empirical studies of how the framework is used and
evolved, and of what its effects are on software quality and on learning software or-
ganizations. One aspect of interest is the evolution of the stakeholder network that
emerges as a result from following a strategy built on the tactics proposed by the
framework. Evaluation and comparison of requirements engineering methods from
the perspective of the described negotiation constellations will make these methods
better accessible to practitioners and further supports method selection.

References

1. Alexander, I., Robertson, S.: Understanding Project Sociology by Modeling Stakeholders.
IEEE Software 21(1), 23–27 (2004)

2. Boehm, B., Grünbacher, P., Briggs, R.: Developing Groupware for Requirements Negotia-
tion: Lessons Learned. IEEE Software 18(3), 46–55 (2001)

3. Cechich, A., Piattini, M., Vallecillo, A.: Component-Based Software Quality. LNCS,
vol. 2693, pp. 99–127. Springer, Heidelberg (2003)

4. Cooper, R.: Winning at New Products: Accelerating the Process from Idea to Launch.
Perseus Publishing (2001)

5. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Communications of the ACM 31(11), 1268–1287 (1988)

6. Damian, D., Eberlein, A., Woodward, B., Shaw, M., Gaines, B.: An Empirical Study of
Facilitation of Computer-mediated Distributed Requirements Negotiations. In: 5th Intl.
Symposium on Requirements Engineering (2001)

7. Doerr, J., Paech, B., Koehler, M.: Requirements Engineering Process Improvement Based on an
Information Model. In: 12th IEEE Intl. Requirements Engineering Conference (2004)

8. Foa, U., Foa, E.: Resource Theory of Social Exchange. General Learning Press (1975)
9. Fricker, S., Gorschek, T., Myllyperkiö, P.: Handshaking between Software Projects and

Stakeholders Using Implementation Proposals. In: 13th Intl. Working Conference on Re-
quirements Engineering: Foundation for Software Quality (2007)

10. Glinz, M., Wieringa, R. (eds.): IEEE Software Special Issue on Stakeholders in Require-
ments Engineering 24(2) (2007)

11. Gorschek, T., Svahnberg, M.: Requirements Engineering in Practice: Studies of Six Com-
panies. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 405–426. Springer, Heidelberg (2005)

Negotiation Constellations – Method Selection Framework for Requirements Negotiation 51

12. Grünbacher, P., Seyff, N.: Requirements Negotiation. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 143–162. Springer, Heidelberg
(2005)

13. Humphrey, W., Snyder, T., Willis, R.: Software Process Improvement at Hughes Aircraft.
IEEE Software 8(4), 11–23 (1991)

14. Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software Engi-
neering Journal 11(1), 5–18 (1996)

15. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven Re-
quirements Engineering. IEEE Transactions on Software Engineering 24(11), 908–926
(1998)

16. Lewicki, R., Barry, B., Saunders, D.: Essentials of Negotiation. McGraw-Hill, New York
(2007)

17. Lumsdaine, E., Lumsdaine, M.: Creative Problem Solving. IEEE Potentials 13(5), 4–9
(1994)

18. Marquardt, K.: Patterns for Plug-ins. In: Manolescu, D., Voelter, M., Noble, J. (eds.) Pat-
tern Languages of Program Design 5, pp. 301–336. Addison-Wesley, Reading (2006)

19. Ovaska, P., Rossi, M., Smolander, K.: Filtering, Negotiating and Shifting in the Under-
standing of Information System Requirements. Scand. J. of Information Systems 17(1),
31–66 (2005)

20. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005)

21. Porter, M.: Competitive Advantage: Creating and Sustaining Superior Performance. The
Free Press (1985)

22. Poston, R.: Software Standards. IEEE Software 1(2), 87–94 (1984)
23. Rahim, M.: Rahim Organizational Conflict Inventories: Professional Manual. Consulting

Psychologists Press (1990)
24. Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Col-

laborative Decision Making. The Belknap Press of Harvard University Press (2007)
25. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software

Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer, Heidelberg (2005)

26. Robinson, W., Volkov, S.: Supporting the Negotiation Life Cycle. Communications of
ACM 41(5), 95–102 (1998)

27. Rubin, J., Pruitt, D., Kim, S.: Social Conflict: Escalation, Stalemate and Settlement.
McGraw-Hill, New York (1994)

28. Schneider, K., von Hunnius, J., Basili, V.: Experience in Implementing a Learning Soft-
ware Organization. IEEE Software 19(3), 46–49 (2002)

29. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley,
Chichester (1997)

30. Thomas, K.: Conflict and Conflict Management. In: Dunette, M. (ed.) Handbook of Indus-
trial and Organizational Psychology, pp. 889–935. Rand McNally College Publishing
Company (1976)

31. Thompson, L.: The Mind and Heart of the Negotiator. Pearson Prentice Hall, London
(2005)

32. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: 14th IEEE Intl. Require-
ments Engineering Conference (2006)

33. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: 3rd IEEE Intl. Symposium on Requirements Engineering (1997)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 52–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

DESCRY: A Method for Evaluating Decision-Supporting
Capabilities of Requirements Engineering Tools

Beatrice Alenljung and Anne Persson

School of Humanities and Informatics, University of Skövde, P.O. Box 408, SE-541 28
Skövde, Sweden

{beatrice.alenljung,anne.persson}@his.se

Abstract. Complex decision-making is a prominent aspect of requirements
engineering (RE) and the need for improved decision support for RE decision-
makers has been identified by a number of authors in the research literature.
Decision-supporting features and qualities can be integrated in RE tools. Thus,
there is a need to evaluate the decision-supporting capabilities of RE tools. In
this paper, we introduce a summative, criteria-based evaluation method termed
DESCRY, which purpose is to investigate to what extent RE tools have
decision-supporting capabilities. The criteria and their related questions are
empirically as well as theoretically grounded.

1 Introduction

RE has been recognized as being largely a decision-making process [1]. Stakeholders’
decisions about the quality and functionality of a system are expressed in
requirements. Other important decisions in RE concern issues such as organization,
staffing, and planning. Thus, poor decisions can cause RE to fail [2]. By addressing
improvement to decision-making in RE, the probability of successful systems
engineering increases [1]. The RE decision-maker’s abilities and capabilities can be
enhanced if appropriate RE decision support is provided, e.g., through integrating
decision-supporting features and qualities in RE tools. RE decision support should
strive to augment the decision-making capacity of the human decision-maker [3].

To develop support for RE decision-making is, hence, a major issue for RE
research [2]. However, research into the field of RE decision-making and RE decision
support is still in its infancy [3].

This paper addresses evaluation of RE tools from a decision support perspective.
Several evaluation methods for tool selection have been proposed, e.g. COSTUME
[4], the R-TEA approach [5], and the value-based tool selection approach [6].
However, to the best of our knowledge, there is no dedicated method enabling
systematic evaluation of the decision-supporting capabilities of RE tools. Our
research contributes to filling this void by suggesting a summative, criteria-based
evaluation method termed DESCRY1 (Decision-Supporting Capabilities of RE tools).

1 Apart from being the acronym for our evaluation method, it is also an English word, which

means see a long way away or catch sight of.

 DESCRY: A Method for Evaluating Decision-Supporting Capabilities of RE Tools 53

The purpose of the method is to investigate to what extent RE tools have decision-
supporting capabilities. This means that the method is summative. DESCRY has a
user-centered perspective, which implies that the evaluator should take the RE
decision-makers’ perspective and estimate whether or not an RE decision-maker can
perceive the existence of decision-supporting features as well as understand how to
use them.

The remainder of the paper is organised as follows. Section 2 describes the
research process. Section 3 introduces DESCRY. We give some concluding remarks
in Section 4.

2 Research Process

The research process consists of four stages: a) literature analysis, b) case study, c)
synthesis, and d) method development. The literature analysis resulted in a generic
decision situation framework [7], which was used during stage b) to make sure that all
the fundamental aspects were taken into account. The case study was conducted using
a qualitative research approach. The case study took place at a systems engineering
company that develops highly advanced systems. The data collection techniques were
open-ended interviews and a focus group session. The interviewees were
requirements engineers and stakeholders related to them. Seventeen persons
participated in the study. The result from the case study was a portrayal of the
decision situation of RE decision-makers [8], [9], [10]. In the synthesis, the empirical
findings from the case study were synthesised with existing relevant theories. This
resulted in empirically based desirable high-level characteristics of an envisioned
future RE decision support system (REDSS) and guiding principles for designing
such a system that are empirically as well as theoretically grounded [9]. In the method
development stage, DESCRY was developed. The criteria in the method are based on
the characteristics and guiding principles of REDSS. To obtain indications of the
method’s usefulness, we applied it to an existing RE tool, CaliberRM.

3 DESCRY – Evaluation Method of Decision-Supporting
Capabilities of RE Tools

The evaluator should assess the RE tool in relation to criteria. The criteria are
exclusively derived from empirical findings [9]. They are based on the needs of RE
decision-makers and the nature of RE decision-making, i.e. we have focused on what
is generic, and not on specific RE tasks. For each criterion, there are one, two, or three
evaluation questions to facilitate the evaluation. The guiding principles are
empirically and theoretically grounded. For each question, we give some additional
queries in order to provide examples of how the questions can be interpreted.
Extensive descriptions of the criteria are presented in [9].

The evaluator should explore the RE tool in order to evaluate it. The guiding star
when answering the evaluation questions and the additional queries is: What is the
likelihood that the RE decision-maker can perceive this affordance? This means that
the evaluator should not just identify if there are features that can fulfill a criterion.
The evaluator should also take the RE decision-maker’s perspective and estimate

54 B. Alenljung and A. Persson

whether or not he or she can perceive the existence of the features and understand
how to use them. Hidden or cumbersome features will most likely not improve the RE
decision performance and will probably not satisfy the RE decision-makers.

Criteria 1: Reduce the cognitive load

• Is it possible to obtain both overview and details?
− Can the RE decision-makers see the information details in a relevant context so

that the understanding and use of the details are facilitated?
• Is memory aid provided?

− Is it possible for the RE decision-maker to get or activate alerts; write and
retrieve rationale for decisions; write and retrieve “soft” information (e.g.,
personal experiences, rumors, and opinions of others).

Criteria 2: Ensure high usability

• Are usability design principles followed?
− Are available functions and the status of the RE tool visible?
− Are design features used in a consistent way?
− Are the terminology and symbols familiar to the RE decision-makers?
− Can the RE decision-maker perceive how to use the functions?
− Can the RE decision-maker easily navigates in the system?
− Are there clear and logical mappings between controls and effects?
− Is feedback constantly and consistently provided?
− Are slips and mistakes rapidly and effectively recovered?
− Are there constraints that prevent inappropriate actions?
− Can the RE tool be used in a flexible way and is it possible for the RE decision-

maker to personalize it?

Criteria 3: Support availability of different types of information

• Is the information mentally available, in terms of being visualized and easy to
understand?
− Is the information visualized appropriately in relation to how it should be used?
− Is it possible to access information from outside the immediate environment of

the RE tool?
− Are there visual knowledge tools for pattern detection and knowledge

crystallization?
− Is it possible to visually enhance objects?

• Is information in different formats available?
− Is it possible to manage data in a database?
− Is it possible to gather, retrieve, classify, and manage unstructured documents?

Criteria 4: Support different types of decision matters

• Are decisions concerning requirements as such supported?
− Are system-related requirements decisions, e.g., requirements prioritization,

facilitated?

 DESCRY: A Method for Evaluating Decision-Supporting Capabilities of RE Tools 55

• Are decisions of determining suitable ways to carry out the RE process supported?
− Are work-related RE decisions, e.g., choosing requirements acquisitions

method, facilitated?
• Are decisions that are made in other parts of systems engineering that use

requirements as input supported?
− Are requirements-related decisions, i.e., beyond requirements decisions and RE

decisions, e.g., test case selection, facilitated?

Criteria 5: Support creativity and idea generation

• Are techniques that enhance creativity available?
− Is it possible for the RE decision-maker to be exposed to creativity enhancing

information?
− Are brainstorming activities supported?
− Is idea generation in groups supported?

Criteria 6: Support knowledge sharing and transfer

• Are there ways to share and transfer knowledge?
− Is knowledge of the application domain shared and transferred?
− Is knowledge of RE practice shared and transferred?
− Is knowledge of the developed system/system to be shared and transferred?

Criteria 7: Support idea evaluation and problem solving

• Are evaluation techniques available?
− Is it possible to quantitatively compare the effectiveness of suggested

alternatives?
− Is it possible to find out what will happen to a suggested solution if some aspect

changes, e.g., an input variable, an assumption, or a parameter value?
− Is it possible to calculate which values of the input are required in order to

accomplish a preferred level of a goal?
• Is it possible to externalize a problem representation?

− Is it possible for the RE decision-maker to draw and make use of concept maps
of problems, i.e., graphical representations in which concepts are linked to other
concepts?

Criteria 8: Support decision communication

• Are additional communication paths provided?
− Is it possible to communicate with decision stakeholders via the RE tool, e.g.,

via chat systems, interactive whiteboards, bulletin boards, shared information
spaces, or virtual meeting systems?

− Is it possible to disseminate decisions to stakeholders?
• Are negotiation facilities provided?

− Does the RE tool support bargaining, consensus seeking, or conflict resolution?

56 B. Alenljung and A. Persson

Criteria 9: Support coordination

• Are coordination technologies available?
− Is it possible to manage interdependencies between activities to harmonize

them?
− Is it possible to specify behaviours of the human actors, e.g., by establishing

shared goals?
− Is it possible to plan behaviors of the human actors, e.g., by agreeing the set and

order of tasks?
− Is it possible to schedule behaviours of the human actors by, e.g., assigning

tasks to individuals or groups?

4 Concluding Remarks

In this paper, we suggest a summative, criteria-based evaluation method called
DESCRY. The purpose of DESCRY is to find out to what extent RE tools have
decision-supporting capabilities. The criteria are empirically grounded. The related
questions are empirically as well as theoretically grounded.

DESCRY is intended to be used by practitioners as well as researcher. RE tool
buyers can use it in comparing available tools in order to assess which one provide
appropriate decision-supporting capabilities. RE tool developers can use DESCRY to
identify the potential of a certain improvement. In addition, DESCRY is intended to
serve as a road map that can direct efforts of researchers addressing RE decision-
making and RE decision support problems. Our intent is to widen the scope and give
new lines of thought about how decision-making in RE can be supported and
improved.

However, the usefulness of DESCRY is not yet validated. So far, it has not been
used by others than its inventors and its actual usefulness cannot be concluded
without thorough evaluation involving its intended users. This clearly requires further
research. In addition, DESCRY is, as mentioned before, summative, which means that
it is concerned with the intrinsic values of the evaluation object, i.e. the RE tools.
Hence, its purpose is not to suggest changes of the tools. Future research can be
directed to transform the current summative evaluation method into a formative
method. Such a method would make it easier for an RE tool developer, who intend to
increase the decision-supporting capabilities of a tool, to obtain concrete ideas for
improvements.

References

1. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering activities as a
decision-making process. Information and Software Technology 45, 945–954 (2003)

2. Regnell, B., Paech, B., Aurum, C., Wohlin, C., Dutoit, A., Nattoch Dag, J.: Requirements
means decision! – Research issues for understanding and supporting decision making in
requirements engineering. In: 1st Swedish Conference on Software Engineering Research
and Practice, SERP 2001, Ronneby, Sweden (2001)

 DESCRY: A Method for Evaluating Decision-Supporting Capabilities of RE Tools 57

3. Ngo-The, A., Ruhe, G.: Decision support in requirements engineering. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and managing software requirements, pp. 267–286.
Springer, Berlin Germany (2005)

4. Carvallo, J.P., Frach, X., Quer, C.: A quality model for requirement management tools. In:
Maté, J.L., Silva, A. (eds.) Requirements engineering form sociotechnical systems, pp.
119–137. Information Science Publishing, Hershey (2005)

5. Matulevičius, R.: Comparing goal-modelling tools with the RE-tool evaluation approach.
Information Technology and Control, 276–286 (2006)

6. Heindl, M., Reinisch, F., Biffl, S., Egyed, A.: Value-based selection of requirements
engineering tool support. In: Proceeding of the 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications, EUROMICRO-SEAA 2006 (2006)

7. Alenljung, B., Persson, A.: Decision-making from the decision-maker’s perspective: A
framework for analysing decision situations. In: Proceedings of the 4th International
Conference on Business Informatics Research, BIR 2005, Skövde, Sweden, October 3-4
(2005)

8. Alenljung, B., Persson, A.: Decision-making activities in the requirements engineering
decision processes: A case study. In: Proceedings of the 14th International Conference on
Information Systems Development, ISD 2005, Karlstad, Sweden, August 15-17 (2005)

9. Alenljung, B.: Envisioning a future decision support system for requirements engineering:
A holistic and human-centred perspective. Doctoral Thesis, Department of Computer and
Information Science, Linköping University, Sweden, Thesis No. 1155 (2008)

10. Alenljung, B., Persson, A.: Factors that affect requirements engineers in their decision
situations: A case study. In: Proceedings of the 11th International Workshop on
Requirements Engineering: Foundation for Software Quality, REFSQ 2005, Porto,
Portugal, June 13-14 (2005)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 58 – 72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Inventing Requirements: Experiences with an Airport
Operations System

Neil Maiden1, Cornelius Ncube2, and James Lockerbie1

1 Centre for HCI Design, City University London, UK
N.A.M.Maiden@city.ac.uk, J.Lockerbie@soi.city.ac.uk

2 Software Systems Research Centre, Bournemouth University, UK
cncube@bournemouth.ac.uk

Abstract. This paper reports a workshop that integrated creativity techniques
with extended use case diagrams and storyboard representations of use cases to
discover stakeholder requirements for VANTAGE, a new system designed to
reduce environmental impact at airports. The workshop revised the boundaries
of the system and generated 200 new requirements-based ideas and storyboards
for VANTAGE. The paper describes the workshop structure, gives examples of
outputs from it, and uses these outputs to answer 3 research questions about the
usefulness of ideas generated and creativity techniques employed.

1 Introduction

As we have reported previously [1, 2], requirements engineering is a creative process
in which stakeholders and engineers work together to create ideas for new software
systems that are eventually expressed as requirements. The importance of creative
system and product design is increasing. Creativity is indispensable for more
innovative product development [3], and requirements are recognized as a key
abstraction that encapsulates the results of creative thinking about a system.

Most current requirements processes and research activities support problem
analysis and system specification. In contrast, invention is often perceived as part of
the design process that follows requirements engineering [4]. One assumption behind
research approaches such as i* [5] and commercial processes such as the RUP is that
stakeholders have sufficient knowledge to already know their requirements. However,
this is increasingly flawed because of the breadth of expertise that is needed to specify
complex systems and the need for stakeholders with different areas of expertise to
work together to generate requirements.

One challenge is to build on previous successes [6, 7, 8] and integrate creativity
techniques into mainstream requirements engineering processes. This paper reports
unpublished results from one creativity workshop within the RESCUE requirements
process [8] that was run to discover requirements for a new system to reduce the
environmental impact of ground aircraft movements at airports. The two-year
VANTAGE (Validation of a Network-Centric, Technology Rich ATM System Guided
by the Need for Environmental Governance) Phase-1 project, funded by the UK’s
Department of Trade and Industry, integrates technologies into the operations of

 Inventing Requirements: Experiences with an Airport Operations System 59

regional airports in the United Kingdom to reduce their environmental impact,
measured as noise and gas emissions. Partners who included Thales and Qinetiq were
introducing new technologies such as surveillance systems into airport operations at
Belfast City Airport (BCA) in Northern Ireland, the pilot site for the project. The
VANTAGE requirements process sought to determine new requirements and
opportunities arising from the technology-led changes to the complex socio-technical
systems at BCA, and in particular to the work practices of actors such as air traffic
controllers, dispatchers and refueling staff. Requirements challenges specific to
VANTAGE included exploring the complex boundaries of airport operations,
determining the impacts on work practices that might be changed, and specifying new
interactive mobile tools that airport staff might use to reduce the environmental
impact of aircraft being turned around at BCA.

In the applied requirements process we ran one creativity workshop to explore the
boundaries of airport operations at BCA, discover new requirements and design
features on interactive and other technologies to be installed at the airport, specify
changes in work practices at BCA, and generate first-cut use case specifications of
VANTAGE that informed later requirements processes in RESCUE. We used outputs
from the workshop to answer 3 research questions about the usefulness of the
requirements and design features generated from applying individual and combined
creativity techniques, and the effectiveness of extended requirements modeling
notations to support creative thinking about system boundaries. Results have
implications for the redesign of requirements processes, techniques and notations to
support more effective creative thinking at the start of systems development.

2 RESCUE and Its Creativity Workshops

RESCUE is a concurrent engineering process in which different modeling and
analysis processes take place in parallel [9]. Concurrent processes are structured into
4 streams. The two most important streams are:

1. System goal modeling to model the future system boundaries, actor dependencies
and most important system goals;

2. Use case modeling and scenario walkthroughs to communicate more effectively
with stakeholders and acquire complete and testable requirements.

Creativity workshops normally take place after a requirements team has specified
the system boundaries using context and use case diagrams but before it specifies the
detailed use cases. Their main purpose is to discover and invent requirements and
ideas needed to specify use cases.

We designed RESCUE to separate the creativity workshops from other more
practical requirements activities such as use case specification, requirements acquisi-
tion and requirements management. In the VANTAGE project, the requirements
team undertook these other requirements activities before and after the workshop.

2.1 Previous Creativity Work

As we have reported previously [6], little requirements engineering research has
addressed creative thinking directly. Brainstorming techniques and RAD/JAD

60 N. Maiden, C. Ncube, and J. Lockerbie

workshops [10] make tangential reference to creative thinking. Most current
brainstorming work refers back to Osborn’s text [11] on principles and procedures of
creative problem solving (CPS). However, there are no reported applications of the
CPS model to requirements processes. Robertson [12] argues that requirements
analysts need to be inventors to bring about innovative change that gives competitive
advantage. Nguyen et al. [13] observed that teams restructured requirements models
at critical points when they solve sub-problems, triggered by moments of sudden
insight. Mich et al. [14] report the successful use of the elementary pragmatic model
from communication theory to trigger combinatorial creativity during requirements
acquisition. However, none of these approaches exploit creativity theories or models
directly. Requirements analysts still lack processes to guide their creative processes.

2.2 Creativity Workshops in RESCUE

RESCUE incorporates creativity workshops to encourage creative thinking with
which to invent requirements. As we reported previously [6], the workshop activities
are designed using 3 established models of creativity from cognitive and social
psychology that we use for 3 purposes. Firstly, to encourage creative thinking, it is
essential to establish a working definition of creativity. The models provide us with
such a definition. Secondly, it is important to structure the workshops into creative
processes. The models provide us with taxonomies of creative thinking with which to
structure processes in workshops. Thirdly, one model provides procedural guidance
for creative problem solving that we apply directly to each workshop’s design.

In RESCUE we adopt Sternberg’s [15] definition as prototypical of those available
in the literature. Creativity is defined as “the ability to produce work that is both novel
(i.e. original, unexpected) and appropriate (i.e. useful, adaptive concerning task
constraints)”. As with previous projects we designed the VANTAGE creativity
workshop to produce ideas that were novel in the VANTAGE domain, novel to
VANTAGE stakeholders, and useful for VANTAGE according to these stakeholders.

So how did we apply the 3 creativity models? Firstly, we designed the workshop to
support the divergence from and convergence towards ideas as described in the CPS
model [11]. As such each workshop period, which typically lasted half a day, started
from an agreed current system model, diverged, then converged towards a revised
agreed model that incorporated new ideas at the end of the session. Secondly, we
designed each workshop period to encourage one of 3 basic types of creativity
identified by Boden [16] – exploratory, combinatorial and transformational creativity.
These 3 types are based on computational creativity approaches that define a space,
then explore and transform it. Thirdly, we designed each period to encourage 4
essential creative processes reported in [17]: preparation, incubation, illumination and
verification. Poincare’s philosophical model was based on personal reflections about
his own scientific processes. We designed incubation and illumination activities using
the type of creativity that we sought to encourage.

In RESCUE we did not integrate these 3 creativity models directly in a single,
consistent model of requirements creativity. Rather these models contributed
separately to the design a coordinated creative requirements process. The CPS model
processes provided the overall structure of the process. During each period the
process encourages divergence from a current requirements model then convergence

 Inventing Requirements: Experiences with an Airport Operations System 61

towards a new one. Poincare’s model provided finer-grain processes – incubation and
illumination – to achieve this divergence and convergence. Boden’s types of
creativity were used to select different creativity techniques for achieving incubation
and illumination during convergence and divergence. It is these techniques that are
the focus of the reported results. A 2-day workshop is composed of 4 half-day
creativity periods. In each period we use a different creativity technique to encourage
different types of creativity.

Prior to VANTAGE, the RESCUE team had facilitated 10 creativity workshops in
the air traffic and policing domains that were reported in previous publications [1, 6,
7, 8, 18]. However, project pressures and the absence of available resources meant
that we had been unable to explore the impact of creativity workshop ideas on
requirements specifications. In VANTAGE, resource and time was put aside for key
stakeholders to assess creativity workshop outputs and, through them, the
effectiveness of the workshops to generate requirements that can be implemented in
VANTAGE.

3 The VANTAGE Creativity Workshop

The VANTAGE creativity workshop took place on the 19th and 20th April 2006 at
Belfast City Airport in Northern Ireland. The workshop ran 10.00–17.00hrs on the first
day and 09.00–16.30hrs on the second. It involved 4 creativity sessions: (i) brainstorming,
then challenging boundaries; (ii) exploring constraints; (iii) discovering requirements from
solutions; (iv) storyboarding. In each session a different creativity technique was used to
encourage different types of creativity.

One facilitator, 2 scribes, and 11 participants attended the VANTAGE workshop.
Each participant represented a VANTAGE technology partner, the national air traffic
service, the airport, the community forum or the airport operators association. The
workshop was held in a large meeting room. The use case models and précis provided
the structure for the workshop room. Each diagram and précis was posted on a
separate 1m2 pin board in the workshop room that became the physical and logical
structure of ideas associated with use cases during the workshop. In total there were
27 such use cases and pin boards at the start of the workshop.

On day-1 in the morning session the participants brainstormed new ideas for
VANTAGE, then walked through the VANTAGE use case diagram shown in Figure 1
to review the VANTAGE system boundaries. Analysts had developed the diagram
prior to the workshop, and a larger version of it is available at [22]. In the afternoon
session participants brainstormed constraints on VANTAGE, then removed selected
constraints to generate new requirements and design features for VANTAGE. On day-
2 in the morning, the technology partners presented technologies available for use in
VANTAGE. Afterwards all of the participants generated new requirements and design
features based on these available solutions and combined them with outcomes from
day-1. In the afternoon participants developed 3 storyboards to combine ideas from the
first one and half days. The use cases were prioritized, then 3 groups took the 3 highest
priority use cases and constructed storyboards for them. Furthermore, participants were
encouraged to generate new requirements and design features that surfaced as a result
of the workshop activities and document them on ideas cards that were placed on the

62 N. Maiden, C. Ncube, and J. Lockerbie

Define 6-month

Operating Schedule

Ground

Movement

Control Departures

(a)

Runway Selection

Arrivals / Departures

(a)

Approach/Arrival

Sequence

Control

(a)

On-Stand

Operations

(a)

Pre-Flight

Checks (a)

Co-ordinate

Aircraft Services

(a)
Co-ordinate

Flight Departure

(a) Co-ordinate

Flight Arrival

(a)

Baggage/Freight

Handling -Arrival(a)

Baggage/Freight

Handling - Departure

(a)

Passenger flow

and Search
(a)

Ground

Movement

Control Arrivals

(a)

Collect Noise

Climate Data

(c)

Develop Wider

Route Network

(c)

Track Aircraft

Noise Emission

(c)

Noise Measure

at Hot-Spots
(c)

Real-Time

Noise Tracking

(c)

Airport

Agreement

Planning

(c)

Management of

the Environment

(c)

Produce Daily

Mayfly

(b)

Define Routes/Flying

Frequency

(b)

Determine 6-month

Mayfly Staff Rosters (b)

(b)

Compile Airport

6-month Mayfly

(b)

Provide Information

to Public
(c)

Dissemination of

Weather Data

(c)

Dissemination of Airport

Operating Standards

 and Procedures

(3)

Cargo Handling

Agent

(2)

BCA

ATC

(3)

Dispatcher

(2)

Ramp

(2)

Security
(2)

BCA Airside

Standards

(2)

Airport

Management

(2)

Airport

Management

(2)

Noise Monitoring System

(2)

All Operational

Stakeholders

(3)

Airline Scheduling

Department

(2)

En Route

Controller

(3)

Belfast

International

 ATC

(3)

Airline

Management

(3)

Environmental

 Agent

(2)

Pilot

(4)

DRD

(4)

Community

Forum

(3)

Negotiate

Educate

VANTAGE

Airspace

designers

Improve/Inform

Airspace design
Environmental

costing

(3)

Whitehall

(3)

Passenger

(3)

Fig. 1. The use case diagram at the end of the workshop

relevant pin boards. To do this the participants were supplied with A6 RESCUE
colour-coded idea cards, post-it notes, A3 paper and pens. Everything captured on the
pin boards was documented electronically in a workshop report sent to all VANTAGE
stakeholders at the end of the workshop.

These activities and the 4 sessions are described in more detail.

3.1 Exploratory Creativity

The exploratory creativity session was in two parts – brainstorming then scoping.
During the brainstorming part standard RAD/JAD facilitation techniques and rules
[19] such as avoiding criticism of other people’s ideas and time-boxing each topic
under discussion were applied. Participants reported requirements during round-robin
then open-ended brainstorming activities.

During the scoping part participants worked together to identify to what extent
VANTAGE can redesign the work of each actor modeled in the use case diagram. We
encouraged exploratory creativity by challenging VANTAGE system boundaries and
exploring ideas previously outside VANTAGE’s scope. We applied an extension to
the use case diagram notation to represent different system boundaries. UML use case
diagrams have a simple representation that describes actors outside of a system
boundary, rather than the complex types of actors and boundaries found with socio-
technical systems such as VANTAGE. Therefore each actor was identified as either:
(1) a new system introduced by VANTAGE; (2) human work to be redesigned in
VANTAGE; (3) systems and work outside of VANTAGE’s direct redesign but open
to influence by it, and; (4) systems and work outside of VANTAGE’s scope. Figure 1
shows these actor system boundaries, for example the cargo handling agent is tagged

 Inventing Requirements: Experiences with an Airport Operations System 63

with (2) – work to be redesigned by VANTAGE partners – and the en-route
controller is tagged with (3) – cannot be redesigned directly by VANTAGE partners,
but amenable to influence by solutions that VANTAGE will deliver. We chose to use
simple tags to make the use case diagram simple to change. The viscosity of a
notation is a cognitive dimension [20] often found in requirements methods. Whilst
less important during more formal analyses, viscosity can be an impediment to
creative requirements modeling, and we sought to avoid it in the creativity workshop.

The use case diagram was also tagged to indicate the impacts of the use cases if
implemented successfully – a form of prioritization in VANTAGE. Participants
ranked each use case as having: (a) a direct potential benefit for the environment; (b)
a partial impact or (c) no impact. Again the use case diagram was extended using a
simple notation to indicate each potential impact. Figure 1 shows that the ground
movement control departures use case was tagged (a) – direct potential impact –
whilst the develop wider route network use case was tagged (c) – having no impact.

An initial version of the use case diagram, with tagged actors and use cases, was
developed prior to the workshop, although the 27 use cases were reduced to 22 after
an initial review of the diagram at the beginning of the workshop.

Finally, during the day-1 lunch period, the facilitator asked participants to think of
other worlds and systems familiar to them, and generate new VANTAGE ideas based
on analogical mappings with these worlds and systems.

3.2 Transformational Creativity

During transformational creativity people change the solution space in a way that
things that were considered impossible are now possible. On the afternoon of day-1
we encouraged transformational creativity by guiding participants to discover and
remove constraints on the reduction of the environmental impact and air travel at
BCA. The facilitator led a group brainstorming session to discover as many
constraints as possible. Participants then worked in 3 groups to select constraints in
turn until none remained, then envisaged the removal of each constraint to generate
new VANTAGE ideas based on this removal. The session ended with the groups
reporting new VANTAGE ideas and posting them on the ideas boards, which in turn
led to a final period of group brainstorming using the new ideas.

On the morning of day-2 five participants gave 5-10 minute presentations of
candidate VANTAGE technologies to discover new requirements and opportunities.
These technologies were collaborative data networks from Selex SI, ADS-B air-
derived surveillance from Raytheon Systems, an interactive approach path monitor
from Thales S.A., enhanced interactive display equipment from Flight Refueling, and
an airport synthetic environment from QinetiQ. After these presentations, participants
worked in groups to discover new requirements and design features arising from these
solutions, which were again documented on ideas cards and reported back to the other
groups at the end of the session.

3.3 Combinatorial Creativity

Combinational creativity is the creation of new ideas from combination and synthesis
of existing ideas. It is the act resulting from an unusual combination of existing

64 N. Maiden, C. Ncube, and J. Lockerbie

concepts [16]. At the end of the morning of day-2 participants combined ideas
generated from the solution presentations with ideas on the pin boards generated from
earlier techniques. On the afternoon of day-2, storyboarding was used to elaborate and
combine creative ideas in the last period of the workshop. Participants again worked
in 3 groups. Each group was asked to produce a storyboard that described the possible
combination of ideas associated with one use case during the first 3 periods of the
workshop. To structure the storyboarding process, each group was given A1-size
pieces of paper that were annotated with 16 boxes to contain a graphical depiction of
each scene of the storyboard and a space to describe that scene.

3.4 So How Useful Were the Creativity Workshop Ideas?

We used data gathered during and after the workshop to investigate 3 research
questions about the usefulness of the generated requirements and design features in
the VANTAGE project, and the extended UML use case diagram notations to support
creative thinking about system boundaries. Although creativity workshops in earlier
projects generated ideas that were perceived to be novel by stakeholders, concerns
remained about the usefulness of these ideas in subsequent requirements and
development processes [8]. Therefore we used the VANTAGE workshop results to
answer 2 research questions about the usefulness of generated requirements and
design features, and thereby and the techniques that led to their generation:

Q1 Did the creativity workshop, as an event, generate ideas that were perceived to
be useful when specifying the requirements of the system to be implemented?

Q2 Did individual creativity techniques generate ideas that were perceived to be
useful when specifying the requirements of the system to be implemented?

We also used the VANTAGE workshop results to answer a third question about
the usefulness of the extended the UML use case diagram notation. Existing
requirements notations such as i* [5] and the UML were not designed to support
creative thinking. Indeed requirements notations are often designed for analysis rather
than invention, and in cognitive terms can be described as viscous – resistant to
change. Therefore we sought to answer a third research question:

Q3 Did the extended UML use case diagram support boundary changes?

We used ideas – requirements and design features – and model changes generated
during the workshop, post-workshop ranking of ideas by VANTAGE stakeholders
and our own observations of the workshop to seek answers to these 3 research
questions.

4 Results

The workshop took place and ran to schedule, and all activities were followed without
disruption. Minor conflicts about ideas were handled with facilitated discussion
during the report back presentations and verification activities.

The main outcomes are summarized in Table 1. Overall the participants generated
197 ideas and 3 storyboards over the 2 days. Participants produced 34 new

 Inventing Requirements: Experiences with an Airport Operations System 65

Table 1. Totals of ideas generated by technique, for the VANTAGE system and specific use
cases

Deliverable type Number system-wide Number use case-specific
Brainstormed ideas 18 16
VANTAGE constraints 31 0
Ideas from VANTAGE constraints 113 0
Ideas from VANTAGE solution presentations 0 6
Workshop1 storyboards 0 3 storyboards
Ideas from informal analogies 3 2
Non –Technique Specific Ideas 39 0

VANTAGE ideas from the day-1 brainstorming and scoping session, another 113 by
identifying and removing 31 constraints on VANTAGE, 6 ideas from presentations of
VANTAGE technologies, 5 ideas from the informal lunchtime analogies, 3 large
storyboards and 39 ideas placed on pin boards but not ascribed to a specific technique.

Most ideas were attributed to the VANTAGE system rather than specific use cases.
Exceptions to this were the brainstormed ideas – almost half were attributed to use
cases, the 6 ideas from the solution presentations all attributed to use cases, and the 3
storyboards that were generated for selected use cases. This contrasts with previous
RESCUE creativity workshops [e.g. 6], in which more than half of all generated ideas
were attributed to use cases.

4.1 Exploring System Boundaries

On the morning of day-1 we reviewed the use case diagrams with information about
the redesign of actor work and the environmental impact of behaviour expressed in
use cases shown in Figure 1. After the workshop we investigated the changes
recorded on the use case diagram during this period, see Table 2. During the 90-
minute session the participants recorded 12 changes to the actors on top of the 34 new
ideas reported on the ideas cards. Four new actors were added to the diagram, 3 actors
already on the diagram but outside VANTAGE boundaries were moved inside
VANTAGE boundaries, and a further 5 actors already inside VANTAGE boundaries
were changed.

The addition of the 4 new actors demonstrates the benefits of reviewing the use
case diagram during brainstorming sessions. Even though the diagram had undergone
thorough analyses prior to the workshop, walking through it still revealed missing
actors, such as passengers, air space designers and UK Government, which were to

Table 2. Changes to use case diagram during exploratory creativity

Change to use case diagram Number Actors changed

New actors added to the model 4 Whitehall (UK Government); Passengers; Airspace
designers; VANTAGE

System boundaries extended to
include actors 3 Environmental agent; Community forum; DRD

System boundaries modified to
change actor roles 5

Belfast International ATC; En-route controller;
Noise monitoring system; operational
stakeholders; BCA ATCOs

66 N. Maiden, C. Ncube, and J. Lockerbie

be influenced by the introduction of the VANTAGE system. Of the 34 ideas
generated during the brainstorming session 4 made reference to passengers (e.g. better
and improved idea who stakeholders are and better communication with public),
suggesting some thematic overlap between brainstormed ideas and changes to the
diagram.

Tagging actors and use cases in the diagram was intended to support creative
exploration of VANTAGE boundaries and include more actors in the system. Results
indicate that it occurred as planned. Two actors - community forum and DRD
(Department of Regional Development) - were brought into the scope of VANTAGE
as a result whilst a third - environmental agent –was changed to redesign the agent’s
work.

More surprisingly, 5 actors were taken outside of the scope of the VANTAGE
direct work redesign. Air traffic controllers at Belfast International Airport, en-route
controllers, BCA controllers and other operational stakeholders were changed to
have their work influenced rather than redesigned by VANTAGE. The simple
extension to use case diagram notations fundamentally changed the boundaries of the
complex socio-technical system in 1 hour of work. Again, of the 34 ideas generated,
some referred to air traffic controllers (e.g. system to give extra information to
controllers that is useful but does not overload them – incentivize them), suggesting
more thematic overlap between the brainstormed ideas and the diagram changes.

4.2 Constraint Generation Works

Identifying and removing VANTAGE constraints to discover new ideas took place on
the afternoon of day-1. Participants worked together to discover 31 constraints on the
design of VANTAGE. These constraints were then divided between 3 groups, each
containing 3 or 4 participants. The groups worked in parallel to brainstorm 113
VANTAGE ideas that became possible if a selected constraint was removed. A final
report back session communicated the ideas across the 3 groups.

Removing constraints led participants to generate new VANTAGE ideas. For
example removing constraint [C17] variability of weather quickly led to generation of
5 ideas: (i) capacity – use cross wind (predictable) to blow away vortex; (ii) gliding
approaches and steam catapult departures – no power; (iii) always choose runway
that would give best environmental impact; (iv) more certainty for people around
airports in terms of what noise they will get when; (v) round runways, steam catapult
runways. These ideas demonstrate how removal of a single constraint often generated
some ideas that both could be implemented in VANTAGE (e.g. use of predictable
crosswinds) and some that could not (e.g. steam catapults). We investigated this
phenomenon more systematically using the post-workshop data reported in Section 5.

Similarly removing constraint [C21] different airline operating methods led to the
generation of 3 ideas: (i) simpler model and consistent measurements to validate the
model; (ii) better predictability = standardized turnaround times and operations; (iii)
applicable to both strategic and tactical planning. Further analysis revealed that these
3 ideas could be implemented to some degree in VANTAGE without removing the
original constraint. It demonstrates the potential effectiveness of constraint removal
on generation of ideas that are potentially useful in requirements processes. Again we
investigated this phenomenon more systematically in Section 5.

 Inventing Requirements: Experiences with an Airport Operations System 67

More occasionally the removal of constraints led stakeholders to consider trade-
offs between satisfying competing goals. For example, removing constraint [C18]
ability to grow with demand led to the generation and documentation of advantages of
the constraint’s removal: (i) increased traffic throughput; (ii) reduced emissions; (iii)
increased throughput and revenues; (iv) improved gate layout; (v) terminal layout-
taxi distance reduces with engine size. Elsewhere, removing constraints led
stakeholders to consider the possible advantages and disadvantages of VANTAGE
ideas. For example, removing constraint [C3] airport operating hours led to
advantages such as aircraft movement increases and increased aircraft utilization, but
also disadvantages such as major impact on 24-hour noise disturbance and increased
community disturbance. As such the stakeholders explored trade-offs between soft
goals that are more commonly expressed with requirements notations such as i* soft
goal contribution links [5].

4.3 Storyboarding Use Cases

On the afternoon of day-2 the 3 stakeholder
groups combined ideas from the physical
use case pin boards to produce 3 storyboards
for the 3 prioritized use cases using
structured storyboards. Figure 2 shows the
state of the use case UC4 on-stand
operations at the end of the workshop. The
original input to the workshop was a simple
précis of just 12 words. The final use case
storyboard depicts how wind direction
changes are detected by a VANTAGE
system that recommends a change of stand
for an arriving aircraft and co-ordinates
ground staff to that stand. It includes and
combines ideas e.g. have an accurate ETA
(estimated time of arrival). A larger version
of the storyboard is available at [21]. The
other 2 storyboards were developed to a
similar level of detail.

5 Rating Idea Usefulness

Although participants considered the VANTAGE creativity workshop a success at the
time that it took place, and the team used its outcomes in subsequent RESCUE
activities, we were unable to review the perceived usefulness of the individual ideas.
Therefore 3 months later, 6 volunteer VANTAGE stakeholders reviewed the
usefulness of 169 of the 197 workshop ideas. All 6 reviewed all of the 169 ideas. We
dropped ideas of 2 types from this analysis – the 24 ideas specific to use cases, which
could only be understood by presenting the use cases as well, and 4 system-wide ideas
that were self-comments to the participants rather than documented ideas per se.

Fig. 2. The storyboard for the UC4
On-stand operations use case

68 N. Maiden, C. Ncube, and J. Lockerbie

For the purposes of VANTAGE, usefulness was defined as the degree to which
each idea could be implemented in the VANTAGE system. A simple 3-point scale
was adopted for each idea – 1 indicated that it can definitely be implemented in
VANTAGE, 2 indicated that the idea might possibly be implemented in VANTAGE,
and 3 indicated that the idea could not be implemented in VANTAGE. Six
stakeholders who had attended the workshop – 4 from the technology partners, 1 from
the airport and 1 from the community forum – independently ranked each of the 169
workshop ideas.

Results are reported in Table 3. The stakeholders, on average, ranked just over 51
ideas as definite implementations in VANTAGE, 62 as possible implementations and
55 as not to be implemented. There were differences between types of stakeholder.
The technology stakeholders tended to rank fewer ideas as definite implementations –
an average of just over 34 per stakeholder – and more ideas as not to be implemented
– an average of almost 72 per stakeholder.

Table 3. Totals of ideas ranked as definitely, possibly and not to be implemented by the 4
technology partners T1-T4, the airport stakeholder A1 and the community forum representative
C1

Idea ranking T1 T2 T3 T4 A1 C1 Average
Definitely to be implemented 25 17 82 13 76 95 51.3
Possibly to be implemented 107 54 44 44 62 61 62
Not to be implemented 36 96 43 112 30 13 55
Not ranked 1 2 0 0 1 0 0.66

Analysis by idea also revealed different stakeholder ratings. All 6 stakeholders

ranked only 3 ideas as definite implementations: (i) better and improved idea who
stakeholders are and better communication including public; (ii) VANTAGE is
scalable – not a constraint; (iii) focus on noise, air quality and emissions. One arose
during the day-1 brainstorm, the second during day-1 constraint removal, and the
third was not attributed to a specific technique. All 3 ideas refer to requirements
specified in the original VANTAGE project plan. A further 10 ideas were ranked as
definite implementations by 4 of the 6 stakeholders. Four of these ideas were
generated during the day-1 brainstorm, 5 during day-1 constraint removal and 1 was
again not attributed to a technique. Three of the 6 stakeholders ranked a further 37
ideas as definite implementations. Once more, a range of creativity techniques
generated these 37 ideas.

Ideas generated from each of the 31 VANTAGE constraints were analyzed to
determine the constraints for which both ideas that were both implementable (e.g. use
of predictable crosswinds reported in section 4.2) and not implementable (e.g. steam
catapults). An idea was recorded as implementable if half or more (≥3) of the
stakeholders rated it as such, whilst an idea was recorded as not implementable if less
than half or less (<3) of the stakeholders rated it as such. Eight of the 31 constraints
led to ideas that were both implementable and not implementable, suggesting that for
some constraints, participants generated ideas both useful and not useful.

To summarize, the post-workshop analysis revealed that one third of the ideas,
generated with different creativity techniques, were useful. The workshop ideas
appeared to be more useful to some stakeholder types than others. Given the advances

 Inventing Requirements: Experiences with an Airport Operations System 69

made in the 2 days – revision of VANTAGE boundaries, actors and use cases,
storyboarding of the most important use cases, and generation of ideas that
VANTAGE can implement – we believe that the workshop was useful. However,
there appear to be limits on who benefited most from the workshop and how.

6 The Research Questions Revisited

VANTAGE stakeholders regarded the creativity workshop as a success. The
VANTAGE team later used deliverables from it to generate the OCU specification for
the VANTAGE system. Workshop results and data gathered through the post-
workshop review provided data to answer the 3 research questions.

