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Books must follow sciences, and not sciences books
— Francis Bacon, Proposition touching Amendment of Laws



Foreword

Long gone are the days when program verification was a task carried out
merely by hand with paper and pen. For one, we are increasingly interested
in proving actual program artifacts, not just abstractions thereof or core
algorithms. The programs we want to verify today are thus longer, including
whole classes and modules. As we consider larger programs, the number of
cases to be considered in a proof increases. The creative and insightful parts
of a proof can easily be lost in scores of mundane cases.

Another problem with paper-and-pen proofs is that the features of the
programming languages we employ in these programs are plentiful, including
object-oriented organizations of data, facilities for specifying different con-
trol flow for rare situations, constructs for iterating over the elements of a
collection, and the grouping together of operations into atomic transactions.
These language features were designed to facilitate simpler and more natural
encodings of programs, and ideally they are accompanied by simpler proof
rules. But the variety and increased number of these features make it harder
to remember all that needs to be proved about their uses.

As a third problem, we have come to expect a higher degree of rigor from
our proofs. A proof carried out or replayed by a machine somehow gets more
credibility than one that requires human intellect to understand.

What it then comes down to is mechanical tools: tools that manage the
details for us, tools that support the kinds of specifications we want to write,
tools that understand the semantics of the programming language, tools that
only allow logically valid proof steps, tools that automate as many of the
proof steps as possible, tools that fit into the development environments that
programmers use.

The KeY tool addresses all of these demanding desiderata. It targets the
modern programming language JAVA, supports multiple common specifica-
tion notations, and integrates into two popular programmers’ development
environments. It offers rules for reasoning about common programming id-
ioms, like the use of frame conditions. And its proof engine empowers users
with the mathematical ingredients we most commonly need when establish-
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ing the correctness of programs, like induction. The advent of the KeY tool
constitutes a major scientific advance.

Yet, program verification tools have not reached the same kind of maturity
as, say, compilers. It took many years of developing and refining the theory
underlying modern compilers, including context-free grammars and data-flow
analyses, but these are now taught in undergraduate computer science cur-
ricula. We can only hope that program verifiers will eventually become as
well understood.

In addition to the engineering effort required to build a program verifica-
tion tool, building and using such a tool require many skills from computer
science, logic, and mathematics. To advance the field of program verification,
we must facilitate the acquisition of these skills for our colleagues, students,
and other tool builders. This kind of material is typically made available in
research papers, but there’s nothing like collecting it under one roof. More-
over, there are deviations from some published practices that our experience
reveals to be useful. Combine these with some case studies that show the
application of the techniques through a verification tool and you provide a
taste of the whole picture.

That is what this KeY book does.
The ultimate goal of program verification is not the theory behind the

tools or the tools themselves, but the application of the theory and tools
in the software engineering process. Our society relies on the correctness of
a vast and growing amount of software. Improving the software engineering
process is an important, long-term goal with many steps. Two of those steps
are the KeY tool and this KeY book.

Redmond, Washington K. Rustan M. Leino
September 2006



Preface

The need for verified software has always been around and, since the late
1960s, also the vision of tools to satisfy it [King, 1969]. But it took a long
time for the field of software verification to move from foundations of comput-
ing in the direction of an engineering-oriented approach. This path was amply
accompanied by derisive comments from practitioners. However, in the last
decade the prospects of formal software verification technology dramatically
improved and many now feel that verification is one of the most exciting and
promising areas of computer science to currently work in. The two develop-
ments that are mainly responsible for this can be roughly identified with the
key words (a) scope and scalability, and (b) integration.

Scope and Scalability

Contemporary verification methods are way beyond academic languages and
problems: target programming languages are mainly JAVA [Burdy et al., 2003,
Ahrendt et al., 2005a, Stenzel, 2004, Marché and Rousset, 2006], C# [Bar-
nett et al., 2005], as well as C [Ball et al., 2004, Cook et al., 2006], and
not merely small fragments are covered, but most or all of these languages.
Formal specification and verification of object-oriented industrial software of
considerable complexity have become routine in the research domain [Jacobs
et al., 2004, Bubel and Hähnle, 2005, Mostowski, 2005, Schellhorn et al.,
2006]. Verification-based tools for bug-finding in drivers and system software
written in C became available recently [Ball et al., 2004, Cook et al., 2006].

One of the pioneers of the field, C.A.R. Hoare, suggested that formal
verification is mature enough to embark on building a “routinely usable Pro-
gram Verifier” as an international Grand Challenge for the Computer Science
community [Hoare, 2003, 2006].

Integration

At the same time, the formal verification community has realized that veri-
fication cannot be done in isolation from other software validation methods.
It will not replace traditional software engineering techniques and quality as-
surance methods, but complement them. The current vision is that at some
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point formal verification becomes a standard part of the tool portfolio of the
software engineer. This requires the integration of verification into processes,
development tools, as well as into safety and security policies.

A closely related development is that technologies pioneered in verification
and theorem proving are more and more used within scenarios that go beyond
verification, including debugging [Flanagan et al., 2002, Barnett et al., 2005],
test generation [Tillmann and Schulte, 2005], fault analysis [Ortmeier et al.,
2005], or fault injection [Larsson and Hähnle, 2006]. A further encouraging
trend is the convergence of tools and methods developed in the formal meth-
ods and programming languages communities [Barthe et al., 2004, Darvas
et al., 2005, Gedell and Hähnle, 2006, Müller et al., 2006].

The Concept Behind This Book

One area that has yet to catch up with the new spirit of software verification
is that of books. Most books on foundations of formal specification and verifi-
cation orient their presentation along traditional lines in logic. This results in
a gap between the foundations of verification and its application that is too
wide for most readers. There are, of course, a number of good books on par-
ticular verification methods [Boyer and Moore, 1988, Abrial, 1996, Nipkow
et al., 2002, Holzmann, 2003], but it is difficult to extract general material
from them. A book that aims to go in the right direction has been written
by Huth and Ryan [2004]: it presents the logical foundations of specification
and verification in as much as they are required by those who want to verify
systems, in particular, for verification based on model checking. The present
book goes in a similar direction, but with different emphases:

• The material is presented on an advanced level suitable for graduate
courses (and, of course, active researchers with an interest in verification).

• The underlying verification paradigm is deductive verification in an ex-
pressive program logic.

• As a rule, the proofs of theoretical results are not contained here, but we
give pointers where to find them.

• The logic used for reasoning about programs is not a minimalist version
suitable for theoretical investigations, but an industrial-strength version.
The first-order part is equipped with a type system for modelling of object
hierarchies, with underspecification, and with various built-in theories.
The program logic covers full JAVA CARD (plus a bit more such as multi-
dimensional arrays, characters, and long integers).

• Much emphasis is placed on specification, including two widely used
object-oriented specifications languages (OCL and JML) and even an in-
terface to natural language generation. The generation of proof obligations
from specified code is discussed at length.

• Two substantial case studies are included and presented in detail.
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Nevertheless, we cannot and do not claim to have fully covered formal rea-
soning about (object-oriented) software in this book. One reason is that the
choice of topics is dependent on our research agenda. As a consequence, sev-
eral important themes, such as specification refinement, model checking, or
predicate abstraction, are not covered. In addition, there are topics that we
are working on, but we felt that we have not yet reached a sufficient stage
of maturity for their inclusion. These include the integration of static analy-
ses with deductive verification, verification of parallel programs, generation
of counter examples, proof visualization, verification of recursive programs,
modular verification, and test generation, to name just a few.

Background: The KeY Project

The context for this book is the KeY project (www.key-project.org), which
aims to create a formal methods tool that integrates design, implementation,
formal specification, and formal verification of object-oriented software as
seamlessly as possible. The project was started in November 1998 at the
University of Karlsruhe. It is now a joint project of the University of Karl-
sruhe, Chalmers University of Technology in Göteborg, and the University of
Koblenz-Landau.

Besides theoretical advances that are documented in numerous research
papers, the most visible result of the KeY project is the KeY tool, a verifica-
tion tool that is unique in several ways:

• It is the only publicly available theorem prover that supports the full JAVA

CARD language standard including the memory model (with persistent
and transient memory) and atomic transactions.

• Specifications can be written in OCL, JML, and in program logic. OCL
specifications can even be translated into natural language.

• Plugins to the popular Eclipse IDE and to Borland’s Together CASE tool
suite are provided as well as stand-alone versions.

The KeY tool is freely available to anyone who is interested. It can be down-
loaded from the Web site mentioned above.

As we use the tool in several courses we wanted to collect the theory that
is necessary for a thorough understanding of the workings of the KeY tool.
This was the starting point for the present book. In the beginning we hoped
to build on existing overview articles or books, for example, on first-order and
program logics, but we soon realized that the treatment of logical foundations
there was too idealistic for specification and verification in a realistic setting.

Hence, we decided to make a serious effort to document the knowledge we
gained during the course of the project about first-order and program log-
ics for object-oriented programs, about the high-level specification languages
OCL and JML, and about how to formulate proof obligations over JAVA CARD

programs and then verify them. We make this knowledge available to the re-
search community and to interested students in this book. Even though it is
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grounded in a particular project, we think that most parts of the book are in-
teresting in their own right to those working on object-oriented specification
and verification. The fact that all examples can be tried out with a concrete
system should be seen as a plus, not as a limitation to a particular verifier.
More details on the organization and on suggested reading strategies can be
found in Chapter 1.

Companion Web Site

This book has its own Web site at www.key-project.org/thebook, where
additional material is provided: most importantly, the version of the KeY tool
that was used to run all the examples in the book including all source files for
example programs and specifications (unless excluded for copyright reasons),
various teaching materials such as slides and exercises, and the electronic
versions of papers on KeY.

Second Readers

Most chapters of the book have been read by experts in the formal verification
community. We benefited immensely from their feedback that included many
valuable suggestions. The second readers were:

Chapter 2 Temur Kutsia (RISC),
Arild Waaler (Univ. Oslo)

Chapter 4 Yves Bertot (INRIA),
Lawrence Paulson (Univ. Cambridge)

Chapter 5 Thomas Baar (EPF Lausanne),
Gary Leavens (Iowa State Univ.),
Erik Poll (RU Nijmegen),
Steffen Zschaler (TU Dresden)

Chapter 7 Aarne Ranta (Chalmers Univ.)

Chapter 9 Engelbert Hubbers (RU Nijmegen)

Chapter 12 Richard Banach (Univ. Manchester)

Chapter 13 Bernd Fischer (NASA),
Dieter Hutter (DFKI)

Chapter 14 Jean-Louis Lanet (Gemplus),
Renaud Marlet (INRIA),
Martijn Warnier (VU Amsterdam)

Sidebars and Typographic Conventions

We use a number of typesetting conventions to give the text a clearer struc-
ture. Occasionally, we felt that a historical remark, a digression, or a reference
to material outside the scope of this book is required. In order not to inter-
rupt the text flow we use sidebars, such as on page 30, whenever this is the
case.
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In this book a considerable number of specification and programming
languages are referred to and used for illustration. To avoid confusion we
usually typeset multiline expressions from concrete languages in a special
environment that is set apart from the main text with horizontal lines and
that specifies the source language as, for example, in (1.1) on page 9.

Expressions from concrete languages are written in typewriter font with
keywords highlighted in boldface, the exception being UML class and feature
names. These are set in sans serif, unless class names correspond to JAVA

types. Mathematical meta symbols are set in math font and the rule names
of logical calculi in sans serif.

Acknowledgements

We are deeply grateful to all researchers and students who contributed with
their time and expertise to the KeY project. In particular, we would like to
acknowledge the current and former project members who are not directly
involved as chapter authors: Thomas Baar (EPF Lausanne), Ádám Darvas
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by Richard Bubel and Reiner Hähnle . . . . . . . . . . . . . . . . . . . . . . . 295
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
6.2 The Database Query Specification Pattern . . . . . . . . . . . . . . . 297

6.2.1 Relational Database Query . . . . . . . . . . . . . . . . . . . . . . 297
6.2.2 Pattern Usage Example . . . . . . . . . . . . . . . . . . . . . . . . . 304

6.3 Specification Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
6.3.1 Format of Specification Patterns . . . . . . . . . . . . . . . . . 306
6.3.2 Application of Specification Patterns . . . . . . . . . . . . . . 307
6.3.3 Other Pattern Usage Scenarios . . . . . . . . . . . . . . . . . . . 307

6.4 Simplification of Pattern-Generated Constraints . . . . . . . . . . 308
6.5 Support for Specification Patterns in KeY . . . . . . . . . . . . . . . 310
6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 313

7 Natural Language Specifications
by Kristofer Johannisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.1 Feature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

7.1.1 Translating OCL to Natural Language . . . . . . . . . . . . 317
7.1.2 Multilingual Specification Editor . . . . . . . . . . . . . . . . . 318
7.1.3 Suggested Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.2 The Grammatical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 323
7.2.1 GF Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.4 The Multilingual Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

7.4.1 Syntax-Directed Editing . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.4.2 Top-Down Editing: Refinement . . . . . . . . . . . . . . . . . . . 327
7.4.3 Bottom-Up Editing: Wrapping . . . . . . . . . . . . . . . . . . . 328
7.4.4 Other Editor Features . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.4.5 Expressions and Sentences . . . . . . . . . . . . . . . . . . . . . . . 329
7.4.6 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.5 Translation of Domain Specific Concepts . . . . . . . . . . . . . . . . 331
7.5.1 Grammar Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.5.2 Customising the Translation . . . . . . . . . . . . . . . . . . . . . 331

7.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332



Contents XIX

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

8 Proof Obligations
by Andreas Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
8.1 Design Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

8.1.1 Disjoint Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.1.2 Behavioural Subtyping of Invariants . . . . . . . . . . . . . . 338
8.1.3 Behavioural Subtyping of Operations . . . . . . . . . . . . . 339
8.1.4 Strong Operation Contract . . . . . . . . . . . . . . . . . . . . . . 342

8.2 Observed-State Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
8.2.1 Observed States vs. Visible States . . . . . . . . . . . . . . . . 345
8.2.2 Assumptions Before Operation Calls . . . . . . . . . . . . . . 348
8.2.3 Operation Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8.2.4 Assertions After Operation Calls . . . . . . . . . . . . . . . . . 351
8.2.5 Static Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.3 Lightweight Program Correctness . . . . . . . . . . . . . . . . . . . . . . . 355
8.3.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
8.3.2 Postconditions and Termination . . . . . . . . . . . . . . . . . . 356
8.3.3 Modifies Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

8.4 Proving Entire Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.5 Modular Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

8.5.1 Visibility-Based Approach . . . . . . . . . . . . . . . . . . . . . . . 363
8.5.2 Encapsulation-Based Approach . . . . . . . . . . . . . . . . . . . 365
8.5.3 Verification Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
8.5.4 Components and Modular Proofs . . . . . . . . . . . . . . . . . 372

9 From Sequential JAVA to JAVA CARD

by Wojciech Mostowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
9.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
9.3 JAVA CARD Memory, Atomicity, and Transactions . . . . . . . . . 377
9.4 Strong Invariants: The “Throughout” Modality . . . . . . . . . . . 379

9.4.1 Additional Calculus Rules for “Throughout” . . . . . . . 380
9.5 Handling Transactions in the Logic . . . . . . . . . . . . . . . . . . . . . 382

9.5.1 Rules for Beginning and Ending a Transaction . . . . . 382
9.5.2 Rules for Conditional Assignment . . . . . . . . . . . . . . . . 386

9.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
9.7 Non-atomic JAVA CARD API Methods . . . . . . . . . . . . . . . . . . . 392

9.7.1 Transaction Suspending and Resuming . . . . . . . . . . . . 394
9.7.2 Conditional Assignments Revised . . . . . . . . . . . . . . . . . 396

9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
9.8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.9 Implementation of the Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
9.9.1 New Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
9.9.2 Transaction Statements and Special Methods . . . . . . 399



XX Contents

9.9.3 Taclet Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
9.9.4 Implicit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
9.9.5 Conditional Assignment Rule Taclets . . . . . . . . . . . . . 403
9.9.6 Examples in the KeY System . . . . . . . . . . . . . . . . . . . . 404
9.9.7 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Part III Using the KeY System

10 Using KeY
by Wolfgang Ahrendt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
10.2 Exploring Framework and System Simultaneously . . . . . . . . 412

10.2.1 Exploring Basic Notions And Usage . . . . . . . . . . . . . . 412
10.2.2 Exploring Terms, Quantification, and Instantiation . 425
10.2.3 Exploring Programs in Formulae . . . . . . . . . . . . . . . . . 433

10.3 Generating Proof Obligations . . . . . . . . . . . . . . . . . . . . . . . . . . 447

11 Proving by Induction
by Angela Wallenburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
11.2 The Need for Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

11.2.1 A First Look at an Induction Rule . . . . . . . . . . . . . . . . 454
11.2.2 A Small Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

11.3 Basics of Induction in KeY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
11.3.1 Induction Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
11.3.2 Induction Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
11.3.3 Induction Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
11.3.4 Induction Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

11.4 A Simple Program Loop Example . . . . . . . . . . . . . . . . . . . . . . 458
11.4.1 Preparing the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
11.4.2 The Proof in JAVA CARD DL . . . . . . . . . . . . . . . . . . . . . 459
11.4.3 Making the Proof in the KeY System . . . . . . . . . . . . . 463

11.5 Choosing the Induction Variable . . . . . . . . . . . . . . . . . . . . . . . . 464
11.5.1 The Difficulty of Guiding Induction Proofs . . . . . . . . 464
11.5.2 How to Choose the Induction Variable . . . . . . . . . . . . 464

11.6 Different Induction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
11.6.1 Customised Induction Rules . . . . . . . . . . . . . . . . . . . . . 468
11.6.2 The Noetherian Induction Rule . . . . . . . . . . . . . . . . . . 472
11.6.3 Soundness of Induction Rules . . . . . . . . . . . . . . . . . . . . 472

11.7 Generalisation of Induction Formulae . . . . . . . . . . . . . . . . . . . 473
11.7.1 Cubic Sum Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

11.8 Summary: The Induction Proving Process . . . . . . . . . . . . . . . 477
11.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479



Contents XXI

12 JAVA Integers
by Steffen Schlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
12.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
12.2 Integer Types in JAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

12.2.1 Implicit Type Casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
12.2.2 Differences Between JAVA and JAVA CARD . . . . . . . . . 486

12.3 Refinement and Retrenchment . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.3.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.3.3 Retrenchment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

12.4 Retrenching Integers in KeY . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
12.4.1 Weakening the Postcondition . . . . . . . . . . . . . . . . . . . . 493
12.4.2 Strengthening the Precondition . . . . . . . . . . . . . . . . . . 496

12.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
12.5.1 Sequent Calculus Rules . . . . . . . . . . . . . . . . . . . . . . . . . 498
12.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

12.6 Pitfalls Related to Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
12.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

13 Proof Reuse
by Vladimir Klebanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
13.2 A Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
13.3 The Main Reuse Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
13.4 Computing Rule Application Similarity . . . . . . . . . . . . . . . . . 513
13.5 Finding Reusable Subproofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
13.6 Implementation and a Short Practical Guide . . . . . . . . . . . . . 520
13.7 The Example Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
13.8 Other Systems and Related Methods . . . . . . . . . . . . . . . . . . . . 522
13.9 Reuse as a Proof Search Framework . . . . . . . . . . . . . . . . . . . . 524
13.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Part IV Case Studies

14 The Demoney Case Study
by Wojciech Mostowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
14.2 Demoney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
14.3 OCL, JML, and Dynamic Logic . . . . . . . . . . . . . . . . . . . . . . . . 534
14.4 Modular Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

14.4.1 KeY Built-in Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 538
14.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

14.5.1 Functional Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 539



XXII Contents

14.5.2 Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
14.5.3 Only ISOExceptions at Top Level . . . . . . . . . . . . . . . . 545
14.5.4 Atomicity and Transactions . . . . . . . . . . . . . . . . . . . . . . 557
14.5.5 No Unwanted Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . 563
14.5.6 Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

14.6 Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
14.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

15 The Schorr-Waite-Algorithm
by Richard Bubel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
15.1 The Algorithm in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

15.1.1 In Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
15.1.2 In Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

15.2 Specifying Schorr-Waite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
15.2.1 Specifying Reachability Properties . . . . . . . . . . . . . . . . 574
15.2.2 Specification in JAVA CARD DL. . . . . . . . . . . . . . . . . . . 578

15.3 Verification of Schorr-Waite Within KeY . . . . . . . . . . . . . . . . 582
15.3.1 Replacing Arguments of Non-rigid Functions Behind

Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
15.3.2 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

15.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

A Predefined Operators in JAVA CARD DL
by Steffen Schlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
A.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

A.1.1 Built-in Rigid Function Symbols . . . . . . . . . . . . . . . . . 591
A.1.2 Built-in Rigid Function Symbols whose Semantics

Depends on the Chosen Integer Semantics . . . . . . . . . 592
A.1.3 Built-in Non-Rigid Function Symbols . . . . . . . . . . . . . 593
A.1.4 Built-in Rigid Predicate Symbols . . . . . . . . . . . . . . . . . 594
A.1.5 Built-in Rigid Predicate Symbols whose Semantics

Depends on the Chosen Integer Semantics . . . . . . . . . 594
A.1.6 Built-in Non-rigid Predicate Symbols . . . . . . . . . . . . . 595

A.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
A.2.1 Semantics of Built-in Rigid Function Symbols . . . . . . 595
A.2.2 Semantics of Built-in Predicate Symbols . . . . . . . . . . . 597

B The KeY Syntax
by Wojciech Mostowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
B.1 Notation, Keywords, Identifiers, Numbers, Strings . . . . . . . . 600
B.2 Terms and Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

B.2.1 Logic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
B.2.2 Atomic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

B.3 Rule Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
B.3.1 Library and File Inclusion . . . . . . . . . . . . . . . . . . . . . . . 612



Contents XXIII

B.3.2 Rule File Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 613
B.3.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

B.4 User Problem and Proof Files . . . . . . . . . . . . . . . . . . . . . . . . . . 619
B.4.1 Method Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

B.5 Schematic JAVA Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
B.5.1 Method Calls, Method Bodies, Method Frames . . . . . 623
B.5.2 Exception Catching in Contracts . . . . . . . . . . . . . . . . . 624
B.5.3 Inactive JAVA Block Prefix and Suffix . . . . . . . . . . . . . 624
B.5.4 Program Schema Variables . . . . . . . . . . . . . . . . . . . . . . 625
B.5.5 Meta-constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
B.5.6 Passive Access in Static Initialisation . . . . . . . . . . . . . 626

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659



List of Tables

3.1 Names of schema variables and their kinds . . . . . . . . . . . . . . . . . 114
3.2 Components of rule assignmentSaveLocation for field accesses . 123
3.3 Components of rule assignmentSaveLocation for array accesses 123
3.4 Implicit object repository and status fields . . . . . . . . . . . . . . . . . 137
3.5 Implicit methods for object creations and initialisation . . . . . . 138

4.1 Kinds of schema variables in the context of a type hierarchy . 193
4.2 A selection of the kinds of schema variables for program

entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.3 Modal operators that exist in KeY . . . . . . . . . . . . . . . . . . . . . . . . 196
4.4 Examples of schematic expressions and their instantiation . . . 200
4.5 Modifiers for schema variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.6 Schema variable conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.7 Matrix of different taclet modes and different find patterns . . 215

5.1 Default contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.2 Iterators from the OCL standard library . . . . . . . . . . . . . . . . . . 264
5.3 Traditional names for Boolean and set operations . . . . . . . . . . . 267
5.4 First-order translations of some iterators . . . . . . . . . . . . . . . . . . 269
5.5 Definitions for some iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.6 Mapping from JML and JAVA expressions to FOL . . . . . . . . . . 283
5.7 Mapping from new JML expressions to FOL . . . . . . . . . . . . . . . 283
5.8 Defaults for missing JML clauses . . . . . . . . . . . . . . . . . . . . . . . . . 286

6.1 Additionally supported idioms and patterns . . . . . . . . . . . . . . . 309

8.1 Programs in proof obligations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
8.2 Proof obligation templates for program correctness . . . . . . . . . 356
8.3 Abbreviations used in proof obligation templates . . . . . . . . . . . 356

12.1 Primitive signed JAVA integer types . . . . . . . . . . . . . . . . . . . . . . . 484
12.2 Examples of integer division and modulo operations . . . . . . . . 502



List of Figures

1.1 Architecture and interface of the KeY system . . . . . . . . . . . . . . 3
1.2 Simple PayCard class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The most important ingredients of formalisation . . . . . . . . . . . . 9
1.4 Sources of specification errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 An example type hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Classical first-order rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Equality rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5 Rules for arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Basic JAVA CARD DL type hierarchy without user-defined
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Example for a JAVA CARD DL type hierarchy . . . . . . . . . . . . . . 74
3.3 An example program with method overriding . . . . . . . . . . . . . . 132
3.4 Initialisation part in a schematic class . . . . . . . . . . . . . . . . . . . . . 138
3.5 Mapping of a class declaration to initialisation schema . . . . . . 139
3.6 Implicit method <createObject>() . . . . . . . . . . . . . . . . . . . . . . 140
3.7 Implicit method <prepare>() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.8 Example for constructor normal forms . . . . . . . . . . . . . . . . . . . . 142
3.9 Building the constructor normal form . . . . . . . . . . . . . . . . . . . . . 143
3.10 The rule for try-catch-finally and throw . . . . . . . . . . . . . . . . 145
3.11 Evaluation order of quantified updates . . . . . . . . . . . . . . . . . . . . 171

4.1 Taclets for an exponentiation function on integers . . . . . . . . . . 181
4.2 Lemma for the exponentiation function . . . . . . . . . . . . . . . . . . . 182
4.3 Examples of taclets implementing propositional rules . . . . . . . 184
4.4 Examples of taclets implementing first-order rules . . . . . . . . . . 186
4.5 Examples of rewriting taclets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.6 Example of a taclet implementing a rule of JAVA CARD DL . . 191
4.7 Assignment taclet from Example 4.4 . . . . . . . . . . . . . . . . . . . . . . 197
4.8 An example type hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206



XXVIII List of Figures

4.9 The taclet syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.10 The taclet described in Example 4.35. . . . . . . . . . . . . . . . . . . . . . 226

5.1 Class diagram for the ATM scenario . . . . . . . . . . . . . . . . . . . . . . 251
5.2 An OCL contract for the enterPIN operation . . . . . . . . . . . . . . 252
5.3 The enterPIN method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.4 UML class diagrams for role-based access scenario . . . . . . . . . . 255
5.5 The hierarchy of OCL types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
5.6 Toplevel metaclass diagram for OCL expressions . . . . . . . . . . . 259
5.7 Metamodel for conditional expressions . . . . . . . . . . . . . . . . . . . . 260
5.8 Metamodel for OCL featureCall expressions . . . . . . . . . . . . . 261
5.9 A generic association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.10 Example of a constraint with iterate . . . . . . . . . . . . . . . . . . . . 271
5.11 Syntax of the iterate construct . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.12 Postcondition referring to exceptions . . . . . . . . . . . . . . . . . . . . . . 275
5.13 Another postcondition referring to exceptions . . . . . . . . . . . . . . 276
5.14 A JML specification for enterPIN . . . . . . . . . . . . . . . . . . . . . . . . 279
5.15 Desugaring of normal_behavior and exceptional_behavior 286

6.1 UML class diagram for gold card scenario . . . . . . . . . . . . . . . . . 299
6.2 Standard idioms for database construction . . . . . . . . . . . . . . . . . 300
6.3 Scenario: Video-controlled toll system . . . . . . . . . . . . . . . . . . . . . 301
6.4 Instantiated table generators with the used instantiation

mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.5 PIParameter type hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
6.6 Template constraint description file . . . . . . . . . . . . . . . . . . . . . . . 312
6.7 Simple database query: instantiation window. . . . . . . . . . . . . . . 313
6.8 Simple database query pattern implementation . . . . . . . . . . . . . 314

7.1 Example natural language translation of OCL constraints . . . 319
7.2 Example class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.3 Example OCL constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
7.4 Example editor session 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.5 Example editor session 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.6 GF parsing and linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.7 System components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.8 Editing by refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
7.9 Editing by wrapping, step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.10 Editing by wrapping, step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

8.1 Visible state semantics vs. observed state semantics . . . . . . . . . 346
8.2 Class diagram for extended ATM scenario . . . . . . . . . . . . . . . . . 365
8.3 Verification strategies for entire observed-state correctness . . . 371

9.1 The proof tree from Example 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . 390



List of Figures XXIX

9.2 The proof tree from Example 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . 392

10.1 KeY-Eclipse integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

11.1 Proof tree for even(2 ∗ 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
11.2 Proof tree for a simple decrementing loop . . . . . . . . . . . . . . . . . 463

12.1 Dialog for choosing integer semantics in the KeY system . . . . . 498

13.1 Schematic proofs before and after program correction . . . . . . . 510
13.2 Main reuse and proof construction algorithm . . . . . . . . . . . . . . . 512
13.3 Function for the best possible reuse pair . . . . . . . . . . . . . . . . . . . 512
13.4 Change detection with GNU diff . . . . . . . . . . . . . . . . . . . . . . . . . 519
13.5 A rule for array assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

15.1 Illustration of a Schorr-Waite run . . . . . . . . . . . . . . . . . . . . . . . . 570
15.2 Class diagram showing the involved participants . . . . . . . . . . . . 571
15.3 Core of the Schorr-Waite algorithm . . . . . . . . . . . . . . . . . . . . . . . 572
15.4 The JAVA CARD DL proof obligation for verifying Schorr-Waite 579
15.5 Loop invariant and assignable clause . . . . . . . . . . . . . . . . . . . . . . 581
15.6 Loop invariant: core part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583



1

A New Look at Formal Methods for

Software Construction

by

Reiner Hähnle

This chapter sets the stage. We take stock of formal methods for software
construction and sketch a path along which formal methods can be brought
into mainstream applications. In addition, we provide an overview of the
material covered in this book, so that the reader may make optimal use of it.

1.1 What KeY Is

The KeY project1 was conceived because, after having worked in logic and
theorem proving for many years, we became convinced that a different kind
of tool than the existing range of editors and theorem provers is necessary to
push formal methods further into industrial applications. We know that not
everyone agrees that formal methods have a place in the software industry,
but recent success stories, such as the SDV project at Microsoft [Ball et al.,
2004], are indicators that formal methods can become mainstream provided
that they are appropriately packaged and marketed. We think that formal
methods are robust and powerful enough for applications, but they need to
become (much!) more accessible.

With this in mind, the KeY system was not designed merely as a theo-
rem prover for verification of object-oriented (OO) software, but as a formal
methods tool that integrates design, implementation, formal specification and
formal verification as seamlessly as possible. The intention is to provide a
platform that allows close collaboration of conventional and formal software
development methods.

This sounds as if KeY were a silver bullet. So let us be very clear that
we do not think that formal specification and verification of complex systems
is a task that can be done automatically or by people who are completely
unskilled in formal methods. This is as improbable as automatised program-
ming of complex systems. Everyone accepts that specialists are needed to

1 www.key-project.org

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 1 Formal Methods for Software Construction

write, say, reliable and efficient systems software. If complex software is to
be formally specified and verified, it should be clear that some serious work
by specialists is called for. But if formal methods specialists are still required
for complex tasks, what is gained by KeY then? In a nutshell, the intention
is to lower the cost of formal methods to an acceptable level from where it is
clear that formal methods actually will save cost in the end. In the following,
we map out the basic principles of such a conception of formal methods in
software construction.

Easy Things Made Easy

KeY provides interfaces and tools that enable non-specialists in formal meth-
ods to use and understand formal artifacts to a certain extent. For example,
we provide idioms and patterns that can be simply instantiated to create
formal specifications. This is comparable to using a visual editor in order to
create a JAVA GUI instead of having to master the Swing framework. Devel-
opers can also run standard checks, such as the consistency of existing formal
specifications by menu selection from their usual case tool. Such provisions
push the boundary beyond which a formal methods specialist is required. It
also provides a learning path to formal methods for interested developers.

Integration of Informal and Formal Notation

From the view of the non-expert user, KeY appears not as a stand-alone
tool, but as a plugin to a familiar case tool (at the moment Borland Together
and the Eclipse IDE are supported). Translation of specifications written in
UML’s Object Constraint Language (OCL) and the Java Modeling Language
(JML) into logic, as well as synthesis of various proof obligations is completely
automatic, as is, to a large extent, proof search. In addition, KeY features a
syntax-directed editor for OCL that can render OCL expressions in several
natural languages while they are being edited. It is even possible to trans-
late OCL expressions automatically into English and German (stylistically
perhaps not optimal, but certainly readable). This means that KeY provides
a common tool and conceptual base for developers and formal methods spe-
cialists. The architecture and interface characteristics of KeY are depicted in
Fig. 1.1.

Teaching Formal Methods for Software Construction

We think that it is necessary to change the way formal methods are taught.
Many of us used to teach traditional courses in logic, theorem proving, for-
mal languages, formal specification, etc. Ten years ago, in a typical Computer
Science programme at a European university you could find a wide variety of
such courses with at least logic or formal systems courses being compulsory.
While such courses are still taught in theoretical specialisations, compul-
sory logic or formal specification courses have mostly been scrapped. In the
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Fig. 1.1. Architecture and interface of the KeY system

post-Bologna bachelor programmes there will be little room for foundational
courses. Even if this were not so, we think that it would be time to look at
software construction not as an afterthought in formal methods courses, but
as the starting point and main driver for the curriculum. The goal of such a
formal methods for software engineering course is not only to teach formal
specification and verification in the context of OO software development, but
also exactly those topics in logic, semantics, formal specification, theorem
proving that are necessary for a deepened understanding. Such a presenta-
tion of this material would necessarily be less systematic and complete than
if it were taught in a traditional manner, but we think this is far outweighed
by a number of advantages:

• It is notoriously difficult to motivate students (in particular those in-
terested in software development) to theoretical studies, which are often
perceived as useless. The tight integration of formal methods into software
development provides a strong and direct motivation.

• Many students find it easier to grasp theoretical concepts when these are
explained and motivated with natural examples.

• We often encountered students who, even after taking several foundational
courses, perceived, for example, logic and programming language seman-
tics as completely different topics and failed to see their close connections.
Compartmentalisation is increased by presentations based on traditional



4 1 Formal Methods for Software Construction

notations developed in separate fields. It is important to point out sim-
ilarities and identical concepts. Most of all, it is important to relate to
concepts from programming languages, because this is what students of
computer science or software engineering are most familiar with. To take a
trivial example, students often find it easier to grasp universal quantifica-
tion when the analogies to for-loops are pointed out, including declaration
of index variables, scoping, binding, hiding, etc.

• A course that teaches base knowledge in logic, specification, and semantics
under the umbrella of high-quality software construction is much easier
to integrate into an educational programme than dedicated foundational
courses. The latter tend to be optional and are taken only by a small
minority of interested students. We see a great danger, in particular with
respect to bachelor programmes, that students are completely deprived of
foundations. We believe that an attractively packaged course with founda-
tional material tailored to the requirements of software engineering could
be a solution.

A course along the lines just sketched is taught by the author of this chapter
at Chalmers University since 2004.2 Many chapters in this book are suitable
as background material for (advanced) courses related to logic, specification,
and verification (see also the following section).

Towards Formal Verification as a Debugging Tool

Formal verification is unlikely to be a fully automatic procedure in the fore-
seeable future. This is true even for less demanding tasks than full functional
verification of concrete source code: the availability of so-called push button
tools notwithstanding, verification remains a highly interactive process. The
main problem, of course, is that most of the time the specification or the
implementation (or both) are buggy. Hence, proof attempts are doomed to
fail. In software verification, it is also often necessary to strengthen induction
hypotheses or invariants before they can be proven. In either case, the source
of a failed proof must be located and patched. Then the proof must be re-
tried, etc. This means that it must be possible to inspect a partial or stuck
proof and make sense of it. This process has strong similarities to debugging.
Therefore, it is important to equip the user interface of a prover with similar
capabilities than that of a debugger.

While the debugger view has not quite been realised yet for the KeY
prover, which also can be used stand-alone without any CASE tool (see
Fig. 1.1), the system offers a wide variety of visual aids and controls. These
range from highlighting of active parts in proofs and proof nodes, drag-and-
drop application of rules, tool tips with explanations of logical rules to exe-
cution control with local computations, breakpoints, etc. Automatic reuse of

2 The course web site is http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form.
The LATEX sources of slides, labs, exercises and exams are available on request.
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failed proofs and correctness management of open goals and lemmas round
off the picture.

In order to increase automation, a number of predefined search strategies
are available. There is a back end to SMT-LIB syntax3 for proving near
propositional proof goals with external decision procedures. A back end to
TPTP syntax4 is under construction.

Nevertheless, it is in this area, where the book gives only a snapshot of
the current capabilities. Ongoing research that is hoped to boost interactive
proof construction dramatically, includes proof visualisation [Baum, 2006]
and automatic search for finite counter examples [Rümmer, 2005].

Industrially Relevant Languages

In our opinion it is essential to support an industrially relevant programming
language as the verification target. We have chosen JAVA CARD source code
[Chen, 2000] because of its importance for security-critical applications. We
refrained from using a home-spun sublanguage of JAVA, because it is unreal-
istic to assume that applications are written in it. It would have been simpler
to create support for JVM bytecode, but while it is easier to build a verifica-
tion system for byte code than for source code, it becomes more difficult to
verify byte code, because it contains much less information. Besides, neither
JAVA CARD nor native code compilers produce JVM bytecode.

The KeY prover and calculus support the full JAVA CARD 2.2.1 language.
This includes all object-oriented features, atomic transactions, JAVA integer
types, abrupt termination (local jumps and exceptions) and even a formal
specification (in OCL) of the essential parts of the JAVA CARD API. In ad-
dition, some JAVA features that are not part of JAVA CARD are supported as
well: multi-dimensional arrays, JAVA class initialisation semantics, char and
String types. In short, if you have a sequential JAVA program without dy-
namic class loading and floating point types, then it is (in principle) possible
to verify it with KeY.

On the front end, we support the OMG standard Object Constraint Lan-
guage (OCL) [Warmer and Kleppe, 2003] for specification as well as the Java
Modeling Language (JML) [Leavens et al., 2006], which is increasingly used
in industrial contexts [Burdy et al., 2005].

The KeY system is written in JAVA and runs on all usual architectures. The
same is true for the Borland Together and Eclipse CASE tools. Everything,
with the exception of Borland Together, is freely available, open software.

3 http://combination.cs.uiowa.edu/smtlib/
4 http://www.cs.miami.edu/~tptp/
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1.2 About This Book

This book is mainly written for two kinds of readers: first, as explained in the
previous section, it can serve as a textbook in an advanced formal-methods
course. All, but the most basic, required mathematical notions are contained
and explained. Chapters 2 and 3 are self-contained discussions of first-order
and program logics and calculi tailored to the needs of formal analysis of
OO software. This means, for example, that meta-logical results such as in-
completeness are only fleetingly discussed, as far as necessary to explain the
limitations of first-order program logics. Among the many calculi available
for automated reasoning we concentrate on sequent calculi, because they are
most widely used in deductive software verification. On the other hand, we
introduce a richly typed first-order logic including essential notions for pro-
gram analysis such as rigid/flexible terms, none of which is treated in logic
textbooks.

We assume that readers of this book are familiar with object-oriented
design and software development, including UML class diagrams and the
programming language JAVA. As mentioned above, no special mathematical
knowledge is required, with the exception of basic set theory and propositional
logic. Naturally, we do not deny that a certain mathematical maturity is
helpful to obtain a deepened understanding of the material in Part I.

Although the book is about a specific tool, the KeY tool, much of the ma-
terial can be read independently and is transferable to other contexts. The
book becomes more KeY-specific towards the end, more precisely, Parts I
and II are fairly independent of KeY while Parts III and IV contain specific
solutions and case studies. As a consequence, in a course on software de-
velopment with formal methods, one might stick to the first two parts plus
Chapter 11. In the book we proceed in a bottom-up style to avoid dangling
definitions, but in the context of a course the material might well be presented
top-down (as it is, in fact, done in the course mentioned above). Chapter 10
is an informal introduction to the main features of the KeY tool and can be
recommended as an entry point.

The second kind of reader is any kind of computer professional (developer,
researcher, etc.) who is interested in formal methods for software development
or in KeY in particular. There is no need to read the book sequentially or
in any particular order. The chapters can be read fairly independently (but
following some dependencies is unavoidable, if a full grasp on technical details
is desired). Those who are familiar with formal techniques would only skim
Chapter 2, but will find Chapter 3 still interesting. If you are mainly interested
in usage and capabilities, Chapter 10 plus some of the case studies are a good
start.

Finally, two things that this book is not : it is not a reference manual for
the KeY system. Even though many features are explained and discussed,
for the sake of readability we did not strive for completeness. Some parts of
the manual are available online at the KeY website, for example, a browsable



1.3 The Case for Formalisation 7

list of all calculus rules. This book is also not simply a collection of papers.
All chapters were specifically written for this book and not just culled from
a technical report. We aimed at self-containedness, many examples and not
too terse explanations. For this we sacrifice some of the technical details.
Wherever technical explanations have been abridged or simplified, we give
pointers to the full treatments in papers and theses.

In the remainder of this chapter, we explain some of the problems that
must be solved during formal specification and verification of object-oriented
software. The idea is to give the reader a better idea of what is covered in
various parts of the book. It will also help not to loose sight of the big picture.

1.3 The Case for Formalisation

For the following considerations we use a small example. We stress that the
size of this example is not indicative for the problems that can be modelled
with the KeY system. Realistic case studies are discussed in Chapters 14
and 15.

Assume that we are given the following informal specification for devel-
oping a simple electronic paycard application:

“The function of a paycard is to let its owner pay bills or withdraw
money from terminals authorised by the card provider.

A paycard contains information about its current balance. The
balance must not be negative and must not exceed a given limit. The
limit of a paycard cannot be changed, although different cards can
have different limits.

Each paycard provides a charge operation that updates the bal-
ance according to the amount involved in a transaction.”

This specification seems quite precise, but even in a small example like this,
unclear issues appear immediately. For example, it is not specified what hap-
pens when the charge operation is called with an amount that would exceed
the card limit. One of the main advantages of formalisation is to exhibit such
imprecision.

Imprecise specifications can lead to serious problems that are detected
(too) late, when it is expensive to fix them. In the example, without a clear
guideline, an implementor might write a charge method that simply does
nothing when the amount to be charged exceeds the card limit. Such an
implementation gives no feedback when something went wrong during the
operation. Probably, the application needs to be redesigned. (In JAVA CARD

redesigning an application can be problematic, because additional features,
such as a counter for unsuccessful charge operations, might not fit into mem-
ory.)

In Fig. 1.2, a very simple UML class diagram with a first design based on
the specification above is given. Partly it reflects the above requirements by
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stipulating instance attributes balance and limit, of which the latter is des-
ignated as immutable (indicated by the property {frozen}). But what about
the other requirements, for example the legal values of balance being between
zero and the value of limit? Of course, one could design a wrapper class that
provides a type for the legal values, but this has a number of disadvantages:
first, a premature decision on how to implement the balance attribute is taken:
for example, if the implementation language is C++, one would probably use
a scalar type instead. Second, wrapper classes for primitive datatypes lead to
clumsy and inefficient code. Third, one needs different wrappers for different
limit values, which leads to various rather complex implementation options.
Fourth, it does not ensure that illegal values of the balance do not occur but,
at best, that a runtime error or exception occurs once this happens.

PayCard

limit:Integer {frozen}
balance:Integer
charge(amount:Integer)

Fig. 1.2. Simple PayCard class diagram

The brief discussion above reflects the fact that purely programming-lan-
guage-based mechanisms such as type systems cannot ensure all kinds of
runtime requirements. The same holds, of course, for design languages (like
UML) that are even less expressive than programming languages. In order
to specify and guarantee runtime requirements the following ingredients are
needed (see also Fig. 1.3):

1. A formal specification language that is expressive enough to capture the
requirements a design stipulates on an implementation, for example, that
it is an invariant of the PayCard class that the values of the balance
attribute are between zero and the value of limit.

2. A framework that allows to formally prove that a given implementation
satisfies its requirements. This involves a formalisation of an execution
model of the programming language in which the verification targets are
written, in our case JAVA CARD.

The designers of UML became aware quite early of the need for a formal
specification language. It is a part of the UML since version 1.1 and is called
Object Constraint Language (OCL) [Warmer and Kleppe, 1999b, 2003]. OCL
allows to attach invariants to classes of UML diagrams and to specify op-
eration contracts in the form of pre- and postcondition pairs. Being part of
the UML, OCL is standardised by the OMG5. The consequent visibility of
5 Object Management Group, www.omg.org
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OCL (⇒ Sect. 5.2) and its integration into the world of OO software develop-
ment motivated us to support it as one of the formal specification languages
in the KeY tool. Back to our example, the requirement on the admissible
values of balance can be expressed as an OCL invariant:

OCL (1.1)
context PayCard
inv withinLimit : balance >= 0 and balance <= limit

OCL

In order to prove that a given implementation of the class PayCard (and
possibly other classes) respects this invariant, however, a lot more work is
necessary. First of all, if we prove something, there must be some underlying
notion of what is a valid statement. In formal logic, as well as in the theory of
programming languages, validity is defined in terms of a formal semantics: a
mapping between expressions of a formal language and a suitable mathemat-
ical model of the underlying domain. In our setting, OCL expressions over a
given UML class diagram D are mapped into an algebra that models objects
and object diagrams. As a consequence one can precisely say, for example,
that a given object diagram satisfies a given Boolean OCL expression.

Real
World

Abstraction

Formal
Execution

Model

Formal
Requirements
Specification

Fig. 1.3. The most important ingredients of formalisation

Unfortunately, semantic notions do not lend themselves directly to mecha-
nised proofs, the reason being that semantic domains typically contain in-
finitely many entities (e.g., all instances of a class). In automated theorem
proving, therefore, one reasons over syntactic expressions that represent the
semantics adequately. This leads to the notion of a calculus , a set of rewrite
rules that specify how syntactic expressions are to be manipulated in or-
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der to be derivable. The idea is to design a calculus that is sound with re-
spect to its semantics, that is, all derivable expressions are supposed to be
valid. For example, one could conceive of a proof rule that reduces derivabil-
ity of the invariant withinLimit above to derivability of the two invariants
balance >= 0 and balance <= limit:

context C inv: I1 context C inv: I2
context C inv: I1 and I2

Such a syntactic proof rule captures a property of an infinite number of
semantic entities: it is valid when C is replaced by any concrete class name
and I1 and I2 by any concrete Boolean OCL constraints in any UML diagram.

Although possible, there are good arguments against building such a cal-
culus directly for OCL:

• It is difficult and expensive to develop a theorem prover for a given formal
language. OCL is a big language compared to logic languages (such as
first-order logic) and, in contrast to them, proof search in OCL is not well
understood. Moreover, OCL is frequently revised.

• OCL was not designed with proof support in mind, and like UML it is
independent of the implementation language. It does not know about
concrete implementations of datatypes such as the integers. Before ver-
sion 2.0, there was no way to specify initial states of classes. OCL is also
not intended to express complex proof obligations that involve several
invariants (see below).

As a consequence, we take a “compilation” approach: OCL expressions
are translated (⇒ Sect. 5.2) into formulae of first-order logic (FOL). OCL
compilation circumvents the difficulties outlined above. It also makes KeY
independent from OCL as the sole specification language: recently, JML
emerged as a popular specification language used in many formal methods
projects dealing with JAVA and JAVA CARD [Burdy et al., 2005]. Replacing
the OCL to FOL compiler with a JML front end enables the use of KeY with
JML (⇒ Sect. 5.3).

A further major advantage of translating OCL and JML into FOL is that
we do not need to define a dedicated formal semantics for these specifica-
tion languages. Their semantics is implicitly defined by the translation into
FOL, the latter having a standard semantics that is widely agreed upon.
The translation approach works only if it is natural to represent a specifi-
cation language by FOL. Admittedly, this is not the case for “vanilla” FOL
as encountered in logic textbooks. Object types, undefined expressions, and
predefined operators need to be added to the syntax, semantics, and cal-
culus of FOL in order to allow a natural and adequate translation. None of
these extensions to FOL is new, but surprisingly no tutorial treatment of this
material accessible to non-specialists is available. This justifies Chapter 2 in
this book, where we give a self-contained treatment of a FOL tailored to the
analysis of object-oriented designs.
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1.4 Creating Formal Requirements

Our aim is to develop a formal specification alongside the design. Those
requirements that cannot be captured diagrammatically must be formalised
either in OCL or in JML and are connected with the design in the form of
class invariants or operation contracts. Technically, formal specifications are
written as structured comments in Javadoc style and precede the declaration
of the context element they relate to. For example, constraint (1.1) appears
in the file PayCard.java as follows:

JAVA

/**

* @invariants

* balance >= 0 and balance < limit

*/

public class PayCard { ... }

JAVA

But before proving that programs fulfill requirements, it is necessary to for-
malise requirements in the first place. So far, we only know that we can use
OCL or JML, but formal requirements specification turns out to be not at
all an easy task.

Real
World

Formal
Model

wrong assumptions
(e.g., zero delay)

missing requirements
(e.g., stack overflow)

misunderstood problem
(e.g., wrong integer model)

a
Fig. 1.4. Sources of specification errors

When we formalise any real phenomena, we necessarily have to abstract from
the real world (see Fig. 1.3). Many times, this abstraction is the source of
errors when specifying requirements. This may involve undue simplifications,
missing or misunderstood (and, hence, erroneously modelled) requirements
(see Fig. 1.4). Formalisation, as we have seen and will see more below, can
detect such errors, but it introduces also additional problems: one needs to
master a specification language, but this is not enough—just like software,
specifications should be well-crafted. Badly written formal specifications are
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at least as difficult to understand and debug as badly written programs. In
addition, formal specifications must be well structured and it must be possible
to render them in natural language, otherwise informal and formal specifi-
cations are in constant need of synchronisation. As a consequence, besides
the two capabilities of expressing formal requirements and proving them, it
is important to add a third one:

3. Support authoring of formal requirements by providing libraries with
idioms and patterns, editors, integration with CASE tools, automatic
translation to natural language.

We do not claim to have solved all this, but we address the problems and
give partial solutions.

To take a very simple example, imposing upper and lower bounds on a
variable with scalar datatype is a very common and typical class invariant,
see (1.1). In the KeY system, we call this a specification idiom. The KeY
extension of Borland Together offers a facility to use a number of specification
idioms without the need to know OCL: by filling in forms. More generally,
there is an extensible library of design patterns, each of which comes with
a number of generic OCL constraints that capture some of the requirements
associated with each pattern [Andersson, 2005]. In the hand of an OCL expert
this becomes even a flexible extension mechanism for OCL. In Chapter 6 this
is discussed further.

In an extensive case study it was shown that at least 25% of the for-
mal specifications could be obtained from standard idioms and very few
application-specific patterns [Bubel and Hähnle, 2005]. Although helpful, this
leaves a considerable part of the formalisation to be crafted by hand (a sim-
ilar situation arises in coding, where code generators and templates do not
go all the way).

There is some further support in obtaining specifications that can be
given. When writing specifications it is useful to keep in mind that there are
two important factors driving them:

• Structural properties of the design—for example, the class hierarchy.
• Functional requirements—typically, the state update and returned result

that effects from calling a method.

The latter is well-known from the design-by-contract methodology [Meyer,
1992], an approximation to full verification. Design-by-contract can be seen
as an efficient and elegant alternative (to, for example, dynamic typing) to
check requirements at runtime, but it does not prove that the requirements
actually hold. Still, the contract metaphor is very useful when specifying
the functionality of a method. In our context we often call the pre- and
postconditions of a method its contract.

One limitation of contracts is that they emphasize the (method-)local
view and do not give a clue as to whether a program achieves its purpose as
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a whole. Such “global” properties are difficult to define and prove and one
needs to know the implementation of all methods. But already the structure
of an OO design (that is, its associations and inheritance relation) gives
important information on whether contracts and invariants are sufficient.

The two most important OO techniques for implementation by reuse are
inheritance and delegation. They have strong consequences for the proper-
ties of an implementation and, therefore, need to be reflected in the formal
specification. For inheritance, often Liskov’s principle [Liskov and Guttag,
2000] is stipulated: it must be possible to replace an object of a class with
an object declared in any of its subclasses without breaking the program.
From a specification point of view, this means, for example, that invariants
of subclasses must be implied by invariants of super classes.

Delegation is perhaps even more important and mostly preferable to in-
heritance [Gamma et al., 1995], but the consequences for formal specifica-
tion are rarely made explicit. Assume, for example, that we want a method
checkPIN(PIN:int):boolean in our PayCard class. Typically, this method would
be implemented elsewhere, say, in class PIN, but in order to minimize the
dependencies between PayCard and PIN (and to allow decoration) one might
want to implement a delegator method checkPIN(PIN:int):boolean in PayCard.
At this point, it is advisable to copy the contract from the implementing to
the delegating method.

In summary, Liskov’s principle applied to subclassing and delegation
yields an important completion of a formal specification that is driven by
structural design properties. In KeY it is even possible to prove that a given
specification fulfills various aspects of Liskov’s principle, see also the following
section.

In the end, it is, of course, unavoidable to author a certain amount of
formal specifications in OCL or JML by hand. This means that one has
to master one of these languages. For a deeper understanding, it is even
advisable to know the principles of the translation of OCL and JML into first-
order logic. This, together with a concise introduction to the main syntactic
elements of these languages, is the content of Chapter 5.

A major problem with formal specification is that formal and informal
specifications tend to drift apart over time, because it is very tedious to keep
them in sync. On the other hand, it is not sufficient to maintain merely a for-
mal specification, because it cannot easily be communicated to managers or
customers. The KeY tool addresses this problem with a feature for translation
of OCL into natural language based on the Grammatical Framework [Ranta,
2004]. Example (1.1) is rendered in (stylistically suboptimal, but readily un-
derstandable) English as follows:

“For the class PayCard the following invariant holds:
the balance is at least 0 and the balance is less than the limit.”

The translation tool, which also features a multi-lingual, syntax-directed ed-
itor for OCL, is explained in Chapter 7.
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1.5 Proof Obligations

The invariants and contracts present in a design give no immediate clue of
what one actually wants to verify. There is a wide range of possible proof
obligations that can be constructed from invariants, contracts, method im-
plementations, class initialisers, and the class hierarchy as building blocks.

In the previous section, we mentioned already Liskov’s principle as one
possible property that one might wish to ensure for a given design and for-
mal specification. In the KeY system, for such and other lightweight design
validation properties, corresponding proof obligations expressed in the KeY
program logic can be synthesised automatically from context sensitive menus
available in the KeY plugins. Other lightweight properties include invariant
consistency, precondition disjointness, contract consistency, and strong op-
eration contracts. They are all formally defined and explained in detail in
Chapter 8. Let us give an example for the last one. Given the following con-
tract for a charge method of class PayCard:

OCL
context PayCard::charge(amount: Integer)
post : balance = balance@pre + amount

OCL

It is desirable to ensure that after any returned method call, the invariant of
its class is restored provided that it held before the call, here (1.1) (see p. 9).
This is an essential part of any strategy to ensure that all class invariants
hold at all times. We call this property strong operation contract.

The KeY prover fails to show this and it is in fact easy to see that the
property does not hold, because the sum of balance and amount may well
be greater than limit. This gives early feedback on the insufficiency of this
particular contract (assuming we want to keep the invariant). Note that we
do not need to prove at this time whether the contract is actually respected
by charge. This can be postponed. In fact, the implementation of charge
may well be unknown yet.

The contract can be patched either by adding a precondition or by weak-
ening the postcondition. If we go for the former, the result looks like this:

OCL (1.2)
context PayCard::charge(amount: Integer)
pre : balance + amount < limit and amount >=0
post : balance = balance@pre + amount

OCL

Unfortunately, this is not sufficient to establish the strong operation contract
property either. The problem is that the attribute limit might have been
changed by charge (there is no problem for the argument amount which is im-
mutable according to OCL semantics). One way to proceed is to strengthen
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the postcondition with an expression such as limit=limit@pre. This be-
comes tedious in the presence of many attributes. Even worse, charge could
have destroyed the invariants of other classes involving any public attribute
in the whole system. The problem to succinctly express what has not been
modified by an action is known as the frame problem in Artificial Intelli-
gence [Shoham, 1987]. To get a handle on it, it is much more efficient to
say what has been modified and to assume everything else is not. In JML a
list of locations that are assignable by a method can be specified. OCL lacks
this feature, but can easily be extended. The complete example including an
assignable clause is:

OCL
context PayCard::charge(amount: Integer)
assignable : balance
pre : balance + amount < limit and amount >=0
post : balance = balance@pre + amount

OCL

With this information a proof obligation can be synthesised that establishes
the strong operation contract property. The key point is that the assignable
clause ensures that limit is unchanged and this is enough to establish in-
variant (1.1). Part of the information contained in assignable clauses can
sometimes be derived automatically, for example, the {frozen} property in
the class diagram Fig. 1.2 suggests to leave out the location limit from
the locations modifiable by charge. Of course, the validity of the assignable
clause of a method must be proven for a given implementation.

Even though assignable clauses make proofs much simpler, it is still a
problem that all class invariants in a system can be potentially affected by
any method of any class. There is much ongoing research to alleviate this
problem, for example, program slicing, containment, type-based approaches,
etc. Common to all approaches is the idea that suitable statically checkable
information about which methods affect which classes can be used to soundly
omit most invariants from a proof. Such kind of analyses are indispensable
for modular verification, because practically all proof obligations make it
necessary to include all existing invariants in order to be sound. Modular
verification is discussed in Chapter 8.

1.6 Proving Correctness of Programs

Design and coding should be different activities during software construction.
In formal verification, this is reflected by the fact that we generate quite
different proof obligations for source code verification as compared to design
validation in the previous section. The most standard proof obligation is total
correctness of a method implementation with respect to its contract. Consider
the following implementation of the charge method:
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JAVA

public void charge(int amount) {
if (this.balance + amount >= this.limit) {
this.unsuccessfulOperations++;

} else {
this.balance = this.balance + amount;

}
}

JAVA

Total correctness with respect to contract (1.2) means: if charge is called in
any state satisfying the precondition, then charge terminates normally (that
is, without throwing an exception) and in its final state the postcondition
holds. The assignable clause is not part of this proof obligation, but creates
a proof obligation of its own.

Note that the first branch of the conditional does not compromise cor-
rectness, because the precondition ensures that this branch is never taken.
This shows that both pre- and postconditions of contracts are essential to
specify method correctness.

Correctness cannot be expressed in specification languages such as OCL
or JML, because it is necessary to logically relate specification expressions
and source code in non-trivial ways in order to produce proof obligations.
For example, most notions of a proof obligation for total correctness would
encompass not merely the preconditions of the contract, but also the class
invariant (in fact, all class invariants). Clearly, first-order logic is not sufficient
to express correctness either—a dedicated program logic is necessary.

The best-known program logic is Hoare logic [Hoare, 1969]. In KeY we
use an extension of Hoare logic called dynamic logic [Harel et al., 2000].
The main difference is that dynamic logic is syntactically closed under all
propositional and first-order operators. The advantage is increased expres-
siveness: one can express not merely program correctness, but also security
properties [Mostowski, 2005], correctness of program transformations, or the
validity of assignable clauses. Other verification approaches [Paulson, 1994,
Boyer, 2003] encode program syntax and semantics in higher-order logic, but
this creates considerable overhead, in particular during interactive proving.
Dynamic logic, like Hoare logic, works directly on the source code.

The program logic of KeY is called JAVA CARD DL. It has been axioma-
tised in a sequent calculus and it is relatively complete6 for any given JAVA

CARD program. The actual verification process in KeY can be envisaged as

6 It is well-known that Turing-complete programming languages cannot be com-
pletely axiomatised by first-order program logics. As usual, we supply an in-
duction schema to approximate completeness. The axiomatisation is relatively
complete to Peano arithmetic. The incompleteness phenomenon is irrelevant for
programs that occur in practice.
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symbolic execution of source code. Loops and recursion are handled by induc-
tion over data structures occurring in the verification target. Alternatively,
partial correctness of loops can also be shown by a rule that uses invariants.
Symbolic execution plus induction as a verification paradigm was originally
suggested for informal usage by Burstall [1974]. The idea to use dynamic logic
as a basis for mechanisation of symbolic execution was first realised in the
Karlsruhe Interactive Verifier (KIV) tool [Heisel et al., 1987]. Symbolic execu-
tion is extremely suitable for interactive verification, because proof progress
corresponds to program execution, which makes it easy to interpret interme-
diate stages in a proof and failed proof attempts.

JAVA CARD is a complex language and this is reflected in the logic JAVA

CARD DL. Therefore, in Chapter 3 we break down JAVA CARD DL into sev-
eral modular components. The core component (⇒ Sect. 3.6) defines sym-
bolic execution rules for JAVA programs with bounded loops and without
method calls. Such programs always terminate and it is possible to execute
them symbolically in a fully automatic way. The result is the symbolic state
update reached after the program terminates (more precisely, a set of up-
dates, each corresponding to one or more execution branches). Updates are
applied to first-order postconditions essentially via syntactic substitution,
resulting in pure first-order verification conditions dealt with by the first-
order rules (⇒ Chap. 2). Further components of the JAVA CARD DL calculus
add independent mechanisms for handling loops (⇒ Sect. 3.7) and method
calls (⇒ Sect. 3.8). It is essential for efficiency to simplify resulting state
updates eagerly after each symbolic execution step. Update simplification is
contained in a separate component (⇒ Sect. 3.9).

Full treatment of some JAVA features is so complex that particular chap-
ters have been devoted to them. For example, the charge method above is
not correct with respect to JAVA integer types, which are finite. How to han-
dle JAVA integer semantics correctly and efficiently is shown in Chapter 12.
There is also a dedicated chapter on data structure induction (⇒ Chap. 11).

JAVA CARD has two features that JAVA does not have:

• Persistent memory that resides in EEPROM, in addition to standard
transient memory residing in RAM.

• Atomic transactions brace a sequence of statements that are either exe-
cuted until completion or not executed at all. Transactions are crucial to
avoid inconsistent data in the case of interrupted computations caused by
card tear-out, power loss, communication failure, etc.

The combination of both features is surprisingly complex to model, because
the semantics of transactions treats the two kinds of memory differently. We
devote Chapter 9 to the logical modelling of JAVA CARD transactions.

As mentioned above, verification based on the JAVA CARD DL calculus
corresponds to symbolic program execution (plus induction). Its rules can,
therefore, be seen as an operational semantics for JAVA CARD. As long as nei-
ther unbounded loops nor recursion occurs, it is possible to execute programs
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symbolically almost without search, even though the full calculus contains
several hundred rules. In the case study in Chapter 14 proofs with several
ten thousand nodes are automatically constructed in a matter of minutes.
At the same time, the KeY prover is very flexible: for example, there is a
rule set that axiomatises Gurevich Abstract State Machines [Nanchen et al.,
2003], one for a fragment of C [Gladisch, 2006], one for a object-oriented
core language called ODL [Platzer, 2004b], and one for simplification of OCL
expressions [Giese and Larsson, 2005]. Work on support for MISRA-C 20047

source code is in progress.
It is interesting to look at the reasons how it is possible to create and

maintain support for such a variety of imperative languages with relatively
modest effort. Many interactive theorem provers are implemented in a meta
programming language for rule and proof construction. The advantage is
generality: not only software verification but any kind of mathematics can
be modelled; in addition, not only rules can be described, but also the way
how to prove them. In contrast to this, the KeY rules must adhere to a very
specific schema language we call taclet [Beckert et al., 2004], which is tailored
to the needs of interactive verification. Taclets specify not only the logical
content of a rule, but also the context and pragmatics of its application. Since
taclets have limited reflection capabilities, the set of primitive rules in JAVA

CARD DL that have to be considered as axiomatic is relatively large with
over a hundred. Soundness of these rules must be shown with external tools
[Ahrendt et al., 2005b, Trentelman, 2005]. But the advantages of taclets are
enormous: they can be efficiently compiled not only into the rule engine, but
also into the automation heuristics and into the GUI. In addition, it is a
matter of hours to master the taclet language. In many cases, new taclets
can be verified within KeY by reflection. In Chapter 4, the taclet concept as
well as correctness of taclets is discussed. An introduction into proof search
and the GUI of the KeY prover is found in Chapter 10.

7 http://www.misra-c2.com/
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First-Order Logic

by

Martin Giese

In this chapter, we introduce a first-order logic. This logic differs in some
respects from what is introduced in most logic text books as classical first-
order logic. The reason for the differences is that our logic has been designed
in such a way that it is convenient for talking about JAVA programs. In
particular our logic includes a type system with subtyping, a feature not
found in most presentations of first-order logic.

Not only the logic itself, but also our presentation of it is different from
what is found in a logic textbook: We concentrate on the definition of the
language and its meaning, motivating most aspects from the intended appli-
cation, namely the description of JAVA programs. We give many examples of
the concepts introduced, to clarify what the definitions mean. In contrast to
an ordinary logic text, we hardly state any theorems about the logic (with the
notable exception of Section 2.6), and we prove none of them. The intention
of this book is not to teach the reader how to reason about logics, but rather
how to use one particular logic for a particular purpose.

The reader interested in the theoretical background of first-order logic in
the context of automated deduction might want to read the book of Fitting
[1996], or that of Goubault-Larrecq and Mackie [1997]. There are a number
of textbooks covering first-order logic in general: by Ben-Ari [2003], Enderton
[2000], Huth and Ryan [2004], Nerode and Shore [1979], or for the mathemat-
ically oriented reader Ebbinghaus et al. [1984]. To the best of our knowledge
the only textbooks covering many-sorted logic, but not allowing subsorts, are
those by Manzano [1996] and Gallier [1986]. For the technical details of the
particular logic described in this chapter, see [Giese, 2005].

2.1 Types

We want to define the type system of our logic in a way that makes the logic
particularly convenient to reason about objects of the JAVA programming

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 21–68, 2007.
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language. The type system of the logic therefore matches JAVA’s type system
in many ways.1

Before we define our type system, let us point out an important fact about
the concept of types in JAVA.

In JAVA, there are two type concepts that should not be confused:

1. Every object created during the execution of a JAVA program has a dy-
namic type. If an object is created with the expression new C(...), then
C is the dynamic type of the newly created object. The dynamic type
of an object is fixed from its creation until it is garbage collected. The
dynamic type of an object can never be an interface type or an abstract
class type.

2. Every expression occurring in a JAVA program has a static type. This sta-
tic type is computed by the compiler from the literals, variables, methods,
attributes, etc. that constitute the expression, using the type information
in the declarations of these constituents. The static type is used for in-
stance to determine which declaration an identifier refers to. A variable
declaration C x; determines the static type C of the variable x when it
occurs in an expression. Via a set of assignment compatibility rules, it
also determines which static types are allowed for an expression e in an
assignment x = e. In contrast to dynamic types, static types can also be
abstract class types or interface types.

Every possible dynamic type can also occur as a static type. The static types
are ordered in a type hierarchy. It therefore makes sense to talk about the
dynamic type of an object being a subtype of some static type.

The connection between dynamic types and static types is this: The dy-
namic type of an object that results from evaluating an expression is always
a subtype of the static type of that expression. For variables or attributes
declared to be of type C, this means that the dynamic type of their value at
runtime is always a subtype of C.

So, does a JAVA object have several types? No, an object has only a
dynamic type, and it has exactly one dynamic type. However, an object can
be used wherever a static type is required that is a supertype of its dynamic
type.

We reflect this distinction in our logic by assigning static types to expres-
sions (“terms”) and dynamic types to their values (“domain elements”).

We keep the discussion of the logic independent of any particular class
library, by introducing the notion of a type hierarchy, which groups all the
relevant information about the types and their subtyping relationships.

Definition 2.1. A type hierarchy is a quadruple (T , Td, Ta,�) of

• a finite set of static types T ,

1 It turns out that the resulting logic is reminiscent of Order-Sorted Algebras
[Goguen and Meseguer, 1992].
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• a finite set of dynamic types Td,
• a finite set of abstract types Ta, and
• a subtype relation � on T ,

such that

• T = Td ∪̇ Ta

• There is an empty type ⊥ ∈ Ta and a universal type � ∈ Td.
• � is a reflexive partial order on T , i.e., for all types A, B, C ∈ T ,

A � A
if A � B and B � A then A = B
if A � B and B � C then A � C

• ⊥ � A � � for all A ∈ T .
• T is closed under greatest lower bounds w.r.t. �, i.e., for any A, B ∈ T ,

there is an2 I ∈ T such that I � A and I � B and for any C ∈ T such
that C � A and C � B, it holds that C � I. We write A � B for the
greatest lower bound of A and B and call it the intersection type of A
and B. The existence of A �B also guarantees the existence of the least
upper bound A 	B of A and B, called the union type of A and B.

• Every non-empty abstract type A ∈ Ta \ {⊥} has a non-abstract subtype:
B ∈ Td with B � A.

We say that A is a subtype of B if A � B. The set of non-empty static types
is denoted by Tq := T \ {⊥}.

Note 2.2. In JAVA, interface types and abstract class types cannot be instan-
tiated: the dynamic type of an object can never be an interface type or an
abstract class type. We reflect this in our logic by dividing the set of types
into two partitions:

T = Td ∪̇ Ta

Td is the set of possible dynamic types, while Ta contains the abstract types,
that can only occur as static types. The distinction between abstract class
types and interface types is not important in this chapter, so we simply call
all types that cannot be instantiated abstract.

The empty type ⊥ is obviously abstract. Moreover, any abstract type that
has no subtypes but ⊥ would necessarily also be empty, so we require some
non-abstract type to lie between any non-empty abstract type and the empty
type.

Note 2.3. We consider only finite type hierarchies. In practice, any given JAVA

program is finite, and can thus mention only finitely many types. The lan-
guage specification actually defines infinitely many built-in types, namely the
nested array types, e.g., int[], int[][], int[][][], etc. Still, even though

2 It is well-known that the greatest lower bound is unique if it exists.



24 2 First-Order Logic

there are conceptually infinitely many types, any reasoning in our system is
always in the context of a given fixed program, and only finitely many types
are needed in that program.

The reason for restricting the logic to finite type hierarchies is that the
construction of a calculus (⇒ Sect. 2.5) becomes problematic in the presence
of infinite hierarchies and abstract types. We do not go into the intricate
details in this text.

Note 2.4. We do not consider the universal type � to be abstract, which
means that there might be objects that belong to �, but to none of the more
specific types. In JAVA this cannot happen: Any value is either of a primitive
type or of a reference type, in which case its type is a subtype of Object.
We can easily forbid objects of dynamic type � when we apply our logic to
JAVA verification. On the other hand, simple explanatory examples that do
not require a “real” type hierarchy are more easily formulated if � and ⊥ are
the only types.

Note 2.5. In JAVA, the primitive types int, boolean, etc. are conceptually
quite different from the class and interface types. We do not need to make
this difference explicit in our definition of the logic, at least not until a much
later point. For the time being, the important property of an int value is
that there are indeed values that have the type int and no other type at
runtime. Hence, int, like all other primitive types, belongs to the dynamic,
i.e., the non-abstract types.

Most of the notions defined in the remainder of this chapter depend on some
type hierarchy. In order to avoid cluttering the notation, we assume that a
certain fixed type hierarchy (T , Td, Ta,�) is given, to which all later defini-
tions refer.

Example 2.6. Consider the type hierarchy in Fig. 2.1, which is mostly taken
from the JAVA Collections Framework. Arrows go from subtypes to super-
types, and abstract types are written in italic letters (⊥ is of course also
abstract).

In this hierarchy, the following hold:

T = {�, Object, AbstractCollection, List,
AbstractList, ArrayList, Null, int,⊥}

Tq = {�, Object, AbstractCollection, List, AbstractList, ArrayList, Null, int}
Td = {�, Object, ArrayList, Null, int}

Ta = {AbstractCollection, List, AbstractList,⊥}
int �Object = ⊥
int 	Object = �
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�

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥

Fig. 2.1. An example type hierarchy

AbstractCollection � List = AbstractList

AbstractCollection 	 List = Object

Object �Null = Null

Object 	Null = Object

Example 2.7. Consider the type hierarchy (T , Td, Ta,�) with:

T := {�,⊥}, Td := {�}, Ta := {⊥}, ⊥ � � .

We call this the minimal type hierarchy. With this hierarchy, our notions
are exactly like those for untyped first-order logic as introduced in other
textbooks.

2.2 Signatures

A method in the JAVA programming language can be called, usually with a
number of arguments, and it will in general compute a result which it returns.
The same idea is present in the form of function or procedure definitions in
many other programming languages.

The equivalent concepts in a logic are functions and predicates. A function
gives a value depending on a number of arguments. A predicate is either true
of false, depending on its arguments. In other words, a predicate is essentially
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a Boolean-valued function. But it is customary to consider functions and
predicates separately.

In JAVA, every method has a declaration which states its name, the (static)
types of the arguments it expects, the (static) type of its return value, and
also other information like thrown exceptions, static or final flags, etc. The
compiler uses the information in the declaration to determine whether it is
legal to call the method with a given list of arguments.3 All types named in a
declaration are static types. At run-time, the dynamic type of any argument
may be a subtype of the declared argument type, and the dynamic type of
the value returned may also be a subtype of the declared return type.

In our logic, we also fix the static types for the arguments of predicates
and functions, as well as the return type of functions. The static types of all
variables are also fixed. We call a set of such declarations a signature.

The main aspect of JAVA we want to reflect in our logic is its type sys-
tem. Two constituents of JAVA expressions are particularly tightly linked to
the meaning of dynamic and static types: type casts and instanceof ex-
pressions. A type cast (A)o changes the static type of an expression o, leav-
ing the value (and therefore the dynamic type) unchanged. The expression
o instanceof A checks whether the dynamic type of o is a subtype of A.
There are corresponding operations in our logic. But instead of considering
them to be special syntactic entities, we treat them like usual function resp.
predicate symbols which we require to be present in any signature.

Definition 2.8. A signature (for a given type hierarchy (T , Td, Ta,�)) is a
quadruple (VSym, FSym, PSym, α) of

• a set of set of variable symbols VSym,
• a set of function symbols FSym,
• a set of predicate symbols PSym, and
• a typing function α,

such that4

• α(v) ∈ Tq for all v ∈ VSym,
• α(f) ∈ T ∗

q × Tq for all f ∈ FSym, and
• α(p) ∈ T ∗

q for all p ∈ PSym.
• There is a function symbol (A) ∈ FSym with α((A)) = ((�), A) for any

A ∈ Tq, called the cast to type A.
• There is a predicate symbol .= ∈ PSym with α( .=) = (�,�).
• There is a predicate symbol �−A ∈ PSym with α(�−A) = (�) for any

A ∈ T , called the type predicate for type A.

We use the following notations:
3 The information is also used to disambiguate calls to overloaded methods, but

this is not important here.
4 We use the standard notation A∗ to denote the set of (possibly empty) sequences

of elements of A.
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• v:A for α(v) = A,
• f : A1, . . . , An → A for α(f) = ((A1, . . . , An), A), and
• p : A1, . . . , An for α(p) = (A1, . . . , An).

A constant symbol is a function symbol c with α(c) = ((), A) for some type A.

Note 2.9. We require the static types in signatures to be from Tq, which
excludes the empty type ⊥. Declaring, for instance, a variable of the empty
type would not be very sensible, since it would mean that the variable may
not have any value. In contrast to JAVA, we allow using the Null type in a
declaration, since it has the one element null.

Note 2.10. While the syntax (A)t for type casts is the same as in JAVA, we
use the syntax t �−A instead of instanceof for type predicates. One reason
for this is to save space. But the main reason is to remind ourselves that
our type predicates have a slightly different semantics from that of the JAVA

construct, as we will see in the following sections.

Note 2.11. In JAVA, there are certain restrictions on type casts: a cast to some
type can only be applied to expressions of certain other types, otherwise the
compiler signals an error. We are less restrictive in this respect, an object of
any type may be cast to an object of any other (non-⊥) type. A similar obser-
vation holds for the type predicates, which may be applied in any situation,
whereas JAVA’s instanceof is subject to certain restrictions.

Note 2.12. We use the symbol .= in our logic, to distinguish it from the equal-
ity = of the mathematical meta-level. For instance, t1

.= t2 is a formula, while
φ = (t1

.= t2) is a statement that two formulae are equal.
Like casts, our equality predicate .= can be applied to terms of arbitrary

types. It should be noted that the KeY system recognises certain cases where
the equality is guaranteed not to hold and treats them as syntax errors. In
particular, this happens for equalities between different primitive types and
between a primitive type and a reference type. In contrast, the JAVA Language
Specification also forbids equality between certain pairs of reference types.
Both our logic and the implementation in the KeY system allow equalities
between arbitrary reference types.

Note 2.13. In our discussion of the logic, we do not allow overloading: α gives
a unique type to every symbol. This is not a real restriction: instead of an
overloaded function f with f : A → B and f : C → D, one can instead use
two functions f1 : A→ B and f2 : C → D. Of course, the KeY system allows
using overloaded methods in JAVA programs, but these are not represented
as overloaded functions in the logic.

Example 2.14. For the type hierarchy from Example 2.6, see Fig. 2.1, a sig-
nature may contain:
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VSym = {n, o, l, a} with n:int, o:Object, l:List, a:ArrayList
FSym = {zero, plus, empty, length, (�), (Object), (int), . . .}

with
zero : int
plus : int, int→ int
empty : List
length : List→ int
(�) : � → �
(Object) : � → Object
(int) : � → int

...

and

PSym = {isEmpty, .=, �−�, �−Object, �−int, . . .}

with
isEmpty : List
.= : �,�
�−� : �
�−Object : �
�−int : �

...

In this example, zero and empty are constant symbols.

2.3 Terms and Formulae

Where the JAVA programming language has expressions, a logic has terms
and formulae. Terms are composed by applying function symbols to variable
and constant symbols.

Definition 2.15. Given a signature (VSym, FSym, PSym, α), we inductively
define the system of sets {TrmA}A∈T of terms of static type A to be the least
system of sets such that

• x ∈ TrmA for any variable x:A ∈ VSym,
• f(t1, . . . , tn) ∈ TrmA for any function symbol f : A1, . . . , An → A ∈

FSym, and terms ti ∈ TrmA′
i

with A′
i � Ai for i = 1, . . . , n.

For type cast terms, we write (A)t instead of (A)(t). We write the static type
of t as σ(t) := A for any term t ∈ TrmA.

A ground term is a term that does not contain variables.

Defining terms as the “least system of sets” with this property is just the
mathematically precise way of saying that all entities built in the described
way are terms, and no others.
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Example 2.16. With the signature from Example 2.14, the following are
terms:

n a variable
empty a constant
plus(n, n) a function applied to two subterms
plus(n, plus(n, n)) nested function applications
length(a) a function applied to a term of some subtype
length((List)o) a term with a type cast
(int)o a type cast we do not expect to “succeed”

On the other hand, the following are not terms:

plus(n) wrong number of arguments
length(o) wrong type of argument
isEmpty(a) isEmpty is a predicate symbol, not a function symbol
(⊥)n a cast to the empty type

Formulae are essentially Boolean-valued terms. They may be composed by
applying predicate symbols to terms, but there are also some other ways of
constructing formulae. Like with predicate and function symbols, the sepa-
ration between terms and formulae in logic is more of a convention than a
necessity. If one wants to draw a parallel to natural language, one can say
that the formulae of a logic correspond to statements in natural language,
while the terms correspond to the objects that the statements are about.

Definition 2.17. We inductively define the set of formulae Fml to be the
least set such that

• p(t1, . . . , tn) ∈ Fml for any predicate symbol p : A1, . . . , An and terms
ti ∈ TrmA′

i
with A′

i � Ai for i = 1, . . . , n,
• true, false ∈ Fml.
• ! φ, (φ | ψ), (φ & ψ), (φ −> ψ) ∈ Fml for any φ, ψ ∈ Fml.
• ∀x.φ, ∃x.φ ∈ Fml for any φ ∈ Fml and any variable x.

For type predicate formulae, we write t �−A instead of �−A(t). For equalities,
we write t1

.= t2 instead of .=(t1, t2). An atomic formula or atom is a formula
of the shape p(t1, . . . , tn) (including t1

.= t2 and t �−A). A literal is an atom
or a negated atom ! p(t1, . . . , tn).

We use parentheses to disambiguate formulae. For instance, (φ & ψ) | ξ and
φ & (ψ | ξ) are different formulae.

The intended meaning of the formulae is as follows:

p(. . .) The property p holds for the given arguments.
t1

.= t2 The values of t1 and t2 are equal.
true always holds.
false never holds.
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! φ The formula φ does not hold.
φ & ψ The formulae φ and ψ both hold.
φ | ψ At least one of the formulae φ and ψ holds.
φ −> ψ If φ holds, then ψ holds.
∀x.φ The formulae φ holds for all values of x.
∃x.φ The formulae φ holds for at least one value of x.

In the next section, we give rigorous definitions that formalise these intended
meanings.

KeY System Syntax, Textbook Syntax

The syntax used in this chapter is not exactly that used in the KeY system,
mainly to save space and to make formulae easier to read. It is also different
from the syntax used in other accounts of first-order logic, because that
would make our syntax too different from the ASCII-oriented one actually
used in the system. Below, we give the correspondence between the syntax
of this chapter, that of the KeY system, and that of a typical introduction
to first-order logic.

this chapter KeY system logic textbooks
(A)t (A) t —
t �−A A::contains(t) —
t1

.= t2 t1 = t2 t1
.= t2, t1 ≈ t2, etc.

true true T , tt, �, etc.
false false F , ff, ⊥, etc.
! φ !φ ¬φ

φ & ψ φ &ψ φ ∧ ψ
φ | ψ φ |ψ φ ∨ ψ

φ −> ψ φ ->ψ φ→ ψ
∀x.φ \forall A x; φ ∀x.φ, (∀x)φ, etc.
∃x.φ \exists A x; φ ∃x.φ, (∃x)φ, etc.

The KeY system requires the user to give a type for the bound variable
in quantifiers. In fact, the system does not know of a global set VSym of
variable symbols with a fixed typing function α, as we suggested in Def. 2.8.
Instead, each variable is “declared” by the quantifier that binds it, so that
is also where the type is given.

Concerning the “conventional” logical syntax, note that most accounts
of first-order logic do not discuss subtypes, and accordingly, there is no
need for type casts or type predicates. Also note that the syntax can vary
considerably, even between conventional logic textbooks.

The operators ∀ and ∃ are called the universal and existential quantifier,
respectively. We say that they bind the variable x in the sub-formula φ, or
that φ is the scope of the quantified variable x. This is very similar to the way
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in which a JAVA method body is the scope of the formal parameters declared
in the method header. All variables occurring in a formula that are not bound
by a quantifier are called free. For the calculus that is introduced later in this
chapter, we are particularly interested in closed formulae, which have no free
variables. These intuitions are captured by the following definition:

Definition 2.18. We define fv(t), the set of free variables of a term t, by

• fv(v) = {v} for v ∈ VSym, and
• fv(f(t1, . . . , tn)) =

⋃
i=1,...,n fv(ti).

The set of free variables of a formula is defined by

• fv(p(t1, . . . , tn)) =
⋃

i=1,...,n fv(ti),
• fv(t1

.= t2) = fv(t1) ∪ fv(t2),
• fv(true) = fv(false) = ∅,
• fv(! φ) = fv(φ),
• fv(φ & ψ) = fv(φ | ψ) = fv(φ −> ψ) = fv(φ) ∪ fv(ψ), and
• fv(∀x.φ) = fv(∃x.φ) = fv(φ) \ {x}.
A formula φ is called closed iff fv(φ) = ∅.

Example 2.19. Given the signature from Example 2.14, the following are for-
mulae:

isEmpty(a) an atomic formula with free variable a
a

.= empty an equality atom with free variable a
o �− List a type predicate atom with free variable o
o �−⊥ a type predicate atom for the empty type with free variable o
∀l.(length(l) .= zero −> isEmpty(l))

a closed formula with a quantifier
o

.= empty | ∀o.o �−�
a formula with one free and one bound occurrence of o

On the other hand, the following are not formulae:

length(l) length is not a predicate symbol.
isEmpty(o) wrong argument type
isEmpty(isEmpty(a))

applying predicate on formula, instead of term
a = empty equality should be .=
∀l.length(l) applying a quantifier to a term

2.4 Semantics

So far, we have only discussed the syntax, the textual structure of our logic.
The next step is to assign a meaning, known as a semantics, to the terms
and formulae.
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2.4.1 Models

For compound formulae involving &, |, ∀, etc., our definition of a seman-
tics should obviously correspond to their intuitive meaning as explained in
the previous section. What is not clear is how to assign a meaning in the
“base case”, i.e., what is the meaning of atomic formulae like p(a). It seems
clear that this should depend on the meaning of the involved terms, so the
semantics of terms also needs to be defined.

We do this by introducing the concept of a model. A model assigns a
meaning (in terms of mathematical entities) to the basic building blocks of
our logic, i.e., the types, and the function and predicate symbols. We can
then define how to combine these meanings to obtain the meaning of any
term or formula, always with respect to some model.

Actually, a model fixes only the meaning of function and predicate sym-
bols. The meaning of the third basic building block, namely the variables is
given by variable assignments which is introduced in Def. 2.23.5

When we think of a method call in a JAVA program, the returned value
depends not only on the values of the arguments, but possibly also on the
state of some other objects. Calling the method again in a modified state
might give a different result. In this chapter, we do not take into account this
idea of a changing state. A model gives a meaning to any term or formula, and
in the same model, this meaning never changes. Evolving states will become
important in Chapter 3.

Before we state the definition, let us look into type casts, which receive a
special treatment. Recall that in JAVA, the evaluation of a type cast expression
(A)o checks whether the value of o has a dynamic type equal to A or a subtype
of A. If this is the case, the value of the cast is the same as the value of o,
though the expression (A)o has static type A, independently of what the
static type of o was. If the dynamic type of the value of o does not fit the
type A, a ClassCastException is thrown.

In a logic, we want every term to have a value. It would greatly complicate
things if we had to take things like exceptions into account. We therefore take
the following approach:

1. The value of a term (A)t is the same as the value of t, provided the value
of t “fits” the type A.

2. Otherwise, the term is given an arbitrary value, but still one that “fits”
its static type A.

If we want to differentiate between these two cases, we can use a type predi-
cate formula t �−A: this is defined to hold exactly if the value of t “fits” the
type A.

5 The reason for keeping the variables separate is that the variable assignment is
occasionally modified in the semantic definitions, whereas the model stays the
same.
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Definition 2.20. Given a type hierarchy and a signature as before, a model
is a triple (D, δ, I) of

• a domain D,
• a dynamic type function δ : D → Td, and
• an interpretation I,

such that, if we define6

DA := {d ∈ D | δ(d) � A} ,

it holds that

• DA is non-empty for all A ∈ Td,
• for any f : A1, . . . , An → A ∈ FSym, I yields a function

I(f) : DA1 × . . .×DAn → DA ,

• for any p : A1, . . . , An ∈ PSym, I yields a subset

I(p) ⊆ DA1 × · · · × DAn ,

• for type casts, I((A))(x) = x if δ(x) � A, otherwise I((A))(x) is an
arbitrary but fixed7 element of DA, and

• for equality, I( .=) = {(d, d) | d ∈ D},
• for type predicates, I(�−A) = DA.

As we promised in the beginning of Section 2.1, every domain element d has
a dynamic type δ(d), just like every object created when executing a JAVA

program has a dynamic type. Also, just like in JAVA, the dynamic type of a
domain element cannot be an abstract type.

Example 2.21. For the type hierarchy from Example 2.6 and the signature
from Example 2.14, the “intended” model M1 = (D, δ, I) may be described
as follows:

Given a state in the execution of a JAVA program, let AL be the set of all
existing ArrayList objects. We assume that there is at least one ArrayList
object e that is currently empty. We denote some arbitrary but fixed
ArrayList object (possibly equal to e) by o. Also, let I := {−231, . . . , 231−1}
be the set of all possible values for a JAVA int.8 Now let

6 DA is our formal definition of the set of all domain elements that “fit” the type A.
7 The chosen element may be different for different arguments, i.e., if x �= y, then
I((A))(x) �= I((A))(y) is allowed.

8 The question of how best to reason about JAVA arithmetic is actually quite
complex, and is covered in Chapter 12. Here, we take a restricted range of integers
for the purpose of explaining the concept of a model.



34 2 First-Order Logic

D := AL ∪̇ I ∪̇ {null} .

We define δ by

δ(d) :=






int if d ∈ I

ArrayList if d ∈ AL

Null if d = null

With those definitions, we get

D� = AL ∪̇ I ∪̇ {null}
Dint = I

DObject = DAbstractCollection = DList =
DAbstractList = DArrayList = AL ∪̇ {null}

DNull = {null}
D⊥ = ∅

Now, we can fix the interpretations of the function symbols:

I(zero)() := 0
I(plus)(x, y) := x + y (with JAVA’s overflow behaviour)
I(empty)() := e

I(length)(l) :=

{
the length of l if l �= null

0 if l = null

Note that the choice of 0 for the length of null is arbitrary, since null does
not represent a list. Most of the interpretation of casts is fixed, but it needs
to be completed for arguments that are not of the “right” type:

I((�))(d) := d

I((int))(d) :=

{
d if d ∈ I

23 otherwise

I((Object))(d) :=

{
d if d ∈ AL ∪̇ {null}
o otherwise

...

Note how the interpretation must produce a value of the correct type for
every combination of arguments, even those that would maybe lead to a
NullPointerException or a ClassCastException in JAVA execution. For
the isEmpty predicate, we can define:

I(isEmpty) := {l ∈ AL | l is an empty ArrayList} .

The interpretation of .= and of the type predicates is fixed by the definition
of a model:
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I( .=) := {(d, d) | d ∈ D}
I(�−�) := AL ∪̇ I ∪̇ {null}
I(�−int) := I

I(�−Object) := AL ∪̇ {null}
...

Example 2.22. While the model in the previous example follows the intended
meanings of the types, functions, and predicates quite closely, there are also
models that have a completely different behaviour. For instance, we can define
a modelM2 with

D := {�, �} with δ(�) := int and δ(�) := Null .

This gives us:

D� = {�, �}
Dint = {�}

DObject = DAbstractCollection = DList =
DAbstractList = DArrayList = DNull = {�}

D⊥ = ∅

The interpretation of the functions can be given by:

I(zero)() := �

I(plus)(x, y) := �

I(empty)() := �

I(length)(l) := �

I((�))(d) := d
I((int))(d) := �

I((Object))(d) := �
...

and the predicates by:

I(isEmpty) := ∅
I( .=) := {(�, �), (�, �)}
I(�−�) := {�, �}
I(�−int) := {�}

I(�−Object) := {�}
...

The following definitions apply to this rather nonsensical model as well as to
the one defined in the previous example. In Section 2.4.3, we introduce a way
of restricting which models we are interested in.

2.4.2 The Meaning of Terms and Formulae

A model is not quite sufficient to give a meaning to an arbitrary term or
formula: it says nothing about the variables. For this, we introduce the notion
of a variable assignment.



36 2 First-Order Logic

Definition 2.23. Given a model (D, δ, I), a variable assignment is a func-
tion β : VSym→ D, such that

β(x) ∈ DA for all x:A ∈ VSym .

We also define the modification βd
x of a variable assignment β for any variable

x:A and any domain element d ∈ DA by:

βd
x(y) :=

{
d if y = x

β(y) otherwise

We are now ready to define the semantics of terms.

Definition 2.24. LetM = (D, δ, I) be a model, and β a variable assignment.
We inductively define the valuation function valM by

• valM,β(x) = β(x) for any variable x.
• valM,β(f(t1, . . . , tn)) = I(f)(valM,β(t1), . . . , valM,β(tn)).

For a ground term t, we simply write valM(t), since valM,β(t) is independent
of β.

Example 2.25. Given the signature from Example 2.14 and the models M1

andM2 from Examples 2.21 and 2.22, we can define variable assignments β1

resp. β2 as follows:

β1(n) := 5
β1(o) := null
β1(l) := e
β1(a) := e

β2(n) := �

β2(o) := �

β2(l) := �

β2(a) := �

We then get the following values for the terms from Example 2.16:

t valM1,β1(t) valM2,β2(t)
n 5 �

empty e �

plus(n, n) 10 �

plus(n, plus(n, n)) 15 �

length(a) 0 �

length((List)o) 0 �

(int)o 23 �

The semantics of formulae is defined in a similar way: we define a validity
relation that says whether some formula is valid in a given model under some
variable assignment.

Definition 2.26. LetM = (D, δ, I) be a model, and β a variable assignment.
We inductively define the validity relation |= by
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• M, β |= p(t1, . . . , tn) iff (valM,β(t1), . . . , valM,β(tn)) ∈ I(p).
• M, β |= true.
• M, β �|= false.
• M, β |= ! φ iff M, β �|= φ.
• M, β |= φ & ψ iff M, β |= φ and M, β |= ψ.
• M, β |= φ | ψ iff M, β |= φ or M, β |= ψ, or both.
• M, β |= φ −> ψ iff if M, β |= φ, then also M, β |= ψ.
• M, β |= ∀x.φ (for a variable x:A) iff M, βd

x |= φ for every d ∈ DA.
• M, β |= ∃x.φ (for a variable x:A) iff there is some d ∈ DA such that
M, βd

x |= φ.

If M, β |= φ, we say that φ is valid in the model M under the variable
assignment β. For a closed formula φ, we write M |= φ, since β is then
irrelevant.

Example 2.27. Let us consider the semantics of the formula

∀l.(length(l) .= zero −> isEmpty(l))

in the modelM1 described in Example 2.21. Intuitively, we reason as follows:
the formula states that any list l which has length 0 is empty. But in our
model, null is a possible value for l, and null has length 0, but is not
considered an empty list. So the statement does not hold.

Formally, we start by looking at the smallest constituents and proceed by
investigating the validity of larger and larger sub-formulae.

1. Consider the term length(l). Its value valM1,β(length(l)) is the length of
the ArrayList object identified by β(l), or 0 if β(l) = null.

2. valM1,β(zero) is 0.
3. Therefore, M1, β |= length(l) .= zero exactly if β(l) is an ArrayList

object of length 0, or β(l) is null.
4.M1, β |= isEmpty(l) iff β(l) is an empty ArrayList object.
5. Whenever the length of an ArrayList object is 0, it is also empty.
6. null is not an empty ArrayList object.
7. Hence,M1, β |= length(l) .= zero −> isEmpty(l) holds iff β(l) is not null.
8. For any β, we haveM1, β

null
l �|= length(l) .= zero −> isEmpty(l), because

βnull
l (l) = null.

9. Therefore,M1, β �|= ∀l.(length(l) .= zero −> isEmpty(l)).

In the other model,M2 from Example 2.22,

1. valM2,β(length(l)) = �, whatever β(l) is.
2. valM2,β(zero) is also �.
3. Therefore,M2, β |= length(l) .= zero holds for any β.
4. There is no β(l) such that M2, β |= isEmpty(l) holds.
5. Thus, there is no β such thatM2, β |= length(l) .= zero −> isEmpty(l).
6. In particular,M2, β

null
l �|= length(l) .= zero −> isEmpty(l) for all β.

7. Therefore,M2, β �|= ∀l.(length(l) .= zero −> isEmpty(l)).
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This result is harder to explain intuitively, since the modelM2 is itself unin-
tuitive. But our description of the model and the definitions of the semantics
allow us to determine the truth of any formula in the model.

In the example, we have seen a formula that is valid in neither of the two
considered models. However, the reader might want to check that there are
also models in which the formula holds.9 But there are also formulae that
hold in all models, or in none. We have special names for such formulae.

Definition 2.28. Let a fixed type hierarchy and signature be given.10

• A formula φ is logically valid if M, β |= φ for any model M and any
variable assignment β.

• A formula φ is satisfiable if M, β |= φ for some model M and some
variable assignment β.

• A formula is unsatisfiable if it is not satisfiable.

It is important to realize that logical validity is a very different notion from
the validity in a particular model. We have seen in our examples that there
are many models for any given signature, most of them having nothing to do
with the intended meaning of symbols. While validity in a model is a relation
between a formula and a model (and a variable assignment), logical validity
is a property of a formula. In Section 2.5, we show that it is even possible to
check logical validity without ever talking about models.

For the time being, here are some examples where the validity/satisfiabil-
ity of simple formulae is determined through explicit reasoning about models.

Example 2.29. For any formula φ, the formula

φ | ! φ

is logically valid: Consider the semantics of φ. For any model M and any
variable assignment β, either M, β |= φ, or not. If M, β |= φ, the semantics
of | in Def. 2.26 tells us that alsoM, β |= φ | ! φ. Otherwise, the semantics of
the negation ! tells us that M, β |= ! φ, and therefore again M, β |= φ | ! φ.
So our formula holds in any model, under any variable assignment, and is
thus logically valid.

Example 2.30. For any formula φ, the formula

φ & ! φ

9 Hint: define a model like M1, but let I(length)(null) = −1.
10 It is important to fix the type hierarchy: there are formulae which are logically

valid in some type hierarchies, unsatisfiable in others, and satisfiable but not
valid in others still. For instance, it might amuse the interested reader to look
for such type hierarchies for the formula ∃x.x �− A & ! x �− B.
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is unsatisfiable: Consider an arbitrary, but fixed model M and a variable
assignment β. For M, β |= φ & ! φ to hold, according to Def. 2.26, both
M, β |= φ andM, β |= ! φ must hold. This cannot be the case, because of the
semantics of !. Hence,M, β |= φ & !φ does not hold, irrespective of the model
and the variable assignment, which means that the formula is unsatisfiable.

Example 2.31. The formula
∃x.x

.= x

for some variable x:A with A ∈ Tq is logically valid: Consider an arbitrary, but
fixed model M and a variable assignment β. We have required in Def. 2.20
that DA is non-empty. Pick an arbitrary element a ∈ DA and look at the
modified variable assignment βa

x . Clearly, M, βa
x |= x

.= x, since both sides
of the equation are equal terms and must therefore evaluate to the same
domain element (namely a). According to the semantics of the ∃ quantifier
in Def. 2.26, it follows that M, β |= x

.= x. Since this holds for any model
and variable assignment, the formula is logically valid.

Example 2.32. The formula

∀l.(length(l) .= zero −> isEmpty(l))

is satisfiable. It is not logically valid, since it does not hold in every model,
as we have seen in Example 2.27. To see that it is satisfiable, take a model
M with

I(isEmpty) := DList

so that isEmpty(l) is true for every value of l. Accordingly, inM, the implica-
tion length(l) .= zero −> isEmpty(l) is also valid for any variable assignment.
The semantics of the ∀ quantifier then tells us that

M |= ∀l.(length(l) .= zero −> isEmpty(l))

so the formula is indeed satisfied by M.

Example 2.33. The formula

(A)x .= x −> x �−A

with x:� is logically valid for any type hierarchy and any type A: Remember
that

valM,β((A)x) = I((A))(β(x)) ∈ DA .

Now, if β(x) ∈ DA, then valM,β((A)x) = β(x), so M, β |= (A)x .= x. On
the other hand, if β(x) �∈ DA, then it cannot be equal to valM,β((A)x), so
M, β �|= (A)x .= x. Thus, if (A)x .= x, holds, then β(x) ∈ DA, and therefore
M, β |= x �−A.

The converse
x �−A −> (A)x .= x

is also logically valid for any type hierarchy and any type A: ifM, β |= x�−A,
then β ∈ DA, and thereforeM, β |= (A)x .= x.
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Logical Consequence

A concept that is quite central to many other introductions to logic, but
that is hardly encountered when dealing with the KeY system, is that of
logical consequence. We briefly explain it here.

Given a set of closed formulae M and a formula φ, φ is said to be
a logical consequence of M , written M |= φ, iff for all models M and
variable assignments β such that M, β |= ψ for all ψ ∈ M , it also holds
that M, β |= φ.

In other words, φ is not required to be satisfied in all models and under
all variable assignments, but only under those that satisfy all elements
of M .

For instance, for any closed formulae φ and ψ, {φ, ψ} |= φ & ψ, since
φ & ψ holds for allM, β for which both φ and ψ hold.

Two formulae φ and ψ are called logically equivalent if for all models
M and variable assignments β, M, β |= φ iffM, β |= ψ.

Note 2.34. The previous example shows that type predicates are not really
necessary in our logic, since a sub-formula t �− A could always be replaced
by (A)t .= t. In the terminology of the above sidebar, the two formulae
are logically equivalent. Another formula that is easily seen to be logically
equivalent to t �−A is

∃y.y
.= t

with a variable y:A. It is shown in Section 2.5.6 however, that the main way
of reasoning about types, and in particular about type casts in our calculus is
to collect information about dynamic types using type predicates. Therefore,
adding type predicates to our logic turns out to be the most convenient
approach for reasoning, even if they do not add anything to the expressivity.

2.4.3 Partial Models

Classically, the logically valid formulae have been at the centre of attention
when studying a logic. However, when dealing with formal methods, many
of the involved types have a fixed intended meaning. For instance, in our
examples, the type int is certainly intended to denote the 4 byte two’s com-
plement integers of the JAVA language, and the function symbol plus should
denote the addition of such integers.11 On the other hand, for some types
and symbols, we are interested in all possible meanings.

To formally express this idea, we introduce the concept of a partial model,
which gives a meaning to parts of a type hierarchy and signature. We then
define what it means for a model to extend a partial model, and look only at
such models.
11 We repeat that the issue of reasoning about JAVA arithmetic in the KeY system

is actually more complex (⇒ Chap. 12).
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The following definition of a partial model is somewhat more complex
than might be expected. If we want to fix the interpretation of some of the
functions and predicates in our signature, it is not sufficient to say which, and
to give their interpretations. The interpretations must act on some domain,
and the domain elements must have some type. For instance, if we want plus
to represent the addition of JAVA integers, we must also identify a subset of
the domain which should be the domain for the int type.

In addition, we want it to be possible to fix the interpretation of some
functions only on parts of the domain. For instance, we might not want to
fix the result of a division by zero.12

Definition 2.35. Given a type hierarchy (T , Td, Ta,�) and a corresponding
signature (VSym, FSym, PSym, α), we define a partial model to be a quintuple
(T0,D0, δ0, D0, I0) consisting of

• a set of fixed types T0 ⊆ Td,
• a set D0 called the partial domain,
• a dynamic type function δ0 : D0 → T0,
• a fixing function D0, and
• a partial interpretation I0,

where

• DA
0 := {d ∈ D0 | δ0(d) � A} is non-empty for all A ∈ T0,

• for any f : A1, . . . , An → A0 ∈ FSym with all Ai ∈ T0, D0 yields a set of
tuples of domain elements

D0(f) ⊆ DA1
0 × . . .×DAn

0

and I0 yields a function

I0(f) : D0(f)→ DA0
0 ,

and
• for any p : A1, . . . , An ∈ PSym with all Ai ∈ T0, D0 yields a set of tuples

of domain elements

D0(p) ⊆ DA1
0 × · · · × DAn

0

and I0 yields a subset
I0(p) ⊆ D0(p) ,

and
12 Instead of using partial functions for cases like division by zero, i.e., functions

which do not have a value for certain arguments, we consider our functions to
be total, but we might not fix (or know, or care about) the value for some
arguments. This corresponds to the under-specification approach advocated by
Hähnle [2005].
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• for any f : A1, . . . , An → A0 ∈ FSym, resp. p : A1, . . . , An ∈ PSym with
one of the Ai �∈ T0, D0(f) = ∅, resp. D0(p) = ∅.

This is a somewhat complex definition, so we explain the meaning of its
various parts. As mentioned above, a part of the domain needs to be fixed for
the interpretation to act upon, and the dynamic type of each element of that
partial domain needs to be identified. This is the role of T0, D0, and δ0. The
fixing function D0 says for which tuples of domain elements and for which
functions this partial model should prescribe an interpretation. In particular,
if D0 gives an empty set for some symbol, then the partial model does not
say anything at all about the interpretation of that symbol. If D0 gives the
set of all element tuples corresponding to the signature of that symbol, then
the interpretation of that symbol is completely fixed. Consider the special
case of a constant symbol c: there is only one 0-tuple, namely (), so the fixing
function can be either D0(c) = {()}, meaning that the interpretation of c is
fixed to some domain element I0(c)(), or D0(c) = ∅, meaning that it is not
fixed.

Finally, the partial interpretation I0 specifies the interpretation for those
tuples of elements where the interpretation should be fixed.

Example 2.36. We use the type hierarchy from the previous examples, and
add to the signature from Example 2.14 a function symbol div : int, int→ int.
We want to define a partial model that fixes the interpretation of plus to be
the two’s complement addition of four-byte integers that is used by JAVA.
The interpretation of div should behave like JAVA’s division unless the second
argument is zero, in which case we do not require any specific interpretation.
This is achieved by choosing

T0 := {int}
D0 := {−231, . . . , 231 − 1}
δ0(x) := int for all x ∈ D0

D0(plus) := D0 × D0

D0(div) := D0 × (D0 \ {0})
I0(plus)(x, y) := x + y (with JAVA overflow)
I0(div)(x, y) := x/y (with JAVA overflow and rounding)

We have not yet defined exactly what it means for some model to adhere
to the restrictions expressed by a partial model. In order to do this, we first
define a refinement relation between partial models. Essentially, one partial
model refines another if its restrictions are stronger, i.e., if it contains all the
restrictions of the other, and possibly more. In particular, more functions and
predicates may be fixed, as well as more types and larger parts of the domain.
It is also possible to fix previously underspecified parts of the interpretation.
However, any types, interpretations, etc. that were previously fixed must
remain the same. This is captured by the following definition:
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Definition 2.37. A partial model (T1,D1, δ1, D1, I1) refines another partial
model (T0,D0, δ0, D0, I0), if

• T1 ⊇ T0,
• D1 ⊇ D0,
• δ1(d) = δ0(d) for all d ∈ D0,
• D1(f) ⊇ D0(f) for all f ∈ FSym,
• D1(p) ⊇ D0(p) for all p ∈ PSym,
• I1(f)(d1, . . . , dn) = I0(f)(d1, . . . , dn) for all (d1, . . . , dn) ∈ D0(f) and

f ∈ FSym, and
• I1(p) ∩D0(p) = I0(p) for all p ∈ PSym.

Example 2.38. We define a partial model that refines the one in the previ-
ous example by also fixing the interpretation of zero, and by restricting the
division of zero by zero to give one.

T1 := {int}
D1 := {−231, . . . , 231 − 1}
δ1(x) := int for all x ∈ D0

D1(zero) := {()} (the empty tuple)
D1(plus) := D0 ×D0

D1(div) := (D0 × (D0 \ {0})) ∪ {(0, 0)}
I1(zero)() := 0
I1(plus)(x, y) := x + y (with JAVA overflow)

I1(div)(x, y) :=

{
1 if x = y = 0,
x/y otherwise (with JAVA overflow and rounding)

To relate models to partial models, we can simply see models as a special
kind of partial model in which all interpretations are completely fixed:

Definition 2.39. Let (T , Td, Ta,�) be a type hierarchy. Any model (D, δ, I)
may also be regarded as a partial model (Td,D, δ, D, I), by letting D(f) =
DA1 × · · · × DAn for all function symbols f : A1, . . . , An → A ∈ FSym, and
D(p) = DA1 × · · · × DAn for all predicate symbols p : A1, . . . , An ∈ PSym.

The models are special among the partial models in that they cannot be
refined any further.

It is now clear how to identify models which adhere to the restrictions
expressed in some partial model: we want exactly those models which are
refinements of that partial model. To express that we are only interested in
such models, we can relativise our definitions of validity, etc.

Definition 2.40. Let a fixed type hierarchy and signature be given. Let M0

be a partial model.

• A formula φ is logically valid with respect to M0 if M, β |= φ for any
model M that refines M0 and any variable assignment β.
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• A formula φ is satisfiable with respect toM0 ifM, β |= φ for some model
M that refines M0 and some variable assignment β.

• A formula is unsatisfiable with respect toM0 if it is not satisfiable with
respect to M0.

Example 2.41. Even though division is often thought of as a partial function,
which is undefined for the divisor 0, from the standpoint of our logic, a
division by zero certainly produces a value. So the formula

∀x.∃y.div(x, zero) .= y

is logically valid, simply because for any value of x, one can interpret the
term div(x, zero) and use the result as instantiation for y.

If we add constants zero, one, two, etc. with the obvious interpretations
to the partial model of Example 2.36, then formulae like

plus(one, two) .= three

and
div(four, two) .= two

are logically valid with respect to that partial model, though they are not
logically valid in the sense of Def. 2.28. However, it is not possible to add
another fixed constant c to the partial model, such that

div(one, zero) .= c

becomes logically valid w.r.t. the partial model, since it does not fix the
interpretation of the term div(one, zero). Therefore, for any given fixed inter-
pretation of the constant c there is a model (D, δ, I) that refines the partial
model and that interprets div(one, zero) to something different, i.e.,

I(div)(1, 0) �= I(c)

So instead of treating div as a partial function, it is left under-specified in the
partial model. Note that we handled the interpretation of “undefined” type
casts in exactly the same way. See the sidebar on handling undefinedness
(p. 90) for a discussion of this approach to partiality.

For the next two sections, we will not be talking about partial models or
relative validity, but only about logical validity in the normal sense. We will
however come back to partial models in Section 2.7.

2.5 A Calculus

We have seen in the examples after Definition 2.28 how a formula can be
shown to be logically valid, using mathematical reasoning about models, the
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definitions of the semantics, etc. The proofs given in these examples are how-
ever somewhat unsatisfactory in that they do not seem to be constructed in
any systematic way. Some of the reasoning seems to require human intuition
and resourcefulness. In order to use logic on a computer, we need a more
systematic, algorithmic way of discovering whether some formula is valid. A
direct application of our semantic definitions is not possible, since for infinite
universes, in general, an infinite number of cases would have to be checked.

For this reason, we now present a calculus for our logic. A calculus de-
scribes a certain arsenal of purely syntactic operations to be carried out on
formulae, allowing us to determine whether a formula is valid. More precisely,
to rule out misunderstandings from the beginning, if a formula is valid, we
are able to establish its validity by systematic application of our calculus. If
it is invalid, it might be impossible to detect this using this calculus. Also
note that the calculus only deals with logical validity in the sense of Def. 2.28,
and not with validity w.r.t. some partial model. We will come back to these
questions in Section 2.6 and 2.7.

The calculus consists of “rules” (see Fig. 2.2, 2.3, and 2.4), along with
some definitions that say how these rules are to be applied to decide whether
a formula is logically valid. We now present these definitions and explain
most of the rules, giving examples to illustrate their use.

The basic building block to which the rules of our calculus are applied is
the sequent, which is defined as follows:

Definition 2.42. A sequent is a pair of sets of closed formulae written as

φ1, . . . , φm =⇒ ψ1, . . . , ψn .

The formulae φi on the left of the sequent arrow =⇒ are called the antecedent,
the formulae ψj on the right the succedent of the sequent. We use capital
Greek letters to denote several formulae in the antecedent or succedent of a
sequent, so by

Γ, φ =⇒ ψ, ∆

we mean a sequent containing φ in the antecedent, and ψ in the succedent,
as well as possibly many other formulae contained in Γ , and ∆.

Note 2.43. Some authors define sequents using lists (sequences) or multi-sets
of formulae in the antecedent or succedent. For us, sets are sufficient. So the
sequent φ =⇒ φ, ψ is the same as φ, φ =⇒ ψ, φ.

Note 2.44. We do not allow formulae with free variables in our sequents.
Free variables add technical difficulties and notoriously lead to confusion,
since they have historically been used for several different purposes. Our
formulation circumvents these difficulties by avoiding free variables altogether
and sticking to closed formulae.
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The intuitive meaning of a sequent

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is the following:

Whenever all the φi of the antecedent are true, then at least one of
the ψj of the succedent is true.

Equivalently, we can read it as:

It cannot be that all the φi of the antecedent are true, and all ψj of
the succedent are false.

This whole statement represented by the sequent has to be shown for all
models. If it can be shown for some model, we also say that the sequent is
valid in that model. Since all formulae are closed, variable assignments are
not important here. If we are simply interested in the logical validity of a
single formula φ, we start with the simple sequent

=⇒ φ

and try to construct a proof. Before giving the formal definition of what
exactly constitutes a proof, we now go through a simple example.

2.5.1 An Example Proof

We proceed by applying the rules of the calculus to construct a tree of se-
quents. We demonstrate this by a proof of the validity of the formula

(p & q) −> (q & p)

where p and q are predicates with no arguments.13 We start with

=⇒ (p & q) −> (q & p) .

In Fig. 2.2, we see a rule

impRight
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆
.

impRight is the name of the rule. It serves to handle implications in the
succedent of a sequent. The sequent below the line is the conclusion of the
rule, and the one above is its premiss. Some rules in Fig. 2.2 have several or
no premisses, we will come to them later.

13 Such predicates are sometimes called propositional variables, but they should not
be confused with the variables of our logic.
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The meaning of the rule is that if a sequent of the form of the premiss is
valid, then the conclusion is also valid. We use it in the opposite direction:
to prove the validity of the conclusion, it suffices to prove the premiss. We
now apply this rule to our sequent, and write the result as follows:

(p & q) =⇒ (q & p)
=⇒ (p & q) −> (q & p)

In this case, we take p & q for the φ in the rule and q & p for the ψ, with
both Γ and ∆ being empty.14 There are now two rules in Fig. 2.2 that may
be applied, namely andLeft and andRight. Let us use andLeft first. We add
the result to the top of the previous proof:

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

In this case Γ contains the untouched formula q & p of the succedent. Now,
we apply andRight. Since this rule has two premisses, our proof branches.

p, q =⇒ q p, q =⇒ p

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

A rule with several premisses means that its conclusion is valid if all of the
premisses are valid. We thus have to show the validity of the two sequents
above the topmost line. We can now use the close rule on both of these
sequents, since each has a formula occurring on both sides.

p, q =⇒ q p, q =⇒ p

p, q =⇒ q & p

p & q =⇒ q & p

=⇒ (p & q) −> (q & p)

The close rule has no premisses, which means that the goal of a branch where
it is applied is successfully proven. We say that the branch is closed. We have
applied the close rule on all branches, so that was it! All branches are closed,
and therefore the original formula was logically valid.

14 Γ , ∆, φ, ψ in the rule are place holders, also known as schema variables. The
act of assigning concrete terms, formulae, or formula sets to schema variables is
known as matching. See also Note 2.51 and Chapter 4 for details about pattern
matching.
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2.5.2 Ground Substitutions

Before discussing the workings of our calculus in a more rigorous way, we
introduce a construct known as substitution. Substitutions are used by many
of the rules that have to do with quantifiers, equality, etc.

Definition 2.45. A ground substitution is a function τ that assigns a ground
term to some finite set of variable symbols dom(τ) ⊆ VSym, the domain of
the substitution, with the restriction that

if v ∈ dom(τ) for a variable v:B ∈ VSym, then τ(v) ∈ TrmA, for
some A with A � B.

We write τ = [u1/t1, . . . , un/tn] to denote the particular substitution defined
by dom(τ) = {u1, . . . , un} and τ(ui) := ti.

We denote by τx the result of removing a variable from the domain of τ ,
i.e., dom(τx) := dom(τ) \ {x} and τx(v) := τ(v) for all v ∈ dom(τx).

Example 2.46. Given the signature from the previous examples,

τ = [o/empty, n/length(empty)]

is a substitution with
dom(τ) = {o, n} .

Note that the static type of empty is List, which is a subtype of Object, which
is the type of the variable o. For this substitution, we have

τo = [n/length(empty)]

and
τn = [o/empty] .

We can also remove both variables from the domain of τ , which gives us

(τo)n = [] ,

the empty substitution with dom([]) = ∅. Removing a variable that is not in
the domain does not change τ :

τa = τ = [o/empty, n/length(empty)] .

The following is not a substitution:

[n/empty] ,

since the type List of the term empty is not a subtype of int, which is the
type of the variable n.
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Note 2.47. In Section 4.2.4, a more general concept of substitution is intro-
duced, that also allows substituting terms with free variables. This can lead
to various complications that we do not need to go into at this point.

We want to apply substitutions not only to variables, but also to terms and
formulae.

Definition 2.48. The application of a ground substitution τ is extended to
non-variable terms by the following definitions:

• τ(x) := x for a variable x �∈ dom(τ).
• τ(f(t1, . . . , tn)) := f(τ(t1), . . . , τ(tn)).

The application of a ground substitution τ to a formula is defined by

• τ(p(t1, . . . , tn)) := p(τ(t1), . . . , τ(tn)).
• τ(true) := true and τ(false) := false.
• τ(! φ) := !(τ(φ)),
• τ(φ & ψ) := τ(φ) & τ(ψ), and correspondingly for φ | ψ and φ −> ψ.
• τ(∀x.φ) := ∀x.τx(φ) and τ(∃x.φ) := ∃x.τx(φ).

Example 2.49. Let’s apply the ground substitution

τ = [o/empty, n/length(empty)]

from the previous example to some terms and formulae:

τ(plus(n, n)) = plus(length(empty), length(empty)) ,

τ(n .= length((List)o)) = (length(empty) .= length((List)empty)) .

By the way, this is an example of why we chose to use the symbol .= instead of
= for the equality symbol in our logic. Here is an example with a quantifier:

τ(∃o.n .= length((List)o)) = (∃o.(length(empty) .= length((List)o)) .

We see that the quantifier for o prevents the substitution from acting on the
o inside its scope.

Some of our rules call for formulae of the form [z/t](φ) for some formula
φ, variable z, and term t. In these cases, the rule is applicable to any formula
that can be written in this way. Consider for instance the following rule from
Fig. 2.3:

eqLeft
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.= t2, [z/t1](φ) =⇒ ∆

if σ(t2) � σ(t1)

Looking at the conclusion, it requires two formulae

t1
.= t2 and [z/t1](φ)
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in the antecedent. The rule adds the formula

[z/t2](φ)

to the antecedent of the sequent. Now consider the formulae

length(empty) .= zero and length(empty) �− int .

The right formula can also be written as

length(empty) �− int = [z/length(empty)](z �− int) .

In other words, in this example, we have:

t1 = length(empty)
t2 = zero
φ = z �− int

Essentially, the z in φ marks an occurrence of t1 in the formula [z/t1](φ).
The new formula added by the rule, [z/t2](φ), is the result of replacing this
occurrence by the term t2.

We do not exclude the case that there are no occurrences of the variable
z in φ, or that there are several occurrences. In the case of no occurrences,
[z/t1](φ) and [z/t2](φ) are the same formula, so the rule application does not
do anything. In the case of several occurrences, we replace several instances
of t1 by t2 simultaneously.

Note that this is just an elegant, yet precise way of formulating our cal-
culus rules. In the implementation of the KeY system, it is more convenient
to replace one occurrence at a time.

2.5.3 Sequent Proofs

As we saw in the example of Section 2.5.1, a sequent proof is a tree that is
constructed according to a certain set of rules. This is made precise by the
following definition:

Definition 2.50. A proof tree is a finite tree (shown with the root at the
bottom), such that

• each node of the tree is annotated with a sequent
• each inner node of the tree is additionally annotated with one of those

rules shown in Figs. 2.2, 2.3, and 2.4 that have at least one premiss.
This rule relates the node’s sequent to the sequents of its descendants.
In particular, the number of descendants is the same as the number of
premisses of the rule.

• a leaf node may or may not be annotated with a rule. If it is, it is one of
the rules that have no premisses, also known as closing rules.
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A proof tree for a formula φ is a proof tree where the root sequent is annotated
with =⇒ φ.

A branch of a proof tree is a path from the root to one of the leaves. A
branch is closed if the leaf is annotated with one of the closing rules. A proof
tree is closed if all its branches are closed, i.e., every leaf is annotated with
a closing rule.

A closed proof tree (for a formula φ) is also called a proof (for φ).

Note 2.51. A really rigorous definition of the concept of a proof would require
a description of the pattern matching and replacement process that underlies
the application of the rules. This is done to a certain extent in Chapter 4.
For the time being, we assume that the reader understands that the Latin
and Greek letters Γ, t1, φ, z, A are actually place holders for arbitrary terms,
formulae, types, etc. according to their context.

In a sense, models and proofs are complementary: to show that a formula
is satisfiable, one has to describe a single model that satisfies it, as we did
for instance in Example 2.32. To show that a formula is logically valid, we
have previously shown that it is valid in any model, like for instance in Ex-
ample 2.33. Now we can show logical validity by constructing a single proof.

2.5.4 The Classical First-Order Rules

Two rules in Fig. 2.2 carry a strange requirement: allRight and exRight require
the choice of “c : → A a new constant, if x:A”. The word “new” in this
requirement means that the symbol c has not occurred in any of the sequents
of the proof tree built so far. The idea is that to prove a statement for all x,
one chooses an arbitrary but fixed c and proves the statement for that c. The
symbol needs to be new since we are not allowed to assume anything about
c (except its type).

If we use the calculus in the presence of a partial model in the sense of
Section 2.4.3, we may only take a symbol c that is not fixed, i.e., D0(c) = ∅.
The reason is again to make sure that no knowledge about c can be assumed.

In order to permit the construction of proofs of arbitrary size, it is sensible
to start with a signature that contains enough constant symbols of every type.
We call signatures where this is the case “admissible”:

Definition 2.52. For any given type hierarchy (T , Td, Ta,�), an admissible
signature is a signature that contains an infinite number of constant symbols
c :→ A for every non-empty type A ∈ Tq.

Since the validity or satisfiability of a formula cannot change if symbols are
added to the signature, it never hurts to assume that our signature is ad-
missible. And in an admissible signature, it is always possible to pick a new
constant symbol of any type.
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andLeft
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆
andRight

Γ =⇒ φ, ∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

orRight
Γ =⇒ φ,ψ, ∆

Γ =⇒ φ | ψ, ∆
orLeft

Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ | ψ =⇒ ∆

impRight
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆
impLeft

Γ =⇒ φ, ∆ Γ, ψ =⇒ ∆

Γ, φ −> ψ =⇒ ∆

notLeft
Γ =⇒ φ, ∆

Γ, ! φ =⇒ ∆
notRight

Γ, φ =⇒ ∆

Γ =⇒ ! φ, ∆

allRight
Γ =⇒ [x/c](φ), ∆

Γ =⇒ ∀x.φ,∆
with c : → A a new constant, if x:A

allLeft
Γ,∀x.φ, [x/t](φ) =⇒ ∆

Γ,∀x.φ =⇒ ∆
with t ∈ TrmA′ ground, A′ 	 A, if x:A

exLeft
Γ, [x/c](φ) =⇒ ∆

Γ,∃x.φ =⇒ ∆
with c : → A a new constant, if x:A

exRight
Γ =⇒ ∃x.φ, [x/t](φ), ∆

Γ =⇒ ∃x.φ,∆
with t ∈ TrmA′ ground, A′ 	 A, if x:A

close
Γ, φ =⇒ φ,∆

closeFalse
Γ, false =⇒ ∆

closeTrue
Γ =⇒ true, ∆

Fig. 2.2. Classical first-order rules

We start our demonstration of the rules with some simple first-order proofs.
We assume the minimal type hierarchy that consists only of ⊥ and �, see
Example 2.7.

Example 2.53. Let the signature contain a predicate p : � and two variables
x:�, y:�. We also assume an infinite set of constants c1, c2, . . . :�. We con-
struct a proof for the formula

∃x.∀y.(p(x) −> p(y)) .

We start with the sequent

=⇒ ∃x.∀y.(p(x) −> p(y))
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for which only the exRight rule is applicable. We need to choose a term t for
the instantiation. For lack of a better candidate, we take c1:15

=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))
=⇒ ∃x.∀y.(p(x) −> p(y))

Note that the original formula is left in the succedent. This means that we
are free to choose a more suitable instantiation later on. For the time being,
we apply the allRight rule, picking c2 as the new constant.

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

Next, we apply impRight:

p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))
=⇒ ∃x.∀y.(p(x) −> p(y))

Since the closing rule close cannot be applied to the leaf sequent (nor any of
the other closing rules), our only choice is to apply exRight again. This time,
we choose the term c2.

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

Another application of allRight (with the new constant c3) and then impRight
give us:

p(c1), p(c2) =⇒ p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2) −> p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

15 There are two reasons for insisting on admissible signatures: one is to have a
sufficient supply of new constants for the allRight and exLeft rules. The other
is that exRight and allLeft sometimes need to be applied although there is no
suitable ground term in the sequent itself, as is the case here.
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Finally, we see that the atom p(c2) appears on both sides of the sequent, so
we can apply the close rule

p(c1), p(c2) =⇒ p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2) −> p(c3), p(c2), ∃x.∀y.(p(x) −> p(y))

p(c1) =⇒ ∀y.(p(c2) −> p(y)), p(c2), ∃x.∀y.(p(x) −> p(y))
p(c1) =⇒ p(c2), ∃x.∀y.(p(x) −> p(y))

=⇒ p(c1) −> p(c2), ∃x.∀y.(p(x) −> p(y))
=⇒ ∀y.(p(c1) −> p(y)), ∃x.∀y.(p(x) −> p(y))

=⇒ ∃x.∀y.(p(x) −> p(y))

This proof tree has only one branch, and a closing rule has been applied to
the leaf of this branch. Therefore, all branches are closed, and this is a proof
for the formula ∃x.∀y.(p(x) −> p(y)).

Example 2.54. We now show an example of a branching proof. In order to save
space, we mostly just write the leaf sequents of the branch we are working
on.

We take again the minimal type hierarchy. The signature contains two
predicate symbols p, q : �, as well as the infinite set of constants c1, c2, . . . :�
and a variable x:�. We show the validity of the formula

(∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x)) .

We start with the sequent

=⇒ (∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x))

from which the impRight rule makes

∃x.p(x) −> ∃x.q(x) =⇒ ∃x.(p(x) −> q(x)) .

We now apply impLeft, which splits the proof tree. The proof tree up to this
point is:

=⇒ ∃x.p(x), ∃x.(p(x) −> q(x)) ∃x.q(x) =⇒ ∃x.(p(x) −> q(x))
∃x.p(x) −> ∃x.q(x) =⇒ ∃x.(p(x) −> q(x))

=⇒ (∃x.p(x) −> ∃x.q(x)) −> ∃x.(p(x) −> q(x))

On the left branch, we have to choose a term to instantiate one of the exis-
tential quantifiers. It turns out that any term will do the trick, so we apply
exRight with c1 on ∃x.p(x), to get

=⇒ p(c1), ∃x.p(x), ∃x.(p(x) −> q(x))

and then on ∃x.(p(x) −> q(x)), which gives
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=⇒ p(c1), p(c1) −> q(c1), ∃x.p(x), ∃x.(p(x) −> q(x)) .

We now apply impRight to get

p(c1) =⇒ p(c1), q(c1), ∃x.p(x), ∃x.(p(x) −> q(x))

to which the close rule applies.
On the right branch, we apply exLeft using c2 as the new constant, which

gives us
q(c2) =⇒ ∃x.(p(x) −> q(x)) .

We now use exRight with the instantiation c2, giving

q(c2) =⇒ p(c2) −> q(c2), ∃x.(p(x) −> q(x)) .

impRight now produces

q(c2), p(c2) =⇒ q(c2), ∃x.(p(x) −> q(x)) ,

to which close may be applied.

To summarise, for each of !, &, |, −>, ∀, and ∃, there is one rule to handle
occurrences in the antecedent and one rule for the succedent. The only “in-
determinisms” in the calculus are 1. the order in which the rules are applied,
and 2. the instantiations chosen for allRight and exRight.

Both of these indeterminisms are of the kind known as don’t care inde-
terminism. What this means is that any choice of rule application order or
instantiations can at worst delay (maybe infinitely) the closure of a proof
tree. If there is a closed proof tree for a formula, any proof tree can be com-
pleted to a closed proof tree. It is not necessary in principle to backtrack over
rule applications, there are no “dead ends” in the search space. A calculus
with this property is known as proof confluent.

It should be noted that an unfortunate choice of applied rules can make
the resulting proof much larger in practice, so that it can be worthwhile to
remove part of a proof attempt and to start from the beginning.

2.5.5 The Equality Rules

The essence of reasoning about equality is the idea that if one entity equals
another, then any occurrence of the first may be replaced by the second. This
idea would be expressed by the following (in general incorrect) rule:

eqLeftWrong
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.= t2, [z/t1](φ) =⇒ ∆

Unfortunately in the presence of subtyping, things are not quite that easy.
Assume for instance a type hierarchy with two types B � A, but B �= A, and
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a signature containing constants a :→ A and b :→ B, and a predicate p : B.
If we apply the above rule on the sequent

b
.= a, p(b) =⇒

we get the new “sequent”

b
.= a, p(b), p(a) =⇒ .

This is in fact not a sequent, since p(a) is not a formula, because p cannot
be applied to a term of static type A.

eqLeft
Γ, t1

.
= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.
= t2, [z/t1](φ) =⇒ ∆

if σ(t2) 	 σ(t1)

eqRight
Γ, t1

.
= t2 =⇒ [z/t2](φ), [z/t1](φ), ∆

Γ, t1
.
= t2 =⇒ [z/t1](φ), ∆

if σ(t2) 	 σ(t1)

eqLeft′
Γ, t1

.
= t2, [z/t1](φ), [z/(A)t2](φ) =⇒ ∆

Γ, t1
.
= t2, [z/t1](φ) =⇒ ∆

with A := σ(t1)

eqRight′
Γ, t1

.
= t2 =⇒ [z/(A)t2](φ), [z/t1](φ), ∆

Γ, t1
.
= t2 =⇒ [z/t1](φ), ∆

with A := σ(t1)

eqSymmLeft
Γ, t2

.
= t1 =⇒ ∆

Γ, t1
.
= t2 =⇒ ∆

eqClose
Γ =⇒ t

.
= t, ∆

Fig. 2.3. Equality rules

There are two ways to solve this problem. The first way is embodied by the
rules eqLeft and eqRight in Fig. 2.3: The static type of the new term t2 is
required to be a subtype of the type of the original t1. This guarantees that
the resulting formula is still well-typed. Indeed, it would have forbidden the
erroneous rule application of our example since σ(t2) �� σ(t1).

The other solution is to insert a cast. If t1
.= t2 holds, and A is the static

type of t1, then t2
.= (A)t2 also holds, and therefore t1

.= (A)t2, so we can
rewrite t1 to (A)t2, which still has the static type A, so again, the formula
remains well-typed. This is what the rules eqLeft′ and eqRight′ do.16

16 As is illustrated in Example 2.58, any application of these two rules may be
replaced by a series of applications of other rules, so it would be possible to do
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Note that the equation t1
.= t2 has to be on the left of the sequent for

all four of these rules. The difference between the Left and Right versions is
the position of the formula on which the equation is applied. The only way
of handling an equation in the succedent, i.e., of showing that an equation
holds is to apply other equations on both sides until they become identical,
and then to apply eqClose.

In general, one might want to apply equations in both directions, i.e.,
also rewrite t2 to t1. We allow this by the rule eqSymmLeft. Equivalently we
could have given variants of the four rewriting rules, that apply equations
from right to left, but that would have doubled the number of rules.

Example 2.55. Assume a type hierarchy containing two types B � A in ad-
dition to ⊥ and �. We need two constants a : → A and b : → B, functions
f : B → B and g : A→ B, and a variable x:A. We show the validity of

(∀x.f(g(x)) .= g(x) & b
.= g(a)) −> f(f(b)) .= f(g(a)) .

Starting from the initial sequent

=⇒ (∀x.f(g(x)) .= g(x) & b
.= g(a)) −> f(f(b)) .= f(g(a)) ,

applying impRight and andLeft leads to

∀x.f(g(x)) .= g(x), b .= g(a) =⇒ f(f(b)) .= f(g(a)) .

We now apply allLeft for the instantiation a. Since we do not need any more
instances of the ∀ formula, we abbreviate it by “. . . ” in the rest of this
example:

. . . , f(g(a)) .= g(a), b .= g(a) =⇒ f(f(b)) .= f(g(a)) .

Consider the equation b
.= g(a). The static type of both sides is B, so we could

apply the equation in both directions. We would like to rewrite occurrences
of g(a) to the smaller term b, so we apply eqSymmLeft to turn the equation
around:

. . . , f(g(a)) .= g(a), g(a) .= b =⇒ f(f(b)) .= f(g(a)) .

Now we apply g(a) .= b on the left side of the equation f(g(a)) .= g(a). As
we explained at the end of Section 2.5.2, this is done by marking the place
where the equality should be applied by a variable z and “pulling out” the
term t1 into a substitution, i.e., (f(z) .= g(a))[z/t1]. In other words, we apply
eqLeft with

t1 = g(a) t2 = b φ = f(z) .= g(a)

to get

without them. Still, it is sometimes convenient to have them, since they allow
to do all equality reasoning first, possibly inserting casts, and taking care of the
type reasoning later.
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. . . , f(g(a)) .= g(a), g(a) .= b, f(b) .= g(a) =⇒ f(f(b)) .= f(g(a)) .

The next step is to apply the new equation f(b) .= g(a) on the occurrence of
f(b) in the succedent, i.e., we apply eqRight with

t1 = f(b) t2 = g(a) φ = f(z) .= f(g(a))

to get
. . . , f(g(a)) .= g(a), g(a) .= b, f(b) .= g(a)

=⇒ f(g(a)) .= f(g(a)), f(f(b)) .= f(g(a))

which can be closed using the eqClose rule.

The eqLeft′/eqRight′ rules introduce casts which can only be treated by using
some additional rules. We therefore postpone an example of their use to the
following section.

The equality rules allow much more freedom in their application than
the previously shown rules in Fig. 2.2. As a general guideline, it is often
best to apply equations in the direction that makes terms smaller or simpler,
provided this is allowed by the types.

It should be mentioned at this point that the equality rules in the imple-
mentation of the KeY system are organised in a slightly different way. Instead
of letting the user decide between the rules eqLeft and eqLeft′, or between
eqRight and eqRight′ for an occurrence in the succedent, the system checks
whether σ(t2) � σ(t1). If this is the case, no cast is needed and eqLeft, resp.
eqRight is applied, otherwise a cast is inserted, corresponding to an applica-
tion of eqLeft′, resp. eqRight′. This combined behaviour is achieved by a rule
named applyEq (see Fig. 4.5).

2.5.6 The Typing Rules

The remaining rules, shown in Fig. 2.4, all concern type casts and type pred-
icates. In problems where all terms are of the same type, and no casts or type
predicates occur, these rules are not needed.

Given two terms t1 ∈ TrmA and t2 ∈ TrmB of static types A and B, the
first rule allows deriving t2 �−A and t1 �−B. Why is this allowed? Given some
model M, and variable assignment β, if M, β |= t1

.= t2, then valM,β(t1) =
valM,β(t2). Therefore, the dynamic types of the terms’ values are also equal:
δ(valM,β(t1)) = δ(valM,β(t2)). Now, the dynamic type of each term is a
subtype of the static type of the term. Since the dynamic types are the same,
we additionally know that the dynamic type of each term is a subtype of the
static type of the other term. Hence, M, β |= t2 �−A and M, β |= t1 �−B. In
combination with the typeStatic and typeGLB rules, we can go on by deriving
t1 �−A �B and t2 �−A �B.

The typeAbstract rule handles type predicate literals for abstract types.
The underlying reasoning is that if the dynamic type of a value cannot be
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typeEq
Γ, t1

.
= t2, t2 �− σ(t1), t1 �− σ(t2) =⇒ ∆

Γ, t1
.
= t2 =⇒ ∆

typeGLB
Γ, t �− A, t �− B, t �− A 
 B =⇒ ∆

Γ, t �− A, t �− B =⇒ ∆

typeStatic
Γ, t �− σ(t) =⇒ ∆

Γ =⇒ ∆

typeAbstract
Γ, t �− A, t �− B1 | · · · | t �− Bk =⇒ ∆

Γ, t �− A =⇒ ∆
with A ∈ Ta and B1, . . . , Bk the direct subtypes of A

castAddLeft
Γ, [z/t](φ), t �− A, [z/(A)t](φ) =⇒ ∆

Γ, [z/t](φ), t �− A =⇒ ∆
where A 	 σ(t).

castAddRight
Γ, t �− A =⇒ [z/(A)t](φ), [z/t](φ), ∆

Γ, t �− A =⇒ [z/t](φ), ∆
where A 	 σ(t).

castDelLeft
Γ, [z/t](φ), [z/(A)t](φ) =⇒ ∆

Γ, [z/(A)t](φ) =⇒ ∆
where σ(t) 	 A.

castDelRight
Γ =⇒ [z/t](φ), [z/(A)t](φ),∆

Γ =⇒ [z/(A)t](φ), ∆
where σ(t) 	 A.

castTypeLeft
Γ, (A)t �− B, t �− A, t �− B =⇒ ∆

Γ, (A)t �− B, t �− A =⇒ ∆

castTypeRight
Γ, t �− A =⇒ t �− B, (A)t �− B,∆

Γ, t �− A =⇒ (A)t �− B,∆

closeSubtype
Γ, t �− A =⇒ t �− B, ∆

with A 	 B
closeEmpty

Γ, t �−⊥ =⇒ ∆

Fig. 2.4. Typing rules

equal to an abstract type, so if t�−A holds for an abstract type A, then t�−B
holds for some subtype B of A. Since we require type hierarchies to be finite,
we can form the disjunction t �− B1 | · · · | t �− Bk for all direct subtypes Bi

of A.17 If one of the direct subtypes Bi is itself abstract, the rule can be
applied again on t �−Bi.

The castAdd, castType, and castDel rules can be used to close proof trees
that involve formulae with type casts. More specifically, we need to deal with
the situation that a branch can almost be closed, using for instance close or
eqClose, but the involved formulae or terms are not quite equal, they differ
by some of the casts. In general, the sequent also contains type predicates
that allow to decide whether the casts are “successful” or not.

17 B is a direct subtype of A if A and B are distinct types, B 	 A, and there is no
type C that is distinct from A and B with B 	 C 	 A, Def. 3.1.
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The basic observation is that if t �− A holds, then the cast (A)t does not
change the value of t, so (A)t .= t also holds. It is tempting to introduce rules
like the following, which allows to remove casts in such situations:

wrongCastDelLeft
Γ, [z/(A)t](φ), t �−A, [z/t](φ) =⇒ ∆

Γ, [z/(A)t](φ), t �−A =⇒ ∆

Unfortunately, the new formula [z/t](φ), in which the cast was removed, is
possibly no longer well-typed: In general, the static type of t is a supertype
of that of (A)t. Our solution to this problem is to add casts to the involved
terms or formulae until they become equal. This is the purpose of the castAdd
rules.

There are also castDel rules to delete casts, but these are only available if
the static type of a term is a subtype of the type being cast to. In that case,
the cast is obviously redundant, and removing it preserves the well-typedness
of terms.

The two castType rules can be considered valid special cases of our
wrongCastDelLeft rule: If we know t �− A, then we may remove the cast in
(A)t�−B to obtain t�−B. There is no problem with the static types here, since
the type predicate �−B may be applied to terms of arbitrary type. These rules
are occasionally needed to derive the most specific type information possible
about the term t.

We now illustrate these rules in some examples.

Example 2.56. We start by the formula from Example 2.33. In any type hi-
erarchy that contains some type A, and a signature with a variable x:� and
a constant c:�, we show the validity of

∀x.((A)x .= x −> x �−A) .

The initial sequent is

=⇒ ∀x.((A)x .= x −> x �−A) ,

on which we apply the allRight and impRight to get

(A)c .= c =⇒ c �−A .

The static type of c is �, and the static type of (A)c is A. We apply the
typeEq rule to get

(A)c .= c, c �−A, (A)c �−� =⇒ c �−A .

Since c �−A appears on both sides, this can be closed using the close rule.

Example 2.57. With the same type hierarchy and signature as the previous
example, we now show the converse implication:
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∀x.(x �−A −> (A)x .= x) .

Again, we apply allRight and impRight on the initial sequent, to obtain

c �−A =⇒ (A)c .= c .

We now apply castAddRight with

t = c and φ = (A)c .= z

to obtain
c �−A =⇒ (A)c .= (A)c, (A)c .= c ,

which can be closed using eqClose.

Example 2.58. Here is a more complicated example of type reasoning. We
return to the type hierarchy from Example 2.6, p. 24. Remember that

AbstractList = AbstractCollection � List .

The following functions are used:

ord : AbstractCollection→ AbstractList
rev : List→ List

Maybe ord takes a collection and puts it into some order, whereas rev reverses
a list. We also use a constant a:AbstractCollection. The problem is to show
the validity of

ord(a) .= a −> rev(ord(a)) .= rev((List)a) .

In this example, we silently omit some formulae from sequents, if they are not
needed any more, to make it easier to follow the development. After applying
impRight on the initial sequent, we get

ord(a) .= a =⇒ rev(ord(a)) .= rev((List)a) . (∗)

Next, we would like to rewrite ord(a) to a in the succedent. However, the
static type of a is AbstractCollection, which is not a subtype of the static
type of ord(a), namely AbstractList. Therefore, we must use eqRight′, which
introduces a cast and gives us:

ord(a) .= a =⇒ rev((AbstractList)a) .= rev((List)a) .

Our goal must now be to make the two casts in the succedent equal. To
deduce more information about the type of a, we apply typeEq on the left to
get

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)a)
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(we omit the other, uninteresting formula ord(a)�−AbstractCollection). Now,
how do we replace the cast to List by a cast to AbstractList? We use a
combination of two rules: First, we apply castAddRight to insert a cast:

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)(AbstractList)a) .

Since AbstractList � List, the outer cast has become redundant, so we use
castDelRight to remove it:

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((AbstractList)a) .

This sequent can be closed using eqClose.
It turns out that applications of the eqRight′/eqLeft′ rules can always

be replaced by sequences of applications of the other rules. They were only
added because they are sometimes more convenient. We demonstrate this by
showing an alternative way of proceeding from the sequent (∗) above. We
first apply the typeEq rule, which gives us

ord(a) .= a, a �−AbstractList =⇒ rev(ord(a)) .= rev((List)a) .

We can then use castAddRight on the right side of the equation in the an-
tecedent, yielding

ord(a) .= (AbstractList)a, a �−AbstractList =⇒ rev(ord(a)) .= rev((List)a) .

Now, the static types are the same on both sides and we can use eqRight to
obtain

a �−AbstractList =⇒ rev((AbstractList)a) .= rev((List)a) .

From this sequent, we continue as before.

Example 2.59. Using the type hierarchy from Example 2.6 once again, a vari-
able l : List and a constant c:List, we show validity of

∀l.l �−ArrayList .

This is of course due to the fact that ArrayList is the top-most non-abstract
subtype of List. Starting from

=⇒ ∀l.l �−ArrayList ,

we apply the rule allRight to obtain

=⇒ c �−ArrayList .

We can use the typeStatic rule for c to get

c �− List =⇒ c �−ArrayList .
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Now typeAbstract produces

c �−AbstractList =⇒ c �−ArrayList ,

since AbstractList is the only direct subtype of the abstract type List. Since
AbstractList is also abstract, we apply typeStatic again, to get

c �−ArrayList =⇒ c �−ArrayList ,

which can be closed by close.

Example 2.60. In the type hierarchy from Example 2.6, using a variable i : int,
and constants c:int and null:Null, we show

! ∃i.i .= null .

On the initial sequent
=⇒ ! ∃i.i .= null ,

we apply notRight to obtain

∃i.i .= null =⇒ ,

and exRight, which gives
c

.= null =⇒ .

Using typeStatic and typeEq for c produces

c
.= null, c �− int, c �−Null =⇒ .

The intersection of int and Null is the empty type, so we can use typeGLB to
derive

c
.= null, c �−⊥ =⇒ ,

which can be closed using closeEmpty.

To summarise, the general idea of type reasoning is to start by identifying the
interesting terms t. For these terms, one tries to derive the most specific type
information, i.e., a type predicate literal t�−A where the type A is as small as
possible with respect to �, by using typeStatic and typeEq, etc. Then, add a
cast to the most specific known type in front of the interesting occurrences of
t. On the other hand, delete redundant casts using the castDel rules. Some-
times, branches can be closed due to contradictory type information using
closeSubtype and closeEmpty.



64 2 First-Order Logic

2.6 Soundness, Completeness

At first sight, the rules given in Section 2.5 might seem like a rather haphazard
collection. But in fact, they enjoy two important properties. First, it is not
possible to close a proof tree for a formula that is not logically valid. This
is known as soundness. Second, if a formula is logically valid, then there is
always a proof for it. This property is known as completeness. These two
properties are so important that we state them as a theorem.

Theorem 2.61. Let a fixed type hierarchy and an admissible signature be
given. Then any formula φ is logically valid if and only if there is a sequent
proof for φ constructed according to Def. 2.50.

A proof of this result has been given by Giese [2005].
It is important to note that the theorem does not state soundness and

completeness for our notion of validity with respect to partial models. This
issue is discussed further in Section 2.7.

Soundness is much more important than completeness, in the sense that
more harm is usually done if a wrong statement is considered correct, than if
a valid statement cannot be shown. For instance, if a proof for the correctness
of a piece of critical software is produced, and the software is used in the belief
that it is correct, the consequences might be catastrophic.

On the other hand, not being able to prove the correctness of a correct
piece of software with a given method might delay its deployment. Maybe
the verification can be done by some other method. Maybe the formal proof
is not considered to be crucial.

In practice, however, when a proof attempt fails, it is good to know that
there can be only two reasons: either the statement to be shown is not valid,
or one has not looked hard enough for a proof. The possibility that the
statement is valid, but no proof exists, would make the whole situation more
confusing.

Since we ultimately intend to use our logic and calculus on a computer,
where a program should help us to find the proofs, let us consider some of
the computational aspects of our calculus.

We already mentioned that the calculus is proof confluent: If a formula
φ is valid, then any proof tree for φ can be completed to a closed proof. No
rule application can lead into a “dead end”. However, it is still possible to
expand a proof tree for a valid formula indefinitely without finding a closed
proof, just by regularly performing the “wrong” rule applications.

The good news is that it is possible to apply rules systematically in such
a way that a closed proof is eventually found if it exists. This leads to a
“computational” version of the previous version:

Theorem 2.62. Let a fixed type hierarchy and an admissible signature be
given. There is a program with the following property: if it is given a formula
as input, it terminates stating the validity of the input formula if and only if
that formula is logically valid.



