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Abstract. We consider a discrete-time queueing system with two pri-
ority classes and absolute priority scheduling. In our model, we capture
potential correlation between the arrivals of the two priority classes. For
practical use, it is required that the high-priority queue is of (relatively)
small size and we hence use a model with finite high-priority queue ca-
pacity. We obtain expressions for the probability mass functions of the
steady-state system content and delay of the high-priority class as well
as for the probability generating functions and moments of the steady-
state system content and delay of the low-priority class. The results are
compared to those of a similar system, but with an infinite capacity for
high priority packets, and it is shown that the latter can be inaccurate.
We also investigate the effect of correlation between the arrivals of both
priority classes on the performance of the system.

Keywords: Queueing Systems and Network Models, Performance
Modelling.

1 Introduction

The huge difference between the Quality of Service (QoS) demands for real-time
traffic flows and best-effort traffic flows emburdens packet-based telecommunica-
tion networks, such as the Internet. Real-time traffic, such as Voice over IP, can
often endure some packet loss but requires low delays and/or low delay jitter.
Best-effort traffic benefits from low packet loss, hence avoiding retransmissions,
but has less stringent delay characteristics. Therefore the packets are distributed
into classes according to their QoS requirements. In the nodes (routers, . . . ) of
the network, packets typically have to wait before being transmitted to the next
node and thus constitute a queueing process. The order in which packets are
transmitted is based on class-dependent priority rules. This approach to QoS
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differentiation is applied in the DiffServ architecture for Internet Protocol (IP),
successfully implemented in corporate networks and debated on as one of the
possible approaches to QoS in the future Internet [1].

In this paper, we study a queueing system with a single server supplying two
queues, one per priority class, and an Absolute Priority scheduling algorithm,
in order to minimize the delay of the high-priority (real-time) packets. The low-
priority packets (class 2) are only served if there are no high-priority packets
(class 1) in the system. This is the most drastic scheduling method, minimiz-
ing class-1 delay at the cost of class-2 performance, but is easy to implement.
Analytic studies of queueing systems generally assume infinite queue capacity
facilitating the mathematical analysis of the system. In the setting under consid-
eration however, the class-1 packets are delay-sensitive so we require the class-1
queue capacity to be as small as possible while still meeting the required packet
loss constraints for this traffic. Note that class-1 traffic that does not arrive at
its destination in time is of no use and can be considered lost. We therefore
consider a system with finite class-1 queue capacity. On the other hand, the
loss-sensitivity of the class-2 packets results in a class-2 queue capacity as large
as practically feasible, justifying the assumption of an infinite class-2 queue ca-
pacity. Notice that the number of arrivals of both classes can be correlated. A
single user often generates packets of both classes simultaneously or no pack-
ets at all, yielding positive correlation. On the other hand, negative correlation
arises when the number of sources that generate (class-1 or class-2) packets is
limited as will be further investigated in the study of an output-queueing switch
in the applications.

In the literature, priority queues have been discussed with various arrival and
service processes, such as in the contributions [2,3,4,5,6,7]. The presented paper
complements [2] where both queues are presumed to be of infinite capacity. As
the class-1 queue capacity must be small in order to obtain a low class-1 delay the
assumption that this queue has infinite capacity can lead to inaccurate results.
Assessing the impact of the finite class-1 queue capacity on the performance
measures is the purpose of the present contribution. Finite queue capacity is
considered in [5] as well but only the packet loss is investigated profoundly and
the delay is not analysed.

This paper is constituted as follows. First the model under consideration will
be thoroughly described. In section 3 we investigate the system content for both
classes and the class-1 packet loss ratio. Section 4 handles the delay of both
classes. Afterwards, the results are applied in some numerical examples. We
finally formulate our conclusions.

2 Model

We consider a discrete-time single-server priority queueing system with 2 classes,
finite class-1 queue capacity N and an infinite class-2 queue. Class-1 packets are
served with absolute priority over class-2 packets and within a class the queueing
discipline is First-Come-First-Served (FCFS). The Tail Drop queue management
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algorithm is used for the class-1 queue, hence the system accepts packets until
the corresponding queue is entirely filled and packets that arrive at a full queue
are dropped by the system. Time is divided into fixed-length slots corresponding
to the transmission time of a packet. A packet can only enter the server at
the beginning of a slot, even if it arrives in an empty system, and its service
takes until the end of that slot (deterministic). The system can contain up to
N + 1 class-1 packets simultaneously in a slot, N in the queue and 1 in the
server. Consequently, there are at most N class-1 packets in the system at the
beginning of a slot. Also note that a class-1 packet thus resides in the system
for at most N slots, which bounds its delay.