The first question (Q1) asked whether the creativity workshop generated ideas that
were useful when specifying the requirements of the system to be implemented. Results
are inconclusive. Whilst, on average, almost one-third of the VANTAGE ideas were
identified as useful, there were differences between stakeholders. Between them, the
airport and community stakeholders rated over half of the ideas as implementable,
indicating that potential beneficiaries of technologies discovered new requirements and
opportunities to negotiate the satisfaction of later on. In contrast, 3 of the technology
partners rated less than one-sixth of the VANTAGE ideas as useful. One possible
explanation was that these requirements could not be implemented using their
technologies. Therefore, for a new socio-technical system based on known technologies,
the workshop was more useful to the actors in this system. However, the small number
of ideas generated after the 5 technology presentations indicated that such direct
presentations did little to communicate the opportunities that the technologies offered.

The second question (Q2) explored whether individual creativity techniques
generated ideas that were useful when specifying requirements of the system to be
implemented. Constraint removal was more productive in terms of the number of
ideas generated, and brainstorming led to more ideas ranked after the workshop as
definitely to be implemented. Stakeholders also generated 3 detailed and complete
storyboards. In contrast, presentations of solution technologies and use of informal
analogies led to low numbers of ideas. These outcomes are discussed in turn.

Transformational creativity with constraint removal generated more ideas than
other any single creativity strategy. One possible reason for this was that we also
counted possible advantages and disadvantages such as those reported above as
separate ideas. Nonetheless, constraint removal appeared to be a productive technique
for generating ideas that were potentially both useful and not in subsequent
requirements processes.

Brainstorming led to the generation of smaller numbers of ideas, however post-
workshop analyses revealed that these ideas were more likely to be implemented. One
explanation is that brainstorming was the first technique applied, and led stakeholders
to express more obvious, considered ideas already planned to be implemented.

In contrast the 90 minutes of transformational creativity using the presentations of
VANTAGE technologies generated only 6 ideas, or 3% of all ideas generated during
the workshop. This contrasted with earlier workshops in which presentations of
information visualization solutions had led to generation of 9% of all ideas generated
during one two-day workshop [1] and 7% of all ideas during 3 two-day workshops in
the air traffic control domain [6].

70 N. Maiden, C. Ncube, and J. Lockerbie

So what was different about these previous workshops? One was the use of a book
of a large number of candidate information visualization solutions to choose from,
rather than the 5 mandated technical solutions in VANTAGE. In the earlier workshops,
instead of simply reviewing each presented solution in turn, participants worked
together to generate new information visualizations. Another difference was the style
of presentation. Whereas the information visualization expert provided neutral descrip-
tions of each visualization solution, the solution providers in VANTAGE stressed
important features of their solutions to other participants, which might have impacted
on subsequent idea generation.

Furthermore, 39 ideas were placed on pin boards but not ascribed to one technique.
There are several possible explanations for this. We discount the possibility that the
facilitator and scribes did not manage idea traceability during the workshop because
these 39 ideas had stakeholders who claimed ownership of them. Rather stakeholders
completed these 39 ideas during the workshop between planned creativity periods,
indicating the importance of the workshop as a single entity to generate some of the
requirements and design features.

The third research question (Q3) investigated whether the extended UML use case
diagram supported boundary changes. The answer to this question is yes. Whilst 4 of
the changes to the use case diagram were possible with an existing UML diagram, the
remaining 8 were made possible from the representation of system boundaries
introduced into the notation. One alternative – to draw the UML diagram after each
change – was not tractable in the workshop due to the number of changes made in a
short time. In contrast, our notation extension – numbers and letters – was simple and
quick to change during the workshop. We believe that this feature of a requirements
notation is important for creative requirements processes, where system boundaries,
allocation of work to actors and system features change rapidly.

There are 4 possible threats to the validity of the post-workshop idea rankings. The
first is that the 3-month delay for ranking the idea might have caused stakeholders to
forget the ideas, leading to incorrect ratings. However stakeholders continued to
analyze the ideas after the workshop, ensuring familiarity with them. A second threat
is that the 6 post-workshop respondents did not represent all VANTAGE
stakeholders. However, over half of the workshop participants rated the workshop
ideas. The third and fourth threats, however, cannot be dismissed so easily. We chose
not to ask stakeholders to rate all of the workshop ideas to avoid overloading them
with information about the use cases essential to their interpretation. Yet there
remains a risk that these 24 ideas had characteristics, such as specific contexts of
application, which might make them more useful in VANTAGE. Nonetheless, real-
world constraints on the availability of the stakeholders led us to choose to capture
incomplete data with some reliably rather than risk this data capture by seeking too
much. The fourth threat was that we do not know whether the stakeholders knew
many of the ideas generated during the workshop prior to it. Our decision to research
the usefulness rather than the novelty of ideas meant that we did not provide a
baseline for the workshop data. Another threat is that stakeholders ranked known
ideas more familiar to them as more useful, leading to results that over-estimate the
usefulness of the workshop. That said, one purpose of the day-1 brainstorming was to
surface such known ideas, and only 34 ideas were documenting, thus providing some
evidence that new ideas might have emerged during subsequent creative activities.

 Inventing Requirements: Experiences with an Airport Operations System 71

7 Discussion

This paper reports one workshop that delivered requirements and design ideas used in
later requirements activities for a major airport operations system. In post-workshop
analyses stakeholders rated just under one-third of the requirements and design
features as definitely to be implemented, suggesting the usefulness of the workshop.
Some creative techniques, such as constraint removal and brainstorming, generated
more ideas that were ranked as to be implemented. The extended UML use case
notation supported changes to system boundaries during early creative activities.

More requirements and design ideas generated in the workshop were useful to the
airport and community beneficiaries than to the technology partners. One
extrapolation is that the workshop facilitated the transfer of knowledge from these
partners to airport and community stakeholders via the communication as well as the
invention of ideas. Such communication appears to have been more successful during
shared creativity activities such as constraint removal and storyboarding. If correct,
this successful communication is in contrast to the technology presentations, during
which the technology partners presented their solutions directly to other stakeholders
but did not generate many ideas. This emerging role of knowledge communication
will be considered in future refinements of the design of the workshops.

Results from the constraint removal suggest it is difficult to separate generation of
useful and un-useful ideas. This result demonstrates an important lesson – that more
focused creativity activities that seek to reduce “noise” – i.e. un-useful ideas – might
not be as successful as those that do.

The results support previous findings [6, 7, 8] that storyboarding is an effective
technique for combining and generating ideas for subsequent use case specification.
Stakeholders trawled the boards to select ideas to include in each storyboard. As such
this form of storyboarding appeared to be more flexible than originally anticipated.

Finally, extending the use case diagram notation to express and challenge system
boundaries during exploratory creativity also worked as intended. We could have
represented system boundaries as additional boundary rectangles. However, the simple-
to-change tags were easier to change during the workshop, thus avoiding the viscosity
of the notation [22]. New research is needed to develop new notations that support
creative requirements activities, and we look forward to reporting these in the future.

Acknowledgements

The work was funded by the UK DTI-supported VANTAGE Phase-1 project.

References

1. Maiden, N.A.M., Manning, S., Robertson, S., Greenwood, J.: Integrating Creativity
Workshops into Structured Requirements Processes. In: Proceedings DIS 2004, Cambridge
Mass, pp. 113–122. ACM Press, New York (2004)

2. Maiden, N.A.M., Robertson, S.: Developing Use Cases and Scenarios in the Requirements
Process. In: Proceedings 26th International Conference on Software Engineering, pp. 561–
570. ACM Press, New York (2005)

72 N. Maiden, C. Ncube, and J. Lockerbie

3. Isaksen, G., Dorval, K.: Changing views of creative problem solving: Over 40 years of
continuous improvement. ICN Newsletter 3(1) (1993)

4. Heitmeyer, C.: System Designers, Not Analysts Should Design. IEEE Software 22(1), 49–
51 (2005)

5. Yu, E., Mylopoulos, J.M.: Understanding “Why” in Software Process Modeling, Analysis
and Design. In: Proceedings 16th International Conference on Software Engineering, pp.
159–168. IEEE Computer Society Press, Los Alamitos (1994)

6. Maiden, N.A.M., Robertson, S.: Integrated Creativity into Requirements Processes:
Experiences with an Air Traffic Management System. In: Proceedings 13th International
Conference on Requirements Engineering, pp. 105–114. IEEE Computer Society, Los
Alamitos (2005)

7. Maiden, N., Robertson, S., Gizikis, A.: Provoking Creativity: Imagine What Your
Requirements Could be Like. IEEE Software 21(5), 68–75 (2004)

8. Maiden, N.A.M., Robertson, S., Ncube, C.: Can Requirements Be Creative? Experiences
with an Enhanced Air Space Management System. Technical Report, Centre for HCI
Design, City University, London, UK (2007)

9. Jones, S.V., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying
Requirements for Complex Socio-Technical Systems. In: Mate, J.L., Silva, A. (eds.)
Requirements Engineering for Socio-Technical Systems, pp. 245–265. Ideas Group (2005)

10. Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., Wolf, G.: Out of Scandinavia:
Alternative Approaches to Software Design and System Development. Human-Computer
Interaction 4(4), 253–350 (1989)

11. Obsorn, A.F.: Applied Imagination: Principles and Procedures of Creative Problem
Solving. Charles Scribener Sons, New York (1953)

12. Robertson, J.: Eureka! Why Analysts Should Invent Requirements. IEEE Software 19(4),
20–22 (2002)

13. Nguyen, L., Carroll, J.M., Swatman, P.A.: Supporting and Monitoring the Creativity of IS
Personnel During the Requirements Engineering Process. In: Proceedings Hawaii Int’l
Conf. Systems Sciences, vol. 33, IEEE Computer Society, Los Alamitos (2000)

14. Mich, L., Anesi, C., Berry, D.M.: Requirements Engineering and Creativity: An Innovative
Approach Based on a Model of the Pragmatics of Communication. In: Proceedings
REFSQ 2004 Workshop, Riga (2004)

15. Sternberg, R.J. (ed.): Handbook of Creativity. Cambridge University Press, Cambridge
(1999)

16. Boden, M.A.: The Creative Mind, Abacus, London (1990)
17. Poincare, H.: The Foundations of Science: Science and Hypothesis, The Value of Science,

Science and Method. University Press of America, Washington (1982)
18. Pennell, L., Maiden, N.A.M.: Creating Requirements – Techniques and Experiences in the

Policing Domain. In: Proceedings REFSQ 2003 Workshop, Velden, Austria (June 2003)
19. Andrews, D.C.: JAD: A Crucial Dimension for Rapid Applications Development. Journal

of Systems Management, 23–31 (1991)
20. Green, T.R.G.: Cognitive Dimensions of Notations. In: Sutcliffe, A., Macaulay, L. (eds.)

Proceedings HCI 1989, People & Computers V, pp. 444–460. Cambridge University Press,
Cambridge (1989)

21. http://vega.soi.city.ac.uk/~cc559/REFSQ2008vFigure2.jpg
22. http://vega.soi.city.ac.uk/~cc559/REFSQ2008vFigure1.jpg

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 73–87, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Stakeholder Model for Interorganizational
Information Systems

Luciana C. Ballejos, Silvio M. Gonnet, and Jorge M. Montagna

CIDISI – INGAR
Instituto de Desarrollo y Diseño – Univ. Tecnológica Nacional – FRSF

Avellaneda 3657 – (3000) Santa Fe – Argentina
Tel/Fax: +54-342-4553439

{lballejos,sgonnet,mmontagna}@santafe-conicet.gov.ar

Abstract. Stakeholders constitute the principal source of requirements in the
development of information systems. They therefore must be considered allover
the process. In order to achieve success, they must be also modelled and then
integrated with requirements, design and implementation models. Thus, a more
complete perspective is added to traditional modelling. This work presents and
describes a stakeholder model for interorganizational information systems, in
order to incorporate a stakeholders-including approach to traditional modelling,
focusing on interorganizational environments.

Keywords: stakeholder, interorganizational information systems.

1 Introduction

In requirements elicitation, the stakeholder concept is fundamental. Stakeholders are
the primary requirements source for software projects [1]. They are defined as any
group or individual that can affect or be affected by the attainment of organizational
objectives or that must be involved in a project because is affected by its activities or
results [2]. Each stakeholder has a unique view on the system. By means of their
coordinated efforts the system is conceived, created and maintained.

Diverse changes of perspectives in organizational management and engineering
areas are taking place by these days. Nowadays, various issues are changing the way
of doing businesses. Organizations now tend to cooperate and create links with other
organizations due to economic globalisation, changes in consumers needs and
requirements, new market trends, ICTs dynamic development, etc., conforming what
is known as Interorganizational Networks (IONs). Operations and interchanges
between participant organizations are supported by a special type of information
system: Interorganizational Information Systems (IOSs). They are the main tool to
support and coordinate interorganizational (IO) processes and relations.

In the engineering area there is a change from design processes centered in the user
towards more participative experiences. A new perspective has arisen from design
FOR users towards design WITH users, where new ways of thinking and working are
required. Participative design is not just a method or a set of methodologies but an

74 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

attitude towards people. It is based on the belief that all the people have something to
offer to the design process. This approach is promoted by various authors. Sanders [3]
affirms that persons want to express themselves and participate directly in design
process development. Thus, the great challenge of creating tools and infrastructures to
support and facilitate the design processes considering users experience is posed.

There exist diverse initiatives to disseminate this perspective, that requires
the explicit representation of stakeholders in information system development models
[4, 5]. This approach not only helps in the common understanding of the system
design process, but also supports the coordinated effort required for its development,
through the connection of the diverse activities which compose the process with the
stakeholders capable to execute them. Also the satisfaction level is assured, since
stakeholders needs are considered from early design stages. By representing
stakeholders in systems models, diverse issues can be analyzed and addressed such as
conflicts between stakeholders, rationale behind requirements, etc.

This approach is even more important in IO environments, where personal
interactions are less frequent and more difficult due to the geographical dispersion
that generally takes place between participants and where diverse cultures, interests,
and points of view exist. Thus, considering the latent needs of (a) counting with tools
and systems to support interorganizational linkages and (b) involving stakeholders in
systems design processes, this article proposes a stakeholder model. It can be used not
only in requirements modelling but also in other stages of the design process, thus
obtaining stakeholders-including models and achieving a more complete vision of the
process. This proposal helps in reducing the existing gap between what is the problem
domain, formed by stakeholders and their needs, and the solution domain, which has
its initial steps in the requirements and needs modelling associated to their main
sources (stakeholders).

In order to present an orderly explanation of the model development, Section 2
characterizes IOSs and stakeholders for IO environments. Section 3 relates the
stakeholder and the actor concepts and introduces the role concept, very important in
process representation. Section 4 progressively develops and describes an integrated
stakeholder model using the concepts explained in Sections 2 and 3, and introducing
new properties. An example of the proposed model is included in Section 5. Finally,
diverse conclusions of the work and new possible research lines are presented in
Section 6.

2 Stakeholders and Interorganizational Information Systems

In the context of contemporary global economy, any design process, and more
strongly IOSs design processes, implies multiple teams and stakeholders collaborating
for attaining a common goal. Being able to capture efficiently and clearly their needs
is increasingly more important and complex.

As opposed to traditional environments, in IO environments stakeholders are more
numerous and their interests vary considerably. They are defined as “any individual,
group or organization which can affect or be affected (positively or negatively) by
the system under study and which has direct or indirect influence on its requirements”
[6, 7, 8]. Fig. 1 represents the concepts under this definition, where a stakeholder can

 A Stakeholder Model for Interorganizational Information Systems 75

Individual Group

2..*

Organization

Stakeholder

*

1..*

Fig. 1. Stakeholder Concept

be an individual, a group or an organization, where an organization is composed by
one or more stakeholder individuals, groups or organizations. In general, a group is
an aggregation of -at least- two individuals.

3 Stakeholders, Actors, and Roles

Pfahl [9] considers the actor concept as essential in order to represent processes
models besides activities, artefacts (which are used and produced by activities), tools
(which are used by activities), and roles (which carry out activities). This concept
defines responsibilities between agents and activities of particular processes.

Nevertheless, a subtle difference between the terms actor and stakeholder exists.
Stakeholders are those which have some interest in the process and will be affected
positively or negatively by the results to be obtained. Thus, the set of stakeholders of
a particular process is more numerous and, at the same time, includes the set of actors
of that process.

In general, process modelling is limited to represent only individuals who will
directly execute activities. Also, in any domain, the execution of activities by actors is
restricted to the roles they may play in particular moments. While an actor represents
a specific entity (individual, group, or computational program), a role represents a
position which might be played by diverse actors. Also an actor might be associated
to more than one role and also a role can be played by more than one actor. A role
implies the possibility or capacity to execute a set of activities. Van Welie and van der
Veer [10] define it as a collection of tasks performed by one or more agents. The tasks
might be hierarchically decomposed. Actor’s roles analyze and consider their
responsibilities on the project and their relation with the artefact or final product to be
obtained as result. In the case of information systems, for example, roles arise from
the analysis of the possible interaction types which can exist between a particular
stakeholder and the future system to be developed.

Thus, the role concept avoids personifying the relation between actors (stakeholders)
and activities and is a very useful concept to model properties and behaviours of entities
which evolve over time in processes models [11]. Methodologies can be easily
described and planned through profiles that can be assumed by the participating entities.

Kueng et al. [12] describe two strengths of the role concept: (1) during modelling
stage, abilities, functionalities, competencies and responsibilities must not be discussed,

76 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

and (2) during operative stage, when the model is used, entities with the same role are
potentially interchangeable.

Role concept can be transferred to collaborative design area, which involves
stakeholders with different intentions, formations and knowledges, and where
activities are influenced not only by technical decisions, but also by social interactions
[13]. Roles and stakeholders analysis and modelling introduce elements of Social
Sciences in the representations, shaping a complementary dimension to traditional
ones for design processes [14].

Stakeholder analysis provides a baseline for effective requirements engineering and
subsequent system design, as well as for eliciting requirements for all key stakeholders.
Macaulay et al. [15], Kirby [16] propose approaches to determine the major categories
of stakeholders for an information system. Similarly, Robertson [17] and Alexander and
Robertson [18] present a well-explained model describing diverse categories of
stakeholders using “the onion model” and locating each category in one of the “onion
levels” (rings). Nevertheless, in IO environments one more step is needed towards the
consideration of certain issues related to those contexts (e.g. the interorganizational
dimension is added, from which stakeholders can also exist). Furthermore, some more
work towards stakeholders concrete selection must be done. Taking into account this
problem, Ballejos and Montagna [19] have proposed a method for stakeholders
identification for IOSs.

When identifying the concrete stakeholders for any software project, diverse
attributes and properties related with the project are also determined: dimension to
which they pertain, roles, and interest and influence degrees. The assignment of roles
to stakeholders describes their relation to IOS design process. It also allows an easier
stakeholder management, by grouping them through roles. In this way, stakeholders
sharing the same profile in relation to IOS can be managed altogether.

Zhang and Chen [14] pose that a clear identification of stakeholders roles and their
participation degree in the diverse design stages are important steps towards the
success of distributed collaborative design. From this affirmation, the first concepts
related to the model development must be addressed in order to represent stakeholders
(Fig. 2). The role (operator, regulator, responsible, beneficiary, etc.) represents the
relation between the stakeholder and the design process activities.

Activity Role Stakeholder

+requires
* *

+possess
1..* *

Fig. 2. Stakeholders and Roles

Fig. 2 takes into account that every stakeholder has at least one role (1..*) and that
a role can be played by diverse stakeholders (zero or more, as indicated by *). The
association-end possess indicates the stakeholder position in relation to the process or
project under analysis.

On the other hand, the execution of activities by stakeholders is performed through
the assignment and utilization of roles. Thus, the model must also include the
necessary concepts in order to represent that every activity requires particular roles to
be executed and that every role is required for the execution of some activity (Fig. 2).

 A Stakeholder Model for Interorganizational Information Systems 77

Between the approaches which incorporate the role concept, activities are executed
only when certain abilities are possessed. In this context, Gonnet et al. [20] use the
skill concept, while Harzallah and Vernadat [21] refer to competency when making
reference to the attribute needed to meet a mission or execute an activity in their
formal models. However, this can be generalized considering the actor concept by
Ellis and Wainer [22]: “an actor is a person, computational program or entity which
must play roles to execute, be responsible for, or be associated in some manner with
activities and procedures”. Analyzing this concept and comparing it with the IO
stakeholder presented in Section 2, it can be deduced that this actor concept for Ellis
and Wainer corresponds to stakeholder one. So, it can be used in order to represent
participative environments, where other criteria also exist when relating stakeholders
with activities, and not only the ability. For example, functions performed,
hierarchical level, geographical location, etc. are attributes independent from the
ability or specific knowledge of the individuals. In the model, these specific
properties will be materialized through the role concept, such as showed by Fig. 2.

However, as it was previously stated, a stakeholder executes a particular activity
playing a certain role. Thus, to count with information related to this, an association-
class is needed in order to integrate the information regarding the execution of a
particular activity. In Fig. 3, execution association-class contains the role played by
the stakeholder when executing an activity.

Activity

Role Stakeholder

+requires *

*

+possess
1..* *

+actor

*

*
Execution

1

+subRole

(a) context Execution
 inv: self.activity.requires ->
 intersection (self.actor.possess) ->
 includes(self.role)

Fig. 3. Stakeholders, Activities, and Roles

Fig. 3 integrates the concepts related with the position of a determined stakeholder
(possess association-end), activities management (requires association-end) and
activities execution by a stakeholder playing a particular role (execution class).
Execution association-class indicates, in the moment to be instantiated the model, the
role possessed in that instant by the stakeholder executing an activity.

A subrole relationship indicates that a role includes other roles, including also
their relations with activities. An example is the beneficiary role, whose subroles are:
functional, financial, political, and sponsor. Thus, all activities required to be
executed by a beneficiary role, may be also executed by all its subroles.

An OCL restriction is included in the model in order to indicate that certain role is
possessed by an actor and is also required for an activity to be executed. In other
words, stakeholders only can execute an activity when they possess the roles required
by that activity.

In conclusion, far from being redundant, the Execution class included in Fig. 3
guarantees the independence of concepts: stakeholder possess role, activity requires

78 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

role and stakeholder with certain role executes activity. Their integration gives
responses to questions involving all of them, such as: which stakeholders can execute
certain activity? (knowing that the activity can be executed only by certain roles),
which activities can certain stakeholder execute? (having the stakeholder certain roles
associated), which roles has a certain stakeholder who can execute a certain activity?
(knowing that an activity can be executed by certain roles), or under which role had a
stakeholder executed certain activity?.

4 Stakeholder Model

Stakeholders are the main concept to be considered and represented in order to create
complete design models. This idea is more significant in IO projects, where shared
objectives are more diffuse and requirements management is more complex.

Once stakeholders to be involved in requirements elicitation are selected, besides
counting with basic information about them, descriptive attributes such as roles,
interest, and influence are also known.

Interest derives from the relation between stakeholders needs and project goals.
Fig. 4 models the concepts associated to a stakeholder interest and determines that the
existence of certain interest promotes zero or more project goals (projectGoal).

StakeholderInterestProjectGoal +has
1..*1..*

+promotes
* *

Requirement

1..*

Fig. 4. Interest Model

Information regarding stakeholders interest will be very useful in future modelling
stages, when requirements and their properties will be associated to project goals.
Then, diverse influence analyses could be executed over stakeholders interests when
managing requirements and their properties (Fig. 4 only shows requirements concept
to give a general understanding, avoiding the concepts related to it).

On the other hand, influence indicates the stakeholder relative power on the
project and the decisions which must be taken about it. In general, when stakeholders
are analyzed, authors generally describe two levels in which interest and influence can
take place: high and low [23, 24]. So, an initial estimation of the priority associated to
requirements is attained. Other authors specify a scale to be used, in order to provide
more utility to particular analysis. For example, Bourne and Walker [25] use five
values in the range between “very high” and “very low” in order to obtain an intensity
index of stakeholders interest.

In some sense, stakeholder roles represent a relation between stakeholders and the
project. They can be associated with certain influence or decision power over
the project, independently from the particular stakeholder who might play the role.
Table 1 presents examples of common stakeholders roles for information systems
development projects. From it, the influence degree or each role over the project
might be deduced. For example, responsible, decision-maker, and regulator are roles
with greater influence than the one associated to operator, consultant or functional

 A Stakeholder Model for Interorganizational Information Systems 79

beneficiary. Thus, in the determination of stakeholders influences, their associated
roles must be analyzed.

The analysis of each role defined in Table 1 in relation to its possible influence on
the project brings out a new property, roleInfluence. Through roleInfluence such
relation is dimensioned and calculated through qualitative (e.g.: high, medium, low)
or quantitative (e.g.: 1, 2, 3; or 1, 5, 10) values. Table 2 shows possible influence
degrees associated to roles, where High → 3, Medium → 2, and Low → 1.

Table 1. Stakeholders Roles

Beneficiary: Those that benefit from system implementation. They can be: functional, financial, political
sponsors.
Negative: Those that undergo some kind of damage or are adversely impacted by system development.
Responsible: They are in charge of the system in all its lifecycle phases. This role includes people working
with budgets and schedules (for example, project manager, those responsible for selecting suppliers, etc.)
Decision-Maker: Those that control the process and make decisions to reach agreements.
Regulators: They generate guidelines and outlines that will affect the system development or operation.
Operators: They interact with the system and use its results (information, products, etc.).
Experts: They widely know the implementation domain and can collaborate in requirements elicitation.
Consultants: Include any role dealing with providing support for any aspect of the system development.
Developer: requirements engineer, analyst, programmer, tester, security engineer, project manager, etc.

Table 2. Stakeholders Roles and associated Influences

Role RoleInfluence
Functional Low 1
Financial Medium 2
Political Medium 2

Beneficiary

Sponsor High 3
Negative Medium 2

Responsible Medium 2
Decision-Maker High 3

Regulator High 3
Operator Low 1
Expert Medium 2

Consultant Low 1
Developer Medium 2

Bourne and Walker [25] affirm that power sources determine the stakeholder

influence. Yukl [26] defines three possible stakeholder power sources: positional
power, derived from authority (e.g., organizational), personal power, derived from
influence on human relationships or specific features such as experience, charisma,
loyalty/friendship, etc., and political power, derived from control positions over
decision processes in relation to the particular project. Thus, once the stakeholders are
selected, project manager must determine the power sources associated to each one.
Also, the different power sources might be associated to diverse qualitative and
quantitative values previously selected by project manager. Fig. 5 outlines the
representation of the concepts. The ppow attribute for Power types is a value

80 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

Role

Stakeholder

+possess 1..*

*Project

+possess
1..*

RoleInfluence

+roleInf 1

Influence

+stkInf

Power

+ppow

+has
*

+evaluates
*

+considers
*

Positional Personal Political

+subRole

(c) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Personal) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Personal)))

(d) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Political) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Political)))

(b) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Positional) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Positional)))

(e) context Influence::stkInf: Real
derive: let x1: Real=0.5 in
 let x2: Real=0.5 in
 x1 * self.power() + x2 * self.maxRole()

(f) context Influence
def: power(): Real = self.considers -> collect(ppow)->sum()
def: maxRole(): Real = self.evaluates ->
 iterate(roleInfluence; max : Real = 0 | if roleInfluence.roleInf > max then roleInfluence.roleInf else max)

Fig. 5. Power and Influence Model

indicating the importance assigned to each power source by the project manager. OCL
restrictions (b), (c), and (d) indicate that any stakeholder can be associated with a
unique occurrence of each power source type.

According to the model, the influence of a particular stakeholder on the project
 is obtained from a weighting function applied over stakeholder power sources
and influence values of each assigned role (roleInfluence) (see (e) OCL restriction in
Fig. 5). The weight assigned to each attribute depends on its importance and on the
criteria adopted by the project manager in order to consider both or not to assess the
influence. In this way, influence values will be obtained from (1), where Power is the
addition of ppow values of each stakeholder associated power type and
Max(roleInfluence) is the maximum value of all roleInfluence values of roles
associated to the stakeholder (see (f) OCL restriction in Fig. 5). Another mathematical
function might be used instead of maximum, for example, average. Thus, a concrete
value for representing a stakeholder influence is obtained considering, not only the
value of the roles assigned (roleInflouence) –which is independent from the
individual, group or organization selected as stakeholder-, but also a value given by
the analysis of the specific individual, group or organization selected as stakeholder
(power), independently from their assigned roles.

 A Stakeholder Model for Interorganizational Information Systems 81

Influence = x1*Power + x2*Max(roleInfluence) .
Where: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, and x1+x2=1. (1)

On the other hand, dimension is a significant concept for IO environments. In
traditional environments, stakeholders dimension is determined by considering if
stakeholders belong to the organization under study or not, classifying them as
internal or external. However, in IO environments a new dimension must be
generated, the interorganizational one. Thus, stakeholders may exist in three possible
dimensions: internal or organizational (whose stakeholders represent the interests of a
particular organization), interorganizational (stakeholders pursue ION goals and may
pertain or not to an ION participant organization), and external (representing interests
from ION external entities).

Fig. 6 considers that a stakeholder may have one or more dimensions. Particular
stakeholders might be selected to represent their organization (organizational
dimension), and at the same time, the ION (interorganizational dimension) where the
organization takes part, considering the interorganizational interests. Also the same
stakeholder may represent more than one ION organization, thus having also their
dimensions associated.

Stakeholder Dimension
+belongs

* 1..*

Organizational Interorganizational External

Fig. 6. Dimension Model

This information is very important to determine requirements contexts, when they
are modelled in relation to stakeholders. Thus, organizational, interorganizational or
external requirements might be discovered when analyzing the dimensions of their
source stakeholders.

Thus, considering on the one hand stakeholder concept and properties previously
described, and, on the other hand, the execution of activities associated with roles,
Fig. 7 proposes a model for stakeholders.

Interest and influence concepts are critical due to their dynamism. They might also
be affected by the variation of roles for a specific stakeholder during the project. They
may change over time due to diverse factors: political, cultural, etc. Thus, they must
be analyzed, for example, when prioritizing and managing requirements and when
conflicts between stakeholders requirements exist.

The inclusion of stakeholder dimension enables organizational, interorganizational
and external stakeholders modelling, the management of requirements is improved
and they may be also grouped through these dimensions.

Following Gonnet et al. [20] idea for design process modelling, each stakeholder
may have interests which express intentions and particular desires. Also, those
interests promote in some manner project goals which are directly related to
requirements. Also stakeholders are directly related to them. Thus, the subsequent
requirements management and analysis will give information regarding which

82 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

Activity

Role

Stakeholder

+requires
*

*

+possess
1..*

*

+actor
* *

Execution

1

Interest

+has

1..*

1..*

ProjectGoal

+promotes
* *

Requirements

1..*

Project

+possess1..*

RoleInfluence

+roleInf

1

Influence

+stkInf

Power

+ppow
+has

*

+evaluates
*

+considers
*

Dimension
+belongs

1..

Organizational

Interorganizational

External

1..*

Positional Personal Political

+subRole

(a) context Execution
 inv: self.activity.requires ->
 intersection (self.actor.possess) ->
 includes(self.role)

(c) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Personal) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Personal)))

(b) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Positional) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Positional)))

(d) context Stakeholder
inv: self.has->forAll(p1 | p1.oclIsTypeOf(Political) implies
 self.has->forAll(p2 | p2 <> p1 implies
 not p2.oclIsTypeOf(Political)))

(e) context Influence::stkInf: Real
derive: let x1: Real=0.5 in
 let x2: Real=0.5 in
 x1 * self.power() + x2 * self.maxRole()

(f) context Influence
def: power(): Real = self.considers -> collect(ppow)->sum()
def: maxRole(): Real = self.evaluates ->
 iterate(roleInfluence; max : Real = 0 | if roleInfluence.roleInf > max then roleInfluence.roleInf else max)

Fig. 7. Stakeholders Representation Model

requirements helps to attain project goals and in which manner. This information will
help in deducing which stakeholders interests are being considered when satisfying
some requirement.

5 Example

In the Public Health Area of an Argentinian province, in order to satisfy health
primary needs and manage medicines and drugs distribution to health centers, an ION
was created, which is shown in Fig. 8.

- Medicines Producer Laboratory (MPL) elaborates generic medicines at a low cost,
to be provided to the population in health centres. Its unique customer is the Central
Pharmacy.

- Central Pharmacy (CP) depends on the Provincial Health Department. Its goals are
to plan, coordinate and control the supply of medicines and other elements required

 A Stakeholder Model for Interorganizational Information Systems 83

Fig. 8. ION for Medicines Production and Distribution

 by health centers. The MPL is one of its principal suppliers. Private laboratories
also provide medicines to the CP.

- Regional Health Areas. The province is divided in 9 health regions, each one
responsible for medicines distribution in hospitals and centres depending on them.

- Hospitals and Health Centers.
- At external level, drugs suppliers, patients, other government areas.

The need of information integration has accelerated an IOS development and
implementation for managing the wide set of interactions that cover generation,
movement and access to medicines and information all around the state. The main
goal is the transformation of the current model of separated organizational systems
into a globalizing model over the ION described.

Diverse stakeholders were identified through the application of the approach
proposed by Ballejos and Montagna [19]. Some of them and their attributes are
described in Table 3, where the last column describes the type of power each
stakeholder has.

As is shown in Table 3, diverse stakeholders can be selected from the case study.
They are associated with diverse roles and predominant power types.

The next step is to average the influences of each stakeholder roles. Table 4
presents the results for each stakeholder. Also some value or importance degree must
be assigned to different power types by project manager. For example, in a project
where positional power is more important than personal power and this last one is
more important than political one, values like 3, 2 and 1 can be assigned respectively.
All of them can be assigned the same value if they are equally important.

Then, the project manager must decide on specific weights for both power types
and the influence arisen from stakeholders roles respectively, in order to determine
each stakeholder influence in the project. Thus, for example, if the same importance is
given to both, the calculus must use the function: Influence = 0.5*Power +
0.5*Max(roleInfluence), and a table like the one presented in Table 5 is the result for
the example, where Influence values range from 0 -indicating the lowest degree of
influence to 3 –indicating the highest degree of influence-.

Diverse object-models can be derived with the information of the example. An
instantiation from the model in Fig. 7 is presented in Fig. 9 for the stakeholder
“Central Pharmacy Director”.

84 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

Table 3. Stakeholders attributes for the example

Stakeholder Dimension Role/s Power

Central Pharmacy Director Organizational
Interorganizacional

• Political Benefic.
• Decision-Maker
• Responsible

Positional
Political

Pharmacy Department
Employees from each

Hospital
Organizational • Functional Benefic.

• Operator --

Central Pharmacy
Purchase Manager Organizational • Operator

• Functional Benefic. Personal

Central Pharmacy
Operative Staff Organizational • Operator

• Functional Benefic. Personal

Administrative Employees
from each Health Center Organizational • Operator

• Negative --

Provincial Health
Department Interorganizacional

• Political Benefic.
• Financial Benefic.
• Regulator

Political

Health Region Coordinator Interorganizacional • Political Benefic.
• Responsible

Positional
Personal

Patients External • Functional Benefic. --

Table 4. Stakeholders and their roles influences for the example

Stakeholder Roles Role
Influence

• Political Benefic. 2
• Decision-Maker 3 Central Pharmacy Director
• Responsible 2
• Func. Benefic. 1 Pharmacy Department Employees from

each Hospital • Operator 1
• Operator 1 Central Pharmacy Purchase Manager
• Funct. Benefic. 1
• Operator 1 Central Pharmacy Operative Staff
• Funct. Benefic. 1
• Operator 1 Administrative Employees from each

Health Center • Negative 2
• Political Benefic. 2
• Financ. Benefic. 2 Provincial Health Department
• Regulator 3
• Political Benefic. 2 Health Region Coordinator
• Responsible 2

Patients • Funct. Benefic. 1

In Fig. 9, “Central Pharmacy Director” stakeholder belonging to “organizational”

and “interorganizational” dimensions is associated with “Reduce Time and Costs”
interest. Also the corresponding influence is calculated through the previously
described power and role influences values of his associated roles. In this case, the
stakeholder has the highest influence value.

“Reduce Time and Costs” interest promotes “Reduce Operation Costs” and
“Optimize Medicines Distribution Times” project goals, which are directly associated
with “Support Orders Management” and “Manage Medicines Delivery Schedules”
requirements for the IOS.

 A Stakeholder Model for Interorganizational Information Systems 85

Table 5. Stakeholders Influence for the example

Stakeholder Max
(RoleInfluence) Power Influence

 Central Pharmacy Director 3 (3+1)
4 3,5

Pharmacy Department Employees from
each Hospital 1 0 0,5

Central Pharmacy Purchase Manager 1 3 2
Central Pharmacy Operative Staff 1 3 2

Administrative Employees from each
Health Center 2 0 1

Provincial Health Department 3 3 3

Health Region Coordinator 2 (3+2)
5 4,5

Patients 1 0 0,5

Central Pharmacy Director : Stakeholder

PoliticalBeneficiary : Role DecisionMaker : Role
Responsible : Role

+possess+possess

+possess

+has

Medium : RoleInfluence
High : RoleInfluence

IOSDevelopment : Project

+possessOrganizational : Dimension

Interorganizational : Dimension

+belongs

+belongs

InfluenceCPD : Influence

ReduceTimesandCosts : Interest

+has

ReduceOperationCosts : ProjectGoal

OptimizeMedicinesDeliveryTimes : ProjectGoal
+promotes

+promotes

SupportOrderManagement : Requirement

ManageMedicinesDeliverySchedules : Requirement

EnlargeBudget : Activity

ExtendProjectSchedule : Activity

ApproveRequirementsDocument : Activity

+requires+requires

+requires

Medium : RoleInfluence

PosPower : Positional

PolPower : Political

+has

Fig. 9. Object model for “Central Pharmacy Director” stakeholder

In this way, the model describes roles, power and influence assigned to the selected
stakeholder. It also associates influences for each played role. In stakeholder
management, diverse activities might also be associated to certain roles, in order to
have control over activities execution in design processes. Also, possible conflicts in
stakeholders interests may be assessed with the instantiation of the complete model
with the information of all existing stakeholders. Also, requirements management
effects over stakeholders might be analyzed. So, the proposed model allows not only a
better understanding of the situation underlying requirements and their source
stakeholders in interorganizational environments, but also the execution of diverse
evaluations, useful in managing stakeholders and requirements throughout the
software development process.

+stkInf: 3,5

+roleInf: 2

+roleInf: 2

+roleInf: 3

+ppow: 1

+ppow: 3

86 L.C. Ballejos, S.M. Gonnet, and J.M. Montagna

6 Conclusions and Future Works

This article has merged two important areas in information systems engineering: on
the one hand, the development of information systems with the latent need of
involving stakeholders in the process, on the other hand, the current and constant
emergence of interorganizational relationships needing to be technologically
supported. This is a first step towards reducing the existing gap between stakeholders
needs (problem domain) and system requirements (solution domain) by proposing a
model for representing stakeholders and their needs, in order to include them in the
requirements model. The model also considers diverse stakeholders properties which
have incidence in their management and in requirements analysis also. It allows a
complete understanding of the environment through the modelling of their principal
stakeholders interests. Thus, not only requirements could be clearly managed, but also
conflicts between stakeholders can be detected and handled.

Design models arise from closed requirements specifications. However, there are
no models for analyzing the rationale after the design, where diverse stakeholders
decisions and activities derive in the requirements specification, and main source of
information for design stage. Thus, the proposed model integrated with the require-
ments model will constitute the basis for future research towards the analysis of the
rationale behind the requirements management stage in interorganizational
information systems development. It will also enable influences analysis, thus
obtaining a more reality-adjusted model of the underlying knowledge.

Acknowledgements

The authors want to thank the financial support from CONICET, ANPCyT, UTN and
Universia-Banco Río.

References

1. Bittner, K., Spence, I.: Establishing the Vision for Use Case Modeling, Use Case
Modeling. Addison Wesley Professional, Reading (2003)

2. Pouloudi, A., Gandecha, R., Papazafeiropoulou, A., Atkinson, C.: How Stakeholder
Analysis can Assist Actor-Network Theory to Understand Actors. In: A Case Study of the
Integrated Care Record Service (ICRS), UK National Health Service Eltrun Working
Paper Series, WP 2004-002 (2004)

3. Sanders, E.B.N.: From User-Centered to Participatory Design Approaches. In: Frascara, J.
(ed.) Design and the Social Sciences, Taylor & Francis Books Limited, Abington (2002)

4. Mostashari, A., Sussman, J.: Engaging Stakeholders in Engineering Systems
Representation and Modeling. In: Engineering Systems External Symposium,
Massachusetts Institute of Technology (2004)

5. Carpenter, S.: Choosing Appropriate Consensus Building Techniques and Strategies. In:
Susskind, L., McKearnan, S., Thomas-Larmer, J. (eds.) The Consensus Building
Handbook: A Comprehensive Guide to Reaching Agreement, pp. 61–97. Sage
Publications, Thousand Oaks (1999)

6. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. J.
Wiley & Sons(eds.) (2003)

 A Stakeholder Model for Interorganizational Information Systems 87

7. Pouloudi, A.: Aspects of the Stakeholder Concept and their Implications for Information
Systems Development. In: 32th Annual Hawaii International Conference on System
Sciences (1999)

8. Sharp, H., Finkelstein, A., Galal, G.: Stakeholder Identification in the Requirements
Engineering Process. In: Database & Expert System Applications, DEXA Workshop 1999,
pp. 387–391. IEEE Press, New York (1999)

9. Pfahl, D.: An Integrated Approach to Simulation-Based Learning in Support of Strategic
and Project Management in Software Organisations. PhD Thesis. Fraunhofer-Institut für
Experimentelles Software Engineering (Fraunhofer IESE), Kaiserslautern (2001)

10. van Welie, M., van der Veer, G.C., Eliëns, A.: An Ontology for Task World Models. In:
Markopoulos, P., Johnson, P. (eds.) DSV-IS 1998. LNCS, pp. 57–71. Springer, Viena
(1998)

11. Rabentós, R., Cabot, J.: Conceptual Modelling Patterns for Roles. In: Spaccapietra, S.,
Atzeni, P., Chu, W.W., Catarci, T., Sycara, K.P. (eds.) Journal on Data Semantics V.
LNCS, vol. 3870, pp. 158–184. Springer, Heidelberg (2006)

12. Kueng, P., Kawalek, P., Bichler, P.: How to compose an Object-Oriented Business Process
Model? In: IFIP TC8, WG8.1/8.2 working conference on Method engineering: principles of
method construction and tool support, UK, pp. 94–110. Chapman & Hall, Ltd., London (1996)

13. Lu, S.C.Y., Cai, J., Burkett, W., Udwadi, F.: A Methodology for Collaborative Design
Process and Conflict Analysis. CIRP Annals-Manufacturing Technology 49(1), 69–73
(2000)

14. Zhang, H., Chen, D.: Developing a Multidisciplinary Approach for Concurrent
Engineering and Collaborative Design I. In: Shen, W., Lin, Z., Barthès, J.-P.A., Li, T.
(eds.) CSCWD 2004. LNCS, vol. 3168, pp. 230–241. Springer, Heidelberg (2005)

15. Macaulay, L., Fowler, C., Kirby, M., Hutt, A.: USTM: A New Approach to Requirements
Specification. Interacting with Computers 2(1), 92–118 (1990)

16. Kirby, M.: Custom Manual, Technical Report DPO/STD/1.0, HCI Research Centre,
University of Huddersfield (1991)

17. Robertson, S.: Project Sociology: Identifying and involving the stakeholders. The Atlantic
Systems Guild Ltd (2000)

18. Alexander, I., Robertson, S.: Understanding Project Sociology by Modeling Stakeholders.
IEEE Software 21(1), 23–27 (2004)

19. Ballejos, L., Montagna, J.M.: Stakeholders Selection for Interorganizational Systems: A
Systematic Approach. In: Avison, D., Elliot, S., Krogstie, J., Heje, J.P. (eds.) The Past and
Future of Information Systems: 1976–2006 and Beyond, vol. 214, pp. 39–50. Springer,
Boston (2006)

20. Gonnet, S., Henning, G., Leone, H.: A model for capturing and representing the
engineering design process. Expert Systems with Applications 33(4), 881–902 (2007)

21. Harzallah, M., Vernadat, F.: IT-based competency modeling and management: from theory
to practice in enterprise engineering and operations. Computers in Industry 48(2), 157–179
(2002)

22. Ellis, C.A., Wainer, J.: A conceptual model of groupware. In: 1994 ACM conference on
Computer supported cooperative work, pp. 79–88. ACM, New York (1994)

23. Applegate, L.M.: Stakeholder Analysis Tool. Harvard Business Online (2003)
24. Smith, L.W.: Project Clarity Through Stakeholder Analysis. The Journal of Defense

Software Engineering (2000), http://www.stsc.hill.af.mil/crosstalk/2000/12/smith.html
25. Bourne, L., Walker, D.H.T.: Visualising and Mapping Stakeholder Influence. Management

Decision 43(5), 649–660 (2005)
26. Yukl, G.: Leadership in Organizations. Prentice Hall International Inc., USA (2001)

Search Based Requirements Optimisation:

Existing Work and Challenges

Yuanyuan Zhang1, Anthony Finkelstein2, and Mark Harman1

1 King’s College London
Strand, London
WC2R 2LS, UK

2 University College London
Malet Place, London

WC1E 6BT, UK

Abstract. In this position paper, we argue that search based software
engineering techniques can be applied to the optimisation problem dur-
ing the requirements analysis phase. Search based techniques offer sig-
nificant advantages; they can be used to seek robust, scalable solutions,
to perform sensitivity analysis, to yield insight and provide feedback ex-
plaining choices to the decision maker. This position paper overviews
existing achievements and sets out future challenges.

1 Introduction

Once an initial set of requirements has been gathered by requirements elicitation,
there is a business-level analysis problem: choices have to be made to identify
optimal choices and trade-offs for decision makers. For example, one important
goal is to select near optimal subsets from all possible requirements to satisfy
the demands of customers, while at the same time making sure that there are
sufficient resources to undertake the selected tasks.

To illustrate, Figure 1 demonstrates a possible spread of equally optimal re-
quirements optimisation results. Two competing objectives are considered: cost
to the provider and estimated satisfaction rating achieved by a solution. Each
circle on the represents an equally optimal solution. That is, each circle denotes a
solution for which no better solution (subset of requirements) can be found that
offers better customer satisfaction without increasing cost. The set of possible
solutions form what is known as a Pareto front. Pareto fronts show a solution
space of candidate solutions, from which the decision maker can select. As will
be seen later, Pareto fronts also yield insights into the structure of the problem.