2.7 Incompleteness 65

What if the formula is not valid? In general, the program will search indef-
initely, and never give any output. It is possible to show that this must be
so: It is a property of our logic that there can be no program that terminates
on both valid and invalid formulae and correctly states whether the input is
valid.

The technical way of describing this situation is to say that the validity
of formulae in our logic is undecidable. This means that there is no program
that terminates on all inputs and answers the question of validity.

More precisely, validity is semi-decidable, which means that there is a pro-
gram that at least gives a positive answer for valid formulae. We equivalently
say that the set of valid formulae is recursively enumerable, which means that
it is possible to write a program that prints a list of all valid formulae.

For the practical use of a theorem proving program, this means that if
the program runs for a very long time, there is no way of knowing whether
the statement we are trying to prove is wrong, or whether we just have to
wait for an even longer time.

There are logics (propositional logic and some modal logics) that have a
better behaviour in this respect: there are theorem provers which terminate
on all input and answer whether the input is a valid formula. However, these
logics are a lot less expressive, and therefore not suited for detailed descrip-
tions of complex software systems. Any logic that is expressive enough for
that purpose has an undecidable validity problem.

The interested reader can find much more information on all aspects of
the mechanisation of reasoning in the Handbook of Automated Reasoning
edited by Robinson and Voronkov [2001].

2.7 Incompleteness

The soundness and completeness properties stated in the previous section do
not apply to validity relative to some partial model. Indeed, it is hard to give
general results about relative validity since any set of operations with fixed
interpretation would require its own set of additional rules.

In this section, we discuss a particularly important case, namely the op-
erations of addition and multiplication on the natural numbers. We do not
include subtraction or division, since they can be expressed in terms of ad-
dition and multiplication.

Let us assume that the type hierarchy contains a sort N and the signature
contains function symbols

zero :→ N
succ : N → N
plus : N, N → N

times : N, N → N

The partial model that interests us is defined as
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T0 := {N}
D0 := N = {0, 1, 2, . . .}
δ0(x) := N for all x ∈ D0

D0(zero) := {()}
D0(succ) := N

D0(plus) := D0(times) := N× N

I0(zero)() := 0
I0(succ)(x) := x + 1
I0(plus)(x, y) := x + y
I0(times)(x, y) := xy

We call this model “arithmetic”. Note that our domain D0 now contains all
the mathematical integers, and not only the JAVA integers as in previous
examples. With this signature and partial model, individual natural numbers
can be expressed as zero for 0, succ(zero) for 1, succ(succ(zero)) for 2, etc.
The operations of addition and multiplication are sufficient to express many
interesting mathematical concepts. For instance the following formula with
free variable x expresses that x is either zero, or one, or a prime number:

∀y.∀z.(times(y, z) .= x −> y
.= x | z .= x) ,

and the following the fact that there are infinitely many prime numbers:18

∀x.∃u.∀y.∀z.(times(y, z) .= plus(x, u) −> y
.= plus(x, u) | z .= plus(x, u)) .

Due to their expressivity, these basic operations on numbers are among the
first things one might want to fix in a partial model. The bad news is that
there can be no complete calculus for validity with respect to arithmetic.

Theorem 2.63. There is no set of sequent rules suitable for mechanisation19

such that a formula φ is valid w.r.t arithmetic if and only if there is a closed
sequent proof for φ using these rules.

Indeed, there is no program with the following property: if it is given a
formula as input, it terminates stating the validity of the input formula if
and only if that formula is logically valid w.r.t. arithmetic.

This is essentially the famous Incompleteness Theorem of Gödel [1931]. It
means that if we want the expressive power of arithmetic, there are always
some theorems that are true, but cannot be shown in our calculus. Another
way of expressing this is that any sound calculus is necessarily incomplete.
Therefore, one also calls a logic with this property incomplete.

18 It expresses that for any x, one can find a u, such that x + u is prime, in other
words there are primes of arbitrary magnitude.

19 By this, we mean that the rules may not perform operations which are so com-
plicated that it cannot be checked by a computer program whether a given rule
application is correct.
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succZero
Γ, ∀n. ! zero

.
= succ(n) =⇒ ∆

Γ =⇒ ∆

succEq
Γ,∀m.∀n.(succ(m)

.
= succ(n) −> m

.
= n) =⇒ ∆

Γ =⇒ ∆

pluZero
Γ,∀n.plus(zero, n)

.
= n =⇒ ∆

Γ =⇒ ∆

plusSucc
Γ,∀m.∀n.plus(succ(m), n)

.
= succ(plus(m,n)) =⇒ ∆

Γ =⇒ ∆

timesZero
Γ, ∀n.times(zero, n)

.
= zero =⇒ ∆

Γ =⇒ ∆

timesSucc
Γ,∀m.∀n.times(succ(m), n)

.
= plus(n, times(m,n)) =⇒ ∆

Γ =⇒ ∆

natInduct
Γ =⇒ [n/zero ](φ), ∆ Γ =⇒ ∀n.(φ −> [n/succ(n)](φ)), ∆ Γ,∀n.φ =⇒ ∆

Γ =⇒ ∆
where φ is a formula with at most one free variable n:N .

Fig. 2.5. Rules for arithmetic, using variables m:N, n:N

In practice, the way of dealing with this problem is to add a number of rules
to the calculus that capture the behaviour of plus and times , as well as one
particular rule called the induction rule (see also Chapter 11). For instance,
we can add the rules in Fig. 2.5. Most of these rules just add simple properties
of the involved operations to the sequent. The interesting rule is natInduct:
It expresses that if you can show that a statement holds for zero, and that if
it holds for some number n, it also holds for the next number succ(n), then
it must hold for all numbers.

These rules are still subject to the incompleteness theorem. But it turns
out that using these rules, it is possible to prove almost any arithmetical
statement that occurs in practice. Virtually any theorem about natural num-
bers that occurs in mathematics is ultimately proven using some variation of
these few rules.20

20 There are exceptions to this. For instance, there is a number theoretical theorem
known as Goodstein’s theorem that can only be proven by using more powerful
methods [Goodstein, 1944, Kirby and Paris, 1982].
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It is interesting to note that many of the data structures appearing in
computer programs, like for instance lists, strings, or trees have the same
properties. In fact their behaviour can be encoded using numbers, and on
the other hand, they can be used to simulate arithmetic. Therefore, for these
data types the same observation holds, namely that validity relative to them
makes the logic incomplete, but adding an appropriate induction rule (struc-
tural induction) allows proving almost all practically interesting statements.
Induction is discussed in much greater detail in Chapter 11.

Fortunately however, this is in a sense the only kind of incompleteness
one has to confront: as explained in Section 3.4.2, the calculus used in KeY
to reason about programs is complete relative to arithmetic, meaning that
it is possible to prove any valid statement about programs if one can prove
statements about arithmetic. The observation about practically interesting
statements applies also here, which means that despite the theoretical in-
completeness, we can prove almost all interesting statements about almost
all interesting programs.
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3.1 Introduction

In the previous chapter, we have introduced a variant of classical predicate
logic that has a rich type system and a sequent calculus for that logic. This
predicate logic can easily be used to describe and reason about data struc-
tures, the relations between objects, the values of variables—in short: about
the states of (JAVA) programs.

Now, we extend the logic and the calculus such that we can describe
and reason about the behaviour of programs, which requires to consider not
just one but several program states. As a trivial example, consider the JAVA

statement x++;. We want to be able to express that this statement, when
started in a state where x is zero, terminates in a state where x is one.

We use an instance of dynamic logic (DL) [Harel, 1984, Harel et al., 2000,
Kozen and Tiuryn, 1990, Pratt, 1977] as the logical basis of the KeY system’s
software verification component [Beckert, 2001]. The principle of DL is the
formulation of statements about program behaviour by integrating programs
and formulae within a single language. To this end, the operators (modalities)
〈p〉 and [p] can be used in formulae, where p can be any sequence of legal
JAVA CARD statements (i.e., DL is a multi-modal logic). These operators that
refer to the final state of p can be placed in front of any formula. The formula
〈p〉φ expresses that the program p terminates in a state in which φ holds,
while [p]φ does not demand termination and expresses that if p terminates,
then φ holds in the final state. For example, “when started in a state where
x is zero, x++; terminates in a state where x is one” can in DL be expressed
as x .= 0 −> 〈x++〉(x .= 1).

In general, there can be more than one final state because the programs
can be non-deterministic; but here, since JAVA CARD programs are determin-
istic, there is exactly one such state (if p terminates normally, i.e., does not
terminate abruptly due to an uncaught exception) or there is no such state
(if p does not terminate or terminates abruptly). “Deterministic” here means

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 69–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that a program, for the same initial state and the some inputs, always has
the same behaviour—in particular, the same final state (if it terminates) and
the same outputs. When we do not (exactly) know what the initial state resp.
the inputs are, we may not know what (exactly) the behaviour is. But that
does not contradict determinism of the programming language JAVA CARD.

Deduction in DL, and in particular in JAVA CARD DL is based on symbolic
program execution and simple program transformations and is, thus, close to
a programmer’s understanding of JAVA (⇒ Sect. 3.4.5).

Dynamic Logic and Hoare Logic
Dynamic logic can be seen as an extension of Hoare logic. The DL formula
φ −> [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast to Hoare
logic, the set of formulae of DL is closed under the usual logical operators:
In Hoare logic, the formulae φ and ψ are pure first-order formulae, whereas
in DL they can contain programs.

DL allows to involve programs in the descriptions φ resp. ψ of states.
For example, using a program, it is easy to specify that a data structure
is not cyclic, which is impossible in pure first-order logic. Also, all JAVA

constructs are available in our DL for the description of states (including
while loops and recursion). It is, therefore, not necessary to define an
abstract data type state and to represent states as terms of that type;
instead DL formulae can be used to give a (partial) description of states,
which is a more flexible technique and allows to concentrate on the relevant
properties of a state.

Structure of This Chapter

The structure of this chapter is similar to that of the chapter on first-order
logic. We first define syntax and semantics of our JAVA CARD dynamic logic in
Sections 3.2 and 3.3. Then, in Section 3.4–3.9, we present the JAVA CARD DL
calculus, which is used in the KeY system for verifying JAVA CARD programs.
Section 3.4 gives an overview, while Sect. 3.5–3.9 describe the main com-
ponents of the calculus: non-program rules (Sect. 3.5), rules for reducing
JAVA CARD programs to combinations of state updates and case distinctions
(Sect. 3.6), rules for handling loops with the help of loop invariants (Sect. 3.7),
rules for handling method calls with the help of method contracts (Sect. 3.8),
and the simplification and normalisation of state updates (Sect. 3.9). Finally,
Sect. 3.10 discusses related work.

In addition, some important aspects of JAVA CARD DL and the calculus
are discussed in other chapters of this book, including the first-order part
(Chapter 2), proof construction and search (Chapter 4), induction (Chap-
ter 11), handling integers (Chapter 12), and handling the particularities of
JAVA CARD such as JAVA CARD’s transaction mechanism (Chapter 9). An
introduction to using the implementation of the calculus in the KeY system
is given in Chapter 10.
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3.2 Syntax

In general, a dynamic logic is constructed by extending some non-dynamic
logic with parameterised modal operators 〈p〉 and [p] for every legal pro-
gram p of some programming language.

In our case, the non-dynamic base logic is the typed first-order predicate
logic described in Chapter 2. Not surprisingly, the programming language we
consider is JAVA CARD, i.e., the programs p within the modal operators are
in our case JAVA CARD programs. The logic we define in this section is called
JAVA CARD Dynamic Logic or, for short, JAVA CARD DL.

The structure of this section follows the structure of Chapter 2. Sect. 3.2.1
defines the notions of type hierarchy and signature for JAVA CARD DL. How-
ever, we are more restrictive here than in the corresponding definitions of
Chapter 2 (Def. 2.1 and 2.8) since we want the JAVA CARD DL type hier-
archy to reflect the type hierarchy of JAVA CARD. A JAVA CARD DL type
hierarchy must, e.g., always contain a type Object. Then, we define the syn-
tax of JAVA CARD DL which consists of terms, formulae, and a new category of
expressions called updates (Sect. 3.2). In the subsequent Sect. 3.3, we present
a model-theoretic semantics of JAVA CARD DL based on Kripke structures.

3.2.1 Type Hierarchy and Signature

We start with the definition of the underlying type hierarchies and the sig-
natures of JAVA CARD DL. Since the logic we define is tailored to the pro-
gramming language JAVA CARD, we are only interested in type hierarchies
containing a set of certain types that are part of every JAVA CARD program.
First, we define a direct subtype relation that is needed in the subsequent
definition.

Definition 3.1 (Direct subtype). Assume a first-order logic type system
(T , Td, Ta,�). Then the direct subtype relation �0⊆ T × T between two
types A, B ∈ T is defined as:

A �0 B
iff

A � B and A �= B and
C = A or C = B for any C ∈ T with A � C and C � B.

Intuitively, A is a direct subtype of B if there is no type C that is between
A and B.

Definition 3.2 (JAVA CARD DL type hierarchy). A JAVA CARD DL type
hierarchy is a type hierarchy (T , Td, Ta,�) (⇒ Def. 2.1) such that:

• Td contains (at least) the types:
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integerDomain, boolean, Object, Error, Exception,
RuntimeException, NullPointerException, ClassCastException,
ExceptionInInitializerError, ArrayIndexOutOfBoundsException,
ArrayStoreException, ArithmeticException, Null;

• Ta contains (at least) the types: integer, byte, short, int, long, char,
Serializable, Cloneable, Throwable;

• if A � Object, then Null � A for all A �= ⊥ ∈ T ;
• integerDomain �0 A and A �0 integer for all A ∈ {byte, short, int,

long, char};
• ⊥ �0 integerDomain;
• ⊥ �0 Null;
• ⊥ �0 boolean;
• A � B = ⊥ for all A ∈ {integerDomain, integer, byte, short, int,

long, char, boolean} and B � Object.

In the remainder of this chapter, with type hierarchy we always mean a JAVA

CARD DL type hierarchy, unless stated otherwise.

A JAVA CARD DL type hierarchy is a type hierarchy containing the types that
are built into JAVA CARD like boolean, the root reference type Object, and
the type Null, which is a subtype of all reference types (Null exists implicitly
in JAVA CARD). As in the first-order case, the type hierarchy contains the
special types � and ⊥ (⇒ Def. 2.1). Moreover, it contains a set of abstract
and dynamic (i.e., non-abstract) types reflecting the set of JAVA CARD inter-
faces and classes necessary when dealing with arrays. These are Cloneable,
Serializable, Throwable, and some particular sub-sorts of the latter which are
the possible exceptions and errors that may occur during initialisation and
when working with arrays.

Finally, a type hierarchy includes the types boolean, byte, short, int,
long, and char representing the corresponding primitive JAVA CARD types.
Note, that these types (except for boolean) are abstract and are subtypes of
the likewise abstract type integer. The common subtype of these types is
the non-abstract type integerDomain, thus satisfying the requirement that
any abstract type must have a non-abstract subtype. Later we define that
the domain of integerDomain is the (infinite) set Z of integer numbers. Since
the domain of a type by definition (⇒ Def. 2.20) includes the domains of its
subtypes, all the abstract supertypes of integerDomain share the common
domain Z. The typing of the usual functions on the integers, like e.g., addition,
is defined as integer, integer→ integer.

Reasons for the Complicated Integer Type Hierarchy

The reasons behind the somewhat complicated looking integer type hier-
archy are twofold. First, we want to have mathematical integers in the
logic instead of integers with finite range as in JAVA CARD (the advan-
tage of this decision is explained in Chapter 12). As a consequence, the
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type integer is defined. Second, we need a dedicated type for each prim-
itive JAVA CARD integer type. That is necessary for a correct handling of
ArrayStoreExceptions in the calculus which requires the mapping be-
tween types in JAVA CARD and sorts in JAVA CARD DL to be an injection.

The reason why we introduce the common subtype integerDomain is
that integer, short, . . . , char are supposed to share the same domain,
namely the integer numbers Z. As a consequence of Def. 2.20, which re-
quires that any domain element d ∈ D has a unique dynamic type δ(d),
the only possibility to obtain the same domain for several types is to de-
clare these types as abstract and introduce a common non-abstract subtype
holding the domain.

The definition of type hierarchies (Def. 3.2) partly fixes the subtype relation.
It requires that type Null is a common subtype of all subtypes of Object
(except ⊥). That is necessary to correctly reflect the JAVA CARD reference
type hierarchy. Besides reference types, JAVA CARD has primitive types (e.g.,
boolean, byte, or int) which have no common sub- or supertype with any
reference type. Def. 3.2 guarantees that we only consider type hierarchies
where there is no common subtype (except ⊥, which does not exist in JAVA

CARD) of primitive and reference types, thus correctly reflecting the type
hierarchy of the JAVA CARD language.

However, Def. 3.2 does not fix the set of user-defined types and the subtype
relation between them. A JAVA CARD type hierarchy can contain additional
user-defined types, e.g., those types that are declared in a concrete JAVA

CARD program (⇒ Def. 3.10).
Fig. 3.1 shows the basic type hierarchy without any user-defined types.

Due to space restrictions the types short, int, and the built-in API refer-
ence types like Serializable, Cloneable, Exception, etc. are omitted from the
figure. Abstract types are written in italics (⊥ is of course also abstract).
The subtype relation A � B is illustrated by an arrow from A to B (reflexive
arrows are omitted).

Example 3.3. Consider the type hierarchy in Fig. 3.2 which is an extension
of the first-order type hierarchy from Example 2.6. The types AbstractCol-
lection, List, AbstractList, ArrayList, and the array type Object[ ] are user-
defined, i.e., are not required to be contained in any type hierarchy. As we
define later, any array type must be a subtype of the built-in types Object,
Serializable, and Cloneable.

Due to space restrictions some of the built-in types (⇒ Fig. 3.1) are
omitted.

As in Chapter 2, we now define the set of symbols that the language JAVA

CARD DL consists of. In contrast to first-order signatures, we have two
kinds of function and predicate symbols: rigid and non-rigid symbols. Conse-
quently, the set of function symbols is divided into two disjoint subsets FSymr
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�

integer

char byte · · · long

integerDomain

boolean

Object

API reference types

(Serializable,Clone-

able, . . . )

Null

⊥

Fig. 3.1. Basic JAVA CARD DL type hierarchy without user-defined types

�

Abstract−
Collection List

AbstractList

ArrayList

Object

Serializable Cloneable

Object[]

Null

⊥

Fig. 3.2. Example for a JAVA CARD DL type hierarchy (built-in types partly omit-
ted)
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and FSymnr of rigid and non-rigid functions, respectively (the same applies
to the set of predicate symbols). Intuitively, rigid symbols have the same
meaning in all program states (e.g., the addition on integers or the equality
predicate), whereas the meaning of non-rigid symbols may differ from state
to state. Non-rigid symbols are used to model (local) variables, attributes,
and arrays outside of modalities, i.e., they occur as terms in JAVA CARD DL.
Local variables can thus not be bound by quantifiers—in contrast to logical
variables. Note, that in classical DL there is no distinction between logical
variables and program variables (constants).

We only allow signatures that contain certain function and predicate sym-
bols. For example, we require that a JAVA CARD DL signature contains con-
stants 0, 1, . . . representing the integer numbers, function symbols for arith-
metical operations like addition, subtraction, etc., and the typical ordering
predicates on the integers.

Definition 3.4 (JAVA CARD DL signature). Let T be a type hierarchy,
and let FSym0

r , FSym0
nr , PSym0

r , and PSym0
nr be the sets of rigid and

non-rigid function and predicate symbols from App. A.
Then, a JAVA CARD DL signature (for T) is a tuple

Σ = (VSym, FSymr, FSymnr , PSymr, PSymnr , α)

consisting of

• a set VSym of variables (as in the first-order case, Def. 2.8),
• a set FSymr of rigid function symbols and a set FSymnr of non-rigid

function symbols such that

FSymr ∩ FSymnr = ∅
FSym0

r ⊆ FSymr

FSym0
nr ⊆ FSymnr ,

• a set PSymr of rigid predicate symbols and a set PSymnr of non-rigid
predicate symbols such that

PSymr ∩ PSymnr = ∅
PSym0

r ⊆ PSymr

PSym0
nr ⊆ PSymnr , and

• a typing function α (as in the first-order case, Def. 2.8).

In the remainder of this chapter, with signature we always mean a JAVA

CARD DL signature, unless stated otherwise.

Example 3.5. Given the type hierarchy from Example 3.3 (⇒ Fig. 3.2), an
example for a signature is the following:

VSym = {a, n, x}
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with
a:ArrayList, n:integer, x:integer

FSymr = {f, g} ∪ FSym0
r

with
f : integer→ integer
g : integer

FSymnr = {al, arg, c, data, i, j, length, para1, sal, v} ∪ FSym0
nr

with
al : ArrayList
arg : int
c : integer
data : ArrayList→ Object[ ]
i : int
j : short
length : ArrayList→ int
para1 : ArrayList
sal : ArrayList
v : int

and
PSymr = PSym0

r

Note 3.6. In the KeY system the user never has to explicitly define the whole
type hierarchy and signature but the system automatically derives large parts
of both from the JAVA CARD program under consideration. Only types and
symbols that do not appear in the program must be declared manually. Note,
however, that from a logical point of view the type hierarchy and the signature
are fixed a priori, and formulae (and thus programs in modal operators being
part of a formula) must only contain types and symbols declared in the type
hierarchy and signature.

The syntactic categories of first-order logic are terms and formulae. Here, we
need an additional category called updates [Beckert, 2001], which are used to
(syntactically) represent state changes.

In contrast to first-order logic, the definition of terms and formulae (and
also updates) in JAVA CARD DL cannot be done separately, since their de-
finitions are mutually recursive. For example, a formula may contain terms
which may contain updates. Updates in turn may contain formulae (see Ex-
ample 3.9). Nevertheless, in order to improve readability we give separate
definitions of updates, terms, and formulae in the following.
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3.2.2 Syntax of JAVA CARD DL Terms

Definition 3.7 (Terms of JAVA CARD DL). Given a JAVA CARD DL sig-
nature (VSym, FSymr, FSymnr , PSymr, PSymnr , α) for a type hierarchy (T ,
Td, Ta,�), the system {TermsA}A∈T of sets of terms of static type A is
inductively defined as the least system of sets such that:

• x ∈ TermsA for all variables x:A ∈ VSym;
• f(t1, . . . , tn) ∈ TermsA for all function symbols f : A1, . . . , An → A in

FSymr ∪ FSymnr and terms ti ∈ TermsA′
i

with A′
i � Ai (1 ≤ i ≤ n);

• (if φ then t1 else t2) ∈ TermsA for all φ ∈ Formulae (⇒ Def. 3.14)
and all terms t1 ∈ TermsA1 , t2 ∈ TermsA2 with A = A1 	A2;

• (ifExMinx.φ then t1 else t2) ∈ TermsA for all variables x ∈ VSym,
all formulae φ ∈ Formulae (⇒ Def. 3.14), and all terms t1 ∈ TermsA1 ,
t2 ∈ TermsA2 with A = A1 	A2;

• {u} t ∈ TermsA for all updates u ∈ Updates (⇒ Def. 3.8) and all terms
t ∈ TermsA.

In the style of JAVA CARD syntax we often write t.f instead of f(t) and a[i]
instead of [ ](a, i).1

Terms in JAVA CARD DL play the same role as in first-order logic, i.e.,
they denote elements of the domain. The syntactical difference to first-order
logic is the existence of terms of the form (if φ then t1 else t2) and
(ifExMin x.φ then t1 else t2) (which could be defined for first-order logic
as well). Informally, if φ holds, a conditional term (if φ then t1 else t2)
denotes the domain element t1 evaluates to. Otherwise, if φ does not hold,
t2 is evaluated. The meaning of a term (ifExMinx.φ then t1 else t2) is a
bit more involved. If there is some d such that φ holds, then the whole term
evaluates to the value denoted by t1 under the variable assignment βd′

x , where
d′ is the least element satisfying φ. Otherwise, if φ does not hold for any x,
then t2 is evaluated.

Terms can be prefixed by updates, which we define next.

3.2.3 Syntax of JAVA CARD DL Updates

Definition 3.8 (Syntactic updates of JAVA CARD DL). Given a JAVA

CARD DL signature (VSym, FSymr, FSymnr , PSymr, PSymnr , α) for a type
hierarchy (T , Td, Ta,�), the set Updates of syntactic updates is inductively
defined as the least set such that:

Function update: (f(t1, . . . , tn) := t) ∈ Updates for all terms f(t1, . . . , tn) ∈
TermsA (⇒ Def. 3.7) with f ∈ FSymnr and t ∈ TermsA′ s.t. A′ � A;

Sequential update: (u1 ; u2) ∈ Updates for all u1, u2 ∈ Updates;
Parallel update: (u1 ||u2) ∈ Updates for all u1, u2 ∈ Updates;

1 Note, that [ ] is a normal function symbol declared in the signature.
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Quantified update: (for x; φ; u) ∈ Updates for all u ∈ Updates, x ∈ VSym,
and φ ∈ Formulae (⇒ Def. 3.14);

Update application: ({u1} u2) ∈ Updates for all u1, u2 ∈ Updates.

Syntactic updates can be seen as a language for describing program transi-
tions. Informally speaking, function updates correspond to assignments in an
imperative programming language and sequential and parallel updates corre-
spond to sequential and parallel composition, respectively. Quantified updates
are a generalisation of parallel updates. A quantified update (for x; φ; u) can
be understood as (the possibly infinite) sequence of updates

· · · || [x/tn]u || · · · || [x/t0]u

put in parallel. The individual updates [x/tn]u, . . . , [x/t0]u are obtained by
substituting the free variable x in the update u with all terms tn, . . . , t0 such
that [x/ti]φ holds (it is assumed that all terms ti evaluate to different domain
elements). For parallel updates, the order matters. In case of a clash, i.e., if
two updates put in parallel modify the same location, the latter one dominates
the earlier one (if read from left to right). Coming back to our approximation
of quantified updates by parallel updates, this means, that the order of the
updates [x/ti]u put in parallel is crucial. As we see in Def. 3.27, the order
depends on a total order �, that is imposed on the domain, such that for all
[x/ti]u the following holds: ti evaluates to a domain element that is less than
all the elements tj (j > i) evaluate to (with respect to �).

Updates vs. Other State Transition Languages

The idea of describing state changes by a (syntactically quite restrictive)
language like JAVA CARD DL updates is not new and appears in slightly
different ways in other approaches as well. For example, abstract state ma-
chines (ASMs) [Gurevich, 1995] are also based on updates which, however,
have a different clash resolution strategy (clashing updates have no effect).

Another concept that is similar to updates are generalised substitutions
in the B language [Abrial, 1996].

According to the semantics we define below, JAVA CARD DL terms are (like
first-order terms) evaluated in a first-order interpretation that fixes the mean-
ing of function and predicate symbols. However, in JAVA CARD DL models,
we have many first-order interpretations (representing program states) rather
than only one. Programs occurring in modal operators describe a state tran-
sition to the state in which the formula following the modal operator is evalu-
ated. Updates serve basically the same purpose, but they are simpler in many
respects.

A simple function update describes a transition from one state to exactly
one successor state (i.e., the update process always “terminates normally” in
our terminology). Exactly one “memory location” is changed during this tran-
sition. None of the above holds in general for a JAVA assignment. Furthermore,
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the syntax of updates generated by the calculus that we define (⇒ Sect. 3.6)
is restricted even further, making analysis and simplification of state change
effects easier and efficient. Updates (together with case distinctions) can be
seen as a normal form for programs and, indeed, the idea of our calculus is
to stepwise transform a program to be verified into a sequence of updates,
which are then simplified and applied to first-order formulae.

Example 3.9. Given the type hierarchy and the signature from Examples 3.3
and 3.5, respectively, the following are JAVA CARD DL terms:

n a variable
c a non-rigid 0-ary function (constant)
{c := 0}(c) a term with a function update
{c := 0 || c := 1}(c) a term with a parallel update
{for x; x

.= 0 | x .= 1; c := x}(c)
a term with a quantified update

{for a; a �−ArrayList; length(x) := 0}(length(al))
a term with a quantified update

In contrast, the following are not terms:

f wrong number of arguments
{n := 0}(c) update tries to change the value of a variable
{g := 0}(c) update tries to change the value of a rigid function symbol
{for i; i

.= 0 | i .= 1; c := i}(c)
an update quantifying over a term instead of a variable
(i was declared to be a function symbol)

Updates vs. Substitutions

In classical dynamic logic [Harel et al., 2000] and Hoare logic [Hoare, 1969]
there are no updates. Modifications of states are expressed using equations
and syntactic substitutions. Consider, for example, the following instance
of the assignment rule for classical dynamic logic

Γ, x′ .= x + 1 =⇒ [x/x′]φ, ∆

Γ =⇒ 〈x = x + 1〉φ, ∆

where the fresh variable x′ denotes the new value of x. The formula φ must
be evaluated with the new value x′ and therefore x is substituted with x′.
The equation x′ .= x + 1 establishes the relation between the old and the
new value of x.

In principle, updates are not more expressive than substitutions. How-
ever, for reasoning about programs in an object-oriented programming lan-
guage like JAVA CARD updates have some advantages.

The main advantage of updates is that they are part of the syntax of the
(object-level) logic, while substitutions are only used on the meta-level to
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describe and manipulate formulae. Thus, updates can be collected and need
not be applied until the whole program has been symbolically executed
(and, thus, has disappeared). The collected updates can be simplified before
they are actually applied, which often helps to avoid case distinctions in
proofs. Substitutions in contrast are applied immediately and thus there is
no chance of simplification (for more details see Sect. 3.6.1).

Another point in favour for updates is that substitutions—as usually
defined for first-order logic—replace variables with terms. This, however,
does not help to handle JAVA CARD assignments since they modify non-rigid
functions rather than variables. Thus, in order to handle assignments with
updates, a more general notion of substitution would become necessary.

3.2.4 Syntax of JAVA CARD DL Formulae

Before we define the syntax of JAVA CARD DL formulae, we first define
normalised JAVA CARD programs, which are allowed to appear in formulae
(within modalities). The normal form can be established automatically by a
simple program transformation and/or extension of the type hierarchy and
the signature and does not constitute a real restriction.

Normalised JAVA CARD Programs

The definition of normalised JAVA CARD programs is necessary for two rea-
sons. First, we do not want to handle certain features of JAVA CARD (like, e.g.,
inner classes) in the calculus (⇒ Sect. 3.4.6), because including them would
require many rules to be added to our calculus. The approach we pursue
is to remove such features by a simple program transformation. The second
reason is that a JAVA CARD program must only contain types and symbols
declared in the type hierarchy and signature. Note, that this does not restrict
the set of possible JAVA CARD programs. It is always possible to adjust the
type hierarchy and signature to a given program.

Since JAVA CARD code can appear in formulae, we actually have to give
a formal definition of the syntax of JAVA CARD. This however goes beyond
the scope of this book and we refer the reader to the JAVA CARD language
specification [Chen, 2000, Sun, 2003d,c].

Definition 3.10 (Normalised JAVA CARD programs). Given a type hi-
erarchy (T , Td, Ta,�) for a signature (VSym, FSymr, FSymnr , PSymr,
PSymnr , α), a normalised JAVA CARD program P is a set of (abstract) class
and interface definitions satisfying the following constraints:
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1. P is compile-correct and compile-time constants of an integer type do not
cause overflow.2

2. P does not contain inner classes.
3. Identifiers in declarations of local variables, attributes, and parameters of

methods (and constructors) are unique.
4. A ∈ Ta for all interface and abstract class types A declared in or imported

into P.
5. A ∈ Td for all non-abstract class types A declared in or imported into P.
6. C � D iff C is implicitly or explicitly declared as a subtype of D (using the

keywords extends or implements), for all (abstract) class or interface
types C, D declared in or imported into P.

7. For all array types A [ ] · · · [ ]
︸ ︷︷ ︸
n times

(or A[ ]n for short where A[ ]0 = A) occurring

in P and 1 ≤ i ≤ n:
– A ∈ T ,
– B[ ]m � A[ ]n iff B[ ]m−1 � A[ ]n−1 for all B[ ]m ∈ T (m ≥ 1),
– A[ ]i ∈ Td,
– A[ ]i � Object,
– A[ ]i � Serializable,
– A[ ]i � Cloneable, and
– B �� A[ ]i ∈ Td for all non-array types B ∈ T \ {⊥, Null},
– Null � A[ ]i.

8. For all local variables and static field declarations “A id;” in P:
a) If A is not an array type, then id:A ∈ FSymnr .
b) If A = A′[ ]n is an array type, then id:(A′[ ]n) ∈ FSymnr .

9. For all non-static field declarations “A id;” in a class C in P:
a) If A is not an array type, then id : (C → A) ∈ FSymnr .
b) If A = A′[ ]n is an array type, then id : (C → A′[ ]n) ∈ FSymnr .

Let Π denote the set of all normalised JAVA CARD programs.

Not surprisingly, we require that the programs P we consider are compile-
correct (Constraint (1)). Constraint (2) requires that P does not contain
inner classes like, e.g., anonymous classes. In principle, this restriction could
be dropped. This however would result in a bunch of extra rules for the
calculus to be defined in Sect. 3.4.6.

In contrast to the programming language JAVA CARD, in JAVA CARD DL
we do not have overloading of function or predicate symbols. Therefore we re-
quire that the identifiers used in declarations in P are unique (Constraint (3)).
For instance, it is not allowed to have two local variables with the same name
occurring in P . Field hiding is disallowed by the same token.

2 The second condition can be checked statically. For example, a compile time con-
stant like final byte b=(byte)500; is not allowed since casting the literal 500
of type int to type byte causes overflow.
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Note, that the Constraints (2) and (3) are harmless restrictions in the
sense that any JAVA CARD program can easily be transformed into an equiv-
alent program satisfying the constraints.

Constraints (4) and (5) make sure that all non-array reference types de-
clared in and imported into P are contained in the type hierarchy. This in
particular applies to all classes that are automatically imported into any
program like the classes in package java.lang (in particular Object).

Constraint (6) guarantees that the inheritance hierarchy of the JAVA CARD

program P is correctly reflected by the subtype relation in the type hierarchy.
Array reference types are addressed in Constraint (7). Array types are not

declared explicitly in JAVA CARD like class or interface types but nevertheless
they still must be part of the type hierarchy and the subtype relation must
match the inheritance hierarchy in JAVA CARD, i.e., array types are subtypes
of Serializable, Cloneable, and Object.

The first condition requires the element type A of an array type A[ ]n to
be part of the type hierarchy (A ∈ T ). The subtype relation between two
array types B[ ]m and A[ ]n is recursively defined on the component types
B[ ]m−1 and A[ ]n−1. Therefore, we additionally postulate that all array types
up to dimension n with element type A are contained in the set of dynamic
types (A[ ]i ∈ Td) as well. Then the recursive definition is well-founded since
eventually we arrive at non-array types and we require that A[ ]i � Object.
Finally, we stipulate that non-array types B ∈ T \ {⊥, Null} must not be a
subtype of any array type A[ ]i.

Local variables and static fields in JAVA CARD occur as non-rigid 0-
ary functions in the logic (i.e., as constants). Therefore, we require for any
such element a corresponding function to be present in the signature (Con-
straint (8)).

Finally, in Constraint (9) we consider non-static fields which are repre-
sented by non-rigid unary functions that map instances of the class declaring
the field to elements of the field type.

In order to normalise a JAVA CARD program, Constraints (2) and (3) can
always be satisfied by performing a program transformation. For example,
inner classes can be transformed into top-level classes; identifiers (e.g., at-
tributes or local variables) can be renamed. On the other hand, meeting the
Constraints (4)–(9) may require an extension of the underlying type hierar-
chy and signature, since only declared types and symbols may be used in
a normalised JAVA CARD program. However, such an extension is harmless
and is done automatically by the KeY system, i.e., the user does not have
to explicitly declare all the types and symbols occurring in the JAVA CARD

program to be considered.

Example 3.11. Given the type hierarchy and signature from Examples 3.3
and 3.5, respectively, the following set of classes and interfaces constitute a
normalised JAVA CARD program.
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JAVA

abstract class AbstractCollection {
2 }

4 interface List {
}

6

abstract class AbstractList
8 extends AbstractCollection implements List {

}
10

class ArrayList extends AbstractList {
12

static ArrayList sal;
14 static int v;

16 Object[] data;
int length;

18

public static void demo1() {
20 int i=0;

}
22

public static void demo2(ArrayList para1) {
24 // int i=1; violates Constraint (3)

short j;
26 if (para1==null)

j=0;
28 else

j=1;
30 para1.demo3();

}
32

void demo3() {
34 this.length=this.length+1;

}
36

int inc(int arg) {
38 return arg+1;

}
40

}
42

// class Violate { violates Constraint (5)
44 // int k; violates Constraint (8)

// }

JAVA
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The above program satisfies all the constraints from Def. 3.10. All interface
types, (abstract) class types, and array types are contained in the correspond-
ing JAVA CARD DL type hierarchy, and for all identifiers in the program there
is a type correct function in the signature.

The statement in line 24 (commented out) would violate Constraint (3)
since method demo1 already declares a local variable with identifier i.

Similarly, declaring a class type Violate that is not contained in the type
hierarchy (as in line 43) violates Constraint (5). Also not allowed is declaring
a local variable if the signature does not contain the corresponding function
symbol (line 44).

Within modal operators we exclusively allow for sequences of statements. A
so-called program statement is either a normal JAVA statement, a method-
body statement, or a method-frame statement. Note that logical variables,
in contrast to non-rigid function symbols reflecting local program variables,
attributes, and arrays, must not occur in programs.

Intuitively, a method-body statement is a shorthand notation for the pre-
cisely identified implementation of method m(. . .) in class T . That is, in
contrast to a normal method call in JAVA CARD where the implementation
to be taken is determined by dynamic binding, a method-body statement
is a call to a method declared in a type that is precisely identified by the
method-body statement.

A method-frame statement is required when handling a method call by
syntactically replacing it with the method’s implementation (⇒ Sect. 3.6.5).
To handle the return statement in the right way, it is necessary

1. to record the object field or variable x that the result is to be assigned
to, and

2. to mark the boundaries of the implementation body when it is substituted
for the method call.

For that purpose, we allow a method-frame statement to occur as a JAVA

CARD DL program statement.

Definition 3.12 (JAVA CARD DL program statement). Let P ∈ Π be a
normalised JAVA CARD program. Then a JAVA CARD DL program statement
is

• a JAVA statement as defined in the JAVA language specification [Gosling
et al., 2000, § 14.5] (except synchronized),

• a method-body statement

retvar=target.m(t1,...,tn)@T;

where
– target.m(t1 , . . . , tn) is a method invocation expression,
– the type T points to a class declared in P (from which the implemen-

tation is taken),
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– the result of the method is assigned to retvar after return (if the method
is not void), or

• a method-frame statement

method-frame(result->retvar, source=T, this=target) : { body }

where
– the return value of the method is assigned to retvar when body has

been executed (if the method is not void),
– the type T points to the class in P providing the particular method

implementation,
– target is the object the method was invoked on,
– body is the body of the invoked method.

Thus, all JAVA statements that are defined in the official language speci-
fication can be used (except for synchronized blocks), and there are two
additional ones: a method-body statement and a method-frame statement.

Another extension is that we do not require definite assignment. In JAVA,
the value of a local variable or final field must have a definitely assigned
value when any access of its value occurs [Gosling et al., 2000, § 16]. In JAVA

CARD DL we allow sequences of statements that violate this condition (the
variable then has a well-defined but unknown value).

Note, that the additional constructs and extensions are a “harmless” ex-
tension as they are only used for proof purposes and never occur in the verified
JAVA CARD programs.

Definition 3.13 (Legal sequence of JAVA CARD DL program state-
ments). Let P ∈ Π be normalised JAVA CARD program.

A sequence st1 · · · stn (n ≥ 0) of JAVA CARD DL program statements is
legal w.r.t. to P if P enriched with the class declaration

public class DefaultClass {
public static void defaultMethod() {

st1
...
stn

}
}

where DefaultClass and defaultMethod are fresh identifiers—is a normalised
JAVA CARD program, except that st1 · · · stn do not have to satisfy the definite
assignment condition [Gosling et al., 2000, § 16].

Now we can define the set of JAVA CARD DL formulae:
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Definition 3.14 (Formulae of JAVA CARD DL). Let a signature (VSym,
FSymr, FSymnr , PSymr, PSymnr , α) for a type hierarchy T a normalised
JAVA CARD program P ∈ Π be given.

Then, the set Formulae of JAVA CARD DL formulae is inductively defined
as the least set such that:

• r(t1, . . . , tn) ∈ Formulae for all predicate symbols r : A1, . . . , An ∈
PSymr ∪ PSymnr and terms ti ∈ TermsA′

i
(⇒ Def. 3.7) with A′

i � Ai

(1 ≤ i ≤ n),
• true, false ∈ Formulae,
• ! φ, (φ | ψ), (φ & ψ), (φ −> ψ), (φ <−> ψ) ∈ Formulae for all φ, ψ ∈

Formulae,
• ∀x.φ, ∃x.φ ∈ Formulae for all φ ∈ Formulae and all variables x ∈ VSym,
• {u} φ ∈ Formulae for all φ ∈ Formulae and u ∈ Updates (⇒ Def. 3.8),
• 〈p〉φ, [p]φ ∈ Formulae for all φ ∈ Formulae and any legal sequence p of

JAVA CARD DL program statements.

In the following we often abbreviate formulae of the form (φ −> ψ) & (! φ −>
ξ) by if φ then ψ else ξ.

Example 3.15. Given the type hierarchy and the signature from Examples 3.3
and 3.5, respectively, and the normalised JAVA CARD DL program from Ex-
ample 3.11, the following are JAVA CARD DL formulae:

{c := 0}(c .= 0) a formula with an update
({c := 0}c) .= c a formula containing a term with an update
sal ! .= null −> 〈ArrayList.demo2(sal);〉j .= 1

a formula with a modal operator
{sal := null}〈ArrayList.demo2(sal);〉j .= 0

a formula with a modal operator and an up-
date

{v := g}〈ArrayList al=new ArrayList(); v=al.inc(v);〉(v .= g + 1)
a formula with a modal operator and an up-
date

{v := g}〈 ArrayList al=new ArrayList();
v=al.inc(v)@ArrayList〉(v .= g + 1)

a method-body statement within a modal op-
erator

〈int i=0; v=i;〉(v .= 0) local variable declaration and assignment
within a modal operator

Note 3.16. In program verification, one is usually interested in proving that
the program under consideration satisfies some property for all possible input
values. Since, by definition, terms (except those declared as static fields) and
in particular logical variables, i.e., variables from the set VSym, may not occur
within modal operators, it can be a bit tricky to express such properties. For
example, the following is not a syntactically correct JAVA CARD DL formula:
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∀n.(〈 ArrayList al=new ArrayList();
v=al.inc(n)〉(v .= n + 1))

To express the desired property, there are two possibilities. The first one
is using an update to bind the program variable to the quantified logical
variable:

∀n.{v := n}(〈 ArrayList al=new ArrayList();
v=al.inc(v);〉(v .= n + 1))

The second possibility is to use an equation:

∀n.(n .= v −> 〈 ArrayList al=new ArrayList();
v=al.inc(v);〉(v .= n + 1))

Both possibilities are equivalent with respect to validity: the first one is valid
iff the second one is valid.3

Before we define the semantics of JAVA CARD DL in the next section, we ex-
tend the definition of free variables from Chap. 2 to the additional syntactical
constructs of JAVA CARD DL.

Definition 3.17. We define the set fv(u) of free variables of an update u by:

• fv(f(t1, . . . , tn) := t) = fv(t) ∪
⋃n

i=1 fv(ti),
• fv(u1 ; u2) = fv(u1) ∪ fv(u2),
• fv(u1 ||u2) = fv(u1) ∪ fv(u2),
• fv(for x; φ; u) = (fv(φ) ∪ fv(u)) \ {x}.
For terms and formulae we extend Def. 2.18 as follows:

• fv(if φ then t1 else t2) = fv(φ) ∪ fv(t1) ∪ fv(f2)
• fv(ifExMinx.φ then t1 else t2) = ((fv(φ) ∪ fv(t1)) \ {x}) ∪ fv(f2)
• fv({u}t) = fv(u) ∪ fv(t) for a term t,
• fv({u}φ) = fv(u) ∪ fv(φ) for a formula φ,
• fv(〈p〉φ) = fv(φ) for a formula φ,
• fv([p]φ) = fv(φ) for a formula φ.

3.3 Semantics

We have seen that the syntax of JAVA CARD DL extends the syntax of first-
order logic with updates and modalities. On the semantic level this is reflected
by the fact that, instead of one first-order model, we now have an (infinite)
set of such models representing the different program states. Traditionally,
in modal logics the different models are called worlds. But here we call them
states, which better fits the intuition.
3 Please note that both formulae φ1, φ2 are not logically equivalent in the sense

that φ1 ↔ φ2 is logically valid.
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Our semantics of JAVA CARD DL is based on so-called Kripke structures,
which are commonly used to define the semantics of modal logics. In our case
a Kripke structure consists of
• a partial first-order model M fixing the meaning of rigid function and

predicate symbols,
• an (infinite) set S of states where a state is any first-order model refin-

ing M, thus assigning meaning to the non-rigid function and predicate
symbols (which are not interpreted byM), and

• a program relation ρ fixing the meaning of programs occurring in modal-
ities: (S1, p, S2) ∈ ρ iff the sequence p of statements when started in
state S1 terminates in state S2, assuming it is executed in some static
context, i.e., in some static method declared in some public class.

3.3.1 Kripke Structures

Definition 3.18 (JAVA CARD DL Kripke structure). Let a signa-
ture (VSym, FSymr, FSymnr , PSymr, PSymnr , α) for a type hierarchy (T , Td,
Ta,�) be given and let P ∈ Π be a normalised JAVA CARD program.

A JAVA CARD DL Kripke structure K for that signature, type hierarchy,
and program is a tuple (M,S, ρ) consisting of a partial first-order modelM =
(T0,D0, δ0, D0, I0), a set S of states, and a program relation ρ such that:

• T0 = T ;
• the partial domain D0 is a set satisfying

– Z = DintegerDomain
0 ,

– {tt ,ff } = Dboolean
0 ,

– {null} = DNull
0 ,

– for all dynamic types A ∈ Td \ {Null} with A � Object there is a
countably infinite set D′

0 ⊆ D0 such that δ0(d) = A for all d ∈ D′
0,

– for all f : A1, . . . , An → A ∈ FSymr ∪ FSymnr

D0(f) =

{
∅ if f ∈ FSymnr

DA1
0 × · · · × DAn

0 if f ∈ FSymr

– for all p : A1, . . . , An ∈ PSymr ∪ PSymnr

D0(p) =

{
∅ if p ∈ PSymnr

DA1
0 × · · · × DAn

0 if p ∈ FSymr

– I0(f) for f ∈ FSym0
r (see App. A.2.1),

– I0(p) for p ∈ PSym0
r (see App. A.2.2);

• the set S of JAVA CARD DL states consists of all first-order models
(D, δ, I) refining M with
– D = D0,
– δ = δ0;
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• the program relation ρ is, for all states S1, S2 ∈ S and any legal sequence p
of JAVA CARD DL program statements, defined by:

ρ(S1, p, S2)
iff

p started in S1 in a static context terminates normally in S2

according to the JAVA language specification [Gosling et al., 2000].

The partial model M is called Kripke seed since it determines the set of
states of a JAVA CARD DL Kripke structure.

Note 3.19. In the above definition we require that the partial domain D0

(which is equal to the domain D) is a set satisfying the mentioned properties.
This guarantees in particular that the domain contains exactly the two ele-
ments tt and ff with dynamic type boolean and that null is the only element
with dynamic type Null.

Moreover, we require that for each dynamic subtype A of type Object (ex-
cept type Null) there is a countably infinite subset D′

0 ⊆ D0 with δ0(d) = A.
These domain elements represent the JAVA CARD objects of dynamic type A.
Objects can be created dynamically during the execution of a JAVA CARD pro-
gram and therefore we do not know the exact number of objects in advance.
Since for a smooth handling of quantifiers in a calculus it is advantageous to
have a constant domain for all JAVA CARD DL states (see below), we can-
not extend the domain on demand if a new object is created. Therefore, we
simply require an infinite number of domain elements with an appropriate
dynamic type making sure that there is always an unused domain element
available to represent a newly created object.

Constant-Domain Assumption
Def. 3.18 requires that both the domain and the dynamic type function
are the same for all states in a Kripke structure. This so-called constant-
domain assumption is a harmless but reasonable and useful restriction as
the following example shows.

If we assume a constant domain, then the formula

∀x.p(x) −> [π]∀x.p(x) ,

where p is a rigid predicate symbol, is valid in all Kripke structures because
p cannot be affected by the program π. Without the constant domain
assumption there could be states where this formula does not hold since
the domain of the state reached by π may have more elements than the
state where ∀x.p(x) holds and in particular might include elements for
which p does not hold.

A problem similar to the one above already appears in classical modal
logics. In this setting constant-domain Kripke structures are characterised
by the so-called Barcan formula ∀x.�p(x)→ �∀x.p(x) (see, e.g., the book
by Fitting and Mendelsohn [1999]).
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The Kripke seedM of a Kripke structure (Def. 3.18) fixes the interpretation
of the rigid function and predicate symbols, i.e., of those symbols that have
the same meaning in all states. Moreover, it is “total” for these symbols in
the sense that it assigns meaning to rigid symbols for all argument tuples,
i.e., D0(s) = DA1

0 × · · · × DAn
0 for any rigid function or predicate symbol s.

That means, for example, that division by zero is defined, i.e., I0(x/y) (we
use infix notation for better readability) yields some (fixed but unknown)
element d ∈ Z ⊆ D0 for y = 0.

Handling Undefinedness

The way we deal with undefinedness is based on underspecification as pro-
posed by Gries and Schneider [1995], Constable and O’Donnell [1978].
Hähnle [2005] argues that this approach is superior to other approaches
(at least in the context of specification and verification of programs).

The basic idea is that any function f that is undefined for certain
argument tuples (like, e.g., / which is undefined for {(x, 0) | x ∈ Z}) is made
total by assigning a fixed but unknown result value for those arguments
where it is undefined. This is achieved using a dedicated (semantic) choice
function choicef which has the same arity as f . For example, for / the
choice function choice/ could be defined as choice/(x, 0) = x.

In the presence of choice functions, the definition of validity needs to
be revised such that a formula φ is said to be valid in a model M iff it is
valid in M for all possible definitions of the choice functions. That is, it
is crucial that all possibilities for a choice function are considered rather
than relying on just one particular possibility.

In Example 2.41 we explained how this can be achieved in classical first-
order logic making use of partial models, leaving open the interpretation of
functions for critical argument tuples. A formula is then valid in a (partial)
modelM iff it is valid in all (total) models refiningM—making sure that
all possibilities for choice functions are considered.

In order to carry over this approach to the Kripke semantics of JAVA

CARD DL there are two options:

1. Leaving open the interpretation of functions for critical argument tu-
ples in the Kripke seed. Then all possibilities for the choice functions
are considered in the states of the Kripke structure, which are defined
as the set of all models refining the Kripke seed.

2. Fixing a particular choice function in the Kripke seed. Then in order to
consider all choice functions all possible Kripke seeds need be to taken
into account.

In Def. 3.18 we chose the second of these two options, and there are good
reasons for this decision. Since a formula is defined to be valid iff it is
valid in all Kripke structures (⇒ Def. 3.38), we need to consider all Kripke
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structures (and thus all Kripke seeds) anyway. The second and more im-
portant argument is that, if we chose the first option, each single Kripke
structure contains states in which the same “undefined” term would eval-
uate to different values. Such a term would then not be rigid anymore
(Lemma. 3.33)—even if the function symbol is declared to be rigid and
the arguments are rigid. That would heavily complicate the definitions of
the semantics of JAVA CARD DL formulae containing modal operators and
of update simplification in Sect. 3.9. For example, without modifying the
semantics of JAVA CARD DL formulae, the formula

g
.= 5/0 −> 〈int i=0;〉g .= 5/0 ,

where g is a rigid constant, would no longer be valid since the program
might terminate in a state where 5/0 has a meaning different from that in
the initial state (whereas g has the same meaning in all states since it is
rigid). Hence it is beneficial to fix the semantics of all rigid functions for
all argument tuples already in the Kripke seed.

Please note, that—besides underspecification—there are several other
ways to deal with undefinedness in formal languages. One possibility is to
introduce an explicit value undefined . That approach is pursued, e.g., in
OCL [OCL 2.0]. It has the disadvantage that the user needs to know non-
standard semantics in order to evaluate expressions. Further approaches,
such as allowing for partially defined functions, are discussed in the article
by Hähnle [2005].

The Kripke seed does not provide an interpretation of the non-rigid symbols,
which is done by the models refining the seed, i.e., the states of the Kripke
structure.

The semantics of normalised JAVA CARD programs is given by the rela-
tion ρ, where ρ holds for (S1, p, S2) iff the sequence p of statements, when
started in S1, terminates normally in S2. Normal termination means that
the program does not terminate abruptly (e.g., because of an uncaught ex-
ception). Otherwise ρ does not hold, i.e., if the program terminates abruptly
or does not terminate at all.

Non-reachable States

According to Def. 3.18, the set S of JAVA CARD DL states contains all
possible states (i.e., all structures refining the Kripke seed). That implies
that a JAVA CARD DL Kripke structure also contains states that are not
reachable by any JAVA CARD program (e.g., states in which a class is both
marked as initialised and erroneous). The main reason for not excluding
such states is that even if they cannot be reached by any JAVA CARD

program, they can still be reached (or better: described) by updates. For
example, the update
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T.<classInitialised> := TRUE ||T.<erroneous> := TRUE

describes a state in which a class T � Object is both initialised and erro-
neous. Such states do not exist in JAVA CARD.

There is no possibility to syntactically restrict the set of updates such
that only states reachable by JAVA CARD programs can be described. Of
course, one could modify the semantics of updates such that updates lead-
ing to non-reachable states do not terminate or yield an unspecified state.
That however would make the semantics and simplification of updates
much more complicated.

Note 3.20. The definition that abrupt termination and non-termination are
treated the same is not a necessity but a result of the answer to the question
of when we consider a program to be correct. On the level of JAVA CARD DL
we say that a program is totally correct if it terminates normally and if it
satisfies the postcondition (assuming it satisfies the precondition). Thus, if
something unexpected happens and the program terminates abruptly then it
is not considered to be totally correct—even if the postcondition holds in the
state in which the execution of the program abruptly stops.

Other languages like, e.g., the JAVA Modeling Language (JML) have a
more fine-grained interpretation of correctness with respect to (abrupt) ter-
mination. JML distinguishes between normal termination and abrupt termi-
nation by an uncaught exception, and it allows to specify different postcon-
dition for each of the two cases. Since in the KeY tool we translate JML
expressions into JAVA CARD DL formulae we somehow have to mimic the dis-
tinction between non-termination and abrupt termination in JAVA CARD DL.

This is done by performing a program transformation such that the result-
ing program catches all exceptions at top-level and thus always terminates
normally. The fact, that the original program would have terminated abruptly
is indicated by the value of a new Boolean variable. For example, in the fol-
lowing formula, the program within the modal operator terminates normally,
independently of the value of j.

KeY
\<{
Throwable thrown = null;
try {

i = i / j;
} catch (Exception e) {
thrown = e;

}
}\> (thrown != null)

KeY
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In the postcondition the formula thrown ! .= null holds if and only if the
original program (without the try-catch block) terminates abruptly.

For a more detailed account of this issue the reader is referred to
Sects. 3.7.1 and 8.2.3.

Analogously to the syntax definition, the semantics of JAVA CARD DL up-
dates, terms, and formulae is defined mutually recursive. For better read-
ability we ignore this fact and give separate definitions for the semantics of
update, terms, and formulae, respectively.

3.3.2 Semantics of JAVA CARD DL Updates

Similar to the first-order case we inductively define a valuation function valM
assigning meaning to updates, terms, and formulae. Since non-rigid function
and predicate symbols can have different meanings in different states, the
valuation function is parameterised with a JAVA CARD DL state, i.e., for each
state S, there is a separate valuation function.

The intuitive meaning of updates is that the term or formula following the
update is to be evaluated not in the current state but in the state described by
the update. To be more precise, updates do not describe a state completely,
but merely the difference between the current state and the target state. As
we see later this is similar to the semantics of programs contained in modal
operators and indeed updates are used to describe the effect of programs.

In parallel updates u1 ||u2 (as well as in quantified updates) clashes can
occur, where u1 and u2 simultaneously modify a non-rigid function f for the
same arguments in an inconsistent way, i.e., by assigning different values.
To handle this problem, we use a last-win semantics, i.e., the update that
syntactically occurs last dominates earlier ones. In the more general situation
of quantified (unbounded parallel) updates for x; φ; u, we assume that a
fixed well-ordering � on the universe D exists (i.e., a total ordering such
that every non-empty subset Dsub ⊆ D has a least element min�(Dsub)). The
parallel application of unbounded sets of updates can then be well-ordered as
well, and clashes can be resolved by giving precedence to the update assigning
the smallest value. For this reasons, we first equip JAVA CARD DL Kripke
structures with a well-ordering on the domain.

Definition 3.21 (JAVA CARD DL Kripke structure with ordered do-
main). A JAVA CARD DL Kripke structure with ordered domain K� is a
JAVA CARD DL Kripke structure K = (M,S, ρ) with a well-ordering on D,
i.e., a binary relation � with the following properties:

• x � x for all x ∈ M (reflexivity),
• x � y and y � x implies x = y (antisymmetry),
• x � y and y � z implies x � z (transitivity), and
• any non-empty subset Dsub ⊆ D has a least element min�(Dsub), i.e.,

min�(Dsub) � y for all y ∈ Dsub (well-orderedness).
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As every set can be well-ordered (based on Zermelo-Fraenkel set theory [Zer-
melo, 1904]), this does not restrict the range of possible domains.

The particular order imposed on the domain of a Kripke structure is a
parameter that can be chosen depending on the problem. In the implemen-
tation of the KeY system, we have chosen the following order as it allows to
capture the effects of a particular class of loops in quantified updates in a
rather nice way Gedell and Hähnle [2006]. Note however, that the order can
be modified without having to adapt other definitions of the logic except for
the predicate quanUpdateLeq that allows to access the order on the object
level (it is required for update simplification (⇒ Sect. 3.9)).

Definition 3.22 (KeY JAVA CARD DL Kripke structure). A KeY JAVA

CARD DL Kripke structure is a JAVA CARD DL Kripke structure with ordered
domain, where the order � is defined for any x, y ∈ D� as follows:

• If δ0(x) �= δ0(y) then






x � y if δ0(x) � δ0(y)
y � x if δ0(y) � δ0(x)
x � y if δ0(x) ≤lex δ0(y) and neither

δ0(x) � δ0(y) nor δ0(y) � δ0(x)
where ≤lex is the usual lexicographic order on the names of types.

• If δ0(x) = δ0(y) then
– if δ0(x) = boolean then x � y iff x = ff
– if δ0(x) = integerDomain then x � y iff

x ≥ 0 and y < 0 or
x ≥ 0 and y ≥ 0 and x ≤ y, or
x < 0 and y < 0 and y ≤ x

– if Null �= A = δ0(x) � Object then x � y iff indexA(x) � indexA(y)
where indexT : DT → integer is some arbitrary but fixed bijective
mapping for all dynamic types T ∈ Td \ {Null}

– if δ0(x) = Null then x = y.

The semantics of an update is defined—relative to a given JAVA CARD DL
state—as a partial first-order model (T0,D0, δ, D, I0) that is defined exactly
on those tuples of domain elements that are affected by the update, i.e., the
partial model describes only the modifications induced by the update. Thus,
the semantics of updates is given by a special class of partial models that
differ only in D and I0 from a JAVA CARD DL state (T0,D0, δ, D

′, I ′0) (here
seen as a partial model), i.e., an update neither modifies the set T0 of fixed
types, nor the partial domain D0, nor the dynamic type function δ. In order
to improve readability, we therefore introduce so-called semantic updates to
capture the semantics of (syntactic) updates.

Definition 3.23. Let (VSym, FSymr, FSymnr , PSymr, PSymnr , α) be a sig-
nature for a type hierarchy. A semantic update is a triple (f, (d1, . . . , dn), d)
such that
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• f : A1, . . . , An → A ∈ FSymnr ,
• di ∈ DAi (1 ≤ i ≤ n), and
• d ∈ DA .

Since updates in general modify more than one location (a location is a pair
(f, (d1, . . . , dn))), we define sets of consistent semantic updates.

Definition 3.24. A set CU of semantic updates is called consistent if for all
(f, (d1, . . . , dn), d), (f ′, (d′1, . . . , d

′
m), d′) ∈ CU ,

d = d′ if f = f ′, n = m, and di = d′i (1 ≤ i ≤ n) .

Let CU denote the set of consistent semantic updates.

As we see in Def. 3.27, a syntactic update describes the modification of a
state S as a set CU of consistent semantic updates. In order to obtain the
state in which the terms, formulae, or updates following an update u are
evaluated, CU is applied to S yielding a state S′.

Definition 3.25 (Application of semantic updates). Let (VSym,FSymr,
FSymnr , PSymr, PSymnr , α) be a signature for a given type hierarchy and let
M = (D0, δ, I0) be a first-order model for that signature.

For any set CU ∈ CU of consistent semantics updates, the modification
CU(M) is defined as the model (D′

0, δ
′, I ′0) with

D′
0 = D0

δ′ = δ

I ′0(f)(d1, . . . , dn) =

{
d if (f, (d1, . . . , dn), d) ∈ CU

I0(f)(d1, . . . , dn) otherwise

for all f : A1, . . . , An → A ∈ FSymnr and di ∈ DAi (1 ≤ i ≤ n).

Intuitively, a set CU of consistent semantic updates modifies the interpreta-
tion ofM for the locations that are contained in CU .

Note 3.26. The consistency condition in Def. 3.24 guarantees that the inter-
pretation function I ′ in Def. 3.25 is well-defined.

Definition 3.27 (Semantics of JAVA CARD DL updates). Given a sig-
nature for a type hierarchy, let K� = (M,S, ρ) be a JAVA CARD DL Kripke
structure with ordered domain, let β be a variable assignment, and let P ∈ Π
be a normalised JAVA CARD program.

For every state S = (D, δ, I) ∈ S, the valuation function valS : Updates→
CU for updates is inductively defined by

• valS,β(f(t1, . . . , tn) := s) = {(f, (d1, . . . , dn), d)} where

di = valS,β(ti) (1 ≤ i ≤ n)
d = valS,β(s) ,
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• valSβ(u1 ; u2) = (U1 ∪ U2) \ C where

U1 = valS,β(u1)
U2 = valS′,β(u2) with S′ = valS,β(u1)(S)
C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ �= d} ,

• valS,β(u1 ||u2) = (U1 ∪ U2) \ C where

U1 = valS,β(u1)
U2 = valS,β(u2)
C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ �= d} ,

• valS,β(for x; φ; u) = U where

U = {(f, (d1, . . . , dn), d) | there is a ∈ DA such that
((f, (d1, . . . , dn), d), a) ∈ dom and
b �� a for all ((f, (d1, . . . , dn), d′), b) ∈ dom}

with dom =
⋃

a∈{d∈DA|S,βd
x|=φ}(valS,βa

x
(u)× {a}), and A is the type of x,

• valS,β({u1} u2) = valS′,β(u2) with S′ = valS,β(u1)(S).

For an update u without free variables we simply write valS(u) since valS,β(u)
is independent of β.

In both sequential and parallel updates, a later sub-update overrides an earlier
one. The difference however is that with sequential updates the evaluation of
the second sub-update is affected by the evaluation of the first one. This is
not the case for parallel updates, which are evaluated simultaneously.

Example 3.28. Consider the updates

c := c + 1 ; c := c + 2

and
c := c + 1 || c := c + 2

where c is a non-rigid constant. We stepwise evaluate these updates in a JAVA

CARD DL state S1 = (D, δ, I1) with I1(c) = 0.

valS1(c := c + 1 ; c := c + 2) = (U1 ∪ U2) \ C

where

U1 = valS1,β(c := c + 1) = {(c, (), 1)}
U2 = valS2,β(c := c + 2) = {(c, (), 3)} with S2 = valS1,β(c := c + 1)(S1)
C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ �= d}
= {(c, (), 1)}
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That is, we first evaluate the sub-update c := c + 1 in state S1 yielding U1.
In order to evaluate the second sub-update, we first have to apply U1 to
state S1, which results in the state S2 that coincides with S1 except for the
interpretation of c, which is I2(c) = 1. The evaluation of c := c + 2 in S2

yields U2. From the union U1 ∪U2 we have to remove the set C of conflicting
semantic updates and finally obtain the result

valS1(c := c + 1 ; c := c + 2) = {(c, (), 3)} ,

i.e., a semantic update that fixes the interpretation of the 0-ary function
symbol c to be the value 3.

On the other hand, the semantics of the parallel update in state S1 is
defined as

valS1(c := c + 1 || c := c + 2) = (U1 ∪ U2) \ C

where

U1 = valS1(c := c + 1)
U2 = valS1(c := c + 2)
C = {(f, (d1, . . . , dn), d) | (f, (d1, . . . , dn), d) ∈ U1 and

(f, (d1, . . . , dn), d′) ∈ U2 for some d′ �= d}

That is, we first evaluate the two parallel sub-updates, resulting in the sets
U1 = {(c, (), 1)} and U2 = {(c, (), 2)} of consistent semantic updates. Both U1

and U2 fix the interpretation of c for the same (and only) argument tuple ()
but in an inconsistent way; U1 and U2 assign c the values 1 and 2, respectively.
Such a situation is called a clash. As a consequence, the union U1∪U2 is not a
set of consistent semantics updates. To regain consistency we have to remove
those elements from the union that cause the clash. In the example, that is
the set

C = {(c, (), 1)} ,

and we obtain as the result

valS1(c := c + 1 || c := c + 2) = {(c, (), 2)} .

This example shows that in case of a clash within a parallel update, the
later sub-update dominates the earlier one such that the evaluation of the
second sub-update is not affected by the first one. In contrast, with sequential
updates the first sub-update affects the second sub-update.

Not surprisingly, defining the semantics of quantified updates is rather
complicated and proceeds in two steps.

First, we determine the set D = {d ∈ DA | S, βd
x |= φ} of domain ele-

ments d ∈ DA satisfying the guard formula φ with the variable assignment βd
x.

Then, for each a ∈ D the sub-update u is evaluated with βa
x resulting in a
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set of consistent semantic updates. If the quantified update is clash-free, its
semantics is simply the union of all these sets of semantic updates.

In general though, a quantified update might contain clashes which must
be resolved. For example, performing the steps described above for the quan-
tified update

for x; x
.= 0 | x .= 1; c := 5− x

results in the two sets U1 = {(c, (), 5)} and U2 = {(c, (), 4)} of consistent se-
mantic updates (the set of values satisfying the guard formula is {0, 1}).
The set U1 ∪ U2 is inconsistent, i.e., the quantified update is not clash-
free and we have to resolve the clashes. For this purpose it is important
to remember the value a ∈ D from the variable assignment βa

x under which
the sub-update u was evaluated. Therefore, in Def. 3.27, we define a set
dom =

⋃
a∈{d∈DA|S,βd

x|=φ}(valS,βa
x
(u)× {a}) consisting of pairs of (possibly

inconsistent) semantics updates (resulting from valS,βa
x
(u)) and the appro-

priate value a (from βa
x). In our example, the set dom is given as

dom = {((c, (), 5), 0), ((c, (), 4), 1)}

which we use for clash resolution. The clash is resolved by considering only
one of the two semantic updates and discarding the other one. In general, to
determine which one is kept the second components a, a′ (here 0 and 1) from
the elements in dom come into play: The semantic update (f, (d1, . . . , dn), d)
with appropriate a is kept if a � a′ for all (f ′, (d′1, . . . , d′n), d′) with f = f ′,
n = m, di = d′i (1 ≤ i ≤ n), and appropriate a′. That is, the semantic update
arising from the least element satisfying the guard dominates. In our example
we keep (c, (), 5) and discard (c, (), 4) since 0 � 1.

This “least element” approach for clash resolution in a sense carries over
the last-win semantics of parallel updates to quantified updates. Note, that
this is not the only possibility for clash resolution (see Note 3.30).

Example 3.29. In this example we show how clashes for quantified updates
are resolved using the ordering predicate � on the domain.

Consider the update

for x; x
.= 0 | x .= 1; h(0) := x .

It attempts to simultaneously assign the values 0 and 1 to the location h(0).
To keep the example simple, we assume that x ranges over the positive inte-
gers, which allows us to chose the usual “less than or equal” ordering rela-
tion ≤.

The semantics of a clashing quantified update is given by the least (second
component of the) elements in the set dom with respect to the ordering. First,
we determine the set dom (for an arbitrary state S):

dom =
⋃

a∈{d∈DA |S,βd
x |=(x

.
=0|x .

=1)}(valS,βa
x
(h(0) := x)× {a})

= {valS,β0
x
(h(0) := x)× {0}, valS,β1

x
(h(0) := x)× {1}}

= {((h, (0), 0), 0), ((h, (0), 1), 1)}
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since valS,β0
x
(h(0) := x) = {(h, (0), 0)} and valS,β1

x
(h(0) := x) = {(h, (0), 1)}.

Then, in the second step, we remove those elements from dom that cause
clashes. In the example, the two elements are inconsistent, and we keep only
((h, (0), 0), 0) since it has the smaller second component with respect to the
ordering ≤. That is, the result of evaluating the quantified update is the
singleton set {(h, (0), 0)} of consistent semantics updates.

As an example for a quantified update without clash consider

for x; x
.= 0 | x .= 1; h(x) := 0 ,

which we evaluate in some arbitrary state S. Again we assume that x ranges
over the non-negative integers. Then,

dom =
⋃

a∈{d∈DA |S,βd
x |= x

.
=0|x .

=1}(valS,βa
x
(h(x) := 0)× {a})

= {valS,β0
x
(h(x) := 0)× {0}, valS,β1

x
(h(x) := 0)× {1}}

= {((h, (0), 0), 0), ((h, (1), 0), 1)}

This set dom does not contain inconsistencies and, thus, the semantics of the
quantified update is {(h, (0), 0), (h, (1), 0)}.

Note 3.30. As already mentioned before there are several possibilities for
defining the semantics of updates in case of a clash.

The crucial advantage of using a last-win clash semantics is that the
transformation of sequential updates into parallel ones becomes almost trivial
and can in practice be carried out very efficiently (⇒ Sect. 3.9.2). A last-win
semantics allows to postpone case distinctions resulting from the possibility
of aliasings/clashes to a later point in the proof.

Other possible strategies for handling clashes in quantified updates are
(the basic ideas are mostly taken from the thesis by Platzer [2004b]):

• Leaving the semantics of updates undefined in case of a clash. This ap-
proach is similar to how partial functions (e.g., /) are handled in KeY.
Then, a clashing update leads to a state where the location affected by
the clash has a fixed but unknown value.

• Using the notion of consistent (syntactic) updates (as it is done in ASMs)
in which no clashes occur. Following this idea, inconsistent updates would
have no effect. However, according to the experiences with the existing
version of KeY for ASMs [Nanchen et al., 2003], proving the consistency
of updates tends to be tedious.

• Making the execution of updates containing clashes indeterministic (an
arbitrary one of the clashing sub-updates is chosen). Then, however, up-
dates would no longer be deterministic modal operators. Apart from the
fact that the determinism of updates is utilised in a number of places in
KeY, transformation rules for updates become much more involved for
this clash semantics.
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3.3.3 Semantics of JAVA CARD DL Terms

The valuation function for JAVA CARD DL terms is defined analogously to
the one for first-order terms, though depending on the JAVA CARD DL state.

Definition 3.31 (Semantics of JAVA CARD DL terms). Given a signa-
ture for a type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke
structure, let β be a variable assignment, and let P ∈ Π be a normalised JAVA

CARD program.
For every state S = (D, δ, I) ∈ S, the valuation function valS for terms

is inductively defined by:

valS,β(x) = β(x) for variables x

valS,β(f(t1, . . . , tn)) = I(f)(valS,β(t1), . . . , valS,β(tn))

valS,β(if φ then t1 else t2)) =

{
valS,β(t1) if S, β |= φ

valS,β(t2) if S, β �|= φ

valS,β(ifExMin x.φ then t1 else t2)) =





valS,βd
x
(t1) if there is some d ∈ DA such that S, βd

x |= φ and
d � d′ for any d′ ∈ DA with S, βd′

x |= φ

(where A is the type of x)
valS,β(t2) otherwise

valS,β({u}(t)) = valS1,β(t) with S1 = valS,β(u)(S)

Since valS,β(t) does not depend on β if t is ground, we write valS(t) in that
case.

The function and predicate symbols of a signature are divided into disjoint
sets of rigid and non-rigid function and predicate symbols, respectively. From
Def. 3.18 follows, that rigid symbols have the same meaning in all states of a
given Kripke structure. The following syntactic criterion continues the notion
of rigidness from function symbols to terms.

Definition 3.32. A JAVA CARD DL term t is rigid

• if t = x and x ∈ VSym,
• if t = f(t1, . . . , tn), f ∈ FSymr and the sub-terms ti are rigid (1 ≤ i ≤ n),
• if t = {u}(s) and s is rigid,
• if t = (if φ then t1 else t2) and the formula φ is rigid (Def. 3.35) and

the sub-terms t1, t2 are rigid,
• if t = (ifExMinx.φ then t1 else t2) and the formula φ is rigid (Def. 3.35)

and the sub-terms t1, t2 are rigid.

Intuitively, rigid terms have the same meaning in all JAVA CARD DL states
(whereas the meaning of non-rigid terms may differ from state to state).
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Lemma 3.33. Let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke struc-
ture, let P ∈ Π be a normalised JAVA CARD program, and let β be a variable
assignment.

If JAVA CARD DL term t is rigid, then

valS1,β(t) = valS2,β(t)

for any two states S1, S2 ∈ S.

The proof of the above lemma proceeds by induction on the term structure
and makes use of the fact, that by definition the leading function symbol f
of a term to be updated must be from the set FSymnr .

3.3.4 Semantics of JAVA CARD DL Formulae

Definition 3.34 (Semantics of JAVA CARD DL formulae). Given a sig-
nature for a type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL
Kripke structure, let β be a variable assignment, and let P ∈ Π be a nor-
malised JAVA CARD program.

For every state S = (D, δ, I) ∈ S the validity relation |= for JAVA

CARD DL formulae is inductively defined by:

• S, β |= p(t1, . . . , tn) iff (valS,β(t1), . . . , valS,β(tn)) ∈ I(p)
• S, β |= true
• S, β �|= false
• S, β |= ! φ iff S, β �|= φ
• S, β |= (φ & ψ) iff S, β |= φ and S, β |= ψ
• S, β |= (φ | ψ) iff S, β |= φ or S, β |= ψ (or both)
• S, β |= (φ −> ψ) iff S, β �|= φ or S, β |= ψ (or both)
• S, β |= ∀x.φ iff S, βd

x |= φ for every d ∈ DA (where A is the type of x)
• S, β |= ∃x.φ iff S, βd

x |= φ for some d ∈ DA (where A is the type of x)
• S, β |= {u}(φ) iff S1, β |= φ with S1 = valS,β(u)(S)
• S, β |= 〈p〉φ iff there exists some state S′ ∈ S such that (S, p, S′) ∈ ρ and

S′, β |= φ
• S, β |= [p]φ iff S′, β |= φ for every state S′ ∈ S with (S, p, S′) ∈ ρ

We write S |= φ for a closed formula φ, since β is then irrelevant.

Similar to rigidness of terms, we now define rigidness of formulae.

Definition 3.35. A JAVA CARD DL formula φ is rigid

• if φ = p(t1, . . . , tn), p ∈ PSymr and the terms ti are rigid (1 ≤ i ≤ n),
• if φ = true or φ = false,
• if φ = ! ψ and ψ is rigid,
• φ = (ψ1 | ψ2), φ = (ψ1 & ψ2), or φ = (ψ1 −> ψ2), and ψ1, ψ2 are rigid,
• if φ = ∀x.ψ or φ = ∃x.ψ, and ψ is rigid,
• φ = {u}ψ and ψ is rigid.
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Note 3.36. A formula 〈p〉ψ or [p]ψ is not rigid, even if ψ is rigid, since the
truth value of such formulas depends, e.g., on the termination behaviour
of the program statements p in the modal operator. Whether a program
terminates or not in general depends on the state the program is started in.

Intuitively, rigid formulae—in contrast to non-rigid formulae—have the same
meaning in all JAVA CARD DL states.

Lemma 3.37. Let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke struc-
ture and let P ∈ Π be a normalised JAVA CARD program, and let β be a
variable assignment.

If a JAVA CARD DL formula φ is rigid, then

S1, β |= φ if and only if S2, β |= φ

for any two states S1, S2 ∈ S.

Finally, we define what it means for a formula to be valid or satisfiable. A first-
order formula is satisfiable (resp., valid) if it holds in some (all) model(s) for
some (all) variable assignment(s) (⇒ Def. 2.40). Similarly, a JAVA CARD DL
formula is satisfiable (resp. valid) if it holds in some (all) state(s) of some
(all) Kripke structure(s) K� for some (all) variable assignment(s).

Definition 3.38. Given a signature for a type hierarchy and a normalised
JAVA CARD program P ∈ Π, let φ be a JAVA CARD DL formula.

φ is satisfiable if there is a KeY JAVA CARD DL Kripke structure K� =
(M,S, ρ) such that S, β |= φ for some state S ∈ S and some variable assign-
ment β.

Given a KeY JAVA CARD DL Kripke structure K� = (M,S, ρ), the for-
mula φ is K�-valid, denoted by K� |= φ, if S, β |= φ for all states S ∈ S and
all variable assignments β

φ is logically valid, denoted by |= φ, if K� |= φ for all KeY JAVA CARD DL
Kripke structures K�.

Note 3.39. Satisfiability and validity for JAVA CARD DL coincide with the
corresponding notions in first-order logic (Def. 2.40), i.e., if a first-order for-
mula φ is satisfiable (valid) in first-order logic then φ is satisfiable (valid) in
JAVA CARD DL.

Note 3.40. The notions of satisfiability, K�-validity, and logical validity of
a formula depend on the given type hierarchy and normalised JAVA CARD

program, and are not preserved if one of the two is modified—as the following
simple example shows.

Suppose a type hierarchy contains an abstract type A with Null as its
only subtype. Then the formula ∀x.x

.= null, where x is of type A, is valid
since DA consists only of the element null to which the term null evaluates.
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Now we modify the type hierarchy and add a dynamic type B that is a
subtype of A and a supertype of Null. By definition, the domain of a dynamic
type is non-empty, and, since B is a subtype of A, DA contains at least one
element d �= null with d ∈ DB. As a consequence, φ is not valid in the
modified type hierarchy.

The following example shows that validity does not only depend on the
given type hierarchy but also on the JAVA CARD DL program (which is, of
course, more obvious). Suppose the type hierarchy contains the dynamic type
Base with dynamic subtype SubA, and the normalised JAVA CARD program
shown below is given:

JAVA

class Base {
2 int m() {

return 0;
4 }

6 public static void start(Base o) {
int i=o.m();

8 }
}

10

class SubA extends Base {
12 int m() {

return 0;
14 }

}

JAVA

Consider the method invocation o.m(); in line 7. Both the implementation
of m in class Base and the one in class SubA may be chosen for execution. The
choice depends on the dynamic type of the domain element that o evaluates
to—resulting in a case distinction.

Nevertheless, the formula

〈i=Base.start(o);〉i .= 0 ,

where o:Base ∈ FSymnr , is valid because both implementations of m() re-
turn 0.

Now we modify the implementation of method m() in class SubA by re-
placing the statement return 0; with return 1;. Then, φ is no longer valid
since now there are values of o for which method invocation o.m(); yields
the return value 1 instead of 0.

Instead of modifying the implementation of method m() in class SubA one
could also add another class SubB extending Base with an implementation of
m() that return a “wrong” result, making φ invalid.
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The examples given here clearly show that in general the validity of a
formula depends on the given type hierarchy and on the program that is con-
sidered. As is explained in Sect. 8.5, as a consequence, any proof is in principle
invalidated if the program is modified (e.g., by adding a new subclass) and
needs to be redone. However, validity is not always lost if the program is
modified and Sect. 8.5 presents methods for identifying situations where it is
preserved.

Example 3.41. We now check the formulae from Example 3.15 for validity.

|= {c := 0} (c .= 0) since in the state in which c
.= 0 is evaluated, c is

indeed 0 (due to the update).
�|= ({c := 0} c) .= c since ({c := 0}c) evaluates to 0 in any state but

there are states in which c (the right side) is dif-
ferent from 0.

|= sal ! .= null −> 〈ArrayList.demo2(sal);〉j .= 1
since after invocation of ArrayList.demo2(sal)
with an argument sal different from null the local
variable j has the value 1.

�|= {sal := null}〈ArrayList.demo2(sal);〉j .= 1
since j has the value 0 when the program termi-
nates if started in a state with sal

.= null. Due to
the update sal := only such states are considered
and, thus, this formula is even unsatisfiable.

�|= {v := g}(〈ArrayList al=new ArrayList(); v=al.inc(v);〉v .= g + 1)
since the JAVA CARD addition arg+1 in method
inc causes a so-called overflow for n = 2147483647
(⇒ Chap. 12), in which case v has the negative
value −2147483648 �= 2147483647 + 1.

�|= {v := g}(〈ArrayList al=new ArrayList();
v=al.inc(v)@ArrayList〉v .= g + 1)

This formula has the same semantics as the previ-
ous one since in this case the method-body state-
ment v=al.inc(v)@ArrayList is equivalent to the
method call v=al.inc(v) (because there are no
subclasses of ArrayList overriding method inc).

|= 〈int v=0;〉v .= 0 since the program always terminates in state with
v

.= 0.

Example 3.42. The following two examples deal with functions that have a
predefined fixed semantics (i.e., the same semantics in all Kripke seeds) only
on parts of the domain. We consider the division function / (written infix in
the following), which has a predefined interpretation for {(x, y) ∈ integer×
integer | y �= 0} while the interpretation for {(x, y) ∈ integer× integer |
y = 0} depends on the particular Kripke seed.
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K� |= 5/c
.= 1 in anyK� with Kripke seedM = (T0,D0, δ0, D0, I0)

such that
• I0(c) = 5 or
• I0(c) = 0 and I0(5/0) = 1.

|= 5/c
.= 5/c since 5/c

.= 5/c holds in any state S of any K� (even
if valS(c) = 0).

3.3.5 JAVA CARD-Reachable States

As mentioned before, the set of states that are reachable by JAVA CARD

programs is a subset of the states of a JAVA CARD DL Kripke structure.
Indeed, a state is (only) JAVA CARD-reachable if it satisfies the following
conditions:

1. A finite number of objects are created.4

2. Reference type attributes of non-null objects are either null or point to
some other created object. Similarly, all entries of reference-type arrays
different from null are either null or point to some created object.

3. For any array a the dynamic type δ(a[i]) of the array entries is a subtype
of the element type A of the dynamic type A[ ] = δ(a) of a (violating this
condition in JAVA leads to an ArrayStoreException).

Given a type hierarchy (T , Td, Ta,�), a signature, and a normalised JAVA

CARD program P ∈ Π the above conditions can be expressed with JAVA

CARD DL formulae as follows (the implicit fields like, e.g., <nextToCreate>
and the function T::get() used in the following formulae are defined formally
in Sect. 3.6.6):

1. For all dynamic types T ∈ Td \ {Null} with T � Object that occur in P :

T.<nextToCreate>>= 0 &
∀x.(x >= 0 & x < T.<nextToCreate><−>

T::get(x).<created> .= TRUE)

where x ∈ VSym is of type integer.
By definition, an object o is created iff its index (which is the in-
teger i for which the equation o

.= C::get(i) holds) is in the inter-
val [0, C.<nextToCreate>[. This guarantees that only a finite number
of objects are created. The above formula expresses the consistency be-
tween the implicit attribute T::get(x).<created> and the definition of
createdness for any type T .

4 In JAVA CARD DL, objects are represented by domain elements, and the domain
is assumed to be constant (see Note 3.19 on page 89). Whether an object is
created or not is indicated by a Boolean function <created> (⇒ Sect. 3.6.6).
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2. (i) For all types T ∈ T \ {⊥, Null} with T � Object that occur in P
and for all non-rigid function symbols f : T → T ′ ∈ FSymnr with
T ′ � Object that are declared as an attribute of T in P :

∀o.(o.<created> .= TRUE & o ! .= null) −>
(o.f .= null | o.f.<created>

.= TRUE))

where o ∈ VSym is of type T .
(ii) For all array types T [ ] ∈ T that occur in P

∀a.∀x.(a.<created>
.= TRUE & a ! .= null) −>

(a[x] .= null | a[x].<created> .= TRUE))

where a ∈ VSym is of type T [ ] and x ∈ VSym of type integer.
3. For all array types T [ ] ∈ T that occur in P :

∀a.∀x.((a.<created>
.= TRUE & a ! .= null) −>

arrayStoreValid(a, a[x]))

where a ∈ VSym is of type T [ ] and x ∈ VSym of type integer (see
App. A.2.2 for the semantics of the predicate arrayStoreValid).

Thus, there is a reachability formula for each type T , each reference type
attribute, and each array type that occurs in the program P . Since the con-
junction of all these may result in a quite lengthy formula, we introduce the
non-rigid predicate inReachableState which, by definition, holds in a state S
iff all the above formulae hold in S.

There are some more constraints restricting the set of JAVA CARD-
reachable states dealing with class initialisation. For example, an initialised
class is not erroneous. However, since class initialisation is not handled in this
book we do not go into details here and omit the corresponding constraints
(for a detailed account on class initialisation the reader is referred to [Bubel,
2001]). Please note that the KeY system can handle class initialisation.

Example 3.43. Consider the following JAVA CARD program

JAVA

class Control {
Data data;

}

class Data {
int d;

}

JAVA
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We assume a specification of class Data that consists of the invariant

∀data.(data.<created>
.= TRUE −> data.d >= 0)

(where data ∈ VSym is of type Data), stating that, for all created objects of
type Data, the value of the attribute d is non-negative.

Now, we would like to prove that for any object c of type Control that is
created and different from null, the value of the attribute c.data.d is non-
negative. With the semantics of JAVA CARD in mind, this seems to be a valid
property given the invariant of class Data. However, the corresponding JAVA

CARD DL formula

∀data.(data.<created>
.= TRUE −> data.d >= 0) −>

(c.<created> .= TRUE & c ! .= null & c.data ! .= null −>
c.data.d >= 0)

is (surprisingly) not valid. The reason is that we cannot establish the as-
sumption of the invariant of class Data, since we cannot prove that the equa-
tion c.data.<created>

.= TRUE holds, i.e., that c.data refers to a created
object (even if we know that c.data is different from null). In JAVA CARD

it is always true that a non-null attribute of a created non-null object points
to a created object. In our logic, however, we have to make this explicit
by adding the assumption inReachableState stating that we are in a JAVA

CARD-reachable state. We obtain

(inReachableState &
∀data.(data.<created>

.= TRUE −> data.d >= 0)) −>
(c.<created> .= TRUE & c ! .= null & c.data ! .= null −>

c.data.d >= 0)

One conjunct of inReachableState is the formula

∀o.(o.<created> .= TRUE & o ! .= null) −>
(o.data .= null | o.data.<created> .= TRUE))

where o ∈ VSym is of type Data. If we instantiate the universal quantifier in
this formula with c we can derive the desired equation

c.data.<created>
.= TRUE .

This example shows that there are formulae that are true in all JAVA CARD-
reachable states but that are not valid in JAVA CARD DL. This problem can
be overcome by adding the predicate inReachableState to the invariants of
the program to be verified. Then, states that are not reachable by any JAVA

CARD program are excluded from consideration.
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Dealing with the inReachableState Predicate in Proofs

When a correctness proof is started, the KeY system automatically adds the
predicate inReachableState to the precondition of the specification. In the ma-
jority of cases, proofs can be completed without considering inReachableState .
There are however situations that require the use of inReachableState :

(i) The proof can only be closed by employing (parts of) the properties stated
in inReachableState (as in Example 3.43).

(ii) A state (described by some update) must be shown to satisfy the predi-
cate inReachableState . Such a situation occurs, for example, when using
a method contract (i.e., the specification of a method) in a proof. Then
it is necessary to establish the precondition of the method specification,
which usually contains the predicate inReachableState , in the invocation
state (⇒ Sect. 3.8).

In both situations, expanding inReachableState into its components is not
feasible since in practice the resulting formula would consist of hundreds or
thousands of conjuncts.

To deal with situation (i), the KeY calculus provides rules that allow the
user to extract parts of inReachableState that are necessary to close the proof.

To prevent full expansion of inReachableState in the case that

inReachableState −> {u} inReachableState

must be shown for some update u (situation (ii)), the KeY system per-
forms a syntactic analysis of the update u and expands only those parts
of inReachableState that possibly are affected by u.

Note, that in general an update u that results from the symbolic execu-
tion of some program cannot describe a state that violates inReachableState .
However, the user might provide such a malicious update that leads to an
unreachable state by, for example, applying the cut rule (⇒ Sect. 3.5.2).

3.4 The Calculus for JAVA CARD DL

3.4.1 Sequents, Rules, and Proofs

The KeY system’s calculus for JAVA CARD DL is a sequent calculus. It extends
the first-order calculus from Chapter 2.

Sequents are defined as in the first-order case (Def. 2.42). The only differ-
ence is that now the formulae in the sequents are JAVA CARD DL formulae.

Definition 3.44. A sequent is of the form Γ =⇒ ∆, where Γ, ∆ are sets of
closed JAVA CARD DL formulae.

The left-hand side Γ is called antecedent and the right-hand side ∆ is
called succedent of the sequent.
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As in the first-order case, the semantics of a sequent

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is the same as that of the formula

(φ1 & . . . & φm) −> (ψ1 | . . . | ψm) .

In Chapter 2 we have used an informal notion of what a rule is, and what a
rule application is. Now, we give a more formal definition.

Definition 3.45. A rule R is a binary relation between (a) the set of all
tuples of sequents and (b) the set of all sequents.

If R(〈P1, . . . , Pk〉, C) (k ≥ 0), then the conclusion C is derivable from
the premisses P1, . . . , Pk using rule R.

The set of sequents that are derivable is the smallest set such that: If there
is a rule in the (JAVA CARD DL) calculus that allows to derive a sequent S
from premisses that are all derivable, then S is derivable in C.

A calculus—in particular our JAVA CARD DL calculus—is formally a set of
rules.

Proof trees are defined as in the first-order case (Def. 2.50), except that
now the rules of the JAVA CARD DL calculus (as described in Sections 3.5–
3.9) are used for derivation instead of the first-order rules. Intuitively, a proof
for a sequent S is a derivation of S written as a tree with root S, where the
sequent in each node is derivable from the sequents in its child nodes.

3.4.2 Soundness and Completeness of the Calculus

Soundness

The most important property of the JAVA CARD DL calculus is soundness,
i.e., everything that is derivable is valid and only valid formulae are derivable.

Proposition 3.46 (Soundness). If a sequent Γ =⇒ ∆ is derivable in
the JAVA CARD DL calculus (Def. 3.45), then it is valid, i.e., the formula∧

Γ −>
∨

∆ is logically valid (Def. 3.38).

It is easy to show that the whole calculus is sound if and only if all its rules
are sound. That is, if the premisses of any rule application are valid sequents,
then the conclusion is valid as well.

Given the soundness of the existing core rules of the JAVA CARD DL
calculus, the user can add new rules, whose soundness must then be proven
w.r.t. the existing rules (⇒ Sect. 4.5).
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Validating the Soundness of the JAVA CARD DL Calculus

So far, we have no intention of formally proving the soundness of the
JAVA CARD DL calculus, i.e., the core rules that are not user-defined (the
soundness of user-defined rules can be verified within the KeY system, see
Sect. 4.5). Doing so would first require a formal specification of the JAVA

CARD language. No official formal semantics of JAVA or JAVA CARD is avail-
able though. Furthermore, proving soundness of the calculus requires the
use of a higher-order theorem proving tool, and it is a tedious task due
to the high number of rules. Resources saved on a formal soundness proof
were instead spent on further improvement of the KeY system. We refer
to [Beckert and Klebanov, 2006] for a discussion of this policy and fur-
ther arguments in its favour. On the other hand, the KeY project performs
ongoing cross-verification against other JAVA formalisations to ensure the
faithfulness of the calculus.

One such effort compares the KeY calculus with the Bali semantics [von
Oheimb, 2001a], which is a JAVA Hoare logic formalised in Isabelle/HOL.
KeY rules are translated manually into Bali rules. These are then shown
sound with respect to the rules of the standard Bali calculus. The published
result [Trentelman, 2005] describes in detail the examination of the rules
for local variable assignment, field assignment and array assignments.

Another validation was carried out by Ahrendt et al. [2005b]. A refer-
ence JAVA semantics from [Farzan et al., 2004] was used, which is formalised
in Rewriting Logic [Meseguer and Rosu, 2004] and mechanised in the input
language of the Maude system. This semantics is an executable specifica-
tion, which together with Maude provides a JAVA interpreter. Considering
the nature of this semantics, we concentrated on using it to verify our
program transformation rules. These are rules that decompose complex
expressions, take care of the evaluation order, etc. (about 45% of the KeY
calculus). For the cross-verification, the Maude semantics was “lifted” in
order to cope with schematic programs like the ones appearing in calculus
rules. The rewriting theory was further extended with means to generate
valid initial states for the involved program fragments, and to check the
final states for equivalence. The result is used in frequent completely auto-
mated validation runs, which is beneficial, since the calculus is constantly
extended with new features.

Furthermore, the KeY calculus is regularly tested against the compiler
test suite Jacks (available at www.sourceware.org/mauve/jacks.html).
The suite is a collection of intricate programs covering many difficult fea-
tures of the JAVA language. These programs are symbolically executed with
the KeY calculus and the output is compared to the reference provided by
the suite.
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Relative Completeness

Ideally, one would like a program verification calculus to be able to prove all
statements about programs that are true, which means that all valid sequents
should be derivable. That, however, is impossible because JAVA CARD DL
includes first-order arithmetic, which is already inherently incomplete as es-
tablished by Gödel’s Incompleteness Theorem [Gödel, 1931] (discussed in
Sect. 2.7). Another, equivalent, argument is that a complete calculus for JAVA

CARD DL would yield a decision procedure for the Halting Problem, which is
well-known to be undecidable. Thus, a logic like JAVA CARD DL cannot ever
have a calculus that is both sound and complete.

Still, it is possible to define a notion of relative completeness [Cook, 1978],
which intuitively states that the calculus is complete “up to” the inherent
incompleteness in its first-order part. A relatively complete calculus contains
all the rules that are necessary to prove valid program properties. It only may
fail to prove such valid formulae whose proof would require the derivation of
a non-provable first-order property (being purely first-order, its provability
would be independent of the program part of the calculus).

Proposition 3.47 (Relative Completeness). If a sequent Γ =⇒∆ is valid,
i.e., the formula

∧
Γ −>

∨
∆ is logically valid (Def. 3.38), then there is a fi-

nite set ΓFOL of logically valid first-order formulae such that the sequent

ΓFOL, Γ =⇒ ∆

is derivable in the JAVA CARD DL calculus.

The standard technique for proving that a program verification calculus is
relatively complete [Harel, 1979] hinges on a central lemma expressing that for
all JAVA CARD DL formulae there is an equivalent purely first-order formula.
A completeness proof for the object-oriented dynamic logic ODL [Beckert
and Platzer, 2006], which captures the essence of JAVA CARD DL, is given
by Platzer [2004b].

3.4.3 Rule Schemata and Schema Variables

The following definition makes use of the notion of schema variables. They
represent concrete syntactical elements (e.g., terms, formulae or programs).
Every schema variable is assigned a kind that determines which class of con-
crete elements is represented by such a schema variable.

Definition 3.48. A rule schema is of the form

P1 P2 · · · Pk

C
(k ≥ 0)

where P1, . . . , Pk and C are schematic sequents, i.e., sequents containing
schema variables.
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A rule schema P1 · · ·Pk / C represents a rule R if the following equivalence
holds: a sequent C∗ is derivable from premisses P ∗

1 , . . . , P ∗
k iff P ∗

1 · · ·P ∗
k / C∗ is

an instance of the rule schema. Schema instances are constructed by instanti-
ating the schema variables with syntactical constructs (terms, formulae, etc.)
which are compliant to the kinds of the schema variables. One rule schema
represents infinitely many rules, namely, its instances.

There are many cases, where a basic rule schema is not sufficient for de-
scribing a rule. Even if its general form adheres to a pattern that is describable
in a schema, there may be details in a rule that cannot be expressed schemat-
ically. For example, in the rules for handling existential quantifiers, there is
the restriction that (Skolem) constants introduced by a rule application must
not already occur in the sequent. When a rule is described schematically, such
constraints are added as a note to the schema.

All the rules of our calculus perform one (or more) of the following actions:

• A sequent is recognised as an axiom, and the corresponding proof branch
is closed.

• A formula in a sequent is modified. A single formula (in the conclusion of
the rule) is chosen to be in focus. It can be modified or deleted from the
sequent. Note, that we do not allow more than one formula to be modified
by a rule application.

• Formulae are added to a sequent. The number of formulae that are added
is finite and is the same for all possible applications of the same rule
schema.

• The proof branches. The number of new branches is the same for all
possible applications of the same rule schema.

Moreover, whether a rule is applicable and what the result of the application
is, depends on the presence of certain formulae in the conclusion.

The above list of possible actions excludes, for example, rules performing
changes on all formulae in a sequent or that delete all formulae with a certain
property.

Thus, all our rules preserve the “context” in a sequent, i.e., the formulae
that are not in the focus of the rule remain unchanged. Therefore, we can
simplify the notation of rule schemata, and leave this context out. Similarly,
an update that is common to all premisses can be left out (this is formalised in
Def. 3.49). Intuitively, if a rule “φ =⇒ ψ / φ′ =⇒ ψ′” is correct, then φ′ =⇒ ψ′

can be derived from φ =⇒ ψ in all possible contexts. In particular, the rule
then is correct in a context described by Γ, ∆,U , i.e., in all states s for which
there is a state s0 such that Γ =⇒ ∆ is true in s0 and s is reached from s0

by executing U . Therefore, “Γ, Uφ =⇒ Uψ ∆ / Γ Uφ′ =⇒ Uψ′, ∆” is a correct
instance of “φ =⇒ ψ / φ′ =⇒ ψ′”, and Γ, ∆,U do not have to be included in
the schema. Instead we allow them to be added during application. Note,
however, that the same Γ, ∆,U have to be added to all premisses of a rule
schema.
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Later in the book (e.g., Sect. 3.7) we will present a few rules where the
context cannot be omitted. Such rules are indicated with the (∗) symbol.
These rules will be shown for comparison only; they are not part of the JAVA

CARD DL calculus.

Definition 3.49. If

φ1
1, . . . , φ

1
m1

=⇒ ψ1
1 , . . . , ψ1

n1
...

φk
1 , . . . , φk

mk
=⇒ ψk

1 , . . . , ψk
nk

φ1, . . . , φm =⇒ ψ1, . . . , ψn

is an instance of a rule schema, then

Γ, Uφ1
1, . . . ,Uφ1

m1
=⇒ Uψ1

1 , . . . ,Uψ1
n1

, ∆
...

Γ, Uφk
1 , . . . ,Uφk

mk
=⇒ Uψk

1 , . . . ,Uψk
nk

, ∆

Γ, Uφ1, . . . ,Uφm =⇒ Uψ1, . . . ,Uψn, ∆

is an inference rule of our DL calculus, where U is an arbitrary syntactic
update (including the empty update), and Γ, ∆ are finite sets of context for-
mulae.

If, however, the symbol (∗) is added to the rule schema, the context Γ, ∆,U
must be empty, i.e., only instances of the schema itself are inference rules.

The schema variables used in rule schemata are all assigned a kind that
determines which class of concrete syntactic elements they represent. In the
following sections, we often do not explicitly mention the kinds of schema
variables but use the name of the variables to indicate their kind. Table 3.1
gives the correspondence between names of schema variables that represent
pieces of JAVA code and their kinds. In addition, we use the schema variables
φ, ψ to represent formulae and Γ, ∆ to represent sets of formulae. Schema
variables of corresponding kinds occur also in the taclets used to implement
rules in the KeY system (⇒ Sect. 4.2).

If a schema variable T representing a type expression is indexed with the
name of another schema variable, say e, then it only maches with the JAVA

type of the expression with which e is instantiated. For example, “Tw v = w”
matches the JAVA code “int i = j” if and only of the type of j is int (and
not, e.g., byte).

3.4.4 The Active Statement in a Modality

The rules of our calculus operate on the first active statement p in a modality
〈πpω〉 or [πpω]. The non-active prefix π consists of an arbitrary sequence of
opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks,
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Table 3.1. Correspondence between names of schema variables and their kinds

π non-active prefix of JAVA code (Sect. 3.4.4)
ω “rest” of JAVA code after the active statement (Sect. 3.4.4)
p, q JAVA code (arbitrary sequence of statements)
e arbitrary JAVA expression
se simple expression, i.e., any expression whose evaluation, a priori,

does not have any side-effects. It is defined as one of the following:
(a) a local variable
(b) this.a , i.e., an access to an instance attribute via the target

expression this (or, equivalently, no target expression)
(c) an access to a static attribute of the form t.a, where the target

expression t is a type name or a simple expression
(d) a literal
(e) a compile-time constant
(f) an instanceof expression with a simple expression as the first

argument
(g) a this reference
An access to an instance attribute o.a is not simple because a
NullPointerException may be thrown

nse non-simple expression, i.e., any expression that is not simple (see
above)

lhs simple expression that can appear on the left-hand-side of an as-
signment. This amounts to the items (a)–(c) from above

v , v0 , . . . local program variables (i.e., non-rigid constants)
a attribute
l label
args argument tuple, i.e., a tuple of expressions
cs sequence of catch clauses
mname name of a method
T type expression
C name of a class or interface

and beginnings “method-frame(. . .){” of method invocation blocks. The pre-
fix is needed to keep track of the blocks that the (first) active command is
part of, such that the abruptly terminating statements throw, return, break,
and continue can be handled appropriately.

The postfix ω denotes the “rest” of the program, i.e., everything except
the non-active prefix and the part of the program the rule operates on (in
particular, ω contains closing braces corresponding to the opening braces
in π). For example, if a rule is applied to the following JAVA block operating
on its first active command “i=0;”, then the non-active prefix π and the
“rest” ω are the indicated parts of the block:

l:{try{
︸ ︷︷ ︸

π

i=0; j=0; } finally{ k=0; }}
︸ ︷︷ ︸

ω
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No Rule for Sequential Composition

In versions of dynamic logic for simple programming languages, where no
prefixes are needed, any formula of the form 〈pq〉φ can be replaced by
〈p〉〈q〉φ. In our calculus, decomposing of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not
possible (unless the prefix π is empty) because πp is not a valid program;
and the formula 〈πpω〉〈πqω〉φ cannot be used either because its semantics
is in general different from that of 〈πpqω〉φ.

3.4.5 The Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the
question of the validity of several simpler formulae. Since JAVA CARD DL for-
mulae contain programs, the JAVA CARD DL calculus has rules that reduce
the meaning of programs to the meaning of simpler programs. For this reduc-
tion we employ the technique of symbolic execution [King, 1976]. Symbolic
execution in JAVA CARD DL resembles playing an accordion: you make the
program longer (though simpler) before you can make it shorter.

For example, to find out whether the sequent

=⇒ 〈o.next.prev=o;〉o.next.prev .= o

is valid, we symbolically execute the JAVA code in the diamond modality. At
first, the calculus rules transform it into an equivalent but longer (albeit in
a sense simpler) sequence of statements:

=⇒ 〈ListEl v; v=o.next; v.prev=o;〉o.next.prev .= o .

This way, we have reduced the reasoning about the complex expression
o.next.prev=o to reasoning about several simpler expressions. We call this
process unfolding, and it works by introducing fresh local variables to store
intermediate computation results.

Now, when analysing the first of the simpler assignments (after removing
the variable declaration), one has to consider the possibility that evaluating
the expression o.next may produce a side effect if o is null (in that case an
exception is thrown). However, it is not possible to unfold o.next any further.
Something else has to be done, namely a case distinction. This results in the
following two new goals:

o ! .= null =⇒ {v := o.next}〈v.prev=o;〉o.next.prev .= o

o
.= null =⇒ 〈throw new NullPointerException();〉o.next.prev .= o

Thus, we can state the essence of symbolic execution: the JAVA code in the
formulae is step-wise unfolded and replaced by case distinctions and syntactic
updates.
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Of course, it is not a coincidence that these two ingredients (case dis-
tinctions and updates) correspond to two of the three basic programming
constructs. The third basic construct are loops. These cannot in general be
treated by symbolic execution, since using symbolic values (as opposed to
concrete values) the number of loop iterations is unbounded. Symbolically
executing a loop, which is called “unwinding”, is useful and even necessary,
but unwinding cannot eliminate a loop in the general case. To treat arbi-
trary loops, one needs to use induction (⇒ Chap. 11) or loop invariants
(⇒ Sect. 3.7.1). Also, certain kinds of loops can be translated into quantified
updates [Gedell and Hähnle, 2006].

Method invocations can be symbolically executed, replacing a method call
by the method’s implementation. However, it is often useful to instead use a
method’s contract so that it is only symbolically executed once—during the
proof that the method satisfies its contract—instead of executing it for each
invocation.

3.4.6 Components of the Calculus

Our JAVA CARD DL calculus has five major components, which are described
in detail in the following sections. Since the calculus consists of hundreds of
rules, however, we cannot list them all in this book. Instead, we give typical
examples for the different rule types and classes (a complete list can be found
on the KeY project website).

In particular, we usually only give the rule versions for the diamond
modality 〈·〉. The rules for box modality [·] are mostly the same—notable
exceptions are the rules for handling loops (Sect. 3.7) and some of the rules
for handling abrupt termination (Sect. 3.6.7).

The five components of the JAVA CARD DL calculus are:

1. Non-program rules, i.e., rules that are not related to particular program
constructs. This includes first-order rules, rules for data-types (in partic-
ular the integers), rules for modalities (e.g., rules for empty modalities),
and the induction rule.

2. Rules that work towards reducing/simplifying the program and replacing
it by a combination of case distinction (proof branches) and sequences of
updates. These always (and only) apply to the first active statement. A
“simpler” program may be syntactically longer; it is simpler in the sense
that expressions are not as deeply nested or have less side-effects.

3. Rules that handle loops for which no fixed upper bound on the number
of iterations exists. In this chapter, we only consider rules that handle
loops using loop invariants (Sect. 3.7). A separate chapter is dedicated
to handling loops by induction (Chapter 11).

4. Rules that replace a method invocation by the method’s contract.
5. Update simplification.
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Component 2 is the core for handling JAVA CARD programs occurring in for-
mulae. These rules can be applied automatically, and they can do everything
needed for handling programs except evaluating loops and using method spec-
ifications.

The overall strategy is to use the rules in Component 2, interspersed with
applications of rules in Component 3 and Component 4 for handling loops
resp. methods, to step-wise eliminate the program and replace it by updates
and case distinctions. After each step, Component 5 is used to simplify/elim-
inate updates. The final result of this process are sequents containing pure
first-order formulae. These are then handled by Component 1.

The symbolic execution process is for the most part done automatically by
the KeY system. Usually, only handling loops and methods may require user
interaction. Also, for solving the first-order problem that is left at the end of
the symbolic execution process, the KeY system often needs support from the
user (or from the decision procedures integrated into KeY, see Chapter 10).

3.5 Calculus Component 1: Non-program Rules

3.5.1 First-Order Rules

Since first-order logic is part of JAVA CARD DL, all the rules of the first-order
calculus introduced in Chapter 2 are also part of the JAVA CARD DL calculus.
That is, all rules from Fig. 2.2 (classical first-order rules), Fig. 2.3 (equality
rules), Fig. 2.4 (typing rules), and Fig. 2.5 (arithmetic rules) can be applied
to JAVA CARD DL sequents—even if the formulae that they are applied to
are not purely first-order.

Consider, for example, the rule impRight. In Chapter 2, the rule schema
for this rule takes the following form:

impRight (Chapter 2 notation)
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆

In this chapter, we omit the context Γ, ∆ from rule schemata (⇒ Sect. 3.4.3),
i.e., the same rule is schematically written as:

impRight
φ =⇒ ψ

=⇒ φ −> ψ

When this schema is instantiated, a context consisting of Γ, ∆ and an up-
date U can be added, and the schema variables φ, ψ can be instantiated with
formulae that are not purely first-order. For example, the following is an
instance of impRight:

x
.= 1, {x := 0}(x .= y) =⇒ {x := 0}〈m();〉(y .= 0)
x

.= 1 =⇒ {x := 0}(x .= y −> 〈m();〉(y .= 0))
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where Γ = (x .= 1), ∆ is empty, and the context update is U = {x := 0}.
Due to the presence of modalities and non-rigid functions, which do not

exist in purely first-order formulae, different parts of a formula may have to
be evaluated in different states. Therefore, the application of some first-order
rules that rely on the identity of terms in different parts of a formula needs
to be restricted. That affects rules for universal quantification and equality
rules.

Restriction of Rules for Universal Quantification

The rules for universal quantification have the following form:

allLeft
∀x.φ, [x/t](φ) =⇒

∀x.φ =⇒
exRight

=⇒ ∃x.φ, [x/t](φ)
=⇒ ∃x.φ

where t ∈ TrmA′ is a rigid ground term
whose type A′ is a sub-type of the type A of x

In the first-order case, the term t that is instantiated for the quantified vari-
able x can be an arbitrary ground term. In JAVA CARD DL, however, we have
to add the restriction that t is a rigid ground term (Def. 3.32). The reason is
that, though an arbitrary value can be instantiated for x as it is universally
quantified, in each individual instantiation, all occurrences of x must have
the same value.

Example 3.50. The formula ∀x.(x .= 0 −> 〈i++;〉(x .= 0)) is logically valid,
but instantiating the variable x with the non rigid constant i is wrong as
it leads to the unsatisfiable formula i

.= 0 −> 〈i++;〉(i .= 0)).

In practice, it is often very useful to instantiate a universally quantified vari-
able x with the value of a non-rigid term t. That, however, is not easily
possible as x must not be instantiated with a non-rigid term. In that case,
one can add the logically valid formula ∃y.(y .= t) to the left of the sequent,
Skolemise that formula, which yields csk

.= t, and then instantiate x with the
rigid constant csk (this is done using the rule substToEq).

Rules for existential quantification do not have to be restricted because
they introduce rigid Skolem constants anyway.

Restriction of Rules for Equalities

The equality rules (Fig. 2.3) are part of the JAVA CARD DL calculus but an
equality t1

.= t2 may only be used for rewriting if

• both t1 and t2 are rigid terms (Def. 3.32), or
• the equality t1

.= t2 and the occurrence of ti that is being replaced are
(a) not in the scope of two different program modalities and (b-1) not in
the scope of two different updates or (b-2) in the scope of syntactically
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identical updates (in fact, it is also sufficient if the two updates are only
semantically identical, i.e., have the same effect). This same-update-level
property is explained in more detail in Sect. 4.4.1.

Example 3.51. The sequent

x
.= v + 1 =⇒ {v := 2}(v + 1 .= 3)

is valid. But applying the equality to the occurrence of v + 1 on the right
side of the sequent is wrong, as it would lead to the sequent

x
.= v + 1 =⇒ {v := 2}(x .= 3)

that is satisfiable but not valid.
In the sequent

{v := 2}(x .= v + 1) =⇒ {v := 2}(v + 1 .= 3) ,

however, both the equality and the term being replaced occur in the scope
of identical updates and, thus, the equality rule can be applied.

3.5.2 The Cut Rule and Lemma Introduction

The cut rule

cut
=⇒ φ φ =⇒

=⇒
allows to introduce a lemma φ, which is an arbitrary JAVA CARD DL formula.
The lemma occurs in the succedent of the left premiss (where, intuitively
speaking, the lemma has to be proved) and in the antecedent of the right
premiss (where, intuitively speaking, the lemma can be used). One can also
view the cut rule as a case distinction on whether φ is true or not as the right
premiss is equivalent to =⇒ ! φ.

Using the cut rule in the right way can greatly reduce the length of proofs.
However, since the cut formula φ is arbitrary, the cut rule is not analytic and
non-deterministic. That is the reason why it is not included in the calculus
for first-order logic (it is not needed for completeness). In the KeY system it
is only applied interactively when the user can choose a useful cut formula
based on his or her knowledge and intuition.

The cut rule introduces a lemma φ that is proved in the particular context
in which it is introduced. Thus, it can only be used in that context. It can,
for example, not be used in the context of an update U since φ does not
imply {U} φ. Another way to introduce a lemma is to define a new calculus
rule and prove its soundness (⇒ Sect. 4.5). That way, a lemma φ can be
introduced that can be used in any context (provided that φ is shown to be
logically valid).
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3.5.3 Non-program Rules for Modalities

The JAVA CARD DL calculus contains some rules that apply to modal op-
erators and are, thus, not first-order rules but that are neither related to a
particular JAVA construct.

The most important representatives of this rule class are the following
two rules for handling empty modalities:

emptyDiamond
=⇒ φ

=⇒ 〈〉φ
emptyBox

=⇒ φ

=⇒ [ ]φ

The rule

diamondToBox
=⇒ [p]φ =⇒ 〈p〉true

=⇒ 〈p〉φ
relates the diamond modality to the box modality. It allows to split a total
correctness proof into a partial correctness proof and a separate proof for
termination. Note, that this rule is only sound for deterministic programming
languages like JAVA CARD.

3.6 Calculus Component 2: Reducing JAVA Programs

3.6.1 The Basic Assignment Rule

In JAVA—like in other object-oriented programming languages—different ob-
ject variables can refer to the same object. This phenomenon, called aliasing,
causes serious difficulties for handling assignments in a calculus (a similar
problem occurs with syntactically different array indices that may refer to
the same array element).

For example, whether or not the formula o1.a
.= 1 still holds after the ex-

ecution of the assignment “o2.a = 2;” depends on whether or not o1 and o2
refer to the same object. Therefore, JAVA assignments cannot be symbolically
executed by syntactic substitution, as done, for instance, in classical Hoare
Logic. Solving this problem naively—by doing a case split—is inefficient and
leads to heavy branching of the proof tree.

In the JAVA CARD DL calculus we use a different solution. It is based on the
notion of updates, which can be seen as “semantic substitutions”. Evaluating
{loc := val}φ in a state is equivalent to evaluating φ in a modified state
where loc evaluates to val , i.e., has been “semantically substituted” with val
(see Sect. 3.2 for a discussion and a comparison of updates with assignments
and substitutions).

The KeY system uses special simplification rules to compute the result
of applying an update to terms and formulae that do not contain programs
(⇒ Sect. 3.9). Computing the effect of an update to a formula 〈p〉φ is delayed
until p has been symbolically executed using other rules of the calculus. Thus,
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case distinctions are not only delayed but can often be avoided altogether,
since (a) updates can be simplified before their effect has to be computed,
and (b) their effect is computed when a maximal amount of information is
available (namely after the symbolic execution of the whole program).

The basic assignment rule thus takes the following simple form:

assignment
=⇒ {loc := val}〈π ω〉φ
=⇒ 〈π loc = val; ω〉φ

That is, it just turns the assignment into an update. Of course, this does not
solve the problem of computing the effect of the assignment. This problem is
postponed and solved later by the rules for simplifying updates.

Furthermore—and this is important—this “trivial” assignment rule is cor-
rect only if the expressions loc and val satisfy certain restrictions. The rule is
only applicable if neither the evaluation of loc nor that of val can cause any
side effects. Otherwise, other rules have to be applied first to analyze loc and
val . For example, these other rules would replace the formula 〈x = ++i;〉φ
with 〈i = i+1; x = i;〉φ, before the assignment rule can be applied to de-
rive first {i := i+1}〈x = i;〉φ and then {i := i+1}{x := i}〈〉φ.

3.6.2 Rules for Handling General Assignments

There are four classes of rules in the JAVA CARD DL calculus for treating
general assignment expressions (that may have side-effects). These classes—
corresponding to steps in the evaluation of an assignment—are induced by
the evaluation order rules of JAVA:

1. Unfolding the left-hand side of the assignment.
2. Saving the location.
3. Unfolding the right-hand side of the assignment.
4. Generating an update.

Of particular importance is the fact that though the right-hand side of an
assignment can change the variables appearing in the left hand side, it cannot
change the location scheduled for assignment, which is saved before the right-
hand side is evaluated.

Step 1: Unfolding the Left-Hand Side

In this first step, the left-hand side of an assignment is unfolded if it is a
non-simple expression, i.e., if its evaluation may have side-effects. One of
the following rules is applied depending on the form of the left-hand side
expression. In general, these rules work by introducing a new local variable v0,
to which the value of a sub-expression is assigned.

If the left-hand side of the assignment is a non-atomic field access—which
is to say it has the form nse.a, where nse is a non-simple expression—then
the following rule is used:
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assignmentUnfoldLeft
=⇒ 〈π Tnse v0=nse; v0.a=e; ω〉φ

=⇒ 〈π nse.a=e; ω〉φ

Applying this rule yields an equivalent but simpler program, in the sense that
the two new assignments have simpler left-hand sides, namely a local variable
resp. an atomic field access.

Unsurprisingly, in the case of arrays, two rules are needed, since both the
array reference and the index have to be treated. First, the array reference
is analysed:

assignmentUnfoldLeftArrayReference

=⇒ 〈π Tnse v0 = nse; v0[e]=e0; ω〉φ
=⇒ 〈π nse[e]=e0; ω〉φ

Then, the rule for analysing the array index can be applied:

assignmentUnfoldLeftArrayIndex

=⇒ 〈π Tv va = v; Tnse v0 = nse; va[v0]=e; ω〉φ
=⇒ 〈π v[nse]=e; ω〉φ

Step 2: Saving the Location

After the left-hand side has been unfolded completely (i.e., has the form v ,
v.a or v[se]), the right-hand side has to be analysed. But before doing
this, we have to memorise the location designated by the left-hand side. The
reason is that the location affected by the assignment remains fixed even if
evaluating the right-hand side of the assignment has a side effect changing
the location to which the left-hand side points. For example, if i .= 0, then
a[i] = ++i; has to update the location a[0] even though evaluating the
right-hand side of the assignment changes the value of i to 1.

Since there is no universal “location” or “address-of” operator in JAVA,
this memorising looks different for different kinds of expressions appearing
on the left. The choice here is between field resp. array accesses. For local
variables, the memorising step is not necessary, since the “location value” of
a variable is syntactically defined and cannot be changed by evaluating the
right-hand side.

We will start with the rule variant where a field access is on the left.
It takes the following form; the components of the premiss are explained in
Table 3.2:

assignmentSaveLocation

=⇒ 〈π check; memorise; unfoldr; update; ω〉φ
=⇒ 〈π v.a=nse; ω〉φ

There is a very similar rule for the case where the left-hand side is an array
access, i.e., the assignment has the form v[se]=nse. The components of the
premiss for that case are shown in Table 3.3.
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Table 3.2. Components of rule assignmentSaveLocation for field accesses v.a=nse

check if (v==null) throw new abort if v is null

NullPointerException();

memorise Tv v0 = v;

unfoldr Tnse v1 = nse; set up Step 3

update v0.a = v1; set up Step 4

Table 3.3. Components of rule assignmentSaveLocation for array accesses
v[se]=nse

check if (se>=v.length || se<0) throw new abort if index
ArrayIndexOutOfBoundsException(); out of boundsa

memorise Tv v0 = v; Tse v1 = se;

unfoldr Tnse v2 = nse; set up Step 3

update v0[v1] = v2; set up Step 4
a This includes an implicit test that v is not null when v.length is analysed.

Step 3: Unfolding the Right-Hand Side

In the next step, after the location that is changed by the assignment has been
memorised, we can analyse and unfold the right hand side of the expression.
There are several rules for this, depending on the form of the right-hand side.
As an example, we give the rule for the case where the right-hand side is a
field access nse.a with a non-simple object reference nse:

assignmentUnfoldRight

=⇒ 〈π Tnse v0 = nse; v = v0.a; ω〉φ
=⇒ 〈π v = nse.a; ω〉φ

The case when the right-hand side is a method call is discussed in the section
on method calls (⇒ Sect. 3.6.5).

Step 4: Generate an Update

The fourth and final step of treating assignments is to turn them into an
update. If both the left- and the right-hand side of the assignment are simple
expressions, the basic assignment rule applies:

assignment
=⇒ {lhs := se∗}〈π ω〉φ
=⇒ 〈π lhs = se; ω〉φ

The value se∗ appearing in the update is not identical to the se in the program
because creating the update requires replacing any JAVA operators in the
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program expression se by their JAVA CARD DL counterparts in order to obtain
a proper logical term. For example, the JAVA division operator / has to be
replaced by the function symbol jdiv (which is different from the standard
mathematical division /, as explained in Chap. 12). The KeY system performs
this conversion automatically to construct se∗ from se. The complete list of
predefined JAVA CARD DL operators is given in App. A.

If there is an atomic field access v.a either on the left or on the right of
the assignment, no further unfolding can be done and the possibility has to
be considered here that the object reference may be null, which would result
in a NullPointerException. Depending on whether the field access is on the
left or on the right of the assignment one of the following rules applies:

assignment

v ! .= null =⇒ {v0 := v.a@Class}〈π ω〉φ
v = null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v0 = v.a; ω〉φ

assignment

v ! .= null =⇒ {v.a@Class := se∗}〈π ω〉φ
v = null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v.a = se; ω〉φ

A further complication is caused by field hiding. Hiding occurs when derived
classes declare fields with the same name as in the superclass. The exact field
reference has to be inferred from the static type of the target expression and
the program context, in which the reference appears. Since logical terms do
not have a program context, hidden fields have to be disambiguated. This
can be achieved by an up-front renaming (as proposed in Def. 3.10), or (as
done in the KeY system) with on-the-fly disambiguation in the assignment
rule. It adds a qualifier @Class to the name of the field as the field migrates
from the program into the update. The pretty-printer does not display the
qualifier if there is no hiding.

For array access, we have to consider the possibility of an ArrayIndexOut-
OfBoundsException in addition to that of a NullPointerException. Thus,
the rule for array access on the right of the assignment takes the following
form (there is a slightly more complicated rule for array access on the left):

assignment

v ! .= null, se∗ >= 0, se∗ < v .length =⇒ {v0 := v[se∗]}〈π ω〉φ
v = null =⇒ 〈π throw new NullPointerException(); ω〉φ
v ! .= null, (se∗ < 0 | se∗ >= v .length) =⇒
〈π throw new ArrayIndexOutOfBoundsException(); ω〉φ

=⇒ 〈π v0 = v[se]; ω〉φ
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3.6.3 Rules for Conditionals

Most if-else statements have a non-simple expression (i.e., one with po-
tential side-effects) as their condition. In this case, we unfold it in the usual
manner first. This is achieved by the rule

ifElseUnfold

=⇒ 〈π boolean v = nse; if (v) p else q ω〉φ
=⇒ 〈π if (nse) p else q ω〉φ

where v is a fresh boolean variable.
After dealing with the non-simple condition, we will eventually get back

to the if-else statement, this time with the condition being a variable and,
thus, a simple expression. Now it is time to take on the case distinction
inherent in the statement. That can be done using the following rule:

ifElseSplit

se .= TRUE =⇒ 〈π p ω〉φ
se .= FALSE =⇒ 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

While perfectly functional, this rule has several drawbacks. First, it uncon-
ditionally splits the proof, even in the presence of additional information.
However, the program or the sequent may contain the explicit knowledge
that the condition is true (or false). In that case, we want to avoid the proof
split altogether. Second, after the split, the condition se appears on both
branches, and we then have to reason about the same formula twice.

A better solution is the following rule that translates a program with an
if-else statement into a conditional formula:

ifElse
=⇒ if(se .= TRUE) then 〈π p ω〉φ else 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

Note that the if-then-else in the premiss of the rule is a logical and not a
program language construct (⇒ Def. 3.14).

The ifElse rule solves the problems of the ifElseSplit rule described above.
The condition se only has to be considered once. And if additional informa-
tion about its truth value is available, splitting the proof can be avoided. If
no such information is available, however, it is still possible to replace the
propositional if-then-else operator with its definition, resulting in

(se .= TRUE) −> 〈π p ω〉φ & (se ! .= TRUE) −> 〈π q ω〉φ

and carry out a case distinction in the usual manner.
A problem that the above rule does not eliminate is the duplication of

the code part ω. Its double appearance in the premiss means that we may
have to reason about the same piece of code twice. Leino [2005] proposes
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a solution for this problem within a verification condition generator system.
However, to preserve the advantages of a symbolic execution, the KeY system
here sacrifices some efficiency for the sake of usability. Fortunately, this issue
is hardly ever limiting in practice.

The rule for the switch statement, which also is conditional and leads
to case distinctions in proofs, is not shown here. It transforms a switch
statement into a sequence of if statements.

3.6.4 Unwinding Loops

The following rule “unwinds” while loops. Its application is the prerequisite
for symbolically executing the loop body. Unfortunately, just unwinding a
loop repeatedly is only sufficient for its verification if the number of loop
iterations has a known upper bound. And it is only practical if that number
is small (as otherwise the proof gets too big).

If the number of loop iterations is not bound, the loop has to be verified us-
ing (a) induction (⇒ Chap. 11) or (b) an invariant rule (⇒ Sect. 3.7.1, 3.7.4).
If induction is used, the unwind rule is also needed as the loop has to be un-
wound once in the step case of the induction.

In case the loop body does not contain break or continue statements
(which is the standard case), the following simple version of the unwind rule
can be applied:

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

Otherwise, in the general case where break and/or continue occur, the fol-
lowing more complex rule version has to be used:

loopUnwind

=⇒ 〈π if (e) l ′:{ l ′′:{ p′ } l1:. . .ln:while (c) { p } } ω〉φ
=⇒ 〈π l1:. . .ln:while (e) { p } ω〉φ

where

• l ′ and l ′′ are new labels,
• p′ is the result of (simultaneously) replacing in p

– every “break li” (for 1 ≤ i ≤ n) and every “break” (with no label)
that has the while loop as its target by break l ′, and

– every “continue li” (for 1 ≤ i ≤ n) and every “continue” (with no
label) that has the while loop as its target by break l ′′.

(The target of a break or continue statement with no label is the loop
that immediately encloses it.)

The label list l1:. . .ln: usually has only one element or is empty, but in
general a loop can have more than one label.
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In the “unwound” instance p′ of the loop body p, the label l ′ is the new
target for break statements and l ′′ is the new target for continue state-
ments, which both had the while loop as target before. This results in the
desired behaviour: break abruptly terminates the whole loop, while continue
abruptly terminates the current instance of the loop body.

A continue (with or without label) is never handled directly by a JAVA

CARD DL rule, because it can only occur in loops, where it is always trans-
formed into a break statement by the loop rules.

3.6.5 Replacing Method Calls by Their Implementation

Symbolic execution deals with method invocations by syntactically replacing
the call by the called implementation (verification via contracts is described
in Sect. 3.8). To obtain an efficient calculus we have conservatively extended
the programming language (⇒ Def. 3.12) with two additional constructs: a
method body statement, which allows us to precisely identify an implementa-
tion, and a method-frame block, which records the receiver of the invocation
result and marks the boundaries of the inlined implementation.

Evaluation of Method Invocation Expressions

The process of evaluating a method invocation expression (method call)
within our JAVA CARD DL calculus consists of the following steps:

1. Identifying the appropriate method.
2. Computing the target reference.
3. Evaluating the arguments.
4. Locating the implementation (or throwing a NullPointerException).
5. Creating the method frame.
6. Handling the return statement.

Since method invocation expressions can take many different shapes, the
calculus contains a number of slightly differing rules for every step. Also, not
every step is necessary for every method invocation.

Step 1: Identify the Appropriate Method

The first step is to identify the appropriate method to invoke. This involves
determining the right method signature and the class where the search for
an implementation should begin. Usually, this process is performed by the
compiler according to the (quite complicated) rules of the JAVA language spec-
ification and considering only static information such as type conformance
and accessibility modifiers. These rules have to be considered as a background
part of our logic, which we will not describe here though, but refer to the
JAVA language specification instead. In the KeY system this process is per-
formed internally (it does not require an application of a calculus rule), and
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the implementation relies on the Recoder metaprogramming framework to
achieve the desired effect (recoder.sourceforge.net).

For our purposes, we discern three different method invocation modes:

Instance or “virtual” mode. This is the most common mode. The target ex-
pression references an object (it may be an implicit this reference), and
the method is not declared static or private. This invocation mode re-
quires dynamic binding.

Static mode. In this case, no dynamic binding is required. The method to
invoke is determined in accordance with the declared static type of the
target expression and not the dynamic type of the object that this expres-
sion may point to. The static mode applies to all invocations of methods
declared static. The target expression in this case can be either a class
name or an object referencing expression (which is evaluated and then
discarded). The static mode is also used for instance methods declared
private.

Super mode. This mode is used to access the methods of the immediate
superclass. The target expression in this case is the keyword super. The
super mode bypasses any overriding declaration in the class that contains
the method invocation.

Below, we present the rules for every step in a method invocation. We con-
centrate on the virtual invocation mode and discuss other modes only where
significant differences occur.

Step 2: Computing the Target Reference

The following rule applies if the target expression of the method invocation
is not a simple expression and may have side-effects. In this case, the method
invocation gets unfolded so that the target expression can be evaluated first.

methodCallUnfoldTarget

=⇒ 〈π Tnse v0 = nse; lhs = v0.mname(args); ω〉φ
=⇒ 〈π lhs = nse.mname(args); ω〉φ

This step is not performed if the target expression is the keyword super or a
class name. For an invocation of a static method via a reference expression,
this step is performed, but the result is discarded later on.

Step 3: Evaluating the Arguments

If a method invocation has arguments, they have to be completely evaluated
before control is transferred to the method body. This is achieved by the
following rule:



3.6 Calculus Component 2: Reducing JAVA Programs 129

methodCallUnfoldArguments

=⇒ 〈π Tel1
v1=el1;

...
Telk

vk=elk ;
lhs = se.mname(a1,...,an);

ω〉φ
=⇒ 〈π lhs = se.mname(e1,...,en); ω〉φ

The rule unfolds the arguments using fresh variables in the usual manner.
However, only those argument expressions ei get unfolded that are non-
simple. We refer to the non-simple argument expressions as el1 . . . elk . The
rule only applies if k > 0, i.e., there is at least one non-simple argument ex-
pression. The expressions ai used in the premiss of the rule are then defined
by:

ai =

{
ei if ei is a simple expression
vi if ei is a non-simple expression

In the instance invocation mode, the target expression se must be simple
(otherwise the rules from Step 2 apply). Furthermore, argument evaluation
has to happen even if the target reference is null, which is not checked until
the next step.

Step 4: Locating the Implementation

This step has two purposes in our calculus: to bind the argument values to
the formal parameters and to simulate dynamic binding (for instance invo-
cations). Both are achieved with the following rule:

methodCall

se .= null =⇒ 〈π throw new NullPointerException(); ω〉φ
se ! .= null =⇒ 〈π Tlhs v0; paramDecl; ifCascade ; lhs = v0; ω〉φ

=⇒ 〈π lhs = se.mname(se1,. . .,sen); ω〉φ

The code piece paramDecl introduces and initialises new local variables that
later replace the formal parameters of the method. That is, paramDecl ab-
breviates

Tse1 p1 = se1; . . . Tsen pn = sen;

The code schema ifCascade simulates dynamic binding. Using the signature
of mname, we extract the set of classes that implement this particular method
from the given JAVA program. Due to the possibility of method overriding,
there can be more than one class implementing a particular method. At
runtime, an implementation is picked based on the dynamic type of the target
object—a process known as dynamic binding. In our calculus, we have to do
a case distinction as the dynamic type is in general not known. We employ a
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sequence of nested if statements that discriminate on the type of the target
object and refer to the distinct method implementations via method-body
statements (⇒ Def. 3.12). Altogether, ifCascade abbreviates:

if (se instanceof C1)
v0=se.mname(p1,. . .,pn)@C1;

else if (se instanceof C2)
v0=se.mname(p1,. . .,pn)@C2;

...
else if (se instanceof Ck−1)

v0=se.mname(p1,. . .,pn)@Ck−1;
else v0=se.mname(p1,. . .,pn)@Ck;

The order of the if statements is a bottom-up latitudinal search over all
classes C1, . . . , Ck of the class inheritance tree that implement mname(. . .).
In other words, the more specialised classes appear closer to the top of the
cascade. Formally, if i < j then Cj �� Ci.

If the invocation mode is static or super no ifCascade is created. The
single appropriate method body statement takes its place. Furthermore, the
check whether se is null is omitted in these modes, though not for private
methods.

Step 5: Creating the Method Frame

In this step, the method-body statement v0=se.mname(. . .)@Class is re-
placed by the implementation of mname from the class Class and the imple-
mentation is enclosed in a method frame:

methodBodyExpand

=⇒ 〈π method-frame(result->lhs,
source=Class,
this=se
) : { body } ω〉φ

〈π lhs=se.mname(v1,. . .,vn)@Class; ω〉φ =⇒

in the implementation body the formal parameters of mname are syntactically
replaced by v1, . . . , vn.

Step 6: Handling the return Statement

The final stage of handling a method invocation, after the method body has
been symbolically executed, involves committing the return value (if any)
and transferring control back to the caller. We postpone the description of
treating method termination resulting from an exception (as well as the in-
tricate interaction between a return statement and a finally block) until
the following section on abrupt termination.



3.6 Calculus Component 2: Reducing JAVA Programs 131

The basic rule for the return statement is:

methodCallReturn

=⇒ 〈π method-frame(...):{ v=se; } ω〉φ
=⇒ 〈π method-frame(result->v, ...) : { return se; p } ω〉φ

We assume that the return value has already undergone the usual unfolding
analysis, and is now a simple expression se. Now, we need to assign it to
the right variable v within the invoking code. This variable is specified in
the head of the method frame. A corresponding assignment is created and v
disappears from the method frame. Any trailing code p is also discarded.

After the assignment of the return value is symbolically executed, we are
left with an empty method frame, which can now be removed altogether.
This is achieved with the rule

methodCallEmpty
=⇒ 〈π ω〉φ

=⇒ 〈π method-frame(. . .) : { } ω〉φ

In case the method is void or if the invoking code simply does not assign the
value of the method invocation to any variable, this fact is reflected by the
variable v missing from the method frame. Then, slightly simpler versions of
the return rule are used, which do not create an assignment.

Example for Handling a Method Invocation

Consider the example program from Fig. 3.3. The method nextId() returns
for a given integer value id some next available value. In the Base class this
method is implemented to return id+1. The class SubA inherits and retains
this implementation. The class SubB overrides the method to return id+2,
which is done by increasing the result of the implementation in Base by one.

We now show step by step how the following code, which invokes the
method nextId() on an object of type SubB, is symbolically executed:

JAVA

Base o = new SubB();

res = o.nextId(i);

JAVA

First, the instance creation is handled, after which we are left with the actual
method call. The effect of the instance creation is reflected in the updates
attached to the formula, which we do not show here. Since the target refer-
ence o is already simple at this point, we skip Step 2. The same applies to the
arguments of the method call and Step 3. We proceed with Step 4, applying
the rule methodCall. This gives us two branches. One corresponds to the case
where o is null, which can be discharged using the knowledge that o points
to a freshly created object. The other branch assumes that o is not null and
contains a formula with the following JAVA code (in the following, program
part A is transformed into A′, B into B′ etc.):
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Base

start()
int nextId(int)

SubA

SubB

int nextId(int)

������ ����� Base {

������ ��	 nextId(��	 i) {


�	�
� ++i;

}

}

������ ����� SubA ��	��� Base {

}

������ ����� SubB ��	��� Base {

������ ��	 nextId(��	 i) {


�	�
� ����
.nextId(i)+1;

}

}

Fig. 3.3. An example program with method overriding

JAVA

int j; {

int i_1 = i;

if (o instanceof SubB)

j=o.nextId(i_1)@SubB;

else

j=o.nextId(i_1)@Base;

}

A

res=j;

JAVA

After dealing with the variable declarations, we reach the if-cascade simulat-
ing dynamic binding. In this case we happen to know the dynamic type of
the object referenced by o. This eliminates the choice and leaves us with a
method body statement pointing to the implementation from SubB:

JAVA

j=o.nextId(i_1)@SubB; A′

res=j;

JAVA

Now it is time for Step 5, unfolding the method body statement and creating
a method frame. This is achieved by the rule methodBodyExpand:
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JAVA

method -frame(result ->j, source=SubB , this=o) : {

return super.nextId(i_1 )+1; B

}

A′′

res=j;

JAVA

The method implementation has been inlined above. We start to execute it
symbolically, unfolding the expression in the return statement in the usual
manner, which gives us after some steps:

JAVA

method-frame(result->j, source=SubB, this=o) : {

int j_2 = super.nextId(i_1 ); C

j_1=j_2 +1;

return j_1;

B′

}

res=j;

JAVA

The active statement is now again a method invocation, this time with the
super keyword. The method invocation process starts again from scratch.
Steps 2 and 3 can be omitted for the same reasons as above. Step 4 gives us
the following code. Note that there is no if-cascade, since no dynamic binding
needs to be performed.

JAVA

method-frame(result->j, source=SubB, this=o) : {

int j_3 ; {

int i_2 = i_1;

j_3=o.nextId(i_2)@Base;

}

j_2=j_3;

C′

j_1=j_2+1;

return j_1;

}

res=j;

JAVA

Now it is necessary to remove the declarations and perform the assignments
to reach the method body statement j_3=o.nextId(i_2)@Base;. Then, this
statement can be unpacked (Step 5), and we obtain two nested method
frames. The second method frame retains the value of this, while the imple-
mentation source is now taken from the superclass:
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JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(result ->j_3 , source=Base , this=o) : {

return ++i_2; D

}

j_2=j_3;

C′′

j_1=j_2+1;

return j_1;

}

res=j;

JAVA

The return expression is unfolded until we arrive at a simple expression. The
actual return value is recorded in the updates attached to the formula. The
code in the formula then is:

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(result ->j_3 , source=Base , this=o) : {

return j_4; D′

}

E

j_2=j_3;

j_1=j_2+1;

return j_1;

}

res=j;

JAVA

Now we can perform Step 6 (rule methodCallReturn), which replaces the
return statement of the inner method frame with the assignment to the
variable j_3. We know that j_3 is the receiver of the return value, since it
was identified as such by the method frame (this information is removed with
the rule application).

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(source=Base , this=o) : {

j_3=j_4;

}

E′

j_2=j_3;

j_1=j_2+1;

return j_1;

}

res=j;

JAVA
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The assignment j_3=j_4; can be executed as usual, generating an update,
and we obtain an empty method frame.

JAVA

method-frame(result->j, source=SubB, this=o) : {

method -frame(source=Base , this=o) : {

}
E′′

j_2=j_3;

j_1=j_2+1;

return j_1;

}

res=j;

JAVA

The empty frame can be removed with the rule methodCallEmpty, complet-
ing Step 6. The invocation depth has now decreased again. We obtain the
program:

JAVA

method-frame(result->j, source=SubB, this=o) : {

j_2=j_3;

j_1=j_2+1;

return j_1;

}

res=j;

JAVA

From here, the execution continues in an analogous manner. The outer
method frame is eventually removed as well.

3.6.6 Instance Creation and Initialisation

In this section we cover the process of instance creation and initialisation. We
do not go into details of array creation and initialisation, since it is sufficiently
similar.

Instance Creation and the Constant Domain Assumption

JAVA CARD DL, like many modal logics, operates under the technically useful
constant domain semantics (all program states have the same universe). This
means, however, that all instances that are ever created in a program have to
exist a priori. To resolve this seeming paradox, we introduce object reposito-
ries with access functions and implicit fields that allow to change and query
the program-visible instance state (created, initialised, etc.). These implicit
fields behave as the usual class or instance attributes, except that they are
not declared by the user but by the logic designer. To distinguish them from
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normal (user declared) attributes, their names are enclosed in angled brack-
ets. According to their use we distinguish object state and repository fields.
An overview of the used implicit fields is given in Table 3.4.

Definition 3.52. Given a non-abstract class type C, the object repository
RepC is the set of all domain elements e of dynamic type C:

RepC := {e ∈ D0 | δ(e) = C}

Note, that RepC does not contain the objects of type D even if D is a subtype
of C.

Allocating a new object requires to access the corresponding object repos-
itory. Therefore, we introduce access functions for the object repositories.

Definition 3.53. For each non-abstract class type C there is a predefined
rigid function symbol

C::get : integer→ C

called repository access function.
Restricted to the set of non-negative integers, C::get is interpreted as a

bijective mapping onto the object repository RepC of type C. For negative
integers, C::get is also defined, but its values are unknown.

Given a JAVA CARD DL Kripke structure, the index of an object o is the
non-negative integer i for which the equation I(C::get)(i) = o holds.

Example 3.54. Since the dynamic type function δ(·) is only defined for a
model, it cannot be used within the logic. We must take another way to
express with a formula that a term (“expression”) evaluates (“refers”) to a
domain element (“object”) of a given dynamic type. The repository access
functions allow us to do it concisely. For example the formula

∃i : integer.(o .= C::get(i))

holds iff the term o evaluates to a domain element of dynamic type C (ex-
cluding, among other, elements of any type D, which might be a subtype
of C).

To model instance allocation appropriately, we must ensure that the new
object is not already in use. Therefore, we declare an implicit static integer
field <nextToCreate> for each non-abstract class type C.

We call an object created, if its index is greater or equal to zero and less
than the value of <nextToCreate>. When an instance of dynamic type T
is allocated by a JAVA program, the instance with T.<nextToCreate> as
object index is used and <nextToCreate> is incremented by one. In all
states that are reachable by a JAVA program (⇒ Sect. 3.3.5), the value of
<nextToCreate> is non-negative.

Further, there is the implicit boolean instance field <created> declared
in java.lang.Object, which is supported mainly for convenience. This field
is set for an object during the instance creation process.
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Table 3.4. Implicit object repository and status fields

Modifier Implicit field Declared in Explanation

private

static

int <nextToCreate> T the index of the object
to be taken the next time
when a new T(. . .)
expression is evaluated

protected boolean <created> Object indicates whether the object
has been created

protected boolean <initialised> Object indicates whether the object
has been initialised

Example 3.55. Consider an instance invariant of class A (a property that must
hold for every object of class A or any class derived from A, in each observable
state) that states that the field head declared in A must always be non-null.

With <created> this can be formalised concisely as:

∀a : A.(a.<created> .= TRUE −> (a.head ! .= null))

Using <nextToCreate> and the repository access functions, in contrast,
would yield a complicated formula, and even require enumerating all sub-
types of A in it.

The JAVA Instance Initialisation Process

We use an approach to handle instance creation and initialisation that is
based on program transformation. The transformation reduces a JAVA pro-
gram p to a program p′ such that the behaviour of p (with initialisation)
is the same as that of p′ when initialisation is disregarded. This is done by
inserting code into p that explicitly executes the initialisation.

The transformation inserts code for explicitly executing all initialisation
processes. To a large extent, the inserted code works by invoking implicit
class or instance methods (similar to implicit fields), which do the actual
work. An overview of all implicit methods introduced is given in Table 3.5.

The transformation covers all details of initialisation in JAVA, except that
we only consider non-concurrent programs and no reflection facilities (in par-
ticular no instances of java.lang.Class). Initialisation of classes and in-
terfaces (also known as static initialisation) is fully supported for the single
threaded case. KeY passes the static initialisation challenge stated by Ja-
cobs et al. [2003]. We omit the treatment of this topic here for space reasons
though.

In the following we use the schematic class form that is stated in Fig-
ure 3.4.
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Table 3.5. Implicit methods for object creations and initialisation declared in every
non-abstract type T (syntactic conventions from Figure 3.4)

Static methods

public static T
<createObject>()

main method for instance creation and
initialisation

private static T <allocate>() allocation of an unused object from the
object repository

Instance methods

protected void <prepare>() assignment of default values to all in-
stance fields

mods T <init>(params) execution of instance initialisers and
the invoked constructor

mods0 class T {

mods1 T1 a1 = initExpression1 ;

...

modsm Tm am = initExpressionm ;

{

initStatementm+1 ;

...

initStatement l ;

}

mods T (params ) {

st1 ;

...

stn ;
}

...

}

Fig. 3.4. Initialisation part in a schematic class
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Example 3.56. Figure 3.5 shows a class Person and its mapping to the
schematic class declaration of Figure 3.4. There is only one initialiser state-
ment in class Person, namely “id = 0”, which is induced by the correspond-
ing field declaration of id.

class Person {

private int id = 0;

public Person(int persID ) {

id = persID;

}

}

mods0 �→ −
T �→ Person

mods1 �→ private

T1 �→ int

a1 �→ id

initExpression1 �→ 0

mods �→ public

params �→ int persID

st1 �→ id = persID

Fig. 3.5. Example for the mapping of a class declaration to the schema of Fig. 3.4

To achieve a uniform presentation we also stipulate that:

1. The default constructor public T() exists in T in case no explicit con-
structor has been declared.

2. Unless T = Object, the statement st1 must be a constructor invocation.
If this is not the case in the original program, “super();” is added ex-
plicitly as the first statement.

Both of these conditions reflect the actual semantics of JAVA.