We assume that for both classes the number of arrivals in consecutive slots
form a sequence of independent and identically distributed (i.i.d.) random vari-
ables. We define ai,k as the number of class-i (i = 1, 2) packet arrivals during slot
k. The arrivals of both classes are characterized by the joint probability mass
function (pmf)

a(m, n) = Prob[a1,k = m, a2,k = n] , (1)

and joint probability generating function (pgf)

A(z1, z2) = E[za1,k

1 z
a2,k

2 ] . (2)

Note that the arrival process allows correlation between both classes. Let the
mean number of class-i arrivals per slot (class-i arrival load) be

λi = E[ai,k] =
∂A(z1, z2)

∂zi

∣
∣
∣
∣
z1=1,z2=1

, (i = 1, 2) . (3)

The total arrival load equals λT = λ1 + λ2.
We also define the pgf of the class-2 arrivals in a slot with i (i or more) class-1

arrivals as Ai(z) (A∗
i (z)), yielding

Ai(z) = E[za2,k1a1,k=i] ,

A∗
i (z) =

∞∑

l=i

Al(z) .
(4)

Note that the indicator function 1x=i is 1 if x = i and equals 0 otherwise.
The aim is to express the system content and delay of both classes in terms of

the arrival process. The system content at the beginning of a slot is the number
of packets contained by the system, thus by the queue or by the server, before
packets arrive in the considered slot. The delay of a packet is the number of
slots between its arrival slot and the slot after its departure. The class-1 packet
loss ratio, this is the fraction of packets that arrive at the system but are not
accepted into the system because the class-1 queue is entirely filled, is to be
obtained as well.
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3 System Content

Let the class-i system content at the beginning of slot k be denoted by ui,k. The
corresponding joint pgf is referred to as

Uk(z1, z2) = E[zu1,k

1 z
u2,k

2 ] . (5)

The (partial) pgf of the class-2 system content in a slot with class-1 system
content equal to i is defined as

Ui,k(z) = E[zu2,k1u1,k=i] . (6)

Note that

Uk(z1, z2) =
N∑

i=0

Ui,k(z2)zi
1 . (7)

Relating the system contents at the beginning of slots k and k + 1 yields

u1,k+1 = (u1,k − 1)+ + ae
1,k,

u2,k+1 =

{

(u2,k − 1)+ + a2,k, if u1,k = 0,

u2,k + a2,k, if u1,k > 0,

(8)

where (x)+ denotes the maximum of x and 0. Due to the finite class-1 capacity,
we only take the effectively admitted class-1 arrivals into account. The number
of effective class-1 arrivals in slot k, denoted by ae

1,k, is clearly influenced by the
class-1 system content in slot k. This can be expressed as

ae
1,k = min(a1,k, N − (u1,k − 1)+) . (9)

Standard z-transform techniques enable the expression of (8) in terms of pgfs.
We establish the system of equations

Ui,k+1(z) =
1
z
U0,k(z)Ai(z) +

z − 1
z

U0,k(0)Ai(z)

+
(i+1∑

j=1

Uj,k(z)Ai−j+1(z)
)

, i = 0 . . .N − 1 ,

UN,k+1(z) =
1
z
U0,k(z)A∗

N (z) +
z − 1

z
U0,k(0)A∗

N (z)

+
( N∑

j=1

Uj,k(z)A∗
N−j+1(z)

)

.

(10)

The impact of the finite class-1 queue capacity is apparent when the queue
is entirely filled due to i extra effective arrivals. These effective arrivals can
correspond with i arrivals, or with i+1 arrivals of which one is dropped because
the queue is full, or with i + 2 arrivals of which two are dropped, . . . This leads
to the appearance of the pgfs A∗

i (z) in the last equation of (10).
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Under the assumption that the system reaches steady state, on which we will
elaborate at the end of this section, let us define

Ui(z) = lim
k→∞

Ui,k(z) = lim
k→∞

Ui,k+1(z), i = 0 . . .N ,

U(z1, z2) = lim
k→∞

Uk(z1, z2) =
N∑

i=0

Ui(z2)zi
1 .

(11)

In steady-state the system of equations (10) becomes

Ui(z) =
1
z
U0(z)Ai(z) +

z − 1
z

U0(0)Ai(z)

+
(i+1∑

j=1

Uj(z)Ai−j+1(z)
)

, i = 0 . . . N − 1 ,

UN(z) =
1
z
U0(z)A∗

N (z) +
z − 1

z
U0(0)A∗

N (z)

+
( N∑

j=1

Uj(z)A∗
N−j+1(z)

)

.