This requirement selection problem is one example of the way in which re-
quirements decisions can be formulated as optimisation problems. Other exam-
ples include ordering requirements to achieve earliest satisfaction, balancing each
customer’s needs against the others and balancing tensions between system and
user requirements.

Such problems are inherently complex optimisation problems that seek to
balance many competing and conflicting concerns, so it would be natural to

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 88–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Search Based Requirements Optimisation: Existing Work and Challenges 89

0 2000 4000 6000 8000 10000 12000 14000
−140

−120

−100

−80

−60

−40

−20

0

Customers’ Satisfaction Rating

−
1*

C
os

t

Fig. 1. Fictitious Data: 15 customers; 40 requirements. Adapted from Zhang et al. [13].
Each circle represents an equally optimal candidate solution that balances the objective
of minimising supplier cost against the objective of maximising customer satisfaction.
See Figure 2 for a comparison to real world requirements data from Motorola.

seek algorithms for decision support. Sadly is often infeasible to apply precise
analytic algorithms, because the problems are typically NP hard. To overcome
this difficultly, Search Based Software Engineering (SBSE) uses metaheuristic
optimisation algorithms that explore and solve complex, multi-objective, highly
constrained problems in Software Engineering [5]. This paper argues that Re-
quirements Optimisation can be viewed as an application area for SBSE.

2 Background: Requirements Optimisation

Previous work on Requirements Optimisation has shown that metaheuristic op-
timisation techniques can be used to search for a balance between costs and
benefits associated with sets of requirements. This has come to be known as the
Next Release Problem (NRP) [2]. In the NRP, as formulated by Bagnall et al.,
the goal is to find the ideal set of requirements that balance customer requests
within resource constraints.

In this formulation the problem is a constrained single objective optimisation
problem. Bagnall et al. applied a variety of techniques to a set of synthetic data
to demonstrate the feasibility of SBSE for this problem. Greer and Ruhe also
studied the NRP [4], proposing an iterative Genetic Algorithm and presenting
results for real world requirements problems. Their approach balances the re-
sources required for all releases; assessing and optimizing the extent to which
the ordering conflicts with stakeholder priorities.

More recently, there has been work on multi-objective formulations of the
NRP [11,13]. In the multi-objective formulation, each of the objectives to be
optimised is treated as a separate goal in its own right; the multiple objectives
are not combined into a single (weighted) objective function. This allows the

90 Y. Zhang, A. Finkelstein, and M. Harman

optimisation algorithm to explore the Pareto front of non-dominated solutions.
Each of these non-dominated solutions denotes a possible assignment of require-
ments that maximizes all objectives without compromising on the maximization
of the others.

Zhang et al. [13] considered the two objectives of cost to the provider and
estimated satisfaction rating for the customer, while Ruhe and Omolade [11]
considered the two objectives that balance the tension between user-level and
system-level requirements.

3 Advantages of the Search Based Approach

This section describes some of the ways in which SBSE techniques have proved
to be effective in Requirements Optimisation and closely related problems.

Robustness. Software engineering problems are typically ‘messy’ problems in
which the available information is often incomplete, sometimes vague and al-
most always subject to a high degree of change (including unforeseen change).
Requirements change frequently, and small changes in the initial stages often
lead to large changes to the solutions, affecting the solution complexity and
making the results of these initial stages potentially fragile.

An important contribution of SBSE techniques is the way in which they can
take changing factors and constraints into account in solution construction. They
can, for example, provide near optimal solutions in the search space which remain
near-optimal under change, rather than seeking optimal but fragile solutions [7].
This better matches the reality of most software projects, in which robustness
under change is often as valuable as any other objective.

Sensitivity Analysis. In SBSE, human effort is partly replaced by metaheuris-
tic search. Nevertheless, the numerical data upon which the automated part of
the process depends come from expert domain knowledge. In the case of require-
ments engineering, the decision maker is forced to rely on estimates of these cru-
cial inputs to the requirements optimisation process. Sensitivity analysis helps
the developer build confidence in the model by studying the uncertainties that
are often associated with parameters in models. It aims to identify how ‘sensi-
tive’ the model is to change. This allows the decision maker to pay additional
attention to estimates for which the model is particularly sensitive.

Insight. Requirements Optimisation problem instances have structure. That is,
the data have implicit characteristics that the decision maker needs to expose in
order to inform decision making. For any non-trivial problem, however, the num-
ber of requirements, customers, their interactions and dependencies make these
implicit properties far from obvious. No human could be expected to simply look
and see all the implications and important features of a problem instance. For
example, the search may make it easier to see that satisfaction of one customer
tends to lead to dissatisfaction of another or that requirement Ri is always in
generated solutions in which Rj is present.

Search Based Requirements Optimisation: Existing Work and Challenges 91

0 200 400 600 800 1000 1200 1400 1600 1800
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Customers’ Satisfaction Rating

−
1*

C
os

t

Fig. 2. Motorola mobile device requirements: 4 customers; 35 requirements. The op-
timisation produces a Pareto front of candidate solutions which reveals an important
elbow point at cost 1,200.

In order to show how SBSE can yield insight in Requirements Optimisation,
we now apply the cost-satisfaction formulation of Zhang et al. [13] to real re-
quirement data from Motorola. The results are shown in Figure 2. These results
have been anonymised to prevent disclosure of sensitive information.

Compare the real world results of Figure 2 with the smooth Pareto front in
Figure 1. There is an ‘elbow point’ in Figure 2’s Pareto front which reveals a
potential for optimisation: The customers’ satisfaction can be increased from 200
to approximately 1,200 at cost 2,000. This would be more attractive that the
increase in satisfaction from 1,200 to 1,500, which would cost almost 3 times as
much. The search has revealed a very attractive elbow point at cost 1,200. This
kind of insight is very hard to achieve without automated optimisation, like that
provided by such a search based approach.

Requirements Prioritisation. In the NRP, the decision maker not only se-
lects the optimal or near optimal subset of requirements, but also the priority
ordering of requirements. This method offers the potential for risk reduction.
That is, circumstances vary and resources may become insufficient to fulfill all
requirements. Prioritisation ensures that the most important requirements will
be released first so that the maximum attainable benefits of the new system are
gained earliest.

Fairness in Requirements Assignment. In the Requirements Optimisation
process, it may be helpful to explore the extent to which the obtainable solutions
can be said to be fair. Of course, fairness can come in different forms: should
we spend the same amount on each customer or give each the same number
or value of fulfilled requirements? Each notion of fairness can also be treated
as a separate objective, for which a Pareto optimal search seeks non-dominated
solutions [10]. In this way it becomes possible to automatically investigate the
extent to which several notions of fairness can simultaneously be satisfied.

92 Y. Zhang, A. Finkelstein, and M. Harman

4 Challenges

This section describes some of the challenges for Search Based Requirements
Optimisation.

Scalability. In Requirements Optimisation, problems arise not merely because
of the number of requirements, customers and other participating factors, but
also because of complexity arising from constraints and dependencies.

Currently, the Requirements Optimisation process, where it is practiced at all,
is a highly labour-intensive activity. Search based techniques have the potential
to handle large scale problems because they are naturally parallelisable [3,12].
However, despite this potential, there remains a need for more work on scalability
of Search Based Requirements Optimisation.

Solution Representation. Visualisation plays an important role in all opti-
misation problems [9]. It illustrates the solution quality and helps the decision
maker to understand the results. This can be easily and directly achieved using
scatterplots when there are only 2 or 3 objective dimensions. Visualisation of
higher dimensionality remains an open problem in the visualisation community.
Requirements Optimisation solutions need to be presented in a manner that is
equally intuitive to engineers and to users alike. This represents an additional
degree of challenge. There are several visualisation methods for higher dimen-
sional spaces that may be useful, for example Heatmaps [9], Self Organizing Maps
(SOM) [8], and Distance and Distribution Charts [1]. However, these remain to
be evaluated for Requirements Optimisation.

Feedback and Explanation of Results. In Requirements Optimisation, an
additional problem arises when solutions are found: how do developers explain
the solution to the customer? Of course, the customer expects to get the highest
interest from the solution and they are likely to want to know, not merely the
results, but also why a certain set of features was chosen or why some excluded
requirements were those for which they had a particular care.

Feedback to the customer should form a part of the solution obtained by the
optimisation process. This will maximize each customers’ satisfaction and make
explicit their participation in the optimisation process. In some cases involving
politically sensitive choices, solution justification and explanation may be as
important as the solution itself.

Fitness Function Definition. At the heart of SBSE is the fitness function,
which guides the search by capturing the properties that make one solution
preferable to another. In software engineering applications, fitness functions can
be thought of as metrics [6]. These metrics translate constraints such as quality
constraints (usability, reliability), organizational constraints (scalability), and
environmental constraints (security, privacy) into some measurable attribute of
a candidate solution.

Unfortunately, these constraints, often misleadingly termed non-functional
requirements, may not be defined precisely in the early stages of the software life

Search Based Requirements Optimisation: Existing Work and Challenges 93

cycle. Therefore, techniques are required for iterative update of fitness function
definition. It is possible that fitness-measure and solution-generation may need
to co-evolve as part of an overall Requirements Optimisation process.

Algorithm Selection. Search Based Requirements Optimisation is based on
experimental results from empirical studies. There is, however, currently little
theoretical understanding as to when, how and why one metaheuristic algorithm
works better than another. Once the nature of Search Based Requirements Op-
timisation is better understood empirically, it will be important to generalise
these results and to augment them with theoretical analysis of search landscape
characteristics. This will support a more formal and rigorous analysis of potential
algorithmic complexity, thereby motivating the choice of algorithm to apply.

Requirements Dependencies. In the requirement analysis process, require-
ments are seldom independent of each other. There are two major problems
related to requirement dependencies: one is how to identify and model them,
the other is the extent to which these dependencies influence and interact with
the software systems level. Ruhe and Omolade [11] show how search based op-
timisation can track dependencies from user requirements into their impact on
system components. Though this is promising, more work is required to handle
fuzzy incomplete, multi-way, implicit and temporal requirements dependencies.

Partial Requirement Fulfillment. Requirements have varying representa-
tions: discrete variable requirements which are either fulfilled completely or not
fulfilled at all and continuous variable requirements which can be fulfilled to a
certain extent, for example sever response time in web-based or distributed sys-
tems. Existing work on Search Based Requirements Optimisation has treated
requirements as being entirely discrete. More work is required to extend these
results to handle continuous requirements.

References

1. Ang, K.H., Chong, G., Li, Y.: Visualization Technique for Analyzing Non-
Dominated Set Comparison. In: 4th Asia-Pacific Conference on Simulated Evo-
lution and Learning (SEAL 2002), Singapore, vol. 1, pp. 36–40 (2002)

2. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The Next Release Problem.
Information & Software Technology 43(14), 883–890 (2001)

3. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies.
Springer, Heidelberg (2003)

4. Greer, D., Ruhe, G.: Software Release Planning: an Evolutionary and Iterative
Approach. Information & Software Technology 46(4), 243–253 (2004)

5. Harman, M.: The Current State and Future of Search Based Software Engineering.
In: 29th International Conference on Software Engineering (ICSE 2007), Future of
Software Engineering (FoSE), pp. 342–357. IEEE Computer Society, Washington
(2007)

6. Harman, M., Clark, J.: Metrics are Fitness Functions Too. In: 10th International
Software Metrics Symposium (METRICS 2004), pp. 58–69. IEEE Computer Soci-
ety, Washington (2004)

94 Y. Zhang, A. Finkelstein, and M. Harman

7. Harman, M., Swift, S., Mahdavi, K.: An Empirical Study of the Robustness of
two Module Clustering Fitness Functions. In: International Conference on Genetic
and Evolutionary Computation (GECCO 2005), pp. 1029–1036. ACM, New York
(2005)

8. Obayashi, S., Sasaki, D.: Visualization and Data Mining of Pareto Solutions using
Self-Organizing Map. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele,
L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 796–809. Springer, Heidelberg (2003)

9. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap Visualisation of Population Based
Multi Objective Algorithms. Technical Report, University of Birmingham (2006)

10. Ren, J.: Sensitivity Analysis in Multi-Objective Next Release Problem and Fairness
Analysis in Software Requirements Engineering. Master’s thesis, DCS/PSE, King’s
College London, London (2007)

11. Saliu, M.O., Ruhe, G.: Bi-Objective Release Planning for Evolving Software Sys-
tems. In: 6th European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, pp. 105–114. ACM, New
York (2007)

12. Szidarovsky, F., Gershon, M.E., Dukstein, L.: Techniques for multiobjective deci-
sion making in systems management. Elsevier, New York (1986)

13. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem.
In: International Conference on Genetic and Evolutionary Computation (GECCO
2007), pp. 1129–1136. ACM, New York (2007)

Connecting Feature Models and AUTOSAR:

An Approach Supporting Requirements
Engineering in Automotive Industries

Wolfram Webers, Christer Thörn, and Kurt Sandkuhl

Jönköping University, School of Engineering, P.O. Box 1026
55111 Jönköping, Sweden

{wolfram.webers,christer.thorn,kurt.sandkuhl}@jth.hj.se

Abstract. Due to the AUTOSAR initiative, automotive suppliers as
well as their customers and sub-suppliers will in the future face the chal-
lenge to exchange AUTOSAR specifications instead of structured docu-
ments with arbitrary specification attachments. The consequential main
tasks for the suppliers will be to implement model-based representation
of artifacts as early as possible in the system development process. Thus,
it would be desirable to link strategic elements in the context of product
family development and technical aspects concerning model management
and representation in AUTOSAR. This paper presents the results of an
industrial case study in requirements engineering of software-intensive
automotive systems, aiming at a process streamlined to both, the strate-
gic demands of the supplier and the technical demands of AUTOSAR.
The main contribution of this paper is the connection of feature mod-
els and assets in AUTOSAR descriptions. This paper presents work in
progress including the developed concepts and feasibility studies.

Keywords: feature modeling, AUTOSAR, product families, require-
ments engineering.

1 Introduction

Requirements engineering in the automotive domain is influenced by a number
of constraints that are not present in other industries [1]. Some of these are based
on the limitations stemming from the system architecture of the networked ECUs
found in modern cars. Such networks can consist of up to 80 or more [2] different
control units, building up the complex functional car domains, such as safety,
comfort, power-train, etc. To tackle this complexity, the automotive industry
established the AUTOSAR [3] partnership to standardize both, the future ar-
chitecture as well as the specification language of such systems. As a result the
automotive supplier has to face the challenge the align (1) the new technical de-
mands of AUTOSAR (new tools, new techniques, new methods) and (2) his very
own strategic demands for his products (unique market space, specific product,
product capabilities to compete, product price, etc) stated among others by his
very own market analyses and business goals.

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 95–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 W. Webers, C. Thörn, and K. Sandkuhl

AUTOSAR is developed with respect to the nowadays automotive develop-
ment process. Systems in the automotive domain are generally evolving in small
steps meaning that innovations are included with great care [4]. Consequently,
the automotive manufacturer (OEM1) planning a new system reuses as much
as possible from former successfully realized systems. Physical space, electri-
cal power consumption and weight, as the most limiting factors in cars, have
a direct impact on the system planning, resulting in so called communication
matrices, which basically capture all technical signals with the participating
senders and receivers. Given such a matrix for an existing system as a starting
point for a new system, a subset can be defined for a specific subsystem, like
engine control, airbag system, window lifter, etc. Together with the interfacing
specification of the surrounding system, this will result in the tight constraints
typically found in the requirements specification for such a subsystem. Thus,
the greater part of the requirements provided to the suppliers are more non-
functional than functional. For a certain subsystem, like an airbag system, the
inner architecture is rather complex, but usually hidden and will not appear
explicitly in the customer requirements specifications. These specifications will
rather contain more information about the different quality attributes of the
demanded subsystem.

Furthermore, car manufacturers develop vehicles in terms of product lines,
as described in [2,4,5]. Thus, variability and variance occur on different levels
of abstraction during the system planning at the OEM. Some of them will be
resolved early by the OEM, but some will propagate down through the whole
supplier chain [6]. As the supplier usually has to satisfy more than one customer
at once, this manifold will multiply with every customer project the supplier
has. Consequently, suppliers need to get an overview of their existing assets as
quick as possible during the requirements acquisition process.

In summary the supplier has to face customer requirements inherently hav-
ing more non-functional than functional requirements one the one hand, and
reflecting the car manufacturers’ own product line on the other hand. Feature
models are widely accepted in the community as a concept for supporting reuse
even on the level of requirements. Still, feature models are intermediate models
and need to be related to reusable assets and original requirements. Further-
more, they very often focus only on functional aspects. This paper propose an
approach to emphasize quality attributes of existing assets in feature models.
These quality attributes will be used for supporting the selection of assets re-
quired for implementing the specified functionality. As an example for represent-
ing existing assets in a detailed descriptive way the approach uses AUTOSAR
models.

The paper is structured as follows: Section 2 introduces the background for the
work, including an industrial case, the AUTOSAR initiative and feature models.
Section 3 presents the approach for connecting feature models and AUTOSAR
for supporting requirements engineering in automotive industries. The discussion
of our approach, the related and future work (section 4) conclude the paper.

1 Original Equipment Manufacturer.

Connecting Feature Models and AUTOSAR 97

2 Background

The background for this paper is the AUTOSAR initiative, in particular the
software component specification approach, feature modeling techniques and an
industrial case from the automotive supplier industry, which defines the appli-
cation context. These topics will be briefly introduced in this section.

2.1 AUTOSAR

General Overview. To tackle the complexity of current and future networks of
electronic control units (ECU) constituting the different subsystems of modern
cars, the AUTOSAR [3] partnership develops an infrastructure for an automotive
software architecture. This architecture is illustrated in Fig. 1, showing different
software layers consisting of a platform independent application layer, a run-
time environment (RTE) on top of standardized interfaces to the middleware
(Basic Software), as well as a description of the underlying hardware platform
(ECU hardware). The communication between the different components of the
architecture relies on standardized interfaces. The idea behind is to support the
exchange of components developed by different suppliers as long they support
the according interface.

AUTOSAR specifications are expressed in a modeling language, based on a
hierarchical UML meta-model. The language covers different areas of concern
and is organized in so-called AUTOSAR template definitions. Each template

ECU-Hardware

Standardized
Interface

Operating
System

S
tandardized
Interface

Standardized
AUTOSAR
Interface

Standardized
Interface

Standardized
Interface

Standardized
Interface

Communication
Services

ECU
Abstraction

Standardized
Interface

AUTOSAR
Interface

Complex
Device
Drivers

AUTOSAR
Interface

Standardized
Interface

Microcontroller
Abstraction

AUTOSAR Runtime Environment

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Application
Software

Component

Actuator
Software

Component

Sensor
Software

Component

Application
Software

Component
AUTOSAR
Software

Basic Software

Fig. 1. AUTOSAR Architecture Overview (adapted from [7])

98 W. Webers, C. Thörn, and K. Sandkuhl

relates to specific aspects of the architecture, namely application software, ECU-
hardware and system topology. This approach provides both the support of
existing modeling tools as well as a standardized, XML-based exchange format.

Additionally, these three AUTOSAR templates cover the different notions
typically found in the requirements specifications in the automotive domain [2].
Requirements of functional aspects, system communication aspects (e.g. com-
munication matrices) and hardware aspects can utilize the modeling facilities
of the corresponding AUTOSAR template. The approach presented in this pa-
per is currently limited to software components on the application level. Thus,
we assume the supplier is responsible for developing the application part of the
architecture. Other scenarios are also possible, and need further investigation.
Furthermore, this paper focuses only on the structural aspects of the application
software. The behavioral aspects are intentionally left out.

AUTOSAR Software Components. Software components in AUTOSAR
can be described on three different levels of abstraction as depicted in Figure 2.
The most abstract level describes the so-called Virtual Function Bus (VFB),
which focuses only on the abstract communication aspects. Thus, it captures
who is present and is communicating with whom.

Software applications on this level are described by subsystems made of com-
ponents with ports and interfaces. Logical hierarchies of software components
can be built up by compositions. Atomic software components contain function-
alities (Runnables) of the application running on the ECU which will be part of
the scheduling. Such components cannot be decomposed further, therefore the
name.

The communication between software components differs only between the
synchronous and asynchronous communication pattern and is completely cap-
tured with the concepts of ports, interfaces and connections. Furthermore, the

AtomicSoftwareComponentType

InternalBehavior

Implementation

+component 1

*

+behavior 1

*

Virtual
Functional Bus

level

Runtime
Environment

level

Implementation
level

Fig. 2. Three Levels of Software Component Descriptions (from [8])

Connecting Feature Models and AUTOSAR 99

communication is abstracted from the underlying hardware. Thus, technical
signals are abstracted to logical representations in the form of data types.

The second abstraction level defines the internal behavior of software compo-
nents and the communication with the runtime environment. The communica-
tion with the RTE is described by means of events, schedulable units (Runnable
Entities), as well as schedulability aspects. Communication with hardware ele-
ments is completely routed through the runtime environment (RTE), but it has
to be represented on the application level as well. Thus, the communication with
sensors is done by using special derivates of atomic software components on the
application layer representing those sensors.

The lowest abstraction level finally describes the implementation of such in-
ternal behavior by mapping them to code, either source or binary. The imple-
mentation can further be annotated by several quality attributes, like resource
consumption or runtime estimations. In general, this level describes the how of
the components realization.

2.2 Feature Modeling

The concept of feature models was originally introduced in 1990 by Kang et al.
with the FODA technical report [9]. Originally used for domain analysis in the
telecom domain, feature models are now used in other domains and for other
purposes. The original definitions, notations and concepts used by Kang has been
extended and modified over the years to fit new uses. Feature modeling is today
a technique that is incorporated in several software and systems development
methodologies.

The purpose of feature models is to extract, structure and visualize the com-
monality and variability of a domain or set of products. The variability and
commonality is modeled as features and organized into a hierarchy of features
and subfeatures, often called a feature tree, which is usually visualized in a
graphical description of the commonality and variability found in the modeled
domain or part of domain.

Between the features in the model, there are relations describing the con-
straints of the features’ composition possibilities. The feature/subfeature hierar-
chy describe the principal restrictions on how features in a product family can
be combined in an instance of a product line, but there are further restrictions
that pose constraints on what parts of a product line that can be combined and
configured. These restrictions could create dependencies or exclusions across
different branches of the feature tree and reach considerable complexity. The
feature tree visualize those dependencies and connections between features and
the subsumption hierarchy of features and subfeatures, so that the engineer can
utilize the variability in product engineering or other configuration activities.

Definitions of Features. There are several definitions of the term feature used
in conjunction with feature models. Some of them are more formal, while oth-
ers are more intuitive. Features are intended to be concepts described by a single

100 W. Webers, C. Thörn, and K. Sandkuhl

word or short line of text. We select a few definitions from other authors that
are aligned to the idea of this paper:

– From FODA by Kang et al: ”A prominent or distinctive and user-visible
aspect, quality, or characteristic of a software system or systems.” [9]

– From IEEE: ”A software characteristic specified or implied by requirements
documentation (for example, functionality, performance, attributes, or de-
sign constraints).” [10]

– From Riebisch et al: ”A feature represents an aspect valuable to the cus-
tomer.” [11]

While many definitions and usages of features and feature models are directed
towards functional characteristics, our work also consider features aimed to non-
functional characteristics and quality attributes. More specifically, we consider
features representing functionality to have attributes of quality characteristics.
Thus, our approach utilizes an extended feature model similar to the one pre-
sented in [12] and shown in Fig. 3. The feature model presented in [13] is extended
in a similar way.

Family Models. Feature models usually do not exist alone, but are related to
reusable assets describing the solution space. Such assets need to be represented
in a manner so that they can be configured and merged to final single solutions.
This raises specific requirements towards the notation of the assets specification.
For example, assets must be described in a way they can be composed or merged
to final products. The CONSUL approach in [13] defines a component based
family model for this and uses logical constraints to relate existing solutions to
features in the feature model. This approach follows a process where a concrete
selection of features defines a product configuration. Such a configuration consists

Services

Internet
Connection

Video on
Demand

Power Line ADSL Wireless

DTIME = VIDEO.DTIME +
INTERNET.DTIME

PRICE = VIDEO.PRICE + INTERNET.PRICE

DTIME = POWERLINE.DTIME +
ADSL.DTIME + WIRELESS.DTIME

PRICE = 20 + POWERLINE.PRICE
+ ADSL.PRICE +

WIRELESS.PRICE

PRICE in {150..200}PRICE in {100..200}PRICE in {100..200}

DTIME in {18000..25000}

PRICE in {80..100}

DTIME in {1000..2000} DTIME in {3000..4000}DTIME in {1500..2500}

Fig. 3. Extended Feature Model (from [12])

Connecting Feature Models and AUTOSAR 101

of the parts from the product family which fulfill certain constraints attached to
them and are merged together to a single product.

In CONSUL, family models compose configurable sets of functionalities in
hierarchies defined by logical components and parts. Components can have an
arbitrary number of parts. Parts collect concrete solutions by referencing to
specific sources of solutions. Those solutions can be of arbitrary types like classes,
objects or source code.

Additionally, CONSUL applies a process of deriving single solutions out of
the family model by creating configurations of features. Those configurations
consist of a subset of the original feature model by selecting those features to
be realized in a single solution. To be able to derive a single product the family
model needs to be formally related to the feature model. In CONSUL this is
done by several logical expressions which are evaluated during the configuration
process. For every asset these expressions need to evaluate to true to be a valid
member of the solution.

2.3 Industrial Case

The industrial background for this paper is a Swedish automotive supplier of
software-intensive systems. In the research project SEMCO, different aspects of
the systems development process of this automotive supplier were studied with
focus on requirements engineering. The major focus of the project was to cre-
ate an enterprise ontology for supporting the requirements engineering process
by applying ontology matching methods [14]. The idea was to have in the first
step both, the original requirements specification and existing asset specifica-
tions described with the help of ontologies [15]. As ontologies themselves are
rather general concepts, we additionally mapped those to the concepts of fea-
ture models [16] with the result of having feature models as subsets of an overall
enterprise ontology. In the following we focus only on the aspects belonging to
the feature model and AUTOSAR concept of the project.

During this project, a feature model for the product line ’Airbag Control Sys-
tems’ of the automotive supplier was developed. As the SEMCO project aimed
at supporting requirements engineering, the intention was to develop the feature
model from this perspective with the intention to match incoming customer re-
quirements as fast as possible to existing solutions. On this basis two system
specification documents of existing airbag solutions developed for different cus-
tomers were analyzed in order to find visible features of this product line. As a
result the functionalities of airbag controllers were captured in a feature model
representing the two solutions in one model.

The feature model was complemented by a family model. The family model
should show all the existing solutions the automotive supplier has for building
airbag systems. Based on the provided specifications it was decided to define
two family models: one for collecting all the hardware parts, and one for the
software parts of an airbag system. The family models consist of hierarchical trees
containing components like they are built by following the CONSUL approach.

102 W. Webers, C. Thörn, and K. Sandkuhl

One challenge was to match the resulting feature model against the original
customer requirements. As mentioned above those requirements state less func-
tionalities than non-functional aspects. Additionally, they list up to a larger ex-
tent hardware components to be used in the solutions. The other challenge was to
find a link between the feature model and AUTOSAR specifications as the family
models defined in the CONSUL approach need explicit relations to the reused
assets. In the following we describe our approach to tackle these challenges.

3 AUTOSAR Software-Components as Family Models

The approach proposed here concerns the requirements engineering process on
the supplier’ side of the OEM-supplier collaboration. Within this requirements
engineering process, the goal is to support the identification of existing devel-
opment assets fitting to certain demands stated in the customers requirements
specifications. The AUTOSAR initiative aims at a process where the customer
requirement specifications to a large extent is expressed as models, i.e. our ap-
proach assumes at least partial AUTOSAR specifications as input from the OEM
to the supplier.

The approach uses the concept of feature models as a mediator between those
requirements and existing assets. As an organization develops and markets a
range of products, it creates various technical solutions that satisfy the require-
ments posed on the products by the customers. These solutions represent vari-
ability in the capabilities of the product line and potential alternatives for use
in development of new products. By structuring the products’ current abilities
via feature models, the various configurations that are available in the solution
space can be modelled with respect to the requirements. Thus, the feature mod-
els describe the problem space or requirements space of the product line, while
the solution space is represented by corresponding family models, which model
the core assets that are available to realize the instances of the product line. In
our approach, feature models are used for two purposes:

– To express specific capabilities of existing assets with AUTOSAR techniques.
The construction of such a feature model is guided by the mapping presented
in section 3.1.

– Matching the customer requirements to existing assets. The same mapping
rules will be used here and the feature model further guides the decision
process in selecting existing assets with respect to their specific capabilities.

In our case, the solution space is populated by AUTOSAR specifications of
software components, which represent the various available assets. The feature
model links the solutions to the requirements posed on the product to be derived
from the product line.

3.1 Mapping between Family and Feature Model Concepts

The approach presented in this paper aims at using AUTOSAR facilities pro-
vided by the software component template and relates those to the family model
in the CONSUL approach.

Connecting Feature Models and AUTOSAR 103

Fig. 4 shows a more detailed overview of the elements taken from the software
component template and used in the approach. As mentioned above, composi-
tions are used for structural reasons and do not influence the concrete realiza-
tion of the application. Thus, we can identify AUTOSAR components with the
component concept in the CONSUL approach. Components in AUTOSAR, and
therefore all possible descendants of atomic software components, are contain-
ers for the concrete realizations. Those will be identified with the parts concept
in CONSUL. The internal behavior is the container for both the possible com-
munication offered by the runtime environment (exemplified with RTEEvent)
and the schedulable parts (RunnableEntities). Finally, the implemented solution
(Code) together with several quality attributes (exemplified by StackUsage and
ExecutionTime) resides in a common container (Implementation). It indirectly
relates to the software component whose functionality is realized by the code.

1

*

1..*

1..*

1

1

*

0..*0..*

1 1

AtomicSoftwareComponent

InternalBehaviour

Implementation

Code

RunnableEntity

StackUsage ExecutionTime

ResourceConsumption

RTEEvent1..*

WaitPoint

*

1..*

*

SensorActuatorSoftwareComponent

Component Composition

1..*

Fig. 4. Software Template Elements used in our Approach

104 W. Webers, C. Thörn, and K. Sandkuhl

Table 1. Mapping between CONSUL and AUTOSAR

CONSUL AUTOSAR

Feature Feature AtomicSoftwareComponents
Composition

Feature FeatureAttribute ResourceConsumption

Family Component Composition

Family Part Component
InternalBehaviour

Family Source Implementation

In this paper we leave out further details about the communication parts
(ports, interfaces and connections), as well as hardware resources. Table 1 sum-
marizes the mapping of the concepts found in CONSUL and AUTOSAR.

For the feature model we have chosen the concepts of atomic software com-
ponents and compositions as targets for the mapping. This was done due to the
more ”component-focused” original requirements specifications found in the case
study. We additionally annotated these features with the concept of resource con-
sumptions as feature attributes. The concrete values for these attributes come
directly from the non-functional requirements found in the specifications. With
such mapping we were able to describe both, the problem space with the help
of the feature model and the solution space with the help of AUTOSAR.

3.2 Example of the Quality Driven Feature Resolution

The following example, abbreviated for confidentiality reasons, provided by our
case study describes the problem of matching a solution for a restraint algorithm
of an airbag system. Both models are built by applying the mapping described
before. The ”stereotypes” in the models are used for clarifying the role of the
model elements.

We assume that the customer requirements contain a statement about the
quality of such a system, defining specific timing requirements and memory re-
source consumption. In Fig. 5 an excerpt of the feature model is given, showing
the main feature for the algorithm as well as the exposed quality features for this
feature.The concrete quality demands, coming from the requirements specifica-
tion, are instantiated as feature attribute values. The family model expressing
the existing solutions is shown in Fig. 6. This example contains two solutions for
the demanded functionality with different realizations and quality attributes.

The relation to the feature model is built up by the logical constraints anno-
tating the components and parts in the family model. Our approach is therefore
following the same approach presented with CONSUL. The feature matching
is done in the traditional way by matching the names. In our case we match
component names. Additionally, the deeper matching is driven by the concrete
quality attribute values stated in the customer requirements. This will decide on
the concrete implementation of the component (if such exist). For the case such

Connecting Feature Models and AUTOSAR 105

<<FeatureAttr>>
WCET

<<FeatureAttrValue>>
10ms

<<Feature>>
RestraintAlgo

<<FeatureAttr>>
StackSize

<<FeatureAttrValue>>
3KB

Fig. 5. Feature Model for Restraint Algorithms

<<AtomicSoftwareComponent>>
RestraintAlgo

<<Implementation>>
Algo1

<<Implementation>>
Algo2

<<Code>>
Func1

<<Code>>
Func2

<<Code>>
Func1

<<Code>>
Func3

hasFeature(RestraintAlgo)

checkMax(WCET,5ms)
/\

checkMax(StackSize,4KB)

checkMax(WCET,8ms)
/\

checkMax(StackSize,2KB)

Fig. 6. Family Model for Restraint Algorithms

constraint evaluation is successful the matching implementation can be seen as
potentially reusable solution.

For the example feature model, when selecting a restraint algorithm in a
concrete configuration, only the second algorithm fulfills the formal constraints.
Thus, the development process can potentially reuse this best fitting existing
implementation.

4 Discussion and Future Work

This paper presents concepts and constructs for connecting quality attributes
expressed in feature models to AUTOSAR specification assets. It addresses the
need for variability and variance management on different abstraction levels in
an automotive-oriented requirements acquisition process, with a special focus on
quality attributes.

106 W. Webers, C. Thörn, and K. Sandkuhl

We recognize non-functional requirements as important parts of any cus-
tomer requirements specification in the automotive domain. The AUTOSAR
meta-model offers a detailed model-based description of those entities. Having
AUTOSAR descriptions of existing assets by hand makes it easier to drive a
decision process driven by quality attributes, as it is exemplified in this paper.

We see AUTOSAR as an important and highly relevant factor for the de-
velopment of embedded automotive software. It enables development processes
and in particular the requirements management to leverage existing assets in
the form of AUTOSAR specifications. For suppliers in the automotive domain
with extensive existing assets, the development for different needs and customers
using compliant specifications is a decisive challenge. Streamlining the activities
between requirements engineering and the main product development is an im-
portant task.

4.1 Related Work

Using feature models to ease or solve the problems of embedded software de-
velopment for the automotive industry has been treated by several authors and
research groups, predominantly in Europe. The survey in [17] gives an overview
on the work done in this area. In contrast to the question treated in [17] about
variability found on the level of quality attributes, the approach presented in
this paper has its focus on matching customer requirements to existing solutions
in a product family by using quality attributes.

Czarnecki et al. describe using attributes for features in the development of
embedded systems, applicable to the automotive domain [18]. The problems
of modeling variability and the peculiarities of software product lines for the
automotive domain has been covered in for instance [19].

The work conducted in AUTOSAR is often mentioned and referenced as a
relevant and important effort that will significantly influence the work flows
and development aspects in the future [2]. To date, most of what has been
written about AUTOSAR has been speculative when it comes to a concrete
application of AUTOSAR, pending the realization by the initiative. Our work
contributes a concrete merger of feature-driven development using product lines
and AUTOSAR-compatible constructs.

4.2 Future Work

The approach presented here focuses on the scenario where the supplier deliv-
ers the application part of the software. Our work utilizes the atomic software
component concept, focusing on the variability of the software implementations
depending only on quality attributes and exclude the communication and hard-
ware resource dependencies. Other scenarios concerning the basic software parts,
the hardware parts and combinations of those, should also be considered. The
approach presented here can be extended in order to cover all quality attributes
found in the AUTOSAR meta-models.

Connecting Feature Models and AUTOSAR 107

Ackknowledgements. Parts of this work are financed by the Swedish Knowl-
edge Foundation (KK-Stiftelsen), grant 2003/0241, project SEMCO.

References

1. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: A roadmap. In: FOSE 2007: 2007 Future of Software Engineering,
Washington, DC, USA, pp. 55–71. IEEE Computer Society, Los Alamitos (2007)

2. Becker, M., Böckmann, C., Kamsties, E., Wierczoch, T.: Requirements engineering
in the automotive development: Known problems in a new complexity. In: 12th
International Workshop on Requirements Engineering Foundations for Software
Quality (REFSQ 2006), Luxembourg (2006)

3. AUTOSAR: AUTOSAR – Automotive Open System Architecture (2007),
http://www.autosar.org/

4. Bittner, M., Botorabi, A., Poth, A., Reiser, M.O., Weber, M.: Managing variabil-
ity and reuse of features and requirements for large and complex organizational
structures. re 0, 469–470 (2005)

5. Bühne, S., Lauenroth, K., Pohl, K., Weber, M.: Modeling features for multi-criteria
product-lines in the automotive industry. IEE Seminar Digests 2004(914), 9–16
(2004)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement
and Practice 10(2), 143–169 (2005)

7. AUTOSAR: AUTOSAR – Technical Overview. Version 2.0.1 (2007)

8. AUTOSAR: AUTOSAR – Software Component Template. Version 2.0.1 (2007)

9. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
ADA235785, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA (November 1990)

10. IEEE Standards Board: IEEE Standard Glossary of Software Engineering Termi-
nology. Technical Report lEEE Std 610.121990, IEEE (1990)

11. Riebisch, M.: Towards a more precise definition of feature models. In: Riebisch,
M., Coplien, J.O., Streitferdt, D. (eds.) ECOOP 2003. LNCS, vol. 2743, pp. 64–76.
Springer, Heidelberg (2003)

12. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. Advanced Information Systems Engineering, 491–503 (2005)

13. Beuche, D., Papajewski, H., Schroder-Preikschat, W.: Variability management with
feature models; software variability management. Science of Computer Program-
ming 53(3), 333–352 (2004)

14. Blomqvist, E., Öhgren, A., Sandkuhl, K.: Ontology construction in an enterprise
context: Comparing and evaluating two approaches. In: Manolopoulos, Y., Filipe,
J., Constantopoulos, P., Cordeiro, J. (eds.) ICEIS, vol. (3), pp. 86–93 (2006)

15. Sandkuhl, K., Billig, A.: Ontology-based artefact management in automotive elec-
tronics. International Journal of Computer Integrated Manufacturing 20(7), 627–
638 (2007)

16. Sandkuhl, K., Thörn, C., Webers, W.: Enterprise ontology and feature model in-
tegration: Approach and experiences from an industrial case. In: ICSOFT 2007:
Second International Conference on Software and Data Technologies (May 2007)

http://www.autosar.org/

108 W. Webers, C. Thörn, and K. Sandkuhl

17. Etxeberria, L., Sagardui, G., Belategi, L.: Modelling variation in quality attributes.
In: Pohl, K., Heymans, P., Kang, K.C., Metzger, A. (eds.) VaMoS: First Intl.
Workshop on Variability Modelling of Software-intensive Systems. Technical Re-
port 2007-01, Lero (January 2007)

18. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.W.: Generative programming
for embedded software: An industrial experience report. In: GPCE 2002: Proceed-
ings of the 1st ACM SIGPLAN/SIGSOFT conference on Generative Programming
and Component Engineering, London, UK, pp. 156–172. Springer (2002)

19. Thiel, S., Hein, A.: Modeling and using product line variability in automotive
systems. IEEE Software 19(4), 66–72 (2002)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 109–122, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using a Creativity Workshop to Generate
Requirements for an Event Database Application

Claudia Schlosser, Sara Jones, and Neil Maiden

ComNetMedia AG, Emil-Figge-Str.86, D-44227 Dortmund, Germany
Centre for HCI Design, City University, London, EC1V 0HB, UK

s.v.jones@city.ac.uk

Abstract. This paper describes one experience of using a creativity workshop
to generate requirements for an event database application for a network of
German Chambers of Commerce (CCI’s). The workshop described was the first
to be run by the host organization. Techniques used during the workshop in-
cluded discussion of system boundaries and use of creativity triggers. We dis-
cuss the results from the workshop in terms of the number and importance to
stakeholders of the requirements generated. We end with a presentation of les-
sons learnt for improved creative practices in requirements engineering.

Keywords: requirements acquisition, creativity workshop.

1 Introduction

The role of creative thinking in requirements engineering has been recognized as
important [1], [2], but creativity techniques have yet to be employed widely in re-
quirements projects. In this paper we report the application of published requirements
creativity techniques during a workshop in a project developing an event database
application for German Chambers of Commerce. Both the project and the organiza-
tion co-ordinating it were smaller than in other reported applications of similar tech-
niques (see, for example, [1], [2] and [6]). Results reveal the positive impact of the
workshop on participants in the requirements process, and the relative effectiveness of
some of the creativity techniques.

The remainder of the paper is in 4 sections. Section 2 describes the organizational
context within which the work took place. Section 3 describes the project in which the
workshop was applied, and section 4 describes the workshop itself. Section 5 reports
results from the workshop and post-workshop analyses of generated requirements.
The paper ends with a discussion of lessons learned for the organization and for crea-
tive requirements engineering activities in general.

2 Requirements Engineering at ComNetMedia

ComNetMedia (CNM) is an IT solution provider, which was founded in 2000 as a
spin-off of the CCI Gesellschaft für Informationsverarbeitung mbH. It is responsible

110 C. Schlosser, S. Jones, and N. Maiden

for about 200 different applications used by German Chambers of Commerce (CCIs),
including databases, enterprise content management systems, archive solutions and
email. In most cases the applications have an interface to the database of the majority
of the German CCI organisation (integrated systems), and need to conform to e-
government standards, which has a significant impact on IT architectures and busi-
ness processes.

CNM has two main branches – development and consulting. The consulting branch
consists of 10 project managers / consultants and is responsible for the RE process as
interface between customers and developers. The senior consultants and team leaders
have nearly 10 years experience in requirements engineering. CNM often carries out
requirements work on behalf of the chamber organization, with development being
carried out by CNM or another company. RE is therefore one of CNM’s core business
areas.

Depending on the project type and size, the RE process is adapted as described in
the internal CNM project handbook. For projects of all sizes, the handbook contains
models and examples of requirements descriptions, and a description of the internal
CNM process for requirements management. For medium and large size projects,
CNM uses Quickplace, a LotusNotes based Groupware tool to give transparency and
management of RE functions such as change requests, description of work as use
cases, and incorporation of RE into project plans. Other tools are available for RE
description and management, including style guides relating to GUI design, tools for
ER diagrams, use case and process modelling tools.

A new project, to build a new application, starts in most cases with some fuzzy
ideas and requirements from the customer or CNM. Analysts at CNM then start to
identify additional requirements. After meetings with customer representatives, or
further partners, and CNM developers, CNM starts to write the technical concept (use
cases, uml etc.) and discuss the results with customers, CNM developers and man-
agement. These steps are performed iteratively. However, representatives are often
high-level people from the customer organisations, and access to the real target group,
which will use the application in their workplace, can be difficult. This problem is
reflected in the meetings with customers, when the selected group of representatives
is not involved in the daily business process and has no detailed experience with the
real issues for users. It means that many requirements are often detected relatively late
in the project, when a prototype is in place and more users have access to it. In most
cases the new requirements are not “cost neutral”. In these cases, change requests are
collected and evaluated by CNM in terms of feasibility, budget, and delivery (re-
lease). Then the customer can decide whether the importance/use of the new “func-
tionality” is at least equal to the additional budget/effort.

One horizontal task within CNM RE work is to improve methods to deliver a
higher quality RE process and ultimately a better quality of finally product or project.
In this paper, we describe the experiences of one of the authors, who is a senior con-
sultant within CNM, of using a creativity workshop as part of the CNM requirements
process. This author had first encountered creativity workshops in the context of the
APOSDLE project [3], first by participating as a stakeholder in one such workshop,
and then learning more about them from the APOSDLE work-based learning proto-
type [4]. The idea of running creativity workshops as part of the requirements process
was initially developed in the context of the RESCUE requirements process [5].

 Using a Creativity Workshop to Generate Requirements for an EDA 111

RESCUE creativity workshops have much in common with other participatory design
workshops, but are designed specifically to stimulate creativity, using established
models of creativity from artificial intelligence and social and cognitive psychology,
as described in, for example [6], Creativity workshops sit between the four streams of
the RESCUE process, drawing input from early models of actors and use cases for the
future system, and providing output which is used in particular to help specify use
cases and identify requirements for the future system. Outputs from such workshops
include requirements, creative design ideas, and storyboards embodying the creative
ideas inspired by the workshop. These are used by those who write use cases and
requirements as part of the future system specification. Workshops are designed based
on models of creativity from cognitive and social psychology, as described in [6] and
normally run for two days, incorporating a number of different activities designed to
stimulate creativity. The RESCUE team has so far facilitated 14 creativity workshops
in the air traffic management, policing and self-directed learning domains (see, for
example, [1], [2]). However, RESCUE-style creativity workshops have not previously
been run by facilitators from outside of the RESCUE team. This paper describes the
first occasion on which this has been attempted.

3 The Event Database Application (EDA) Project

The project in which CNM decided to trial the use of a creativity was to develop an
event database application for German CCIs. The first version of the application was
built using a content management system. Further development was then transferred
into an internal knowledge management project of the DCCI: the association of the
German CCIs. As part of this project, “event publication and management” was de-
fined as a sub-system and realised as a database application. Several requirements,
such as interfaces to other systems, XML-import/export functions, event management
etc. were realised. This version of the application is currently used by German CCIs
for offering and “booking” events and training sessions. There are several types of
events, such as free-of-charge information events; expensive long term training
courses, including examinations, that can lead to degree level qualifications; one day
basic training courses about, for example, “how to use MS Word”; or workshops on
how to set up a new company.

Three years ago there was a platform change resulting from the fact that the old
versions were no longer supported by the software and hardware. The application was
updated several times so that the technical platform was “state-of-the-art” but the
application (business logic) itself was not. The “old-fashioned” event database appli-
cation needed an update. At this stage a decision had to be made: whether to simply
change the platform again and keep the old concepts, or to take the chance to start
from scratch and develop a new concept and IT architecture. CNM management,
together with developers and the EDA project leader decided to start from scratch and
build a new application, which would be appealing to users, with additional features
and modules in a new architecture. It was decided that input from users and customers
should be an important source of information for the new concept. Since, as described
above, staff at CNM had access to information about the RESCUE user-centred re-
quirements process, due to their participation in the APOSDLE project [3], it was

112 C. Schlosser, S. Jones, and N. Maiden

decided to use one of the techniques described within the RESCUE process – a crea-
tivity workshop -- to obtain inputs from the CCI user group.