The Rule for Instance Creation and Initialisation

The instance creation rule

instanceCreation

=⇒ 〈π T v0 = T.<createObject>();
v0.<init>(args);
v0.<initialised> = true;
v = v0;

ω〉φ
=⇒ 〈π v = new T(args); ω〉φ

replaces an instance creation expression “v = new T(args)” by a sequence
of statements. These can be divided into three phases, which we examine in
detail below:

1. obtain the next available object from the repository (as explained above,
it is not really “created”) and assign it to a fresh temporary variable v0

2. prepare the object by assigning all fields their default values
3. initialise the object of v0 and subsequently mark it as initialised. Finally,

assign v0 to v



140 3 Dynamic Logic

The reason for assigning to v in the last step is to ensure correct behaviour
in case initialisation terminates abruptly due to an exception.5

Phase 1: Instance Creation

The implicit static method <createObject>() (⇒ Fig. 3.6) declared in each
non-abstract class T returns the next available object from the object repos-
itory of type T after setting its fields to default values.

public static T <createObject >() {

// Get an unused instance from the object repository
T newObject = T .<allocate >();

newObject .< transient > = 0;

newObject .<initialized > = false;

// Invoke the preparation method to assign default values to
// instance fields

newObject .<prepare >();

// Return the newly created object in order to initialise it:
return newObject ;

}

Fig. 3.6. Implicit method <createObject>()

<createObject>() delegates the actual interaction with the object repos-
itory to yet another helper, an implicit method called <allocate>(). The
<allocate>() method has no JAVA implementation, its semantics is given
by the following rule instead:

allocateInstance

=⇒ {lhs := T :: get(T.<nextToCreate>)}
{lhs .<created> := true}
{T .<nextToCreate> := T .<nextToCreate>+ 1}〈π ω〉φ

=⇒ 〈π lhs = T.<allocate>(); ω〉φ

The rule ensures that after termination of <allocate>():

• The object that has index <nextToCreate> (in the pre-state) is allocated
and returned.

• Its <created> field has been set to true.
• The field <nextToCreate> has been increased by one.
5 Nonetheless, JAVA does not prevent creating and accessing partly initialised ob-

jects. This can be done, for example, by assigning the object reference to a static
field during initialisation. This behaviour is modelled faithfully in the calculus.
In such cases the preparation phase guarantees that all fields have a definite
value.
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Note that the mathematical arithmetic addition is used to specify the incre-
ment of field <nextToCreate>. This is the reason for using a calculus rule to
define <allocate>() instead of JAVA code. An unbounded number of objects
could not be modelled with bounded integer data types of JAVA.

Phase 2: Preparation

The next phase during the execution of <createObject>() is the preparation
phase. All fields, including the ones declared in the superclasses, are assigned
their default values.6 Up to this point no user code is involved, which ensures
that all field accesses by the user observe a definite value. This value is given
by the function defaultValue that maps each type to its default value (e.g.,
int to 0). The concrete default values are specified in the JAVA language
specification [Gosling et al., 2000, § 4.5.5]. The method <prepare>() used
for preparation is shown in Figure 3.7.

protected void <prepare >() {

// Prepare the fields declared in the superclass. . .
super.<prepare >(); // unless T = Object

// Then assign each field ai of type Ti declared in T
// to its default value:

a1 = defaultValue(T1);

. . .
am = defaultValue(Tm);

}

Fig. 3.7. Implicit method <prepare>()

Note 3.57. In the KeY system, <createObject>() does not call <prepare>()
on the new object directly. Instead it invokes another implicitly declared
method called <prepareEnter>(), which has private access and whose body
is identical to the one of <prepare>(). The reason is that due to the super
call in <prepare>()’s body, its visibility must be at least protected such that
a direct call would trigger dynamic method dispatching, which is unnecessary
and would lead to a larger proof.

Phase 3: Initialisation

After the preparation of the new object, the user-defined initialisation code
can be processed. Such code can occur

6 Since class declarations are given beforehand this is possible with a simple enu-
meration. In case of arrays, a quantified update is used to achieve the same effect,
even when the actual array size is not known.
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• as a field initialiser expression “T attr = val;” (e.g., (*) in Figure 3.8);
the corresponding initialiser statement is attr = val ;

• as an instance initialiser block (similar to (**) in Figure 3.8); such a block
is also an initialiser statement;

• within a constructor body (like (***) in Figure 3.8).

class A {

(*) private int a = 3;

(**) {a++;}

public int b;

(***) private A() {

a = a + 2;

}

(***) public A(int i) {

this();

a = a + i;

}

...

private <init >() {

super.<init >();

a = 3;

{a++;}

a = a + 2;

}

public <init >(int i) {

this.<init >();

a = a + i;

}

}

Fig. 3.8. Example for constructor normal forms

For each constructor mods T(params) of T we provide a constructor normal
form mods T <init>(params), which includes (1) the initialisation of the
superclass, (2) the execution of all initialiser statements in source code order,
and finally (3) the actual constructor body. In the initialisation phase the
arguments of the instance creation expression are evaluated and passed on
to this constructor normal form. An example of the normal form is given in
Figure 3.8.

The exact blueprint for building a constructor normal form is shown in
Figure 3.9, using the conventions of Figure 3.4. Due to the uniform class
form assumed above, the first statement st1 of every original constructor is
either an alternate constructor invocation or a superclass constructor invo-
cation (with the notable exception of T = Object). Depending on this first
statement, the normal form of the constructor is built to do one of two things:

1. st1 = super(args): Recursive re-start of the initialisation phase for the
superclass of T . If T = Object stop. Afterwards, initialiser statements
are executed in source code order. Finally, the original constructor body
is executed.

2. st1 = this(args): Recursive re-start of the initialisation phase with the
alternate constructor. Afterwards, the original constructor body is exe-
cuted.
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If one of the above steps fails, the initialisation terminates abruptly throwing
an exception.

mods T <init >(params ) {

// invoke constructor
// normal form of superclass
// (only if T �= Object)

super.<init >(args);

// add the initialiser
// statements:

initStatement1 ;

. . .
initStatement l ;

// append constructor body
sts; . . . stn;

// if T = Object then s = 1
// otherwise s = 2

}

(a) st1 = super(args)
in the original
constructor

mods T <init >(params ) {

// constructor normal form
// instead of this(args)

this.<init >(args );
// no initialiser statements
// if st1 is an explicit
// this() invocation

// append constructor body
st2 ; . . . stn ;

// starting with its second
// statement

}

(b) st1 = this(args)
in the original
constructor

Fig. 3.9. Building the constructor normal form

3.6.7 Handling Abrupt Termination

Abrupt Termination in JAVA CARD DL

In JAVA, the execution of a statement can terminate abruptly (besides termi-
nating normally and not terminating at all). Possible reasons for an abrupt
termination are (a) that an exception has been thrown, (b) that a loop or a
switch statement is terminated with break, (c) that a single loop iteration
is terminated with the continue statement, and (d) that the execution of
a method is terminated with the return statement. Abrupt termination of
a statement either leads to a redirection of the control flow after which the
program execution resumes (for example if an exception is caught), or the
whole program terminates abruptly (if an exception is not caught).

Evaluation of Arguments

If the argument of a throw or a return statement is a non-simple expres-
sion, the statement has to be unfolded first such that the argument can be
(symbolically) evaluated:
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throwEvaluate
=⇒ 〈π Tnse v0 = nse; throw v0; ω〉φ

=⇒ 〈π throw nse; ω〉φ

If the Whole Program Terminates Abruptly

In JAVA CARD DL, an abruptly terminating statement—where the abrupt ter-
mination does not just change the control flow but actually terminates the
whole program p in a modal operator 〈p〉 or [p]—has the same semantics as a
non-terminating statement (Def. 3.18). For that case rules such as the follow-
ing are provided in the JAVA CARD DL calculus for all abruptly terminating
statements:

throwDiamond

=⇒ false
=⇒ 〈throw se; ω〉φ

throwBox

=⇒ true
=⇒ [throw se; ω]φ

Note, that in these rules, there is no inactive prefix π in front of the throw
statement. Such a π could contain a try with accompanying catch clause
that would catch the thrown exception. However, the rules throwDiamond,
throwBox etc. must only be applied to uncaught exceptions. If there is a
prefix π, other rules described below must be applied first.

If the Control Flow Is Redirected

The case where an abruptly terminating statement does not terminate the
whole program in a modal operator but only changes the control flow is
more difficult to handle and requires more rules. The basic idea for handling
this case in our JAVA CARD DL calculus are rules that symbolically execute
the change in control flow by syntactically rearranging the affected program
parts.

The calculus rules have to consider the different combinations of prefix-
context (beginning of a block, method-frame, or try) and abruptly termi-
nating statement (break, continue, return, or throw). Below, rules for all
combinations are discussed—with the following exceptions:

• The rule for the combination method frame/return is part of handling
method invocations (Step 6 in Sect. 3.6.5).

• Due to restrictions of the JAVA language specification, the combination
method frame/break does not occur.

• Since the continue statement can only occur within loops, all occurrences
of continue are handled by the loop rules (Sect. 3.7).

Moreover, switch statements, which may contain a break, are not considered
here; they are transformed into a sequence of if statements.
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Rule for Method Frame and throw

In this case, the method is terminated, but no return value is assigned. The
throw statement remains unchanged (i.e., the exception is handed up to the
invoking code):

methodCallThrow
=⇒ 〈π throw se; ω〉φ

=⇒ 〈π method-frame(. . .) : {throw se; p } ω〉φ

Rules for try and throw

The rule in Figure 3.10 allows to handle try-catch-finally blocks and the
throw statement. The schema variable cs represents a (possibly empty) se-
quence of catch clauses. The rule covers three cases corresponding to the
three cases in the premiss:

1. The argument of the throw statement is the null pointer (which, of
course, in practice should not happen). In that case everything remains
unchanged except that a NullPointerException is thrown instead of
null.

2. The first catch clause catches the exception. Then, after binding the ex-
ception to v , the code p from the catch clause is executed.

3. The first catch clause does not catch the exception. In that case the first
clause gets eliminated. The same rule can then be applied again to check
further clauses.

Note, that in all three cases the code p after the throw statement gets elim-
inated.

tryCatchThrow

=⇒ 〈π if (se == null) {

try { throw NullPointerException (); }

catch (T v) { q } cs finally { r }

} else if (se instanceof T) {

try { T v; v = se; q } finally { r }

} else {

try { throw se; } cs finally { r }

}

ω〉φ
=⇒ 〈π try { throw se; p}

catch ( T v ) { q } cs finally { r }

ω〉φ

Fig. 3.10. The rule for try-catch-finally and throw

When all catch clauses have been checked and the exception has still not
been caught, the following rule applies:
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tryFinallyThrow
=⇒ 〈π Tse vse = se; r throw vse; ω〉φ

=⇒ 〈π try { throw se; p } finally { r }〉φ

This rule moves the code r from the finally block to the front. The try-block
gets eliminated so that the thrown exception now may be caught by other
try blocks in π (or remain uncaught). The value of se has to be saved in vse

before the code r is executed as r might change se.
There is also a rule for try blocks that have been symbolically executed

without throwing an exception and that are now empty and terminate nor-
mally (similar rules exist for empty blocks and empty method frames). Again,
cs represents a finite (possibly empty) sequence of catch clauses:

tryEmpty
=⇒ 〈π r ω〉φ

=⇒ 〈π try{ } cs { q } finally { r } ω〉φ

Rules for try/break and try/return

A return or a break statement within a try-catch-finally statement
causes the immediate execution of the finally block. Afterwards the try
statement terminates abnormally with the break resp. the return statement
(a different abruptly terminating statement that may occur in the finally
block takes precedence). This behaviour is simulated by the following two
rules (here, also, cs is a finite, possibly empty sequence of catch clauses):

tryBreak

=⇒ 〈π r break l; ω〉φ
=⇒ 〈π try{ break l; p } cs { q } finally{ r } ω〉φ

tryReturn

=⇒ 〈π Tvr v0 = vr; r return v0; ω〉φ
=⇒ 〈π try{ return vr; p } cs { q } finally{ r } ω〉φ

Rules for block/break, block/return, and block/throw

The following two rules apply to blocks being terminated by a break state-
ment that does not have a label resp. by a break statement with a label l
identical to one of the labels l1, . . . , lk of the block (k ≥ 1).

blockBreakNoLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .lk:{ break; p } ω〉φ

blockBreakLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .li:. . .lk:{ break li; p } ω〉φ
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To blocks (labelled or unlabelled) that are abruptly terminated by a break
statement with a label l not matching any of the labels of the block, the
following rule applies:

blockBreakNomatch
=⇒ 〈π break l; ω〉φ

=⇒ 〈π l1:. . .lk:{ break l; p} ω〉φ

Similar rules exist for blocks that are terminated by a return or throw state-
ment:

blockReturn
=⇒ 〈π return v; ω〉φ

=⇒ 〈π l1:. . .lk:{ return v; p} ω〉φ

blockThrow
=⇒ 〈π throw v; ω〉φ

=⇒ 〈π l1:. . .lk:{ throw v; p} ω〉φ

3.7 Calculus Component 3: Invariant Rules for Loops

There are two techniques for handling loops in KeY: induction and using
an invariant rule. In the following we describe the use of invariant rules. A
separate chapter is dedicated to handling loops by induction (Chapter 11).

3.7.1 The Classical Invariant Rule

Before we discuss the problems that arise when setting up an invariant rule
for a complex language like JAVA CARD, we first recall the classical invariant
rule for a simple deterministic while-language with assignments, if-then-else,
and while-loops. In particular, we assume that there is no abrupt termination
and expressions do not have side-effects.

For such a simple while-language the invariant rule looks as follows:

invRuleClassical

Γ =⇒ UInv, ∆
Inv, se =⇒ [p]Inv
Inv, ! se =⇒ φ

Γ =⇒ U [while (se) { p }]φ, ∆
(∗)

This rule states that, if one can find a formula Inv such that the three pre-
misses hold requiring that

(a) Inv holds in the beginning,
(b) Inv is indeed an invariant, and
(c) the conclusion φ follows from Inv and the negated loop condition ! se,

then φ holds after executing the loop (provided it terminates). Remember
that the symbol (∗) in the rule schema means, that the context Γ, ∆,U must



148 3 Dynamic Logic

be empty unless its presence is stated explicitly (as in the first premiss), i.e.,
only instances of the schema itself are inference rules.

It is crucial to the soundness of Rule invRuleClassical that expressions are
free of side-effects and that there is no concept of abrupt termination like, for
example, in JAVA CARD. In the following we discuss the problems arising from
side-effects of expressions and abrupt termination concerning the invariant
rule.

3.7.2 Loop Invariants and Abrupt Termination in JAVA CARD DL

JAVA CARD DL does not distinguish non-termination and abrupt termination.
For example, the formulae

[while (true) ;]φ

and
[i = i / (j - j);]φ

are equivalent (both evaluate to true). However, the program (fragment) in
the first formula does not terminate while the program in the second formula
terminates abruptly with an ArithmeticException (due to division by zero).

Thus, setting up a sound invariant rule for JAVA CARD DL requires a
more fine-grained semantics concerning termination behaviour of programs.
There are (at least) the following two approaches to distinguish between non-
termination and abrupt termination.

Firstly, the logic JAVA CARD DL could be enriched with additional labelled
modalities [ ]R and 〈 〉R with R ⊆ {break, exception, continue, return} referring
to the reason R of a possible abrupt termination. The semantics of a formula
[p]Rφ is that, if the program p terminates abruptly with reason R, then the
formula φ has to hold in the final state, whereas 〈p〉Rφ expresses that p
terminates abruptly with reason R and in the final state φ holds.

The second possibility for distinguishing non-termination and abrupt ter-
mination is to perform a program transformation such that the resulting pro-
gram catches all top-level exceptions and thus always terminates normally.
Abrupt termination due to exceptions can, e.g., be handled by enclosing the
original program with a try-catch block. For example, the following (valid)
formula expresses that if the program from above terminates abruptly with
an exception then formula φ has to hold:

[Throwable thrown = null;
try {

i = i / (j - j);
} catch (Exception e) {

thrown = e;
}
](thrown ! .= null −> φ)
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Using the additional modalities the same could be expressed more concisely
as

[i = i / (j - j);]exceptionφ .

Handling the other reasons for abrupt termination by program transforma-
tion is more involved and is not explained here. The advantage of using
dedicated modalities is that termination properties can be addressed on a
syntactic level (suited for reasoning with a calculus), whereas the program
transformation approach relies on the semantics of JAVA CARD to encode
abrupt termination and its reason. In order to describe the invariant rule for
JAVA CARD DL in the following (and also the improved rule in Section 3.7.4),
we pursue the approach of introducing additional modalities. Note however,
that the actual rule available in the KeY system is based on the program
transformation approach. The reason for that is that introducing indexed
modalities would result in a multitude of rules to be added to the calculus.

Since the general rule covering all reasons for abrupt termination and
side-effects of the loop condition is very complex, we start with some simpler
rules dealing with special cases excluding certain difficulties (e.g., abrupt
termination).

Normal Termination and Condition Without Side-Effects

Under the assumptions that (a) the loop does not terminate abruptly (i.e.,
terminates normally or does not terminate at all) and that (b) the loop
condition does not have side-effects, the invariant rule essentially corresponds
to the classical rule (the only difference are the prefix π and the postfix ω,
which are not present in the classical rule. As a reminder: π consists of opening
braces, labels, and try-statement but no executable statements and ω contains
the rest of the program (including closing braces and catch-blocks).

invRuleSimple

Γ =⇒ UInv, ∆
Inv & se =⇒ [p]Inv
Inv & ! se =⇒ [π ω]φ

Γ =⇒ U [π while (se) { p } ω]φ, ∆
(∗)

Abrupt Termination and Condition Without Side-Effects

When a continue statement without label or with a label referring to the
currently investigated loop is encountered in the loop body, the execution of
the body is stopped and the loop condition is evaluated again, i.e., the loop
moves on to the next iteration. Thus, the invariant Inv has to hold both when
the body terminates normally and when a continue statement occurs (second
premiss of rule invRuleAt).

If during the execution of the loop body
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• a continue statement with a label referring to an enclosing loop,
• an exception is thrown that is not caught within the body,
• a break statement occurs without label or with a label that refers to a

position in front of the loop, or
• a return statement occurs

then the whole loop statement terminates abruptly. In the rule, the reasons
leading to abrupt termination of the whole loop statement are contained in
the set AT = {break, exception, return}. Note that a continue with a label
referring to an enclosing loop can be simulated by a corresponding break
statement and, thus, we also use the label break to identify this case. In
contrast, we use the label continue if the control flow is to be transferred to
the beginning of the loop containing the continue statement.

The consequence of abrupt termination of a loop statement is that the
execution of the loop is stopped immediately and the control flow is changed
according to the reason for the abrupt termination. Thus, since the whole
loop statement terminates, it is then not necessary to show that the invari-
ant holds. Rather it must be shown that the postcondition φ holds after the
rest of the program following the while loop has been executed (provided it
terminates). This is expressed by the third premiss of rule invRuleAt, where
the formula 〈p〉AT true holds iff p terminates abruptly (se is a simple ex-
pression and its evaluation to terminate normally). If no abrupt termination
occurs in the loop body, rule invRuleAt reduces to rule invRuleSimple).

invRuleAt

Γ =⇒ UInv, ∆
Inv & se =⇒ [p]Inv & [p]continueInv
Inv & se =⇒ 〈p〉AT true −> [π p ω]φ
Inv & ! se =⇒ [π ω]φ

Γ =⇒ U [π while ( se ) { p } ω]φ, ∆
(∗)

Normal Termination and Condition with Side-Effects

Now we assume that the loop body terminates normally but the loop con-
dition may have side-effects (including abrupt termination which leads to
abrupt termination of the loop statement). A loop condition nse that may
have side-effects is not a logical term and therefore has to be evaluated first.
The result is then assigned to a new variable v of type boolean. The only
reason for abrupt termination of a while statement during evaluation of the
loop condition can be an exception. Thus, AT = {exception}.

The first premiss is identical to the one in the previous rules. The second
and third premiss correspond to premisses two and three of rule invRuleSimple,
but take possible side-effects (except for abrupt termination) of evaluating
the loop condition e into account.

Abrupt termination of the loop condition caused by an exception is han-
dled in premiss four, where the postcondition φ has to be established since
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the whole loop statement terminates abruptly. If the evaluation of the loop
condition does not throw an exception this premiss trivially holds since then
〈v=e;〉AT true evaluates to false.

In case that the evaluation of nse does not terminate at all, all premisses
except for the first one are trivially valid. Note that this would not be true
if modality [·]AT had been used in the fourth premiss instead of 〈·〉AT .

invRuleNse

Γ =⇒ UInv, ∆
Inv =⇒ [boolean v=nse;](v .= TRUE −> [p]Inv)
Inv =⇒ [boolean v=nse;](v .= FALSE −> [π ω]φ)
Inv, 〈boolean v=nse;〉AT true =⇒ [π boolean v=nse; ω]φ

Γ =⇒ U [π while (nse) { p } ω]φ, ∆
(∗)

Abrupt Termination and Condition with Side-Effects

The following most general rule covers all possible cases of side-effects and
abrupt termination.

Again, the sets AT = {break, exception, return} and AT ′ = {exception}
contain the reasons leading to abrupt termination of the whole loop state-
ment.

invRule

Γ =⇒ UInv, ∆
Inv =⇒ [boolean v=nse;](v .= TRUE −> ([p]Inv & [p]continueInv))
Inv, 〈boolean v=nse;〉AT′ true =⇒ [π boolean v=nse; ω]φ
Inv, 〈boolean v=nse;〉(v .= TRUE & 〈p〉AT true) =⇒

[π boolean v=nse;p ω]φ
Inv =⇒ [boolean v=nse;](v .= FALSE −> [π ω]φ)

Γ =⇒ U [π while (nse) { p } ω]φ, ∆
(∗)

The first premiss is identical to the one in previous rules and states that the
invariant has to hold in the beginning.

The second premiss covers the case that executing the loop body once
preserves the invariant both if the execution terminates normally and if a
continue statement occurred. Note that it is important that the execution
of p is started in a state reflecting the side-effects of evaluating the loop
condition nse. Therefore, writing

Inv, [boolean v=nse;](v .= TRUE) =⇒ [p]Inv & [p]continueInv

instead would not be correct.
Premiss three (which is the same as premiss four of rule invRuleNse) states

that if the invariant holds and the evaluation of the loop condition nse ter-
minates abruptly (the only reason can be an exception), then the postcondi-
tion φ has to hold after the rest ω of the program has been executed. Since
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the whole loop terminates abruptly if the loop condition terminates abruptly,
the loop is omitted in the formula on the right side of the sequent.

Also in the fourth premiss, the postcondition φ has to be established if
the invariant Inv holds and the evaluation of the loop condition nse termi-
nates normally but the execution of p terminates abruptly due to one of the
reasons in AT. Again, in the formula on the right side of the sequent the loop
statement is replaced by a statement evaluating the loop condition and the
body of the loop.

The last premiss applies to the case that the loop terminates because
the loop condition evaluates to false. Then, assuming the invariant Inv holds
before executing the rest ω of the program, the postcondition φ has to hold.

3.7.3 Implementation of Invariant Rules

The invariant rules, from invRuleSimple to invRule, are different from other
rules of the JAVA CARD DL calculus, since in some premisses the context
(denoted by Γ, ∆ and the update U) is deleted, which is why rule schemata
with (∗) are used (⇒ Def. 3.49). If the context would not be deleted, the
rules would not be sound as the following example shows.

Example 3.58. Consider the following JAVA CARD program:

JAVA

while ( i<10 ) {
i=i+1;

}

JAVA

The sequent

i
.= 0 =⇒ [int i=0; while (i<10 ) { i=i+1; }]i .= 0

is obviously not valid. In our example program no abrupt termination can
occur and the loop condition has no side-effects. We thus can apply the rule
invRuleSimple. Let us see what happens, if we use the following (unsound)
variant where the context is not deleted from the second and the third premiss
(schema version without (∗)):

unsoundRule

=⇒ Inv
Inv & se =⇒ [p]Inv
Inv & ! se =⇒ [π ω]φ

=⇒ [π while (se) { p } ω]φ

Instantiating that rule yields (with Γ = (i .= 0), ∆,U empty, and using the
formula true as invariant):
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unsoundInstance

i
.= 0 =⇒ true

i
.= 0, true & i < 10 =⇒ [i=i+1;]true

i
.= 0, true & !(i < 10) =⇒ []i .= 0

i
.= 0 =⇒ [int i=0; while (i<10 ) { i=i+1; }]i .= 0

As one can easily see, the three premisses of this instance are valid but the
conclusion is not. The reason for this unsoundness is that the context de-
scribes the initial state of the loop execution; however, for correctness, in
the second premiss the loop body would have to be executed in an arbitrary
state (that is described merely by the invariant) and in the third premiss the
invariant and the negated loop condition must entail the postcondition in the
final state of the loop execution.

If the invariant rule is to be implemented using the taclet language presented
in Chapter 4, there is the problem that taclets do not allow to omit context
formulae since they act locally on the formula or term in focus. This is a
deliberate design decision and not a flaw of the taclet language, which in
most cases is very useful. However, in the case of the invariant rule, it requires
to use some additional mechanism. The implementation of the invariant rule
using taclets is based on the idea that a special kind of updates can be
used to achieve a similar effect as with omitting the context. These special
updates are called anonymising updates and their intuitive semantics is that
they assign arbitrary unknown values to all locations, thus “destroying” the
information contained in the context.

Definition 3.59 (Anonymising Update). Let a JAVA CARD DL signa-
ture (VSym, FSymr, FSymnr , PSymr, PSymnr , α) for a type hierarchy, a nor-
malised JAVA CARD program P ∈ Π, and a sequent Γ =⇒ ∆ be given.

For every fi : A1, . . . , Ani → A ∈ FSymnr (0 ≤ i ≤ n) occurring in P or
in Γ ∪∆ let f ′

i : A1, . . . , Ani → A ∈ FSymr be a fresh (w.r.t. P and Γ ∪∆)
rigid function symbol (i.e., f ′

i does neither occur in P nor in Γ ∪∆). Then,
the update

u1 ||u2 || · · · ||un

with

ui = for xi
1; true; · · ·for xi

ni
; true; fi(xi

1, . . . , x
i
ni

) := f ′
i(x

i
1, . . . , x

i
ni

)

is called an anonymising update for the sequent Γ =⇒ ∆. In the following we
abbreviate an anonymising update with V.

In the KeY system, the syntax for anonymising updates is {∗ := ∗n}, where
n ∈ N.

Using anonymising updates we can set-up invariant rules for JAVA CARD DL
that can be implemented using the taclet language. Here, we only present
the variant of the general rule invRule, covering abrupt termination and
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side-effects of the loop condition (variants of the rules invRuleSimple and
invRuleNse with anonymising updates are obtained analogously).

invRuleAnonymisingUpdate

=⇒ Inv
VInv =⇒ V [boolean v=nse;](v .= TRUE −> ([p]Inv & [p]continueInv))
VInv, V〈boolean v=nse;〉AT′ true =⇒ V [π v=nse; ω]φ
VInv, V〈boolean v=nse;〉(v .= TRUE & 〈p〉AT true) =⇒ V [π v=nse;p ω]φ
VInv =⇒ V [boolean v=nse;](v .= FALSE −> [π ω]φ)

=⇒ [π while (nse) { p } ω]φ

As can be seen, the context remains unchanged in all premisses, but formulae
whose evaluation must not be affected by the context are prefixed with an
anonymising update V .

Note 3.60. Please note that the above rule looks differently in the KeY system
since in the implementation we follow the approach based on a program trans-
formation to deal with abrupt termination of the loop instead of introducing
additional modalities 〈·〉AT and [·]AT (see the discussion in Sect. 3.7.2).

3.7.4 An Improved Loop Invariant Rule

Performance and usability of program verification systems can be greatly
enhanced if specifications of programs and program parts not only consist of
the usual pre-/postcondition pairs and invariants but also include additional
information, such as knowledge about which memory locations are changed
by executing a piece of code. More precisely, we associate with a (sequence of)
statement(s) p a set Modp of expressions, called the modifier set (for p), with
the understanding that Modp is part of the specification of p. Its semantics is
that those parts of a program state that are not referenced by an expression
in Modp are never changed by executing p [Beckert and Schmitt, 2003].

Usually, modifier sets are used for method specifications (⇒ Chap. 5, 8).
In this chapter we extend the idea of modifier sets to loops. Similar as with
method specifications, modifier sets for loops allow to

• separate the aspects of (a) which locations change and (b) how they
change,

• state the change information in a compact way,
• make the proof process more efficient.

To achieve the latter point, we define a new JAVA CARD DL proof rule for
while loops that makes use of the information contained in a modifier set for
the loop. The main idea is to throw away only those parts of the context Γ, ∆
and U (i.e., of the descriptions of the initial state) that may be changed by
the loop. Anything that remains unchanged is kept and can be used to es-
tablish the invariant (second premiss of rule invRuleAnonymisingUpdate) and
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the postcondition (premisses 3–5 of rule invRuleAnonymisingUpdate). That is,
we do not use an anonymising update V as in rule invRuleAnonymisingUpdate
which assigns unknown values to all location but a more restricted update
that only assigns anonymous values to critical locations.

An important advantage of using modifier sets is that usually a loop
only changes few locations, and that only these locations need to be put in
a modifier set. On the other hand, using the traditional rule, all locations
that are not changed and whose value is of relevance have to be included
in the invariant and, typically, the number of relevant locations that are
not changed by a loop is much bigger than the number of locations that
are changed. Of course, in general, not everything that remains unchanged is
needed to establish the postcondition in the third premiss. But when applying
the invariant rule it is often not obvious what information must be preserved,
in particular if the loop is followed by a non-trivial program. That can lead to
repeated failed attempts to construct the right invariant. Whereas, to figure
out the locations that are (possibly) changed by the loop, it is usually enough
to look at the small piece of code in the loop condition and the loop body.

As a motivating example, consider the following JAVA CARD program
fragment pmin that computes the minimum of an array a of integers:

JAVA (3.1)
m = a[0]; i = 1;
while (i < a.length) {
if (a[i] < m) then

m = a[i];
i++;

}

JAVA

A postcondition (in KeY syntax) for this program is

φmin = ∀x.(0 <= x & x < a.length −> m <= a[x]) &
∃x.(0 <= x & x < a.length & m

.= a[x]) ,

stating that, after running pmin, the variable m indeed contains the minimum
of a. However, a specification that just consists of φmin is rather weak. The
problem is that φmin can also be established using, for example, a program
that sets m as well as all elements of a to 0, which of course is not the intended
behaviour. To exclude such programs, the specification must also state what
the program does modify (the variables i and m) and does not modify (the
array a and its elements). One way of doing this is to extend the postcondition
with an additional part

φinv = ∀x.(0 <= x & x < a.length −> a[x]
.= a old[x])

where a old is a new array variable (not allowed to occur in the program)
that is supposed to contain the “old” values of the array elements. To make
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sure a old has the same elements as a, the formula φinv must also be used
as a precondition and, thus, be turned into an invariant. In JAVA CARD DL,
this specification of pmin is written as φinv −> [pmin](φmin & φinv).

In order to prove the correctness of the program pmin using the clas-
sical invariant rule invRule or the variant with anonymising updates (rule
invRuleAnonymisingUpdate), it is crucial to add the formula φinv also to the
loop invariant that is used. Otherwise, the loop invariant is not strong enough
to entail the postcondition φ (the third premiss of the loop rule does not hold).
The reason is that all premisses of the invariant rule except for the first one
omit the context formulae Γ, ∆ and the sequence U of updates, i.e., all in-
formation about the state reached before running the while loop is lost (one
can construct similar examples where the second premiss of the rule does not
hold). The only way to keep this information—as long as no modifier sets are
used—is to add it to the invariant. In general, loop invariants are “polluted”
with formulae stating what the loop does not do. All relevant properties of
the pre-state that need to be preserved have to be encoded into the invari-
ant, even if they are in no way affected by the loop. Thus, two aspects are
intermingled:

• Information about what intended effects the loop does have.
• Information about what non-intended effects the loop does not have.

This problem can be avoided by encoding the second aspect (i.e., the change
information) with a modifier set instead of adding it to the invariant. Then
the correctness of the program and the correctness of the modifier set can
be shown in independent proofs and, thus, the two aspects are separated on
verification level as well.

Modifier Sets

We shall now formally define the notion of modifier sets which has been
motivated above. Intuitively, a modifier set enumerates the set of locations
that a code piece p may change—it is thus part of the specification of p. The
question how correctness of a modifier set with respect to a program can be
proved is addressed in Sect. 8.3.3.

In general programs and in particular loops can—and in practice often
do—change a finite but unknown number of locations (though in our simple
motivating example pmin the number of changed locations is known to be
two). A loop may, for example, change all elements in a list whose length is
not known at proof time but only at run time. Therefore, to handle loops, we
define modifier sets that can describe location sets of unknown size. Of course,
such modifier sets can no longer be represented as simple enumerations of
ground terms. Rather, we use guard formulae to define the set of ground terms
that may change (this is similar to the use of guard formulae in quantified
updates).



3.7 Calculus Component 3: Invariant Rules for Loops 157

Definition 3.61 (Syntax of Modifier Sets). Let (VSym, FSymr, FSymnr ,
PSymr, PSymnr , α) be a signature for a type hierarchy.

A modifier set Mod is a set of pairs 〈φ, f(t1, . . . , tn)〉 with φ ∈ Formulae
and f(t1, . . . , tn) ∈ Terms with f ∈ FSymnr .

Given a sequent Γ =⇒ ∆, let F ⊆ FSymnr be the set of non-rigid function
symbols f ∈ FSymnr occurring in Γ ∪∆. Then, {∗} is the modifier set

⋃

f∈F

{〈true, f(x1, . . . , xn)〉}

(specifying that any location in Γ =⇒ ∆ may change).

The intuitive meaning of a modifier set is that some location (f, (d1, . . . , dn))
may be changed by a program p when started in a state S, if the modifier set
for p contains an element 〈φ, f(t1, . . . , tn)〉 and there is variable assignment β
such that the following conditions hold:

1. valS,β(ti) = di for 1 ≤ i ≤ n, i.e., β assigns the free logical variables oc-
curring in ti values such that ti coincides with di.

2. S, β |= φ, i.e., the guard formula φ holds for the variable assignment β.

For our example program pmin, an appropriate modifier set is

Modmin = {〈true, i〉, 〈true, m〉} .

It states in a very compact and simple way that pmin only changes i and m
and, in particular, does not change the array a.

A modifier set Mod is said to be correct for a program p if p (at most)
changes the value of locations mentioned in Mod.

Definition 3.62 (Semantics of Modifier Sets). Given a signature for a
type hierarchy, let K� = (M,S, ρ) be a KeY JAVA CARD DL Kripke structure,
and let β be a variable assignment.

A pair (S1, S2) = ((D, δ, I1), (D, δ, I2)) ∈ S × S of states satisfies a mod-
ifier set Mod, denoted by

(S1, S2) |= Mod ,

iff, for

(a) all f : A1, . . . , An → A ∈ FSymnr ,
(b) all (d1, . . . , dn) ∈ DA1 × · · · × DAn

the following holds:

I1(f)(d1, . . . , dn) �= I2(f)(d1, . . . , dn)

implies that there is a pair 〈φ, f(t1, . . . , tn)〉 ∈ Mod and a variable assign-
ment β such that

di = valS1,β(ti) (1 ≤ i ≤ n)
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and
S1, β |= φ .

The modifier set Mod is correct for a program p, if

(S1, S2) |= Mod

for all state pairs (S1, p, S2) ∈ ρ.

The definition states that, if after running a program p there is some loca-
tion (f, (d1, . . . , dn)) which is assigned a value different from its value in the
pre-state, then the modifier set must contain a corresponding entry, i.e., a
pair 〈φ, f(t1, . . . , tn)〉 such that for some variable assignment β the formula
φ holds and the ti evaluate to di (1 ≤ i ≤ n). Note that φ and the ti are
evaluated in the pre-state.

Example 3.63. Consider the following JAVA CARD method, which has one pa-
rameter of type int[].

JAVA

public multiplyByTwo(int[] a) {
int i = 0;
int j = 0;
while (i < a.length) {

a[i] = a[i] * 2;
i++;

}
}

JAVA

Since a is a parameter of the method, the value of a.length is unknown.
Thus, for giving a correct modifier set, it is not possible to enumerate the
locations a[0], a[1], . . . , a[a.length-1].

However, a correct modifier set for the above program can be written as

{〈0 <= x & x < a.length, a[x]〉, 〈true, i〉} .

Another correct modifier set illustrating that modifier sets are not necessarily
minimal is

{〈0 <= x & x < a.length, a[x]〉, 〈true, i〉, 〈true, j〉} .

In general, a correct modifier set describes a superset of the locations that
actually change.

The modifier set {〈0 <= x & x < a.length, a[x]〉} is not correct for the
above program, since i is changed by the program but not contained in the
modifier set.
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Based on a modifier set Mod, we define the notion of an anonymising update
with respect to Mod, which is an update that (only) assigns unknown values
to those locations that are contained in the modifier set Mod.

Definition 3.64 (Anonymising Update w.r.t. a Modifier Set). Let
a signature (VSym, FSymr, FSymnr , PSymr, PSymnr , α) for a type hierar-
chy, a modifier set Mod, and a sequent Γ =⇒ ∆ be given. For every
〈φi, fi(ti1, . . . , t

i
ni

)〉 ∈ Mod with fi : A1, . . . , Ani → A, let f ′
i ∈ FSymr be a

fresh (w.r.t. Γ ∪ ∆) rigid function symbol with the same type as fi, i.e.,
f ′

i does not occur in Γ ∪∆.
Then the update V(Mod) =

{
V if Mod = {∗}
u1 || · · · ||uk if Mod = {〈φ1, f1(t11, . . . , t

1
n1

)〉, . . . , 〈φk, fk(tk1 , . . . , tknk
)〉}

with

V being an anonymising update for the sequent Γ =⇒ ∆ (Def. 3.59) and
ui = for xi

1; true; · · · for xli ; φi; fi(ti1, . . . , tini
) := f ′

i(t
i
1, . . . , t

i
ni

)

where
{xi

1, . . . , x
i
li} = fv(φi) ∪ fv(ti1) ∪ · · · ∪ fv(tini

)

is called an anonymising update with respect to Mod.

Properties of Anonymising Updates w.r.t. inReachableState

An anonymising update V(Mod) assigns terms an unknown but fixed value.
As a consequence, the state it describes is not necessarily reachable by a
JAVA CARD program. The idea of an anonymising update however is that
it approximates all possible state changes of some program and, thus, we
require that anonymising updates preserve inReachableState (⇒ Sect. 3.3.5),
i.e., the formula

inReachableState −> {V(Mod)} inReachableState

is logically valid for any V(Mod).

Improved Invariant Rule for JAVA CARD DL

We now present an invariant rule that makes use of the information contained
in a correct modifier set (if available). This rule is an improvement over rule
invRuleAnonymisingUpdate since it keeps as much of the context as possible,
i.e., only locations described by the modifier set are assigned unknown values
[Beckert et al., 2005b]. In contrast, rule invRuleAnonymisingUpdate assigns
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unknown values to all locations, no matter whether they can be modified by
the loop or not.

The rule loopInvariantRule is identical to rule invRuleAnonymisingUpdate
except that instead of the anonymising update V , the update V(Mod) is used
that is anonymising with respect to a modifier set Mod being correct for the
set

{ ;
if (nse) { p }
if (nse) { p } if (nse) { p }
if (nse) { p } if (nse) { p } if (nse) { p }
...
}

of programs. That is, the required modifier must be correct not only for the
loop body p and the loop condition nse but also for an arbitrary number of
iterations which, in classical dynamic logic, is denoted by (if (nse) { p })∗

using the iteration operator ∗.

loopInvariantRule

=⇒ Inv
U ′Inv =⇒ U ′[boolean v=nse;](v .= TRUE −> ([p]Inv & [p]continueInv))
U ′Inv, U ′〈boolean v=nse;〉AT′ true =⇒ U ′[π v=nse; ω]φ
U ′Inv, U ′〈boolean v=nse;〉(v .= TRUE & 〈p〉AT true) =⇒

U ′[π v=nse;p ω]φ
U ′Inv =⇒ U ′[boolean v=nse;](v .= FALSE −> [π ω]φ)

=⇒ [π while (nse) { p } ω]φ

where U ′ = V(Mod) and Mod is a correct modifier set for (if (nse) { p })∗.

Example 3.65. The following example shows that a “normal” modifier set
that is correct for the loop condition and loop body is not sufficient for the
rule to be sound.

Consider the program

JAVA

while ( i<10 ) {
if ( i>0 ) {

a = 5;
}
i=i+1;

}

JAVA

which we abbreviate with p in the following. A correct modifier set for the
loop body and loop condition would be Mod = {〈true, i〉, 〈i > 0, a〉} since
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i is modified in any case and a is modified if i is greater than zero. The
anonymising update with respect to Mod is in this case

V(Mod) = for y1; true; i := c || for y2; i > 0; a := d .

Setting U ′ = V(Mod) we try to prove the (invalid) formula

{i := 0 || a := 0} [π p ω]a .= 0 .

Applying the loopInvariantRule with Inv = (a .= 0) yields as a fifth premiss
(after some simplification)

{a := 0 || i := c} a .= 0 =⇒
{a := 0 || i := c} [v=i<10;](v .= FALSE −> [π ω]a .= 0)

which is a valid sequent. We do not show the other four premisses here which
are also valid, i.e., the rule is not sound with U ′ = V(Mod).

The reason for the unsoundness here is that Mod is a correct modifier set
for the loop body and loop condition if executed only once. However, in a
loop the body can be executed several times. In our example the modifier set
Mod = {〈true, i〉, 〈i > 0, a〉} is correct for the program

if (i>0) { a=5; } i=i+1;

but not for

if (i>0) { a=5; } i=i+1; if (i>0) { a=5; } i=i+1; .

That is, the anonymising update V(Mod) only anonymises the locations that
are modified in the first iteration of the loop. For the rule to be sound we how-
ever need an anonymising update that affects all locations that are changed
by any execution of the body.

Usually, a modifier set describes the changes that a given, fixed (part of a)
program can perform. In contrast, the modifier set that is required for the
rule loopInvariantRule must describe the changes of an aribtrary number of
iterations of a given program. This has two serious drawbacks: Firstly, it is
unintuitive for the user since he is used to give modifier sets for one given
program and, secondly, the proof obligation for the correctness of modifier
sets (⇒ Sect. 8.3.3) cannot be used offhand for an unknown number if itera-
tions of a program. In the following section we therefore present a method how
a (correct) modifier set for the iteration p∗ of a program p can be generated
automatically from a (correct) modifier set for p.

Generating Modifier Sets for Iterated Programs

The following theorem states how a correct modifier set Mod∗
p for p∗ can be

obtained if a correct modifier set for p is given.
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Theorem 3.66. Let

Modp = {〈φ1, f1(s1
1, . . . , s

1
n1

)〉, . . . , 〈φm, fm(sm
1 , . . . , sm

nm
)〉}

be a correct modifier for the program p such that the φi (1 ≤ i ≤ m) are first-
order formulae. Then the modifier set Mod∗p that is the least set satisfying the
conditions

• Modp ⊆ Mod∗p.
• If 〈ψ, g(t1, . . . , tn)〉 ∈ Modp, then 〈ψ′, g(t′1, . . . , t′n)〉 ∈ Mod∗

p if there is a
substitution σ = [x1/l1(r1

1 , . . . , r
1
o1

), . . . , xk/lk(rk
1 , . . . , rk

ok
)] such that

– the variables xi are fresh and of the same type as li(ri
1, . . . , r

i
oi

),
– for each li(ri

1, . . . , r
i
oi

) there is some 〈φ, f(s1, . . . , sk)〉 ∈ Modp such
that f = l and k = oi, and

– σ(ψ′) = ψ and σ(g(t′1, . . . , t
′
n)) = g(t1, . . . , tn).

is correct for the iteration p∗ of p.

Note that the modifier set Mod∗
p is not necessary minimal, even if Modp is

minimal for p.
In the KeY system we make use of the above theorem, i.e., when applying

the rule loopInvariantRule the user is asked to provide a modifier set that
is correct for the loop body p and loop condition nse. The system then
automatically generates a modifier set for the iterated loop body.

Example 3.67. We revisit Example 3.65 and apply Theorem 3.66 in order to
obtain a correct modifier set for the iterated loop body.

For the loop in Example 3.65 a correct modifier set for the loop body and
the loop condition is

Mod = {〈true, i〉, 〈i > 0, a〉} .

Then, following Theorem 3.66, a correct modifier set for the iterated loop
body is

Mod∗ = {〈true, i〉, 〈i > 0, a〉, 〈x > 0, a〉}

with the corresponding substitution σ = [x/i].
For another example consider the program

JAVA

while ( i<10 ) {
ar[i]=0;
i=i+1;

}

JAVA
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A correct modifier set for the loop body and loop condition is

Mod = {〈true, i〉, 〈true, ar[i]〉}

and, following Theorem 3.66, a correct modifier set for the iterated loop body
is

Mod = {〈true, i〉, 〈true, ar[i]〉, 〈true, ar[x]〉}
with the corresponding substitution σ = [x/i].

3.8 Calculus Component 4: Using Method Contracts

There are basically two possibilities to deal with method calls in program
verification: inlining the body of the invoked method (⇒ Sect. 3.6.5) or us-
ing the specification (which then, of course, has to be verified). The latter
approach is discussed in this section.

Exploiting the specifications is indispensable in order for program veri-
fication to scale up. This way, each method only needs to be verified (i.e.,
executed symbolically) once. In contrast, inlined methods may have to be
symbolically executed multiple times, and the size of the proofs would grow
more than linearly in the size of the program code to be executed symboli-
cally. Moreover, the source code of a (library) method may not be available.
Then, the only way to deal with the invocation of the method is to use its
specification.

The specification of a method is called method contract and is defined as
follows.

Definition 3.68 (Method contract). A method contract for a method or
constructor op declared in a class or interface C ∈ P is a quadruple

(Pre,Post ,Mod, term)

where:

• Pre ∈ Formulae is the precondition that may contain the following pro-
gram variables:
– self for the receiver object (the object which a caller invokes the method

on); if op refers to a static method or a constructor the receiver object
variable is not allowed;

– p1 . . . , pn for the parameters.
• Post ∈ Formulae is the postcondition of the form

(exc .= null −> φ) & (exc ! .= null −> ψ)

where φ is the postcondition for the case that the method terminates nor-
mally and ψ specifies the case where the method terminates abruptly with
an exception. The formulae φ and ψ may contain the following program
variables:
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– self for the receiver object; again the receiver object variable is not
allowed for static methods;

– p1, . . . , pn for the parameters;
– result for the returned value;

• Mod is a modifier set for the method op.
• The termination marker term is an element from the set {partial , total};

the marker is set to total if and only if the method contract requires the
method or constructor to terminate, otherwise term is set to partial .

The formulae Pre and Post are JAVA CARD DL formulae. However, in most
cases they do not contain modal operators. This is in particular true if they
are automatically generated translations of JML or OCL specifications.

In this section, we assume that the method contract to be considered is
correct, i.e., the method satisfies its contract. This is a prerequisite for the
method contract rule to be correct. The question how to establish correctness
of a method contract is addressed in Sect. 8.2.4.

The rule for using a contract for a method invocation in a diamond modal-
ity looks as follows:

methodContractTotal

=⇒ {self := setarget || p1 := se1 || · · · || pn := sen} Pre
{V(Mod)} exc .= null =⇒
{V(Mod) || self := setarget || p1 := se1 || · · · || pn := sen || lhs := result}

(Post −> 〈π ω〉φ)
{V(Mod)} exc ! .= null =⇒
{V(Mod) || self := setarget || p1 := se1 || · · · || pn := sen}

(Post −> 〈π throw exc; ω〉φ)
=⇒ 〈π lhs=setarget.mname(se1, . . . , sen)@C; ω〉φ

where V(Mod) is an anonymising update w.r.t. the modifier set Mod of the
method contract.

The above rule is applicable to a method-body-statement

lhs=se.mname(t1, . . . , tn)@C;

if a contract (Pre,Post ,Mod, total) for the method mname(T1 , . . . ,Tn) de-
clared in class C is given. Note, that the rule cannot be applied if a contract
with the termination marker set to partial is given since then termination of
the method to be invoked is not guaranteed.

In the first premiss we have to show that the precondition Pre holds in the
state in which the method is invoked after updating the program variables
self and pi with the receiver object se and with the parameters sei . This
guarantees that the method contract’s precondition is fulfilled and we can
use the postcondition Post to describe the effect of the method invocation,
where two cases must be distinguished.
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In the first case (second premiss) we assume that the invoked method
terminates normally, i.e., the program variable exc is null. If the method
is non-void the return value return is assigned to the variable lhs . The sec-
ond case deals with the situation that the method terminates abruptly (third
premiss). Note, that in both cases the postcondition Post holds and the lo-
cations that the method possibly modifies are updated with the anonymising
update V(Mod) with respect to Mod. As in the first premiss, the variables for
the receiver object and the parameters are updated with the corresponding
terms. In case of abrupt termination there is no result but an exception exc
that must be thrown explicitly in the fourth premiss to make sure that the
control flow of the program is correctly reflected.

The rule for the method invocations in the box modality is similar. It can
be applied independently of the value of the termination marker.

methodContractPartial

=⇒ {self := se || p1 := se1 || · · · || pn := sen} Pre
exc .= null =⇒
{V(Mod) || self := se || p1 := se1 || · · · || pn := sen || lhs := result}

(Post −> [π ω]φ)
exc ! .= null =⇒
{V(Mod) || self := se || p1 := se1 || · · · || pn := tn}

(Post −> [π throw exc; ω]φ)
=⇒ [π lhs=se.mname(se1, . . . , sen)@C; ω]φ

where V(Mod) is an anonymising update w.r.t. the modifier set Mod of the
method contract.

Example 3.69. The following JAVA CARD class MCDemo contains the two meth-
ods inc and init that are annotated with JML specifications. The contract
of inc states that:

• The method terminates normally.
• The result is equal to the sum of the parameter x and the literal 1.
• The method is pure, i.e., does not modify any location.

The contract of init expresses that:

• The method terminates normally.
• When the method terminates, the result is equal to the sum of the para-

meter u and the literal 1 and the attribute attr has the value 100

JAVA

public class MCDemo {

int attr;
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/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result == x+1;

@ */

public int inc(int x) {
return ++x;

}

/*@ public normal_behavior

@ ensures \result == u+1 && attr == 100;

@ */

public int init(int u) {
attr = 100;
return inc(u);

}

}

JAVA

In this example, we want to prove the (total) correctness of the method init.
We feed this annotated JAVA CARD class into the JML front-end of the KeY
system and select the corresponding proof obligation for total correctness.
When we arrive at the point in the proof where method inc is invoked we
apply the rule methodContractTotal. This is possible even if we have not
explicitly set-up a method contract according to Def. 3.68. Rather the KeY
system automatically translates the JML specification of method inc into
the method contract (Pre,Post ,Mod, term) with

Pre = true
Post = result .= p1 + 1
Mod = {}
term = total

Since we have specified that the method inc terminates normally, the KeY
system generates only the following (slightly simplified) two premisses instead
of the three in the rule scheme (the one dealing with abrupt termination is
omitted):

1. In the first sequent we have to establish the precondition of method inc
in the state where inc is invoked. This is trivial here since the JML spec-
ification does not contain a requires clause and, thus, the precondition
is true.
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KeY
==>
{u_old:=u_lv,
self:=self_lv,
x:=u_lv,
self_lv.attr:=100} true

KeY

2. In the second sequent we make use of the postcondition of method inc.
In lines 4 and 5 the variables for the receiver object self and the pa-
rameter x, respectively, are updated with the corresponding parameter
terms. In the JML specification we have an assignable nothing; state-
ment saying that the method inc does not modify any location. As a
consequence, the anonymising update V(Mod) in the rule scheme here is
empty and, thus, omitted.

KeY
==>
{u_old:=u_lv,

3 self_lv.attr:=100
self:=self_lv,
x:=u_lv}

6 ( j = x + 1
-> \<{method-frame(result->result,

source=MCDemo,
9 this=self): {

return j;
}

12 }\> (result = u_old + 1 & self.attr = 100))

KeY

The validity of the two sequents shown above can be established automati-
cally by the KeY prover.

Note that the program would also be correct if we omit from the speci-
fication assignable nothing;. Then, however, we could not prove the cor-
rectness of the program using the rule methodContractTotal since for the
rule being sound it must be assumed that anything, i.e., in particular the
attribute attr, can be changed by the corresponding method. As a conse-
quence, the validity of the equation attr = 100 in the formula following
the diamond modality in the above sequent cannot be established. If instead
of the method contract rule the rule for inlining the method body is used,
the correctness of the program can be shown even if the assignable clause is
missing since the implementation of method inc in fact does not modify the
attribute attr.
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3.9 Calculus Component 5: Update Simplification

The process of update simplification comprises (a) update normalisation and
(b) update application. Update normalisation transforms single updates into
a certain normal form, while update application involves an update and a
term, a formula, or another update that it is applied to. Note that in the KeY
system both normalisation and application of updates is done automatically;
there are no interactive rules for that purpose.

3.9.1 General Simplification Laws

We first define an equivalence relation on the set of JAVA CARD DL updates,
which holds if and only if two updates always have the same effect, i.e.,
represent the same state transition.

Definition 3.70. Let u1, u2 be JAVA CARD DL updates. The relation

≡ ⊆ Updates×Updates

is defined by
u1 ≡ u2 iff valS,β(u1) = valS,β(u2)

for all variable assignments β and JAVA CARD DL states S.

The first update simplification law expressed in the following lemma is that
the sequential and parallel update operators are associative.

Lemma 3.71. For all u1, u2, u3 ∈ Updates the following holds:

• u1 || (u2 ||u3) ≡ (u1 ||u2) ||u3,
• u1 ; (u2 ; u3) ≡ (u1 ; u2) ; u3.

This justifies that in the sequel we omit parentheses when writing lists of
sequential or parallel updates. However, neither of the operators || and ; is
commutative, as the following example demonstrates.

Example 3.72. The sequential and parallel update operators are not commu-
tative:

i := 0 ; i := 1 ≡ i := 1 �≡ i := 0 ≡ i := 1 ; i := 0
i := 0 || i := 1 ≡ i := 1 �≡ i := 0 ≡ i := 1 || i := 0

Another simple law is that quantification in an update has no effect if the
quantified variable does not occur in the scope.

Lemma 3.73. Let x be a variable, φ a JAVA CARD DL formula, and u an
update. If φ is logically valid and x �∈ fv(φ) ∪ fv(u) then

(for x; φ; u) ≡ u .
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3.9.2 Update Normalisation

In the following we present a normal form for updates and explain how arbi-
trary updates are transformed into this normal form. We use “for x̄; φ; u”
and “for (x1, . . . , xn); φ; u” to abbreviate “for x1; true; · · ·for xn; φ; u”.

The normal form for updates is a sequence of quantified updates (with
function updates as sub-updates) executed in parallel.

Definition 3.74 (Update Normal Form). An update u is in update nor-
mal form if it has the form

for x̄1; φ1; u1 || for x̄2; φ2; u2 || · · · || for x̄n; φn; un

where the ui are function updates (⇒ Def. 3.8).

It is crucial for this normal form that the well-ordering of the domain
(of a JAVA CARD DL Kripke structure with ordered domain) is express-
ible in the object logic. For that purpose JAVA CARD DL contains the bi-
nary predicate quanUpdateLeq . It is used for resolving clashes in quantified
updates on a syntactic level. This requires to express that there is an ele-
ment x satisfying some property φ and that it is the smallest such element:
∃x.(φ & ∀y.([y/x]φ −> quanUpdateLeq(x, y))).

We now present simplification laws that allow arbitrary updates to be
turned into normal form.

Function Updates

A function update f(t1, . . . , tn) := s can easily be transformed into normal
form by applying Lemma 3.73:

f(t1, . . . , tn) := s ≡ for x; true; f(t1, . . . , tn) := s

where x �∈ fv(f(t1, . . . , tn) := s).

Sequential Update

Sequential updates u1 ; u2 can be transformed into normal form by ap-
plying the following law which introduces an update application {u1} u2

(⇒ Sect. 3.9.3).

Lemma 3.75. For all u1, u2 ∈ Updates:

u1 ; u2 ≡ u1 || {u1}u2
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Quantified Updates with Non-function Sub-updates

We consider a quantified update for x; φ; u where u is not a function update
(otherwise the update would already be in normal form).

If u is a sequential update, we apply the previous rule to transform u
into a parallel update. The handling of parallel updates however is not that
straightforward. For u = u1 ||u2, the quantification cannot be simply distrib-
uted over the parallel update operator as the following example shows.

Example 3.76. For simplicity, we assume that x ranges only over the non-
negative integers (which shall be ordered as usual). Then,

for x; 0 <= x <= 2; (f(x + 1) := x || f(x) := x)
≡ f(3) := 2 || f(2) := 2 || f(2) := 1 || f(1) := 1 || f(1) := 0 || f(0) := 0
≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(0) := 0
�≡ f(3) := 2 || f(2) := 2 || f(1) := 1 || f(0) := 0
≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(2) := 2 || f(1) := 1 || f(0) := 0
≡ (for x; 0 <= x <= 2; f(x + 1) := x) ||

(for x; 0 <= x <= 2; f(x) := x)

As the above example suggests, a quantified update for x; φ; u can be under-
stood as a (possibly infinite) sequence . . . || [x/t2]u || [x/t1]u where instances
of the sub-update u are put in parallel for all values satisfying the guard
(syntactically represented by terms ti). To preserve the clash semantics of
quantified updates, the order of the updates [x/ti]u put in parallel is cru-
cial. A term ti must evaluate to a domain element di that is smaller than or
equal to all the dj that the terms tj , j > i, evaluate to. Intuitively, in the se-
quence . . . || [x/t2]u || [x/t1]u a term ti must be smaller than all the terms ti+n

occurring to its left to correctly represent the corresponding quantified up-
date, since this guarantees that in case of a clash “the least element wins”.

Distributing a quantification over the parallel-composition operator corre-
sponds to a permutation of the updates in the sequence . . . || [x/t2]u || [x/t1]u,
which in general alters the semantics (as the above example shows). Only in
the case that no clashes occur, permutations preserve the semantics of parallel
updates.

Example 3.77. We revisit the updates from Example 3.76 and visualise the
permutation of sub-updates induced by distributing quantification over the
parallel-composition operator. The arrows in Fig. 3.11 indicate the order of
the updates [x/ti]f(x + 1) := x and [x/ti]f(x) := x if the quantified updates
from Example 3.76 are understood as a sequence of parallel updates.

The left part of Fig. 3.11 shows the order for the update

for x; 0 ≤ x ≤ 2; (f(x + 1) := x || f(x) := x)
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and the right part the order for

for x; 0 ≤ x ≤ 2; f(x + 1) := x || for x; 0 ≤ x ≤ 2; f(x) := x ,

i.e., after distributing the quantification over the parallel sub-update. The
figure shows that the order of clashing parallel updates in the two cases differ.
For example, the update [x/1](f(x) := x) clashes with [x/0](f(x + 1) := x).
In the left part of the figure, the latter update wins, while in the right part,
the former update takes precedence.

[x/2]f(x + 1) := x [x/2]f(x) := x

[x/1]f(x + 1) := x [x/1]f(x) := x

[x/0]f(x + 1) := x [x/0]f(x) := x

[x/2]f(x + 1) := x [x/2]f(x) := x

[x/1]f(x + 1) := x [x/1]f(x) := x

[x/0]f(x + 1) := x [x/0]f(x) := x

Fig. 3.11. Evaluation order of quantified updates

Fig. 3.11 does not only illustrate that naive distribution of quantification
over parallel composition is not a correct update simplification law, but also
gives a hint on how to “repair” the law based on the following two observa-
tions:

• If no clashes occur, the parallel update operator is commutative, i.e., in
that case the order in a sequence of parallel updates is irrelevant.

• In case of a clash, the update that gets overridden by a later update can
simply be omitted (since parallel updates do not influence each other).

The idea is now to distribute the quantification and to add a guard formula ψ
to the quantified update to prevent wrong overriding. The formula ψ is con-
structed in such a way that it evaluates to false if the update would wrongly
override another update. For example, in Fig. 3.11 that situation occurs if an
update clashes with an other update that is located in a column to its left
and in a row below.

That way, an update of the form

for x; ϕ; (u1 ||u2)

can still be transformed into an update of the shape

for x; ϕ; u1 || for x; ϕ & ψ; u2

where u1 can be assumed to be in normal form

for ȳ1; ϕ1; v1 || for ȳ2; ϕ2; v2 || · · · || for ȳn; ϕn; vn
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and u2 is an update of the form

for (z1, . . . , zo); ω; f(t1, . . . , tk) := s .

The formula ψ which adds additional constraints preventing the right update
from overriding the left one in a wrong way looks like

ψ = ∀x′.((C1 | · · · | Cn) −> quanUpdateLeq(x, x′))

where x′ is a fresh variable and Ci determines whether the i-th part

for (y1, . . . , yl); ϕi; g(r1, . . . , rm) := si

of u1 might collide with u2.
This is the case if and only if

• the left hand sides f(t1, . . . , tk) and g(r1, . . . , rm) of both updates syn-
tactically match (i.e. same top-level function symbols f = g and same
arities k = m) and

• there are values y1, . . . , yl such that the guard ϕi evaluates to true for a
value x′ < x (i.e. u2 illicitly overrides u1 “in a row below”) and for that
same value x′ the arguments tj and rj pairwise evaluate to the same value
(i.e. there is in fact a clash).

Thus, Ci is defined as

Ci =

{
∃y1. · · · ∃yl.C

′
i for f = g, k = m

false otherwise

C′
i = [x/x′]ϕi & t1

.= [x/x′]r1 & · · · & tk
.= [x/x′]rk

Example 3.78. We apply the transformation described above to Example 3.76.
Since we assume x to range only over non-negative integers with the usual
ordering, we can write y <= z instead of quanUpdateLeq (y, z).

In a first step we transform the sub-updates of the parallel update
f(x + 1) := x || f(x) := x into normal form:

for x; 0 <= x <= 2; (f(x + 1) := x || f(x) := x)

≡ for x; 0 <= x <= 2; (for y; true; f(x + 1) := x ||
for z; true; f(x) := x)

Then, we distribute the quantification over the parallel update and add a
formula ψ to guarantee the correctness of the transformation.

≡ (for x; 0 <= x <= 2; for y; true; f(x + 1) := x) ||
(for x; 0 <= x <= 2 & ψ; for z; true; f(x) := x)
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where ψ = ∀x′.(x .= x′ + 1 −> x <= x′). The formula 0 <= x <= 2 & ψ can
be simplified to x

.= 0, and we obtain

≡ (for x; 0 <= x <= 2; for y; true; f(x + 1) := x) ||
(for x; x

.= 0; for z; true; f(x) := x)

≡ (for x; 0 <= x <= 2; f(x + 1) := x) ||
(for x; x

.= 0; f(x) := x)

≡ f(3) := 2 || f(2) := 1 || f(1) := 0 || f(0) := 0

The last equivalence shows that the transformed formula is in fact equivalent
to the original one (see Example 3.76).

Note 3.79. The normal form for updates consists of quantified updates put
in parallel. In KeY we also allow function updates to appear instead of quan-
tified updates, i.e., it is not necessary to transform a function update into a
quantified update. The reason is that the majority of updates are function
updates and the normal form becomes very clumsy and hard to read if these
updates are transformed into quantified updates (see, e.g., Example 3.76).

In the KeY system, the parallel sub-updates of an update in normal form
are ordered lexicographically. That makes it possible to close many proof
goals without additional rules for permuting the parallel sub-updates.

3.9.3 Update Application

The second part of the update simplification process is the application of
updates to other updates, terms, and formulae. Since updates are “semanti-
cal” substitutions, the application of an update cannot (always) be effected
by a mere syntactical substitution but may require more complex syntactical
manipulations.

Applying an Update to an Update

The application of an update to another update is based on the following
simplification laws.

Lemma 3.80. Let an arbitrary update u ∈ Updates and function updates
u1, . . . , un ∈ Updates be given. Then,

• {u} (f(t1, . . . , tn) := s) ≡ f({u} t1, . . . , {u} tn) := {u} s
• if none of the variables in the variable lists x̄i occur in u

{u} (for x̄1; φ1; u1 || · · · || for x̄n; φn; un) ≡
for x̄1; {u} φ1; {u} u1 || · · · || for x̄n; {u} φn; {u} un

In the above lemma only applications of updates to function updates and to
updates in normal form are considered. That, however, is sufficient since all
updates can be transformed into normal form using the rules from Sect. 3.9.2.
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Applying an Update to a Term

In the following, we use the notation t ≡ t′ and φ ≡ φ′ to denote that the
terms t, t′ resp. the formulae φ, φ′ have the same value in all states for all
variable assignments, in which case one can safely be replaced by the other
preserving the semantics of the term of formula.

Definition 3.81. Given terms t, t′ ∈ Terms and formulae φ, φ′ ∈ Formulae,
we write

• t ≡ t′ if the formula t
.= t′ is logically valid,

• φ ≡ φ′ if the formula φ <−> φ′ is logically valid.

Lemma 3.82. Let

u = for ȳ1; φ1; t1 := s1 || · · · || for ȳm; φm; tm := sm

be an update in normal form. Then,

• for all rigid terms t ∈ Terms,

{u} t ≡ t ,

• for all terms f(a1, . . . , an) ∈ Terms,

{u} f(a1, . . . , an) ≡
if Cm then Tm else . . . if C1 then T1 else f({u} a1, . . . , {u} an)

where C1, . . . , Cm are guard formulae expressing that the i-th sub-update
of u affects the term f(a1, . . . , an), and T1, . . . , Tm are terms that describe
the value of the expression in these cases.
Ci and Ti are defined as follows. Suppose that the i-th part of u is of the
form

for (z1, . . . , zl); φi; g(b1, . . . , bk) := si .

Then, the formula Ci is defined by

Ci =

{
∃z1. · · · ∃zl. C′

i if f = g and n = k

false otherwise

C′
i = φi & ({u} a1)

.= b1 & · · · & ({u} ak) .= bk

and the terms Ti are constructed from the si by applying substitutions
that instantiate the occurring variables with the smallest of clashing values
(corresponding to the clash semantics of quantified updates):

[
z1 / (ifExMin z1.∃z2. · · · ∃zl. C′

i then z1 else z1),
z2 / (ifExMin z2.∃z3. · · · ∃zl. C′

i then z2 else z2),
. . . ,
zl / (ifExMin zl.C

′
i then zl else zl)

]
si
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• for all u1 ∈ Updates and t ∈ Terms,

{u} ({u1} t) ≡ {u ; u1} t .

The order of the Ci and Ti in the second equivalence in the above lemma
is relevant. Due to the last-win semantics of parallel updates, the right-most
sub-update for ȳi; φi; ti := si, i = m, must be checked first, and the left-
most sub-update, i = 1, must be checked last such that the i-th update “wins”
over the j-th update if i > j.

Example 3.83. As an example, we consider the term {a(o) := t} a(p). Intu-
itively, the update a(o) := t affects the term a(p) iff o and p evaluate to the
same domain element. In a first step, we transform the update into normal
form:

a(o) := t ≡ for y; true; a(o) := t

where y is a fresh variable. Now, we can apply the normalised update on the
term a(p) using Lemma 3.82:

{for y; true; a(o) := t} a(p) ≡
if C then T else a({for y; true; a(o) := t} p)

where

C = ∃y.C′

C′ = true & ({for y; true; a(o) := t} p) .= o

≡ ({for y; true; a(o) := t} p) .= o

T = [y / (ifExMin z.C′ then z else y)]t
= t (since y does not occur in t)

The simplification of ({for y; true; a(o) := t} p) yields p since it can be
excluded syntactically that this update can affect the non-rigid constant p.
Thus, we finally obtain

{for y; true; a(o) := t} a(p) ≡
if p

.= o then t else a(p)

which coincides with our intuition.

Applying an Update to a Formula

The following lemma contains simplification laws for applications of updates
to formulae. Updates can be distributed over logical operators (except modal
operators) as (a) the semantics of logical operators is not affected by a state
change (b) the state change affected by an update is deterministic.
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Lemma 3.84. Let u ∈ Updates be an update:

• {u} p(t1, . . . , tn) ≡ p({u} t1, . . . , {u} tn),
• {u} true ≡ true and {u} false ≡ false,
• {u} (! φ) ≡ !{u} φ,
• {u} (φ ◦ ψ) ≡ {u} φ ◦ {u} ψ for ◦ ∈ {|, &,−>},
• {u} ∀x.φ ≡ ∀x.{u} φ and {u} ∃x.φ ≡ ∃x.{x} φ provided that

x �∈ fv(u),
• {u} ({u1} φ) ≡ {u ; u1} φ.

The application of an update u to a formula with a modal operator, such as
{u} 〈p〉φ and {u} [p]φ, cannot be simplified any further. In such a situation,
instead of using update simplification, the program p must be handled first
by symbolic execution. Only when the whole program has disappeared, the
resulting updates can be applied to the formula φ.

3.10 Related Work

An object-oriented dynamic logic, called ODL, has been defined [Beckert and
Platzer, 2006], which captures the essence of JAVA CARD DL, consolidating its
foundational principles into a concise logic. The ODL programming language
is a While language extended with an object type system, object creation, and
non-rigid functions that can be used to represent object attributes. However,
it does not include the many other language features, built-in operators, etc.
of JAVA. Using such a minimal extension that is not cluttered with too many
features makes theoretical investigations much easier. A case in point are
paper-and-pencil soundness and completeness proofs for the ODL calculus,
which are—though not trivial—still readable, understandable and, hence,
accessible to investigation.

A version of dynamic logic is also used in the software verification systems
KIV [Balser et al., 2000] and VSE [Stephan et al., 2005] for (artificial) imper-
ative programming languages. More recently, the KIV system also supports
a fragment of the JAVA language [Stenzel, 2005]. In both systems, DL was
successfully applied to verify software systems of considerable size.

The LOOP tool [Jacobs and Poll, 2001, van den Berg and Jacobs, 2001]
translates JAVA programs and specifications written in the Java Modeling
Language (JML) into proof goals expressed in higher-order logic. LOOP
serves as a front-end to a theorem prover (PVS or Isabelle), in which the
actual verification of the program properties takes place, based on a seman-
tics of sequential JAVA that is formalised using coalgebras.

The Jive tool [Meyer and Poetzsch-Heffter, 2000] follows a similar ap-
proach, translating programs that are written in a core subset of Java to-
gether with their specification into higher-order proof goals. These proof goals
can then be discharged using the interactive theorem prover Isabelle.
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von Oheimb [2000, 2001b] defines a Hoare calculus for Java Light, which
is shown to be sound and (relatively) complete. Java Light includes side-
effects, recursion, dynamic dispatch, exception handling, static class initiali-
sation, object creation, static fields and methods as well as static overloading.
And von Oheimb and Nipkow [2002] describe a Hoare calculus for NanoJava,
which is a further restricted subset of JAVA CARD. Both calculi have been de-
fined in Isabelle/HOL and proven sound and complete relative to a semantics
of Java Light resp. NanoJava specified in Isabelle.

Nipkow [2003] and Klein and Nipkow [2006] define an (artificial) program-
ming language called Jinja to capture the essentials of object-orientation
(without giving a calculus). Big step and small step operational semantics
for Jinja are shown equivalent, and type safety is proven.

Pierik and de Boer [2003] present a wp-calculus for a moderate abstraction
of an object-oriented programming language with a fairly rich set of features
(without exceptions) and a focus on method invocation, using an assertion
language with quantification over sequences of objects.

Abadi and Leino [1997] define a logic for reasoning about a programming
language with prototype-based object inheritance. Their logic resembles a
formal type system enriched with pre- and postconditions.

Igarashi et al. [2001] define a λ-calculus for a functional version of JAVA

(without assignments), called Featherweight Java and use it to investigate
JAVA’s type-safety as well as parametric type genericity.
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Construction of Proofs

by

Philipp Rümmer

The primary means of reasoning in a logic are calculi, collections of purely
syntactic operations that allow us to determine whether a given formula is
valid. Two such calculi are defined in Chap. 2 and 3 for first-order predicate
logic and for dynamic logic (DL). Having such calculi at hand enables us
in principle to create proofs of arbitrarily complex conjectures, using pen
and paper, but it is obvious that we need computer support for all realistic
applications. Such a mechanised proof assistant primarily helps us in two
respects: 1. The assistant ensures that rules are applied correctly, e.g., that
rules can only be applied if their side-conditions are not violated, and 2. the
assistant can provide guidance for selecting the right rules. Whereas the first
point is a necessity for making calculi and proofs meaningful, the second item
covers a whole spectrum from simple analyses to determine which rules are
applicable in a certain situation to the complete automation that is possible
for many first-order problems.

Creating a proof assistant requires formalising the rules that the imple-
mented calculus consists of. In our setting—in particular looking at calculi for
dynamic logic—such a formalisation is subject to a number of requirements:

• JAVA CARD DL has a complex syntax (subsuming the actual JAVA CARD

language) and a large number of rules: first-order rules, rules for the reduc-
tion of programs and rules that belong to theories like integer arithmetic.
Besides that, in many situations it is necessary to introduce derived rules
(lemmas) that are more convenient or that are tailored to a particular
complex proof. This motivates the need for a language in which new rules
can easily be written, rather than hard-coding rules as it is done in high-
performance automated provers (for first-order logic). It is also necessary
to ensure the soundness of lemmas, i.e., we need a mechanised way to
reason about the soundness of rules.

• Because complete automation is impossible for most aspects of program
verification, the formalisation has to support interactive theorem proving.
KeY provides a graphical user interface (GUI) that makes most rules

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 179–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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applicable only using mouse clicks and drag and drop. This puts a limit
on the complexity that a single rule should have for keeping the required
user interaction clear and simple, and it requires that rules also contain
“pragmatic” information that describes how the rules are supposed to be
applied. Accounts on the user interface in KeY are Chap. 10 and [Giese,
2004].

• The formalisation also has to enable the automation of as many proof
tasks as possible. This covers the simplification of formulae and proof
goals, the symbolic execution of programs (which usually does not require
user interaction) as well as automated proof or decision procedures for
simpler fragments of the logic and for theories. The approach followed
in KeY is to have global strategies that give priorities to the different
applicable rules and automatically apply the rule that is considered most
suitable. This concept is powerful enough to implement complete proof
procedures for first-order logic1 and to handle theories like linear integer
arithmetic or polynomial rings mostly automatically.

This chapter is devoted to the formalism called taclets that is used in KeY to
meet these requirements. The concept of taclets provides a notation for rules
of sequent calculi, which has an expressiveness comparable to the “textbook-
notation” for rules that is used in Chap. 2 and 3, while being more formal.
Compared to textbook-notation, taclets inherently limit the degrees of free-
dom (non-determinism) that a rule can have, which is important to clarify
user interaction. Furthermore, an application mechanism—the semantics of
taclets—is provided that describes when taclets can be applied and what the
effect of an application is.

Historically, taclets have first been devised by Habermalz [2000b,a] un-
der the name “Schematic Theory Specific Rules,” with the main purpose of
capturing the axioms of theories and algebraic specifications as rules. The
language is general enough, however, to also cover all rules of a first-order
sequent calculus and most rules of calculi for dynamic logic. The develop-
ment of taclets as a way to build interactive provers was influenced to a large
degree by the theorem prover InterACT [Geisler et al., 1996], but also has
strong roots in more traditional methods like tactics and derived rules that
are commonly used for higher-order logics (examples for such systems are Is-
abelle/HOL, see [Nipkow et al., 2002], Coq, see [Dowek et al., 1993], or PVS,
see [Owre et al., 1996]). Compared to tactics, the expressiveness of taclets
is very limited, for the reasons mentioned above. A further difference is that
taclets do not (explicitly) build on a small and fixed set of primitive rules, as
tactics do in (foundational) higher-order frameworks like Isabelle, but that
a rather large number of taclets are considered as axioms that are simply
assumed.

1 KeY does not use backtracking, the implemented procedure rather follows the
non-destructive approach of Giese [2001].



4 Construction of Proofs 181

KeY

\functions {

integer exp(integer, integer);

}

\schemaVariables {

\term integer a, b;

}

\rules {

expZero { \find(exp(a, 0)) \replacewith(1) };

expSucc { \find(exp(a, b)) \sameUpdateLevel

\replacewith(a * exp(a, b-1));

\add(==> b > 0) };

}

KeY

Fig. 4.1. Taclets for an exponentiation function on integers

A recent conceptual introduction to taclets is given by Beckert et al. [2004].
The article lacks, however, many details of how taclets currently are used in
KeY, because the taclet concept has constantly been extended over the last
years in order to implement the rules of JAVA CARD DL. This chapter gives a
more comprehensive description of taclets as they now exist in KeY, and also
includes features that were only added recently. At the same time, even in
the scope of this chapter many details had to be left out. For an introduction
of taclets from a user’s point of view—how taclets are applied interactively
and automatically when working with KeY—we refer to Chap. 10.

Purpose of this Chapter

In most cases it is not necessary for a user of the theorem prover KeY to define
taclets, because KeY already comes with complete implementations of the
calculi for first-order and dynamic logic. There are, nevertheless, situations
when the introduction of new taclets can be valuable:

• The introduction of lemmas, i.e., of non-axiom taclets that can be derived
from existing rules, can help to structure complex proofs. Such taclets can
be written to an external file and be loaded on demand. When lemmas
are loaded, proof obligations that ensure soundness (⇒ Sect. 4.5) are au-
tomatically created by KeY as new proof tasks and have to be proven
using already existing taclets. This means that lemmas only can add con-
venience, but do not increase the set of derivable formulae. Instead of ap-
plying lemmas, one could as well apply more basic rules, but this usually
leads to a longer and more intricate proof. Typical examples are lemmas
about complex arithmetic transformations.

• Assumptions under which a conjecture is to be proven can be formulated
as taclets. For verifying an algorithm, we might, for instance, want to
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KeY

\schemaVariables {

\term integer a, b, c;

}

\rules {

expSplit { \find(exp(a, b)) \sameUpdateLevel

\replacewith(exp(a, b-c) * exp(a, c));

\add(==> c >= 0);

\add(==> b >= c) };

}

KeY

Fig. 4.2. Lemma for the exponentiation function

introduce an exponentiation function exp through the clauses

exp(a, 0) = 1, exp(a, b) = a · exp(a, b− 1) (b > 0)

While the two equations can, in principle, simply be added as (quantified)
formulae to the conjecture in question, having a large number of such
definitions would clutter proofs and would also be very tedious to apply.
Fig. 4.1 shows how exp can instead be defined with two simple taclets
that can be used in a proof exactly like the ordinary rules of a calculus.
The keywords and clauses of the taclets are explained in detail later in
this chapter (⇒ Sect. 4.4).
Note, that the two taclets of Fig. 4.1 are not lemmas but axioms : the
normal rules of a calculus will not tell us anything about the function
exp and will in particular not entail that exp actually describes exponen-
tiation. For this reason, such axioms cannot be loaded on demand while
proving but have to be defined as part of a problem file that can be loaded
by KeY. Based on the axioms, in turn, lemmas can be defined, loaded at
a later point, and then also proven correct. An example for such a lemma
is the following identity (the corresponding taclet is shown in Fig. 4.2):

exp(a, b) = exp(a, b− c) · exp(a, c) (c ≥ 0, b ≥ c)

• More generally, new theories can be defined and axiomatised through
appropriate taclets, which is the original intention of the taclet concept.
This is described in more detail by Habermalz [2000b,a]. Typical examples
would be algebraic datatypes like lists, finite sets or trees, the laws of
which can naturally be captured with taclets.

The next pages give all information that is required to write taclets for these
purposes. In the whole chapter, we assume that the reader already knows
about sequents Γ =⇒ ∆ and about their meaning (see Sect. 2.5 and 3.4.1).
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Organisation of this Chapter

We continue with introducing the concepts and keywords of taclets informally
in Sect. 4.1: we look at a number of taclets that implement the rules that are
given in Chap. 2 and 3. After that, Sect. 4.2 provides a complete account on
schema variables. The two sections (Sect. 4.1 and 4.2) together with Sect. 4.3
about meta variables contain all practical information that is necessary for
developing new taclets. An in-depth introduction of the taclet language and
a discussion of the soundness aspect of taclets are given in the two remaining
sections (Sect. 4.4 and 4.5).

4.1 Taclets by Example

The next pages give a tour through the taclet language and illustrate the
most important features with examples. We organise the section along logics
of increasing complexity that are defined in the first two chapters: 1. propo-
sitional logic, the fragment of first-order predicate logic that is obtained by
removing quantifiers, variables and terms, 2. first-order predicate logic, and
3. dynamic logic for JAVA CARD (JAVA CARD DL). Accordingly, many of the
taclets discussed here correspond to rules that are given in Chap. 2 and 3, in
particular to the rules of Fig. 2.2 and 2.3. As a convention, in this chapter we
use typewriter font both for schema variables (in order to distinguish them
from normal variables x, y) and for taclet names (to distinguish them from
rule names like allLeft as in Chap. 2 and 3).

Propositional Rules as Taclets

The first example is the taclet close (⇒ Fig. 4.3) representing an axiom that
closes a branch of a proof (corresponding to rule close in Fig. 2.2). It can be
applied whenever the sequent of a proof leaf contains the same formula both
in the antecedent and the succedent.2 The taclet makes use of two different
keywords of the taclet language:

• \assumes imposes a condition on the applicability of the taclet and has
a sequent as parameter. In the case of close, the \assumes clause states
that the taclet must only be applied if an arbitrary formula phi appears
both in the antecedent and the succedent of a sequent (the sequent may
very well contain further formulae).

• \closegoal specifies that an application of the taclet closes a proof
branch.

The expression in an \assumes clause (like all expressions that turn up
in a taclet) may contain schema variables like the variable phi. A schema
2 In a sequent Γ =⇒ ∆ we call the left part Γ the antecedent and the right part ∆

the succedent (⇒ Chap. 3).
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KeY

\schemaVariables {

\formula phi, psi;

}

\rules {

close { \assumes(phi ==> phi) \closegoal };

impRight { \find(==> phi -> psi) \replacewith(phi ==> psi) };

cut { \add(phi ==>); \add(==> phi) };

mpLeft { \assumes(phi ==>) \find(phi -> psi ==>)

\replacewith(psi ==>) };

}

KeY

Fig. 4.3. Examples of taclets implementing propositional rules

variable has a kind that defines which expressions the variable can stand for
(a precise definition is given in Sect. 4.2). In our example, phi represents
an arbitrary formula. More generally, the taclet language provides schema
variables that are necessary for all first-order logics, e.g., kinds for match-
ing variables, terms, and formulae. Further kinds are necessary for rules of
dynamic logic and enable variables representing program entities (like JAVA

statements or expressions).

Note 4.1. The keywords of the taclet language reflect the direction in which
sequent calculus proofs are constructed: we start with a formula that is sup-
posed to be proven and create a tree upwards by analysing the formula and
taking it apart. Taclets describe expansion steps (or, as a border case, closure
steps), and by the application of a taclet we mean the process of adding new
nodes to a leaf of a proof tree following this description.

In order to describe rules that modify formulae of a sequent, the taclet
language offers keywords for specifying which expression a taclet works
on (the focus of the taclet application) and in which way it is modified.
Taclet impRight (⇒ Fig. 4.3) corresponds to rule impRight in Fig. 2.2 and
contains clauses to this end:

• \find defines a pattern (in this taclet phi −> psi, where phi, psi are
again schema variables) that must occur in the sequent to which the taclet
is supposed to be applied. Accordingly, impRight can be applied whenever
an implication turns up in the succedent of a proof leaf.

• \replacewith tells how the focus of the application will be altered, which
for impRight means that an implication phi −> psi in the succedent
will be removed, that the formula phi is added to the antecedent and
that psi is added to the succedent. In general, when a taclet with a
\replacewith clause is applied, a new proof goal is created from the
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previous one by replacing the expression matched in the \find part with
the expression in the \replacewith part (after substituting the correct
concrete expressions for schema variables).

Besides rules that modify a term or a formula, there are also rules that add
new formulae (but not terms) to a sequent. A typical example is the cut rule,
which is a rule with two premisses that makes a case distinction on whether
a formula phi is true or false (⇒ Sect. 3.5.2):

cut
Γ, φ =⇒ ∆ Γ =⇒ φ, ∆

Γ =⇒ ∆

Taclet cut (⇒ Fig. 4.3) shows how case distinctions like this can be realised
in the taclet language and contains a keyword that has not turned up so far:

• \add specifies formulae that are added to a sequent when the taclet is
applied. Similarly to \replacewith, the argument of \add is a sequent
that gives a list of formulae to be added to the antecedent and a second
list to be added to the succedent.

The taclet cut also shows how taclets can be written for rules that have more
than one premiss and split a proof branch into two branches. The clauses
that belong to different branches are in the taclet separated by semicolons.
In case of cut, an application creates two new proof goals and adds phi to
the antecedent in one of the goals and to the succedent in the other one.

The examples above exclusively contained either \add or \replacewith
clauses. It is, however, legal to use both in a taclet, and often they are inter-
changeable. We could—without changing the meaning of the taclet—write
taclet impRight also in the following way:

Taclet
impRightAdd { \find(==> phi -> psi) \replacewith(==> psi)

\add(phi ==>) };

Taclet

Similarly, \assumes and \find can be combined for specifying that a formula
can be modified provided that certain other formulae occur in the sequent.
An example is the rule known as modus ponens : if a formula phi and the
implication phi −> psi hold, then also psi holds. Because the converse is true
as well—if phi and psi hold, then also phi −> psi—we can safely eliminate
the implication:

mpLeft
Γ, φ, ψ =⇒ ∆

Γ, φ, φ −> ψ =⇒ ∆

The taclet mpLeft (⇒ Fig. 4.3) implements this rule. If the formulae phi
and phi −> psi both occur in the antecedent of a sequent, then the taclet
is applicable and phi −> psi can be replaced with psi. The assumption phi
will not be altered by the taclet application.
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KeY

\sorts {

\generic G;

}

\schemaVariables {

\formula phi; \variables G x;

\skolemTerm G cnst; \term G s;

}

\rules {

allLeft { \find (\forall x; phi ==>)

\add ({\subst x; s}phi ==>) };

allRight { \find (==> \forall x; phi)

\varcond (\new(cnst, \dependingOn(phi)))

\replacewith (==> {\subst x; cnst}phi) };

}

KeY

Fig. 4.4. Examples of taclets implementing first-order rules

First-Order Rules as Taclets

Dealing with a calculus for first-order logic (as opposed to propositional logic)
using the taclet approach requires handling terms and variables, in particular
schema variables for variables and for terms are necessary. As an example,
we consider the rule allLeft (⇒ Fig. 2.2) for universal quantifiers, which is
implemented by the taclet allLeft (⇒ Fig. 4.4). Apart from a variable phi
for formulae, we need the following schema variables:

• x represents logical variables of type G that can be bound by a quantifier.
• s represents an arbitrary (ground) term with static type G (or a subtype

of G).

The \find clause of allLeft specifies that the rule is applied to universally
quantified formulae of the antecedent. Upon application, the taclet adds an
instance of the formula to the antecedent by substituting term s for the
quantified variable x. Because s does not turn up in the \find clause of
the taclet, it can essentially be chosen arbitrarily when applying the taclet,
reflecting the nature of the allLeft rule.

The taclet allLeft demonstrates a further feature: the rule allLeft is
supposed to be applicable for arbitrary static types A of the quantified vari-
able and the substituted term. This is realised in taclets by introducing a
type G that is marked as \generic and that can stand for arbitrary “con-
crete” types A, in the same way as a schema variable can represent concrete
formulae or terms.

The analogue of allLeft is the taclet allRight (⇒ Fig. 4.4) that realises
the rule with same name in Fig. 2.2. In contrast to allLeft, here the original
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quantified formula can be replaced with an instance in which a fresh3 constant
is substituted for the bound variable. There is a particular kind of schema
variable for introducing new constants that can be used here: variable cnst
is defined as a variable of kind \skolemTerm and will always represent a
fresh constant or function symbol that does not yet turn up in the proof
in question. The strange line \varcond(\new(cnst,\dependingOn(phi)))
becomes important in the presence of meta variables (see Sect. 4.2.1 and 4.3,
where detailed explanations are given) and ensures that all meta variables
that occur in phi also are arguments of the function symbol.

Rewriting Taclets

In all of the taclets that we have looked at so far, the parameter of \find
clauses were sequents containing exactly one formula. For implementing many
first-order rules it is, however, necessary also to modify expressions (formu-
lae or terms) inside of formulae, leaving the surrounding formula or term
unchanged. Examples are most of the equality rules in Fig. 2.3, where we can
use an equation s

.= t for replacing the term s with t anywhere in a sequent.
The taclets that we can use for making rules like this available are called
rewriting taclets : now, the argument of \find is a single formula or term and
does not contain the arrow ==>.

A first and very simple rewriting taclet is zeroRight (⇒ Fig. 4.5). It states
that 0 is the right identity of addition. In zeroRight, the \find expression
is a term. As we obviously cannot replace terms with formulae, in order to
make the taclet well-formed then also \replacewith expressions have to be
terms (if the \find expression were a formula, also \replacewith expressions
would have to be).

Using zeroRight, we can for instance conduct the following proof, where
the taclet is used to turn p(a + 0) into p(a). Subsequently, the proof can be
closed using close.

p(a) =⇒ p(a)
p(a + 0) =⇒ p(a)

Both of the rules eqLeft and eqRight (⇒ Fig. 2.3) for applying equations are
implemented by taclet applyEq (⇒ Fig. 4.5), because a rewriting taclet does
not distinguish between a focus in the antecedent and in the succedent. The
taclet again uses an \assumes clause for demanding the presence of certain
formulae in a sequent, here of the appropriate equation in the antecedent,
and a \find clause for specifying the terms that can be modified. t1 and t2
are schema variables for the left and the right side of the equation.

When examining the rules eqLeft and eqRight carefully, we see that both
rules also have a side-condition σ(t2) � σ(t1) that demands that the type of
t2 is a subtype of the type of t1. This condition is captured in the taclet
applyEq by declaring the schema variable t1 as strict:
3 A symbol is called fresh for a given proof if it does not occur in the proof.
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KeY

\sorts {

\generic G;

}

\schemaVariables {

\formula phi; \variables G x;

\term[strict] G t1; \term G t2; \term integer intTerm;

}

\rules {

zeroRight { \find (intTerm + 0) \replacewith (intTerm) };

removeAll { \find (\forall x; phi) \varcond (\notFreeIn(x, phi))

\replacewith (phi) };

applyEq { \assumes (t1 = t2 ==>) \find(t1) \sameUpdateLevel

\replacewith(t2) };

applyEqAR { \find (t1 = t2 ==>)

\addrules ( rewrWithEq { \find (t1) \sameUpdateLevel

\replacewith (t2) } ) };

}

KeY

Fig. 4.5. Examples of rewriting taclets

• The option strict demands that the term that is represented by t1
exactly has type A, otherwise also subtypes would be allowed.

Because t2 is non-strict, also subtypes are allowed and the condition
σ(t2) � σ(t1) is met.

Implementing the rules for applying equations in a sound way—also for
dynamic logic—requires a further feature of the taclet language:

• \sameUpdateLevel is a state condition and can only be added to rewriting
taclets. This clause ensures that the focus of the taclet application (the
term that is represented by t1 in \find) does not occur in the scope of
modal operators apart from updates. Updates are allowed above the focus,
but in this case the equation t1

.= t2—or, more generally, all formulae
referred to using \assumes, \replacewith and \add—have to be in the
scope of the same4 update.

This keyword is necessary for applyEq, because too liberal an application of
equations is not sound in dynamic logic (⇒ Sect. 3.5.1). In order to illustrate
the effect of \sameUpdateLevel, we consider two potential applications of
applyEq:

4 It is enough if the updates in front of the different constituents have the same
effect. This can be determined more or less liberally, e.g., by checking for syntactic
identity or by taking laws of updates (⇒ Sect. 3.9) into account.
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Illegal: Legal:

x
.= v + 1 =⇒ {v := 2}p(v + 1)
x

.= v + 1 =⇒ {v := 2}p(x)
{v := 2}(x .= v + 1) =⇒ {v := 2}p(v + 1)
{v := 2}(x .= v + 1) =⇒ {v := 2}p(x)

We have to rule out the left application (by adding the flag
\sameUpdateLevel) because the equation x

.= v + 1 must not be used in
the state that is created by the update v := 2. The right application is ad-
missible, however, because here the equation is preceded by the same update
and we know that it holds if v has value 2.

Compared with the rules of Fig. 2.3, applyEq differs in a further aspect:
while the rule eqRight, for instance, only adds new formulae to a sequent,
leaving the original formulae untouched, the taclet applyEq directly and de-
structively modifies formulae. Taclets cannot immediately capture the copy-
behaviour of eqRight. We will show later in this section how the behaviour
of eqRight could be simulated. In practice, however, the rewriting-behaviour
of applyEq tends to match the intention of a user better than the copy-
behaviour of the rule eqRight: equations are usually applied in order to sim-
plify expressions, there is no reason to keep the original and more complicated
expression.

Sometimes it is necessary to impose conditions on the variables that may
turn up (or not turn up) in formulae or terms involved. For this purpose,
the taclet language offers the keyword \varcond that is illustrated in the
rewriting taclet removeAll. The taclet eliminates universal quantifiers, pro-
vided that the variable that is quantified over does not occur in the scope
of the quantifier. Because the taclet is a rewriting taclet, it can also be ap-
plied in situations in which ordinary quantifier elimination (using rules like
allRight) is not possible, namely if a quantifier is not top-level.

Nested Taclets

Taclets have restricted higher-order features: it is possible to write taclets that
upon application introduce further taclets, i.e., make further taclets available
for proof construction.

• \addrules has as argument a list of taclets that will be made available
when the parent taclet is applied. \addrules is used similarly to \add, in
particular it is possible to introduce different taclets in each branch that
a taclet creates.

Consider the taclet applyEqAR (⇒ Fig. 4.5), which is an alternative taclet for
handling equations and is essentially equivalent to applyEq. If the antecedent
contains an equality that can be matched by t1

.= t2, then applying the taclet
results in a new rewriting taclet that replaces a term matched by t1 with a
term matched by t2. For the equation f(a) .= b, for instance, we would obtain
the following additional taclet (the whole truth is, however, more complicated
and explained in Sect. 4.4.7):
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Taclet
rewrWithEq { \find (f(a)) \sameUpdateLevel \replacewith (b) };

Taclet

This means that the actual application of an equality is now performed by
two taclets. Due to the \addrules-clause, the set of available taclets is not
fixed but can grow dynamically during the course of a proof. Note that the
generated taclets are not sound in general: rewrWithEq above is only ren-
dered sound by the presence of the equation f(a) .= b in the antecedent.5

Soundness of taclets is discussed in Sect. 4.5. The flag \sameUpdateLevel is
set in rewrWithEq for the same reason as for applyEq, but now entails that
rewrWithEq can only be applied in the same state (below the same updates)
as the taclet applyEqAR by which it was introduced.

Using \addrules, we can also store formulae that might be needed again
later in a proof in the form of a taclet (before applying destructive modifica-
tions) or hide formulae:

Taclet
saveLeft { \find (phi ==>)

\addrules( insert { \add (phi ==>) } ) };
hideLeft { \find (phi ==>) \replacewith (==>)

\addrules( insert { \add (phi ==>) } ) };

Taclet

Rules of Dynamic Logic as Taclets

So far, we have shown examples for taclets representing calculus rules for
propositional and first-order logic. However, taclets are not restricted to these
two logics but can also be used for formally capturing the rules of the dy-
namic logic of Chap. 3 (JAVA CARD DL). A taclet for handling the if-then-else
statement in JAVA CARD is ifElseSplit (⇒ Fig. 4.6), which captures the
rule ifElseSplit in Sect. 3.6.3. The basic idea of the taclet is to split the if-
then-else statement into two statements representing the possible branches
(⇒ Sect. 3.6). As it was done for formulae, terms and variables, the taclet
makes use of schema variables within programs, in this case a schema vari-
able #se for side-effect free expressions and #s0, #s1 representing program
statements.

As we have seen on page 188, it is possible to apply a rewriting taclet
containing the keyword \sameUpdateLevel only if the application focus and
the formulae referred to using \assumes, \replacewith and \add are in the
scope of the same update. The same holds for taclets that are not rewriting

5 It is also sound to apply rewrWithEq in the (direct or indirect) children of the
sequent, as long as the rules applied in between are locally sound. Because sound
taclets are also locally sound, this is always ensured in our setting.
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KeY

\schemaVariables {

\formula phi;

\program SimpleExpression #se; \program Statement #s0, #s1;

}

\rules {

ifElseSplit { \find (==> \<{.. if(#se) #s0 else #s1 ...}\>phi)

"if�#se�true": \replacewith (==> \<{.. #s0 ...}\>phi)

\add (#se = TRUE ==>);

"if�#se�false": \replacewith (==> \<{.. #s1 ...}\>phi)

\add (#se = FALSE ==>) };

}

KeY

Fig. 4.6. Example of a taclet implementing a rule of JAVA CARD DL

taclets, i.e., where the \find pattern is a sequent or there is no \find clause,
although it is not necessary to include the flag \sameUpdateLevel explicitly
for such taclets. The following application of ifElseSplit is possible, in
which the update v := a occurs in front of all affected formulae:

a ≥ 0 <−> b
.= TRUE, {v := a} (b .= TRUE) =⇒ {v := a} 〈 v++; 〉v > 0

a ≥ 0 <−> b
.= TRUE, {v := a} (b .= FALSE) =⇒ {v := a} 〈 v = -v; 〉v > 0

a ≥ 0 <−> b
.= TRUE =⇒ {v := a} 〈 if (b) v++; else v = -v; 〉v > 0

Another feature of taclets used in ifElseSplit are the dots . ./. . . surround-
ing the program. These dots can be considered a further kind of schema
variable and stand for the context in which a statement (here the conditional
statement that is eliminated by ifElseSplit) occurs, which can be certain
blocks around the statement (like try-blocks) and arbitrary trailing code. In
Chap. 3, this context is denoted with π and ω.

Finally, the taclet ifElseSplit shows how the different branches that
a taclet creates can be given names for convenience reasons. In the KeY
implementation, these strings (like "if #se true") are used as annotations
in the proof tree and can make navigation easier. As can be seen here, branch
names may also contain schema variables (#se) that are replaced with their
concrete instantiation when the taclet is applied.

The remaining chapter is a more systematic and less tutorial-like account on
taclets. When taking a step back, we see that the approach is based on two
notions or principles that are mostly orthogonal to each other:

• Schema variables, the special kind of variables that is used as wildcards in
expressions. Schema variables are a concept that also occurs unrelated to
taclets, for instance in Chap. 2 and 3 for writing rules in textbook nota-
tion, and are a general means of describing rule schemata (⇒ Sect. 3.4.3).
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As this chapter targets the actual implementation of rules within theorem
provers, it is, however, necessary to develop the notion of schema variables
in a more formal manner.

• A simple and high-level imperative language for modifying sequents. A
program in this language—a taclet—describes conditions when a modifi-
cation is possible, where it is possible, a list of modification statements for
adding, removing and modifying formulae, and means of branching and
closing proof goals. Speaking in terms of sequent calculi, taclets are suit-
able for describing and also practically executing almost arbitrary local
rules.

Most parts of the chapter relate to these two concepts: Sect. 4.2 is an account
on schema variables, whereas the actual taclet language is defined in Sect. 4.4.

4.2 Schema Variables

Despite the name variable, schema variables are in the context of KeY a very
broad concept: they comprise a large number of different kinds of placeholders
that can be used in taclets. All schema variables have in common that they are
wildcards for syntactic entities, which can again be different kinds of variables
(like logical variables or program variables), terms, formulae, programs or
more abstract things like modal operators.

Schema variables are used to define taclets. When a taclet is applied, i.e.,
when a goal of a proof is modified by carrying out the steps described by the
taclet, the contained schema variables will be replaced by concrete syntactic
entities. This process is called instantiation and ensures that schema variables
never occur in the proof itself. Instantiation is formally defined in Sect. 4.2.3.
In order to ensure that no ill-formed expressions occur while instantiating
schema variables with concrete expressions, e.g., that no formula is inserted
at a place where only terms are allowed, the kind of a schema variable defines
which entities the schema variable can represent and may be replaced with.

Example 4.2. In KeY syntax, we declare phi to be a schema variable repre-
senting formulae and n a variable for terms of type integer :

KeY
\schemaVariables {
\formula phi;
\term integer n;

}

KeY

The kinds of schema variables that exist in the KeY system are given in Ta-
ble 4.1. A more detailed explanation of each of the different categories is given
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Table 4.1. Kinds of schema variables in the context of a type hierarchy
(T , Td, Ta,	)

\variables A Logical variables of type A ∈ T
\term A Terms of type B 	 A (with A ∈ T )
\formula Formulae
\skolemTerm A Skolem constants/functions of type A ∈ T
\program t Program entities of type t (from Table 4.2)
\modalOperator M Modal operators that are elements of set M
\programContext Program context

in Sect. 4.2.1. Table 4.1 has been found to be rather stable during the devel-
opment of KeY in the last years and is not expected to be modified a lot in
the future. The part that in our experience used to be altered most frequently
(e.g., for adding support for further features of a programming language or
completely new languages) are the different types of program entities that
can be described with variables of kind \program t (see Table 4.2).

For the following definition, recall that a type hierarchy (⇒ Chap. 2)
is a tuple (T , Td, Ta,�) consisting of a set T = Td ∪̇ Ta of types, which can
be either non-abstract (dynamic) types (Td) or abstract types (Ta), and a
subtype relation �.

Definition 4.3. Let (T , Td, Ta,�) by a type hierarchy. A set SV of schema
variables over (T , Td, Ta,�) is a set of symbols that are distinct from all other
declared symbols, where each schema variable sv ∈ SV has exactly one of the
kinds from Table 4.1 over (T , Td, Ta,�).

4.2.1 The Kinds of Schema Variables in Detail

We can roughly distinguish two different categories of schema variables, those
which belong to first-order logic (the upper part of Table 4.1) and the more
special kinds that are used to write taclets for JAVA CARD DL.

Variables: \variables A

Schema variables for variables can be instantiated with logical variables that
have static type A. In contrast to schema variables for terms, logical variables
of subtypes of A are not allowed, as such a behaviour has been found to
make development of sound taclets difficult (⇒ Sect. 4.5). Schema variables
can also occur bound in formulae—which actually is the most common use—
and also bound occurrences will be replaced with concrete variables when
instantiations are applied (this is illustrated in Example 4.11 below).

Terms: \term A

Schema variables for terms can be instantiated with arbitrary terms that
have the static type A or a subtype of A. Subtypes are allowed because this
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behaviour is most useful in practice: there are only very few rules for which
the static type of involved terms exactly has to match some given type (in
case the reader wants to implement a rule like this, the modifier strict
(⇒ Sect. 4.2.5) can be used). In general, there are no conditions on the
logical variables that may occur (free) in terms substituted for such schema
variables. When a term schema variable is in the scope of a quantifier, logical
variables can be “captured” when applying the instantiation, which needs to
be considered when writing taclets (again, this is illustrated in Example 4.11
below).

Formulae: \formula

Schema variables for formulae can be instantiated with arbitrary formulae.
As for schema variables for terms, the substituted concrete formulae may
contain free variables, and during instantiation variable capture can occur.

Skolem Terms: \skolemTerm A

Schema variables for Skolem terms are supposed to be instantiated with terms
of the form

fsk(X1, . . . , Xn)

with a fresh function symbol fsk of type A and a list X1, . . . , Xn of meta
variables as arguments. Meta variables (or free variables) are a means of
postponing the instantiation of schema variables for terms, which is essential
for automated proving, and are described in Sect. 4.3. In most cases, namely
if no meta variables are involved, the term degenerates to a fresh constant
csk of type A.

The taclet application mechanism in KeY simply creates new func-
tion symbols when a taclet is applied that contains such schema vari-
ables. This ensures that the inserted symbols are fresh for a proof and
hence can be used as Skolem symbols (⇒ Chap. 2). In order to deter-
mine the arguments X1, . . . , Xn of a Skolem term, the variable condi-
tions \new(sk,\dependingOn(te)) have to be used (⇒ Sect. 4.2.6). Adding
such conditions can be necessary for ensuring that taclets are sound. For
more details see Sect. 4.3.

In practice, there are only few rules that use schema variables for Skolem
terms, and most probably the reader will never make use of them in his or
her own taclets.

Program Entities: \program t

There is a large number of different kinds of program entities that can be
represented using program schema variables. Table 4.2 contains the most im-
portant ones. A complete list of the currently defined kinds schema variables



4.2 Schema Variables 195

Table 4.2. A selection of the kinds of schema variables for program entities

Expressions

Expression Arbitrary JAVA expressions
SimpleExpression Any expression whose evaluation, for syntactical rea-

sons, cannot have side-effects. It is defined as one of
the following: 1. a local variable, 2. an access to an
instance attribute via the target expression this (or,
equivalently, no target expression), 3. an access to a
static attribute of the form t.a, where the target ex-
pression t is a type name or a simple expression, 4. a
literal, 5. a compile-time constant, 6. an instanceof ex-
pression with a simple expression as the first argument,
7. a this reference

NonSimpleExpression Expression, but not SimpleExpression

Java*Expression The same as SimpleExpression, but in addition the
type of an expression has to be *, which can be Boolean,
Byte, Char, Short, Int or Long

LeftHandSide A simple expression that can appear on the left-hand-
side of an assignment. This amounts to the items 1–3
from the definition of simple expressions above

Variable Local program variables
StaticVariable An access to a static attribute of the form t.a, where the

target expression t is a type name or a simple expression

Statements

Statement A single arbitrary JAVA statement
Catch A catch clause of a try block

Types

Type Arbitrary JAVA type references
NonPrimitiveType The same as Type, but not the primitive types of JAVA

Miscellaneous

Label A JAVA label

is given in App. B.3.2 on page B.3.2. Most of the kinds introduced here cor-
respond to the schema variables that are used in Chap. 3 (see Table 3.1)
in order to define the calculus for JAVA CARD DL. In KeY, the name of a
program schema variable always has to start with a hash (like #se), mostly
for the purpose of parsing schematic programs.

Modal Operators: \modalOperator M

When implementing rules for dynamic logic, very often the same rule should
be applicable for different modal operators. In most cases the versions of
rules for box and diamond operators, for instance, do not differ apart from
the fact that different modalities are used. In this situation, having to define
essentially the same rule multiple times would be very inconvenient. The
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Table 4.3. Modal operators that exist in KeY

diamond, box Standard operators (⇒ Chap. 3)

throughout Throughout modality (⇒ Chap. 9)

diamond_trc, box_trc, throughout_trc, Chap. 9
diamond_tra, box_tra, throughout_tra,
diamond_susp, box_susp, throughout_susp

problem gets worse with the introduction of further modal operators, as done
in Chap. 9.

More concise definitions of rules for a variety of modal operators use
schema variables that represent groups of modal operators. An overview of
the modalities that exist in KeY is given in Table 4.3, and the syntax for such
schema variables is illustrated in the following example:

Example 4.4.We implement the most basic assignment rule for JAVA CARD DL
(for assignments with side-effect free left- and right-hand side, see Sect. 3.6):

assignment
=⇒ {loc := val}〈π ω〉φ
=⇒ 〈π loc = val; ω〉φ

This rule is shown here for the diamond modal operator, but it can be for-
mulated in the same way for other modalities. In taclets, this can be realised
by introducing a variable #normalMod that represents exactly the admissible
operators. The syntax for using such schema variables in taclets is

\modality{<variable>}{ <program> }\endmodality(<postcondition>)

The complete declaration of the taclet is given in Fig. 4.7.

Program Context: \programContext

Context schema variables cannot be declared explicitly. Instead, there is al-
ways at most one variable of this kind that is hidden behind the π and ω in
a formula:

〈π p ω〉φ

In KeY syntax, π and ω are simply written as dots:

\<.. p ...\> phi

Chap. 3 explains how program contexts are used in rules of JAVA CARD DL.
We use the notation π/ω ∈ SV to talk about the context schema variable
itself. An instantiation of the context schema variable π/ω is a pair (α, β)
of two program fragments, where the “left half” α only consists of opening
braces, opening try blocks and similar “inactive” parts of JAVA, and the “right
half” β is a continuation that closes all blocks that were opened in α.
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KeY

\schemaVariables{

\formula phi; \program Variable #loc; \program SimpleExpression #se;

\modalOperator { diamond, box, diamond_trc,

box_trc, throughout_trc } #normalMod;

}

\rules{

assign { \find ( ==> \modality{#normalMod}

{.. #loc = #se; ...}

\endmodality(phi) )

\replacewith ( ==> {#loc:= #se}

\modality{#normalMod}

{.. ...}

\endmodality(phi) ) };

}

KeY

Fig. 4.7. Assignment taclet from Example 4.4

Example 4.5. We can use context schema variables to enclose a program state-
ment of interest in a context of blocks and following statements. A possible
choice for the program fragments α and β is shown here:

try{
︸ ︷︷ ︸

α

x = y; f(13); } finally{ x = 0; }
︸ ︷︷ ︸

β

4.2.2 Schematic Expressions

For all families of expressions that are introduced in Chap. 2 and 3, like terms
and formulae of first-order logic or of JAVA CARD DL, programs, sequents,
etc. we can introduce corresponding schematic versions in which appropriate
schema variables can be used as surrogates for concrete sub-expressions. For
obvious reasons, however, we do not want to repeat all definitions given so
far. We only give, as an example, a simplified definition of schematic terms
and formulae, based on the more complete languages described in Chap. 3.
The augmentation with further connectives is obvious. What is also left out
in this chapter is the definition of schematic JAVA programs, which are defined
in the same spirit as the other schematic expressions.

Definition 4.6 (Basic schematic terms and formulae). Suppose that
(VSym, FSym, PSym, α) is a signature for the type hierarchy (T , Td, Ta,�)
and SV a set of schema variables over (T , Td, Ta,�).

The system of sets {SchemaTermsA}A∈T of schematic terms of static
type A is inductively defined as the least system of sets such that:
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• sv ∈ SchemaTermsA for any schema variable sv ∈ SV that is of kind
\variables A, \term A or \skolemTerm A;

• f(t1, . . . , tn) ∈ SchemaTermsA for any function symbol

f : A1, . . . , An → A ∈ FSym

and terms ti ∈ SchemaTermsA′
i

with A′
i � Ai for i = 1, . . . , n;

• {\subst va; s}(t) ∈ SchemaTermsA for any schema variable va ∈ SV of
kind \variables B and terms s ∈ SchemaTermsB′ , t ∈ SchemaTermsA

with B′ � B.

The set SchemaFormulae of JAVA CARD DL formulae is inductively de-
fined as the least set such that:

• phi ∈ SchemaFormulae for any schema variable phi ∈ SV of kind
\formula;

• p(t1, . . . , tn) ∈ SchemaFormulae for any predicate symbol p : A1, . . . , An ∈
PSym and terms ti ∈ SchemaTermsA′

i
with A′

i � Ai for i = 1, . . . , n;
• true, false, ! φ, (φ | ψ), (φ & ψ), (φ −> ψ) ∈ SchemaFormulae for any

φ, ψ ∈ SchemaFormulae;
• ∀va. φ, ∃va. φ ∈ SchemaFormulae for any φ ∈ SchemaFormulae and any

schema variable sv ∈ SV of kind \variables;
• {\subst va; s}(φ) ∈ SchemaFormulae for any schema variable va ∈ SV of

kind \variables B, term s ∈ SchemaTermsB′ with B′ � B and formula
φ ∈ SchemaFormulae.

Note 4.7. According to this definition, schematic expressions never contain
logical variables, the set VSym is not used. While this is not a strict ne-
cessity, it has been found that not considering the case where logical and
schema variables simultaneously turn up in expressions significantly simpli-
fies the following sections. Concrete (non-schema) variables are fortunately
not necessary for writing taclets, as they can always be replaced with schema
variables of kind \variables. The actual logical variables that a taclet op-
erates on, are only determined when the taclet is applied, i.e., when schema
variables are replaced with concrete expressions (⇒ Sect. 4.2.3).

Note 4.8. In contrast to Chap. 2, substitutions {\subst va; s} are here in-
troduced as syntactic constructs and not directly as operations on terms or
formulae. This is necessary as substitutions are used in taclets and have to be
given a formal syntax. Further, we also allow the case that s contains schema
variables of kind \variables, which corresponds to substituting terms that
contain free variables (non-ground substitutions, compare Sect. 2.5.2). Only
considering ground substitutions would be an unreasonable restriction for
taclets, but, as a downside, the application of non-ground substitutions is
more involved. Sect. 4.2.3 and 4.2.4 describe how substitutions are eliminated
when instantiating expressions.



4.2 Schema Variables 199

4.2.3 Instantiation of Schema Variables and Expressions

Schema variables are replaced with concrete entities when a taclet is applied.
This replacement can be considered as a generalisation of the notion of ground
substitutions in Chap. 2, and like substitutions the replacement is carried out
in a purely syntactic manner. A mapping from schema variables to concrete
expressions is canonically extended to terms and formulae.

Definition 4.9 (Instantiation of Schema Variables). Let the quadruple
(VSym, FSym, PSym, α) be a signature for a type hierarchy (T , Td, Ta,�) and
SV a set of schema variables over (T , Td, Ta,�). An instantiation of SV is a
partial mapping

ι : SV→
(
Formulae ∪

⋃

A∈T
TermsA ∪ Programs

)

that assigns concrete syntactic entities to schema variables in accordance with
Tables 4.1 and 4.2. An instantiation is called complete for SV if it is a total
mapping on SV.

For sake of brevity, we also talk about instantiations of (schematic) terms,
formulae or programs (⇒ Def. 4.6), which really are instantiations of the
set of schema variables that turn up in the expression. Given a complete
instantiation of such an expression—which in general is more complex than
only a single schema variable—we can turn the expression into a concrete
one by replacing all schema variables sv with their concrete value ι(sv).
The extension of ι to arbitrary schematic expressions makes use of a further
prerequisite, (possibly non-ground) substitutions [x/s](t), which is provided in
Sect. 4.2.4 but follows the same idea as the ground substitutions in Sect. 2.5.2.
Again, the corresponding definition for instantiation of schematic programs
is left out.

Definition 4.10 (Instantiation of Terms and Formulae). Let ι be a
complete instantiation of SV. We extend ι to arbitrary schematic terms over
SV:

• ι(f(t1, . . . , tn)) := f(ι(t1), . . . , ι(tn))
• ι({\subst va; s}(t)) := [ι(va)/ι(s)](ι(t))

Likewise, ι is extended to schematic formulae over SV:

• ι(p(t1, . . . , tn)) := p(ι(t1), . . . , ι(tn))
• ι(true) := true and ι(false) := false,
• ι(! φ) := ! ι(φ),
• ι(φ & ψ) := ι(φ) & ι(ψ) (and correspondingly for φ | ψ and φ −> ψ),
• ι(∀va. φ) := ∀ι(va). ι(φ) and ι(∃va. φ) := ∃ι(va). ι(φ),
• ι({\subst va; s}(φ)) := [ι(va)/ι(s)](ι(φ)).
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Table 4.4. Examples of schematic expressions and their instantiation

Expression t Instantiation ι Instance ι(t)

f(te) {te �→ g(a)} f(g(a))
f(va) {va �→ x} f(x)
∀va. p(va) {va �→ x} ∀x. p(x)
∀va. p(te) {va �→ x,te �→ x} ∀x. p(x)
∀va. phi {va �→ x, phi �→ p(x)} ∀x. p(x)
phi & p(te) {phi �→ q | r, te �→ f(a)} (q | r) & p(f(a))
p(sk) −> ∃va. p(va) {sk �→ c, va �→ x} p(c) −> ∃x. p(x)
{\subst va; sk}(phi) {sk �→ c, va �→ x, phi �→ p(x)} p(c) −> ∃x. p(x)

−> ∃va. phi

Example 4.11. Table 4.4 illustrates the instantiation of the different kinds of
schema variables for first-order logic. We use the following schema variables:

KeY
\schemaVariables {
\variables A va; \term A te;
\formula phi; \skolemTerm A sk;

}

KeY

Further, we assume that f, g : A→ A are function symbols, a, c : A are con-
stants, p : A and q, r are predicates and x:A is a logical variable. The most
interesting instantiation takes place in the last line of Table 4.4, where first
the schema variables are replaced with terms and variables and then the
substitution is applied:

ι({\subst va; sk}(phi) −> ∃va. phi)
= [x/c](p(x)) −> ∃x. p(x))
= p(c) −> ∃x. p(x)

Note 4.12. Example 4.11 demonstrates the interrelation between schema vari-
ables of kind \variables, \term, and \formula. Instantiations of variables of
the latter two kinds, like ι(phi) = p(x), may contain free logical variables that
also schema variables va of kind \variables are instantiated with. Such oc-
currences can become bound when evaluating an expression like ι(∀va. phi),
effectively turning \term and \formula variables into higher-order variables:
the variable phi represents a predicate with the formal argument va. This
feature is essential for taclets like allLeft (⇒ Fig. 4.4) or induction rules. A
more thorough discussion is given in Sect. 4.4.3.

4.2.4 Substitutions Revisited

The sequent calculus for first-order logic of Chap. 2 makes use of ground
substitutions (introduced in Sect. 2.5.2) in order to define rules for quantified
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formulae and for handling equations. Substitutions are syntactic operations
on terms or formulae that replace variables with terms and that, similarly to
schema variables, are always eliminated when a rule is applied. Substitutions
never turn up in the actual proofs.

In the context of a general rule language like taclets, the restriction to
ground substitutions would often be a real limitation. We might, for instance,
formulate a taclet that eliminates existential quantifiers if the only possible
solution can directly be read off:

Taclet
uniqueEx { \find (\exists va; (va=t & phi))

\varcond (\notFreeIn (va, t))
\replacewith ({\subst va; t}phi) };

Taclet

The taclet is a rewriting taclet and can also be applied in the scope of quan-
tifiers, for instance in

=⇒ ∀x. ∀z. x
.= z

=⇒ ∀x. ∃y. (y .= x & ∀z. y
.= z)

where the expression [y/x](∀z. y
.= z) has to be evaluated. Note that the

substitution applied here is not ground.
Unfortunately, application of non-ground substitutions can raise problems

that do not occur in the ground case. While both formulae given in the
example above are obviously not valid, the following slight modification of
the conclusion (to which uniqueEx is applied) shows that the taclet is not
sound if the substitution is carried out naively. We rename the innermost
bound variable to x, which does not alter the meaning of the lower formula:

=⇒ ∀x. ∀x. x
.= x

=⇒ ∀x. ∃y. (y .= x & ∀x. y
.= x)

Surprisingly, the result of applying uniqueEx is a valid formula (the premiss
above the bar). A rule that draws invalid conclusions from valid premisses,
however, is not sound. The cause of unsoundness is the application of the sub-
stitution in [y/x](∀x. y

.= x)—following the definitions of Sect. 2.5.2—which
turns a formula that is not valid into a valid one. This phenomenon is known
as variable capture or collision and occurs whenever a term containing a (free)
variable x is moved into the scope of a quantifier like ∀x. (or any operator
binding x). Because the transformation changes the place where x is bound,
also the meaning of an expression will be altered drastically.

It is possible to circumvent variable capture by suitable bound renaming,
i.e., by renaming quantified variables when the danger of captured variables
arises. The concept of bound renaming often occurs when working with bound
variables: giving variables names (or an identity) is only a means to determine
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the place where a variable is bound. One variable can always be exchanged (or
renamed) with another (unused) variable. This is also known as α-conversion.
Such a renaming can as well be performed deeply within formulae. The KeY
implementation performs bound renaming automatically whenever it is nec-
essary. In order to ensure that we can always pick a variable that is fresh
for some expression or proof, in this section we assume that a signature
(VSym, FSymr, FSymnr , PSymr, PSymnr , α) always contains infinitely many
variables for each type. The actual definition of substitutions mostly coincides
with the definition of ground substitutions (Sect. 2.5.2, Def. 2.45):

Definition 4.13. A substitution is a function τ that assigns (possibly non-
ground) terms to some finite set of variable symbols dom(τ) ⊆ VSym, the
domain of the substitution, with the restriction that:

If v ∈ dom(τ) and v : B, then τ(v) ∈ TermsA, for some A with A � B.

We write τ = [u1/t1, . . . , un/tn] for the substitution with dom(τ) =
{u1, . . . , un} and τ(ui) := ti.

We denote by τx the result of removing a variable from the domain of τ ,
i.e. dom(τx) := dom(τ) \ {x} and τx(v) := τ(v) for all v ∈ dom(τx).

When extending substitutions to arbitrary terms or formulae, compared to
Def. 2.48 the only interesting and new case are quantifiers, where it can be
necessary to perform renaming.

Definition 4.14. The application of a substitution τ is extended to non-
variable terms by the following definitions:

• τ(x) := x for a variable x �∈ dom(τ).
• τ(f(t1, . . . , tn)) := f(τ(t1), . . . , τ(tn)).

The application of a substitution τ to a formula is defined by:

• τ(p(t1, . . . , tn)) := p(τ(t1), . . . , τ(tn)).
• τ(true) := true and τ(false) := false.
• τ(! φ) := !(τ(φ)).
• τ(φ & ψ) := τ(φ) & τ(ψ), and correspondingly for φ | ψ and φ −> ψ.
• If there exists y ∈ dom(τ)\{x} such that the variable x (of type A) occurs

in τ(y), then τ(∀x. φ) := ∀z. τ([x/z]φ) for a fresh variable z : A ∈ VSym.
Otherwise, τ(∀x. φ) := ∀x. τx(φ). (Correspondingly for ∃x. φ.)

With these definitions, we can repeat the previously unsound application of
uniqueEx and now get a correct result (that we also would obtain when using
KeY):

=⇒ ∀x. ∀u. x
.= u

=⇒ ∀x. ∃y. (y .= x & ∀x. y
.= x)

where u is an arbitrary unused variable.
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Expressions Modulo Bound Renaming

An elegant approach to bound renaming—that often occurs in the liter-
ature—is to always work with the equivalence classes of formulae modulo
bound renaming. When following this notion, two formulae like ∀x. p(x)
and ∀y. p(y) are different representatives of the same equivalence class and
are considered as the same formula. While definitions usually get shorter
and less technical this way because bound renaming does not have to be
handled explicitly anymore, the differences between the approaches are
negligible for an implementation.

Note 4.15. As discussed in Sect. 3.5.1, the substitution of non-rigid terms
in dynamic logic (which could happen when applying rules like allLeft or
exRight) in combination with modal operators can have unwanted effects
and has to be restricted. The KeY implementation implicitly ensures that
no erroneous substitutions are carried out when evaluating substitution ex-
pressions {\subst va; t}(φ) during the application of taclets. In problematic
situations, the substitution is delayed and in the next step resolved by adding
an equation to the antecedent that has the correct effect.

4.2.5 Schema Variable Modifiers

Some of the schema variable kinds come in more than one flavour: it is possible
to change the set of concrete expressions that are represented by the schema
variable using certain modifiers. Such modifiers can restrict the instantiations
allowed for a variable further, or can also modify the meaning of a kind more
drastically. The KeY prover currently implements the three modifiers that
are given in Table 4.5.

Example 4.16. We define phi to represent exclusively rigid formulae (instead
of arbitrary formulae, see Chap. 3), te to represent rigid terms that have
exactly static type A (subtypes of A are not allowed), and #slist to represent
a whole sequence of JAVA statements (separated by ;).

KeY
\schemaVariables {
\formula[rigid] phi;
\term[rigid,strict] A te;
\program[list] statement #slist;

}

KeY
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Table 4.5. Modifiers for schema variables

Modifier Applicable to

rigid \term A
\formula

Terms or formulae that can syntactically be identified
as rigid

strict \term A Terms of type A (and not of proper subtypes of A)

list \program t Sequences of program entities. The type t can be any
of the types of Table 4.2 apart from Label, Type and
NonPrimitiveType. Sequences of expressions can be
used to represent arguments of method invocations.

4.2.6 Schema Variable Conditions

The simple notion of kinds of schema variables described in the previous
sections is often not expressive enough for writing useful taclets. In many
cases, one has to impose further restrictions on the instantiations of schema
variables, e.g., state that certain logical variables must not occur free in
certain terms. The taclet formalism is hence equipped with a simple language
for expressing such conditions, variable conditions. To each taclet, a list of
variable conditions can be attached (⇒ Sect. 4.4.1), which will be checked
when the taclet is about to be applied.

Table 4.6 contains the most important variable conditions in KeY. Par-
ticularly useful is the \notFreeIn condition that is frequently needed for
defining theories using taclets.

4.2.7 Generic Types

Schema variables for terms, logical variables and Skolem terms are typed and
may only be instantiated with terms or variables of certain static types. While
such schema variables are in principle sufficient for implementing all rules of
a calculus for dynamic logic, this would not be particularly convenient: for
certain rules, a number of taclets would be required, one for each existing
type. Example for such rules are allLeft, allRight (⇒ Fig. 2.2).

To handle this situation in a better way, the taclet formalism provides
the possibility of writing generic taclets, i.e., taclets in which the types of
schema variables involved are flexible and are assigned only when the taclet
is applied. The concept resembles schema variables, which represent concrete
syntactic entities and are instantiated when applying the taclet. When writing
taclets, we thus distinguish between concrete types, which are exactly the
types defined in Chap. 2, and generic types that are mapped to concrete
types when applying the taclet. Like schema variables, generic types can
only be used for defining taclets and are not part of the actual signature of
a logic.

Note 4.17. Generic types should not be confused with the abstract types of
Sect. 2.1, the two notions are not related. For technical reasons, we will in
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Table 4.6. Schema variable conditions

First-Order Conditions

\notFreeIn(va, te)

\notFreeIn(va, fo)

The logical variable that is the instantiation of
va must not occur (free) in the instantiation of
te/fo.

\new(sk, \dependingOn(te))

\new(sk, \dependingOn(fo))

If sk is instantiated with fsk(X1, . . . , Xn), then
ensure that X1, . . . , Xn contains all meta vari-
ables that occur in the instantiation of te/fo.
There can be more than one such condition for
sk. Also see Sect. 4.3.

Introducing Fresh Local Program Variables
(KeY will create a new program variable as instantiation of #x

when a taclet with such a condition is applied)

\new(#x, *) #x will have the JAVA type * (for instance int[]).

\new(#x, \typeof(#y)) #x will have the same JAVA type as the instanti-
ation of #y.

\new(#x, \elemTypeof(#y)) The instantiation of #y has to be of a JAVA array
type. Its component type will be the type of #x.

The schema variables used above are of the following kinds:
va \variables

te \term

fo \formula

sk \skolemTerm

#x, #y \program LeftHandSide or \program Variable

fact consider generic types as dynamic (i.e., non-abstract), but when ap-
plying a taclet a generic type can represent both abstract and non-abstract
concrete types.

For introducing generic types we extend the notion of a type hierarchy
(⇒ Chap. 2). Because generic type hierarchies can still be seen as normal type
hierarchies by simply ignoring the distinction between generic and concrete
types, Def. 4.6 about schematic expressions does not have to be changed but
also covers terms or formulae containing “generic parts.”

Definition 4.18. A generic type hierarchy is a tuple (T , Td, Ta, Tg,�,Rg) of

• a set of static types T ,
• a set of dynamic types Td,
• a set of abstract types Ta,
• a set of generic types Tg,
• a subtype relation �, and
• a range relation Rg of the generic types

such that:

• Each generic type is a dynamic type, but is not universal: Tg ⊆ Td\{�}
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�

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥

GenA

GenRefType

KeY

\sorts {

\generic GenA;

\generic GenRefType \extends Object;

}

KeY

Fig. 4.8. An example type hierarchy

• Rg is a relation between generic and concrete types: Rg ⊆ Tg × (T \Tg)
• (T , Td, Ta,�) is a type hierarchy (⇒ Def. 2.1)
• The concrete (non-generic) types also form a type hierarchy on their own:

(
T \Tg, Td\Tg, Ta, � ∩

(
(T \Tg)× (T \Tg)

))

is a type hierarchy
• The subtypes A � G of generic types G ∈ Tg are either generic or empty:

A ∈ Tg ∪ {⊥}

Example 4.19. Fig. 4.8 adds two generic types to the type hierarchy shown
in Example 2.6:

• GenA, which is subtype of � and can thus be used to denote arbitrary
concrete types in a taclet, and

• GenRefType, which can only represent reference types (subtypes of class
Object).
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As range relation, we choose the full relationRg = Tg × (T \Tg), which means
thatRg does not impose any restrictions on the instantiation of generic types.
The figure also shows how to declare the two generic types in the concrete
syntax of KeY (provided that type Object exists). After the declaration, we
could use the types in taclets as illustrated in Sect. 4.1, for instance in order
to implement the rule allLeft.

When a taclet containing generic types (i.e., containing schema variables
with generic type) is applied, first an instantiation of these types with con-
crete types is chosen: all generic types that occur in the taclet are replaced
with concrete types. It can then be checked whether instantiations of schema
variables are allowed according to Table 4.1. Instantiations of generic types
cannot be arbitrary, however, as the creation of ill-formed terms or formulae
has to be prevented. Referring to the types of the previous example, a taclet
could, for instance, contain the term f(te), where f : Object→ Object is a
function symbol and te a schema variable of kind \term GenRefType (note
that GenRefType is a subtype of Object). It is obvious that we would run the
risk of ill-formed terms if GenRefType was allowed to be instantiated with
types that themselves are not subtypes of Object, because then also te could
be replaced with terms whose type is not a subtype of Object. This insight
is generalised by demanding that type instantiations always are monotonic
w.r.t. the subtype relation.

Definition 4.20. Given a generic type hierarchy (T , Td, Ta, Tg,�,Rg), a
type instantiation is a partial mapping ιt : T → T such that:

• ιt is defined on concrete types A ∈ T \Tg, which are fixed-points: ιt(A) = A.
• Generic types G ∈ Tg are mapped to concrete types: ιt(G) �∈ Tg (provided

that ιt(G) is defined).
• The mapping is monotonic: if A � B then also ιt(A) � ιt(B) (provided

that ιt(A) and ιt(B) are defined).
• The instantiation ιt(G) of a generic type G ∈ Tg is within the range of G:

(G, ιt(G)) ∈ Rg (provided that ιt(G) is defined).

Example 4.21. For the type hierarchy that is declared in Example 4.19, one
possible type instantiation is given by

ιt(GenA) = �, ιt(GenRefType) = AbstractList , ιt(A) = A (A �∈ Tg)

An instantiation ιt(GenRefType) = int would not be allowed, because there
is no monotonic extension of this mapping to the set T of all types that maps
Object to itself.

Given the notion of a type instantiation, we can augment Def. 4.9 to also
take schema variables of generic types into account. First, we can extend
type instantiations ιt to the kinds of schema variables:
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\term A �→ \term ιt(A)
\variables A �→ \variables ιt(A)
\skolemTerm A �→ \skolemTerm ιt(A)

k �→ k (all other kinds)

In the presence of generic types, instantiations are then described by a pair
consisting of a schema variable instantiation and a type instantiation:

Definition 4.22. Let (VSym, FSym, PSym, α) be a signature for a generic
type hierarchy (T , Td, Ta, Tg,�,Rg) and SV a set of schema variables over
the same type system. An instantiation under generic types of a set SV of
schema variables is a pair (ιt, ι), where

• ιt is a type instantiation that is defined for all types of variables in SV,
and

• ι is a partial mapping (as in Def. 4.9)

ι : SV→
(
Formulae ∪

⋃

A∈T
TermsA ∪ Programs

)

such that, for each schema variable sv ∈ SV of kind k with ι(sv) �= ⊥, ι(sv)
is an admissible instantiation for a schema variable of kind ιt(k).

Example 4.23. The purpose of range relations Rg is to provide a more direct
control over the concrete types that can be chosen for generic ones. If we, for
instance, would like to write a taclet that only can be applied for abstract
types, we could strengthen the declaration of Fig. 4.8:

KeY
\sorts {
\generic GenA;
\generic GenRefType \extends Object

\oneof { AbstractCollection, AbstractList, List };
}
\schemaVariables {
\term[strict] GenRefType te;

}

KeY

The schema variable te would then exclusively represent terms of the
types AbstractCollection, AbstractList, List. Leaving out the keyword
strict, te could also stand for terms of the subtypes ArrayList and Null.
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Generic Types vs. Schema Variables

The role of generic types is comparable to that of schema variables, and
an alternative way to define taclets that are parametric over types would
indeed be to have a concept of type schema variables. The two approaches
only represent different views on the same idea. While the differences are
negligible for an implementation, we believe that including generic types
in the normal type hierarchy enables an easier theory and presentation: in
this approach, also schematic terms that occur in a taclet are well-typed.

4.2.8 Meta-operators

Certain operations or transformations, in particular, operations that are per-
formed on JAVA programs, are difficult or tedious to capture using only
taclets. Examples are arithmetic operations on literals, which would be rather
inefficient when handled by taclets, or taclets that need to access the JAVA

program that is verified, e.g., for inserting method bodies when method in-
vocations are executed (⇒ Sect. 3.6). In order to handle such cases, a num-
ber of very specific operators have been introduced in KeY that are used
in taclets implementing the DL calculus from Chap. 3. Theoretically, such
meta-operators can be seen as an extension of Def. 4.10 about instantiation
of terms and formulae. Practically, they allow the execution of arbitrary JAVA

code in taclets. Because it is virtually impossible to properly describe their
semantics, meta-operators should be avoided in user-written taclets. We only
give one example of a meta-operator:

• #method-call: transforms its argument, which is a method reference, into
an if-else-cascade simulating dynamic binding by case distinction on the
runtime type of the target object.

4.3 Instantiations and Meta Variables

Before a taclet can be applied, generic types and schema variables need to be
instantiated. Selecting the expression that a schema variable sv represents is
comparatively easy if the variable turns up in the \find or \assumes clause
of a taclet: in this case, the expression already has to be part of the sequent
to which the taclet is applied and can be found by matching the formulae of
the sequent with the schematic terms or formulae of \find and \assumes.
This situation also allows for a simple automated application of taclets.

There can also be schema variables that only turn up in the goal templates
of a taclet, i.e., only in \replacewith or \add clauses. The most well-known
example for such a rule is the taclet allLeft (⇒ Sect. 4.1), in which the
schema variable s for terms only occurs in \add (a further taclet containing
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such schema variables is expSplit (⇒ Fig. 4.2)). This means that the term
that is represented by s can be chosen arbitrarily when applying the taclet.
While making this choice can already be a difficult task for the human user
of a proof assistant, the automated application of the taclet is even more
hampered, and it is necessary to put a large amount of “intelligence,” heuris-
tics and knowledge about the particular problem domain into an automatic
search strategy for guessing the right terms. The problem is also made dif-
ficult by the fact that the terms that need to be inserted do in general not
appear in the proof up to this point (although they often do in practice). It
can be necessary to “invent” or synthesise completely new terms.

A general approach to overcome the problem, which has been developed
in the area of automated theorem proving, are “free variables” or “meta
variables.” Meta variables are place-holders that can be introduced instead
of actual expressions when applying rules. For an extensive account on meta
variables in first-order logic see, for instance, [Fitting, 1996]. While meta
variables can in principle be introduced for all kinds of expressions, most
commonly (and also in KeY) they are only used as place-holders for terms:
whenever a taclet is applied that contains schema variables for terms that only
occur in goal templates, instead of immediately choosing the instantiation of
the schema variables, meta variables can be introduced.

At some point after introducing a meta variable, it often becomes obvi-
ous which term the meta variable should stand for, or it becomes necessary
to choose a certain term in order to apply a rule. This is achieved by ap-
plying a substitution (⇒ Sect. 4.2.4) to the whole proof tree that replaces
the meta variable with the chosen term. Because such a replacement is a
destructive operation (substituting the wrong term can make it necessary to
start over with parts of the proof), KeY follows the non-destructive approach
that is described in [Fitting, 1996, Giese, 2001] and actually never applies
substitutions. Instead of substitutions, constraints are stored that describe
substitution candidates. Constraints are generated whenever the application
of substitutions becomes necessary in order to apply rules and are attached
to formulae and to proof goals.

Not all terms can be substituted for meta variables. Because meta vari-
ables are considered as rigid symbols, in particular, it is not allowed to substi-
tute non-rigid terms (like program variables) for meta variables. In practice,
this seriously limits the usefulness of meta variables when doing proofs in
dynamic logic and is an issue that belongs to the “Future Work” section.

An example for the usage of meta variables and constraints is given in
Chap. 10.

Skolem Symbols and the “Occurs Check”

The concept of meta variables collides, to a certain degree, with rules that
are supposed to introduce fresh symbols (like allRight in Sect. 4.1). The
problematic situation is as follows: by applying substitutions to a proof tree,
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the sequents that rules are operating on can be modified after actually ap-
plying the rules. This means that we can no longer be sure that a symbol
that does not turn up in sequents actually is fresh, because it could also be
inserted at a later point through a substitution. In order to illustrate this
phenomenon, we try to prove the (non-valid) formula ∃x. ∀y. x

.= y using a
meta variable X :

=⇒ ∃x. ∀y. x
.= y, X

.= csk

=⇒ ∃x. ∀y. .x
.= y, ∀y. X

.= y
allRight

=⇒ ∃x. ∀y. x
.= y

exRight

At this point, it becomes obvious that we would like to substitute csk for X :

=⇒ ∃x. ∀y. x
.= y, csk

.= csk

=⇒ ∃x. ∀y. x
.= y, ∀y. csk

.= y
allRight

=⇒ ∃x. ∀y. x
.= y

exRight

The proof can now be closed by applying eqClose to the formula csk
.= csk.

Searching for the mistake, we see that the application of allRight becomes
illegal after applying the substitution, because the constant csk that is intro-
duced is no longer fresh.

There is a simple and standard solution to this inconsistency: when intro-
ducing symbols that are supposed to be fresh, critical meta variables have to
be listed as arguments of the fresh symbols. A correct version of our proof
attempt is:

=⇒ ∃x. ∀y. x
.= y, X

.= csk(X)
=⇒ ∃x. ∀y. x

.= y, ∀y.X
.= y

allRight

=⇒ ∃x. ∀y. x
.= y

exRight

It is easy to see that no substitution can make the terms X and csk(X)
syntactically equal, so that it is impossible to close the proof: the terms are
not unifiable, because X occurs in the term that it is supposed to represent.
This situation is known as a failing occurs check.

When writing taclets that introduce fresh symbols (using schema variables
of kind \skolemTerm), it is currently necessary to specify the meta variables
that have to turn up as arguments of the symbol by hand using the variable
condition \new(...,\dependingOn(...)) (⇒ Sect. 4.2.6). An example is the
taclet allRight (⇒ Sect. 4.1). It is likely, however, that these dependencies
will be computed automatically by KeY in the future.
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4.4 Systematic Introduction of Taclets

This section introduces the syntax6 and semantics of the taclet language.
The first pages are written in the style of a reference manual for the different
taclet constructs and provide most of the information that is necessary for
writing one’s own taclets. Later, the meaning of taclets is defined in a more
rigorous setting.

4.4.1 The Taclet Language

〈taclet〉 ::=
〈identifier〉 {
〈contextAssumptions〉? 〈findPattern〉?
〈stateCondition〉? 〈variableConditions 〉?
( 〈goalTemplateList 〉 | \closegoal )
〈ruleSetMemberships〉?

}

Taclets describe elementary goal expansion steps. In short, a taclet contains
information about 1. when and to which parts of a sequent the taclet can be
applied, and 2. in which way the proof is expanded or a proof goal is closed.
This information is given by the different parts that make up the body of a
taclet. Fig. 4.9 shows the syntax of the taclet parts, which are explained in
more detail on the following pages.

Context Assumptions: What Has to Be Present in a Sequent

〈contextAssumptions〉 ::= \assumes ( 〈schematicSequent〉 )

Context assumptions are—together with the \find part of a taclet—the
means of expressing that a goal modification can only be performed if cer-
tain formulae are present in the goal. If a taclet contains an \assumes clause,
then the taclet may only be applied if the given sequent is part of the goal
that is supposed to be modified. Formulae specified as assumptions are not
consumed7 by the application of the taclet, they are instead kept and will
also be present in the modified goals.

Examples in Sect. 4.1: close, mpLeft (⇒ Fig. 4.3), applyEq (⇒ Fig. 4.5).

6 Appendix B provides a complete grammar of taclets as they are implemented
in KeY and contains more elements than we describe here. The present chapter
concentrates on those taclet constructs that are of interest for a KeY user.

7 It is possible, however, that a taclet is applied on one of its assumptions, i.e.,
that an assumption is also matched by the \find pattern of a taclet. In this
situation a taclet application can modify or remove an assumption.
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KeY Syntax

〈taclet〉 ::=
〈identifier〉 {

〈contextAssumptions 〉? 〈findPattern〉?
〈stateCondition〉? 〈variableConditions〉?
( 〈goalTemplateList〉 | \closegoal )
〈ruleSetMemberships〉?

}

〈contextAssumptions 〉 ::= \assumes ( 〈schematicSequent 〉 )

〈findPattern〉 ::= \find ( 〈schematicExpression 〉 )

〈schematicExpression 〉 ::=
〈schematicSequent 〉 | 〈schematicFormula〉 | 〈schematicTerm〉

〈stateCondition〉 ::= \inSequentState | \sameUpdateLevel

〈variableConditions〉 ::= \varcond ( 〈variableConditionList〉 )

〈variableConditionList〉 ::= 〈variableCondition〉 ( , 〈variableCondition〉 )∗

〈goalTemplateList〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
( \replacewith ( 〈schematicExpression 〉 ) )?
( \add ( 〈schematicSequent 〉 ) )?
( \addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?

〈branchName〉 ::= 〈string〉 :

〈ruleSetMemberships〉 ::= \heuristics ( 〈identifierList〉 )

〈identifierList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗
KeY Syntax

Fig. 4.9. The taclet syntax

Find Pattern: To Which Expressions a Taclet Can Be Applied

〈findPattern〉 ::= \find ( 〈schematicExpression〉 )
〈schematicExpression〉 ::=

〈schematicSequent〉 | 〈schematicFormula〉 | 〈schematicTerm〉

More specifically than just to a goal of a proof, taclets are usually applied to
an occurrence of either a formula or a term within this goal. This occurrence
is called the focus of the taclet application and is the only place in the goal
where the taclet can modify an already existing formula (apart from which,
only new formulae can be added to the goal). There are three different kinds
of patterns a taclet can match on:
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• A schematic sequent that contains exactly one formula: this either speci-
fies that the taclet can be applied if the given formula is an element of the
antecedent, or if it is an element of the succedent, with the formula being
the focus of the application. It is allowed, however, that the occurrence of
the formula is preceded by updates (see the section on “State Conditions”
and Sect. 3.4.3).

• A formula: the focus of the application can be an arbitrary occurrence of
the given formula (also as subformula) within a goal.

• A term: the focus of the application can be any occurrence of the given
term within a goal.

Taclets with the last two kinds of \find patterns are commonly referred to
as rewriting taclets.

Examples in Sect. 4.1: Virtually all taclets given there.

State Conditions: Where a Taclet Can Be Applied

〈stateCondition〉 ::= \inSequentState | \sameUpdateLevel

In a modal logic like JAVA CARD DL, a finer control over where the focus
of a taclet application may be located is needed than is provided by the
different kinds of \find patterns. For rewriting rules it is, for instance, often
necessary to forbid taclet applications within the scope of modal operators
(like program blocks) in order to ensure soundness. There are three different
“modes” that a taclet can have:

• \inSequentState: the most restrictive mode, in which the focus of a
taclet application must not be located within the scope of any modal
operator (like programs or updates).

• \sameUpdateLevel: this mode is only allowed for rewriting taclets (i.e.,
there is a \find clause, and the pattern is not a sequent) and allows the
application focus of a taclet to lie within the scope of updates, but not in
the scope of other modal operators. The same updates have to occur in
front of the application focus and the formulae referred to using \assumes,
\replacewith and \add.

Examples in Sect. 4.1: applyEq, applyEqAR (⇒ Fig. 4.5).

• Default: the most liberal mode. For rewriting taclets, this means that
the focus can occur arbitrarily deeply nested and in the scope of any
modal operator. If the \find pattern of the taclet is a sequent, then the
application focus may occur below updates, but not in the scope of any
other operator.

State conditions also affect the formulae that are required or added by
\assumes, \add or \replacewith clauses. Such formulae have to be pre-
ceded by the same updates as the focus of the taclet application (which also
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Table 4.7. Matrix of the different taclet modes and the different \find patterns.
For each combination, it is shown 1. where the focus of the taclet application can
be located, and 2. which updates consequently have to occur above the formulae
that are matched or added by \assumes, \add or \replacewith.

\find pattern is
sequent

\find pattern is
term or formula

No \find

Operators that are allowed above focus

\inSequentState None All non-modal
operators

Forbidden
combination

\sameUpdateLevel Forbidden
combination

All non-modal
operators, updates

Forbidden
combination

Default Updates All operators —

Which updates occur above \assumes and \add formulae

\inSequentState None None Forbidden
combination

\sameUpdateLevel Forbidden
combination

Same updates as
above focus

Forbidden
combination

Default Same updates as
above focus

None None

Which updates occur above \replacewith formulae

\inSequentState None None Forbidden
combination

\sameUpdateLevel Forbidden
combination

Same updates as
above focus

Forbidden
combination

Default Same updates as
above focus

Same updates as
above focus

None

explains the keyword \sameUpdateLevel). The only exception are rewriting
taclets in “default” mode, where formulae that are described by \assumes
or \add must not be in the scope of updates, whereas there are no restric-
tions on the location of the focus. The relation between the positions of the
different formulae is also shown in Table 4.7.

Variable Conditions: How Schema Variables May Be Instantiated

〈variableConditions 〉 ::= \varcond ( 〈variableConditionList 〉 )
〈variableConditionList 〉 ::= 〈variableCondition 〉 ( , 〈variableCondition 〉 )∗

Schema variable conditions have already been introduced in Sect. 4.2.6, to-
gether with the concrete syntax for such conditions that is used in KeY. A
list of such conditions can be attached to each taclet to control how schema
variables are allowed to be instantiated.