(12)

We now define the (N + 1) × (N + 1) matrix

X(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0(z) A1(z) A2(z) · · · AN−1(z) A∗
N (z)

A0(z)z A1(z)z A2(z)z · · · AN−1(z)z A∗
N (z)z

0 A0(z)z A1(z)z · · · AN−2(z)z A∗
N−1(z)z

0 0 A0(z)z · · · AN−3(z)z A∗
N−2(z)z

...
...

. . . · · · ...
...

0 · · · · · · · · · A0(z)z A∗
1(z)z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

and the row vectors of N + 1 elements

Y(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A0(z)
A1(z)

...
AN−1(z)
A∗

N (z)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T

, U(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

U0(z)
U1(z)

...
UN−1(z)
UN(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T

. (14)

In view of these definitions, the system of equations (12) is equivalent with

U(z)
(

zIN+1 − X(z)
)

= (z − 1)U0(0)Y(z) . (15)

Here In denotes the n × n identity matrix. We have expressed U(z) in terms of
known quantities and the unknown constant U0(0). For z = 1 this yields

U(1)
(

IN+1 − X(1)
)

=
(
0 0 · · · 0 0

)

. (16)
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As X(1) is a right stochastic matrix we find

Rank
(

IN+1 − X(1)
)

= N . (17)

We thus require an additional relation in order to determine the N +1 unknowns
in the vector U(1). From (6) it is clear that Ui(1) = Prob[u1 = i]. As the class-1
system content is normalised over the N + 1 possible states we establish

N∑

i=0

Ui(1) = 1 . (18)

By replacing a relation in equation (16) by the normalisation condition we obtain
the pmf of the class-1 system content as

U(1) =
(
0 0 · · · 0 1

)
(

[

IN+1 − X(1)
∣
∣1N+1

]
)−1

. (19)

Note that 1N+1 is the column vector consisting of N + 1 ones and that [A|B]
equals the matrix A with the last column replaced by B.

We now determine the unknown constant U0(0), the probability that the
system is empty. In steady state, the average number of packets accepted by
a system equals the average number of packets leaving that system. Class-1
traffic is not affected by class-2 traffic and consequently class-1 can be seen as
an independent system. The mean number of class-1 packets accepted by the
system during a slot is denoted by λe

1. A class-1 packet leaves the system when
the class-1 system content is larger than 0. This leads to λe

1 = 1 − U0(1). The
same reasoning for the system containing both queues yields λe

1 +λ2 = 1−U0(0).
Bringing these two equations together provides

U0(0) = U0(1) − λ2 . (20)

The pgf of the class-2 system content can now be found from (15). The moment-
generating property of pgfs enables determination of the moments of the system
content. Application of matrix properties significantly expedites the computation
of these moments by expressing them in terms of the derivates of the pgfs of the
arrival process.

From the class-1 system content we easily obtain the class-1 packet loss ratio
plr1. This is the fraction of class-1 packets that arrive at the system but are
dropped. We have

plr1 =
λ1 − λe

1

λ1
= 1 − 1 − U0(1)

λ1
. (21)

As the class-1 queue has finite capacity and excess packets are thus dropped the
class-1 system is always stable. For the entire system to reach steady state it is
imperative that the average number of class-2 packets that is served exceeds the
average number of class-2 arrivals, or that λ2 < 1 − λe

1. Notice that requiring
that U0(0) > 0 is an equivalent stability constraint.
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4 Packet Delay

We tag an arbitrary class-i packet. Let the delay of the packet be denoted by di.
The arrival slot of the packet is assumed to be slot k. As stated earlier, the class-
1 packets are not affected by class-2 traffic. Consequently, the delay of a class-1
packet can easily be obtained from the system content using the distributional
form of Little’s Theorem [8]. For the pmf of the class-1 delay this leads to

d1(n) =
Un(1)

1 − U0(1)
, n = 1 . . .N . (22)

For a class-2 packet the analysis is more elaborate. Some preliminary work is
performed before we tackle the delay. We first determine the (remaining) class-1
busy period. Next, the extended service completion time of a class-2 packet is
defined. We finally establish the number of class-i packets in the system at the
end of slot k to be served before the tagged class-2 packet.

The remaining class-1 busy period in slot k, r1,k, corresponds with the number
of slots until the next slot with class-1 system content equal to 0. Recall that
class-1 traffic is unaffected by class-2 traffic. Relating r1,k and r1,k+1 and letting
k go to infinity results in a system of equations for R1,n(z), the conditional pgf
of the remaining class-1 busy period in steady state, at the beginning of a slot
during a busy period, if the class-1 system content at the beginning of that slot
equals n. We obtain

R1,n(z) =z
N−n∑

m=0

R1,n−1+m(z)Am(1)

+ zR1,N(z)A∗
N−n+1(1), n = 1 . . .N .