Several target groups were identified, including external customers interested in
CCI training courses, and CCI staff involved in training and event management, mar-
keting, administration, and overall management and control. Holding the creativity
workshop as a “live event”, rather than simply consulting experts or writing down
concepts, seemed to be a good start to get a wide range of the different target groups
from different CCIs together. The aim was to collect ideas from the different target
groups in a “democratic” way and not only to ask some experts or write the concept
without asking users. The techniques chosen were intended to support the creative
invention of requirements from heterogeneous, non-technical user groups, and the
structuring of those requirements around key use cases.

4 The EDA Project Creativity Workshop

18 CCI representatives responded to the invitation to the workshop, including project
leaders responsible for CCI web sites and training and course management. Partici-
pants came from 12 different CCI’s within the CCI24 group, which consists of nearly
30 chambers of commerce [7]. All of these chambers have the old system in place. In
addition, to add some more technical expertise on systems and tools running in differ-
ent CCI’s, 2 senior consultants, the CCI24 project leader and a trainee from within
CNM were also invited.

The representatives from CCI’s were well prepared. As part of the invitation to at-
tend the workshop, they were asked to be prepared with detailed knowledge of CCI
internal processes (e.g. how to proceed with the application process for a training
course, editing of events in the application, types of events etc.) and experience with
the existing application. In most cases CCI representatives collected some feedback
from their colleagues and brought lists of ideas (problems) to the workshop. The fa-
cilitator spent one day preparing for the workshop, and 4 hours, with the help of some
technical support, preparing the space in which the workshop was to be held.

The workshop lasted for 8 hours, with 45 minutes break for lunch. It was held in a
large meeting room in Dortmund, and was facilitated by the first author. A first draft
of the system context model and use case precis (unstructured paragraphs describing
the behaviour of actors in a potential use case) provided the structure for the work-
shop room itself. The credo was “no ideas off limits” – think of anything, which
might be a good idea or should be prevented. Participants were told that all require-
ments they would identify might be realised in the new application, but that the
evaluation of this would be done by CNM, since they were the solution owners, and
had an overview of existing and currently planned IT architectures and applications,
allowing them to exploit possible synergies with other applications. The workshop
was facilitated to encourage a fun atmosphere so that the stakeholders were relaxed to
generate and voice ideas without fear of criticism. During creativity periods, standard
RAD/JAD facilitation techniques and rules [1] such as avoiding criticism of other
people’s ideas and time-boxing each topic under discussion were applied. Stake-
holders were supplied with Volere requirement shells [9], print-outs from the current
application, A3/4 paper, color pens, pencils etc. with which to record the results from
each period.

 Using a Creativity Workshop to Generate Requirements for an EDA 113

Fig. 1. Scene from the creativity workshop

4.1 Pros and Cons of the Current Situation

The morning period activities began with two ‘round-robin’ sessions in which each
stakeholder was asked to come up with features or ideas for the new system based on
their experience with the existing application. Participants were given approximately
5 minutes, working alone, to identify the disadvantages of the current system, and half
an hour was then allowed for each participant to tell the result to the group. The same
procedure was performed for the advantages of the system. The aim of this session
was to allow participants to concentrate on the current limitations and identify weak-
nesses and strengths of the current version. But it was also to get their own favorite
ideas or important features out into the workshop up-front, so that they would not use
time in subsequent sessions trying to get those ideas heard. Participants were allowed
to contribute more than one idea each.

4.2 Definition of System Boundaries

The morning period activities continued with system-wide brainstorming and the
identification of system boundaries, considering other systems used within different
CCIs where different direct connections for import and export of data are in place.
This led to constraint and boundary identification and cleared up the focus and scope
of the future development, and of course of the expectations of the workshop day.

The session began with a prepared flip chart showing the first draft system context
model, where the system was in the centre and two “rings” around it defined the dif-
ferent layers: the user front-end and GUI; any co-operative adjacent systems [9]; and
autonomous adjacent systems. To get the discussion and idea flow started, partici-
pants reviewed the “general story” of the application from the point of view of differ-
ent target groups including the customer, the CCI, the system itself, and external

114 C. Schlosser, S. Jones, and N. Maiden

systems. To drive the session forward, the facilitator then asked open questions e.g.
“who or what is part of the application process”. Questions focussed on connections
to other systems or actors, connections to different departments in the CCIs (different
actors / roles within the CCI organsastion), connections between the customer and the
system, relation(s) between actors, and relations between use cases or functions and
external actors (systems, humans, regulations etc.).

For each activity, actor or system mentioned, assistants added different coloured
and shaped post-it notes onto the chart. In addition the group started to create connec-
tions between them. The session finished by considering the main use case precis. The
aim of this session was to generate a common understanding of what was in and out
of scope. This was essential as a lot of the participants’ initial concerns had been to do
with external systems.

4.3 Using Creativity Triggers to Generate New Requirements

Two sessions during the workshop were dedicated to generating new requirements
using exploratory creativity stimulated by the use of creativity triggers. In each of
these sessions, participants were divided into four groups with four or five representa-
tives from CCIs and one from CNM. The moderator created the groups in a way that
people from different CCIs and departments, and with different experience (as mar-
keting experts, technical experts or event managers) worked in groups together. The
aim was to have groups which brought individuals with different expertise and focus
together to prevent “specialisation”. Groups worked in parallel, using different crea-
tivity triggers.

The creativity triggers used were those defined in [10], and were explained by the
facilitator using the context-relevant examples shown in Table 1. Groups were able to
choose which trigger they wanted to work with during each session. Each group
worked on using its chosen trigger to identify requirements for approximately 30
minutes, documenting new requirements using the Volere requirement shell [9] trans-
lated into German. During this time, the facilitator was available to answer questions
if needed, but did not otherwise intervene. After each round each group presented
their ideas to the workshop as a whole. This often lead to the identification of further
requirements. After each round, the participants were re-grouped and chose a new
trigger for the next round.

After the workshop, all the identified requirements were recorded in an MS Excel
spreadsheet. The CNM project manager structured the list of requirements by relating
them to a rough cluster of basic use cases and identifying those requirements which
could be used within different use cases (e.g. print, e-mail reminder) as system-level
requirements. The spreadsheet was then placed on the CCI24 partner server. This
allowed responsible CCI stakeholders, who were not able to participate in the work-
shop, to be informed and provide additional ideas to CNM. Several new requirements
were identified in this way. Finally, all CCI24 project leader participants were asked
to rank the requirements, using the Volere satisfaction and dissatisfaction rating scales
[9], on behalf of their CCI. This feedback was then collected and used for our internal
ranking.

 Using a Creativity Workshop to Generate Requirements for an EDA 115

Table 1. Creativity triggers and EDA-specific examples used for explanation in the workshop

Creativity triggers Context-specific explanations and examples used in the EDA workshop

Service Target group: customer
Target group: CCI event/course management
Target group: CCI training
Target group: CCI public relation and others

Information Which kind of information is interesting for customers?
Which kind of information could a CCI offer?
Which kind of information is useful for the customer?
Which kind of information is useful for the CCI?

Participation How can customers actively participate?
How can CCI training course representatives actively participate?
How can CCI event management people actively participate?
How can CCI PR people actively participate?

Connections Media for customers
Connection to ECMS
Connection/ Interfaces to other CCI systems
Connection of further media (information) channels/systems

Trust Customer point of view - System
Customer point of view - CCI
CCI
System

Convenience Customers
CCI course/event management
CCI training department
CCI PR, communication

5 Results and Discussion

During the workshop, a total of 148 requirements were generated. 34 requirements
had been identified by participants in preparation for the workshop, and a further 5
were identified by the facilitators on immediate reflection after the workshop. In this
section, we analyse data relating to the 148 requirements generated during the course
of the workshop to answer a number of research questions of interest. The main out-
comes are shown in Table 2.

Table 2. Numbers of requirements generated from the initial round robin session and the use of
different creativity triggers during idea generation sessions

Technique/Creativity trigger No. reqts

Round robin pros & cons 41

Service 33

Information 25

Participation 0

Connections 4

Trust 9

Convenience 36

Total 148

116 C. Schlosser, S. Jones, and N. Maiden

5.1 What Triggers Did Groups Choose to Work with?

During the idea generation sessions, groups were free to choose which creativity trig-
gers to work with. Table 3 shows how many times a group chose to work with each of
the available triggers.

It is interesting to note the differences in the numbers of groups opting to work
with the different creativity triggers. Triggers are shown in the table in the order in
which they were explained during the workshop. Therefore, the differences may be
due to a combination of recency and primacy effects, whereby participants remem-
bered better the earlier and later triggers from the list. However, the impression of the
facilitator was that some triggers did not seem as relevant as others, and were not so
easy to understand for the participants in this workshop. For example, the ‘Connec-
tions’ trigger was explained as quite a technical concept, relating to interfaces with
other CCI systems, and may therefore not have seemed very relevant to the stake-
holders’ perceptions of the system in terms of its user interface. Further investigation
of this issue is needed.

Table 3. Numbers of groups who chose to work with different creativity triggers

Creativity trigger No. of groups

Service 4

Information 3

Participation 0

Connections 1

Trust 2

Convenience 4

5.2 How Productive Were the Different Techniques Used during the
Workshop?

In Table 4, we present a measure of the relative productivity of the different tech-
niques and triggers used during the idea generation sessions. The data shown was
generated according to the formula:

number of requirements generated during the session / (total number of min-
utes in the session x number of repetitions of session x total number of people

involved in the session) .
(1)

This measure is intended to give an approximate representation of the number of
requirements generated per person-minute. Note that this is only an approximate
measure, since sessions lengths are approximate (correct to within + or – 5 minutes),
and group sizes for the idea generation sessions were sometimes 5 and sometimes 6
(an average of 5.5 was used for the calculations).

It is interesting that the round robin session, involving all participants, appears less
productive than the work with some of the creativity triggers, which was done by
smaller groups working in parallel, although it should be remembered that this session
served other important purposes in terms of allowing participants to share ideas and
build a common sense of purpose.

 Using a Creativity Workshop to Generate Requirements for an EDA 117

Table 4. Productivity of different techniques and triggers

Technique/Creativity trigger No. of requirements per person-minute

Round robin pros & cons 0.027

Service 0.050

Information 0.051

Participation N/A

Connections 0.024

Trust 0.027

Convenience 0.055

Looking at Tables 3 and 4, it is also interesting to note an apparent correlation be-

tween the popularity of the creativity triggers (i.e. how often they were chosen by
groups) and their productivity, with Service, Information and Convenience being the
three most popular triggers (chosen by 3 or 4 groups) and apparently also the most
productive (with a productivity measure of 0.05 or more). Both choice of trigger and
productivity in working with a trigger are likely to be indicators of how meaningful
different triggers are to stakeholders with particular experience in a particular domain.
These results therefore lend support to the hypothesis that certain triggers may be
more meaningful to participants working in particular domains than others. Again,
further research is needed to investigate this.

5.3 Does the Use of Creativity Techniques Lead to Good Quality Requirements?

Following the workshop, all CCI’s which had sent representatives to the workshop
were asked to rate the requirements generated using the Volere measures of customer
satisfaction and dissatisfaction [9]. In other words, CCIs were asked to rate, on a scale
of 1 – 5, how satisfied they would be if a requirement was met in the final system
(where 5 is most satisfied), and also on a scale of 1 – 5, how dissatisfied they would
be if the requirement were not met (where 5 is most dissatisfied).

Data from this exercise is collated in Table 5. The table shows the numbers of
times an CCI rated a requirement generated from the creativity technique or trigger
shown at levels 1 – 5 for satisfaction and dissatisfaction. Since each CCI was asked to
give two different ratings to each of around 200 requirements, it is perhaps not sur-
prising that some of the requirements were not rated by some participants. In our
table, we simply count and average the ratings given.

The overall averages for both satisfaction and dissatisfaction are greater than 3,
suggesting that requirements generated during the creativity workshop are seen by the
participants to be important in relation to the future system.

It is interesting to note that for both satisfaction and dissatisfaction, the highest av-
erage rating is for requirements generated during the round robin pros and cons ses-
sion held at the beginning of the workshop. This is perhaps not surprising, as people
came prepared to share their ‘big ideas’ about the future system, and did so during
that session. So, although this session could be seen as less productive than some
according to the measure shown in Table 4, it delivered, on average, the most highly
rated requirements.

118 C. Schlosser, S. Jones, and N. Maiden

Table 5. Total numbers of CCI ratings of a requirement from the creativity technique or trigger
shown at the level of satisfaction or dissatisfaction shown

Technique/
Creativity
trigger

Customer satisfaction Customer Dissatisfaction

 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Round robin
pros & cons

18 14 67 50 133 3.94 12 15 54 49 94 3.88

Service 27 28 52 64 130 3.80 14 29 56 51 84 3.69

Information 30 27 54 35 49 3.23 31 22 59 30 22 2.93

Participation

Connections 3 2 6 2 16 3.89 1 2 5 5 9 3.86

Trust 11 5 22 14 27 3.51 9 9 16 10 18 3.30

Convenience 55 32 68 32 88 3.24 46 28 61 27 62 3.13

Total 144 108 269 197 443 3.60 113 105 251 172 289 3.47

Considering the different creativity triggers used in idea generation sessions, it is

also interesting to note that the triggers which were apparently most productive did
not necessarily produce the most important requirements. For example, the ‘Informa-
tion’ trigger was the second most productive (see Table 4), but requirements gener-
ated using that trigger had the lowest average satisfaction and dissatisfaction ratings
of those from any trigger. ‘Connections’, on the other hand, appeared to be the least
productive trigger according to Table 4, but to stimulate the requirements with the
highest satisfaction and dissatisfaction ratings of any trigger. Once again these find-
ings may be quite specific to this group of participants working in this domain. It is
the impression of the facilitator that the ‘Connections’ and ‘Trust’ triggers were inter-
preted in quite a technical way (as relating to networking and security, for example),
and were in this sense outside of the expertise of most of the stakeholders present.
This may have accounted both for the apparently low productivity (i.e. the low num-
ber of requirements generated) and the high importance attached to the requirements
generated. Further research is needed before we can generalize about the effectiveness
of different creativity triggers and techniques.

5.4 Is There Any Association between the Creativity Technique or Trigger Used
and the Part of the System for Which Requirements Are Derived?

There is a wide variation in the numbers of requirements identified for the different
use cases, from 0 to 30, as shown in Table 6. The main foci for attention were the
editing of forms on the provider side (‘Edit forms’), and making applications to attend
training courses on the customer side (‘Make application’). 19 requirements were also
identified in relation to customer ‘Comfort functions’ – features of the system which
would make it easier and more pleasant for customers to use – and 24 requirements
were identified in relation to interfaces, import/export functionalities and xml formats
for linking with external systems (‘Import/export’).

Requirements from the round robin pros and cons session are particularly focused
on the ‘Edit forms’ use case (which accounted for 15 out of the 41 requirements

 Using a Creativity Workshop to Generate Requirements for an EDA 119

Table 6. Association of requirements from different sources with use cases or system-level
aspects of functionality

Technique/
Creativity
trigger

Customer use cases Provider use cases System-level
requirements

Lo
gi

n

Se
ar

ch

D
is

pl
ay

 r
es

ul
ts

M
ak

e
ap

pl
ic

at
io

n

Pa
ym

en
t

O
ff

er
s

Co
m

fo
rt

 f
un

ct
io

ns

Ed
it

 f
or

m
s

Ed
it

 a
pp

. f
or

m
s

A
dm

in
/m

on
it

or
in

g

M
ar

ke
ti

ng

St
at

is
ti

cs

Pe
rf

or
m

an
ce

U
sa

bi
lit

y

Im
po

rt
/e

xp
or

t

Se
cu

ri
ty

Round robin
pros & cons

 2 4 5 15 1 1 2 11

Service 2 1 7 1 2 3 7 2 1 7

Information 9 3 5 4 1 2 1

Participa-
tion

Connections 1 1 2

Trust 1 1 2 1 4

Convenience 4 1 6 3 5 8 5 4

Total 0 8 12 21 1 10 1
9

3
0

2 0 11 2 0 4 24 4

generated during this session) and ‘Import/export’ connections with external systems
(11 out of 41). This reflects the areas of concern which the participants brought to the
workshop. However, it is noticeable that requirements related to other areas of func-
tionality were identified later in the workshop, during idea generation sessions using
the creativity triggers. For example, while no requirements for the ‘Display results’
use case were identified during the pros and cons session, a total of 12 had been iden-
tified by the end of the idea generation sessions using creativity triggers. No require-
ments were identified in relation to ‘Offers’ in the pros and cons session, but creativ-
ity triggers lead to 10 new requirements in this area, and finally only 1 requirement
relating to ‘Marketing’ was raised during the pros and cons session, but 10 new re-
quirements were added during idea generation. This suggests that the work with crea-
tivity triggers in general gave participants the opportunity to consider broader issues
and other parts of the system than those on which they might initially have focused.

Considering the impact of work with particular triggers, the spread of requirements
identified using the Service and Convenience triggers appears to reflect the trends
from the workshop as a whole, with most requirements from these triggers relating to
‘Make applications’, ‘Edit forms’ and ‘Import/export’. Requirements generated using
other triggers do not always follow the same pattern. For example, perhaps not sur-
prisingly, the biggest group of requirements from the ‘Information’ trigger relate to

120 C. Schlosser, S. Jones, and N. Maiden

the use case about displaying results of searches for course information. Too few
requirements were identified using the Connections, Trust and Participation triggers
to be able to identify any trends of this kind.

6 Lessons Learnt

This was the first use of a creativity workshop within CNM, and the first time that such
a workshop had been facilitated by someone outside of the RESCUE team that origi-
nally developed the concept. The workshop proved to be an extremely useful technique
in this context. Many important requirements were generated in a short space of time. In
CNM’s experience of similar projects, it could take around a year of monthly visits,
meetings and discussions to collect a number of requirements similar to that collected
through the use of the one day creativity workshop in the EDA project. While some of
the efficiency gains may have come simply from collecting a number of different stake-
holders together in a single workshop rather than carrying out separate meetings with
the different stakeholder organisations, it is the impression of the facilitator that other
benefits were due to the use of creativity techniques within the workshop. These tech-
niques surfaced a wider range of ideas, from more different stakeholders, and generated
different kinds of ideas from those which would typically be identified through the use
of ‘standard’ requirements techniques. The feedback from participants about both their
experience of using creativity techniques during the workshop and the quality of the
resulting use cases and requirements was also very positive.

Based on this experience, CNM will use creativity workshops again to collect
requirements for projects similar to the EDA project, where there is a need for a user-
oriented requirements process to define requirements for a sizeable product or applica-
tion, where requirements are initially unclear and there are heterogeneous user groups
with different requirements and backgrounds (technical, organisational, content).

One important lesson concerned the management of stakeholder expectations about
the requirements activities in and around a workshop. People were surprised and even
resentful in the beginning as their expectations differed completely from what actually
happened. They expected a meeting where they could place some ideas or just follow
a presentation and then start a discussion – the way they usually define applications.
Some participants initially criticised the definition of system boundaries as “useless”
or a “waste of time”. This was the most important, and most difficult part of the
workshop. As the event progressed, the participants’ understanding of why bounda-
ries and the identification of actors are important developed. The most important
lesson is to ensure that a good explanation is given as to why this kind of work is
important. In future use of creativity workshops, especially with non-technical target
groups who have little or no experience of the requirements process, there is a need
for some easy to understand arguments and explanations of, for example, why system
boundaries are important, and how actors or functionality groups will have influence.

Another lesson, based on our experience, is the need to incorporate some modifica-
tions of the creativity process in the case of projects with a clearly fixed budget limit,
in order to reduce or prevent dissatisfaction. A workshop can generate many ideas,
but there may not be the budget to realise them. In such cases creativity should, if
possible, be channelled to focus on areas of functionality within the range of the

 Using a Creativity Workshop to Generate Requirements for an EDA 121

project budget. One possibility would be to identify extra costs in parallel with re-
quirements so that the customer can decide whether s/he wants the relevant features or
not. In the case of product development, the normal practice of CNM is to work first
with a pilot customer, before developing a product for general release. In this case, the
pilot customer would have the opportunity to be creative, but CNM would ultimately
decide whether a particular feature should be “in” or “out of scope”.

In more general terms, the results from this workshop suggest that the effectiveness
of different creativity triggers may depend on the project context, and especially on
the interests and experience of the stakeholders and the nature of the system to be
developed. In the workshop reported in this paper, some triggers were apparently
more productive than others, in terms of the numbers of requirements generated by
people working with them. Some triggers seem also to have led to the generation of
more important requirements than others. However, it is important to note that the
triggers which stimulated the generation of the highest numbers of requirements were
not the same as those which led to the requirements which were most valued by
stakeholders. Finally, there is some evidence that the use of creativity triggers during
a workshop can stimulate stakeholders to identify requirements for parts of a new
system on which they had not previously focused, and that some triggers (such as
‘Information’) may focus attention on particular aspects of the system. We look for-
ward to building on these findings in future workshops.

Acknowledgements. The work reported in this paper began as part of the APOSDLE
project, which is partially funded under the FP6 of the European Community withn
the IST work programme (project number IST-027023).

References

1. Maiden, N.A.M., Robertson, S.: Integrating Creativity into Requirements Processes: Ex-
periences with an Air Traffic Management System. In: Proceedings of the 13th IEEE In-
ternational Requirements Engineering Conference (RE 2005), IEEE CS Press, Los
Alamitos (2005)

2. Maiden, N.A.M., Ncube, C., Robertson, S.: Can Requirements be Creative? Experiences
with an Enhanced Air Space Management System. In: Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE 2007), IEEE CS Press, Los Alamitos
(2007)

3. The APOSDLE project web site (2007), http://www.aposdle.org
4. Ley, T., Kump, B., Lindstaedt, S.N., Albert, D., Maiden, N.A.M., Jones, S.: Competence

and Performance in Requirements Engineering: Bringing Learning to the Workplace. In:
Proceedings of the 2nd Workshop on Learner-Oriented Knowledge Management & KM-
Oriented E-Learning (LOKMOL) (2006)

5. Jones, S., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying Requirements
for Complex Socio-Technical Systems. In: Mate, J.L., Silva, A. (eds.) Requirements Engi-
neering for Sociotechnical Systems, Idea Group Inc. (2005)

6. Jones, S., Maiden, N.A.M., Karlsen, K.: Creativity in the Specification of Large-Scale
Socio-Technical Systems. In: Golightly, D., Rose, T., Wong, B.L.W., Light, A. (eds.) Pro-
ceedings of CREATE 2007, the Conference on Creative Inventions, Innovations and Eve-
ryday Designs in HCI, London, UK, June 13-14, 2007, pp. 41–46. Ergonomics Society
(2007)

122 C. Schlosser, S. Jones, and N. Maiden

7. IHK24 Partner homepage (2007), http://www.ihk24.de
8. Andrews, D.C.: JAD: A Crucial Dimension for Rapid Applications Development. Journal

of Systems Management, 23–31 (March 1991)
9. Robertson, S., Robertson, J.: Mastering the Requirements Process. ACM Press, New York

(1999)
10. Maiden, N.A.M., Robertson, J.: Creative Requirements - Invention and its Role in Re-

quirements Engineering, Tutorial Notes. In: RE 2005 Conference, Paris, France (August
29, 2005)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 123 – 128, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Can We Beat the Complexity of
Very Large-Scale Requirements Engineering?

Björn Regnell1,2, Richard Berntsson Svensson2, and Krzysztof Wnuk2

1 Sony Ericsson, Lund, Sweden
http://www.sonyericsson.com

2 Lund University, Sweden
bjorn.regnell@cs.lth.se,

http://www.cs.lth.se

Abstract. Competitive development of complex embedded systems such as
mobile phones requires management of massive amounts of complex require-
ments. This paper defines and discusses orders of magnitudes in RE and impli-
cations of the highest order of magnitude that we have experienced in industrial
settings. Based on experiences from the mobile phone domain we propose re-
search areas that, if addressed successfully, may help beating the complexity of
Very Large-Scale Requirements Engineering.

1 Introduction

The complexity and size of software-intensive systems continues to increase, which in
turn gives increasingly large and complex sets of requirements. How many require-
ments can an industrial system development organisation manage with available Re-
quirements Engineering (RE) processes, methodology, techniques and tools? This is
hard to know as RE research often falls short in characterizing the scalability of pro-
posed methods. How large and complex sets of requirements do we need to consider
when researching new RE technology? We have no complete picture of current indus-
trial practice in terms of complexity of sets of requirements, but we have experiences
from industrial cases with enormous complexity where current RE technology have
useful but partial effect [4,5,6]. Our objective with this paper is to share some impor-
tant research opportunities that we have found in our observation of what we call
Very Large-Scale Requirements Engineering (VLSRE).

The paper is organized as follows. Section 2 proposes a definition of VLSRE based
on the size of a requirement set as a proxy for its complexity. Section 3 provides a
case description of the mobile phone domain that illustrates an instance of VLSRE.
Section 4 highlights some research opportunities that we through our own industrial
experience have found relevant to VLSRE. Section 5 concludes the paper.

2 Orders of Magnitude in Requirements Engineering

Table 1 defines four orders of magnitude in RE based on the size of the set of re-
quirements that are managed by an organisation that develops software-intensive

124 B. Regnell, R.B. Svensson, and K. Wnuk

Table 1. Three orders of magnitude in Requirements Engineering

 Abrev. Level Order of
magnitude

Sample
empirical
evidence

Interdependency
 management conjectures
with current RE technology

SSRE Small-Scale
Requirements
Engineering

~10
requirements

 Managing a complete set of interde-
pendencies requires small effort.

MSRE Medium-Scale
Requirements
Engineering

~ 100
requirements

[3] Managing a complete set of interde-
pendencies is feasible but requires
large effort.

LSRE Large-Scale
Requirements
Engineering

~1000
requirements

[8] Managing a complete set of interde-
pendencies is practically unfeasible,
but feasible among small bundles of
requirements.

VLSRE Very Large-Scale
Requirements
Engineering

~10000
requirements

[6]

Managing a complete set of interde-
pendencies among small bundles of
requirements is unfeasible in practice.

systems. The levels are inspired by the characterisation of orders of magnitude in
integration of digital circuits.

We have chosen numbers of requirements as a proxy for complexity as we believe
that increased numbers of customers, end users, developers, subcontractors, product
features, external system interfaces, etc. come along with increased number of
requirements generated in the RE process as well as increased complexity of RE.
Furthermore, in almost all industrial RE settings that we have encountered, the re-
quirements that are documented are also eventually enumerated and often given a
unique identity, allowing a counting of the elements in the set of requirements in a
given development organisation. If so, it is fairly easy to give a size figure for a given
case that in turn allows for cases to be compared in terms of their order of magnitude
(although the average level of detail in the set of requirements needs to be fairly simi-
lar for the comparison not to be too speculative).

We suggest based on experience that the complexity of a set of requirement is
heavily related to the nature of interdependencies among requirements (see e.g. [2] for
an empirical investigation of interdependencies). With a realistic degree of interde-
pendencies among n-tuples of requirements, we hypothesize that the number of inter-
dependencies to elicit, document and validate increases dramatically with increased
number of requirements. When shifting from MSRE to LSRE, a typical heuristic for
dealing with the complexity of interdependency management is to bundle require-
ments into partitions and thereby creating a higher level of abstraction where interde-
pendencies among bundles can be managed with reasonable effort. When shifting
from LSRE to VLSRE, our conjecture is that even the number of bundles gets too
high and the size of bundles becomes too large to allow for interdependency man-
agement with desired effectiveness. If the requirements bundles become too large, the
interdependency links loose practical usefulness as they relate too coarse grained
abstractions.

SSRE and MSRE is a common scale in research papers that seek to validate a pro-
posed method or tool. For example, in [3] the scalability issue is addressed but for a
specific tool dealing with only 67 requirements. In this situation it is possible to

 Can We Beat the Complexity of Very Large-Scale Requirements Engineering? 125

enumerate and manage complex relations among requirements even with dense relation
patterns. However, we believe that few industrial situations in current system develop-
ment can avoid stretching beyond SSRE and even MSRE. We have found few examples
in RE literature that discusses LSRE (such as [8]), but we believe that LSRE is common
industrial practice (confirmed by [1]). We also believe that a significant number of com-
panies that currently face LSRE will grow into the situation of VLSRE as their products
grow in complexity, their product portfolio grows in size, and they introduce product
line engineering that further drives RE complexity. In the next section we describe one
specific case that already has experienced such atransition.

3 A Case of VLSRE

To illustrate the complexity in VLSRE we provide a case description of embedded
systems engineering in the mobile phone domain, based on experiences at Sony Erics-
son, which has faced a transition from LSRE to VLSRE in the last years, while
remaining competitive on the market with a growing number of around 6000 employ-
ees. Mobile phones include a wide range of features related to e.g. communication,
business applications and entertainment. The technological content is complex and
includes advanced system engineering areas such as radio technology, memory tech-
nology, software design, communication protocols, security, audio & video, digital
rights management, gaming, positioning etc. The complexity of RE is driven by a
large and diverse set of stakeholders, both external to the company and internal. Table
2 gives examples of stakeholders that generate requirements.

Table 2. Examples of stakeholders that generate requirements

External Stakeholders Internal Stakeholders
Competitors
Consumers of different segments
Content providers
Legislation authorities
Operators
Retailers
Service providers
Share holders
Standardization bodies
Subcontractors & component providers

Accessories
Customer Services
Market research
Marketing & customer relations
Platform development (SW+HW)
Product, application & content planning
Product development (SW+HW)
Product management
Sourcing, supply & manufacturing
Technology research & development
Usability engineering

Some stakeholders are counted in billions, such as consumers of different seg-

ments, while some are counted in hundreds such as operators. In the case of Sony
Ericsson, the requirements that are generated from internal and external stakeholders
amount to several tens of thousands, and this is a clear case of VLSRE.

Figure 1 provides a simplified picture of the different types of requirements and
their relations. Similar to the case in [3], requirements originating from external stake-
holders (called market requirements) are separated from but linked to system
requirements that are input to platform scoping in a product line setting. Market

126 B. Regnell, R.B. Svensson, and K. Wnuk

requirements are mainly generated by operators submitting specifications with thou-
sands of requirements that require statements of compliance. The total volume of
market requirements at Sony Ericsson exceeds 10000 as well as the total volume of
platform system requirements. In order to make scoping feasible, platform system
requirements are bundled into hundreds of features that represent the smallest units
that can be scoped in or out. In order to support product development the platform
capabilities are organised into configuration packages that improve over time as more
and more features are implemented for each new version of a platform. Products are
configured through assemblies of configuration packages according to the rules of
how they can be combined based on their interdependencies. All categories of re-
quirements are expressed in natural language text and include a set of attributes ac-
cording to a requirements data model for a requirements data base implemented in a
commercial requirements engineering tool. Based on our experience with the com-
plexity of this VLSRE case we bring forward three key research opportunities in the
next section.

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

Fig. 1. Orders of magnitude in different artifacts of a specific VLSRE case

4 Three Key Research Opportunities in VLSRE

Based on our experience from working several years in the previously described
VLSRE context, we have chosen to highlight three areas where we believe RE re-
search can and should contribute:

• Sustainable requirements architectures: Fighting information overload. With
the term requirements architecture we mean the underlying structure by which the

 Can We Beat the Complexity of Very Large-Scale Requirements Engineering? 127

requirements are organised including the data model of the requirements with their
pre-conceived attributes and relations. In VLSRE, the amount of information that
must be managed is immense and not possible to grasp in all its details by a single
person. In order to fight information overload we need requirements architectures
that are sustainable in the sense that they allow for controlled growth while allow-
ing the requirements engineers in a large organisation to keep track of the myriad
of issues that continuously emerge. How should we design sustainable require-
ments architectures? Which concepts are stable? Which attributes and links are
most important to maintain? What is the simplest yet competitive requirements
data model?

• Effective requirements abstractions: Fighting combinatorial explosions. In
VLSRE situations where interdependencies among requirements are critical (such as
prioritisation, resource estimation, and change impact analysis) we inevitably stum-
ble on combinatorial explosions, further fuelled by product line engineering that
significantly increases the complexity of the requirements architecture. Finding all
interdependencies among 20 requirements is possible, but not among 10000. A major
vehicle for fighting this is abstraction mechanisms and experience-based heuristics.
In interviews with requirements architects at Sony Ericsson we encounter heuristics
related to requirements bundling and choice of level of detail, but they still often
struggle to find yet another needle in the haystack. Can we empirically characterize
the effectiveness of requirements abstractions? How can we empirically investigate
human requirements comprehension? How to support humans in navigating and
searching massive sets of requirements? How can we make relevant visualisations of
different partial viewpoints on immense requirements heaps that hide irrelevant de-
tails but highlight important issues for a given decision-making situation? What level
of uncertainty and degree of approximation can we tolerate?

• Emergent quality predictions: Fighting over-scoping. Given a competitive market
and a large and demanding set of stakeholders, there seems to be an inevitable
shortage of resources to meet quality expectations. To predict the system level
quality aspects that emerge from a myriad of details is very difficult and we have
seen a sustained risk of defining a too large scope for platform development partly
due to the inherent difficulty in understanding quality requirements and predicting
their impact and required development resources. We are beginning to understand
how to do roadmapping and cost-benefit analysis of quality requirements in sub-
domains [7], but we still struggle with how to manage a holistic view where quality
requirements are aggregated to system level. How can we deal with interdependen-
cies among quality requirements? Maybe we can get the scope of functions right,
but are the set of functions of adequate quality? How can we with reasonable effort
prioritize emergent system qualities when predictions are uncertain?

5 Conclusion

During the last decade we have seen VLSRE emerge as a very demanding challenge.
Parts of the embedded systems engineering industry are facing severe problems in coping
with the rapidly increasing complexity of the massive amount of information that needs
to be managed in order to be competitive on the market. Our conjecture is that we have
hit the roof with current tools and we need to mobilise RE researchers to try to beat the

128 B. Regnell, R.B. Svensson, and K. Wnuk

complexity of VLSRE. We should also increase our knowledge of how existing methods,
tools and techniques perform in SSRE, MSRE, LSRE and VLSRE respectively, to better
understand which methods that are good candidates for use in VLSRE combined with
sustainable requirements architectures and effective requirements abstractions. By ad-
vancing these techniques and heuristics we might be able to manage the complex task of
predicting emergent system quality aspects already in the early stages of the development
cycles where opportunities are rising while uncertainties are high.

Acknowledgements. This work is supported by VINNOVA (Swedish Agency for
Innovation Systems) within the MARS and UPITER projects. Special thanks to
Thomas Olsson for input on numbers and to Even-André Karlsson for input to the
visualisation of entity relations in fig. 1.

References

1. Brinkkemper, S.: Requirements Engineering Research the Industry Is and Is Not Waiting
For. In: 10th Anniversary Int. Workshop on Requirements Engineering: Foundation for
Software Quality. Riga Latvia, pp. 41–54 (2004), URL visited 07/12/2007 http://www.sse.
uni-essen.de/refsq/downloads/refsq-10-booklet.pdf

2. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An industrial sur-
vey of requirements interdependencies in software product release planning. In: Proc. IEEE
Int. Conf. on Requirements Engineering, Toronto, Canada, pp. 84–91 (2001)

3. Feather, M.S., Cornford, S.L., Gibbel, M.: Scalable mechanisms for requirements interac-
tion management. In: Proc. 4th Int. Conf. on Requirements Engineering, Los Alamitos,
USA, pp. 119–129 (2000)

4. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: Speeding up Requirements
Management in a Product Software Company: Linking Customer Wishes to Product Re-
quirements through Linguistic Engineering. In: Proc. of the 12th Int. Requirements Engi-
neering Conf., Kyoto, Japan, pp. 283–294 (2004)

5. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: A Linguistic Engineering Ap-
proach to Large-Scale Requirements Management. IEEE Software 22, 32–39 (2005)

6. Regnell, B., Olsson, H.O., Mossberg, S.: Assessing requirements compliance scenarios in
system platform subcontracting. In: Proc. 7th Int. Conf. on Product Focused Software Proc-
ess Improvement, Amsterdam, The Netherlands, pp. 362–376 (2006)

7. Regnell, B., Höst, M., Berntsson Svensson, R.: A Quality Performance Model for Cost-
Benefit Analysis of Non-Functional Requirements Applied to the Mobile Handset Domain.
In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 277–291.
Springer, Heidelberg (2007)

8. Park, S., Nang, J.: Requirements management in large software system development. In:
IEEE Conf. on Systems, Man, and Cybernetics, New York, USA, pp. 2681–2685 (1998)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 129–134, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Macro-level Traceability Via Media Transformations

Orlena C. Z. Gotel1 and Stephen J. Morris2

1 Department of Computer Science, Pace University, New York, USA
ogotel@pace.edu

2 Department of Computing, City University, London, UK
sjm@soi.city.ac.uk

Abstract. This paper proposes an alternative approach to the examination of
artifacts whose contents must be traceable to promote software quality. The
approach places emphasis on media use and media transformations. We suggest
that one cannot begin to assign and sustain traceability relations at a micro-level
between units of content if the sign systems that have been created and
transformed to represent this content are not considered at a more macro-level.
Our approach is anticipatory, feasible to automate and exemplified.

Keywords: Media Transformation, Multimedia, Requirements Traceability.

1 Introduction

Recent traceability research has focused on establishing links between semantically
similar terms to identify automatically content-based traceability relations between
the artifacts of software development [2]. These approaches account for textual
artifacts and, to a limited extent, the textual characteristics of structured diagrams.
While they address some of the problems associated with traceability [5], they
ultimately lend themselves to natural language ambiguity and many artifact types are
precluded. The premise of our work is that artifacts relevant to the trace record will be
held in multiple media in the future, especially those generated during upstream
requirements-related activities, including the results of observational studies or
sketches drawn by stakeholders. Video fragments from elicitation sessions are already
used to provide supporting rationale for requirements in some contexts [3] and a
vision of video-based requirements engineering continues to gain clarity [7].

Presuming a media-rich software development environment, we suggest that you
first have to be precise about the nature of the relation between the underlying media
types before you can say what the implications are for content change and any
particular traceability relation between artifacts. The underlying assumption is that
there is no such thing as a pure element of content, only some representation of it as
an artifact. It is therefore essential to understand the process whereby representations
come into being and are transformed because this is the only way to understand what
happens to content. We extend previous research by marrying traceability with
multimedia production to propose an approach through which to make decisions
about media choices, combinations and transformations when seeking to create or
recover a representative trace record [6]. The concept for the approach is exemplified
to highlight its potential value in framing a familiar topic from a new perspective.

130 O.C.Z. Gotel and S.J. Morris

2 Media Use in Requirements Engineering

Any subject matter being communicated has an associated medium which is its
carrier, or vector, in the physical sense. In a second sense media are abstract; they are
agencies for the communication of subject matter. As such they are separate sign
systems, the most common and most significant being natural language text and
speech, graphics, still and moving images, and specialised systems such as numbers,
mathematical and computer languages [9].

Fig. 1 shows how media may be involved in a simple requirements engineering
scenario. During an elicitation interview, the respondent can indicate other relevant
people, activities or documents. The range of potential responses and their referents
suggests the need for text, video and sound recording. A minimal set of other material
(e.g. an operations manual and a client’s briefing document) represents sources in
conventional print media. If the interviewer asks questions from a pre-written
questionnaire, the abstract medium is written natural language and the physical
medium is ink on paper. The spoken questions and answers comprise spoken natural
language carried by sound waves. If the interview is recorded, moving pictures,
natural language speech and sounds proper to the domain (e.g. traffic) are captured.
Responses and supplementary detail may be recorded as written natural language text
and images on paper. The primary source material is thus rich in media.

Fig. 1. The media in a simple requirements engineering scenario

During what is loosely defined as ‘analysis’, a series of media transfers take place.
An audio segment may be transcribed and augmented with contextual information
from the video to gain gesture and gaze detail. Progressively, the abstract media will
be reduced in variety and from amongst the abstract media initially involved only text
survives when requirements are first formally documented. Moreover, only the textual
samples from the original interview can be unequivocally traced back to an original
source. Although every output is now within the single digital medium, the
complexities and implications of media transfers remain hidden.

 Macro-level Traceability Via Media Transformations 131

3 Media Transformations

In earlier work, the concept of media transformations for describing and prescribing
changes to abstract media elements was developed [8]. We give examples below as
they apply to the scenario above and explain the implication for traceability.

Origination: Examples would be text of the questionnaire responses, recorded
video images, speech and other sounds from the interview environment, text and
graphics in the operations manual, or text and images in the brief. This transformation
should guarantee the identification of all primary source material and provide starting
points for forwards traceability and all end-points for backwards traceability.

Amplification: An example would be the elaboration of the interview text
transcribed from the audio recording with the text notes of the visual indicators in the
video. Use should provide the opportunity to identify partial content changes, not
involving the complete merger or amalgamation of media that might otherwise be
without an identifiable source, along with the ability to retrace provenance in the
original context. This may be important for forwards and backwards traceability
where clarity of change is significant and wider history is relevant to understanding.

Revision: Examples would be alterations to the text of the questionnaire responses
to ensure they reproduce the recorded speech, or the structuring of pre-existing text to
form use case descriptions. Differentiating from amplification, elements of an artifact
are completely replaced by elements in the same medium as opposed to extended.
This transformation demands identification of the basis for any revision, even if this
requires the origination of a primary source. The implication is the possible need to
incorporate an element of rationale into the trace record.

Translation: Examples would be the translation of interview speech to written text,
the video images to text of the content, or the use case descriptions to the use case
diagram. Switching between abstract media involves representation in an alternative
sign system and there are implicit losses involved [1]. This is problematic, and
irreversible for backwards traceability, where signs are wholly undifferentiable one
from another either syntactically or semantically [4]. The translation from the video of
the interview into text would be subject to such restriction. Even recorded speech to
text, although guided by transcription conventions, comes with some losses.

Outline: An example would be the list of use cases from the text in the operations
manual. With neither abstract medium nor domain of content changing, this
transformation should not cause problems for traceability, but is subject to the
restriction that detail is lost. Where the media vary and are reduced in number, say
from a video, speech and sound recording to text, it is important to know for
traceability whether the outline represents indexical properties.

Merger: An example would be text from the interview answers combined with text
derived from extraneous dialogue. This transformation indicates the fusion of pre-
existing paths, henceforth treated as a single path. The complete merger of elements
in the same abstract medium should not be problematic unless it is important to
differentiate between the contributions of sources, to propagate forward changes from
things prior. Traceability implications depend on the volatility of contributing paths.

Amalgamation: An example would be the fusion of some of the text from the use
case description with graphics to form the use case diagram. The process of
specification is one in which the number of abstract media used is steadily reduced,

132 O.C.Z. Gotel and S.J. Morris

often to text and notational sign systems such as UML. Only if the separate abstract
media remain differentiable is the traceability in either direction unimpaired.

Proxy creation/use: An example of creation would be the questionnaire text to be
spoken; use would be the questions spoken. Tracing depends on an accurate mapping
between elements in the different abstract media (e.g. direct mappings between text
and the spoken version). Proxy transformations clarify the role of artifacts, such as a
storyboard standing in place of a design, but present issues for any trace.

Substitute creation/use: An example of creation would be any UML representation
that is an intermediate artifact between requirements and implementation; use would
be transitional UML models prior to implementation. These transformations play an
important role in the exploration of concepts and promote trace continuity.

Comparate use: When one artifact influences another, but does not participate in a
media transformation, it acts as a basis for comparison. This transformation
contributes to the accuracy of others, thus to the completeness of the trace record, and
so to the effectiveness of traceability. An example would be the recorded speech used
for comparison with the written answers to the questionnaire to check for accuracy.

4 Media-Based Traceability

In software engineering, improving lifecycle-wide traceability involves defining an
exact path for tracing and understanding the alteration of information content along
this path over time. Where this involves a range of abstract media representations,
carried by physical and digital media, there are many paths that might be followed.
One set of paths for the scenario is given in Fig. 2. It shows how media transfor-
mations may provide a practical means of linking artifacts at a high level.

The media transformations in the scenario begin with origination, shown by the
creation of primary sources via the interview or preparatory tasks (1.1-1.5). Given the
varied abstract media, translation into a common abstract medium may be necessary
to enable the construction of new artifacts. Switching between abstract media is a
translation (2.1, 2.2) and involves content discontinuity. The trace path and record
will be impaired where translation is undertaken, implying the potential need to revisit
original sources. Whether an artifact is being used as a subsequent comparate in its
original medium or in a translated form also has implications for what is re-
examinable. Translation presents a problem for traceability since it is not bi-
directional without effort. When there are choices between using media other than
natural language text, we should be able to determine which media are going to be the
most problematic and know what measures to take to preserve future traceability.

Four transformations affect changes within a single abstract medium: amplifica-
tion, revision, outline and merger. The scenario shows an amplification (2.3) where an
element in one medium elaborates another of the same medium and a revision (2.4
etc.) where an element replaces one of the same medium. One would expect to see
many such transformations within software development since its essence is the
distillation of content. Both these transformations demand versioning information for
understanding. Amplification typically requires a subsidiary artifact to ensure
backwards traceability. This is not so for revision, which may simply follow from
changes to the prior artifact. However, if the basis for the revision is relegated to
memory, rationale is not automatically retrievable and the path not easily reversible.