Examples in Sect. 4.1: removeAll (⇒ Fig. 4.5).
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Goal Templates: The Effect of the Taclet Application

〈goalTemplateList 〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
( \replacewith ( 〈schematicExpression〉 ) )?
( \add ( 〈schematicSequent〉 ) )?
( \addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?

〈branchName〉 ::= 〈string〉 :

If the application of a taclet on a certain goal and a certain focus is permitted
and is carried out, the goal templates of the taclet describe in which way the
goal is altered. Generally, the taclet application will first create a number of
new proof goals (split the existing proof goal into a number of new goals)
and then modify each of the goals according to one of the goal templates. A
taclet without goal templates will close a proof goal. As shown above as well
as in Sect. 4.1, in this case the keyword \closegoal is written instead of a
list of goal templates in order to clarify this behaviour syntactically.

Goal templates are made up of three kinds of operations:

• \replacewith: if a taclet contains a \find clause, then the focus of
the taclet application can be replaced with new formulae or terms.
\replacewith has to be used in accordance with the kind of the \find
pattern: if the pattern is a sequent, then also the argument of the keyword
\replacewith has to be a sequent, etc. In contrast to \find patterns,
there is no restriction concerning the number of formulae that may turn
up in a sequent being argument of \replacewith. It is possible to remove
a formula from a sequent by replacing it with an empty sequent, or to
replace it with multiple new formulae.

• \add: independently of the kind of the \find pattern, the taclet applica-
tion can add new formulae to a goal.

• \addrules: a taclet can also create new taclets when being applied. We
ignore this feature for the time being and come back to it in Sect. 4.4.7.

Examples in Sect. 4.1: applyEqAR (⇒ Fig. 4.5), saveLeft, hideLeft.

Apart from that, each of the new goals (or branches) can be given a name in
order to improve readability of proof trees.

Rule Sets: How Taclets Are Applied Automatically

〈ruleSetMemberships〉 ::= \heuristics ( 〈identifierList〉 )
〈identifierList〉 ::= 〈identifier 〉 ( , 〈identifier 〉 )∗

Each taclet can be declared to be element of a number of rule sets, which in
turn are used by the strategies in KeY that are responsible for applying rules
automatically. Rule sets are intended as an abstraction from the actual taclets
and identify taclets that should be treated in the same way. Existing rule sets
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in KeY are, amongst many others, alpha8 (for non-splitting elimination of
propositional connectives), beta (splitting elimination of connectives), and
simplify (simplification of expressions).

4.4.2 Managing Rules: An Excursion to Taclet Options

It frequently happens that slightly differing versions of a calculus or a the-
ory are to be defined. Examples for this in KeY are 1. the different ways of
interpreting JAVA integers (⇒ Chap. 12), which in KeY are realised by dif-
ferent sets of rules for symbolic execution, 2. whether static initialisation of
classes should be taken into account during symbolic execution (⇒ Chap. 3),
3. whether dereferencing during symbolic execution (accesses to attributes
or array elements) should check for null references (⇒ Chap. 3), or 4. how
transactions in JAVA CARD are handled (⇒ Chap. 9).

In order to meet such situations, KeY provides means of disabling or
enabling taclets (or other constructs like function symbols) depending on
taclet options that can be chosen before starting a proof. The usage of taclet
options basically consists of three components:

Declaration of Taclet Option Categories

Similarly to schema variables, taclet option categories can be introduced in
rule or problem files before defining taclets or symbols. The following dec-
laration, for instance, creates a category expSideConditions that has two
possible values, splitting and ifThenElse:

KeY
\optionsDecl { expSideConditions : {splitting, ifThenElse}; }

KeY

Conditional Declaration of Rules or Symbols

After their declaration, taclet options can be used to define taclets and sym-
bols that must only occur in proofs or formulae for a particular value of the
option. As an example, we define two different versions of the taclet expSplit
from Fig. 4.2 in the beginning of this chapter. Note, that the two declarations
do not clash, even though they are defining two taclets with the same name:

KeY
\rules {

expSplit (expSideConditions:splitting) {
\find(exp(a, b)) \sameUpdateLevel

8 The names alpha and beta are common terminology in tableau-style theorem
provers.
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\replacewith(exp(a, b-c) * exp(a, c));
\add(==> c >= 0); \add(==> b >= c) };

expSplit (expSideConditions:ifThenElse) {
\find(exp(a, b)) \sameUpdateLevel

\replacewith( \if (c >= 0 & b >= c)
\then (exp(a, b-c) * exp(a, c))
\else (exp(a, b)) ) };

}

KeY

A complete list of the locations where taclet options can be used is given in
Appendix B.

Definition of the Taclet Option Value

Finally, when starting a proof, the value of taclet options can be chosen,
which determines the versions of taclets that are made available in the proof.
There are two major ways of doing this: values can be set with the keyword
\withOptions in a KeY problem file, or the default values of taclet options
can be chosen in the KeY user interface. An example for the first possibility
is the following line:

KeY
\withOptions expSideConditions:splitting;

KeY

It is not possible to change the value of taclet options during the course of a
proof.

4.4.3 Well-Formedness Conditions on Taclets

Not all taclets that can be written using the syntax of Sect. 4.4.1 are mean-
ingful or desirable descriptions of rules. We want to avoid, in particular, rules
whose application could destroy well-formedness of formulae or sequents. In
this section, we thus give a number of additional constraints on taclets that
go beyond the pure taclet syntax. As a note up-front, all of the following is-
sues could also be solved in different ways, possibly leading to a more flexible
taclet language, but experience shows that the requirement to write taclets in
a more explicit way reduces the risk of introducing bugs and unsound taclets.

In the KeY implementation, non-well-formed taclets are immediately re-
jected and cannot even be loaded.

Sequents Do Not Contain Free Variables

Following Chap. 2, we do not allow sequents of our proofs to contain free
logical variables (in contrast to meta variables (⇒ Sect. 4.3), which are never
bound). Unfortunately, this is a property that can easily be destroyed by
incorrect taclets:
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Taclet
illegalTac1 { \find(==> \forall va; p(va))

\replacewith(==> p(va)) };
illegalTac2 { \find(==> \forall va; phi)

\replacewith(==> phi) };

Taclet

In both examples, the taclets remove quantifiers and possibly inject free vari-
ables into a sequent: 1. schema variables of kind \variables could occur free
in clauses \add or \replacewith, or 2. a logical variable ι(va) could occur
free in the concrete formula ι(phi) that a schema variable phi represents, and
after removing the quantifier the variable would be free in the sequent (the
same can happen with schema variables for terms). We will rule out both
taclets by imposing suitable constraints.

In order to handle taclets like illegalTac1, we simply forbid taclets
containing \replacewith or \add clauses with unbound schema variables
va:

Definition 4.24. An occurrence of a schema variable va of kind \variables
in a schematic expression is called bound if it is in the scope of a quanti-
fier ∀va. , ∃va. or a substitution {\subst sv; t}, and if it is not itself part of
a binder (like ∀va. ).

Requirement 4.25 (Variables are bound). All occurrences of a schema
variable of kind \variables in \find, \assumes, \replacewith or \add
clauses are either part of a binder or are bound.

Note 4.26. It would, in principle, be safe to allow schema variables of kind
\variables to occur free in \find or \assumes. This would only lead to use-
less taclets that are never applicable (provided that sequents are not already
ill-formed and contain free logical variables).

It is less obvious how taclet illegalTac2 should be taken care of. According
to Sect. 4.2, the schema variable phi can stand for arbitrary formulae con-
taining arbitrary free variables, but as the example shows this is too liberal.
Whenever a variable x occurs free in a formula ι(phi), the formula also has
to be in the scope of a binder of x. The binder could either occur explicitly
in the taclet—like a quantifier ∀va. —or for a rewriting taclet it could be
part of the context in which the taclet is applied. An example for the latter
possibility is shown in Sect. 4.2.4.

We go for a rigorous solution of the problem and require the author of
illegalTac2 to state his or her intention more clearly. The first half of
the solution is given in the following definition, where we require that the
variables that are explicitly bound in the taclet above occurrences of phi are
consistent. The second part is Def. 4.32, describing which logical variables we
allow to occur free in a formula ι(phi).
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Requirement 4.27 (Unique Context Variables). Suppose that t is a
taclet, that sv is a schema variable of kind \term or \formula, and that va
is a schema variable of kind \variables. If an occurrence of sv in \find,
\assumes, \replacewith or \add clauses of t is in the scope of a binder of
va (which could be ∀va. , ∃va. or {\subst sv; u}), then

• all occurrences of sv in t are in the scope of a binder of va, or
• t has a variable condition \notFreeIn(va, sv).

The variable va is called a context variable of sv in t. More formally, the
set of context variables of sv in t is defined as

Πt(sv) = {va | va is of kind \variables, sv is in the scope of va}
\ {va | t has variable condition \notFreeIn(va, sv)}

Correct versions of the taclet shown above are thus:

Taclet
legalTac2a { \find(==> \forall va; phi)

\replacewith(==> {\subst va; t} phi) };
legalTac2b { \find(==> \forall va; phi)

\varcond(\notFreeIn(va, phi))
\replacewith(==> phi) };

Taclet

The context of phi in these two taclets, i.e., the sets of variables that are
bound for all occurrences of phi in the taclets, is ΠlegalTac2a(phi) = {va}
and ΠlegalTac2b(phi) = ∅.

Note 4.28. The KeY implementation contains a further well-formedness con-
dition: schema variables of kind \variables are allowed to be bound at most
once in the \find and \assumes clauses of a taclet (together). This is not a
severe restriction, because it is always possible to apply bound renaming for
ensuring that variables are only bound in one place, without changing the
intended meaning of a taclet. For the representation of taclets in this chapter,
however, it is not necessary to enforce unique binding of variables.

4.4.4 Implicit Bound Renaming and Avoidance of Collisions

As already seen in Sect. 4.2.4 about substitutions, the actual identity of
bound variables is not important for the meaning of a formula. If a variable
z �∈ fv(φ) does not occur free in φ, then formulae ∀x. φ and ∀z. [x/z](φ) will be
equivalent. Although it is not strictly necessary for achieving completeness,9

9 The calculus in Chap. 2 is complete also without rules for bound renaming or
comparing formulae modulo bound renaming. This shows that it is, in principle,
sufficient to provide rules for eliminating quantifiers.
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from a practical point of view it is desirable that the applicability of taclets
does not depend on which variables are bound in formulae. We would like to
treat sequents like

∀x. p(x) =⇒ ∀x. p(x)
∀x. p(x) =⇒ ∀y. p(y)

in the same way, in particular a taclet like close (⇒ Sect. 4.1) should be
applicable to one of the sequents if and only if it is applicable to the other
sequent. For the second sequent, this would mean that the schema variable
phi represents two different formulae, which does obviously not work without
further measures.

The most common (theoretic) standpoint is to allow implicit renaming
steps whenever they are necessary for applying rules. We follow this approach
in the scope of this chapter, and in the definitions on the following pages we
will only formulate conditions on (bound) variables that possibly have to be
established by implicit renaming. In this setting, an application of close to
the second sequent would be

∀y. p(y) =⇒ ∀y. p(y)
close

∀x. p(x) =⇒ ∀y. p(y)
(rename)

where the first step (rename) is performed implicitly for preparing the sequent
for the actual taclet application. Likewise, in both formulae the variables x
(or any other variable) could have been introduced. Renaming steps are often
not shown at all in proofs.

Note 4.29. KeY applies bound renaming, whenever it becomes necessary, as
part of its taclet application mechanism. As renaming steps are not shown
in the proof tree, the user will in most cases not even notice that a renaming
has occurred.

Collisions

We have already met the problem of collisions in Sect. 4.2.4. A similar phe-
nomenon occurs when applying and evaluating taclets, also here it is possible
that the place where a variable is bound changes unintentionally. The reason
is that distinct schema variables of kind \variables can happen to be in-
stantiated with the same logical variable. If an “artificial,” but in principle
reasonable, taclet for eliminating universal quantifiers in the antecedent

Taclet
allExLeft {

\find (\forall x; \exists y; phi ==>)
\varcond (\notFreeIn(y, t))
\add (\exists y; {\subst x; t} phi ==>) };

Taclet
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was applied naively, we would have to consider the taclet as unsound. The
taclet commutes binders, so that the location where variables are bound can
change:

∀x. ∃x. x
.= 0, ∃x. 1 .= 0 =⇒

∀x. ∃x. x
.= 0, ∃x. [x/1](x .= 0) =⇒
∀x. ∃x. x

.= 0 =⇒
Here, the lower sequent is not valid (because it only contains a valid formula
in the antecedent), whereas the upper one is valid (the assumption ∃x. 1 .= 0
is wrong). This means that the application of the taclet has to be considered
unsound. In order to make the development of sound taclets easier (feasible),
we forbid such taclet applications and demand that the following condition is
satisfied when applying taclets (we will refer to this condition when defining
taclet applications):

Definition 4.30. Suppose that t is a taclet and that ι is an instantiation
of the variables of t. Then ι has distinct bound variables concerning t if all
logical variables ι(va) represented by schema variables va of kind \variables
in t are distinct.

As illustrated in the first part of this section, we assume that the conditions of
the previous definition are implicitly established by suitable variable renam-
ing when applying a taclet. In rather special cases, it can also be necessary
to duplicate formulae in order to establish distinctness. As an example, we
can imagine a taclet that works with terms representing surjective functions:

Taclet
surjectivity {

\assumes (\forall x; \exists y; x = t ==>)
\find (\exists z; phi) \sameUpdateLevel

\varcond (\notFreeIn(x, t), \notFreeIn(y, phi))
\replacewith (\exists y; {\subst z; t} phi)

};

Taclet

Provided that a term t—in which a variable y can occur free—describes a
surjective mapping, we can use it to rewrite quantified formulae:

∀a. ∃b. a .= b + 1 =⇒ ∃b. b + 1− 1 .= 3
∀a. ∃b. a .= b + 1 =⇒ ∃c. c− 1 .= 3

surjectivity

In a more pathological application, however, the taclet can be used to modify
the quantified formula of the antecedent itself:

∀a. ∃b. a .= b + 1 + 1 =⇒
∀a. ∃b. a .= b + 1 =⇒

surjectivity
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Strictly speaking, this transformation is only possible if the formula is first
duplicated and the variable b is renamed to a new variable b′. The variable
condition \notFreeIn(y, phi) would otherwise be violated: phi becomes
instantiated with a

.= b + 1 and y with the variable b, which contradicts the
variable condition. Hence, a detailed proof tree showing the taclet application
looks as follows:

∀a. ∃b. a .= b + 1 + 1 =⇒
∀a. ∃b. a .= b + 1, ∀a. ∃b. a .= b + 1 + 1 =⇒

(weak.)

∀a. ∃b. a .= b + 1, ∀a. ∃b′. a .= b′ + 1 =⇒
surj.

∀a.∃b. a .= b + 1 =⇒
(rename)

In the KeY implementation, the steps (rename) and (weaken) would be carried
out automatically and not be shown in the proof tree. The example illustrates
that it can—in rare cases—be necessary to duplicate formulae and apply
renaming before the application of a taclet is possible.

Note 4.31. The condition of Def. 4.30 is sufficient for preventing collisions,
but is usually more defensive than necessary. In the KeY implementation,
more precise (and complicated) conditions are used that often avoid variable
renaming or duplicating formulae.

4.4.5 Applicability of Taclets

This section describes when the application of a taclet is possible. An informal
account of this was already given in Sect. 4.4.1, where the different clauses
of a taclet are introduced, and is now accompanied with a more rigorous
treatment. In order to apply a taclet on a proof goal, several parameters
have to be provided:

• If the taclet contains schema variables of generic types (⇒ Sect. 4.2.7),
then these types first have to be mapped to concrete types.

• If the taclet contains schema variables, then one has to give an instan-
tiation (⇒ Sect. 4.2.3) that describes how to replace the variables with
concrete expressions.

• If the taclet contains a \find clause (⇒ Sect. 4.4.1), then it is necessary
to select a focus of the taclet application within the goal in question.

Not all values that can be chosen for these unknowns are meaningful and
should be admitted. It is obvious that taclet application should not be allowed
if, e.g., variable conditions are violated, but there are a number of further
and more subtle requirements.

Free Variables in Instantiations of Schema Variables

The examples in the previous sections show that instantiations of schema
variables for terms or formulae should be allowed to contain certain logical



224 4 Construction of Proofs

variables free. At the same time, it has to be ensured that no free variables are
introduced in sequents. In taclet legalTac2a (⇒ Sect. 4.4.3), for instance,
it should be possible to instantiate variable va with x and phi with p(x)
(where x occurs free), so that the taclet matches on a formula ∀x. p(x). The
tool for deciding about the free variables that are permitted will be the context
variables of a schema variable (Requirement 4.27), which are exactly those
variables that are guaranteed to be bound (in the taclet) for each occurrence
of a schema variable.

For certain rewriting taclets, it is desirable to allow further free variables
that are not context variables of a schema variable. An example is the taclet
zeroRight (⇒ Sect. 4.1), which we also would like to apply to a formula
like ∀x. p(x + 0). The variable intTerm does not have any context variables,
however, as there are no variables bound at all in the taclet. Situations like
this are taken into account as well by the next definition.

Definition 4.32. Suppose that t is a taclet, that ι is an instantiation of the
variables of t and that focus is a potential application focus of t, where we
write focus for an occurrence of the formula or term focus, i.e., focus de-
scribes not only an expression but also a location within a sequent. We choose
focus = ⊥ if t does not have a \find clause. We say that ι respects variable
contexts concerning focus if, for every schema variable sv of t of kind \term
or \formula and all free variables x ∈ fv(ι(sv)),

• there is a schema variable va ∈ Πt(sv) with ι(va) = x, or
• t contains at most one \replacewith clause, sv turns up only in \find,

\replacewith or \varcond clauses of t, and x is bound above focus.

The second item makes it possible to apply taclet zeroRight to a for-
mula ∀x. p(x + 0). According to Table 4.7, it only applies to rewriting taclets,
because for other taclets there will never be any variables bound above focus .

Note 4.33. The requirement of the second item—there is not more than one
\replacewith clause—is added because quantifiers or other binders do in
general not distribute over conjunctions. It would hardly be possible to for-
mulate sound rewriting taclets with more than one \replacewith clause if
free variables were allowed to turn up. An example is the (artificial, but not
unreasonable) taclet performing a case distinction on a term of type boolean

Taclet
splitBool { \find (b) \replacewith (TRUE);

\replacewith (FALSE) };

Taclet

which could be used in the following unsound way:

=⇒ ∃x : boolean. TRUE ! .= x =⇒ ∃x : boolean. FALSE ! .= x
=⇒ ∃x : boolean. x ! .= x



4.4 Systematic Introduction of Taclets 225

Permitted Taclet Applications

We can now give a complete definition of when we consider a taclet, given a
sequent and all necessary parameters, as applicable:

Definition 4.34 (Matching Instantiation). Suppose that t is a taclet over
a generic type hierarchy (T , Td, Ta, Tg,�,Rg) and a set SV of schema vari-
ables. A matching instantiation of t is a tuple (ιt, ι,U , Γ =⇒ ∆, focus) con-
sisting of

• a type instantiation ιt,
• a complete instantiation ι of the schema variables of t (apart from those

variables that only occur within \addrules clauses),
• an update U describing the context of the taclet application (U can be

empty),
• a sequent Γ =⇒ ∆ to which the taclet is supposed to be applied, and
• an application focus focus within Γ =⇒ ∆ that is supposed to be modified

(we write focus = ⊥ if t does not have a \find clause)

that satisfies the following conditions:

1. the pair (ιt, ι) is an admissible instantiation of SV under generic types
(⇒ Def. 4.22),

2. ι satisfies all variable conditions of taclet t (referring to Table 4.6),
3. ι respects the variable context of t concerning focus (⇒ Def. 4.32),
4. ι has distinct bound variables concerning t (⇒ Def. 4.30),
5. if t has a \find clause, then the position of focus is consistent with the

state conditions of t (Table 4.7),
6. U is derived from focus according to the middle part “Which updates have

to occur above \assumes and \add formulae” of Table 4.7 (for focus = ⊥
and the fields “forbidden combination” we choose the empty update skip),

7. for each formula φ of an \assumes clause of t, Γ =⇒ ∆ contains a cor-
responding formula Uι(φ) (on the correct side),

8. if t has a clause \find(f), where f is a formula or a term, then
ι(f) = focus (the \find pattern has to match the focus of the applica-
tion),

9. if t has a clause \find(f), where f is a sequent containing a single
formula φ, then ι(φ) = focus and the formulae φ and focus occur on the
same sequent side (both antecedent or both succedent).

Example 4.35. We show how this definition applies to the taclet instAll
(⇒ Fig. 4.10), which is a variant of allLeft and allows to select the term
that is supposed to be substituted as focus. We can apply the taclet to the
sequent

Γ =⇒ ∆ = ∀o. f (o) .= o.a, f (self ) .= 1 =⇒ {i := 2}(self .a
.= 1)
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KeY

\sorts {

\generic G;

}

\schemaVariables {

\formula phi; \variables G x; \term G s;

}

\rules {

instAll { \assumes (\forall x; phi ==>) \find (s)

\add ({\subst x; s}phi ==>) };

}

KeY

Fig. 4.10. The taclet described in Example 4.35.

where the application focus is underlined, the constant self and the logical
variable o have type A and f : A→ integer is a function. The remaining
components of the matching instantiation are:

• the type instantiation ιt = {G �→ A},
• the instantiation ι = {phi �→ (f (o) .= o.a), x �→ o, s �→ self },
• the (effect-less) update U = skip.

That the instantiation is indeed matching can be observed as follows:

1. We have ιt(\variables G) = \variables A, ιt(\term G) = \term A.
Because of the types of self and o, the pair (ιt, ι) is an admissible in-
stantiation.

2. There are no variable conditions.
3. The variable contexts of instAll are the sets ΠinstAll(phi) = {x} and

ΠinstAll(s) = ∅, they are respected by ι as fv(ι(phi)) = {o} = {ι(x)} and
ι(s) does not contain variables.

4. There is only one schema variable of kind \variables. Hence, ι has
distinct bound variables.

5. instAll has no explicit state conditions, and thus all operators are al-
lowed above the focus self .

6. According to Table 4.7, U has to be the empty update skip. Note that
this is the case even though the application focus is in the scope of an
update.

7. The \assumes clause contains only one formula, which is correctly
mapped to one of the formulae of Γ : ι(∀x. phi) = (∀o. f (o) .= o.a).

8. The \find expression is correctly mapped to the term of the application
focus: ι(s) = self .

9. (Does not apply.)

Note 4.36. In the KeY implementation, when applying a taclet like instAll
one will usually not specify the instantiations of x and phi explicitly, but
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KeY will rather search for formulas of the antecedent that could be matched
by ∀x. phi and derive possible choices for x and phi automatically. If more
than one possible formula is found in the antecedent, a dialog will be shown in
which the user can choose the formula that should be taken. This is explained
in more detail in Chap. 10.

4.4.6 The Effect of a Taclet

Applying a taclet to a goal and a focus will carry out the modification steps
that are described by the goal templates of the taclet. Each goal template
can alter the focus the taclet is applied to (\replacewith), add further for-
mulae to a goal (\add) and make further taclets available (\addrules). In
this section, we concentrate on the first two kinds of effects and postpone a
discussion of the latter kind until Sect. 4.4.7.

Definition 4.37 (Applying a Goal Template). Suppose that a matching
instantiation (ιt, ι,U , Γ =⇒ ∆, focus) of a taclet t is given. One goal template
is applied on Γ =⇒ ∆ by performing the following steps (in the given order):

1. If the goal template has a clause \replacewith(rw), where rw is a
formula or a term, then focus is replaced with ι(rw). If rw is a term
and the type Anew of ι(rw) is not a subtype of the type Aold of focus
(Anew �� Aold), then focus is replaced with (Aold )ι(rw) instead of ι(rw)
(a cast has to be introduced to prevent ill-formed terms).

2. If the goal template has a clause \replacewith(rw), where rw is a se-
quent, then the formula containing focus is removed from Γ =⇒ ∆, and
for each formula φ in rw the formula Uι(φ) is added (on the correct side).

3. If the goal template has a clause \add(add), then for each formula φ in
add the formula Uι(φ) is added (on the correct side).

The complete application of a taclet involves duplicating a proof goal and
applying each of its goal templates. In case of taclets that do not have any
goal templates, this actually closes the proof goal.

Definition 4.38 (Applying a Taclet). Suppose that a matching instan-
tiation (ιt, ι,U , Γ =⇒ ∆, focus) of a taclet t is given, where Γ =⇒ ∆ is the
sequent of one proof goal g. Carrying out the application of t means perform-
ing the following steps (in the given order):

1. n new proof goals with sequent Γ =⇒ ∆ are created as children of g, where
n is the number of goal templates of t. For n = 0 the goal g is closed.

2. Each of the goal templates of t is applied to one of the new goals, given
the matching instantiation (ιt, ι,U , Γ =⇒ ∆, focus).

Example 4.39. We continue Example 4.35 and apply instAllwith the match-
ing instantiation shown there. The taclet instAll has only a single goal
template, so the first step is to duplicate the initial sequent:
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∀o. f (o) .= o.a, f (self ) .= 1 =⇒ {i := 2}(self .a
.= 1)

∀o. f (o) .= o.a, f (self ) .= 1 =⇒ {i := 2}(self .a
.= 1)

Applying the goal template here only means to carry out the \add clause.
The formula that is to be added is (the update can be left out immediately)

Uι({\subst x; s}phi) = {skip}([o/self ](f (o) .= o.a)) = f (self ) .= self .a

Finally, the rule application yields

∀o. f (o) .= o.a, f (self ) .= 1, f (self ) .= self .a =⇒ {i := 2}(self .a
.= 1)

∀o. f (o) .= o.a, f (self ) .= 1 =⇒ {i := 2}(self .a
.= 1)

4.4.7 Taclets in Context: Taclet-Based Proofs

So far, we have introduced and defined the meaning of taclets as modification
steps that can be applied to a proof tree. Taclets can, however, also modify the
rule base that is used to construct a proof. Probably the best example for this
feature is taclet applyEqAR (⇒ Sect. 4.1) for rewriting terms in the presence
of an equation in an antecedent. Applying the taclet to an equation that can
be matched by t1

.= t2 results in a new taclet rewrWithEq that replaces the
term matched by t1 with the term matched by t2. It is clear, however, that
the taclet rewrWithEq must not be added to the rule base “globally,” as it
is only correct for those sequents that actually contain an equation f(a) .= b.
\addrules is only meaningful if we have a notion of “local” rules that only
exist in certain parts of a proof tree, and that are not available elsewhere. To
realise such a notion, taclets will get a character that is similar to the formulae
of a sequent: to each sequent, a set of taclets is attached that are available for
application. If a proof is expanded by adding children to a parent goal, then
these goals will inherit all rules from the parent goal, but will possibly also
get further rules that were not present in the parent goal (like rewrWithEq).

Partially Instantiated Taclets

What is attached to sequents are not only the actual taclets, but also further
information that is necessary to restrict the applicability of taclets in the
right way. What is actually added when applying applyEqAR to the equa-
tion f(a) .= b is the taclet rewrWithEq

Taclet
rewrWithEq { \find (t) \sameUpdateLevel \replacewith (t2) }

Taclet

together with the following components:

• the type instantiation ιt = {G �→ A} (where A is the type of f(a)),
• the instantiation ι = {ι(t1) �→ f(a), ι(t2) �→ b}, and
• the update U = skip.
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The two instantiation functions have to be considered as partial in this set-
ting, because an inner taclet like rewrWithEq can contain schema variables
or generic types that are not part of the parent taclet and, thus, are not yet
determined.

Definition 4.40. A partially instantiated taclet is a tuple (t, ιt, ι,U) consist-
ing of

• a taclet t,
• a (partial) type instantiation ιt,
• a (partial) schema variable instantiation ι, and
• an update U describing the context of the taclet application (U can be

empty or ⊥).

When applying a partially instantiated taclet, the information already given
has to be extended so that the application is possible.

Definition 4.41. A matching instantiation of a partially instantiated taclet
(t, ι′t, ι

′,U ′) is a tuple (ιt, ι,U , Γ =⇒ ∆, focus) such that

• (ιt, ι,U , Γ =⇒ ∆, focus) is a matching instantiation of t (⇒ Def. 4.34),
• ιt is an extension of ι′t (as function),
• ι is an extension of ι′ (as function),
• if U ′ �= ⊥ then U = U ′.

Taclet-Based Proofs

In contrast to a proof tree in an ordinary sequent calculus (⇒ Sect. 2.5), to
each node of a taclet-based proof tree a set of partially instantiated taclets
is attached. The root of the tree is given the base set of rules, which are
partially instantiated taclets (t,⊥,⊥,⊥), i.e., the instantiation mappings are
completely undefined, and the update context of taclet applications is not
yet determined. During the construction of the proof tree, further taclets can
be added to proof nodes below the root using the \addrules clause.

Taking this into account, we can extend the definitions of the effect of
taclets in the previous section.

Definition 4.42 (Continuation of Def. 4.37).

4. If the goal template has a clause \addrules(rules), then for each taclet r
in rules the partially instantiated taclet (r, ι′t, ι

′,U) is added, where
• ι′ is the restriction of ι to the schema variables of r,
• ι′t is the restriction of the mapping ιt to the types that occur within

the kinds k of schema variables sv with ι(sv) �= ⊥.

Definition 4.43 (Continuation of Def. 4.38).

1b. Each of the new proof goals is given the same set of partially instantiated
taclets as the parent goal.
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4.5 Reasoning About the Soundness of Taclets

Taclets are a general language for describing proof modification steps. In
order to ensure that the rules that are implemented using taclets are correct,
we can consider the definitions of the previous sections and try to derive that
no incorrect proofs can be constructed using the taclets. This promises to be
tedious work, however, and is for a larger number of taclets virtually useless
if the reasoning is performed informally: we are bound to make mistakes.

For treating the correctness of taclets in a more systematic way, we would
rather like to have some calculus for reasoning about soundness of taclets.
This is provided in this section for some of the features of taclets.10 Note, that
the following two translation steps correspond to the two main ingredients of
taclets in the end of Sect. 4.1 (page 191).

• We describe a translation of taclets into formulae (the meaning formulae
of taclets), such that a taclet is sound if the formula is valid. This trans-
lation captures the semantics of the different clauses that a taclet can
consist of. Meaning formulae do, however, still contain schema variables,
which means that for proving their validity methods like induction over
terms or programs are necessary.

• A second transformation handles the elimination of schema variables in
meaning formulae, which is achieved by replacing schema variables with
Skolem terms or formulae. The result is a formula of first order logic or
dynamic logic (depending on the expressions that turned up in the taclet),
such that the original formula is valid if the derived formula is valid. This
step is only possible for certain kinds of schema variables; handling schema
variables for program entities, in particular, can be difficult or impossible
[Bubel et al., 2004]. Depending on the kind of the schema variable, it can
happen that only an incomplete transformation is possible, in the sense
that the resulting formula can be invalid although the meaning formula
actually is valid and the taclet is sound.

The two steps can be employed in different settings:

• The first step can be carried out, and one can reason about the resulting
formula using an appropriate proof assistant, e.g., based on higher-order
logic. For taclets that contain JAVA CARD programs, this will usually re-
quire to have a formalisation of the JAVA CARD semantics for the chosen
proof assistant. In this context, some of the assignment rules for JAVA

CARD (⇒ Sect. 3.6) have been proven correct by Trentelman [2005] us-
ing the Isabelle/HOL proof assistant [Nipkow et al., 2002] and the Bali
formalisation of JAVA [Oheimb and Nipkow, 1999]. Ahrendt et al. [2005b]
follow a similar strategy and prove the correctness of certain rules for
the symbolic execution of JAVA referring to an existing JAVA semantics in

10 The issue of meta variables (⇒ Sect. 4.3), for instance, is not taken into account
on the next pages.
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rewriting logic [Meseguer and Rosu, 2004]. A more detailed description is
given in the sidebar on page 109 in Chap. 3.

• Both steps can be carried out, which opens up for a wider spectrum of
provers or proof assistants that the resulting formulae can be tackled with.
The formulae can in particular be treated by a prover for dynamic logic
itself, such as KeY. This is applicable for lemma rules, i.e., for taclets
which can be proven sound referring to other—more basic—taclets. The
complete translation from taclets to formulae of dynamic logic can auto-
matically be performed by KeY and makes it possible to write and use
lemmas whenever this is useful, see [Bubel et al., 2004].

In the following, we first give a recapitulation about when rules of a sequent
calculus are sound, and then show how this notion can be applied to the taclet
concept. It has to be noted, however, that although reading the following
pages in detail is not necessary for defining new taclets, it might help to
understand what happens when lemmas are loaded in KeY.

4.5.1 Soundness in Sequent Calculi

In the whole section we write (Γ =⇒ ∆)∗ :=
∧

Γ −>
∨

∆ for the formula that
expresses the meaning of the sequent Γ =⇒ ∆. This formula is, in particular:

(=⇒ φ)∗ = φ , (φ =⇒)∗ = ¬φ .

By the validity of a sequent we consequently mean the validity of the for-
mula (Γ =⇒ ∆)∗.

A further notation that we are going to use is the following “union” of
two sequents:

(
Γ1 =⇒ ∆1

)
∪

(
Γ2 =⇒ ∆2

)
:= Γ1, Γ2 =⇒ ∆1, ∆2 .

Because antecedents and succedents are defined to be sets, duplicate formulae
will automatically disappear in the sequent on the right side.

Definition 4.44 (Soundness). A sequent calculus C is sound if only valid
sequents are derivable in C, i.e., if the root Γ =⇒ ∆ of a closed proof tree is
valid.

This general definition does not refer to particular rules of a calculus C, but
treats C as an abstract mechanism that determines a set of derivable sequents.
For practical purposes, however, it is advantageous to formulate soundness in
a more “local” fashion and to talk about the rules (or taclets implementing
the rules) of C. Such a local criterion can already be given when considering
rules in a very abstract sense: a rule R can be considered as an arbitrary (but
at least semi-decidable) relation between tuples of sequents (the premisses)
and single sequents (the conclusions). Consequently, (〈P1, . . . , Pk〉, Q) ∈ R
means that the rule R can be applied in an expansion step
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P1 · · · Pk

Q

The following lemma relates the notion of soundness of a calculus with rules:

Lemma 4.45. A calculus C is sound, if for each rule R ∈ C and all tuples
(〈P1, . . . , Pk〉, Q) ∈ R the following implication holds:

if P1, . . . , Pk are valid, then Q is valid. (4.1)

If condition (4.1) holds for all tuples (〈P1, . . . , Pk〉, Q) ∈ R of a rule R, then
this rule is also called sound.

4.5.2 A Basic Version of Meaning Formulae

In our case, the rules of a calculus C are defined through taclets t over a
set SV of schema variables, and within the next paragraphs we discuss how
Lem. 4.45 can be applied considering such a rule. For a start, we consider
a taclet whose \find pattern is a sequent and that has the following basic
shape:

Taclet
t1 { \assumes(assum) \find(findSeq) \inSequentState

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

Using text-book notation for rules in sequent calculi (as in Chap. 2), the
taclet describes the rule

rw1 ∪ add1 ∪ assum ∪ (Γ =⇒ ∆) · · · rwk ∪ addk ∪ assum ∪ (Γ =⇒ ∆)
findSeq∪ assum ∪ (Γ =⇒ ∆)

In order to apply Lem. 4.45, it is then necessary to show implication (4.1) for
all possible applications of the rule, i.e., essentially for all possible ways the
schema variables that now turn up in the sequents can be instantiated. If ι
is such a possible instantiation (⇒ Def. 4.34), and if Γ =⇒ ∆ is an arbitrary
sequent, then

Pi = ι(rwi ∪ addi ∪ assum) ∪ (Γ =⇒ ∆) (i = 1, . . . , k),
Q = ι(findSeq ∪ assum) ∪ (Γ =⇒ ∆) (4.2)

Implication (4.1)—which is a global soundness criterion—can be replaced
with a local implication:

(
P ∗

1 & . . . & P ∗
k −> Q∗) is valid. (4.3)
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Inserting the sequents (4.2) extracted from taclet t1 into (4.3) leads to a
formula whose validity is sufficient for implication (4.1):

P ∗
1 & . . . & P ∗

k −> Q∗ =
∧k

i=1

(
ι(rwi ∪ addi ∪ assum) ∪ (Γ =⇒ ∆)

)∗

−>
(
ι(findSeq∪ assum) ∪ (Γ =⇒ ∆)

)∗
(4.4)

In order to simplify the right side of Eq. (4.4), we can now make use of the
fact that ι distributes through all propositional connectives (−>, &, |, etc.)
and also through the union of sequents. Furthermore, there is a simple law
describing the relation between ∗ and the union of sequents:

(P ∪Q)∗ ≡ P ∗ | Q∗ .

Thus, the formulae of Eq. (4.4) are equivalent to

ι
( k∧

i=1

(
rwi∪addi∪assum∪ (Γ =⇒ ∆)

)∗ −>
(
findSeq∪assum∪ (Γ =⇒ ∆)

)∗
)

and can then be simplified to

ι
( k∧

i=1

(
rwi∗ | addi∗

)
−>

(
findSeq∗ | assum∗

))
| (Γ =⇒ ∆)∗.

Showing that this formula holds for all sequents Γ =⇒ ∆, i.e., in particular
for the empty sequent, is equivalent to proving

ι
( k∧

i=1

(
rwi∗ | addi∗

)
−>

(
findSeq∗ | assum∗

))

for all possible instantiations ι. We call the formula

M(t1) =
k∧

i=1

(
rwi∗ | addi∗

)
−>

(
findSeq∗ | assum∗

)
(4.5)

the meaning formula of t1. From the construction of M(t1), it is clear that
if M(t1) is valid whatever expressions we replace its schema variables with,
then the taclet t1 will be sound. Note, that the disjunctions | in the for-
mula stem from the union operator on sequents. Intuitively, given that the
premisses of a rule application are true (the formulas on the left side of the
implication), it has to be shown that at least one formula of the conclusion
is true (the formulas on the right side of the implication).

Meaning Formulae for Taclets that do not contain all clauses

We can easily adapt Eq. (4.5) if some of the clauses of t1 are missing in a
taclet:
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• If the \find clause is missing: in this case, findSeq can simply be consid-
ered as the empty sequent, which means that we can set findSeq∗ = false
in Eq. (4.5).

• If \assumes or \add clauses are missing: again we can assume that the
respective sequents are empty and set

assum∗ = false, addi∗ = false

• If a clause \replacewith(rwi) is not present: then we can normalise
by setting rwi = findSeq, which means that the taclet will replace the
focus of the application with itself. If both \replacewith and \find are
missing, we can simply set rwi∗ = false.

Example 4.46. We consider the taclet impRight (⇒ Fig. 4.3) from Sect. 4.1
that eliminates implications within the succedent. The taclet represents the
rule schema

phi =⇒ psi
=⇒ phi −> psi

and the meaning formula is the logically valid formula

M(impRight)
= ( ! phi | psi

︸ ︷︷ ︸
=rw1∗

) −> ( phi −> psi
︸ ︷︷ ︸

=findSeq∗

) ≡ !(phi −> psi) | (phi −> psi) .

4.5.3 Meaning Formulae for Rewriting Taclets

The construction given in the previous section can be carried over to rewriting
taclets.

Taclet
t2 { \assumes(assum) \find(findTerm) \inSequentState

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

In this case, findTerm and rw1, . . . , rwk are schematic terms. We can, in fact,
reduce the taclet t2 to a non-rewriting taclet (note, that the union operator ∪
is not part of the actual taclet language).

Taclet
t2b { \assumes(assum) \inSequentState

\add( (findTerm=rw1 ==>) ∪ add1 );
...
\add( (findTerm=rwk ==>) ∪ addk ) };

Taclet



4.5 Reasoning About the Soundness of Taclets 235

We create a taclet that adds equations findTerm=rw1, . . . , findTerm=rwk to
the antecedent. Using taclet t2b and a general rule for applying equations
in the antecedent, the effect of t2 can be simulated.11 On the other hand,
also taclet t2b can be simulated using t2 and standard rules (cut, reflexivity
of equality), which means that it suffices to consider the soundness of t2b.
Eq. (4.5) and some propositional simplifications then directly give us the
meaning formula

M(t2b) ≡ M(t2) =
k∧

i=1

(
findTerm

.= rwi −> addi∗
)
−> assum∗ (4.6)

In the same way, rewriting taclets for formulae can be treated, if equations
are replaced with equivalences:

k∧

i=1

(
(findFor <−> rwi) −> addi∗

)
−> assum∗ (4.7)

4.5.4 Meaning Formulae in the Presence of State Conditions

Taclets that do not contain the statement \inSequentState (i.e., unlike
all taclets whose soundness we have tackled so far) require a bit more care
when deriving meaning formulae. As introduced in Sect. 4.4.1, there are two
further modes that taclets can have, \sameUpdateLevel and the “default”
mode without any flags. From the soundness point of view, it is meaningful
to consider the following two categories of taclets:

• Taclets with mode \sameUpdateLevel and non-rewriting taclets with de-
fault mode: in contrast to taclets with mode \inSequentState, such
taclets can also be applied in the scope of updates (see Table 4.7 on
page 215). It is ensured that all parts of the taclets work in the same
update context, i.e., the same updates occur above the taclet application
focus, above assumptions of the taclet (\assumes) and above expressions
that are modified or added by the clauses \replacewith and \add.

• Rewriting taclets with default mode: this is the most liberal case, in which
the application focus can be in the scope of arbitrary modal operators.
This means that the application focus can in particular be located in a
different state from assumptions of the taclet (\assumes) or formulae that
are added by an \add clause.

The following paragraphs sketch how meaning formulae for taclets of these
two kinds can be created.
11 Strictly speaking, this transformation only works if findTerm and rwi are not

instantiated to terms that contain free variables from the application context, as
it is allowed in the second item of Def. 4.32. We can imagine to implicitly add
universal quantifiers for such variables.
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Taclets with \sameUpdateLevel, Non-Rewriting Taclets with Default Mode

We only consider a taclet in default mode in which \find pattern is a se-
quent, but the same reasoning applies to rewriting taclets with the statement
\sameUpdateLevel.

Taclet
t3 { \assumes(assum) \find(findSeq)

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

In text-book notation, the rule implemented by the taclet will consequently
look as follows:

U rw1 ∪ U add1 ∪ U assum ∪ (Γ =⇒ ∆)
· · ·

U rwk ∪ U addk ∪ U assum ∪ (Γ =⇒ ∆)

U findSeq ∪ U assum ∪ (Γ =⇒ ∆)

We write U (Γ =⇒ ∆) for denoting that an arbitrary update U is added in
front of each formula of Γ =⇒ ∆. For such a rule, we can derive a meaning
formula exactly as in Sect. 4.5.2, with the only difference that the whole
formula is preceded with the update U :

U
( k∧

i=1

(
rwi∗ | addi∗

)
−>

(
findSeq∗ | assum∗

))
(4.8)

Fortunately, now the update U can be left out: because U can be the empty
update skip, the validity of (4.8) entails that also the formula after U has
to be valid. But if the formula after U is logically valid, i.e., if it is true for
all structures and states, then (4.8) also has to hold for arbitrary updates U .
We can thus define the meaning formula of t3 as in Sect. 4.5.2:

M(t3) =
k∧

i=1

(
rwi∗ | addi∗

)
−>

(
findSeq∗ | assum∗

)
(4.9)

Rewriting Taclets with Default Mode

The second and more difficult case concerns rewriting taclets where the ap-
plication focus can be in the scope of arbitrary modal operators. We consider
a taclet similar to the one treated in Sect. 4.5.3.
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Taclet
t4 { \assumes(assum) \find(findTerm)

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

The strategy followed in Sect. 4.5.3 for deriving a meaning formula for t2
was to find an equivalent non-rewriting taclet. For t4, such a taclet would
need to have the following shape:

Taclet
t4b { \assumes(assum) \inSequentState

\add( (∀U .U (findTerm=rw1) ==>) ∪ add1 );
...
\add( (∀U .U (findTerm=rwk) ==>) ∪ addk ) };

Taclet

The quantifiers ∀U . have to be added in order to ensure that the inserted
equations are also applicable in the scope of modal operators. Such quantifiers
over states do not exist in our dynamic logic, but can be added in a straight-
forward way (they are, in fact, present in the KeY implementation in a similar
form). The meaning formula of t4b would be

M(t4b) =
∧k

i=1

(
∀U .U (findTerm .= rwi) −> addi∗

)

−> assum∗

4.5.5 Meaning Formulae for Nested Taclets

So far, only taclets were considered that do not contain the \addrules clause
(⇒ Sect. 4.4.7). The keyword \addrules makes it possible to nest taclets and
to use one taclet as part of another. For a start, we consider taclets of the
following shape:

Taclet
t3 { \assumes(assum) \find(findSeq) \sameUpdateLevel

\replacewith(rw1) \add(add1) \addrules(s1_1;...; s1_m1);
...
\replacewith(rwk) \add(addk) \addrules(sk_1;...; sk_mk) };

Taclet

where s1_1, . . . , sk_mk are again taclets (we will call them sub-taclets in
the next paragraphs). We can construct meaning formulae of such taclets
recursively and using a similar argument as in Sect. 4.5.3 about rewriting
taclets. Essentially, one can imagine replacing taclet t3 with a taclet that
introduces the meaning formulae of the sub-taclets s1_1, . . . in the antecedent
using the \add clause:
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Taclet
t3b {
\assumes(assum) \find(findSeq) \sameUpdateLevel

\replacewith(rw1) \add((M(s1 1),..., M(s1 m1) ==>) ∪ add1);
...
\replacewith(rwk) \add((M(sk 1),..., M(sk mk) ==>) ∪ addk) };

Taclet

This is not directly possible, because the meaning formulae of the sub-taclets
will contain schema variables whose instantiation is not yet determined when
applying t3, but it leads us to the following variant of Eq. (4.5):

M(t3) =
∧k

i=1

(
M(si 1) & · · · & M(si mi) −> (rwi∗ | addi∗)

)

−>
(
findSeq∗ | assum∗

)

In the same way, Eq. (4.6) and Eq. (4.7) can be extended to take sub-taclets
into account.

Example 4.47. In order to illustrate meaning formulae for nested taclets, we
consider the taclet applyEqAR (⇒ Sect. 4.1). The meaning formulae for the
sub-taclet rewrWithEq and the complete taclet are

M(rewrWithEq) = t1
.= t2

M(applyEqAR) = M(rewrWithEq) | t1 ! .= t2

= t1
.= t2 | t1 ! .= t2

Obviously, M(rewrWithEq) is not a valid formula for most instantiations of
the variables t1 and t2, which reflects the observation from Sect. 4.4.7 that
the taclet is not correct in general. As M(applyEqAR) is a tautology, however,
rewrWithEq is correct in situations in which applyEqAR can be applied, which
distinguishes admissible instantiations of t1 and t2.

Unfortunately, there is one difficulty when dealing with nested taclets. For
some taclets, which we consider in the following as ill-formed, the meaning
formulae defined so far do not ensure soundness:

Example 4.48. We derive the meaning formula of the following taclet, which—
at first glance—seems to implement the cut rule, but which in fact can be
used to add arbitrary formulae to a sequent:

Taclet
illegalTac3 { \addrules( introduceRight { \add(==> phi) } );

\addrules( introduceLeft { \add(phi ==>) } ) };

Taclet
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The “meaning formula” is the tautology M(illegalTac3) ≡ phi | ! phi, how-
ever. This does not reflect that the two occurrences of phi can be instantiated
independently when applying introduceRight and introduceLeft.

The problem with taclets like this is that different instantiations of schema
variables can be chosen when applying the sub-taclets, whereas one schema
variable only represents one and the same expression in the meaning formula.
illegalTac3 can be corrected to a taclet that better reflects the nature of
schema variables in sub-taclets:

Taclet
legalTac3 { \addrules( introduceRight { \add(==> phi1) } );

\addrules( introduceLeft { \add(phi2 ==>) } ) };

Taclet

Now, the meaning formula is M(legalTac3) ≡ !phi1 | phi2 and is no longer
valid.

The following requirement prohibits taclets like illegalTac3 and could
be seen as an item that belongs to Sect. 4.4.3 about well-formedness of taclets.
It is, however, only important when deriving meaning formulae of taclets (it
is irrelevant for the effect of taclets according to Sect. 4.4.6), and we assume
only in this section that it is satisfied by considered taclets. We demand
that common schema variables of sub-taclets of a taclet t also appear in t
outside of sub-taclets, which entails that they are already instantiated when
applying t. Arbitrary taclets can easily be transformed into equivalent taclets
that respect this property.

Requirement 4.49 (Uniqueness of Variables in Sub-Taclets). If a
taclet t has two sub-taclets containing a common schema variable sv, then
sv also appears in t outside of \addrules clauses.

4.5.6 Elimination of Schema Variables

Meaning formulae of taclets in general contain schema variables, i.e., place-
holders for syntactic constructs like terms, formulae or programs. In order
to prove a taclet sound, it is necessary to show that its meaning formula
is valid for all possible instantiations of the schema variables. Looking at
Example 4.47, for instance, we would have to prove the formula

M(applyEqAR) = t1
.= t2 | t1 ! .= t2

for all terms ι(t1), ι(t2) that we can substitute for t1, t2. Note, that this
syntactic quantification ranges over terms and is completely different from a
first-order formula ∀x : integer. p(x), which is semantic and expresses that x
ranges over all integers.

Instead of explicitly enumerating instantiations using techniques like in-
duction over terms, it is to some degree possible, however, to replace the
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syntactic quantification with an implicit semantic quantification through the
introduction of Skolem symbols. For M(applyEqAR), it is sufficient to prove
the formula

φ = c
.= d | c ! .= d

in which c, d are fresh constant symbols. The validity of M(applyEqAR) for
all other instantiations follows, because the symbols c, d can take the values
of arbitrary terms ι(t1), ι(t2). Fortunately, φ is only a first-order formula
that can be tackled with a calculus as defined in Chap. 2.

We will only sketch how Skolem expressions can be introduced for some
of the schema variable kinds that are described in Sect. 4.2. Schema variables
for program entities are left out at this point, a detailed description that also
covers such variables can be found in [Bubel et al., 2004]. Also, more involved
features like generic types are not considered here. For the rest of the section,
we assume that a taclet t and its meaning formula M(t) are fixed. We then
construct an instantiation ιsk of the schema variables that turn up in t with
Skolem expressions. In the example above, this instantiation would be

ιsk = {t1 �→ c, t2 �→ d}

Variables: \variables A

Because of Def. 4.30, instantiations of schema variables va for logical vari-
ables are always distinct. Such variables only occur bound in taclets and the
identity of bound variables does not matter. Therefore, ιsk(va) can simply be
chosen to be a fresh logical variable ιsk(va) = x of type A.

Terms: \term A

As already shown in the example above, a schema variable te for terms can
be eliminated by replacing it with a constant or a function term. In general,
also the context variables Πt(te) of te have to be taken into account and
have to appear as arguments of the function symbol. The reason is that such
variables can occur in the term that is represented by te. We choose the
instantiation ιsk(te) = fsk(x1, . . . , xl), where

• x1, . . . , xl are the instantiations of the schema variables va1, . . . , val, i.e.,
xi = ιsk(vai),

• va1, . . . , val are the (distinct) context variables of the variable te in the
taclet t: Πt(te) = {va1, . . . , val},

• fsk : A1, . . . , Al → A is a fresh function symbol,
• A1, . . . , Al are the types of x1, . . . , xl and te is of kind \term A.

As a further complication, the symbol fsk has to be non-rigid (unless the
schema variable modifier rigid is used), because the term that is represented
by te can also be non-rigid. This entails that updates in front of fsk matter,
in contrast to rigid function symbols where such updates can immediately be
removed, e.g.

{o.a := 3}fsk(x) �= fsk(x)
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Formulae: \formula

The elimination of schema variables phi for formulae is very similar to the
elimination of term schema variables. The main difference is, obviously, that
instead of a non-rigid function symbol a non-rigid predicate symbol has to
be introduced: ιsk(phi) = psk(x1, . . . , xl), where

• x1, . . . , xl are the instantiations of the schema variables va1, . . . , val, i.e.,
xi = ιsk(vai),

• va1, . . . , val are the (distinct) context variables of the variable te in the
taclet t: Πt(te) = {va1, . . . , val},

• psk : A1, . . . , Al is a fresh predicate symbol,
• A1, . . . , Al are the types of x1, . . . , xl.

Skolem Terms: \skolemTerm A

Schema variables of kind \skolemTermA are responsible for introducing fresh
constant or function symbols in a proof. Such variables could in principle be
treated like schema variables for terms, but this would strengthen meaning
formulae excessively (often, the formulae would no longer be valid even for
sound taclets).

We can handle schema variables sk for Skolem terms more faithfully:
if in implication (4.1) the sequents P1, . . . , Pk contain symbols that do not
occur in Q, then these symbols can be regarded as universally quantified.
Because a negation occurs in front of the quantifiers in (4.3) (the quantifiers
are on the left side of an implication), the symbols have to be considered
as existentially quantified when looking at the whole meaning formula. This
entails that schema variables for Skolem terms can be eliminated and replaced
with existentially quantified variables: ιsk(sk) = x, where x is a fresh variable
of type A.12 At the same time, an existential quantifier ∃x. has to be added
in front of the whole meaning formula.

Example 4.50. The meaning formula of the taclet allRight (⇒ Sect. 4.1) is

M(allRight) = {\subst x; cnst}(phi) −> ∀x.phi
In order to eliminate the schema variables of this taclet, we first assume that
the generic type G of the taclet is instantiated with a concrete type A. Then,
the schema variable x can be replaced with a fresh logical variable ιsk(x) = y
of type A. The schema variable phi is eliminated through the instantiation
ιsk(phi) = psk(y), where psk is a fresh non-rigid predicate symbol. Finally, we
can replace the schema variable cnst for Skolem terms with a fresh logical
variable ιsk(cnst) = z of type A and add an existential quantifier ∃z. . The
resulting formula without schema variables is

∃z. ιsk(M(allRight)) = ∃z. (psk(z) −> ∀y. psk(y))
12 Strictly speaking, this violates Def. 4.9, because schema variables for Skolem

terms must not be instantiated with variables according to this definition. The
required generalisation of the definition is, however, straightforward.
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4.5.7 Introducing Lemmas in KeY

The derivation of meaning formulae for taclets and the elimination of schema
variables is implemented in KeY and is automatically carried out when lemma
taclets are loaded. This ensures that only those taclets can be introduced
during a proof that can be derived and justified based on already exist-
ing taclets. At the time of writing this book, the implementation does not
completely support schema variables for program entities or more involved
features like generic types. Loading lemmas is, therefore, mostly applicable
for first-order rules or for rules that describe properties of theories, such as
the lemma expSplit in Fig. 4.2 in the introduction.
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Formal Specification

by

Andreas Roth
Peter H. Schmitt

This chapter serves as an introduction to formal specifications. In Sect. 5.1 we
reconsider in greater detail, but still on a fairly general level, the basic build-
ing blocks of formal specification—pre- and postconditions, invariants, and
modifies clauses—that have already been informally introduced in Sect. 1.3.
The next two sections then show how these notions can be formulated in two
popular specification languages, OCL and JML. A short comparison between
the two languages in Section 5.4 concludes this chapter.

Methodological questions like: How should operation contracts be inher-
ited by subclasses? At which system states are invariants required to hold?
How can modular specification and verification be effected? will be postponed
till Chapter 8.

5.1 General Concepts

Specifications may be used at different stages in the software development
process. They may be attached to a coarse design model or to runnable
code or at any stage in between. What is essentially needed for the kind of
specifications we treat in this book are

1. a notion of a state, e.g., the state or snapshot of a system model or the
state of computation of a JAVA program;

2. a notion of a transition from pre-state to post-state effected by an oper-
ation;

3. a language to formulate specifications. It is understood that we should
be able to determine whether a statement in this language is true or false
in any given state.

In the example in Sect. 1.3 user authentication was not considered. Let us
address this task now. We think of a user having inserted her bankcard into an
automatic teller machine (ATM). After some basic initalisation the machine

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 245–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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performs an operation we choose to call enterPIN. The user is prompted to
enter her pin.

Let us start thinking about what specifications we may want for enterPIN.

5.1.1 Operation Contracts

We decide to allow three attempts to enter the correct pin. So, it is natural
to introduce an attribute wrongPINCounter that counts the number of un-
successful attempts. An operation contract for enterPIN may then look like
this:

precondition card is inserted, user not yet authenticated
postcondition if entered pin is correct

then the user is authenticated,
if entered pin is incorrect

and wrongPINCounter < 2
then wrongPINCounter is increased by 1

and user is not authenticated,
if entered pin is incorrect

and wrongPINCounter >= 2
then the card is confiscated

and user is not authenticated.

With this concrete example in mind we are ready for the general definition.
Here and in the following we will use the word operation in a general sense
and refer to implementations of operations as methods.

Definition 5.1. A contract with precondition and postcondition for an oper-
ation op is satisfied if:

When op is called in any state that satisfies the precondition then op
terminates and in any terminating state of op the postcondition is
true.

This definition looks innocuous enough, but it is worth stressing the following
facts.

1. No guarantees are given when the precondition is not satisfied. If for some
reason the enterPIN method is called when no card is inserted, there is
no telling what happens.

2. By default, termination is part of the contract. There are other options
though and we will come back to this a bit later in this subsection.

3. The terminating state may be reached by normal or by abrupt termina-
tion, i.e., termination by op throwing an exception.

It is usual to allow more than one pre-/postcondition pair in a contract. The
above example could be rephrased as:
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precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated,
precondition card is inserted, user not yet authenticated,

pin is incorrect and wrongPINCounter < 2
postcondition wrongPINCounter is increased by 1,

and user is not authenticated,
precondition card is inserted, user not yet authenticated,

pin is incorrect and wrongPINCounter >= 2
postcondition card is confiscated

and user is not authenticated.

In this example, the preconditions are mutually exclusive. This is not required
in general.

In non-trivial contexts it is not easy to come up with a postcondition that
precisely defines an operation. One particular difficulty is to state what items
do not change. This is a notorious problem in many areas of computer science
that deal with some notion of action and has been given a special name: the
frame problem. The first observation towards a solution of the frame problem,
at least in our context, is that we should make no attempt to enumerate the
items that do not change. There are hopelessly many. Rather we should try
to determine those items that at most may get changed. We thus add an
explicit list of items that may be modified by a method to its specification.
This is not an uncommon approach, and has consequently been pursued in
the book [Morgan, 1990].

In our enterPIN example the modification list might look like this:

modifies wrongPINCounter
all attributes needed for user authentication
all attributes needed for confiscating the card

Since we have at this level of the design not fixed all attributes we have to
be a bit vague about the modification required for user authentication. It is
easy to imagine how a card gets confiscated in the real world; it ends up in
a special box of the machine to be picked up by a clerk. We will see below
how this can be modelled in a specification.

The requirements given in Definition 5.1 go in program verification theory
by the name of total correctness. When termination is not required we speak
of partial correctness. The choice between these alternatives is realised by
adding another clause termination to the contract. Possible values for this
clause could be required, not required or normal termination. In the
last case we do not want termination to be brought about by an exception.

For a uniform treatment we stipulate that all operations have a contract.
If contract parts are not explicitly given, we assume the defaults in Table 5.1.
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Table 5.1. Default contracts

Default Contracts

precondition true
postcondition true
modifies everything
termination required

5.1.2 Invariants

Another frequently used specification method is that of an invariant, i.e., a
statement that is required to be true in all system states. A possible invariant
in the enterPIN scenario is:

invariant wrongPINCounter is always ≥ 0 and ≤ 2

Since in our model of the banking world the wrongPINCounter attribute is
attached to the class ATM, this invariant says that in all system states, for
all ATM-machines m that exist in this state, 0 ≤ m.wrongPINCounter≤ 2 is
satisfied.

In object-oriented programming and design it is has become customary
to attach invariants to classes or interfaces. We will follow this practice. Fre-
quently invariants address only one instance of a class. This has lead to the
figure of speech of an object satisfying an invariant throughout its lifetime.
Though this view is helpful in many cases, it fails to cover invariants that
address only static fields. Also, invariants addressing two instances of a class
are not covered naturally since one of them has to be chosen as the main
actor, arbitrarily. An example of the latter type of invariants is the following,
attached to the class BankCard (see Figure 5.1 below):

invariant no two cards have the same cardNumber

Invariants may even address fields and objects from different classes. To give
an example we expand our scenario by considering a central host to which the
ATM is connected. In particular we imagine that this central host provides
an attribute validCardsCount satisfying:

invariant validCardsCount equals the number of issued
bank cards that are still valid

The next step towards a thorough understanding of the concept of an in-
variant is the answer to the question: When should an invariant hold? The
first and quick description we used at the beginning of this subsection, that
an invariant should hold in all system states, is in most cases far too strong.
This leads us to consider two notions of invariants:

• strong invariants that really hold in all system states
(these will be treated in Sections 9.2 and 9.4),
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• invariants without further qualification
(we will continue to consider these here).

As a first approximation we may require an invariant to be true as long as
no operation is executing. The method ATM::confiscateCard() will prob-
ably first set insertedCard = null which will destroy the above invariant
on validCardsCount. Only after ATM::confiscateCard() updates the field
validCardsCount will it be true again. We record the present state of our
discussion in the following definition:

Definition 5.2. A class C satisfies an invariant Inv if,

1. for any operation op and any state s satisfying at least one precondition
of op and Inv, the invariant Inv is also true in any terminating state.

2. Inv is true in the state reached after execution of any constructor.

Notice, that nothing is said here about termination or truth of the postcon-
dition. These issues are settled in the operations contract for op.

This is a first working definition that will be sufficient for the purposes of
the present chapter. It does not address the special case of invariants involv-
ing only static fields and leaves open which operations should be considered.
Intuitively all exported operations of the class to which the invariant is at-
tached should suffice. This is not true in all cases (⇒ Chap. 8).

As can be seen from Definition 5.2, invariants are in principle superfluous,
one could add them to pre- and postconditions of every operation contract.
Obviously, this is not a very practical alternative in particular in a context
where new subclasses are added to an existing program.

The reader might wonder at this point how invariants and operation con-
tracts behave with respect to the class hierarchy. Our position on this issue
is:

• an invariant of a class is inherited by all its subclasses,
• on the other hand an operation redefined in a subclass does not inherit

the operation contract from the superclass.

Given the number of subtyping disciplines that have been proposed in the
literature this non-committal approach for operation contracts seems to be
best suited.

An example of another kind of invariant that is useful at a later stage in
the software development when code is already present are loop invariants:

/* loop invariant Inv */
while ( guard ) {

body
}

The intention is that Inv is true in the state before the while loop is entered
and again in the states after each execution of its body. No commitment is
made on the termination of the loop.
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5.2 Object Constraint Language

The Object Constraint Language (OCL) is part of the OMG standard Unified
Modeling Language, UML1. An easy introduction is available through the
book [Warmer and Kleppe, 2003]. Material on a precise semantics of OCL is
contained in the volume [Clark and Warmer, 2002], in particular [Gogolla and
Richters, 2002]. Another source for a formal semantics is [Brucker and Wolff,
2002]. There is also Chapter 10 of the standard describing the semantics in
terms of UML plus OCL. But, not many people found this account accessible.
Our text follows the draft of the OCL Version 2.0 standard as of June 6, 2005,
[OCL 2.0].

OCL was introduced to express those parts of the meaning that diagrams
cannot convey by themselves. It was first developed in 1995 by Jos Warmer
and Steve Cook. The most extensive use of OCL so far is within the UML
standard itself, where it is used in the semantics description of the UML meta-
model. For an example of the use of OCL in API specification see [Larsson
and Mostowski, 2004].

OCL is perceived by its creators as a formal language. On the other hand
they put emphasis on the fact that OCL is not designed for people who have
a strong mathematical background. We quote from [Warmer and Kleppe,
1999a, Preface]:

The users of OCL are the same people as the users of UML: software
developers with an interest in object technology. OCL is designed for
usability, although it is underpinned by mathematical set theory and
logic.

5.2.1 OCL by Example

Before we enter into a systematic treatment of OCL we start with some
instructive examples. The UML standard allows one to add constraints to
almost every diagram type. In this chapter we exclusively consider con-
straints in UML class diagrams and use the diagram in Figure 5.1 as our
running example. It is in fact the UML class model for the scenario previ-
ously sketched in Sect. 5.1. It contains the three classes ATM, BankCard and
CentralHost. Of the attributes for the ATM class we have already encountered
wrongPINCounter. The attribute insertedCard is either null or points to
the instance of class BankCard that is currently inserted in the ATM. We use
the Boolean field customerAuthenticated to model whether the inserted
card is authenticated or not. The last attribute centralHost points to the
central host the ATM in question is attached to.

Figure 5.2 shows how the informal contract for the enterPIN operation
given above translates into OCL.

1 See http://www.uml.org
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BankCard

- cardNumber:Integer
- correctPin:Integer
- accountNumber:Integer
- invalid:Boolean
+ makeCardInvalid()
�query�
+ pinIsCorrect():Boolean
�query�
+ cardIsInvalid():Boolean
�query�
+ getAccountNumber():Integer

ATM

- centralHost:CentralHost
- insertedCard:BankCard
- customerAuthenticated:Boolean
- wrongPINCounter:Integer
+ enterPIN(pin:Integer)
+ confiscateCard()
�query�
+ cardIsInserted():Boolean
�query�
+ customerIsAuthenticated():Boolean

CentralHost

maxAccountNumber:Integer
- validCardsCount:Integer
+ createAccount(N:Integer)
+ issueCard(N:Integer,pin:Integer)
�query�
+ accountExists(N:Integer):Boolean

0..1 0..1

insertedCard

1centralHost

*

Fig. 5.1. Class diagram for the ATM scenario

This specification uses two features that are not present in the OCL standard
but are implemented in the KeY system. The modifies clause we have simply
added since it proved indispensable for our purposes and also since it increases
compatibility with JML (⇒ Sect. 5.3). The literal null is the only element
in the OCL type VoidType and serves us to denote JAVA’s null object. We
will comment on this later, Section 5.2.4. This being said let us have a closer
look at this OCL operation contract.

First we observe that the syntactical entities used either come from the
class diagram or are OCL built-ins. From the class diagram we are allowed to
use in OCL: names of classes (does not occur in this example, but will appear
shortly), attributes, association ends (in the present example this does not
show since, incidentally, any association end also occurs as an attribute),
and queries. Arbitrary operation names may not occur outside the context
declaration since OCL is intended to be side-effect free.

Next you would expect that in an object-oriented setting an attribute like
insertedCard in the above precondition is applied to a particular object. In
fact it is, you just do not see it. By a frequently used shorthand, object
references may be omitted and will be replaced by default with the reserved
variable self which plays in OCL the same role that this plays in JAVA.
Thus the precondition from Fig.5.2 reads in full:
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OCL

context ATM::enterPIN(pin: Integer)

modifies: customerAuthenticated, wrongPINCounter,

insertedCard, insertedCard.invalid

pre: insertedCard <> null and not customerAuthenticated

post: if pin = insertedCard@pre.correctPIN

then customerAuthenticated

else

if wrongPINCounter@pre < 2

then wrongPINCounter = wrongPINCounter@pre + 1

and not customerAuthenticated

else

insertedCard = null

and insertedCard@pre.invalid

and not customerAuthenticated

endif

endif

OCL

Fig. 5.2. An OCL contract for the enterPIN operation

OCL
context ATM::enterPIN(pin: Integer)
pre: self.insertedCard <> null and

not self.customerAuthenticated

OCL

OCL offers as a third possibility that you declare your own local reference,
e.g., atm1:

OCL
context atm1:ATM::enterPIN(pin: Integer)
pre: atm1.insertedCard <> null and

not atm1.customerAuthenticated

OCL

These references self or atm1 are implicitly universally quantified, i.e., the
intended meaning of an operation contract is: in all system states and for
all instances atm1 of class ATM, if the precondition for atm1 is satisfied, then
the postcondition is satisfied for atm1. Implicit universal quantification also
applies to any other reference occurring in the contract, like the argument
pin in our example.

Still looking at Figure 5.2, we notice the peculiar @pre symbol. Only in
postconditions it may be attached to attributes, associations or queries and
refers to the value of the corresponding model element before execution of
the operation.
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Let us look at some more examples of OCL constraints. The following
contract explains how we model confiscation of cards.

OCL
context ATM::confiscateCard()
pre: insertedCard <> null
post: insertedCard = null and insertedCard@pre.invalid

OCL

The attribute insertedCard is reset to null. This is obvious, since after
confiscation there is no card inserted. In our model, however, the card in
question is still an instance of class BankCard undistinguished from all other
instances. To avoid this we introduced the attribute invalid of BankCard
which is set to true when the card gets confiscated. Notice, we have to use
insertedCard@pre since in the post state insertedCard is null.

So much for operation contracts. Let us now present examples of OCL
invariants.The simplest invariant from Section 5.1.2 is formalised in OCL as:

OCL (5.1)
context ATM
inv: 0 <= wrongPINCounter && wrongPINCounter <= 2

OCL

In greater detail we would add explicitly the variable self which is thought
of as universally quantified:

OCL
context ATM
inv: 0 <= self.wrongPINCounter &&

self.wrongPINCounter <= 2

OCL

The next invariant gives us the occasion to use some of the more advanced
built-in concepts.

OCL (5.2)
context BankCard
inv: BankCard::allInstances() -> forall(p1,p2|

p1<>p2 implies p1.cardNumber<>p2.cardNumber)

OCL

Note, that now the context is the class BankCard. The intended meaning of
this invariant is evident. Here allInstances() is a query that is available
for most classes. (More precisely it is inherited from the class OclAny for
all subclasses of OclAny.) In any snapshot, A::allInstances() evaluates
to the set of all existing elements of class A. In the OCL standard the use
of allInstances() is restricted to classes with finitely many elements and



254 5 Formal Specification

required to yield an undefined result when applied to a class with infinitely
many elements like String or Integer. This is a viable position when you
use OCL in simulation tools or for runtime checking. It is too restrictive for
formal verification in general.

BankCard::allInstances() is our first example of an OCL expression
that evaluates to a collection of objects rather than to a single object or
a single value. This also accounts for the -> symbol following BankCard::
allInstances(). To provide for an easier reading, OCL uses -> instead of a
simple dot when applying an operation to a collection. In fact, if you change
all -> to dots in an OCL expression and then hand it to me I will be able to
restore all arrows (except in one very special exceptional case). The operation
that is applied to the collection BankCard::allInstances() in the present
case is universal quantification. Unlike in other languages where you may
always add quantifiers to a formula, e.g., ∀p1.∀p2.(p1 �= p2 −> c(p1) �= c(p2))
in predicate logic, in OCL you first have to provide a collection that the
quantifier, universal or existential, will range over. Notice also that OCL
allows you to quantify two variables by one operator, just as some logic
notations would allow you to write ∀p1, p2.(p1 �= p2 −> c(p1) �= c(p2)).

The next example introduces more operations on collections.

OCL (5.3)
context CentralHost
inv: validCardsCount =

BankCard::allInstances() ->
select(not invalid) -> size()

OCL

We again encounter a shorthand here. The full version could look as follows:

OCL
inv: validCardsCount =

BankCard::allInstances() ->
select(c | c.invalid) -> size()

OCL

Now, this might look familiar to readers with a background in basic set
theory. Assume that BankCard::allInstances() evaluates to a set A then
the whole expression evaluates to the set of those elements c ∈ A that satisfy
the condition after the | symbol.

You can think of the UML class diagram and its OCL constraints as a
specification, as a blue print for a system to be built. At this level one can
check consistency of the specification or try to derive other properties of
the specification alone. In addition, if code has been written, you will want
to prove that it satisfies the constraints. A possible implementation of the
enterPIN method is shown in Figure 5.3. If you are interested to try out
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for yourself the verification of this operation contract with KeY you will find
assistance in Section 10.3.

JAVA

public void enterPIN (int pin) {

if ( !( cardIsInserted () &&

!customerIsAuthenticated () ) ) {

throw new RuntimeException ();

}

if ( insertedCard.pinIsCorrect ( pin ) ) {

customerAuthenticated = true;

} else {

++wrongPINCounter;

if ( wrongPINCounter >= 3 )

confiscateCard ();

}

}

JAVA

Fig. 5.3. The enterPIN method

The examples we have seen so far were close to program code. The diagram
in Figure 5.4, however, may occur very early in system modelling. It identifies
the main classes in a role-based access scenario, User, Role, Permission. In
addition there are associations connecting users and roles and also roles with
permissions. No commitment is made at this point on how these relations will
be realised in code. Notice the asterisks at each association end. They stand
for multiplicities and signal that a user may have an unbounded number of
roles, a role may be assigned to an unlimited number of users, a role may be
granted an unlimited number of permissions and a permission may be part
of an unbounded number of roles.

User Role
Permission

�query�
+ isUsed():Boolean

ua *

assigned users

* pa **

assigned permissions

Fig. 5.4. UML class diagrams for role-based access scenario

We can think, even at this general level, of useful contracts, e.g., that every
permission is used:
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OCL
context Permission::isUsed():Boolean
post: result = role.assigned_users -> notEmpty()

OCL

We already know that the postcondition is a shorthand of:

OCL
post: self.result = self.role.assigned_users -> notEmpty()

OCL

Furthermore result is an OCL keyword that can only be used in postcon-
ditions of operations that return a result, exactly for specifying what this
result should be. Notice, that this offers the possibility to not only give a
condition that should be satisfied after execution of the operation, but to
uniquely define its result.

Let us look at the expression at the right hand side of the = sign. It shows
that we can string together several dot-operations. That is what in OCL
jargon is called navigation, because it has the effect of navigating through
the UML class diagram. The first leg of this navigation is towards an unnamed
association end. In this case the default is to use the name of the class to
which the association end is attached, spelled in lower case. This first leg
yields the set R = {r1, . . . , rk} of roles that are attached to the permission
represented by self. The whole expression self.role.assigned users is a
much used shorthand for:

OCL (5.4)
post: self.role -> collect( r | r.assigned_users)

OCL

If for r = ri the OCL expression r.assigned_users evaluates to a set Ui of
users then the whole expression evaluates to the union U1 ∪ . . . ∪ Uk. More
precisely, this union is considered as a bag or multi-set with the consequence,
that a user that is assigned to more then one role will occur more than once
in the result.

5.2.2 OCL Syntax

In this subsection we try to convey a basic understanding of the syntax
and semantics of OCL. The main reference for a full definition is the OMG
standard draft [OCL 2.0]. This is still not the final document and does not
settle all issues, but it will be more than sufficient for what we need here.

The Object Constraints Language, OCL, is a typed language; every ex-
pression has a unique type. Evaluating an expression e in a snapshot yields
a value of the type of e. Figure 5.5 presents a survey of the types available in
OCL. Abstract classes, i.e., classes whose instances are all instances of one
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of its subclasses, are written in italics. It deviates from [OCL 2.0, Chapter 8,
Figure 5] in that

• it does not show ElementType, which is mainly used to connect to state
machine diagrams, which we do not consider here,

• it does not show InvalidType, since we do not use it, see Section 5.2.4.
• it does not show TypeType since the meaning of this remains unclear,
• we chose to omit OrderedSetType for brevity,
• it shows AnyType as a subclass of PrimitiveType rather than as direct

subclass of Classifier. The standard’s position on this is still inconsis-
tent and the difference does not have an impact on what we have to say
here.

Classifier
(from core)

Message-
Type

Class
(from core)

DataType
(from core)

VoidType

TupleType PrimitiveType CollectionType

SetType SequenceType BagType

0..4

+collectionTypes

1

+elementType

PrimitiveType

OclBoolean OclReal OclInteger OclString AnyType

Fig. 5.5. The hierarchy of OCL types
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The classes shown in Figure 5.5 are metaclasses. To illustrate what is
meant by this look at OclInteger. This class has exactly one instance, which
is named Integer. The instances of Integer in turn are the well known
numbers . . .−1, 0, 1, . . ..

OCL expressions are always placed into the context of an UML class
model. The classes, say C1, . . . , Ck, appearing there will be the instances of
the metaclass Class from Figure 5.5. Evaluation of an OCL expression is
always done with respect to a fixed snapshot s of the modelled system. To
evaluate expressions we need to know how to evaluate types in s. This is easy
for types that derive from the class diagram: the type Ci evaluates to the set
of all instances of class Ci that exist in s.

CollectionType is an abstract class, that is to say, that any instance
of it has to be an instance of one of its subclasses. For any instance C in
the metaclass Class we have the instances Bag(C), Set(C), Sequence(C) of
BagType, SetType, and SequenceType, respectively. The evaluation of these
are, naturally, the bags, sets, sequences of elements of class C existing in a
given snapshot s. Also Set(Integer), Set(String) etc. occur in SetType
and even Set(Set(C)) and Set(Set(Integer)) are legitimate types with
the usual intended meaning.

We skip commenting on tuple types, since they are what you expect.
Thus VoidType and AnyType remain. The metaclass VoidType has exactly
one instance OclVoid. The only instance of OclVoid is the element null.
The only instance of AnyType is the OCL type OclAny. This type is meant
to be the big grab bag of almost everything. At any snapshot every instance
of a model class C, every instance of a primitive type is also an instance of
OclAny. The OCL standard decided that this should not apply for instances
of collection or tuple types. The main reason is to steer clear of semantical
problems. OCL not only uses types, but also declares a subtype relation
among them, much in the same way as in the first-order logic introduced in
Chapter 2. This relation is called conformance and is defined as follows:

Definition 5.3. The conforms to relation is the least reflexive and transitive
relation on the set of all OCL types satisfying the following conditions

1. Integer conforms to Real,
2. C1 conforms to C2 for instances Ci of Class iff C1 is a subtype of C2 in

the UML class diagram,
3. S(T1) conforms to S(T2) for S one of Collection, Set, Bag or Sequence

iff T1 conforms to T2,
4. T conforms to OclAny for any type T that is not a collection or a tuple

type,
5. OclVoid conforms to every other type,
6. for tuple types we have: Tuple(name1:T1, . . . , namek:Tk)

conforms to Tuple(name′1:S1, . . ., name′k:Sk)
iff {name1, . . . , namek} = {name′1,. . . , name′k} and for namei = name′j
we have Ti conforms to Sj.
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According to item 6 above, the OCL expression

Tuple(first :Integer , second :Integer ,node:C)

conforms to
Tuple(second :Integer ,node:C,first :Real)

if C conforms to D.
Having completed our survey of OCL types we are now ready to explain

what OCL expressions are. It has become popular to present formal lan-
guages by a metamodel. Figure 5.6 shows the top level of the metamodel
for the abstract syntax of OCL expressions. We explain bit by bit how to
read this model. Classes with the label “(from core)” are classes from the
metamodel of UML. They serve to connect OCL expressions to the class dia-
gram to which they belong. The top-level class for OCL is the abstract class
OCLExpression. If you are more comfortable with grammar rules you could
express this information equivalently by the production rule

TypedElement
(from core)

OclExpression

CallExp Literal
Exp

IfExp Variable
Exp

Type-
Exp

Message-
Exp

State-
Exp

FeatureCall-
Exp

LoopExp Classifier
(from core)

Variable

IteratorExp IterateExp Parameter
(from core)

0..1

*

referredType

0.
.1

*

refV
ar

refE
xp

0..1

0..1
source

ap
pl

ie
dE

le
m

en
t

0..1

1

body

lo
op

B
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O
w

ne
r

0.
.1

lo
op

E
xp

*

iterator

0..1

baseExp

0..1 result

0..1

initializedElement

0..1

initExp

* 0..1

variable

representedParam

Fig. 5.6. Toplevel metaclass diagram for OCL expressions
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IfExp

OclExpression
1

thenExpression

0..1

thenOwner

1 condition

0..1 ifOwner

1

elseExpression

0..1

elseOwner

Fig. 5.7. Metamodel for conditional expressions

OclExpressionCS ::= CallExpCS | VariableExpCS |
LiteralExpCS | LetExpCS |
MessageExpCS | IfExpCS

We use the postfix CS to distinguish between the names of metaclasses and
non-terminal symbols in the concrete syntax grammar. Notice that there are
no non-terminals for the metaclasses TypeExp and StateExp. These will occur
as parts of OCL expressions, but cannot stand alone as an OCL expression.
The non-terminal LetExpCS has no corresponding class in Figure 5.6, because
we left it out to not clutter the diagram even further.

Before we look closer into the top-level diagram, we describe the general
workings of the abstract syntax model by looking at the simple metamodel for
conditional expressions in Figure 5.7. The diagram shows that a conditional
expression consists of OCL expressions, referred to by the association ends
condition, thenExpression, and elseExpression. These three expressions
are considered as parts of the conditional expression as signalled by the compo-
sition icons. The multiplicities at the corresponding ends, that is 1 in all cases,
show that none of these may be missing. This is an elegant way to describe con-
ditional expressions abstractly without imposing a concrete syntax.

Certainly, not every OCL expression can serve as a value for the
condition. This restriction cannot be expressed in the metaclass diagram.
Instead OCL constraints are added. For conditional expressions these are the
invariants:

OCL
context IfExp
inv: self.condition.type.name = ’Boolean’
inv: self.condition.type.oclIsKindOf(PrimitiveType)
inv: self.type = thenExp.type.commonSuperType(elseExp.type)

OCL
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The attribute type is inherited from the UML metaclass TypedElement. The
first invariant says that the type of the condition expression has to be named
Boolean. Since somebody might draw a class diagram with a class named
Boolean the second invariant requires that the type of the condition expres-
sion be primitive. The operation oclIsKindOf(T) may be found in the OCL
standard library as a Boolean operation on the class OclAny with the expla-
nation that s.oclIsKindOf(T) is true if s is a (not necessarily immediate)
subtype of T. The third invariant determines the type of the if expression.
s.commonSuperType(t) is a defined OCL expression that returns the least
common supertype of s and t if it exists and undefined otherwise. A complete
OCL definition of the commonSyperType operation will be given at the end
of Section 5.2.2. The type of

if c:Boolean then t:Integer else s:Real endif

thus is Real. Finally, here is the grammar rule for the concrete syntax.

IfExpCS ::= ’if’ OclExpCS ’then’ OclExpCS
’else’ OclExpCS ’endif’

Let us now turn back and look at Figure 5.6 again. For abstract classes it is
easy to read off the grammar rules from the metamodel:

CallExpCS ::= FeatureCallExpCS | LoopExpCS

FeatureCall-
Exp

NavigationCall-
Exp

OclExpression

PropertyCall-
Exp

Property
(from core)

OperationCall-
Exp

Operation
(from core)

*{ordered}
0..1

parentNav

qualifier

arguments

parentCall

{ordered}
*

0..1

* 0..1

referringExp referredOperation

* 0..1

referringExp referredProp

*

0..1navigationSource

Fig. 5.8. Metamodel for OCL featureCall expressions
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Looking at Figure 5.8 we find furthermore:

FeatureCallExpCS ::= NavigationCallExpCS |
PropertyCallCS | OperationCallExpCS

To gain an initial understanding, let us look at some examples taken from
the constraints we had already encountered in Section 5.2.1.

The expressions p1.cardNumber, p2.cardNumber are property call ex-
pressions. So are insertedCard@pre and self.insertedCard@pre. Exam-
ples of operation call expressions are p1.cardNumber <> p2.cardNumber,
p1 <> p2, BankCard::allInstances(). An example for the last category
of feature call expressions, i.e., an example for a navigation call expres-
sion (taken from Figure 5.4 on page 255) is self.role.assigned users or
role.assigned users.

Next we have a closer look at OperationCallExp. The concrete syntax
grammar rule reads as:

OperationCallExpCS ::=
(A) OclExpCS(1) sNameCS OclExpCS(2) |
(B) OclExpCS ’->’ sNameCS’(’ argumentsCS?’)’ |
(C) OclExpCS’.’sNameCS ismarkedPreCS?’(’argumentsCS?’)’ |
(D) sNameCS ismarkedPreCS?’(’argumentsCS?’)’ |
(G) pathNameCS’(’argumentsCS?’)’ |
(H) sNameCS OclExpCS

As usual in grammar formalisms, a non-terminal with a question mark is
optional. The rule in the standard lists additional clauses (E) and (F), which
in our version are subsumed by (D) and (C). Here are typical examples for
all six cases of operation call expressions:

(A) wrongPINCounter + 1
wrongPINCounter < 2
wrongPINCounter = wrongPINCounter + 1
insertedCard <> null

(B) self.role.assigned_users -> notEmpty()
s -> union(s2)

(C) self.insertedCard.pinIsCorrect()
self.insertedCard.pinIsCorrect@pre()

(D) pinIsCorrect()
pinIsCorrect()@pre

(G) BankCard::allInstances()
(H) -wrongPINCounter

not cardIsInserted()

In the above, sNameCS is our shorthand notation for simpleNameCS. This is
a string of symbols without further restrictions. There are of course addi-
tional well-formedness conditions for each of the eight production rules that
make sure that the instance of sName is the name of an operation with the
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correct typing that is available in the OCL library or in the UML model
the expression is attached to. First, pathNameCS is a non-empty sequence of
simple names separated by “::”. Applying rule (G) requires to check that
pathNameCS ends in className::opName() where className does occur in
the context diagram and opName() is a static operation declared in this class.
classNamemay optionally be prefixed by package names or might be implicit.
Finally, we observe that case (D) is the same as (C) only with implicit source
expression. Typically the implicit source could be the variable self.

Now let us look at the other two subclasses of feature call expressions. In
the rules to follow we skip the rule versions for implicit source expressions.

(A) PropertyCallExpCS ::= OclExpressionCS’.’
sNameCS isMarkedPreCS?

(C) PropertyCallExpCS ::= pathNameCS

Here sNameCS must match a suitable attribute name. (C) covers the case that
the attribute is static.

(A) NavigationCallExpCS ::= AssociationEndCallExpCS
(B) NavigationCallExpCS ::= AssociationClassCallExpCS
(A) AssociationEndCallExpCS ::= OclExpressionCS’.’

sNameCS(’[’argumentsCS’]’)? isMarkedPreCS?
(A) AssociationClassCallExpCS ::= OclExpressionCS’.’

sNameCS(’[’argumentsCS’]’)? isMarkedPreCS?

Note that the rules for AssociationEndExpCS and AssociationClassExpCS
are literally identical. The difference is that in the first rule sNameCS has
to match the name of an association end and in the second rule sNameCS
has to match the name of an association class available in the context UML
model. The optional arguments within square brackets take care of qualifiers
attached to association ends or classes.

This is all we want so say on feature call expressions. Next we turn to
loop expressions, consult Figure 5.6. Of the two subclasses of the metaclass
LoopExp we consider IteratorExp here and defer IterateExp to Sect. 5.2.4
on advanced topics.

(A) IteratorExpCS ::=
OclExpressionCS ’->’ sNameCS
(’(VarDecl, (’,’ VarDecl)? ’|’)? OclExpressionCS’)’

(B) IteratorExpCS ::= OclExpressionCS’.’sNameCS’(’argCS?’)’
(C) IteratorExpCS ::= OclExpressionCS’.’sNameCS
(D) IteratorExpCS ::=

OclExpressionCS’.’sNameCS (’[’argumentsCS’]’)?
(E) IteratorExpCS ::=

OclExpressionCS’.’sNameCS (’[’argumentsCS’]’)?
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Table 5.2. Iterators from the OCL standard library

exists any select

forAll one reject

isUnique collect collectNested

sortedBy

A complete listing of the built-in choices for sNameCS in (A) is shown in
Table 5.2. New iterators may be added. The following are correct iterator
expressions:

(A1) source ’->’ ’select’ ’(’ p ’|’ body ’)’
(A2) source ’->’ ’select’ ’(’ body ’)’

Assume that source evaluates to a collection s = {a1, . . . , a2}. Then the
whole expression evaluates to the subset of those elements ai ∈ s that satisfy
body. If the type of source is not a collection type it is implicitly turned into
one, with the understanding that in the evaluation an object is replaced by
the singleton set containing this object.

For the remaining rules (B) to (C) it is required that the source expressions
be of collection type. They are all shorthand notations for a collect iterator.
For example, an expression source.attribute is shorthand for

source -> collect(p | p.attribute) .

If again source evaluates to s = {a1, . . . , an}, then the result of the whole
expression is the set {ai.attribute | ai ∈ s}.

So far we have considered stand-alone OCL expressions. We now turn to
the syntax OCL offers to explicitly relate constraints to UML model elements.
We only discuss invariants, pre- and postconditions, and definitions, ignoring
initial value, derived invariants, body, and guard expressions.

The generic form of invariants is:

OCL
context (x1,..,xk:)?classPath
inv (invName)?: expression

OCL

For operations contracts the generic form looks like this:

OCL
context (x1,..,xk:)?classPath::op(p1:T1,..,pn:Tn):T
pre (prename1)?: precondition1
post (postname1)?: postcondition1

:
pre (prenamek)?: preconditionk
post (postnamek)?: postconditionk

OCL
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For definitions, the generic context is shown below, where the left-hand sides
are either variables or operation declarations:

OCL
context classPath
def: lhs1 = ex1

:
lhsk = ex2

OCL

As an example for a definition we reproduce the definition of the least com-
mon supertype from the UML metaclass Classifier that had been used in
the discussion of if expressions.

OCL
context Classifier
def: commonSuperType(c:Classifier):Classifier =

Classifier.allInstances() -> select(cst |
c.conformsTo(cst) and self.conformsTo(cst) and

not Classifier.allInstances() -> exists(t |
c.conformsTo(t) and self.conformsTo(t) and

t.conformsTo(cst) and t <> s))
-> any()

OCL

For an explanation of any() see Figure 5.5. There is also a construct for
definitions local to a single expression, e.g.:

OCL
context ATM::enterPIN(pin: Integer

pre: let cardInserted = self.insertedCard <> null
in

cardInsterted and not self.customerAuthenticated

OCL

In both constructs def and let the variable or operation to be defined may
also occur on the right-hand side, i.e., arbitrary, mutual recursive definitions
are possible.

5.2.3 OCL Semantics

We define a precise meaning for OCL expressions indirectly by translating
them to first-order logic, in some cases to dynamic logic, and then referring
to the semantics explained in Chapters 2 and 3.
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Signature

First we fix the signature of the target language. The types occurring in the
context of the OCL expressions to be translated directly constitute a type
hierarchy (T , Td, Ta,�) as defined in Sect. 2.1. This hierarchy includes the
types ⊥ and �, even though they have no corresponding OCL type. For
every type B there are the types Set(B), Sequence(B), etc. The functions
and predicates in the signature Σ of the target language are determined as
follows:

C0 C1
r0 r1

m1m0

Fig. 5.9. A generic association

1. For every binary association r between classes C0 and C1 with role names
r0, r1 and multiplicities m0, m1, see Figure 5.9, there are non-rigid func-
tion symbols in Σ with the following typing

r1 : C0 → C1 if m1 = 1
r1 : C0 → Set(C1) if m1 �= 1
r1 : C0 → Sequence(C1) if m1 �= 1 and the association end at C1

is marked � ordered�

Likewise there is a function symbol r0 : C1 → C0 if m0 = 1 etc. In case
that m0 = m1 = ∗, a binary predicate symbol r : C0 × C1 is introduced
in addition.

2. For n-ary associations r, an n-ary predicate symbol of the appropriate
typing occurs in Σ.

3. For every attribute att in class C with result type Cr , there is a unary
function att : C → Cr in Σ (if the attribute is static, the function is a
constant of type Cr).

4. For every query operation op in class C with parameters of types
C1, . . . Cn and result type Cr , there is an (n + 1)-ary function symbol
op in Σ with op : C ×C1× . . .×Cn → Cr (if the operation is a static the
typing reduces to op : C1 × . . .× Cn → Cr).

5. The signature Σ contains names for all operations in the OCL standard
library.

6. If C is an association class attached to an association r between classes
C1 and C2 then function symbols c1 : C → C1 and c2 : C → C2, or
c1 : C → Collection(C1) and c2 : C → Collection(C2) depending on the
multiplicities of association r, are available in Σ.
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All the functions and predicate symbols introduced in the above list are non-
rigid symbols.

In this presentation we use the same names for the OCL entities and
their counterparts in first-order logic with the exceptions shown in Table 5.3.
Functions and predicates introduced in predicate logic as counterparts of
functions in the OCL library are rigid symbols.

Table 5.3. Traditional names for Boolean and set operations

OCL Logic OCL Logic

not ! x.intersection(y) x ∩ y
and & x.union(y) x ∪ y
or | x.includes(y) y ∈ x
implies −> x.excludes(y) y �∈ x
x.including(y) x ∪ {y} x.includesAll(y) y ⊆ x
x.excluding(y) x \ {y} x.isEmpty() x

.
= ∅

x.excludesAll(y) x ∩ y
.
= ∅ x.notEmpty() x �= ∅

x.equals(y) x
.
= y x <> y x �= y

The expression allInstances() is a static method in the OCL standard
library. It is inherited by all types T extending OclAny, which is in particular
the case for all classifiers from the UML model. For any such T there is a
non-rigid constant T :: allInstances() of type Set(T ) in our signature Σ.

The translation of iterators will be deferred for the moment.

Semantics of Expressions Without Iterators

Once a type hierarchy and a signature Σ are fixed, we can form well-sorted
terms (⇒ Sect. 2.3). Translating OCL expressions, for the moment without
iterators, into terms of first-order typed logic amounts to nothing more than
changing from one concrete syntax to another. In addition we view Boolean
functions as predicates. The OCL expression

insertedCard <> null and not customerAuthenticated

from Figure 5.2 on page 252 now reads

insertedCard(self) �= null & ! customerAuthenticated(self) .

The context information tells us, that this expression plays the role of an
invariant. The variable self is thus implicitly understood as quantified over
all existing instances of ATM. The translation of the invariant into the KeY
input language thus is:



268 5 Formal Specification

KeY
\forall ATM x;(x.<created> ->

insertedCard(x) != null & customerAuthenticated(x))

KeY

In our logic quantification ranges over all instances of a class, also over those
not yet created. So, the restriction x.<created> had to be added to capture
the meaning of the OCL constraint correctly (⇒ Sect. 3.6.6). Since this will
happen frequently in rest of this section we use ∀̇x.φ and ∃̇x.φ as abbreviations
for ∀x.(x.<created> −> φ) and ∃x.(x.<created> & φ), respectively. The
above invariant could thus be written as:

∀̇ATM x.(insertedCard (x) ! .= null & customerAuthenticated(x)) .

In addition to what we have said so far there are also symbols f@pre in Σ
for any f ∈ Σ that is not already suffixed with @pre. Thus,

pin = insertedCard@pre.correctPIN

translates to
pin(self) = correctPIN (insertedCard@pre(self)) .

In translating associations, see again Figure 5.9, one of the function symbols
added to Σ already carries all the information. Nevertheless the redundancy
to have one function symbol for each direction is highly desirable. But, when
reasoning with terms over Σ we need axioms expressing the interrelations
between them:

∀̇C0 x.∀̇C1 y.(r1(x) .= y <−> r0(y) .= x) if m0 = m1 = 1
∀̇C0 x.∀̇C1 y.(y ∈ r1(x) <−> r0(y) .= x) if m0 = 1, m1 �= 1
∀̇C0 x.∀̇C1 y.(r1(x) .= y <−> x ∈ r0(y)) if m0 �= 1, m1 = 1

Similar formulas have to be added for multiplicities m different from 1
and ∗. Finally, we need axioms to reason about constants of the form
B::allInstances():

∀̇Object x.(x ∈ B::allInstances() <−> x �−B) .

It is important to notice that the type Set(T ) is treated on the same footing
as any other type in our first-order logic. There is no commitment that in an
interpretation I the domain I(Set(T )) consists of all (finite) subsets of I(T ).
A formula like

∀̇T x.∃̇Set(T ) u.∀T z.(z ∈ u <−> ψ(x))

need not be universally valid for arbitrary ψ. If we want certain relationships
between I(Set(T )) and I(T ) to hold, we have to add axioms to enforce it. We
insist that the basic set theoretic operations are defined and have their usual
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Table 5.4. First-order translations of some iterators

OCL e0->forAll(x | e1)

FOL ∀̇x.(x ∈ [e0] −> [e1])

OCL e0->exists(x | e1)

FOL ∃̇x.(x ∈ [e0] & [e1])

OCL e0->select(x | e1)

FOL se0,e1 (new symbol) with definition

∀̇x.(x ∈ se0,e1 <−> (x ∈ [e0] & [e1]))

OCL e0->collect(x | e1)

FOL ce0,e1 (new symbol) with definition

∀̇z.(z ∈ ce0,e1 <−> ∃̇x.(x ∈ [e0] & z
.
= [e1]))

OCL e0->isUnique(x | e1)

FOL ∀̇x.∀̇y.(x ∈ [e0] & y ∈ [e0] & [e1]
.
= {x/y}[e1] −> x

.
= y)

OCL e0->any(x | e1)

FOL skx,e0,e1 (new symbol) with definition

∃̇x.(x ∈ [e0] & [e1]) −> skx,e0,e1 ∈ [e0] & {x/skx,e0,e1}[e1]

meaning. Thus we know, that for every finite subset {t1, . . . , tn} of I(T ) there
is an s ∈ Set(T ) such that t ∈ s is exactly true for t = ti for some 1 ≤ i ≤ n.
This is known as the Henkin semantics of higher order logic. We also insist
that for every Set(T ) the following axiom is satisfied:

∀̇Object x.∀̇Set(T ) u.(x ∈ u −> x �− T ) .

Semantics of Iterators

The OCL Standard Library is not systematic in the way it defines the mean-
ing of its expressions. The union operation union(s:Set(T)):Set(T) on sets
e.g., is defined via postconditions:

OCL
post: result->forAll(elem |

self->includes(elem) or s->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: s ->forAll(elem | result->includes(elem))

OCL

It could just as well have been defined using the iterate construct:

OCL
self -> union(s : Set(T)) : Set(T) =
self -> iterate( x ; u:Set(T) = s | u->including(x))

OCL

On the other hand, select is defined in the standard as an iterator, but
could just as well have benn characterised by postconditions:
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OCL
source -> select(iterator | body)

post: result -> forAll(e | source.includes(e))
post: result -> forAll(e | body)
post: source -> forAll(e | body implies result.includes(e))

OCL

It is easy to see that in fact all iterators can be defined this way using only
forAll and exists. to translate OCL iterators into first-order logic. See the
summary in Table 5.4, where [e] denotes the first-order logic (FOL) trans-
lation of OCL expression e,2 and {x/t0}t1 is the term resulting from t1 by
replacing all occurrences of variable x by the term t0.

To illustrate how the new symbols, introduced in Table 5.4, are used, let
us reconsider the expression from the invariant (5.3) on page 254:

validCardsCount = BankCard::allInstances() ->
select(not invalid ) -> size()

which translates to

validCardsCount (self) = size(a)

plus the definition

∀̇x.(x ∈ a <−> x ∈ BankCard :: allInstances() & invalid (x)) .

Comparing the first-order logic translation of any(x|e) with its definition
in Figure 5.5 one might object that it does not take into account that the
new constant should denote the first element of its kind. But notice that
the operation asSequence is performed with respect to an unknown order.
Choosing the first element in an arbitrary order amounts to choosing an
arbitrary element.

Operation Contracts

An operation contract

OCL
context C::op()
pre: pre

post: post

OCL

2 The same notation will later be used to denote translated JML expressions, but
there will hardly be occasions for confusing both.
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is translated into the dynamic logic formula

[pre] −> 〈C::op()〉[post ] .

We notice, that this translation adopts the total correctness semantics, i.e.,
termination of the operation is required. We should also point out that the
above translation treats the contract in isolation. The whole picture would
also include invariants that can be assumed in proving the above implica-
tion (⇒ Chap. 8).

The KeY tool also offers the partial correctness semantics translation

[pre] −> [C::op()][post ]

as an option. Using the modal operator 〈〉 in the total correctness semantics
treats abrupt termination as non-termination. If you want a postcondition to
also hold after abrupt termination the contract is translated:

[pre] −> 〈try{C::op()}catch(java.lang.Throwable exc){}〉[post ] .

See also the definition of Prgop() in Sect. 8.2.3. How abrupt termination is
handled is explained in Sect. 3.6.7.

If the postcondition post contains as a subexpression a@pre(exp) the
translation is [Baar et al., 2001]:

(
[pre] & ∀̇x.(a@pre(x) .= a(x))

)
−> 〈C::op()〉[post ] .

Here, a@pre is a new function symbol, which in particular does not occur in
the body of op. On the other hand a will normally occur in the code of op. The
newly added premiss ∀̇x.(a@pre(x) .= a(x) outside the scope of the modal
operator allows one to conclude that the value of a@pre(x) after execution
of C is the value of a(x) before.

Paper

authors[*]:Person
number:Int
pages:Int
totalnumber:Int
sumpages:Int

OCL

context Paper

inv: Paper::allInstances() ->

iterate(x:Paper;y:Integer = 0|y+x.pages)

= Paper::totalnumber

OCL

Fig. 5.10. Example of a constraint with iterate

5.2.4 Advanced Topics

The Iterate Construct

As the first advanced construct we now consider the iterate construct, the
second kind of loop expression, that we had skipped in Sect. 5.2.2, see Fig-
ure 5.6 for its position within the metamodel. Figure 5.10 shows an invariant
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of the class Paper which expresses that the static attribute totalnumber of
this class equals, at all times, the sum of the pages attribute taken over all
instances in the class. The general form of an iterate expression is given in
Figure 5.11, which uses the names for association ends from the metamodel.
The following restrictions apply:

1. variable y ist different from x,
2. variable y does not occur in the term t,
3. variables x and y do not occur in t0,
4. the types of y and u coincide,
5. the type of t is a collection type Collection(S) and x is of type S.

Given a model M = (D, δ, I) and an assignments β to local variables. The
interpretation valM,β(exp) for

exp = t ->iterate(x;y = t0 | u )

is obtained as follows. Let A = {a1, . . . , an} be the evaluation valM,β(t) of
the source expression t. For the purposes of this definition, for any variable
assignment γ, we use γ[a, b] to denote

γ[a, b](z) :=






a if z = x

b if z = y

γ(z) otherwise

Using this notation we define

β1 = β[a1, valM,β(t0)]
βk+1 = βk[ak+1, valM,βk

(u)] for k < n

Then, valM,β(exp) = valM,βn(u).
This definition depends in general on the ordering of the set {a1, . . . , an}.

If t is of type Sequence then, naturally, we use the order given by the sequence.
In the other cases, it is the responsibility of the user to ensure independence
from the order of evaluation.

All iterator expressions can in fact be defined in terms of an iterate ex-
pression, see Figure 5.5 below. The OCL standard is not systematic with
respect to the definition of set theoretic operations. The union of two sets,
e.g., is specified by an operation contract, but could just as well have been
defined using iterate. The select operation on the other hand is defined
via iterate, but could just as well have been specified by a postcondition.

We strongly recommend to avoid iterate expressions in OCL specifica-
tions, they are hard to read, they are at a low level of abstraction and they
put an excessive burden on verification. If need arises, a new iterator could be
defined. Its definition may use the iterate construct but in the specification
only the iterator occurs.
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iterator variable expr of sort T , initial expr

source expression t -> iterate(x : S; y : T = t0 | u)

result variable expr of sort T , body

Fig. 5.11. Syntax of the iterate construct

Table 5.5. Definitions for some iterators

t->forAll(x|a) = t -> iterate(x;y = true| y and a )

t->exists(x|a) = t -> iterate(x;y = false| or a )

t-> collectNested(x|u) = t -> iterate(x;y = Bag{} |

y ->including(u))

t->collect(x|u) = t->collectNested(x|u) -> flatten()

t->select(x|a) = t-> iterate(x;y = Collection{} |

if a then y.including(x) else y

t->any(x|e) = t->select(x|e)-> asSequence()-> first()

t-> flatten() a = if

t.type.elementType.

oclIsKindOf(CollectionType)

then

t -> iterate(c;acc:Bag = Bag{} |

acc -> union(c->asBag))

else

t

endif

a This is the definition from the OCL standard, which only works for set
nestings of level 2.

collectNested

In OCL2.0 the collect operation is defined via the more general operation
called collectNested. The expression

self.role -> collectNested( r | r.assigned_users) ,

similar to the one considered in OCL example 5.4 on page 256, evaluates to
{U1, . . . , Uk} if for r = ri the OCL expression r.assigned_users evaluates
to a set Ui.
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Type Dependent Operations

There are three families of operators defined in OclAny that depend on types.

1. oclAsType(T:TypeExp):OclAny→ T
2. oclIsTypeOf(T:TypeExp):OclAny→ Boolean
3. oclIsKindOf(T:TypeExp):OclAny→ Boolean

Note, that the type expression is not an argument to these operations. It can
be viewed as part of the operation’s name. Translations to first-order logic
are straight forward:

[e.oclAsType(T:TypeExp)] = (T)[e]
[e.oclIsTypeOf(T:TypeExp)] = [e] �−− T

[e.oclIsKindOf(T:TypeExp)] = [e] �− T

Exceptions in OCL

In contrast to JML (⇒ Sect. 5.3), the OCL language does not offer built-
in support for talking about exceptions. This can be remedied by adding
a new Boolean attribute excThrown(’T:TypeExp’) to any class. Types are
attached to the excThrown attribute in the same way types are attached to
the operations in the previous section.3

The use of excThrown only makes sense in the later stages of design when,
e.g., the classes in the design model can be related to JAVA classes. The type T
should then be a subtype of Exception. The easiest way to technically realize
the use of excThrown would then be to automatically add the corresponding
attribute excThrown to the JAVA class Object. Also excThrown can only be
used in postconditions. A constraint

OCL
context C0::op(x1:D1,..,xn:Dn):C1
pre: e0
post: e1

OCL

with excThrown(’T1:TypeExp’), . . . , excThrown(’Tk:TypeExp’) occurring
in the postcondition e1 is translated into the dynamic logic proof obligation

KeY
==>
\forall T1 x1; .. \forall Tn xn;(

x1.<created> & .. & xn.<created> & [e0]
->

3 This feature is at the time of this writing only implemented in a simplified form
in KeY.
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\< boolean thrownT1 = false;
:
boolean thrownTk = false;
try {C0::self.op(x1,..,xn);}
catch (java.lang.Throwable exc) {
thrownT1 = exc instanceof T1;
:
thrownTk = exc instanceof Tk; }

\>

[e1]*

KeY

JAVA

/**

* @postconditions self.x< 0 implies

* excThrown(’IllegalArgumentException’)

*/

public void positive()

throws IllegalArgumentException {

if (this.x >= 0) { do something; }

else { throw new IllegalArgumentException(); };

}

JAVA

Fig. 5.12. Postcondition referring to exceptions

Here thrownTi are new local Boolean program variables, whose names are
composed of the string Thrown appended with the string Ti, and [e1]*
arises from [e1] by replacing all occurrences of excThrown(’Ti:TypeExp’)
by thrownTi.

Figure 5.12 contains a concrete example of a JAVA program with a post-
condition that refers to exceptions. For a change we have used a different way
to attach an OCL condition to an operation, i.e., by placing it as a specially
tagged comment directly into JAVA code in front of the method it refers to.
Here is the translated proof obligation in dynamic logic:

KeY
\< boolean thrownIllegalArgumentException = false;

try { TrivialExc()::self.positive (); }
catch (java.lang.Throwable thrownExc) {

thrownIllegalArgumentException=thrownExc
instanceof java.lang.IllegalArgumentException; }

\> (self.x < 0 -> thrownIllegalArgumentException = TRUE)

KeY
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Another example program of the same kind is shown in Figure 5.13 with the
following dynamic logic proof obligation:

KeY
==>
\< boolean thrownIllegalArgumentException = false;

try { TrivialExc1()::self.positive (); }
catch (java.lang.Throwable thrownExc) {

thrownIllegalArgumentException=thrownExc
instanceof java.lang.IllegalArgumentException; }

\> thrownIllegalArgumentException != TRUE

KeY

JAVA

/**

* @postconditions not excThrown(’IllegalArgumentException’)

*/

public void positive()

throws IllegalArgumentException {

try{

if (this.x >= 0) { this.b = true; }

else { throw new IllegalArgumentException(); }

} catch (java.lang.Throwable exc) {

this.b = false;

}

}

JAVA

Fig. 5.13. Another postcondition referring to exceptions

Miscellaneous

In the OCL constraints throughout this chapter, we frequently made use
of the constant null. We extended OCL by assuming that any UML class
diagram implicitly contains a class Null that is a subclass of every existing
class in the diagram and whose only element is null. For all attributes attr
that Null inherits the value of null.attr is undefined. Since OCL2.0 there
is now an OCL type OclVoid that is the only instance of the metaclass
VoidType and in turn contains as only element the object null. So, you
could identify the types Null and OclVoid if you wished. We think of our
solution as a first step towards defining an OCL profile for JAVA specification.
We stick to it for the moment till the discussion on what is in general regarded
as a null object has reached a consensus.



5.3 JAVA Modeling Language 277

The OCL standard uses a three-valued logic to treat undefinedness. We
deviate from this. In our logic all functions are total and undefinedness is
handled by underspecification as explained in the sidebar 3.3.1 on page 90.
See also Sect. refsect11:partmod.

If a and b are inherited attributes in class Null then in all snapshots
null.a and null.b are defined, but we have no information on what the
values are. Thus neither null.a = null.b nor null.a != null.b are valid.
For a comparison of the various logical approaches to formalise undefinedness
we recommend [Hähnle, 2005]. We want to emphasise that our semantics,
defined by the translation into first-order logic faithfully models OCL in that
an expression is undefined according to the OCL standard if and only if it is
undefined in our translation semantics. The first difference is that we do not
have an equivalent of the instance invalid which is the only element of the
OCL type OclInvalid. The use of invalid can be easily avoided by using
the query oclIsInvalid() on the the type OclAny. The second difference lies
in the logic employed to deal with undefined statements. OCL uses a three-
valued logic while KeY uses classical two-valued logic with underspecification.

5.3 JAVA Modeling Language

An increasingly popular specification language for JAVA projects is the JAVA

Modeling Language, JML. Unlike UML the language is not standardised by
an organisation like the OMG, the development is more a community effort
lead by Gary T. Leavens, Iowa State University.4 The nature of such a project
entails that language details change, sometimes rapidly, over time and there
is no ultimate reference for JML. Fortunately, for the items that we address in
this introduction, the syntax and semantics are for the greatest part already
settled in [Leavens et al., 2006]. Basic design decisions and extensive examples
are described in [Leavens et al., 2003].

As the major difference to UML/OCL, JML focuses solely on the phases
of software development in which source code is written. Moreover the only
supported programming language is JAVA. JML talks directly about JAVA

classes represented in source files. There is no need for separate UML class
diagrams. Since specifications may also serve the purpose of documenting a
program, it is most natural that specifications are directly annotated to the
entities to which they refer. So if we have a class invariant for a JAVA class
C, the JML representation of the invariant is directly written as comment
(somewhat in the style of a Javadoc comment) into the class declaration
of C. If it is not desired to include specifications into source code, it is also
possible to add JML specifications in extra files, which contain copies of the
source file signatures.

4 See www.jmlspecs.org
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The close integration of JML with JAVA allows one to use JAVA expressions,
for instance the side-effect free boolean expression atm.wrongPINCounter==0,
directly in invariants and operation contracts. This possibility makes writing
specifications easily accessible for developers acquainted with JAVA. More-
over, JML is more easily adapted to the JAVA specific issues, such as abrupt
termination.

In this section we start, as in the previous section, with some illuminating
examples from our ATM scenario, before a more thorough introduction to
JML’s syntax and semantics follows.

5.3.1 JML by Example

Consider now a design phase in which concrete JAVA code has been written
for a realisation of the ATM scenario. We assume that a JAVA class ATM is part
of it. Immediately preceding its method enterPIN, the JML representation
of the operation contract described in Sect. 5.1.1 is annotated as a comment
starting with the symbol @. It has become customary to also end a JML
comment with @ though this is not mandatory.

This can be seen in the listing in Fig. 5.14. At a first glance, we see that
the JML specification from lines 9 to 40 contains three blocks, each start-
ing with public normal_behavior. These blocks represent three operation
contracts as introduced in Sect. 5.1.1. In JML terminology operation con-
tracts are called specification cases while contract refers to the collection of
all specification cases; we continue to stick with the term operation contract.
JML annotations come together with visibility modifiers subject to the same
rules as in JAVA. These have no bearing on the semantics, the meaning of a
public contract is the same as that of a private contract. On the other
hand visibility modifiers are in many cases helpful to formulate sensible con-
tracts. JML adopts the principle that a public invariant is not allowed to
talk about private fields.

The JML keyword normal_behavior states that the contract implicitly
includes the requirement that the method must not throw an exception.

Let us look more closely at the third operation contract (lines 30 to 39).
There are three keywords starting clauses that are terminated by a semicolon:

requires The condition following this keyword describes a precondition of
the contract. More precisely, the conjunction of all these conditions forms
the precondition of the operation contract. The expression following the
first requires clause on line 10 resembles a JAVA expression, and its
meaning is in fact that of a boolean JAVA expression. So this part of
the precondition says that before calling enterPIN the insertedCard
field must not be null, in order to ensure the assertions formalised in
this contract. Alternatively, instead of expressing the precondition of the
operation contract in separate clauses, one could have equivalently used
the and-operator && and written (replacing lines 31 to 34):
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JAVA + JML

1 public class ATM {

2

3 private /*@ spec_public @*/

4 BankCard insertedCard = null;

5 private /*@ spec_public @*/

6 boolean customerAuthenticated = false;

7

8

9 /*@ public normal_behavior

10 requires insertedCard != null;

11 requires !customerAuthenticated;

12 requires pin == insertedCard.correctPIN;

13 assignable customerAuthenticated;

14 ensures customerAuthenticated;

15

16 also

17

18 public normal_behavior

19 requires insertedCard != null;

20 requires !customerAuthenticated;

21 requires pin != insertedCard.correctPIN;

22 requires wrongPINCounter < 2;

23 assignable wrongPINCounter;

24 ensures wrongPINCounter

25 == \old(wrongPINCounter) + 1;

26 ensures !customerAuthenticated;

27

28 also

29

30 public normal_behavior

31 requires insertedCard != null;

32 requires !customerAuthenticated;

33 requires pin != insertedCard.correctPIN;

34 requires wrongPINCounter >= 2;

35 assignable insertedCard, wrongPINCounter,

36 insertedCard.invalid;

37 ensures insertedCard == null;

38 ensures \old(insertedCard).invalid;

39 ensures !customerAuthenticated;

40 @*/

41 public void enterPIN (int pin) {

42 // here the implementation follows

JAVA + JML

Fig. 5.14. A JML specification for enterPIN
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JML (5.5)
requires insertedCard != null

&& !customerAuthenticated

&& pin != insertedCard.correctPIN

&& wrongPINCounter >= 2;

JML

ensures All boolean expressions of an operation contract following this key-
word form (again in the sense of a conjunction) the postcondition of the
contract. Our first example of a JML expression which is no JAVA ex-
pression turns up in line 38; here \old occurs. Keywords special to JML
within expressions, like \old, start with a backslash. This one serves the
same purpose as the @pre construct. Unlike @pre it refers to a whole
expression. So \old(insertedCard) refers to the value of insertedCard
before executing enterPIN. There are some subtle problems with this
way of referring to pre states which we discuss later in Sect. 5.4.

assignable This keyword is followed by a list (items separated with a
comma) of what is allowed to change during the execution of the method.
JML does not allow temporary modifications of the specified location dur-
ing the call deviating from the definition of modifies clauses in Sect. 3.7.4.

The JML contracts in Fig. 5.14 though marked public refer to the pri-
vate field insertedCard. This is not a legal JML expression and any correct
checker would reject it. To override the default we may declare a private JAVA

field to be treated by the specification as if it were public by the annotation
/*@ spec_public @*/. For the insertedCard field this was done in line 3
in Fig. 5.14. We could have omitted the keywords public normal_behavior
because JML would assume them by default.

Clearly something is wrong if enterPIN is called but insertedCard is still
equal to null. In the contracts we have seen so far the caller of the method
is responsible to establish this precondition. If he does not, then no commit-
ment is made. We could however decide otherwise and require that if the pre-
condition is not met an exception of a type ATMException is thrown and no
customer is authenticated. This could be specified in JML with the help of
exceptional_behavior, a signals_only clause and a signals clause:

JAVA + JML (5.6)
/*@ (* the contracts as defined above *)

@ also public exceptional_behavior

@ requires insertedCard==null;
@ signals_only ATMException;
@ signals (ATMException) !customerAuthenticated;
@*/

public void enterPIN (int pin) {
// here the implementation follows

JAVA + JML
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The signals_only clause says that only exceptions of type ATMException
must be thrown and the signals clause specifies that in the case of a thrown
ATMException the customerAuthenticated field is set to false.

Another detail worth mentioning already here is the use of side-effect free
and terminating methods in JML expressions. This is, as was the case with
OCL, perfectly legal. Such methods are called pure in JML terminology and
must be annotated with the keyword /*@ pure @*/. We could, e.g., add the
following method, which is clearly pure, in class ATM:

JAVA + JML
public /*@ pure @*/ boolean cardIsInserted() {
return insertedCard!=null;

}

JAVA + JML

Now cardIsInserted() could replace insertedCard != null in all the con-
tracts above.

The next example shows how invariants are written in JML. Again we want
to formalise the property that different cards have different card numbers,
compare the OCL constraint (5.2) on page 253. Clearly, this requires means
that go beyond JAVA expressions. Universal quantification, syntactically quite
similar to first-order logic, is used. The range of the quantification must only
include the objects which are created. This can be achieved with the help of
the expression \created(o), which says that o is a created object. Since the
resulting expression does not depend on one particular instance of BankCard
it is referred to as a static invariant. The whole annotation to the class
BankCard now reads:

JAVA + JML (5.7)
public class BankCard {

/*@ public static invariant

@ (\forall BankCard p1, p2;
@ \created(p1) && \created(p2);
@ p1!=p2 ==> p1.cardNumber!=p2.cardNumber)
@*/
private /*@ spec_public @*/ int cardNumber;
// rest of class follows

}

JAVA + JML

Opposed to static invariants are instance invariants. They formalise proper-
ties of a particular instance, referred to by this. The OCL invariant (5.3)
from page 254 on the class CentralHost reads in JML as follows:
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JAVA + JML (5.8)
public class CentralHost {

/*@ public instance invariant this.validCardsCount
@ == (\num_of BankCard p; !p.invalid)
@*/

}

JAVA + JML

As in JAVA we could have skipped this in this.validCardsCount. An in-
stance invariant contains an implicit universal quantification in that it re-
quires that the stated property must evaluate to true for all created objects
of its class.

We could use this to rewrite the JML static invariant (5.7) into an equiv-
alent instance invariant:

JAVA + JML (5.9)
public class BankCard {

/*@ public instance invariant

@ (\forall BankCard p; this != p ==>
this.cardNumber != p.cardNumber)

@*/
private /*@ spec_public @*/ int cardNumber;
// rest of class follows

}

JAVA + JML

5.3.2 JML Expressions

Every JAVA expression according to Gosling et al. [2000] that does not include
operators with side-effect, like e++, e--, ++e, --e, non-pure method invoca-
tion expressions, and assignment operators, is a JML expression. Any such
expression e has a natural representation in KeY’s first-order logic, which we
denote by [e]. The JML reference manual [Leavens et al., 2006] does not con-
tain a formal semantics of JML. The paper [Jacobs and Poll, 2001] roughly
sketches a semantics of JML expressions in a higher-order logic that is a
common abstraction of PVS and Isabelle/HOL.

The translation to first-order logic serves us as a precise definition of the
meaning of JML expression. In Table 5.6, the mapping e � [e] is defined for
JML expressions e0, e1, and e2.

For example, the JML expression

insertedCard != null && !customerAuthenticated;

is translated as follows to first-order logic:
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Table 5.6. Mapping from JML and JAVA expressions to FOL (selected items)

JML Expression first-order logic formula

!e0 ![e0]
e0 && e1 [e0] & [e1]
e0 || e1 [e0] | [e1]
e0?e1:e2 if [e0] then [e1] else [e2]
e0 != e1 !([e0]

.
= [e1])

e0 >= e1 [e0] >= [e1]

!(o.insertedCard .= null) & ! o.customerAuthenticated .= TRUE .

Note that this formula contains free occurrences of a variable o of type ATM,
which is the this type the JML expression refers to.

Moreover JML introduces operators to express implication (==>) and log-
ical equivalence (<==>).

Finally JML extends JAVA by quantified expressions. We have already seen
an example of universal quantification at work in the JML annotation (5.7).
Existential quantification works analogously. Table 5.7 summarises the first-
order logic translations of these expressions. Note that quantifiers bind two
expressions, the range predicate and the body expression with the seman-
tics shown in the first-order logic column. A missing range predicate is by
default true. Quantifiers are meant to range over all objects including the
not yet created ones. This is in accordance with our definition of quantifica-
tion in Sect. 3.3. In contrast to that, JML excludes null from the range of
quantification.

Table 5.7. Mapping from new JML expressions to first-order logic (selected items)

JML Expression first-order logic formula

e0 ==> e1 [e0] −> [e1]
e0 <==> e1 [e0] <−> [e1]
(\forall T e;e0;e1) \forall T e; (([e] !

.
= null & [e0]) −> [e1])

(\exists T e;e0;e1) \exists T e; ([e] !
.
= null & [e0] & [e1])

In addition to these traditional quantifiers JML offers so called generalised
and numerical quantifiers. We have already seen the \num_of quantifier which
delivers the number of values of its quantified variable for which the ex-
pression in the second argument is true. Other such quantifiers are \sum,
\product, \min, and \max. Translations of these expressions have to be done
similarly as for OCL (see Sect. 5.2.3).

More on the translation of JML expressions can be found in [Engel, 2005].
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5.3.3 Operation Contracts in JML

We now turn our attention to operation contracts in JML. We have al-
ready encountered operation contracts starting with normal_behavior and
exceptional_behavior in Figure 5.14. These are, in fact, special cases of
a general contract concept starting with the keyword behavior which we
discuss now.

An operation contract consists of a number of clauses each starting with
one of the keywords requires, assignable, ensures, diverges, signals,
or signals_only.

The boolean expressions following the requires clauses specify (seen as
a conjunction) the preconditions of the operation contract. All other clauses
must be true only under the provision that all requires clauses hold.

The postcondition of an operation contract is spread over the ensures,
signals, and signals_only clauses. ensures describes the postcondition in
the case of normal termination of the operation. That is, if the operation
terminates normally then all the boolean expressions following ensures must
hold. The signals clause specifies what happens if the operation terminates
abruptly. signals is not directly followed by a JML expression. Instead there
is first a declaration of an exception type T , and then a boolean JML expres-
sion e. If abrupt termination is caused by an exception of type T then e must
be true in the post-state. Note that e does not specify the condition which
triggers the specified expression to be thrown; such conditions can be stated
in the requires clause of an operation contract. Finally signals_only lists
the types of exceptions that may at most be thrown by a method. As we have
done for JML expressions, we can define the meaning of a JML postcondi-
tion by translating them into the first-order fragment of JAVA CARD DL. The
postcondition of a contract

JML
ensures E;

signals (ET1) S1;

...

signals (ETn) Sn;

signals_only OT1,. . .,OTm;

JML

is translated into

( e .= null −> [E])
& ( e �− [ET1]

.= TRUE −> [S1])
. . .

& ( e �− [ETn] .= TRUE −> [Sn])
& ( e �− [OE1]

.= TRUE |
. . .
| e �− [OEm] .= TRUE)
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We assume in this translation that the operation stores a thrown exception
causing abrupt termination in the variable e. If the operation terminates
normally then e equals null.

assignable is followed by a list of expressions which specify locations of
the program. When these expressions are translated into our first-order logic,
the top-level operator must be a non-rigid function symbol representing a field
symbol or an array access. As special symbols we allow the JML expressions
\nothing (which is equivalent to the empty modifies set) and \everything
(which means that every location is allowed to be modified). The semantics
of assignable clauses follows Definition 3.62. The diverges clause consists
again of a boolean JML expression. It specifies the condition which must hold
before calling the operation if the operation does not terminate. This sounds
complicated but fortunately in practice and also as a matter of normalisation
this can be reduced to two cases. As one case, we specify diverges false,
then, in case of non-termination, false must have been satisfied before the
operation call. This is never the case. Thus, diverges false requires the
operation to terminate. On the other hand one could specify diverges true,
then non-termination is always allowed. It is quite easy to figure out, that we
can use appropriate requires clauses and these two incarnations of diverges
to express all termination behaviour we may desire.

We can summarise the requirements imposed by an operation contract
for an operation op as follows: When op is called in any state that satisfies
all the requires clauses then:

• If op terminates normally then all ensures clauses are satisfied.
• If op terminates abruptly with an exception of type ET then

– all signals(ET ′) clauses for exception types ET ′ where ET is a
subtype of ET ′ are satisfied and

– there is a signals_only(ET ′′) clause such that ET is a subtype of
ET ′′.

• If op terminates (either normally or abruptly) then at most the locations
specified by assignable are modified compared to the pre-state.

• If op does not terminate, then the diverges condition has been true before
calling op.

Figure 5.15 depicts the meaning of the special contracts normal_behavior
and exceptional_behavior in terms of behavior contracts. Abbreviations,
like the use of normal_behavior instead of a more verbose behavior, oc-
cur quite often in JML, and the process of resolving them is referred to as
desugaring. Extending this scheme to specification cases with more than one
occurrence of the different clauses can naturally be done.

Some JML operation contracts even have no behavior, normal_behavior,
or exceptional_behavior header at all. Instead they start with clauses (like
requires, ensures, etc.) directly. Such operation contracts are called light-
weight in JML jargon. All others are called heavyweight. There is only a
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normal_behavior

requires R;

assignable A;

ensures E;

diverges D;

=⇒

behavior

requires R;

assignable A;

ensures E;

diverges D;

signals (Exception) false;

exceptional_behavior

requires R;

assignable A;

diverges D;

signals (ET) S;
signals_only (OT);

=⇒

behavior

requires R;

assignable A;

ensures false;

diverges D;

signals (E) S;
signals_only (OT);

Fig. 5.15. Desugaring of normal_behavior and exceptional_behavior

small semantical difference of lightweight specifications compared to heavy-
weight specifications starting with behavior. In lightweight specifications
most missing clauses default to \not_specified, which leaves different JML
tools different options to treat the missing items. In KeY, always the same de-
faults as for heavyweight specifications are used. See Table 5.8 for lightweight
and heavyweight defaults. The choices correspond to Table 5.1 in Sect. 5.1.

Table 5.8. Defaults for missing JML clauses

Clause Lightweight default Heavyweight default

requires \not_specified true

assignable \not_specified \everything

ensures \not_specified true

diverges false false

signals \not_specified (Exception)true

signals_only All exception types declared in the JAVA

method declaration

We have already seen in the introductory examples that, when describing
post-states, one needs to refer to the state before the method invocation.
The ensures and signals clauses describe post-states so that the JML ex-
pressions used in these clauses may include the \old construct.

With /*@ pure @*/ annotations, implicit additions to all operation con-
tracts are implied. This can again be seen as a de-sugaring. The operation
contracts for an operation annotated with /*@ pure @*/ are equivalent to
adding assignable \nothing and diverges false to all operation con-
tracts which are available for the constrained operation.
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JML dictates a stricter rule of inheritance of operation contracts than
required in Sect. 5.1. Every contract for a method automatically applies
to overridden methods, too. Syntactically this is signified by the fact that
contracts for overridden methods must start with also, the keyword which
conjoins several contracts for an operation. The contract inheritance policy
has the effect that all subtypes of a type T are behavioural subtypes (see
Sect. 8.1.3) of T [Leavens and Dhara, 2000].

5.3.4 Invariants in JML

JML distinguishes two types of class invariants: instance invariants and static
invariants.

An instance invariant is a boolean JML expression containing explic-
itly or implicitly the variable this. An instance invariant is satisfied in a
program state if it always evaluates to true when the value of this ranges
over all instances of its class. Syntactically, instance invariants are comments
(as usual, starting and ending with @) which are explicitly marked with
instance invariant or, if the targeted type is a class, just as invariant.

As illustrated in Sect. 5.3.2, we can translate boolean JML expressions
into first-order logic formulae. The characteristic property of instance in-
variants is that there is a free variable in the resulting formulae. Consider
the JML invariant (5.9) in Sect. 5.3.1. It could be represented as follows as
first-order logic formula containing a program variable o of type BankCard:

KeY
\forall BankCard p; p.<created> = TRUE ->

o != p -> o.cardNumber != p.cardNumber

KeY

The variable o is, according to the semantics of invariants, implicitly univer-
sally quantified over all created objects of the respective type. For a uniform
treatment of invariants, we make this quantification explicit. We obtain closed
formulae. If φ is the “raw” translation of a boolean JML expression in an in-
variant and if o is the occurring free variable of type T , then

\forall T o; (o.<created> .= true −> φ)

is defined to be the translation of the JML invariant. The translation of our
example yields:

KeY
\forall Bankcard o; \forall Bankcard p;

( o.<created>=TRUE & p.<created>=TRUE & o != p
-> o.cardNumber != p.cardNumber )

KeY
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According to Leavens et al. [2006], instance invariants defined in a class C
must hold at any visible state for any object o of C. Visible states for an
object o are the states reached when a method of o (this includes non-static
methods and static methods declared in C or a super class) is invoked or
finished or when a constructor of o is finished. A further visible state is
when no method or constructor of o is in progress. The latter means that
invariants must be established, according to JML, when in a method of o
another method is called. JML thus requires invariants to hold at intermediate
states of an operation. In Chapter 8 we will deviate from the visible state
semantics of JML, since it is overly strong to require invariants to hold at
intermediate states.

The semantics of invariants is liberalised by the possibility of JML to
declare methods with /*@ helper @*/. It is not required that invariants
hold at the entry and exit states of such helper methods.

Static invariants do not refer to a special instance of the class they are
defined in. This implies that static invariants can only refer to instance fields
via quantification as in the example of the static invariant in Sect. 5.3.1.
We have seen there that it was in that case possible to replace it with an
equivalent instance invariant (5.9). So are static invariants necessary at all?
Imagine we want to express that the static integer field maxAccountNumber
in class CentralHost is always greater or equal to 0. Then we want to require
this condition even in states in which no object of CentralHost is created at
all. So it is of no use to add an instance invariant

JAVA + JML
public class CentralHost {
/*@ public instance invariant maxAccountNumber >= 0 @*/

//...

JAVA + JML

which would need to hold only after the constructor call of the first instance
of this class is finished. The following static invariant

JAVA + JML
public class CentralHost {
/*@ public static invariant maxAccountNumber >= 0 @*/

//...

JAVA + JML

must however hold already after the static initialisation of CentralHost has
finished, which is the desired property.

Static invariants must be explicitly declared as static (as above) or they
are written into an interface declaration and just start with invariant.
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5.3.5 Model Fields and Model Methods

The operation contracts and instance invariants we have seen so far may
only talk about instance (and static) fields occurring in the JAVA program
they annotate. Since instance fields may only occur in classes and not in
interfaces, how would we write operation contracts and instance invariants
for interfaces?

In our banking scenario we could extend the simple BankCard class into
a card which allows one to collect bonus points as well. Whenever certain
transactions are done with the card, a counter bankCardPoints on the card
is increased. We also foresee the situation that the bonus point system will
be used with other cards from other vendors than our bank. It may thus
be a good idea to separate the interface of accessing bonus points from the
BankCard class. We use a JAVA interface IBonusCard, which BankCard im-
plements. A JAVA interface is definitely the best choice since we do not want
to provide implementations, as for instance in an abstract class, for the other
vendors, just the mere interface:

JAVA

public interface IBonusCard {
public void addBonus(int newBonusPoints);

}

JAVA

As already mentioned, we may wonder how to add a suitable specification,
since there are no fields to talk about in a JAVA interface. Here JML model
fields are the solution. We simply assume that a field representing bonus
points was available. Let us call it bonusPoints of type int. Since it is not
a true field and just for specification purposes, we add it (as usual in JML)
as comment and qualified with the key word model. In specifications, as in
the operation contract for addBonus this field may then be referred to:

JAVA + JML
public interface IBonusCard {

/*@ public instance model int bonusPoints; @*/

/*@ ensures bonusPoints == \old(bonusPoints)+newBonusPoints;
@ assignable bonusPoints;
@ */

public void addBonus(int newBonusPoints);
}

JAVA + JML

The specification says that the bonus points are increased by the number
given as argument in the method addBonus.
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You may wonder how we can relate concrete implementations like that of
BankCard with model fields. Let us consider the implementation of addBonus
in BankCard:

JAVA

public class BankCard implements IBonusCard{
/*@ public instance model int bonusPoints; @*/

/*@ also

@ assignable bankCardPoints;

@*/

public void addBonus(int newBonusPoints) {
bankCardPoints+=newBonusPoints;

}
}

JAVA

Since JML operation contracts are inherited, the contract in IBonusCard
is implicitly present at this method, but it specifies the change of field
bonusPoints not that of bankCardPoints as the implementation does. We
thus need to specify the relation between the concrete field and the model
field. In our case the relation is simple: bonusPoints exactly corresponds to
bankCardPoints; whenever we refer to bonusPoints in a specification, we
mean bankCardPoints in the implementation. This is how we denote this in
JML, added directly after the header of the class declaration:

JML (5.10)
/*@ private represents bonusPoints <- bankCardPoints; @*/

JML

The expression on the right side could in fact also be a more complicated
expression. If for some reason the points stored on the bank card are 100
times the points credited by the addBonus method we could write:

JML
/*@ private represents bonusPoints <- bankCardPoints * 100;
@*/

JML

In our translation to first-order logic, we can simply replace every occurrence
of the model field with the expression

The represents clauses so far are called functional abstractions since the
relation between model field and concrete field(s) is a function. There are
also relational abstractions

JML
/*@ represents x \such_that A(x); @*/

JML
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which relate concrete fields with the model field x; the relation must satisfy
the axiom A(x). The functional abstraction (5.10) can thus also be expressed
as relational abstraction:

JML
/*@ private represents bonusPoints

\such_that bonusPoints==bankCardPoints;
@*/

JML

As Breunesse and Poll [2003] point out, the translation of model fields into a
logical representation is non-trivial if A(x) is not a function of x or if it is not
a total function. KeY roughly follows one of the solutions in that paper: All
occurrences of the model field in an expression are replaced by occurrences of
a reference to a pure (“model”) method m with no arguments and the same
result type as the type of the model method. Method m is specified with an
operation contract which (a) requires in its precondition that there is an x
such that A(x) holds, and (b) ensures that the result r of m satisfies A(r).

5.3.6 Supporting Verification with Annotations

All JML annotations considered so far are obligations for verification: We are
aiming to prove that the program satisfies the given specification. There are
also other kinds of annotations which can be considered more as helpers for
the verification process, such as loop invariants. For the program (3.1) on
page 155 a loop invariant could be specified with JML as follows.

JAVA + JML
m = a[0]; i = 1;
while (i < a.length) {

/*@ ensures \forall integer x;0 != x && x < i ;a[x] <= m;
@ assignable m, i;
@ */

if (a[i] < m) then
m = a[i];

i++;
}

JAVA + JML

This example also shows the use of the assignable clause for loop bodies.
This is at the time of this writing not a part of the official JML syntax, but
is expected to be included soon.
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5.4 Comparing OCL and JML

Advantages of OCL over JML:

1. OCL lives on a higher level of abstraction. A UML diagram can be an-
notated with OCL constraints before code is developed. Automatic gen-
eration of constraints from patterns (described in Chapter 6) as well as
editing constraints parallel to natural language phrases (as detailed in
Chapter 7) would be much harder if not impossible on code level.

2. As a consequence of the previous item, OCL is not committed to a par-
ticular programming language and better suited for model driven system
development.

3. OCL is an OMG standard, though one has to admit that at the time of
this writing the official standard draft still contains serious inconsistencies
and many unfinished items.

Advantages of JML over OCL

1. JML is closer to JAVA code, which encourages its use by programmers and
developers. In fact, today JML specifications are much more widespread
than OCL specifications.

2. JML offers a greater variety of concepts on the implementation level, like
exceptional behaviour, modifies clauses, and loop invariants.

JML is not standardised and its specification document is still very incom-
plete.

Referring to the Pre-state

It is a detail, but nevertheless instructive to compare the differences in re-
ferring to values in pre-states in OCL and JML, i.e., to compare OCL’s
@pre construct with JML’s \old. The former can be attached to individ-
ual symbols while the second can only be applied to whole expressions. So,
o@pre.b@pre.c@pre, o.b@pre.c@pre, o.b.c@pre, o@pre.b.c@pre are all le-
gal OCL expressions while only \old(o.b.c) is allowed in JML, and would
correspond to the first of the OCL expressions. The JML proponents argue
that the explicit scoping of the \old construct make it easier to read. A
more substantial difference is the fact, that the @pre construct is hard to
implement for run-time checking in full generality. A drawback of the \old
construct comes to the surface in the following specification problem. Sup-
pose you want to state in a postcondition to a method m manipulating an
array a[] and a field idx that the value a[0] equals the old value of the
array at position idx. Now, \old(a[idx]) would not do, since the value of
idx in the pre-state would be used. We resorted to

JML
(\forall int x; x==idx; \old(a[x])==a[0]);

JML
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On the other hand, one has to admit that OCL does not offer a built-in
construct to model JAVA arrays. The sequence data type does not fit since it
does not take into account that JAVA arrays are objects and also it declares
operations, e.g., union or append, that do not make sense for arrays. As an
extension of OCL we introduced functions a.get(i) and a.length(i) for
array object a and integer i. The above discussed expression can now easily
be written as a.get@pre(i).

Modifies Clauses

Our semantics of the assignable or modifies clause deviates slightly from the
semantics in JML. In the JML semantics, only the locations listed in the
assignable clause can be assigned to during method execution. In the KeY
semantics the locations contained in the modifier terms may be assigned to,
it is only important that in the end the terms have the same value as before.
We found no clear statement on OCL’s position on the frame problem. The
unofficial position seem to be that it is assumed that locations not contained
in the postcondition cannot change. In [Baar, 2006] explicit extension of OCL
to deal with the frame problem are proposed.

Range of Quantification

In JML, quantification extends over all elements of a given type and not only
over all created or allocated elements. Since our logic uses the same semantics
the static JML invariant (5.7) translates in

∀p1.∀p2.(p1 ! .= p2 −> p1.cardNumber ! .= p2.cardNumber)

where p1, p2 are variables of type BankCard. The instance JML invariant (5.9)
on the other hand translates to

∀this.(this.<created>−> ∀p.(this ! .= p −>
this.cardNumber ! .= p.cardNumber))

This discrepancy is attributable to the fact that implicit quantification of the
variable this is treated differently from explicitly quantified variables; they
are only meant to range over existing elements.

For a not created BankCard o, the value of o.cardNumber should be unde-
fined. The validity of the two formulae above now depends on how undefined-
ness is modelled. In our logic we model undefinedness by underspecification
which would make both formulae invalid.

In our logic we express the intended invariant by

∀p1.∀p2.(p1.<created> & p2.<created> −> (p1 ! .= p2 −>
p1.cardNumber ! .= p2.cardNumber))
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The JML community is at the time of this writing considering the introduc-
tion of an attribute similar to <created>.

The shown first-order formula is also the correct translation of the OCL
constraint (5.2). The OCL method A::allInstances() returns the set of all
existing instances of A.

The semantics in Appendix A of the OCL standard draft also distinguishes
between existing elements and reservoir elements waiting to be created. But
there seems to be no possibility to talk about these element in the language.

Integers

The following JML specification for the integer square root method can be
found in [Leavens et al., 2003]

JAVA + JML (5.11)
/*@ requires y >= 0;

@ ensures

@ \result * \result <= y &&
@ y < (abs(\result)+1) * (abs(\result)+1);
@ */
public static int isqrt(int y)

JAVA + JML

In [Chalin, 2003], the following flaw has been pointed out. For y = 1 and
\result = 1073741821 = 1

2 (max int − 5) the above postcondition is true,
though we do not want 1073741821 to be a square root of 1. The problem
arises since JML uses the JAVA semantics of integers which yields

1073741821 ∗ 1073741821 = −2147483639
1073741822 ∗ 1073741822 = 4

The findings in [Chalin, 2003] seem to indicate that programmers tend to
have the mathematical integers in their minds and frequently make mistakes
in JML specification. Chalin proposes the extension JMLa that includes a new
primitive type \bigint of arbitrary precision integers, i.e., the mathematical
integers.

The KeY system offers the option to choose between the mathematical
and the JAVA semantics of integers (⇒ Chap. 12).

In OCL quantification over all integers is not possible. Its semantics only
allows finite sets. The expression Integer::allInstances() -> forAll(e)
is thus undefined.
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Pattern-Driven Formal Specification

by

Richard Bubel
Reiner Hähnle

6.1 Introduction

There are few examples of innovations in software engineering that caught
on as quickly and as pervasively as software design patterns [Gamma et al.,
1995] did. Offering reusable solutions for recurring software design problems,
software design patterns (from now simply called “patterns”) proved to be
attractive not only for software designers and developers: as academic teach-
ers we often observe that patterns belong to a small number of methods
that are immediately perceived as useful by most students. The pedagogical
advantages of patterns are at least as big as the productivity gain.

Originating in urban architecture [Alexander, 1977, 1999], patterns turned
out not only to be readily applicable in software design, but it was only there
that they became mainstream technology. One has to surmise that there
are reasons beyond the fact that patterns give named solutions to recurring
design problems and discuss their consequences, as this would make them ap-
plicable in many areas where recurring design problems figure. And, in fact,
patterns were tried out in a variety of settings, but not anywhere nearly as
successfully as in software design. We believe the key reason for this phenom-
enon is that, in contrast to other areas, software patterns contain a mixture of
informal and formal elements. The latter are typically expressed as structural
diagrams in design languages (the pioneering book [Gamma et al., 1995] em-
ployed OMT, nowadays it is UML) and as schematic code (most often C++
or JAVA). It is a characteristic of software construction that solutions for
design and code can immediately be used in production, once their applica-
bility is realised. It is no coincidence that patterns became popular at the
same time as formal notations for (object-oriented) design. Implementations
of libraries of design patterns in object-oriented analysis and design (OOAD)
CASE tools quickly followed.

In our opinion, patterns are among the very few methods that render
themselves naturally to connect informal and formal models of software (even

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 295–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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if this is clearly not the intention of some pattern theorists, see [Coplien,
1996]). This intermediate status makes them interesting for solving one of
the major problems discussed in this book: how to create formal specifica-
tions that are well-written and catch the intention of the designer. The first
attempts to use patterns in formal specification appear in the Bandera project
[Dwyer et al., 1998, 1999], where patterns are qualified regular expressions.

Most similar to our approach is the usage of specification patterns in
the Minerva/Hydra project. They combine UML diagrams (class-, sequence
and state diagrams) and schematic linear temporal logic formulas (similar
to [Dwyer et al., 1998, 1999]) to specification patterns. In [Konrad et al.,
2003] they report on a successful application on the specification of safety
requirements for a Diesel Filter System. The coherence of specification and
modelled systems is verified using the SPIN model checker.

Within the KeY project we have equipped a number of established design
patterns (mainly from [Gamma et al., 1995]) with schematic formal con-
straints expressed in OCL [Baar et al., 2000]. These constraints formalise a
part of the properties of the solution given by each pattern. The KeY system
connects the schematic OCL constraints to the pattern library of the underly-
ing case tool1 so that they are instantiated and simplified automatically when
the pattern that contains them is instantiated [Giese and Larsson, 2005]. We
describe this process in Sections 6.3 and 6.4. There is a simple interface that
permits the end user to extend the mechanism with his or her own patterns
and constraints [Andersson, 2005]. This is sketched in Section 6.5.

It is also possible to take a view on pattern-driven specification, where the
pattern is centered around formal specification. More precisely, the solution
proposed in such a specification pattern is a formal specification. Structural
design and code are merely collaborators than primary constituents of the so-
lution. The justification for such specification-centric patterns is that in many
specification scenarios neither structural design diagrams nor source code are
adequate primary means of specification. The former give not enough details,
while the latter is not generic enough. A typical example is the specification
of operations that are in principle relational database queries, but which are
not realised by using an explicit database. Usually these operations access in-
ternal data structure directly and the queries are hardcoded. This is a rather
frequent scenario [Bubel and Hähnle, 2005]. The structural relationships are
trivial while concrete code is too specific and not reusable. In the follow-
ing section we further analyze the difficulties in formal specification and we
exemplify our approach by defining a database query pattern.

1 In addition KeY provides its own pattern library and can generate code that
partially implements the provided patterns.
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6.2 The Database Query Specification Pattern

In this section we describe a specification pattern. The pattern solves the
problem of how to embed relational database query expressions into formal
specification languages. We base our considerations on the formal specifi-
cation language OCL (⇒ Sect. 5.2). The following subsection describes the
Database Query Specification Pattern in detail. It is similarly structured as
descriptions of Design Patterns [Gamma et al., 1995].

6.2.1 Relational Database Query

Intent

Make it possible for developers with less or none experience in writing formal
specifications to formally specify relational database queries. Embed rela-
tional database query expressions succinctly in a formal specification lan-
guage while avoiding domain-specific extensions.

Motivation

Consider the scenario from the banking application used throughout this
book. Assume that the bank’s marketing policy includes an upgrade to gold
status of credit/debit cards associated to accounts with a transfer volume
of at least e 5000 in the most recent accounting period. The affected clients
have to be informed regularly.

In order to determine the clients that are in line for gold status the bank’s
account database needs to be queried for all accounts that have the afore de-
scribed property. This involves to sum up all transactions performed in the
recent accounting period on a per-account basis and to select those accounts,
where the sum is greater or equal to e 5000. For data security reasons, ac-
count holders (clients) and accounts are solely related by the account number.
Therefore, both the transactions table (all transactions together with date,
account number, and transferred amount) and the clients table (name, ad-
dress, and account number) are involved in order to determine the gold status
candidates.