 Macro-level Traceability Via Media Transformations 133

1 Primary source material [in multiple media and multimedia]
0.1 proxy creation: text of questionnaire to be spoken in interview
0.2 proxy use: questions spoken in interview
1.1 origination: text of responses to questionnaire
1.2 origination: recorded video images
1.3 origination: speech and other sounds from interview and work environment
1.4 origination: text and graphics in operations manual
1.5 origination: text and images in client brief
2 Conversion to text [transferring back to the ‘primary modelling language’ of natural language] – now within digital carrier media
2.1 translation: speech in recorded interview 1.3 to written text
2.2 translation: video images 1.2 to text notes of content
2.3 amplification: elaboration of interview text 1.1 with comparate use of text notes of video 2.2
2.4 revision: alterations to text of responses 2.3 with comparate use of speech recorded 1.3
2.5 merger: text from structured interview answers with text derived from any open-ended exchanges or extraneous dialogue 2.1 and 2.4
2.6 outline: text list of possible use cases from interview text 2.5
2.7 outline: text list of possible use cases from operations manual 1.4
2.8 outline: text list of possible use cases from client brief 1.5
3 Documentation [transferring to a ‘secondary modelling language’ of structured natural language]
3.1 revision: structuring of interview text 2.5 to form initial use case descriptions
3.2 revision: structuring of operations manual text 1.4 (and possible translation from graphics) to form initial use case descriptions
3.3 revision: structuring of client brief text 1.5 (and possible translation from images) to form initial use case descriptions
3.4 merger and revision 2.6, 2.7, 2.8: use case list
3.5 merger and revision 3.1, 3.2, 3.3: use case descriptions
3.6 proxy creation: use case descriptions 3.5 in part for later UML activity diagrams
3.7 revision: sample extractions from interview text 2.5 on basis of comparate use of use case list 3.4
4 Modelling [transferring to a ‘tertiary modelling language’ using non-textual components as the foundation for representation]
4.1 outline and translation: use case list 3.4 to use case names and diagram elements; use case descriptions 3.5 to associations in diagram
4.2 amalgamation and substitute creation: elements from 4.1 brought together in a use case diagram (or model)

Fig. 2. Traceability from a media-based and transformational perspective

The outline transformation, used in the scenario to structure use case descriptions
(2.6-2.8), provides a précis version without media change. This appears innocuous,
but if the source artifact combines abstract media, the textual outline may be a result
of implicit translations coupled with additional undocumented information derived
from the juxtaposition of media. An outline in one medium derived from multiple
media presents a potential break in continuity for the trace record and may need to be
re-examinable in its wider derivation context.

When two or more elements in the same medium are combined to form another,
the result is a merger. While not directly reversible, merger transformations within a
single abstract medium minimize content loss. The first merger (2.5) combines text
that has been translated from speech with text elaborated with textual information
derived from video. This artifact could equally have been constructed as a result of
revisions/amplifications, with comparate use of primary sources, but this would have
had negative consequences for the trace record because the absence of discrete
intermediary stages compounds impact analysis. Where a merger takes place with an
accompanying revision/amplification (3.4, 3.5), the traceability path is likely to be
jeopardized unless a supporting artifact is provided.

Amalgamation transformations (4.2) should be common in requirements
engineering since they are used when constructing use case models. However, the
combination of media elements of different types, whatever the medium of the result,
may be even more unpredictable in outcome than translation. This is the case where it
is difficult to untangle the contributing media elements and their individual paths for
traceability. The choices made as to the types and ordering of transformations is of
interest because amalgamation can be avoided, for example, by translation into a
common medium (e.g. text in the scenario) followed by merger. Such ordering will
alter the path through which requirements are engineered, in one case retaining some
ability to retrace separate contributing paths. Amalgamations are worth examining if
preserving the integrity of the trace record is crucial and effort should be made to
retain separation potential if parts of the embedded content are likely to change.

134 O.C.Z. Gotel and S.J. Morris

5 Towards a Framework for Macro-level Traceability

There are implications for content loss or gain when different media types are used in
software development, impacting traceability. Decisions need to be made as to the use
of media, combinations of media and the ordering of transformations between media
as content from those artifacts constituting primary source material is created and
transformed into specification and code. Our research seeks to provide a framework
and develop guidelines to help engineers take these decisions in support of their
anticipated traceability needs. We suggest that an understanding of the artifact
collection, at a foundational and representational level, is critical for contextualizing
more discerning forms of traceability, irrespective of manual provision or automated
recovery. The routine generation of macro-level traceability between media-rich
artifacts should not be an insurmountable task for future requirements management
environments and integrated guidelines would alert to and help mitigate critical
traceability issues, focusing effort only when and where most needed given the
potential costs incurred. An exploration of these important topics, accompanied by
validation of the underlying approach, forms our on-going research.

References

1. Anderson, P.B.: A Theory of Computer Semiotics. 2nd edn. CUP, Cambridge (1997)
2. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best Practices for

Automated Traceability. IEEE Computer 40(6), 27–35 (2007)
3. Gall, M., Bruegge, B., Berenbach, B.: Towards a Framework for Real Time Requirements

Elicitation. In: 1st Intl. Workshop on Multimedia Requirements Engineering (with 14th IEEE
Intl. Requirements Engineering Conference), Minneapolis, MN (2006)

4. Goodman, N.: Languages of art: An approach to a theory of symbols, 2nd edn. Hackett,
Indianapolis, IN (1976)

5. Gotel, O.C.Z., Finkelstein, A.C.W.: An Analysis of the Requirements Traceability Problem.
In: 1st IEEE Intl. Conference on Requirements Engineering, Colorado Springs, CO, pp. 94–
101 (1994)

6. Gotel, O.C.Z., Morris, S.J.: Crafting the Requirements Record with the Informed Use of
Media. In: 1st Intl. Workshop on Multimedia Requirements Engineering (with 14th IEEE
Intl. Requirements Engineering Conference), Minneapolis, MN (2006)

7. Jirotka, M., Luff, P.: Supporting Requirements with Video-Based Analysis. IEEE
Software 23(3), 42–44 (2006)

8. Morris, S.J.: Media transformations for the representation and communication of
multimedia production activities. In: Sutcliffe, A., et al. (eds.) Designing Effective and
Usable Multimedia Systems, pp. 72–85. Kluwer Academic Publishers, Norwell Mass
(1998)

9. Morris, S.J., Finkelstein, A.C.W.: Engineering via discourse: Content structure as an
essential component for multimedia documents. International Journal of Software
Engineering and Knowledge Engineering, World Scientific Pub. Co. 9(6), 691–724 (1999)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 135 – 140, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Simulation-Based
Quality Requirements Elicitation: A Position Paper

Roland Kaschek1, Christian Kop2, Vladimir A. Shekhovtsov3, and Heinrich C. Mayr2

1 School of Engineering and Advanced Technology,
Massey University, New Zealand
Roland.Kaschek@ieee.org
2 Institute for Applied Informatics,

Alpen-Adria-Universität Klagenfurt, Austria
{chris,mayr}@ifit.uni-klu.ac.at

3 Department of Computer-Aided Management Systems,
National Technical University “Kharkiv Polytechnical Institute”, Ukraine

shekvl@yahoo.com

Abstract. The future users of a system under development are not necessarily
good at talking about the quality they require of that system if they cannot yet
experience it. We therefore propose to support them by a simulation of the sys-
tem under development thus allowing them to experience and validate system
quality. Requirements are supposed to be expressed in a user-centered glossary-
based semantic model.

1 Introduction

The traditional approach to requirements elicitation focuses on functional require-
ments. This might be justified by conceptualizing computers mainly as machines for
executing operations. It is, however, unfortunate because it contributes to losing sight
on alternative solutions. However, the convenience of use of a software system
strongly affects its success. We therefore suggest to introduce a computer usage
model in addition to the computational one. The latter is important with respect to
assessing complexity of computational procedures but is not as effective with respect
to requirements elicitation or specification.

Non-functional requirements (NFR) are not always clearly distinguished from
functional requirements [9, 12]. We thus prefer using the term quality requirement
(QR) instead at least for those system aspects which address system quality. We con-
ceptualize system quality as fitness for use under stated or implied conditions [14].
One system quality aspect is the appropriateness of the provided functionality. Further
quality aspects are e.g. learnability, maintainability, memorizability, performance,
safety, or security. They concern the ways of use of the provided functionality.
Clearly some of these ways are preferable over others.

Three arguments are in favor of the claim that specifying the “right” quality for a
system under development (SUD) may be difficult. First, an assessment of an SUD’s
fitness for use often is a reflection of a respective consensus among various stake-
holders. Second, such an assessment depends on the anticipated or implemented

136 R. Kaschek et al.

interaction of the SUD with its environment. Such an assessment obviously may be a
complex task for complex SUD environments. Third, talking about suitability of SUD
usage processes that one cannot experience yet is quite speculative.

An online simulation tool supporting SUD stakeholders in experiencing their (fu-
ture) working environment might help in such situations: In [20] such a system, called
POSE (parameterized online simulation environment) was introduced. POSE utilizes
a specific user-centered conceptual model called QAPM (quality-aware predesign
model) for representing the quality requirements in an easy-to-understand way.
QAPM is based on KCPM, the Klagenfurt Conceptual Predesign Model, which was
first introduced in [16].

This position outlines the overall methodology. Related work is shortly discussed
in section 2. We then describe QAPM and POSE in sections 3 and 4, respectively, and
provide a short look on further work to do in section 5.

2 Related Work and Research Issues

2.1 Traditional Quality Requirements Elicitation Techniques

Stakeholder-involving techniques of eliciting quality requirements employ traditional
techniques such as interviews, brainstorming, and checklists. Usually they work by
writing up requirements and structuring them based on human interaction with stake-
holders. Goal-oriented techniques [4] classify the requirements according to struc-
tured system goals. Requirements Description Language (RDL) [3] represents the
requirements via an XML-based model allowing for requirements composition. Qual-
ity Attribute Workshops [2] use case specific interpretations of the quality attributes
for the given SUD. Glossary-based approaches [6, 16] use specific glossaries for
modeling and organizing requirements.

Specification-based techniques use informal or structured requirements specifica-
tions as elicitation sources. NLP techniques can be used to elicit the quality require-
ments from these documents in an automated way [1, 3, 5]. The problem with these
approaches is that stakeholder participation in the elicitation process is limited. In
fact, after this process is completed, the stakeholders often still need to verify its re-
sults.

The first research issue arises out of an investigation of these approaches: we argue
that it makes sense to give stakeholders a chance to get an experience of working with
the targeted SUD prior to participating in quality requirements elicitation activities.

2.2 Using Simulations to Elicit Requirements

Early attempts to support requirements elicitation by exemplification were made in
the 80ies [8, 17] under the title of (rapid) prototyping. In particular, “horizontal” proto-
types (lacking implemented functionality) were introduced to simulate user interfaces
in order to allow stakeholders to experience their future environment. However, due to
technical limits within that time, the approaches did not leave the laboratory status. In
contrast to that, today several tools (based on research projects [7, 10, 11, 19] and
developed in industry [13, 18]) exist that aim at using interactive SUD simulations to
work with system requirements.

 Towards Simulation-Based Quality Requirements Elicitation: A Position Paper 137

Simulation goals. In most cases, the tools use simulation to support the requirements
validation. For example, in [10, 11] an already-built requirements model is validated,
in [19] such model is validated during its incremental building, in [7] the object of
validation is a structure of an already-designed component and its interactions with an
environment. Industry-based tools [13, 18] allow non-programmers to build and
execute models simulating the external behavior of the SUD to receive feedback
about the quality of the simulated interface and the required functionality as seen via
this interface; they allow eliciting some subset of the quality requirements (usability,
user-friendliness etc.), but only as informal user notes.

Common characteristic of these tools is that they are not specifically targeting the
elicitation of quality requirements. Actually, they leave our first research issue unad-
dressed, as we do not know about any approach using simulation to elicit the required
system qualities based on users’ experience of working with this simulation. As a result,
we can state the second research issue: we argue that it makes sense to create an envi-
ronment executing simulations specifically aimed at eliciting quality requirements.

Simulation scope. These tools in most cases simulate a SUD only as a standalone
system. Integrating these simulations into the SUD usage processes is not well
supported. For example, in [10], using proposed control language, it is necessary to
develop usage scenario manually for every simulation run. Describing the usage
processes in this situation is similar to coding business processes in a general-purpose
programming language instead of a specialized one (for example, BPEL). Two
approaches are closer to addressing this problem as they pay stronger attention to the
SUD usage modeling. In [7], several software process activities related to SUD
(treated as a software component) are modeled (replacement, upgrading etc.).
However, they are still not addressing the SUD usage processes. In [18], the user can
specify the usage processes interactively using BPMN-like notation, but the goal of
this specification is purely descriptive since the processes are not supposed to be
simulated.

As a result, we can formulate the third research issue: we argue that it makes sense
to implement a simulation of the entire environment for the SUD. The roles of both
the user and the SUD should be completely specified in this environment.

2.3 Our Propositions

For overcoming the above problems, we propose to combine traditional techniques
(focusing on documenting and discussing quality requirements) with interactive simu-
lation (focusing on elicitation and on assessment of requirements drafts).

The next sections, therefore, introduce QAPM as such a traditional technique and
discuss how it can work together with a simulation technique that addresses some of
the above research issues.

3 The Quality-Aware Predesign Model QAPM

QAPM is based on the user-centered glossaries of KCPM [16] which help stake-
holders to find missing information. SUD quality is modeled as a hierarchy of quality
following ISO/IEC 9126-1 [15]. It takes into account the interrelationships between

138 R. Kaschek et al.

these characteristics and the points of view of different stakeholders’ categories. The
model also reflects the fact that relationships between quality requirements and sys-
tem functionality are crosscutting in nature (i.e. a single quality requirement can be
related to multiple functional elements of the system). The semantics of quality and
functional requirements, together with the semantics of their crosscutting relation-
ships is collected in a structured way – as in KCPM.

Table 1 shows a part of the QAPM glossary for a quality requirement related to the
response time for all actions involving orders. It is represented as a constraint refer-
ring to both the quality characteristic and the functional element of the model.

Table 1. Part of the QAPM glossary representing a quality requirement

Quality char-
acteristic

Sequen-
cing

Functional
element

Decision
operator

Thres-
hold

Applica-
bility

Description

Response time WRAP Order < 0.5 sec Peak hours Users’ opinion

We can build POSE on top of this semantic model. It provides (1) the definition of
quality for POSE, (2) the means of representing the SUD functionality and its initial
qualities, (3) the positions where the quality assessments can be made, (4) the way of
expressing the semantics of elicited quality requirements.

4 The Parameterized Online Simulation Environment POSE

Actually, two kinds of simulations are supported by POSE [20]: the simulation of
SUD behavior and the simulation of its usage in the particular organization.

SUD usage processes. As we consider an organization as a system that enacts a
number of business processes, for simulating SUD usage we need to model the
structure of the organization at hand, the resources it utilizes, as well as its business
processes, supporting- and management processes. These processes are actually SUD
usage processes. To save implementation effort, we propose to represent them
suitably for BPM simulation engines. Therefore, POSE stores process models using
the process assembler tool (PA) [21], thus allowing to use various process modeling
languages (PML). We plan to have an archive of models for different industries
managed by PA.

The simulations are supposed to be interactive allowing stakeholders to participate.

SUD components. For each usage process, POSE allows to define the required
resources and the set of software components maintaining these resources. The SUD
is represented via the particular system of these components. For each version of the
component, its representation is registered with POSE and made accessible to the
stakeholders. It can be: (1) its requirements-based semantic model (QAPM
representation of its functionality and initial qualities); (2) the set of its processes
retrieved from PA; (3) its software prototype; (4) its final implementation.

POSE usage. One of the initial tasks the POSE users need to solve is the definition of
the scope of the intended simulation, i.e., they need to define what counts as the
organization under scrutiny, its structure, and the roles of its staff. After that, it is

 Towards Simulation-Based Quality Requirements Elicitation: A Position Paper 139

necessary to specify its business processes and register SUD component models and
prototypes. Then the users provide all data they need for conducting simulation
experiments. This process is called POSE parameterization; it covers typical load
data such as occurrence figures, availability of resources, probability of disasters etc.

After the processes are defined and the parameter data is specified, POSE runs the
simulations of the usage processes. Stakeholders interact with them using the “busi-
ness game” interface. When this interaction entails querying a SUD, POSE simulates
the model of registered SUD component or tries out its prototype or final version.
POSE users can make comments on the perceived system qualities or assess regis-
tered SUD components in formalized ways (e.g. via ranking a SUD version on some
scale, or via pairwise comparisons of SUD versions). The places in the model where
these assessments can be made are defined using QAPM crosscutting support. After
that, requirements engineers analyze the requirements elicited out of these assess-
ments. The semantics of these requirements is also represented using QAPM.

Usage example. Suppose we plan to use the proposed environment to elicit the
response time requirement related to the Account actions in a banking system. First, we
need to describe the business processes going on in a bank (in particular Opening an
account) and define user roles in these processes (e.g. Bank clerk). These descriptions
can be coded in any PML supported by POSE. Then, it is necessary to describe process
models of the necessary SUD components (in particular, Account management) and
register these models with the usage processes. In our case, for Opening an account
process, the Account management component is registered to handle such actions as
Validate account information etc. Then, the initial load figures (e.g. expected user load,
hardware capacity etc.) are entered into the system (they will later affect the simulation).
After that, the usage processes are interactively simulated and the stakeholders (e.g. real
bank clerks) encounter a "business game" interface. In a process of interacting with
POSE through this interface, stakeholders initiate requests handled by Account
management component. If such request is issued, this component provides an answer
with some simulated response time (which depends on load figures) and the stakeholder
can assess it (e.g. using 1...10 scale). This assessment together with the simulated
response time is then used to form an elicited requirement. Its QAPM representation is
then made available to a requirement engineer.

5 Work to Do

Although the POSE approach is promising, some potential problems have to be
solved, e.g. (1) the cost-benefit ratio of the approach might be prohibitive; (2) the
POSE set up might be too difficult to do. Case studies are planned to find evidence in
favor or against these claims.

References

1. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and Design.
In: Proc. ICSE 2004, pp. 158–167. IEEE CS Press, Los Alamitos (2004)

2. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C.B., Wood, W.G.: Quality
Attribute Workshops (QAWs), 3rd edn. Technical Report, CMU (2003)

140 R. Kaschek et al.

3. Chitchyan, R., Sampaio, A., Rashid, A., Sawyer, P., Khan, S.: Initial Version of Aspect-
Oriented Requirements Engineering Model. AOSD-Europe project report D36 (2006)

4. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston (2000)

5. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated Classification of Non-
Functional Requirements. Requirements Engineering 12, 103–120 (2007)

6. Cysneiros, L.M., Yu, E.: Non-Functional Requirements Elicitation. In: Perspectives on
Software Requirements, pp. 115–138. Kluwer Academic Publishers, Boston (2004)

7. Egyed, A.: Dynamic Deployment of Executing and Simulating Software Components. In:
Emmerich, W., Wolf, A.L. (eds.) CD 2004. LNCS, vol. 3083, pp. 113–128. Springer, Hei-
delberg (2004)

8. Floyd, C.: A Systematic Look at Prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen,
L. (eds.) Approaches to Prototyping, pp. 1–17. Springer, Berlin (1984)

9. Glinz, M.: On Non-Functional Requirements. In: Proc. RE 2007, pp. 21–26. IEEE CS
Press, Los Alamitos (2007)

10. Harel, D., Pnueli, A., Lachover, H., Naamad, A., Politi, M., Sherman, R., Shtull-Trauring,
A., Trakhtenbrot, M.: STATEMATE: A Working Environment for the Development of
Complex Reactive Systems. IEEE Trans.Soft.Eng. 16, 403–414 (1990)

11. Heitmeyer, C.: Formal Methods for Specifying, Validating, and Verifying Requirements.
Journal of Universal Computer Science 13, 607–618 (2007)

12. Hochmüller, E.: Towards the Proper Integration of Extra-Functional Requirements. The
Australian Journal of Information Systems 7, 98–117 (1999)

13. iRise tool, http://www.irise.com
14. ISO 9000:2005, Quality Management Systems - Fundamentals and Vocabulary (2005)
15. ISO/IEC 9126-1, Software Engineering – Product Quality – Part 1: Quality Model (2001)
16. Kop, C., Mayr, H.C.: Conceptual Predesign – Bridging the Gap between Requirements and

Conceptual Design. In: Proc. ICRE 1998, pp. 90–100. IEEE CS Press, Los Alamitos
(1998)

17. Mayr, H.C., Bever, M., Lockemann, P.C.: Prototyping Interactive Application Systems. In:
Budde, R., Kuhlenkamp, K., Mathiassen, L. (eds.) Approaches to Prototyping, pp. 105–
121. Springer, Berlin (1984)

18. Serena Composer tool, http://www.serena.com/products/composer/
19. Seybold, C., Meier, S., Glinz, M.: Scenario-Driven Modeling and Validation of Require-

ments Models. In: Proc. SCESM 2006, pp. 83–89. ACM Press, New York (2006)
20. Shekhovtsov, V., Kaschek, R., Zlatkin, S.: Constructing POSE: a Tool for Eliciting

Quality Requirements. In: Proc. ISTA 2007, GI, Bonn. LNI, vol. P-107, pp. 187–199
(2007)

21. Zlatkin, S., Kaschek, R.: Towards Amplifying Business Process Reuse. In: Akoka, J.,
Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp,
M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp.
364–374. Springer, Heidelberg (2005)

Classifying Assumptions Made during

Requirements Verification of Embedded Systems

Jelena Marinčić�, Angelika Mader, and Roel Wieringa

Department of Computer Science, University of Twente, The Netherlands,
P.O.Box 217, 7500 AE Enschede, The Netherlands

{j.marincic,mader,roelw}@ewi.utwente.nl

Abstract. We are investigating ways to improve the process of mod-
elling of embedded systems for formal verification. In the modelling pro-
cess, we make a mathematical model of the system software and its
environment (the plant), and we prove that the requirement holds for
the model. But we also want to have an argument that increases our
confidence that the model represents the system correctly (with respect
to the requirement). Therefore, we document some of the modelling de-
cisions in form of a list of the system assumptions made while modelling.
Identifying the assumptions and deciding which ones are relevant is a dif-
ficult task and it cannot be formalized. To support this process, we give
a classification of assumptions. We show our approach on an example.

1 Introduction

Models have increasing relevance in embedded system design. Our focus is on
the construction of embedded systems verification models. Our goals are:

(1) We want to develop a modelling method. We share the observation of
[1] that more research is spent on developing new languages and tools than on
providing methods for using the existing ones. A major difficulty here is that
modelling cannot be purely formal. We claim that the non-formal steps do not
follow unpredictable irrationalism, but are part of educated creativity, following
a systematic way of thinking.

(2) Having constructed a verification model we also want its justification - a
correctness argument that makes us convinced that successful verification of the
model reflects the desired behaviour of the embedded system. The correctness
argument includes the assumptions and modelling decisions about the embedded
system we have taken during modelling. Changing the assumptions can invali-
date the model justification. Therefore, we propose to write down a list of the
assumptions made while modelling.

(3) Identifying an assumption and deciding whether it is relevant are informal
activities, difficult to capture by a formal approach. To help the modeller, we
present a classification of assumptions. The classification presented in this paper
� Supported by the Netherlands Organisation for Scientific Research (NWO), project

600 065 120 241420, Modelling Control Aspects of Embedded Systems.

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 141–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 J. Marinčić, A. Mader, and R. Wieringa

does not depend on a formal modelling or verification technique. The classifica-
tions of assumptions also help us understand the modelling activity itself. We
believe that checking the assumptions we made against the classes we identifed,
gives more structure to the way of thinking and argumentation.

Terminology and Basic Concepts. An embedded system consists of a con-
troller and a controlled, physical part. By plant we denote the controlled, phys-
ical part, and by environment everything outside the embedded system. The
control software is abbreviated to control.

A model is a formal representation of the system, e.g., a diagram or a timed
automaton. We model both the plant and the control and verify them against
the required behaviour. The verification problem is to prove that a plant P and
a control C together satisfy certain requirements R, denoted by C ∧ P |= R.
This is analogous to [2, 3], but different from other approaches, where only the
control software is modelled.

To conclude that the real system satisfies the required behavior, we need a
model justification - an argument that the model and the formal requirement
represent the system and the required behaviour. Such a justification can be
given by reconstructing the modeling process into a rational process. In this
paper we focus on the role of assumptions in rationalizing the modeling process.

In Sect.2 and Sect.3 we will present our classification of assumptions and will
demonstrate it on an example. After briefly discussing related work in Sect.4 we
will draw conclusions in Sect.5.

2 Classification of Assumptions

We define an assumption as a statement that refers to the plant and environment,
and is taken for granted to be true for the purpose of the model justification. As
control specifiers, we place constraints on the control behaviour, but we cannot
place constraints on the plant; we can only make assumptions on its behaviour.
Assumptions can be stated formally - then they are part of the formal proof, or
non-formally - in that case they are part of the justification argument. The first
two classes below answer the question what the assumptions are describing. The
next two are focusing on the criteria of their changeability. The third group of
the classifications focus on the relevance for the system users.

C1: Assumptions about system components. The requirement we want
to verify determines where we draw the border between the system and its en-
vironment and what system aspects we will describe in the model. After that,
we decompose the system, describe each component and, if necessary, decom-
pose further. When decomposing the system, we simultaneously decompose the
requirement, where each sub-requirement should be satisfied by a system compo-
nent, and all sub-requirements together should imply the original requirement.

We can decompose the system in many different ways. We can make a process
decomposition, a decomposition to the physical components, functional decom-
position etc. The components can be described through assumption-requirement
pairs in the form assum(i) =⇒ req(i), where req is the subrequirement we

Classifying Assumptions Made during Requirements Verification 143

found while decomposing the system. For example: ”If the wire is not longer
than 12m (assumption), then the signal strength is sufficient for correct trans-
mission (requirement)”.

C2: Assumptions about system aspects. A system aspect is a group of sys-
tem properties, usually related to one knowledge domain. An embedded system
has electrical, mechanical aspect etc. When designing the control and verifying
the system requirement, we might need assumptions coming from these different
knowledge domains. If, e.g., we are designing shut-down system procedure for
an embedded system, we want to know the electrical characteristics like capac-
ity and resistance of the circuit that delays power off, to calculate the time the
procedure has to save the data.

C3, C4: Necessary and Contingent Assumptions. Depending on the con-
text in which we use the system, some of the assumptions we take as true and
do not consider them as changeable.

Natural laws, like for example physics formulas, are considered to be true. If we
have a system with a conveyor belt that transports bottles from the filling place,
we will assume that its users will put the conveyor belt on a horizontal surface.
Some of the plant components can be described with engineering formulas which
we do not doubt. For example, the signal transmission through fiber optic cable
is described with formulas that precisely calculate optical signal properties.

Contingent truths on the other hand may change. There are some facts about
the system for which we are not sure whether they will change or not. In practice,
it often happens that we have the plant and start designing the control software
as if the plant is fixed, whereas in practice components are replaced. For ex-
ample, if we have a conveyor belt that has to move faster, we can replace the
existing motor with a more powerful one. (Then, we would have to change some
parameters in control law implemented by control software.) Another example is
that the plant is fixed, but our knowledge about it is changed. A domain expert
can provide an improved formula describing the system behaviour.

C5: Constraints on the Plant and Embedded System Environment
Some of the assumptions we make pose constraints on the plant and users. We
cannot be sure in advance that they will be fulfilled. The best we can do is to list
them and deliver them together with the system. These assumptions are not part
of the model - they can be seen as a label on the ’delivery box’ of the system.
For example: ”If the weight in the cabin is larger than 20 and less than 150kg,
the lift will go to the floor determined by the button pressed in the cabin.”

3 Example - The Lego Sorter

The Lego sorter is a PLC (Programmable Logic Controller)-controlled plant
made of Lego bricks, DC motors, angle sensors and a colour scanner [4]. Bricks
of two colours are stored in a queue. They enter a belt one after another, and
possibly more than one brick is on the belt. The belt is moved by a motor. Bricks
are transported by the conveyor belt to the scanner and further on to the sorter.

144 J. Marinčić, A. Mader, and R. Wieringa

The scanner can distinguish a yellow, blue or no brick in front of it. Putting a
brick of another colour in front of it would cause the scanner to enter into an
unknown state. The sorter consists of two fork-like arms. Each arm can rotate
a brick to one of the sides of the plant. Each sorter arm is controlled by its own
motor and has its own rotation sensor that senses the angle of the arm. The
starting angle is 0, and as the arm rotates it changes to 360 degrees.

Q
ue

ue

B
el

t

Sc
an

ne
r

So
rt

er

O
pe

ra
to

r

C
la

ss
ifi

ca
tio

n
C

1:
 A

ss
um

pt
io

ns
 a

bo
ut

 c
om

po
ne

nt
s

A
6:

Th
er

e
ar

e
on

ly
 b

lu
e

an
d

ye
llo

w
 b

ric
ks

 in

th
e

Q
ue

ue
.

A
7:

Th
e

m
ot

or
 m

ov
in

g
th

e
B

el
t i

s
w

or
ki

ng
 p

ro
pe

rly
.

A
8:

Th
e

S
ca

nn
er

 o
bs

er
ve

s
th

e
co

lo
r a

ll
th

e
tim

e
(n

ot
 in

te
rr

up
t-d

riv
en

).

A
9:

Th
e

ro
ta

tio
n

se
ns

or
s

an
d

m
ot

or
s

w
or

k
pr

op
er

ly

an
d

tra
ns

m
it

si
gn

al
s

w
ith

 n
o

de
la

y.
.

A
11

:T
he

 s
or

te
r s

ta
rts

 w
ith

 p
ro

pe
r i

ni
tia

l p
os

iti
on

.

A
14

:U
po

n
st

ar
t,

S
or

te
r a

nd
 B

el
t a

re
 e

m
pt

y.

A
5:

A
n

op
er

at
or

 w
ill

 p
ut

 th
e

br
ic

ks
 in

 th
e

Q
ue

ue
.

B
ric

ks

A
14

:U
po

n
st

ar
t,

S
or

te
r a

nd
 B

el
t a

re
 e

m
pt

y.

A
16

:B
ric

ks
 a

re
 s

ta
nd

ar
d

Le
go

 b
ric

ks

(5
0m

m
 x

 1
5m

m
 x

 7
m

m
) t

ha
t f

it
in

 th
e

Q
ue

ue
.

C
on

tr
ol

le
r

ha
rd

w
ar

e
‘

an
d

O
S

A
1:

C
om

pu
te

r h
ar

dw
ar

e
w

or
ks

 p
ro

pe
rly

.
A

2:
Th

e
O

S
 s

up
po

rts
 th

e
co

nt
ro

l w
e

de
si

gn
.

A
3:

Th
e

sa
m

pl
in

g
pe

rio
d

is
 s

uc
h

th
at

 c
on

tro
l c

an

ob
se

rv
e

ro
ta

tio
n

an
gl

e
w

ith
 s

uf
fic

ie
nt

 g
ra

nu
la

rit
y.

A
4:

Th
e

P
LC

 c
on

tro
lle

r s
up

po
rts

 th
e

de
si

re
d

sa
m

pl
in

g
fre

qu
en

cy
.

A
12

:T
he

re
 is

 a
 m

in
im

al
 d

is
ta

nc
e

be
tw

ee
n

br
ic

ks
 s

o
th

at
A

12
.1

:T
he

re
 is

 a
lw

ay
s

"n
ot

hi
ng

_a
t_

sc
an

ne
r"

ob

se
rv

ed
 b

y
S

ca
nn

er
 b

ef
or

e
th

e
ne

w
 b

ric
k

is

ob
se

rv
ed

 a
nd

A
12

.2
:T

he
re

 w
ill

 b
e

no
 n

ew
 b

ric
k

in
 fr

on
t o

f t
he

S

ca
nn

er
 b

ef
or

e
a

pr
ev

io
us

 b
ric

k
m

ov
es

 to
 th

e
S

or
te

r.

A
12

, A
13

, A
15

A
12

, A
15

A
13

:T
he

 o
rd

er
 o

f a
 b

ric
k

ob
se

rv
ed

 a
t S

ca
nn

er

an
d

a
ne

w
 b

ric
k

en
tir

el
y

on
 th

e
B

el
t i

s
no

t d
et

er
m

in
is

tic
.

A
15

:T
he

 o
rd

er
 o

f a
 b

ric
k

ar
riv

al
 to

 th
e

S
ca

nn
er

 a
nd

pr

ev
io

us
 b

ric
k

so
rte

d
Is

 n
ot

 d
et

er
m

in
is

tic
.

A
12

, A
13

, A
15

C
la

ss
ifi

ca
tio

n
C

2:
 A

ss
um

pt
io

ns
 a

bo
ut

 a
sp

ec
ts

C
on

tr
ol

en

g.

El
ec

tr
ic

al

M
ec

ha
ni

ca
l

C
la

ss
ifi

ca
tio

ns
 C

3,
 C

4:

N
ec

es
sa

ry
 a

nd
 c

on
tin

ge
nt

as

su
m

pt
io

ns

A
3:

Th
e

sa
m

pl
in

g
pe

rio
d

is
 s

uc
h

th
at

 c
on

tro
l

ca
n

ob
se

rv
e

ro
ta

tio
n

an
gl

e
w

ith
 s

uf
fic

ie
nt

gr

an
ul

ar
ity

.

A
9:

Th
e

ro
ta

tio
n

se
ns

or
s

…
.tr

an
sm

it
si

gn
al

s
w

ith
 n

o
de

la
y.

A
8.

1:
Th

e
S

ca
nn

er
 tr

an
sm

its
 th

e
si

gn
al

 w
ith

th

e
de

la
y

D
1

A
8.

1:
Th

e
S

ca
nn

er
 tr

an
sm

its
 th

e
si

gn
al

w

ith
 th

e
de

la
y

D
1

A
9.

1:
Th

e
ro

ta
tio

n
se

ns
or

s
sh

ow
 o

nl
y

re
la

tiv
e

ar
m

 p
os

iti
on

.

A
9.

1:
Th

e
ro

ta
tio

n
se

ns
or

s
sh

ow
 o

nl
y

re
la

tiv
e

ar
m

 p
os

iti
on

.

C
om
po
ne
nt
s

A
ss
um
pt
io
ns

A
sp
ec
ts

A
ss
um

pt
io
ns

A
1:

C
om

pu
te

r h
ar

dw
ar

e
w

or
ks

 p
ro

pe
rly

.

A
12

:T
he

re
 is

 a
 m

in
im

al
 d

is
ta

nc
e

be
tw

ee
n

br
ic

ks
 s

o
th

at
A

12
.1

:T
he

re
 is

 a
lw

ay
s

"n
ot

hi
ng

_a
t_

sc
an

ne
r"

ob

se
rv

ed
 b

y
S

ca
nn

er
 b

ef
or

e
th

e
ne

w
 b

ric
k

is

ob
se

rv
ed

 a
nd

A
12

.2
:T

he
re

 w
ill

 b
e

no
 n

ew
 b

ric
k

in
 fr

on
t o

f
th

e
S

ca
nn

er
 b

ef
or

e
a

pr
ev

io
us

 b
ric

k
m

ov
es

to

 th
e

S
or

te
r.

A
13

:T
he

 o
rd

er
 o

f a
 b

ric
k

ob
se

rv
ed

 a
t t

he

S
ca

nn
er

 a
nd

 a
 n

ew
 b

ric
k

ly
in

g
en

tir
el

y
on

 th
e

B
el

t i
s

no
t d

et
er

m
in

is
tic

.

A
15

:T
he

 o
rd

er
 o

f a
 b

ric
k

ar
riv

al
 to

 th
e

S
ca

nn
er

 a
nd

 p
re

vi
ou

s
br

ic
k

so
rte

d
is

 n
ot

 d
et

er
m

in
is

tic
.

A
16

:B
ric

ks
 a

re
 s

ta
nd

ar
d

Le
go

 b
ric

ks

(5
0m

m
 x

 1
5m

m
 x

 7
m

m
) t

ha
t f

it
in

 th
e

Q
ue

ue
.

A
7:

Th
e

m
ot

or
 m

ov
in

g
th

e
B

el
t w

or
k

pr
op

er
ly

.

A
9:

Th
e

ro
ta

tio
n

se
ns

or
s

an
d

m
ot

or
s

w
or

k
pr

op
er

ly

…
...

..
A

11
:T

he
 s

or
te

r s
ho

ul
d

st
ar

t w
ith

 p
ro

pe
r i

ni
tia

l
po

si
tio

n.

Im
pl

em
en

ta
-

tio
n

A
2:

Th
e

op
er

at
in

g
sy

st
em

 s
up

po
rts

 th
e

co
nt

ro
l

th
at

 w
e

de
si

gn
.

A
4:

Th
e

P
LC

 c
on

tro
lle

r s
up

po
rts

 th
e

de
si

re
d

sa
m

pl
in

g
fre

qu
en

cy
.

A
8:

Th
e

S
ca

nn
er

 o
bs

er
ve

s
th

e
co

lo
r

al
l t

he
 ti

m
e

(n
ot

 in
te

rru
pt

-d
riv

en
).

N
at

ur
al

 la
w

s

If
on

 th
e

B
el

t f
or

 T
1

se
co

nd
s,

an
d

th
e

B
el

t i
s

m
ov

in
g,

th
e

br
ic

k
ch

an
ge

s
its

 p
os

iti
on

.

C
on

tin
ge

nt
tr

ut
hs

H
er

e,
 a

ll
th

e
de

sc
rip

tio
ns

 a
bo

ut

th
e

S
ca

nn
er

 a
re

 c
on

tin
ge

nt
.

W
e

m
ig

ht
 re

pl
ac

e
th

e
S

ca
nn

er

th
at

 fo
r,

ex
am

pl
e

di
st

in
gu

is
he

s
m

or
e

co
lo

ur
s

or
 th

at
 h

as

a
ze

ro
 d

el
ay

Th
e

sa
m

e
ho

ld
s

fo
r o

th
er

 p
la

nt

as
su

m
pt

io
ns

; w
e

m
ig

ht
,

fo
r e

xa
m

pl
e,

 re
co

ns
tru

ct
th

e
P

la
nt

 in
 s

uc
h

a
w

ay

th
at

 th
e

S
or

te
r a

rm
s

ha
ve

 to

m
ov

e
in

 d
iff

er
en

t d
ire

ct
io

n
w

he
n

so
rti

ng

If
th

e
B

el
t i

s
st

op
pe

d,
 a

nd

th
e

br
ic

k
is

 o
n

it,
 it

 w
on

’t
ch

an
ge

 it
s

po
si

tio
n.

En
gi

ne
er

in
g

fo
rm

ul
as

Th
e

B
el

t s
pe

ed
 v

 is
 a

 fu
nc

tio
n

of
 th

e
va

lu
e

m
 p

ut
 o

n
th

e
B

el
t m

ot
or

:
v

=
k

x
m

C
la

ss
ifi

ca
tio

n
C

5:
 P

la
nt

 a
nd

en

vi
ro

nm
en

t c
on

st
ra

in
ts

A
6:

Th
er

e
ar

e
on

ly
 b

lu
e

an
d

ye
llo

w
 b

ric
ks

 in
 th

e
Q

ue
ue

. (
If

a
br

ic
k

of
 a

ny
 o

th
er

 c
ol

ou
r i

s
th

er
e,

th

e
S

ca
nn

er
 w

ill
 re

co
gn

iz
e

it
as

 Y
el

lo
w

 o
r b

lu
e

an
d

w
ill

so
rt

it
on

 o
ne

 o
f t

he
 s

id
es

.)

A
5:

A
n

op
er

at
or

 w
ill

 p
ut

 th
e

br
ic

ks
 in

 th
e

Q
ue

ue
.

A
11

:T
he

 s
or

te
r s

ho
ul

d
st

ar
t w

ith

pr
op

er
 in

iti
al

 p
os

iti
on

.

A
11

:T
he

 s
or

te
r s

ta
rts

 w
ith

 p
ro

pe
r i

ni
tia

l p
os

iti
on

.

Fig. 1. List of the assumptions shown according to the classification criteria we found

Classifying Assumptions Made during Requirements Verification 145

The requirement is: “Eventually all the bricks from the queue will be moved
by the sorter to the side corresponding to their colour”. We designed the control,
and modelled and verified the system (see [5] and [6]). The assumptions that we
identified are presented in table in Fig.1. Some of the assumptions are part of
the model, but are also listed in the table.

4 Related Work

From the work following the approach of [2] we mention only the most similar to
ours. The problem frames technique [3] defines frame concerns through examples
of issues that have to be addressed and that are not described in the problem
diagrams, e.g., initialization of the software and hardware.

In [7] a technique for software specification is described, starting from the re-
quirement for the plant. Assumptions (’breadcrumbs’) on the plant are collected,
and an argument for each modelling step. No guidelines for finding assumptions
are given.

In [8] a formal conceptual network based on problem-oriented perspective is
developed, where modelling steps are formally described. We, on the other hand,
are looking for ways to systematically perform these steps.

In the area of requirements engineering, the goal-oriented methods have a sig-
nificant place. Our classification of assumption could be useful in the phases of
requirements analysis of the KAOS method [9]. In the Tropos methodology [10],
when defining the circumstances under which a given dependency among two
actors arises, a modeller has to learn about the system, so our assumption clas-
sification might be useful there, too.

The problem of modelling method is addressed in [1] by agendas, a list of
modelling steps. The transition from informal to formal is performed in one of
the first steps of the requirements elicitation, while we formalize only the last
steps when the complete knowledge about the system is available.

In [11] a General Property-oriented Specification Method is introduced, where
assumptions are collected in the cells of a table made while decomposing the
system. This framework is restricted to the use of labelled transition systems.

5 Discussion and Conclusion

Formal methods are applied in a non-formal world and we cannot give an al-
gorithm how to collect the assumptions. Instead, we found different classes of
assumptions that are made in the modelling process and different ways of iden-
tifying the assumptions.

Making assumptions explicit is not so much a matter of using the appropriate
languages or tools. In the first place it requires a discipline of thought, and being
aware what we do during modelling activity can help here by saying at which
point of the modelling process we have to look for assumptions, and which form
these can have. Different categories of assumptions mean that we have different
views to the system, even if we chose one decomposition. If we restrict ourselves

146 J. Marinčić, A. Mader, and R. Wieringa

into one single view or decomposition, we might omit an important assumption.
Therefore, classification of assumptions is useful as a checklist to go through
when describing the system; this is a hypothesis that needs further proving. An
experiment in which a group of modellers will be presented with assumptions
classification and one not, is needed to make this statement an empirical claim.
This is the part of our further work.

We plan to look closer into subclasses of embedded control systems for which
we can make specialized, more concrete modelling guidelines. We will focus on
the communication of control engineers and verification experts while doing for-
mal verification, to identify the boundaries of these two knowledge domains, and
to make more clear what one expert has to know about other expert’s area.

References

[1] Heisel, M., Souquières, J.: A method for requirements elicitation and formal spec-
ification. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER
1999. LNCS, vol. 1728, pp. 309–325. Springer, Heidelberg (1999)

[2] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

[3] Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Reading (2000)

[4] MOCA project - ongoing work, http://moca.ewi.utwente.nl/WORK.html/
[5] Marincic, J., Wupper, H., Mader, A., Wieringa, R.: Obtaining formal mod-

els through non-monotonic refinement. Technical report TR-CTIT-07-33, CTIT,
Univ. of Twente, The Netherlands (2007)

[6] Marincic, J., Mader, A., Wieringa, R.: Capturing assumptions while designing
a verification model for embedded systems. Technical report TR-CTIT-07-03,
CTIT, Univ. of Twente, The Netherlands (2007)

[7] Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem frames:
deriving specifications from requirements. Requir. Eng. 12(2), 77–102 (2007)

[8] Hall, J.G., Rapanotti, L., Jackson, M.: Problem oriented software engineering: A
design-theoretic framework for software engineering. sefm 0, 15–24 (2007)

[9] Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition
in requirements elicitation. In: Procs of IWSSD 1991, pp. 14–21. IEEE Computer
Society Press, Los Alamitos (1991)

[10] Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Engineering Applications of Artifcial
Intelligence 18/2 (2005)

[11] Choppy, C., Reggio, G.: Towards a formally grounded software development
method. Technical Report DISI-TR-03-35, Universita di Genova, Italy (2003)

http://moca.ewi.utwente.nl/WORK.html/

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 147–152, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Portfolio Management and Simulation
Concepts in the ERP Project Estimation Practice

Maya Daneva

University of Twente
m.daneva@utwente.nl

Abstract. This paper presents a two-site case study on requirements-based
effort estimation practices in enterprise resource planning projects. Specifically,
the case study investigated the question of how to handle qualitative data and
highly volatile values of project context characteristics. We counterpart this
challenge and expound upon the integration of portfolio management concepts
and simulation concepts into a classic effort estimation model (COCOMO II).

1 Introduction

Business-requirements-based effort estimation is a practical part of the early stage of
any Enterprise Resource Planning (ERP) project. Though, how to construct realistic
schedules and budgets so that an ERP-adopting organization can achieve cost-
effective and timely project delivery is, by and large, unknown. Researchers [3,10]
indicate that existing project estimation practices (e.g. [1]) are limited by their
inability to counterpart the challenges which the ERP project context poses to
estimation analysts, for example, how to account for the uncertainties in cost drivers
unique to the diverse configurations, system instances and versions [3] included in the
solution. Here we explore one possible approach as a remedy to this situation. In case
study settings, we complementarily deployed the COCOMO II effort estimation
model [1] at the requirements stage, and portfolio management (PM) and Monte Carlo
(MC) simulation concepts. In what follows, we provide a background on the approach
and, then, we report on our case study plan, its execution, and our early conclusions.

2 Background

Our approach to uncertainties in ERP effort estimation rests on four types of sources:
(i) the COCOMO II model [1] that lets us account for ERP adopter’s specific cost
drivers, (ii) the MC simulation [8] which lets us approach the cost drivers’ degrees of
uncertainty, (iii) the effort-and-deadline-probability-based PM concept [9] which lets
us quantify the chance for success with proposed interdependent deadlines for a set of
related ERP projects, and (iv) our own experience in ERP RE [4], which was used to
incorporate the effort estimation process into the larger process of early RE (that is, at
time of bidding). We chose the combination of (i), (ii) and (iii), because other
researchers already used it [7] and found it encouraging. In marked contrast with
these authors [7] who blended these techniques for the purpose of custom software

148 M. Daneva

Monte Carlo simulation

Probability
distribution of

cost factor values

COCOMO II
Probability

distribution of
effort/duration

portfolio
management

method

Probability
of success

under deadline/
effort constraints

Fig. 1. A conceptual model of the solution approach

contract bidding, we adapt the techniques to the ERP project context and we use them
jointly therein.

Fig. 1 presents how the three techniques fit. Because we want to incorporate ERP
project context uncertainties into the project estimates, we suggest COCOMO II take
as inputs the probability distributions of the COCOMO scale factors and cost drivers
(instead of taking as inputs single values as in [1]). We use the MC simulation to get
randomly-selected values into COCOMO II and, then, see how likely each resulting
outcome is. Our approach yields as a result the possible effort and duration estimation
values for each uncertain factor. Unlike COCOMO II, our output is the probability
distributions of effort and duration and not the most likely effort and duration which
COCOMO II creates. The probability distributions are fed into the PM method [9]. To
run it, we first bunch projects into portfolios and, then, obtain the probability of
successfully delivering the projects under both time and effort constraints. The
application of this solution in context is described below.

3 The Case Study Plan

Our case study was planned as per the guidelines in [14]. Our overall goal was to
determine whether the use of PM increases the chance of success and, if so, to what
extent. Our expectation was that the ERP projects with high uncertainty ratings of the
COCOMO II scale factors and cost drivers would benefit more from PM, than the
projects with low uncertainty ratings would. The scope of the case study covers two
sites in a large North-American company. Each site represents an independent
business unit running their own ERP projects based on a specific package. Prior to the
case study, the units were independent firms which merged. While the first site
implemented three modules of the PeopleSoft ERP package, the second site [5] rolled
out a large organization-wide ERP solution that included eight functional modules of
the SAP package. A condensed summary of the case study setup pertaining to the
SAP site has been presented in a ESEM’07 poster [5].

The three techniques from Fig. 1 are summarized as follows:

COCOMO II: We used it because (i) it’s a popular and comprehensive empirical
parametric model [1] and (ii) both our sites had data allowing its use. COCOMO II
produces estimates of effort and duration by using two equations as follows:

 Integrating Portfolio Management and Simulation Concepts in the ERP Project 149

Effort = A x (Size)E x ∏
=

17

1i

EM i and Duration = C x (Effort) F (1)

Therein, E and F are calculated via the following two expressions, respectively:

 E = B + 0.01 x ∑
=

5

1j

SF j and F = D + 0.2 x (E – B) (2)

In (1), 17 cost drivers (EM) serve to adjust initial effort estimations. In (2), five
scale factors (SF) reflect economies and diseconomies of scale observable in projects
of various sizes. The degrees of these 22 context characteristics are rated on a seven-
point scale, ranging from ‘extra low’ to ‘extra high’.

Monte Carlo simulation: This is a problem-solving technique to approximate the
probability of certain outcomes by running multiple trial runs, called simulations,
using random variables. Here, we use it to obtain a range of possible values for our
estimates, while taking the COCOMO II cost drivers and their degrees of uncertainty
as inputs. We borrowed this idea from the THAAD Project Office [8] and the JLP
NASA [6]. We run it according to these steps: (1) ascribe a particular distribution type
to an input variable in COCOMO II; (2) repeatedly run the model 10000 times and
collect samples of the output variables for each run so that we produce an overall
picture of the combined effect of different input variables distribution on the output of
the model; (3) plot a histogram showing the likelihood of obtaining certain output
values for the set of input variables and attached distribution definitions.

Portfolio management: The PM method in [9] quantifies the uncertainty associated
with a project estimate for a set of projects managed as a portfolio. It gives the
opportunity to obtain a probability of a portfolio’s success under effort and schedule
constraints. We chose it because: (i) it is applicable at the stage of requirements [9],
(ii) its only input requirement is a record of previous projects; and (iii) it fits with the
ERP adopters’ project realities suggesting that an ERP project is implemented as a
portfolio of interdependent subprojects. Each subproject is a piece of functionality (or
an ERP module) linked to other pieces. For example, the Asset Management
functionality in a package is tightly linked with the Financial Accounting module and
the Controlling module. Given a set of interdependent subprojects, the effort
estimation model yields (i) the probability of portfolio’s success with the proposed
deadlines for each subproject in this portfolio, and (ii) a set of new deadlines which
will result in a required probability of success. The portfolio success is judged by two
conditions applied to any two subprojects a and b for which deadlinea is earlier than
deadlineb. The conditions are that: (i) subproject a is to be over by deadlinea and (ii)
subproject a and subproject b are to be over by deadlineb. In other words, the
conditions require all subprojects planned with a deadline before deadlineb to be
completed by deadlineb , rather than just project b. This is the key to the portfolio
approach, because uncertainty about completion of project b incorporated uncertainty
from all previous projects. Suppose in total E people are on the project and let d be
the number of work days it takes from start date to deadline, then the total available
resources is Exd. So, suppose an ERP portfolio Y is made up by n subprojects, the
success conditions are represented as follows:

150 M. Daneva

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≤

++

+

n
d

d

d

E

n
YYY

YY

Y

...
2

1

..
21

...
21

1

 (3)

where Yi is the estimated effort for subproject i to succeed. We check if, for any j, (j=
1..n), the sum of Y1,..,Yj is greater of Exdj. If this is true, then deadline dj has failed.
Success probabilities result from simulations in which Y1,...,Yn are generated from a
predetermined probability distribution. If we deem Y1, …,Yn is satisfying all
conditions, then we say that the portfolio Y succeeds. The portfolio’s probability of
success is equal to the ratio of the number of successes in the set Y to the number of
trials in the simulation.

4 Case Study Execution

We modeled the uncertainty of the 22 context factors by means of a probability
distribution, which means identifying for each factor (i) its distribution type and (ii)
its parameters. We did this based on proposed default choices by other authors [6,7,8],
e.g. McDonald’s [8] default ‘high’ levels of uncertainty associated to the ratings of
the RESL, DATA, ACAP and PCAP cost drivers [1]. The level of uncertainty
determines, in turn, the distribution type to be assigned to each cost driver: normal,
triangular, and uniform for low, medium and high uncertainty, respectively.

Next, the matter that COCOMO II provides duration estimation (2), encouraged us
to formulate the following condition for PM in terms of time constraints:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≤

++

+

n
m

m

m

n
TTT

TT

T

...
2

1

...
21

...
21

1

 (4)

where Ti is the ERP implementation time in months for subproject i. We note that this
condition does not include the number of people E, because COCOMO II assumed an
average number of project staff [1] which was accounted in (2). Furthermore, as
recommended in [7], we attempted to improve the chances for portfolio success by
adjusting the cost drivers and scale factors. Hence, we adopted the assumption that for
projects with two different ratings for the same factor, the probability of success for
each project will be different too.

Project data: The data we used in the first site were collected from six PeopleSoft
projects completed between May’98 and June’00 and the data in the second site -
from 13 SAP projects carried out between Nov’97 and Oct’03. In this period, the
author was employed by the case company as a SAP process analyst and was actively
involved in the projects. In both sites, for each project, we got (i) project size data, (ii)

 Integrating Portfolio Management and Simulation Concepts in the ERP Project 151

reuse levels, (iii) start and end dates, and (iv) scale factor and cost driver ratings. Size
(see equation (1)), was measured in terms of unadjusted Function Points (FP) [4]. We
counted it by using the standard rules of the International Function Point User Group
(IFPUG, www.ifpug.org). The first site employed a IFPUG-certified FP specialist
who counted FP from requirements and architecture design documents delivered by
the PeopleSoft consultants on board. The second site also followed the IFPUG
standard, but used the counting rules specifically refined to the observable elements of
functionality in the SAP business requirement documents [4]. The effort multipliers
A, B, and EM, and the scale factors SF were calibrated for each site by using ERP
effort data collected between 1997 and 2004 in the two business units. We note that in
both sites, we did not have any knowledge about the uncertainty of the scale factors
and cost drivers ratings and therefore, we used default levels proposed by other
authors [6,7,8]. We opted to use a lognormal distribution for functional size, as this
was motivated by Chulani’s observations [2] that (i) the skew of the size distribution
is positive and that (ii) log(size) is likely to be a normal distribution. With this input
data, we run MC simulations (a total of 10000 trials) which gave us samples of (i)
effort, expressed in person-months, and (ii) duration, expressed in months.

Results: To see how the change of uncertainty levels of a cost driver rating impacts
the project success under effort and schedule constraints, we constructed two
portfolios: the first one had this driver rated as ‘very high’ for all projects and the
other portfolio had it rated as ‘very low’ for all projects. For each portfolio, we
calculated the probability of success under time constraints and under effort
constraints. For example, Table 1 indicates that – at both sites, when the ERP-specific
tools (TOOL [1]) were used in the project, the probability of success was higher under
both time and effort constraints.

Table 1. Analysis of the probability of success for the factor TOOL under effort constraints

 TOOL rating Probability of success

Site
Under effort constraints Under time constraints

Very low PeopleSoft 46.33% 51.54%

Very high PeopleSoft 97.99% 96.88%

Very low SAP 49.27% 51.88%

Very high SAP 98.01% 95.72%

Table 2. Probability of success for low/high uncertain projects under time constraints

Site Probability of success Ratio of increase
(b)/(a)

Uncertainty level

 Individual projects
(a)

Portfolio
(b)

Low uncertainty PeopleSoft 21.45% 90.93% 4.23

High uncertainty PeopleSoft 14.31% 86.77% 6.06

Low uncertainty SAP 15.76% 87.52% 5.55

High uncertainty SAP 8.31% 75.91% 9.13

152 M. Daneva

In both sites, we observed that 13 of the 17 COCOMO II drivers can be adjusted
in a way that maximizes the chance of success. Furthermore, we used ‘the ratio of
increase’ [5,7] (i.e. the utmost right column in Table 2) to see whether the probability
of success increases (and if so by how much) when projects are managed as a
portfolio. Table 2 suggests that bundling ERP projects as a portfolio had the
advantage over managing projects separately under time constraint.

5 Conclusions

Many issues arise when estimating ERP project costs from early requirements. This
two-site case study applied an approach targeted to resolve the issue of volatile values
of context factors which impact project outcomes. We learnt that: (1) to get a better
estimate, we must be flexible and open enough to exploit the power of synergies
among the three techniques and to learn from qualitative details of context; (2)
examining the uncertainties in the context of each ERP portfolio clearly and from
diverse sides helps us learn more about the effort estimation problem we face; (3) to
ERP-adopters, this approach might be one good alternative over vendor-provided
project estimates. However, our results are preliminary only. We are aware of related
validity concerns [11] and plan a series of case studies to test our approach, to
properly evaluate its validity and to come up with an improved version of it.

References

[1] Boehm, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper Saddle
River (2000)

[2] Chulani, S., Boehm, B.W., Steece, B.: Bayesian Analysis of Empirical Software
Engineering Cost Models. IEEE Trans. on Software Eng. 25, 573–583 (1999)

[3] Daneva, M., Wieringa, R.: Cost Estimation for Cross-organizational ERP Projects:
Research Perspectives. Soft Quality J. 16 (2008)

[4] Daneva, M.: Measuring Reuse of SAP Requirements: a Model-based Approach. In: 5th
International Symposium on Software Reusability, pp. 141–150. ACM Press, LA (1999)

[5] Daneva, M.: Approaching the ERP Project Cost Estimation Problem: an Experiment. In:
1st International Symposium on Empirical Software Engineering and Measurement,
p. 500. IEEE Press, New York (2007)

[6] Hihn, J.: Model-based Estimate. Technical report, JLP NASA (2004)
[7] Jiamthubthugsin, W., Sutivong, D.: Protfolio Management of Software Development

Projects Using COCOMO II. In: 34th IEEE International Conference on Software Engin-
eering, pp. 889–892. IEEE Press, New York (2006)

[8] McDonald, P., Giles, S., Strickland, D.: Extensions of Auto-Generated Code and
NOSTROMO Methodologies. In: 19th International Forum on COCOMO, LA (2004)

[9] Fewster, R.M., Mendes, E.: Portfolio Management Method for Deadline Planning. In: 9th
International Software Metrics Symposium, pp. 325–336. IEEE Press, Los Alamitos
(2003)

[10] Stensrud, E.: Alternative Approaches to Effort Prediction of ERP Projects. J. Inf. Soft.
Techn. 43, 413–423 (2001)

[11] Yin, R.: Case Study Research, Design & Methods. 3rd edn. Sage, Newbury Park (2002)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 153–167, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Can Patterns Improve i* Modeling? Two Exploratory
Studies

Markus Strohmaier1, Jennifer Horkoff2, Eric Yu3, Jorge Aranda2,
and Steve Easterbrook2

1 Knowledge Management Institute, Graz University of Technology and Know-Center,
Inffeldgasse 21a, Graz, Austria

2 Department of Computer Science, University of Toronto, 10 King’s College Road,
Toronto, Ontario, Canada

3 Faculty of Information Studies, University of Toronto, 140 St. George St., Toronto,
Ontario, Canada

markus.strohmaier@tugraz.at, yu@fis.utoronto.ca,
{jenhork,jaranda,sme}@cs.utoronto.ca

Abstract. A considerable amount of effort has been placed into the investigation
of i* modeling as a tool for early stage requirements engineering. However,
widespread adoption of i* models in the requirements process has been hindered
by issues such as the effort required to create the models, coverage of the
problem context, and model complexity. In this work, we explore the feasibility
of pattern application to address these issues. To this end, we perform both an
exploratory case study and initial experiment to investigate whether the
application of patterns improves aspects of i* modeling. Furthermore, we
develop a methodology which guides the adoption of patterns for i* modeling.
Our findings suggest that applying model patterns can increase model coverage,
but increases complexity, and may increase modeling effort depending on the
experience of the modeler. Our conclusions indicate situations where pattern
application to i* models may be beneficial.

Keywords: The i* Framework, Model Patterns, Modeling Effort, Model Coverage,
Model Complexity.

1 Introduction

In the field of requirements engineering, much work has been dedicated to modeling
in the early stages of the requirements engineering process. Models created in the i*
Framework capture the goals of stakeholders and help requirements engineers to
understand the strategic interactions and dependencies among agents [20]. These
models are assumed to, for example, facilitate analysis and discover new knowledge
about the domain. However, widespread adoption of such models in the requirements
engineering process has been hindered by a series of issues [7], including:

Costs of modeling: The effort necessary to create, maintain, understand, and analyze
i* models is high.

154 M. Strohmaier et al.

Model coverage: Due to the high complexity of social relations, i* models may fail
to cover all relevant issues.

Complexity of models: At the same time, the models that result from modeling with
the i* Framework can be complex and difficult to scale.

Improving some of these aspects would represent an improvement to i* modeling
practices. Usage of patterns in previous work suggests that patterns in general can
provide, among others, the following benefits ([1],[3],[4]):

Reuse: By abstracting and packaging domain knowledge in a structured way, patterns
enable the reuse of knowledge.

Modularization: Because patterns have a clearly defined focus and well defined
areas of application, they contribute to modularizing the domain.

Communication: By providing an agreed upon vocabulary of domain knowledge,
patterns facilitate communication among stakeholders.

Although there have been some initial efforts in using patterns for agent-oriented,

social focused modeling ([15], [17]), patterns have not yet been applied extensively in
this area. This might be because the use of patterns in this area brings new challenges
related to pattern construction, selection, adaptation and evaluation, whose effects
might cancel out the benefits of pattern application. Our research sets out to explore
challenges related to patterns in an early requirements context.

Of the many different types of patterns which can be constructed, we are especially
interested in the utility of model patterns, that is, patterns that capture knowledge for
reuse in the form of conceptual models rather than textual descriptions. Specifically,
we define i* model patterns as i* models which are generalizations of a particular
domain or situation of interest, which can then be contextualized when applied to a
more specific situation. In this work we focus on those patterns which describe the
roles and intentions involved in the use of specific software or technologies in an
abstract and reusable way. We focus on these types of patterns because they relate to
the challenges and typical use of i*, specifically, enabling the evaluation of a particular
technological solution in a specific context. To acquire a deeper understanding about
the effects of pattern use in this context we have raised a set of research questions and
conducted both an exploratory case study and an initial experiment involving the
construction, application and evaluation of i* model patterns. A methodology for i*
pattern application is introduced as part of an exploratory case study in Section 5.

2 Patterns in the i* Framework

Although the application of patterns shows promise in addressing several of the issues
associated with i* modeling, i* model patterns as we have defined them differ from
patterns typically seen in later stage requirements and software engineering. These
differences often involve form (textual versus graphical representation) and focus,
with i* models focusing on high-level solutions in the early stages of requirements
analysis. In the area of requirements engineering, patterns have been used to capture

 Can Patterns improve i* Modeling? Two Exploratory Studies 155

and organize knowledge about requirements and requirements engineering
techniques. In software engineering, pattern theory defines a pattern as a construct
that captures some proven knowledge of a domain via problem/context/solution
triples which are created for further reuse [1]. In contrast, model patterns, as we
define them, focus on the social context and interactions of the pattern subject matter.
The patterns used in this work capture general requirements for the technology in the
form of i* elements as well as general goals of the roles it interacts with, including the
dependencies between them.

We assume familiarity with the i* Framework [21]. As an example of an i* model
pattern, consider a pattern describing the social relationships surrounding the usage of
a wiki, as shown in Fig. 1. We expect that particular instances of wikis (expressed as
contextual models) would have many of the features depicted in this model pattern,
but possibly also deviations from it.

The wiki, as a technology system, is modeled as an agent. Its main task is to
Provide for Mass Collaborative Authoring. It exists in the context of a number of roles –
visitors, editors, reviewers, as well as a, Technology “Champion”, who wants to promote
the benefits of the wiki. The champion depends on the wiki to achieve the goal
Content be Correct/Useful as part of facilitating Collaborative Authoring. Each actor (agent
or role) has its own goals and tasks and softgoals (success criteria), but ultimately
depend on each other to form a socio-technological system.

In this example, and in our pattern application methodology, the check marks in
the model are used to indicate the extent to which the actor’s goals are achieved,

Fig. 1. Simplified Version of the Wiki Pattern

156 M. Strohmaier et al.

using a procedure described in [13]. Generally, the leaf elements or opertionalizations
in the model are marked as satisfied, assuming their implementation. These values are
propagated throughout the model using a combination of automatic rules, based on the
semantics of the links, and human intervention, to resolve conflicting or partial
evidence. The results of the propagation are analyzed to determine if the needs of all
actors are sufficiently met.

3 Research Questions and Research Design

Claims that the adoption of patterns improves requirements engineering efforts are
abundant in literature, but the actual - positive or negative - effects that patterns have
on requirements engineering in general and i* modeling in particular have not been
studied in detail. Therefore, the overarching question of this paper is "Can patterns
improve modeling with the i* Framework?" In order to clarify what we mean by
"improve" and to make this question amenable to scientific investigations, we
formulate a set of more specific questions. This work does not aim to find definite
answer to these questions, but instead aims to find evidence which begins to support
or deny our preliminary claims.

Q1: Do model patterns help reduce modeling effort? Because i* model patterns are
designed with reuse in mind, model patterns should contribute to decreasing the effort
involved in i* modeling.

Q2: Do model patterns help increase model coverage? By capturing and
documenting deep domain knowledge, the utilization and combination of i* model
patterns should increase the degree to which i* models cover relevant aspects of the
world.

Q3: Do model patterns help decrease complexity? Because i* model patterns have
a scope and clearly defined borders, they should help to make the high complexity of
i* models more manageable through modularization.

In order to investigate the positive and/or negative effects of patterns on i*

modeling we need to observe instantiations of the modeling process. For this reason,
we employ a research approach which uses a case study as well as an exploratory
experiment to study the introduced research questions. The case study involves an
ongoing requirements analysis project with an external organization, while the follow-
up experiment, designed to address some of the limitations of the initial case study,
uses student participants in a classroom setting.

4 Case Study: Kids Help Phone

In order to investigate our research questions concerning the use of patterns, we
developed a methodology, or series of concrete steps, that guides and constrains the
application of model patterns to i* models. In this section we outline the general
steps of our proposed methodology, provide a description of the execution of these
steps in the Kids Help Phone (KHP) case study, and present selected results.

 Can Patterns improve i* Modeling? Two Exploratory Studies 157

4.1 Case Study Context and Preparation

This study uses data from an ongoing requirements analysis project with a not-for-
profit youth counseling organization. KHP is a charitable, non-governmental
organization that provides 24/7 counseling to kids across Canada via phone and web.
The project was aimed to explore the situational "effectiveness" of a range of social
technologies, such as discussion forums and wikis in their operations. To create an
empirical baseline for our investigations, we interviewed stakeholders at KHP and
constructed i* models of the domain without focusing on patterns. Specifically, we
interviewed a total of ten stakeholders on their issues with knowledge transfer, in
interview sessions lasting approximately one hour. The interviews acted as a basis for
creating models that focused on the current usage of different technologies, such as a
discussion forum. Finally, we assessed the current situation of KHP by evaluating the
created models as a baseline for analyzing alternative solutions. In the case study, we
chose to focus on a model representing the usage of a discussion forum.

4.2 Methodology and Case Study Execution

The left side of Fig. 2 provides a high-level overview of the steps involved in our
methodology: from pattern creation, insertion and integration to the final evaluation
of the resulting model. The right side of this figure contains some corresponding
quantitative results of the study, explained in future sections.

4.2.1 Pattern Creation
This step involves the creation of i* model patterns. This will not be necessary once a
patterns catalog becomes available.

Create Patterns. Create a set of patterns by consulting relevant literature. Model the
roles, goals, tasks, resources, dependencies and contribution links related to a specific
technology.
Case Study Application. In order to be able to evaluate a pattern approach in our case
study, we created two model patterns – one pattern containing the use of wikis and
one containing a discussion forum (Disc. F.). We applied the first pattern in a case
where the original technology in the domain (a discussion forum) is replaced by a
new technology (a wiki), and applied the second pattern in a case where a model of an
existing technology is replaced by a more detailed, generalized model of this
technology.

Evaluate Patterns. Evaluate the model patterns, (using the qualitative procedure
described in [13]), in order to ensure that the goals of the pattern are, in principle,
achievable in certain scenarios.
Case Study Application. Both the wiki and discussion forum patterns were evaluated
in light of various common implementation scenarios. See Fig. 1 for a simplified
version of the wiki pattern containing an evaluation of stakeholder goals.

4.2.2 Pattern Application
1. Select Patterns. Select patterns which are believed to be applicable and beneficial
in the contextual model. Compare the contributions of goals in the pattern to the
goals expressed in the contextual model(s) for an indication of pattern applicability.

158 M. Strohmaier et al.

Case Study Application. In the case of KHP, we chose the two patterns we had
previously created.

2. Contextualize the Pattern. View the selected pattern in light of the contextual
model domain, adding and removing relevant and irrelevant links and elements.

Case Study Application. We contextualized the wiki model pattern, removing 7 of the
117 elements and 16 of the 169 links. In the case of the discussion forum model
pattern, all elements and design options were considered relevant and no changes
were made.

3. Insert the Pattern. Insert the pattern into the contextual model view.

Case Study Application. In each case, the model pattern was pasted into the
contextual model file containing the discussion forum.

4. Linking Actors. Link the actors defined in the pattern to the actors in the
contextual model.

Case Study Application. In the case of the wiki model pattern, we replaced the
discussion forum of the contextual model with the wiki model pattern. The pattern
contained roles such as Visitor, Editing Visitor or Technology “Champion”, which
were linked to the existing roles in the contextual model via the i* Framework’s actor
association links (such as “PLAYS” and “IS-A”).

5. Pattern Integration. Integrate the pattern into the contextual model.

Case Study Application. The interactions between the pattern and the contextual
actors were considered by adding or changing existing dependency links. The domain
actors depended on their new roles in order to satisfy their goals, and, conversely, the
technology agent depends on these actors, possibly indirectly, to be successful. In
addition, we changed the existing elements and links in order to connect the new
technology to the goals of existing actors.

We use measurements of model size and model changes as a way of quantifying our
observations in relation to our research questions, see “Threats to Construct Validity”
in Section 8 for a discussion of these measurements. As the first two points of
measurement (“CM“, “MP”), we considered the size of the contextual model and
model patterns before pattern insertion and integration. As the third point of
measurement (“CIP”) we considered the size of the model after all pattern integration
changes were made. During the integration process, the number of i* constructs added,
deleted or changed in some way was recorded. A summary of the measurements
appears in the table on the right side of Fig. 2. Note that the differences between the
top and bottom size counts in the table do not balance with the changes reported in the
middle, as the measurements for steps 2 and 3 are not reported.

6. Evaluate Model. Evaluate and analyze the resulting model to determine whether or
not the technology represented by the model pattern is successful, both in terms of its
own goals and the goals of the contextual actors. Compare the results with the
evaluation of the existing technology in the contextual model.

Case Study Application. In the case of the wiki pattern, two possible wiki
configurations were evaluated, one with periodic reviewing of content and one where
content must be reviewed before being posted to the wiki. Although the second

 Can Patterns improve i* Modeling? Two Exploratory Studies 159

Context.
Model
(CM)

Wiki Disc. F.
Pattern
(MP)

Pattern
(MP)

Size
Actors 21 6 4
Elmts. 178 102 76
Links 222 169 96
Total 421 277 176
Context. Model
with Integrated
Patterns

Wiki
Pattern
(CIP)

D. F.
Pattern
(CIP)

Effects of Integration (Steps 4 & 5)
Add 20 27
Delete 9 13

Elmts.

Change 6 0
Add 55 61
Delete 23 23

Links

Change 2 7
Actor Delete 1 1
Overall Resulting Size
Actor 24 24
Elmts. 272 232
Links 365 321
Total 661 577

Fig. 2. Pattern Methodology and Resulting Measurements

configuration proved to be most successful, overall, based on an evaluation of the
goals in the contextual model, the wiki technology did not seem to meet the needs of
the organization. The discussion forum pattern, with differing features than the
existing discussion forum, seemed to show more promise.

7. Improve Pattern & 8. Repeat. Use the experience of inserting and integrating the
model patterns to make any necessary adjustments or improvements to the pattern. In
this way, existing patterns can be gradually validated through iterative use and
modification. For each relevant pattern, repeat steps 1 to 7.

The results of both of the studies we have conducted are analyzed in Section 7.

5 Exploratory Experiment: Classroom Setting

Although results collected in the case study have potential to address our research
questions, the study had several limitations, several of which related to internal
validity. First, the modelers who applied the model patterns were often their creators,
which is not necessarily the case in pattern-oriented approaches. Second, the
evaluation of the pattern approach in the case study was performed by the authors of

160 M. Strohmaier et al.

this work. In order to address some of these limitations, we designed and executed a
follow-up experiment in order to find further evidence to address our research
questions.

5.1 Exploratory Experiment Context and Preparation

The experiment took place in a graduate course of a school with a focus on business
and technology. Thus, the students had a mixed background of technical and business
experience. The students had some knowledge of the i* Framework through previous
courses, but they had not applied it extensively and could be considered to be novice
modelers. The study was introduced to the course as one of the course assignments;
however, participation was anonymous and voluntary, not affecting grading. Six
students opted to participate in the experiment.

The student assignment was divided into three parts. Part A (Contextual Model
Creation) simulated the creation of a contextual model, with each student analyzing
a type of information technology as applied to a collaborative work setting. All
students analyzed the same work setting, but used different technologies. Models
were evaluated to explore the effectiveness of the technology. Part B (Pattern
Creation) involved the creation of a model pattern, with each student producing a
pattern for a technology that they did not choose in the first stage. The third part, Part
C (Pattern Integration), required the students to apply and contextualize a selected
pattern produced by another student into their model created during Part A. Hints for
integration were given to the students by describing some of the steps presented in the
methodology in section 4.2. Questions were posed in the assignment to qualitatively
assess effort (Q1), coverage (Q2) and complexity (Q3) of various steps in the
assignment.

5.2 Qualitative Analysis of Experimental Results

Q1: To address modeling effort, the students were asked which of the assignment
activities were the most difficult for them to complete. One student said this was the
construction of the Part A (contextual) model, two students indicated that making the
Part B pattern was either the most difficult or time consuming to construct,
complaining about the difficulty of having to make a more abstract model, and two
student said that the integration in Part C was the most time consuming task, with
three students complaining about the difficulty of understanding the Part B model.
The last student did not clearly pick a task as most difficult.

Q2: To address their perception of coverage, the students were asked the following
question, with student answers summarized in Table 1 and the # symbol indicating
answers that were missing or unclear.

How would you describe your confidence on the correctness (including accuracy and
completeness of coverage) of the models and analysis results of:

1. The Part A model before you performed Part C?
2. The Part A model after you performed Part C?
3. The Part C Model? (in comparison to the Part A model)

 Can Patterns improve i* Modeling? Two Exploratory Studies 161

Table 1. Summary of Student Answers for Question 2

Q 2.1. Q 2.2. Q 2.3.

Student 1 Correctness: above
average
Coverage: not sufficient

Accuracy: good
Completeness: not as good
as part C

#

Student 2 Correctness: High
confidence
Coverage: cannot be
determined

Correctness: High
confidence
Coverage: cannot be
determined

C more complete in
coverage

Student 3 Accuracy: good
Completeness: good

Completeness: was not as
good as thought

Part C model more
complete

Student 4 Completeness and
Accuracy: not confident
(due to lack of i*
experience)

Completeness and
Accuracy: not confident
(due to lack of i*
experience)
did add more things

Completeness and
Accuracy: more
confident, but still not
completely confident

Student 5 Accuracy: high Accuracy: not as high as
thought

Part C models most
accurate and correct

Student 6 Quality and Accuracy:
Not confident

Lots of details left out in
part A

#

Q3: When asked which models would be the easiest to understand for themselves or
for others (related to our research question of model complexity), four students said
that the Part C model is easiest for them to understand, while two indicated Part A.
However, only two students clearly said that the Part C models would be easiest for
others to understand, with one student indicating it would depend on the modeler’s
experience and another expressing concern about the complexity of Part C.

In addition, when asked about the quality of the model pattern produced by another
student, received in Part C, five of the students complained about some aspect of the
pattern they were supposed to apply, including completeness, ambiguity and
complexity. However, four of these students, as well as the sixth student, listed
positive aspects of applying patterns, including quality and knowledge previously
missing.

Finally, despite the concerns expressed, when asked about their overall experience
with using patterns in the assignment, five of them said they would use patterns again,
although one indicated that only if the pattern was created by a reputable source. The
validity of this and other evidence collected is discussed in Section 8.

6 Interpretation and Discussion of Results

In this section, we interpret and discuss the collected evidence from our studies in the
light of our three driving research questions.

Q1: Do model patterns help reduce modeling effort? Assuming that patterns are
readily available (leaving costs related to pattern construction aside), this research
question can be affirmed when the integration of model patterns is less costly than the
development of the corresponding parts of non-pattern models.

162 M. Strohmaier et al.

Case Study: We can acquire an estimation of modeling effort by examining the size of
this section of the model its sub-agents and related dependencies. By comparing these
measures to the amount of effort put into the integration of the discussion
forum pattern into the same model, we derive evidence with respect to the question at
hand. In our study, the contextually developed discussion forum model has 42
elements and 52 links, compared to the integration of the discussion forum model
pattern which required the modification of 40 (13 deletions and 27 additions)
elements and 84 links (23 deletions, 61 additions and 7 modifications).

Experiment: To make the experiment’s results comparable to our case study results,
we would ignore the effort put into the Pattern Creation of the assignment, despite
several complaints about the difficulty of this activity. However, apart from pattern
construction, there is the act of understanding the pattern sufficiently in order to apply
it. As reported, five of the students expressed concerns about their ability to
understand the incoming patterns. Furthermore, only one student indicated that
Contextual Model Construction was the most difficult to construct while at least three
students indicated difficulties with Pattern Integration.

Combined: Examining the Case Study evidence, it appears that the integration of the
discussion forum model pattern required at least as much effort as modeling the
technology within the contextual model. Considering the experiment, it seems that in
addition to problems understanding the incoming pattern, the integration of a model
pattern into a contextual model was generally thought to be more difficult than
creating the contextualized model. These results are in clear conflict to our
predictions, and especially surprising as we have already left the costs related to
pattern construction out of the equation. The difference in the level of effort required
to integrate patterns between studies may indicate that effort depends heavily on
experience, as the case study was performed by experienced i* modelers, while the
students in the experiment were i* novices.

Q2: Do model patterns help increase model coverage? This research question can
be affirmed when the application of patterns leads to models that cover more relevant
aspects of the domain than non-pattern models.

Case Study: We have found that patterns have a significant impact in this regard: by
replacing the contextually developed discussion forum model with a discussion forum
model pattern, model coverage increased along several dimensions: the integration of
the pattern introduced 10 additional goals (+143%), 43 additional softgoals (+96%),
49 additional "help" contribution links (+87%) and 14 additional means-ends
relationships (+1400%). We can surmise that these were additions of relevant
constructs as irrelevant model sections were removed during the contextualization of
the model pattern.

Experiment: Even though the students did not have high confidence in the coverage of
their contextual models before pattern integration, three students indicated that the
integrated models were the most complete and at least two students noticed detail left
out of the contextual model after completing the Pattern integration.

Combined: The evidence found in both studies therefore suggests that the adoption of
model patterns can have a positive influence on elaborating i* models with respect to
model coverage.

 Can Patterns improve i* Modeling? Two Exploratory Studies 163

Q3: Do model patterns help decrease complexity? This research question can be
affirmed when the application of patterns leads to models which are significantly less
complex than non-pattern models.

Case Study: In our case study, all developed model patterns were significantly more
complex (i.e. contained more elements and links) than their technology counterparts in
the contextual models, as discussed in the Q2 analysis. In the example where we have
introduced the discussion forum model pattern to replace its contextual counterpart,
an overall increase of modeling elements and links of 30% and 43%, respectively,
could be observed. Results for replacing the contextual discussion forum model with
the wiki pattern showed similar trends. However, the use of patterns can be said to
modularize the model development process, and, as the patterns are significantly
smaller than the contextual models before and after integration, the complexity of any
steps performed with only the patterns would be simpler than working with the larger
contextual model.

Experiment: We can examine questions relating to the quality of the model pattern
and ease of comprehension as measures of model complexity. As mentioned, five of
the students expressed concerns about their ability to understand the incoming
patterns. In addition, although four of the students indicated that the integrated model
would be the easiest to understand, there was concern over the ability of other to
understand these models.

Combined: Despite the possible benefits of modularization, as well as the student’s
purported ability to understand their own integrated models, we are led to doubt an
overall reduction in complexity from the use of model patterns. In fact, measuring
complexity from model size, the case study results indicate that pattern application
may actually increase model complexity.

7 Threats to Validity

Construct Validity: The constructs we intended to investigate in our study were
effort, model coverage and model complexity. In our case study we measured the
effort involved in model construction by measuring the amount of necessary model
changes (additions, deletions). In doing that, we aimed to eliminate confounding
factors such as the varying skills of modelers with a particular modeling tool.
However, our approach does not mitigate the potential influence of varying cognitive
efforts. In fact, our observations indicate that the act of integrating a pattern into a
model may require more cognitive effort than the creation of corresponding,
contextual models, which represents an interesting finding.

In the KHP study, we measured model coverage by investigating whether the total
amount of modeling elements and links increased or decreased after integration of the
model patterns into the contextual model. These changes were made with the
relevance of these elements in mind. A potential threat to validity is the subjective
nature of “relevance” in general. We tried to mitigate this factor by involving a
modeler that has a good understanding of the case study organization. Our case study
used the size of the models, including elements and relations, as a measure of model
complexity. We argue that this represents a suitable surrogate measure for an

164 M. Strohmaier et al.

exploratory case study. To address issues with the means of measuring effort,
coverage and complexity in our case study, our exploratory experiment instead used a
qualitative judgment of these aspects as reported by the student participants.

Internal Validity: The internal validity problems of the case study were discussed in
Section 6. In the experiment, pattern creation was performed by novice modelers,
whereas in pattern theory, patterns are typically developed by experts in the domain
and pattern creation. We attempted to mitigate these effects by providing resources
on the technology subject matter of the patterns and by providing sufficient i*
training. However, results may have differed if the patterns were created by more
experienced individuals.

External Validity: Because the experiment and case study were performed using the
i* Framework, it is difficult to generalize findings to other modeling frameworks.
However, several of our findings may generalize to other agent-oriented, goal
modeling frameworks, such as the fact that pattern integration involves significant
effort or that patterns have the potential to increase model coverage.

As always, there are external validity issues with the use of students as research
subjects, especially when the sample size is small. However, this particular group of
students represented a fairly diverse background, having a mixture of academic and
business experiences. Furthermore, the subjects had a novice level of expertise in use
of the i* Framework, making it difficult to generalize to more experienced modelers.
In contrast, the modelers in the case study were experienced with the i* Framework.

Both the case study modelers and the students were experts in their respective
domains, KHP and a collaborative work setting. It is possible that differing levels of
expertise may produce different findings. However, the issue of expertise in the
pattern technology may be yet more relevant, with participants in both studies having
varying levels of expertise in the technologies modeled.

The differences in the contexts of our investigations increase our confidence that
the results would generalize to other settings. However, it is still possible that some
domains may be more amenable to pattern application than others.

The results of our study may depend on the nature of the patterns we use.
Employing a variety of pattern creators in both the case study and experiment
increases our confidence that the results would generalize to different sized and
scoped patterns, but i* patterns defined in a different way may produce different
results.

Reliability: Making the methodology we followed explicit increases our confidence
that our findings can be reproduced by others. Other than the small number of
participants, there is nothing to indicate that, given similar settings, both of our
studies would not produce similar results.

8 Related Work

In i* modeling, patterns have not been applied extensively, but some reports are
available. [15] and [16], for example, use the i* Framework to 1) construct agent-
oriented strategic dependency patterns of different types of organizational structures
and to 2) (re)construct traditional, object-oriented patterns in an agent-oriented

 Can Patterns improve i* Modeling? Two Exploratory Studies 165

fashion. In addition, [18] uses i* strategic dependency and strategic rationale
diagrams to capture and encapsulate knowledge about possible design trade-offs of
submarine maneuvering systems for reuse in future engineering efforts. Reusable
security patterns, expressed in the i* Framework, are introduced in [17]. While these
examples demonstrate the potential of patterns for agent-based, social focused
modeling, testing the assumption that a pattern-based approach actually improves
modeling was not in the focus of these investigations.

In the broader context of requirements engineering, patterns have been proposed
and used for many different purposes. Patterns were proposed and investigated as a
means for organizing and documenting, for example, functional and non-functional
requirements knowledge ([5], [9]) and for capturing knowledge about requirements
engineering techniques and strategies [11]. Examples include patterns for refining
requirements [6], and dealing with conflicts [19]. Beyond these approaches, patterns
were suggested to act as solution templates for requirements specification (Hosoya in
[10]), and as guidelines for performing and improving the requirements process [12].
Finally, patterns were investigated as references for assuring the quality of
specifications (Hanyuda in [10]). In software engineering in general, patterns have a
longer tradition. Beyond the influential work on object-oriented patterns (including
[3] and [4]), a series of approaches for utilizing agent-oriented design patterns have
been proposed including [2] and [14].

9 Conclusions

Execution of the studies in this work has revealed some limitations to the use of
model patterns in i*. For instance, contrary to our expectations, replacing the techno-
logies in our case study with the two patterns did not have a large effect on the overall
goals of KHP's actors. This emphasizes that the application of patterns to a model is a
bottom-up (solution driven) approach, whereas the traditional goal modeling approach
is predominately top-down (goal driven). Although applying patterns was useful for
improving coverage, further brainstorming is required to sufficiently satisfy the goals
of the organization.

Execution of the experiment revealed potential difficulties with the construction
and comprehension of model patterns. Some students had difficulty constructing
patterns capturing abstract situations. Patterns created by other students were often
difficult for a student to understand or apply. Further studies should test whether
these issues are as apparent when models are created and used by experienced
modelers.

Can patterns improve i* modeling?

Q1-Effort: We have found that several assumptions of pattern theory seem to be
questionable when applied to i* modeling. Even when we took the effort necessary
for pattern creation out of the equation, we found empirical evidence that suggests
that patterns increase modeling effort for novice users, and do not decrease effort for
more experienced users.

Q2-Coverage: The findings of our exploratory investigations suggest that the
utilization of patterns can address issues identified with i* modeling related to
coverage by integrating broader domain knowledge.

166 M. Strohmaier et al.

Q3-Complexity: We could not find evidence that patterns help in reducing complexity
in an i* context. In fact, our quantitative case study findings suggest the opposite:
pattern integration almost always led to an increase of modeling elements. Our
qualitative experimental findings also point to an increase in the complexity of models
containing patterns, especially for those not creating the models. However, because
patterns also modularize the domain and can be inspected independent from their
contexts, patterns might nevertheless support analysts in dealing with large-scale
models. Further studies should investigate this possibility.

Combining these preliminary observations, we can make the assertion that the
decision to apply patterns in a given situation can be made based on certain factors
including the importance of model coverage and the experience of the modelers. If
model coverage, including related factors such as accuracy and correctness, are
strongly desired, applying a tested and reputable pattern can be beneficial, especially
if being applied by experienced modelers. However, if reduced effort and complexity
are favored over coverage, or if modelers are inexperienced, a pattern approach may
be less appropriate.

In this paper, we have investigated the application of model patterns in the
presence of existing contextual models. One promising further application is the
utilization of patterns at the beginning of the modeling process, where contextual
models have not yet been created. In this situation, model patterns could be used as
seeding elements for the construction of contextual models, eliminating the effort of
pattern integration. Relevant topics for future research brought to light by our
exploratory studies include examining the impact of patterns on model
comprehension and correctness, as well as further investigating the effect of modeler
experience and domain expertise on the ability to effectively apply patterns.

Acknowledgements

We thank the experiment participants as well as all the management and staff at Kids
Help Phone for allowing us to conduct these studies. Funding for this work was
provided by Bell University Labs (BUL), the National Sciences and Engineering
Research Council of Canada, the Ontario Graduate Scholarships Program, the
Austrian COMET Program - Competence Centers for Excellent Technologies, and the
FWF Austrian Science Fund.

References

1. Alexander, C.: The Timeless Way of Building. Oxford Press, Oxford (1979)
2. Aridor, Y., Lange, D.B.: Agent design patterns: Elements of agent application design. In:

2nd Int. Conference on Autonomous Agents, pp. 108–115. ACM Press, New York (1998)
3. Beck, K., Coplien, J.O., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., Vlissides,

J.: Industrial Experience with Design Patterns. In: 18th International Conference on
Software Engineering (ICSE), pp. 103–114. IEEE Press, New York (1996)

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture. A System of Patterns, vol. 1. Wiley, New York (1996)

 Can Patterns improve i* Modeling? Two Exploratory Studies 167

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer, Norwell (2000)

6. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Soft. Eng. Notes 21(6), 179–190 (1996)

7. Easterbrook, S.M., Yu, E., Aranda, J., Fan, Y., Horkoff, J., Leica, M., Qadir, R.A.: Do
Viewpoints Lead to Better Conceptual Models? An Exploratory Case Study. In: 13th IEEE
Int. Conference on Requirements Engineering (RE 2005), pp. 199–208. IEEE Press, New
York (2005)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (1995)

9. Gross, D., Yu., E.: From Non-Functional Requirements to Design through Patterns. Req.
Eng. 6(1), 18–36 (2001)

10. Hagge, L., Houdek, F., Paech, B.: Workshop Summary of the International Workshop on
Requirements Engineering Patterns. In: International Workshop on Requirements
Engineering Patterns, In conjunction with RE 2004 (2004), http://rep04.desy.de/

11. Hagge, L., Lappe, K.: Sharing requirements engineering experience using patterns. IEEE
Software 22(1), 24–31 (2005)

12. Hagge, L., Lappe, K.: Using Requirements Engineering (RE) Patterns for Organizational
Learning. Journal of Universal Knowledge Management 1(2), 137–148 (2006)

13. Horkoff, J., Yu, E., Liu, L.: Analyzing Trust in Technology Strategies. In: Int. Conference
on Privacy, Security and Trust (PST 2006), pp. 21–32. McGraw-Hill, New York (2006)

14. Kendall, E.A., Krishna, P.V.M., Pathak, C.V., Suresh, C.B.: Patterns of intelligent and
mobile agents. In: Second International Conference on Autonomous Agents, pp. 92–99.
ACM Press, New York (1998)

15. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, p. 1030.
Springer, Heidelberg (2003)

16. Kolp, M., Giorgini, P., Mylopoulos, J.: A Goal-Based Organizational Perspective on
Multi-Agent Architectures. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS
(LNAI), vol. 2333, pp. 128–140. Springer, Heidelberg (2002)

17. Mouratidis, H., Giorgini, P., Schumacher, M.: Security Patterns for Agent Systems. In: 8th
European Conference on Pattern Languages of Programs (EuroPLoP), pp. 25–29. Wiley,
New York (2003)

18. Pavan, P., Maiden, N.A.M., Zhu, X.: Towards a Systems Engineering Pattern Language:
Applying i* to Model Requirements-Architecture Patterns. In: 2nd Int. Workshop from
Software Requirements to Architectures (STRAW 2003), co-located with ICSE (2003)

19. van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Eng. 24(11), 908–926 (1998)

20. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Thesis,
Department of Computer Science, University of Toronto, Toronto, Canada (1995)

21. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: 3rd IEEE Int. Symp. on Requirements Engineering (RE 1997), pp.
226–235. IEEE Press, New York (1997)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 168–182, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Discovering Web Services to Improve Requirements
Specifications: Does It Help?

Konstantinos Zachos, Neil Maiden, and Rhydian Howells-Morris

Centre for HCI Design, City University, London
kzachos@soi.city.ac.uk, n.a.m.maiden@city.ac.uk,

rhydianmorris2002@hotmail.com

Abstract. Service-centric systems pose new opportunities for when engineering
requirements. This paper reports an evaluation of software tools with which to
exploit discovered services to improve the completeness of requirements speci-
fications. Although these tools had been evaluated previously in facilitated in-
dustrial workshops, industrial users had not used the tools directly. In this paper
we report 2 industrial uses and evaluations in which experienced analysts used
the tools directly on 2 real-world requirements projects. Results reveal that ana-
lysts used the tools to retrieve web services that could implement specified re-
quirements, but analysts were less able to improve these requirements in light of
the retrieved services. Results have implications for iterative service discovery
processes and service discovery algorithms.

1 Developing with Web Services

Web and software services are operations that users access via the internet through a
well-defined interface independent of where the service is executed [1]. Service-
centric systems integrate software services from different providers into applications
that discover, compose and monitor these services. Developments in service-centric
computing have been rapid [2], but there has been little reported research to address
how to engineer service-centric systems.