As relational databases are very common in many application areas, most
developers are familiar (at least to a certain extent) with the Standard Query-
ing Language (SQL) for relational databases and may come up easily with
an SQL statement such as the following in order to realize part of the use
case described in the scenario:

SQL (6.1)
SELECT name FROM clients
WHERE accountnumber IN

(SELECT accountnumber FROM transactions t
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WHERE Date.today - t.date <= period
GROUP BY accountnumber
HAVING sum(t.amount) >= 5000);

SQL

For writing a formal specification of our use case it is necessary to render the
content of such an SQL expression in a formal specification language. This,
however, poses serious problems for a number of reasons:

• Developers are not familiar with formal specification languages.
• Formal specification languages are developed for general purposes and

lack specific features as provided by domain-specific languages.
• There is no or insufficient tool support for formal specification, for exam-

ple, formal specification languages are not integrated into software devel-
opment environments.

Our approach aims to address all three points: the developer may express
the properties to be specified in domain-specific terms from which suitable
OCL constraints are automatically generated. Developers need not to be OCL
experts to specify (for example) complex database queries in OCL.

Applicability

Use the database query specification pattern, when:

• The specification of a property resembles or requires a complex database
query.

• An SQL-like statement implementing the query would be easy to write.
• The queried database is explicitly modeled as part of the system, i.e.,

there is a small set of classes from which the structure of the corresponding
relational database can be reconstructed.

The database query design pattern allows the user to generate OCL con-
straints for queries from an SQL-like terminology.

Structure

The database query pattern supports a small subset of the SQL SELECT
statement. The supported small fragment includes

• nested selects of all or specific columns,
• aggregation functions like max and sum as part of the SELECT condition,
• row and group selection conditions WHERE and HAVING,
• the grouping of entries.

The pattern provides a generic OCL translation of SQL-like statements,
which adhere to the following syntactic restrictions:
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SQL
SELECT (* | T 1.column | agg(T 1.column))
FROM table T1
(WHERE boolean expression)?
(GROUP BY T 1.column name)?
(HAVING boolean expression)? ;

SQL

The selection conditions filter out entries that do not satisfy the Boolean
expressions. Thereby the WHERE condition is evaluated before grouping takes
place or the aggregation functions are computed, whereas the Boolean expres-
sion of the HAVING section is evaluated after these computations as it filters
out complete groups and may therefore use aggregation functions. Please
notice the necessity to provide an explicit label for each table in the FROM
section and that references to columns in the SELECT statement have to be
fully qualified. Otherwise, implicit references will always be interpreted as
self references relative to the class context where the instantiated OCL con-
straints are placed.

Account
accountNumber:Integer
balance:Integer

. . .

Transaction
date:Integer

WithDrawn
amount:Integer

Client
name:String
address:String
clientID:Integer
. . .

CentralHost
. . .

transactions

0..*

clients

0..*

accountNumber

owner

accounts

accounts

0..*

Fig. 6.1. Scenario gold card upgrade: UML class diagram (slightly simplified)

Participants

Database defines the context where to put table definitions and generated
query constraints. Usually a type which allows for easy navigation to the
required information (tables) is taken.

Table, Entry the context Table encapsulates a collection of Entry instances
defining the content one is interested in (for example, Entry’s attribute
values). Depending on the scenario one may identify the Table and
Database contexts.
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Implementation

Tables Database tables are represented as sequences of tuples. The type
TupleType is new in OCL 2.0 and allows a natural representation of data-
bases. The following schematic OCL constraint is a general and flexible tem-
plate specifying a table’s structure and content:

OCL
context Database def:

tname: Sequence(TupleType(col1:Tcol1,...,coln:Tcoln)) =
generator expression

OCL

We are writing a pattern for formal specifications in OCL, so it is convenient
to distinguish those parts of OCL expressions that can be modified during
pattern instantiation from the ones that are fixed. Here and in the following
we use italics as a typographic convention to denote OCL schema variables.

Table
- key1:S1

. . .
- keym:Sn

Entry
- attribute1:T1

. . .
- attributen:Tn

Database

*

*

entries

(a) Joining tables

Table
. . .

Entry
- attribute1:T1

. . .
- attributen:Tn

Database

1

*

entries

(b) Simple table representation

Fig. 6.2. Standard idioms for database construction

For the schema variable generator expression, a number of constructor tem-
plates are available that cover frequently encountered idioms in database
construction, see Fig. 6.2. In Fig. 6.2(a) we depict the situation, where a
database is constructed from a number of given tables only distinguished via
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key attributes k1, . . . , km. The schematic constraint (6.2) defines a specific
template for a generator expression that realises such a “join” in OCL:

OCL (6.2)
tname: Sequence(TupleType(k1 : S1, . . . , km : Sm, a1 : T1, . . . , an : Tn)) =

tables->collect(t:Table |
entries->collect(e:Entry |

Tuple{k1 = t.k1,. . .,km = t.km,
a1 = e.a1,. . .,an = e.an}))->asSequence()

OCL

Example 6.1. In a video-controlled toll system the relationship between own-
ers and cars is modeled as in Fig. 6.3. In order to send bills, the operating
company needs to identify the owners of the observed cars. The problem is
that the required information is fragmented between Person and Car, but
with a defined relationship, namely the existence of an owner association be-
tween two instances. Their join yields a table that can be easily queried for
the desired information:

OCL
carOwners: Sequence(TupleType(name:String, address:String,

licensePlate:String)) =
registeredPersons->collect(p:Person |
owns->collect(c:Car |
Tuple{name = p.name,

address = p.address,
licensePlate = c.licensePlate}))->asSequence()

OCL

Person
- name:String
- address:String

Car
- licensePlate:String

TollCompany

* registeredPersons

*
owns

Fig. 6.3. Scenario: Video-controlled toll system

A frequent specialisation of this template is illustrated in Fig. 6.2(b). The
schematic constraint (6.2) can then be simplified to:
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OCL (6.3)
tname: Sequence(TupleType(attribute1:T1,. . .,attributen:Tn)) =

entries->collect(e:Entry |
Tuple{attribute1 = e.attribute1,

. . .,
attributen = e.attributen})->asSequence()

OCL

One difference between SQL rows and the OCL TupleType is that the latter
permits identical names for different columns, whereas the former does not.

Simple Queries Our OCL templates so far enable us to define a database
to be queried. It remains to model actual SQL queries as schematic OCL
constraints. We do this in an incremental way. Whenever a schematic OCL
constraint is instantiated it represents a concrete SQL query.

To get started let us look at how a simple SQL SELECT statement without
aggregation functions or grouping can be expressed in schematic OCL:

OCL (6.4)
-- SELECT * FROM from WHERE where
from->select(where)
-- SELECT coli FROM from WHERE where
from->select(where)->collect(t | Tuple{coli=t.coli})

OCL

The schema variable from denotes the queried table using variable t to iterate
over the stored data.

Queries with Aggregation Now we add support for aggregation functions to
our OCL template. Assume that agg is an SQL aggregate function such
as sum, max, etc., and aggOCL is its counterpart from the OCL standard
collection library. The result is represented as a new sequence of tuples using
the new aggregate function name aggnew as column identifier.

OCL (6.5)
-- SELECT agg(coli) FROM from WHERE where
Tuple{aggnew =

from->select(where)->collect(t | t.coli)->aggOCL()}

OCL

In general, an aggregate expression of kind ’agg(coli)’ is translated as

OCL
Tuple{aggnewname = table->collect(coli)->aggOCL()}

OCL
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Queries with Grouping Aggregate functions as described before are of limited
use, because they apply to a specific column of the complete table. In our
scenario we would not be able to calculate the transaction volume per ac-
count. The problem is that the table contains all transactions of all accounts,
so if we sum up the withdrawal column we obtain the transferred volume of
all accounts. In SQL, grouping is used to solve this problem. With grouping
the user specifies a table column col to be used as a distinguishing aspect of
a group. This means all rows with an identical entry in col are grouped to-
gether into one subtable. Applying an aggregate function on a grouped table
then computes the result for each subtable rather than for the complete one.

First we define a family of helper functions groupBy_coli() that take care
of grouping a table from by its ith column:

OCL
context Database def:
groupBy_coli(from:Sequence(TupleType(col1:T1,. . .,coln:Tn))):
Sequence(Sequence(TupleType(col1:T1,. . .,coln:Tn))) =

from->collectNested(e1 |
from->iterate(e2; groupedRows:

Sequence(TupleType(col1:T1,. . .,coln:Tn)) = {e1} |
if (e1.coli = e2.coli) then

groupedRows->including(e2)
else

groupedRows
endif))->asSequence()

OCL

The function groupBy_coli() can now be applied to one of the select ex-
pressions of the previously given OCL templates. So let sOCL be the OCL
collection expression, havingOCL the OCL translation of the HAVING expres-
sion, and eOCL the OCL select expression of the first part of the query in the
form “SELECT s FROM from WHERE where” as in (6.4) and (6.5). Then an SQL
query with grouping can be translated to OCL according to the following
template:

OCL (6.6)
-- SELECT s FROM from WHERE where GROUP BY coli HAVING having
groupBy_coli(eOCL)->select(g| havingOCL)->collect(t| sOCL)

OCL

Queries with Nested SELECT In order to increase readability we take a modu-
lar approach to nested inner SELECT expressions instead of inlining them. An
inner SELECT is factored out as a standalone OCL definition. The definition
declaration has one formal parameter for each variable visible in the scope of
the inner SELECT. These are exactly the variables declared in FROM parts of
outer SELECT statements.



304 6 Pattern-Driven Formal Specification

6.2.2 Pattern Usage Example

We now demonstrate how to take advantage of the Relational Database Query
pattern exemplified by the card upgrade scenario. Recall that the task was to
compute those customers whose accumulated transactions in the recent ac-
counting period exceeded a certain amount and who, therefore, are eligible for
a credit card upgrade. Probably this information is used by several other oper-
ations, so it will be convenient to store it in an attribute upgradeCandidates
with type Sequence(TupleType(name:String)). We want to specify the se-
mantics of this attribute in OCL. The context of the OCL constraint will
be the class CentralHost in Fig. 6.1, because (i) all information that is nec-
essary to construct the tables can be retrieved by this class, and (ii) the
attribute is implemented as a member of this or a closely connected class.
The transactions and clients table result directly from instantiations of OCL
template (6.2). The OCL constraints and the instantiation mappings needed
to obtain them are shown in Fig. 6.4.

Based on the generated tables we continue with the translation of the
innermost SELECT in the query (6.1). There is only one visible table declared
in the outer FROM section, the clientsTable in Fig. 6.4. This table must
become a parameter of the inner SELECT definition. In order to shorten the
presentation we ignore the OCL translation defining the grouping operation
for column accountNumber. The instantiation mapping is then as follows:

map =






eOCL � transactionsTable−>select(t | . . .)
sOCL � g−>collect(t | t.accountNumber)
havingOCL � g−>collect(t | t.amount)−>sum() >= 5000

. . .

When this mapping is applied to the template (6.6) one obtains the following
OCL code (now including the grouping):

OCL
context CentralHost def:
-- inner most select

computeVolume(c:TupleType(client:Client,accountNumber:Integer)):
Sequence(TupleType(accountNumber:Integer)) =
groupBy_accountNumber
(transactionsTable->select(t | Date.today-t.date>=period))

->select(g | g->collect(t | t.amount)->sum()>=5000)
->collect(g |
g->collect(t | Tuple{accountNumber=t.accountNumber}))

OCL

It can be observed that the groups assume the role of tables in the translation
of the select OCL expression sOCL. The translation of the outer select is
easier. It makes use of the inner select statement and is obtained from the
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context CentralHost def:
transactionsTable:Sequence(TupleType(
accountNumber:Integer,date:Integer,amount:Integer)) =
accounts->collect(acc:Account |
acc.transactions->collect(trans:Withdrawn |
Tuple{accountNumber = acc.accountNumber,

date = trans.date, amount = trans.amount}))

map =






tname � transactionsTable
tables � accounts
Table � Account
entries � transactions
Entry � Withdrawn
m � 1
k1 � accountNumber
S1 � Integer
n � 2

. . .
(a) Transactions table generator with instantiation mapping

context CentralHost def:
clientsTable:Sequence(TupleType(client:Client,

accountNumber:Integer)) =
clients->collect(owner:Client |

owner.accounts->collect(accNr:Integer |
Tuple{client = owner, accountNumber = accNr}))

(b) Clients table generator

Fig. 6.4. Instantiated table generators with the used instantiation mapping

template (6.4). The formal specification of attribute upgradeCandiates in
terms of OCL is then:

OCL
context CentralHost def:

upgradeCandiates:Sequence(TupleType(name:String)) =
clientsTable->select(c |
computeVolume(c)->includes(c.accountNumber))
->collect(t| Tuple{name=t.client.name})

OCL

The main drawback of this solution is that automatically generated OCL
constraints are usually more complex than necessary. For this reason, the
KeY tool features support for automatic simplification of OCL expressions.
This is described in Section 6.4.
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6.3 Specification Patterns

6.3.1 Format of Specification Patterns

As seen in Section 6.2.1, specification patterns follow a similar format as
design patterns [Gamma et al., 1995, Coplien, 1996]. The most important
section in a specification pattern are briefly explained in the following:

Intent Concise description of the pattern’s objectives.

Motivation Explains where the need of this kind of pattern originates by
means of a typical situation encountered when formally specifying a software
system.

Applicability Clarifies the context conditions that have to be present for suc-
cessful and useful pattern application. The Relational Database Query pat-
tern, for example, is only useful when the database is explicitly modeled by
classes in the system; it is likely to fail when the tables are actually stored in
a relational database.

Structure Defines the minimal context required to specify the property of
interest. As specification patterns are self-contained, all required types and
symbols have to be declared in the pattern, except for predefined concepts of
the specification language (here OCL). Consequently, a typical specification
pattern for OCL/UML comes together with template (class) diagrams that
declare all necessary classes, the members of these classes that occur in the
pattern, as well as relations (associations) among these classes. Some proper-
ties of the pattern may be expressed on the UML level using multiplicities or
stereotypes. If this is possible, it is preferable to OCL constraints, because it
increases readability. In general, however, in order to specify more complex
properties schematic OCL constraints must be provided such as (6.2)–(6.6).
The following definitions make the notion of template diagram and schematic
OCL constraint precise:

Definition 6.2 (Template Diagram). A template diagram is a UML dia-
gram describing the specification pattern’s context. In the defining parts of the
pattern only elements are allowed that either are declared in these diagrams
(for example, types or attributes) or predefined in UML/OCL.

Definition 6.3 (OCL Schema Variable). An OCL schema variable is a
placeholder within an OCL expression that may stand for (i) a local variable,
(ii) a formal parameter, or (iii) the name of an operation within OCL def-
initions (def: clauses and let expressions). In addition, a schema variable
may occur (iv) at any position within an OCL constraint where an instance
of an OCLExpression is expected. The schema variable’s type must conform
to its usage, it must be the same throughout the constraint, and it must be
either declared explicitly or it must be possible to infer it from the schema
variable’s occurrence.
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Definition 6.4 (Schematic OCL Constraint). A schematic OCL con-
straint is an OCL constraint whose context has to be given relative to a tem-
plate class diagram. In contrast to standard OCL constraints, a schematic
OCL constraint is allowed to contain OCL schema variables as replacement
for all syntactical elements.

Implementation This section of a specification pattern introduces and ex-
plains all provided schematic OCL constraints. The context of a schematic
OCL constraint must be a class or an operation declared in one of the tem-
plate diagrams.

Example The example section of a pattern should illustrate the pattern’s
usage for a medium-sized example. In particular, common traps should be
emphasised.

6.3.2 Application of Specification Patterns

Specification patterns are applied by mapping all schematic elements in the
pattern to concrete counterparts within an existing UML/OCL model. There-
fore, the modeler needs to provide an instantiation mapping defining the
relationship between schematic and concrete elements.

Definition 6.5 (Pattern Application, Instantiation Mapping). The
process of embedding template diagrams and schematic OCL constraints into
an existing UML model is called pattern application or pattern instantia-
tion. The instantiation mapping map is the canonical continuation of two
user-provided functions mapUML and mapSV that relate schematic diagram
elements (types, attributes, role names, etc.), respectively, schema variables
to their concrete counterparts.

The KeY tool provides a graphical user interface that assists the modeler to
enter the instantiation mapping to be used. Furthermore, concrete diagram
elements that are the target of the instantiation mapping, but do not exist
already, are created on-the-fly.

6.3.3 Other Pattern Usage Scenarios

The database query specification pattern is only one of several supported
patterns. As in design pattern theory, we speak of an idiom, rather than
of a pattern, when its complexity is low. Additionally, we distinguish be-
tween proper specification patterns and conventional design patterns that
were enhanced with schematic constraints capturing some of the forces and
consequences of the pattern. A partial list of supported idioms and patterns
is in Table 6.1.
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6.4 Simplification of Pattern-Generated Constraints

OCL constraints obtained by translation from other domain-specific lan-
guages or by pattern instantiation of schematic templates (Def. 6.5) con-
tain a certain amount of redundancy. The reason is that the original source
has been written/designed for a more general scenario than the one it has
been applied to. Once an OCL constraint has been instantiated for a concrete
model, however, some redundancy can be removed using information from its
specific model context such as the concrete classes including their inheritance
relation and the concrete multiplicities of associations. Using the information
in the concrete modelling context allows, for example, to evaluate guards of
conditionals and to eliminate dead branches in OCL constraints. Additional
possibilities for simplification include unwinding of iterator expressions over
fixed finite collections as well as algebraic simplifications. These techniques
are akin to those employed in optimising compilers. A detailed view on sim-
plification and partial evaluation of OCL constraints and its realisation is
in the paper [Giese and Larsson, 2005]. In the remainder of this section we
demonstrate along an example, how OCL constraints can be simplified by
partial evaluation.

The OCL constraints (6.4)–(6.6) specify the semantics of various SQL
SELECT expressions, but it is left to the user (or to the CASE tool) to choose
the appropriate template. It turns out that the reflexion capabilities of OCL
are strong enough to write a generic template that works for all SQL expres-
sions supported in the database pattern (Section 6.2.1). A generic template
that can deal with plain *-arguments as well as with sum and column argu-
ments of SELECT is as follows:

OCL
if (selectArgument = ’*’) then

table->select(where)
else

if (selectArgument = ’sum’) then

Tuple{sum=table->select(where)->
collect(t | columnIdentifier)->sum()}

else

table->select(where)->
collect(t | Tuple{columnIdentifier=t.columnIdentifier})

endif

endif

OCL

This generic template is essentially a combination of (6.4) and (6.5). The
first branch corresponds to the first constraint in (6.4), the second branch
to (6.5), and the third branch to the second constraint in (6.4). A partic-
ular instantiation of schema variables could be columnIdentifier � price,
selectArgument � ’sum’ and where � Set{1,2,3}->forAll(s | s < 4):
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Table 6.1. Additionally supported idioms and patterns

Idioms Specification enhanced design patterns

Key Property Abstract Factory
Field Value Restrictions Observer

Composite
Singleton

OCL
if (’sum’ = ’*’) then

table->select(Set{1,2,3}->forAll(s | s < 4))
else

if (’sum’ = ’sum’) then

Tuple{sum=table->select(Set{1,2,3}->forAll(s | s < 4))->
collect(t | t.price)->sum()}

else

table->select(Set{1,2,3}->forAll(s | s < 4))->
collect(t | Tuple{price=t.price})

endif

endif

OCL

This constraint offers several points for performing simplifications. The most
obvious one is the evaluation of guards:

OCL
if (false) then . . . else

if (true) then

Tuple{sum=table->select(Set{1,2,3}->forAll(s | s < 4))->
collect(t| t.price)->sum()}

else . . . endif

endif

OCL

This simplification prepares the ground to eliminate dead branches of the
if-conditionals. In addition, rules are applicable that match the body of an
OCL select expression and rewrite the universal quantifier into an iterate
expression [Giese and Larsson, 2005, Section 4.1]:

OCL
Tuple{sum = table->select

(Set{1,2,3}->
iterate(x; acc:Boolean = true | acc and x < 4))->
collect(t | t.price)->sum()}

OCL
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An iterate expression over a finite and concrete collection can be unwound
by multiple applications of an iterate simplification rule, which executes the
iterate expression on one element of the argument. The result of executing
iterate(x; acc:Boolean = true | acc and x < 4) on Set{1,2,3} is:

OCL
true and 1<4 and 2<4 and 3<4

OCL

After further simplification steps the original constraint is rewritten to a
much more readable (and shorter) one that can be seen as a simplification of
(6.5):

OCL
Tuple{sum = table->collect(t | t.price)->sum()}

OCL

A prototypic implementation of OCL simplification is available as part of
the KeY tool. The simplification of constraints is done by reusing the taclet
mechanism (⇒ Chap. 4), where OCL constraints are represented as terms
and simplification rules as taclets.

6.5 Support for Specification Patterns in KeY

In the previous sections we introduced and defined specification patterns, and
we discussed the relational database query pattern in detail. In general, it is
necessary to develop new domain-specific patterns. This leads to optimised
division of work in a development process that employs formal methods:
the (few) team members who have expertise in writing formal constraints
implement patterns including OCL templates that the others merely need
to instantiate. Empirical investigations indicate that it is realistic to assume
that at least 25% of a formal specification on the design level can be obtain
through pattern instantiation [Bubel and Hähnle, 2005].

In this section we describe how to implement new patterns using the
pattern instantiation mechanism of the KeY tool. For more details, see [An-
dersson, 2005].

All interfaces and classes related to the pattern instantiation mechanism
are part of package de.uka.ilkd.key.casetool.patternimplementor. Of
particular interest are:

AbstractPatternImplementor This interface has to be implemented by all
patterns. It declares methods to query for the specification pattern’s
name, the instantiable schema variables (therein called parameters), and
the method that returns the instantiated template.
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PIParameter and subclasses. A pattern instantiation parameter is uniquely
identified by its internal name and typically is used to represent a schema
variable as defined in Def. 6.3. As shown in Fig. 6.5 the PIParameter type
hierarchy implements the composite pattern. This means parameters can
be grouped together forming a PIParameterGroup.

PIParameter

PIParameterBoolean . . . PIParameterString PIParameterGroup

members

*

Fig. 6.5. PIParameter type hierarchy

ConstraintMechanism generates parameter groups from a textual template
description and generates constraints defined as part of these descriptions
with the entered parameter values.

The template language supported in this way allows to express schematic
OCL constraints in a straightforward and natural manner. From a text file
the template constraint as well as required parameters (schema variables)
are read in and organised as a PIParameterGroup. The template constraint
is automatically instantiated when applying the pattern. For more complex
patterns the template language is not flexible enough, but for these cases the
user can make use of the PIParameter directly.

We show how to implement a simplified version of the database query
pattern. It suffices to create two new files. The first is the pattern’s main
class SimpleDatabaseQueryPattern (Fig. 6.8) that implements the inter-
face AbstractPatternImplementor. The second contains the schematic OCL
constraint to be instantiated (Fig. 6.6). The final result as laid out in the pat-
tern instantiation panel for the user of the KeY tool can be seen in Fig. 6.7.

Some words on the concrete implementation of the pattern’s main class
(Fig. 6.8):

getName() returns the fully qualified name of the pattern. The qualifiers de-
scribe the category a pattern belongs to (here: Specification Pattern).

createParameters() creates the parameter group with all parameters for
which an instantiation has to be provided by the user. In our example
the parameter group is built up using
• the API directly, for example, for the database context and table

definition generation;
• the template language mechanism: creation of an instance of class

ConstraintMechanism, which is parameterised with the template de-
scription file name and the parameter group.
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[Group] "databaseQuery", "Database Query"

[String] "select", "SELECT", "t"

[Boolean] "aggregate", "Aggregate", "false"

[String] "aggregateFunction", "Aggregate Function", "’sum’"

...

[Context] Database

[Definition]

if ’<:select:>’ = ’*’ then

<:from:>->select(<:fromIterator:>| <:where:>

else

if (<:aggregate:>) then

if (<:aggregateFunction:> = ’sum’) then

Tuple{sum=<:from:>->select(<:fromIterator:>| <:where:>)->

collect(<:fromIterator:>| <:fromIterator:>.<:select:>)->sum()}

else ... endif

else

Tuple{<:select:>=<:from:>->select(<:fromIterator:>| <:where:>)->

collect(<:fromIterator:>| <:fromIterator:>.<:select:>)}

endif

endif

[EndGroup]

Fig. 6.6. Template constraint description file

getParameters() (not shown) returns the created parameter group. The
graphical user interface lays out the instantiation panel automatically
as shown in Fig. 6.7.

getImplementation() returns the instantiated templates. In the first lines
the template instantiation has been hard-coded by the pattern imple-
mentor, while for the query instantiation itself the template language
framework is used.

Almost self-explaining is the format of the template description file: A tem-
plate file is more or less a list of group definitions. Each group can contain a
number of parameter declarations, for example:

[String] internalName, displayName, defaultV alue

The parameter declaration consists of an internal name used to refer unam-
biguously to the parameter (e.g. select), a display name (e.g. SELECT) and a
default value (e.g. *). The parameter declarations are followed by the context
definition ([Context]), where the instantiated schematic [Constraint] has
to be put. The schema variables occurring in the body of the constraint are
enclosed in <:. . . :>. Their identifiers must correspond to the internal names
of already declared parameters (either in the template or the pattern’s main
class).
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Fig. 6.7. Simple database query: instantiation window

6.6 Conclusion and Future Work

Patterns are a widely-used semi-formal concept for capturing good, reusable
solutions for recurring design problems. There is little overhead involved in
using them and the pedagogical gain is considerable. In this chapter we ad-
vocate the usage of patterns for the purpose of creating formal specifications.
Methodologically, this is justified, because formal specifications are closely
related to both design and code. Stressing the code aspect of formal specifi-
cations (precise contract-based semantics), it is natural to extend standard
design patterns [Gamma et al., 1995] with constraint templates in addition to
implementation templates that are already present. A library of such enriched
patterns is part of the KeY tool [Andersson, 2005].

When viewing formal specification as a design problem (determining the
right signature and relations among constituents), we write specification pat-
terns in their own right. In their implementation part they contain again
constraint templates. We exemplified the idea with a database query pat-
tern. Completed by small-scale patterns, so-called specification idioms (Sec-
tion 6.3.3), we obtain a whole range of pattern-driven mechanisms to arrive
at well-written and sound formal specifications.

First experiences indicate that at least 25% of a formal specification on the
design level can be obtain through pattern instantiation [Bubel and Hähnle,
2005]. As it is difficult to write good formal specifications, this is a consid-
erable productivity gain. In addition, there is the advantage that users learn
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JAVA

public String getName() {

return "Specification�Pattern:Simple�Database�Query�Pattern";

}

private void createParameters() {

paramGroup = new PIParameterGroup("simpleDatabaseQueryPattern",

"Simple�Database�Query�Pattern");

PIParameterString context =

new PIParameterString("database", "Database", "Database");

PIParameterGroup tableDefinitionGroup =

new PIParameterGroup("tableDefinition", "Table�Definition");

...

/*

* add parameter specifying the class used as database

* to the pattern’s parameter group

*/

paramGroup.add(context);

/* add table definition to the pattern’s parameter group */

paramGroup.add(tableDefinitionGroup);

/* add query definition to the pattern’s parameter group */

oclTemplate = new ConstraintMechanism(oclTemplateFilename,

paramGroup, this);

}

public SourceCode getImplementation() {

...

// get table definition instantiations

String tableName =

paramGroup.get("tableIdentifier").getValue();

... // access further instantiations and

// construct tblDef String

// add definition of table

src.add("�*�@definitions�");

src.add("�*�\t�" + tblDef.toString());

// add database query

src.add(oclTemplate.getConstraints("�*�", "Database",

database));

...

}

JAVA

Fig. 6.8. Simple database query pattern implementation (excerpt)
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how to specify from the solutions they see in the patterns. A further advantage
of specification patterns is that they are a path to introduce domain-specific
extensions into formal specification languages in a well-structured manner.
For example, the database query pattern adds support for specifying rela-
tional database queries to OCL systematically and naturally.

Future Work

Throughout this chapter we focused on specification patterns tailored to
UML/OCL. In the future, we intend to support JML specification patterns
as well.

Making the template language more powerful is another direction to be
aimed at in order to reduce the need to implement patterns in JAVA. One
solution could be to incorporate Apache’s velocity engine.

The KeY tool features an automatic translation module from OCL to
natural language (described in Chapter 7). The quality of this translation
depends on the availability of domain-specific hints (Section 7.5). Such hints
could be attached to the OCL templates occurring in specification patterns.
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Natural Language Specifications

by

Kristofer Johannisson

This chapter describes how to use the KeY tool to bridge the gap between for-
mal and informal specifications. Specifications need to be understood, main-
tained and authored by people with varying levels of familiarity with a formal
specification language such as OCL. While a user of the KeY theorem prover
should know a formal specification language, we cannot expect the same from
a typical software developer, manager or customer. Hence there is need for
specifications of different levels of formality, and we need to keep these dif-
ferent versions synchronised.

The KeY tool addresses these problems by making it possible to automat-
ically translate formal (OCL) specifications to natural language (English and
German),1 and by providing a multilingual editor in which specifications can
be edited in OCL and natural language in parallel.

This chapter starts with an overview of the natural language features
of KeY in Section 7.1. Sections 7.2 and 7.3 describe basic principles and
components. The multilingual editor is described in Section 7.4. We outline
how domain specific vocabulary is handled in Section 7.5, and conclude with
pointers to further reading and a summary in Sections 7.6 and 7.7.

7.1 Feature Overview

This section gives an overview of the natural language features of the KeY
tool. While the later sections give a more thorough description, this should
give you an idea about what is possible to achieve, and what limitations there
are.

7.1.1 Translating OCL to Natural Language

Using the KeY tool, it is possible to translate all OCL specifications in a
Borland Together project to natural language. Fig. 7.1 shows an example
1 As explained in Section 7.5, the support for German is limited.

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 317–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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English translation provided by KeY, based on the class diagram and OCL
specifications in Fig. 7.2 and 7.3. To get an unbiased impression of what the
KeY tool can do, the reader is encouraged to consider the English translation
before reading the formal description provided by the class diagram and OCL
specifications.

The translation in Fig. 7.1 is produced automatically, no user interac-
tion is required (unless we want to customise the translation). The output is
formatted, using either LATEX (as shown here) or HTML.

Note that the structure of the natural language text is very similar to the
structure of the OCL specification, and has the same level of abstraction. We
get a direct translation of the OCL specification, not an informal explanation
of what it means.

For translating the domain specific concepts from a class diagram (classes,
attributes, operations and associations) we use some heuristics which often
work well, but not always. For instance, translating juniorLimit as “junior
limit” is probably fine, while for unsuccessfulOperations we may prefer “num-
ber of unsuccessful operations” rather than the default translation “unsuc-
cessful operations”. We therefore allow user customisation of the translation
of domain specific concepts, as described in Section 7.5.

The OCL to natural language translation can be accomplished either from
within the KeY tool, or by using stand-alone command line tools.

7.1.2 Multilingual Specification Editor

The KeY tool provides a multilingual, syntax-directed editor for editing of
OCL and natural language specifications in parallel. The editor is started
from the KeY submenu of the context menu of any class or operation in
Borland Together. It allows the user to construct an abstract syntax tree of
a specification (for instance an invariant of a class) by selecting alternatives
from menus. The syntax tree is at all times presented to the user in both
OCL and natural language.

Figure 7.4 shows an example editing session, where we have just started
editing an invariant for the class PayCard. There are three main parts of the
editor window: the syntax tree display (top left), the linearisation area (top
right), and the refinements menu (bottom). The syntax tree display shows
the abstract representation of the specification, while the linearisation area
presents the specification in OCL and natural language (English and Ger-
man). Unfinished parts of the specification—called goals, or metavariables—
are shown as question marks. The refinements menu presents possible ways
of filling in the goals. Basic editing proceeds by selecting a goal (by clicking
in the text or in the tree) and a refinement (by choosing from the hierarchi-
cal refinements menu). Since the tree is presented in both OCL and natural
language, knowledge of OCL is not required for using the editor.

Assume that we wish to complete the unfinished invariant in Fig. 7.4 into
for instance balance >= 0 (OCL) or “the balance is at least 0” (English).
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For the operation charge ( amount : Integer ) of the class PayCard ,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold :

• the balance is at least the previous value of the balance

For the operation available () : Integer of the class PayCard ,
the following postcondition should hold :

• the result is equal to the balance or the unsuccessful operations is greater than 3

For the class PayCardJunior the following invariant holds :

• the following conditions are true
– the balance is at least 0
– the balance is less than the junior limit
– the junior limit is less than the limit

For the operation createCard () : PayCardJunior of the class PayCardJunior ,
the following postcondition should hold :

• the limit of the result is equal to 10

For the operation charge ( amount : Integer ) of the class PayCardJunior ,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold :

• if the previous value of the balance plus amount is less than the junior limit then:
– the balance is incremented by amount
otherwise:
– the balance does not change and the unsuccessful operations is incremented by 1

For the operation checkSum ( sum : Integer ) : Integer of the class PayCardJunior
,
the following postcondition should hold :

• if the result is equal to 1 then:
– sum is less than the junior limit
otherwise:
– sum is at least the junior limit

For the operation complexCharge ( amount : Integer ) of the class PayCardJunior
,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold:

• if the previous value of the balance plus amount is less than the limit then:
– amount is equal to the balance minus the previous value of the balance
otherwise:
– the balance does not change and the unsuccessful operations is incremented by 1

Fig. 7.1. Example natural language translation of OCL constraints
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PayCard
id : Integer

limit : Integer

balance : Integer

unsuccessfulOperations

: Integer

available() : Integer

charge(amount : Integer)

PayCardJunior
juniorLimit : Integer

createCard() : PayCardJunior

checkSum(sum : Integer) : Integer

complexCharge(amount : Integer)

Fig. 7.2. Example class diagram

We would then proceed in a top-down fashion, first adding the comparison
operator, and then the left and right argument to it. As shown in Fig. 7.4, the
refinement “greater than or equal” is found in the submenu of “comparison
operators”. Figure 7.5 shows the editor after selecting this refinement.

We now have a specification ? >= ? (OCL) or “? is at least ?” (English).
Since the comparison operator takes two arguments, we have two new goals
to fill in. In the figure, the leftmost goal has been selected. The refinements
menu presents only type correct alternatives, which in this case means that
we are only allowed to fill in instances of the OCL library type Real or any
of its subtypes.

To complete the example, we have to fill in the left goal with balance, and
the right with 0, but we omit these steps here. The syntax editor is further
explained in Section 7.4.

7.1.3 Suggested Use Cases

Translation of OCL to Natural Language

Being able to automatically translate OCL to natural language means that
OCL specifications can be presented to people who do not know OCL. The
translation can for instance be shown to a customer, who can then validate if
it captures the desired behaviour of a system, or to a programmer who does
not know OCL but needs to implement a system according to the specifica-
tions.

However, the provided natural language translations are on the same ab-
straction level as the original OCL specifications (as noted above). The in-
tended reader of the translations must therefore be comfortable with this
abstraction level. For instance, we cannot expect a translation of OCL spec-
ifications involving low-level implementation issues to be understandable to
a customer.

The Multilingual Editor

The editor supports editing of OCL and natural language in parallel, and
only allows the construction of specifications which are correct with respect



7.1 Feature Overview 321

OCL

context PayCard::charge(amount : Integer)

pre: amount > 0

post: balance >= balance@pre

context PayCard::available() : Integer

post: result = balance or unsuccessfulOperations > 3

context PayCardJunior

inv: self.balance >= 0 and self.balance < juniorLimit

and juniorLimit < limit

context PayCardJunior::createCard() : PayCardJunior

post: result.limit = 10

context PayCardJunior::charge(amount : Integer)

pre: amount > 0

post: if balance@pre + amount < juniorLimit

then balance = balance@pre + amount

else balance = balance@pre and

unsuccessfulOperations = unsuccessfulOperations@pre + 1

endif

context PayCardJunior::checkSum(sum : Integer) : Integer

post: if result = 1 then sum < juniorLimit

else sum >= juniorLimit endif

context PayCardJunior::complexCharge(amount : Integer)

pre: amount > 0

post: if balance@pre + amount < limit

then amount = balance - balance@pre

else balance = balance@pre and

unsuccessfulOperations = unsuccessfulOperations@pre + 1

endif

OCL

Fig. 7.3. Example OCL constraints

to the OCL syntax and type system. It should therefore be useful for instance
to a person who is not an OCL expert, but who needs to modify existing OCL
specifications, as well as to people learning OCL.

For people who are already proficient in OCL, and who are not concerned
with natural language translation, a traditional text editor is a more suitable
tool for creating and modifying OCL specifications.
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Fig. 7.4. Example editor session 1

Fig. 7.5. Example editor session 2
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OCL as Single Source

An important part of our approach is to use OCL as “single source”: by
creating and maintaining specifications in OCL (possibly using the multilin-
gual editor), and then automatically translating them to natural language,
we avoid the problem of having different versions of the same specification
which need to be synchronised.

7.2 The Grammatical Framework

The natural language functionality in KeY is based on a multilingual gram-
mar of specifications written in the Grammatical Framework (GF) formalism
[Ranta, 2004].

A GF grammar defines abstract and concrete syntax. The abstract syntax
gives rules for how to form abstract syntax trees. In a typical GF application
grammar these trees are used as a non-linguistic, semantic representation of
a restricted domain. In our case, we use abstract syntax trees to represent
requirements specifications.

The concrete syntax defines how to present abstract syntax trees as ex-
pressions of a particular language, which can be a formal or a natural one. By
having several concrete syntaxes for the same abstract syntax we get a mul-
tilingual grammar. We have defined concrete syntaxes for OCL, English, and
German, which means that specifications represented in GF abstract syntax
can be presented in these three languages.

The multilingual grammar for OCL, English and German specifications
is written in the GF formalism. The GF system then provides functional-
ity based on this grammar: it derives parsers and linearisers for the three
languages as shown in Fig. 7.6. We can, for instance, parse an OCL specifica-
tion (resulting in an abstract syntax tree) and then linearize it into English
or German. Although we can also parse English or German specifications,
the fragment of these languages described by our grammar is very small: we
cannot expect to successfully parse arbitrary informal English or German
specifications.

As noted above in Section 7.1.1, the structure of the natural language
translation of an OCL specification provided by our tool is very similar to
the structure of the original OCL specification. We can now explain the rea-
son for this: the translation and the original specification both share the
same abstract syntax, and the linearisation rules as defined by the concrete
syntaxes for OCL, English and German cannot be arbitrarily complex. GF
linearisation rules must be compositional, meaning that the linearisation of a
tree is always expressed in terms of the linearisation of its subtrees, not the
subtrees themselves.

An important aspect of our multilingual GF grammar is that it consists of
a static as well as a dynamic part. The static part captures the OCL type sys-
tem, basic OCL constructions such as invariants or if-then-else expressions,
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Fig. 7.6. GF parsing and linearisation

and the predefined types and operations of the OCL library. The dynamic
part is a description of the domain specific concepts—classes, attributes, op-
erations and associations—found in the class diagram of the current Borland
Together project. This part of the GF grammar is generated from the current
class diagram. Section 7.5 describes the basics of this generation, and how it
can be customised.

7.2.1 GF Examples

To illustrate the general principles of GF we give some examples of abstract
and concrete syntax rules, loosely based on our multilingual GF grammar
(without explaining all the details of the GF formalism).

In the abstract syntax, we want to represent the domain of OCL speci-
fications, for instance, we have to represent classes, expressions and queries.
The following is one way to do this in GF abstract syntax:

GF
cat Class;
cat Expr (c:Class);
fun IntegerC : Class;
fun maxQ : (x,y : Expr IntegerC) -> Expr IntegerC;
fun intLit : Int -> Expr IntegerC;

GF

This defines two categories Class and Expr: If c is a Class, then Expr c
represents expressions of type c (Expr is a dependent type, since it requires
an argument). Using these two categories, we can then introduce the GF
functions IntegerC and maxQ to represent the OCL library class Integer,
and the query max (which returns the maximum of two integers). The function
intLit allows us to use the built-in integer type of GF for integer literals.
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The concrete syntax then gives rules for how to linearize abstract syn-
tax trees in OCL, English, or German. Here we consider some examples for
English. Writing GF concrete syntax is much like working in a functional
programming language with record-types, strings, and finite algebraic data
types. We must provide a record type for each category in the abstract syn-
tax, and a function building records of the correct type for each abstract
syntax function.

To express that a class in OCL corresponds to a noun in English we use
the following concrete syntax:

GF
param Number = Sg | Pl;
lincat Class = {s : Number => Str};
lin IntegerC = {s = table {Sg => "integer"; Pl => "integers"}};

GF

Here we introduce a parameter type for representing singular and plural
number. The lincat judgement states that the category Class corresponds
to records containing a field s, which is a string inflected in number (a finite
function from Number to Str). Then, IntegerC is linearised as an inflection
table with the singular and plural form of the noun “integer”.

To linearize an abstract tree (maxQ x y), where x and y have type Expr
IntegerC, as an English noun phrase “the maximum of x and y”, we give the
following rules to complete our small GF grammar (we also need to include
a linearisation for the intLit function):

GF
lincat Expr = {s : Str};
lin maxQ x y = {s = "the" ++ "maximum" ++ "of" ++ x.s ++

"and" ++ y.s};
lin intLit i = {s = i.s};

GF

Loading this grammar into the GF system, we can then parse for example
the string “the maximum of 2 and 7”, which gives us the abstract syntax tree
(maxQ (intLit 2) (intLit 7)).

When writing larger GF application grammars, such as the one used to
link OCL and natural language, you normally work on a higher level of ab-
straction than in these small examples. Instead of defining your own types for
nouns and number (or for gender and case, as we would need for German),
you make use of the resource grammar library which is supplied with the GF
system. This library provides an interface of linguistically motivated types
(e.g., types for number, gender, nouns, verbs and sentences) and functions
(e.g., for building a sentence from a verb phrase and a noun phrase). Im-
plementations of the interface are provided for several languages. By making
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use of the resource library interface we can therefore share code between the
English and German concrete syntax in our multilingual grammar.

7.3 System Overview

There are a number of components involved in linking OCL to natural lan-
guage: a multilingual GF grammar, the GF system, a syntax-directed editor,
a GF grammar generator taking class diagrams as input, and also a stand-
alone OCL parser and typechecker. Fig. 7.7 shows how these components
relate to each other in terms of input and output.

Fig. 7.7. System components

Grammar Generation

All functionality relies on the existence of the GF grammar for specifications,
and as described in Section 7.2 above, parts of this grammar are dynamically
generated from a class diagram. The class diagram is in turn extracted from
Borland Together.

OCL Parsing and Typechecking

When translating an OCL specification to natural language, or when starting
the multilingual editor for a given OCL specification, the first step is to turn
the OCL text into a GF abstract syntax tree. To do this, we are not using the
parser automatically derived by GF, but a custom parser and typechecker.
Note that typechecking OCL requires also the class diagram as input.
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There are a number of reasons for using a custom parser and typechecker:
we need to work around a limitation in the parser derived by GF for our
particular grammar, it makes it simpler to deal with all the various implicit
forms in OCL concrete syntax, and it also makes it possible to give better
error messages when encountering type errors. Finally, we expect the external
parser, which is derived using a standard context-free parser generator, to be
more efficient than the GF parser when parsing large specifications.

GF

The input to GF is the grammar (static and dynamic parts) and an abstract
syntax tree. To translate OCL to natural language, the tree is then just lin-
earised into English and German. In case of the editor, the user manipulates
the syntax tree in the editor, while viewing the result in OCL, English and
German in parallel.

7.4 The Multilingual Editor

The multilingual editor allows you to edit specifications in OCL, English
and German in parallel. It is based on the generic GF syntax editor [Khegai
et al., 2003] but has been customised for the domain of software specifications
[Daniels, 2005]. The editor is started from the KeY submenu of the context
menu of any class or operation in Borland Together. If the class or operation
is already annotated with an OCL specification, it is parsed and shown in the
editor, otherwise the editor starts up with an empty invariant (for classes) or
with empty pre- and postconditions (for operations). The editor is intended
for editing the OCL specification of one class or operation at a time.

7.4.1 Syntax-Directed Editing

The editor is syntax-directed: editing consists of manipulating the abstract
syntax tree of a specification, rather than a string of characters as in a typical
text editor. The tree is at all times presented in OCL, English and German,
as defined by the GF grammar for specifications (the user can choose which
languages to show). Since we are editing a syntax tree, we can only construct
syntactically correct specifications. The editor also includes a type system
and ensures that the syntax tree is always type-correct.

There are two basic ways of manipulating a syntax tree in the editor:
refinement (top-down editing) and wrapping (bottom-up).

7.4.2 Top-Down Editing: Refinement

Refinement consist of selecting a goal—an unfinished part of the tree, dis-
played as a question mark—and filling in this goal by selecting a refinement
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from a menu. The selected refinement may in turn contain new goals which
need to be filled in.

Each goal has a type, and the refinements menu only lists refinements of
this type. A type can for instance be “integer expressions”, “sentences”, or
“attributes”. The types and refinements available are given by the underlying
GF grammar.

We consider the example from the beginning of this chapter again, as
shown in Fig. 7.8. In the upper left part of the editor window we see the
abstract syntax tree of a specification, which is presented in OCL and natural
language in the upper right part of the window. There are two unfinished
parts (goals), one for each argument to the comparison operator (>=).

Fig. 7.8. Editing by refinement

7.4.3 Bottom-Up Editing: Wrapping

Wrapping consists of selecting any part of the syntax tree—with or without
unfinished parts—and replacing it with a new construction, which contains
the previously selected subtree as a part. For instance, if we have constructed
the invariant self.balance >= 0, and would like to add that balance should
also be smaller than limit, we do this by wrapping it using and. The first step
is to select the subtree corresponding to self.balance >= 0, as shown in
Fig. 7.9.
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Fig. 7.9. Editing by wrapping, step 1

The current selection is now a sentence. Since and is a construction which
takes two sentences into a new sentence, we can wrap the current selection
using and. This is done by selecting “wrap boolean ’and’ for sentences as
argument 1” in the refinements menu. The result is shown in Fig. 7.10: the
previously selected subtree balance >= 0 has now been wrapped as the first
argument to and, resulting in balance >= 0 and ?.

7.4.4 Other Editor Features

The editor also includes other features, for instance, as you would expect
there is a clipboard for copying and pasting syntax trees, as well as an undo
command. Another feature is refinement by parsing: instead of filling in a
goal by selecting a refinement, one can enter a text string. The string is then
parsed and (if parsing was successful) the goal is filled in with the resulting
syntax tree. In this case, it is the parser derived by GF which is being used,
not the custom OCL parser and typechecker.

7.4.5 Expressions and Sentences

The editor makes a distinction between expressions and sentences. Expres-
sions are instances of any of the classes from the class diagram, or of the
OCL library types such as Integer or Boolean. Sentences are used to express
invariants, pre- and postconditions. An example expression is self.balance
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Fig. 7.10. Editing by wrapping, step 2

(“the balance”), an example sentence is self.balance >= 0 (“the balance is
at least 0”). We mention this distinction since it is not present in OCL itself:
there is no concept of sentences in the OCL language specification. Instead,
expressions of type Boolean are used for invariants, pre- and postconditions.
However, in the editor expressions and sentences are two different types: goals
of expression type cannot be filled in with a sentence, and vice versa.

All OCL library operations as well as all domain specific attributes and
operations which return Boolean from the point of view of OCL are considered
as sentences in the editor. It is always possible to convert a sentence into a
Boolean expression, but this has to be done explicitly.

7.4.6 Subtyping

The OCL type system includes subtyping: wherever an expression of a type
T is expected, we can also use an expression of type T ′ as long as T ′ is a
subtype of T . For instance, the OCL comparison operators <, >, <=, and >=
are all defined for the class Real. However, since Integer is a subtype of Real,
we can also use them to compare integers.

GF has no built-in notion of subtyping. In the GF grammars for specifica-
tions, this problem is solved by including explicit coercions (typecasts). These
coercions are part of the abstract syntax tree, but are not visible in the OCL
or natural language rendering of the tree. The editor usually creates these
coercions automatically without requiring user interaction, but sometimes—
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in particular when an existing specification is modified—the user has to be
aware of the coercions.

7.5 Translation of Domain Specific Concepts

As previously mentioned, the translation of domain specific concepts is de-
fined by GF grammar modules which are generated from the class diagram
of the current project in Borland Together. This generation is based on some
simple rules described below. If the automatically derived translation is not
appropriate, it can be customised by hand.

The generation and customisation are both based on the assumption that
the language used in class diagrams is English, and that OCL specifications
are to be translated into English. The generated GF modules can be used
with the German GF grammar anyway, but the resulting German contains
fragments of the English used in the class diagram (as seen in the syntax
editing examples in Section 7.4).

7.5.1 Grammar Generation

The grammar generation provides default translations for the concepts—
classes, attributes, operations, and associations—in a class diagram. Cur-
rently, this generation is based on a few simple rules:

• Classes are treated as common nouns, or as common noun phrases. In
case the name of the class is capitalised (as in PublicKey), it is split into
separate words, where the last word is considered as a noun which is
modified by the other words. For instance, a class Person is treated as a
common noun “person”, while a class PublicKey is treated as a common
noun phrase “public key”.

• Properties (attributes, operations and associations) are treated as noun
phrases, except for Boolean properties, which are treated as sentences.
Capitalization is used also for properties, e.g., an attribute juniorLimit
is translated as the noun phrase “junior limit”. Boolean properties which
start with “is-”, e.g., isEmpty or isValidated, are treated as adjectives (e.g.,
“. . . is empty”, “. . . is validated”).

7.5.2 Customising the Translation

If the translation provided by the generated grammar modules is not ap-
propriate, it can be customised by hand. We plan to make it possible to
perform such customisation by having the user add annotations to the Bor-
land Together class diagram, but at present there is no such functionality. To
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customise the translation, one must instead modify the generated GF gram-
mar files directly. However, as described below, this can be done without
requiring GF expertise.

Customisation is done on the level of concrete syntax. The generated
concrete syntax makes use of a grammar-level API, which contains functions
for common constructions. This API abstracts from the complexity of the
rest of the grammar. To modify the generated concrete syntax it is therefore
enough to have an understanding of the API, it is not necessary to be a GF
expert.

This API is described in detail on the web site for the OCL-Natural Lan-
guage tool (⇒ Sect. 7.6), here we just consider a small example. As mentioned
in the previous example in Section 7.1.1, the default translation of the unsuc-
cessfulOperations attribute of the PayCard class is “unsuccessful operations”,
although “number of unsuccessful operations” might be a more natural trans-
lation. The generated GF concrete syntax for unsuccessfulOperations is the
following:

GF
lin unsuccessfulOperations = mkSimpleProperty (adjCN

["unsuccessful"] ((strCN ["operations"])));

GF

The left hand side of this linearisation judgement is simply the name of the
construction in the abstract syntax which represents unsuccesfulOperations.
The right hand side gives the linearisation of this construction, expressed
using the functions mkSimpleProperty, adjCN and strCN of the grammar
API.

This generated linearisation can be changed to produce “the number of
unsuccessful operations” instead by using the ofCN and strCN functions:

GF
lin unsuccessfulOperations = mkSimpleProperty (ofCN

(strCN "number") (adjCN ["unsuccessful"] ((strCN
["operations"]))));

GF

7.6 Further Reading

The basic motivations and design principles of a GF based tool to link OCL
and natural language are described in a paper by Hähnle et al. [2002]. A
later paper shows that the tool scales well enough to handle a case study:
translating OCL specifications of the JAVA CARD API to natural language
[Burke and Johannisson, 2005]. There is also a web site for the tool.2

2 http://www.key-project.org/oclnl/
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7.7 Summary

The KeY tool makes it possible for people who are not OCL experts to
create and maintain OCL specifications, by providing a multilingual, syntax-
directed editor in which specifications can be edited in OCL and natural
language in parallel. OCL specifications can also be translated to natural
language independently of the editor, which enables people who have no
knowledge of OCL to make use of formal specifications.

A limitation is that the provided natural language translation has roughly
the same structure and level of abstraction as the original OCL specification.
In this sense, we do not provide informal explanations of formal specifications.
Also, automatic formalisation of arbitrary informal specifications falls outside
the scope of the KeY tool.

The natural language tools are built around a multilingual Grammatical
Framework grammar for specifications in OCL, English and German. The
translation of domain-specific concepts can be customised on the grammar
level.
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Proof Obligations

by

Andreas Roth

This chapter deals with the question how we can prove properties of specifi-
cations and of the relations between specifications and programs. The most
important instance of such a property is the correctness of a program with
respect to its specification.

In Chapter 5 we discussed specifications expressed with the languages
UML/OCL and JML and their translations into the first-order fragment of
JAVA CARD DL. We now present our answers to the questions we left open
there. What is the role we want class invariants to play? In which states
should they hold and how do we prove this? What is the relation between
postconditions and invariants?

We formulate a series of proof obligations templates. These contain para-
meters that can be instantiated with a specification or parts of a specification
to yield proof obligations. These are finite sets of JAVA CARD DL formulae
that can be submitted to the KeY prover.

In the following we denote by P the program under investigation and by
Spec a fixed specification of P . Furthermore, we refer to the common set of
methods and constructors of a program as its operations (⇒ Sect. 5.3).

Building on the translations from Chapter 5 we assume that the elements
of Spec are given by first-order JAVA CARD DL formulae. More specifically
Spec consists of

• The set InvSpec of all formulae that result from the translation of invari-
ants for P . These are closed formulae. Remember, that instance invariants
φ with an implicitly universally quantified variable o for the object that
was constrained (that is, the self or this object) are translated in the
closed form

\forall T o; (o.<created> .= TRUE −> φ) .

In this chapter we often say, a bit sloppy, that this formula is an invariant.
• The set of operation contracts each consisting of

– A method or constructor declaration op in a class or interface C ∈ P .

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 335–374, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– A precondition Pre as first-order logic formula. This formula may con-
tain program variables for the receiver object, this is the object which
a caller invokes the method on, and for the parameters. If op refers
to a static method or a constructor the receiver object variable is not
allowed.

– A postcondition Post as first-order logic formula containing program
variables for the receiver object, for the parameters, for the returned
value, and for the thrown exception. The latter two are optional if the
method’s thrown exception or return type is irrelevant or non-existent.
The receiver object variable is again not allowed for static methods.

– A modifier set

Mod = { 〈φ1, f1(t11 . . . , t1n1
)〉, . . . , 〈φk, fk(tk1 . . . , tknk

)〉 }

as the translation of the modifies or assignable clause, see Def. 3.61 in
Sect. 3.7.4. Each li = f i(ti1 . . . , tini

) may contain program variables for
the receiver object (if existent) and for the parameters,

– It is indicated whether the operation must terminate. Technically, a
marker from {partial , total} is provided. The marker total is set if and
only if the operation contract requires the method or constructor to
terminate, otherwise partial is set.

From time to time we explicitly list the program variables in Pre, Post ,
l1, . . . , ln by adding their names in parentheses in the following order:
receiver object, parameters, return value, thrown exception object. For
instance we could write

Post(self; p1, . . . , pn; result; exc) .

We use opct to denote an operation contract comprising all the mentioned
items.

Structure of this Chapter

We distinguish between vertical proof obligations, also called program correct-
ness proof obligations, that relate programs and specifications and horizontal
proof obligations or design validation proof obligations which concern prop-
erties of specifications only. We start with the latter in Sect. 8.1 on design
validation. The rest of the chapter is devoted to vertical verification.

As we said above, we offer a series of proof obligation templates, that a
user may chose from to suit his needs and fit into his development methodol-
ogy. Yet, we adopt a particular notion of program correctness, that we have
dubbed observed state correctness, as a basis for possible variations. This
will be explained in Sect. 8.2 together with some other general assumptions.

We use the attribute lightweight to refer to proof obligations that address
interesting or important parts of invariants and operation contracts without
any claim to overall correctness. This is the topic of Sect. 8.3. In Sect. 8.4 we
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present a first approach of how lightweight proof obligations may be combined
to establish the correctness of whole programs.

The proof obligations considered so far apply to completed programs.
Adding new classes to it or importing it into a new context would necessitate
to redo all previous verifications. In Sect. 8.5 we investigate ways to overcome
this deficiency and arrive at modular specification and verification. As it
turns out these modularisation techniques may also be used to improve the
verification of closed programs considered in Sect.8.4.

Note on Notation

When we speak of states in this chapter we refer to states as defined in
Def. 3.18 on page 88. Thus states are first-order models. We will frequently
use S, Si to denote states, i.e., S = (D, δ, I). For function symbols f in the
signature we use S(f) as a short hand for the interpretation I(f) of f in S.

8.1 Design Validation

It is commonplace that the later in software development design flaws or
bugs are uncovered, the more expensive they are to fix. It is thus desirable
that formal verification starts as early as possible. In this section we propose
proof obligation templates at the design phase where no code is yet writ-
ten. Of course, we cannot expect statements on the correctness of the still
to be written program, but we can get valuable hints on inconsistencies or
deficiencies of the design.

8.1.1 Disjoint Preconditions

Consider the following JML specification:

JAVA + JML
/*@ normal_behavior

@ requires !customerAuthenticated
@ && pin != insertedCard.correctPIN
@ && wrongPINCounter >= 2;
@ ensures \old(insertedCard).invalid;
@ also exceptional_behavior

@ requires insertedCard==null;
@ signals (ATMException) !customerAuthenticated;
@*/

public void enterPIN (int pin) {
// here the implementation follows

JAVA + JML
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This example is a slight variation of our example in Sect. 5.3.1, but there
can in fact be no correct implementation of this specification at all! Assume
a state in which no costumer is authenticated, (!customerAuthenticated),
the entered PIN is incorrect (pin != insertedCard.correctPIN) and there
have been at least two earlier unsuccessful attempts to enter the PIN,
(wrongPINCounter >= 2). Assume further that there is no card inserted in
the ATM (insertedCard==null). Both preconditions are satisfied in this
state, so both postconditions must hold after having executed enterPIN in
that state. The first one says that the method must terminate normally, the
second says that it must terminate abruptly! Clearly there is no implemen-
tation which can fulfil both operation contracts. In the original formulation
(⇒ Sect. 5.3.1) we had insertedCard==null as an additional precondition
in the first operation contract, which made the two preconditions not overlap.

We would thus like to check whether contracts with overlapping precondi-
tions have consistent postconditions. Unfortunately, this cannot be expressed
in first-order logic in general. The best we can do is to check whether pre-
conditions are disjoint.

Proof Obligation Template 1
DisjointPre(opct1, opct2):
for two operation contracts opct1 and opct2 with preconditions Pre1 and Pre2

using the same program variables for the receiver object and the arguments

!Pre1 | !Pre2

If we can prove this formula to be universally valid, we can be sure that there
is no state in which the preconditions of both operation contracts hold. The
instantiation of this template with the preconditions from the above example
is obviously not provable. The instantiation with the preconditions from the
specifications 5.5 and 5.6 from Sect. 5.3.1 yields (for simplicity we skip some
unimportant conjuncts):

!(atm.insertedCard ! .= null & customerAuthenticated ! .= TRUE)
| atm.insertedCard ! .= null

This formula is universally valid, the preconditions are thus never valid in
the same state.

8.1.2 Behavioural Subtyping of Invariants

According to Liskov and Wing [1994], a class D is a subtype of a class C if all
properties on instances of C hold also for instances of D. This property is usu-
ally referred to as Liskov’s principle or as behavioural subtyping (⇒ Sect. 1.4).
Since we agreed that invariants be inherited by subclasses (⇒ Sect. 5.1.2)

Liskov’s principle for invariants is automatically satisfied. For instance in-
variants, which we view as universally quantified formulae of the shape
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\forall C o; (o.<created> .= TRUE −> φ(o)) .

Liskov’s principle is already an immediate consequence of our semantics of
typed first-order logic (⇒ Chap. 2). In any first-order structure class D is
interpreted as a subset of the interpretation of class C. So if φ(o) holds true
for all instances o of D it is also trivially true for all instances o of C.

The following template makes thus only sense for users that do not sub-
scribe to automatic inheritance of invariants. A possible argument in favour
of this position might be that specifications should be as local as possible. To
understand the invariant of a class it should not be required to retrieve the
invariants for all its superclasses. In this case the invariant of a class D could
syntactically look completely different from the invariant of its superclass C.

Proof Obligation Template 2
BehaviouralSubtypingInv(C, D):

\forall D x;
(
ConjD −> ConjC

)

where the formulae ConjC and ConjD are the conjunction of all formulae φ
where \forall x C; φ and \forall x D; φ are invariants. If C or D contain
no invariant then ConjC (or ConjD) equals true.

Example 8.1. In Sect. 7.1.1 we already encountered the following invariant of
class PayCardJunior (translated to first-order logic):

self.balance >= 0 & self.balance < PayCardJunior.juniorLimit

& PayCardJunior.juniorLimit < self.limit

and the invariant of its superclass PayCard:

self.balance >= 0 & self.balance < self.limit .

Instantiating BehaviouralSubtypingInv with these invariants we we obtain:

(
self.balance >= 0 & self.balance < PayCardJunior.juniorLimit

& PayCardJunior.juniorLimit < self.limit
)

−> self.balance >= 0 & self.balance < self.limit

The validity of this formula can easily be proved with KeY.

8.1.3 Behavioural Subtyping of Operations

Let us again consider a subclass D of a class C. This time we focus on
an operation op and its operation contract opctC with precondition PreC

and postcondition PostC . We assume that op is overridden in D now with
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a contract opctD with precondition PreD and postcondition PostD. Liskov’s
principle requires that any implementation of op in D satisfying its contract
PreD also satisfies the contract opctC . This requirement may be broken down
into the following obligations:

• Weaken preconditions in subclasses: PreD must be weaker than PreC .
Again we use an implication to express this property: PreC −> PreD.
This condition ensures that D’s implementation produces a well-defined
result at least in those states C’s implementation may be safely called.

• Strengthen postconditions in subclasses: PostD must be stronger than
PostC . In terms of formulae this can be expressed by a logical impli-
cation: PostD −> PostC . If this condition is established we can be sure
that D’s implementation produces at least the results C’s implementation
does.

These two formulae could be used to formulate a proof obligation template
right away. But, let us think for a moment if we cannot do better. The second
formula expressing that postconditions in subclasses are stronger than in
superclasses ignores the fact that both preconditions are true before invoking
the operations. Can we get extra milage out of this? To help shape our ideas
consider the following specification of a method m which returns the result
result of the division of two (static) attributes a and b:

PreC : b ! .= 0 PreD : true
PostC : result .= a/b PostD : (b .= 0 −> result

.= 0)
& (b ! .= 0 −> result

.= a/b)

In this example the formula expressing strengthening of postconditions in-
stantiates to

(b .= 0 −> result
.= 0) & (b ! .= 0 −> result

.= a/b) −> result
.= a/b .

One can easily figure out that this proof obligation is not valid in states
satisfying b = 0. Let us, as a first attempt, just add the precondition that b
is not equal to 0:

b ! .= 0 −>
(
(b .= 0 −> result

.= 0) & (b ! .= 0 −> result
.= a/b)

−> result
.= a/b

)
(8.1)

This formula is valid. But, does it guarantee Liskov’s principle? Consider the
following JAVA implementation in D:

JAVA (8.1)
public int m() {

b--;
return (b==0) ? 0 : a/b;

}

JAVA
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It first decrements b by one and returns 0 in the case that b is 0 and the
result of the division otherwise. Since the case distinction in PostD refers to
the values of a and b in the post-state, m fulfils opctD. It does however not
fulfil opctC , since, here, the case distinction refers to the pre-state, since it
is written in the precondition. So in the case of b = 1 in the pre-state, our
implementation delivers 0 but opctC promises a.

The example shows that our first attempt to improve the proof obliga-
tion for behavioural subtyping for operations was wrong. We failed to take
into account that preconditions and postconditions are evaluated in different
states. A vehicle to account for this difference are anonymising updates V
(see Def. 3.59). V assigns arbitrary unknown values to all locations which
can be possibly modified by an operation. We are thus assuming a worst-
case approximation of the actually executed operation. This update is put
“between” preconditions and postconditions in our proof obligation. In the
example we get:

b ! .= 0 −> {V}
(
(b .= 0 −> result

.= 0)
& (b ! .= 0 −> result

.= a/b) −> result
.= a/b

) (8.2)

In order to know which locations are modifiable, we have already required
that a modifies clause is present in an operation contract. In our example we
could specify that the modifies clause is empty, i.e., we want op to be a query
without side effects. In that case, V is the empty update, and can simply be
omitted. Then the proof obligation (8.1) results, which holds as desired.

The empty modifies clause would not be correct for the JAVA method in
(8.2). We had to specify Mod = {a}. Now we get V = a := a′ where a′ is a
rigid function symbol. With it (8.2) is, as desired, not valid. Remember that V
equals the completely anonymous update ∗ in case that everything is allowed
to be modified. Then, since there is no relation at all between pre-state and
post-state, (8.2) is not valid either.

In general the proof obligation template for behavioural subtyping with
respect to two operation contracts opctC and opctD is as follows:

Proof Obligation Template 3
BehaviouralSubtypingOperationPair(opctC , opctD):

PreC −> PreD (8.3a)
PreC −> {V}(PostD −> PostC) (8.3b)

where
• D is a subclass of C.
• PreC and PreD are the preconditions of the operation contracts opctC

and opctD (resp.), PostC and PostD are their postconditions, and Mod
is their modifies clause (which must be identical in both contracts). All of
these formulae use the same program variables for the receiver object, the
arguments, and the result.

• V is the anonymising update for Mod.
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We could relax the requirement of identical modifier sets to modifier sets that
have the same effect, but the increased complexity of verifying this hardly
pays off.

This is a proof obligation for a pair of operation contracts. Behavioural
subtyping requires to check this obligation for all operation contracts:

Proof Obligation Template 4
BehaviouralSubtyping(C, D):
For all operation contracts for an operation opC in C and all operations opD

which override opC in the subclass D of C there is an operation contract
opctD for opD with:

BehaviouralSubtypingOperationPair(opctC , opctD)

For specifications that strictly follow the subtyping discipline described, e.g.,
in [Leavens and Dhara, 2000] where all operation contracts are inherited or
copied to subclasses, behavioural subtyping is trivially satisfied. In this case
the proof obligation templates (8.3a) and (8.3b) reduce to the tautologies
PreC −> PreC and PreC −> {V}(PostC −> PostC).

In our opinion the behavioural subtyping discipline is not universally ac-
cepted at the moment and not without criticism. Even JML, that adopts
inheritance of operation contracts as default, knows the construct of code
contracts that are not inherited. The KeY system gives the designers the
freedom to choose their preferred methodology on operation contracts.

8.1.4 Strong Operation Contract

We had previously introduced the concept of a strong operation contract
(⇒ Sect. 1.5), i.e., a contract that is strong enough to ensure that all invari-
ants of its class are satisfied after the return of the operation provided they
were true before. The ultimate check of this property can only be done when
an implementation of the operation is available. What can be done at the
level of design verification? One could try to prove that the postcondition of
an operation op implies all invariants. This will rarely be the case, since it
does not make use of the fact that the invariants and the precondition may
be assumed to be true at the start of the operation. As in the previous section
we make use of anonymising updates to cope with this problem and arrive
at the following proof obligation template:

Proof Obligation Template 5
StrongOperationContract(opct ;Assumed ; φ):

Pre & φ & ConjAssumed & {V}Post −> {V}φ

where V is the anonymising update for the modifies clause Mod of opct (see
Def. 3.59), Pre is the precondition and Post the postcondition of opct and φ
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is an invariant. Moreover Pre, Post , and Mod use the same program vari-
ables for the receiver object, the arguments, and the result. The set Assumed
consists of additional invariants which are assumed to be valid before the op-
eration invocation; ConjAssumed is their conjunction. If op is a constructor
operation neither φ nor Assumed are allowed.

We have included in this template the extra parameter Assumed to allow
for greater flexibility in its application. In many case it will be sufficient to
instantiate Assumed as the empty set. In other cases the invariants might
interact with each other.

And this is what this proof obligation does. Assume first, that we have
verified that all operations satisfy their contracts. This involves, of course,
looking at the methods implementing these operations. Further assume that
all instances of the StrongOperationContract template for all operations op
and all invariants φ can be proved, no implementations need to be consid-
ered for this second step, then we are sure that all invariants are true in all
reachable system states. This is an ideal situation, which we will not take
for granted in general. Templates to deal with less ideal situations will be
discussed in the Sections 8.2 to 8.5.

Let us recall the example from Sect. 1.5 with the specification of the
operation charge in class PayCard:

OCL
context PayCard::charge(amount: Integer)
modifies : balance
pre : balance + amount < limit and amount >=0
post : balance = balance@pre + amount

OCL

an the invariant:

OCL
context PayCard
inv: withinLimit : 0 <= balance and balance <= limit

OCL

Instantiating StrongOperationContract to these specification we end up with
the formula:

KeY
\forall PayCard pc; balance@pre(pc)=pc.balance
& self.balance + amount < self.limit & amount >= 0
& \forall PayCard pc; (pc.<created>=TRUE -> 0 <= pc.balance

& pc.balance <= pc.limit)
& {self.balance:=l_balance(self)}

self.balance = balance@pre(self) + amount
-> {self.balance:=l_balance(self)}
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\forall PayCard pc; (pc.<created>=TRUE -> 0 <= pc.balance
& pc.balance <= pc.limit)

KeY

It can be discharged with the KeY prover.
If we omitt the precondition, as has been done in the first specifi-

cation attempt described in Sect. 1.5, the corresponding instantiation of
StrongOperationContract would fail, even if we add the modifies clause con-
taining the attribute balance.

8.2 Observed-State Correctness

At some point during software development programs come into play and the
question arises whether the program is correct according to the specification.
In this section we define what we consider to be a correct program.

Let us first recall the notations from the beginning of this chapter. We
deal with a program P and its specification Spec. Specifications are for the
purposes of this chapter JAVA CARD DL formulae. The specification consists of
a set of invariants InvSpec and operation contracts opct for each operation op.
Each operation contract in turn specifies a precondition Pre, a postcondition
Post , a modifier set Mod, and the termination marker total .

The basic definition, that we elaborate on in the rest of this subsection,
is

Definition 8.2 (Observed-State Correctness). A program P is observed-
state correct w.r.t. a specification Spec, if

1. all operations op fulfil all operation contracts of Spec for op,
2. all invariants InvSpec of Spec are preserved by all operations of P , and
3. all invariants are valid in the initial state of P .

In the sequel, we make explicit what constitutes fulfilment of operation con-
tracts and preservation of invariants. The mental model behind this notion
of correctness is that of an observer of P . We think of an observer as a set of
classes that may run all public methods of P . The observer sees all internal
details of P , all values stored in all fields and arrays of all of P , but only in the
pre-state and post-state. He does not see intermediate states. He has access to
all public fields and can run a public method in a state satisfying its precon-
dition and observe whether the final state satisfies its postcondition. He can
see, whether the pre-state satisfies an additional property I and he can check
whether I is again true in the post-state. When all observers only observe
behaviour of P consistent with Spec, we call P observed-state correct. On
the other hand, if there is an observer which observes behaviour which differs
from Spec, then P is incorrect. In our opinion the observed-state paradigm
fits very well with the design-by-contract methodology of Meyer [1992].
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We point out though, that in the presence of a transaction concept in the
programming language observed-stated correctness is not sufficient. In this
case it is indispensable to take intermediate states into account (⇒ Sect. 9.4).
Our observed-state semantics also differs from the JML visible state semantics
(⇒ Sect. 5.3); we discuss this issue in the next subsection.

The observed-state model seems simple and obvious. Yet there are some
fine points to be clarified: How is the call performed? Are there restrictions
when an observer may call an operation, that is, which assumptions are made
before invoking the operation? And most importantly: When is an observed
behaviour judged to be correct, that is which conditions should be ensured in
the post-state of an operation? What methods are available to the observer
in the initial state? An observer could as well modify fields of a sufficient
visibility, like public, directly. If invariants depend on these fields giving any
guarantees on the validity of such invariants is almost impossible. We thus
require that all fields are declared as private or protected. Note that classes
using fields of other visibilities can easily be transformed into programs which
satisfy this requirement by making the field protected and providing “setter”
and “getter” methods. These new methods make it apparent that assertions
on these fields are difficult to meet.

8.2.1 Observed States vs. Visible States

Another approach to entire program correctness employs the visible state
semantics [Poetzsch-Heffter, 1997, Leavens et al., 2006].

A state is visible [Leavens et al., 2006] for an object o if it is reached at
one of the following moments during the execution of a program; we leave
out finalisers and JML’s helper methods for simplicity:

• at the end of a constructor invocation which is initialising o,
• at the beginning and end of a non-static method invocation with o as

receiver,
• at the beginning and end of a static method which is declared in the class

of o or a superclass.
• when no constructor, non-static method invocation with o as receiver, or

static method invocation for a method in o’s class or a superclass is in
progress.

A state is visible for a type T if it is reached after static initialisation for T
is complete and it is a visible state for some object of type T .

The visible state semantics requires all instance invariants declared in
type T to hold for every object o of type T in every visible state for o. All
static invariants declared in T must hold in every visible state for T .

Clearly this semantics is stronger than observed-state correctness. The
example program in Fig. 8.1 is observed-state correct but not visible-state
correct:
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JAVA

1 public class A {

2 private int i = 1;

3 /*@ instance invariant i>0 */

4

5 public int getI() { return i; }

6 /*@ requires p>0;

7 @ ensures i==p;

8 @*/

9 public void setI(int p) { i=p; }

10 public void m1() {

11 setI(0);

12 i=1;

13 }

14 public void m2() {

15 i=0;

16 setI(1);

17 }

18 public int m3() {

19 i=0;

20 i=(new B()).m5(this);

21 }

22 /*@ ensures \result>0 @*/

23 public int m4() {

24 return 42/i;

25 }

26 }

27

28 public class B {

29 /*@ ensures \result>0 @*/

30 public int m5(A a) {

31 if (a.getI()<=0) a.setI(1);

32 return a.m4();

33 }

34 }

JAVA

Fig. 8.1. An example program demonstrating the differences between visible state
semantics and observed-state semantics

With the visible-state semantics, the methods m1(), m2(), and m3() are
not correct:

• According to visible-state semantics the invariant i>0 must be established
in line 12 where the call to method setI(int) returns. This is not the
case. With observed-state correctness, this state does not matter since it
is not observed by an observer.
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• For m2() the visible state semantics requires that the invariant holds in
line 16 before the call to setI(int) starts. This is not the case but again
an observer does not notice such a state and when m2() terminates the
invariant is valid again.

• For the same reason m3() does not fulfill its contract in the visible state
semantics, but it does in the observed-state semantics.

Our view is more liberal and we believe closer to a programmer’s view of
invariants.

An argument often used in favour of visible state semantics [Barnett and
Naumann, 2004, Huizing and Kuiper, 2000] is the fact that invariants are
required to be true at the start of reentrant calls (also referred to by the
name call-back). To explain this phenomenon we look at the classes A and B
from our example in Fig. 8.1.

When an A instance o executes m3() it calls at line 20 method m5(o) on
a B instance. The B instance calls back to o namely the method m4() on line
32. The visible state semantics requires that the invariant in the visible state
reached on line 32 is true, which in the example it in fact is. Nevertheless,
instance o violates its visible state contract already on line 20. On the other
hand, the program {A, B} is observed-state correct: Which ever method an
observer invokes, in any state observable state in which the invariant holds
true, after the method returns A’s invariant holds again.

This section is about the semantical definition of observable state cor-
rectness. But, we feel it will be helpful for the reader to include here some
explanations of the calculus that is used in our verification system. The KeY
verification system tries to prove that m3() preserves the invariant i>0 by
symbolically executing the program code of m3(). When symbolic execution
reaches line 32 it knows that i>0 is true and subsequent symbolic execution
of m4() succeeds to establish the invariant after termination of m3(). The
difference to the visible state semantics becomes apparent, if we decide in
the KeY verification effort not to symbolically execute method m4(), but use
its contract instead. Since the precondition of m4() is true the proof would
again succeed. But, the system would record that the contract for m4() has
not been proved yet. It turns out that it cannot be proved as it stands, we
have to assume the invariant as a precondition. The proof that m3() preserves
the invariant is still open at this point and one has to redo it. Let us consider
another scenario, where we first prove the contract of m4() using the invari-
ant as an additional precondition. Next the proof that m3() preserves the
invariant is started again using the contract of m4() when symbolic execu-
tion reaches line 32. The system offers (or automatically selects) the proved
contract. Since the state on reaching line 32 is not observable, the invariant
cannot be assumed to hold and has to be discharged on the basis of what the
system knows at this point of the symbolic execution. In the present example
this proof succeeds.
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Note, that with the help of our JAVA CARD DL calculus we can enforce vis-
ible state semantics by requiring all invariants to be true whenever a method
contract is invoked. When we try, e.g., to prove that m2() preserves invariants
and symbolic execution has reached line 16 we use the contract of setI(int)
with the invariant as additional assumption. In order to use this contract
we must prove that the precondition of setI(int) and the invariant holds.
This fails as it should since class A is not visible state correct. The KeY
calculus is more flexible and would allow us to use a contract which relies on
weaker assumptions than that of all invariants: In our example, a contract
which does not include the instance invariant would hold and could thus be
used.

8.2.2 Assumptions Before Operation Calls

As already remarked in Sect. 5.1.1 an operation contract does not give guaran-
tees for all pre-states. Our observer model reflects this by calling the observed
program P only in certain states that satisfy properties which we define in
this section.

In particular such a state must be reachable from the start state of the
system by calling operations on P and performing other statements in the
observer. Any intermediate state while a method in a class of the observer is in
progress is such a reachable state. Instead of talking about an intermediate
state we could also use any final state of a method execution (since our
observer can be any program):

Definition 8.3. A state S is reachable by a program P if there is a class
Obs with one static method m such that at the end of the execution of m the
state S is reached.

Clearly, other states cannot be checked by an observer and according to our
observer model we are only interested in what an observer can observe. We
will extend the notion of reachable states in the context of components in
Sect. 8.5.4.

Our first-order specification languages are unfortunately not capable of
making statements about reachability of states. When formalising proof oblig-
ations, such a requirement can thus not be formalised. The way out is that
we must characterise reachable states by properties which they must satisfy.
This is exactly the purpose of class invariants. Nevertheless for the theoreti-
cal notion of legal pre-states we include the condition that these states must
be reachable.

Though we cannot completely formalise reachability of pre-states we can
give some necessary conditions of reachable states which are obvious in our
mental observer model, but must now be made explicit:

• If the observer invokes an instance method, then the receiver object self
is a created object; in our first-order logic we write
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self.<created>
.= TRUE .

• All arguments p1, . . . , pn passed to the formal parameters of the method
call are created objects, null, or a primitive value; so for every i = 1, . . . , n
where pi is of a reference type:

pi.<created>
.= TRUE | pi

.= null .

We write ValidCall op(self, p1, . . . , pn) or simply ValidCall op to refer to the
conjunction of these formulae for an operation op.

According to what we said in Sect. 5.1.1 we are furthermore only inter-
ested in pre-states which satisfy a precondition of the considered operation.
An operation may have more than one operation contract, so that we can
assume that the disjunction of the preconditions of all contracts of the oper-
ation holds. We denote this formula by DisjPre .

From the point of view of an observer, invariants always hold. We may
thus assume that all of them hold in a pre-state.

8.2.3 Operation Calls

To compare implemented and specified behaviour, the observer must invoke
the method or constructor. The call is arbitrary in the sense that we have
arbitrary receiver and arguments for the call. We are thus using unknown but
fixed objects which we assume to be stored in the suitably typed program
variables self (for the receiver object, if one is needed) and as well suitably
typed argument program variables p1, . . . , pn. Depending on the signature,
a variable (usually called r) that captures the returned value of a non-void
method call is needed.

The observer uses the JAVA statement Prg0
op(self; p1, . . . , pn; result)

listed in Table 8.1, depending on the program variables introduced above, as
call to method or constructor op. Note, that we use method body statements
as introduced in Chapter 3. This means, dynamic binding is not triggered by
the observer call, instead a concrete method body is executed. Consider for
instance the following method declared in class C:

JAVA (8.2)
public void m(int i) {

i=1;
}

JAVA
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When a method body statement self.m@C(p); is executed in the post-state
p equals 1. As a postcondition of m however, we expect p

.= 1 not to be
satisfied, since assignments to parameters are hidden from the caller of a
method.

The pure program Prg0
op() is thus not what is desired. Our observer

should naturally not see the assignments made to the arguments of the opera-
tion call. Thus we assign the arguments p1, . . . , pn to fresh variables p′1, . . . , p

′
n

before the method body statement. So if T1, . . . , Tn are the static types of
p1, . . . , pn we use, instead of Prg0

op(self; p′1, . . . , p
′
n; result), the following

statements:
T1 p′1 = p1;
...
Tn p′n = pn;

Prg0
op(self; p′1, . . . , p

′
n; result)

When we reason about the example method m in (8.2) we would consider
the program int p′=p; self.m@C(p′);. In its post-state p

.= 1 is—as
intended—not true.

Recall that JAVA CARD DL defined abrupt termination as non-termination.
If the observer “executes” Prg0

op(self; p1, . . . , pn; result) this implies that
no statement about the post-state of an abruptly terminated op can be made,
at least with the standard modalities 〈·〉 and [·]. Thus, this JAVA sequence is
not sufficient to make statements about exceptional behaviour of methods.
Not too much is missing, though, to get information on thrown exceptions:
Potentially thrown exceptions are caught and assigned to an additional pro-
gram variable exc which is assigned null before invoking the method or
constructor (we abbreviate result by res here):

Table 8.1. Programs in proof obligations

Prg0
op(self; p1, . . . , pn; result) if op is a. . .

result=self.m(p1,...,pn)@D; method in type D declared as
D0 m(D1,...,Dn)

self.m(p1,...,pn)@D; method in type D declared as
void m(D1,...,Dn)

result=D.m(p1,...,pn); method in type D declared as
static D0 m(D1,...,Dn)

D.m(p1,...,pn); method in type D declared as
static void m(D1,...,Dn)

result=new D(p1,...,pn); constructor declared as
D(D1,...,Dn)
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Prgop(self; p1, . . . , pn; res; exc) :=






T1 p′1 = p1;
...
Tn p′n = pn;
exc=null;
try{

Prg0
op(self; p′1, . . . , p

′
n; res)

} catch (Throwable e) {
exc = e;

}

In post conditions the value of exc may now be referred to. It is either null,
then op terminated normally, or is assigned an exception which is the reason
for the abrupt termination.

From time to time however, we are not interested in the actual thrown
exception but would only like to know that a postcondition holds indepen-
dently of the question whether the method terminated normally or abruptly.
Then, the following JAVA sequence suffices:

Prgop(self; p1, . . . , pn; result) :=






T1 p′1 = p1;
...
Tn p′n = pn;
try{

Prg0
op(self; p

′
1, . . . , p

′
n; result)

} catch (Throwable e) {}

In the sequel, we are fixing the program variables self, p1, . . . , pn, result,
exc and thus most often simply write Prgop() instead of the more verbose
Prgop(self; p1, . . . , pn; result; exc) or Prgop(self; p1, . . . , pn; result).

8.2.4 Assertions After Operation Calls

When an observer invokes an operation as described above in a pre-state
which satisfies the assumptions stated in Sect. 8.2.2, then:

1. If the operation is required to terminate (that is, the total marker has
been set in opct) the call must terminate in a post-state.

2. If it terminates, then in the post-state
a) the postcondition Post of opct is valid,
b) only the locations described by the modifies clause in opct are modi-

fied (comparing pre-state and post-state and ignoring local variables),
c) all invariants InvSpec are satisfied.
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If Conditions 2a and 2b are satisfied we say that op fulfils the operation
contract opct. If the Condition 2c is satisfied we say that invariants are pre-
served by op. This will be more precisely defined as follows. Before that we
are discussing the role of invariants as assumptions in each of these notions.

Invariants describe conditions that are, for an observer, always present
in the observed program. Though invariants are (at least in the specification
languages UML/OCL and JML) always defined in one class or interface, their
effective scope is global. In particular, a method called by the observer can
rely on any invariant defined in other types than those which the method
is declared in. From the perspective of the overall proving process it may
however be advantageous not to assume all invariants at that call: When we
make use of contracts as lemma rules in a proof it is desirable to have as few
assumptions as possible. Since all of them must be proven to hold when a
method contract is applied. We are thus relativising both notions and define
fulfilment of operation contracts and preservation of invariants of under the
assumption of some subset of all invariants.

Definition 8.4 (Fulfilling Operation Contracts). Let P be a program
and Spec a specification for P . Let furthermore

• op be an operation declared in type T with parameter types T1, . . . , Tn and
return type R in a program P

• self be a program variable of type T ,
• p1, . . . , pn be program variables of types T1, . . . , Tn,
• result be a program variable of type R,
• exc a program variable of type java.lang.Throwable, and
• opct = (op’,Pre ,Post ,Mod,Termin) be an operation contract of Spec

op fulfils the operation contract opct under the assumption of I ⊆ InvSpec if
op′ = op or op overrides op′ and for all reachable states Spre and all eself ∈
DT , ei ∈ DTi (i = 1, . . . , n) with Spre(self) = eself and Spre(pi) = ei with

1. Spre |= ValidCall op

2. Spre |= Pre
3. Spre |= I

the following conditions hold:

• If the total marker is set there is a state Spost with

(Spre, Spost) ∈ ρPrgop′ (self;p1,...,pn;result;exc) .

• If there is such a state Spost then:

Spost |= Post(self; p1, . . . , pn; result; exc)
(Spre, Spost) |= Mod(self; p1, . . . , pn)
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Definition 8.5 (Preservation of Invariants). With the same abbrevia-
tions as in the last definition, for some sets I and I ′ of invariants:

op preserves a set of invariants I ′ of a specification of P under the as-
sumption of I if for all reachable states Spre and all eself ∈ DT , ei ∈ DTi

(i = 1, . . . , n) with Spre(self) = eself and Spre(pi) = ei with

1. Spre |= ValidCall op

2. Spre |= DisjPre

3. Spre |= I
4. (Spre, Spost) ∈ ρPrgop(self;p1,...,pn;result)

the following condition holds for all φ ∈ I ′:

Spost |= φ .

Typically invariants impose constraints on all instances of a particular class.
Usually one tends to think that constructors must establish such instance in-
variants rather than preserve them. Remember again that instance invariants
are formalised as

\forall C o; (o.<created> .= TRUE −> φ(o)) .

In the case of a constructor we get:

• Before the invocation of a constructor, the instance invariant of the object
to be created is not assumed to hold since we restrict our quantification
to all created objects. This is as desired.

• When the constructor terminates normally an object is created and quan-
tification includes it. Again this reflects our idea of what we expect from
an invariant.

• When the constructor terminates abruptly the object is created but not
initialised. We must however require that invariants hold for such objects,
too. The reason is that during object initialisation references may have
leaked and are then available to other objects.

Consider furthermore a state where no classes are initialised and no objects
created. According to our mental model, instance invariants do not need
to hold in such a state. And in fact the instance invariant quantified over
all created objects evaluates trivially to true. By Def. 8.2 we, moreover, only
permit static invariants which evaluate to true if all classes are not initialised.

8.2.5 Static Initialisation

In the initial state of a program P no classes are initialised and thus no
instances created. Since instance invariants are universally quantified over all
created instances, they are trivially true in the initial state.
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Thus, our only concern is with static invariants. An invariant of the form
C.a

.= 0 would not be true in the initial state However, the following re-
formulation would:

C.<classInitialized>
.= TRUE −> C.a

.= 0 .

We then go on and try to prove that this formula is preserved by all opera-
tions.

Definition 8.6. An initial state of a program P is an interpretation Sinit for
which for all classes C ∈ P :

Sinit |= C.<classPrepared>
.= FALSE .

The values of all other implicit fields in Sinit relevant for static initialisation
can be deduced using the JAVA CARD DL calculus. If <classPrepared> is set
to FALSE, all other variables are still set to their default values, for instance
<classInitialized> is set to TRUE.

We make a restricting but realistic assumption on the state of static class
initialisation in all states an observer can consider: All classes in P have either
already successfully processed static class initialisation or have not started
with their static initialisation. In pathological cases, classes can be in an
erroneous state after having processed class initialisation, though such classes
and their instances may behave according to their specifications. Although
the JAVA CARD DL calculus correctly treats these cases (⇒ Sect. 3.6.6), we
rule out that erroneous classes exist when a method or constructor is called,
since in practice it is

• unlikely that a programmer ever intends to have erroneous classes during
the execution of his program; if they occur something is likely to be wrong,
and

• highly complicated to prove properties with more liberal assumptions than
we are postulating.

These assumptions are encoded and treated as implicitly present invariants,
that is we include for every non-abstract class C the following to the invariants
InvSpec:

C.<classErroneous>
.= FALSE

& C.<classInitialisationInProgress>
.= FALSE (8.4)

The static initialisation routine of a class C is simulated in JAVA CARD DL
by a static method <clinit>() implicitly declared in C (⇒ Sect. 3.6.6). As
for ordinary methods and constructors, an observer may invoke <clinit>(),
that is—in reality—it triggers static initialisation.

We require that assumptions and assertions for ordinary methods and
constructors, which were postulated above, should hold for <clinit>(), too.
There is only a minor adjustment to be made which we express by means of
an implicit operation contract for <clinit>().
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Definition 8.7. The standard operation contract of C.<clinit>() consists
of the precondition

C.<classInitialised>
.= FALSE

& C.<classPrepared>
.= FALSE (8.5)

and the termination marker total .

We assume that this standard operation contract is always present in our
specifications.

As a summary: For static initialisation we assume the precondition from
the standard operation contract to hold. As we included (8.4) to the invari-
ants, we may assume in all other proof obligations that no class is erroneous
and not being initialised as well as all invariants hold. It is ensured that static
initialisation terminates normally, that is without top-level exception, again
no class is erroneous, and all invariants hold. JAVA by itself ensures that no
class is currently being initialised after a static initialisation terminates, so
that this part of the implicitly given invariant is not needed to be shown.

8.3 Lightweight Program Correctness

Often while writing code one is not interested in the correctness of the whole
program but only in certain lightweight properties, for instance that a method
preserves a set of invariants.

Table 8.2 shows all such proof obligations. Table 8.3 lists the used no-
tation. For a more concise display we assume that all templates operate on
the same set of program variables; by convention this is self for the receiver
object, result for the result variable, p1, . . . , pn for the arguments, and exc
for the variable storing the thrown exception (or null if none is thrown).

By systematically combining these proof obligations, as shown in the next
section, we can prove observed-state correctness of a program. The rest of
this section explains the design and purpose of the proof obligations.

8.3.1 Invariants

According to Def. 8.2 we are interested in two properties of invariants:

1. They must be valid in all initial states.
2. (All) operations must preserve them.

The first item is covered by the template InitInv , the latter by PreservesInv .

InitInv This template is a direct translation of Def. 8.6. It requires that a
formula φ holds in an initial state of a program.
As remarked earlier, instance invariants, that is, invariants of the shape
\forall C x; (x.<created>

.= TRUE −> φ′) are true in the initial state
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Table 8.2. Proof obligation templates for program correctness

Proof Obligation Template Formula

InitInv(I) φinit −> ConjI

PreservesInv (op;Assumed ;Ensured) ConjAssumed & DisjPre & ValidCallop

−> [Prgop()] ConjEnsured

PreservesOwnInv (op;Assumed) ConjAssumed & DisjPre & ValidCallop

−> [Prgop()] ConjI
EnsuresPost (opct ;Assumed) ConjAssumed & Pre & ValidCallop

−> 〈Prgop()〉Post
(if Termin = total )

ConjAssumed & Pre & ValidCallop

−> [Prgop()]Post
(if Termin = partial )

RespectsModifies(opct ;Assumed) ConjAssumed & Pre & ValidCallop

& PreAxioms & {V}〈anon();〉true
−> [Prgop()]{V@pre}〈anon();〉true

Table 8.3. Abbreviations used in proof obligation templates

Abbreviation Explanation

op an operation of P
opct an operation contract for op with

opct = (Pre,Post ,Mod,Termin)
I,Assumed ,Ensured subsets of InvSpec

ConjF conjunction of the formulae contained in set F
DisjPre disjunction of all preconditions for op
φinit characterisation of the initial state; equivalent to the

conjunction of C.<classPrepared>
.
= FALSE over all

C ∈ P
V anonymising update as defined in Def. 3.59

and thus also trivially pass this proof obligation. It is thus unnecessary
to invoke this proof obligation if the formula already has this shape.

PreservesInv This template exactly corresponds to Def. 8.5.

For the special case that the parameter Ensured equals the set of all in-
stance invariants of a given class we introduce the separate proof obligation
PreservesOwnInv . It is depicted in the third line of Table 8.2.

8.3.2 Postconditions and Termination

For an operation op and an operation contract opct on op, we certainly want
to prove that op establishes the postcondition of opct and complies to the
termination behaviour specified in opct .

As in the case of PreservesInv , the generated proof obligation is of the
shape: ψ −> [p]φ but the kind of modal operator ([·] in that formula) varies



8.3 Lightweight Program Correctness 357

depending on the required termination behaviour. If termination is required
in the operation contract we use ψ −> 〈p〉φ instead.

8.3.3 Modifies Clauses

A modifies clause for an operation indicates the locations that it can at most
modify. Checking modifies clauses belongs amongst the most difficult tasks in
program verification. The reason is that the focus is on those locations which
are not explicitly mentioned in the specification. All of them must be proven
to be unmodified. Due to the nature of the problem, the proof obligation is
not as intuitive as for the others presented in this chapter. We thus proceed
in small steps.

A modifies clause of an operation contract opct of an operation op consists
of a set

Mod = { 〈φ1, f1(t11 . . . , t1n1
)〉, . . . , 〈φk, fk(tk1 . . . , tknk

)〉 } .

Intuitively, Mod is correct if a call p to op (which satisfies the invariants and
the precondition of opct) assigns at most to the locations LMod described by
Mod. Temporary violations of this rule, not visible to an observer, are legal
however (⇒ Sect. 3.7.4).

We consider two JAVA CARD code snippets:

1. p′: This is a method reference to op plus subsequent assignments of fixed
but arbitrary values {v1, v2, . . .} to the locations in LMod = {l1, l2, . . .},
that is: v1 is assigned to l1, v2 to l2, etc. p′ executes op and afterwards
overrides exactly those locations allowed by Mod.

2. p: This consists only of the assignments of {v1, v2, . . .} to the respective
locations in LMod = {l1, l2, . . .}. Note, that these values must be the
same as in the program p′. Thus, p overrides only exactly those locations
allowed by Mod.

Assume now that our program is in a pre-state Spre which satisfies the pre-
condition of opct and the invariants. Our goal is to formalise that p′ and p
result in the same state when started in Spre. If op modified (when called
in Spre) other locations than specified in Mod, say value v′ was assigned to
location l′, then the state resulting from p′ would be different from p, since
location l′ is assigned to a different value in the former than in the latter case.
So if p′ and p terminate in the same state we are done and Mod is a correct
modifies clause for op (under the considered preconditions and invariants).

So we must formalise in JAVA CARD DL that two states (obtained by p′

and p, resp.) are equivalent. Two states are equivalent if all locations are
assigned the same value in both states. To capture this property we make
use of an anonymous method anon(). The behaviour of this method may
depend on all locations. In particular the question under which circumstances
anon() terminates depends on all locations of the program. So we can say
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that two states S1 and S2 are equivalent if the following condition holds: the
anonymous method terminates started in S2 if it terminates started in S1.

In the following, we formalise these considerations as a JAVA CARD DL
proof obligation. First of all, the pre-state Spre is characterised as a state in
which the precondition of opct, some subset Assumed of all invariants, and
argument and receiver objects are created:

Pre & ConjAssumed & ValidCall op .

Furthermore, we formalise the assignment of LMod to the fixed but unknown
values as an update. In order to reflect that the values assigned to these loca-
tions are arbitrary, we use the anonymising update V introduced in Def. 3.59.
The update has rigid symbols as top level operators of its right hand side
terms. These match the signature of the top-level non-rigid symbols of the
terms in the modifies clause. Termination of anon() is expressed, as usual,
as 〈anon();〉true.

When formalising the update, we must take some care since the update
occurs one time inside the scope of a modality; the locations that are to be
updated refer to the pre-state of this modality however. In Sect. 5.2.3 we have
seen a technique which allowed us to refer to values of non-rigid functions
f in the pre-state. We introduce a rigid operator f@pre which reflects the
signature of f and replace the occurrence of f which should refer to the pre-
state by f@pre . Moreover we must appropriately “set” f@pre in the pre-state
by requiring

\forall T1 x1; · · · \forall Tn xn; f@pre(x1, . . . , xn) .= f(x1, . . . , xn) (8.6)

if α(f) = ((T1, . . . , Tn), T ′).
We want the complete update V to refer to the pre-state. But we must

be careful: We must not replace the top-level operator f of the update’s left-
hand side by its counterpart f@pre , simply because we want to refer to the
location not to the object. Moreover replacing it would make the result not
satisfy the definition of an update anymore.

We thus define V@pre inductively as follows:

• (f(t1, . . . , tn) := t0)@pre := (f(t@pre
1 , . . . , t@pre

n ) := t@pre
0 ),

• (u1 ; u2)@pre := (u@pre
1 ; u@pre

2 ),
• (u1 ||u2)@pre := (u@pre

1 ||u@pre
2 ), and

• (for x; ϕ; u)@pre := (for x; ϕ@pre ; u@pre)
• (f(t1, . . . , tn))@pre := (f@pre(t@pre

1 , . . . , t@pre
n )) for non-rigid functions f

• t@pre = t for all other kinds of terms and formulae t

We see that for all states S and all locations l

valS(V@pre)(l) = valSpre(V)(l)

if in Spre all axioms (8.6) for the used f@pre function symbols hold.



8.4 Proving Entire Correctness 359

Now we can assemble the proof obligation for the correctness of the mod-
ifies clause of an operation contract opct under the assumption of a set
Assumed of invariants as in the last line of Table 8.2. PreAxioms denotes
the conjunction of axioms (8.6) for all used f@pre function symbols.

This proof obligation template is correct:

Lemma 8.8. If |= RespectsModifies(opct;Assumed ; self; p1, . . . , pn) is true
for some Assumed ⊆ InvSpec then in all states Spre, Spost with

Spre |= ConjAssumed & Pre & ValidCall op

and (Spre, Spost) ∈ ρPrgop(self;p1,...,pn)

the modifies clause Mod is satisfied (w.r.t. the pre-state Spre and the post-
state Spost).

Example 8.9. In Sect. 5.3.1 we had an operation contract for the method
enterPIN (int pin) describing the behaviour of an ATM when the correct
PIN has been inserted. Translated in first order logic we get the following
operation contract opct :

Pre : self.insertedCard ! .= null
& self.customerAuthenticated ! .= TRUE
& pin

.= self.insertedCard.correctPIN

Post : self.customerAuthenticated
.= TRUE

Mod : self.customerAuthenticated

The proof obligation RespectsModifies(opct; ∅; self; pin) that the modifies
clause Mod is satisfied is as follows:

self.insertedCard ! .= null
& self.customerAuthenticated ! .= TRUE
& pin

.= self.insertedCard.correctPIN
& self@pre .= self
& {self.customerAuthenticated := f(self)}〈anon();〉true
−> [try{self.enterPIN@(ATM)(pin);}catch(Throwable e){}]

{self@pre .customerAuthenticated := f(self@pre)}
〈anon();〉true

where f is a fresh rigid function.

8.4 Proving Entire Correctness

The properties presented so far are intended to help developers when ques-
tions concerning single correctness issues occur during development. At some
point the program is finished being written and the question might arise
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whether the complete program is entirely correct. Of course, the proofs orig-
inating from lightweight correctness proof obligations (with the unmodified
underlying program context) remain useful in order to prove the entire cor-
rectness and might thus be re-used here.

Basic Proof Obligation System

The following proof obligation system consists of several elementary proof
obligations and ensures observed-state correctness as defined in Def. 8.2. That
definition is directly formalised:

Lemma 8.10. Let S be a specification of P . If for all non-private operations
op of P the following proof obligations are valid then P is observed-state
correct w.r.t. S:

• for all operation contracts opct for op and some Assumed ⊆ InvSpec:

EnsuresPost(opct ;Assumed) and RespectsModifies(opct ; I) ;

• for all invariants φ ∈ InvSpec and for some Assumed ⊆ InvSpec:

PreservesInv(op,Assumed ; {φ}) and InitInv({φ}) .

Instead of proving PreservesInv(op, I; {φ}) for all operations φ ∈ InvSpec

(and some I ⊆ InvSpec) one could equivalently show the validity of the larger
formula PreservesInv (op, InvSpec).

One thing may look strange at a first glance: We require that all opera-
tions of the complete program preserve all invariants of the complete spec-
ification. This makes proving invariants really complicated! Were invariants
not attached to a certain class, and is it not sufficient to let the operations of
just that class preserve these invariants? A couple of things can be done to
remedy the problem that proving invariants is complicated. These measures
will be described in the rest of this chapter. But first let us explain why it is
in fact necessary to consider all operations.

Consider the following invariant of the ATM class:

insertedCard ! .= null −> insertedCard.invalid
.= FALSE

which says that inserted cards are always not invalidated. There could be
other references to the BankCard object stored in insertedCard. For in-
stance, the PermanentAccount class could hold a reference to all cards
associated with the account. If, for some reason, there is a method in
PermanentAccount which sets the invalid bit in some BankCard instance
to true, this could also affect the card inserted in the ATM. ATM’s invariant
would thus be violated although no operation of ATM has been processed.
If we checked however that the operations of BankCard preserve the opera-
tions of ATM, the BankCard instance cannot perform the invariant invalidating
changes.
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Problems

The preservation of invariants is with this definition quite a complex task,
since the number of generated proof obligations explodes: with i the number
of invariants in the program and j the number of operations, we get i ·j proof
obligations, whereas there are only 2 · j proof obligations for ensuring that
the operation contracts are fulfilled (assuming there is exactly one contract
per operation).

Moreover consider the situation in which we have verified a program P
(w.r.t. invariants I) and then a class is added with additional invariants I ′.
What we would have to do now is to prove the preservation of I ′ for the
operations of P and the preservation of I for the operations of the new class.
This is a truly non-modular and undesired effect, which we tackle in the rest
of this chapter.

Non-modular Improvements

Example 8.11. From our banking application as described in Chapter 5 we
get the invariant:

φ := ∀c :BankCard. (c.<created> .= TRUE
−> 0 <= c.wrongPINCounter& c.wrongPINCounter<= 2) (8.7)

It is intuitively clear that this invariant cannot be violated by the method
addBonus in BankCard. There should thus be no need to check that addBonus
preserves this particular invariant, though in this case symbolic execution
would be trivial. Clearly however there could be methods where a huge effort
would be needed to get deductively rid of the code, although the method has
no means to affect the evaluation of the considered invariant.

The intuition of a developer recognises quite immediately if a method cannot
influence the evaluation of a certain invariant, since the locations that get
changed by the method on the one side and those that an invariant depends
on are distinct.

We have already familiarised ourselves with the fact that those locations
an operation may assign values to are specified in modifies clauses. If modifies
clauses are checked as described above, we can make safe use of this kind of
specifications to decide that an operation cannot be affected by an invariant.

More precisely we make use of the fact that if V is the anonymising update
relative to a modifies clause Mod and the formula {V}φ is valid, then φ is
valid after the execution of a program which Mod is an modifies clause for.
So instead of symbolically executing the operation body we can apply the
update V . If this does not already affect a considered invariant, the actual
body will neither.
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The validity of

Pre & ConjAssumed & ValidCall op & φ −> {V}φ

for an operation op, Assumed ⊆ InvSpec thus implies that op preserves the
invariant φ. We can however be more precise if we also take into consideration
the precondition Pre and the postcondition Post of an operation contract of
op. We can assume that Pre holds in the pre-state and that after executing
op, or its approximation V , Post holds.

If we pack all this into a formula we end up with a proof obligation we
already know: StrongOperationContract :

Pre & φ & ConjI & {V}Post −> {V}φ

where in our case I = Assumed ∪ {ValidCallop}.

Lemma 8.12. For an invariant φ and an operation op, if

|= StrongOperationContract(opct ;Assumed ∪ {ValidCall op}; φ)

for some operation contract opct for op and if op fulfils opct under the as-
sumption of Assumed then op preserves φ under the assumption of Assumed.

Example 8.13. Coming back to Ex. 8.11, addBonus could have the following
operation contract:

Pre = true Post = true Mod = {self.bankCardPoints} .

Though this specification is quite weak it is in fact good enough to show that
addBonus preserves (8.7):

φ := ∀c :BankCard. (c.<created> .= TRUE
−> 0 <= c.wrongPINCounter& c.wrongPINCounter<= 2)

provided that the implementation of addBonus fulfils the contract. The latter
has to be proven separately.

For the preservation of invariants the StrongOperationContract proof
obligation is instantiated as follows:

true & φ & ValidCall op & {self.bankCardPoints := f(self)} true
−> {self.bankCardPoints := f(self)}φ

where f is a rigid function. According to update application rules (and other
simplification rules) this is equivalent to the tautology φ −> φ. The lemma
above ensures that addBonus preserves the considered invariant. Note again
that we did not look at the implementation of addBonus to come to this con-
clusion; an inspection of the code is needed when the correctness w.r.t. opct
is proven.
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As a consequence, if the modifies clause of an operation is (provably) empty,
there is no need to check PreservesInv for that operation, since this property
is trivially true.

Lemma 8.14. If all operation contracts opct applicable to an operation op
have an empty modifies clause and |= RespectsModifies(opct) then op pre-
serves every invariant.

Example 8.15. In our banking example, cardIsInserted() in class ATM does
not modify anything (it is a query or pure method). Its modifies clause is
thus empty in all applicable operation contracts. There is thus no need to
check for invariant preservation for any invariant at this method.

8.5 Modular Verification

The just described basic proof obligation system (Lemma 8.10) requires to
show the preservation of all invariants for all operations. In spite of the
non-modular improvement described above, the basic problem persists: We
have to take, for all invariants, all operations into consideration. The above
improvement just saved us from examining the code of an operation. It does
not help us with the problem of the explosion of proof obligations. We are
now aiming at a more modular treatment: With a little effort, invariants
themselves reveal that they are relevant to certain classes only. Then only
operations in these classes must be checked to preserve these invariants. We
describe two approaches which are commonly known as the visibility-based
approach and the encapsulation-based approach.

8.5.1 Visibility-Based Approach

We reconsider the invariant (8.7) that the value stored in wrongPINCounter
of BankCard is always greater or equal 0 and less or equal 2. We further
assume that wrongPINCounter is declared as private. This means that only
operations implemented in the class BankCard may modify that field. No
other methods is able to set it to a different value; these methods thus trivially
preserve the invariant. Thus, if all operations of BankCard take care that our
invariant is preserved, we may conclude that all operations preserve it. The
reason is that our invariant was visible to all classes which are relevant for it.

This example was about one of the simplest types of invariant we can
imagine: A single private field was constrained to be in a certain range. We
are now aiming at extending the visibility principle both to more complex
invariants and to fields being declared as protected; remember that we are
only dealing with private and protected fields.

For the former we can simply apply our argument of our example and
come to the conclusion: If all used fields are private and all operations of the
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classes which declare these fields preserve invariants, then all operations of the
whole program preserve invariants. Implicit fields which cannot arbitrarily be
assigned values do not need to be considered however. More precisely we can
capture this with the notion of a field depends clause of an invariant.

Definition 8.16. A field depends clause D of a closed formula φ is a set
of (instance and static) non-implicit fields such that for all f ∈ D, for all
((d1, . . . , dn), d′) ∈ α(f) and for all states S1 and S2 with S1(f)(d1, . . . , dn) =
S2(f)(d1, . . . , dn):

S1 |= φ iff S2 |= φ .

Lemma 8.17. Let φ be a formula and all occurring non-rigid function and
predicate symbols are field symbols. Then the set of fields corresponding to
these field symbols is a field depends clause.

Lemma 8.18. Let φ be a closed formula. Let D be a field depends clause of
φ. If all fields in D are private and all classes declaring these fields preserve
φ, then φ is preserved by all operations of the program.

The argument for a proof of this lemma is as follows: During the execution of
an operation of some class which does not declare some field of D all f ∈ D
are evaluated to the same value in every state because f cannot be assigned.
In all other operations we assume the preservation of invariants however.

When we take protected fields into account, we must be more careful:
Protected fields can only be assigned values in the class declaring it or in a
subclass. We must thus check the preservation of invariants for all subclasses
of classes declaring a protected field contained in the field depends clause.
For an easier notation we introduce the notion of a self-guard :

Definition 8.19. Let D be a set of not-implicit fields and G be a set of types.
G is a self-guard of φ if it contains

• all classes declaring some f ∈ D and
• all subclasses of all classes declaring some protected f ∈ D.

With it the final condition for the visibility technique can be formulated:

Lemma 8.20. Let φ be a closed formula. Let D be a field depends clause of
φ. If there is a set G of types which is a self-guard of D and all operations
of all classes in G preserve φ, then φ is preserved by all operations of the
program.

Example 8.21. For the introductorily mentioned invariant (8.7):

φ := ∀c :BankCard. (c.<created> .= TRUE
−> 0 <= c.wrongPINCounter& c.wrongPINCounter<= 2)

we obtain, with the help of Lemma 8.17, the field depends clause
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D := {wrongPINCounter} .

This field is declared private in BankCard. Thus {BankCard} is a self-guard of
D. If all operations of BankCard preserve φ then all operations of the whole
banking application will preserve it.

Assume now that wrongPINCounter is declared protected in BankCard
and there is a subclass BankCardJunior in our scenario. {BankCard} is then
no more a self-guard of D, we must extend it with the new subclass to

{BankCard, BankCardJunior} .

This entails that also all operations of BankCardJunior must preserve φ.

8.5.2 Encapsulation-Based Approach

Protecting invariants based on visibility is not always sufficient as the follow-
ing example extending our banking scenario shows, see Fig. 8.2.

PermanentAccount

clock:Clock
dailyLimit:int
- balance:int
- dateOfLatestWithdrawal:Date
�query�
+ accountBalance():int

CentralHost

maxAccountNumber:Integer
- validCardsCount:Integer
+ createAccount(N:Integer)
+ issueCard(N:Integer,pin:Integer)
�query�
+ accountExists(N:Integer):Boolean

Clock

currentDate:Date
�query�
+ isSameDay():boolean

ATM

1 centralHost

*

0..*

Fig. 8.2. Class diagram for extended ATM scenario

Example 8.22. The PermanentAccount class keeps track of the date at which
the latest withdrawal has been performed on this account. This is to ensure
that only a certain maximal amount is withdrawn each day. So that day is
stored in a field dateOfLatestWithdrawal of type Date. Let us assume for
simplicity that this class Date mainly consists of an integer counter currDate:
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JAVA

public class Date {
private int currDate;
public void setDate(int newDate) { currDate = newDate; }
public int getDate() { return currDate; }

}

JAVA

(and maybe some convenience methods computing days, months, or years
from it). Moreover there is a class Clock with a static field currentDate of
type Date. A natural invariant of PermanentAccount is:

\forall Account a; (a.<created>
.= TRUE

−> Clock.currentDate.value >= a.dateOfLatestWithdrawal.value)
(8.8)

With the visibility-based approach we would have to ensure that the classes
Account, Clock, and Date preserve this invariant, since they are the classes
in which all fields occurring in the invariant are declared in. While this task
does not seem to be a problem for the former two1, it is certainly impossible
that Date preserves this invariant: The setValue method would permit the
invariant to be violated. As soon as (more) general classes which are not only
used in the context of the invariant (like Date) come into play the visibility
strategy might fail. Note that also our “brute-force” method, that is, showing
the preservation of all invariants for all operations, would have failed here.

We can observe the following issue concerning our invariant: An object
stored in the dateOfLatestWithdrawal field of a PermanentAccount in-
stance a could be referenced (aliased) by another object o of some class
T (T �= Account, T �= Clock). An operation m defined for o could violate our
invariant, for instance by calling

. . . setValue(Clock.getCurrentDate().getValue()+1)

on it. If we do not want to check operation m as well for invariant preservation,
we must control arbitrary leakage of certain object references. In our case
it must be forbidden that a.dateOfLatestWithdrawal leaks to o. In other
words, we must take care that there is a sufficient degree of encapsulation,
which helps to protect invariants. Note, that an analogous requirement as for
dateOfLatestWithdrawal in PermanentAccountmust hold for currentDate
in Clock, too.

1 Note, that we might need additional invariants stating that the two Date objects
are not the same. Moreover note that Clock will probably only increase the value
counter.
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In the following, we investigate which encapsulation properties must hold
for which invariant and which consequences are implied for program verifi-
cation; finally we discuss by which means encapsulation properties can be
established.

Depends Clauses

First of all it is advantageous to have a more precise notion of the locations an
invariant depends on than field depends clauses. We therefore extend them
to full depends clauses. Instead of finding sets of fields for invariants, we are
now aiming at sets of terms. As before, these sets of terms determine sets of
locations. If these locations are not affected by a change from some state S1

to some state S2 then the invariant is evaluated to the same truth value both
in s1 and s2.

Definition 8.23. A depends clause D of a closed formula φ is a finite set of
pairs (ξ, f(t1, . . . , tn)) (where ξ is a formula, f a non-rigid function symbol,
and t1, . . . , tn are terms)2 such that for all (ξ, f(t1, . . . , tn)) ∈ D, for all states
S1 and S2 and all variable assignments β with

• S1(f)(valS1,β(t1), . . . , valS1,β(tn)) = S2(f)(valS1,β(t1), . . . , valS1,β(tn))
and

• S1, β |= ξ

the following holds:
S1 |= φ iff S2 |= φ .

The following lemma says that we can perform the visibility-based analysis
also with depends clauses and not only with field depends clauses.

Lemma 8.24. Let φ be a closed formula. A set DF of fields is a field depends
clause iff

{(true, x.f) | f ∈ DF}
is a depends clause of φ.

Depends clauses deliver us more detailed information on the dependencies of
invariants. In particular we keep complete “access chains” like

.dateOfLatestWithdrawal.value

and not only the single and unrelated fields dateOfLatestWithdrawal and
value.

Example 8.25. The invariant (8.8) in Ex. 8.22 has the following depends
clause:

D :=






Clock.currentDate.value, Clock.currentDate,
x.dateOfLatestWithdrawal.value,

x.dateOfLatestWithdrawal





(8.9)

2 Note that this is the same way to describe locations syntactically as for modifier
sets in Sect. 3.7.4
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Determining Depends Clauses

We have not yet said where depends clauses come from. Usually it is quite
easy to extract them syntactically from the considered invariant.

Lemma 8.26. Let φ be a formula which does not contain non-rigid predi-
cates. Let Dep(φ) be the set of all subterms of φ which are of the shape
f(t1, . . . , tn) with terms t1, . . . , tn where f is a non-rigid function symbol but
not an implicit field. Then Dep(φ) is a depends clause of φ.

Example 8.27. For the invariant (8.8) in Ex. 8.22 we obtain, with the proce-
dure described in the above lemma, Dep(φ) = D where D is the set described
in Ex. 8.25.

Example 8.28. The procedure does not always deliver an “optimal” depends
clause. For the formula φ

\forall T x; (x = a.b −> x.c > 0)

where a is a static field, we obtain Dep(φ) = {a, a.b, x.c} as depends clause.
Since φ is however equivalent to a.b.c > 0 the set D = {a, a.b, a.b.c} would
as well be a depends clause. As can be seen after the next sections D is a
better depends clause than Dep(φ).

An alternative to the above procedure is thus to let the developer find a
depends clause which is then subject to be proven with the help of an ap-
propriate proof obligation. Such a proof obligation can be found in [Roth,
2006].

Interior and Guards

Depends clauses Dφ of invariants φ deliver important information: If all loca-
tions described by them remain unchanged then the truth value of φ remains
unchanged, too. These locations must thus only be changeable by operations
from which we know that they preserve φ. We must take care that all other
operations do not get a chance to directly modify the critical locations.

Let (f, o) be such a location, where f is an instance field symbol and o an
object. Let us assume that o offers operations which could modify f . In that
case the only possibility to prohibit that (f, o) is modified, is to avoid that o
is referenced by a not trustable object. Given a state S, we call the objects o
the interior of Dφ in S.

We thus need to distinguish between trustable and not trustable objects
(w.r.t. φ). We trust in an object if and only if its operations preserve φ. Let G,
the guard, be exactly that set of classes whose instances can be trusted. We
will have to show (later) that these classes preserve φ, but we first want to
establish the property that references to the interior of Dφ do not escape
to not trusted objects. Not trusted objects are exactly those objects which
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are not instances of some class in G. According to our discussion above they
must not obtain a reference to the interior of the locations described by the
depends clause of φ. It is a task of the guard classes to maintain this property.

Definition 8.29 (Interior, Guard). Let L be the locations described by a
depends clause D of the closed formula φ. Let G be a subset of the considered
program context.

• The interior of D in a state S is the set InS with

InS := {o′i | (f, (o′1, . . . , o
′
n)) ∈ L, 1 ≤ i ≤ n} .

• G is a guard for D in a state S if for all locations (g, (o1, . . . , om)) with
S(g)(o1, . . . , om) ∈ InS one of the following three alternatives holds:
– If g is an instance field symbol with α(g) = T × T ′′ for some T and

T ′′ then T ∈ G; if g is protected then for all T ′ with T ′ � T : T ′ ∈ G.
– If g is a static field symbol declared in type T then T ∈ G; if g is

protected then for all T ′ with T ′ � T : T ′ ∈ G.
– o1, . . . , om ∈ InS ∪DPT (where DPT denotes the primitive values).

• G is a guard for D if it is a guard for D in all states.

If we have found a guard for a depends clause of an invariant φ it is sufficient
that just the operations of the guard classes preserve φ. Moreover we combine
this with the self-guard approach.

Lemma 8.30. Let P be a program. Let φ be a closed formula, D = Dsg �Dg

a depends clause of φ, and G ⊆ P a self-guard of Dsg and a guard of Dg.
If all operations op of all classes in G preserve φ then all operations of all
classes of P preserve φ.

Example 8.31. The depends clause (8.9) of invariant (8.8) can be partitioned
into the subsets Dsg and Dg with

Dsg = {Clock.currentDate, x.dateOfLatestWithdrawal}
Dg = {Clock.currentDate.value, x.dateOfLatestWithdrawal.value}

Dg has the guard

G := {PermanentAccount, Clock} .

Moreover G is a self-guard for Dsg. If all operations of G preserve (8.8) then
all operations of our banking program preserve it.

Proving Guards with Encapsulation Predicates

We give a short glimpse at one method, using encapsulation predicates [Roth,
2005], how guardedness can be verified. For other ways to prove encapsulation
see the following sidebar.
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Verifying Encapsulation

Several possibilities exist to verify encapsulation properties, as needed to
show guardedness. Techniques like islands [Hogg, 1991], balloons [Almeida,
1997], uniqueness [Boyland, 2001], and different types of ownership [Clarke
et al., 1998, Müller, 2002, Boyapati et al., 2003] can be employed. These
approaches are based on type systems and they all require that the pro-
grammer explicitly annotates the program to indicate the desired encap-
sulation. By type-checking the annotations one can conclude completely
automatically that a certain kind of encapsulation is established. Weiß
[2006] and Roth [2006] show that it is possible to make use of an owner-
ship approach like Universes of Müller [2002] to check formulae containing
encapsulation predicates. Other static analyses for checking encapsulation
which do not require explicit extensive annotations are rare (e.g., [Burrows,
2005]).

The first-order fragment of JAVA CARD DL gives us almost all means to specify
encapsulation. There is however at least one predicate missing to conveniently
express the desired property: the binary Acc predicate. Acc(o1, o2) formalises
that there is at least one field a defined for o1, an access, such that o1.a = o2. If
all fields of a program are known then it is even possible to replace Acc(o1, o2)
with a big disjunction of formulae o1.a

.= o2 over all fields a. This is however
impossible in the context of open programs (see below).

With Acc we can define more specific predicates describing encapsulation
properties. A useful property is that there are accesses to objects (or values)
z satisfying a formula p(z) exclusively from a set of objects y satisfying g(y).
This property is formalised by the 0-ary predicates Ency,z[g(y), p(z)] for all
formulae g(y) and p(z):

Ency,z[g(y), p(z)] :⇔ \forall Object y; \forall Object z;
(Acc(y, z) & p(z) −> p(y) | g(y))

To simplify matters we assume that the only non-rigid functions occurring in
our formulae are field accesses. Roth [2006] extends the approach to arrays.
Guardedness of a set of types G w.r.t. a depends clause D of a formula φ can
then be formalised as the conjunction of the m formulae (for k = 1, . . . , m):

φenc :⇔ cl∀
(
Ency,z

(
Conjinstance,

(
φk & z

.= d′k
)))

where

• G is a set of types,
• D = {d1, . . . , dm} is a depends clause where dk = (φk, d′k.f) where f is a

field,
• cl∀ universally quantifies the free occurrences of variables in dk and φk

for all k = 1, . . . , m.
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• Conjinstance is the conjunction of the formulae y �− C over all C ∈ G.

If we assume that no supertype of G declares fields, φenc is our desired prop-
erty; if it holds in any state s: G is a guard for D in S. It remains to show
that φenc is in fact an invariant of P . Roth [2006] shows that it is sufficient
to show the preservation of φenc for the operations of G provided that the
depends clause satisfies certain syntactic criteria.

8.5.3 Verification Strategies

This section summarises the results from above about the observed-state
entire correctness of a closed program. We have seen that there are several
ways to establish correctness, in particular the correctness of invariants. In
the end, it is the choice of the individual developer which of the different
ways or verification strategies should be taken.

For all operations op and all operation contracts opct in S for op:

• EnsuresPost (opct ; I),
• RespectsModifies(opct ; I),

for some I ⊆ InvSpec

and for all invariants φ ∈ InvSpec:
InitInv(φ) and one of two following conditions holds:

• there is depends clause D for φ and
there is set of types G and
there are sets D1 and D2 with D = D1 � D2 and
– G is a self-guard for D1 and
– G is guard for D2

and
for all operations op in G: PreservesInv (op; I ; {φ}) for some I ⊆ InvSpec

• for all operations op in P : PreservesInv (op; I ; {φ}) for some I ⊆ InvSpec

As alternative to PreservesInv (op; I ; {φ}) one can show:
StrongOperationContract (opct ; I ;φ) for some operation contract opct for op

Fig. 8.3. Verification strategies for entire observed-state correctness

Fig. 8.3 shows the proof obligations that must be proven for entire observed-
state correctness. We must ensure that operation contracts are fulfilled and
that invariants are preserved. With both tasks there are several options:

• For every proof obligation we can choose which invariants we assume
before a call to an operation. For establishing observed-state correctness
it is possible to assume all invariants. This however complicates the use
of the proof as a lemma since the check for the applicability of the lemma
becomes more complex. It is thus advisable to assume as few invariants
as possible.



372 8 Proof Obligations

• There are two principal possibilities to establish the preservation of in-
variants. Either we restrict the number of operations which we check for
the preservation with the help of guards and self-guards, or we check all
operations of the whole program. If we decide for the former we have to
choose between self-guards (visibility principle) and guards (encapsulation
principle). The former works mainly for simple invariants which do not
involve the state of general purpose classes. Whenever possible one should
opt for this way, since proving encapsulation entails additional non-trivial
proof obligations.
As depicted in Fig. 8.3 it is possible to closely combine visibility and
encapsulation principles: The depends clause of the considered invariant
is, because of Lemma 8.24, basis for both. It is partitioned into two sets of
terms. For the first we show that a self-guard is available, for the second
a guard must be found.

• Finally, in order to prove that a concrete operation preserves a concrete
invariant there are two alternatives:
– Symbolic execution of the code with PreservesInv .
– Analysis of the invariant with the help of StrongOperationContract

using precondition, postcondition, and the modifies clause. If the op-
eration contract is “sufficiently functionally complete” this proof oblig-
ation can conclude that the operation preserves the invariant without
symbolically executing code. This way works also if the locations rel-
evant for the invariant and the locations which are modified by the
operation are distinct. Note, that symbolic execution of code takes
place when we check that the operation fulfils its operation contracts.

8.5.4 Components and Modular Proofs

So far we have fixed a program context as the object of our verification
effort. In a typical software engineering project this is however an unusual
situation. Typically, components are programmed independently, with the
goal to be composed with other components. For our purposes we use the
term component for a set of classes which are developed and distributed as a
unit to be composed with other components to form a complex application
program.

Unfortunately, the notion of observed-state correctness as defined in
Sect. 8.2 is not sufficient for these purposes as demonstrated in the following
example:

Example 8.32. Consider again the invariant (8.7) which said that the wrong
PIN counters of all BankCards should be between 0 and 2. Assume we have
proven, as required by observed-state correctness that all methods of the
considered component, including BankCard preserve this invariant. We may
now use this component in a context which contains a class MyBankCard
which is a subclass of BankCard and overrides a method m of BankCard. Let us
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assume that the field wrongPINCounterwas declared protected in BankCard
such that it can be directly modified in the overridden version in MyBankCard.
And in fact we override m in a way that we set the wrongPINCounter field
to 5. Clearly, when running the composed program, we end up in a state,
observable by an observer, which does not satisfy our invariant. Note, that the
invariant also talks about subclasses of BankCard! So the mere preservation
of invariants by the component methods was not sufficient, we have to be
more strict.

Our definition of observed-state correctness must thus be adapted slightly.
First we adapt the notion of reachable states. We must take into account
that the pre-states we consider can be reached by an extended state space;
for instance we could have to deal with subclasses of our components.

Definition 8.33 (refining Def. 8.3). A state S is reachable by a program
P if there is a set of classes P cl such that at the end of the execution of a
method of Obs := P cl\P the state S is reached.

This change triggers re-definitions of the fulfilment of operation contracts and
the preservation of invariants.

This leads to the notion of durable observed-state correctness. It extends
observed-state correctness. With that correctness, observers need to ensure
invariants of the components before the call. Now we demand that invariants
hold in any intermediate state (or equivalently at the end of an arbitrary
method) in the observer. So for an observer, invariants of an observed com-
ponent always hold.

Definition 8.34 (Durable Observed-State Correctness). Let Spec be
a specification of a component P . Suppose P cl is an arbitrary super set of P
consisting of types. Set further Obs := P cl\P . Furthermore we assume that
every method or constructor op of P with an operation contract in Spec is
called by Obs only in a state where the precondition of at least one fitting
operation contract from Spec is satisfied.

P is durable observed-state correct w.r.t. Spec if it is observed-state cor-
rect and all invariants of P hold after an arbitrary method of Obs has termi-
nated.

Example 8.35. The component considered in the previous example is not
durable observed correct since a method, namely the overridden one, of the
observer Obs := {MyBankCard} results in a state in which our invariant does
not hold.

This notion imposes very strict conditions on the system to be verified. A
system which is durable observed-state correct will thus not or only hardly be
adaptable to new re-use contexts. For example it will not be possible to over-
ride methods which are critical to invariants of a specification. Yet overriding
for the purpose of adapting behaviour is an integral part of object-oriented
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development. The only way out of the dilemma verification vs. adaptability
is to impose requirements on the context in which the component may safely
be used. We obtain a notion of relative observed-state correctness: only in
contexts which satisfy certain requirements, a component behaves as speci-
fied in its specification. This idea is refined in [Roth, 2006]. In our example
we would have required that classes overriding BankCard in the context must
preserve invariant (8.7).

The JAVA CARD DL calculus requires a fixed program context. By adding
additional components, valid formulae can become invalid. In [Roth, 2006]
a solution to this problem is provided. The idea is to introduce a new no-
tion of validity and soundness. According to this notion, formulae are valid
only if they are valid (in the original sense) in all type hierarchies extending
the “core” type hierarchy. This classifies some rules of the JAVA CARD DL
calculus as unsound in this sense. They may not be used when considering
components. Only few rules are affected, the most relevant being the rule
simulating dynamic method dispatching (⇒ Sect. 3.6.5). It is sound in a par-
ticular fixed context but not if classes (overriding the method) are added to
the context.

The way out is that we do not offer the rule which replaces a method call
by an if-cascade discriminating between all method implementations in the
context. Instead a new rule inserts the specification attached to the method
contract of the (static) type T of the receiver object (⇒ Sect. 3.8). Of course
this does not guarantee that all subclasses of T fulfil this contract. Moreover,
in component-based development, it is not possible to know about all sub-
classes and their implementation. We must thus impose constraints on con-
texts relative to which formulae are valid. Again generic extension contracts
are an instrument to impose such constraints on unknown contexts [Roth,
2006].

Roth [2006] also defines a proof obligation system for durable observed-
state correctness, which makes extensively use of the visibility and the en-
capsulation approach.
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From Sequential JAVA to JAVA CARD

by

Wojciech Mostowski

9.1 Introduction

The JAVA CARD dialect of JAVA is often thought of as a subset of JAVA. JAVA

CARD is used to program smart cards, and due to the limited nature of smart
cards JAVA CARD is a much simpler programming language than JAVA; cur-
rently, there is no concurrency in JAVA CARD, floating point arithmetic, or
dynamic class loading. Because of these simplifications, verification of smart
card applications written in JAVA CARD is substantially easier than verifica-
tion of full-featured JAVA applications. However, there are some smart card
specific features in JAVA CARD that are not present in standard JAVA, namely
object persistency and an atomic transaction mechanism. Another way to
put it is that, technically, JAVA CARD is not a subset of JAVA, it is a superset
of a subset of JAVA. This chapter explains these JAVA CARD specific features
and describes extensions to the basic JAVA CARD DL to handle them. In
this chapter we assume that the reader is already familiar with basic JAVA

CARD DL presented in Chapter 3.
Object persistency is an important issue when a possible abrupt termina-

tion of a JAVA CARD applet running on a smart card is considered. Such an
abrupt termination can occur due to an unexpected power loss, caused by,
for example, ripping the smart card out of the card terminal—a card tear,
or, as it is also referred to, card rip-out. For such situations we would like to
be able to establish that the consistency of the persistent data stored on the
card is preserved. On the programming language side JAVA CARD technology
provides the atomic transaction mechanism—a program construct available
to the programmer to ensure that an arbitrary piece of JAVA CARD program is
executed in one atomic step. On the logic side, to be able to reason about con-
sistency properties of persistent data, it is necessary to introduce the notion
of a strong invariant and deal with the intricacies of the transaction mech-
anism. The manifestation of strong invariants in the logic is the throughout

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 375–405, 2007.
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modality ([[·]]), and conditional assignments inside transactions are modelled
by updates of a new kind (shadowed updates).

In the next section we elaborate on the motivation for introducing strong
invariants and support for transactions in JAVA CARD DL and in Section 9.3
JAVA CARD’s object persistency and transaction mechanism are described.
Section 9.4 discusses strong invariants and their treatment in the logic with
throughout modality in detail. Section 9.5 presents the logic extension to
deal with JAVA CARD transaction statements and conditional assignments.
In Section 9.6 sample proofs are given presenting the use of the new cal-
culus rules. Section 9.7 presents further extensions to the logic to properly
handle two specific JAVA CARD library methods, arrayCopyNonAtomic and
arrayFillNonAtomic, and Section 9.8 summarises the theoretical contents
of this chapter. Finally, Section 9.9 discusses some details about the taclet
implementation of the throughout and transaction rules.

9.2 Motivation

The main motivation to introduce strong invariants and support for trans-
actions into JAVA CARD DL resulted from the analysis of a JAVA CARD case
study described by Mostowski [2002]. The case study involves a JAVA CARD

applet that is used for user authentication in a Linux system instead of the
password mechanism. After analysing the application and testing it, the fol-
lowing observation was made: the JAVA CARD applet in question is not “tear
safe”. That is, it is possible to destroy the applet’s functionality by removing
(tearing) the JAVA CARD device from the card reader (terminal) during the
authentication process. The applet’s memory is corrupted and it is left in an
undefined state, causing all subsequent authentication attempts to be unsuc-
cessful. Fortunately, this particular error causes the applet to become useless
but does not allow unauthorised access. In a general case however, we should
take the worst case scenario under consideration. Thus it is clear that, to
avoid such errors, we have to be able to specify and verify the property that
a certain invariant is maintained at all times during the applet’s execution,
and, in particular, in case of an abrupt termination. Standard OCL or JML
invariants do not suffice for this purpose, because in principle their semantics
is that if they hold before a method is executed then they hold after the
execution of a method. Normally, it is not required for an invariant to hold
in the intermediate states of a method’s execution. To solve this problem,
we introduce strong invariants, which allow to specify properties about all
intermediate states of a program.

For example, the following strong invariant (expressed in pseudo OCL)
says that we do not allow partially initialised PersonalData objects at any
point in our program. In case the program is abruptly terminated, we should
end up with either a fully initialised object or an uninitialised (empty) one:
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OCL
context PersonalData
stronginv: not self.empty implies self.firstName <> null

and self.lastName <> null and self.age > 0

OCL

To be able to reason about such properties in the KeY system, JAVA CARD DL
needs to be extended to support strong invariants. What follows is that a
proper notion of atomicity of JAVA CARD programs needs to be established.
Since JAVA CARD transaction mechanism provides the programmer with the
possibility to make arbitrary program blocks atomic, the transaction mecha-
nism also has to be fully supported in the logic.

9.3 JAVA CARD Memory, Atomicity, and Transactions

Here we describe the aspects of object persistency and transaction handling
within the JAVA CARD platform relevant to this chapter. A full description of
the transaction mechanism can be found in [Chen, 2000, Sun, 2003b,c,d].

The memory model of JAVA CARD differs slightly from JAVA’s model.
In smart cards there are two kinds of writable memory: persistent memory
(EEPROM), which holds its contents between card sessions, and transient
memory (RAM), whose contents disappear when a power loss occurs, in par-
ticular, when the card is removed from the card reader. Thus, every memory
element in JAVA CARD (a variable or an object field) is either persistent or
transient. Based on the JAVA CARD language specification the following sim-
plified rules can be given:

• All objects (including the currently running applet, as well as this ob-
ject, and arrays) are stored in persistent memory. Thus, in JAVA CARD

all assignments like “o.attr = 2;”, “this.a = 3;”, and “arr[i] = 4;”
have permanent character; that is, the assigned values will be kept after
the card loses power.

• A programmer can create an array with transient elements by calling a
certain method from the JAVA CARD API (for example, JCSystem.make-
TransientByteArray), but currently there is no possibility to make ob-
jects (fields) other than array elements transient. Moreover, some JAVA

CARD system owned arrays (like the APDU buffer) are transient.
• All local variables are transient.

The distinction between persistent and transient objects is very important
since these two types of objects are treated in a different way by JAVA CARD’s
transaction mechanism. The following are the JAVA CARD system calls for
transactions with their description:
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• JCSystem.beginTransaction() begins an atomic transaction. From this
point on, all assignments to fields of persistent objects are executed con-
ditionally, while assignments to transient variables or array elements are
executed unconditionally.

• JCSystem.commitTransaction() commits the transaction. All condi-
tional assignments are committed (in one atomic step).

• JCSystem.abortTransaction() aborts the transaction. All conditional
assignments are rolled back to the state in which the transaction started.1

Assignments to transient variables and array elements remain unchanged
(as if performed outside a transaction). Also, references to all objects
created inside the transaction are reset to null.

As an example to illustrate how transactions work in practice, consider the
following fragment of a JAVA CARD program:

JAVA CARD

this.a = 1;
int i = 0;
JCSystem.beginTransaction();
this.a = 2;
i = this.a;
SomeClass c = new SomeClass();

JCSystem.abortTransaction();

JAVA CARD

After the execution of this program, the value of persistent this.a is still 1
(value before the transaction), while the value of local (and thus transient)
i is now 2 (the value it was assigned during the transaction). The value of
c is null, even though c is a local variable and was updated unconditionally
inside the transaction.

A transaction can be aborted explicitly by the programmer, like in the
example above, but also implicitly by the JAVA CARD Runtime Environment
(JCRE), when a transaction cannot be completed due to lack of resources
or an unexpected program termination (for example, card tear). In the first
case, the JAVA CARD program continues its execution with the assignments
performed inside the transaction rolled back, while in the second case the
program is terminated immediately and the updates are rolled back during
the transaction recovery process next time the JAVA CARD applet is initialised.
The possibility of an explicit transaction abort has important consequences
for the design of the logic to handle transactions, as we will see later in the
chapter.

Transactions do not have to be interleaved properly with other program
constructs, for example, a transaction can be started within one method and

1 This definition is not entirely accurate, we will refine it later in Section 9.7, where
we discuss non-atomic JAVA CARD API methods.
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committed within another method. However, transactions must be nested
properly with each other. In the current version (2.2.1) of JAVA CARD [Sun,
2003c] the nesting depth of transactions is restricted to 1—only one transac-
tion can be active at a time.

Considering the persistent objects, the whole program block inside the
transaction is seen by the outside world as if it were executed in one atomic
step. This also has a consequence for the design of the logic—multiple as-
signment statements inside a transaction will have to be regarded as a single
atomic step by the logic, while outside of the transaction each single primitive
assignment will be treated atomically.

9.4 Strong Invariants: The “Throughout” Modality

In some regard the basic JAVA CARD DL (and other versions of Dynamic
Logic, as well as all sorts of Hoare logics) lacks expressiveness—the semantics
of a program is a relation between states; formulas can only describe the
input/output behaviour of programs. Basic JAVA CARD DL cannot be used to
reason about program behaviour not manifested in the input/output relation.
Therefore, it is inadequate for verifying strong invariants that must be valid
throughout program execution.

Following Beckert and Schlager [2001], to overcome this deficiency and
increase the expressiveness of JAVA CARD DL we added a new modality [[·]]
(“throughout”) to the logic. In the extended logic, the semantics of a program
is the sequence of all states its execution passes through when started in
the current state (its trace). Using [[·]], it is possible to specify properties of
the intermediate states of terminating and non-terminating programs. And
such properties (typically strong invariants and safety constraints) can be
verified using the JAVA CARD DL calculus extended with additional rules
for [[·]] shortly to be presented in Section 9.4.1.

A “throughout” property (formula) has to be checked after every single
field or variable assignment, that is, the rules for the throughout modality
will have more premisses and branch more frequently. According to the JAVA

CARD runtime environment specification [Sun, 2003c], each single field or
variable assignment is atomic. This matches exactly JAVA CARD DL’s notion
of a single update. Thus, a “throughout” property has to hold after every
single JAVA CARD DL update.

However, since the transaction mechanism can be used to ensure atomicity
of arbitrary program blocks, such additional checks have to be suspended for
the assignments that appear inside a transaction. This is described in detail
in Section 9.5.

In practice, only formulas of the form ψ & φ −> [[p]]φ will be considered,
φ being a strong invariant for p and ψ being the necessary preconditions
for proper execution of p. If transient arrays are involved in φ (explicitly
or implicitly), one also has to prove φ −> 〈initAllTransientArrays();〉φ,
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that is, that after a card tear the re-initialisation of transient arrays preserves
the strong invariant.

9.4.1 Additional Calculus Rules for the Throughout Modality

As far as the basic JAVA CARD DL calculus is considered, the new throughout
modality is almost exactly the same as the box modality. What is required
of the throughout formula [[p]]φ in addition, is that φ holds after every sin-
gle primitive assignment of p. This means that the assignment rule for the
throughout modality has to be extended compared to the box rule. The
only other rules that are affected by the new semantics of the throughout
modality are the invariant loop rules. Otherwise, when transactions are not
considered, the rules for the throughout modality are exactly the same as
for the box modality [·]. Thus, here we discuss the assignment rule and the
while invariant rule for the throughout modality, while the rules to support
transactions are presented in the next section.

Note, that the rules we are about to present in this chapter are in a
simplified form. In particular, each complex assignment in JAVA CARD DL
is treated by a sequence of rules, which, among other things, unfold com-
plex expressions and take care of possible abrupt termination. Here, we omit
these details as they are irrelevant for our purposes. All the rules have been
implemented in the KeY system in their full form though.

The Assignment Rule for [[·]]

Overall, the assignment rules for the throughout modality follow the same
4-step process, which has been described for regular assignments in Sec-
tion 3.6.2. Important differences occur during Step 4 (generating an update
from the assignment), on which we will concentrate here. We will simplify
the case even further and disregard the possibility of exceptions at this stage.

In JAVA CARD an assignment v = se; (where v is a variable and se is
a simple expression) is an atomic program and can be executed in a single
step. Its semantics is a trace consisting of the initial state s (before the assign-
ment) and the final state s′ (after the assignment). Therefore, the meaning of
[[v = se;]]φ is that φ is true in both s and s′, which is what the two premisses
of the following assignment rule express:

assignTout
=⇒ φ =⇒ {v := se}[[π ω]]φ

=⇒ [[π v = se; ω]]φ

The left premiss states that the formula φ has to hold in the state s before
the assignment takes place. The right premiss says that φ has to hold in the
state s′ after the assignment—and in all states thereafter during the execution
of the rest of the program ω.



9.4 Strong Invariants: The “Throughout” Modality 381

It is easy to see that using this rule causes some extra branching of the
proofs involving the [[·]] modality. This branching is unavoidable due to the
fact that the strong invariant has to be checked for each intermediate state
of the program execution. However, many of those branches, which do not
involve JAVA CARD programs any more, are very simple and can be discharged
quickly. An equivalent rule to assignTout is the following:

assignToutOpt
=⇒ φ & (φ −> {v := se}[[π ω]]φ)

=⇒ [[π v = se; ω]]φ

In this form, the rule is more efficient when used in practice in the KeY
prover, because unnecessary branching can be avoided.

The While Rule for [[·]]

Another essential programming construct, where the rule for the [[·]] modality
differs from the corresponding rule for the [·] modality, is the while loop.
A detailed description was already given of how the while invariant rule
for JAVA CARD DL works, including the proper treatment of possible abrupt
termination inside the loop (with the break and continue statements among
others), and loop modifier sets (⇒ Chap. 3, Sect. 3.7.1). Here we only give
a simplified version of the while rule for the throughout modality referring
the reader to Section 3.7.1 for the technical details, which are essentially the
same as for the box invariant rule. As in the case of the while rule for the
[·] modality the user has to supply a loop invariant Inv . Intuitively, the rule
establishes the following:

1. In the state before the loop is executed, some invariant Inv holds (invari-
ant is initially valid).

2. If the loop condition is true, at the end of a single execution of the
loop body the invariant Inv has to hold again (loop body preserves the
invariant).

3. Provided Inv holds, the formula φ has to hold during and continuously
after loop body execution in all of the following cases: (i) when the loop
body is executed once and terminates normally, (ii) when the loop body
terminates abruptly (by break, continue, or throwing an exception) re-
sulting in a termination of the whole loop, and (iii) when the loop body
is not executed (the loop condition is not satisfied).

Formally, the while rule for [[·]] is the following:

whileTout

=⇒ UInv
Inv , a .= TRUE =⇒ [p]Inv
Inv , a .= TRUE =⇒ [[π p ω]]φ
Inv , a .= FALSE =⇒ [[π ω]]
=⇒ U [[π while(a){p} ω]]φ
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The four premisses of this rule establish the conditions listed above: The first
premiss establishes the first condition, the second premiss establishes the
second condition, the third premiss establishes sub-conditions (i) and (ii) of
the third condition, and finally, the fourth premiss establishes sub-condition
(iii) of the third condition.

9.5 Handling Transactions in the Logic

Up till now we only considered one level of atomicity when dealing with the
semantics of the throughout modality, namely, that only the primitive as-
signments are atomic. But as we said already, the JAVA CARD transaction
mechanism can be used to ensure atomicity of larger blocks of the program.
This is one issue that the logic has to deal with. The second and equally
important issue is the fact that a transaction can abort and roll back the as-
signments to persistent data that appeared inside the transaction. When the
transaction is aborted explicitly by the programmer, the program continues
its execution after the abort. It is very important to note that an aborted
transaction influences the final state of the program. What follows, is that
the semantics of the diamond and box modality (total and partial correct-
ness) has to account for the transaction mechanism as well. One other way
of looking at it is to consider the transaction abort statement as an undoing
assignment, and, being (a special kind of) assignment it has to be included
in the semantics of all the modal operators: diamond, box, and throughout.

The basis of the solution for transactions consists of two parts. First,
whenever a transaction is encountered in the JAVA CARD program, the proof
is split into two branches. One of the branches is responsible for analysing
the program under the assumption that the transaction will commit (commit
branch) and the second branch assumes that the transaction will abort (abort
branch).2 The second part of the solution is to mark the modality (respec-
tively, the program in the modality) with a tag indicating that a transaction
is in progress so that different rules (depending on the commit or abort as-
sumption) for assignment can be applied. In particular a special assignment
rule to deal with assignment roll-back is used on the abort branch, which
selectively performs assignments to mimic assignment undoing. We explain
this in the following sections.

9.5.1 Rules for Beginning and Ending a Transaction

Transactions in JAVA CARD do not have to be interleaved properly with other
program constructs (although a good programming practice would suggest
they should). Thus we cannot assume that we will be able to “look ahead”

2 This proof splitting is in some sense a very special kind of a cut/case split rule,
which has to account for the two possible transaction termination scenarios.
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in the verified program to see where a transaction is finished. In particular,
a transaction terminating statement can appear in more than one place, for
example, in two branches of the if statement. Thus, enclosing a transaction
in a block with a separate set of rules for that kind of block, like it is done
for method calls with the method-frame (⇒ Sect. 3.6.5), is not possible.

Following this motivation, our rules have to be aware of the JAVA CARD

transaction statements and the current state of the transaction mechanism
(that is, whether there is an active transaction at a given program point or
not). We now explain how this is achieved.

Additional Constructs

First, we introduce some new programming constructs (distinguished method
calls) to JAVA CARD DL. The three distinguished method calls we need are
the following:

• jvmBeginTransaction—low-level JAVA CARD call to begin a transaction,
• jvmCommitTransaction—low-level JAVA CARD call to end a transaction

with a commit,
• jvmAbortTransaction—low-level JAVA CARD call to end a transaction

with an abort.

These methods are used in the proof when the transaction is started, re-
spectively, finished in the JAVA CARD program. They are only part of the
rules and not of the JAVA CARD programming language. Thus, for ex-
ample, when a transaction is started in a JAVA CARD program by a call
to JCSystem.beginTransaction() the following implementation of begin-
Transaction is assumed in JAVA CARD DL:

JAVA CARD

public class JCSystem {
private static short _transactionDepth = 0;

public static void beginTransaction()
throws TransactionException {

if(_transactionDepth > 0)
TransactionException.throwIt(
TransactionException.IN_PROGRESS);

_transactionDepth++;
de.uka.ilkd.key.javacard.KeYJCSystem.
jvmBeginTransaction();

}
...

}

JAVA CARD



384 9 From Sequential JAVA to JAVA CARD

And similarly for commitTransaction and abortTransaction. Thus, when
we encounter any of jvmBeginTransaction, jvmCommitTransaction, or
jvmAbortTransaction in our proof we can assume they are properly nested.

The Main Idea

When a call to jvmBeginTransaction is encountered during the symbolic
execution, the proof is split into two branches. In the first branch the program
is analysed with the assumption that the transaction will commit, in the
second branch it is assumed that the transaction will be aborted. Later, when
a jvmAbortTransaction statement is encountered on the commit branch, the
branch is simply discarded. The same exact thing happens in the opposite
situation, i.e., when a jvmCommitTransaction is encountered on the abort
branch.

On the calculus level, a rule for jvmBeginTransaction splits the proof
into two branches, and each branch (more precisely, the modality containing
the program) is marked with a tag indicating what kind of transaction finish
is assumed. The two tags are:

• TRC—a transaction is in progress and is assumed to commit,
• TRA—a transaction is in progress and is assumed to abort.

Depending on the tag different rules for assignment are applied. Making the
distinction between the commit and the abort case is very helpful in handling
the assignments inside the transaction. Since we assume that the transaction
is going to commit on the first branch, we do not have to worry about keep-
ing the backup copies of the modified data and can commit all the changes
as we encounter them. Conversely, on the abort branch, we know that the
assignments eventually (upon encountering jvmAbortTransaction) will have
to be rolled back, so we can choose not to perform them in the first place.

There is, however, a complication: in JAVA CARD only the assignments to
the persistent data are rolled back, the assignments to transient data are al-
ways performed unconditionally. Moreover, conditionally updated persistent
values may be used to update transient variables. Thus, we cannot simply ig-
nore the assignments inside the abort branch. Instead, we operate on backup
(also called shadow) copies of persistent data, keeping the original persistent
data unmodified, while the updates to transient objects are always performed
on the original data. This is explained in the upcoming section on conditional
assignment (⇒ Sect. 9.5.2).

Rules for Beginning a Transaction

We have already stated that the transaction mechanism affects the semantics
of all modal operators in our logic. Thus, for each of the three modal operators
currently used in the logic (〈·〉, [·], [[·]]) there is one jvmBeginTransaction
rule:
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beginTransTout
=⇒ φ =⇒ [[TRC:π ω]]φ =⇒ [[TRA:π ω]]φ

=⇒ [[π jvmBeginTransaction(); ω]]φ

beginTransDia
=⇒ 〈TRC:π ω〉φ =⇒ 〈TRA:π ω〉φ

=⇒ 〈π jvmBeginTransaction(); ω〉φ

beginTransBox
=⇒ [TRC:π ω]φ =⇒ [TRA:π ω]φ

=⇒ [π jvmBeginTransaction(); ω]φ

In case of the [[·]] operator the following things have to be established. First of
all, φ has to hold before the transaction is started. Then we split the proof in
two cases: the transaction will be terminated by a commit, or the transaction
will be terminated by an abort. In both cases the formulas are marked with
the proper tag, so that corresponding rules can be applied later, depending
on the case. The 〈·〉 and [·] rules for jvmBeginTransaction are very similar
to [[·]] except that φ does not have to hold before the transaction is started.

Rules for Committing and Aborting Transactions

Note that, apart from the modality, the jvmBeginTransaction rules for dia-
mond and box are exactly the same. For exiting the transaction (by commit
or abort) the rules are the same for all three operators, so we only quote the
[[·]] rules.

The first two rules apply when the expected type of termination is en-
countered (“TRC” for commit, respectively, “TRA” for abort). In that case,
the corresponding transaction tag is simply removed, which means that the
transaction is no longer in progress. These are the rules:

commitTransExp
=⇒ [[π ω]]φ

=⇒ [[TRC:π jvmCommitTransaction(); ω]]φ

abortTransExp
=⇒ [[π ω]]φ

=⇒ [[TRA:π jvmAbortTransaction(); ω]]φ

We also have to deal with the case where the transaction is terminated in
an unexpected way, that is, a commit is encountered when the transaction
was expected to abort and vice versa. In this case we simply use an axiom
rule, which immediately closes the proof branch. One of the proof branches
produced by the jvmBeginTransaction rule will, eventually, always become
obsolete since each transaction can only terminate by either commit or abort.
The rules are the following:

commitTransUnexp
=⇒ [[TRA:π jvmCommitTransaction(); ω]]φ

abortTransUnexp
=⇒ [[TRC:π jvmAbortTransaction(); ω]]φ



386 9 From Sequential JAVA to JAVA CARD

9.5.2 Rules for Conditional Assignment

Finally, we come to the essence of conditional assignment handling in our
rules. When the transaction is expected to commit, no special handling is
required—all the assignments are executed immediately. Thus, the rule for an
assignment in the scope of [[TRC: . . .]] is the same as the rule for an assignment
within [·]. Note that, even using the [[TRC: . . .]] modality, φ only has to hold
at the end of the transaction, which is considered to be atomic:

assignTRC
=⇒ {v := se}[[TRC:π ω]]φ
=⇒ [[TRC:π v = se; ω]]φ

When a transaction is terminated by an abort, all the conditional assignments
are rolled back as if they were not performed. Since it is assumed that the
transaction is going to abort (because of a TRA tag), we can deliberately
choose not to perform the updates to persistent objects as we encounter
them. However, we cannot simply skip them since the new values assigned to
(fields of) persistent objects during a transaction may be referred to later in
the same transaction (before the abort). The idea to handle this, is to assign
the new value to a copy of the object field (shadow object field) or array
element (shadow array element) while leaving the original unchanged, and
to replace—until the transaction is aborted—references to persistent fields
and array elements by references to their shadow copies holding the new
value. Note that if an object field to which no new value has been assigned
is referenced (and for which therefore no shadow copy has been initialised),
the original reference is used.

Making this work in practice requires altering the assignment rule for
the cases where a transaction is in progress and is expected to abort (when
the TRA tag is present). Also, the semantics of an update and the rules for
update simplification need to be adjusted, as described later on. We now
present the assignment rule for the [[·]] modality with the TRA tag present.
Since persistence is a property of object fields, this is a rule for assigning
values to object fields, with the null check omitted for clarity.

assignTRAObject
=⇒ {o.a′ := se ′}[[TRA:π ω]]φ
=⇒ [[TRA:π o.a = se; ω]]φ

The shadowing is denoted with the prime symbol ′. The corresponding rules
for 〈·〉 and [·] are the same.

In general, the rules of this class work by shadowing all appearing object
fields and array elements, i.e., replacing all occurrences of o.a with o.a′ and
all occurrences of or a[e] with a[e′]′ in se when generating an update. For
the array access function [] the prime symbol denotes a shadow access func-
tion that operates on copies of elements of a given array. The reference obj
in obj.a as well as a in a[i] is not primed, since it is either a local variable,
which is not persistent, or the this reference, which is not assignable, or a
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static class reference, like SomeClass, which also should be viewed as not
assignable. All occurrences of local variables are also left unchanged.

As mentioned, the semantics of an update has to be changed to take care
of the cases when the shadow copy of an object’s field has not been initialised.
In the new semantics, if the value of o.a′ or a[e]′ is referred to in an update
but is not known (that is, there was no such value assigned in the preceding
updates) then it is considered to be equal to o.a or a[e], respectively.

The assignments to the shadow copies are not visible outside the trans-
action, where the original values are used again—the effect of a roll-back is
accomplished. Each separate transaction has to have its own set of shadow
copies of fields or array elements, so that shadow copies from different transac-
tions do not collide with each other. Thus, the second encountered transaction
uses ′′, the third one ′′′, etc.

The rule assignTRAObject takes care of assignments to object fields, which
are always persistent in JAVA CARD. For array elements however, the situ-
ation is a bit more complex—the programmer can also explicitly define an
array to be transient, in which case the assignments to elements of such an
array are executed unconditionally. For persistent arrays, as for object fields,
assignments inside a transaction are conditional. Thus, the rule for handling
assignments to array elements in the scope of the TRA tag has to account for
the persistency type of the array. It is not possible to statically decide which
arrays are transient and which are not, since they are defined to be transient
by reference and not by name. This problem can be treated by adding an
implicit field <transient> to each array (⇒ Sect. 3.6.6) indicating whether
the given array is transient or persistent (rules for initialising arrays set this
field). Compared to rule assignTRAObject, the conditional assignment rule
for arrays has two premisses to distinguish between persistent and transient
arrays by checking the value of <transient> field:

assignTRAArray

a.<transient> .= TRUE =⇒ {a[e ′] := se ′}[[TRA:π ω]]φ
a.<transient> .= FALSE =⇒ {a[e ′]′ := se ′}[[TRA:π ω]]φ

=⇒ [[TRA:π a[e] = se; ω]]φ

The remaining rules for [[TRA:·]] (that is, for other programming constructs)
are the same as for [·], and the remaining rules for 〈TRA:·〉 and [TRA:·] are as
if there were no transaction tag.

9.6 Examples

In the following, we show two examples of proofs using the above rules. The
first example shows how the [[·]] assignment and while rules are used, the
second example shows the transaction rules in action. The formula we are
trying to prove in the second example is deliberately not provable and shows
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the importance of the transaction mechanism when it comes to card tear
properties.

Corresponding proofs in the KeY system are performed almost automat-
ically, the only place where user interaction is required is providing the loop
invariant.

Example 9.1. Consider the following JAVA program p:

JAVA

x = 3;
while (x < 10) {
if(x == 2)

x = 1;
else

x++;
}

JAVA

We show that throughout the execution of this program, the strong invariant
φ

.= x >= 2 holds, that is, we prove the formula x >= 2 −> [[p]]x >= 2. Proof
steps are numbered locally on the right side of formulae.

Proof. We start the proof with the sequent

x >= 2 =⇒ [[x = 3; . . .]]x >= 2 (P1)

Applying the assignment rule assignTout to (P1) produces two proof obliga-
tions:

x >= 2 =⇒ x >= 2 (P2)

x >= 2 =⇒ {x := 3}[[while . . .]]x >= 2 (P3)

Sequent (P2) is obviously valid. Applying the rule whileTout to (P3) with
x >= 3 as the loop invariant Inv gives us the four proof obligations below.
Note that here it is necessary to use x >= 3 as the invariant. Using φ

.= x >= 2
would not be enough, because the assignment x = 1 inside the then-branch
of the if statement could not be discarded and x would be assigned 1, which
would break the x >= 2 property.

x >= 2 =⇒ {x := 3}x >= 3 (P4)

x >= 3, x < 10 =⇒ [β]x >= 3 (P5)

x >= 3, x < 10 =⇒ [[β]]x >= 2 (P6)

x >= 3, x >= 10 =⇒ [[ ]]x >= 2 (P7)

where:
β

.= if(x == 2) x = 1; else x++;
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Applying the update in (P4) results in x >= 2 =⇒ 3 >= 3 which is valid, and
simplifying (P7) results in x >= 3, x >= 10 =⇒ x >= 2, which is also valid.
We are left with (P5) and (P6) to prove. Applying the if rule to (P5) gives
two proof obligations:

x >= 3, x < 10, x
.= 2 =⇒ [x = 1;]x >= 3 (P8)

x >= 3, x < 10, x ! .= 2 =⇒ [x = x + 1;]x >= 3 (P9)

(P8) is valid by contradiction in the antecedent. Applying the assignment
rule to (P9) gives:

x >= 3, x < 10, x ! .= 2 =⇒ {x := x + 1}[ ]x >= 3 (P10)

which is reduced to:

x >= 3, x < 10, x ! .= 2 =⇒ x + 1 >= 3 (P11)

Sequent (P11) is valid. We can continue with (P6) and apply the if rule
yielding two proof obligations:

x >= 3, x < 10, x
.= 2 =⇒ [[x = 1;]]x >= 2 (P12)

x >= 3, x < 10, x ! .= 2 =⇒ [[x = x + 1;]]x >= 2 (P13)

Sequent (P12) is valid by contradiction in the antecedent. Applying rule
assignTout to (P13) gives two proof obligations:

x >= 3, x < 10, x ! .= 2 =⇒ x >= 2 (P14)

x >= 3, x < 10, x ! .= 2 =⇒ {x := x + 1}[[ ]]x >= 2 (P15)

Sequent (P14) is valid. Sequent (P15) is reduced to:

x >= 3, x < 10, x ! .= 2 =⇒ x + 1 >= 2 (P16)

Sequent (P16) is valid and thus we have proved the initial formula. Figure
9.1 shows the proof tree for this example.

Example 9.2. Now consider the following JAVA CARD program p (fields of o
are persistent):

JAVA CARD

jvmBeginTransaction();
o.x = 60;
o.y = 40;

jvmCommitTransaction();
t = o.x;
o.x = o.y;
o.y = t;

JAVA CARD
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(P2)

(P4)

(P8)

(P11)

(P10)

(P9)

(P5)

(P12)

(P14)

(P16)

(P15)

(P13)
aT

(P6) (P7)

(P3)
wT

(P1)
aT

aT = assignTout
wT = whileTout

Fig. 9.1. The proof tree from Example 9.1

We try to prove that the strong invariant o.x+ o.y
.= 100 holds throughout

the execution of this program. The formula to prove is the following:

o.x+ o.y
.= 100 =⇒ [[jvmBeginTransaction(); . . .]]o.x + o.y

.= 100 (P1)

Note that this is not provable.

Proof. We start our proof by applying rule beginTransTout to (P1) yielding
three proof obligations:

o.x+ o.y
.= 100 =⇒ o.x+ o.y

.= 100 (P2)

o.x+ o.y
.= 100 =⇒ [[TRC:o.x = 60; . . .]]o.x + o.y

.= 100 (P3)

o.x + o.y
.= 100 =⇒ [[TRA:o.x = 60; . . .]]o.x+ o.y

.= 100 (P4)

Sequent (P2) is obviously valid. Applying rule assignTRAObject to (P4) gives:

o.x+ o.y
.= 100 =⇒

{o.x′ := 60}
[[TRA:o.y = 40; . . .]]o.x + o.y

.= 100
(P5)

Notice that since we are inside a transaction the assignment rule does not
branch. Again, applying assignTRAObject to (P5) gives:

o.x+ o.y
.= 100 =⇒

{o.x′ := 60, o.y′ := 40}
[[TRA:jvmCommitTransaction(); . . .]]o.x + o.y

.= 100
(P6)

Applying rule commitTransUnexp to (P6) proves (P6) to be valid. Applying
rule assignTRC to (P3) gives:

o.x+ o.y
.= 100 =⇒

{o.x := 60}[[TRC:o.y = 40; . . .]]o.x + o.y
.= 100 (P7)

Again, applying assignTRC to (P7) gives:
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o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40}
[[TRC:jvmCommitTransaction(); . . .]]o.x + o.y

.= 100
(P8)

Applying rule commitTransExp to (P8) gives:

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40}[[t = o.x; . . .]]o.x + o.y
.= 100 (P9)

Applying rule assignTout to (P9) gives two proof obligations:

o.x+ o.y
.= 100 =⇒ {o.x := 60, o.y := 40}o.x+ o.y

.= 100 (P10)

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40, t := o.x}
[[o.x = o.y; . . .]]o.x + o.y

.= 100
(P11)

Sequent (P10) is simplified to:

o.x + o.y
.= 100 =⇒ 60 + 40 .= 100 (P12)

which is valid. Applying rule assignTout to (P11) gives two proof obligations:

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40, t := o.x}o.x+ o.y
.= 100 (P13)

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40, t := o.x, o.x := o.y}
[[o.y = t; . . .]]o.x+ o.y

.= 100
(P14)

Sequent (P13) is reduced to:

o.x + o.y
.= 100 =⇒ 60 + 40 .= 100 (P15)

which is valid. Applying rule assignTout to (P14) gives again two proof oblig-
ations:

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40, t := o.x, o.x := o.y}o.x+ o.y
.= 100 (P16)

o.x+ o.y
.= 100 =⇒

{o.x := 60, o.y := 40, t := o.x, o.x := o.y, o.y := t}
[[ ]]o.x+ o.y

.= 100
(P17)

Sequents (P16) and (P17) are reduced to, respectively:

o.x + o.y
.= 100 =⇒ 40 + 40 .= 100 (P18)

o.x + o.y
.= 100 =⇒ 60 + 40 .= 100 (P19)

Sequent (P19) is obviously valid. Sequent (P18) is not provable. Inspecting
our program closely shows that indeed both o.x and o.y are equal to 40 at
some point (after line 6 is executed) and their sum is 80, which violates the
property we wanted to prove. Figure 9.2 shows the proof tree for this example
with an open proof goal (P18).
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(P2)

(P6)
cTU

(P5)
aTRA

(P4)
aTRA

(P12)

(P10)

(P15)

(P13)

(P18)

(P16)

(P19)

(P17)

(P14)
aT

(P11)
aT

(P9)
aT

(P8)
cTE

(P7)
aTRC

(P3)
aTRC

(P1)
bT

aT = assignTout
bT = beginTransTout

cTE = commitTransExp
cTU = commitTransUnexp

aTRA = assignTRAObject
aTRC = assignTRC

Fig. 9.2. The proof tree from Example 9.2

9.7 Non-atomic JAVA CARD API Methods

There is one more aspect of JAVA CARD transaction mechanism that we have
to cover in our logic to make the support for strong invariants and transac-
tions complete. There are two static methods in the JAVA CARD API that
exhibit an additional feature of the JAVA CARD transaction mechanism. The
two methods in question are arrayCopyNonAtomic and arrayFillNonAtomic
from the Util class. Hubbers and Poll [2004b] thoroughly analyse the behav-
iour of the two methods based on extensive experiments performed with JAVA

CARD devices. Here we only present the highlights that motivate further ex-
tension to JAVA CARD DL, for further details we refer the reader to [Hubbers
and Poll, 2004b].

Methods arrayCopyNonAtomic and arrayFillNonAtomic are responsible
for copying, respectively, resetting to a given value, an array in a non-atomic
fashion even when a transaction is in progress, that is, they bypass the trans-
action mechanism. The motivation behind the need for such methods is the
following. Imagine a variable in your JAVA CARD applet, which despite being
persistent, needs to be updated unconditionally during a transaction. One
example of such a variable would be the number of tries left to present a
correct PIN code in the OwnerPIN class. Such a variable, call it triesLeft,
has to be updated unconditionally during a transaction to prevent a security
breach. If it would be updated conditionally, an aborted transaction would
reset triesLeft to the value before the transaction was started, giving the
prospective attacker an infinite number of tries to present the correct PIN
code. Thus, the need for exclusion of certain persistent memory locations
from the transaction mechanism. In the current version, JAVA CARD only
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allows such non-atomic updates for elements of byte arrays, that is, one
cannot update an object attribute unconditionally inside a transaction, and
hence there are only two API methods to take care of non-atomic updates,
arrayCopyNonAtomic and arrayFillNonAtomic.3

The consequence for our logic is that, apart from committing or abort-
ing, a transaction can also be suspended to perform unconditional updates
to persistent byte array elements and later resumed to continue updating
persistent data atomically.

On top of that, the two non-atomic methods introduce one more com-
plication to the semantics of JAVA CARD transaction mechanism. Extensive
experiments with real JAVA CARD devices presented by Hubbers and Poll
[2004b] show that the notion of transaction roll-back is under-specified in the
official JAVA CARD specification [Sun, 2003c]. Consider the following two short
(abbreviated) pieces of JAVA CARD code. Persistent array a stores elements
of type byte and the last argument of arrayFillNonAtomic is the value that
is assigned to all elements of an array (in this case only one element, a[0]):

JAVA CARD

a[0] = 0;
beginTransaction();
a[0] = 1;
arrayFillNonAtomic(a,0,1,2);

abortTransaction();

JAVA CARD

JAVA CARD

a[0] = 0;
beginTransaction();
arrayFillNonAtomic(a,0,1,2);
a[0] = 1;
abortTransaction();

JAVA CARD

The question is what is the value of a[0] at the end of each of these programs.
If we turn to official JAVA CARD specification, it says that upon transaction
abort JCRE will restore to their previous values all the memory locations con-
ditionally updated since the previous call to beginTransaction. The prob-
lem is how to interpret their previous values. Naturally one would assume
it means values they had just before the transaction was started. However,
experiments show that this is not the case—when the first program above is
executed the value of a[0] is 0, the execution of the second program results
in a[0] equal to 2. So, looking at the result of the second program, we can
see that the value of a[0] is not rolled back to the value it had before the
transaction was started, but to the value it was updated to by a non-atomic
method after the transaction started and before the conditional assignment
a[0] = 1 took place. Following Hubbers and Poll [2004b] this suggests that

3 Another motivation, which is not relevant here, for introducing such methods is
efficiency. Since they are non atomic they can be implemented more efficiently
in hardware and used to update arrays which do not need to preserve atomicity
related properties.
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the official JAVA CARD specification is ambiguous and should be clarified as
follows:

“If power is lost (tear) or the card is reset or some other system
failure occurs while a transaction is in progress, then the JCRE shall
restore to the values they had directly prior to the first conditional
update after the previous call to beginTransaction all fields and
array components conditionally updated since the previous call to
beginTransaction.”

This definition of a transaction roll-back will require us to slightly modify the
conditional assignment rule for arrays assignTRAArray to account for possible
non-atomic method calls or, more generally, transaction suspension.

Before we continue with explaining how all these issues are handled in the
logic, we quote one more sentence from the JCRE specification [Sun, 2003c]:

“Note – The contents of an array component which is updated us-
ing the arrayCopyNonAtomic method or the arrayFillNonAtomic
method while a transaction is in progress, is not predictable, follow-
ing the abortion of the transaction. [explicit, by the programmer, or
implicit, by the JCRE]”

What follows is that in practice any formal, deterministic reasoning about
non-atomic method calls in JAVA CARD is not possible. It also renders the
two non-atomic methods practically useless and, more importantly, danger-
ous.4 Experiments on real JAVA CARD devices show that such indeterministic
behaviour is indeed exhibited by some devices, but they also show there is
a handful of JAVA CARD devices that behave deterministically, that is, the
assignments performed by non-atomic methods to persistent locations are
kept after the transaction is aborted. Hence we need to have support in our
logic for such well behaved devices. Still, it is not advisable to make calls
to arrayCopyNonAtomic and arrayFillNonAtomic methods from within a
transaction at all.

9.7.1 Transaction Suspending and Resuming

Similarly to what we did for the basic transaction support, we need to make
JAVA CARD DL aware of possible transaction suspension in a program. Thus,
we introduce two more distinguished methods to JAVA CARD that are going
to be treated by the logic rules:

• jvmSuspendTransaction: suspend an active transaction,
• jvmResumeTransaction: resume a suspended transaction.

4 When a JAVA CARD device indeed exhibits such an indeterministic behaviour
suggested by the JCRE documentation, very simple card tear attacks are possi-
ble.
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Similarly as for jvmBeginTransaction, etc., these statements are only used
in the calculus, they are not part of the official JAVA CARD API. Our JAVA

CARD model used in the logic can then assume the following implementation
for arrayFillNonAtomic:5

JAVA CARD

public class Util {
public static short arrayFillNonAtomic(

byte[] dest, short offset, short len, byte val)
{
de.uka.ilkd.key.javacard.KeYJCSystem.
jvmSuspendTransaction();

for(short i = 0; i < len; i++)
dest[(short)(offset + i)] = val;

de.uka.ilkd.key.javacard.KeYJCSystem.
jvmResumeTransaction();

return (short)(offset + len);
}

}

JAVA CARD

And similarly for arrayCopyNonAtomic.
We also need to mark the modality, respectively, the program it contains,

with a tag that says that the current transaction is suspended. The tag we
are going to use is TRS. Similarly as for the TRA and TRC tags this indicates
that different rules should be applied in the scope of a suspended transaction,
in particular for the array element assignment.

Rules for Suspending a Transaction

It is important to note that, given the way we reason about transactions in
our logic, the transaction suspension is only relevant when modalities with
an active TRA tag are considered. When there is no transaction in progress
the transaction suspension can be safely ignored. In the scope of the com-
mit branch, transaction suspension also does not introduce any additional
semantics—all assignments are going to be committed, no matter if triggered
by a non-atomic method or any other program statement. This gives raise to
the following jvmSuspendTransaction rules:

suspendTrans
=⇒ 〈π ω〉φ

=⇒ 〈π jvmSuspendTransaction(); ω〉φ

5 The actual implementation would be more complex—it should take care of some
extra checks that the actual JAVA CARD API method would do, here we used a
simplified version for clarity.
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suspendTransTRC
=⇒ 〈TRC:π ω〉φ

=⇒ 〈TRC:π jvmSuspendTransaction(); ω〉φ
And similarly for box and throughout modalities. In the above two rules,
statements related to transaction suspension are simply ignored. When the
modality is marked with the TRA tag however, we need to mark the modality
with the TRS tag to indicate that a transaction is momentarily suspended:

suspendTransTRA
=⇒ 〈TRS:π ω〉φ

=⇒ 〈TRA:π jvmSuspendTransaction(); ω〉φ

Again, the rules for box and throughout modalities are the same. Rules for
resuming a transaction will simply change the TRS tag back to the TRA tag.

Rules for Resuming a Transaction

As we pointed out in the previous section, transaction suspension can be
ignored for modalities without any transaction tags or for modalities marked
with the TRC tag. Thus, for these cases, the rules for resuming the transaction
will also ignore the transaction resume statement jvmResumeTransaction
(again, the rules for box and throughout are the same):

resumeTrans
=⇒ 〈π ω〉φ

=⇒ 〈π jvmResumeTransaction(); ω〉φ

resumeTransTRC
=⇒ 〈TRC:π ω〉φ

=⇒ 〈TRC:π jvmResumeTransaction(); ω〉φ
And for the modalities with TRS tag we simply change the tag back to TRA

to indicate that a transaction is again in progress:

resumeTransTRA
=⇒ 〈TRA:π ω〉φ

=⇒ 〈TRS:π jvmResumeTransaction(); ω〉φ

9.7.2 Conditional Assignments Revised

The new semantics of transaction roll-back affects the conditional assignment
rule for arrays assignTRAArray in the following way. The value of an array
element is rolled back to the state it had just before the first conditional
assignment took place. This means that the assignment rules need to keep
track and need to be aware if an array location has been conditionally updated
or not. For this we need to introduce another implicit field to arrays on
the logic level, like the <transient> field indicating the object’s persistency
type. The new field is called <traInitialized> and is of type boolean array.
Having a field like this allows us to put formulas like a.<traInitialized>[i]
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into the sequent which will evaluate to true or false depending if the array
element a[i] has been conditionally updated (initialised) or not. So, first our
conditional assignment rule needs to update information about conditional
initialisation when a conditional assignment happens (the default value for
a.<traInitialized>[i] is always false):

assignTRAArrayRevised

a.<transient> .= TRUE =⇒ {a[e ′] := se ′}〈TRA:π ω〉φ
a.<transient> .= FALSE =⇒
{a.<traInitialized>[e ′]′ := TRUE}{a[e ′]′ := se ′}〈TRA:π ω〉φ

=⇒ 〈TRA:π a[e] = se; ω〉φ

As before, the rule for box and throughout are the same. Note that we only
need to keep track of conditional assignments for persistent arrays, because
transient arrays are always updated unconditionally.

The second part of treating the new semantics of transaction roll-back
is to make the rules that update an array element when a transaction is
suspended check if an array element has been already updated conditionally,
and depending on that do a conditional or unconditional update. This way, if
an array element has not yet been initialised inside a transaction the update
is going to be unconditional, so that when the transaction is aborted, the
array element will have this unconditionally assigned value. So we need a
rule for array assignment for suspended transactions. Here only the rules for
diamond and box are the same, because for throughout extra checks need to
be done in the scope of the TRA tag, which we will explain shortly:

assignDiaSuspArray

a.<traInitialized>[e ′]′
.= FALSE | a.<transient> .= TRUE =⇒

{a[e ′] := se ′}〈TRS:π ω〉φ
a.<traInitialized>[e ′]′

.= TRUE) =⇒ {a[e ′]′ := se ′}〈TRS:π ω〉φ
=⇒ 〈TRS:π a[e] = se; ω〉φ

Finally, we need to properly handle assignments for a suspended transaction
in the scope of the throughout modality. Since the transaction is suspended
and some of the assignments are executed unconditionally, it means we need
to check the strong invariant after these unconditional assignments. Thus,
the rule for a suspended transaction for the throughout modality:

assignToutSuspArray

arr.<traInitialized>[e′]′
.= FALSE &

arr.<transient>
.= FALSE =⇒ {a[e ′] := se ′}(φ & [[TRS:π ω]]φ)

a.<traInitialized>[e ′]′
.= TRUE =⇒ {a[e ′]′ := se ′}[[TRS:π ω]]φ

a.<traInitialized>[e ′]′
.= FALSE & a.<transient> .= TRUE =⇒

{a[e ′] := se ′}[[TRS:π ω]]φ
=⇒ [[TRS:π a[e] = se; ω]]φ
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In this rule, in the first premiss, the formula φ is also evaluated right after
the unconditional assignment to the array element happens. In the second
premiss (an element is already conditionally assigned and hence is going to
be rolled back after the abort) and in the third premiss (the array element
is transient and is going to be reset to a default value upon unexpected
termination) the extra check is not necessary.

9.8 Summary

In this chapter we presented numerous extensions to JAVA CARD DL neces-
sary to support strong invariants and JAVA CARD’s transaction mechanism.
Strong invariants are crucial to express card tear properties for JAVA CARD

applets—properties that have be maintained in case of an unexpected (pre-
mature) termination of the program. The support for the transaction mech-
anism is necessary to reason properly about (i) different atomicity levels
introduced by transactions in the context of strong invariants, and (ii) as-
signment roll-back caused by an aborted transaction in the context of all the
modal operators. We also presented some “on paper” examples showing how
the extended calculus works in practice. In the closing Section 9.9 we briefly
discuss some of the implementation issues and point to relevant transaction
examples included in the KeY distribution.

9.8.1 Related Work

To the best of our knowledge, the KeY system is the first JAVA CARD ver-
ification tool that treats strong invariants and transactions thoroughly, in-
cluding the implementation of the logic rules [Beckert and Mostowski, 2003,
Mostowski, 2006]. The only other work that gives a basic formal framework to
reason about card tears and JAVA CARD transaction mechanism is presented
by Hubbers and Poll [2004a], however the framework has not been imple-
mented. Hubbers and Poll also wrote a technical report [Hubbers and Poll,
2004b], which we already cited on many occasions, that describes numerous
experiments with real JAVA CARD devices with respect to transactions, JAVA

CARD non-atomic methods and card tears and tries to set in order the intri-
cacies of the transaction mechanism. The report was of enormous help to us
when developing the support for transaction suspending.

Recently, the Krakatoa tool6 has been extended to support JAVA CARD

transaction mechanism [Marché and Rousset, 2006]. The extension treats the
transaction mechanism thoroughly and provides a JML interface to transac-
tions related properties (like strong invariants).

The idea to introduce trace modalities “throughout” and “at least once”
to pure Dynamic Logic was first presented by Beckert and Schlager [2001]. In
our work we adapt these ideas to the more complex JAVA CARD DL setting,
6 http://krakatoa.lri.fr
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where we also have to deal with the transaction mechanism, which obviously
is not present in pure Dynamic Logic. We have also chosen not to introduce
the “at least once” modality to JAVA CARD DL because so far we did not
find practical applications for it. But given the KeY system’s flexible logic
framework it should be quite straightforward task and future versions of the
KeY system may contain the support for “at least once” modality.

9.9 Implementation of the Rules

Here we briefly discuss some taclet implementation issues related to through-
out and transaction rules.

9.9.1 New Modalities

The transaction markers TRC, TRA, and TRS are implemented as separate
modalities. That is, instead of marking a modality, say diamond, with a
TRC tag, a new modality “diamond with TRC” is introduced. Thus, for the
diamond operator diamond there are four different modalities:

• \<...\>: the diamond modality,
• \diamond_trc...\endmodality: the diamond modality marked with the

TRC tag,
• \diamond_tra...\endmodality: the diamond modality marked with the

TRA tag,
• \diamond_susp...\endmodality: the diamond modality marked with

the TRS tag.

Similarly for box and throughout operators, where shorthand notations are
\[...\] and \[[...\]], respectively. This way the transaction specific rules,
notably all different assignment rules, can be written separately for the dif-
ferent modalities, or groups of modalities with the help of schematic modal
operators described in Section 4.2.

9.9.2 Transaction Statements and Special Methods

In the theoretical part of this chapter we mentioned distinguished API
method calls that the logic rules operate on: jvmBeginTransaction, jvm-
CommitTransaction, etc. Thus, the model of the JAVA CARD API that is
associated with a proof involving transactions has to include the following
class and method declarations:

JAVA CARD

package de.uka.ilkd.key.javacard;

public class KeYJCSystem {
public static native void jvmBeginTransaction();
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public static native void jvmCommitTransaction();
public static native void jvmAbortTransaction();
public static native void jvmSuspendTransaction();
public static native void jvmResumeTransaction();

}

JAVA CARD

And as before, the implementation of the actual JAVA CARD transaction meth-
ods in our model API has to take the following form:

JAVA CARD

public class JCSystem {
private static short _transactionDepth = 0;

public static void beginTransaction()
throws TransactionException {

if(_transactionDepth > 0)
TransactionException.throwIt(
TransactionException.IN_PROGRESS);

_transactionDepth++;
de.uka.ilkd.key.javacard.KeYJCSystem.
jvmBeginTransaction();

}
...

}

JAVA CARD

As there is no public user interface to support transaction suspending there
are no public API methods suspendTransaction and resumeTransaction.
The only two methods that can suspend a transaction are arrayCopyNon-
Atomic and arrayFillNonAtomic. In the model API these two methods can
call jvmSuspendTransaction and jvmResumeTransaction directly, following
the schema discussed in Section 9.7.1.

An alternative and more efficient solution to handle non-atomic method
calls is to introduce distinguished (or special) (⇒ Sect. 14.4.1) methods for
array filling and copying as well, following this schema:

JAVA CARD

public class Util {
public static short arrayFillNonAtomic(

byte[] bArray, short bOff, short bLen, byte bValue) {
if(bArray == null) throw new NullPointerException();
if(bLen < 0 || bOff < 0 || bOff + bLen > bArray.length)
throw new ArrayIndexOutOfBoundsException();

de.uka.ilkd.key.javacard.KeYJCSystem.
jvmArrayFillNonAtomic(bArray, bOff, bLen, bValue);
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return (short)(bOff+bLen);
}

}

public class KeYJCSystem {
public static native void jvmArrayFillNonAtomic(
byte[] bArray, short bOff, short bLen, byte bValue);

}

JAVA CARD

This way, it is ensured that the distinguished method jvmArrayFillNon-
Atomic is called with well defined arguments and should always succeed
without throwing exceptions. A specialised taclet takes care of executing
jvmArrayFillNonAtomic, which boils down to creating a suitable quantified
update (⇒ Sect. 3.2.3) that follows the semantics of transaction suspending
accurately.

Other special methods that the KeY JAVA CARD model utilises are jvm-
IsTransient (low-level interface to isTransient method of the JAVA CARD

API) and jvmMakeShort/jvmSetShort (low-level methods related to repre-
sentation of short values with bytes). The KeY system distribution contains
a skeleton JAVA CARD API implementation which uses such distinguished
methods (in examples/java dl/jc transactions/code).

The distinguished jvm... methods are excluded from the method call
handling rules, so that specialised taclets can be defined for them. Since
concrete method names are not allowed in the rules, schema variables that
match distinguished jvm... calls have to be defined. Then, for example, we
can write a taclet for the rule beginTransTout this way:

Taclet
beginTransTout {

\schemaVar \program jvmBeginTransaction #trb;
\find (==> \throughout{..

de.uka.ilkd.key.javacard.KeYJCSystem()::
de.uka.ilkd.key.javacard.KeYJCSystem.#trb();

...}\endmodality post)
"Pre-State":
\replacewith(==> post);

"Will�Abort":
\replacewith(==> \throughout_tra{.. ...}\endmodality post);

"Will�Commit":
\replacewith(==> \throughout_trc{.. ...}\endmodality post))
\heuristics(simplify_prog)
\displayname "beginTrans"

};

Taclet
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All the other rules for handling transaction entering, exiting, suspending, and
resuming are similar.

9.9.3 Taclet Options

Transactions related rules are only active in the KeY system, when the taclet
option (⇒ Sect. 4.4.2) transactions is set to transactionsOn. Similarly,
for the throughout rules there is a taclet option throughout, which can be
activated by setting it to toutOn. Also, in practice it often happens that the
verified program with transactions does not contain any abortTransaction
calls, or possibly they are never reached. In this case the abort branch of the
proof resulting from applying the transaction begin rule beginTrans will al-
ways be closed by the axiom rule commitTransUnexp. So introducing the abort
branch case into the proof is superfluous in the first place and skipping this
branch from the start can considerably reduce the size of the proof. If the user
knows or suspects that there is no call to abortTransaction7 in the program
that he wants to verify, he can set the taclet option transactionAbort to
abortOff, which will result in choosing the set of rules that do not introduce
the abort branch into the proof. In case the abortTransaction is reached
in the program anyway, the commit branch will not be closable, because the
axiom rule abortTransUnexp is not active when the abortOff option is set.

9.9.4 Implicit Fields

In our conditional assignment rules for arrays (⇒ Sect. 9.5.2, 9.7.2) we also
made use of two implicit fields (⇒ Sect. 3.6.6):

• <transient> of boolean type that indicates the persistency type of an
array,

• <traInitialized> of boolean array type that indicates whether a given
array element has been conditionally updated inside a transaction.

In the KeY system’s implementation the persistency field <transient> is of
integer type instead of boolean, because in reality each object can have two
different types of non-persistency, for example, a value of a transient array
can be kept only as long as the applet is active, or as long as the card is
powered [Sun, 2003c]. The two taclet meta-constructs (⇒ Sect. 4.2.8) that
are used in taclets to get access to these implicit fields are:

• #transient(#a) to express #a.<transient>,
• #traInitialized(#a)[#i] to express #a.<traInitialized>[#i].

7 Keep in mind that in JAVA CARD programs there can also be implicit calls to
abortTransaction (e.g., when a program starts a transaction and does not close
it before the end of execution) which cannot be deduced by looking at the code.
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9.9.5 Conditional Assignment Rule Taclets

This is almost everything that is needed to write the taclets for conditional
assignment rules (⇒ Sect. 9.5.2, 9.7.2). Recall that, in Section 9.5.2, we said
that each subsequent transaction needs to keep its own copies of the at-
tributes, respectively, array elements by using a different number of prime (′)
symbols, so that conditional assignments from one transaction do not col-
lide with conditional assignments from another transaction. Thus, it is not
correct to write expressions containing prime symbols directly in taclets, for
example:

Taclet
\replacewith({#o.#a’ := #se}

\diamond_tra{...}\endmodality post)

Taclet

Instead the rule should assign the number of primes dynamically depending
on the number of transactions processed in the proof so far. On top of that
an attribute or array expression may be hidden behind a schema variable,
for example, expression #se can possibly represent a.o or ar[i]. So, for
taclets we need a meta-construct that will take care of both assigning the
right number of primes (a shadow number) and for constructing such primed
(shadowed) expressions from the attribute or array expressions hidden in
schema variables on the fly when the rule is applied. The meta-construct is
called #shadowed.

Now we can finally present (a simplified version of) the taclet that imple-
ments the conditional assignment rule assignTRAArray:

Taclet
assignTRAArray {
\schemaVar

\modalOperator {diamond_tra, box_tra, throughout_tra}
#traonly;

\find (\modality{#traonly}{..
#v[#se]=#se0;...

}\endmodality post) \sameUpdateLevel

"array�#v�persistent":
\replacewith (

{#shadowed(#v[#se]) := #shadowed(#se0)}
\modality{#traonly}{.. ...}\endmodality post

)
\add (#transient(#shadowed(#v)) = 0 ==> );

"array�#v�transient":
\replacewith (

{#v[#se] := #shadowed(#se0)}
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\modality{#traonly}{.. ...}\endmodality post
)
\add (#transient(#shadowed(#v)) > 0 ==>);

\heuristics(simplify_prog, simplify_prog_subset)
\displayname "assignment"

};

Taclet

This simplified version of the taclet does not cover null pointer or array
index bounds checks. The taclet exactly reflects rule assignTRAArray, and
also covers the same rule for the diamond and box operators by the use of
#traonly schematic modal operator.

Accessing the Transaction Counter Directly

In some cases it is necessary to “prime” an expression selectively in the taclet,
that is, to apply the #shadowedmeta-operator only to specific subexpressions.
To achieve that it is possible to refer to the current transaction number
(shadow number) with the #transactionCounter schema variable this way:

Taclet
...
\replacewith({#o.#a^(#transactionCounter) := #se}

\diamond_tra{...}\endmodality post)
...

Taclet

If, for example, the current transaction counter is 3, #o matches this, #a
matches attr, and #se matches 1, a formula with following update is going
to be introduced into the sequent:

KeY
{this.attr’’’ := 1}...

KeY

When an interaction is required from the user (for example, when taclet
instantiation is required) that involves primed expressions, it is possible to
use prime symbols directly.

9.9.6 Examples in the KeY System

The examples/java dl/jc transactions directory of the KeY system dis-
tribution contains simple examples of the KeY problem files involving trans-
actions. For example, the file ex1.key contains the following problem:
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KeY
\javaSource "code/";

\programVariables { MyClass self; int a; }

\problem {
javacard.framework.JCSystem._transactionDepth = 0

& !self = null & self.a = 0 & a = 0
->
\<{

javacard.framework.JCSystem.beginTransaction();
self.a = 10;
a = 10;

javacard.framework.JCSystem.abortTransaction();
}\> (self.a = 0 & a = 10)

}

KeY

This example is automatically provable by choosing the basic JAVA CARD DL
strategy (the transactionAbort taclet option needs to be active). It presents
how the effect of a transaction roll-back is achieved and how conditional
assignment to persistent and non-persistent memory locations are properly
handled—the value of self.a is rolled back to the value it had before the
transaction was started, while local variable a keeps the value that it was
assigned during the transaction.

9.9.7 Current Limitations

One small part of JAVA CARD transaction semantics is not yet supported
in the KeY system. According to the JAVA CARD specification [Sun, 2003c],
references to all the objects created during a transaction are reset to a null
reference upon transaction abort. In our execution model such references are
preserved. That implies that proofs for programs that create objects inside
a transaction may be (but do not necessarily have to be) unsound. However,
creating objects within a transaction is not advised by JAVA CARD coding
guidelines, thus for the moment we do not consider this limitation a big
issue. Future versions for of the KeY system will resolve this problem.
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Using KeY

by

Wolfgang Ahrendt

10.1 Introduction

This whole book is about the KeY approach and framework. This chapter
now focuses on the KeY system, and that entirely from the user’s perspective.
Naturally, the graphical user interface (GUI) will play an important role here.
However, the chapter is not all about that. Via the GUI, the system and
the user communicate, and interactively manipulate, several artefacts of the
framework, like formulae of the used logic, proofs within the used calculus,
elements of the used specification languages, among others. Therefore, these
artefacts are (in parts) very important when using the system. Even if all
of them have their own chapter/section in this book, they will appear here
as well, in a somewhat superficial manner, with pointers given to in-depth
discussions in other parts.

We aim at a largely self-contained presentation, allowing the reader to
follow the chapter, and to start using the KeY system, without necessarily
having to read several other chapters of the book before. The reader, however,
can gain a better understanding by following the references we give to other
parts of the book. In any case, we strongly recommend to read Chapter 1
beforehand, where the reader can get a picture of what KeY is all about. The
other chapters are not treated as prerequisites to this one, which of course
imposes limitations on how far we can go here. Had we built on the knowledge
and understanding provided by the other chapters, we would be able to guide
the user much further into to the application of KeY to larger resp. more
difficult scenarios. However, this would raise the threshold for getting started
with the system, thereby contradicting the philosophy of the whole project.
The KeY framework was designed from the beginning for being usable without
having to read a thick book first. Software verification is a difficult task
anyhow. Neither the system nor the used artefacts (like the logic) should
add to that difficulty, and are designed to instead lower the threshold for the
user. The used logic, dynamic logic (DL), features transparency w.r.t. the

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 409–451, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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programs to be verified, such that the code literally appears in the formulae,
allowing the user to relate back to the program when proving properties
about it. The “taclet” language for the declarative implementation of both,
rules and lemmas, is kept so simple that we can well use a rule’s declaration
as a tooltip when the user is about to select the rule. The calculus itself is,
however, complicated, as it captures the complicated semantics of JAVA. Still,
most of these complications do not concern the user, as they are handled in
a fully automatic way. Powerful strategies relieve the user from tedious, time
consuming tasks, particularly when performing symbolic execution.

In spite of a high degree of automation, in many cases there are significant,
non-trivial tasks left for the user. It is the very purpose of the GUI to support
those tasks well. When proving a property which is too involved to be han-
dled fully automatically, certain steps need to be performed in an interactive
manner, in dialogue with the system. This is the case when either the auto-
mated strategies are exhausted, or else when the user deliberately performs
a strategic step (like a case distinction) manually, before automated strate-
gies are invoked (again). In the case of human-guided proof steps, the user
is asked to solve tasks like: selecting a proof rule to be applied, providing in-
stantiations for the proof rule’s schema variables, or providing instantiations
for quantified variables of the logic. In turn, the system, and its advanced
GUI, are designed to support these steps well. For instance, the selection of
the right rule, out of over 1500(!), is greatly simplified by allowing the user to
highlight any syntactical sub-entity of the proof goal simply by positioning
the mouse. A dynamic context menu will offer only the few proof rules which
apply to this entity. Furthermore, these menus feature tooltips for each rule
pointed to. When it comes to interactive variable instantiation, drag-and-
drop mechanisms greatly simplify the usage of the instantiation dialogues,
and in some cases even allow to omit explicit rule selection. Other supported
forms of interaction in the context of proof construction are the inspection
of proof trees, the pruning of proof branches, stepwise backtracking, and the
triggering of proof reuse.

Performing interactive proof steps is, however, only one of the many func-
tionalities offered by the KeY system. Also, these features play their role rela-
tively late in the process of verifying programs. Other functionalities are (we
go backwards in the verification process): controlling the automated strate-
gies, adding lemmas and generating corresponding proof obligations, cus-
tomising the calculus (for instance by choosing either of the mathematical or
the JAVA semantics for integers), and generating proof obligations from spec-
ifications. Those features (and several others to be discussed below) comprise
what we call the “core KeY system”, “stand-alone KeY system”, or “stand-
alone KeY prover”.

On top of the core system, there exist integrations into (currently two)
standard tools for (JAVA) software development, as was discussed in the in-
troduction to this book (Chap. 1, see particularly Fig. 1.1). One of them is
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the commercial CASE1 tool Borland Together Control Center, the other is
the open source IDE Eclipse. In both cases, users can develop the whole soft-
ware project, comprising both specifications and implementations, entirely in
the frame of either of these (KeY-enhanced) tools, which offer the extended
functionality of generating proof obligations from selected entities of specifi-
cations, and starting up the KeY prover accordingly.

Working with the KeY system has therefore many aspects, and there are
many ways to give an introduction into those. In this chapter, we will take
an “inside out” approach, starting with the core prover, describing how it
communicates which artefacts for which purpose with the user, when proving
a formula at hand.

In general, we will discuss the usage of the system by means of rather (in
some cases extremely) simple examples. Thereby, we try to provide a good
understanding of the various ingredients before their combination (seemingly)
complicates things. Also, the usage of the prover will sometimes be illustrated
by at first performing basic steps manually, and demonstrating automation
thereafter. Please note that the toy examples used all over this chapter serve
the purpose of step by step introducing the concepts and usage of the KeY
system. They are not suitable for giving any indication of the capabilities of
the system. (See Part IV instead.)

Before we start, there is one more basic issue which should be reflected
on at this point. The evolution of both, the KeY project in general, and
the KeY system in particular, has been very dynamic up to now, and will
continue to be so. As far as the system and its GUI is concerned, it has
been constantly improved and will be modified in the future as well. The
author faces the difficult task of not letting the description of the tool’s
usage depend too much on its current appearance. The grouping of menus,
the visual placement of panes and tabs, the naming of operations or options,
all that can potentially change. Also, on the more conceptual level, things like
the configuration policy for strategies and rule sets, among others, cannot be
assumed to be frozen for all times. Even the theoretical grounds will develop
further, as KeY is indeed a research project. A lot of ongoing research does not
yet show in the current release of the KeY system, like support for mainstream
languages other than JAVA, support for disproving wrong formulae, or the
combination of deductive verification with static analysis, to name just very
few. These, and others, will enhance the framework, and find their way into
the system. We make a strong effort, not only in this chapter, to make the
material valuable for the understanding and usage also of the future KeY.

The problem of describing a dynamic system is approached from three
sides. First, we will continue to keep available the book release of the system,
KeY 1.0, on the KeY book’s web page. Second, in order to not restrict the
reader to that release only, we will try to minimise the dependency of the
material on the current version of the system and its GUI. Third, whenever

1 CASE stands for Computer-Aided Software Engineering.
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we talk about the specific location of a pane, tab, or menu item, or about
key/mouse combinations, we stress the dynamic nature of such information
in this way . For instance, we might say that “one can trigger the run of an
automated strategy which is restricted to a highlighted term/formula by Shift
+ click on it”. Menu navigation will be displayed by connecting the cascaded
menus/sub-menus with “→”, like “Options → Decision Procedure Config →
Simplify”. Note that menu navigation is release dependent as well.

This chapter is meant for being read with the KeY system up and run-
ning. We want to explore the system together with the reader, and reflect on
whatever shows up along the path. Downloads of KeY, particularly its book
version, KeY 1.0, are available on the project page, www.key-project.org.
The example input files, which the reader frequently is asked to load, can
be found on the web page for this book, www.key-project.org/thebook, as
well as in your KeY system’s installation, under examples/BookExamples.

10.2 Exploring Framework and System Simultaneously

Together with the reader, we want to open, for the first time, the KeY system,
in order to perform first steps and understand the basic structure of the
interface. We start the stand-alone KeY prover by running bin/runProver in
your KeY installation directory . The KeY–Prover main window, together with
a Proof Assistant2 pops up. The latter is simply a message window, which
comments on pre-selected menus or actions the user is about to make.

Like many window-based GUIs, the main window offers several menus, a
toolbar, and a few panes, partly tabbed. Instead of enumerating those com-
ponents one after another, we immediately load an example to demonstrate
some basic interaction with the prover.

10.2.1 Exploring Basic Notions and Usage: Building a
Propositional Proof

In general, the KeY prover is made for proving formulae in dynamic logic
(DL), an extension of first-order logic, which in turn is an extension of propo-
sitional logic. We start with a very simple propositional formula, when in-
troducing the usage of the KeY prover, because a lot of KeY concepts can
already be discussed when proving the most simple theorem.

Loading the First Problem

The formula we prove first is contained in the file andCommutes.key. In gen-
eral, .key is the suffix for what we call problem files, which may, among other
things, contain a formula to be proved. (The general format of .key files is
documented in Appendix B.) For now, we look into the file andCommutes.key
itself (using your favourite editor):

2 If the Proof Assistant does not appear, please check Options → Proof Assistant.
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KeY Problem File
\predicates {

p;
q;

}
\problem {

(p & q) -> (q & p)
}

KeY Problem File

The \problem block contains the formula to be proved (with & and -> denot-
ing the logical “and” and “implication”, respectively). In general, all func-
tions, predicates, and variables appearing in a problem formula are to be
declared beforehand, which, in our case here, is done in the \predicates
block. We load this file by File → Load ... (or selecting in the tool bar)
and navigating through the opened file browser . The system not only loads the
selected .key file, but also the whole calculus, i.e., its rules.

Reading the Initial Sequent

Afterwards, we find the text ==> p & q -> q & p displayed in the Current

Goal pane. This seems to be merely the \problem formula, but actually, the
arrow “==>” turns it into a sequent. KeY uses a sequent calculus, meaning that
sequents are the basic artefact on which the calculus operates. Sequents have
the form φ1, . . . , φn =⇒ φ′

1, . . . , φ
′
m, with φ1, . . . , φn and φ′

1, . . . , φ
′
m being

two (possibly empty) comma-separated lists of formulae, distinguished by
the sequent arrow “ =⇒ ” (written as “ ==> ” in both input and output of
the KeY system). The intuitive meaning of a sequent is: if we assume all
formulae φ1, . . . , φn to hold, then at least one of the formulae φ′

1, . . . , φ
′
m

holds. In our particular calculus, the order of formulae within φ1, . . . , φn

and within φ′
1, . . . , φ

′
m does not matter. Therefore, we can for instance write

“Γ =⇒ φ −> ψ, ∆” to refer to sequents where any of the right-hand side
formulae is an implication. (Γ and ∆ are both used to refer to arbitrary,
and sometimes empty, lists of formulae.) We refer to Chap. 2, Sect. 2.5, for
a proper introduction of a (simple first-order) sequent calculus. The example
used there is exactly the one we use here. We recommend to double-check
the following steps with the on paper proof given there.

We start proving the given sequent with the KeY system, however in a
very interactive manner, step by step introducing and explaining the different
aspects of the calculus and system. This purpose is really the only excuse to
not let KeY prove this automatically.

Even if we perform all steps “by hand” for now, we want the system to
minimise interaction, e.g., by not asking the user for an instantiation if the
system can find one itself. For this, please make sure that the “Minimize
interaction” option (at Options → Minimize interaction) is checked.
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Applying the First Rule

The sequent ==> p & q -> q & p displayed in the Current Goal pane states
that the formula p & q -> q & p holds unconditionally (no formula left of
“==>”), and without alternatives (no other formula right of “==>”). This is
an often encountered pattern for proof obligations when starting a proof:
sequents with empty left-hand sides, and only the single formula we want to
prove on the right-hand side. It is the duty of the sequent calculus to, step by
step, take such formulae apart, while collecting assumptions on the left-hand
side, or alternatives on the right-hand side, until the sheer shape of a sequent
makes it trivially true, which is the case when both sides have a formula
in common. (For instance, the sequent φ1, φ2 =⇒ φ3, φ1 is trivially true.
Assuming both, φ1 and φ2, indeed implies that “at least one of φ3 and φ1”
hold, namely φ1.) It is such primitive shapes which we aim at when proving.

“Taking apart” a formula in a sense refers to breaking it up at the top-level
operator. The displayed formula p & q -> q & p does not anymore show the
brackets of the formula in the problem file. Still, for identifying the leading
operator it is not required to memorise the built in operator precedences.
Instead, the term structure gets clear when, with the mouse pointer, sliding
back and forth over the formula area, as the sub-formula (or sub-term) under
the symbol currently pointed at always gets highlighted. To get the whole
formula highlighted, the user needs to point to the implication symbol “->”,
so this is where we can break up the formula.

Next we want to select a rule which is meant specifically to break up an
implication on the right-hand side. This kind of user interaction is supported
by the system offering only those rules which apply to the highlighted formula,
resp. term (or, more precisely, to its leading symbol). A click on “->” will
open a context menu for rule selection, offering several rules applicable to
this implication, among them impRight:

impRight
Γ, φ =⇒ ψ, ∆

Γ =⇒ φ −> ψ, ∆

Note that, strictly speaking, both the premiss Γ, φ =⇒ ψ, ∆ and the conclu-
sion Γ =⇒ φ −> ψ, ∆ are not just plain sequents, but sequent schemata. In
particular, φ and ψ are schema variables, to be instantiated with the two
sub-formulae of the matching implication, when applying the rule.

As for any other rule, the logical meaning of this rule is downwards
(concerning validity): if a sequent matching the premiss Γ, φ =⇒ ψ, ∆ is
valid, we can conclude that the corresponding instance of the conclusion
Γ =⇒ φ −> ψ, ∆ is valid as well. Accordingly, the operational meaning dur-
ing proof construction goes upwards: the problem of proving a sequent which
matches Γ =⇒ φ −> ψ, ∆ is reduced to the problem of proving the cor-
responding instance of Γ, φ =⇒ ψ, ∆. During proof construction, a rule is
therefore applicable only to situations where the current goal matches the
rule’s conclusion. The proof will then be extended by the new sequent re-
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sulting from the rule’s premiss. (See below for a generalisation to multiple
premisses).

To see this in action, we click at impRight in order to apply the rule to
the current goal. This produces the new sequent p & q ==> q & p, which
becomes the new current goal. By “goal”, we mean a sequent to which no
rule is yet applied. By “current goal” we mean the goal in focus, to which
rules can be applied currently.

Inspecting the Emerging Proof

The user may have noticed the Proof tab as part of the tabbed pane in the lower
left corner . It displays the structure of the (unfinished) proof we have achieved
so far, showing all the nodes of the current proof, numbered consecutively,
and labelled either by the name of the rule which was applied to that node,
or by “OPEN GOAL” in case of a goal. The blue highlighted node is always
the one which is detailed in the big pane. So far, this was always a goal, such
that the big pane was called “Current Goal”. But if the user clicks at an inner
node, in our case on the one labelled with impRight, that node gets detailed in
the big pane now called “Inner Node”. It shows not only the sequent of that
node, but also the Upcoming rule application , in a notation we come to
in a minute.

Note that the (so far linear) proof tree displayed in the Proof tab has
its root on the top, and grows downwards, as is common for trees displayed
in GUIs. On paper, however, the traditional way to depict sequent proofs is
bottom-up, as is done all over in this book. In that view, the structure of the
current proof (with the upper sequent being the current goal) is:

p & q =⇒ q & p

=⇒ p & q −> q & p

For the on-paper presentation of the proof to be developed, we again refer to
Section 2.5. Here, we concentrate on the development and presentation via
the KeY GUI instead.

Understanding the First Taclet

With the inner node still highlighted in the Proof tab, we look at the rule
information given in the Inner Node pane, saying:

KeY Output
impRight {
\find ( ==> b -> c )
\replacewith ( b ==> c )
\heuristics ( alpha )

}

KeY Output
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What we see here is what is called a taclet. Taclets are a framework for
sequent calculi, a declarative language for programming the rules of a sequent
calculus. The taclet framework was developed as part of the KeY project. The
depicted taclet is the one which in the KeY system defines the rule impRight.
In this chapter, we give just a hands-on explanation of the few taclets we
come across. For a good introduction and discussion of the taclet framework,
we refer to Chap. 4.

The taclet impRight captures what is expressed in the traditional sequent
calculus style presentation of impRight we gave earlier, and a little more. The
schema “b -> c” in the \find clause indicates that the taclet is applicable to
sequents if one of its formulae is an implication, with b and c being schema
variables matching the two sub-formulae of the implication. Further down
the Inner Node pane, we see that b and c are indeed of kind “\formula”:

KeY Output
\schemaVariables {
\formula b;
\formula c;

}

KeY Output

The sequent arrow “==>” in “\find(==> b -> c)” further restricts the
applicability of the taclet to the top-level3 of the sequent only, and, in this
case, to implications on the right-hand side of the sequent (as “b -> c”
appears right of “==>”). The \replacewith clause describes how to con-
struct the new sequent from the current one: first the matching implica-
tion (here p & q -> q & p) gets deleted (“replace-”), and then the sub-
formulae matching b and c (here p & q and q & p) are added (“-with”) to
the sequent. Which side of the sequent p & q resp. q & p are added to is
indicated by the relative position of b and c w.r.t. “==>” in the argument of
\replacewith. The result is the new sequent p & q ==> q & p. It is a very
special case here that \find(==> b -> c) matches the whole old sequent,
and \replacewith(b ==> c) matches the whole new sequent. Other formu-
lae could appear in the old sequent. Those would remain unchanged in the
new sequent. In other words, the Γ and ∆ traditionally appearing in on-paper
presentations of sequent rules are omitted in the taclet formalism. (Finally,
with \heuristics(alpha) the taclet declares itself to be part of the alpha
heuristics, which only matters for the execution of automated strategies.)

The discussed taclet is the complete definition of the impRight rule in
KeY, and all the system knows about the rule. The complete list of available
taclets can be viewed in the Rules tab as part of the tabbed pane in the lower
left corner, within the “Taclet Base” folder . To test this, we click that folder
and scroll down the list of taclets, until impRight, on which we can click to be
shown the same taclet we have just discussed. It might feel scary to see the
3 Modulo leading updates, see Sect. 10.2.3.
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sheer mass of taclets available. Please note, however, that the vast majority
of taclets is never in the picture when interactively applying a rule in any
practical usage of the KeY system. Instead, most taclets are only used by
automated symbolic execution of the programs contained in formulae (see
below).

Backtracking the Proof

So far, we performed only one little step in the proof. Our aim was, however,
to introduce some very basic elements of the framework and system. In fact,
we even go one step back, with the help of the system. For that, we make
sure that the OPEN GOAL is in focus (by clicking on it in the Proof tab). We
can then undo the proof step which led to this goal, by clicking at Goal Back

in the task bar. This action will put us back in the situation we started in,
which is confirmed by both the Current Goal pane and the Proof tab. Note
that Goal Back, here and in general, only undoes one step each time.

Viewing and Customising Taclet Tooltips

Before performing the next steps in our proof, we take a closer look at the
tooltips for rule selection. (The reader may already have noticed those tooltips
earlier.) If we again click at the implication symbol -> appearing in the
current goal, and pre-select the impRight rule in the opened context menu
simply by placing the mouse at impRight, without clicking yet, we get to see
a tooltip, displaying something similar, or identical, to the impRight taclet
discussed above. The exact tooltip text depends on option settings which
the user can configure. Depending on those settings, what is shown in the
tooltip is just the taclet as is, or a certain ’significant’ part of it, in both
cases either with or without schema variables already being instantiated. It
would be unwise to commit, in this chapter, to the tooltip settings currently
in place in the reader’s KeY system. Instead, we control the options actively
here, and discuss the respective outcome.

We open the tooltip options window by View → ToolTip options, and make
sure that all parts of taclets are displayed by making sure the “pretty-print
whole taclet . . . ” checkbox is checked . For now, we disable the instantiation
of schema variables by setting the “Maximum size . . . of tooltips . . . with
schema variable instantiations displayed . . . ” to 0 . With these settings, the
tooltips for pre-selected rules consist of the original taclets, nothing more,
nothing less. (The reader might try this with the already familiar impRight

rule.) This is a good setting for getting familiar with the taclets as such. The
effect of a taclet to the current proof situation is, however, better captured
by tooltips where the schema variables from the \find argument are already
instantiated by their respective matching formula or term. We achieve this by
setting the “Maximum size . . . of tooltips . . . with schema variable instantia-
tions displayed . . . ” to some higher value, say 40. When trying the tooltip for
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impRight with this, we see something like the original taclet, however with b
and c already being instantiated with p & q and q & p, respectively:

Tooltip
impRight {
\find ( ==> p & q -> q & p )
\replacewith ( p & q ==> q & p )
\heuristics ( alpha )

}

Tooltip

This “instantiated taclet”-tooltip tells us the following: If we clicked on the
rule name, the formula p & q -> q & p, which we \find somewhere on the
right-hand side of the sequent (see the formula’s relative position compared
to ==> in the \find argument), would be \replace(d )with the two for-
mulae p & q and q & p, where the former would be added to the left-hand
side, and the latter to the right-hand side of the sequent (see their relative
position compared to ==> in the \replacewith argument). Note that, in this
particular case, where the sequent only contains the matched formula, the
arguments of \find and \replacewith which are displayed in the tooltip
happen to be the entire old, resp., new sequent. This is not the case in gen-
eral. The same tooltip would show up when preselecting impRight on the
sequent: r ==> p & q -> q & p, s.

A closer look at the tooltip text in its current form (i.e., with the schema
variables already being instantiated), reveals that the whole \find clause
actually is redundant, as it is essentially identical with the anyhow high-
lighted text within the Current Goal pane. Also, the taclet’s name is already
clear from the preselected rule name in the context menu. On top of that,
the \heuristics clause is actually irrelevant for the interactive selection
of the rule. The only non-redundant piece of information is therefore the
\replacewith clause (in this case). Consequently, the tooltips can be re-
duced to the minimum which is relevant for supporting the selection of the
appropriate rule by un-checking “pretty-print whole taclet . . . ” option again.
The whole tooltip for impRight is the one-liner:

Tooltip
\replacewith ( p & q ==> q & p )

Tooltip

In general, the user might play around with different tooltip options in order
to see which settings are most helpful. However, in the following steps, we
assume these tooltips to show the full and unchanged taclet, so we switch
back to our first setting by checking “pretty-print whole taclet . . . ” and set-
ting the “Maximum size . . . of tooltips . . . with schema variable instantiations
displayed . . . ” to 0 again.
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Splitting Up the Proof

We apply impRight and consider the new goal p & q ==> q & p. For further
decomposition we could break up the conjunctions on either sides of the
sequent. By first selecting q & p on the right-hand side, we are offered the
rule andRight, among others. The corresponding tooltip shows the following
taclet:

Tooltip
andRight {
\find ( ==> b & c )
\replacewith ( ==> b );
\replacewith ( ==> c )
\heuristics ( beta, split )

}

Tooltip

Here we see two \replacewiths, telling us that this taclet will construct two
new goals from the old one, meaning that this is a branching rule.4 Written
as a sequent calculus rule, it looks like this:

andRight
Γ =⇒ φ, ∆ Γ =⇒ ψ, ∆

Γ =⇒ φ & ψ, ∆

We now generalise the earlier description of the meaning of rules, to also
cover branching rules. The logical meaning of a rule is downwards: if a certain
instantiation of the rule’s schema variables makes all premisses valid, then the
corresponding instantiation of the conclusion is valid as well. Accordingly, the
operational meaning during proof construction goes upwards: The problem
of proving a goal which matches the conclusion is reduced to the problem of
proving all the (accordingly instantiated) premisses.

If we apply andRight in the system, the Proof tab shows the proof branch-
ing into two different Cases. In fact, both branches carry an OPEN GOAL. At
least one of them is currently visible in the Proof tab, and highlighted blue
to indicate that this is the new current goal, being detailed in the Current

Goal pane as usual. The other OPEN GOAL might be hidden in the Proof tab
(depending on the system settings), as the branches not leading to the cur-
rent goal appear collapsed in the Proof tab by default. A collapsed/expanded
branch can however be expanded/collapsed by clicking on / .5 If we ex-
pand the yet collapsed branch, we see the full structure of the proof, with
4 Note that it is not the “split” argument of the heuristics clause which makes

this rule branching. The “split” is only the name of the heuristics this taclet
claims to be member of. The fact that the taclet would branch a proof is the
reason for (and not a consequence of) making it member of the split heuristics.

5 Bulk expansion, resp., bulk collapsing of all proof branches is offered by a context
menu via right click in the Proof tab.
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both OPEN GOALs being displayed. We can even switch the current goal by
clicking on any of the OPEN GOALs.6

An on-paper presentation of the current proof would look like this:

p & q =⇒ q p & q =⇒ p

p & q =⇒ q & p

=⇒ p & q −> q & p

The reader might compare this presentation with the proof presented in the
Proof tab by again clicking on the different nodes (or by clicking just anywhere
within the Proof tab, and browsing the proof using the arrow keys).

Closing the First Branch

To continue, we put the OPEN GOAL p & q ==> q in focus again. Please
recall that we want to reach a sequent where identical formulae appear on
both sides (as such sequents are trivially true). We are already very close to
that, just that p & q remains to be decomposed. Clicking at & offers the rule
andLeft, as usual with the tooltip showing the taclet, here:

Tooltip
andLeft {
\find ( b & c ==> )
\replacewith ( b, c ==> )
\heuristics ( alpha )

}

Tooltip

which corresponds to the sequent calculus rule:

andLeft
Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

We apply this rule, and arrive at the sequent p, q ==> q . We have arrived
where we wanted to be, at a goal which is trivially true by the plain fact
that one formula appears on both sides, regardless of how that formula looks
like. (Of course, the sequents we were coming across in this example were all
trivially true in an intuitive sense, but always only because of the particular
form of the involved formulae.) In the sequent calculus, sequents of the form
Γ, φ =⇒ φ, ∆ are considered valid without any need of further reduction. This
argument is also represented by a rule, namely:

closeGoal
Γ, φ =⇒ φ, ∆

6 Another way of getting an overview over the open goals, and switch the current
goal, is offered by the Goals tab.
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In general, rules with no premiss close the branch leading to the goal they
are applied to, or, as we say in short (and a little imprecise), close the goal
they are applied to.

The representation of this rule as a taclet calls for two new keywords
which we have not seen so far. One is \closegoal, having the effect that
taclet application does not produce any new goal, but instead closes the
current proof branch. The other keyword is \assumes, which is meant for
expressing assumptions on formulae other than the one matching the \find
clause. Note that, so far, the applicability of rules always depended on one
formula only. The applicability of closeGoal however depends on two formulae
(or, more precisely, on two formula occurrences). The second formula is taken
care of by the \assumes clause in the closeGoal taclet:

Taclet
closeGoal {
\assumes ( b ==> )
\find ( ==> b )
\closegoal

\heuristics ( closure )
}

Taclet

Note that this taclet is not symmetric (as opposed to the closeGoal sequent
rule given above). To apply it interactively on our Current Goal p, q ==> q,
we have to put the right-hand side q into focus (cf. “\find(==> b)”). But
the \assumes clause makes a taclet applicable only in the presence of fur-
ther formulas, in this case the identical formula on the left-hand side (cf.
“\assumes(b ==>)”).7

This discussion of the closeGoal sequent rule and a corresponding closeGoal

taclet shows that taclets are more fine grained than rules. They contain more
information, and consequently there is more than one way to represent a
sequent rule as a taclet. To see another way of representing the above sequent
rule closeGoal by a taclet, the reader might click on the q on the left-hand
side of p, q ==> q , and pre-select the taclet closeGoalAntec. The tooltip will
show the taclet:

7 This is not the whole truth. In KeY, one can even enforce the application of
taclets with the assumes clause not syntactically satisfied by the sequent. In
that case, an additional branch is created, allowing us to prove the assumptions
not yet present in the sequent. We may, however, ignore that possibility for the
time being. Moreover, in the case of closing rules, the usage of this feature is
particularly useless, as it leads to a loop in the proof.
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Tooltip
closeGoalAntec {
\assumes ( ==> b )
\find ( b ==> )
\closegoal

}

Tooltip

We, however, proceed by applying the taclet closeGoal on the right-hand side
formula q. (With the current settings, the taclet application should happen
instantly. In case there opens a dialogue, the reader might select Cancel, check
the Minimize interaction option, and re-apply closeGoal.) After this step, the
Proof pane tells us that the proof branch that has just been under consid-
eration is closed, which is indicated by that branch ending with a “Closed

goal” node coloured green. The system has automatically changed focus to
the next OPEN GOAL, which is detailed in the Current Goal pane as the se-
quent p & q ==> p.

Pruning the Proof Tree

We apply andLeft to the & on the left, in the same fashion as we did on the
other branch. Afterwards, we could close the new goal p, q ==> p, but we
refrain from doing so. Instead, we compare the two branches, the closed and
the open one, which both carry a node labelled with andLeft. When inspecting
these two nodes again (by simply clicking on them), we see that we broke
up the same formula, the left-hand side formula “p & q”, on both branches.
It appears that we branched the proof too early. Instead, we should have
applied the (non-branching) andLeft, once and for all, before the (branching)
andRight. This is a good strategy in general, to delay proof branching as much
as possible, thereby avoiding double work on the different branches. Without
this strategy, more realistic examples with hundreds or thousands of proof
steps would become completely infeasible.

In our tiny example here, it seems not to matter much, but it is instructive
to apply the late splitting also here. We want to re-do the proof from the
point where we split too early. Instead of re-loading the problem file, we can
prune the proof at the node labelled with andRight by right-click on that node,
and selecting Prune Proof. As a result, large parts of the proof are pruned
away, and the second node, with the sequent p & q ==> q & p, becomes the
Current Goal again.

Closing the First Proof

This time, we apply andLeft before we split the proof via andRight. The two
remaining goals, p, q ==> q and p, q ==> p, we close by applying closeGoal

to the right-hand q and p, respectively. By closing all branches, we have
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actually closed the entire proof, as we can see from the Proof closed window
popping up now.

Altogether, we have proved the validity of the sequent at the root of the
proof tree, here ==> p & q -> q & p. As this sequent has only one formula,
placed on the right-hand side, we have actually proved validity of that formula
p & q -> q & p, the one stated as the \problem in the file we loaded.

Proving the Same Formula Automatically

As noted earlier, the reason for doing all the steps in the above proof manually
was that we wanted to learn about the system and the used artefacts. Of
course, one would otherwise prove such a formula automatically, which is
what we do in the following.

Before loading the same problem again, we can choose whether we aban-
don the current proof, or alternatively keep it in the system. Abandoning a
proof would be achieved via the menu: Proof → Abandon Task. It is however
possible to keep several (finished or unfinished) proofs in the system, so we
suggest to start the new proof while keeping the old one. This will allow us
to compare the proofs more easily.

Loading the file andCommutes.key again can be done in the same fashion
as before or alternatively via the “Load last opened file.” button in the toolbar .
The system might then ask whether the problem should be opened in a
new environment or in the already existing one. We choose Open in new

environment (and do so also in the following, unless stated otherwise). The
system might further ask whether the previous proof should be marked for
reuse. We Cancel that dialog here (but refer to Chap. 13 on the topic of proof
reuse). Afterwards, we see a second ’task’ being displayed in the Task pane.
One can even switch between the different tasks by clicking in that pane.

The newly opened proof shows the Current Goal ==> p & q -> q & p,
just as last time. In order to let KeY prove this automatically, we first have
to select a proof search strategy, which is done in the Proof Search Strategy tab.
The most important strategy offered there is the strategy for JAVA dynamic
logic Java DL, with its variations for loop/method treatment. However, our
sequent here does not contain programs, and therefore falls in the pure first-
order fragment of the logic. (Here, it is even only propositional.) Therefore,
the strategy for pure first-order logic FOL is appropriate, and we select that.
(The slider controlling the maximal number of automatic rule applications
should be at least 1000, which will suffice for all examples in this chapter).

By pressing the “automated proof search” button , we start running
the chosen strategy. A complete proof is constructed immediately. Its shape
(see Proof tab) depends heavily on the current implementation of the FOL
strategy. However, it is most likely different from the proof we constructed
interactively before. (For a comparison, we switch between the tasks in the
Task pane.)
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Rewrite Rules

With the current implementation of the FOL strategy, only the first steps
of the automatically constructed proof, impRight and andLeft, are identical
with the interactively constructed proof from above, leading to the sequent
p, q ==> q & p. After that, the proof does not branch, but instead uses the
rule replaceKnownLeft:

Taclet
replaceKnownLeft {
\assumes ( b ==> )
\find ( b )
\sameUpdateLevel

\replacewith ( true )
\heuristics ( replace_known )

}

Taclet

It has the effect that any formula (\find(b)) which has another appearance
on the left side of the sequent (\assumes(b ==> )) can be replaced by true.
Note that the \find clause does not contain “==>”, and therefore does not
specify where the formula to be replaced shall appear. However, only one
formula at a time gets replaced.

Taclets with a “==>”-free \find clause are called rewrite taclets or rewrite
rules. The argument of \find is a schema variable of kind \formula or
\term, matching formulae resp. terms at arbitrary positions, which may
even be nested. (The position can be further restricted. The restriction
\sameUpdateLevel in this taclet is however not relevant for the current ex-
ample.) When we look at how the taclet was used in our proof, we see that
indeed the sub-formula q of the formula q & p has been rewritten to true,
resulting in the sequent p, q ==> true & p. The following rule application
simplifies the true away, after which closeGoal is applicable again.

Saving a Proof

Before we leave the discussion of the current example, we save the just ac-
complished proof (admittedly for no other reason than practising the saving
of proofs). For that, we select File → Save ... or alternatively the “Save current

proof.” button in the toolbar . The opened file browser dialogue allows to lo-
cate and name the proof file. A sensible name would be andCommutes.proof,
but any name would do, as long as the file extension is “.proof”. It is com-
pletely legal for a proof file to have a different naming than the corresponding
problem file. This way, it is possible to save several proofs for the same prob-
lem.

Proofs can actually be saved at any time, regardless of whether they are
finished or not. An unfinished proof can be continued when loaded again.



10.2 Exploring Framework and System Simultaneously 425

10.2.2 Exploring Terms, Quantification, and Instantiation:
Building First-Order Proofs

After having looked at the basic usage of the KeY prover, we want to extend
the discussion to more advanced features of the logic. The example of the
previous section did only use propositional connectives. Here, we discuss the
basic handling of first-order formulae, containing terms, variables, quantifiers,
and equality. As an example, we prove a \problem which we load from the
file projection.key:

KeY Problem File
\sorts {

s;
}
\functions {

s f(s);
s a;

}
\problem {

( \forall s x; f(f(x)) = f(x) ) -> f(a) = f(f(f(a)))
}

KeY Problem File

The file first declares a function f (of type s→ s) and a constant a (of sort s).
The first part of the \problem formula, \forall s x; f(f(x)) = f(x), says
that f is a projection: For all x, applying f twice is the same as applying f
once. The whole \problem formula then states that f(a) and f(f(f(a)))
are equal, given f is a projection.

Instantiating Quantified Formulae

We prove this simple formula interactively, for now. After loading the prob-
lem file, and applying impRight to the initial sequent, the Current Goal is:
\forall s x; f(f(x)) = f(x) ==> f(a) = f(f(f(a))).

We proceed by deriving an additional assumption (i.e., left-hand side for-
mula) f(f(a)) = f(a), by instantiating x with a. For the interactive instan-
tiation of quantifiers, KeY supports drag and drop of terms over quantifiers
(whenever the instantiation is textually present in the current sequent). In
the situation at hand, we can drag any of the two “a” onto the quantifier
\forall by clicking at “a”, holding and moving the mouse, to release it over
the “forall”. As a result of this action, the new Current Goal features the
additional assumption f(f(a)) = f(a).

There is something special to this proof step: Though it was triggered
interactively, we have not been specific about which taclet to apply. The
Proof pane, however, tells us that we just applied the taclet instAll. To see
the very taclet, we can click at the previous proof node, marked with instAll,
such that the Inner Node pane displays:
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KeY Output
instAll {
\assumes ( \forall u; b ==> )
\find ( t )
\add ( {\subst u; t}b ==> )

}

KeY Output

“{\subst u; t}b” means that (the match of) u is substituted by (the match
of) t in (the match of) b, during taclet application.

Making Use of Equations

Now we can use the new equation f(f(a)) = f(a) to simplify the term
f(f(f(a))), meaning we apply the equation to the f(f(a)) subterm of
f(f(f(a))). This action can again be performed via drag and drop, here
by dragging the equation on the left side of the sequent, and dropping it over
the f(f(a)) subterm of f(f(f(a))).8 In the current system, there opens a
context menu, allowing to select either of two taclets with the identical display
name applyEquality. The taclets are however different, see their tooltips. For our
example, it does not matter which one is selected.

Afterwards, the right-hand side equation has changed to f(a) = f(f(a)),
which looks almost like the left-hand side equation. We can proceed either
by swapping one equation, or by again applying the left-hand side equation
on a right-hand side term. It is instructive to discuss both alternatives here.

First, we select f(a) = f(f(a)), and apply commuteEq. The resulting
goal has two identical formulae on both sides of the sequent, so we could
apply closeGoal. But instead, just to demonstrate the other possibility as
well, we backtrack (via Goal Back), leading us back to the Current Goal

f(f(a)) = f(a), ... ==> f(a) = f(f(a)).
The other option is to apply the left-hand equation to f(f(a)) on the

right (via drag and drop). Afterwards, we have the tautology f(a) = f(a)
on the right. By preselecting that formula, we get offered the taclet closeEq,
which transforms the equation into true.

Closing “by True” and “by False”

So far, all goals we ever closed featured identical formulae on both sides of
the sequent. We have arrived at the second type of closable sequents: one
with true on the right side. We close it by highlighting true, and selecting
the taclet closeByTrue, which is defined as:
8 More detailed, we move the mouse over the “=” symbol, such that the whole of
f(f(a)) = f(a) is highlighted. We click, hold, and move the mouse, over the sec-
ond “f” in f(f(f(a))), such that exactly the subterm f(f(a)) gets highlighted.
Then, we release the mouse.
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Taclet
closeByTrue {
\find ( ==> true )
\closegoal

\heuristics ( closure )
}

Taclet

This finishes our proof.
Without giving an example, we mention here the third type of closable

sequents, namely those with false on the left side, to be closed by:

Taclet
closeByFalse {
\find ( false ==> )
\closegoal

\heuristics ( closure )
}

Taclet

This is actually a very important type of closable sequent. In many examples,
a sequent can be proved by showing that the assumptions (i.e., the left-hand
side formulae) are contradictory, meaning that false can be derived on the
left side.

Using Taclet Instantiation Dialogues

In our previous proof, we used the “drag-and-drop-directly-in-goal” feature
offered by the KeY prover. This kind of user interaction can be seen as a
shortcut to another kind of user interaction: the usage of taclet instantiation
dialogues. While the former is most convenient, the latter is more general
and should be familiar to each KeY user. Therefore, we re-construct the (in
spirit) same proof, this time using such a dialogue explicitly.

After again loading the problem file projection.key (and Cancelling the
re-use dialogue), we apply impRight to the initial sequent, just like before.
Next, to instantiate the quantified formula \forall s x; f(f(x)) = f(x),
we highlight that formula, and apply the taclet allLeft, which is defined as:

Taclet
allLeft {
\find ( \forall u; b ==> )
\add ( {\subst u; t}b ==> )
\heuristics ( gamma )

}

Taclet
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This opens a Choose Taclet Instantiation dialogue, allowing the user to choose
the (not yet determined) instantiations of the taclet’s schema variables. The
taclet at hand has three schema variables, b, u, and t. The instantiations
of b and u are already determined to be f(f(x)) = f(x) and x, just by
matching the highlighted sequent formula \forall s x; f(f(x)) = f(x)
with the \find argument \forall u; b. The instantiation of t is, however,
left open, to be chosen by the user. We can type “a” in the corresponding
input field of the dialogue,9 and click Apply. As a result, the f(f(a)) = f(a)
is added to the left side of the sequent. The rest of the proof goes exactly as
discussed before. The reader may finish it herself.

Loading a Proof

We want to compare the proof which we just have constructed interactively
with a proof the FOL strategy would construct automatically. The user could
load the same \problem again, and run the FOL strategy. However, to not
make the discussion too dependent on the current implementation of the FOL
strategy, we instead load a proof which was automatically constructed, and
saved, at the time this chapter was written.

The loading of a proof is done in exactly the same way as loading a
problem file, with the only difference that a .proof file is selected (instead
of a .key file). We load the proof projectionAutomat.proof.

Discovering Meta Variables and Constraints

We inspect the loaded proof. The sequent of the first inner node (labelled
with “1:”) tells us that this is actually a proof of the same problem as before.
(The name of the proof file is just an indication, nothing more.) We can
see that the FOL strategy decided to, as a first step, reorient the equation
f(a) = f(f(f(a))). Afterwards, nothing special is happening until node
“3:”. To the sequent of that node, the FOL strategy applied allLeft, as we
did in our previous proof. However, the resulting goal (number ”4:”) looks
different:

KeY Output
f(f(X_0)) = f(X_0),
\forall s x; f(f(x)) = f(x)
==>
f(f(f(a))) = f(a)

KeY Output

9 Alternatively, one can also drag and drop syntactic entities from the Current Goal
pane into the input fields of such a dialogue, and possibly edit them afterwards.
This is not attractive in the current example, but becomes essential in other
cases, for instance when generalising induction hypotheses, see Chap. 11.
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Note that the formula newly introduced by allLeft is f(f(X 0)) = f(X 0)
(and not, like in the previous proof, f(f(a)) = f(a)). Not only has the
FOL strategy chosen an instantiation (of the schematic taclet variable t)
which is different from our previous choice. The fact that the instantiation
“X 0” starts with a capital letter tells us that this is a meta variable, which
intuitively stands for a term yet to be determined. Before we discuss this new
concept a bit more, we check out the next node. The sequent of node num-
ber “5:” contains the constrained formula f(f(a)) = f(a) << [ X_0 = a ],
which intuitively says something like: “The (unconstrained) formula f(f(a))
= f(a) is only present really if the constraint X_0 = a is fulfilled, otherwise
we imagine it not being there.”

Meta variables, and constraints over meta variables, are concepts which
serve the purpose of proof automation. They are less important for (purely)
interactive proving. The KeY project, however, follows an integrated ap-
proach, where automated and interactive proof steps are intertwined. There-
fore, a KeY user should at least have a rudimentary idea of what meta vari-
ables and constraints are all about.

Understanding Meta Variables and Constraints (to a Certain Extent)

Instantiation of quantified variables is a crucial task, and typically more dif-
ficult than in the example at hand. For automated strategies it is often infea-
sible to guess the right instance at the point of quantifier instantiation (like
when applying allLeft). To help solving this problem, the automated theorem
proving community has invented the notion of meta variables10. These vari-
ables are not part of the actual logic under consideration. Rather, they are
employed on the meta level, used as place-holders (for concrete terms) in the
proof.

Meta variables allow to delay the guessing of concrete instances. During
proof construction, they are introduced as generic instances, to be refined
later on with the help of constraints11. A typical point when to refine a meta
variable is for instance a situation where a concrete instance would allow to
close the current goal.

A thorough understanding of meta variable constraint handling goes be-
yond the scope of this chapter (⇒ Sect. 4.3), and luckily is not needed for
a user in order to effectively use the KeY prover. Some rudimentary under-
standing is however helpful, and we try to provide that here by reconstructing
the current proof interactively, in a kind of slow motion picture of the fully
automatic proof construction.
10 This kind of variables are known in the tableau-style theorem proving community

under the name of “free variables”, see Fitting [1996].
11 Historically, refining meta variables was not done with the help of constraints,

but via destructive substitution. The usage of constraints for this purpose was in-
vented within the KeY project, by Giese [2001], mainly to achieve a backtracking
free calculus.
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For this, we again load projection.key (while keeping the proof from
projectionAutomat.proof in the system, for comparison). First, we apply
commuteEq on f(a) = f(f(f(a))), and afterwards impRight. Selecting al-

lLeft on the quantified formula opens the Choose Taclet Instantiation dialogue,
just as before. This time, we point the reader to the massage pane of that
dialogue, telling us that the “Instantiation is OK”, already. This might come
as a surprise, as the instantiation of t is still left open. However, the proof
system here allows the user to not commit to a concrete instantiation for
t, in which case the system will instantiate t with a new meta variable, in
the current implementation with “X_0”. This is exactly the effect of clicking
Apply now (while leaving the Instantiation field for t empty).

As a result, the new equation f(f(X_0)) = f(X_0) is added on the left-
hand side. Next, we would like to use that equation, to rewrite the f(f(a))
sub-term of right-hand side formula f(f(f(a))) = f(a). It is intuitively
clear that this is only possible if X_0 is equal to a. In the calculus, this “if”
is reflected in the following way: Rewriting f(f(a)) in f(f(f(a))) = f(a)
with f(f(X_0)) = f(X_0) results in f(f(a)) = f(a) << [ X_0 = a ].

This is not the whole truth yet, as we can see when performing this
step in the system. We drag the equation f(f(X_0)) = f(X_0), and drop it
over f(f(a)). In the resulting sequent, we can see that the original formula
f(f(f(a))) = f(a) was kept, in addition to the rewritten, constrained for-
mula. By not throwing away this formula, we still cover the case where X_0
is not equal to a.

Now we can close our proof, by applying closeGoal on f(f(a)) = f(a)
<< [ X_0 = a ]. On the surface, this will immediately finish our proof. In-
ternally, both f(f(X_0)) = f(X_0) and f(f(a)) = f(a) << [ X_0 = a ]
need to serve as instantiation for the single schema variable b of the taclet
closeGoal, and therefore need to be identified. What happens is that the
application of the taclet first matches the two formulae, i.e., it rewrites
f(f(X_0)) = f(X_0) to f(f(a)) = f(a) << [ X_0 = a ], and actually
closes the goal afterwards.

Please recall that the creation, manipulation, and usage of meta vari-
ables and their constraints is entirely done by the system, not by the user.
Therefore, the purpose of the above explanations is mainly to allow the user
to interact on proof goals which were constructed automatically. (For some
more discussion, we refer to Sect. 4.3.)

As a general advice, when instantiating quantifiers interactively, we rec-
ommend to use concrete instances instead of meta variables whenever the
user is clear about which instance is needed for the current proof.

Skolemising Quantified Formulae

We will now consider a slight generalisation of the theorem we have just
proved. Again, we assume that f is a projection. But instead of showing
f(a) = f(f(f(a))), for a particular a, we show f(y) = f(f(f(y))) for
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all y. For this we load generalProjection.key, and apply impRight, which
results in the sequent:

KeY Output
\forall s x; f(f(x)) = f(x) ==> \forall s y; f(y) = f(f(f(y)))

KeY Output

As in the previous proof, we will have to instantiate the quantified formula
on the left. But this time we also have to deal with the quantifier on the
right. Luckily, that quantifier can be eliminated altogether, by applying the
rule allRight, which results in:12

KeY Output
\forall s x; f(f(x)) = f(x) ==> f(y_0) = f(f(f(y_0)))

KeY Output

We see that the quantifier disappeared, and the variable y got replaced. The
replacement, y 0, is a constant, which we can see from the fact that y 0 is not
quantified. Note that in our logic each logical variable appears in the scope
of a quantifier binding it.13 Therefore, y 0 can be nothing but a constant.
Moreover, y 0 is a new symbol.

Eliminating quantifiers by introducing new constants is called skolemi-
sation (after the logician Thoralf Skolem). In a sequent calculus, universal
quantifiers (\forall) on the right, and existential quantifiers (\exists) on
the left side, can be eliminated this way, leading to sequents which are equiv-
alent (concerning provability), but simpler. This should not be confused with
quantifier instantiation, which applies to the complementary cases: (\exists)
on the right, and (\forall) on the left, see our discussion of allLeft above.
(It is instructive to look at all four cases in combination, see Sect. 2.5.4,
Chapt. 2.)

Skolemisation is a simple proof step, and is normally done fully automati-
cally. We only discuss it here to give the user some understanding about new
constants (or functions, see below) that might show up during proving.

To see the taclet we have just applied, we select the inner node labelled
with allRight. The Inner Node pane reveals the taclet:

KeY Output
allRight {
\find ( ==> \forall u; b )
\varcond ( \new(sk, \dependingOn(b)) )
\replacewith ( ==> {\subst u; sk}b )
\heuristics ( delta )

}

KeY Output

12 Note that the particular name y 0 can differ, depending on the implementation.
13 This is not the case for meta variables, as they are not logical variables.
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It tells us that the rule removes the quantifier matching \forall u;, and
that (the match of) u is \substituted by (the match of) sk in the remaining
formula (matching b). During application of this taclet, the schema variable
sk will be instantiated with a Skolem term, in many cases a Skolem constant
only. The instantiation of sk is restricted by the schema variable condition
\varcond: First of all, the instantiation of sk must be a \new term. Second,
the particular instantiation of sk is determined \dependingOn the (match
of) b.

Two things remain to be explained here. Why are Skolem constants not
always sufficient, and how do proper Skolem terms depend on the formula at
hand? Both issues are related to the potential presence of “meta variables” in
a sequent. Without that, new constants would indeed be sufficient. But in the
presence of meta variables, newly introduced constants could later be iden-
tified with “older” meta variables, leading to unsound reasoning. This is the
reason why Skolem terms are used in the general case. Those terms are of the
form f(X1, . . . , Xn), with f being a new function symbol, and X1, . . . , Xn be-
ing the meta variables appearing in the formula this term is \dependingOn.14

Here, we do not give an example where proper Skolem terms appear. How-
ever, these explanations should help the user to not feel uncomfortable when
confronted with automatically introduced Skolem constants/functions/terms.

The rest of our current proof goes exactly like for the previous prob-
lem formula. Instead of further discussing it here, we simply run the “FOL”
strategy to resume the proof.

Employing External Decision Procedures

Apart from strategies, which apply taclets automatically, KeY also employs
external decision procedure tools for increasing the automation of proofs.
The field of decision procedures is very dynamic, and so is the way in which
KeY makes use of them. The user can choose among the available decision
procedure tools under Options → Decision Procedure Config. With Simplify

selected there, we load generalProjection.key once more, and push the
Run Simplify button in the tool bar. This closes the proof in one step(!), as
the Proof tab is telling us. Decision procedures can be very efficient on certain
problems. On the down side, we sacrificed proof transparency here.

In a more realistic setting, we use decision procedures towards the end
of a proof (branch), to close first-order goals which emerged from proving
problems that go beyond the scope of decision procedures.

14 Note that a (finite) term is always syntactically different from its proper sub-
terms. Therefore, the newly introduced term f(X1, . . . , Xn) can never be instan-
tiated in a way that makes it syntactically equal to either of X1, . . . , Xn. This
property is actually the sole purpose of the form f(X1, . . . , Xn). The fact that
only the meta variable of the quantified formula, not those of the whole sequent,
are needed goes back to a result by Hähnle and Schmitt [1994].
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10.2.3 Exploring Programs in Formulae:
Building Dynamic Logic Proofs

Not first-order logic, and certainly not propositional logic, is the real target
of the KeY prover. Instead, the prover is designed to handle proof obliga-
tions formulated in a substantial extension of first-order logic, dynamic logic
(DL). What is dynamic about this logic is the notion of the world, i.e., the
interpretation (of function/predicate symbols) in which formulae (and sub-
formulae) are evaluated. In particular, a formula and its sub-formulae can be
interpreted in different worlds.

The other distinguished feature of DL is that descriptions of how to con-
struct one world from another are explicit in the logic, in the form of programs.
Accordingly, the worlds represent computation states. (In the following, we
take “state” as a synonym for “world”.) This allows us to, for instance, talk
about the states both before and after executing a certain program, within
the same formula.

Compared to first-order logic, DL employs two additional (mix-fix) oper-
ators: 〈 . 〉 . (diamond) and [ . ] . (box). In both cases, the first argument is a
program, whereas the second argument is another DL formula. With 〈p〉ϕ and
[p]ϕ being DL formulae, 〈p〉 and [p] are called the modalities of the respective
formula.

A formula 〈p〉ϕ is valid in a state if, from there, an execution of p ter-
minates normally and results in a state where ϕ is valid. As for the other
operator, a formula [p]ϕ is valid in a state from where execution of p does
either not terminate normally or results in a state where ϕ is valid.15 For
our applications the diamond operator is way more important than the box
operator, so we restrict attention to that.

One frequent pattern of DL formulae is “ϕ −> 〈p〉ψ”, stating that the
program p, when started from a state where ϕ is valid, terminates, with
ψ being valid in the post state. (Here, ϕ and ψ often are pure first-order
formulae, but they can very well be proper DL formulae, containing programs
themselves.)

Each variant of DL has to commit to a formalism used to describe the
programs (i.e., the p) in the modalities. Unlike most other variants of DL,
the KeY project’s DL variant employs a real programming language, namely
JAVA CARD. Concretely, p is a sequence of (zero, one, or more) JAVA CARD

statements. Accordingly, the logic is called JAVA CARD DL.
The following is an example of a JAVA CARD DL formula:

x < y −> 〈int t = x; x = y; y = t;〉 y < x (10.1)

It says that in each state where the program variable x has a value smaller
than that of the program variable y, the sequence of JAVA statements
15 These descriptions have to be generalised when indeterministic programs are

considered, which is not the case here.
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“int t = x; x = y; y = t;” terminates, and afterwards the value of y is
smaller than that of x. It is important to note that x and y are program
variables, not to be confused with logical variables. In our logic, there is a
strict distinction between both. Logical variables must appear in the scope
of a quantifier binding them, whereas program variables cannot be quantified
over. The formula (10.1) has no quantifier because it does not contain any
logical variables.

As we will see in the following examples, both program variables and logi-
cal variables can appear mixed in terms and formulae, also together with log-
ical constants, functions, and predicate symbols. However, inside the modal-
ities, there can be nothing but (sequents of) pure JAVA statements.

For a more thorough discussion of JAVA CARD DL, please refer to Chap. 3.

Feeding the Prover with a DL Problem File

The file exchange.key contains the JAVA CARD DL formula (10.1), in the
concrete syntax used in the KeY system:16

KeY Problem File
\programVariables { int x, y; }
\problem {

x < y
-> \<{

int t = x;
x=y;
y=t;

}\> y < x
}

KeY Problem File

When comparing this syntax with the notation used in (10.1), we see that
diamond modality brackets “〈” and “〉” are written as “\<{” and “}\>” within
the KeY system. (In future versions, “{” and “}” might become obsolete here,
such that “\<” and “\>” would suffice.) What we can also observe from the
file is that all program variables which are not declared in the JAVA code
inside the modality (like “t” here) must appear within a \programVariables
declaration of the file (like “x” and “y” here).

Instead of loading this file, and proving the problem, we try out other
examples first, which are meant to slowly introduce the principles of proving
JAVA CARD DL formulae with KeY.

Using the Prover as an Interpreter

We consider the file executeByProving.key:
16 Here as in all .key files, line breaks and indentation do not matter other than

supporting readability.
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KeY Problem File
\predicates { p(int,int); }
\programVariables { int i, j; }
\problem {

\<{ i=2;
j=(i=i+1)+4;

}\> p(i,j)
}

KeY Problem File

As the reader might guess, the \problem formula is not valid, as there are
no assumptions made about the predicate p. Anyhow, we let the system
try to prove this formula. By doing so, we will see that the KeY prover
will essentially execute our (rather obscure) program “i=2; j=(i=i+1)+4;”,
which is possible because all values the program deals with are concrete. The
execution of JAVA programs is of course not the purpose of the KeY prover,
but it serves us here as a first step towards the method for handling symbolic
values, symbolic execution, to be discussed later.

We load the file executeByProving.key into the system. Then, we run
the automated JAVA CARD DL strategy (by clicking the play button with
the Java DL strategy selected in the Proof Search Strategy tab). The strategy
stops with ==> p(3,7) being the (only) OPEN GOAL, see also the Proof tab.
This means that the proof could be closed if p(3,7) was provable, which
it is not. But that is fine, because all we wanted is letting the KeY system
compute the values of i and j after execution of “i=2; j=(i=i+1)+4;”. And
indeed, the fact that proving p(3,7) would be sufficient to prove the original
formula tells us that that 3 and 7 are the final values of i and j.

We now want to inspect the (unfinished) proof itself. For this, we select
the first inner node, labelled with number “1:”, which contains the origi-
nal sequent. By using the down-arrow key, we can scroll down the proof.
The reader is encouraged to do so, before reading on, all the way down to
the OPEN GOAL, to get an impression on how the calculus executes the JAVA

statements at hand. This way, one can observe that one of the main principles
in building a proof for a DL formula is to perform program transformation
within the modality(s). In the current example, the complex second assign-
ment j=(i=i+1)+4; was transformed into a sequence of simpler assignments.
Once a leading assignment is simple enough, it moves out from the modality,
into other parts of the formula (see below). This process continues until the
modality is empty (“\<{}\>”). That empty modality gets eventually removed
by the taclet emptyModality.

Discovering Updates

Our next observation is that the formulae which appear in inner nodes of
this proof contain a syntactical element which is not yet covered by the
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above explanations of DL. We see that already in the second inner node
(number ”2:”), which in the current implementation looks like:

KeY Output
==>
{i:=2}
\<{

j=(i=i+1)+4;
}\> p(i,j)

KeY Output

The “i:=2” within the curly brackets is an example of what is called “up-
dates”. When scrolling down the proof, we can see that leading assignments
turn into updates when they move out from the modality. The updates some-
how accumulate, and are simplified, in front of a “shrinking” modality. Fi-
nally, they get applied to the remaining formula once the modality is gone.

Understanding Updates (to a Certain Extent)

Updates are part of the JAVA CARD DL invented within the KeY project.
Their main intention is to represent the effect of some JAVA code they replace.
This effect can be accumulated, manipulated, simplified, and applied to other
parts of the formula, in a way which is (to a certain extent) disentangled from
the manipulation of the program in the modality. This allows a separation of
concerns which has been fruitful for the design and usage of the calculus and
the automated strategies.17

Elementary updates in essence are a restricted kind of JAVA assignment,
where the right-hand side must be a simple expression, which in particular
is free of side effects. Examples are “i:=2”, or “i:=i + 1” (which we find
further down in the proof). From elementary updates, more complex updates
can be constructed (see Def. 3.8, Chap. 3). Here, we only mention the most
important kind of compound updates, parallel updates, an example of which
is “i:=3 || j:=7” further down in the proof.

Updates extend traditional DL in the following way: if ϕ is a DL formula
and u is an update, then {u}ϕ is also a DL formula. Note that this definition
is recursive, such that ϕ in turn may have the form {u′}ϕ′, in which case
the whole formula looks like {u}{u′}ϕ′. (The strategies try to transform such
subsequent updates into one, parallel update.) As a special case, ϕ may not
contain any modality (i.e., it is purely first-order). This situation occurs in
the current proof in form of the sequent ==> {i:=3 || j:=7}p(i,j) (close
to the OPEN GOAL). Once the modality is gone, the update is applied, in
the form of a substitution, to the (now only first-order) formula following the
update, as the reader can see when scrolling the proof. Altogether, this leads

17 In the presence of pointers, like the object references in JAVA, the concept of
updates serves as an alternative to having and explicit heap as data in the logic.
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to a delayed turning of program assignments in into substitutions in the logic,
as compared to other variants of DL (or of Hoare logic).

In this sense, we can say that updates are lazily applied. On the other
hand, they are eagerly simplified, as we will see in the following (intentionally
primitive) example. For that, we load the file updates.key. Then, the initial
Current Goal looks like this:

KeY Output
==>
\<{

i=1;
j=3;
i=2;

}\> i = 2

KeY Output

We prove this sequent interactively (twice even), just to get a better under-
standing of the basic steps usually performed by automated strategies. In
the first round, we focus on the role of updates in the proof, whereas the
discussion of the used taclets is postponed to the second round (see below).

The first assignment, i=1;, is simple enough to be moved out from the
modality, into an update. We can perform this step by pointing on that as-
signment, and applying the assignment rule. In the resulting sequent, that
assignment got removed and the update {i:=1}18 appeared in front. We
perform the same step on the leading assignment j=3;. Afterwards, and
surprisingly, the Current Goal does not contain the corresponding update,
{j:=3}. But a closer look on the Proof pane shows that the prover actually
performed two steps. After the first, we actually had the two subsequent up-
dates {i:=1}{j:=3} (as we can see when selecting the corresponding inner
node). However, on this goal the prover called the built in update simplifier,
automatically. That update simplifier is a very powerful proof rule, and one
of the few rules which are not represented by a taclet. In this case, the update
simplifier detected that the update {j:=3} is irrelevant for the validity of the
sequent, and simplified it away.

We continue by calling the assignment rule a third time (which requires
that the OPEN GOAL is selected again). When looking at the resulting Current

Goal, we note that indeed the assignment i=2; turned into the update {i:=2},
but this time, the older update {i:=1} got lost. The reason is again that the
prover eagerly applies the update simplifier, which this time turned the two
updates {i:=1}{i:=2} (see the corresponding inner node) into {i:=2} only.

With the empty modality highlighted in the OPEN GOAL, we can apply
the rule emptyModality. It deletes that modality, and results in the sequent

18 Strictly speaking, the curly brackets are not part of the update, but rather sur-
round it. It is however handy to ignore this syntactic subtlety when discussing
examples.
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==> {i:=2}(i = 2)19. However, we cannot immediately see that sequent,
because again the update simplifier resolved that goal, by applying the update
as a substitution. We refrain from finishing this proof interactively, and just
press the play button instead.

Before moving on, we note that the examples which are discussed here
are not intended (and not sufficient) for justifying the presence of updates
in the logic really. Such a discussion would certainly exceed the scope of this
chapter. We only mention here that one of the major tasks of the update
simplifier is the proper handling of object aliasing.

Employing Active Statements

We are going to prove the same problem again, this time focusing on the
connection between programs in modalities on the one hand, and taclets on
the other hand. For that, we load updates.key again. When moving the
mouse around over the single formula of the Current Goal,
\<{

i=1;
j=3;
i=2;

}\> i = 2

we realise that, whenever the mouse points anywhere between (and includ-
ing) “\<{” and “}\>”, the whole formula gets highlighted. However, the first
statement is highlighted in a particular way, with a different colour, regard-
less of which statement we point to. This indicates that the system considers
the first statement i=1; as the active statement of this DL formula.

Active statements are a central concept of the DL calculus used in KeY.
They control the application/applicability of taclets. Also, all rules which
modify the program inside of modalities operate on the active statement,
by rewriting or removing it. Intuitively, the active statement stands for the
statement next to be executed. In the current example, this simply translates
to the first statement.

We click anywhere within the modality, and preselect (only) the taclet
assignment, just to view the actual taclet presented in the tooltip:

Tooltip
assignment {
\find (
\modality{#normalassign}{ ..

#loc=#se;
... }\endmodality post

)

19 Note that i = 2 here is a formula, not a JAVA assignment. An assignment would
end with a “;”, and could only appear within a modality.
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\replacewith (
{#loc:=#se}
\modality{#normalassign}{ .. ... }\endmodality post

)
\heuristics ( simplify_prog_subset, simplify_prog )

}

Tooltip

The \find clause tells us how this taclet matches the formula at hand. First
of all, the formula must contain a modality followed by a (not further con-
strained) formula post. Then, the first argument of \modality tells which
kinds of modalities can be matched by this taclets. (We ignore that argument
here, mentioning just that the standard modality 〈.〉. is covered.) And finally,
the second argument of \modality, “.. #loc=#se; ...” specifies the code
which this taclet matches on. The convention is that everything between “..”
and “...” matches the active statement. Here, the active statement must
have the form “#loc=#se;”, i.e., a statement assigning a simple expression
to a location, here i=1;. The “...” refers to the rest of the program (here
j=3;i=2;), and the match of “..” is empty, in this particular example. Hav-
ing understood the \find part, the \replacewith part tells us that the active
statement moves out into an update.

After applying the taclet, we point to the active statement j=3;, and
again preselect the assignment. The taclet in the tooltip is the same, but we
note that it matches the highlighted sub-formula, below the leading update.
We suggest to finish the proof by pressing the play button.

The reader might wonder why we talk about “active” rather than “first”
statements. The reason is that our calculus is designed in a way such that
block statements never are “active”. By “block” we mean both unlabelled
and labelled JAVA blocks, and well as try-catch blocks. If the first statement
inside the modality is a block, then the active statement is the first statement
inside that block, if that is not a block again, and so on. This concept prevents
our logic from being bloated with control information. Instead, the calculus
works inside the blocks, until the whole block can be resolved (because it
is either empty or a break, resp., throw is active). The interested reader is
invited to examine this by loading the file activeStmt.key. Afterwards, one
can see that, as a first step in the proof, one can pull out the assignment
i=0;, even if that is nested within a labelled block and a try-catch block. We
suggest to perform this first step interactively, and prove the resulting goal
automatically, for inspecting the proof afterwards.

Now we are able to round up the explanation of the “..” and “...”
notation used in DL taclets. The “..” matches the opening of leading blocks,
up to the first non-block (i.e., active) statement, whereas “...” matches the
statements following the active statement, plus the corresponding closings of
the opened blocks.20

20 “..” and “...” correspond to π and ω, respectively, in the rules in Chap. 3.
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Executing Programs Symbolically

So far, all DL examples we have been trying the prover on in this chapter had
in common that they worked with concrete values. This is very untypical, but
served the purpose of focusing on certain aspects of the logic and calculus.
However, it is time to apply the prover on problems where (some of) the values
are either completely unknown, or only constrained by formulae typically
having many solutions. After all, it is the ability of handling symbolic values
which makes theorem proving more powerful than testing. It allows to verify
a program with respect to all legitimate input values!

First, we load the problem symbolicExecution.key:
KeY Problem File

\predicates { p(int,int); }
\functions { int a; }
\programVariables { int i, j; }
\problem {

{i:=a}
\<{

j=(i=i+1)+3;
}\> p(i,j)

}

KeY Problem File

This problem is a variation of executeByProving.key (see above), the dif-
ference being that the initial value of “i” is symbolic. The “a” is a logical
constant (i.e., a function without arguments), and thereby represents an un-
known, but fixed value in the range of int. The update {i:=a} is necessary
because it would be illegal to have an assignment i=a; inside the modality,
as “a” is not an element of the JAVA language, not even a program variable.
This is another important purpose of updates in our logic: to serve as an
interface between logical terms and program variables.

The problem is of course as unprovable as executeByProving.key. All
we want this time is to let the prover compute the symbolic values of i and
j, with respect to a. We get those by running the Java DL strategy on this
problem, which results in ==> p(1+a,4+a) being the remaining OPEN GOAL.
This tells us that 1+a and 4+a are the final values of i and j, respectively. By
further inspecting the proof, we can see how the strategy performed symbolic
computation (in a way which is typically very different from interactive proof
construction). That intertwined with the “execution by proving” method
discussed above forms the principle of symbolic execution, which lies at the
heart of the KeY prover.

Another example for this style of formulae is the \problem which we load
from postIncrement.key:
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KeY Problem File
\functions { int a; }
\programVariables { int i; }
\problem {

{i:=a}
\<{

i=i*(i++);
}\> a * a = i

}

KeY Problem File

Depending on the reader’s understanding of JAVA, the validity of this formula
is not completely obvious. But indeed, the obscure assignment i=i*(i++);
computes the square of the original value of i. The point is the exact eval-
uation order within the assignment at hand. It is of course crucial that the
calculus allows to, by symbolic execution, emulate the evaluation order ex-
actly as it is specified in the JAVA language description, and that the calculus
does not allow any other evaluation order.

We prove this formula automatically and, as always, suggest that the
reader scrolls through the proof afterwards, not to check all details, but to
get an impression on how KeY symbolically executes the program.

Quantifying over Values of Program Variables

A DL formula of the form 〈p〉ϕ, possibly preceded by updates, like {u}〈p〉ϕ,
can well be a sub-formula of a more complex DL formula. One example is the
form ψ −> 〈p〉ϕ, where the diamond formula is below an implication (see,
for instance, formula (10.1)). A DL sub-formula can actually appear below
arbitrary logical connectives, including quantifiers. The following problem
formula from quantifyProgVals.key is an example for that.

KeY Problem File
\programVariables { int i; }
\problem {

\forall int x;
{i := x}
\<{

i = i*(i++);
}\> x * x = i

}

KeY Problem File

Note that it would be illegal to have an assignment i=x; inside the modality,
as “x” is not an element of the JAVA language, but a logical variable instead.

This formula literally says that, \forall initial values i, it holds that
after the assignment i contains the square of that value. Intuitively, this
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seems to be no different from stating the same for an arbitrary but fixed
initial value “a”, as we did in postIncrement.key above. And indeed, if we
load quantifyProgVals.key, and as a first step apply the taclet allRight,
then the Current Goal looks like this:

KeY Output
==>
{i:=x_0}
\<{

i=i*(i++);
}\> x_0 * x_0 = i

KeY Output

Note that x_0 cannot be a logical variable (as was x in the previous sequent),
because it is not bound by a quantifier. Instead, x_0 is a Skolem constant (cf.
the earlier discussion of Skolem terms).

We see here that, after only one proof step, the sequent is essentially no
different from the initial sequent of postIncrement.key. This seems to in-
dicate that quantification over values of program variables is not necessary.
That might be true here, but is not the case in general! The important proof
principle of induction applies to quantified formulae, only! Using KeY for in-
ductive proving is so important that there is a separate chapter (⇒ Chap. 11)
reserved for that issue.

Proving DL Problems with Program Variables

So far, most DL \problem formulae explicitly talked about values, either
concrete ones (like “2”) or symbolic ones (like the logical constant “a” and
the logical variable “x”). It is however also common to have DL formulae
which do not talk about any (concrete or symbolic) values explicitly, but
instead only talk about program variables (and thereby implicitly about their
values). As an example, we use yet another variation of the post increment
problem, contained in postIncrNoUpdate.key:

KeY Problem File
\programVariables { int i, j; }
\problem {

\<{
j=i;
i=i*(i++);

}\> j * j = i
}

KeY Problem File

Here, instead of initially updating i with some symbolic value, we store the
value of i into some other program variable. The equation after the modal-
ity then is a claim about the relation between (the implicit values of) the
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program variables, in a state after program execution. When proving this
formula automatically with KeY, we see that the proof has no real surprise
as compared to the other variants of post increment. Please observe, however,
that the entire proof does not make use of any symbolic value, and only talks
about program variables, some of which are introduced within the proof.

In this context, it is very natural to come back to the formula

x < y −> 〈int t = x; x = y; y = t;〉 y < x

which we discussed in the beginning of this section (Sect. 10.2.3). Also this
formula only talks about program variables. It assumes the (values of) the
variables having a certain relation in the initial state, and states that (the
values of) these variables have a different relation after execution of the pro-
gram.

We load the corresponding problem file, exchange.key (which was dis-
played on page 434) into the system. After proving this problem automati-
cally, we want to point the reader to one interesting detail. When scrolling
down this proof, we see the usual course of symbolic execution: programs are
transformed into one another, simple assignments turn into updates, and up-
dates are simplified. We stop at the inner node where the modality is already
gone, and the last remaining update is about to disappear for the rest of the
proof (by being applied as a substitution). Currently this inner node looks
like y >= 1 + x ==> {x:=y, y:=x}(y <= -1 + x). In contrast to previous
examples, here it really matters that the update {x:=y, y:=x} is a paral-
lel one. The variables x and y switch their values at once, and no auxiliary
variable is needed at this point.

Calling Methods in Proofs

Even though the DL problem formulae discussed so far all contained real
JAVA code, we did not see either of the following central JAVA features: classes,
objects, or method calls. The following small example features all of them.

We consider the file methodCall.key:

KeY Problem File
\javaSource "methodExample/"; // location of class definitions

\programVariables { Person p; }
\problem {

\forall int x;
{p.age:=x} // assign initial value to "age"

( x >= 0
-> \<{

p.birthday();
}\> p.age > x)

}

KeY Problem File
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The \javaSource declaration tells the prover where to look up the sources
of classes (and interfaces) used in the file. In particular, the JAVA source file
Person.java is contained in the directory methodExample/. The problem
formula states that a Person p is getting older at its birthday(). (On the
side, the reader may note that the update here does not immediately precede
a modality, but a more general DL formula.)

Before loading this problem file, we look at the source file Person.java
in methodExample/:

JAVA

public class Person {
private int age = 0;
public void setAge(int newAge) { this.age = newAge; }
public void birthday() {

if (age >= 0) age++;
}

}

JAVA

The reader is encouraged to reflect on the validity of the above problem for-
mula a little, before reading on.—Ready?—Luckily, we have a prover at hand
to be certain. We load methodCall.key into KeY and, without hesitation,
press the play button (assuming that Java DL is the selected strategy).

The strategy stops with the OPEN GOAL “p = null, x_0 >= 0 ==>”
left.21 There are different ways to read this goal, which however are logi-
cally equivalent. One way of proving any sequent is to show that its left-hand
side is false. Here, it would be sufficient to show that p = null is false. An
alternative viewpoint is the following: in a sequent calculus, we always get a
logically equivalent sequent by throwing any formula to the respective other
side, but negated. Therefore, we can as well read the OPEN GOAL as if it
was “x_0 >= 0 ==> p != null”. Then, it would be sufficient to show that
p != null is true.

Whichever reading we choose, we cannot prove the sequent, because we
have no knowledge whatsoever about p being null or not. When looking back
to our problem formula, we see that indeed the formula is not valid, because
the case where p is nullwas forgotten. The postcondition p.age > x depends
on the method body of birthday() being executed, which it cannot in case
p is null. We can even read this off from the structure of the uncompleted
proof in the Proof pane. When tracing the branch of the OPEN GOAL, back
to the first split, we can see that the proof failed in the branch marked as
“Null Reference (p = null)”. It was the taclet methodCall which triggered this
split.

21 If not, please select nullCheck as the nullPointerPolicy (see page 446) and load
methodCall.key again.
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The file methodCall2.key contains the patch of the problem formula. The
problem formula from above is preceded by “p != null ->”. We load that
problem, and let KeY prove it automatically without problems. In this proof,
we want to have a closer look on the way KeY handles method calls. Like
in the previous proof, the first split was triggered by the taclet methodCall.
Then, in the branch marked as “Normal Execution (p != null)”, the second inner
node (after some update simplification) looks like this:

KeY Output (10.1)
x_0 >= 0

==>
p = null,
{p.age:=x_0}
\<{

p.birthday();
}\> x_0 <= -1 + p.age

KeY Output

We should not let confuse ourselves by p = null being present here. Re-
call that the comma on the right-hand side of a sequent essentially is a
logical or. Also, as stated above, we can always imagine a formula being
thrown to the other side of the sequent, but negated. Therefore, we essen-
tially have p != null as an assumption here. Another thing to comment on
is the @Person notation in the method call. It represents that the calculus
has decided which implementation of birthday is to be chosen (which, in the
presence of inheritance and hiding, can be less trivial than here).

At this point, the strategy was ready to apply methodBodyExpand. After
that, the code inside the modality looks like this:

method-frame(source=Person,this=p): {
if (age>=0) {

age++;
}

}

This method-frame is the only really substantial extension over JAVA which
our logic allows inside modalities. It models the execution stack, and can
appear nested in case of nested method calls. Apart from the class and the
this reference, it can also specify a return variable, in case of non-void
methods. However, the user is rarely concerned with this construction, and
if so, only passively. We will not discuss this construct further here, but refer
to Chap. 3, Sect. 3.6.5 instead. One interesting thing to note here, however,
is that method frames are considered as block statements in the sense of our
earlier discussion of active statements, meaning that method frames are never
active. For our sequent at hand, this means that the active statement of the
discussed formula is if (age>=0) {age++;}, as one can also see from the
taclet which was applied next.
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Controlling Strategy Settings

The expansion of methods is among the more problematic steps in program
verification (together with the handling of loops). In place of recursion, an
automated proof strategy working with method expansion might not even
terminate. Another issue is that method expansion goes against the principle
of modular verification, without which even mid-size examples become infea-
sible to verify. These are good reasons for giving the user more control over
this crucial proof step.

KeY therefore allows to configure the automated strategies in a way that
they refrain from expanding methods automatically.22 We try this out by
loading methodCall2.key again, and selecting None as the Method treatment

option in the Proof Search Strategy tab. Then we start the strategy, which
now stops exactly at the sequent which we discussed earlier (Sect. 10.1). We
can highlight the active statement, and could call methodBodyExpand interac-
tively. KeY would then only apply this very taclet, and stop again. Therefore,
we first check the Autoresume Strategy checkbox, and then apply methodBody-

Expand. The strategy will resume automatically, and close the proof.

Controlling Taclet Options

The proof of methodCall2.key has a branch for the null case (“Null Reference

(p=null)”), but that was closed after a few steps, as p = null is already
present, explicitly, on the right side of the sequent (closeGoal). It is, however,
untypical that absence of null references can be derived so easily. Often, the
“null branches” complicate proofs substantially. The KeY system allows to
use a variant of the calculus which ignores the problem of null references.
This is actually only one of the issues which are addressed by taclet options
(see Sect. 4.4.2).

We open the taclet option dialogue, via Options → Taclet options defaults.
Among the option categories, we select the nullPointerPolicy, observe that
nullCheck is chosen as default, and change that by selecting noNullCheck in-
stead. Even if the effect of this change on our very example is modest, we try
it out, to see what happens in principle. We again load methodCall2.key,
press play, and observe that indeed the finished proof has only one branch.

One has to be aware that this change has a dramatic consequence: it
affects the soundness of the calculus. To demonstrate this, we load the original
problem formula from methodCall.key again. By running the automated
strategy with the current taclet options, we can see that the system now is
able to prove the non-valid formula! As a consequence, one should only switch
off the proper null handling if one is, for whatever reason, not interested in
problems that originate from null references. Another scenario is that one first
tries to prove a problem under the simplifying assumption of no null references
being present, which allows to focus attention to other complications of the
22 For a discussion of loop treatment, please refer to Chaps. 11 and 3.
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problem at hand. Thereafter, one can re-prove the problem with null check
again, with help of the re-use facility (see Chap. 13).

Integer Semantics Options
We briefly mention another very important taclet option, the intRules. Here,
the user can choose between different semantics of the primitive JAVA inte-
ger types byte, short, int, long, and char. Options are: the mathematical
integers (easy to use, but not fully sound), mathematical integers with over-
flow check (sound, reasonably easy to use, but unable to verify programs
which depend on JAVA’s modulo semantics), and the true modulo semantics
of JAVA integers (sound, complete, but difficult to use). This book contains
a full chapter on JAVA Integers (Chap. 12), discussing the different vari-
ants in the semantics and the calculus. Fig. 12.1 displays the corresponding
GUI dialogue. Please note that KeY 1.0 comes with the mathematical inte-
ger semantics chosen as default option, to optimise usability for beginners.
However, for a sound treatment of integers, the user should switch to ei-
ther of the other semantics. As an alternative, we suggest to use the proof
reuse feature of KeY (see Chap. 13). One can first construct a proof using
the mathematical integer option, and then replay it with the mathematical
overflow semantics selected.

10.3 Generating Proof Obligations

We have so far applied KeY on several examples which were meant to demon-
strate the most essential features of the logic, the calculus, the prover, and, in
particular, the usage of the prover. All those examples had in common that
the proof obligations were hand crafted, and stored in .key files.

However, even if the logical framework and the prover technology forms
an essential part of the KeY project, the whole KeY approach to formal
methods is not all about that. Instead, it is very much about the integra-
tion of verification technology into more conventional software development
methods, as was outlined in the introductory chapter of this book (Chap. 1).
Sect. 1.1 gave an overview on how we use modern object-oriented modelling
approaches as hooks for formal verification. In particular, KeY so far employs
two modelling/specification languages: UML’s Object Constraint Language
(OCL) and the Java Modeling Language (JML). These languages, their usage
and their theory, are described in Chap. 5 in this book.

KeY interfaces with OCL as well as JML, by translating them (and the
specified JAVA code) into proof obligations in JAVA CARD DL. This issue, and
the rich theory behind it, is described in Chap. 8.

But not only does KeY interface with certain standard specification lan-
guages. It also interfaces with standard tools for software development, cur-
rently the commercial CASE tool Borland Together, and the freely available
IDE Eclipse. An overview over the architectural setup of this integration
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was given in Fig. 1.1 (Chap. 1). Following that figure from the right to the
left, we have essentially four scenarios, varying in the origin of proof obliga-
tions (POs):

1. Hand-crafted POs, to be loaded from .key files.
2. Automatically generated POs

a) from JML-augmented JAVA source files, using
i. the JML browser of the KeY stand-alone system.
ii. Eclipse with the KeY plug-in.

b) from OCL-augmented UML diagrams and JAVA source files, using
Borland Together with KeY extensions.

Scenario 1 has been practised in the course of the previous section. Below,
we focus on Scenario 2.

Using the JML Specification Browser of the KeY Stand-Alone System

JAVA classes and their methods are specified in JML using class invariants
and method contracts.23 It is part of the concept of JML that specifications
are included in JAVA source code, in the form of particular comments. If we
want to verify that JML specifications are respected by the corresponding
implementations, we can let the KeY system generate corresponding proof
obligations (in JAVA CARD DL) from these JML comments. The KeY stand-
alone system supports this by offering a JML specification browser.

In the directory Bank-JML, the reader finds the JAVA sources of a banking
scenario24. Using an editor, we can see that the .java files in Bank-JML
indeed contain JML specifications. We focus on the file ATM.java, and therein
on the contract of the method enterPIN (textually located in the comment
preceding the method). This contract is also displayed in Fig. 5.14, Sect. 5.3.1
(Chap. 5). The same section contains a detailed explanation of this very JML
contract!

A JML contract can be composed from several more elementary contracts,
connected by the keyword “also”. The contract of enterPIN is composed
from three such parts, the last of which specifies the case where a wrong PIN
has been entered too often:

JML (10.2)
public normal_behavior

requires insertedCard != null;

requires !customerAuthenticated;

requires pin != insertedCard.correctPIN;

requires wrongPINCounter >= 2;

assignable insertedCard, wrongPINCounter,

insertedCard.invalid;

23 Method contracts are referred to as “operation contracts” in Chap. 5.
24 This scenario is used in a course at Chalmers University, see Chap. 1.



10.3 Generating Proof Obligations 449

ensures insertedCard == null;

ensures \old(insertedCard).invalid;

ensures !customerAuthenticated;

JML

The displayed part of the JML contract gives rise to two POs, to be gen-
erated by the JAVA CARD DL translation of KeY: one PO for verifying the
“assignable” conditions, and one PO for verifying the “ensures” condi-
tions. The latter PO we want to generate, and prove, with the KeY system.

First of all, we activate the JML browser on the directory Bank-JML, by
loading the entire directory, containing JAVA+JML sources into the system.
This is done in the same manner as loading problem files and proofs by File

→ Load ... or clicking at in the tool bar . It is important that we have the
directory, here Bank-JML, selected when pressing the Open button (not any
of the contained files).

The system now analyses the JAVA+JML sources in Bank-JML, and opens
the JML Specification Browser window. In its Classes pane, the available classes
are grouped after the packages they belong to. The application classes of
our scenario all belong to the package bank, so we make sure that folder is
expanded, and select the class ATM. The Methods pane shows the methods of
class ATM. After selecting enterPIN, the Proof Obligations pane allows choosing
a PO connected to that method, to be loaded into the system. We ignore the
Assignable POs for now, and among the three others choose the one which
corresponds to the piece of JML quoted above (10.2), and press Load Proof

Obligation.
We find ourselves in a familiar situation: a new proof task is loaded into

the system, and the initial sequent is presented in the Current Goal pane.
The sequent looks very substantial. How this PO was constructed cannot be
discussed here in detail. (We refer to Chap. 8.) Still, we comment a bit on
the overall structure of this PO, with the intention to demystify its lengthy
appearance.

The PO is an implication, with “inReachableState” acting as basic
condition under which the rest of the PO must be true. The predicate
inReachableState restricts the states to those reachable by any JAVA com-
putation. For instance, inReachableState implies that all referenced (non-
null) objects are actually created.

The remaining PO starts with some quantifiers and updates. Thereafter,
we have an implication basically saying: “the (translated) requires part,
together with the (translated) class invariant, implies that the (translated)
ensures part holds after the method”. Note that it is the translated class
invariant which makes the PO so long. That however is not a burden from the
proving perspective. To the contrary: being on the left side of the implication,
the invariant only provides additional assumptions that may, or may not, be
used for establishing the right-hand side.

By simply pressing the play button, we make KeY proving this PO auto-
matically.
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Fig. 10.1. KeY-Eclipse integration

Using Eclipse with KeY Plug-in

Contemporary software development makes more and more use of tools which
integrate the different activities around the development of programs. One
such tool is the freely available IDE Eclipse25, which currently is the most
widely distributed IDE for JAVA. It provides powerful coding support, like
code templates, code completion, and import management. Eclipse also fea-
tures a well documented plug-in interface.

KeY also comes as one such Eclipse plug-in. When developing JAVA+JML
code within Eclipse, the usual context menus offer the additional functionality
of selecting proof obligations, as indicated in Fig. 10.1 (for our ATM.enterPIN
example). The KeY plug-in will start up automatically, generate the selected
proof obligation, and present it in the prover window, ready for automated,
resp. interactive proving. We refer to documentation and tutorials, avail-
able from the KeY project’s web page for updated information about how
to install—and use—a KeY-equipped Eclipse platform as a front end in the
verification of JML specified JAVA programs.

25 www.eclipse.org
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Using Borland Together with KeY Extensions

CASE tools go beyond IDEs in their integration of software modelling activi-
ties, which normally includes support of (various aspects of) UML. The KeY
project propagates the use of formal methods early in the software process,
and therefore makes a serious attempt to integrate facilities for specification
and verification into tools of that kind. Such an integration has been exempli-
fied by augmenting the commercial CASE tool Borland Together with KeY
extensions.

In this context, the hook for formal methods consists of UML/OCL. In the
KeY-extended Borland Together, UML class diagrams can be decorated with
OCL constraints. The creation of such constraints is supported a) by pars-
ing, b) by KeY OCL idioms and KeY OCL patterns, with an corresponding
pattern instantiation mechanism (see Chap. 6), and c) by a structural, multi-
lingual editor, for simultaneous editing, and cross translation, of constraints
in OCL respectively natural language (English, German) (see Chap. 7).

As for the verification side, context menus allow to, for instance, choose
proof obligations directly from the class diagram view of a project. Also here,
KeY will generate the chosen proof obligation, and start up the prover, ready
to prove the goal at hand. We again refer to the KeY project’s web page
for the version-sensitive information of how to install—and use—the KeY
extensions on top of Borland Together.
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Proving by Induction

by

Angela Wallenburg

11.1 Introduction

In this chapter we describe how the concept of mathematical induction can
be used in a practical way to prove program correctness. To complete an
inductive proof the user needs to guide the theorem prover in KeY along the
way. The knowledge about the fundamentals of induction that is required for
this will be introduced. Since this chapter is written in tutorial style it is a
good idea to work out the examples in the KeY prover in parallel to reading. It
can also be read as a general introduction to induction in program verification.

11.2 The Need for Induction

Mathematical induction1 is a proof method that can be used to prove prop-
erties about infinite (or very large) data types. In program verification, we
want to reason about many of the abstract data objects that are commonly
used by programmers: integers, lists, trees etc; as well as about properties of
iterative programs. For this, induction is an essential tool.

For instance, consider the scenario that you want to prove a loop totally
correct—that it terminates and fulfills the specified postcondition—and the
number of loop iterations is unknown or very large. How many times should
you apply the loopUnwind rule (3.6.4) to unwind the loop body?

This chapter is devoted to explaining the basic concepts of (mathematical)
induction, how these are implemented in KeY, some general difficulties with
inductive theorem proving and how to interact with the KeY prover in the
most fruitful way to construct induction proofs. We consider programs that
terminate normally. For abrupt termination, see [Beckert and Sasse, 2001].
Further limitations are discussed in Sect. 11.9. Let us start by taking a first
look at the most common induction rule and show it at work on a small
example in first-order logic (⇒ Chap. 2).
1 As opposed to philosophical induction.

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 453–479, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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11.2.1 A First Look at an Induction Rule

Let us start with the first-order Peano induction rule in its simplest form. If
you have encountered induction before, it is likely that you have seen a rule
similar to this one:

peanoInduct
Γ =⇒ φ(0), ∆ Γ =⇒ ∀n.(φ(n) −> φ(n + 1)), ∆

Γ =⇒ ∀n.φ(n), ∆

Here (and in the following) we use the convention that n:N. Induction is
performed over the induction variable n and φ(n) is the induction formula.
An application of this rule results in two branches—a base case and a step
case. The idea of induction is the following: In the base case we show that the
induction formula holds for n

.= 0, and in the step case we show that if we
assume that the induction formula holds for an arbitrary n, then it holds for
n + 1. By the principle of induction, we can then conclude that the formula
holds for all natural numbers.

It is common to either introduce a lemma and prove that using induction,
or to apply the cut rule to make use of the result.

cut
Γ =⇒ ψ, ∆ Γ, ψ =⇒ ∆

Γ =⇒ ∆

In order to avoid an extra cut, and simply to facilitate direct usage of induc-
tion (almost) anywhere along the way of a proof attempt, the KeY prover
has an induction rule that combines the above rules into one:

natInduct

Γ =⇒ φ(0), ∆
Γ =⇒ ∀n.(φ(n) −> φ(n + 1)), ∆
Γ, ∀n.φ(n) =⇒ ∆

Γ =⇒ ∆

This rule is used both to conclude that a formula holds for all (natural) num-
bers, and to use that conclusion as an assumption for other proof obligations
(∆ in the rule above). It gives three branches: 1) base case, 2) step case, and
3) use case. This rule represents a simple form of induction, but it is still very
powerful, as we see in the next example.

11.2.2 A Small Example

In this section we show the entire proof of a tiny example in first order logic.
Consider the predicate even that has the following definition:

even(0) (11.1)
∀x.(even(x) −> even(x + 2)) (11.2)
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Now the task is to prove that 2 times 7 is even. For proving this, we have
two options. One way is to apply the definition 7 times. The other way is
to use induction to prove that even(2 ∗ n) holds for all natural numbers n.
Of course, we proceed with the more general choice and show the inductive
proof. Please refer to Fig. 11.1 for an overview of the proof. We start with
the following proof obligation:

even(0), ∀x.(even(x) −> even(x + 2)) =⇒ even(2 ∗ 7) . (P1)

Then let us apply the simple induction rule natInduct that we have seen, and
use even(2 ∗ n) as the induction formula. The proof gets divided into three
branches:

even(0), ∀x.(even(x) −> even(x + 2)) =⇒ even(2 ∗ 0), even(2 ∗ 7) (P2)

even(0), ∀x.(even(x) −> even(x + 2)) =⇒
∀n.(even(2 ∗ n) −> even(2 ∗ (n + 1))), even(2 ∗ 7) (P3)

even(0), ∀x.(even(x) −> even(x+2)), ∀n.(even(2∗n) =⇒ even(2∗7)) (P4)

These are the base case (P2), the step case (P3) and the use case (P4) re-
spectively. Assuming the existence of basic arithmetic taclets for addition
and multiplication, we proceed with each case in turn:

Base Case

By applying the rule for multiplication with 0 in the succedent of (P2) we
get:

even(0), ∀x.(even(x) −> even(x + 2)) =⇒ even(0), even(2 ∗ 7) (P5)

which is closable and we are done with the base case.

Step Case

To the formula (P3), we apply the rule allRight and get:

even(0), ∀x.(even(x) −> even(x + 2)) =⇒
even(2 ∗ nc) −> even(2 ∗ (nc + 1)), even(2 ∗ 7) (P6)

Recall (⇒ Chap. 2) that the rule allRight replaces the universally quantified
variable with a (Skolem) constant, here nc, which represents an arbitrary nat-
ural number. We move on with the proof by distributing the multiplication:

even(0), ∀x.(even(x) −> even(x + 2)) =⇒
even(2 ∗ nc) −> even(2 ∗ nc + 2), even(2 ∗ 7) (P7)
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Now we make the observation that we would be able to close this branch if
we could supply 2 ∗ nc for the universally quantified variable x. We can do
this so called instantiation by applying the rule allLeft:

even(0), even(2 ∗ nc) −> even(2 ∗ nc + 2) =⇒
even(2 ∗ nc) −> even(2 ∗ nc + 2), even(2 ∗ 7) (P8)

and the step proof branch can also be closed. By doing this (and due to the
induction principle) we have now proven ∀n.even(2 ∗ n).

Use Case

Now it only remains to make use of the result that we have proven with
induction. This we do by instantiation again. Recall formula (P4). We use
the rule allLeft to instantiate the universally quantified variable n with 7:

even(0), ∀x.(even(x) −> even(x + 2)), even(2 ∗ 7) =⇒ even(2 ∗ 7) (P9)

and then we have closed all three branches and we have proved both even(2∗7)
and ∀n.even(2 ∗n). Below is a proof tree to provide an overview of the proof.

(P5)
close

(P2)
timesZero

(P8)
close

(P7)
allLeft

(P6)
mulDistr

(P3)
allRight

(P9)
close

(P4)
allLeft

(P1)
natInduct

Fig. 11.1. Proof tree for even(2 ∗ 7)

11.3 Basics of Induction in KeY

In this section we briefly explain the fundamentals of mathematical induction.
At the same time we introduce the notation that we use in the remainder of
this chapter. We also describe how induction and its related necessities are
implemented in JAVA CARD DL and KeY.

11.3.1 Induction Rule

By now you have seen the simplest induction rule in KeY at work. The
rule can be applied both to first-order (⇒ Chap. 2) and JAVA CARD DL
(⇒ Chap. 3) formulas. In KeY the deduction rules are implemented as taclets
(⇒ Chap. 4), and so are the induction rules. Here is the natInduct taclet
expressed in .key syntax (⇒ App. B):
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KeY
nat_induction {

"Base�Case": \add ( ==> {\subst nv; 0}(b) );
"Step�Case": \add ( ==> \forall nv; (nv >= 0 & b) ->

{\subst nv; (nv + 1)}b));
"Use�Case": \add ( \forall nv; (nv >= 0 -> b) ==>)

};

KeY

11.3.2 Induction Variable

The induction variable is the variable that we perform induction over. Its
domain can be for instance some subset of the integers (and this domain gets
most of the attention in this chapter) but in general it can be any well-founded
set. In the natInduct rule above the induction variable is n.

One important issue to note here is that the induction variable needs to
be a logical variable. This is due to the fact that we cannot quantify over
program variables, or locations, in KeY and JAVA CARD DL. So in order
to prove some inductive property about a program, one needs to “connect”
the induction variable to the program variable intended in the update (the
state description within curly brackets) of the induction formula. A concrete
example of how to do this is can be found in Sect. 11.4 below. Also note that
all programs in this chapter have mathematical integer semantics, not JAVA

integer semantics.

11.3.3 Induction Formula

The induction formula represents what we really want to prove with the in-
duction. This formula depends on the induction variable. In the rule natInduct
from above the induction formula is called φ(n). When using induction, we
prove that the induction formula holds for all the elements in the domain of
the induction variable, for our example ∀n.φ(n).

The choice of induction formula greatly influences the proof (attempt).
Different instances of the same induction formula occur in all the branches
of an inductive proof. In the step case, two instances occur: the induction
hypothesis and the induction conclusion. The induction hypothesis is the
assumption of the step case φ(n) for an arbitrary n. The induction conclusion,
φ(n + 1), is what needs to be proven under the assumption of the induction
hypothesis.

11.3.4 Induction Principle

The induction principle is the argument that the induction formula holds
for all numbers once the base case and the step case have been proved; it
constitutes the main soundness argument.
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Theorem 11.1 (Principle of Mathematical Induction). The truth of
an infinite sequence of propositions Pi for i = 1, . . . ,∞ is established if (1)
P1 is true, and (2) Pk implies Pk+1 for all k.

This principle is sometimes also known as the method of induction. The
rule natInduct, as seen earlier in this chapter, would not be sound without
this theorem. Later on we will use more advanced induction rules and it
is important to note that any induction rule requires an argument for its
soundness similar to the theorem above. This we have to keep in mind in order
to avoid introducing unsound induction taclets into KeY. One can say that
the induction principle is implemented in the use case of an induction taclet
in KeY, because in the use case it is assumed that the induction formula holds
for the entire induction set. If we do not have an accompanying induction
principle with our induction rule, or if we rely on a flawed induction principle,
it is the use case that would be unsound.

11.4 A Simple Program Loop Example

Now it is time for a small but complete program example—a simple loop.
Consider the—from a program verification point of view—incomplete speci-
fication: “Decrementing a variable as long as the counter is positive sets the
variable to zero.” Such a decrementor can be implemented as a loop in JAVA:

JAVA

int i;
// some initialisation code

while (i > 0) {
i--;

}

JAVA

Let us say that we want to show that this loop terminates and arrives at a
state where a certain condition, the postcondition (here i

.= 0), is fulfilled.
What do we need to assume about the value of the variable i before the loop
in order to be able to prove this? This we have to put in the precondition.
So we let our proof obligation be ∀il.φ(il), where φ(il) is the following JAVA

CARD DL formula:

il ≥ 0 −> {i := il}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P1)
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Notice that the only available variable to reason about in our example is i,
which is a program variable. We cannot quantify over program variables in
JAVA CARD DL, but we need somehow to quantify over i to show that this
program is correct regardless of its value. Thus we have introduced the logical
variable il which is connected to i in the update, within the curly brackets.
Its value is updated as the proof (and symbolic execution) proceeds. So we
can quantify over il instead of the program variable and our proof obligation
becomes ∀il.φ(il).

As the rest (apart from the update) of the formula is concerned, it states
that the precondition il ≥ 0 implies total correctness of the loop. It contains
the total correctness assertion, that is the diamond brackets 〈 〉 with the
program code that we want to prove correct (the while-loop). Finally, the
postcondition is stated following the diamond brackets.

11.4.1 Preparing the Proof

Now we proceed to describe how to make the proof. KeY is an interactive
theorem prover and to construct an induction proof the user has to 1) supply
the induction variable, 2) choose which induction rule to use, and 3) supply
the induction formula.

For 1), in our example the obvious choice for the induction variable is il
since it is the logical variable that corresponds to the only available variable
i. Regarding 2), the standard Peano induction rule natInduct is good enough
for this simple example. Finally, for deciding the induction formula (3), let
us make the naive choice and just supply the formula in the proof obligation
itself: φ(il).

11.4.2 The Proof in JAVA CARD DL

With the original proof obligation in (P1) as the induction formula φ(il) and
il as the induction variable, we apply the induction rule natInduct and get a
base case, a step case and a use case. Let us proceed with each of the cases in
turn. See Fig. 11.2 for an overview of the proof. The formulas in our proofs
are relatively large and usually there are only small changes between proof
steps. Here and in the following we print the unchanged parts of a formula
in gray in order to make it easier to follow the proofs.

Base Case

In the base case, we start with an instantiation with 0 of the induction for-
mula, φ(0), (P2). Application of concreteImpl simplifies it to (P3).
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=⇒
0 ≥ 0 −>
{i := 0}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P2)

=⇒
{i := 0}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P3)

Then we proceed to unwind one iteration of the loop body with the
loopUnwind rule, which results in (P4). Since i

.= 0 (see the update) the
loop terminates when we apply ifThenElseFalse, and we end up with (P5),
which is easily closed.

=⇒
{i := 0}
〈 if (i > 0) {

i--;
while (i > 0) {
i--;

}
} 〉 (i .= 0)

(P4)
=⇒
{i := 0} 〈{}〉 (i .= 0) (P5)

Step Case

In the step case, we start with (P6). First we eliminate the universal quantifier
using the allLeft rule, and the bound logical variable il gets replaced by a
Skolem constant ic that is an arbitrary integer. The resulting proof obligation
is (P7).

=⇒
∀il.(il ≥ 0 &
(il ≥ 0 −>
{i := il}
〈 while (i > 0) {

i--;
} 〉 (i .= 0))

−>
il + 1 ≥ 0 −>
{i := il + 1}
〈 while (i > 0) {

i--;
} 〉 (i .= 0))

(P6)

=⇒
ilc ≥ 0 &
(ilc ≥ 0 −>
{i := ilc}
〈 while (i > 0) {

i--;
} 〉 (i .= 0))

−>
ilc + 1 ≥ 0 −>
{i := ilc + 1}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P7)

After automatic processing the standard simplifications (impRight, andLeft,
replaceKnownLeft, concreteImpl) have been performed (P8). Notice that in
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(P8) we have the induction hypothesis in the antecedent and the induction
conclusion in the succedent, just as expected. Then we unwind one iteration
of the loop in the induction conclusion using the loopUnwind rule, and (P9)
shows the state after that.

ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic + 1}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P8)

ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic + 1}
〈 if (i > 0) {

i--;
while (i > 0) {
i--;
}

} 〉 (i .= 0)

(P9)

The loopUnwind rule application is one instance where the calculus mimics
symbolic execution. We proceed to symbolically execute the next statement,
using the ifEval (introducing the new variable b) and ifElseSplit rules. As the
name suggests, an application of ifElseSplit causes the proof tree to branch.
We get one branch for ic + 1 ≤ 0 (P10) and one for ic + 1 > 0 (P11):

ic + 1 ≤ 0,
ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic + 1}
〈 b = false;
if (b) {
i--;
while (i > 0) {
i--;

}
} 〉 (i .= 0)

(P10)

ic + 1 > 0,
ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic + 1}
〈 b = true;
if (b) {
i--;
while (i > 0) {
i--;
}

} 〉 (i .= 0)

(P11)

In the antecedent of (P10), the condition ic + 1 ≤ 0 contradicts ic ≥ 0, and
therefore this branch is easily closed. In the other branch (P11) we have to
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proceed with symbolic execution in the succedent. The statement i--; is
evaluated using the assignment rule. Note that the state change can be seen
in the update in (P12).

ic + 1 > 0,
ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic + 1− 1}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P12)

ic + 1 > 0,
ic + 1 ≥ 0,
ic ≥ 0,
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P13)

After update simplification, in (P13) we can make the observation that the
induction hypothesis and the induction conclusion are syntactically equal and
we can close the step case of this inductive proof.

Use Case

Finally, it is time to apply the result that we have proven with the base case,
the step case and the induction principle. The use case of the natInduct rule
lets us make use of the result. For our program example, the use case is (P14):

∀il.(il ≥ 0 &
(il ≥ 0 −>
{i := il}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)))

=⇒
∀il.(il ≥ 0 −>
{i := il}
〈 while (i > 0) {

i--;
} 〉 (i .= 0))

(P14)

ic ≥ 0,
ic ≥ 0 −>
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

=⇒
ic ≥ 0 −>
{i := ic}
〈 while (i > 0) {

i--;
} 〉 (i .= 0)

(P15)

First, we have to apply allRight to get rid of the universal quantifier in the
succedent, and il gets replaced by the Skolem constant ic. Then, after au-
tomatic processing (or andLeft) we can proceed to instantiate the universal
quantifier in the antecedent, using allLeft to supply the constant ic, leaving
(P15). Now we can close the use case and we are done with the proof!
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(P5)

(P4)

(P3)
loopUnwind

(P2)

(P10)

(P13)

(P12)

(P11)

(P9)
ifSplit

(P8)
loopUnwind

(P7)

(P6)

(P15)

(P14)
allRight, allLeft

(P1)
natInduct

Fig. 11.2. Proof tree for a simple decrementing loop

Note that the precondition 0 ≤ il in the proof obligation of this example
was not really needed. Since we used the induction rule for natural numbers
this condition is present anyway. However, we kept it for the proof obligation
to be self-contained.