As we have reported previously [3], one consequence of service-centric systems is
that requirements processes might change due to the availability of services. Discov-
ering candidate services can enable analysts to increase the completeness of system
requirements based on available service features. We have researched new tools and
techniques to form service queries from incomplete requirements specifications as
part of the EU-funded SeCSE Integrated Project. Although the effectiveness of these
tools to increase requirements completeness was demonstrated in workshops, in
which stakeholders worked with the tools through facilitators and scribes [4], we still
lacked empirical evidence of whether analysts can use and benefit from these tools
directly. Therefore we made the tools available for use by SeCSE’s industrial partners
on service-centric systems development projects. This paper reports results from the
requirements phases of projects at 2 of these partners – a large multi-national consul-
tancy and a small software house providing applications. Results were used to inves-
tigate 2 research questions about the usefulness of the SeCSE tools:

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 169

Q1. Can the tools retrieve specifications of services compliant with requirements
specified by analysts in service queries?

Q2. Can analysts make requirement specifications more complete using the re-
trieved service specifications?

To answer these 2 questions we collected data about the requirements specified by
analysts, the service specifications retrieved using service queries composed of these
requirements, analysts’ decisions to retain or reject each of these services, changes to
requirements in light of service specifications, and qualitative statements made by
analysts. Q1 was answered using analyst decisions to retain or reject each retrieved
service. Q2 was answered using post-retrieval changes that analysts make to use case
and requirement specifications.

Sections 2 and 3 of this paper describe SeCSE’s service-centric requirements proc-
ess and tools. Section 4 introduces the 2 industrial users of these tools and the evalua-
tion method, and sections 5 and 6 report results from the 2 evaluations. Section 7
answers the 2 research questions and reports some threats to validity. The paper ends
with future work on new software modules to support the specification of require-
ments from retrieved web services.

2 Discovering Services in SeCSE

In previous SeCSE work we had reported an iterative and incremental requirements
process for service-centric systems [5]. Requirements analysts form service queries
from a requirements specification to retrieve services that are related to the require-
ments. Descriptions of these retrieved services are explained to stakeholders, then
used to refine and complete the requirements specification to enable more accurate
service retrieval, and so on.

Relevance feedback, as it is known, has important advantages for the requirements
process. Stakeholders will rarely express complete requirements at the correct levels
of abstraction and granularity to match to the descriptions of available services. Rele-
vance feedback enables service consumers and analysts to specify new requirements
and re-express current ones to increase the likelihood of discovering compliant ser-
vices. Furthermore accurate relevance feedback provides information about whether
requirements can be satisfied by available services, to guide the analysts to consider
build, buy or lease alternatives or to trade-off whether requirements can be met by the
available services.

The process has 2 important features. Firstly, to ensure its industrial uptake, the
process uses established specification techniques based on structured natural lan-
guage. For example, to specify system behaviour the process supports UML use case
specifications. To specify the required properties in a testable form for generating
service monitoring policies it supports the VOLERE requirements shell [6]. As such
the process extends the Rational Unified Process (RUP) without mandating unneces-
sary specification or service querying activities.

Secondly the process uses services that are discovered from service registries to
challenge system boundaries and discover new requirements. For example, if no ser-
vices are found with an initial query, SeCSE provides advice on how to broaden the

170 K. Zachos, N. Maiden, and R. Howells-Morris

query to find services that, though not exactly matching the needs of the future sys-
tem, might provide a useful basis for further specification.

To support the iterative and incremental requirements process we implemented the
SeCSE service discovery environment. The next section describes this environment.

3 SeCSE’s Service Discovery Environment

The environment has 4 modules: (i) service registries; (ii) UCaRE, a module to
document requirements and generate service queries; (iii) EDDiE, the service discov-
ery engine, and; (iv) the Service Browser module for reviewing and selecting re-
trieved services. We describe these 4 modules in turn.

3.1 SeCSE’s Service Registries

The environment discovers services from federated SeCSE service registries that store
both the service implementation that applications invoke and one or more facets that
specify different aspects of each service. Current service registries such as UDDI are
inadequate for discovering services using criteria such as cost, quality of service and
exception handling. Therefore SeCSE has defined 6 facets of a service – signature,
description, operational semantics, exception, quality-of-service, cost/commerce, and
testing [7] – that specify features that are important when discovering services. Each
facet is described using an XML data structure. The environment uses the description
and quality-of-service facets of each service. Figure 1 shows part of the service de-
scription facet of one service retrieved in 1 of the 2 reported evaluations. The quality-
of-service facet is used to refine selection once services are discovered. SeCSE’s
service registries are implemented using eXist, an Open Source native XML database
featuring index-based XQuery processing, automatic indexing.

Name: ViaMichelinFindNearByPOIwebservice
Service goal: ServiceGoal: The FindNearbyPOI Web Service allows you to search a list of
POI matching specified criteria located around a central point

Short service description: The "FindNearbyPOI" Web Service allows searching for a certain
number of ad-dresses or locations closest 'as the crow flies' to a particular address or place of
interest within a user-definable search radius. Then displaying any detailed poi information is

possible. For example, it can look for car dealers closest to a given location or find competitors
that are closest to your sales points and, as a result, analyze catchment areas that are the
least well served

Fig. 1. Example of part of one service with SeCSE’s description facet

3.2 The UCaRE Requirements Module

Analysts express requirements for new applications using UCaRE, a web-based .NET
application. UCaRE supports tight integration of use case and requirements specifica-
tions – a requirement expressed using VOLERE can describe a system-wide require-
ment, a requirement on the behavior specified in one use case, or a requirement on the
behavior expressed in one use case action. UCaRE allows analysts to create service
queries directly from use case and requirements specifications.

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 171

At the start of the requirements process, analysts work with stakeholders to de-
velop simple use case précis that describe the required behaviour of a new system.
Figure 2(a) shows a use case précis expressed in UCaRE, taken from one of the re-
ported evaluations, to specify how a user shall use an on-line ticket searching applica-
tion. A second précis also used in the evaluation is reported in a readable form in
Figure 3. Figure 2(b) shows a requirement, also from these partners, associated with
the précis expressed using the UCaRE VOLERE shell. Larger versions of the screen-
shots in Figure 2 are available at [8]. Requirements also used in the evaluation are
reported in readable form in Figure 3.

The analyst then uses the simple tick-box feature shown in Figure 2(c) to select at-
tributes of use cases and requirements to include in a service query. Each service
query is formed of one or more elements of a pre-defined type such as a requirement
description or rationale, or a use case précis, pre-condition or action. UCaRE maps
these element types to service query elements to deliver the seamless integration of
service querying with requirements specification, as described at length in [3]. The

a

b

c

Fig. 2. Specification of a use case (a) and requirement (b) in UCaRE, and selection of use case
and requirements attributes to generate service queries (c)

Precis: All users can search events and tickets by use of search function. She can search

event and ticket on base of event date or event name or event place or interpreter
(band, sport team, etc.) name. She can specify also type of event. If search result is
more then one, they are displayed like list. Number of list rows on page can be lim-

ited by application variable.
AR: Must be available during local office hours.
FR: For registered and logged user must be possibility to book or purchase tickets di-

rectly from list.

Fig. 3. A simple use case précis and requirements for the ticket searching application used in
one of the industrial evaluations, which are used to formulate queries and discover services

172 K. Zachos, N. Maiden, and R. Howells-Morris

analyst then refines each generated service query using the names and locations of
registries to search, the maximum number of services to retrieve, and the parts of
speech (e.g. noun, verb and adjective) in the service query text to search on.

An analyst using UCaRE can generate one or more service queries from the speci-
fication of a system. Each query is a structured XML file containing structured natural
language statements. Because these statements are derived from requirements and use
cases, each is potentially ambiguous and incomplete. EDDiE, the service discovery
engine, was designed to handle this ambiguity and incompleteness.

3.3 The EDDiE Module

The purpose of EDDiE is to discover descriptions of candidate services using the
service description facet with queries composed of information such as that in Figures
2 & 3. Other requirement types and service facets such as quality-of-service and cost
fulfil important roles during service selection once discovered using the Service
Browser module.

The EDDiE algorithm has the 4 key components. In the first the service query is
divided into sentences, then tokenized and part-of-speech tagged and modified to
include each term’s morphological root (e.g. displayed to display, and tickets to
ticket). Secondly, the algorithm applies procedures to disambiguate each term by
defining its correct sense and tagging it with that sense defined in the WordNet online
lexicon [9] (e.g. defining a ticket to be a a commercial document showing that the
holder is entitled to something (as to ride on public transportation or to enter a public
entertainment rather than a list of candidates nominated by a political party to run for
election to public offices). Thirdly, the algorithm expands each term with other terms
that have similar meaning according to the tagged sense using WordNet, to increase
the likelihood of a match with a service description (e.g. the term ticket is synony-
mous with the term order or voucher which is also included in the query). This query
expansion enables the algorithm to retrieve service specifications for service queries
that share no common terms. In the fourth component the algorithm matches all ex-
panded and sense-tagged query terms to a similar set of terms that describe each can-
didate service, expressed using the service description facet, in the SeCSE service
registry. Query matching is in 2 steps: (i) XQuery text-searching functions to discover
an initial set of services descriptions that satisfy global search constraints; (ii) tradi-
tional vector-space model information retrieval, enhanced with WordNet, to further
refine and assess the quality of the candidate service set. This two-step approach
overcomes XQuery’s limited text-based search capabilities. The algorithm returns a
set of retrieved service specifications and match scores ranked according to the se-
mantic distance to the service query.

The EDDiE algorithm is described at length in [3].

3.4 The Service Browser Module

The Service Browser presents retrieved services to analysts and stakeholders. Services
that attain a minimum threshold of match value are presented in a ranked order. The
analyst can view all properties of the service description facet and corresponding use

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 173

Fig. 4. The Service Browser module, showing retrieved services, their specifications and match
scores

case and requirement properties to enable understanding and selection. The analyst
can also filter the services according to compliance or otherwise with non-functional
requirements included in the service query. A screenshot showing candidate services
retrieved for queries in one evaluation is depicted in Figure 4. A larger version of the
screenshot in Figure 4 is available at [10].

Previously SeCSE’s service discovery environment had been tested with industrial
users for its usability and core functionality [11]. It was also evaluated successfully in
a half-day workshop at FIAT’s research centre to discover requirements for new
automotive applications [4]. However, the FIAT analysts did not use the tool directly.
In the remainder of this paper we report the next phase of evaluation, in which ana-
lysts used the environment on their own to specify requirements and retrieve candi-
date service specifications.

4 The Industrial Users and Evaluation Method

The 2 industrial users – both members of the SeCSE project – were CA and KD
Software. CA is one of the world's largest IT management software providers. It un-
dertakes core systems integration roles for clients seeking secure, service-oriented
architectures. KD Software is an independent software developer in the Czech Repub-
lic that develops business systems using service-centric techniques.

Two experienced analysts – 1 from the UK office of CA and 1 from the Czech of-
fice of KD Software – undertook the evaluations. Both had extensive analytic experi-
ence and were familiar with UML. Both worked remotely at their offices, accessing
SeCSE tools on servers based in London using thin web clients through their

174 K. Zachos, N. Maiden, and R. Howells-Morris

organizations’ firewalls. The CA analyst received initial on-site training with the tools
whereas the KD Software analyst learned to use the tools independently using SeCSE
user guides. The SeCSE tools searched 4 federated service registries located in Italy
and Spain. They contained 154 service specifications for applications including
weather reporting, flight booking and route planning taken from existing public UDDI
registries and generated by service providers in SeCSE. Each service description was
written by the original service provider and not modified prior to use.

The CA analyst specified requirements for a travel cost estimation application for
CA consultants to use. The KD Software specified requirements for an outline ticket
searching application. The analysts worked independently of each other, but under-
took the same 6-step evaluation method. Each step is described in turn:

1. The application was analyzed using UML use case diagrams to generate use
case specifications of the required behaviour of the application;

2. One or more use case specifications for use cases described in the diagrams
were entered directly by each analyst into UCaRE, and requirements were en-
tered using the VOLERE requirements shell;

3. Each analyst used UCaRE functions to generate one or more service queries
per use case specification defined in UCaRE during the second step;

4. Each analyst used EDDiE to retrieve services from SeCSE service registries
using the service queries generated in the previous step. KD Software had
specified and published one web service, called KDTicketDataDelivery2a, in
the service registries which the analyst aimed to discover in the evaluation. CA
had not published any service specifications, hence the evaluation investigated
whether an uncontrolled set of available services could be used to support
CA’s requirements process;

5. Each analyst used the Service Browser to understand the service specifications
retrieved from the registries and select those relevant to the generated queries;

6. Each analyst experimented with changes to use case and requirements specifi-
cations in light of the discovered services, documenting changes in use case
and requirements specified in UCaRE. Each analyst could then repeat steps 3-6
again until the evaluation was complete.

Each analyst undertook all 6 steps. The 6 steps provide reference steps during the
descriptions of the 2 evaluations reported in the next 2 sections.

5 Results from the CA Evaluation

The CA travel cost estimation application was specified to support its consultants who
travel to client sites then bill their time and expenses. The use case diagram for the
application contained 15 use cases and 3 actors. The primary actor in the model was
the consulting manager, who seeks to achieve goals such as create draft description of
work, establish price, agree project terms and conditions, search for consultants, and
review projects.

Several of the use cases in the diagram were expanded into use case specifications
entered into UCaRE. One such use case specification, Estimate expense, is shown in
Figure 5. The problem statement outlined the existing problem. The précis described
the required behaviour using unstructured text. The author also specified 4

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 175

Use Case ID Estimate Expense
Actors Consultant search, Consulting Manager
Problem
statement

As part of the Consultant search function the Consulting manager needs to Estimate
expenses. For this to be as accurate as possible the consulting manager has to get
details of distance, travel mode and accommodation requirements costs. All of these
costs.

Precis When the consulting manager is matching consultant to company he needs to establish
accurate costs to enable him to negotiate and agree a job price with the customer.
Estimate expense works on distance of skilled consultant from the customer, what
mode of travel is being used, what the contract says about travel expenses and what
accommodation on site is required.

Functional
Requirements

Response time should be < 1 minute.

Non-Functional
Requirements

All costs to be calculated in US Dollars but values to be displayed in local currency
based on that days interbank rate.
Must be available during local office hours.
Travel type must be shortest time of travel for consultant unless that gives a dispro-
portionate cost increase.

Added Value Currently done manually with online mapping and some rule of thumb measures.
Justification Accurate estimate generate confidence and correct pricing of jobs
Triggering
event

Sales notification of a contract negotiation that includes consultancy costs.

Preconditions Draft description of work is available. DOW has been reviewed by the customer and
agreed in principle.

Assumptions Consultants are appropriately skilled for the work. Choice of travel mode is at the
consultants discretion, discounted travel is not appropriate for the work.

Normal Course 1. Draft description of work review complete.
2. Distance between consultant and customer is calculated.
3. Cost of daily travel is estimated.
4. Mode of transport is decided.
5. Accommodation is accepted or rejected.
6. Total cost calculated.

Fig. 5. The Estimate expense use case specification from the CA application

requirements – 1 functional and 3 non-functional – on the behaviour specified in the
use case. A post-study review revealed that the specified functional requirement
should be a performance requirement and at least one of the non-functional require-
ments can be interpreted as a functional one, so service discovery took place using
incorrectly typed requirements. The use case normal course was composed of 6 ac-
tions that describe the required behaviour of the new expense estimating application.

During step 2 of the process the CA analyst commented that UCaRE was robust
but necessitated the user guide to specify use cases. He also commented that there was
no discernible difference in tool performance between access from the server site and
remotely at CA offices, but remote access suffered from some Internet lag.

During step 3 the CA analyst successfully generated service requests and queries
from the use case specification. The service query retrieved 14 candidate service
specifications from the registries containing the 154 service specifications. Table 1
lists the names of the retrieved services in match order and the CA analyst’s decisions
to retain or reject each service using the Service Browser module.

During step 5 of the process the CA analyst retained 6 and rejected 7 of the 14 re-
trieved services to invoke in the future travel cost estimation application. An 8th was
also rejected but identified as potentially useful to a related CA application. Over half
of the services retrieved by EDDiE were deemed to be incorrect by the analyst for the
specified service query.

176 K. Zachos, N. Maiden, and R. Howells-Morris

Table 1. Ranked services retrieved by EDDiE fror the CA Estimate expense use case specifica-
tion, and the decision to retain or reject each of the services

Discovered Service Name Decision to retain or reject service
Weblogwebservice - Rejected -
AdressMeister + Retained +
Webservice search - Rejected -
XigniteCurrencies + Retained +
FoldCalc - Rejected -
XgniteEdgar Rejected, but could be

useful in another application
QuoteAndMarketData - Rejected -
ThirdPartyCallTLAB - Rejected -
SendSMSTLAB + Retained +
Mobile7NavigationKit + Retained +
CreditCardVerifyer - Rejected -
XnavigationCEFRIEL + Retained +
TimeServiceCEFRIEL + Retained +
EmailVerifier - Rejected -
XigniteDataSet - Rejected -

There was no relationship between the services retained and the EDDiE ranking of
these services. Short descriptions of the 6 retained services and the reasons for retain-
ing them are reported in Table 2.

Table 2. Retained services and the CA analyst’s rationale for their retention as relevant to the
CA application

Service Name Service Description Rationale for retention
AdressMeister Address Meister is a web-service for postal ad-

dress verification and correction. It provides
current, high-quality address data and verification
logic without the cost and complexity of maintaining
the nation's address database in-house. The service
can be used by e-businesses to verify the ad-
dresses provided to them on their websites.

Verifying if the ad-
dress is correct of
both consultant and
customer.

XigniteCurrencies This web service provides real-time currency data
(foreign exchange rate) for more than 170 curren-
cies. Convert the US dollar amount to other curren-
cies using real-time currency exchange rates re-
turned by this currency web service

All internal currencies
in USD, therefore
currency conversion is
required

SendSMSTLAB This WS allows sending and monitoring SMS with a
very simple interface. The Consumer can ask to
send an SMS text to a list of addresses through
the GSM network. After requiring SMS sending
The Consumer can ask to the Provider to outline the
delivery status of his request.

Communication of
authorisation to con-
sultant

Mobile7NavigationKit ROUTE 66 Mobile 7 determines its position using an
advanced high sensitive wireless GPS receiver,
guiding the user with turn-by-turn voice instruc-
tions and on-screen directions to its destination. A
new navigation display has been developed providing
users with all vital travel information on a single
clear screen of their smartphone including 3D map
display, turn arrows and navigation guidance, as well
as the ability to dial points of interest directly
from the map.

Used to calculate
distance between
consultant and cus-
tomer locations

XnavigationCEFRIEL Especially useful for car drivers. You may want to
know the duration in time of your trip, given the
geographical positions of the departure and arrival
places.

Required for estimating
journey costs/time

TimeServiceCEFRIEL This service computes the difference in time of
two given moments.

Used in many places,
for delivering time
differences, e.g how
long has the negotiation
been progressing

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 177

The reasons given by the CA analyst demonstrate the usefulness of the retrieved
services for estimating expenses. The AdressMeister service could be invoked to
verify client addresses, the XigniteCurrencies service was needed to compute costs in
a single currency, invoking the SendSMSTLAB service would deliver a means of
communicating system outputs to the consultant, the Mobile7NavigationKit service
would calculate distances between locations deemed pivotal to the application, the
XnavigationCEFRIEL service could be invoked to compute the travel time – also
pivotal to the application, and the TimeServiceCEFRIEL service would provide im-
portant timing data to the application.

During step 6 of the process the CA analyst used the specifications of the 6 re-
trieved services to generate 2 new requirements and improve a 3rd one in UCaRE.
Table 3 lists the 2 new requirements and changed third one, along with the rationale
for these requirements provided by the CA analyst.

Table 3. New and changed requirements generated from relevant feedback from the 6 retained
services retained within the Service Browser

Type of Edit Requirement Description Rationale
New requirement Web based access for the remote use by

consulting manager
Consulting manager may have to
authorise travel when travelling
themselves

New requirement The application must present 2 alterna-
tive methods of travel, Lowest cost and
shortest time

Lowest cost requirement is not
the only requirement, see
changed requirement below

Changed require-
ment

Travel type modified so that the travel
is short only if it is cost effective

Removed requirement for lowest
cost travel.

After the evaluation we examined the granularity of the specified requirements and

retrieved web services. Both new and original requirements were coarser grain than
retrieved web services that implemented atomic functions that, if invoked, were insuf-
ficient on their own to satisfy a requirement. Therefore EDDiE was able to retrieve
web services that were finer-grain than the requirements in the service queries, but
this difference in granularity might have impacted on further requirements generation.

Using the revised use case and requirement specifications the CA analyst returned
to step 3 of the process and generated a new service query. EDDiE returned the same
14 service specifications in the same order, although some of the MatchValues were
slightly different to the MatchValues returned for the original service query. Because
of this second result, the CA analyst concluded the evaluation. After the evaluation he
reported that he was unable to use the Service Browser to review the service specifi-
cations and their similarities with requirement and use case attributes in the service
query effectively, and this made service selection activities difficult.

6 Results from the KD Software Evaluation

During steps 1 and 2 the KD analyst used the SeCSE tools to specify 10 use cases and
the associated requirements on the ticketing selection application, then discover services
from registries (steps 3 & 4) that were then browsed, selected (step 5) and used to revise
the use cases and requirements (step 6). One of these use case specifications is reported
in Figure 6. The specification reveals evidence that the KD analyst had also attributed
the wrong type to some of the requirements used to generate service queries.

178 K. Zachos, N. Maiden, and R. Howells-Morris

Use Case ID KD UC Ticket Searching
Actors User (Unregistered User, Registered User, Administrator)
Problem
statement

Providing events and ticket information search

Precis All users can search events and tickets by use of search function. She can search
event and ticket on base of event date or event name or event place or interpreter
(band, sport team, etc.) name. She can specify also type of event. If search result is
more then one, they are displayed like list. Number of list rows on page can be limited
by application variable.

Functional
Requirements

FR: Application UI must be standard internet browser.
FR: Ticket data are provided by any Ticket data delivery service.
FR: Ticket data can be searched in own or third party database.
FR: Tickets or events can be searched according to several criteria (ticket database
connection, event name, date, place, event type, etc.).
FR: The search results must be in list form with possibility to limit size (rows number).

Non-Functional
Requirements

NFR: Availability 99,9%
NFR: Delay max.30 second

Added Value Searching functionality is open, it can works with several ticket databases.
Justification User needs information for ticket purchase.
Triggering
event

User needs information for ticket purchase or for event attending planning.

Preconditions Internet access, standard browser, ticket booking application started on web server,
ticket database is accessible.

Assumptions Internet browser software, internet access
Successful end
states

List of events, tickets.
Message “No suitable event or ticket found”.

Unsuccessful
end states

No internet access.
Ticket database is not available.
Too many users work with database (database is busy).

Normal Course User chooses Ticket Search option
FR1: Application must have this option (button or link).

 User chooses Ticket Searching criteria (ticket database connection (it should be in
parameters data), date, event name, maximal ticket price, event place, event type,
max.returned results number, etc.)
FR2: Application must have possibility to fill search criteria.

 System returns list of events or list of tickets for events.
FR3: Application must represent returned data in list or grid format. When user click
on rows in list, details are displayed.
FR4: For registered and logged user must be possibility to book or purchase tickets
directly from list.

Variations If [no connection to internet] then [application cannot run (browser accessibility
message)] (related to Action 1).
If [Registered and Logged User] then [User can continue to book or purchase tickets
(those options are visible)] (related to Action 3).

Alternatives If [no ticket database is available] then [application returns message about data
availability]
If [exotic browser] then [application returns standard info message window and
recommends to change browser]
If [no internet access] then [application returns standard info message window]
If [no ticket data fits to criteria] then [application returns message about and rec-
ommends to change search criteria]

Fig. 6. One example KD Software use case specification – specifying the use case Ticket
searching

The main difference between the KD and CA evaluations was that KD Software
had earlier published one service specification in the registries, called KDTicket-
DataDelivery2a, which could be invoked in the ticketing application. The short de-
scription of the service was:

Service provides ticket data delivery in several formats (list, one con-
crete item, etc.). Service also has operation for data searching.

The KD analyst generated 2 service queries from 2 of the 10 use case specifications
entered into UCaRE. Both were composed of text extracted from the use case name,

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 179

Table 4. Top 10 service specifications retrieved for service queries generated from 2 KD Soft-
ware application use case specifications

Rank Ticket Browsing Use Case Ticket Searching Use Case
1 KDTicketDataDelivery2a ViaMichelinFindNearByPOIwebservice
2 AGENDAMSD KDTicketDataDelivery2a
3 ViaMichelinFindNearByPOIwebservice Weblogwebservice
4 ImageCutOut WebServiceSearch
5 Weblogwebservice XgniteEdgar
6 XgniteEdgar Mobile7NavigationKit
7 EmailVerifier FoldCalc
8 AmazonHistoricalPricingService ImageCutOut
9 Anagram KDfindCarService1
10 CalendarServiceEMIC ABAExpress

actors, précis, problem statement, assumptions, preconditions and triggering event, and
5 or 6 requirements of different types. Both were specified to search using the noun,
verb, adverb and adjective parts-of-speech, but no query expansion was requested be-
cause the KD analyst explained in debriefing sessions that he did not understand the
meanings of the terms synonyms, hyponyms and glosses in the service query.

The top 10 service specifications retrieved for the 2 service queries are reported in
Table 4, ranked by MatchValues computed by EDDiE.

The target service specification - KDTicketDataDelivery2a - was ranked in the top
two by EDDiE for both service queries. In the first query EDDiE retrieved it with full
MatchValue (100). For the second use case that specified ticket searching, EDDiE
also retrieved the ViaMichelinFindNearByPOIwebservice service with full match
value that, according to the KD analyst, had no relation with the generated query. The
description of this service, also taken from the SeCSE service registries, was:

the "FindNearbyPOI" Web Service allows searching for a certain number of
addresses or locations closest 'as the crow flies' to a particular address or
place of interest within a user-definable search radius. Then displaying any
detailed poi information is possible. For example, it can look for car dealers
closest to a given location or find competitors that are closest to your sales
points and, as a result, analyze catchment areas that are the least well served.

The analyst’s decision not to select query expansion types in the service query
prevented EDDiE from generating additional query terms with the same or similar
meaning to original query terms. Therefore EDDiE matched only identical or very
similar terms such as search and display. We conjecture that the match values of the
retrieved services including ViaMichelinFindNearByPOIwebservice would have been
different if query expansion was enabled. This result demonstrated that, for ambigu-
ous and incomplete queries, EDDIE generated false positives during service discovery
alongside true positive discovered services.

During step 6 the KD analyst attempted to edit the use case and requirements
specifications using information in retrieved services. However the changes made by
the KD analyst were simple and did not lead to significant changes to new service
queries or retrieved services. At this point the KD analyst ended the evaluation.

180 K. Zachos, N. Maiden, and R. Howells-Morris

7 Research Questions Revisited

We used data from the 2 evaluations to answer the 2 research questions. The answer to
Q1 – can SeCSE tools retrieve specifications of services that can implement require-
ments specified by analysts in service queries – was yes. In the KD Software evaluation
EDDiE retrieved the target service specification with rank 1 and 2 of 154 with 2 service
queries. This suggests high precision of the EDDiE algorithm in the presence of am-
biguous and incomplete requirements in a real-world project. Failure to use query
expansion increased the relative weighting of syntactic similarities during service dis-
covery and, in the second query, returned one high-ranked but irrelevant service specifi-
cations. In the CA evaluation, for which there were no target service specifications, the
analyst retained 6 of the 14 retrieved services to invoke in the application. This suggests
that the process and environment has the potential to support applications when suffi-
cient numbers of application-independent services are published. That said, our decision
to evaluate the utility of the tools, rather than determine their precision and recall, means
that we do not know whether the algorithm failed to retrieve other service specifications
that might also have been retained by the analyst.

We investigated post-retrieval changes to the use case and requirement specifica-
tions to answer Q2 – can analysts using the SeCSE tools make requirement specifica-
tions more complete. There was little evidence to answer yes. The CA evaluation
added 2 requirements to and changed 1 of the original 6 requirements, and there were
no changes in the KD evaluation. Post-evaluation questions revealed that both ana-
lysts encountered difficulties browsing retrieved services due to complexities in the
service descriptions and similarities with the requirements in the service queries. Poor
expression of non-functional requirements meant that filtering services on quality-of-
service compliance could not be used, and the Service Browser provided little support
to each analyst to understand services. Furthermore UCaRE did not provide support
for service querying that was sensitive to the recent changes to requirement and use
case specifications. Because service-based changes were small in the context of the
use cases specifications, the revised queries did not retrieve new services.

Of course there are numerous threats to the validity of the reported results, and im-
portant ones are reported here. The obvious threat to the validity of conclusions drawn
was the small number of studies and both were participants in the SeCSE project. To
minimize this threat, follow-on studies with more analysts from organizations external
to the project are now taking place, and we will interpret results reported in this paper
in light of the results from these future evaluations. One threat to the internal validity
of the evaluations was that the application requirements and registry services were
(unintentionally) aligned too well – we might not expect such alignment in public,
market-oriented registries. However, results from the CA evaluation do not support
this threat. The domain-independent nature of the services – for verifying addresses,
calculating journey times and computing currency exchanges – made them candidates
for invocation, and the SeCSE software tools retrieved and presented these services
effectively enough to enable the analyst to retain them. A threat to the evaluation’s
construct validity also merits a mention here. Because the analysts were SeCSE part-
ners with a vested interest in the outcome we cannot discount that they were biased to
generate positive results. And one threat to the external validity of the results was our
decision to align SeCSE’s requirements process and service discovery tools with

 Discovering Web Services to Improve Requirements Specifications: Does It Help? 181

UML. Whilst we chose UML for its ubiquity in software development, it does mean
that the evaluation results might be less applicable to projects that adopt workflow
and business process approaches to requirements analysis.

8 Discussion and Future Work

Answers to the 2 research questions investigated in this paper indicate future directions
of research and evaluation in SeCSE. One is the need for precision-and-recall experi-
ments of the EDDiE algorithm and FrEDDiE, a new software module in the environ-
ment that decomposes service queries to increase the likelihood of successful retrieval
with coarse-grain use cases and requirements. Controlled variables in these experi-
ments will be predefined service query attributes such as use case précis and require-
ment descriptions and expansion types such as synonyms and glosses. Application
experts will review retrieved services for their relevance to each query to generate
precision and recall measures for different query attributes and expansion strategies.
We are also extending EDDiE to retrieve other types of services, such as peer-to-peer
(P2P) and grid services, thus leveraging new repositories of software services of differ-
ent types on the Internet. In this extension EDDiE service queries are translated into
the Universal Service Query Language [12] then fired at federations of P2P and grid
service registries compliant with different standards applicable to these service types.
Of course, retrieval of more candidate services from more sources amplifies 2 prob-
lems reported in the evaluations, which was how to understand and select between
retrieved services, then revise requirements and service queries using relevance feed-
back from retained services.

The answers to the 2 research questions also provide empirical foundations for
further development of the SeCSE service discovery environment, particularly in light
of our answer to research question Q2. One priority is to improve the usability of the
Service Browser module. To make it more usable we responded to post-review com-
ments from the 2 analysts and developed an off-line version of the module in Micro-
soft Excel. Analysts can now download all data about service queries, specifications
of retrieved services, match values and mappings between terms to interactive spread-
sheets, to review the data off-line and manipulate it in other forms more supportive of
comprehension and selection tasks.

The low number of requirements generated by both analysts when reviewing the
retrieved web services contrasts with the higher number of requirements generated
from services during facilitated workshops [4]. This difference indicates the need to
improve tool support for analysts during this step. To this end we are developing one
new software module and adding new features to a second to support service under-
standing and selection. The Service Browser module does not provide analysts with
explicit support for generating or editing requirements in the UCaRE module. Instead
the analyst is expected to flip between the 2 modules in a single web browser win-
dow, using problem analysis and requirements writing skills to document new or
changed requirements in UCaRE. Therefore we designed a new software module to
generate candidate new requirements descriptions from service specification text
highlighted as relevant by the analyst. This new module will use mappings between
terms computed by EDDiE in use case and requirement specification and retrieved
service specifications to generate candidate descriptions of new requirements struc-
tured using requirements writing guidelines [13]. The analyst then selects between

182 K. Zachos, N. Maiden, and R. Howells-Morris

and edits the candidate requirements in UCaRE and links it to the service specifica-
tion for traceability purposes. Of course, if successful, this requirements auto-
generation module could be applied to other sources of requirement-related data such
as software product descriptions.

Finally we are also adding a new feature to UcaRE to support the iterative and in-
cremental SeCSE requirements process. In both evaluations the 2 analysts were un-
able to retrieve further service specifications because requirements changes from
relevance feedback were small in the context of the original requirement specifica-
tion. The new feature will allow an analyst to generate service queries that only in-
clude requirement and use case information that is new since the last service
query(ies) were fired. We predict that the feature will enable focused searching and
service retrieval, a prediction that we will investigate empirically in future user stud-
ies with the SeCSE service discovery environment.

Acknowledgements

SeCSE is funded by the EU 511680 Integrated Project.

References

1. Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology Driven Archi-
tectures and Potential Uses of the Semantic Web in Software Engineering. W3C (2005)

2. Margaria, T.: Service in the Eye of the Beholder. IEEE Computer 40(11), 33–37 (2007)
3. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.: Discovering Web Services To Specify

More Complete System Requirements. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg (2007)

4. Zachos, K., Maiden, N.A.M.: Discovering Services to Support Creative Thinking during
Early Requirements Processes. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749. Springer, Heidelberg (2007)

5. Jones, S.V., Maiden, N.A.M., Zachos, K., Zhu, X.: How Service-Centric Systems Change
the Requirements Process. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 13–14. Springer, Heidelberg (2005)

6. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley-
Longman (1999)

7. Sawyer, P., Hutchinson, J., Walkerdine, J., Sommerville, I.: Faceted Service Specification.
In: Proceedings SOCCER (Service-Oriented Computing: Consequences for Engineering
Requirements) Workshop, at RE 2005 Conference, Paris (2005)

8. http://vega.soi.city.ac.uk/~cc559/REFSQ2008Figure2.jpg
9. Miller, K.: Introduction to WordNet: an On-line Lexical Database Distributed with Word-

Net software (1993)
10. http://vega.soi.city.ac.uk/~cc559/REFSQ2008Figure4.tiff
11. Deliverable A2.D10 - Evaluation of service discovery environments, v2.0, SeCSE Techni-

cal Report, available at secse.eng.it (2007)
12. SODIUM, Service-Oriented Development In a Unified fraMework, IST-FP6-004559

(2007), http://www.atc.gr/sodium
13. Alexander, I.F., Stevens, R.: Writing Better Requirements. Addison-Wesley, Reading

(2002)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 183–197, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Mobile Discovery of Requirements
for Context-Aware Systems

Norbert Seyff1, Florian Graf1, Paul Grünbacher1, and Neil Maiden2

1 Johannes Kepler University, Systems Engineering and Automation, 4040 Linz, Austria
{ns,fg,pg}@sea.uni-linz.ac.at

2 City University London, Centre for HCI Design, London EC1V 0HB, UK
n.a.m.maiden@city.ac.uk

Abstract. Understanding the work context of future system users is essential in
requirements engineering. It is particularly crucial when developing ubiquitous
systems that react on context changes. This paper discusses the need for in-situ
requirements elicitation approaches to build mobile and context-aware systems.
We identify three different levels of support: The first level covers contextual
techniques without tool support. Second level support is based on existing RE
approaches and mobile tools. Third level support utilizes context-aware tools
receiving context-specific information to guide analysts in the field. These tools
enhance requirements gathering for ubiquitous systems. We present a context-
aware tool prototype for on-site scenario walkthroughs and discuss how the un-
derlying scenario-based approach needs to be adapted. Our tool-based approach
was tested in an initial evaluation study. Finally, the paper presents require-
ments for RE approaches supporting ubiquitous system development based on
lessons learned from using level II and III tools.

Keywords: Requirements elicitation, scenarios, contextual inquiry, mobile and
context-aware systems.

1 Introduction

Technology trends such as ubiquitous computing mean new challenges for software
engineering and requirements engineering [8]. Ubiquitous systems provide support
for everyday activities and their mobile and context-aware nature is a main challenge
that needs to be addressed [23]. In particular, understanding the context of such
systems is essential for specifying its requirements. Analysts must consider that end
user requirements vary according to context changes and that the future system must
adapt accordingly. Fahrmeier et al. [6] report that many ubiquitous systems pass labo-
ratory tests, but fail to meet real world user expectations when released into the wild.
One main reason is the difficulty for future system end users to describe their specific
needs in a certain situation or context. Blomberg et al. [3] have pointed out
that “…people have only limited ability to describe what they do and how they do it
without immediate access to the social and material aspects of their lives.”

We use a fictitious museum guide of the future as the example throughout this pa-
per to illustrate the unique characteristics of mobile and context-aware systems. In

184 N. Seyff et al.

this example, the museum visitors’ aim is still the exploration of exhibitions and arte-
facts. However, ubiquitous computing technologies in the museum significantly
change this everyday activity and allow visitors to retrieve context-specific informa-
tion via mobile devices and panels on the wall. Museum visitors receive information
about ongoing exhibitions, events, and detailed floor plans based on their context,
such as their position in the museum. For example, a visitor entering a certain exhibi-
tion expects the museum guide to display detailed information on the exhibition’s
theme. In contrast, visitors entering the museum’s cafeteria might want to take a look
at the menu. The context-aware museum guide supports the activities of visitors by
providing just the right information at the right time and location. The example shows
that the needs of visitors vary depending on their current context which changes con-
tinuously due to visitors’ mobility.

The elicitation and specification of requirements for such systems differs consid-
erably from conventional systems. Neglecting ubiquitous systems’ technologies in
requirements engineering (RE) is risky as the key characteristics of the future system
can easily be overlooked. We propose that RE methods and tools should benefit from
the manifold and omnipresent mobile and context-aware technologies. As a result
(i) context-aware RE approaches will provide better support for developing ubiqui-
tous systems; and (ii) existing RE approaches will benefit from ubiquitous technolo-
gies. For example, context-aware RE tools will significantly enhance the range of
possibilities for requirements engineers. Such tools can guide and support them by
providing essential information just at the right time in a context-aware manner.

In our research we want to address the problems and challenges of requirements
elicitation for ubiquitous systems. In particular, we focus on requirements gathering
for mobile and context-aware systems. This work is based on scenarios, a widely and
successfully used technique to discover requirements for software systems [12]. In
previous studies [13, 15, 16] we used scenario-based techniques for gathering re-
quirements in the work-context of future system users. Based on this work we de-
signed an approach, which uses ubiquitous technologies to support requirements dis-
covery for mobile and context-aware systems. In particular, we developed a scenario
walkthrough tool prototype that automatically activates scenario events like “The
visitor enters the museum” or “The visitor stands in front of an artefact” based on
position signals or tags installed in the museum’s environment. We expect that the
automatic highlighting of scenario events will increase guidance and thereby lower
the hurdles for using such tools.

The work presented in this paper is based on our research on mobile tools for sce-
nario-based RE [13, 14, 15, 16, 20]. We propose a framework that covers three different
levels of support for contextual requirements elicitation. According to the framework
we present a prototype of a context-aware tool which improves guidance for on-site
analysts. We explain how a scenario-based approach can be tailored to support contex-
tual requirements elicitation. Based on a literature review and lessons learned from
using our tools we identify requirements for elicitation approaches aiming to support
mobile and context-aware system development.

The paper is structured as follows: Section 2 presents a 3-level framework of sup-
port for contextual requirements elicitation, introduces basic notions of context and
context-awareness, and discusses related work. Section 3 discusses the ART-SCENE
method and shows how it can be applied to support contextual requirements elicitation.

 Mobile Discovery of Requirements for Context-Aware Systems 185

Section 4 describes a mobile user-driven requirements elicitation tool based on
ART-SCENE. Section 5 describes our context-aware tool prototype. Section 6 dis-
cusses requirements for elicitation approaches and tools supporting mobile and con-
text-aware system development. We end the paper with conclusions and future work.

2 Levels of Support for Contextual Requirements Elicitation

The terms context and context-awareness are often used intuitively. However, finding
useful definitions is not easy and has led to many debates in the research community
[5, 18, 19]. We adopt the definition of Dey et al. [5] who define context as “… infor-
mation that can be used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.” These entities are highly
relevant in requirements discovery for ubiquitous and interactive systems that rely
heavily on such context information. The term context-awareness is used to describe
software systems, which are able to adapt themselves to their context. Dey et al. [5]
call a system context-aware if “… it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.”

Reasoning about context in RE and system design is not new. For example, Potts
et al. [17] highlight the influence of location on requirements and on the acceptance
of a system in their work on the Inquiry Cycle. Sutcliffe et al. [22] describe a frame-
work for contextual requirements engineering, which highlights the dependency be-
tween requirements, location, time, and the mutability of requirements by different
users. Related research also covers requirements monitoring where changing runtime
behaviour triggers system adaptation and reconfiguration [7].

The research presented in this paper is strongly influenced by the ideas and
concepts of contextual inquiry (CI) [2]. CI is the first part of contextual design – a
customer-centred process that supports understanding users in their workplace and
examining how people work to meet real world requirements. CI supports analysts in
observing peoples’ work and asking questions feeding the design process.

When using CI to elicit requirements for the context-aware museum guide an ana-
lyst directly observes visitors in the museum and asks questions about their typical
behaviour to better understand their needs as a result of being in the context. CI is
based on the four principles context, partnership, focus, and interpretation. Under-
standing the context of future system users is considered as essential for optimal re-
design of work. Partnership means that future system users should be treated as real
partners in designing the new system by helping them to articulate their work experi-
ence. Focus defines the analyst’s point of view, which should steer conversations to
reveal details of work. Finally, the right interpretation of gathered data and informa-
tion is essential for designing a new system satisfying future system user require-
ments. Although CI and similar approaches provide a good start they generally lack
tool support and are not well integrated with existing RE approaches. Researchers
highlight this lack of tool support as a major issue in mobile and context-aware sys-
tem development [8].

Our research on contextual requirements elicitation is based on understanding the
context and interacting with the context using appropriate tools in the field. Going

186 N. Seyff et al.

beyond CI our aim is to bring mature and established RE approaches into the work-
place of future system end users and to provide tool support for analysts applying
them. On-site analysts can understand stakeholder needs more easily by having im-
mediate access to their work environment, including the social and material aspects of
their lives. Gathering implicit and tacit knowledge by observing stakeholders and
asking questions enables analysts to discover requirements that reflect stakeholders’
needs. This includes in particular the discovery of requirements that vary on context
changes. Therefore analysts need to be equipped with mobile RE tools that unobtru-
sively support their on-site analysis. This includes tools that interpret context informa-
tion and provide intuitive guidance and support for the analysts.

Fig. 1. Levels of support for and elements of contextual requirements elicitation

We identified three key elements of contextual requirements elicitation and de-
pendencies among them (see Figure 1): the work context, the analyst, and the RE tool.
The dependencies between these elements highlight the interaction and information
flow. In the left part of the figure the analyst observes and interacts with the work
context in the domain under analysis. The middle area of the figure visualizes the
analyst additionally equipped with a mobile RE tool to support his activities on-site.
In the right part of the figure the mobile RE tool uses context-aware technologies to
interact with and reveal further information about the work context. We identified
three different levels of support for contextual requirements elicitation based on these
three key elements and their dependencies (discussed in more detail in Table 1):

Level I represents conventional approaches for understanding context, such as CI.
Analysts using these approaches typically move around freely in the work context of
future system users. No software tool support is required.

Level II represents user-driven RE tools enabling the requirements engineers to
elicit requirements in the work context when moving around freely. Such tools are
based on mature and proven RE approaches to support the work of engineers in situ.
The tool user is in charge of identifying the current work context. Examples are the
Mobile Scenario Presenter (MSP) [16] or ARENA-M [20]. These tools are available
on mobile devices, such as Personal Digital Assistants (PDAs) or Smartphones.

Level III context-aware RE tools are capable of identifying the current work con-
text. Based on information received from the context they improve guidance and
support for requirements engineers. For example, these tools offer features to inform
its users about context changes. An example is the context-aware MSP prototype,
which we will present in Section 5.

 Mobile Discovery of Requirements for Context-Aware Systems 187

Table 1. Levels of support for contextual requirements elicitation

 Level I:
No tool support

Level II:
User-driven tools

Level III:
Context-aware tools

Characteristics

Structured dia-
logue in situ /

Guidance based on
principles and

checklists

Usage of RE ap-
proaches in situ /

Guidance provided by
tool

Usage of RE ap-
proaches in situ /

Advanced guidance
and contextual infor-
mation provided by

tool

Prerequisites

Knowledge of and
experience with

the method /
No technology
requirements

Knowledge of and
experience with the

RE approach and tool /
Tool specific technol-

ogy requirements

Knowledge of and
experience with the RE

approach and tool /
Tool and work context

specific technology
requirements

Examples Contextual inquiry
Mobile Scenario

Presenter and
ARENA-M

Context-aware MSP

Table 1 also shows prerequisites for the different levels of tool support. All three

levels rely on knowledge of and experience with the underlying approach. Level II
and III further have technology-dependent requirements. User-driven RE tools avail-
able on PDAs or similar mobile devices may require wireless connectivity. Context-
aware RE tools further depend on technologies enabling them to acquire context
information. This includes ubiquitous technologies (e.g., RFID) and context frame-
works and middleware [11].

The three levels of tool support for contextual requirements elicitation build on
each other. Following the principles of CI user-driven and context-aware tools enable
analysts to use mature RE approaches in the work context [16]. The presented levels
of tool support are not limited to particular RE methods such as scenario-based ap-
proaches. Many existing RE approaches can be complemented with contextual as-
pects to guide RE work. In the following we show how user-driven and context-aware
tools can bring a scenario-based approach in the work context of future system users
and discuss challenges of adapting the approach.

3 Tailoring ART-SCENE to Contextual Requirements Elicitation

We developed and evaluated level II and level III tool support for ART-SCENE1, a sce-
nario-driven approach to discover and analyze requirements [12]. ART-SCENE supports
analysts and stakeholders to walk through scenarios in workshops. Scenarios are auto-
matically generated from use case specifications and offer recognition cues by providing
alternative courses for each normal course event. These so called what-if questions origi-
nate from a model of abnormal behaviour, which covers different types of failures. The
idea underpinning these walkthroughs is simple: people are better at identifying errors
of commission rather than omission [12]. For example, if an alternative course what-if

1 Analysing Requirements Trade-offs: SCENario Evaluations.

188 N. Seyff et al.

question is relevant to the system under development stakeholders try to find new
requirements addressing the issue behind the alternative course.