11.4.3 Making the Proof in the KeY System

You have seen a simple inductive program proof in JAVA CARD DL. Now there
is some good news. The size of the proof description in the above section does
not reflect the difficulty of the proof—the proof is very easy to complete in
KeY—but just the rather high level of detail.

In fact, most of the steps shown in the proof above can be performed
automatically by the KeY prover. With the correct settings in the prover all
steps can be automatically derived except for the application of induction
itself using natInduct, the unwinding of the loops using the loopUnwind rule,
and some instantiations of the universally quantified variables using allLeft.
The two latter kinds of user-interactions are rather straight-forward, and
most likely subject to automation in the future. In general, the harder part
is the correct application of the induction; the following four sections of this
chapter are devoted to describing some of the difficulties and solutions.

If you have not done that already, now is a good point to try to make
the proof in the KeY system. The proof obligation (P1) that we have seen in
JAVA CARD DLcan be expressed in .key syntax:

KeY
\programVariables {

int i;
}
\problem {

\forall int il;
{i:=il} 0 <= i -> (( \<{while (i>0) i--;}\> i=0)))

}

KeY
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This formula can be found in the file decrToZero.key in the KeY distribu-
tion, and uploaded into the KeY standalone prover. In Chap. 10 the details
are presented on how interact with the system more concretely and how to
run the automatic processing.

11.5 Choosing the Induction Variable

11.5.1 The Difficulty of Guiding Induction Proofs

Induction is a rather simple concept, however, the use of it can be very com-
plicated as we will see in the following sections. It is common that a proof
attempt of a valid formula fails. As most proof attempts are rather involved,
performing mechanical induction can be a very cumbersome and frustrating
experience. In this and the following sections some of the fundamental diffi-
culties are addressed and the user interaction that is required to guide the
prover to success is be explained. We will also see how failed proof attempts
often give valuable insights into a better approach. The problems we discuss
concern the choices necessary for the application of induction, that is, the
choice of the induction variable (this section), the induction rule (Sect. 11.6)
and the induction formula (Sect. 11.7).

11.5.2 How to Choose the Induction Variable

When guiding an induction proof, the user has to supply information along
the way. Generally, the choice of the induction variable is the first one we
make.

To choose the variable, start by studying the problem, the proof obligation
at hand. Where is the “inductiveness” in the problem? If you are trying to
prove the total correctness of a loop, termination and data correctness are
proved in one go. A useful trick is to look at the terminating condition of the
loop. The value of the induction variable should be in the domain of the base
case when the loop condition is false. And when the loop condition is true,
the value of the induction variable should be in the domain of the step case.

In the examples we have seen so far, it has been trivial to choose the
induction variable, because there has been only one variable available in each
of the cases. Still, for the example in Sect. 11.4 we can confirm this rule
of thumb by observing that the value of the induction variable il is in the
domain of the base case (that is, 0), whenever the loop terminates.

Sometimes none of the variables at hand can serve as the induction vari-
able, and the trick is then to create a new variable that is defined to be a
function of one or more of the existing variables. A common case is to intro-
duce one new (logical) variable that is defined as a relation among existing
variables. For instance, consider the following example.
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Example 11.2 (Loop incrementing to n). Assume that the specification of the
loop below stipulates that it terminates for non-negative n in a state where
i

.= n.

JAVA

int i,n;
// some initialisation code

i = 0;
while (i < n) {

i++;
}

JAVA

Note that n and i are program variables and n is not updated by the loop
so we can regard it as a constant. But we do not know the value of it so we
need to prove that the loop terminates for all values of n and so we need
to introduce an extra logical variable nl to universally quantify over. For
simplicity we use a precondition that restricts nl to non-negative numbers.
Also note that the value of i is assigned to 0 just before the loop. We can
then construct a JAVA CARD DL proof obligation (P1). After simplification,
using the allRight and assignment rules, the Skolem constant nc is introduced
and we have (P2).

=⇒
∀nl.nl ≥ 0 −>
{n := nl}
〈 i = 0;
while (i < n) {
i++;
} 〉 (i .= nl)

(P1)

nc ≥ 0
=⇒
{i := 0 || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P2)

Now, what would we use as the induction variable to prove (P2)? The initial
guess might be to do induction over i, but we would not be able to close the
base case then since the loop does not terminate for i .= 0. We cannot use the
constant n as the induction variable either, so this is a case where we need
to come up with a new (logical) variable to perform induction over. Let us
call this new logical variable kl. Given that the loop should terminate when
i ≥ n (the negation of the loop condition) and kl

.= 0 (in the base case),
we can define i

.= nc − kl. So we apply induction with kl as the induction
variable and with ψ(kl) (P3) as the induction formula. The requirement that
kl ≥ 0 need not be explicit since that is part of natInduct. After applying
induction, we get three proof branches. The first one (P4), for the base case,
is easy to close because the program state is i = n = nc, so when we apply
the loopUnwind rule the loop is not entered and the postcondition is valid for
this state.
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∀nl.nl ≥ 0 −>
{i := nl− kl || n := nl}
〈 while (i < n) {

i++;
} 〉 (i .= nl)

(P3)

nc ≥ 0
=⇒
{i := nc − 0 || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P4)

For the step case (P5), we have to unwind the loop body in the succedent,
using the loopUnwind rule as usual, and automatic processing triggers ifSplit
to branch again. The branch that involves the preconditions can be closed
easily. In the other branch, first the user has to unwind the loop body in
the succedent, apply automatic processing, and then use allLeft to instanti-
ate nl with nc (P6). After simplification the antecedent and succedent are
syntactically equivalent and the branch can be closed.

kc ≥ 0,
nc ≥ 0,
∀nl.nl ≥ 0 −>
{i := nl − kc || n := nl}
〈 while (i < n) {

i++;
} 〉 (i .= nl)

=⇒
{i := nc − (kc + 1) || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P5)

kc ≥ 0,
nc ≥ 0,
{i := nc − kc || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

=⇒
{i := nc − (kc + 1) + 1 || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P6)

Now the use case (P7) remains. Here we need to show the original proof
goal (P2) using the the induction formula ψ(kl) (P3) that we have proved by
now. We must instantiate (using allLeft) the universal quantifiers correctly.
The trick is to compare the updates of the antecedent and the succedent,
and to find the instantiations for kl and nl so that syntactic equivalence can
be achieved. We start with the outer quantifier (kl), and instantiate it with
nc, and then after simplification we instantiate nc for nl as well, to get (P8).
After simplification, the use case can be closed as well and we are done with
the proof.
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nc ≥ 0,
∀kl.kl ≥ 0 −>
∀nl.nl ≥ 0 −>
{i := nl− kl || n := nl}
〈 while (i < n) {

i++;
} 〉 (i .= nl)

=⇒
{i := 0 || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P7)

nc ≥ 0,
{i := nc − nc || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

=⇒
{i := 0 || n := nc}
〈 while (i < n) {

i++;
} 〉 (i .= nc)

(P8)

Again, once you know how to apply the induction rule correctly, the proof is
very easy to perform in the KeY prover. Most of the proof steps can be done
automatically. The user interaction required is similar to what we have seen
before, only this time the induction variable was a bit trickier to find. So go
ahead and load the problem expressed in .key syntax:

KeY
\programVariables {

int i;
int n;

}

\problem{
\forall int nl; (nl >= 0 ->

{n:=nl} \<{i=0; while (i<n) i++;}\> i = nl)
}

KeY

11.6 Different Induction Rules

So far we have seen the rule natInduct that implements (first-order) Peano
induction in KeY. This form of induction allows us to prove that a formula
is valid for all natural numbers. For instance, we can prove the preceding
examples quite easily. This is because in those examples the induction variable
was decremented by steps of one and ended at zero. However, if we alter the
simple decrementor from Sect. 11.4 slightly to for instance stepping down by
a non-zero constant c it becomes very hard to make immediate use of the
natInduct rule. Consider the proof obligation ∀il.φ(il) where φ(il) is:
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∀cl.(il ≥ 0 & cl ≥ 1 −>
{i := il || c := cl}
〈 while (i > 0) {

if(i >= c) {
i = i - c;

} else {
i--;

}
} 〉 i .= 0)

In this example the obvious choice for the induction variable is i (see the
terminating condition of the loop). Picking the right formula is generally a lot
more complicated as we see in the next section. However, the simplest possible
choice of induction formula for proving correctness of this loop would be φ(il).
It is completely schematic and requires no interaction with the user. The
hypothesis, however, is too weak when using natInduct. Roughly speaking,
in a proof attempt of the standard step case, ∀il.(φ(il) −> φ(il + 1)), the
following happens: the while-loop is unwound for il+1 and the proof branches
at the conditional statement. One case (the one with i--;) is possible to
prove, because {i := il}(i+1)--; is equal to il after symbolic execution and
simplification. The proof obligation for this case simplifies to ∀il.(φ(il) & il <
cl −> φ(il)), which is valid. In the other case symbolic execution gives il+1−cl
so that the resulting proof obligation ∀il.(φ(il) & il ≥ c −> φ(il + 1− cl)) is
in general unprovable. So now we have arrived at the inconvenient fact that
despite that the formula is valid for all natural numbers we can not prove the
unmodified formula using natInduct.

11.6.1 Customised Induction Rules

To remedy this inconvenience, a method to generate customised induction
rules [Olsson and Wallenburg, 2005, Hähnle and Wallenburg, 2003] has been
developed within the KeY project. A customised induction rule can be (auto-
matically) generated2 to match a particular proof obligation. Its construction
ensures soundness. For our example above, the following customised induc-
tion rule can be produced (for brevity we have omitted the use case):

constDecrRule

Γ =⇒ φ(0) & · · · & φ(c − 1), ∆ Γ =⇒ ∀il.(φ(il) −> φ(il + c)), ∆

Γ =⇒ ∀n.φ(n), ∆

2 At the time of writing, the generation of customised induction rules is not yet a
part of the KeY distribution.
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Note that this customised induction rule is powerful enough to make the proof
go through almost automatically with the unchanged induction formula φ(il)
which is very desirable in our effort to minimise user interaction.

In fact, these customised induction rules are generated from information
gained during naive failed proof attempts and they always follow a certain
pattern:

customInduct

Γ =⇒ ∀i.BC(i) −> φ(i), ∆
Γ =⇒ ∀i.(BP1(i) & φ(p1(i)) −> φ(i)), ∆

...
Γ =⇒ ∀i.(BPn(i) & φ(pn(i)) −> φ(i)), ∆

Γ =⇒ ∀i.φ(i), ∆

where BC(i) <−> ¬BP1(i) & . . . & ¬BPn(i) must hold. The predicate BPj

is the condition required for ensuring execution of that branch of the program
which causes the induction variable i to have the term pj(i) as value after
execution. Before we can trust this rule we must make sure that it is sound,
i.e., that there is an induction principle that allows us to conclude ∀i.φ(i).
We need to explain a few things ahead of that so the soundness discussion
is postponed to Sect. 11.6.3. But first we continue to study the usefulness of
customised induction rules.

By using customised induction rules, the gain is twofold; first, they de-
crease the need for generalisation and second, they branch the proof at an
earlier stage so that the resulting proof becomes easier to develop or a failed
proof attempt becomes easier to “debug”. Next we study a detailed example
of a problem that benefits from the use of customised induction rules.

Example 11.3 (Russian multiplication). Let us have a look at a program that
computes the product of two numbers, al and bl, using only division and
multiplication by 2, i.e., bit-shifts. The program uses an accumulator for the
product that has the initial value of zl. Consider the problem of proving
∀al.φ(al), where φ(al) is:

∀bl, zl.
{a := al || b := bl || z := zl}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zl + al ∗ bl
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Using the natInduct rule, we get the instantiations of the induction formula
φ(al) and φ(al + 1) in the step case (P9):

∀bl, zl.
{a := alc || b := bl || z := zl}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zl + alc ∗ bl

=⇒
{a := alc + 1 || b := blc || z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zlc + (alc + 1) ∗ blc

(P9)

∀bl, zl.
{a := alc || b := bl || z := zl}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zl + alc ∗ bl

=⇒
{a := (alc + 1)/2 || b := 2 ∗ blc ||
z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zlc + (alc + 1) ∗ blc

(P10)

But the proof attempt that follows is doomed already after the symbolic
execution of the loop body in the succedent, (P10). Syntactic equivalence
between the updates of a cannot be achieved and the proof obligation can-
not be closed. There is no point in proceeding with the attempt to perform
substantiations of bl and zl.

Instead, we need to use a more powerful induction rule. If we analyse the
program by the method in [Olsson and Wallenburg, 2005] we can generate a
customised induction rule that is suitable for proving the particular program.

russianCustomInduct

Γ =⇒ φ(0), ∆
Γ =⇒ ∀n.(n mod 2 .= 0 & φ(n/2) −> φ(n)), ∆
Γ =⇒ ∀n.(n mod 2 ! .= 0 & φ(n/2) −> φ(n)), ∆

Γ =⇒ ∀n.φ(n), ∆

Using the customised rule instead our proof attempt works in the following
way. We apply the russianCustomInduct rule, and study the even step case,
(P11):
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alc mod 2 .= 0,
∀bl, zl.
{a := alc/2 || b := bl || z := zl}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z = zl + (alc/2) ∗ bl

=⇒
{a := alc || b := blc || z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zlc + alc ∗ blc

(P11)

alc mod 2 .= 0,
∀bl, zl.
{a := alc/2 || b := bl || z := zl}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zl + (alc/2) ∗ bl

=⇒
{a := alc/2 || b := 2 ∗ blc ||
z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zlc + alc ∗ blc

(P12)

We follow the standard proving process for loops and unwind the loop in
the succedent. This time, the effect of the loop body matches the induction
step as we can see by comparing the updates of a in the antecedent and
succedent of (P12). For this proof obligation, all that remains is to perform the
obvious instantiations for bl and zl; find the right values to achieve syntactic
equivalence by studying the updates in the succedent.

Finally, we arrive at stage (P13) where, after some basic arithmetic sim-
plification, we can close the proof branch. The step case for odd numbers
follows the same pattern, but involves more arithmetic in the final step.
For instance, we need to take advantage of the fact that if alc is odd, then
alc/2 .= (alc − 1)/2. This proof branch is left as an exercise to the reader.

alc mod 2 .= 0,
{a := alc/2 || b := 2 ∗ blc || z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z = zlc + (alc/2) ∗ 2 ∗ blc

=⇒
{a := alc, b := 2 ∗ blc, z := zlc}
〈 while (a != 0) {

if(a % 2 != 0) z = z + b;
a = a / 2;
b = b * 2;
} 〉 z .= zlc + alc ∗ blc

(P13)
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11.6.2 The Noetherian Induction Rule

In order to prepare for the soundness discussion in the following section, we
will introduce the perhaps most important variant of induction—Noetherian
induction. Noetherian induction, or Well-founded induction, is the most gen-
eral form of induction, meaning that all other induction rules are special cases
of this one.

Theorem 11.4 (Principle of Noetherian Induction). Let (M,≺M ) be
a well-founded set. If ∀m ∈ M we have that (∀k ∈ M.k ≺M m → φ(k)) →
φ(m) holds, then ∀m ∈M.φ(m).

Note that this induction schema is valid for any induction set (M,≺M ),
provided that it is well-founded. Below is the principle expressed as a proof
rule.

noetherInduct

Γ =⇒ ∀m.(∀k.(k ≺M m −> φ(k))) −> φ(m), ∆
Γ, ∀m.φ(m) =⇒ ∆

Γ =⇒ ∆

The induction hypothesis is stronger in the Noetherian induction rule than
in other induction rules. Using this rule, we avoid the need for generalisation
of the proof obligation in many cases. For instance the Russian multiplica-
tion example above could also be proven using Noetherian induction. Still,
the user-interaction involved in the remaining proof after application of the
Noetherian induction rule can be very complicated because of the inherent
mix of data and control-flow correctness and the size of the proof. Therefore,
a customised induction rule might be preferable, even though it is not the
strongest form of induction.

11.6.3 Soundness of Induction Rules

As we pointed out in Sect. 11.3, for an induction rule to be sound, it must
be supported by an induction principle such as the principle of mathematical
induction, or the principle of well-founded induction above. One way to es-
tablish soundness of an arbitrary induction rule is to show 1) that the rule is
an instance of the Noetherian induction principle, and 2) that the induction
set is well-founded. This is possible since Noetherian induction is the most
general form of induction.

For example, we can (informally here) convince ourselves that the princi-
ple of mathematical induction is sound by considering the relation ≺+1 where
≺+1<−> {(i, i+1) | i ∈ N}. Instantiating (M,≺M ) with (N,≺+1) reduces the
first premiss of noetherInduct to the two familiar proof obligations φ(0) and
∀n.(φ(n) −> φ(n+1)). To see this, let m be either 0 or n+1 where n : N. For
m = 0, there is no k : N such that k ≺+1 0 and the entire proof obligation
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reduces to φ(m), which is φ(0) in this case. For m = n + 1, since there is
exactly one k such that k ≺+1 n + 1, namely k = n, ∀k.k ≺+1 n + 1 −> φ(k)
reduces to φ(n) and we get the proof obligation of the step case in natInduct.
Furthermore, since the set (N,≺+1) is well-founded, we can see that natInduct
is a sound induction rule.

Similarly, another example of a very useful and well-known induction
schema for natural numbers is the following, sometimes called strong induc-
tion on N:

Theorem 11.5 (Second Principle of Mathematical Induction). If the
formula ∀n.(∀k.(k < n −> P (k))) −> P (n) holds, then ∀n.P (n) can be
concluded.

This is clearly an instance of Noetherian induction with the well-founded
induction set being (N, <).

The customised induction rules are also instances of well-founded induc-
tion. Consider the basic customised induction rule CustomInduct above. This
can be shown to be an instance of Noetherian induction, using the induc-
tion set (N,≺), where i ≺ j holds iff BP1(j) & p1(j)

.= i | . . . | BPn(j) &
pn(j) .= i, see [Olsson and Wallenburg, 2005]. However, only if the induction
set (N,≺) is well-founded, the induction rule is sound. For a general prob-
lem, or an arbitrary customised rule, this is not guaranteed. In fact, to prove
well-foundedness of (N,≺) is equivalent to proving termination of the loop in
the problem. So, the way we have stated CustomInduct, it is unsound. In or-
der construct sound rules mechanically, the method [Olsson and Wallenburg,
2005] introduces extra proof obligations that imposes restrictions on the or-
der ≺, to for instance require that all branches in the loop are decreasing the
induction variable.

In summary: do not forget the induction principle! You cannot just write
a new induction taclet for every problem: the use case must implement a
proper induction principle to ensure soundness.

11.7 Generalisation of Induction Formulae

Despite using the correct induction variable and induction rule, a proof still
might fail. Even Noetherian induction sometimes is not enough to prove a
valid formula. This is because of the inherent incompleteness of first-order
rules, see Sect. 2.7. However, many times we can work around this problem by
proving something stronger than is actually needed and then prove that if the
stronger property holds, the original proof obligation also holds. This is called
generalisation since the new, stronger induction formula is a generalisation
of the original formula. In the following section we show how this technique
can be used.
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11.7.1 Cubic Sum Example

In this section we describe the correctness proof of a program that computes
the so called cubic sum and therefore should fulfill the following property:

n∑

i=1

i3 = n2(n + 1)2/4 . (P1)

This problem can be formalised in JAVA CARD DL and presented to the KeY
prover using the following input:

KeY
\programVariables{
int n,i,r;

}
\problem{
\forall int nl; (0 <= nl) ->

{n:=nl}
\<{ i=0;

r=0;
while (i < n) {

i++;
r = r + (i*i*i);

}
}\> 4*r = nl*nl*(nl+1)*(nl+1) )

}

KeY

As usual when we are about to apply induction, we have to make some
choices: Which induction variable, which induction rule and which induction
formula should we use?

For the induction variable, a glance at the terminating condition tells us
that n− i is zero when the loop terminates. Then it is a good idea to intro-
duce a new logical variable for this expression and let that be the induction
variable. Let us call this induction variable kl, where kl = n − i. We know
that kl has to be a logical variable since we need to quantify over it when we
apply induction.

By observing the change to the induction variable kl that happens inside
the loop body, we can decide which induction rule to use. Since the induction
variable kl is decremented by one, this happens implicitly at i++;, we see
that the Peano induction rule is a good match. Despite this match, a proof
attempt would fail, and another induction rule would not help. Let us have
a look at why.

The central problem here is to suitably generalise the induction formula.
Let us have a look at the starting point for the induction application. The
proof obligation after the usual simplification involving allRight is (P2). In
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order to make the formulas more readable we write nl2c instead of nlc ∗ nlc,
etc.

=⇒
nlc < 0,
{i := 0 || n := nlc || r := 0}
〈 while (i < n) {

i++;
r= r+(i*i*i);

} 〉 4r .= nl2c(nlc + 1)2

(P2)

0 ≤ nlc −>
{i := nlc − kl || n := nlc || r := 0}
〈 while (i < n) {

i++;
r= r+(i*i*i);
} 〉 4r .= nl2c(nlc + 1)2

(P3)

If we make a naive choice for the induction formula (P3), taking the original
formula and just changing the update of i to connect it with the induction
variable kl and with nl, the corresponding naive proof attempt fails. Only the
use case is provable. In the base case, after loopUnwind, the loop does indeed
terminate but the postcondition is not fulfilled, leaving an open proof branch
with 0 .= nl2c(nlc + 1)2. Furthermore, the step case, after loopUnwind and
simplification, is impossible to close due to the syntactic differences of the
updates: {r := 0} in the antecedent and {r := (nlc − kl)3} in the succedent.
So we have reached a position in the induction proving process where we
need to generalise the induction formula. The latter of these two problems,
the syntactic difference in the updates, is remedied in a rather straightforward
fashion by introducing a new universally quantified variable. In our example,
let us introduce a variable rl that represents the initial value of r. But we are
not done yet. As hinted by the failed base case, we also need to generalise
the post condition. So how would one generalise the post condition to make
it go through all the branches: base case, step case and use case? In general
this requires some intuition about the problem at hand, and this can be very
tricky. One way to solve the problem more systematically is to make another
proof attempt and when it fails, simply learn from that. Since we have one
mandatory patch for our example already, the introduction of rl, let us try
with that one and see what we can learn. So we use the following induction
formula:

∀rl.(0 ≤ rl −>
{i := nlc − kl || n := nlc || r := rl}
〈 while (i < n) {

i++;
r = r+(i*i*i);
} 〉 4r .= nl2c(nlc + 1)2)

(P4)

We repeat the procedure of applying simplification and unwinding the while
loop in both the base case and the step case. This time when we get to
the syntactically different updates in the step case, the solution is right at
hand: we simply use allLeft to instantiate the universally quantified rl in the
antecedent with the value of r in the succedent’s update. The use case is easy
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to prove with just one more instantiation than before. But—as expected—at
the base case the proof attempt still fails and this time it leaves the proof
goal 4rlc

.= nl2c(nlc + 1)2. So we got one step further, and we have a little
more information about how to generalise the postcondition.

To be more concrete, let us call the sought-after post condition Q(kl, rl),
which depends on the induction variable kl and the new universally quantified
variable rl. From the three proof obligations of our most recent failed proof
attempt, and from the fact that we know how we need to proceed with the
proof, we can generate three constraints that must hold:

{r := rlc} Q(0, rlc) (P5)

Q(klc, rlc + (nlc − klc)3) <−> Q(klc + 1, rlc) (P6)

Q(nlc, 0) <−> 4r .= nl2c(nlc + 1)2 (P7)

In the following we describe how those constraints were generated. Starting
with the base case, what do we know from the proof obligation and the
proving process? We know that the induction variable kl is 0 and we also
know that after skolemisation, the update is {r := rlc}, and therefore after
unwinding the loop, we have the proof obligation (P5). Next, consider a proof
attempt of the step case. After skolemisation of kl, unwinding of the loop in
the succedent, skolemisation of rl in the succedent, and simplification, the
correct instantiation of the universally quantified rl in the antecedent has to
be done. To achieve syntactic equality in the updates, the value of r, i.e.,
rlc + (nlc − klc)3, is supplied. It is important to note that this substitution
also effects the postcondition Q in the antecedent, since Q depends on rl,
remember (P4). What now remains to achieve is syntactic equality between
the postconditions, thus we can generate the constraint (P6). Finally, what do
we get from the use case? The two instantiations that have to be performed,
nlc for kl and 0 for rl are easily identified based on the values of the updates.
Again, syntactic equality of the updates remains to be proven and this gives
us the third constraint (P7).

Now, by solving our constraints (P5), (P6), and (P7) we can get hold of
our desired postcondition. It turns out that the constraints are satisfied by
the following Q(kl, rl):

4(r− rl) .= nl2c(nlc + 1)2 − (nlc − kl)2(nlc − kl + 1)2 .

Using this Q(kl, rl) as our postcondition we can create an induction formula
φ(kl) that we by now know is provable:
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∀rl.(0 ≤ rl −>
{i := nlc − kl || n := nlc || r := rl}
〈 while (i < n) {

i++;
r = r+(i*i*i);
} 〉 4(r− rl) .= nl2c(nlc + 1)2 − (nlc − kl)2(nlc − kl + 1)2)

(P8)

Note that in order to solve the constraint (P6) or, equivalently, to prove the
step case, we need to perform a series of arithmetic rule applications that at
the time of writing cannot be performed automatically by the KeY system.
These include for example multiplication distributivity and the square rule.
When performing a proof such as the cubic sum, you may find that you miss
certain arithmetic rules. In that case, those can be implemented as taclets,
uploaded to the system, proven (as lemmas, to be reused) and applied. For
brevity we have excluded some straight-forward but technical details of this
proof, in particular the arithmetical tricks do not belong to this discussion.
The exact details on how to prove the cubic sum program can be found in
the distribution of .key files that comes with this book.

11.8 Summary: The Induction Proving Process

At this point we take a look back to summarise what we have learned about
making induction proofs in KeY. We present an overview of the induction
proving process and some related useful tricks. This guide can be used to get
started in the practice of inductive theorem proving or as a quick reference
later on.

1. Load the .key file that contains the problem and possible extra taclets
that can be introduced as lemmas when necessary (do not forget to prove
these taclets as well).

2. Apply strategy to the original proof obligation. Make sure to have
the correct settings in the prover (for loops: simple JAVA CARD DL,
mathematical integers and no automatic unwinding of loops). Study the
remaining proof goal.

3. Choose an induction variable. If you are trying to prove correctness
of a loop, see the termination condition. Pick the induction variable so
that when it is in the base case, the loop condition is false. You may have
to introduce a new logical variable to be defined in terms of the existing
variables, please refer to Sect. 11.5 and 11.7 for examples of this.

4. Choose an induction rule. See the update to the induction variable in-
side the loop; if it does not decrement the induction variable with 1, then
it is easier to go for a customised induction rule or the Noetherian induc-
tion rule right away. Different induction rules are discussed in Sect. 11.6.
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5. Choose an induction formula. Start with the proof obligation (the
naive approach). Then edit the formula so that your induction variable
appears in one of the updates. The simple example in Sect. 11.4 shows
how to do this.

6. Apply the induction rule. Point to the sequent arrow and pick the
rule to use, then you will be given the opportunity to supply the induc-
tion variable and the induction formula in the instantiation dialog that
appears. Drag-and-drop is often very useful at this point.

7. After applying induction, the proof contains several branches; 1) either
one or no base case, 2) at least one step case, and 3) one use case.
Simplify the branches one at a time in a similar fashion:
Apply strategy and invoke one of the external theorem provers through-
out the process to maximize automation. It is useful to apply a strategy
locally (right-click on the proof goal) on the current branch of the proof
tree. You can also prune the proof tree locally if you wish to undo many
steps in one go.
a) Base/Step cases:

Unwind the body of the loop in the succedent. Perform suitable in-
stantiations. See the updates to find the right choices, they have to
be the same in the antecedent and the succedent. You might need to
manually apply arithmetical taclets to achieve syntactic equivalence
in the updates and post conditions. Sometimes it is helpful to con-
struct a lemma for an arithmetic property, prove that separately, and
later hopefully reuse it.

b) Use case:
Suitable instantiation of the previously proven induction formula
should do the trick. See the updates to find the right choices.

If there is a case that cannot be closed and you strongly believe that the
program and its specification are correct then move on to generalisation
of the induction formula.

8. Generalise the induction formula, if needed. It is the updates and
the pre- and postconditions that have to be changed, the program stays
the same. A typical generalisation is for instance to introduce an all-
quantified logical variable, for example, for the initial value of a program
variable, and then connect the variables in the updates. Usually these
additional logical variables need to be introduced in the postcondition so
that the arithmetic works out. Try applying induction again.
When you are experienced, possible generalisations can be spotted and
introduced already at step (3). Otherwise this can be rather time-
consuming. The best approach for learning is to start with a formula that
is similar (or even identical) to the proof goal, make a proof attempt, see
what is missing, be creative, generalise and try again. Sect. 11.7 discusses
generalisation of the induction formula in greater detail.
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11.9 Conclusion

In this chapter we described the induction proving process in the KeY sys-
tem from the viewpoint of practical program verification. We discussed the
mandatory requirements of user guidance of induction proofs and as a side
effect we addressed the fundamentals of induction. We limited ourselves to
reason about integers, mathematical integers instead of JAVA integers, and
had a focus on proving total correctness of loops. This is an interesting class
of problems, because here induction is both necessary and also rather difficult
to use.

First-order logic with arithmetic is far from complete, as we have seen
in Sect. 2.7. With the addition of induction we can prove most arithmetical
properties that are practically interesting. Even though we suffer from Gödel’s
result, induction is still practically useful in program verification. As we saw,
the main challenge is to deal with the complexity of user interaction. Some
user interaction that is still necessary in the examples of this chapter will
soon be avoidable by stronger support for automation in the KeY prover. We
continue to work towards automation.
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JAVA Integers

by

Steffen Schlager

Specification languages typically offer idealistic data types that are not avail-
able in programming languages. For example, the integer data types available
in the specification languages UML/OCL, Z, B, and JAVA CARD DL (which
can also be seen as a specification language) are isomorphic to the mathe-
matical integers Z having an infinite domain. On the other hand, the built-in
integer types in JAVA and many other programming languages have finite
domains. As a consequence the semantics of data types on specification and
implementation level differ (at least on the boundaries of the domain).

In this section we clarify the quite subtle relation between integer data
types in JAVA CARD DL and JAVA. It turns out that the JAVA integers are
not a refinement of the type integer in JAVA CARD DL but a so-called
retrenchment which constitutes a generalisation of refinement. Note, that
the problems and solutions given in this section are not restricted to JAVA

CARD DL and JAVA. They analogously apply to other specification languages
like e.g., UML/OCL, Z and B and to several programming languages like
e.g., C and C++.

This section may also serve as a lightweight introduction to refinement
and retrenchment (for a more detailed and systematic introduction we recom-
mend [Derrick and Boiten, 2001] and [Banach and Poppleton, 1998], respec-
tively). This section is based on material published in [Beckert and Schlager,
2004, 2005, Schlager, 2002].

12.1 Motivation

Refinement is a well-established and accepted technique for the systematic de-
velopment of correct software systems. Starting from an initial formal specifi-
cation, refinement steps are performed to obtain a correct implementation—a
software system satisfying the specification. Each refinement step may add
more details, e.g., by removing non-determinism.

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 481–505, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To guarantee correctness of the system being developed, the refinement
steps themselves must be correct, i.e., they must adhere to certain rules.
Then, the refinement process preserves all properties of the abstract system.
They are automatically satisfied by the concrete system as well and it is not
necessary to re-prove them.

Here we concentrate on the refinement of data types (data refinement),
in particular the refinement of integer data types. Following [He et al., 1986],
a data refinement is correct if in all circumstances and for all purposes the
concrete data type can be validly used in place of the abstract one, i.e., an
observer cannot distinguish whether the concrete or the abstract type is used.

Consider, for example, the following JAVA method, which—supposedly—
implements an operation computing the sum of two integers:

JAVA

int sum(int x, int y) {
return x+y;

}

JAVA

The correctness of this implementation with respect to the specification can
be expressed in JAVA CARD DL as the formula (inlining the method body in
the diamond modality)

∀i.∀j.{x := i || y := j} 〈result=x+y;〉result .= i + j

where i, j are variables of type integer.
At first sight this formula seems to be valid, i.e., the method is correct

and returns the mathematical sum of the parameter values. In truth, however,
the implementation is not correct. The reason is that the (finite) JAVA type
int used in the implementation does not correctly refine the (infinite) JAVA

CARD DL type integer. In particular, the JAVA operation +int (addition on
JAVA type int) is not a refinement of the operation +integer (addition on the
mathematical integers), because it computes the sum of the two arguments
modulo the size of the type int, e.g.:

2147483647 +integer 1 = 2147483648 but
2147483647 +int 1 = −2147483648

To overcome the problem outlined above there are basically two approaches.
The idealistic approach, trying to stick to the refinement principle,

amounts to changing the (semantics of the) types involved such that the
concrete type is in fact a refinement of the abstract one. Possibly appealing
from the theoretical point of view, in practice both modifying the abstract
type and adapting the concrete type has serious drawbacks.

On the one hand, changing and adapting the implementation data type
(e.g., using big number arithmetics instead of the built-in integer types),
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introduces unnecessary and serious inefficiencies into the implementation.
Moreover, such data type implementations are not always readily available.
For example, in JAVA there exists the class BigInteger whose instances rep-
resent arbitrary precision integers. Note, that BigInteger is not a primitive
type. It is tedious to use and leads to clumsy expressions. In JAVA CARD type
BigInteger is not available.

On the other hand, using an implementation language data type on the
specification level—this approach is, for example, pursued in the JAVA Model-
ing Language (JML) [Leavens et al., 1999]—contradicts the idea that specifi-
cations should be abstract and hide implementation details. Humans think in
terms of infinite (mathematical) types. It is, thus, not surprising that quite a
number of JML specifications are inadequate, i.e., do not have the intended
meaning [Chalin, 2003].1 If not uncovered early, inadequate specifications
are expensive to fix since they are at the root of the development process.
Moreover, some implementation details may not even be known during spec-
ification, e.g., the implementation language or the concrete data types that
are used. Obviously, an early specification containing such details is neither
reusable nor comprehensive and hence more likely to be inadequate.

The pragmatic, engineering-oriented approach accepts the fact that the
real world is not perfect, i.e., that the available types are not related by a
refinement relation and tries to cope with it. It allows a limited and controlled
incorrectness in the “refinement” steps.

The price we have to pay for allowing a limited incorrectness in the “re-
finement” steps, is that the implementation is not anymore automatically
correct “by refinement.” Rather, additional proofs are required. This ap-
proach, which can be seen as a generalisation of refinement, is an instance
of Banach and Poppleton’s retrenchment paradigm [Banach and Poppleton,
1998] which constitutes the basis for this section.

Before we briefly present refinement and retrenchment we shall introduce
the semantics of the data types and their operations we consider in this chap-
ter. The semantics of type integer and the usual operations like addition,
subtraction, multiplication, etc. is clear (see Definition 3.18, Chapter 3); it
corresponds to the semantics of the mathematical integers Z and we do not
say anything about it. However, the semantics of integers in JAVA is not that
obvious and is discussed in the next section.

12.2 Integer Types in JAVA

JAVA offers the four signed primitive integer data types byte, short, int,
and long which have different but finite domains (see Table 12.1). We do

1 To solve this problem, Chalin [2003] proposes to extend the JML, which does
not support infinite integer types, with a type bigInt with infinite range. That,
however, introduces into JML the problem of “incorrect refinement”.
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not consider the unsigned primitive type char in this chapter since there are
some differences that prevent a uniform treatment of all primitive integer
types. Nevertheless, in principle our approach can also be applied to char.

In the following we refer to the minimal and maximal value of a type T
by MINT and MAXT , respectively. For example, the minimum value −128 of
type byte is denoted by MINbyte.

Table 12.1. Primitive signed JAVA integer types, the corresponding domain, and
the number of bits needed for storing values

data type domain bits

byte -128 to 127 8
short -32768 to 32767 16
int -2147483648 to 2147483647 32
long -9223372036854775808 to 9223372036854775807 64

Internally, values of these types are stored in so-called signed two’s com-
plement which allows for efficient computation of arithmetical operations. If
the result of an operation does not fit in the range of the expression type,
i.e., the value cannot be represented using the provided number of bits, so-
called overflow2 occurs and the surplus number of bits are simply discarded
by the JAVA virtual machine (for the technical details the reader is referred
to [Schlager, 2002]). In mathematical terms this corresponds to computing
the result modulo the size −2 ∗ MINT of the data type T . The values of the
JAVA types are, due to the negative values, non-standard representatives of
the induced equivalence classes.3 Therefore we have to normalise the value
before applying the modulo function. Undoing the normalisation thereafter
yields the correct result corresponding to the JAVA semantics. This is achieved
by the family modT of functions defined as follows:

Definition 12.1. For T ∈ {byte, short, int, long} the family of functions
modT : integer→ integer is defined as

modT (x) = (x − MINT ) mod (−2 ∗ MINT ) + MINT .

Example 12.2. The value 128 causes overflow in the JAVA domain of type
byte. Applying function modbyte yields
2 The JAVA language specification [Gosling et al., 2000] distinguishes overflow and

underflow for integer operation depending on the sign of the value. However,
we have experienced that people are often misguided by the term “underflow”
which is more commonly used in the context of floating point arithmetic with
a different semantics. To avoid confusion we merely use the term “overflow”
since the difference between overflow and underflow does not play a role in this
chapter.

3 The standard representatives for equivalence classes induced by modulo n are
0, 1, . . . , n − 1.
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modbyte(128) = (128− (−128)) mod (−2 ∗ (−128)) + (−128) = −128 .

It is important to mention that the JAVA virtual machine does not indicate
overflow in any way, e.g., by throwing an exception (as it is done in case of a
division by zero). Some programming languages do indicate integer overflow
by throwing an appropriate exception making debugging of programs con-
taining errors related to overflow much easier. The concept of checked and
unchecked execution contexts in the language C# even goes one step further:
overflow in a checked context causes an exception being thrown whereas over-
flow in an unchecked context is treated as in JAVA.

Example 12.3. In the following C# code fragment variable z is set to zero if
x + y causes overflow on type short.

C#
try {
// addition in checked context

z = checked((short)(x + y));
} catch (System.OverflowException e) {

z = 0;
}

C#

12.2.1 Implicit Type Casts (Numeric Promotion)

In JAVA the type of an arithmetic expression may be different from the types
of the arguments, even if their types are equal. It is determined by so-called
unary or binary numeric promotion, depending on the arity of the operator
involved. The rules for numeric promotion are defined in the JAVA language
specification but we shall briefly recall them here, omitting the cases for type
char.

Binary numeric promotion is applied to arithmetic expressions with a
binary operator (except for bit-operators). If (at least) one argument is of
type long, the expression is of type long. Otherwise, i.e., if none of the
arguments is of type long the result is of type int. Note, that the rules
become more complex if one also considers floating point types which we
ignore in this chapter.

Unary numeric promotion is applied to unary integer arithmetic expres-
sions (except for bit-operators and pre- and postfix operators ++ and --)
according to the following rule: If the type of the argument is long then the
type of the unary expression is long, otherwise it is int.

Example 12.4. Let b be of type byte and let 1 be a numeric literal which is
always of type int (unless the characters l or L are attached to it—indicating
a literal of type long).
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The type of expression ++b is byte since, as mentioned above, unary pro-
motion is not applied to increment and decrement operations. In contrast, as
a result of binary numeric promotion the type of the expression b+1 is int
since the type of literal 1 is int. Thus, expression ++b is not equivalent to
b+1 but to (byte)(b+1). For example, if b has the value 127 both the ex-
pressions ++b and (byte)(b+1) evaluate to −128 (overflow on byte) whereas
b+1 evaluates to 128 (no overflow on int).

12.2.2 Differences Between JAVA and JAVA CARD

JAVA CARD does not offer the primitive type long and availability of type
int depends on the implementation of the JAVA CARD virtual machine. If
int is not supported the virtual machine rejects programs containing that
type. However, even if type int does not occur explicitly in a JAVA program
it may still be used to store intermediate results of computations. In the code
fragment

JAVA

short a = 32767;
short b = 1;
short c = 2;
a = (short) ((a + b) / c);

JAVA

the JAVA virtual machine implicitly evaluates expression a + b on type int
(as explained in Section 12.2.1) yielding a result of 32768. The subsequent
division evaluates to 16384. The final cast operation to short does not have
any effect here and is only required to ensure type correctness.

A JAVA CARD virtual machine that does not support int cannot perform
implicit type casts to int in order to store intermediate results. As a conse-
quence, overflow may already occur on type short. If the same program is
executed on a JAVA CARD virtual machine without support for int the in-
termediate result of a + b causes overflow and results in −32768. Evaluating
division and cast operations finally yields a result of −16384.

The previous example contradicts the rule mentioned in [Chen, 2000] that
any arithmetic operation should render the same result when executed on a
JAVA virtual machine and on a JAVA CARD virtual machine. To prevent such
discrepancies in computation typically the converter, which transforms JAVA

byte code into JAVA CARD byte code, reports an error if a program contains
expressions like the one above.

For a uniform treatment of JAVA and JAVA CARD, in the following we
assume that implicit type casts performed by the JAVA CARD virtual machine
but not by the JAVA virtual machine are made explicit in the source code
by adding appropriate type casts. This assumption also guarantees that the
converter does not abort with errors mentioned above.
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12.3 Refinement and Retrenchment

In this section we shall give a lightweight introduction on refinement and
retrenchment as far as required for this chapter.

12.3.1 Preliminaries

In Section 3.3 we defined the semantics of a program as a binary relation
between the initial and final program state. Input and output of a program
is considered being part of the program state. In this section we are not
interested in internal states of programs but merely in input and output of a
program. We therefore make input and output explicit and call the program
an operation.

Definition 12.5 (Operation, Termination). Let S be a set of states,
Input a set of possible inputs, and Output a set of possible outputs. An op-
eration

Op ⊆ S × Input× S ×Output

is a relation on states and input/output values. We write s[[out = Op(in)]]s′

iff (s, in, s′, out) ∈ Op.
Operation Op started in a state s ∈ S with input in terminates iff there

exists a state s′ ∈ S and output out such that s[[out = Op(in)]]s′. This is
denoted by s |= Op(in)↓.

Without loss of generality, we only consider operations that have output.
Operations without output are considered to return an arbitrary value. For
non-deterministic programming languages the above definition of termination
expresses that there is a possibility for the operation to terminate and is
thus similar to the semantics of the diamond modality (see Definition 3.34,
Chapter 3). For a deterministic language like JAVA CARD, s |= Op(in)↓ means
that the operation always terminates when started in s.

Specifications of operations are as usual pairs of pre- and postcondition.
But, since it is more convenient in this chapter, pre- and postconditions are
not given as (OCL, JML, or JAVA CARD DL) formulae as in Chapter 5 but
as their denotations, i.e., as the sets of states and input and output values
satisfying the corresponding formulae.

Definition 12.6 (Operation Specification). Given sets S of states, Input
of input, and Output of output values, an operation specification is a pair
(Pre,Post) of predicates

Pre ⊆ S × Input and Post ⊆ S × Input × S × Output .

The correctness of an operation with respect to a given specification is defined
as usual, i.e., if an operation satisfies the precondition then it has to satisfy
the postcondition.
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Definition 12.7 (Operation Correctness). Given sets S of states, Input
of input, Output of output values, and an operation specification (Pre,Post).
An operation Op ⊆ S × Input × S ×Output is correct w.r.t. (Pre,Post) iff,
for all (s, in, s′, out) ∈ Op,

(s, in) ∈ Pre implies (s, in, s′, out) ∈ Post .

The above definition constrains only terminating runs of an operation, i.e.,
reflects the partial correctness semantics mentioned in Section 5.2.3.

12.3.2 Refinement

Very generally speaking, refinement is a relation between two systems, an
abstract system and a concrete one. The concrete system C is said to refine
(or to implement) the abstract system A if PreA ⊆ PreC and PostC ⊆ PostA,
i.e., if the precondition of the concrete system is equal or less restrictive than
the one of the abstract system and vice versa for the postcondition. This
means a refined system can at least be used where the abstract system can
be used and always yields a result that is compatible with the result of the
abstract system.

Example 12.8. Suppose a resource manager that allocates identical but num-
bered resources to clients.

Upon request an abstract resource manager assigns an arbitrary but free
resource to the client.

A concrete refined manager of this abstract manager (which can also be
considered as the specification) could be a system that always allocates the
free resource with the smallest number (thus eliminating non-determinism).
Additionally, the refined system could also manage resources that are released
by the client so that they can be re-allocated. This is possible since a refined
system may do more than the abstract one.

Refinement (and also retrenchment) in general allows the operations of ab-
stract and concrete data type to act on different state spaces. A retrieve
relation connects abstract and concrete states, i.e., defines which abstract
states are represented by which concrete states.

Example 12.9. Suppose the abstract resource manager from Example 12.8
uses a set of integers to manage the available free resources.

The concrete manager uses an array instead of a set (since this makes it
easier to find the free resource with the smallest number).

However, the order of the elements in the array is not important and
a reasonable retrieve relation could identify a state of the abstract system
with all states of the concrete system where the elements of the array are a
permutation of the elements in the set.
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The above example already suggests that refinement is not restricted to sys-
tems but can also be applied to data types and operations. Intuitively, an
operation adding an element to an array is a refinement of an operation
adding an element to a set only if it makes sure that the element to be added
in not already contained in the array. This means it must be guaranteed that
the state of the concrete data type is related (via the retrieve relation) to the
state of the abstract data type after every operation.

The integer data type which we consider in this chapter is particular in
the sense that it does not have a state. Hence the operations do not per-
form a state transition but merely compute an output for the given input.
As a consequence, we neither have to consider different state spaces nor a re-
trieve relation. Therefore we obtain simpler definitions of so-called operation
refinement and later operation retrenchment.

Definition 12.10 (Operation Refinement). An operation Opconcr is an
operation refinement of an operation Opabstr (over the same state space S)
iff, for all states s, s′, all input values in such that s |= Opabstr (in)↓, and all
output values out,

if s[[out = Opconcr (in)]]s′ then s[[out = Opabstr (in)]]s′ .

This definition states that the abstract operation can do anything (and pos-
sibly more) the concrete operation can do. For example, this means that the
concrete operation eliminates non-determinism.

It is important to mention that (operation) refinement does not allow
input and output of abstract and concrete operations to differ. Not least
because of this it is obvious that the JAVA integers are not a refinement of
the mathematical integers Z. Furthermore, operations on JAVA integers may
yield a result different from the result on Z (see the example in Section 12.1).

12.3.3 Retrenchment

In practical system design, situations where abstract types cannot be cor-
rectly refined by more concrete types occur quite often. This observation was
the motivation for several liberalisations of the strict refinement notion like
e.g., IO refinement [Boiten and Derrick, 1998] which allows input and output
of abstract and concrete operations to differ. Retrenchment [Banach and Pop-
pleton, 1998] constitutes the most radical generalisation of refinement which,
in principle, allows to relate arbitrary abstract and concrete data types and
operations.

We now give the definition of operation retrenchment which is a special
case of retrenchment adapted to our setting:

Definition 12.11 (Operation Retrenchment). A concrete operation

Opconcr ⊆ S × Inputconcr × S ×Outputconcr
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is an operation retrenchment of an abstract operation

Opabstr ⊆ S × Inputabstr × S ×Outputabstr

(over the same state space S) via

– a within relation W ⊆ Inputabstr × Inputconcr × S,
– a concedes relation C ⊆ S × S ×Outputabstr ×Outputconcr ,
– and an output relation O ⊆ Outputabstr ×Outputconcr ,

iff,
for all states s, s′, input values inabstr , inconcr such that s |= Opabstr (inconcr )↓,
and output values outconcr ,

if s[[outconcr = Opconcr (inconcr)]]s′ and W (inabstr , inconcr , s) ,
then there exists an output value outabstr with

s[[outabstr = Opabstr (inabstr )]]s′ and
(O(outabstr , outconcr) or C(s, s′, outabstr , outconcr)) .

The formal definition of operation retrenchment contains three relations,
called within relation W , concedes relation C, and output relation O.

The within relation W is used to limit the set of states and inputs for
which the relationship between abstract and concrete operations needs to be
established. In contrast, refinement requires to establish the relation for every
pair of state and input/output.

The output and concedes relation O and C allow to restrict abstract and
concrete output values. Usually, the output relation is used to define the “nor-
mal” case, whereas the concedes relation defines exceptional behaviour. This
is of course not prescribed by the formal definition since O and C are dis-
junctively connected relations on the output values. However, as we see later,
separating the normal and the exceptional case in O and C simplifies setting
up proof rules for verifying the correctness of a retrenchment considerably.

If we define W ≡ {(inabstr , inconcr , s) | inabstr = inconcr}, i.e., exclude
from consideration cases where abstract and concrete input differ, C ≡ ∅,
and O ≡ {(outabstr , outconcr) | outabstr = outconcr} then Definitions 12.10
and 12.11 coincide, i.e., operation refinement is indeed a special case of op-
eration retrenchment.

The advantage of casting non-refinement steps into the retrenchment
framework is that it becomes explicit where exactly the refinement condi-
tions are violated, namely where the within relation W does not hold or
where the concedes relation C becomes true. In these cases correctness can-
not be shown once and for all (as it is the case with correct refinement).
Correctness of a program containing retrenchment is shown by individually
verifying these critical situations. Note, that this requires additional proofs
which are still done at proof time. After these proofs have been done, no
run-time checks are required.
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The additional proof obligations arise from the conditions the following
correctness theorem is based on. The theorem has been proven in a slightly
different form in [Beckert and Schlager, 2005].

Theorem 12.12 (Correctness w.r.t. Retrenchment). Let Opabstr be an
operation that is correct with respect to a given specification (Pre,Post). Let
Opconcr be an operation that is an operation retrenchment of Opabstr via re-
lations W , C, and O (as in Definition 12.11) and let Inputconcr = Inputabstr
and Outputconcr = Outputabstr .

Then Opconcr is correct with respect to (Pre,Post) if for all inputs inconcr

and all states s with (s, inconcr) ∈ Pre

1. in case that (inabstr , inconcr , s) ∈ W for some input value inabstr (cases
where the within relation holds),

O(outabstr , outconcr ) or C(s, s′, outabstr , outconcr )
implies

inabstr = inconcr and outabstr = outconcr

or
(s, inconcr , s

′, outconcr ) ∈ Post
for all states s′ and
output values outconcr with s[[outconcr = Op(inconcr )]]s′ and

2. in case that (inabstr , inconcr , s) �∈ W for all input values inabstr (cases
excluded by the within relation),

(s, inconcr , s
′, outconcr ) ∈ Post

for all states s′ and
output values outconcr with s[[outconcr = Op(inconcr )]]s′ .

The above theorem states under which conditions a retrenched operation
is correct under the assumption that the abstract operation is correct with
respect to the given specification:

• If there exists an input inabstr for inconcr such that W holds, i.e., the case
is of interest for the retrenchment, then either the postcondition holds
immediately or O and C have to imply that abstract and concrete input
and output are equal. Then the correctness of the concrete operation
follows from the correctness of the abstract one.

• The case is excluded from consideration, i.e., for any inabstr W does not
hold. Then both abstract and concrete operation are unrelated and the
correctness of the concrete operation has to be established by showing
that the postcondition holds for this particular situation.

As compared to refinement, when retrenchment is used to establish correct-
ness of the concrete operation Opconcr , the additional Conditions (1.) and (2.)
in Theorem 12.12 have to be proven. Note that, although Condition (1.),
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which handles cases for which the within relation W is true, looks more com-
plicated than Condition (2.), it is actually the “harmless” one. In particular,
if the definitions

W ≡ {(inabstr , inconcr , s) | inabstr = inconcr}
O ≡ {(outabstr , outconcr ) | outabstr = outconcr}
C ≡ ∅

for the within, the output, and the concedes relation are used, Condition (1.)
is trivially true for all cases where it applies. Even if other definitions for W ,
O, and C are used, the particular postcondition Post has rarely to be con-
sidered. On the other hand, checking Condition (2.) always involves the par-
ticular postcondition and, thus, the particular specification. To summarise,
if W , O, and C are well chosen, Condition (1.) it trivially true, or at least
can be proven once and for all, whereas Condition (2.) has to be proven for
each particular specification.

12.4 Retrenching Integers in KeY

In this section we demonstrate how retrenchment can be used to exactly
describe the relation between infinite integers integer in JAVA CARD DL and
finite integers in JAVA. We shall consider the following operations available
on both data types.

Definition 12.13. Let S be an arbitrary set of states. Then the (abstract)
operations

Opabstr ,◦ ⊆ S × (integer× integer)× S × integer

for ◦ ∈ {+,−, ∗, /, %} are defined by

s[[out = Opabstr,◦(〈in1, in2〉)]]s′ iff s = s′ and out = in1 ◦ in2

for all states s, s′, input values 〈in1, in2〉 and output values out.

Note, that we exclude bit-wise operations from consideration since they are
not defined on integer. For the defined operations we discuss the two re-
trenchments implemented in the KeY system. As concrete retrenched types
we consider the JAVA type int but everything holds analogously as well for
byte, short, and long.

In the first retrenchment RJava that is described in Section 12.4.1 it is
shown that, for those cases violating the refinement conditions, the “refined”
data type operations are sufficient (this amounts to weakening the postcon-
dition).

For the example of addition, one has to show for the particular situation
that using x+inty instead of x +integer y does not lead to incorrectness, i.e.,



12.4 Retrenching Integers in KeY 493

that the property to be proven is independent of the used type (see the
example in Section 12.4.1).

In the second retrenchment RKeY (Section 12.4.2) cases violating the
refinement conditions are shown not to occur. This amounts to strengthening
the preconditions for the invocation of the “refined” data type operations.

Considering as an example the operations +int and +integer, one has to
show for each individual invocation of x+y in a JAVA CARD program that the
result does not exceed the (finite) range of int, i.e., does not lead to overflow.

The KeY system supports both RJava and RKeY . However, we argue that
the second possibility RKeY is the better choice and strongly suggest its use.

12.4.1 Retrenchment RJava by Weakening the Postcondition

Definition 12.14 formalises the semantics of the operations on type int as
defined in the JAVA language specification, i.e., the operations do not modify
the state and the result is calculated modulo the size of the type of the
expression T .

Definition 12.14. The (concrete) operations

OpJava
concr ,◦ ⊆ S × (integer× integer)× S × integer

for ◦ ∈ {{+,−, ∗, /, %} are defined by

s[[out = OpJava
concr ,◦(〈in1, in2〉)]]s′ iff s = s′ and out = modT (in1 ◦ in2)

for all states s, s′, input values 〈in1, in2〉 and output values out, where T is
the type of in1 ◦ in2 determined by binary numeric promotion.

The following theorem provides the within, output, and concedes rela-
tions for which the operations OpJava

concr ,◦ are retrenchments of Opabstr ,◦
(◦ ∈ {+,−, ∗, /, %}). This retrenchment is called RJava in the sequel.

Theorem 12.15. For every ◦ ∈ {+,−, ∗, /, %}, the operation OpJava
concr ,◦ is

an operation retrenchment of Opabstr ,◦ via the relations defined by:

W ≡ {(inabstr , inconcr , s) | inabstr = inconcr}
O ≡ {(outabstr , outconcr) | outabstr = outconcr}
C ≡ {(s, s′, outabstr , outconcr ) | s = s′ and outconcr = modT (outabstr )

and outabstr �= outconcr}

Note, that the condition outabstr �= outconcr in the above definition of C could
as well be omitted. However, making it explicit has the advantage of making
the concedes relation C and the output relation O disjoint. This allows to
clearly distinguish between “normal” behaviour (O holds) and “exceptional”
behaviour (C holds).
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This retrenchment says that we only take into account cases where both
abstract and concrete input values are equal. Then, either no overflow occurs
and both output values have to be equal (output relation O) or overflow
occurs and the concrete output outconcr is equal to the result of applying
function modT to outabstr (concedes relation C).

Example of Retrenchment RJava

The following example illustrates the effects of this retrenchment concerning
the correctness of a JAVA implementation with respect to specification using
the integers integer.

Assume an operation addTwo that is supposed to increase the argument
by two and a specification for addTwo consisting of the precondition even(x)
and the postcondition even(result), where result denotes the output of the
operations. The JAVA implementation of addTwo is as follows:

JAVA

int addTwo(int x) {
return x+2;

}

JAVA

If we assume that the JAVA type int coincides with the mathematical integers
integer, it is obvious that the implementation satisfies the specification.

But what happens if we consider the true semantics of int instead, i.e.,
the retrenchment RJava from above? Obviously, for every input inconcr ∈ int
there is an input inabstr ∈ integer with inabstr = inconcr (since the domain
of int is a subset of integer), i.e., an abstract value for which W holds always
exists. Thus, we can forget about the proof obligation from Condition (2.)
in Theorem 12.12, and we only have to consider Condition (1.) assuming
inabstr = inconcr . Then Condition (1.) reduces to:

inconcr+int2 = inabstr +integer 2 or
inconcr+int2 = modint(inabstr +integer 2) and
inconcr+int2 �= inabstr +integer 2

implies
inabstr = inconcr and inabstr +integer 2 = inconcr+int2 or
even(inconcr+int2).

We assume that the precondition even(inconcr) holds and consider the left-
hand side of the implication.

The first disjunct arises from the output relation O and constitutes the
“normal” case where the concrete operation yields the same result as the
abstract operation. Together with the assumptions it obviously implies the
(first disjunct of the) right-hand side of the implication.
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The second disjunct corresponds to the concedes relation of the retrench-
ment, which says that the result of the concrete operation is equal to the
result of the abstract operation modulo −2 ∗ MINint, i.e., this is the case
where the concrete operations does not correctly simulate the abstract one.
Incidentally, in our example the size −2∗MINint of int is even and, thus, also
(x + 2)%(−2 ∗ MINint) is even. This means that, even if the concrete opera-
tion has a different behaviour than the abstract one the postcondition is still
satisfied, i.e., the implementation is correct.

Assessment of Retrenchment RJava

As the above example shows, using RJava it is possible for a program to
be correct even if it contains expressions such that abstract and concrete
operations yield different results.

In general, if the correctness of a program has been established using
retrenchment Theorem 12.12 via a necessarily non-trivial concedes relation C
(i.e., the theorem does not hold any more if C is replaced by false) we call
the program incidentally correct.

We think the term “incidental correctness” is justified since “luckily” the
postcondition holds even if the concrete type yields a result different from
the abstract result. A user who is not aware of that may think that the same
automatically holds true for other postconditions, which it does not.

Programmers tend to use retrenched types as if they were refined types,
i.e., the fact that there is a non-trivial concedes relation is ignored. And in
fact, the concedes relation often does not play a role since the concrete pro-
gram solely works on the part of the domain where the concedes relation
is not required (most JAVA programs do not contain overflow). However, for
critical applications we cannot trust our luck and hope that a program does
not “make use” of the concedes relation. If it does, there are two possibil-
ities. First, the concedes relation does not entail the postcondition. Then
the program is in fact incorrect. Second, the concedes relation implies the
postcondition, in which case the program is correct.

Still, we argue that the second case may cause problems in an ongoing
development process. The reason is that the program can run into situa-
tions where the concrete type has a different behaviour than the abstract
one, though the specification still holds in these exceptional cases. Since the
program behaves correctly it may remain hidden from the programmer that
the program runs into exceptional situations. Only an inspection of the cor-
rectness proof would reveal the fact the concedes relation is actually used. If
the developer does not do that (the proof may be constructed automatically
or by someone else), the true behaviour may diverge from the developer’s
intuition and understanding of the program. This is dangerous in an ongoing
software project, where programs and even specifications are often modified.
Then, a wrong understanding of the internal program behaviour and the fact
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that the particular concedes relation may not work for other postconditions
easily leads to errors that are hard to find.

12.4.2 Retrenchment RKeY by Strengthening the Precondition

The second retrenchment RKeY is based on strengthening the precondition
of the operations to ensure that the operations only act on the parts of the
domain where int actually behaves like integer, i.e., where no overflow oc-
curs. This results in additional proof obligations stating that the result of an
operation does not exceed the (finite) range of the expression type. By veri-
fying these additional proof obligations, we establish that the programming
language types are only used to the extent that they indeed are a refinement
of the specification language types (the non-refinement cases do not occur).
As already said, this check cannot be done once and for all, as it is the case
for a correct refinement, but has to be repeated for each particular specifica-
tion and program. Since this is tedious and error-prone if done by hand the
generation of the additional proof obligation is integrated into the verification
calculus of the KeY system (see Section 12.5.1).

The operations OpKeY
concr ,◦ (◦ ∈ {+,−, ∗, /, %}) that we define for the sec-

ond retrenchment differ from the abstract operations only on those parts of
the input domain integer× integerwhere the result of the operation would
exceed the bounds MINT or MAXT . For these cases the semantics of OpKeY

concr ,◦ is
not specified, i.e., it is not guaranteed to terminate and in case of termination
it returns an arbitrary value.

Definition 12.16. The family RangeT ⊆ integer of predicates is defined by

RangeT (x) iff MINT ≤ x ≤ MAXT ,

where T is the type of expression x.

Definition 12.17. For ◦ ∈ {+,−, ∗, /, %}, the concrete operation

OpKeY
concr ,◦ ⊆ S × (integer× integer)× S × integer

is defined, for all states s, s′, input values 〈in1, in2〉, and output values out,
by

s[[out = OpKeY
concr ,◦(〈in1, in2〉)]]s′ iff

(i) s = s′ ,
(ii) out = in1 ◦ in2 , and
(iii) RangeT1

(in1) and RangeT2
(in2) implies RangeT (in1 ◦ in2) .

where T1, T2, T is the type of in1, in2, and in1 ◦ in2 (for the latter determined
by binary numeric promotion), respectively.
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Analogous to Section 12.4.1 we provide the within, the concedes, and the out-
put relation for which the operations OpKeY

concr ,◦ are retrenchments of Opabstr ,◦
(◦ ∈ {+,−, ∗, /, %}). This retrenchment is called RKeY in the following.

Theorem 12.18. For every ◦ ∈ {+,−, ∗, /, %}, the operation OpKeY
concr ,◦ is

an operation retrenchment of Opabstr ,◦ via the relations defined by:

W ≡ {(inabstr , inconcr , s) | inabstr = inconcr and
RangeT1

(inconcr ,1) and RangeT2
(inconcr,2)

implies RangeT (inconcr,1 ◦ inconcr,2)}
O ≡ {(outabstr , outconcr) | outabstr = outconcr}
C ≡ ∅

where T1, T2, T is the type of inconcr,1, inconcr,2, and inconcr,1 ◦ inconcr,2 (for
the latter determined by binary numeric promotion), respectively.

The within relation W states that we only consider cases where both abstract
and concrete inputs are equal and the concrete operation does not cause over-
flow. Assuming W holds we have to show that O or C holds (Condition (1.)
in Theorem 12.12). Since C ≡ ∅ this amounts to showing that O holds, i.e.,
that the outputs are also equal. This retrenchment does not say anything
about the case where overflow occurs, i.e., where the within relation does not
hold (Condition (2.) in Theorem 12.12). Thus, to ensure correctness of an
implementation we have to ensure that W always holds. In the calculus of
the KeY system this is achieved by generating proof obligations to establish
W for every occurrence of an arithmetical operation OpJava

concr ,◦ (consider for
example the first premiss of rule assignmentAdditionToUpdateCheckingOF in
Section 12.5.1).

12.5 Implementation

The implementation of the two retrenchments presented in Section 12.4.1
and 12.4.2 in the KeY system is based on different rules sets which can be
activated by the user in the “Taclet Options Defaults” dialog in the options
menu of the KeY prover shown in Figure 12.1.

The following rule sets are available:

• intRules : javaSemantics contains rules for integer arithmetic based on re-
trenchment RJava defined in Section 12.4.1, i.e., faithfully reflects the
semantics defined in the JAVA language specification.

• intRules : arithmeticSemanticsCheckingOF covers the rules for retrench-
ment RKeY from Section 12.4.2, i.e., overflow is not allowed to occur.

• intRules : arithmeticSemanticsIgnoringOF which ignores the problems aris-
ing from the different semantics of (finite) programming language data
types and (idealistic) specification language data types. That is, in these
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Fig. 12.1. Dialog for choosing integer semantics in the KeY system

rules the JAVA integers are (wrongly) assumed to implement the semantics
of the mathematical integers Z. As a consequence, using this rule set a
closed proof does in general not imply the correctness of the implementa-
tion with respect to a specification since the rules do not correctly reflect
the JAVA semantics.

Which rule set, i.e., which retrenchment, should be chosen depends on the
requirement of the level of dependability one wants to guarantee. Functional
correctness can be achieved only using the first two of the options above. The
rule set intRules : arithmeticSemanticsCheckingOF in addition ensures that the
verified program does not contain overflow.

The rule set intRules : arithmeticSemanticsIgnoringOF does not guarantee
functional correctness. Nevertheless, since the calculus rules are simpler this
semantics can be used for a first verification attempt if the main focus is
different from functional correctness.

12.5.1 Sequent Calculus Rules

In the following rule schemata, var is a local program variable (of an
arithmetical type) whose access cannot cause side-effects. For expressions
with potential side-effects (like, e.g., an attribute access that might cause a
NullPointerException) the rules for symbolic execution cannot be applied
and program transformation rules that evaluate the complex expression and
assign the result to a new local variable have to be applied first. Similarly,
se satisfies the restrictions on var as well or it is an integer literal (whose
evaluation is also without side-effects). There is no restriction on expr , which
is an arbitrary JAVA expression of a primitive integer type (its evaluation may
have side-effects).

Program Transformation Rules

Program transformation rules are independent of the chosen integer seman-
tics since they transform complex expressions into a sequence of simpler but
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semantically equivalent expressions. As examples we present rules for han-
dling postfix increment expressions and compound assignments.

The Rule for Prefix Increment

This rule transforms a prefix increment into a normal JAVA addition.

preIncrement
=⇒ 〈π var=(T)(var+1); ω〉φ

=⇒ 〈π ++var; ω〉φ

T is the declared type of var . The explicit type cast is necessary to preserve
the semantics since the arguments of + are implicitly cast to int or long
by binary numeric promotion which is not the case for the prefix increment
operator ++ (see Section 12.2.1).

The Rule for Compound Assignment

This rule transforms a statement containing the compound assignment oper-
ator += into a semantically equivalent statement with the simple assignment
operator = (again, T is the declared type of var).

compoundAssignmentUnfold
=⇒ 〈π var=(T)(var+expr); ω〉φ

=⇒ 〈π var+=expr; ω〉φ

For the soundness of both rules it is essential that var does not have side-
effects because var is evaluated twice in the premisses and only once in the
conclusions.

Rules for Symbolic Execution

In contrast to program transformation rules, we here have different rules for
retrenchments RJava and RKeY .

The Addition Rule for Retrenchment RJava

assignmentAdditionToUpdateJavaSemantics

=⇒ {var := moduloT (se1 + se2)} 〈π ω〉φ
=⇒ 〈π var=se1+se2; ω〉φ

T is the type of the expression se1+se2 which is determined by binary nu-
meric promotion. Depending on T the schematic function moduloT is instan-
tiated with the corresponding JAVA CARD DL function symbols moduloByte,
moduloShort, moduloInt, moduloLong, or moduloChar (see Appendix A.1.2)
which have the same semantics as the meta-level function modT .
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The Addition Rule for Retrenchment RKeY

assignmentAdditionToUpdateCheckingOF

inRangeT1
(se1), inRangeT2

(se2) =⇒ inRangeT (se1 + se2)
=⇒ {var := se1 + se2} 〈π ω〉φ

=⇒ 〈π var=se1+se2; ω〉φ
T1, T2, T are types of se1,se2, and se1+se2, respectively. Depending on these
types the schematic predicate inRangeT is instantiated with the correspond-
ing JAVA CARD DL predicate inByte,inShort ,inInt ,inLong , or inChar (see
Appendix A.1.5) which have the same semantics as the meta-level predicate
RangeT .

The first premiss establishes the within relation W of the retrenchment
RKeY (see Theorem 12.18). If both arguments are within the provided range,
then the result must be within range as well, i.e., no overflow occurs.

In the second premiss the JAVA statement is symbolically executed, i.e.,
the statement disappears from the program and is translated into a state
update.

Note, that the rule contains two different symbols for addition with differ-
ent semantics: The symbol “+” occurring in the conclusion of the rule denotes
the JAVA operation. The symbol “+”, which occurs in the two premisses, rep-
resents the abstract addition operation on integer.

Obviously, completeness is lost using retrenchment RKeY since attempting
to verify any program containing overflow results in proof goals that cannot be
closed. However, we discourage from making use of overflow and believe that
the loss of completeness is not a disadvantage. Moreover, if overflow cannot
be excluded for some reason the rule set based on retrenchment RJava can
be used which is complete (also for programs containing overflow).

12.5.2 Example

As an example we want to prove that ++b is in fact equivalent to (byte)(b+1)
(see Example 12.4) and set up the following proof obligation:

b
.= c =⇒ 〈boolean r=(++b==(byte)(c+1));〉r .= TRUE (12.1)

Firstly, by choosing the integer semantics intRules:javaSemantics in the
taclet options we activate the rule set reflecting retrenchment RJava where
overflow is handled as defined in the JAVA language specification.

After some applications of program transformation rules breaking up the
quite complex expression from above we obtain

b
.= c =⇒ 〈byte i0=++b; byte i1=(byte)(c+1); r=i0==i1;〉r .= TRUE

As one can see fresh variables i0 and i1 of type byte are introduced and
assigned the result of the left and respectively right side of the complex
comparison expression from above.



12.5 Implementation 501

After removing the declaration of the fresh variable i0 rule preIncrement
can be applied yielding

b
.= c =⇒ \〈 b=(byte)(b+1); i0=b;

byte i1=(byte)(c+1); r=i0==i1;\〉r .= TRUE (12.2)

Again, some program transformations are applied and eventually rule
assignmentAdditionToUpdateJavaSemantics which gives

b
.= c =⇒ {i0 := moduloByte(addJint(b, 1))}

〈byte i1=(byte)(c+1); r=i0==i1;〉r .= TRUE (12.3)

As one can see the JAVA statements b=(byte)(b+1); i0=b; have been
worked off resulting in the update {i0 := moduloByte(addJint(b, 1))} .

Then the proof proceeds similar to above and we obtain

b
.= c =⇒ { i0 := moduloByte(addJint(b, 1)),

i1 := moduloByte(addJint(c, 1))}〈r=i0==i1;〉r .= TRUE

We make use of the equation b
.= c in the antecedent and eventually finish

the proof after a few simple steps.
In a second attempt we try to discharge the same proof obligation (12.1)

using the integer semantics intRules:arithmeticSemanticsCheckingOF, i.e.,
using the rule set reflecting retrenchment RKeY .

The proof is similar to the one above until we reach goal (12.2). After some
simplifications, instead of rule assignmentAdditionToUpdateJavaSemantics we
now have to apply rule assignmentAdditionToUpdateCheckingOF and a rule for
type casts (not shown here) which results in the following three new goals:

b
.= c =⇒ {i0 := b + 1} (12.4)

〈byte i1=(byte)(c+1); r=i0==i1;〉r .= TRUE
b

.= c , inByte(b), inByte(1) =⇒ inInt(b + 1) (12.5)
b

.= c =⇒ inByte(b + 1) (12.6)

Goal (12.4) corresponds to (12.3) but here we have addition + on integer
instead of the function addJint from above. Furthermore, instead of the cast
function moduloByte we here have the additional goal (12.6) ensuring that the
cast does not cause overflow and, thus, has no effect. Goal (12.5) guarantees
that the expression b + 1 does not cause overflow. Obviously, both sequents
(12.5) and (12.6) are not valid, i.e., do not holds in all states—e.g., if b has
the value 127 both sequents do not hold. If we continue the proof with (12.4)
we obtain two similar proof obligations for c that cannot be discharged.
The reason for that is, that retrenchment RKeY requires a program to be
free of overflow for all possible input values. To make the above program
provable in RKeY we therefore have to restrict the possible values of b and c
to prevent overflow, e.g., by adding a precondition b ≥ 0 ∧ b < 100 which
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then also restricts the range of c since we have b
.= c. We obtain the valid

sequent

b
.= c, b ≥ 0, b < 100 =⇒ 〈boolean r=(++b==(byte)(c+1));〉r .= TRUE

that can be derived with the KeY prover using the integer semantics checking
for overflow.

12.6 Pitfalls Related to Integers

In addition to problems related to the finiteness of the JAVA integer types
there are further pitfalls arising from the semantics of division and remainder
operations.

In JAVA integer division / always rounds towards 0, i.e., the result of n/d
with d �= 0 is the integer value q defined as follows:

• |q| is the (unique) value satisfying |n| − |d| < |d · q| ≤ |n|
• q is positive if both n and d have same signs and negative otherwise.

The remainder operator % yields the remainder of an implied integer division
and is defined such that (n/d)*d+(n%d) = n holds (even in case of overflow).

In mathematics there are several definitions of integer division whereas
the most commonly used is the Euclidean definition: For n, d with d �= 0
there are uniquely defined numbers q, r with n = q ∗ d + r and 0 ≤ r < |d|
where q is the quotient n/d and r the remainder n%d.

It can be shown that both definitions coincide for a non-negative div-
idend n. For negative dividends though the two definitions yield different
results for integer division and remainder operations as Table 12.2 shows.

Table 12.2. Examples of integer division and modulo operations corresponding to
the JAVA definition (columns 2–3) and the Euclidean definition (columns 4–5)

(n, d) n jdiv d n jmod d n/d n%d

(5, 3) 1 2 1 2
(5,−3) −1 2 −1 2
(−5, 3) −1 −2 −2 1

(−5,−3) 1 −2 2 1

In JAVA CARD DL there are two function symbols for division: jdiv having
the JAVA semantics (without overflow though) and / having the Euclidean
semantics. The same applies to remainder functions jmod and %.

Example 12.19. Let the program variables d, n, and q be of type int.
Then the formula

d ! .= 0 & !(d .= −1 & d
.= MINint) −> 〈q=n/d;〉q .= jdiv(n, d)
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is valid independently of the chosen integer semantics. The only case for JAVA

division to cause overflow is MINint/− 1 which is excluded by the left-hand
side of the implication.

The formula

d ! .= 0 & !(d .= −1 & d
.= MINint) −> 〈q=n/d;〉q .= n/d

is not valid since for negative values of n or d the results of JAVA division and
the Euclidean division differ. Adding additional assumptions n > 0 & d > 0
ensuring that both n and d are positive makes the formula valid.

12.7 Conclusion

Developing software systems by stepwise refinement is often not easy and
sometimes even impossible. In particular, the last step from an already refined
specification to code often violates the principles of refinement. One reason
is that idealistic data types that are available in specification languages, such
as the natural numbers Z and the real numbers R, are not available in pro-
gramming languages. Instead, programming language data types have to be
used that are not a correct refinement of the abstract specification language
types. However, the programming language data types are not completely
different from the abstract types—on parts of the domain they even behave
as if they were a correct refinement. In this chapter we used the mathemati-
cal integers Z on the one hand and the primitive JAVA type int on the other
hand to illustrate the problems and to describe an approach to overcome the
problem.

The idea of “correctness by construction” using refinement has to be
adapted when, e.g., replacing Z with int, and additional proofs become nec-
essary to ensure correctness of the system. We used the retrenchment frame-
work [Banach and Poppleton, 1998] to formally describe the non-refinement
steps. The advantage of casting non-refinement steps into the retrenchment
framework is that it becomes explicit where exactly the refinement conditions
are violated and, thus, where correctness cannot be shown once and for all
(as it is the case with correct refinement). Instead, we prove the correctness
of a program containing retrenchment by individually verifying critical situ-
ations. After these proofs have been done, no run-time checks are required.
The additional proof obligations are systematically generated from the re-
trenchment clauses. Case studies showed that most of the additional proof
obligations can be discharged automatically by the KeY system or by exter-
nal decision procedures like CVC [Stump et al., 2002] and the Simplify tool,
which is part of ESC/Java [Detlefs et al., 1998].

As far as we know, the KeY system is the first tool that implements
retrenchment into a deductive calculus.
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12.8 Related Work

Retrenchment was first mentioned in [Banach and Poppleton, 1998] as an
answer to the problem that refinement is too restrictive for many practical
applications. In [Banach and Poppleton, 1999] an even more general variant
of retrenchment is presented.

Research on arithmetic in verification focused so far mainly formalising
and verifying properties of floating-point arithmetic [Harrison, 1999, 2000]
(following the IEEE 754 standard). However, there are good reasons not to
neglect integer arithmetic and in particular integer arithmetic on finite pro-
gramming language data types. For example, integer overflow was involved
in the notorious Ariane 501 rocket self-destruction, which resulted from con-
verting a 64-bit floating-point number into a 16-bit signed integer. To avoid
such accidents in the future the ESA inquiry report [European Space Agency,
1996] explicitly recommended to “verify the range of values taken by any in-
ternal or communication variables in the software.”

Approaches to the verification of JAVA programs that take the finiteness of
JAVA’s integer types into consideration—but not their relationship to the infi-
nite integer types in specification languages—have been presented in [Jacobs,
2003, Stenzel, 2005].

The verification techniques described in [Poetzsch-Heffter and Müller,
1999, von Oheimb, 2001a, Huisman, 2001] treat JAVA’s integer types as if
they were infinite, i.e., the overflow problem is ignored.

Closely related to our approach is Chalin’s work [Chalin, 2003, 2004]. He
argues that the semantics of JML’s arithmetic types (which are finite as in
JAVA) diverges from the user’s intuition. In fact, a high number of published
JML specifications are shown to be inadequate due to that problem. As a
solution, in [Chalin, 2003] Chalin proposes JMLa—an extension of JML with
an infinite arithmetic type bigInt. In [Chalin, 2004] JMLa is extended to
JMLb which offers three different semantics for JML integer expressions,
called math modes :

• Java math which corresponds to the semantics of JAVA and, thus, to re-
trenchment RJava .

• Bigint math which corresponds to the semantics on which the rule
set intRules : arithmeticSemanticsIgnoringOF is based. Technically this is
achieved by an implicit type cast of arithmetic expressions that might
cause overflow to the infinite type bigInt.

• Safe math which is like JAVA math except that overflow is signalled by
means of an exception (like C# checked mode). This mode is not that
strict as retrenchment RKeY . It does not prohibit overflow but it still can
contribute to avoid incidental correctness by signalling overflow with an
exception.
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Breunesse [2006] defines JMLc, another extension of JML and a slight varia-
tion of JMLb. Since the differences between JMLb and JMLc are quite subtle,
we do not go into details here.
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Proof Reuse

by

Vladimir Klebanov

13.1 Introduction

The Need for Proof Reuse in Software Verification

Experience shows that the prevalent use case of program verification systems
is not a single prover run. It is far more likely that a proof attempt fails, and
that the program (and/or the specification) has to be revised. Then, after a
small change, it is better to adapt and reuse the existing partial proof than
to verify the program again from first principles. A particular advantage is
that proof reuse can reduce the number of required user interactions.

Here we present such a technique for proof reuse. In fact, towards the end
of this chapter (⇒ Sect. 13.9), we will show how our method can improve the
user experience for a whole range of verification scenarios. Until then, we limit
ourselves to the setting described above, with the further assumption that
only the implementation changes and the specification remains unchanged.

After discussing the features of the method, we will introduce a small
running example, cover the theoretical and practical details of proof reuse,
examine other solutions to the problem, and finally survey the full range of
proof reuse applications in deductive verification of JAVA software.

Features of Our Reuse Method

The main features of our reuse method are:
(1) The units of reuse are single rule applications. That is, proofs are

reused incrementally, one proof step at a time1. This allows us to keep our
method flexible, avoiding the need to build knowledge about the target pro-
gramming language or the particular calculus rules into the reuse mechanism.
Another consequence of this feature is the guaranteed soundness of proofs,
since the usual rule application mechanism of the prover is used for proof
construction.
1 Alternative approaches are discussed under “related work” (⇒ Sect. 13.8).

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 507–529, 2007.
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(2) Proof steps can be adapted and reused even if the situation in the new
proof is merely similar but not identical to the template.

(3) In case reuse has to stop because a changed part in the new program
is reached that requires genuinely new proof steps, reuse can be resumed
later on when an unaffected part is reached. The system detects when this is
the case.

A Review of Basic Notions and Definitions

At this point, we review some important calculus-related notions from the
Section 3.4. As usual, we assume that rules are represented by rule schemata.
Rule instances are derived from rule schemata by instantiating schema vari-
ables. In the following, we identify rules and their schema representations.

A proof for a goal (a sequent) S is a tree with S at the root. A proof
is constructed by matching an open goal with the conclusion of a rule and
extending the tree at this point with child nodes (sub-goals) corresponding
to the premisses of the rule. Rules without premisses (axioms) finalise this
process at a given goal. A rule application, thus, consists of a rule instance
and a node in the proof tree that is a logical consequence of its child nodes
via this instance.

‘Most rules have a focus, i.e., a single formula, term, or program part in
the conclusion of the rule that is modified or deleted by applying the rule.
The focus of the if rule in Section 3.6.3, for example, is the if-statement. An
example for a rule that does not have a focus is the cut rule; it can be applied
anywhere.

13.2 A Running Example

We now motivate our approach using a simple example. While utterly con-
trived, this example is well-suited to give insight into the setting and the
mechanics of proof reuse.

Consider the following program:

JAVA

int x;
int res;
res=x/x;

JAVA

Its intended behaviour and specification is that it should always terminate
with res set to 1. The program, however, contains a bug and cannot be
proven correct, since an arithmetic exception can be thrown on division by
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zero.2 Figure 13.1 (a) shows the beginning of the failed correctness proof. It
has one open branch (the “division by zero” branch) where an exception is
thrown. The other branch (the “normal execution” branch) can be closed.
We will use this proof as a template for reuse and refer to it as “old proof”.

We now amend the program and obtain the following “new” version:

JAVA

int x;
int res;
if(x==0) {

res=1;
} else {

res=x/x;
}

JAVA

This new program is correct w.r.t. the specification. It always terminates with
res set to 1. Figure 13.1 (b) shows the beginning of the proof for this, which
consists of a completely new branch for the case that x is zero (shaded) and
a “non-zero” subproof that handles the division statement.

Comparing the old and the new proof we can see that there are parts
that are in some way common to both. We can also see that in the new proof
these recyclable parts are interspersed with proof steps that are genuinely
new. Furthermore, the formulas in the new proof are not always identical
to their counterparts: some have additional premisses, but the similarity is
discernible. This is a common situation where proof reuse is called for. We
will return to this example and show how reuse works for it in Section 13.7.

13.3 The Main Reuse Algorithm

Basic Ideas

As said in the introduction, we start with two versions of a program: an old
one, and a corrected new one. We also have two proofs in the system: the
old, template proof dealing with the old program—it may or may not be a
complete proof—and an incomplete new proof dealing with the new program.
At the beginning, the new proof is a tree of a single node. This initial proof
goal is constructed from the new program and the specification, which we
assume to have remained unchanged.

For each application of the reuse facility—as for any interactive proof
step—there are choices to be made:

2 In fact, JAVA requires initialising the program variable x. However, here we treat x
as if it were an input parameter with unknown value. The variable declarations
play the role of the leading program part that is not affected by the bug fix.
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Fig. 13.1. Schematic proofs (a) before and (b) after program correction. The left-
most branch of the old proof cannot be closed, since the program contains a bug.
AExc is shorthand for throw new ArithmeticException();.

(a) the rule (schema) to be applied
(b) the focus of application, i.e., a suitable goal/position
(c) instantiations for schema variables.

On the one hand, our goal is to make in the new proof—if possible—the same
choices as in the template proof. On the other hand, we expect the two to
have parts, which evolve in a similar but not identical manner. This requires
us to generalise and extract the essence of the above choices in the old proof.

For finding the rules that are candidates for choice (a), such a generali-
sation is readily available. The rule schemata are natural generalisations of
particular rule applications. We then try to adhere to the overall succession
of rule applications in the template proof. But, since proofs are not linear, at
each point in time there can still be several candidate rules that compete for
being used first.

Choice (b), i.e., the point where a given candidate rule is to be applied, is
more difficult as it is hard to capture the essence of a formula or sequent. To
solve this problem, we define a similarity measure on formulas (⇒ Sect. 13.4).
Fortunately, there is usually only a moderate number of possibilities, because
program verification calculi are to a large degree “locally deterministic”. That
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is, given a proof to be extended, most rule schemata only have a small number
of potential application foci.

These combinations of candidate rules and their potential focus points—
which we call reuse pairs in the following—are ordered according to the sim-
ilarity between the potential focus in the new proof and the actual focus in
the template proof. Thus, the similarity measure both implements the gener-
alisation for choice (b) and is used to prioritise the rule candidates left from
choice (a).

Finally, to make choice (c), schema variable instantiations are computed
by matching the rule schema against the chosen focus of application. Schema
variables that do not get instantiated that way, e.g., quantifier instantiations,
are simply copied verbatim from the old proof.

The Main Algorithm

The main reuse algorithm is shown in Figure 13.2. It maintains an unsorted
list C of distinguished rule applications in the template proof, which are the
reuse candidates . While reuse progresses and the new proof grows, those old
rule applications that are considered currently available for reuse are listed
in C. In the beginning, C is initialised with the list of initial candidates C0,
which is computed by the function initialCandidateList from the differences
in programs.

At each iteration step, the function chooseReuse is invoked to compute
all potential reuse pairs and choose the most appropriate one. A reuse pair
consists of (1) a candidate rule application and (2) a potential new focus,
i.e., a position in a goal sequent of the new proof, where the same rule is
applicable. The implementation of chooseReuse is shown in Figure 13.3.3 For
the reuse pair selection process chooseReuse employs the similarity function
score, which will be discussed later on. The function score is mainly based
on focus similarity.

The rule of the selected reuse pair is then applied at the target focus,
extending the new proof. The candidate rule application is removed from the
list C.4 Finally, the children of the used candidate rule in the old proof tree
become new candidates and are added to C.

In other words: the proof steps appearing in the list C at a given time
can be considered as marked in the template proof. These markers form a
“wavefront” extending through the old proof tree during reuse. The markers
are indeed visible in the KeY prover as -signs attached to nodes of the
template proof tree.

3 We show a nested loop implementation for its clarity. The actual implementation
uses an optimised incremental computation algorithm.

4 Unless it is an initial candidate (i.e., an element of C0), in which case it is per-
sistent in C. The reason for making the initial candidates persistent is explained
in Section 13.5.
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Pseudocode

input oldProof , oldProgram , newProgram , specification ;

newProof := initialProofGoal(newProgram , specification);
C0 := initialCandidateList(oldProof , ∆(oldProgram ,newProgram));
C := C0;
while newProof has open goals do

〈candidate ,newFocus〉 := chooseReuse(C, oldProof ,newProof );
if 〈candidate ,newFocus〉 �= ⊥ then

newProof := result of applying rule(candidate) at newFocus in newProof ;
if candidate �∈ C0 then C := C \ {candidate}; fi;
C := C ∪ {c | c is a child of candidate in oldProof };

else
newProof := applyRuleWithoutReuse(newProof );

fi;
od;

output newProof ;

Pseudocode

Fig. 13.2. Main reuse and proof construction algorithm

Pseudocode

function chooseReuse(list C of candidates, oldProof , newProof )
possibleReuses := {};
Goals := open goals of newProof ;
foreach c ∈ C do

foreach g ∈ Goals do
foreach position p in the sequent of g do

if the rule schema of c is applicable at p then
possibleReuses := possibleReuses ∪ 〈c, p〉;

fi;
od;

od;
od;
if possibleReuses = {} then return ⊥ fi;
select 〈c, p〉 from possibleReuses with score(〈c, p〉) maximal;
if score(〈c, p〉) > ε then

return 〈c, p〉;
else

return ⊥;
fi;

Pseudocode

Fig. 13.3. Function for the best possible reuse pair



13.4 Computing Rule Application Similarity 513

So far, two very important questions remain open: how is the quality of
possible reuse pairs computed (i.e., how does the function score that is used
by chooseReuse work)? And where do the initial candidate proof steps come
from (i.e., how does the function initialCandidateList work)? These questions
are answered in Sections 13.4 and 13.5, respectively. Note that our algorithm
is “modular” in the sense that the answers can be given independently.

Avoiding Confusion: A Quality Threshold

While performing reuse, the danger is not only to do too little, but also to do
“too much”. Sometimes, even though there are possible reuse pairs available,
it is better to use none of them. This is not so odd as it seems, since a
reuse pair’s existence alone means little more than a possibility of applying a
single rule. Whether the rule is appropriate in a particular context is another
question.

The most prominent opportunity for exercising restraint is when a gen-
uinely new situation in the new proof is reached. In this case we want reuse
to stop, since reuse pairs used up here would not in general be available when
an unaffected proof part is reached again. This does not undermine the cor-
rectness of the proof under construction (since the prover only allows correct
rule applications), but it can confuse the user and impede performance.

To safeguard against confusion, we compare the quality scores of reuse
pairs to a threshold value ε. In case the score of all possible reuse pairs is
below ε—which is an indication that we have reached a situation that is
either different or not present in the old proof—a completely new proof step
has to be chosen by the user or the automated proof search procedure (this
choice is symbolised by calling applyRuleWithoutReuse in the algorithm). In
the meantime, the system constantly checks whether reuse can be restarted
using one of the available candidates.

What to Do With Instantiations?

For some rules it is not sufficient to know where they will be applied (i.e., what
their focus is), but additional information is required. For example, (a) the cut
formula has to be known for an application of the cut rule, (b) for induction
rules, the induction hypothesis has to be known, and (c) for quantifier rules,
the appropriate instantiation has to be provided. Since it would be a very
hard task to adapt this kind of information from the old rule application to
the new one, we currently attempt to use the same information as in the old
proof.

13.4 Computing Rule Application Similarity

Recall that a possible reuse pair consists of a rule application in the old proof
and a focus (formula, term, or program) in the new proof where the same
rule is applicable.
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The similarity score for quality assessment of possible reuse pairs is a key
part of our reuse facility, since it is one of the most crucial and difficult parts
in our effort. We have to distinguish between proof parts that are appropriate
for reuse in a given situation and parts that only seem to be so on first sight.
In other words, similarity scoring must prevent mis-application of proof steps
from the old proof that are not appropriate for reuse.

When all possible reuse pairs have been computed for an iteration step of
the reuse algorithm, we are (usually) left with a choice. Several features may
influence the quality of a reuse pair. The first and most important one is the
similarity between the application foci in the old and the new proof. How it
is computed is described in detail in the following, where we distinguish three
kinds of rules:

Rules for symbolic execution, which focus on a program. The similarity score
is determined by comparing the focus programs in the old and the new
proof. The non-program parts of the formulas in question are not consid-
ered, since in our calculus they rarely provide additional discriminating
evidence.

Analytic first-order logic and rewrite rules, which manipulate a (sub-)formu-
la or term without modifying program parts. A similarity analysis of the
foci tailored to the first-order fragment is performed.

Focus-less rules, which are the few rules of our calculus, that do not have
a focus. The score of such a reuse candidate is solely based on other
features, in particular proof connectivity.

To get a single numerical quality value for a reuse pair, we sum up the scores
computed for different features.

Similarity Score for Program Parts

We evaluate the appropriateness of symbolic execution proof steps by com-
paring the programs that these steps focus on. In general, symbolic execution
rules only touch the first statement of a program. Our comparison is not lim-
ited to the first statement though, the entire focus programs are considered
as well.

A straightforward way to compare two programs is to compute the edit
distance between them, which is the length of the minimal edit script for
turning one program into the other. Since, for example, the particular names
of variables, methods, etc. have no effect on the structure of proofs, we use
an abstraction of actual programs for comparison.

Below, the following steps of the comparison are explained in more detail:
(1) the algorithm for computing the minimal edit script, (2) the program
abstraction that we use, and (3) the computation of a numerical similarity
score from an edit script.



13.4 Computing Rule Application Similarity 515

Computing the Minimal Edit Script

Currently, our similarity assessment function treats programs as linear se-
quences of symbols. Experiments with this implementation show that it is an
efficient and successful way to compare programs for our purposes. Theoreti-
cally, a program similarity measure based on a tree editing distance algorithm
(e.g., [Zhang and Shasha, 1989]) would yield even better discrimination.

In the following we use Myers’s classical Longest Common Subsequence
(LCS) algorithm [Myers, 1986] to efficiently compute the minimal edit script
of two sequences of symbols. It takes two sequences

A = a1 a2 · · · aN and B = b1 b2 · · · bM

as input, where the ai and bj are elements of an arbitrary alphabet, and
produces the minimal edit script for turning A into B.

An edit script is a list of insertion and deletion commands. The delete
command “xD” deletes the symbol at position x from A. The insert com-
mand “x I b1 b2 · · · bt” inserts the sequence of symbols b1 b2 · · · bt immediately
after position x. The script commands refer to symbol positions in A after
the preceding commands have been executed. The length of the script is the
number of symbols inserted or deleted.

Program Abstraction

The computation of a minimal edit script requires as input two sequences
of symbols. To construct such sequences from the two programs that are to
be compared, we first linearise the programs into a sequence of statements.
Then, the statements are abstracted into statement signatures.

Statement signatures are defined to abstract from names, expressions,
most literal values, etc. That is, they are designed to remove all features that
tend not to influence the shape of the control flow and, thus, proof structure.
Abstraction reduces noise and increases reuse performance. As a byproduct,
it allows our algorithm to deal with such program changes as renamings and
changes of literal values. This “coarsening” approach has parallels to the
technique of boolean program abstraction [Ball and Rajamani, 2000], which
produces an equivalent—in some sense—program with a reduced state space.
In contrast, we are only interested in a means to syntactically discern related
and unrelated programs and not in behavioural refinement.

The first element of the abstraction of a statement S is the name of S
(e.g., If , LocalVarDecl , Assignment). In the following cases, more details are
added to the abstraction:

• If the statement S is also an expression, the static type of the expression is
added. If, moreover, S is an assignment whose right operand is a boolean
literal, then the value of that literal is appended as well.
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• If the statement S is a method invocation, the signature of the method
and the name of the class containing the referenced implementation are
added.

The boolean literal assignment has indeed to be treated in this special way.
First, the symbolic execution rules of our calculus often introduce two sym-
metrical assignments of this kind when branching upon JAVA’s relational and
equality expressions. Without the special treatment, the two branches would
be indistinguishable. Also, the small domain of the boolean data type and
the direct impact of the particular value assigned on the control flow do not
permit removal of this information.

Example 13.1. Consider the following two programs α and β:

α =
{
int x; int res;
res = x/x;

β =
{
int x; int res;
if (x==0) res=1; else res=x/x;

The result of abstracting them into sequences A resp. B of signatures is:

A =
{
LocalVarDecl, LocalVarDecl,
Assignment(int)

B =
{
LocalVarDecl, LocalVarDecl,
If, Assignment(int), Assignment(int)

The underlined parts correspond to the insertions in the minimal edit script.
It consists of the two commands 2 I If and 4 I Assignment(int).

One could devise more elaborate abstraction schemes. Our experience,
though, shows that this only leads to a marginal improvement.

From Edit Script to Similarity Score

To compute a similarity score for two programs α and β, we have computed
a minimal edit script between their abstract representations A and B. Now
we must condense this edit script into a single numerical value.

Definition 13.2 (Program similarity score). Let E(A, B) = e1 e2 · · · en

be the minimal edit script for the abstractions A, B of programs α, β. Then,
the similarity score of A, B resp. α, β is defined by

δ(α, β) = δ(A, B) = −
n∑

i=1

P (ei)

where the penalty P (e) for an edit command e is5

5 Please note that all numbers provided here are for orientation purposes only.
The numbers in your version of the KeY system may vary.
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P (e) =






t∑

k=1

0.75
x + k

if e = x I b1 b2 · · · bt

1
x + 1

if e = xD

We remind that x is the numeric position of the insertion/deletion as counted
from the beginning of the linearised program.

Note that higher values of δ(α, β) mean higher similarity, and that δ(α, β)
is always less than or equal to zero. The maximal value 0 is reached for
programs with identical signatures. The quality threshold is chosen at −0.72
for the given values of penalty constants.

The function δ is not symmetric, meaning that δ(A, B) differs in general
from δ(B, A). Statement insertions are penalised less than deletions. The
reason for defining δ in that way is that additional statements in the new
program are easier to handle for reuse than missing statements. Deleting
statements does usually not simply correspond to deleting proof parts but
requires more complex changes of the proof.

Program differences are penalised less the farther they are from the active
(first) statement, which is the target of symbolic execution.

Example 13.3 (Example 13.1 continued). We now consider the minimal edit
script for the programs α and β presented above. It consists of the two com-
mands 2 I If and 4 I Assignment(int).

The similarity score is thus:

δ(α, β) = δ(A, B) = − 0.75
2 + 1

+− 0.75
4 + 1

= −0.4 ,

which signifies a medium to high similarity. The score is above the threshold
and warrants reusing the application of the local-variable-declaration rule
from the old proof in the new one.

Similarity Score for First-Order Logic Parts

Assessing the quality of possible reuse pairs that do not deal with symbolic
program execution is a more difficult challenge. This is due to the lower degree
of local determinism of the first-order fragment of the calculus and the high
“volatility” of first-order formulas in a proof.

We use two different criteria for first-order-related proof steps. First, a
high bonus (+1.0) is added to the quality score if the foci in the old and
the new proof are identical up to variable renaming. Otherwise, a small
penalty (−0.2) is added. Second, the two formulas that contain the actual
rule application foci are compared in a similar manner as programs: formulas
are linearised, then the names of variables, functions, etc. are abstracted to
their sorts, and finally a minimal edit script is computed. The script is scored
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uniformly, with every deletion worth a penalty of 0.1 and every insertion a
penalty of 0.05. Additionally, the programs in the formulas contribute their
similarity scores with a weight of 0.25.

The results of using these criteria are sufficient for a high ratio of correctly
reused rule applications but are not as good as for rule applications with a
program part in focus.

Similarity Score for Focus-less Rules and a Refinement Based on
Proof Connectivity

An additional feature that can be used to score possible reuse pairs (besides
similarity of rule foci), is the connectivity of the new proof (as compared to
the old proof). This criterion gives a bias against tearing apart proof steps
that are connected in the old proof. Reuse pairs disrupting connectivity are
assigned a small penalty (of −0.1). This is enough to tip the scales in case
other features do not provide discrimination between several possible reuse
pairs.

13.5 Finding Reusable Subproofs

Our main reuse algorithm requires an initial list of reuse candidates. These
initial candidates, which are rule applications in the old proof, can be seen
as the points where the old proof is cut into subproofs that are separately
reusable. They are the points where reuse is re-started after program changes
required the user or the automated proof search mechanism to perform new
rule applications not present in the old proof. The choice of the right initial
candidates is important for reuse performance.

Since program changes may lead to additional case distinctions in the
new proof, it may be necessary to reuse old subproofs repeatedly in the new
setting. In order to deal with this necessity, we make the initial candidate
proof steps persistent. As shown in Figure 13.2, the initial candidates (they
are the elements of C0) are not consumed when they are reused. Thus an
initial candidate proof step is always available to seed the corresponding
template subproof when needed.

The way initial candidates are computed depends on the way the program
and thus the initial proof goal has changed. For changes affecting single state-
ments (local changes) we extract the differences right from the source files, us-
ing an implementation of the GNU diff utility (www.bmsi.com/java/#diff)
in JAVA. The diff utility is based on the same algorithm by Myers [Myers,
1986] that we use for program similarity scoring. GNU diff is well-known to
produce meaningful change sets for modifications of source files. A number
of heuristics help identify common sections of code in the old and the new



13.5 Finding Reusable Subproofs 519

program based on diff output. The proof fragments dealing with these com-
mon parts are good candidates for reuse; thus, their root nodes are marked
as initial reuse candidates.

In the KeY system, the differences between program revisions are provided
by the integrated source tracking system based on CVS, which in turn uses
GNU diff. Based on that information, markers for initial reuse candidates are
automatically inserted by our reuse facility into the proof to be reused.

int x;

int res;

res=x/x;

int x;

int res;

if(x==0) {

res=1;

} else {

res=x/x;

}

-- old

+++ new

@@ -1,3 +1,7 @@

int x;

int res;

+if(x==0) {

+ res=1;

+}else {

res=x/x;

+}

(a) (b) (c)

Fig. 13.4. Change detection with GNU diff: (a) old program, (b) new program,
and (c) output of “diff -uw”

Example 13.4. The output of GNU diff for our running example is shown in
Figure 13.4. The first three lines show bookkeeping information (names of the
compared files, position of the difference found). The lines after this starting
with “+” have been added to the old program. Lines starting with a “-” (not
occurring here) have been removed from the old program. Lines starting with
a space are common to both programs.

In this example, the common program parts start with the statements
int x; and res=x/x;. Thus we scan the old proof top-down and look for
proof steps with these statements in focus. This procedure yields two initial
reuse candidates for our example. These are the proof steps with the bold
border in Figure 13.1 (a).

Caveats and Limitations

We have to note that the heuristics used to detect initial reuse candidates
are quite accurate but not infallible. Their biggest adversary is again the fact
that program structure is more adequately represented as a tree than as a
linear sequence of symbols, which is the view we take.

The detection performance can further be impaired, for example, if the
programmer puts several statements on one line. Given that this is (a) not
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too common and (b) explicitly discouraged by the official JAVA Coding Con-
ventions [Sun, 2003a], we did not provide a solution (such as an additional
intra-line diff).

Also, non-local changes, such as renaming of classes or changes in the
class hierarchy, cannot be detected in a meaningful way by the standard
diff algorithm; the user has to announce these changes separately. In the
meantime, techniques have been developed for computing a precise and se-
mantically aware diff of two JAVA programs [Apiwattanapong et al., 2004].
Unfortunately, this work is limited to JAVA bytecode, which is cumbersome
to version control.

13.6 Implementation and a Short Practical Guide

To profit from reuse we simply have to load another instance of a problem
already present in the prover. A dialog will appear asking whether we want to
reuse a previous proof. If we say yes, the system will analyse the differences
in the source code, compute initial reuse candidates, and, if reuse is indeed
possible, enable the -marked reuse button.

Hitting the button activates the reuse process. Should reuse stop, the
system will indicate its idea of how the proof continues via a message in the
status line: template proof continues with 〈rulename〉. We can hit Alt-space to
switch the view to this particular proof step. Hitting Alt-space again takes
us back to the open goal in the current proof. This can give us some idea of
where to steer the proof. Now we have to perform proof steps interactively
or run a strategy. Once a state is reached where reuse is possible again, the
reuse button will be enabled.

The candidate proof steps (“reuse candidates”) are always distinguished
in the template proof by a -sign at the corresponding node of the template
proof tree. It is possible to add or remove candidate markers at any time via
the context menu of a proof node. For this, the context menu offers the item
mark for reuse, which toggles the marked state.

In order to provide feedback, the reuse facility can colour the nodes in the
proof tree it constructs with different colours. The ecru (yellowish) nodes are
the ones created by the reuse procedure. Red nodes are the ones where the
connectivity of the old proof has been broken for some reason.

13.7 The Example Revisited

We trace the first few interesting steps in detail, while slightly simplifying
the presentation for clarity (e.g., the connectivity feature is not considered).

First, we need to compute a set of initial reuse candidates based on the
differences between the old and the new version of the program (both given
in the introduction). How this is done is explained in Example 13.4, which
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shows that we obtain two candidates in our case. These are the nodes with
a bold border in Figure 13.1 (a).

For now, we only consider the first one, namely the rule for variable dec-
larations applied to “int x;” in the old proof (the rule of the second initial
candidate concerning “res=x/x;” is not applicable anyway). It has one pos-
sible focus in the following (new) initial proof goal (it cannot be applied to
the second variable declaration, since our calculus always treats the left-most
statement first):

=⇒ 〈int x; int res;

if (x==0) res=1; else res=x/x;〉 (res = 1)
(G0)

The similarity score for the single possible reuse pair (see Example 13.1 for
the computation) is −0.4, and reuse is performed. We get the new goal

=⇒ 〈int res;

if (x==0) res=1; else res=x/x;〉 (res = 1)
(G1)

and a new reuse candidate (the child of the initial candidate in the old proof),
which is again an application of the rule for variable declarations, this time
applied to “int res;”. It also has one possible focus in the new proof in
goal (G1). The similarity score for the resulting possible reuse pair is −0.62.
This is less than before as there are now fewer identical parts in the pro-
grams of the old and the new focus, and the first difference is closer to the
active statement. Nevertheless, reuse is still indicated. The resulting new goal
sequent is

=⇒ 〈if (x==0) res=1; else res=x/x;〉 (res = 1) (G2)

and the new candidate is the rule handling the assignment “res=x/x;” in the
old proof (which happens to be identical to the second initial candidate). This
candidate, however, is not applicable in (G2). We have reached a genuinely
new part of the amended program and, thus, of the proof.

To deal with the new program parts, where no reuse is possible, we manu-
ally apply the rules for handling the if statement and evaluating its condition
(in practice this can be done automatically). The proof tree splits, and we
get two subgoals:

=⇒ x = 0 −> 〈res=1;〉 (res = 1) (G2.1)
=⇒ !(x = 0) −> 〈res=x/x;〉 (res = 1) (G2.2)

There are still two identical candidate proof steps, both with the rule handling
“res=x/x;” in the old proof. It cannot be applied to (G2.1), as handling an
assignment with a literal instead of a division on the right requires a different
rule. But the candidate can, of course, be applied to (G2.2). The similarity
score for this possible reuse pair is 0.0. The candidate is reused, and (G2.2)
is replaced by two new subgoals:
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=⇒ !(x = 0) −>

!(x = 0) −> (res = div(x, x) −> 〈〉 (res = 1))
(G2.2.1)

=⇒ !(x = 0) −>

x = 0 −> 〈throw new ArithmeticException();〉 (res = 1)
(G2.2.2)

We now have three open goals: (G2.1) is on the “new” branch, (G2.2.1) is
on the “normal execution” branch, and (G2.2.2) is on the “division by zero”
branch. Things get a bit complicated now as we also obtain two new reuse
candidates. Both are applications of the same rule, namely the first-order
logic rule for handling implications; their foci are:

!(x = 0) −> ({res = div(x, x)} 〈〉 (res = 1)) (C-N)

x = 0 −> 〈throw new ArithmeticException();〉 (res = 1) (C-Z)

Each of these two candidates has a possible focus in all three open goals. Thus
we obtain six possible reuse pairs, of which in fact only two are appropriate—
(C-N) must be reused at (G2.2.1) and (C-Z) at (G2.2.2), not the other way
round. We also do not want to waste any of these two candidates on the
branch (G2.1), which was not present in the template. The reuse facility
computes the following quality scores for the six pairs:

(C-N) (C-Z)
(G2.1) −0.53 −0.81
(G2.2.1) −0.35 −0.77
(G2.2.2) −0.58 −0.35

As desired, the two right possibilities (shown in bold) have the highest sim-
ilarity scores and are selected for application. Subsequently the candidate
markers move on, and the other 4 possible reuse pairs become obsolete.

From here on, reuse can be continued to the successful completion of
the proof. If we immediately close the branch under (G2.2.2), which is ob-
viously futile in the new situation, the new proof consists of 45 proof steps,
of which 27 have been reused.6 This is the optimal reuse performance for
the given correction. More important than the numbers, though, is the fact
that all unaffected parts of the old proofs could be reused completely. For
a complicated program, these parts would normally contain non-trivial user
interactions (quantifier instantiations, use of lemmas, etc.). Saving these is
the main benefit of reuse.

13.8 Other Systems and Related Methods

In this section we give a short survey and comparison of proof reuse-related
methods as employed by a number of different verification systems.
6 The numbers can vary with the version of the KeY system.
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Global Abstraction Methods

An alternative to incremental reuse presented here is global proof abstraction.
This broad group of methods attempts to capture the overall gist of whole
proofs—at once—and instantiate it for a new problem. Examples are Kolbe
and Walther’s technique for proving conjectures by induction [Kolbe and
Walther, 1994] and the efforts of the Omega Project [Melis and Whittle,
1999]. To our knowledge, this approach has not been successfully applied to
verification of object-oriented software. This might be attributed to the fact
that the relevant changes in this domain are of local nature.

Constructive Methods

Another non-incremental technique for reusing proofs is constructive reuse.
The constructive approach is to analyse the changes made to the proof goal
(i.e., the program to be verified) and their effects, and to use this informa-
tion to identify and reassemble parts of the template proof into a new one.
This approach, however, needs to have exact knowledge of all calculus rules
and effects of program changes (“when an if-statement is inserted, an appli-
cation of the if-rule must be added to the proof and, below that, the proof
branches. . . ”). Thus, constructive methods are infeasible for calculi with com-
plex target programming languages (e.g., JAVA) and a large number of rules.

The software verification system KIV [Balser et al., 2000], for example,
contains a constructive proof reuse facility [Reif and Stenzel, 1993]. It works
well as the programs that are verified with KIV are written in a simple Pascal-
like language, and the KIV calculus has only a comparatively small number
of program logic rules.

Replay Methods

The simplest incremental reuse method is to just replay the (old) proof script.
This works well as long as the information in which the new proof must
differ from the old proof is not contained in the (linear) script but can be
inferred during rule application. An example for such types of information
are the instantiations of schema variables, which are computed by a matching
algorithm. Significant changes in proof structure, however, cannot be handled
by a simple replay mechanism.

A typical example for this kind of reuse is the replay mechanism of the Is-
abelle theorem prover [Paulson, 1994]. It is quite powerful as its proof scripts
(usually) contain neither variable instantiations nor the foci of rule applica-
tions (which are inferred during rule/tactic application according to simple
rules). On the other hand, it cannot automatically cope with changes in proof
goal ordering or automatically resume reuse after an intermittent failure.
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Similarity Guided Methods

Melis and Schairer pursue another variation of replay [Melis and Schairer,
1998]; this time specifically for reuse of subproofs in the verification of in-
variants of reactive systems, which are specified using first-order logic. Due
to symmetries and redundancies in the state space, such proofs give rise to
many similar subproofs.

Melis and Schairer’s approach identifies a suitable previously solved sub-
problem via a similarity measure on first-order formulas and replays the
stored subproof straight on.

This method is related to our work as it operates under the assumption
that similar situations (proof goals) warrant similar actions (rule applica-
tions or subproofs). The similarity assessment though is performed only once,
which is justifiable by a simpler setting.

13.9 Other Uses for Reuse: Reuse as a Proof Search
Framework

In this section we discuss how proof reuse fulfills a need that goes beyond the
basic scenario that we have presented so far.

The Case of a Changed Class Hierarchy

Fixing a bug is the most obvious but not the only reason for re-doing
proofs. Unfortunately, every addition or removal of a class in a JAVA pro-
gram potentially invalidates all proofs about this program. The problem is
that, for two program-related rule schemata of our calculus—the method
call rule (⇒ Sect. 3.6.5) and the typeAbstract rule (⇒ Sect. 2.5.6)—the
particular rule instance depends on the set of classes constituting the pro-
gram (⇒ Def. 3.10, 3.14). Using an old instance in the new context may be
unsound.

The problem lies here with the JAVA language, and while this situation can
be alleviated, it cannot be completely eliminated in a verification tool. In some
cases, efficient criteria can establish that the validity of a particular proof is/
is not affected by a particular change of the class hierarchy.7 For example,
an instance of the method call rule remains valid if the added class does not
override the method in question. Nonetheless, the lack of a sufficiently strong
module system in JAVA [Corwin et al., 2003] impedes modular verification
and makes every change of the class hierarchy more costly than one would
desire. This issue is also addressed in Sect. 8.5.4.

In general, such changes demand a re-doing of proofs, most of which will
stay to a great extent the same. Here reuse can help.
7 Another take on this problem is given in Section 8.5.4. Furthermore, see [Roth,

2006] for a detailed discussion.



13.9 Reuse as a Proof Search Framework 525

The Case of a Changed Specification

A problem that is a symmetrical variation of the main reuse scenario pre-
sented so far is a case of a revised specification. Given a (partial) proof for
〈p〉φ we are trying to construct a proof for 〈p〉φ′, where φ′ is a (slightly) re-
vised version of φ. While this case occurs probably just as often as a change
of the program, the outlook for reuse is not as optimistic.

Usually, the specification is provided in a high-level language like OCL
or JML, which is then translated into Dynamic Logic. A small change of the
specification is more likely to produce a significantly different proof obliga-
tion. Furthermore, the choice of reuse candidates in the template proof is far
from obvious (apart from the root node).

Altogether, it is hardly possible to give a performance prediction, but the
procedure might still be helpful in a given case.

The Case of Interactive Proof Search

Complicated proofs almost always require user interaction. Even worse, the
quality of the choice required from the user often becomes apparent only
much later in the proof. For instance, many proof steps after choosing an
induction hypothesis one regularly finds out that it has to be amended for
the proof to be successful. In many cases the required change is actually quite
simple, like adding a premiss.

In theory, this is not a problem, since the KeY calculus is confluent. Con-
fluence means that there are no dead ends or blind alleys: it is always possible
to extend any partial proof to completion if a proof exists at all. In practice
this is a small consolation, since the remnants of the old proof attempt clutter
the sequents making it impossible to concentrate on the new one.

This way, we are usually stuck with the only choice of performing undo all
the way back to the regrettable decision and re-constructing the rest of the
proof. Now, it would be tempting to have the ability to edit the proof tree
“in place”, but this would require some very elaborate presentation. With
proof reuse we obtain an alternative solution to the problem.

Here’s how it works in practice. If we think that a proof step needs re-
vision, we select this step (node) in the proof tree. From the context menu
we select change this node. A clone of the current problem instance will be
created, with reuse active. Activating reuse will re-enact the existing proof
up to the step we wish to change. Then reuse will stop, and we have the
possibility to revise our choice at this point. After that, it is possible (if the
new situation allows) to reuse the rest of the old attempt in the new setting.

The Case of Redundant Subproblems

Sometimes a verification problem gives rise to several similar subproblems.
These may be symmetrical in some sense, or maybe even identical. Having
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solved one of them it is possible to employ the reuse mechanism to solve the
others.

In practice, we identify the root node of the desired template subproof
and mark it as a reuse candidate using the contextual menu of the proof
tree. The reuse facility then automatically identifies an open goal where this
solution may be applicable and attempts to adapt it to the new target in the
usual fashion.

The Case of Using Customisable Calculus Modules

Another opportunity for proof reuse arises when using customisable calcu-
lus modules. There are several areas of the KeY calculus where the calculus
designers provide alternative sets of rules for the user to choose from. These
rule sets have different properties and are tailored towards different verifi-
cation tasks and scenarios. The areas covered by such customisable modules
include: null dereferencing checks (on or off), treatment of static initialisa-
tion (on or off), integer semantics (three different ones) and others. The user
can select a particular rule set for each area via the taclet options mecha-
nism (⇒ Sect. 4.4.2).

Usually, in order to reduce complexity, it is recommended to verify a
program with a “simple” calculus version first and then incrementally add
assurance by repeating the proof with a more involved calculus setting. In this
proof reuse is a real help. We illustrate this using verification of integer ma-
nipulation in programs an an example, which Chapter 12 discusses in detail.
The approach of choice here is to verify a program using the mathematical
integer semantics, and afterwards repeat the proof with the RKeY -semantics.

The rules of RKeY -semantics differ from the mathematical rules by an
additional premiss, which is boxed in the following example of an addition
rule (⇒ Sect. 12.5.1).

assignmentAdditionToUpdateCheckingOF

RangeT (se1), RangeT (se2) =⇒ RangeT (se1 + se2)

=⇒ {var := se1 + se2}〈π ω〉φ
=⇒ 〈π var=se1+se2; ω〉φ

This means that the RKeY -proof is just the original proof with an additional
branch for every arithmetical operation considered during the proof.

Once we are satisfied with a proof that uses mathematical integers, we
change the integer semantics to the RKeY -based one and reload the prob-
lem. The reuse facility creates a single reuse candidate at the root of the
template proof. Activating reuse produces a copy of the template with the
additional open branches mentioned above. Discharging these branches yields
a proof that the program is functionally correct w.r.t. the finite range of JAVA

integers. Note that we did not have to engineer any knowledge about the par-
ticular structure of the rules or the ordering of the premisses.
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The above scenario can also be seen as a benign instance of a more
general—and still open—problem, which we discuss in the following section.

The Case of a Changed Proof System

A fact seldomly acknowledged by verification solution providers is that a
significant part of the verification cost is due to changes in the verification
system itself. If proofs are used as certificates for program correctness, they
often have to be maintained over a longer period of time, possibly over many
years. For most purposes, it is essential that proofs can be loaded, checked,
and manipulated within the verification system during their lifetime. On the
other hand, modifications to the proof system itself are to be expected in the
meantime.

These modifications are quite frequent and can force users to redo proofs,
mostly for two reasons. The first reason is that a critical bug has been fixed in
the system and the correctness assertions—while mostly still valid—have to
be re-proved with the fixed version. The second reason is that the improved
performance and usability of the new version warrants an upgrade. But, of
course, every upgrade also has a downside. Old proofs stored on persistent
media may have become obsolete and require significant effort to salvage their
content. This is a problem for all verification systems that store proofs.

During the years of the development of the KeY system we have encoun-
tered numerous changes in the following areas:8

1. logic syntax
2. parser/disambiguation
3. formalisation of the JAVA language semantics
4. logical structure of the rules
5. rule execution engine

We now briefly discuss the important cases (3) and (4). We are currently
extending the reuse facility to automate translation of proofs between versions
of the proof system affected by these changes.

Case (3) arises when minor errors in the symbolic execution rules of the
KeY calculus have to be fixed. This happens infrequently, but cannot be
ruled out, since one can never arrive from an informal specification at a
formal one by formal means.9 The KeY project on regular bases performs the
only measure suitable to mitigate this: cross-checking our rules with other
formalisations of JAVA. A recent check of this kind [Trentelman, 2005] has
discovered a missing case in our array assignment rule. The erroneous rule
and its correction are presented in Figure 13.5. As one can see, the changes
are minor and of local nature, which should allow a similarity-guided proof
reuse.

8 See [Beckert et al., 2005a] for a complete survey.
9 For an in-depth discussion of the calculus soundness issue please see Section 3.4.2.
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a = null =⇒ 〈π NPE; ω〉φ
a �= null ∧ (i < 0 ∨ i ≥ a.length) =⇒ 〈π AOBE; ω〉φ

a �= null ∧ i ≥ 0 ∧ i < a.length =⇒ {a[i] := val}〈π ω〉φ
=⇒ 〈π a[i]=val ω〉φ

a = null =⇒ 〈π NPE; ω〉φ
a �= null ∧ (i < 0 ∨ i ≥ a.length) =⇒ 〈π AOBE; ω〉φ

a �= null ∧ i ≥ 0 ∧ i < a.length ∧ ¬storable(val, a) =⇒ 〈π ASE; ω〉φ
a �= null ∧ i ≥ 0 ∧ i < a.length∧storable(val, a) =⇒ {a[i] := val}〈π ω〉φ

=⇒ 〈π a[i]=val ω〉φ

Abbreviations: NPE=throw new NullPointerException()

AOBE=throw new ArrayIndexOutOfBoundsException()

ASE=throw new ArrayStoreException()

Fig. 13.5. A rule for array assignment: initial and revised version (differences are
boxed)

The case (4) is usually not concerned with soundness, but with efficiency. At
one point some rules containing a potential case distinction have been refor-
mulated from the form splitting the proof (e.g. ifElseSplit) to a form employing
a conditional formula (rule ifElse, both rules are given in Section 3.6.3), which
has the advantage that one has to reason about the condition only once. Also
in this case, proof reuse can enable a smoother transition to the upgraded
calculus.

13.10 Conclusion

Practitioners often report that the cost of re-verification is a serious bottle-
neck in real world formal methods applications [Denney and Fischer, 2005].
We have presented a proof reuse method that works surprisingly well for a
broad range of deductive program verification tasks. The method is very flex-
ible and requires no modification even as the calculus is constantly evolving.
Also, no knowledge has to be built into the method concerning the effects
that a certain program change has on the structure of the correctness proof.

The main reason why the method works is that programs are exceedingly
information-rich artefacts, and the KeY calculus preserves this richness with a
highly locally deterministic design. First, symbolic execution rules only apply
at the foremost, or active, statement of the program, and, second, there is
no rule for sequential composition (see the sidebar on page 3.4.4), so active
statements do not “multiply”. This way, there are usually only few possible
foci for a particular rule to extend a given partial proof.

We have shown that proof reuse has many applications in the verification
process beyond the simple scenario presented at first. We have also discussed
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the biggest remaining challenge: the case when the specification of a system
is modified. We have given instructions on using the reuse implementation
within the KeY prover.
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The Demoney Case Study

by

Wojciech Mostowski

14.1 Introduction

So far in this book no specific JAVA CARD examples have been discussed, apart
from very simple transactions related examples in Chapter 9. In this chap-
ter we are going to discuss how the KeY system is used to verify real world
JAVA CARD programs. The basis and running example for this chapter is the
demonstrative JAVA CARD electronic purse application Demoney provided by
Trusted Logic S.A. The purpose of this chapter is not to present full specifi-
cations for Demoney and a thorough verification procedure, or give a tutorial
on using the KeY system verification facilities (⇒ Chap. 10). Rather, we will
discuss general problems associated with JAVA CARD verification attempts:
provide advice on what to specify about JAVA CARD applets, how to specify it
using different specification languages, and give the reader hints necessary to
perform efficient verification of his or her own JAVA CARD applets. Verifica-
tions that we are going to discuss were performed on an absolutely unmodified
source code of Demoney, thus, the context of this chapter is slightly different
from the rest of the book—we do not consider the use of formal methods
during the development process, instead we show how one can verify preex-
isting, legacy JAVA CARD code, in other words, perform post-hoc verification.
We also assume that, to a certain extent, the reader is familiar with JAVA

CARD technology, described by Chen [2000] (⇒ Chap. 9).
In the next section we present the Demoney application in more detail,

in Section 14.3 we discuss different specification techniques and languages
available in the KeY system, their advantages and disadvantages in the con-
text of Demoney verification. Section 14.4 discusses modular verification and
the use of method contracts in proofs, which is necessary to make the veri-
fication process scalable. Then in Section 14.5 different properties related to
JAVA CARD applets are presented, example specifications are given based on
Demoney and verification is discussed. Finally, Section 14.6 summarises this
chapter.

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 533–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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14.2 Demoney

The case study that we are going to use throughout this chapter is a JAVA

CARD electronic purse application Demoney. While Demoney does not have
all of the features of a purse application actually used in production (for
example, no really sophisticated security measures are implemented), it was
developed some years ago by Trusted Logic S.A. as a realistic demonstration
application (yet still accessible to non-specialists) that includes some major
complexities of a commercial program. In particular Demoney is partly op-
timised for memory consumption, which, as noted by Hähnle and Mostowski
[2005], is one of the major obstacles in verification. The Demoney source
code is at present not publicly available, so there are certain limits to the
level of the technical detail in the presented examples. The implementation
of Demoney follows the extensive, informal specification given by Marlet and
Mesnil [2002], here we give a brief overview of the complexity of the Demoney
source code.

The Demoney implementation consists of 9 JAVA classes and the total of
150 kB of code, large parts of which are comments. The main Demoney class
with the actual JAVA CARD applet consists of over 3 000 lines of code (100kB)
and contains 42 methods. On top of that Demoney uses the JAVA CARD API,
which itself contains over 50 classes. Of course not all of the API classes
and methods are used in Demoney, but it is important to remember that
the size of the API in principle influences the verification complexity—every
call to an API method in the program has to be treated appropriately in the
proof, either by in-lining the referenced method’s implementation or by using
a suitable method contract. We discuss this issue in detail in Section 14.4.

14.3 OCL, JML, and Dynamic Logic

The KeY system offers three ways of specifying the behaviour of the program:
in OCL, JML, and directly in JAVA CARD DL. The KeY system’s OCL in-
terface is described in detail in Section 5.2 and JML interface in Section 5.3.
Using JAVA CARD DL to specify and verify the behaviour of the system means
writing the correctness formulae directly in JAVA CARD DL in the form of a
.key file and loading it directly to the KeY prover (⇒ Chap. 10).

JAVA CARD applets are very specific kinds of JAVA programs, usually ex-
hibiting the following features:

• JAVA CARD applets hardly ever make use of class inheritance or interfaces,
• in general, JAVA CARD implementations do not support the int primitive

data type, instead byte and short types are widely used giving raise to
overflow issues,

• JAVA CARD applets most often store all their data in applet’s primitive
type attributes or primitive type arrays as contiguous byte segments, and
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not in dedicated class structures, and thus there are hardly ever any classes
other than the main applet class,

• JAVA CARD applets use exceptions as the only means to communicate
errors to the card terminal,

• due to limited resources of a smart card and lack of garbage collection
(in general) JAVA CARD applets (i) hardly ever do any memory allocation
and (ii) have to deal with many different kinds of runtime exceptions,

• each JAVA CARD memory location can be persistent or transient which
affects the behaviour of the JAVA CARD transaction mechanism
(⇒ Sect. 9.3).

Because of those features, each of the three ways to specify JAVA CARD applet
behaviour have strong and weak aspects, which we outline next.

As for OCL, it seems that in the context of JAVA CARD applet verification
OCL does not offer substantially more expressiveness than JML. Moreover,
some things are comparatively more difficult (or impossible if only pure OCL
is considered, without custom extensions for the KeY system) to express in
OCL than in JML or JAVA CARD DL. For example, it is not easy to write
expressions involving different integer types or primitive arrays that a JAVA

CARD applet deals with. Also, complex exceptional behaviour is difficult to
express in OCL, as described by Larsson and Mostowski [2004]. On top of
that OCL is not aware (and neither is JML) of the JAVA CARD transaction
mechanism and different persistency types of objects, for example, it is not
possible to specify that a program or a method makes only conditional up-
dates to object attributes (⇒ Sect. 9.5.2).

So, considering also that JAVA CARD programs usually have a flat class
structure and hardly ever make use of advanced software engineering con-
cepts, like design patterns, we are not going to discuss further the use of
OCL (⇒ Sect. 5.4) in the context of this chapter.

JML is a specification language that has been designed specifically for
JAVA, thus, it handles features specific to JAVA much better. Moreover, it
seems that JML has been accepted as a standard specification language
in the JAVA CARD verification community, which means there are plenty
of references to problems related to specifying JAVA CARD programs in
JML (⇒ Sect. 14.6.1), in particular, a comprehensive library of JAVA CARD

API specifications tested in practice are available [Poll et al., 2000]. The one
thing that JML does not fully support are properties related to the JAVA

CARD transaction mechanism. While some of the properties related to ob-
ject persistency can be expressed through references to the JAVA CARD API,
some properties are not expressible at all, like strong invariants or conditional
updates (⇒ Sect. 9.4).

One disadvantage of JML is its strict, visible state semantics seman-
tics (⇒ Chap. 8). In the context of this chapter it means that verification of
properties based on full JML semantics can be very difficult and impractical.
For example, JML requires that all invariants of all instances of all classes in
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the project have to be preserved by all methods. Thus, a proof obligation gen-
erated from a JML specification for a project of realistic size can be quite big
and complex. On the other hand, many useful properties about JAVA CARD

applets can be proved using a much lighter correctness semantics. To achieve
this in practice, it is necessary to construct proof obligations manually, by
writing appropriate JAVA CARD DL formulae in a file that is later fed into the
prover.1 Constructing such proof obligations “manually” is almost as easy as
writing JML specification, moreover, it also brings certain advantages into
the specification and verification process. Most importantly, JAVA CARD DL
provides full support for specifying strong invariants and behaviour related to
the JAVA CARD transaction mechanism. Secondly, JAVA CARD DL expressions
can be optimised “up-front” for a given proof obligation and certain prop-
erties can be expressed in a more direct way by accessing “low level” JAVA

CARD DL features (for example, directly referring to implicit fields). This has
serious impact on verification efficiency and automation. In addition, to fur-
ther simplify the proof, the user can include his or her own problem specific
logic rules. We will elaborate more on these issues later on in the chapter.2

The only disadvantages of using JAVA CARD DL as a specification language
are related to user friendliness. For a single method to be verified, the user
has to write a .key file that includes the full specification for the method,
including necessary parts of the class invariant and invariants for all the
objects accessed by the method. Such a file also needs to contain method
specifications (contracts), that are going to be used in the proof, directly
expressed in JAVA CARD DL. To make the process of writing .key files easier,
the KeY system provides a file inclusion mechanism that prevents repetition of
JAVA CARD DL formulae over different files. Finally, JML is more widespread
than JAVA CARD DL: JML is probably easier to read for an average JAVA

programmer and using JAVA CARD DL as a specification language limits the
usability of the specifications to the KeY system.

In the remainder of this chapter we will be presenting and discussing
specifications both in JAVA CARD DL and in JML, where applicable. Due
to impracticality of the (full) JML approach in the context of this chap-
ter, comments about verification and verification benchmarks are based on
JAVA CARD DL proof obligations only, which use the simplified observational
correctness semantics.

1 A new proof obligation generation mechanism (⇒ Chap. 8) allows to also pro-
duce lightweight proof obligations for JML following observed-state correctness
semantics (⇒ Sect. 8.2). The manually constructed JAVA CARD DL proof oblig-
ations that we discuss in this chapter adhere to such observational semantics.

2 It should be stressed that constructing proof obligations manually can easily
introduce trivially verifiable proof obligations, or at least proof obligations that
are weaker than intended. On the other hand, it is also easy to write a JML
specification that is trivially satisfied due to specification inconsistency, however,
manually constructed proof obligations are more prone to problems of this kind.
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14.4 Modular Verification

No matter which language is used to specify the behaviour of the JAVA CARD

program or method, one needs to have support to handle calls to other meth-
ods inside the program, in particular, calls to the JAVA CARD API. What it
means is that the prover has to have access to either a reference implemen-
tation of the API classes and methods, or a set of specifications for those
classes and methods that can be used in the proof (method contracts).

Using the reference implementation to deal with API calls poses certain
difficulties and inefficiencies in the verification process. First of all, the refer-
ence implementation has to be available. Considering that many of the JAVA

CARD API methods are native, this is not always possible. Secondly, even if
the reference implementation is available (either provided by a JAVA CARD

manufacturer, or self-developed specifically for verification), using such an
implementation in the proof is not always efficient. Take for example JAVA

CARD’s API static method arrayCompare, which simply compares contents
of two arrays. The implementation of this method involves a loop that iter-
ates over the elements of the two arrays. It is known that dealing with loops
in program verification is difficult (⇒ Chap. 3, 11), and in-lining the imple-
mentation of arrayCompare into the program to be verified certainly poses
an extra verification challenge. On the other hand, in most cases it is enough
to specify arrayCompare with a simple postcondition saying that the method
returns a byte value −1, 0, or 1 given that the method parameters satisfy a
precondition that guarantees exception free execution.

Another example of introducing inefficiency into the proof is repeated in-
lining the (possibly very simple) implementation of the same method. Such
a situation can be easily triggered by a repeated call in the program to be
verified, but also by a heavily branching proof, that is, when the same method
call has to be analysed many times in different proof branches.

It is clear that to avoid such inefficiencies, deal with methods without
implementation, and make the verification process highly scalable, the second
approach of using class specifications and method contracts in the proof has
to be taken.

This gives raise to modular verification (⇒ Sect. 8.5). It is a feature of
JML to support modular verification (⇒ Sect. 5.3). In the context of this
chapter we will also use method contracts written directly in JAVA CARD DL.

Again, there are certain advantages of using JAVA CARD DL instead of
JML. For example, one can use Dynamic Logic function symbols in method
specifications, which can be a very efficient replacement for JML’s model
fields and methods, and it is possible to describe transaction specific behav-
iour of a method in JAVA CARD DL, including strong invariants.
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14.4.1 KeY Built-in Methods

Whenever a call to a JAVA CARD API method is encountered in the program
to be verified, the KeY system has to have at least the signature of the method
available, even if the method is going to be handled by applying a method
contract.

Moreover, because of the way JAVA CARD transactions are handled in
the KeY system (⇒ Sect. 9.5, 9.9) some of the JAVA CARD API methods
cannot be fully specified, notably the methods beginTransaction, commit-
Transaction, abortTransaction, isTransient, and the makeTransient-
Array method family from class JCSystem. Their implementation has to be
given and used in the proof explicitly. Also, to handle transaction prop-
erly, the JAVA CARD API has to contain signatures of the methods rep-
resenting the “internal” transaction triggering statements that the JAVA

CARD DL calculus uses—jvmBeginTransaction, jvmCommitTransaction,
etc. Such a customised skeleton of the JAVA CARD API, which also con-
tains reference implementations for the most commonly used methods3 can
be found on the KeY and book webpages. A full JAVA CARD API writ-
ten in JML that can be adapted to the needs of the KeY system can be
found at www.cs.ru.nl/E.Poll/publications/jc211_specs.html. An at-
tempt to produce a complete OCL specification for the JAVA CARD API was
also given by Larsson and Mostowski [2004], however, as we said already, we
are not going to refer to OCL in this chapter.

Apart from the JAVA CARD API methods that are related to transac-
tions, there are a few other methods that are treated in a special way during
the proof. The methods in question are arrayCompare, arrayCopy, array-
CopyNonAtomic, arrayFillNonAtomic,makeShort, setShort, and getShort
from the Util class. Although in principle it is possible to give a reasonable
contract specification for each of these methods, it is really difficult to give
a highly accurate one that would reflect all of the specificities and complexi-
ties that some of these methods entail, for example, implicit transactions or
data representation in card’s memory (big or small endian) [Sun, 2003b,c]. A
solution to this is to provide a relatively simple implementation for each of
these methods in terms of an “internal” (or low-level) API method. Such an
internal method is then in turn treated by a specialised taclet that accurately
reflects the method’s behaviour. This is usually done by introducing a ded-
icated update into the sequent4 possibly involving special function symbols.
Take, for example, the implementation of getShort:
3 The reference implementation that we talk about here and use throughout this

chapter is for JAVA CARD API 2.2.1. It is partly based on Sun’s reference imple-
mentation of an older API version (2.1.1) and partly self-developed. The imple-
mentation of the API methods is in a way näıve—it tries to reflect accurately the
official API specification [Sun, 2003b], but it does not take into account low-level
security issues, possible hardware failures, or JAVA CARD object ownership.

4 Introducing an update directly into the formula can also in many cases simplify
the proof as additional, complex update substitutions can be avoided.
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JAVA

public static short getShort(byte[] bArray, short bOff) {
if(bArray == null) throw new NullPointerException();
if(bOff < 0 || (short)(bOff + 1) >= bArray.length)
throw new ArrayIndexOutOfBoundsException();

// bArray[bOff] and bArray[(short)(bOff+1)] exception-free,

// call "special" method

return de.uka.ilkd.key.javacard.KeYJCSystem.
jvmMakeShort(bArray[bOff], bArray[(short)(bOff+1)]);

}

JAVA

The method produces a short value represented by two byte values stored in
bArray. A corresponding taclet that executes method jvmMakeShort simply
introduces the following update into the sequent:

{res := jvmMakeShort (bArray[bOff], bArray[bOff+1])} .

Here res is the result variable for method jvmMakeShort and jvmMakeShort
is a function symbol that can be later treated with dedicated rules that
represent the semantics of composing and decomposing shorts into bytes.

Of course, it is still possible (if necessary) to give a contract specifica-
tion for method getShort, verify its implementation by using the customised
taclet for jvmMakeShort, and then use the contract for getShort in the proof
of a program that makes calls to getShort. But in most cases, specifying
getShort (or other special methods) is not necessary, in-lining its implemen-
tation directly gives expected results with reasonable efficiency.

14.5 Properties

In the remainder of this chapter we discuss different properties that one
can specify about JAVA CARD applets and prove with the KeY system. We
illustrate the properties with examples based on Demoney and discuss the
verification issues in detail. In general, JAVA CARD applet properties can be
divided into two classes: functional properties and security properties. We
discuss them in the following sections.

14.5.1 Functional Properties

Functional properties are concerned with the actual functionality of the pro-
gram, that is, what parts of the program state are changed by a method,
how they are changed, and what is the return value of a method. Take, for
example, the method keyNum2keySet in class Demoney with the following
signature:
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JAVA

private DESKey[] keyNum2keySet(byte keyNum);

JAVA

Informally, the method returns a set of DESKeys based on the parame-
ter keyNum. A keyNum can be one of the byte constants DEBIT KEY NUM,
CREDIT KEY NUM, or ADMIN KEY NUM. When keyNum is not equal to either of
the three values the method throws a CardRuntimeException. The method
does not change any instance attributes of the Demoney applet class. Assum-
ing that in Demoney the method is always called with a correct argument and
never gives raise to an exception, the behaviour can be completely specified
in JML in the following way:

JAVA + JML
/*@ public normal_behavior

requires keyNum == DemoneyIO.DEBIT_KEY_NUM ||
keyNum == DemoneyIO.CREDIT_KEY_NUM ||
keyNum == DemoneyIO.ADMIN_KEY_NUM;

ensures keyNum == DemoneyIO.DEBIT_KEY_NUM ==>
\result == keySets[0];

ensures keyNum == DemoneyIO.CREDIT_KEY_NUM ==>
\result == keySets[1];

ensures keyNum == DemoneyIO.ADMIN_KEY_NUM ==>
\result == keySets[2];

assignable \nothing;
@*/
private DESKey[] keyNum2keySet(byte keyNum) {...}

JAVA + JML

The method keyNum2keySet accesses the attribute keySets of type Object[]
to extract the actual key set to be returned. Thus, we also need an in-
variant that describes valid contents of the keySets array for the method
keyNum2keySet to terminate properly without throwing exceptions:

JAVA + JML
/*@ public invariant keySets != null && keySets.length == 3 &&

(\forall int i; i >= 0 && i < keySets.length;
keySets[i] instanceof javacard.security.DESKey[]);

@*/
/*@spec_public@*/ private Object[] keySets;

JAVA + JML

This is enough information to prove the full functional property of keyNum2-
keySet, including the fact that the method does not throw anyexception,
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which also qualifies as a security property (to be discussed shortly). But
before we discuss the verification of keyNum2keySet, let us first have a look
at how the same specification is written in JAVA CARD DL. First of all, we
need to specify where the source code for the verified program is located and
declare program variables that are going to be used in the proof obligation:

KeY
\javaSource "demoney/";

\programVariables {
fr.trustedlogic.demo.demoney.Demoney self;
byte keyNum;
javacard.security.DESKey[] result;

}

KeY

Then we can specify the proof obligation directly as a JAVA CARD DL for-
mula. To ensure the termination of keyNum2keySet we need to assume its
precondition and the part of the class invariant specifying the contents of
keySets:

KeY
\problem {
// Class invariant:

self.keySets != null

& self.keySets.<created> = TRUE
& self.keySets.length = 3
& \forall int i; (i >= 0 & i < self.keySets.length ->

javacard.security.DESKey[]::instance(
self.keySets[i]) = TRUE)

// keyNum2keySet precondition:

& (keyNum = DemoneyIO.DEBIT_KEY_NUM |
keyNum = DemoneyIO.CREDIT_KEY_NUM |
keyNum = DemoneyIO.ADMIN_KEY_NUM)

-> \<{
result = self.keyNum2keySet(keyNum)
@fr.trustedlogic.demo.demoney.Demoney;

}\>
// keyNum2keySet postcondition:

((keyNum = DemoneyIO.DEBIT_KEY_NUM ->
result = self.keySets[0]) &

(keyNum = DemoneyIO.CREDIT_KEY_NUM ->
result = self.keySets[1]) &

(keyNum = DemoneyIO.ADMIN_KEY_NUM ->
result = self.keySets[2])
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// Class invariant:

self.keySets != null

& self.keySets.<created> = TRUE
& ...)

}

KeY

Even if this proof obligations looks very similar (in fact, syntactically it is
practically identical) to the JML specification given above, when verification
is considered some differences occur. In case of the JAVA CARD DL specifica-
tion we have to prove exactly what the proof obligation states, that is, the
dynamic logic formula included in the \problem section. For JML however,
when a proof obligation is generated that follows the full JML semantics, the
precondition and the postcondition of the keyNum2keySet include all invari-
ants of all the classes from Demoney and JAVA CARD API.

The explicit JAVA CARD DL proof obligation is proved fully automatically
by the KeY system in less than 30 seconds5 by first applying the basic JAVA

CARD DL strategy and then calling Simplify.

Taclet and Prover Options
For all verification problems like this one, the user has to remember to
set the taclet options appropriately (⇒ Sect. 4.4.2). First of all, the null
pointer checks should be turned on to thoroughly analyse the program for
possible abrupt termination resulting from NullPointerExceptions.

Secondly, due to the characteristics of the JAVA CARD language, applets
are usually subject to overflow issues. To control overflow in the verified
program a taclet option for semantics of arithmetic operations has to be
set accordingly (⇒ Sect. 12.5). Proving problems with overflow control
switched on is substantially more difficult, thus for most of the problems
that we discuss in this chapter, natural integer semantics has been used.
In Section 14.5.5 we discuss a particular example of a program containing
arithmetic expressions causing overflow.

Thirdly, if the JAVA CARD transaction mechanism is involved in the
program to be verified the transactions option should be set to trans-
actionsOn (⇒ Sect. 9.9). If the program does not contain a call to abort-
Transaction, the user can simplify the proof by setting the transaction-
Abort option to abortOff. Note, that there can be also implicit aborts in
the program, for example, when the program leaves an open transaction. In
this case the option needs to be set to abortOn, or otherwise the proof will
not close. When strong invariants are used in the proofs (the throughout
modality) the throughout option needs to be set to toutOn. Setting the

5 All the benchmarks discussed in this chapter were run on Pentium IV 3.4 GHz
Linux system with 1GB of memory. Although slightly slower, all the proofs
discussed in this chapter can be also run on a mid-sized laptop without any
problem.
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taclet options in the wrong way does not introduce any unsoundness into
the proof in any way, but with inadequate taclet options the proof may not
(and most likely will not!) be closable, even for correct proof obligations.

Finally, if the verified source code contains lots of JML annotations
which are not intended to be used (because the proof obligations and
method contracts are given directly in the .key file), the prover can be
run with the no jmlspecs option, which will speed up the start up time
and save considerable amounts of memory.

The Demoney method we have just discussed is quite small and its specifi-
cation is relatively simple. However, we did not only prove the strictly func-
tional specification of the method but also its termination behaviour, that
is, that the method terminates and does so in a non-abrupt fashion—this is
what the KeY semantics of the diamond modality in the proof obligation re-
quires. Such a non-abrupt termination property qualifies as a simple security
property. More advanced security properties require a program not to throw
exceptions of a given sort or allow a program to throw exception only of a
given sort. In both cases there may be additional conditions. We discuss such
properties in the following sections.

14.5.2 Security Properties

As opposed to functional properties, security properties are usually not con-
cerned with state changes caused by a method or the return value of the
method. Instead, they concentrate on program behaviour with respect to
abrupt termination, preserving sensitive data in good shape, or data confi-
dentiality. A comprehensive set of security properties specific to JAVA CARD

applications has been developed in the context of the SecSafe project6 and
published in [Marlet and Métayer, 2001], which we will refer to as the SecSafe
document in the rest of this chapter. The SecSafe document has been devel-
oped in cooperation with Trusted Logic S.A., thus, the properties we present
here should be considered as industrial, that is, properties that are poten-
tially of great interest to the JAVA CARD industry. The properties from the
SecSafe document that are fully specifiable in JML or JAVA CARD DL and ver-
ifiable with the KeY system are discussed in the following sections. Later the
other properties, that are not yet supported by the KeY system, are discussed
briefly. We start with an overview of the fully supported security properties.

Only ISOExceptions at Top Level
(Section 3.4 of the SecSafe Document)

Exceptions of type ISOException are used in JAVA CARD to signal error condi-
tions to the smart card terminal. Such an exception results in a specific APDU
6 http://www.doc.ic.ac.uk/~siveroni/secsafe/
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(Application Protocol Data Unit) carrying an error code being sent back to
the card terminal. To avoid leaking the information about error conditions
inside the applet, a well written JAVA CARD applet should only allow excep-
tions of type ISOException to reach the top level of an applet. In other words,
ISOException is the only kind of exception that is allowed not to be caught
inside an applet and propagate to the card terminal through an APDU.

No X Exceptions at Top Level
(Section 3.4 of the SecSafe Document)

Due to its complexity, the previous property is proposed to be decom-
posed into simpler sub-properties. Such properties say that certain excep-
tions should not reach the top level of an applet, including most common
NullPointerException, ArrayIndexOutOfBoundsException, or Negative-
ArraySizeException. However, when the capabilities of the KeY system are
considered, this property is no different than the previous property—in JAVA

CARD DL non-abrupt termination required by the diamond modality disal-
lows all kinds of exceptions.

Well Formed Transactions
(Section 3.4 of the SecSafe Document)

This property relates to the JAVA CARD transaction mechanism and consists
of three parts, which say, respectively: do not start a transaction before com-
mitting or aborting the previous one, do not commit or abort a transaction
without having started any, and do not let the JAVA CARD Runtime Envi-
ronment close an open transaction. The JAVA CARD specification allows only
one level of transactions, that is, JAVA CARD transactions cannot be nested.
The first two parts of this property can be expressed in terms of disallowing
JAVA CARD’s TransactionException at top level, and the third part can be
considered together with the next property as they are closely related.

Atomic Updates
(Section 3.5 of the SecSafe Document)

In general, this property requires related persistent data in the applet to be
updated atomically. This is exactly what the card tear properties and strong
invariants are about, which were introduced in Chapter 9. In this chapter we
show how strong invariants are used in practice.

No Unwanted Overflow
(Section 3.6 of the SecSafe Document)

This property simply says that common integer operations should not over-
flow. Properties of this category can be treated in the KeY system by choosing
the appropriate integer semantics (⇒ Chap. 12).
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14.5.3 Only ISOExceptions at Top Level

The KeY system provides a uniform framework for allowing and disallowing
exceptions of any kind in verified programs—the KeY semantics of the dia-
mond modality requires that all exceptions thrown during the execution of
a program are caught, i.e., that the program terminates normally. However,
the first property that we want to deal with states that one kind of excep-
tion is allowed to be thrown by a JAVA CARD program—an ISOException.
In JML this property is easily expressible with the signals clause. In JAVA

CARD DL this property is also expressible by a simple transformation of the
program inside the modality. Section 3.6.7 describes a general framework
for such transformations to deal with abrupt termination in JAVA CARD DL
(in fact, such a transformation is exactly what the JML to JAVA CARD DL
translation for the signal clauses does).

Let us give a first example of this property based on the Demoney method
verifyPIN. This method is present (in one form or the other) in many JAVA

CARD applets, it is responsible for verifying the correctness of the PIN passed
in the APDU. When the PIN is correct the method sets a global flag indicat-
ing successful PIN verification and returns. If the PIN is not correct or the
maximum number of PIN entry trials has been reached an ISOException
with a proper status code (including the number of tries left to enter the
correct PIN) is thrown. Let us specify this in JML, without including the
description of the status code of the exception:

JAVA + JML
/*@ public behavior

requires apdu != null && length == DemoneyIO.VERIFY_PIN_LC
&& offset == ISO7816.OFFSET_CDATA
&& apdu._buffer != null

&& offset + length <= apdu._buffer.length
&& apdu._buffer[ISO7816.OFFSET_LC] ==

DemoneyIO.VERIFY_PIN_LC;
ensures true;
signals (ISOException ie);
signals_only ISOException;
assignable ISOException._systemInstance._reason[0],

pin._triesLeft[0], pin._isValidated[0];
@*/
private void verifyPIN(APDU apdu, short offset, byte length)...

JAVA + JML

The precondition establishes that the apdu object passed as a parameter is
well formed and contains the proper data—at least VERIFY PIN LC bytes of
PIN data starting at offset ISO7816.OFFSET LC + 1. The assignable clause
states what are the accessible locations that verifyPIN can potentially mod-
ify. To verify the correctness of verifyPIN alone, the assignables could be
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simplified to \nothing, because the postcondition does not refer to any of
the assignable locations. This simplification however would make this specifi-
cation unusable as a contract in other proofs and would prevent a successful
proof of JML’s “Assignable Proof Obligation” for verifyPIN.

To be able to prove the correctness of verifyPIN with respect to the
presented specification, we need to state a few more properties about the
Demoney class and the behaviour of the JAVA CARD API. Method verifyPIN
accesses Demoney’s private attribute pin of type OwnerPIN. Thus we need to
state some facts about the attribute pin:

JAVA + JML
/*@ public invariant

pin != null && pin._maxPINSize == DemoneyIO.VERIFY_PIN_LC;
@*/
/*@spec_public@*/ private OwnerPIN pin;

JAVA + JML

A couple of method calls are made to the pin object inside verifyPIN, thus,
the following invariants and method specifications in the OwnerPIN class are
also needed:

JAVA + JML
/*@ public invariant _maxTries > 0; @*/
/*@spec_public@*/ private byte _maxTries;

/*@ public invariant _pinArray != null

&& _pinArray.length == _maxPINSize
&& JCSystem.isTransient(_pinArray) ==

JCSystem.NOT_A_TRANSIENT_OBJECT;
@*/
/*@spec_public@*/ private byte[] _pinArray;

/*@ public invariant _maxPINSize > 0; @*/
/*@spec_public@*/ private byte _maxPINSize;

/*@ public invariant _triesLeft != null

&& _triesLeft.length == 1
&& JCSystem.isTransient(_triesLeft) ==
JCSystem.NOT_A_TRANSIENT_OBJECT;

@*/
/*@spec_public@*/ private byte[] _triesLeft;

// Temporary array to bypass the transaction mechanism

// during updates to _triesLeft:

/*@ public invariant _temps != null

&& _temps.length == 1
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&& JCSystem.isTransient(_temps) ==
JCSystem.CLEAR_ON_RESET;

@*/
/*@spec_public@*/ private byte[] _temps;

/*@ public invariant _isValidated != null

&& _isValidated.length == 1
&& JCSystem.isTransient(_isValidated) ==

JCSystem.CLEAR_ON_DESELECT;
@*/
/*@spec_public@*/ private boolean[] _isValidated;

/*@ public normal_behavior

requires true;
ensures \result == _triesLeft[0];
assignable \nothing;

@*/
public byte getTriesRemaining() { ... }

/*@ public normal_behavior

requires pin != null && offset >= 0
&& length >= 0 && offset + length <= pin.length
&& length <= _pinArray.length;

ensures true;
assignable _triesLeft[0], _isValidated[0], _temps[0];

@*/
public boolean check(byte[] pin, short offset, byte length)...

JAVA + JML

Note that specifications for both verifyPIN and check have relatively strong
preconditions. For the former the precondition guards occurrence of ISOEx-
ceptions only, for the latter it is ensured that there are no exceptions of any
kind.7 Such a way of specifying the behaviour could be called context depen-
dent, that is, the preconditions are always satisfied in a given context (here,
the Demoney applet), and thus a contract resulting from such a specification
is always applicable in the context. On the other hand, a context independent
specification covers all possible behaviour of a method. For context indepen-
dent specifications the precondition is usually true and the postcondition is

7 In reality, a JAVA CARD applet can also throw a multiplicity of exceptions related
to hardware or internal failures. We ignore them here, as usually they cannot
be prevented by giving a simple precondition and occurrence of such exceptions
heavily depends on the actual hardware used. Instead we only concentrate on
exceptions caused by programming errors.
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very elaborate—it describes all possible outcomes of executing the method,
including a long list of all possible exceptions that can occur. The first ap-
proach (context independent specifications) considerably simplifies the veri-
fication process—generated contracts are sufficient to be used in the proof,
but also very simple and easy to prove. Thus, introducing context indepen-
dent specifications does not bring in any advantages as far as verification is
concerned (although it may be good for documentation and “manual” bug
finding).

There is one more call that verifyPIN makes, namely, a static call to
ISOException.throwIt. For this call, the following specification suffices:

JAVA + JML
/*@
public static invariant _systemInstance != null;

@*/
/*@spec_public@*/ private static ISOException _systemInstance;

/*@
public invariant _reason != null && _reason.length == 1

&& JCSystem.isTransient(_reason) ==
JCSystem.CLEAR_ON_RESET;;

@*/
/*@spec_public@*/ private short[] _reason;

/*@ public exceptional_behavior

requires true;
signals (ISOException ie) ie == _systemInstance;
signals_only ISOException;
assignable _systemInstance._reason[0];

@*/
public static void throwIt(short reason) throws ISOException...

JAVA + JML

JAVA CARD Transient Arrays

By now, a careful reader may have noticed that a lot of data in our im-
plementation of the API classes is stored in one element arrays instead
of simple primitive data fields. The reason is that array elements are the
only global memory locations (that is, ones to which a reference can be
kept between smart card sessions) that can be declared to be transient—
not preserving its contents between single sessions. The ability to declare
transient data is very important for security reasons. For example, one
does not want the value of the PIN validation flag to be preserved between
card sessions—for each card session the user should be required to present
a valid PIN code. Moreover, array elements constitute the only type of
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data that can undergo “transaction bypassing”—they can be uncondition-
ally updated despite the fact that a transaction is in progress by calling
the methods arrayCopyNonAtomic or arrayFillNonAtomic from the Util
class (⇒ Sect. 9.7).

Let us now see how the same specification for verifyPIN is formalised in
JAVA CARD DL. The proof obligation for the method itself is the following:

KeY
\problem {
// verifyPIN precondition

apdu != null

& length = DemoneyIO.VERIFY_PIN_LC
& offset = javacard.framework.ISO7816.OFFSET_CDATA
& apdu._buffer != null // APDU invariant

& offset + length <= apdu._buffer.length
& apdu._buffer[javacard.framework.ISO7816.OFFSET_LC] =
DemoneyIO.VERIFY_PIN_LC

// Demoney invariant:

& self.pin != null & self.pin.<created> = TRUE
& self.pin._maxPINSize = DemoneyIO.VERIFY_PIN_LC
& // Rest of Demoney invariant

// OwnerPIN invariant:

& self.pin._pinArray != null

& self.pin._pinArray.<created> = TRUE
& self.pin._pinArray.length = self.pin._maxPINSize
& self.pin._pinArray.<transient> =

JCSystem.NOT_A_TRANSIENT_OBJECT
& self.pin._triesLeft != null

& self.pin._triesLeft.<created> = TRUE
& self.pin._triesLeft.length = 1
& self.pin._triesLeft.<transient> =

JCSystem.NOT_A_TRANSIENT_OBJECT
// Similarly for _isValidated and _temps plus

// other parts of OwnerPIN invariant

// ISOException invariant:

& ISOException._systemInstance != null

& ISOException._systemInstance.<created> = TRUE
& ISOException._systemInstance._reason != null

& ISOException._systemInstance._reason.<created> = TRUE
& ISOException._systemInstance._reason.length = 1
& ISOException._systemInstance._reason.<transient> =

JCSystem.CLEAR_ON_DESELECT
-> \<{ try{ self.verifyPIN(apdu, offset, length)@

fr.trustedlogic.demo.demoney.Demoney;
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} catch (javacard.framework.ISOException ie) {}
}\> ( self.pin != null & self.pin.<created> = TRUE

& ... ) // Rest of Demoney Invariant

}

KeY

And, as in case of JML, we also need a specification of the API methods that
verifyPIN makes calls to. In the .key file such specifications are given in
the \contracts section preceding the \problem section. For this particular
proof obligation the following contracts suffice:

KeY
\contracts {

// Name of the taclet that will be generated

OwnerPIN_getTriesRemaining {
// Program variables used in the contract

\programVariables {
javacard.framework.OwnerPIN ownerPIN;
byte result;

}
// OwnerPIN invariant:

ownerPIN._triesLeft != null

& ownerPIN._triesLeft.<created> = TRUE
& ownerPIN._triesLeft.length = 1
& ... // Rest of the invariant

-> \<{
result = ownerPIN.

getTriesRemaining()@javacard.framework.OwnerPIN;
}\>
// getTriesRemaining postcondition:

(result = ownerPIN._triesLeft[0]
// OwnerPIN invariant:

& ownerPIN._triesLeft != null

& ownerPIN._triesLeft.<created> = TRUE
& ...)

\modifies{}
};

OwnerPIN_check {
\programVariables {

javacard.framework.OwnerPIN ownerPIN;
byte[] pin; short offset; short length;
byte result;

}
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// OwnerPIN invariant:

ownerPIN._pinArray != null & ...
// check precondition:

pin != null & offset >= 0 & length >= 0 &
offset + length <= pin.length &
length <= ownerPIN._pinArray.length

-> \<{
result = ownerPIN.check(
pin, offset, length)@javacard.framework.OwnerPIN;

}\>
// check postcondition:

(true
// OwnerPIN invariant:

& ownerPIN._triesLeft != null

& ownerPIN._triesLeft.<created> = TRUE
& ...)

\modifies{ownerPIN._triesLeft[0], ownerPIN._isValidated[0],
ownerPIN._temps[0] }

};

ISOException_throwIt {
\programVariables { short reason; }

// ISOException invariant:

ISOException._systemInstance != null

& ISOException._systemInstance.<created> = TRUE
& ...
-> \<{

#catchAll(javacard.framework.ISOException ie) {
javacard.framework.ISOException.throwIt(
reason)@javacard.framework.ISOException;

}
}\>
(// throwIt exceptional postcondition:

ie != null & ie = ISOException._systemInstance
& ie._reason[0] = reason &
// ISOException invariant:

ISOException._systemInstance != null & ...)
\modifies{ISOException._systemInstance._reason[0]}

};

}

KeY
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Note the special construct #catchAll in the specification of throwIt, which
indicates that a method can throw an exception. In this case the formulation
of the postcondition makes the exception obligatory (ie != null & ...).
This is similar to the JML’s signals clause, but in contrast to JML,
#catchAll indicates that only an exception of the given type (here
ISOException) can be thrown. To express the same in JML, the
signals only clause has to be added to the specification.

As in case of JML, these method specifications are context specifications—
the preconditions are always satisfied in the Demoney applet context. The
proof obligation establishing the correctness of verifyPIN is proven automat-
ically in less than a minute. The strategy to use is the basic JAVA CARD DL
with contracts option switched on. A call to Simplify may also be necessary
to close a few remaining goals after the execution of the strategy is finished.
All side proofs for the used contracts are also automatically provable in less
than a minute total.

The examples we have presented so far could be proved fully automatically
by the KeY system. This, however, is not always going to be the case; in
many cases treatment of loops require certain amount of user interaction.
In the KeY system loops are either treated with induction or loop invariant
rules, both of which require user interaction. Induction proofs are discussed in
detail in Chapter 11 and loop invariant rules in Chapter 3. Here we are going
to discuss an example of a while loop in Demoney that can be efficiently
treated with a while invariant rule with support for variants to prove absence
of exceptions other than ISOException in the method setTLVs. We are not
going to concentrate much on the thorough specification of setTLVs and other
involved methods, but rather focus on the treatment of the while rule itself.
The interesting part of the implementation of setTLVs is the following:

JAVA

private void setTLVs(byte[] buffer, short offset, short length)
{

...
short stopOffset = (short)(offset + length);

while( offset < stopOffset ) {
try {

offset = setTLV(buffer, offset, ...);
} catch(ArrayIndexOutOfBoundsException e) {
ISOException.throwIt(ISO_7816.SW_WRONG_DATA);

}
}
...

}

JAVA
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As it can be deduced from this code, setTLVs iterates over the input array
buffer with a while loop, and calls another method, setTLV, to perform
some operations on the elements of the input array buffer. Method setTLV
returns an offset pointing to the elements in buffer to be processed in the
next loop iteration. Method setTLV itself does not check if the input array
buffer contains consistent data, it just tries to process it, and in case the
data is in fact inconsistent, an ArrayIndexOutOfBoundsException is thrown.
What we want to establish, is that the top level method setTLVs does not
throw exceptions other than ISOException. So, what we need to prove in
reality is total correctness of setTLVs. This has to be done efficiently without
repeated symbolic execution of the loop body.

For scenarios like this, the while invariant rule with support for vari-
ants can be used. Before we discuss how the rule is applied on the example
we need to gather a few facts about the loop and the method setTLV ap-
pearing inside the loop. To apply the while invariant rule we need to spec-
ify: (i) a suitable invariant for the loop, that is, a property that is pre-
served by a single loop body execution, (ii) optionally a set of variables
and locations that a single loop body execution can modify, and (iii) a
loop variant—a term that strictly decreases with every loop iteration. For
the setTLV method we need to know what the range of the offset re-
turn value is so that a proper invariant for the loop can be constructed.
The inspection of the implementation of setTLV reveals that the value of
offset stays between javacard.framework.ISO7816.OFFSET LC + 1 == 5
and buffer.length (both inclusive). The return value of the offset is also
strictly greater than the value of the offset passed to setTLV. The method
can also throw ArrayIndexOutOfBoundsException or ISOException. Thus,
our specification for setTLV needs to at least include the following facts:

JAVA + JML
/*@ public behavior

requires buffer != null && offset >= 5 &&
offset < buffer.length;

ensures \result <= buffer.length && \result > \old(offset);
signals (ISOException ie);
signals (ArrayIndexOutOfBoundsException ae);
signals_only ISOException, ArrayIndexOutOfBoundsException;
assignable ...;

@*/
private short setTLV(byte[] buffer, short offset, ...) { ... }

JAVA + JML

Since we are only interested in the termination behaviour we do not specify
what the method does with the data provided in the buffer array.
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Now we are ready to give the specification for the while loop. A good
choice for an invariant is to say that offset stays between 5 and buffer.len-
gth. The only variable that the loop modifies is offset, and the term that is
strictly decreasing with every loop iteration is buffer.length - offset.8

Having all this information we can now explain how the actual correctness
proof is performed for the top level method setTLVs (of course, apart from
what we discussed, setTLVs as well as setTLV need to be specified to a
sufficient degree). The first thing to do is to choose the basic JAVA CARD DL
strategy with contracts option switched on and loops option switched off. The
proof is started and when the while loop is reached the prover stops and waits
for user interaction. At this point we apply the “decreasing variant” version
of the while invariant taclet. When a taclet instantiation window pops up,
we need to provide the following information:

• loop variant: buffer.length - offset,
• modifies: {offset},
• loop invariant: offset >= 5 & offset <= buffer.length.

This information can be also provided in the code in form of JML annotations
in the following way:9

JAVA + JML
/*@
decreases buffer.length - offset;
assignable offset;
loop_invariant offset >= 5 && offset <= buffer.length;

@*/
while( offset < stopOffset ) { ... }

JAVA + JML

In this case the prover can extract this information and perform the right in-
stantiations to apply the while invariant with variant dec taclet. Next
we continue with executing the strategy. When the execution of the strategy
stops again, all the open goals should be closable by calling Simplify. Exclud-
ing the manual interaction, the whole proof (for an equivalent JAVA CARD DL
proof obligation) takes less than a minute to finish. If the JML annotation
for the loop is used, the amount of interaction is negligible, and the whole
process can be considered automatic. Of course, in all the cases the user still
needs to come up with a suitable loop invariant.

8 Based on the loop condition, the first guess for the strictly decreasing term would
be stopOffset - offset. However, closer inspection of the code (and failed
proof attempts!) reveals that it actually should be buffer.length - offset.

9 The keywords used are not compliant with the current (mutating) JML standard.
KeY, however, understands and treats appropriately these keywords.
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Transactions and JAVA CARD DL Contracts
The real setTLVs method in Demoney also involves a transaction—before
the while loop is executed a call to beginTransaction is made, and af-
ter the loop is finished the transaction is finalised with a call to commit-
Transaction. The practical consequences are the following. Firstly, the
transaction support has to be activated in the prover. Secondly, the exe-
cution of setTLVs can cause an implicit transaction abort by throwing an
ISOException inside the loop body. Thus, the transactionAbort option
needs to be set to abortOn as well.

However, a much more important consequence of the possible abort is
the necessity to provide two separate method contracts for methods that
are called within a transaction—for the abort case and for the commit
case (⇒ Sect. 9.9.5). A “commit” method contract is exactly the same
as the regular contract. An “abort” method contract specifies the effect
of the method on the shadowed object locations (⇒ Sect. 9.5.2).Such a
contract is only expressible in JAVA CARD DL. For each persistent object
location that a normal contract would refer to (in the example below,
contents of the Demoney instance array purchaseAgentAIDBuffer that
setTLV modifies), an “abort” contract refers to shadowed locations denoted
with a prime symbol ’. Moreover, instead of referring to the diamond (resp.
box) modality, an “abort” contract refers to diamond tra (resp. box tra)
modality. For example, if a regular contract for method setTLV is the
following (expressed in JAVA CARD DL):

KeY
Demoney_setTLV {

\programVariables {
fr.trustedlogic.demo.demoney.Demoney demoney; ... }

buffer != null & buffer.<created> = TRUE
& offset > 0 & ...
& demoney.purchaseAgentAIDBuffer != null & ...
-> \diamond{

#catchAll(Exception e) {
result = demoney.setTLV(buffer, offset, ...)

@fr.trustedlogic.demo.demoney.Demoney;
}

}\endmodality
((e = null & result > offset@pre & ...) |
(e != null &
(javacard.framework.ISOException::instance(e) = TRUE
| ...)))

\modifies{demoney.purchaseAgentAIDBuffer[*], ...}
};

KeY



556 14 The Demoney Case Study

Then the corresponding abort contract is the following:

KeY
Demoney_setTLV_tra {

\programVariables {
fr.trustedlogic.demo.demoney.Demoney demoney; ... }

buffer != null & buffer.<created> = TRUE
& offset > 0 & ...
& demoney.purchaseAgentAIDBuffer’ != null & ...
-> \diamond_tra{

#catchAll(Exception e) {
result = demoney.setTLV(buffer, offset, ...)

@fr.trustedlogic.demo.demoney.Demoney;
}

}\endmodality
((e = null & result > offset@pre & ...) |
(e != null &
(javacard.framework.ISOException::instance(e) = TRUE
| ...)))

\modifies{demoney.purchaseAgentAIDBuffer’[*]’, ...}
};

KeY

Here diamond tra is used instead of diamond and persistent object loca-
tions (attributes and array elements) are shadowed with a prime symbol.

An abort contract cannot be automatically generated from a regular
contract, because the shadowing depends on the persistency type of the
expressions involved. For example, if an array is transient, then the prime
symbol should not be applied to the corresponding array access operator
[]. Whether an array is persistent or transient cannot be easily statically
detected, thus the user has to provide this information “manually” by
means of a properly formulated abort contract.

Finally, whenever user interaction with the prover is required in the
scope of any tra modality, the user has to remember to refer to any
persistent object location with a prime (or two primes if it is a sec-
ond consecutive transaction, three primes if it is a third transaction,
etc. (⇒ Sect. 9.5.2). For example, when applying the while invariant
rule in the scope of diamond tra, if the loop body modifies obj.attr,
the user has to give {obj.attr’} for #modifies in the taclet instan-
tiation window. An alternative is to tell the prover to use the current
transaction counter, that evaluates to the right number of primes. This
is achieved with ^(KeYJCSystem.<transactionCounter>), for example,
{obj.attr^(KeYJCSystem.<transactionCounter>)}. When used in the
scope of a “shadowed” contract the prime symbol is in fact a shorthand
notation for ^(KeYJCSystem.<transactionCounter>).
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This concludes the discussion on how to deal with ISOExceptions in JAVA

CARD programs. In the KeY system, the presence or absence of all kinds of
exceptions can be specified and verified in the same uniform way as presented
above. One more property we should mention at this point is the well-formed
transactions property from the SecSafe document. The first part of this prop-
erty says the transactions should be properly nested, that is, a transaction
should not be opened if there is already one in progress, and a transaction
should not be closed if none was started. In a JAVA CARD applet the violation
of this property will always give raise to a TransactionException. Thus, to
ensure this part of the transaction well-formedness property, it is enough to
specify and verify that a program does not throw a TransactionException
at top level,10 which is a special case of the property we have discussed in
this section. The second part of the transaction well-formedness property
says that the programmer should not leave an open transaction to be closed
by JAVA CARD Runtime Environment. To establish this, one more detail in
the specification is needed and we discuss that in the following section, as it
closely relates to atomicity and card tear properties.

14.5.4 Atomicity and Transactions

The atomicity property requires related persistent data in the applet to be
updated atomically. Strong invariants (⇒ Chap. 9) are used to specify con-
sistency of data at all times, so that in case an abrupt termination occurs
(for example, by a card tear), the data (in particular, related data) stay con-
sistent. Hence, strong invariants seem to be the right technique to deal with
consistency properties related to atomic updates. JAVA CARD transaction
mechanism is the facility that the programmer can use to ensure atomicity
of arbitrary blocks of a JAVA CARD program, so it seems natural to also deal
with transaction properties in the context of atomicity properties. Thus, we
will also discuss the second part of the transaction well-formedness property
(do not let the JCRE close an open transaction) in this section.

JML does not support strong invariants, and the ability to reason about
transactions (and also object persistency) is limited to what can be expressed
with JAVA CARD API calls related to transactions and object persistency (one
possible solution to this problem was proposed by Hubbers and Poll [2004a]).
Therefore, in the context of this section, we limit ourselves to expressing the
properties only in JAVA CARD DL.

10 In reality, TransactionException can also be thrown due to the transaction
commit buffer exhaustion, but in our JAVA CARD model we assume that to be
an internal smart card problem (lack of memory), and we stated already that
these are ignored. The downside of ignoring this problem is that JAVA code that
“overuses” the transaction mechanism will not be detected. Proper modelling
of memory consumption, which will resolve this problem, is a subject of future
research (⇒ Sect. 14.5.6).
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To discuss the atomicity property we use the example of the perform-
Transactionmethod in Demoney. One of the responsibilities of the Demoney
applet is to record information about each purchase made with the electronic
purse in the log file. Among other things, the current balance after the pur-
chase is recorded in a new log entry. As the SecSafe document points out
accurately, when atomic consistency properties are considered, one has to
be able to say what it means for the data to be related. In principle, such
relations cannot be deduced automatically, because of the specific logics and
semantics of the considered applet. In our example we want to state that
the current balance of the purse is always the same as the one recorded in
the most recent log entry. Debiting the purse balance and updating the log
file in an atomic fashion is exactly what the performTransaction method
is responsible for, and, not surprisingly, it uses the JAVA CARD transaction
mechanism to ensure atomic update of the involved data.

In JAVA CARD DL, to express a strong invariant property, the through-
out modality is used (⇒ Chap. 9). Thus, the proof obligation to ensure our
example atomicity property for performTransaction reads:

KeY
\problem {
// No transaction in progress when the method is called:

JCSystem._transactionDepth = 0 &
// performTransaction precondition - method arguments:

apduBuffer != null &
apduBuffer.<created> = TRUE & apduBuffer.length >= 45 &
apduBuffer[ISO7816.OFFSET_LC] =
DemoneyIO.COMPLETE_TRANSACTION_LC &

offsetTransCtx =
DemoneyIO.COMPLETE_TRANSACTION_OFF_TRANS_CTX &

// Demoney & CyclicFile invariants:

self.logFile != null & self.logFile.<created> = TRUE &
self.logFile.records != null &
self.logFile.records.<created> = TRUE &
self.logFile.recordLength = DemoneyIO.LEN_LOG_RECORD &
self.logFile.records.length > 0 &
self.logFile.nextRecordIndex >= 0 &
self.logFile.nextRecordIndex < self.logFile.records.length &

// performTransaction precondition - the log entry to be

// filled in by performTransaction is properly allocated:

jbyte[]::instance(
self.logFile.records[self.logFile.nextRecordIndex]

) = TRUE &
((jbyte[])self.logFile.records[
self.logFile.nextRecordIndex]).length
= DemoneyIO.LEN_LOG_RECORD &
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// Strong invariant (balance in the recent log entry is equal

// to current balance) holds before performTransaction

// is called. #recentIndex is equivalent to:

// self.logFile.nextRecordIndex - 1 %

// self.logFile.records.length,

// see explanations below.

jvmMakeShort(
((jbyte[])self.logFile.records[#recentIndex])
[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],

((jbyte[])self.logFile.records[#recentIndex])
[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE + 1]) =

self.balance
->
\[[{

self.performTransaction(amount,apduBuffer,offsetTransCtx)
@fr.trustedlogic.demo.demoney.Demoney;

}\]]
// Strong invariant holds throughout the execution

// of performTransaction

jvmMakeShort(
((jbyte[])self.logFile.records[#recentIndex])
[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE],

((jbyte[])self.logFile.records[#recentIndex])
[DemoneyIO.LOG_RECORD_OFF_NEW_BALANCE + 1]) =

self.balance
}

KeY

This proof obligation seems to be more complex than what has been presented
so far, and indeed some explanations are due. First of all, since the method
utilises the JAVA CARD transaction mechanism to ensure atomicity, we need
to assume that there is no transaction in progress when performTransac-
tion is called. Secondly, a precondition establishing correctness of the method
parameters is needed—that the apduBuffer array contains expected data of
proper size. Then we also need to assume that the log record data structure
(which is basically a two-dimensional byte array) is properly allocated.

The rest of the assumptions in the proof obligation relate to the strong
invariant itself and the parts of the log record that are affected by perform-
Transaction and referred to in the strong invariant. The first complication
in expressing the strong invariant is due to the way the log record data
structure in Demoney is defined—it is a two-dimensional byte array, where
the first index points to a given log entry, and the second index points to the
actual record data. Since JAVA CARD only allows one-dimensional arrays, a
workaround in the Demoney code has been introduced, namely, first a one-
dimensional array of objects is allocated:
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JAVA

Object[] records = new Object[...];

JAVA

and then each entry in this array is associated with a byte array:

JAVA

records[i] = new byte[...];

JAVA

Because of this, the records array lacks static type information. This results
in type casts in the Demoney code, and necessity to introduce corresponding
type casts in the proof obligation above.

The second complication in expressing the strong invariant is caused by
the fact that in the CyclicFile class only the index to the next record to be
used is kept, and in the specification we need to refer to the most recently
used record. Since the records are stored in a cyclic fashion (that is, each new
record overwrites the oldest one) the next record index is advanced in the
following way:

JAVA

nextRecordIndex = (short)((short)(nextRecordIndex + 1) %
records.length);

JAVA

To construct an index to the most recently used log entry, in JAVA we would
have to write something like:

JAVA

recentIndex = (short)((short)(nextRecordIndex - 1) %
records.length);

JAVA

Thus, we need to give an equivalent expression in our proof obligation:

KeY
jmod(self.logFile.nextRecordIndex - 1,
self.logFile.records.length)

KeY

In the proof obligation above this expression has been abbreviated with
#recentIndex for clarity. The symbolic execution of the statement that ad-
vances the nextRecordIndex and the form of the expression referring to the
most recent log entry will result in quite complex integer expressions in the
proof. To help the prover resolve such expressions easily, without requiring
user interaction, we need to provide the following integer simplification taclet:
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KeY
\rules(intRules:aritmethicSemanticsIgnoringOF) {
modulo_index_prop {
\schemaVar \term int #index, #size;
\find(jmod(jmod(#index + 1, #size) - 1, #size))
\replacewith(#index)
\heuristics(simplify_int)

};
}

KeY

This taclet simply states that the following mathematical fact in integer rings
in always true:

index = (((index + 1) mod size)− 1) mod size .

The rule is only valid in natural arithmetic integer semantics (thus a taclet
option indication right after the keyword \rules) and obviously needs to be
proven correct as well (⇒ Sect. 4.5).

Finally, the strong invariant also contains a function symbol jvmMake-
Short. The value of the balance, which is of type short, is stored in two
elements of a byte array in the log record. The function symbol jvmMake-
Short is used to express that two byte values (function parameters) are
composed to form a short value (function result). A proper implementation
of setShort, getShort, and makeShort, together with a couple of taclets
to execute the “built-in” methods (⇒ Sect. 14.4.1), ensure that the strong
invariant formulation above is sufficient to prove the desired property.

The correctness proof for performTransaction is most efficiently done
without using any method contracts. Most of the method calls are to spe-
cial methods (⇒ Sect. 14.4.1), and these are usually more efficiently treated
by specialised taclets. The only other method that could be specified with a
contract is appendRecordData from class CyclicFile. However, because of
resulting complex update substitutions, using a contract for this method gives
a proof with a few open goals that require non-trivial user interaction. With-
out using the contract the performTransaction proof obligation is proved
almost automatically (two simple interactions and a call to Simplify) in just
above two minutes.

This, however, does not conclude the verification of performTransac-
tion. Two more issues to take care of are termination and well-formed trans-
actions. The throughout modality is partial in its nature, thus, proving that
the method performTransaction preserves the strong invariant does not
mean that the method terminates or does anything useful. In fact, it can be
the case that if the precondition is not strong enough the symbolic execution
of performTransaction terminates shortly with an exception, which trivially
satisfies the strong invariant. So, in the worst case, it is possible that we have
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proved the preservation of a strong invariant, when no actual change to the
data involved in the strong invariant has been made. Therefore, it is crucial
to also prove that the method terminates in a non-abrupt fashion with the
same preconditions as used for the proof of the strong invariant.

We also have not yet discussed the second part of the transactions well-
formedness property, saying that the program should not leave an open trans-
action to be closed by the JAVA CARD Runtime Environment. The information
about open transactions can be extracted from the JAVA CARD API through
the static attribute transactionDepth of the class JCSystem. To state that
a program does not leave an open transaction it is enough to put the following
expression in the postcondition:

KeY
JCSystem._transactionDepth = 0

KeY

It was also necessary to include this expression in the precondition of per-
formTransaction to ensure that the proper nesting of transactions is not
violated.

The termination property of performTransaction and transaction well-
formedness can be expressed in one proof obligation, as follows:

KeY
\problem {
// No transaction in progress:

JCSystem._transactionDepth = 0 &
// performTransaction precondition - method arguments:

...
// Demoney invariants:

...
// performTransaction precondition - the log entry to be

// filled in by performTransaction is properly allocated:

...
->
\<{

fr.trustedlogic.demo.demoney.Demoney()::
self.performTransaction(amount,apduBuffer,offsetTransCtx);

}\> JCSystem._transactionDepth = 0
}

KeY

Since this proof obligation does not involve the strong invariant or throughout
modality, this specification can be also expressed in JML. We leave this as
an exercise for the reader.
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14.5.5 No Unwanted Overflow

Finally, we deal with a property purely related to integer arithmetic. The in-
formal formulation of the property is really simple—additions, subtractions,
multiplications and negations must not overflow. Formal treatment of such
properties is a bit more complex though, the whole Chapter 12 is devoted
to this, here we only summarise. To deal with all possible issues related to
integer arithmetic, in particular overflow, the KeY system uses three differ-
ent semantics of arithmetic operations. The first semantics treats the integer
numbers in the idealised way, that is, the integer types are assumed to be in-
finite and, thus, not overflowing. The second semantics bounds all the integer
types and prohibits any kind of overflow. The third semantics is that of JAVA,
that is, all the arithmetic operations are performed as in the JVM, in par-
ticular they are allowed to overflow and the effects of overflow are accurately
modelled.

To illustrate how the different semantics can be used to deal with the no
unwanted overflow property, we use an example remotely related to Demoney,
that is, it is not based on the actual Demoney code, but it is quoted in the
SecSafe document. First let us look at a proof obligation with a badly formed
program with respect to overflow:

KeY
\problem {

inShort(balance) & inShort(maxBalance) & inShort(credit) &
balance > 0 & maxBalance > 0 & credit > 0 ->
\<{ try {

if ((short)(balance + credit) > maxBalance)
ISOException.throwIt(SW_CREDIT_TOO_HIGH);

else

balance += credit;
}catch(javacard.framework.ISOException e){}

}\> balance > 0
}

KeY

The problem in this program is that the (short)(balance + credit) op-
eration can overflow making the condition inside the if statement false re-
sulting in a balance being less than 0 after this program is executed. When
processed by the KeY system with the idealised integer semantics switched
on, this proof obligation is proved quickly. When the arithmetic semantics
with overflow control is used this proof obligation is not provable. The fix to
the program to avoid overflow is to change the if condition in the following
way:
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JAVA

if (balance > (short)(maxBalance - credit))

JAVA

Here, since both maxBalance and credit are strictly positive, the result of
subtraction will always stay within limits of the short integer type. A border-
line case is when maxBalance is 1 and credit is 32767—the result is then
−32766, which is greater than the minimum allowed short value −32768.
This proof obligation is provable with both kinds of integer semantics. For
further discussion about handling integer arithmetic we refer the reader to
Chapter 12.

14.5.6 Other Properties

There are other security properties mentioned in the SecSafe document, which
are either not (yet) fully supported in the KeY system, or are beyond the
scope of this book. We briefly discuss those properties here.

Memory Allocation

Due to restricted resources of a smart card, one of the requirements on a
properly designed JAVA CARD applet is the constrained memory usage. This
includes bounded dynamic memory allocation and no memory allocation in
certain life stages of the applet. This seems like a problem strictly related to
syntax-oriented static analysis, because in general there is no need for precise
analysis of the control flow. However, some cases would require precise analy-
sis anyhow, for example, if memory allocation is performed inside a loop, the
precise loop bound has to be known. Either way, we believe that this prop-
erty in general can be formalised and proved with the KeY system as well,
provided some simple extensions to the JAVA CARD DL are added. The main
idea is the following. To model certain aspects of the JAVA virtual machine, in
particular object creation, the JAVA CARD DL refers to a set of implicit fields
defined for every object (⇒ Sect. 3.6.6). For example, each type of object
contains an implicit reference <next>, which points to the object of the same
type that was created next after this one—the JAVA CARD DL rules that
handle object creation are responsible for updating the state of the <next>
reference in the proof. There is no obstacle to introduce a new static implicit
field to our JAVA model that would keep track of the amount of allocated
memory or the possibility to allocate memory. There are, of course, certain
technical details with respect to the accuracy of the memory consumption es-
timations, for example, an object may consume different amounts of memory
depending on the actual JVM used. Thus, keeping precise record of the allo-
cated memory may not be possible and only close approximations could be
achieved with this solution. Relating to this problem, an approach to perform
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memory consumption analysis is presented in Barthe et al. [2005], based on
the JACK tool [Burdy et al., 2003] and semi-automatic generation of JML
annotations that describe memory usage of an applet.

Conditional Execution Points

This property says that certain program points must only be executed if
a given condition holds. This is not a difficult task, for example, JML and
JAVA itself (version 1.4 onwards) provide means to annotate any program
point with a boolean condition (the @assert clause in JML and the assert
statement in JAVA). ESC/JAVA2 can easily check (to a certain limit) JML
@assert clauses. A thorough treatment of such properties in the KeY system
would require us to introduce a generalisation of strong invariants which
are supposed to hold after every program statement. For the generalised
case, such a property would differ depending on the actual program point.
Thus, there are no theoretical obstacles here, and the future versions of the
KeY system will certainly provide support for this property (and also JML’s
@assert clause).

Information Privacy and Manipulation of Plain Text Secret

Those two properties fall into the category of data security properties. As
it has been shown in [Darvas et al., 2005, Pan, 2005], formalising and prov-
ing such confidentiality properties can be achieved with interactive theorem
proving using the KeY system. This is still a subject of ongoing research and
detailed discussion is beyond the scope of this book. In particular, no exper-
iments on a real JAVA CARD code that we could present has been performed.

14.6 Lessons

The results presented in this chapter prove that the KeY system is highly
capable of performing serious verification of unmodified/legacy JAVA CARD

code with respect to industry related properties. However, to achieve this
level of KeY system’s functionality, the following lessons we have learned
have to be kept in mind.

The performance results presented here would suggest that the time spent
on verification could be considered not to be an issue. As this might be true for
verification itself, one has to remember that most of the time is actually spent
on developing the correct specifications—the prerequisite for verification. In
the context of this work, writing specifications was an iterative, trial and error
process. What is in particular difficult, is to find the right preconditions for
the correct execution of a method, in particular when a preexisting or legacy
code like the Demoney applet is considered. Although it has not been used in
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the context of this work, the KeY system supports automatic construction of
preconditions, based on failed proof attempts. This is described in detail by
Platzer [2004a]. The basic idea behind computing the specification is to try
to prove a total correctness proof obligation. In case it fails, all the open proof
goals are collected and the necessary preconditions that would be needed to
close those goals are calculated. There are two disadvantages to this tech-
nique: (1) for the proof to terminate the preconditions that guard the loop
bounds cannot be omitted, so there is no way to calculate preconditions for
loops, they have to be given beforehand, (2) proofs have to be performed the
same way for computing the specification as it is done when one simply tries
to prove the obligation, so computing the specification is in fact a front-end
for analysing failed proof attempts in an organised fashion. Moreover, the
specifications produced can be equally hard to read as is analysing the failed
proof attempt manually. More ideas about specification engineering can be
found in Chapter 5, which is fully devoted to this subject.

The second important thing to keep in mind is the partial correctness
issue in the context of strong invariants. As we pointed out, the throughout
modality used to write proof obligations for strong invariants is partial. Thus,
in many cases it is important to verify the termination property apart from
the strong invariant preservation property to ensure that the strong invariant
is not satisfied trivially.

The examples presented in this chapter clearly show that highly auto-
matic and very efficient verification can be achieved with the KeY system.
In large part this is because the KeY system and the JAVA CARD DL are de-
signed in a way not to bother the user with the workings of the calculus and
the proof system. However, we have realised that some verification decisions
can further support automation and affect the performance. For example, we
gave an example of a method (appendRecordData) which is more efficiently
handled when no contract for the method is used, but instead the method’s
implementation is in-lined into the proof. Apart from isolated examples like
this, proof modularisation by using method contracts is vital for successful,
scalable, and efficient verification. Although the KeY system provides power-
ful support for such specifications both in JML and JAVA CARD DL, it is still
up to the user to construct the specifications, which, as we pointed out al-
ready, is tedious work, and do so in a way that no unnecessary complications
are introduced into the proof (that is, try to construct context specification).

To further support the verification process, we introduced a small number
of additional simplification rules for arithmetic expressions in the context of
the performTransactionmethod. Such rules considerably simplify the proof,
but introducing them, although being relatively easy, requires a little bit more
than the basic understanding of JAVA CARD DL. Moreover, each introduced
rule has to be proven sound (⇒ Sect. 4.5). Yet another place, where the prover
had to be supported by the user, was providing the while loop specification
in the setTLVs method. General discussion on how to (semi-)automatically
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calculate or provide such specifications is beyond the scope of this chapter,
but a good starting point is Chapter 11 that deals with induction proofs
in the KeY system. Finally, the size of the proofs that involve JAVA CARD

transaction statements can be greatly reduced by choosing the abortOff
taclet option in cases where there is no call to abortTransaction in the
verified code (explicit or implicit).

We have shown that it is possible to express similar properties in both
JML and directly in JAVA CARD DL. Both of the approaches have their
advantages and disadvantages (⇒ Sect. 14.3). It seems that in the con-
text of this chapter, the JAVA CARD DL approach is more practical. JAVA

CARD DL proof obligations can be customised for a given security property
and fine tuned to ease verification. The new proof obligation generation mech-
anism (⇒ Chap. 8) will also provide the possibility to customise JML proof
obligations in a similar way. Nevertheless certain properties, like strong in-
variants and other transaction related properties, are only expressible in JAVA

CARD DL.

14.6.1 Related Work

To finish this chapter we should briefly discuss some other work reporting
on serious verification attempts of JAVA CARD software on the source code
level in the context similar to ours. Jacobs et al. [2004] discuss verification of
a commercial JAVA CARD applet with different verification tools. The use of
the following JAVA and JAVA CARD verification tools is discussed: ESC/JAVA2
(successor of ESC/JAVA—Flanagan et al. [2002]), Krakatoa [Marché et al.,
2004], Jive [Meyer and Poetzsch-Heffter, 2000], and LOOP [Jacobs and Poll,
2003]. The security property under consideration, one of the properties we
discussed, is that only ISOExceptions are thrown at the top level of the ap-
plet. Jacobs et al. detected subtle bugs in the applet with respect to a possible
uncaught ArrayIndexOutOfBoundsException (with LOOP and Jive tools),
as well as full verification (no exceptions other than ISOException, satis-
fied postcondition, and preserved class invariant) of single methods with the
Krakatoa tool. The paper admits that expertise and considerable user in-
teraction with the back-end theorem provers (PVS and Coq) were required.
The paper also discusses precondition generation, the same problem we en-
countered in our work. One of the solutions proposed by Jacobs et al. is to use
ESC/JAVA2 to construct preconditions. In short, the tool is run interactively
on an unspecified applet, which results in warnings about possible exceptions.
Such warnings are removed step by step by adding appropriate expressions
to the precondition. Alternatively the weakest precondition calculus of the
Jive system could be used by running the proof “backwards”, that is, by
starting with a postcondition and calculating the necessary preconditions.
This however, has not been presented in the paper and to our understanding
the approach has certain limitations.
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Breunesse et al. [2002] present a case study in verifying the correctness of
a JAVA class representing limited precision decimal numbers (Decimal class).
The verification tool used there is the LOOP tool. In this case the main goal
was to fully verify a very complex functional behaviour of the Decimal class.
During the process non-trivial bugs have been found and the Decimal class
was reimplemented.

Finally, Pavlova et al. [2004] discuss specification and verification of some
properties from the SecSafe document. The two main properties that are dis-
cussed are no ISOExceptions at top level and well-formed transactions. The
paper discusses a mechanism to automatically augment JAVA CARD programs
with JML annotations to enforce those properties and mentions successful
verification of the properties with the JACK, Jive, Krakatoa, LOOP, and
ESC/JAVA tools.
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The Schorr-Waite-Algorithm

by

Richard Bubel

The Schorr-Waite graph marking algorithm named after its inventors Schorr
and Waite [1967] has become an unofficial benchmark for the verification of
programs dealing with linked data structures.

It has been originally designed with a LISP garbage collector as applica-
tion field in mind and thus, its main characteristic is low additional memory
consumption. The original design claimed only two markers per data object
and, more important, only three auxiliary pointers at all during the algo-
rithm’s runtime. It is the latter point, where most other graph marking al-
gorithms lose against Schorr-Waite and need to allocate (often implicitly as
part of the method stack) additional memory linear in the number of nodes
in the worst case. These resources are used to log the taken path for later
backtracking when a circle is detected or a sink reached.

Schorr and Waite’s trick is to keep track of the path by reversing traversed
edges offset by one and restoring them afterwards in the backtracking phase
of the algorithm. A detailed description including the JAVA implementation
to be verified is given in Section 15.1.

Formal treatment of Schorr-Waite is challenging as reachability issues are
involved. Transitive closure resp. reachability is beyond pure first-order logic
and some extra effort has to be spent to deal with this kind of problems (see
[Beckert and Trentelman, 2005] for a detailed discussion). On the other side,
the algorithm is small and simple enough to serve as a testbed for different
approaches. We introduce a notion of reachability as part of Sect. 15.2 and
come back to it for the actual verification, which makes up most of Sect. 15.3.

15.1 The Algorithm in Detail

15.1.1 In Theory

As usual a directed graph G is defined as a set of vertices V and edges E ⊆
V ×V . The directed edge s ⇀ t ∈ E connects source node s ∈ V with target

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 569–587, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(a) Initial unmarked Graph
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(b) Visiting node n4 via n2; edge
e12 (e24) reverses formerly traversed
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(c) Visiting node n6 via n1; back-
tracking restored the formerly mod-
ified edges e12, e24

Fig. 15.1. Illustration of a Schorr-Waite run: curved edges have been modified to
encode the taken path; pointers crt, prev refer to the current resp. the previous
node

node t ∈ V , but not vice versa. We call node t a direct successor of node s
(resp. s a direct predecessor of t).

For sake of simplicity, we require that each edge e is labelled with a unique
natural number l(e) where l : E → N. The labelling allows us to put an order
on all outgoing edges ei := s ⇀i ti, i ∈ {1, . . . , n} of a node s, which complies
with the natural number ordering ≤ of the corresponding labels l(ei).

When speaking of visiting all children (of a node s) from left-to-right, we
mean in fact that all direct successors of s are accessed via its outgoing edges
in ascending order of their labels. We refer to the target node of the edge
with the i-th smallest label of all outgoing edges of node s as the node’s i-th
child.

In addition, each node is augmented with a flag visited and an integer
field usedEdge, which is used to store the number of the most recently visited
child via this node (or equivalently the corresponding edge label).

In the subsequent four additional pointers are required:

• current and previous, whose intended purpose is to refer to the currently
respective previously visited node and

• the two helpers next and old.

Given a directed graph G as for example shown in Fig. 15.1 and a designated
node s, here: n3, Schorr-Waite explores G starting at node s applying a left
depth-first strategy:
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1. Outgoing from the currently visited node current the leftmost not yet
visited child next is selected and the taken edge e redirected to target
the node referenced by pointer previous. The usedEdge field of current
is used to keep the label l(e) of the reversed edge in order to restore
edge e later in the backtracking phase (step 2). Afterwards previous is
altered to point to our current node, while pointer current moves onto
node next. Finally, the new current node becomes marked as visited.
Continue with step 1.

2. If all children of the node referred to by current have already been
visited or it is a childless node and current �= s, then a backward step
is performed. Therefore the edge via which current has been accessed
and remembered in the usedEdge field of node previous during step 1,
is restored: this means to redirect it to its original target current, but
not before rescuing its current target using pointer old. Now pointer
current can be reset to the node referenced by previous and—last but
not least—previous is moved back to node old. Continue with step 1.

After all reachable nodes have been visited the algorithm terminates when
after a backtracking step the starting node s is reached. At this time the
original graph structure has been also restored.

15.1.2 In Practice

The design of our JAVA implementation to be verified is illustrated in
Fig. 15.2. The graph nodes are modelled as instances of class HeapObject,
where each instance contains a children array, whose i-th component con-
tains the node’s i-th child.

HeapObject

- visited:boolean
- nextChild:int
- children:HeapObject[]
+ isVisited()
+ getChild(int pos):HeapObject
+ getIndex():int
+ hasNext()
. . .

SchorrWaite

+ mark(HeapObject startNode)

0..n

children

Fig. 15.2. Class diagram showing the involved participants

All HeapObject instances provide a rudimentary iterate facility to access their
children. Therefore, they implement an integer index field, which contains the
array index of the child to be visited next. Method hasNext tests if the index
field has reached the end of the array and therewith all children of the node
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have been accessed. The index field is used to realise the usedEdge field of the
previously given description. In fact, usedEdge is equal to the value stored
in the index field minus one.

The JAVA implementation of the algorithm itself is realised as method
mark of class Schorr-Waite shown in Fig. 15.3. Invoking mark with a non-
null start node handed over as argument starts the graph traversal. The
method assumes that before it is invoked, all HeapObject instances have no
marks set.

public void mark(HeapObject startNode ) {

HeapObject current = start;

HeapObject previous = null;

HeapObject next = null;

5 HeapObject old = null;

startNode .setMark(true);

while ( current != startNode || startNode .hasNext ()) {

10 if ( current .hasNext ()) {

final int nextChild = current.getIndex ();

next = current.getChild (nextChild );

if (next != null && ! next.isMarked ()) {

// forward scan

15 current .setChild (nextChild , previous );

current .incIndex ();

previous = current ;

current = next;

current .setMark(true);

20 } else {

// already visited or no child at this slot

// proceed to next child

current .incIndex ();

}

25 } else {

// backward

final int ref2restore = previous .getIndex () - 1;

old = previous .getChild (ref2restore );

previous .setChild (ref2restore , current );

30 current = previous ;

previous = old ;

}

} }

Fig. 15.3. Core of the Schorr-Waite algorithm
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The first lines of method mark initialise the required pointers current,
previous, next and old. The starting node s of the previous section is handed
over as the method’s argument referred to by parameter startNode. It be-
comes also the first node current points to. All other pointers are set to
null at first. Before the while loop is entered, the starting node startNode
is marked.

After these preparations the graph will be traversed in left depth-first
order as long as pointer current has not yet returned to the starting node
startNode or if node startNode still has children that need to be checked.

If node current has a child left, a forward step is performed (lines 10-25):

line 12 the nextChildth component of node current’s children array (that
is the current’s next not already accessed child) is assigned to variable
next

lines 14–19 these lines are entered in case that the HeapObject instance
referred to by next has not already been visited, which is tested by
method isMarked in the conditionals guard. First the taken edge, i.e.,
the nextChildth component of current’s children array, has to be redi-
rected to the node variable previous refers to (line 15). In the succeeding
lines, field nextChild of node current is updated, pointer previous is
moved toward the node current refers to, and finally, node next becomes
the new current node. At the end the new current node is marked as
visited with help of method setMark.

line 23 is only executed in case that node next has been already marked in
a previous step

Lines 26-32 are executed if node current has no remaining children to be
visited. In this case a backward step has to be performed:

line 28 the nextChild-1th child of node previous, which stores the penul-
timate node is memorised in old

line 29 the nextChild-1th children array component of node previous is
restored, i.e., redirected to node current

lines 30–31 finally, current becomes previous and previous is set to the
node stored in old.

15.2 Specifying Schorr-Waite

A correct implementation of Schorr-Waite must guarantee at least these re-
quirements:

First, the algorithm invoked on an arbitrary node of a finite graph must
terminate. And second, in its final state it is ensured that

1. When initially invoked on an unmarked graph, a node has been marked
if and only if it has been reachable from the starting node.
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2. The graph structure has not been modified, i.e., after the algorithm ter-
minates all components of the children arrays contain their original value
again.

We concentrate on the specification and verification of the first requirement.
The second one is a relative straightforward extension to the first one and
can be specified and proven in a similar manner.

15.2.1 Specifying Reachability Properties

Reasoning about linked or recursive data structures requires some notion of
reachability of objects. Therefore, we define a reachable predicate that allows
to express that an object is reachable from another one via a specified set of
fields Acc.

In order to express these properties we have to define a variant of non-
rigid predicate (function) symbols equipped with a list of locations/accessor
expressions that are allowed to be used in order to navigate between objects.
We call them non-rigid symbols with explicit dependencies.

A New Class of Symbols

A first step in the definition of these symbols, is to define a notion of accessor
expressions. You might want to look ahead to Example 15.9 to get an idea
what we are aiming at.

Definition 15.1 (Accessor expression). The set AE of accessor expres-
sions is inductively defined as follows:

1. (·)C .a@(C) is an accessor expression for all attributes a declared in a
class type C,

2. f(∗, . . . , ∗,
i

︷︸︸︷
a , ∗, . . . , ∗) is an accessor expression for any arbitrary ex-

pression a ∈ AE, n-ary function symbol f , 1 ≤ i ≤ n and the sort of a
is compatible with the i-th argument sort of f .

Note 15.2. Any accessor expression acc contains exactly one placeholder (·)C .
We will write s.acc when we mean to replace (·)C by a term s with sort(s) ≤
C. The suffix @(C) to the attribute a only serves to disambiguate attributes
with the same name in different classes.

Example 15.3. Let List denote a class type declaring an attribute next of
the same type. Further, let ASTNode be another class type declaring an at-
tribute children of array type ASTNode[]. Then both (·)List.next and
(·)ASTNode.children[*] are accessor expressions. When there is only one
obvious choice for the placeholder (·)C we omit it. We will thus write these
two accessor expressions as next and children[*].
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Definition 15.4 (Syntax and signature: non-rigid symbols with ex-
plicit dependencies). The non-rigid predicate/function symbol p[acc list; ] :
T1×· · ·×Tn, resp., f [acc list; ] : T1×· · ·×Tn → T , where acc list is a semi-
colon separated list of accessor expressions are called non-rigid symbols with
explicit dependencies .

Terms and formulas are defined as before(⇒ Sect. 3.2) with the only dif-
ference that the corresponding sets of function and predicate symbols may
contain these newly introduced symbols.

Definition 15.5 (Semantics). Let K = (M,S, ρ) denote a JAVA CARD DL
Kripke structure. Then for any two states S1 and S2 ∈ S, the predicate
p[acc list; ](t1, . . . , tn) evaluates to the same truth value, if S1 and S2 coincide
on the interpretation of all accessor expressions, i.e., for any acc ∈ acc list
with placeholder (·)C , and for all u, v ∈ TermC

Σ with valS1(u) = valS2(v)
the following holds: valS1(u.acc) = valS2(v.acc). In case of nested accessor
expressions, both states have to coincide on the constituents and in case of
an array expression on the length attribute as well. Analogous for function
symbols.

The Reachable Predicate

The reachable predicate is a representative of a non-rigid predicate with ex-
plicit dependencies. Its syntax is defined as follows:

Definition 15.6 (Reachable predicate, syntax). The ternary non-rigid
predicate reach[acc list;](T,T,int) is called reachable predicate, where
acc list is a semicolon separated list of accessor expressions, whose usage
is allowed in navigation expressions.

Example 15.7. Let o, u and s, t be program variables of type List resp.
ASTNode and n be an arbitrary integer constant, then reach[next; ](o, o, 0),
reach[next; ](o, u, n) and reach[children[∗]; ](s, t, n) are syntactical correct
JAVA CARD DL formulas.

The semantics of the reachable predicate needs to be defined. The definition
has to adhere to the constraint given in Def. 15.5.

Definition 15.8 (Reachable predicate, semantics). The reachable pred-
icate reach[acc list; ](o, u, n) is valid in a state s iff. s |= ∃p1, . . . , pm;
(o.a1. . . . .an

.= u) with accessor expressions ai ∈ acc list and a logic vari-
able pj for each ∗ ∈ {a1, . . . , an} of the corresponding type.

Example 15.9. Let terms o, u denote two objects of type T and term n
a positive integer. The formula reach[next; ](o, u, n) is valid in a state s
iff s |= o .next. · · · .next︸ ︷︷ ︸

n

.= u. Let t1, t2 be terms of type ASTNode then

reach[children[∗]; ](t1,t2,2) is valid in state s iff s |= ∃p1∃p2; (t1.children[p1].
children[p2]

.= t2).
Furthermore reach[acc list; ](o, u, 0) will always be equivalent to o = u.
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The taclet reachableDefinition representing the semantics definition of the
reachable predicate in its instance for acc list = children[∗]; can be written
as follows:

KeY
reachableDefinition {
\find(reach[children[*];](t1, t2, n))
\varcond(\notFreeIn(k, t1, t2, n))
\replacewith(t1 = t2 & n = 0 |

(t1 != null & n > 0 &
\exists k;( k>=0 & k<t1.children@(HeapObject)).length &
reach[children[*];*.children.length;]

(t1.children@(HeapObject)[k], t2, n-1))) )
};

KeY

The given rule defines reachable recursively, but is well-founded. Instead of
reach[children[∗]; ] the slightly shorter form reach[children[∗]; ] will from
now on be used in order to keep the formulas readable.

If n is negative, it will evaluate to false due to n >= 0. If n is equal to
zero then t1 = t2 must hold. This is the only case where t1 may be null.
If n > 0 then it must hold that t2 is reachable in n− 1 steps from an object
stored in the children array of t1.

Together with induction over the natural numbers, rule reachableDefinition
suffices to express the required reachable properties. But it would not be very
convenient and, therefore, a number of further taclets exists covering common
situations directly

KeY
reachableDefinitionBase {

\find(reach[children[*];](t1, t2, 0))
\replacewith(t1 = t2)

};

reachableDefinitionFalse {
\assumes (n < 0 ==>)
\find(reach[children[*];](t1, t2, n)) \sameUpdateLevel

\replacewith(false)
};

KeY

Encoding the Backtracking Path

For the specification of the loop invariant it turns out to be useful to define a
relation onPath, which describes the backtracking path. We formalise the re-
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lation as the characteristic function of the set of nodes lying on the backtrack-
ing path in means of an auxiliary non-rigid predicate with explicit dependen-
cies onPath[∗.children[∗]; ∗.nextChild] : HeapObject×HeapObject× int.

For sake of shortness and readability, we will skip the accessor list for the
onPath predicate from now on. Formally, the non-rigid predicate onPath is
defined as follows: Let σ denote a state, x, y terms of type HeapObject and
n an integer term, then:

σ |= onPath(x, y, n)
iff.

n >= 0 and there exist terms x = u0, . . . , un = y, such that
for all 0 ≤ i < n :

σ |= ui+1
.= ui.children[ui.nextChild− 1]

and
σ |= ! ui

.= null

Notice that onPath(x, y, 0) is equivalent to x
.= y. The semantical definition

of onPath is reflected by the calculus in form of a recursive definition:

KeY
onPathDefinition {
\find(onPath(t1,t2,step))
\replacewith(

step >= 0 &
((t1 = t2 & step = 0) |
(t1 != null & t1.nextChild@(HeapObject) > 0 &
t1.nextChild@(HeapObject) <

t1.children@(HeapObject).length &
onPath(t1.children@(HeapObject)

[t1.nextChild@(HeapObject)-1], t2, step-1))
))

};

KeY

The recursion is well founded and required to formalise the existential state-
ment given in the semantical definition. For convenience reasons, we use ad-
ditional taclets which can be derived directly from the rule onPathDefinition:

KeY
onPathBase {

\find ( onPath(t1, t2, 0) )
\replacewith( t1 = t2 )

};
onPathNull {

\find ( onPath(null, t2, n) )
\replacewith( n = 0 & t2 = null )

};
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onPathNegative {
\assumes (n < 0 ==> )
\find ( onPath(t1, t2, n) ) \sameUpdateLevel

\replacewith( false )
};

KeY

With this work done, we can now express the property that a node x is on
the backtracking path by:

\exists int n onPath(previous, x, n); | x = current

where previous and current are the reference variables declared in method
mark. Note, that we have included the current node to belong to the back-
tracking path.

15.2.2 Specification in JAVA CARD DL

Pre- and Postconditions

The proof obligation of method mark to be proven valid is listed in Fig. 15.4.
In previous chapters we considered proof obligations in OCL or JML. Since
the reachable concepts are available in neither of them we resort to using
Dynamic Logic formulas directly (⇒ Chap. 14). The proof obligation is com-
posed of three components:

1. invariant of class HeapObject (lines 1–12),
2. the precondition proper (lines 14–19) and
3. the postcondition (lines 22–26) to be ensured to hold after the method

has been executed.

The instance invariant of class HeapObject gives the following guarantees:

Line 3 that field children is always a non null array reference. Conse-
quently, a node representing a sink refers to a zero-length array instead
to null.

Lines 4–5 that the value of field nextChild ranges from 0 to the number
of children.

Lines 7–9 that arrays referenced by children are not shared among differ-
ent HeapObject instances.

Lines 10–12 that the components of the children array are not null.

In addition, a caller of method mark has to ensure that the start node, which
is passed through as an argument (startNode), is not null (line 15) and
that all markers of all nodes have been reset to their initial values indicating
that they have not yet been visited (line 16). We simplified the specification
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KeY

// Invariant of class HeapObject

2 \forall HeapObject ho;(!(ho = null) ->

!(ho.children = null) &

4 ho.nextChild >= 0 &

ho.nextChild <= ho.children.length &

6 ho.children.length >= 0 ) &

\forall HeapObject ho1;

8 \forall HeapObject ho2;(!(ho1 = ho2) ->

!(ho1.children = ho2.children)) &

10 \forall HeapObject ho;\forall int i;

(!(ho = null) & 0 <= i & i < ho.children.length ->

12 !(ho.children[i] = null))

// contract for method ’mark’

14 // precondition

!(startNode = null) &

16 \forall HeapObject ho; (ho.visited = FALSE & ho.nextChild = 0)

// keep old values

18 \forall HeapObject ho; \forall int i;

(children_pre(ho,i) = ho.children[i])

20 ->

\[{ sw.mark(startNode); }\]

22 // postcondition

(\forall HeapObject ho;(ho != null &

24 \exists int n; (n>=0 &

reach[children[*];](startNode, ho, n)) <->

26 ho.visited = TRUE))

KeY

Fig. 15.4. The JAVA CARD DL proof obligation for verifying Schorr-Waite

slightly by requiring that the markers of all nodes even of not yet created
ones have been set to their initial value.

By proving the proof obligation, we can ensure that all and only nodes
reachable from the starting node startNode have been marked as visited
(line 22-26). Note, that the postcondition does not specify reservedness of
the class invariants. This makes the proof easier and, in fact, one would often
decompose these kind of proof obligations in order to keep a proof feasible.

For later use it will be convenient to refer to the “old” content of the
children arrays. As JAVA CARD DL is not a high-level specification language,
there is no construct like @pre in OCL or \old in JML. Instead we use
in line 19 the trick to remember old values of the OCL/DL translation as
described in Sect. 5.2.
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Invariants

The most critical part of the specification is the loop invariant as most of
the later verification depends on a sufficiently strong invariant. The while

invariant rule used in KeY (⇒ Sect. 3.7.1) takes change information into
consideration and allows to reduce the complexity of the invariant.

The loop’s assignable set is

{current, previous, next, old,
*.children@(HeapObject)[*],
*.visited@(HeapObject),
*.nextChild@(HeapObject) }

In the first line all possibly altered method-local pointers are enumerated. The
remaining lines denote all the fields of nodes that are likely to be changed.
The assignable set is a conservative approximation in principal it would be
sufficient to restrict to fields of nodes reachable from the starting node.

The loop invariant is listed in Fig. 15.5. Its core part on which we will con-
centrate on is the subformula in lines 20–40. We come later back to the filter-
ing condition stated in the lines 20–25. For the next few paragraphs, assume
that the first condition (lines 21– 22), and consequently, the following equa-
tions lCur=current, lPrv=previous and bnd=current.nextChild hold.

To write a good invariant means to find the right balance between being
strong enough to allow to prove the methods postconditions, but not too
strong in order to keep the preserves loop invariant proof branch as simple
as possible.

For the moment let the graph to be marked be similar to the one shown
in Fig. 15.6. In both sub-figures the algorithm is currently at node c and
prepares for its move onwards to node n. The other children d0 . . . dk (with
k = c.nextChild−1) have already been accessed via node c. The backtracking
path is highlighted using solid curved edges.

In order to get a rough idea, how a possible invariant could look like, we
concentrate first on the case illustrated by the left part of Figure 15.6(a).

The subgraph S spanned by the current node’s children d0 to dk is a
promising candidate to look at for a loop invariant. One is tempted to state
that all nodes belonging to S have already been marked as visited and in
fact, that is what we express in lines 27–31. The proof plan in mind is that
if this invariant is preserved by the loop, then when the loop terminates we
are back at the start node and all of its children have been accessed. Thus
we can yield directly from the loop invariant that all nodes in the subgraph
spanned by its children, which is nearly the complete graph excluding just
the start node itself, have been marked.

But unfortunately the proposed invariant is not preserved by the loop,
due to situations like the one illustrated in Fig. 15.6(b). In such a scenario
the spanned subgraph contains a node u′, which is only reachable via paths
crossing the backtracking path, i.e., all paths share at least one node (here: u)
with the backtracking path. In this case we cannot assume, that the complete
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KeY

current != null

& current.visited = TRUE

& (previous = null -> startNode = current)

& (previous != null -> previous.nextChild > 0)

5 & \forall HeapObject ho;(

(\exists int n; onPath(previous, ho, n)) ->

(ho = null | ho.visited = TRUE))

& \forall HeapObject ho;

(ho != null ->

10 ho.nextChild <= ho.children.length & ho.nextChild >= 0)

& \forall HeapObject ho;\forall int i;

(ho != null & 0 <= i & i<ho.nextChild ->

(ho.children[i] != null |

(ho = startNode & current != startNode &

15 i = ho.nextChild - 1))) & ...

& \forall HeapObject ho;

\forall int i; ((ho != null & i >= ho.nextChild & i >= 0 &

i < ho.children.length) ->

ho.children[i] = children_pre(ho,i))

20 & \forall HeapObject lCur;\forall HeapObject lPrv;\forall int bnd;

((lCur != null & ( (lCur = current & lPrv = previous

& bnd = current.nextChild)

| (lPrv = lCur.children[lCur.next-1]

& \exists int d; onPath(lPrv, lCur, d)

25 & bnd = current.nextChild - 1)))

->

\forall HeapObject ho1;(

\forall int n; (ho1 != null & n >= 0 &

\exists int idx; (0 <= idx & idx < bnd &

30 reach[children[*];](lCur.children[idx], ho1, n)))

-> (ho1.visited = TRUE |

(\exists HeapObject ho2; (ho2 != null &

ho2.children != null

& (\exists int d; (d >= 0 & onPath(lPrv, ho2, d))

35 | ho2 = lCur)

& \exists int j; (ho2.nextChild <= j

& j < ho2.children.length

& \exists int l; (l >= 0

reach[children[*];](ho2.children[j], ho1, l))

40 ))))))

Assignable Clause

{ current, previous, next, old, *.children@(HeapObject)[*],

*.visited@(HeapObject), *.nextChild@(HeapObject) }

KeY

Fig. 15.5. Loop invariant and assignable clause
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subgraph reachable from u has been visited. As the algorithm as described
in 15.1.1 will stop at u and perform a backtracking step instead of exploring
its unvisited children. Literally spoken, the backtracking path plays the role
of demarcation line that bounds subgraph S.

To cope with these kinds of situations the stated property has to be
weakened. This is achieved by introducing a disjunction (lines 33–40) stating
now that all nodes of the spanned subgraph have been visited or there is at
least one path to the node crossing the backtracking path. Notice, that this
property is weaker than necessary as we do not require a node to be visited,
if there is at least one path sharing a node with the backtracking path. This
weakening does not hurt us, as in the use case the backtracking path is empty,
turning the second part of the disjunction to false and allowing us to draw
the conclusion that all nodes of the subgraph spanned by the children of the
starting node have been marked as visited.

In order to reestablish the invariant in case of backward step, one has to
state the explained property not only relative to the currently examined node
(i.e., lCur=current), but for the other nodes on the backtracking path too.
Therefore the second part of the filtering condition (lines 23– 25) is required.
Some further (technical) invariant details:

lines 5–7 in addition to the nodes specified by the invariant’s core part as
marked, also the nodes of the backtracking path have been marked. This
property is essential
• to solve some aliasing problems occurring during the proof like that

the current node does not coincide with the former previous node
• to reason that the complete graph has been visited. Remember the

core part allows only to draw the conclusion that the subgraph
spanned by the children has been marked visited, but excludes the
current node

lines 9–16 express a kind of “preserve instance invariant” statement for
class HeapObject. Note that the loop will violate the invariant that null
is not referenced by the children array components. The weakened version
of this invariant can be found in lines 13-16.

lines 16–19 completes the former part of the invariant by stating that the
components of the children with an index greater or equal to nextChild
remain unchanged, allowing to use parts of the HeapObject’s invariant
stated in the precondition (e.g., that the stored values are not null).

15.3 Verification of Schorr-Waite Within KeY

In the subsequent sections we will roughly outline the correctness proof of
Schorr-Waite. We will step only into the technical details for some of the more
interesting proof steps. The interested reader may download the complete
proof from the book website and load it with the accompanying KeY version.



15.3 Verification of Schorr-Waite Within KeY 583

(a) Subgraph spanned by children
0 to nextChild − 1 do not contain
a node only reachable by through
nodes on the backtracking path

(b) Subgraph spanned by children
0 to nextChild−1 contains a node
where all paths have to cross the
backtracking path

Fig. 15.6. Loop invariant: core part

15.3.1 Replacing Arguments of Non-rigid Functions Behind
Updates

In several branches of the proof, we face situations similar to the following:

KeY
{current:=startNode} reach[..](current, x, n)

==>
{current:=startNode} reach[..](startNode, x, n)

KeY

The sequent is clearly universally valid. But in order to close this proof goal,
the first arguments of both occurrences of the reachable predicate need to
be unified. Inserting the reachable definition will not succeed, as the defini-
tion itself is recursive and the value of n unknown. Furthermore, we have to
operate behind updates, restricting the kind of applicable taclets.

In order to close this sequent the non-rigid arguments of the formulas
reach[..](fst, snd, thrd) have to be replaced by new rigid constant sym-
bols ci and defining equations {current:=startNode}ci = fst have to be
added to the sequent’s antecedent.

The replacement is performed by successive application of rule pullOut on
the first arguments of both sides:

KeY
pullOut { \find ( t ) \sameUpdateLevel

\varcond ( \new(sk, \dependingOn(t)) )
\replacewith (sk)
\add ( t = sk ==>)

};

KeY
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The result is the following sequent:

KeY
{current:=startNode} (c1 = current),
{current:=startNode} (c2 = startNode),
{current:=startNode} reach[..](c1, x, n)

==>
{current:=startNode} reach[..](c2, x, n)

KeY

After a few further simplification steps, we obtain:

KeY
c1 = startNode, c1 = c2,
{current:=startNode} reach[..](c1, x, n))

==>
{current:=startNode} reach[..](c2, x, n))

KeY

The equation c1 = c2 contains only rigid elements and is thus applicable
also in the scope of updates - in fact behind any modality.

Applying this equation on the first argument of the third formula in the
antecedent {current:=startNode} reach[..](c1, x, n)) establishes an
axiom where two equal formulas occur in the ante- and succedent.

15.3.2 The Proof

Invariant Initially Valid

This branch closes almost automatically (with help from Simplify for some
universal quantifier instantiations). Only one interactive step remains for the
invariant part, that ensures that all nodes on the backtracking path have been
marked visited (lines 5-7). In the initial case, only the starting node, which
has been marked visited in the statement before the loop is entered, is part
of the backtracking path. To show that no other node is on the backtracking
path, we insert the onPath predicate definition and leave the remaining steps
for the strategies.

Use Case

As the method to verify ends when the loop terminates, this proof branch is
of normal complexity. Most of the steps are performed automatically by the
strategies. Nevertheless some interaction with the prover are necessary. Be-
sides usual universal quantifications, which would be possible to perform also
automatically (i.e., a heuristic approach should succeed), there is one step
that will reoccur in the preserves loop invariant, which is of particular interest.
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In this branch only normal termination of the loop is considered. Abrupt ter-
mination as uncaught exceptions or return or break statements are treated
in the preserves invariant branch. The task is to prove that when the

• loop condition evaluates to false and
• loop invariant is valid

then

• the method’s postcondition is satisfied, i.e., all reachable nodes have been
visited.

The plan is to use the core part of the invariant (Fig. 15.5), lines 20–40).
The postcondition to prove looked like

KeY
\forall HeapObject x; \forall int n;

(x != null & reach[children[*];](startNode, x, n)
-> x.visited = TRUE)

KeY

In order to prove the post condition we have to show that an arbitrary chosen
non-null instance x 0 of type HeapObject reachable from the starting node
startNode within n 0 steps, is marked reachable.

After some steps, this part of the proof goal is presented1 as

KeY
( !(x_0 = null) & n_0 >= 0 &

n_0 <= -1 + startNode.children.length &
{\for HeapObject h; h.nextChild := anonNextChild(h) ||
startNode.visited := TRUE ||
\for HeapObject h; h.visited := anonVisited(h) ||
current := startNode ||
previous := anonPrevious(sw) ||
\for (int i; HeapObject h)
\if (i >= 0 & i <= -1 + h.children.length)

h.children[i] := anonChildren(h.children, i)}
reach[children[*];](startNode, x_0, n_0)) ->

anonVisited(x_0) = TRUE

KeY

The first line corresponds with the afore stated side conditions. Following
is a quantified update describing the state after leaving the methods. The
functions symbols anon∗ are the anonymous functions introduced by the while
invariant rule application. They describe the value of the location after the
while loop, for example, anonVisited(h) is the value of h.visited when
leaving the loop and so on.
1 Names are slightly beautified.
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Preserves Loop Invariant

Although this proof branch requires most interactions, the necessary tech-
niques have been already introduced in the preceding paragraphs. The great-
est difficulty is to keep track of the current loop invariant part that has to
be proven.

In several subgoals the definitions of the reachable and onPath predicate
have to be inserted—often in combination with the pullOut taclet to make
the predicates’ arguments rigid, as described in the Use Case paragraph. The
remaining steps have been mostly simple quantifier instantiations.

15.4 Related Work

There is a variety of literature available about verification of the Schorr-Waite
algorithm. We briefly describe a (representative) selection of them.

Broy and Pepper

The Schorr-Waite algorithm has been treated by [Broy and Pepper, 1982].
In this paper, the authors start with the construction of an algebraical data
type modelling a binary graph. They continue with the definition of the
reflexive and transitive closure relation R∗ of the graph. Then a function B
is developed, proven to compute the set of all reachable graph nodes from
a distinguished node x, i.e. R∗(x). The function B turns out to realise the
well-known depth-first traversal algorithm for (binary) graphs.

An extended graph structure is build upon the binary graph data type.
In addition to the binary graph it provides two distinguished nodes (repre-
senting the current and previous node). Also two additional basic functions
ex and rot are defined, which exchange the current and previous node resp.
perform a rotation operation (forward step). By composition of these elemen-
tary graph operations a function is constructed that computes and returns
a tuple consisting of a set of nodes and an extended graph structure. It is
proven that the returned node set is the same as computed by the former
function B and that the returned extended graph structure is the same on
which the function has operated.

Afterwards the functional algorithm is refined to a procedural version.

Mehta and Nipkow

The authors of [Mehta and Nipkow, 2003] verify the correctness of a Schorr-
Waite implementation (for binary graphs) using higher order logics. The pro-
gram is written in a simple imperative programming language designed by
the authors themselves. The operational semantics of the programming lan-
guage has been modelled in Isabelle/HOL and a Hoare style calculus has
been derived from the semantics.
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The main difference to our approach is the explicit modelling of heaps and
the distinction between addresses and references. On top of these definitions
a reachability relation (and some auxiliary relations) is defined as above.

The program is then specified using Hoare logic by annotating the pro-
gram with assertions and a loop invariant making use of the former defined re-
lations. From these annotations, verification conditions are generated, which
have to be proven by Isabelle/HOL.

Abrial

The approach described in [Abrial, 2003] uses the B language and method-
ology to construct a correct implementation of the Schorr-Waite algorithm.
Therefore the author starts with a high-level mathematical abstraction in B
of a graph marking algorithm and then successively refines the abstraction
towards an implementation of an (improved) version of Schorr-Waite. Each
refinement step is accompanied by several proof obligations that need to be
proven to ensure the correctness of the refinement step.

Yang

In [Yang, 2001] the author uses a relatively new kind of logic called Separation
Logics, which is a variant of bunched implication logics. For verification they
use a Hoare like calculus. The advantage of this logic is the possibility to
express that two heaps are distinct and in particular the existence/possibility
of a frame introduction rule. In short, the frame introduction rule allows to
embed a property shown for a local memory area in a global context with
other memory cells.

The frame rule allows to show that if {P}C{Q} is valid for a local piece
of code C then one can embed this knowledge in a broader context {P ∗
H}C{Q ∗ H} as long as the part of the heap H talks about is not altered
by C (separate heaps). Without this frame rule one would have to consider
H when proving {P}C{Q}, which makes correctness proves very tedious, in
particular when the property shall be used in different separate contexts Hi.

Hubert and Marché

In [Hubert and Marché, 2005] the authors follow an approach very similar to
the one presented in this chapter. They used a weakest precondition calculus
for C implemented in the CADUCEUS tool to verify a C implementation of
Schorr-Waite working on a bigraph. In the same manner as described here,
they specified the loop invariant with help of an inductively defined reachable
predicate using a higher order logic.
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A

Predefined Operators in JAVA CARD DL

by

Steffen Schlager

This appendix lists syntax and semantics of all predefined function and pred-
icate symbols of JAVA CARD DL.

A.1 Syntax

A.1.1 Built-in Rigid Function Symbols

These symbols are contained in the set FSym0
r (⇒ Def. 3.4).

function symbol typing and informal semantics
+ integer, integer→ integer

addition
− integer, integer→ integer

subtraction
∗ integer, integer→ integer

multiplication
/ integer, integer→ integer

Euclidian division
% integer, integer→ integer

remainder for /
− integer→ integer

unary minus
jdiv integer, integer→ integer

division rounding towards 0
jmod integer, integer→ integer

remainder for jdiv
. . . ,−1, 0, 1, 2, . . . integer

integer numbers
FALSE boolean

constant for truth value false

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 591–598, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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function symbol typing and informal semantics
TRUE boolean

constant for truth value true
null Null

constant for null element
(A) (for any A ∈ T ) � → A

cast to type A
A::get for any A ∈ Td \ {Null} integer

gives an object of dynamic type A
max byte integer
max short integer
max int integer
max long integer
max char integer

maximum number of
respective JAVA CARD type

min byte integer
min short integer
min int integer
min long integer
min char integer

minimum number of
respective JAVA CARD type

A.1.2 Built-in Rigid Function Symbols whose Semantics Depends
on the Chosen Integer Semantics

These symbols are contained in the set FSym0
r (⇒ Def. 3.4). Their semantics

depends on the chosen integer semantics (⇒ Sect. 12.5).

function symbol typing and informal semantics
unaryMinusJint integer
unaryMinusJlong integer

unary minus
addJint integer, integer→ integer
addJlong integer, integer→ integer

addition
subJint integer, integer→ integer
subJlong integer, integer→ integer

subtraction
mulJint integer, integer→ integer
mulJlong integer, integer→ integer

multiplication
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function symbol typing and informal semantics
divJint integer, integer→ integer
divJlong integer, integer→ integer

division
modJint integer, integer→ integer
modJlong integer, integer→ integer

modulo
shiftrightJint integer, integer→ integer
shiftrightJlong integer, integer→ integer

binary shift-right
unsignedshiftrightJint integer, integer→ integer
unsignedshiftrightJlong integer, integer→ integer

unsigned binary shift-right
shiftleftJint integer, integer→ integer
shiftleftJlong integer, integer→ integer

binary shift-left
orJint integer, integer→ integer
orJlong integer, integer→ integer

binary or
xorJint integer, integer→ integer
xorJlong integer, integer→ integer

binary xor
andJint integer, integer→ integer
andJlong integer, integer→ integer

binary and
negJint integer
negJlong integer

binary negation
moduloByte integer
moduloShort integer
moduloInt integer
moduloLong integer
moduloChar integer

computation of overflow

A.1.3 Built-in Non-Rigid Function Symbols

These symbols are contained in the set FSym0
nr (⇒ Def. 3.4).

function symbol typing and informal semantics
[ ] �, integer→ �

array access in the logic
length � → integer

length of an array
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function symbol typing and informal semantics
A.<nextToCreate> integer

(for any A ∈ Td) index of next object to be created
<created> Object→ boolean

indicates whether object is created

A.1.4 Built-in Rigid Predicate Symbols

These symbols are contained in the set PSym0
r (⇒ Def. 3.4).

predicate symbol typing and informal semantics
< integer, integer

less than
<= integer, integer

less than or equal
> integer, integer

greater than
>= integer, integer

greater than or equal
.= �,�

equality
! .= �,�

inequality
quanUpdateLeq �,�

ordering predicate
�−A (for any A ∈ T ) �

type predicate for A
arrayStoreValid �,�

holds iff an array store operation
is valid for the given arguments

A.1.5 Built-in Rigid Predicate Symbols whose Semantics
Depends on the Chosen Integer Semantics

These symbols are contained in the set PSym0
r (⇒ Def. 3.4). Their semantics

depends on the chosen integer semantics (⇒ Sect. 12.5).
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predicate symbol typing and informal semantics
inByte integer
inShort integer
inInt integer
inLong integer
inChar integer

holds iff argument in range
of respective JAVA CARD type

A.1.6 Built-in Non-rigid Predicate Symbols Contained in PSym0
nr

This symbol is contained in the set PSym0
nr (⇒ Def. 3.4).

predicate symbol typing and informal semantics
inReachableState ()

characterises JAVA CARD-reachable states

A.2 Semantics

A.2.1 Semantics of Built-in Rigid Function Symbols

function symbol semantics
+ I0(+)(x, y) = x + y
− I0(−)(x, y) = x− y
∗ I0(∗)(x, y) = x ∗ y
/ I0(/)(x, y) =






z such that if y �= 0
0 ≤ x− y ∗ z < |y|
some arbitrary but otherwise
fixed d ∈ Dinteger

% I0(%)(x, y) =




x%y := x− y ∗ (x/y) if y �= 0
some arbitrary but otherwise
fixed d ∈ Dinteger

− I0(−)(x) = −x
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function symbol semantics
jdiv I0(jdiv)(x, y) =





|x|/|y| if x ≥ 0, y > 0 or
x ≤ 0, y < 0

−|x|/|y| if x < 0, y > 0 or
x > 0, y < 0

some arbitrary but if y = 0
fixed d ∈ Dinteger

jmod I0(jmod)(x, y) =




x− y ∗ I0(jdiv(x, y)) if y �= 0
some arbitrary but otherwise
fixed d ∈ Dinteger

. . . ,−1, 0, 1, . . . I0(i) = i for i ∈ {. . . ,−1, 0, 1, . . .}
FALSE I0(FALSE) = ff
TRUE I0(TRUE) = tt
null I0(null) = null
(A) I0((A))(x) =





x if δ0(x) � A

some arbitrary otherwise
but fixed d ∈ DA

A::get see Def. 3.53
max byte I0(max byte)(x) = 27 − 1
min byte I0(min byte)(x) = −27

max short I0(max short)(x) = 215 − 1
min short I0(min short)(x) = −215

max int I0(max int)(x) = 231 − 1
min int I0(min int)(x) = −231

max long I0(max long)(x) = 263 − 1
min long I0(min long)(x) = −263

max char I0(max char)(x) = 216 − 1
min char I0(min char)(x) = 0
moduloByte I0(moduloByte)(x)

= (x + 27)%28 − 27

moduloShort I0(moduloShort)(x)
= (x + 215)%216 − 215

moduloInt I0(moduloInt)(x)
= (x + 231)%232 − 231

moduloLong I0(moduloLong)(x)
= (x + 263)%264 − 263

moduloChar I0(moduloChar)(x) = x%216
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function symbol semantics
unaryMinusJint I0(unaryMinusJint)(x) = roundInt(−x)
unaryMinusJlong I0(unaryMinusJlong)(x) = roundLong(−x)
addJint I0(addJint)(x, y) = roundInt(x + y)
addJlong I0(addJlong)(x, y) = roundLong(x + y)
subJint I0(subJint)(x, y) = roundInt(x− y)
subJlong I0(subJlong)(x, y) = roundLong(x− y)
mulJint I0(mulJint)(x, y) = roundInt(x ∗ y)
mulJlong I0(mulJlong)(x, y) = roundLong(x ∗ y)
divJint I0(divJint)(x, y) = roundInt(jdiv(x, y))
divJlong I0(divJlong)(x, y) = roundLong(jdiv(x, y))
modJint I0(modJint)(x, y) = roundInt(jmod(x, y))
modJlong I0(modJlong)(x, y) = roundLong(jmod(x, y))

where roundInt = I0(moduloInt) and
roundLong = I0(moduloLong)

shiftrightJint I0(shiftrightJint)(x, y) = x >> y
shiftrightJlong I0(shiftrightJlong)(x, y) = x >> y
unsignedshiftrightJint I0(unsignedshiftrightJint)(x, y) = x >>> y
unsignedshiftrightJlong I0(unsignedshiftrightJlong)(x, y) = x >>> y
shiftleftJint I0(shiftleftJint)(x, y) = x << y
shiftleftJlong I0(shiftleftJlong)(x, y) = x << y
orJint I0(orJint)(x, y) = x | y
orJlong I0(orJlong)(x, y) = x | y
xorJint I0(xorJint)(x, y) = x ˆ y
xorJlong I0(xorJlong)(x, y) = x ˆ y
andJint I0(andJint)(x, y) = x & y
andJlong I0(andJlong)(x, y) = x & y
negJint I0(negJint)(x) = ˜x
negJlong I0(negJlong)(x) = ˜x

these functions have the same semantics as
the corresponding JAVA bit-operators
[Gosling et al., 2000, § 15.15.5]

A.2.2 Semantics of Built-in Predicate Symbols

function symbol semantics
inByte I0(inByte) = {z ∈ Z | −27 ≤ z ≤ 27 − 1}
inShort I0(inShort) = {z ∈ Z | −215 ≤ z ≤ 215 − 1}
inInt I0(inInt) = {z ∈ Z | −231 ≤ z ≤ 231 − 1}
inLong I0(inLong) = {z ∈ Z | −263 ≤ z ≤ 263 − 1}
inChar I0(inChar ) = {z ∈ Z | 0 ≤ z ≤ 216 − 1}
< I0(<) = {(x, y) ∈ Z× Z | x < y}
<= I0(≤) = {(x, y) ∈ Z× Z | x ≤ y}
> I0(>) = {(x, y) ∈ Z× Z | x > y}
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function symbol semantics
>= I0(≥) = {(x, y) ∈ Z× Z | x ≥ y}
.= I0( .=) = {(x, y) ∈ D ×D | x = y}
quanUpdateLeq I0(quanUpdateLeq) = {(x, y) ∈ �×� | x ≺ y}
�−A I0(�−A)(x) = DA

arrayStoreValid I0(arrayStoreValid) =
{(x, y) ∈ D ×D | A � B where

B[ ] = δ0(x) and A = δ0(y)}
inReachableState holds in exactly those states that are

reachable by a JAVA CARD program
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The KeY Syntax

by

Wojciech Mostowski

The KeY system accepts different kinds of inputs related to JAVA CARD DL.
From the user point of view these inputs can be divided into the following
categories:

• system rule files,
• user defined rule files,
• user problem files/proofs with optional user defined rules,
• JAVA CARD DL terms and formulae required by the interaction component

of the KeY system.

From the system’s perspective the division is similar, but on top of this,
the distinction between schematic mode and term (normal) mode is very
important:

• in schematic mode schema variables can be defined and used (usually in
definition of rules/taclets) and concrete terms or formulae are forbidden,

• in normal mode schema variables and all other schematic constructs are
forbidden, while concrete terms and formulae are allowed.

Additionally, most of terms and formulae constructs can appear in both
schematic and normal mode, but take slightly different form depending on
the mode.

In either case, all inputs the KeY system accepts follow the same syntax—
the KeY syntax (or, as sometimes it is sometimes referred to, .key file syntax).

On the implementation level, the parsing of the KeY input is done on two
levels. One parser (called term, taclet, or problem parser) is used to parse
all the input up to modalities, and a second parser (schematic JAVA parser)
is used to parse all JAVA program blocks inside the modalities. Thus, on
occasion, slightly different conventions may apply when input material inside
the modality is considered as compared to input outside of the modality.

Finally, note that the syntax described here reflects the syntax of the
KeY system snapshot available before the book was printed. The KeY syn-

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 599–626, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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tax undergoes minor changes during system development, thus the publicly
available KeY system may differ slightly in its input syntax.

B.1 Notation, Keywords, Identifiers, Numbers, Strings

Expressions in the type-writer font are KeY syntax tokens or identifiers.
Keywords are annotated with bold type-writer font. In the KeY system
the convention is to use an escape character, backslash \, to mark (almost) all
keywords, and some KeY specific operators, like modalities. This is necessary
to avoid collisions between KeY system keywords/operators and possible JAVA

identifiers/operators.
An identifier in the KeY system can be one of the following:

KeY Syntax
lettersdigits_# starts with a letter, can contain letters, digits,

underscore, and hash characters
identifier@pre like above, to allow OCL names in JAVA CARD DL
$identifier like the first one, for special OCL purposes, an identifier

can start with a single dollar character
<letters> identifier enclosed in <>, used to annotate implicit

attributes, only letters allowed
\letters_ If not a reserved keyword, a sequence of letters and

underscores starting with a backslash is also
an identifier

singledigit In special cases, when used as a function symbol,
e.g., 1(...), a single digit is also an identifier

KeY Syntax

A keyword is a reserved identifier that starts with a backslash \ and contains
only letters and underscores. An exception from this rule are keywords true,
false, and modality symbols. Some examples of identifiers and the list of all
keywords:

KeY Syntax
Identifiers:

varName #varName operation@pre $forAll
<transient> \non_keyword_ident

Keywords and keyword-escaped symbols:
\sorts \generic \extends \oneof \object \inter

\schemaVariables \schemaVar \modalOperator \operator

\program \formula \term \variables \skolemTerm \location

\function

\programVariables
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\varcond \typeof \elemTypeof \new \not \same \compatible

\sub \strict \staticMethodReference \notFreeIn

\static \notSameLiteral \isReferenceArray \isReference

\dependingOn \dependingOnMod \isQuery \hasSort

\isLocalVariable \isInReachableState \isAbstractOrInterface

\containerType

\bind \forall \exists \subst \ifEx \for

\if \then \else

\include \includeLDTs \javaSource \withOptions

\optionsDecl \settings

\sameUpdateLevel \inSequentState \closegoal

\heuristicsDecl \noninteractive \displayname

\helptext \replacewith \addrules \addprogvars

\heuristics \recursive \find \add \assumes

\inType

\predicates \functions \nonRigid

\rules \problem \proof \contracts \modifies

\< \> \[ \] \[[ \]] \diamond \box \throughout

\modality \endmodality

\diamond_trc \diamond_tra \diamond_susp

\box_trc \box_tra \box_susp

\throughout_trc \throughout_tra \throughout_susp

true false

KeY Syntax

An integer number in KeY can be given in a decimal or hexadecimal form
with infinite precision. An integer constant can have a negation sign:

KeY Syntax
Decimal integers:

1 2 -3 10 -20 12345678901234567890123456789
Hexadecimal integers:

0x01 -0xA 0xFFAABBCC0090ffaa

KeY Syntax

The KeY system can also recognise strings and character constants in its in-
put. Strings and characters in KeY are practically the same as strings and
characters in JAVA, with the same special characters and character quot-
ing rules:
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KeY Syntax
"A�string�with�a�line�break�at�the�end.\n"
’A’ ’0’ ’\t’ ’\r’ ’0x0020’

KeY Syntax

Finally, in the following expressions in 〈italics〉 represent parsing rules in reg-
ular expression form with operators ::= (definition), | (alternative), ? (zero or
one occurrence), ∗ (zero or more occurrences), + (one or more occurrences),
and () grouping. Whenever necessary, explanations are given to explain intu-
itive meaning of the rules. Identifiers are denoted with 〈identifier 〉, numbers
with 〈number〉, strings and characters with 〈string〉 and 〈character 〉 respec-
tively.

B.2 Terms and Formulae

We start with describing what are the KeY syntax rules to construct a valid
JAVA CARD DL term or formula. Note, that on the syntax level, terms are
hardly distinguishable from formulae, that is, from the parser point of view,
a formula is a term with a special top-level sort (a “formula” sort). In gen-
eral, many of the following rules for the KeY syntax are only applicable if
the involved expressions have the right sort. That is, on the implementation
level, apart from the syntax checks also semantic checks are performed when
expressions are parsed.

B.2.1 Logic Operators

The logic operators for building terms or formulae are the following:

KeY Syntax
〈formula〉 ::= 〈term〉

〈term〉 ::= 〈term1 〉 ( <-> 〈term1 〉 )∗

〈term1 〉 ::= 〈term2 〉 ( -> 〈term1 〉 )?

〈term2 〉 ::= 〈term3 〉 ( | 〈term3 〉 )∗

〈term3 〉 ::= 〈term4 〉 ( & 〈term4 〉 )∗

〈term4 〉 ::=
! 〈term4 〉

| 〈modalityTerm〉
| 〈quantifierTerm〉
| 〈equalityTerm〉

KeY Syntax
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Intuitively, it means that the negation ! is the strongest operator and is right
associative, then comes left associative conjunction &, then left associative
disjunction |, then right associative implication ->, and finally left associative
equivalence <->. Possible modalities are the following:

KeY Syntax
〈modalityTerm〉 ::=

〈modalityBlock 〉 〈term4 〉

〈modalityBlock 〉 ::=
\< 〈javaBlock 〉 \>

| \[ 〈javaBlock 〉 \]
| \[[ 〈javaBlock 〉 \]]
| \diamond 〈javaBlock 〉 \endmodality
| \box 〈javaBlock 〉 \endmodality
| \throughout 〈javaBlock 〉 \endmodality
| \diamond_trc 〈javaBlock 〉 \endmodality
| \box_trc 〈javaBlock 〉 \endmodality
| \throughout_trc 〈javaBlock 〉 \endmodality
| \diamond_tra 〈javaBlock 〉 \endmodality
| \box_tra 〈javaBlock 〉 \endmodality
| \throughout_tra 〈javaBlock 〉 \endmodality
| \diamond_susp 〈javaBlock 〉 \endmodality
| \box_susp 〈javaBlock 〉 \endmodality
| \throughout_susp 〈javaBlock 〉 \endmodality
| \modality{〈modalityName〉} 〈javaBlock 〉 \endmodality

〈modalityName〉 ::= 〈identifier 〉
KeY Syntax

In the last alternative, 〈modalityName〉 can be either a concrete modality
(diamond, box, diamond trc, etc.), or a schema variable representing a set
of modalities if the expression is parsed in the schematic mode.

As mentioned earlier, JAVA blocks inside modalities are parsed separately,
we describe the corresponding syntax in Section B.5.

Next, a quantifier takes the following form:

KeY Syntax
〈quantifierTerm〉 ::=

\forall 〈variableBinding 〉 〈term4 〉
| \exists 〈variableBinding 〉 〈term4 〉

KeY Syntax
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A variable binding takes the following form:

KeY Syntax
〈variableBinding 〉 ::=

〈singleVariableBinding 〉
| 〈multipleVariableBinding 〉

KeY Syntax

Then, depending on the parsing mode, variable binding can take the following
forms, in normal mode:

KeY Syntax
〈singleVariableBinding 〉 ::= 〈sortExp〉 〈varName〉 ;

〈multipleVariableBinding 〉 ::=
( 〈sortExp〉 〈varName〉 ( ; 〈sortExp〉 〈varName〉 )+ )

〈varName〉 ::= 〈identifier 〉
KeY Syntax

And in the schematic mode:

KeY Syntax
〈singleVariableBinding 〉 ::=
〈schemaVarName〉 ;

〈multipleVariableBinding 〉 ::=
( 〈schemaVarName〉 ( ; 〈schemaVarName〉 )+ )

〈schemaVarName〉 ::= 〈identifier 〉
KeY Syntax

In the former, 〈varName〉 is any valid KeY identifier and 〈sortExp〉 is a valid
sort name as explained shortly, in the latter 〈schemaVarName〉 is also any
valid KeY identifier associated with a proper schema variable (⇒ Sect. 4.1).
A sort expression takes the following form:

KeY Syntax
〈sortExp〉 ::=

〈sortName〉 (( [] ) ∗ | ( {} )∗)
| 〈intersectionSort〉

〈intersectionSort〉 ::=
\inter( 〈sortName〉 ,

( 〈intersectionSort〉 | 〈sortName〉 ) )

KeY Syntax
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A sort name 〈sortName〉 is any valid KeY sort, including fully qualified sorts
that reflect JAVA types. The suffix [] denotes “array of” sort, and the suffix {}
denotes “set of” sort. The keyword \inter is used to construct intersection
sorts. Examples of valid quantifiers and sort expressions are the following:

KeY Syntax
\forall (int i; int j) true

\exists java.lang.Object{} o_set; true

\inter(Sort1, \inter(Sort2, Sort3))

KeY Syntax

In the remainder of this appendix 〈variableBinding 〉 and 〈sortExp〉 are going
to be referenced often.

Finally, an 〈equalityTerm〉 expresses (in-)equality between two atomic
terms:

KeY Syntax
〈equalityTerm〉 ::=

〈atomicTerm1 〉 ( = 〈atomicTerm1 〉 )?
| 〈atomicTerm1 〉 ( != 〈atomicTerm1 〉 )?

KeY Syntax

The inequality operator != is simply a syntactic sugar: a != b is the same
as !a = b (note that = binds stronger than !).

B.2.2 Atomic Terms

Atomic terms are build in the following way. The top-level atomic term is:

KeY Syntax
〈atomicTerm1 〉 ::=
〈atomicTerm2 〉 ( 〈intRelation〉 〈atomicTerm2 〉 )?

〈intRelation〉 ::=
< | <= | > | >=

KeY Syntax

The rule 〈intRelation〉 represents a possible integer comparison relation in
the infix form. Of course, such relation can be only used if the sort of
〈atomicTerm2 〉 permits this. The infix relation expressions (as well as infix in-
teger binary operators, like +, -, *, etc., see below) are only a short hand nota-
tion for corresponding function symbols, like lt, geq, add, or mul (⇒ App. A).
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Further definitions for atomic terms are the following:

KeY Syntax
〈atomicTerm2 〉 ::=
〈atomicTerm3 〉 ( 〈arithOp1 〉 〈atomicTerm3 〉 )∗

〈atomicTerm3 〉 ::=
〈atomicTerm4 〉 ( 〈arithOp2 〉 〈atomicTerm4 〉 )∗

〈atomicTerm4 〉 ::=
- 〈atomicTerm4 〉

| ( 〈sortExp〉 ) 〈atomicTerm4 〉
| 〈atomicTerm5 〉

〈arithOp1 〉 ::= + | -

〈arithOp2 〉 ::= * | / | %
KeY Syntax

Intuitively, all binary arithmetic operators are left associative, and *, /,
% bind stronger than + and -. Unary minus and sort casts (definition of
〈atomicTerm4 〉) are strongest and right associative. Next, the definition for
〈atomicTerm5 〉 is the following:

KeY Syntax
〈atomicTerm5 〉 ::=

〈accessTerm〉
| 〈substitutionTerm〉
| 〈updateTerm〉

KeY Syntax

Access terms are defined in the following way:

KeY Syntax
〈accessTerm〉 ::=
〈primitiveTerm〉 〈arrayAttributeQueryAccess〉∗

〈primitiveTerm〉 ::=
〈staticQuery〉

| 〈staticAttribute〉
| 〈functionPredicateTerm〉
| 〈variable〉
| 〈conditionalTerm〉
| 〈specialTerm〉
| 〈abbrTerm〉
| ( 〈term〉 )
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| true

| false

| 〈number〉
| 〈character 〉
| 〈string〉

〈arrayAttributeQueryAccess〉 ::=
〈arrayAccess〉

| 〈attributeAccess〉
| 〈queryAccess〉

〈arrayAccess〉 ::=
[ 〈indexTerm〉 ] 〈shadowOp〉?

〈indexTerm〉 ::=
〈atomicTerm1 〉

| *
| 〈atomicTerm1 〉 .. 〈atomicTerm1 〉

〈attributeAccess〉 ::= . 〈attributeExp〉 〈shadowOp〉?

〈queryAccess〉 ::= . 〈queryExp〉

〈staticAttribute〉 ::=
〈typeReference〉 . 〈attributeExp〉 〈shadowOp〉?

〈staticQuery〉 ::= 〈typeReference〉 . 〈queryExp〉

〈shadowOp〉 ::=
^( 〈atomicTerm1 〉 )

| ’+
KeY Syntax

The 〈shadowOp〉 rule gives the syntax for shadowed array and attribute ex-
pressions (⇒ Sect. 9.5.2). The second alternative can only be used in normal
term parsing mode, and not in the schematic mode. The last two alternatives
of the 〈indexTerm〉 can only occur when modifies clauses (for example, in con-
tracts (⇒ Sect. B.4.1), or when instantiating modifier sets (⇒ Sect. 3.7.4))
are parsed and denote quantified array expressions. Further details are the
following:

KeY Syntax
〈attributeExp〉 ::=
〈attributeName〉 〈classLocator 〉?



608 B The KeY Syntax

〈queryExp〉 ::=
〈queryName〉 〈classLocator 〉? ( 〈argumentList〉? )

〈classLocator 〉 ::= @( 〈typeReference〉 )

〈argumentList〉 ::= ( 〈term〉 ( , 〈term〉 )∗ )

〈attributeName〉 ::= 〈identifier 〉

〈queryName〉 ::= 〈identifier〉
KeY Syntax

Class locator expressions are used to resolve possible collisions between at-
tribute names when JAVA name shadowing occurs. Class locator expressions
are obligatory when such a collision takes place, otherwise they are op-
tional. Class locators can only occur in normal term parsing mode, not in
the schematic mode. A 〈typeReference〉 is a fully qualified JAVA type expres-
sion, for example:

KeY Syntax
java.lang.Object
int[]

KeY Syntax

If there are no ambiguities, the package information can be skipped. An
〈attributeName〉 is either a concrete attribute name, or a schema variable
representing one, again depending on the parsing mode. 〈queryName〉 is sim-
ilar to 〈attributeName〉, however in the current version of the KeY system,
query expressions can only appear in normal parsing mode, thus 〈queryName〉
always represents a concrete method/query name.

Before we describe what are the lowest level building blocks for terms, we
first go back to the definition of 〈substitutionTerm〉 and 〈updateTerm〉:

KeY Syntax
〈substitutionTerm〉 ::=
{ \subst 〈singleVariableBinding 〉 〈atomicTerm1 〉 } 〈term4 〉

〈updateTerm〉 ::=
{ 〈singleUpdate〉 ( || 〈singleUpdate〉 )∗ } 〈term4 〉

〈singleUpdate〉 ::=
( \for 〈variableBinding 〉 )? ( \if ( 〈formula〉 ) )?
〈atomicTerm1 〉 := 〈atomicTerm1 〉

| * := * 〈number〉
KeY Syntax
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The second alternative in the 〈singleUpdate〉 rule represents an anonymous
update (⇒ Sect. 3.7.4). The above definitions mean that, in particular, the
following terms are going to be parsed like this:

KeY Syntax
{\subst int i; 2} i = i is parsed as
({\subst int i; 2} i) = i

{o.a := 1} o.a = o.a is parsed as
({o.a := 1} o.a) = o.a

KeY Syntax

In updates, update quantification \for and update guard \if are optional.
Function and predicate expressions are constructed in the following way:

KeY Syntax
〈functionPredicateTerm〉 ::=
〈functionPredicateName〉 ( 〈dependencyList 〉 )? ( (〈argumentList〉) )?

〈functionPredicateName〉 ::=
〈identifier 〉

| 〈sortExp〉 :: 〈sortOperator 〉

〈sortOperator 〉 ::= 〈identifier 〉

〈dependencyList 〉 ::=
[ 〈dependencies〉 ( , 〈dependencies〉 )∗ ]

〈dependencies〉 ::=
( ( 〈attributeExp〉 | 〈arrayExp〉 ) ; )+

〈arrayExp〉 ::= [] ( 〈typeReference〉 )

KeY Syntax

The dependency list can only be present if the corresponding function or pred-
icate has been declared to be non-rigid. The use and meaning of dependencies
in function and predicate expressions have been explained in Section 15.2.1.
The second alternative in 〈functionPredicateName〉 is for predefined func-
tions and predicates that relate to sort operations (built-in sort functions
and predicates), 〈sortOperator〉 can be any of the following identifiers:

KeY Syntax
including excluding includes excludes sum emptySet
isEmpty notEmpty size intersection symmetricDifference
instance union without

KeY Syntax
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Simple variables, conditional terms, and abbreviations are defined as follows:

KeY Syntax
〈variable〉 ::= 〈identifier 〉

〈abbrTerm〉 ::= @ 〈identifier 〉

〈conditionalTerm〉 ::=
( \if | \ifEx 〈variableBinding 〉 )
( 〈formula〉 )
\then ( 〈term〉 )
\else ( 〈term〉 )

KeY Syntax

A variable can be a logic or a program variable (normal parsing mode), or a
schema variable (schematic mode). An abbreviation expression refers to an
identifier that contains a term abbreviation.

A special term is built in the following way:
KeY Syntax

〈specialTerm〉 ::=
〈metaTerm〉

| \inType (
-? 〈schemaVariable〉

| 〈schemaVariable〉 〈arithOp〉 〈schemaVariable〉
)

〈metaTerm〉 ::=
〈metaOperator〉 ( ( 〈argumentList〉 ) )?

〈arithOp〉 ::= + | - | * | / | %

〈schemaVariable〉 ::=
〈identifier 〉

〈metaOperator 〉 ::= 〈identifier 〉
KeY Syntax

Special terms can only occur in the schematic mode. Meta-terms are used to
construct taclet meta-operator expressions (⇒ Sect. 4.2.8). Currently, valid
meta-operator identifiers are the following:

KeY Syntax
#lengthReference #created #nextToCreate
#traInitialized #transient #transactionCounter #shadowed
#add #sub #mul #div #jdiv #mod #jmod #less #greater
#leq #geq #eq #JavaIntUnaryMinus #JavaLongUnaryMinus
#JavaIntAdd #JavaIntSub #JavaIntMul #JavaIntDiv #JavaIntMod
#JavaIntAnd #JavaIntOr #JavaIntXor #JavaIntComplement
#JavaIntShiftRight #JavaIntShiftLeft
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#JavaIntUnsignedShiftRight #JavaLongAdd #JavaLongSub
#JavaLongMul #JavaLongDiv #JavaLongMod #JavaLongAnd
#JavaLongOr #JavaLongXor #JavaLongComplement
#JavaLongShiftRight #JavaLongShiftLeft
#JavaLongUnsignedShiftRight
#moduloByte #moduloShort #moduloInteger #moduloLong
#whileInvRule #introNewAnonUpdate
#arrayBaseInstanceOf #arrayStoreStaticAnalyse
#expandDynamicType #ResolveQuery #constantvalue
#Universes #allSubtypes
#divideMonomials #divideLCRMonomials
#createInReachableStatePO

KeY Syntax

The ideas behind the \inType special operator are described in Chapter 12.
Note that different meta-operators/constructs are used inside modalities for
the schematic JAVA code blocks (⇒ Sect. B.5.5).

Finally, the remaining term building blocks are number 〈number〉 con-
stants, string 〈string〉 and character 〈character 〉 constants, grouping with
parenthesis (), and logic constants true and false.

To sum up this section, here are some examples of properly built terms
and formulae. In normal mode:

KeY Syntax
false -> true

\forall int i; (i + i = 2 * i & i - i = 0)
\forall int i; (add(i, i) = mul(2, i) & sub(i, i) = 0)
\exists java.lang.Object[] o; o != null
{\for int i; \if (i >= 0 & i < a.length)

a[i].<transient> := 1, o := a} (o[0].<transient> = 1)
StaticClass.staticAttr <= StaticClass.staticQuery()
o.a@(ClassA).b@(ClassB) =

o.identity@(ClassA)(o.a@(ClassA).b@(ClassB))
java.lang.Object::instance(o) = TRUE
\< {i = 1;} \> i = 1

KeY Syntax

And in schematic mode:

KeY Syntax
\forall #v; (#v + #v = 2 * #v & #v - #v = 0)
\exists #v; #v != null
{\for #v; \if (#v >= 0 & #v < a.length)

#transient(#a[#v]) := 1} (#transient(#a[#v]) = 1)
AnySort::instance(#v) = TRUE
#o.#a != #se0 + #se1

KeY Syntax
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B.3 Rule Files

All rule files (system and user defined) are parsed only in schematic mode.
On the top level, a rule file has the following form:

KeY Syntax
〈ruleFile〉 ::=
〈libraryIncludeStatement〉∗
〈ruleFileDeclarations〉∗
〈ruleBlock〉∗

KeY Syntax

B.3.1 Library and File Inclusion

The KeY system supports file inclusion on two levels: (low) file level, and
(high) library level. File inclusion statements can appear anywhere in the
KeY input, and take the following form:

KeY Syntax
〈fileInclusion〉 ::=
\includeFile " 〈fileName〉 ";

KeY Syntax

The effect of \includeFile is that KeY unconditionally redirects its input
to the indicated file 〈fileName〉. When the indicated file is read in, the parsing
in the current file continues. File inclusion nesting is allowed and its depth is
not limited by the KeY system itself.

Library file inclusion can be done with the following statements:

KeY Syntax
〈libraryIncludeStatement〉 ::=

(\include | \includeLDTs )
〈libraryFileName〉 ( , 〈libraryFileName〉 )∗ ;

KeY Syntax

The major feature of the library inclusion statements is that each library file
is going to be read in once, even if the same library is requested multiple times
(for example, because of circular dependencies). On the implementation level,
when the library files are read in \includeLDTs performs slightly different
operations than \include.
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B.3.2 Rule File Declarations

Each rule file can have the following declarations:

KeY Syntax
〈ruleFileDeclarations〉 ::=

〈ruleSetsDecl〉
| 〈optionsDecl 〉
| 〈sortsDecls〉
| 〈schemaVariablesDecl 〉
| 〈functionsDecl〉
| 〈predicatesDecl〉

KeY Syntax

Rule sets and options are declared in the following way:

KeY Syntax
〈ruleSetsDecl〉 ::=
\heuristicsDecl { ( 〈ruleSetName〉 ; )∗ }

〈optionsDecl 〉 ::=
\optionsDecl { ( 〈oneOptionDecl 〉 ; )∗ }

〈oneOptionDecl 〉 ::=
〈optionName〉 : { 〈optionValue〉 ( , 〈optionValue〉 )∗ }

〈ruleSetName〉 ::= 〈identifier 〉

〈optionName〉 ::= 〈identifier 〉

〈optionValue〉 ::= 〈identifier 〉
KeY Syntax

Examples of valid rule set and option declarations are:

KeY Syntax
\heuristicsDecl { simplify_int; simplify_prog; }

\optionsDecl {
nullPointerPolicy:{nullCheck, noNullCheck};
programRules:{Java, ODL};

}

KeY Syntax



614 B The KeY Syntax

Sorts are declared in the following way:

KeY Syntax
〈sortsDecl〉 ::=
\sorts { ( 〈oneSortDecl〉 ; )∗ }

〈oneSortDecl〉 ::=
\object 〈sortNameList〉

| \generic 〈sortNameList〉
( \extends 〈sortNameList〉 )? ( \oneof { 〈sortNameList〉 } )?

| 〈intersectionSort〉
| 〈sortName〉 \extends 〈sortNameList〉
| 〈sortNameList〉

〈sortNameList〉 ::= 〈sortName〉 ( , 〈sortName〉 )∗
KeY Syntax

The definitions of 〈intersectionSort〉 and 〈sortName〉 have been given earlier.
Note, that here 〈sortName〉 may be (only in some places) required to be a
simple 〈identifier 〉, and cannot be a fully qualified sort name.

Schema variables are declared in the following way:

KeY Syntax
〈schemaVariablesDecl 〉 ::=
\schemaVariables { ( 〈schemaVarDecl〉 ; )∗ }

〈schemaVarDecl 〉 ::=
( \modalOperator | \operator ( 〈sortName〉 ) )

{ 〈operatorList 〉 } 〈variableList 〉
| \formula 〈schemaModifiers 〉? 〈variableList 〉
| \location 〈schemaModifiers 〉? 〈variableList 〉
| \function 〈schemaModifiers 〉? 〈variableList 〉
| \program 〈schemaModifiers 〉? 〈programSchemaVarSort〉 〈variableList 〉
| \term 〈schemaModifiers〉? 〈sortName〉 〈variableList 〉
| \variables 〈sortName〉 〈variableList 〉
| \skolemTerm 〈sortName〉 〈variableList 〉

〈programSchemaVarSort〉 ::= 〈identifier 〉

〈schemaModifiers 〉 ::= [ 〈identifier 〉 ( , 〈identifier 〉 )∗ ]

〈variableList 〉 ::= 〈identifier 〉 ( , 〈identifier 〉 )∗

〈operatorList 〉 ::= 〈identifier 〉 ( , 〈identifier〉 )∗
KeY Syntax

Schema variable modifiers can be list, rigid, or strict. The list of cur-
rently defined program schema variable sorts is the following:
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KeY Syntax
LeftHandSide Variable StaticVariable SimpleExpression
NonSimpleExpression Expression Literal Label
InstanceCreation ArrayCreation ArrayInitializer
SpecialConstructorReference LoopInit Guard ForUpdates
MultipleVariableDeclaration ArrayPostDeclaration
Switch ImplicitVariable ExplicitVariable
ConstantVariable ImplicitReferenceField VariableInitializer
ImplicitClassInitialized NonSimpleMethodReference
Statement Catch MethodBody NonModelMethodBody Type
NonPrimitiveType MethodName ExecutionContext
ContextStatementBlock <allocate>

JavaBooleanExpression JavaByteExpression
JavaCharExpression JavaShortExpression JavaIntExpression
JavaLongExpression JavaByteShortExpression
JavaByteShortIntExpression AnyJavaTypeExpression
AnyNumberTypeExpression SimpleStringExpression

ImplicitClassInitializationInProgress ImplicitClassErroneous
ImplicitClassPrepared ImplicitNextToCreate ImplicitCreated
ImplicitTraInitialized ImplicitTransactionCounter ArrayLength

makeTransientBooleanArray makeTransientByteArray
makeTransientShortArray makeTransientObjectArray
jvmArrayCopy jvmArrayCopyNonAtomic jvmArrayFillNonAtomic
jvmArrayCompare jvmMakeShort jvmSetShort jvmIsTransient
jvmBeginTransaction jvmCommitTransaction jvmAbortTransaction
jvmSuspendTransaction jvmResumeTransaction

KeY Syntax

Some examples of properly declared schema variables:

KeY Syntax
\schemaVariables {
\modalOperator {diamond, box, throughout} #puremodal;
\operator (int) {add, sub, mul, mod, div};
\formula post, inv, post1;
\program Type #t, #t2 ;
\program[list] Catch #cs ;
\location[list] #modifies;
\function[list] anon1, anon2, anon3;
\term[rigid,strict] H h;
\variables G x;

KeY Syntax
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Function and predicate declarations are very similar to each other, the only
difference is that there is no result type specified for predicates:

KeY Syntax
〈functionsDecl〉 ::=
\functions 〈optionSpecs〉? { ( 〈oneFunctionDecl〉 ; )∗ }

〈predicatesDecl〉 ::=
\predicates 〈optionSpecs〉? { ( 〈onePredicateDecl 〉 ; )∗ }

〈oneFunctionDecl〉 ::=
( \nonRigid ( [Location] )? )?
〈sortExp〉 〈functionPredicateName〉 ( 〈dependencyList〉 )?
〈argumentSorts〉?

〈onePredicateDecl 〉 ::=
( \nonRigid ( [Location] )? )?
〈functionPredicateName〉 ( 〈dependencyList 〉 )?
〈argumentSorts〉?

〈argumentSorts〉 ::= ( 〈sortExp〉 ( , 〈sortExp〉 )∗ )

〈optionSpecs〉 ::= ( 〈optionSpecList〉 )

〈optionSpecList 〉 ::= 〈oneOptionSpec〉 ( , 〈oneOptionSpec〉 )∗

〈oneOptionSpec〉 ::= 〈optionName〉 : 〈optionValue〉
KeY Syntax

In the above 〈dependencyList〉 can only occur if the function or predicate is
declared to be non-rigid. The option specification tell the the system that
the declared functions or predicates should only be visible when the specified
option is active. Some function and predicate declaration examples:

KeY Syntax
\functions(intRules:javaSemantics) {

int unaryMinusJint(int);
}

\predicates {
\nonRigid Acc(java.lang.Object, any);

}

KeY Syntax
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B.3.3 Rules

Rules (taclets) are defined in \rules blocks this way:

KeY Syntax
〈ruleBlock 〉 ::=
\rules 〈optionSpecs〉? { ( 〈taclet〉 ; )∗ }

KeY Syntax

The option specification has the same meaning as for the function and pred-
icate declarations. Each taclet can have additional (per taclet) option speci-
fications and local schema variable declarations. The syntax for a taclet is:

KeY Syntax
〈taclet〉 ::=
〈identifier〉 〈optionSpecs〉? {

( \schemaVar 〈schemaVarDecl〉 ; )∗
〈contextAssumptions〉? 〈findPattern〉?
〈stateCondition〉? 〈variableConditions 〉?
( 〈goalTemplateList 〉 | \closegoal )
〈tacletModifiers〉∗

}

〈contextAssumptions〉 ::= \assumes ( 〈schematicSequent〉 )

〈findPattern〉 ::= \find ( 〈termOrSequent〉 )

〈stateCondition〉 ::= \inSequentState | \sameUpdateLevel

〈variableConditions 〉 ::= \varcond ( 〈variableConditionList 〉 )
〈variableConditionList 〉 ::= 〈variableCondition 〉 ( , 〈variableCondition 〉 )∗

〈goalTemplateList 〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗

〈schematicSequent〉 ::= 〈termList〉? ==> 〈termList〉?

〈termList〉 ::= 〈term〉 ( , 〈term〉 )∗

〈termOrSequent〉 ::= 〈term〉 | 〈schematicSequent〉

〈tacletModifiers〉 ::=
\heuristics ( 〈identifierList〉 )

| \noninteractive

| \recursive

| \displayname 〈string〉
| \helptext 〈string〉

〈identifierList〉 ::= 〈identifier 〉 ( , 〈identifier 〉 )∗
KeY Syntax
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A variable condition can be one of the following:

KeY Syntax
〈variableCondition 〉 ::=

\new ( 〈variable〉 ,
〈typeCondExp〉

| \dependingOn ( 〈variable〉 )
| \dependingOnMod ( 〈variable〉 )
)

| \notSameLiteral ( 〈variable〉 , 〈variable〉 )
| \notFreeIn ( 〈variable〉 ( , 〈variable〉 )+ )
| \hasSort ( 〈variable〉 , 〈sortExp〉 )
| \isQuery ( 〈variable〉 )
| \isInReachableState ( 〈variable〉 )
| \isReference ( [non_null] )? ( 〈typeCondExp〉 )
| \not? \staticMethodReference (

〈variable〉 , 〈variable〉 , 〈variable〉 )
| \not? \isReferenceArray ( 〈variable〉 )
| \not? \static ( 〈variable〉 )
| \not? \isLocalVariable ( 〈variable〉 )
| \not? \isAbstractOrInterface ( 〈typeCondExp〉 )
| \not? 〈typeComparison〉 ( 〈typeCondExp〉 , 〈typeCondExp〉 )

〈typeCondExp〉 ::=
\typeof ( 〈variable〉 )

| \containerType ( 〈variable〉 )
| 〈sortExp〉

〈typeComparison〉 ::=
\same | \compatible | \strict? \sub

KeY Syntax

The goal specification is defined as follows:

KeY Syntax
〈goalTemplate〉 ::=

〈optionSpecs〉 { 〈oneGoalTemplate〉 }
| 〈oneGoalTemplate〉

〈oneGoalTemplate〉 ::=
〈branchName〉?

〈replaceGoal 〉 〈addGoal 〉? 〈addRules〉? 〈addProgramVars〉?
| 〈addGoal 〉 〈addRules〉?
| 〈addRules〉
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〈branchName〉 ::= 〈string〉 :

〈replaceGoal 〉 ::= \replacewith ( 〈termOrSequent〉 )

〈addGoal 〉 ::= \add ( 〈schematicSequent〉 )

〈addRules〉 ::=
\addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ )

〈addProgramVars〉 ::=
\addprogvars ( 〈variable〉 ( , 〈variable〉 )∗ )

KeY Syntax

Some examples of properly formed taclets:

KeY Syntax
eliminateVariableDeclaration {
\find (\<{.. #t #v0; ...}\> post)
\replacewith (\<{.. ...}\> post)
\addprogvars(#v0)

\heuristics(simplify_prog, simplify_prog_subset)
\displayname "eliminateVariableDeclaration"

};

makeInsertEq {
\find (sr = tr ==>)
\addrules ( insertEq { \find (sr) \replacewith (tr) } )
\heuristics (simplify)
\noninteractive

};

cut {
"cut:�#b�TRUE": \add (#b ==>);
"cut:�#b�FALSE": \add (==> #b)

};

KeY Syntax

B.4 User Problem and Proof Files

User problem and proof files are almost the same, the only difference is that
the problem file does not contain a \proof section. User problem and proof
files have some additional elements as compared to rules files, and all the
elements of the rule files can be present in a problem/proof file:



620 B The KeY Syntax

KeY Syntax
〈userProblemProofFile〉 ::=
〈proverSettings〉?
〈javaSource〉?
〈libraryIncludeStatement〉∗
〈tacletOptionActivation〉?
〈programVariablesDecl〉?
〈ruleFileDeclarations〉∗
〈contracts〉∗
〈ruleBlock〉∗
〈problem〉
〈proof 〉?

KeY Syntax

The following simple definitions cover most of the problem/proof file syntax:

KeY Syntax
〈proverSettings〉 ::= \settings { 〈string〉 }

〈javaSource〉 ::= \javaSource " 〈fileName〉 ";

〈tacletOptionActivation〉 ::= \withOptions 〈optionSpecList〉 ;

〈programVariablesDecl 〉 ::=
\programVariables { ( 〈programVarDecl〉 ; )∗ }

〈programVarDecl 〉 ::= 〈typeReference〉 〈variableList 〉

〈problem〉 ::= \problem { 〈formula〉 }

〈proof 〉 ::= \proof { 〈proofTree〉 }

KeY Syntax

The \programVariables section defines program variables local to the the
problem, for example:

KeY Syntax
\programVariables { java.lang.Object o; }

\problem { \< {o = new Object();} \> o != null }

KeY Syntax

The parameter to \settings is a string containing the description of prover
settings in a category/property list form, similar to this:
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KeY Syntax
\settings {
"#Proof-Settings-Config-File
#Tue�Apr�04�15:36:57�CEST�2006
[General]SuggestiveVarNames=false
[General]OuterRenaming=true
[View]FontIndex=0
[View]ShowWholeTaclet=false
[SimultaneousUpdateSimplifier]DeleteEffectLessLocations=true
[DecisionProcedure]=SIMPLIFY
..." }

KeY Syntax

The \proof contains a proof tree in the form of Lisp-like nested lists. Since
proof trees are in principle not supposed to be edited by the user manually,
we skip the detailed description of the proof tree syntax. An example of a
proof tree is the following:

KeY Syntax
\proof {
(keyLog "0" (keyUser "woj" ) (keyVersion "0.2184"))

(branch "dummy�ID"
(rule "concrete_and_1" (formula "1") (term "0")

(userinteraction "n"))
(rule "concrete_and_2" (formula "1") (term "1")

(userinteraction "n"))
(rule "concrete_eq_4" (formula "1") (userinteraction "n"))
(rule "concrete_not_2" (formula "1") (userinteraction "n"))
(rule "close_by_true" (formula "1") (userinteraction "n"))

)
}

KeY Syntax

B.4.1 Method Contracts

Finally, method contracts expressed directly in JAVA CARD DL take the fol-
lowing form in the KeY syntax:

KeY Syntax
〈contracts〉 ::=
\contracts { ( 〈oneContract〉 ; )∗ }
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〈oneContract〉 ::=
〈identifier〉 {
〈programVariablesDecl 〉?
〈prePostFormula〉
\modifies { 〈locationList〉 }
( \heuristics ( 〈identifierList〉 ) )?
( \displayname 〈string〉 )?

}

〈prePostFormula〉 ::=
〈formula〉 -> 〈modalityBlock 〉 〈formula〉

〈locationList 〉 ::= 〈oneLocation〉 ( , 〈oneLocation〉 )∗

〈oneLocation〉 ::=
*

| ( \for 〈variableBinding 〉 )? ( \if 〈formula〉 )? 〈accessTerm〉
KeY Syntax

Here program variables are declared locally for a contract. The contract for-
mula 〈prePostFormula〉 has to be in special form (Hoare Triple)—the pro-
gram blocks appearing inside the modality are limited to single method body
reference expression and special exception catching constructs (⇒ Sect. B.5).
Also, in contracts, an 〈accessTerm〉 can contain quantified array expres-
sions (⇒ Sect. B.2.2). An explicit quantification of expressions with \for

is also possible. An example of a contract is the following:

KeY Syntax
\contracts {

Demoney_setUndefined {
\programVariables {
byte b;
fr.trustedlogic.demo.demoney.Demoney demoney;

}
demoney.definedParamFlags != null ->
\<{

demoney.setUndefined(b)
@fr.trustedlogic.demo.demoney.Demoney;

}\> demoney.definedParamFlags != null
\modifies { demoney.definedParamFlags[*] }
\displayname "setUndefined"

};
}

KeY Syntax
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B.5 Schematic JAVA Syntax

In principle, inside a JAVA CARD DL modality any valid JAVA code block
can be placed, that is, any JAVA code block that would be allowed in a JAVA

method implementation. On top of that, the KeY system allows extensions
to the regular JAVA syntax. We are not going to discuss the JAVA syntax,
we assume that in this context it is common knowledge. Similarly to terms,
different rules for the code inside a modality apply when the schematic mode
is used for parsing the rule files, as explained below. All JAVA blocks that
appear inside a modality have to be surrounded with a pair of braces {}. In
the following, JAVA keywords that appear in JAVA blocks are marked with
bold.

B.5.1 Method Calls, Method Bodies, Method Frames

In normal parsing mode the following construct can be used to refer to
method’s body/implementation:

KeY Syntax
〈methodBody〉 ::=

( 〈resultLoc〉 = )?
〈staticClassOrObjectRef 〉 . 〈methodName〉
〈methodArguments〉 @ 〈classReference〉 ;

KeY Syntax

The following are properly constructed method body references:

KeY Syntax
o.method()@MyClass;
result = pack.StaticClass.method(o, 2)@pack.StaticClass;

KeY Syntax

On the top level, any JAVA block can also be enclosed in a method frame to
provide the method execution context. A method frame expression takes the
following form:

KeY Syntax
〈methodFrame〉 ::=

method-frame(result -> 〈resultLoc〉 ,
source = 〈classReference〉 ,
this = 〈variable〉) : {

〈javaBlock 〉
}

KeY Syntax
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For example:

KeY Syntax
\<{ method-frame(result->j, source=MyClass, this=c)

: {
this.a=10;
return this.a;

}
}\> ...

KeY Syntax

B.5.2 Exception Catching in Contracts

When a JAVA CARD DL method contract is constructed a method body refer-
ence inside the modality can be enclosed in an exception catching construct
to allow exceptional specification of a method. The syntax is the following:

KeY Syntax
〈contractExceptionCatch〉 ::=

#catchAll(〈classReference〉 〈variable〉) {
〈methodBody〉

}

KeY Syntax

For example:

KeY Syntax
#catchAll(Exception e) {

o.method()@MyClass;
}

KeY Syntax

B.5.3 Inactive JAVA Block Prefix and Suffix

In the schematic mode several extensions to the JAVA syntax are available.
First, the inactive prefix and suffix of the JAVA block (⇒ Sect. 3.6) can be
given with .. and ..., following this syntax:

KeY Syntax
〈inactivePrefixSuffix 〉 ::=

.. 〈javaBlock 〉 ...

KeY Syntax

The inactive prefix and suffix constructs can be seen as special cases of pro-
gram schema variables.
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B.5.4 Program Schema Variables

Any program part inside the modality can be replaced with a corresponding
schema variable, provided a schema variable of a proper kind is provided to
match the given element in JAVA code (⇒ Sect. B.3.2). Additionally some
elements of the inactive prefix can also be matched with a schema variable
to refer to the execution context data. For example, the following are valid
schematic JAVA blocks:

KeY Syntax
.. #loc = #se; ... Assignment
.#ex.. #lb: throw #se; ... Execution Context & Label
.. #t #v = #exp; ... Variable declaration
.. #se.#mn(#selist); Method call

KeY Syntax

B.5.5 Meta-constructs

When in schematic mode, the KeY system offers a variety of meta-constructs
to perform local program transformations and new code introduction re-
lated to the corresponding symbolic execution rules of JAVA code. Such
meta-constructs can only be used in the modalities that are part of the
\replacewith or \add taclet goal specifiers. For example the following meta-
construct can be used to introduce proper method body reference into the
analysed JAVA code:

KeY Syntax
.. #method-call(#se.#mn(#selist)); ...

KeY Syntax

The full list of schematic JAVA meta-constructs is the following:

KeY Syntax
#unwind-loop #unpack #switch-to-if #do-break
#evaluate-arguments #replace #resolve-multiple-var-decl
#typeof #length-reference

#method-call #method-call-contract #expand-method-body
#constructor-call #special-constructor-call

#create-object #post-work #array-post-declaration
#init-array-creation #init-array-creation-transient
#init-array-assignments

#static-initialisation #isstatic #static-evaluate

KeY Syntax
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B.5.6 Passive Access in Static Initialisation

Finally, the static initialisation rules (⇒ Sect. 3.6.6) extend JAVA syntax with
the passive (or raw) access operator:

KeY Syntax
〈passiveAccessExp〉 ::= @( 〈attributeVariableAccess〉 )

KeY Syntax

The passive access operator @ can be used both in normal (only when appro-
priate) and schematic mode.
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rent Théry, editors, Proceedings, Theorem Proving in Higher Order Logics
(TPHOLs), Nice, France, LNCS 1690, pages 113–130. Springer, 1999.

Jifeng He, Tony Hoare, and Jeff W. Sanders. Data refinement refined. In
B. Robinet and R. Wilhelm, editors, European Symposium on Program-
ming, volume 213 of LNCS, pages 187–196. Springer, 1986.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Program verification by
symbolic execution and induction. In K. Morik, editor, Proc. 11th German
Workshop on Artificial Intelligence, volume 152 of Informatik Fachberichte.
Springer-Verlag, 1987.

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 583, October 1969.

Tony Hoare. The verifying compiler: A grand challenge for computing re-
search. Journal of the ACM, 50(1):63–69, 2003.

Tony Hoare. The ideal of verified software. In Thomas Ball and Robert B.
Jones, editors, Proc. Computer Aided Verification, 18th International Con-
ference (CAV), Seattle, WA, USA, volume 4144 of LNCS, pages 5–16.
Springer-Verlag, 2006. URL http://dx.doi.org/10.1007/11817963_4.

John Hogg. Islands: Aliasing protection in object-oriented languages. In An-
dreas Paepcke, editor, Proc. Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 271–285. ACM
Press, 1991.

Gerard J. Holzmann. The SPIN Model Checker. Pearson Education, 2003.
Engelbert Hubbers and Erik Poll. Reasoning about card tears and transac-

tions in Java Card. In Michel Wermelinger and Tiziana Margaria, ed-
itors, Proc. Fundamental Approaches to Software Engineering (FASE),
Barcelona, Spain, volume 2984 of LNCS, pages 114–128. Springer-Verlag,
2004a.

Engelbert Hubbers and Erik Poll. Transactions and non-atomic API calls in
Java Card: specification ambiguity and strange implementation behaviours.
Dept. of Computer Science NIII-R0438, Radboud University Nijmegen,
2004b.
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José Meseguer and Grigore Rosu. Rewriting logic semantics: From language
specifications to formal analysis tools. In D. Basin and M. Rusinowitch,
editors, Automated Reasoning, Second International Joint Conference, IJ-
CAR 2004, Cork, Ireland, Proceedings, volume 3097 of LNCS, pages 1–44.
Springer, 2004.

Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):
40–51, October 1992.

Jörg Meyer and Arnd Poetzsch-Heffter. An architecture for interactive pro-
gram provers. In Susanne Graf and Michael I. Schwartzbach, editors,
Proc. 6th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), Berlin, Germany, volume 1785 of
LNCS, pages 63–77. Springer-Verlag, 2000.

Carroll Morgan. Programming from specifications. International series in
computer science. Prentice-Hall, 1990.

Wojciech Mostowski. Formalisation and verification of Java Card security
properties in dynamic logic. In Maura Cerioli, editor, Proc. Fundamental
Approaches to Software Engineering (FASE), Edinburgh, volume 3442 of
LNCS, pages 357–371. Springer-Verlag, April 2005.

Wojciech Mostowski. Formal reasoning about non-atomic JAVA CARD meth-
ods in Dynamic Logic. In Jayadev Misra, Tobias Nipkow, and Emil Sekerin-



640 References

ski, editors, Proceedings, Formal Methods (FM) 2006, Hamilton, Ontario,
Canada, volume 4085 of LNCS, pages 444–459. Springer, August 2006.

Wojciech Mostowski. Rigorous development of JAVA CARD applications. In
T. Clarke, A. Evans, and K. Lano, editors, Proceedings, Fourth Workshop
on Rigorous Object-Oriented Methods, London, U.K., March 2002.

Peter Müller. Modular specification and verification of object-oriented pro-
grams. Springer-Verlag, 2002.

Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invari-
ants for layered object structures. Science of Computer Programming, 62
(3):253–286, October 2006.

Eugene W. Myers. An O(ND) difference algorithm and its variations. Algo-
rithmica, 1(2):251–266, 1986.

Stanislas Nanchen, Hubert Schmid, Peter H. Schmitt, and Robert F. Stärk.
The ASMKeY prover. Technical Report 436, Department of Computer
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JAVA CARD DL 16, 17, 69–177

JAVA Modeling Language see JML

\javaSource (keyword) 600, 619

JML 2, 10, 277, 447, 534

clause 280

specification browser 448
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K
KeY 1–5
.key file 534, 599
keyword 600
Kripke

seed 89
structure 88, 94

state 88
transition relation 88
with ordered domain 93

L
left-hand side (expression) 114, 194
lemma 119, 181, 231, 242
library inclusion 612
lightweight 285
Liskov principle 14, 338
list (schema variable modifier) 203
literal 29
loading

problem file 412
proof 428

local variable 75
\location (keyword) 600
logical variable 75
long (integer type) 483
loop

invariant 147–163
informal 249
JML 291
rule 147, 152, 552–554

total correctness 453–479
unwinding 116, 126–127

loopUnwind (rule) 126

M
\max (JML) 283
meaning formula 230, 232
meta variable 194, 209–211, 428–430
meta-construct 625
meta-operator 209, 610
metaclass 258
method 246

anonymous 357
body statement 84
contract 163–167, 537

syntax 621–622
frame statement 85
non-atomic 392–398

methodBodyExpand (rule) 130
methodCall (rule) 129
methodCallEmpty (rule) 131
methodCallReturn (rule) 131
methodCallThrow (rule) 145
methodCallUnfoldArguments (rule)

129
methodCallUnfoldTarget (rule) 128
\min (JML) 283
\modality (keyword) 196, 600
\modalOperator (keyword) 195–196,

403, 600, 614
model 33

partial 41
modifier set 156–159, 336

for loop 154
JML 285
OCL 293
semantics 157
syntax 157

\modifies (keyword) 600
modular verification 537
modus ponens 185
mpLeft (rule) 185
mpLeft (taclet) 183

N
natInduct (rule) 454
\new (keyword) 51, 186, 194, 204, 211,

600
<nextToCreate> (implicit field) 137
Noetherian induction 472
noetherInduct (rule) 472
non-active prefix 113
\noninteractive (keyword) 600, 617
\nonRigid (keyword) 600, 616
normalised program 80
\not (keyword) 600, 618
\notFreeIn (keyword) 189, 204, 219,

600
notLeft (rule) 52
notRight (rule) 52
\notSameLiteral (keyword) 600, 618
null (JAVA) 102
null 276
null pointer policy 446
NullPointerException 124
\num (JML) 282, 283



654 Index

O
object

index 136
repository 136

access function 136
\object (keyword) 600, 613
Object Constraint Language see OCL
observational correctness 536
observed state correctness 336
occurs check 210
OCL 2, 8, 250, 447, 534

exception 274–276
schema variable 306
schematic constraint 307
type hierarchy 257

\old (JML) 280
one (OCL) 264
\oneof (keyword) 208, 600, 613
operation 246, 335, 487

contract 246, 335
strong 14, 342–344

\operator (keyword) 600, 614
operator, built-in 591–598
\optionsDecl (keyword) 600, 613
orLeft (rule) 52
orRight (rule) 52
overloading 27

P
parentheses 29
partial model 41

refinement of 43
pattern 295

instantiation 307
Peano induction 454
peanoInduct (rule) 454
post (OCL) 246
postcondition 12, 14, 246
pre (OCL) 246
precondition 12, 14, 246
predicate symbol 26

built-in 591–598
semantics 597

non-rigid
built-in 595

predefined 75
rigid 73, 241

built-in 594
\predicates (keyword) 600, 616

prefix increment 499
preIncrement (rule) 499
premiss (of a rule) 46, 109
<prepare> (implicit method) 141
<prepareEnter> (implicit method)

141
\problem (keyword) 600, 620
program 335

normalised 80
schematic 197
similarity 516
statement 84
variable 75

\program (keyword) 190, 194, 600
\programContext (keyword) 191, 196
\programVariables (keyword) 600,

620
promotion, numeric 485
proof 51, 179

branch 51
obligation 14

generation 447
horizontal 336
template 338–359
vertical 336

reuse 507–529
taclet-based 228
tree 50, 109

closed 51
\proof (keyword) 600, 621
PVS 180

Q
quantified update 401
quantifier 29, 118

elimination 189
instantiation 425
syntax 603

R
range relation 205
reachable predicate

semantics 575
syntax 575

reachable state 105, 348
\recursive (keyword) 600
recursively enumerable 65
reentrant call 347
refinement
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data types 488–489
of partial models 43
operations 489

reject (OCL) 264

relational database query see SQL
relative completeness 111
removeAll (taclet) 187

rename (rule) 223
\replacewith (keyword) 184, 216,

600
requires (JML) 280

result (OCL) 256
resumeTrans (rule) 396
resumeTransTRA (rule) 396
resumeTransTRC (rule) 396

retrenchment 489–493
concedes relation 490
implementation 497–502

operations 489
output relation 490
within relation 490

return (JAVA) 146–147

reuse 507–529
candidate 511, 520
pair 511

rewrite rule 424

rewriting logic 230
rewrWithEq (taclet) 189, 228, 238
rigid 73, 100, 101, 210, 575, 591–598
rigid (schema variable modifier) 203

rule 109
abrupt termination 143–147
assignment 120–124

conditional 386–387, 396–398
throughout modality 380–381

break 146–147
conditional (if) 125–126

contract 163–167
cut 119
equality handling 55–58, 118–119
file 612–619

first-order 51–55, 117–118
taclets 186–187

induction 454, 467–473
customised 468–471

initialisation 135–143
instance creation 135–143
integer data types 497–502

invariant 147–163, 552
throughout modality 381–382

JAVA CARD DL
taclets 190–191

JAVA CARD DL 108–176
method call 127–135
non-program 117–120
reducing programs 120–147
return 146–147
schema 111–113
set 216
soundness 232
theory specific 180
throw 145–146
try-catch-finally 145–146
type reasoning 58–63
unwinding loops 126–127

\rules (keyword) 600, 617

S
\same (keyword) 600, 618
\sameUpdateLevel (keyword) 119,

188, 214, 236, 600
satisfiability 38, 102

w.r.t. partial models 44
saveLeft (taclet) 190
saving a proof 424
schema variable 111–113, 183,

192–209
condition 186, 189, 204, 215
declaration 614
elimination 230, 239
kind 114, 192, 193–197, 614
modifier 187, 203
OCL 306
uniqueness in sub-taclets 239

\schemaVar (keyword) 600, 614
\schemaVariables (keyword) 416,

600, 614
Schorr-Waite algorithm 569–573
SecSafe project 543
select (OCL) 264, 269
self-guard 364
semi-decidable 65
sequent 45, 108, 182, 413

calculus 45, 413
validity 231

\settings (keyword) 600, 620
short (integer type) 483
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signals (JML) 281
signals only (JML) 284
signature 26

admissible 51
JAVA CARD DL 75

simple expression 114, 194
Skolem 430–432

constant 51, 186
function symbol 186
term 186, 194, 210, 240

\skolemTerm (keyword) 186, 194, 241,
600

sortedBy (OCL) 264

\sorts (keyword) 600, 613
soundness 10, 18, 64–65, 109–110

reasoning about 230–242
specification 487

idiom 12

splitBool (taclet) 224
SQL 297

aggregate function 302
grouping 303
join 301

table generator 300
Standard Querying Language see

SQL
state 88

condition 188, 214, 235

initial 353
observed 344, 345

reachable 105, 348
visible 345

statement, active 113, 438

static
initialisation 353–355

variable 194
\static (keyword) 600, 618
\staticMethodReference (keyword)

600, 618
strategy 180, 216, 446

\strict (keyword) 193, 600
strict (schema variable modifier)

187, 203, 240

string 601
strong invariant 557
\sub (keyword) 600

\subst (keyword) 600, 608
substitution 197, 200, 210

ground 48–49
syntax 608

substToEq (rule) 118
subtype 23

direct 71
succedent 45, 108
\sum (JML) 283
super (JAVA) 128, 142
surjectivity (taclet) 222
suspendTrans (rule) 395
suspendTransTRA (rule) 396
suspendTransTRC (rule) 396
switch (JAVA) 126, 144
symbolic execution 17, 115–116, 440
synchronized (JAVA) 84
syntax 599–626

T
taclet 18, 179, 212–229, 415

application 223, 227, 229
effect 227
examples 183–192
first-order rules 186–187
generic 204
instantiation 199, 427

matching 225
partial 229
respecting variable contexts 224
schema variable 199
schematic expression 199
type 207

JAVA CARD DL 190–191
nested 189–190, 237
option 217, 446, 542

integer semantics 447
null pointer policy 446
transactions 402

partially instantiated 228–229
propositional rules 183
rewriting 187–189, 213, 234
soundness 230–242
syntax 212, 612–619
well-formed 218, 239

tactic 180
template diagram 306
term 28, 77

conditional 77
ground 28
rigid 100
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schematic 197
semantics 100
Skolem 186, 194, 210, 240
syntax 602–611

\term (keyword) 186, 193, 240, 600
\then (keyword) 600, 609
theory 182
this (JAVA) 114, 142
\throughout (keyword) 379, 600, 603

throughout modality 379, 558
\throughout susp (keyword) 399, 600
\throughout tra (keyword) 399, 600
\throughout trc (keyword) 399, 600

throw (JAVA) 145–146
throwBox (rule) 144
throwDiamond (rule) 144
throwEvaluate (rule) 144

tooltip 417
transaction 377–379, 382

resuming 394–396
suspending 394–396

transition relation 88

true (logical constant) 29, 86, 101
\true (keyword) 606
true (keyword) 600
Trusted Logic S.A. 534

try (JAVA) 145–146
tryBreak (rule) 146
tryCatchThrow (rule) 145
tryEmpty (rule) 146
tryFinallyThrow (rule) 146

tryReturn (rule) 146
type 21–25

abstract 23
cast 26, 32, 56, 560

conformance 258
dynamic 22, 23, 33
empty 23
generic 186, 204
hierarchy 22, 71

intersection 23
predicate 26
static 22, 28
union 23

universal 23
typeAbstract (rule) 59
typeEq (rule) 59
typeGLB (rule) 59

\typeof (keyword) 204, 600
typeStatic (rule) 59
typing function 26

U
UML 7, 8
undecidability 65
undefinedness 44, 90, 276
underspecification 90
unfolding 115
Unified modeling language see UML
unique (OCL) 269
uniqueEx (taclet) 201
universal quantification 29, 118
unwinding loops 116, 126–127
update 69–177, 435–438

anonymising 153
w.r.t. a modifier set 159

equivalence relation 168
normal form 169
semantic 94

application 95
consistent 95

semantics 95
simplification 168–176
syntactic 77

application to update 78
function 77
parallel 77
quantified 78
sequential 77

syntax 608

V
validity 38, 44, 102

in a model 36
undecidability 65
w.r.t. partial models 43

valuation function 36
\varcond (keyword) 204, 576, 600
variable

assignment 36
bound 186, 193

distinct 222
capture 201
context 219, 223, 240
free 31, 45, 87, 209–211, 218, 223
induction 457, 464–467
local 75
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logical 75

meta 194, 209–211, 428–430

program 75

schema 111–113, 183, 192–209

condition 186, 189, 204, 215

declaration 614

elimination 230, 239

kind 114, 192, 193–197

modifier 187, 203

OCL 306

uniqueness in sub-taclets 239

static 194

symbol 26

syntax 603

\variables (keyword) 186, 193, 198,
219, 240, 600

verification
modular 363, 537
strategy 371

visible state correctness 345

W
weaken (rule) 223
whileTout (rule) 381
\withOptions (keyword) 446, 600,

620

Z
zeroRight (taclet) 187
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