The ART-SCENE environment includes several tools. The web-based Scenario
Presenter supports a team of analysts and stakeholders to walk through the generated
scenarios collaboratively in a face-to-face meeting. In our museum guide example
several potential museum visitors are invited to an ART-SCENE workshop. Guided
by an analyst they use scenario events, such as “The visitor enters the museum” to
discover new requirements for the system. The alternative course what-if questions
(e.g., “What-if the mobile device is not working properly in this situation?”) trigger
stakeholders to explore abnormal and unusual system behaviour to identify require-
ments not yet handled in the specification. A scribe using the Scenario Presenter
documents the discovered requirements. To attend these workshops stakeholders must
leave their work environment. The missing contextual information might limit the
their ability to report hidden and tacit knowledge, which potentially reduces the effec-
tiveness of the elicitation technique [13].

To overcome existing limitations we developed contextual tool support for ART-
SCENE. Our aim is not to replace existing workshops but to complement them with
on-site scenario walkthroughs. Before presenting level II and III tool support for
ART-SCENE we discuss how the approach needs to be changed to support on-site
walkthroughs. Our initial experiences with contextual requirements elicitation tools
suggest several changes to ART-SCENE. In particular, we identified four new on-site
activities that extend the existing approach (see Figure 2). In situ scenario validation
and walkthrough are the two key activities, which are relevant for all three levels of
support and can even be done using paper-based scenarios. We do however not favour
this approach for usability reasons. Prepare environment and link context information
to scenario elements are activities needed for level III.

We recommend proceeding as follows:

Generate scenario. The first activity of the analyst is using ART-SCENE to auto-
matically generate scenarios based on use case models. These generated scenarios
include normal course events and alternative course what-if questions. This first step
is also part of other ART-SCENE projects not considering contextual activities. The
generated scenarios are highly relevant for contextual requirements elicitation as they
provide a model of the context usable to relate scenario events to the real-world con-
text events.

Fig. 2. ART-SCENE and contextual activities

 Mobile Discovery of Requirements for Context-Aware Systems 189

Validate scenarios in context. The ART-SCENE approach supports developing use
case models and scenarios [12]. We recommend that the on-site analyst validates the
scenarios in the work context to check whether the defined normal course events
reflect the observed activities. For example, a generated normal course event se-
quence for the museum example may contain an event for buying a ticket. If the ana-
lyst observes, however, that the museum offers free entrance he may decide to drop
the generated event to streamline the subsequent walkthrough. The analyst can also
validate alternative course what-ifs to prune irrelevant questions or to add new ques-
tions. Level II and III ART-SCENE tools can support the on-site scenario validation.

Prepare environment. Context-aware elicitation tools rely on external information to
determine the context of the tool user. However, in many cases the existing environ-
ment does not provide sufficient context triggers and it is necessary to prepare it by
installing tags or sensors. In our museum example the analyst might decide to install
tags in selected areas of the museum, which later allow determining the user’s con-
text, i.e., his position in the museum. Depending on the actual situation in the work
environment and the problem at hand the analyst carefully chooses the appropriate
ubiquitous technology (this step is only necessary when using a level III RE tool).

Link context information to scenario elements. After preparing the environment the
external triggers need to be linked to scenario elements. This enables a context-aware
level III tool to highlight relevant scenario events automatically. A trained analyst
with sufficient domain knowledge and tool experience links domain and scenario
events and thereby shares his domain knowledge with other analysts or even future
system end users. In our museum example a senior analyst identifies and analyses
possible external triggers for the scenario event “The visitor enters the museum”
when stepping inside the museum. He then links the external triggers to the scenario
event. Another analyst benefits from this information as the context-aware tool can
guide him by highlighting the event automatically as soon as he enters the museum. In
many cases there will be multiple external triggers for one event. This is especially
relevant for alternative course what-if questions. For example, the alternative course
event “What if the museum is closed?” could be triggered initially by the same signal
provided for the normal course event “The visitor enters the museum” but would also
need a second trigger based on time constraints, such as the museum’s opening hours.
It is however important to note that not all normal course and alternative events need
to be covered by level III support. As the three levels of contextual requirements elici-
tation build on each other some events can also be addressed by level I and level II
support.

Perform scenario walkthrough. The analyst performs a contextual scenario walkthrough
in situ following the principles of contextual inquiry. He observes current system behav-
iour and asks questions to future system users to discover requirements. The analyst is
supported by a user-driven level II or context-aware level III tool. A level III tool pro-
vides additional guidance and information and automatically recommends actions to the
analyst as soon as the context changes. This feature allows the analyst to unobtrusively
interact with stakeholders as the tool determines the current context.

New requirements for the context-aware museum guide will be discovered and
captured by analysts observing context changes when walking around in a museum.
For example, the requirement “The museum guide shall provide information about

190 N. Seyff et al.

exhibitions” is gathered for the normal course event “The visitor enters the museum”.
Another requirement “Inform visitors about the estimated waiting time” is identified
when the on-site analyst waits in line to enter the museum. Depending on the level of
support the analyst either selects the appropriate events himself (level II) or the tool
will support this task (level III).

Analysis and Follow Up. The main aim of the on-site analyst is to interact with future
system users in an unobtrusive and uninterrupted way. High mobility and frequent
context changes in the field limit the time for documenting requirements. This
strengthens the need for level III tool support and requires easier ways to document
requirements. Instead of full requirements analysts are advised to record information
cues instead [13]. To support this way of requirements documentation level II and
level III need to provide features for the fast recording of recognition cues, such as
audio. After the walkthrough the analyst can use ART-SCENE’s desktop tools to
analyze the gathered information and to specify detailed requirements.

Earlier experiences show that by following this tailored ART-SCENE approach
analysts are able to gather requirements in the field with potential benefits for re-
quirements correctness and completeness [13, 15]. We assume that several analysts
and stakeholders will be involved in on-site requirements discovery. This means that
on-site scenario walkthroughs will be repeated several times. This assumption is es-
pecially relevant for level III elicitations, as the preparation steps, such as setting up
the environment and linking external triggers to scenario events are time consuming
and challenging. The presented activities extend the existing ART-SCENE approach
to support on-site contextual requirements elicitations. In the next sections we intro-
duce tools using this approach to support on-site analysts.

4 The Mobile Scenario Presenter: A Level II Tool

The Mobile Scenario Presenter (MSP) is a PDA-based mobile scenario walkthrough
tool providing level II support for ART-SCENE [15, 16, 20] by making selected ca-
pabilities of ART-SCENE available to mobile analysts discovering requirements in
the workplace of future system users. The MSP is based on contextual inquiry and
supports its key principles [14]. The on-site analyst uses the MSP when observing
current work context and interacting with future system users. Working in the field
the analyst is able to gather context specific requirements. The MSP is a user-driven
level II tool and does not interact with the context. The generated alternative course
what-if questions guide the analyst when asking questions about abnormal system
behaviour in different contextual situations. The discovered requirements can be
documented using PDA specific multimedia capabilities. In our museum example an
analyst equipped with the MSP discovers and captures requirements while walking
around in the museum. The analyst observes people’s behaviour and asks questions
according to the scenarios what-ifs. Further the MSP’s audio recoding feature is used
to document requirements.

We performed several case studies to empirically test the usefulness and usability
of the tool [15]. At Belfast City Airport the MSP was used to gather requirements for
the air traffic management system VANTAGE. A detailed discussion of this evalua-
tion can be found in [13]. This evaluation revealed that analysts using the MSP

 Mobile Discovery of Requirements for Context-Aware Systems 191

discovered different requirements than compared to workshop scenario walkthroughs.
In particular, the analysts documented numerous location-specific requirements re-
garding departure gates, air bridges, and dispatch offices showing the importance of
context for requirements discovery. For instance, although detailed domain modelling
had been done prior to the mobile walkthrough the analysts using the MSP discovered
two new actors. Another interesting outcome was that the on-site analysts were able
to document significantly more requirements per hour of stakeholder involvement as
compared to workshop scenario walkthroughs.

Previous evolutions discovered that it is difficult for a single analyst to work with
the tool and interact with stakeholders simultaneously in highly dynamic environ-
ments [15]. Therefore in VANTAGE the more experienced analyst took the role of
the facilitator and the other analyst operated the MSP as a scribe. The idea was that
facilitator and scribe observe on-site activities. The facilitator’s task was to ask ques-
tions to airport and airplane staff. The scribe documented requirements and communi-
cated the information provided by the MSP to the facilitator. However, the majority of
the gathered requirements were triggered by the work context and not by scenario
events provided by the MSP. Possible reasons are the richness of work context trig-
gers, the experience of the facilitator, the fact that the facilitator could hardly see the
provided what-if questions, as well as the limited communication between the facilita-
tor and the scribe during ongoing interviews.

In a second project the MSP was used to gather requirements for the APOSDLE
system [9]. The APOSDLE system provides individual learning support for informa-
tion workers and features to contribute new content to an organisation’s knowledge
pool. Two analysts visited stakeholders in offices in Graz and Dortmund to gather
requirements for this system. This time both analysts were equipped with a PDA
running the MSP based on the VANTAGE lessons. This enabled the analysts to fol-
low the scenarios provided by the MSP and to switch the role of facilitator and scribe.
Both analysts accessed the same database to synchronize their activities. As in the
VANTAGE project the analysts intensively used the audio recording feature of the
MSP. One interesting observation during this project was that the two analysts some-
times interpreted the real world context differently. For example, both analysts gath-
ered the same requirement but added it to a different scenario event. Another outcome
was that the start and end events provided by the MSP (see Figure 3) helped the ana-
lysts to handle context changes. Rotating the role of facilitator and scribe made both
analysts aware of the what-if questions. Although the time for handling the tool was
short it still affected the analysts’ ability to interact with stakeholders. Using the MSP
the analysts had to be familiar with the tool, the domain, and the scenario events to
work effectively. To provide additional guidance for analysts we started to evolve the
MSP into a context-aware application.

5 The Context-Aware MSP: A Level III Tool

Based on the MSP we developed a context-aware level III tool prototype by enhanc-
ing the level II MSP with a capability for receiving infrared signals from other de-
vices to detect context changes. By interpreting the received contextual information
the prototype improves guidance of analysts by automatically highlighting the actual
scenario event.

192 N. Seyff et al.

Fig. 3. Level III tool normal course (left) and event highlighting (right)

The level III MSP prototype has been used in an initial evaluation study to explore
the impacts of context-awareness on scenario-based RE. We positioned several laptop
computers with activated infrared in our laboratory together with artefacts and pictures
to simulate relevant parts of a museum (see Figure 4). The unique identifiers transmit-
ted via infrared referred to normal and alternative course events of the scenario. Link-
ing the external triggers to scenario elements was done manually in the underlying
ART-SCENE database. This enabled the MSP to determine the users’ position in the
fictitious museum. As soon as the tool received a new infrared signal it informed the
user that his context had changed and highlighted the related normal or alternative
course event (see Figure 3). For example, if a user approached the entrance, the sce-
nario event “The visitor enters the museum” was automatically highlighted. The user
then captured requirements for this particular context using the audio recording feature.

Fig. 4. Using the context-aware scenario tool in the museum

 Mobile Discovery of Requirements for Context-Aware Systems 193

We performed several scenario walkthroughs in the laboratory museum to gain
first experiences with the level III tool. Some of the participants already had used the
level II tool in real word settings and had experienced the need of continuously inter-
acting with stakeholders. A second group of analysts had limited experience in using
the MSP. Despite the restrictions of infrared (e.g., the PDA must be in line of sight to
the laptop to trigger context changes) the level III tool was able to provide relevant
context-information. All analysts were successfully guided through the scenario and
none had to use event selection and scrolling functions, a feature that had led to some
problems in earlier evaluation studies with the MSP [15]. The analysts documented
requirements to the automatically highlighted events using the audio recording fea-
ture. Some analysts with limited MSP experience reported that handling the audio
recording feature reduced their ability to focus on the work context. The more experi-
enced analysts did not report this issue. One reason could be that they were already
used to the MSP’s user interface. Another analyst requested an audio alarm feature to
inform him about context changes.

6 Requirements for RE Approaches

We present initial requirements for RE approaches and tools addressing the character-
istics of mobile and context-aware systems based on lessons learned from the in-situ
use of the level II MSP, the initial feasibility study of the context-aware MSP, and a
literature review. As mobility and context-awareness are essential for ubiquitous sys-
tems [1, 10, 23] the identified requirements are also relevant for ubiquitous system
development. In the following paragraph we discuss the identified requirements by
highlighting their rationale:

Usable on-site. To discover requirements for a mobile and context-aware system it is
essential to understand the existing work environment. Working on-site enables ana-
lysts to observe and interact with the current work context with potential benefits for
requirements completeness and correctness [2, 3, 15].

Support mobility. This requirement covers two aspects of working on-site: First, if
mobility is an essential part of the system under development [1] it must be addressed
during requirements discovery [4]. The second aspect covers the mobility of the ana-
lyst in the work context. In many cases the analyst needs to move around freely with-
out any restrictions to observe stakeholder activities on-site. For example, when
discovering requirements for VANTAGE the analyst had to enter the cockpit of an
airplane to interview the pilot [13].

Usable unobtrusively. The analyst in the context might influence the work of stake-
holders to be observed. To avoid this influence the analyst needs to use approaches
and tools supporting him without distracting future system users. While PDA-based
tools supported these requirements in most cases we experienced that elderly people
at London bus stops were distracted by this kind of device [15].

Provide a model of the work context. Researchers highlight that any context-aware
system relies on a well-defined context model [21]. Such a model is also needed when

194 N. Seyff et al.

eliciting requirements for such systems as it increases focus and enables analysts to
link discovered requirements to modelled contextual situations.

Consider unusual or unexpected system behaviour. Approaches such as ART-SCENE
provide recognition cues in the form of what-if questions to discover requirements for
unusual or unexpected system behaviour [12]. Working in the context might trigger
even more requirements than the what-if questions [13]. Nevertheless, as the name
suggests, unusual contextual situations are rarely experienced by the on-site analyst.
The what-if questions are thus highly relevant for on-site analysts.

Detect context changes automatically. During interviews the analyst’s attention is on
interacting with stakeholders [2]. This limits his ability to determine the actual context
in dynamic environments. Detecting context change automatically improves guidance
and lowers the hurdles for analysts to work on-site.

Usable by end users. Support for end users requires tools that provide guidance when
walking through scenarios. This requirement also stresses the need to minimize user
interaction.

Using these requirements Table 2 summarizes the difference between CI, the
level II MSP, and the level III context-aware tool with respect to the specific way of
support. Being in the work context is a prerequisite for CI and the MSP tools. The
approaches and tools support mobility and can be used unobtrusively. Based on ART-
SCENE the MSP tools provide a context model in the form of scenarios and recogni-
tion cues. The context-aware MSP prototype provides more guidance for on-site
analysts. It detects context changes and refers this information to the underlying
model using ubiquitous technologies. The currently available tools are still inadequate
to be used by end users as the degree of guidance is still insufficient.

Table 2. Characteristics of contextual requirements elicitation approaches

Level I:

Contextual
Inquiry

Level II:
Mobile Scenario
Presenter (MSP)

Level III:
Context-aware

MSP
Can be used on-site?
Supports mobility?

Unobtrusive?
Provides model of context? -

Considers unexpected behaviour? -
Context change detected? - -

Usable by end users? - - -

7 Conclusions and Future Work

The increasing use of mobile and context-aware systems will require novel ap-
proaches in requirements engineering. In this paper we discuss a framework that iden-
tifies three layers of support for contextual requirements engineering. The MSP is
an example of a level II user-driven approach. We presented a novel prototype of a

 Mobile Discovery of Requirements for Context-Aware Systems 195

context-aware tool offering level III support by interpreting and reacting to contextual
information provided via infrared signals. The impact of these tools on the underlying
ART-SCENE approach is discussed as an example how established approaches can be
tailored to the needs of on-site work. We summarize our lessons learned by identify-
ing requirements for approaches supporting the discovery of requirements for mobile
and context-aware systems.

Our tool prototype shows the feasibility of developing requirements elicitation ap-
proaches, which use ubiquitous technologies to identify the current work context.

Further research challenges include, but are not limited to the following:

Extending the notion of context is highly relevant for further evaluation studies. In
our study the notion of context was limited to a single contextual aspect (physical
location). We plan to extend this notion to explore the effects of receiving several
contextual triggers (e.g., time, weather, and social context).

The process of setting up the environment needs to be explored to optimize the
benefits and reduce the costs of the approach. As discussed in section 3 it is necessary
to link these triggers to scenario elements before working with the context-aware tool.
We need to experiment with technologies that can easily be installed in environments
to start the elicitation process. In certain cases this step might be obsolete if ubiqui-
tous technologies are already present.

The process of linking scenario events and real world scenes needs more research.
In particular, finding appropriate external trigger for all alternative course what-if
questions can be challenging. We assume that in many cases it will not be possible to
identify an external trigger for each what-if question. Grouping of alternative course
events might be a solution.

Exploring the possibility of adaptive scenarios that change their appearance de-
pending on the context is another research issue. We are envisioning scenarios that
adapt according to the context, e.g., by changing the ordering of events. These normal
course variations would better support on-site analysts. We experienced that in many
cases the work processes of future system end users vary slightly depending on sev-
eral criteria, e.g., the weather. For example, when discovering requirements for the
VANTAGE systems [13] the analysts observed that bad weather conditions affected
the work of the airport staff. Evolved level III context-aware tools providing adaptive
scenarios could be helpful for on-site analysts in such situations.

Supporting future system end users in documenting their needs is another impor-
tant part of further research. We believe that evolved level III tools will not only sup-
port analysts but will also enable future system end users to document their needs
themselves. For instance, end users could document their requirements using the au-
dio recording feature automatically guided through scenarios by the MSP. Later these
recognition cues could be transcribed into requirements by an analyst.

References

1. Abowd, G.D.: Software engineering issues for ubiquitous computing. In: Proc. 21st IEEE
Intl. Conference on Software Engineering. IEEE CS, Los Angeles (1999)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Consumer-Centered Systems. Mor-
gan-Kauffman, San Francisco (1998)

196 N. Seyff et al.

3. Blomberg, J., Burrell, M., Guest, G.: An ethnographic approach to design. In: Jacko, J.A.,
Sears, A. (eds.) The human-computer interaction handbook: fundamentals, evolving tech-
nologies and emerging applications. Lawrence Erlbaum Associates, Mahwah (2002)

4. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-
aware electronic tourist guide: some issues and experiences. In: Proc SIGCHI Conference
on Human factors in computing system. ACM, The Hague (2000)

5. Dey, A.K., Abowd, G.D., Brown, P.J., Davis, N., Smith, M., Steggles, P.: Towards a Bet-
ter Understanding of Context and Context-Awareness. In: Proc 1st Intl. Symposium on
Handheld and Ubiquitous Computing. Springer, Karlsruhe (1999)

6. Fahrmair, M., Sitou, W.: Unwanted Behavior and its Impact on Adaptive Systems in Ubiq-
uitous Computing. In: 14th Workshop on Adaptivity and User Modeling in Interactive
Systems, Hildesheim (2006)

7. Fickas, F., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proc 2nd
IEEE Intl Symposium on Requirements Engineering. IEEE CS, New York (1995)

8. Fouskas, K., Pateli, A., Spinellis, D., Virola, H.: Applying contextual inquiry for capturing
end-users behaviour requirements for mobile exhibition services. In: 1st Intl. Conference
on Mobile Business, Kopenhagen (2002)

9. Ghidini, C., Pammer, V., Scheir, P., Serafini, L., Lindstaedt, S.: APOSDLE: learn@work
with semantic web technology. In: I-Know 2007, Graz (2007)

10. Kindberg, T., Fox, A.: System software for ubiquitous computing. IEEE Pervasive Com-
puting 1(1), 70–81. IEEE EAD, Piscataway (2002)

11. Leaver, S.C., Mendelsohn, T., Overby, C.S., Yuen, E.H.: Evaluating RFID Middleware.
RFID Journal (September 2004)

12. Maiden, N.: Systematic Scenario Walkthroughs with ART-SCENE. In: Alexander, I.,
Maiden, N. (eds.) Scenarios, Stories, Use Cases: Through the Systems Development Life-
Cycle. John Wiley, Chichester (2004)

13. Maiden, N., Ncube, C., Kamali, S., Seyff, N., Grünbacher, P.: Exploring Scenario Forms
and Ways of Use to Discover Requirements on Airports that Minimize Environmental Im-
pact. In: Proc 15th IEEE Intl. Requirements Engineering Conference. IEEE CS, New Delhi
(2007)

14. Maiden, N., Seyff, N., Grünbacher, P.: The Mobile Scenario Presenter: Integrating Contex-
tual Inquiry and Structured Walkthroughs. In: Proc 13th IEEE Intl. Workshops on Ena-
bling Technologies: Infrastructure for Collaborative Enterprises. IEEE CS, Modena (2004)

15. Maiden, N., Seyff, N., Grünbacher, P., Otojare, O., Mitteregger, K.: Making Mobile Re-
quirements Engineering Tools Usable and Useful. In: Proc 14th IEEE Intl. Requirements
Engineering Conference. IEEE CS, Minneapolis (2006)

16. Maiden, N., Seyff, N., Grünbacher, P., Otojare, O., Mitteregger, K.: Determining Stake-
holder Needs in the Workplace: How Mobile Technologies Can Help. IEEE Soft-
ware 24(2), 46–52. IEEE CS, Los Alamitos (2007)

17. Potts, C., Takahashi, K., Anton, A.I.: Inquiry-based requirements analysis. IEEE Soft-
ware 11(2), 21–32 (1994)

18. Schilit, B.N., Adams, N., Want, R.: Context-Aware Computing Applications. In: Proc
Workshop on Mobile Computing Systems and Applications. IEEE CS, Santa Cruz (1994)

19. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K.V., Velde, W.V.d.:
Advanced Interactions in Context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707,
pp. 10–89. Springer, Heidelberg (1999)

20. Seyff, N., Grünbacher, P., Maiden, N., Tosar, A.: RE Tools Go Mobile. In: Proc 26th IEEE
Intl. Conference on Software Engineering. IEEE CS, Edinburgh (2004)

 Mobile Discovery of Requirements for Context-Aware Systems 197

21. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management, Nottingham (2004)

22. Sutcliffe, A.G., Fickas, S., Sohlberg, M.M.: PC-RE: a method for personal and contextual
requirements engineering with some experience. Requirements Engineering 11(3), 157–
173 (2006)

23. Weiser, M.: The Computer for the 21st Century. In: Baecker, R.M., Grudin, J., Buxton,
W.A.S., Greenberg, S. (eds.) Human-computer interaction: toward the year 2000. Morgan
Kaufmann, San Francisco (1995)

B. Paech et al. (Eds.): REFSQ 2008, LNCS 5025, pp. 198–203, 2008.
© Springer-Verlag Berlin Heidelberg 2008

When to Adapt? Identification of Problem Domains for
Adaptive Systems

Kristopher Welsh and Pete Sawyer

Lancaster University, Computing Dept., Infolab21 LA1 4WA Lancaster, UK
{k.welsh,p.sawyer}@lancs.ac.uk

Abstract. Dynamically adaptive systems (DASs) change behaviour at run-time
to operate in volatile environments. As we learn how best to design and build
systems with greater autonomy, we must also consider when to do so. Thus far,
DASs have tended to showcase the benefits of adaptation infrastructures with
little understanding of what characterizes the problem domains that require run-
time adaptation. This position paper posits that context-dependent variation in
the acceptable trade-offs between non-functional requirements is a key indicator
of problems that require dynamically adaptive solutions.

Keywords: Adaptive systems, non-functional requirements.

1 Introduction

Kephart and Chess [1] identified the move to autonomic computing as a grand
challenge to the software engineering community. They argue that systems able to
monitor, (re)configure, (re)construct, heal and tune themselves at run-time, are needed
to mitigate the ever increasing size and complexity of computing systems; which are
expected to operate in ever less predictable and stable environments. Although such
systems remain out of reach today, important steps toward them are being taken by
the research community with self-managed, or dynamically adaptive systems (DASs).
A DAS alters its behaviour or composition in response to changes in its environment.

All software systems have to cope with changes in their environment, but usually
the environment changes slowly enough for adaptation to be performed off-line. Web
browsers, for example, need to adapt to cope with new content types and protocols
with the development of new versions that can be installed as updates on users’
computers. Increasingly, however, systems are being conceived that need to adapt at
run-time. For example, applications at the “wireless edge” of the Internet, must adapt
to the fluctuating availability of services as users move between areas covered by
different networks. Other examples include systems adapting to cope with different
user needs [2], new network topologies [3][4], and radical change in physical
environments [5].

There are two common types of adaptation: parametric and architectural [6].
Parametric adaptation involves building adaptive capabilities into code on a per-
application basis, radically increasing complexity and making DASs costly to build
and maintain. Architectural adaptation, by contrast, uses an adaptive infrastructure

 When to Adapt? Identification of Problem Domains for Adaptive Systems 199

which typically effects adaptation by component substitution without suspending
execution [7][8]. Adaptive complexity is partitioned to a reusable and configurable
adaptive infrastructure, easing the maintenance of applications that use it. Dynamic
adaptation is a technology that is still maturing and many of the DASs reported in the
literature have been developed to showcase the capabilities of particular adaptation
infrastructures.

Although adaptive infrastructures provide a mechanism for easing implementation
complexity at the implementation level, the complexity inherent in the problems for
which DASs provide a solution remains a challenge. As the enabling technology
continues to mature, we will need to improve our understanding of how to analyse,
specify and design DASs, so that we can cope with the conceptual complexity posed
by volatile environments. At the requirements level, Berry et. al. [9] have identified
four levels of RE needed for DASs, which has been used as the basis for subsequent
work on goal-driven analysis of DASs [10][11], along with other approaches
investigating their requirements: e.g. [12]. In most cases, the RE for DASs start with
an assumption that the problem under analysis requires a DAS as the solution, and
that therefore the need for dynamic adaptation is somehow obvious from the outset.
There may well be families of problems where this will be true, but it may not always
be clear. Such ambiguity risks over-engineering systems for which dynamic
adaptation is not, in fact, a requirement. Similarly, failure to recognize the presence of
such a requirement early in a project may result in cost underestimation or worse.

In this position paper, we posit that a problem that requires a DAS will exhibit
identifiable characteristics that if not present, strongly indicate that a conventional,
static system will provide an adequate solution. If our hypothesis holds true, it should
act as a litmus test usable for analysts during the early-phases of RE.

2 Volatile Problem Domains, Adaptive Requirements

For our purposes here, we consider the requirement to adapt dynamically to be
imposed by the environment in which the system must operate. In general, we exclude
systems that use adaptation as a defensive strategy to cope with design or
implementation failures, perhaps by adopting a ‘limp-home’ mode on detection of a
failed component. An exception to this rule is where the system is designed to cope
with failure conditions that have their root in a ‘failure’ of the analysis process to
anticipate possible states of the environment. In our terms, dynamic adaptation is a
legitimate mitigating strategy when the analyst recognizes that their model of the
environment is incomplete. For example, there may unknowable properties of the
atmosphere of Mars that the designers of a probe nevertheless need to try to cope
with.

Systems that must cope with unknowable environments are at the extreme end of a
spectrum of DASs. More common is the situation where the environment is volatile
but understood sufficiently well to allow the analyst to anticipate how it will change.
Here, the approach advocated by Berry et al [9] is to characterize the environment as
a set of discrete stable domains that it can transition between. A DAS can then be
conceptualized to comprise a set of target systems, each designed to operate within a
domain. The analyst’s job is then to specify each target system and the adaptation

200 K. Welsh and P. Sawyer

scenarios [10][11][13] that specify when the system adapts from one target system to
another.

The question we seek to answer is how can a requirement for dynamic adaptation
be identified early in the development process? This can be re-phrased as what
features of the problem domain indicate that a DAS will provide an appropriate
solution? There are two non-exclusive classes of environment which imply a need for
dynamic adaptability. The first class is where the requirements that are consequent on
the environment change on a time-scale likely to be experienced by the running
system. For example, a mobile device may need the ability to adapt in order to take
advantage of new services as they come in range and become available. The second
class is where the trade-offs between non-functional requirements (NFRs) varies with
context. Here, the set of requirements may be constant, but what constitutes their
satisfaction is not. We hypothesize that the second class is the more common but also
more subtle and harder to recognise. For example, in the case of the mobile device
above, the choice of service to use may be constrained by a preference for certain
service providers that may not always be available.

In the next section we examine two examples of DASs to illustrate that NFR trade-
offs are a common feature of each. By so doing they provide evidence in support of
our hypothesis.

3 DAS Exemplars

Our first example DAS is an image viewer that adapts to usage patterns and available
resources. The system, presented in [4] loads images either from the local file system
or a remote URL, and caches images to reduce latency when there is sufficient
memory available. Although no requirements process is reported for the system, it is
trivial to elicit the two primary non-functional requirements that the adaptation
addresses: minimise latency when switching between images and minimise memory
usage to avoid swapping. The time taken to load images from local and remote file
systems is variable, as is the amount of memory available.

During normal operation, the “minimise memory usage” NFR is given priority,
with the system performing no caching. However, when image loading and decoding
time exceeds a given threshold, the system adds a caching component, satisficing the
“minimise latency” NFR. The viewer also monitors free memory, disabling the cache
when scarce and using parametric adaptation to adjust cache size during operation.

Parametric adaptation is also used to switch cache replacement policy: selecting a
Most Recently Used policy if images are accessed sequentially, and a Least Recently
Used policy otherwise. This essentially tunes the system to best satisfy the “minimise
latency” NFR according to usage. They key point is that what constitutes satisfaction of
the NFRs varies with the operating environment, thus making adaptation advantageous.

Our second example is an adaptive flood prediction and monitoring system
deployed on the banks of the river Ribble in North West England [5]. GridStix is an
intelligent wireless sensor network that monitors the river and analyses data gathered
by multiple sensor nodes. The sensor nodes have enough processing power to process
the data co-operatively by acting as a lightweight computational grid, obviating the
need to transmit raw water depth and flow rate data off-site for processing. This is
significant because GridStix’s remote location means that only low-bandwidth

 When to Adapt? Identification of Problem Domains for Adaptive Systems 201

cellular radio networks are available for long-range data transmission. The remote
location also means that GridStix is dependent on batteries and solar panels for its
power supply. Another feature mandated for GridStix is the use of digital camera
images for flow sensing. Digital cameras are inexpensive and robust but produce large
volumes of data. The ability to process this data locally is a precondition for the use of
digicams.

GridStix’s environment has been characterized by domain experts according to
three distinct domains. In the first the river is quiescent. In the second domain, high
flow, the river flows rapidly but still without significant depth increase. A high flow
rate can presage the arrival of a pulse of water that would result in the third domain,
flood, where both the flow rate and the depth are high. GridStix's key NFRs are
"energy efficiency" to maximise battery life, "accuracy" to provide timely and
accurate flood warnings, and "fault tolerance" to aid survivability. Crucially, the
relative importance of the NFRs varies with the domain. In the quiescent domain,
energy efficiency has the priority. With no flood event imminent, the key requirement
is to keep the system in readiness, sampling data relatively infrequently. In the high
flow domain, the possibility of the onset of a flood event means that accuracy of
prediction is relatively more important than it is in the quiescent domain. This means
that sampling needs to happen more frequently and the data needs to be processed
more quickly. In the flood domain, GridStix still needs to provide accurate predictions
but the ability to survive node loss due to submersion or water-borne debris promotes
the relative importance of fault-tolerance.

GridStix needs to adapt to the three domains to ensure the appropriate trade-offs
between the three NFRs. A reflective middleware platform supports this by, for
example, substituting components for different spanning tree algorithms that enable
the sensor nodes to communicate. A relatively energy-efficient shortest-path
algorithm is used for the quiescent and high flow domains. A more power-hungry but
resilient fewest-hop algorithm is used for the flood domain.

Many flood warning systems use sensor networks. Most of these are ‘dumb’, with
no grid-like computational capability. This precludes, for example the use of
inexpensive digital camera imaging for flow sensing since the volumes of data are too
high to transmit off-site for processing over low-bandwidth communication networks.
Nevertheless, such systems are subject to many of the same NFRs as GridStix.
Satisfaction of both the fault-tolerance and energy-efficiency requirements is
significantly inhibited, however, if the systems are unable to adapt as their river
environments change. Hence, although flood warning systems need not necessarily be
DASs, the peculiar combination of NFRs to which they are subject make a strong case
for them being implemented as DASs. The same argument can be made in many other
domains where dynamic adaptability offers better solutions than have hitherto been
available.

Both our exemplars exhibit environment volatility. The image processing system
has to cope with network latency, while the flood warning system has to cope with a
river subject to frequent heavy rainfall. In both cases, the key goals of the system
remain the same irrespective of the environment; to render images and to predict
flooding, respectively. In both cases, however, the acceptable trade off between their
NFRs varies. We hypothesise that this NFR trade-off characteristic is a key signifier
that dynamic adaptation is needed.

202 K. Welsh and P. Sawyer

Fig. 1. Models of GridStix configured for High Flow (S2) and Flood (S3) domains

In [10] we have proposed the use of i* [14] for making the trade-offs between
NFRs explicit. Figure 1 illustrates this by showing developments of two models of
how GridStix is configured for the High Flow and Flood domains. The key features
are the three softgoals representing the NFRs on the right of each part of the figure.
Notice how Fault tolerance and Energy efficiency are either helped or hurt by
substituting the task Provide FH (fewest hop) Topology for the Provide SP (shortest
path) Topology as the system adapts from High Flow to Flood. In our approach,
which follows closely the three levels of RE for DASs proposed by Berry et al. [9],
the models in Figure 1 are developed following development of a strategic depen-
dency graph that models in which the overall goals and softgoals are identified.
Subsequent models are developed to specify the adaptation scenarios and to inform
the selection of the adaptive infrastructure.

4 Conclusion

Dynamic adaptation allows us to create systems able to operate in environments that
have hitherto posed daunting problems for system developers. As ubiquitous
computing begins to demand greater context-awareness and flexibility we will
encounter problem domains requiring dynamic adaptation increasingly often. Since
adaptive systems are fundamentally more complex than static systems, however,
being able to identify such problems early on in the RE process is important.

There currently exists no systematic means to recognize the characteristics of a
problem that requires a dynamically adaptive solution. Great advances have been
made in the development of adaptive infrastructures but the RE community has been
slow to respond to the challenges posed by the kinds of problem that adaptive
infrastructures are designed to support. The RE community is now beginning to show
some awareness, as evidenced by, for example [2] [9] [11].

Our aim in writing this paper has been to argue that a key capability of RE is early
recognition of whether a problem demands a dynamically adaptive solution. We have
not shown that this can be done in all cases. Rather, we have posited the idea that
where analysis of a problem identifies a set of NFRs whose relative priorities change
according to the state of the environment, a capability for dynamic adaptability may

 When to Adapt? Identification of Problem Domains for Adaptive Systems 203

be a key requirement of the solution. Two exemplars have illustrated our ideas. We
now need to test our hypothesis in a wider range of applications to see whether our
hypothesis holds. If it does hold, then we will have a useful litmus test of one aspect
of complexity that impacts significantly on system development.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1)
(2003)

2. Fickas, S.: Clinical requirements engineering. In: Proceedings of the 27th International
Conference on Software engineering (2005)

3. Cerpa, A., Estrin, D.: ASCENT: adaptive self-configuring sensor networks topologies.
Transactions on Mobile Computing 3(3) (2004)

4. David, P.C., Ledoux, T.: Towards a Framework for Self-Adaptive Component-Based
Applications. In: Stefani, J.-B., Demeure, I., Hagimont, D. (eds.) DAIS 2003. LNCS,
vol. 2893, pp. 1–14. Springer, Heidelberg (2003)

5. Hughes, D., Greenwood, P., Coulson, G., Blair, G.: GridStix: supporting flood prediction
using embedded hardware and next generation grid middleware. World of Wireless,
Mobile and Multimedia Networks (2006)

6. Mckinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. IEEE Computer 37(7) (2004)

7. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. Future of
Software Engineering (2007)

8. Karsai, G., Ledeczi, A., Sztipanovits, J., Peceli, G., Simon, G.,, Kovacshazy, T.: An
Approach to Self-adaptive Software Based on Supervisory Control. In: Laddaga, R.,
Shrobe, H.E., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 24–38. Springer,
Heidelberg (2003)

9. Berry, D.M., Cheng, B.H., Zhang, J.: The four levels of requirements engineering for and
in dynamic adaptive systems. In: Proc. 11th International Workshop on Requirements
Engineering: Foundation for Software Quality, Porto, Portugal (2005)

10. Sawyer, P., Bencomo, N., Hughes, D., Grace, P., Goldsby, H., Cheng, B.: Visualizing the
Analysis of Dynamically Adaptive Systems Using i* and DSLs. In: Proc. 2nd Intl.
Workshop on Requirements Engineering Visualization, Delhi, India (2007)

11. Goldsby, H., Cheng, B.H.C.: Goal-Oriented Modeling of Requirements Engineering for
Dynamically Adaptive System. In: Proc. 14th IEEE International Requirements
Engineering Conference, Minneapolis, USA (2006)

12. Sora, I., Cretu, V., Verbaeten, P., Berbers, Y.: Managing Variability of Self-customizable
Systems through Composable Components. Software Process: Improvement and
Practice 10(1) (2005)

13. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An Architecture for the Effective
Support of Adaptive Context-Aware Applications. In: Proc. Second International
Conference on Mobile Data Management, Hong Kong (2001)

14. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: 3rd IEEE Int. Symp. on Requirements Engineering (RE 1997),
Washington D.C., USA (1997)

Author Index

Alenljung, Beatrice 52
Aranda, Jorge 153

Ballejos, Luciana C. 73
Bendjenna, Hakim 23
Brinkkemper, Sjaak 6

Charrel, Pierre-Jean 23

Daneva, Maya 147

Easterbrook, Steve 153

Finkelstein, Anthony 88
Fricker, Samuel 37

Gonnet, Silvio M. 73
Gotel, Orlena C.Z. 129
Grünbacher, Paul 37, 183
Graf, Florian 183

Harman, Mark 88
Horkoff, Jennifer 153
Howells-Morris, Rhydian 168

Jones, Sara 109

Kaschek, Roland 135
Kop, Christian 135

Lockerbie, James 58

Mader, Angelika 141
Maiden, Neil 58, 109, 168, 183
Marinčić, Jelena 141
Mayr, Heinrich C. 135

Montagna, Jorge M. 73
Morris, Stephen J. 129

Ncube, Cornelius 58

Paech, Barbara 1
Persson, Anne 52

Regnell, Björn 123
Rolland, Colette 1

Saeki, Motoshi 6
Sandkuhl, Kurt 95
Sawyer, Pete 198
Schlosser, Claudia 109
Seyff, Norbert 183
Shekhovtsov, Vladimir A. 135
Strohmaier, Markus 153
Svensson, Richard Berntsson 123

Thörn, Christer 95

van de Weerd, Inge 6
Versendaal, Johan 6

Webers, Wolfram 95
Welsh, Kristopher 198
Wieringa, Roel 141
Wnuk, Krzysztof 123

Yu, Eric 153

Zachos, Konstantinos 168
Zarour, Nacereddine 23
Zhang, Yuanyuan 88

	Title Page
	Preface
	Organization
	Table of Contents
	REFSQ’08 International Working Conference on Requirements Engineering: Foundation for Software Quality
	Introduction
	The Program
	Fitness
	Requirements Elicitation
	Industrial Experience of RE
	Innovative Systems
	Maturing Research
	Empirical Studies

	Concluding Remarks

	Process Improvement in Requirements Management: A Method Engineering Approach
	Method Engineering and Requirements Engineering
	Methods for Product Software Development
	Research Approach

	Realization of the Product Software Knowledge Infrastructure
	A Combined Process Improvement Approach
	Functional Architecture
	Illustrative Example: ERPComp
	A Typical Scenario in the PSKI

	Method Improvement Based on Situational Capability Matching
	Method Fragment Structure
	Maturity Matrix for Software Product Management

	Method Increment Example
	Related Literature
	Conclusions and Further Research
	References

	Enhancing Elicitation Technique Selection Process in a Cooperative Distributed Environment
	Introduction
	Elicitation Technique Selection
	A Process Model for Elicitation Technique Selection in a Cooperative Distributed Environment
	Motivations to Improve the Selection Process
	The Proposed Process Model

	Two Motivating Examples
	Example 1
	Example 2

	Related Works
	Concluding Remarks and Further Work
	References

	Negotiation Constellations – Method Selection Framework for Requirements Negotiation
	Introduction
	Background and Related Work
	Negotiation Constellations
	Common Negotiation Characteristics in Software Organizations
	Characterization of the Negotiating Parties
	Micro-level: Negotiation Tactics
	Macro Level: Negotiation Methods

	Framework Use for Tactical and Methodological Advice
	Discussion
	Practical Considerations
	Implications on Research and Education
	Limitations

	Summary and Conclusions
	References

	DESCRY: A Method for Evaluating Decision-Supporting Capabilities of Requirements Engineering Tools
	Introduction
	Research Process
	DESCRY – Evaluation Method of Decision-Supporting Capabilities of RE Tools
	Concluding Remarks
	References

	Inventing Requirements: Experiences with an Airport Operations System
	Introduction
	RESCUE and Its Creativity Workshops
	Previous Creativity Work
	Creativity Workshops in RESCUE

	The VANTAGE Creativity Workshop
	Exploratory Creativity
	Transformational Creativity
	Combinatorial Creativity
	So How Useful Were the Creativity Workshop Ideas?

	Results
	Exploring System Boundaries
	Constraint Generation Works
	Storyboarding Use Cases

	Rating Idea Usefulness
	The Research Questions Revisited
	Discussion
	References

	A Stakeholder Model for Interorganizational Information Systems
	Introduction
	Stakeholders and Interorganizational Information Systems
	Stakeholders, Actors, and Roles
	Stakeholder Model
	Example
	Conclusions and Future Works
	References

	Search Based Requirements Optimisation:Existing Work and Challenges
	Introduction
	Background: Requirements Optimisation
	Advantages of the Search Based Approach
	Challenges
	References

	Connecting Feature Models and AUTOSAR: An Approach Supporting Requirements Engineering in Automotive Industries
	Introduction
	Background
	AUTOSAR
	General Overview.
	AUTOSAR Software Components.

	Feature Modeling
	Definitions of Features.
	Family Models.

	Industrial Case

	AUTOSAR Software-Components as Family Models
	Mapping between Family and Feature Model Concepts
	Example of the Quality Driven Feature Resolution

	Discussion and Future Work
	Related Work
	Future Work

	References

	Using a Creativity Workshop to GenerateRequirements for an Event Database Application
	Introduction
	Requirements Engineering at ComNetMedia
	The Event Database Application (EDA) Project
	The EDA Project Creativity Workshop
	Pros and Cons of the Current Situation
	Definition of System Boundaries
	Using Creativity Triggers to Generate New Requirements

	Results and Discussion
	What Triggers Did Groups Choose to Work with?
	How Productive Were the Different Techniques Used during the Workshop?
	Does the Use of Creativity Techniques Lead to Good Quality Requirements?
	Is There Any Association between the Creativity Technique or Trigger Used and the Part of the System for Which Requirements Are Derived?

	Lessons Learnt
	References

	Can We Beat the Complexity of Very Large-Scale Requirements Engineering?
	Introduction
	Orders of Magnitude in Requirements Engineering
	A Case of VLSRE
	Three Key Research Opportunities in VLSRE
	Conclusion
	References

	Macro-level Traceability Via Media Transformations
	Introduction
	Media Use in Requirements Engineering
	Media Transformations
	Media-Based Traceability
	Towards a Framework for Macro-level Traceability
	References

	Towards Simulation-Based Quality Requirements Elicitation: A Position Paper
	Introduction
	Related Work and Research Issues
	Traditional Quality Requirements Elicitation Techniques
	Using Simulations to Elicit Requirements
	Our Propositions

	The Quality-Aware Predesign Model QAPM
	The Parameterized Online Simulation Environment POSE
	Work to Do
	References

	Classifying Assumptions Made during Requirements Verification of Embedded Systems
	Introduction
	Classification of Assumptions
	Example - The Lego Sorter
	Related Work
	Discussion and Conclusion

	Integrating Portfolio Management and Simulation Concepts in the ERP Project Estimation Practice
	Introduction
	Background
	The Case Study Plan
	Case Study Execution
	Conclusions
	References

	Can Patterns Improve i* Modeling? Two Exploratory Studies
	Introduction
	Patterns in the i* Framework
	Research Questions and Research Design
	Case Study: Kids Help Phone
	Case Study Context and Preparation
	Methodology and Case Study Execution

	Exploratory Experiment: Classroom Setting
	Exploratory Experiment Context and Preparation
	Qualitative Analysis of Experimental Results

	Interpretation and Discussion of Results
	Threats to Validity
	Related Work
	Conclusions
	References

	Discovering Web Services to Improve Requirements Specifications: Does It Help?
	Developing with Web Services
	Discovering Services in SeCSE
	SeCSE’s Service Discovery Environment
	SeCSE’s Service Registries
	The UCaRE Requirements Module
	The EDDiE Module
	The Service Browser Module

	The Industrial Users and Evaluation Method
	Results from the CA Evaluation
	Results from the KD Software Evaluation
	Research Questions Revisited
	Discussion and Future Work
	References

	Mobile Discovery of Requirements for Context-Aware Systems
	Introduction
	Levels of Support for Contextual Requirements Elicitation
	Tailoring ART-SCENE to Contextual Requirements Elicitation
	The Mobile Scenario Presenter: A Level II Tool
	The Context-Aware MSP: A Level III Tool
	Requirements for RE Approaches
	Conclusions and Future Work
	References

	When to Adapt? Identification of Problem Domains for Adaptive Systems
	Introduction
	Volatile Problem Domains, Adaptive Requirements
	DAS Exemplars
	Conclusion
	References

	Author Index