(23)

Note that R1,0(z) = 1 as the class-1 busy period ends when the class-1 queue is
empty. Again the pgfs A∗

i (z) appear when the class-1 queue is completely filled.
Let us define the N × N matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1(1) A0(1) 0 0 · · · 0
A2(1) A1(1) A0(1) 0 · · · 0
A3(1) A2(1) A1(1) A0(1) · · · 0

...
...

...
...

. . .
...

AN−1(1) AN−2(1) AN−3(1) AN−4(1) · · · A0(1)
A∗

N (1) A∗
N−1(1) A∗

N−2(1) A∗
N−3(1) · · · A∗

1(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (24)

and the row vectors of N elements

L =

⎛

⎜
⎜
⎜
⎝

A0(1)
0
...
0

⎞

⎟
⎟
⎟
⎠

T

, R̂(z) =

⎛

⎜
⎜
⎜
⎝

R1,1(z)
R1,2(z)

...
R1,N (z)

⎞

⎟
⎟
⎟
⎠

T

. (25)
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In matrix notation the system of equations (23) leads to

R̂(z) = zL
(

IN − zM
)−1

. (26)

Note that the relation between R1,0(z) and R1,1(z) is expressed in L. We have
determined R̂(z) and we now extend this vector with R1,0(z) = 1 resulting in
the row vector of N + 1 elements

R(z) =

⎛

⎜
⎜
⎜
⎝

R1,0(z)
R1,1(z)

...
R1,N (z)

⎞

⎟
⎟
⎟
⎠

T

=
(

1
R̂(z)

)T

. (27)

Notice that a class-1 busy period is simply the remaining class-1 busy period in
a random slot preceded by a slot with an empty class-1 system content at the
beginning of the slot and a number of arrivals larger than 0. Thus we obtain the
pgf of the steady-state class-1 busy period as

B1(z) =
∑N−1

m=1 R1,m(z)Am(1) + R1,N (z)A∗
N (1)

1 − A0(1)
. (28)

The extended service completion time of a class-2 packet, denoted by t2, starts
at the slot where the packet starts service and lasts until the next slot wherein a
class-2 packet can be serviced [10]. If no class-1 packets arrive during the service-
slot of the packet, the server can handle another class-2 packet in the next slot.
If there are class-1 arrivals, we have to wait for a class-1 busy period after the
service-slot until the service of another class-2 packet can start. We can thus
express the pgf of the extended service completion time in steady state as

T2(z) = A0(1)z +
(

1 − A0(1)
)

B1(z)z . (29)

The number of class-i packets in the system at the end of slot k that have to be
served before the tagged class-2 packet is denoted by vi,k. Let u∗

i,k denote the
number of class-i packets that remain in the system during slot k. This equals
the class-i system content at the beginning of slot k diminished by 1 if a class-i
packet is in service during slot k. As all class-1 packets that arrive during slot
k are to be served before the tagged packet it is clear that v1,k = u∗

1,k + ae
1,k.

The class-2 packets that arrive during slot k but after the tagged packet are not
to be served before it. Consequently v2,k = u∗

2,k + â2,k where â2,k denotes the
number of class-2 arrivals during slot k to be served before the tagged packet.
We will now determine some corresponding pgfs.

Foremost we define the steady-state pgfs

U∗
i (z) = lim

k→∞
E[zu∗

2,k1u∗
1,k=i], i = 0 . . .N − 1 . (30)
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Standard z-transform techniques lead to

U∗
0 (z) =U0(0)

z − 1
z

+
U0(z)

z
+ U1(z) ,

U∗
i (z) =Ui+1(z), i = 1 . . .N − 1 .

(31)

The corresponding column vector of N elements is denoted by

U∗(z) =

⎛

⎜
⎜
⎜
⎝

U∗
0 (z)

U∗
1 (z)
...

U∗
N−1(z)

⎞

⎟
⎟
⎟
⎠

. (32)

Determination of the number of class-2 arrivals before the tagged packet is a bit
more involved. If the arrivals of both classes are correlated it is clear that a1,k

and â2,k are correlated as well. We again define steady-state pgfs

Âi(z) = lim
k→∞

E[zâ2,k1a1,k=i] ,

Â∗
i (z) =

∞∑

l=i

Âl(z) .
(33)

Taking into account that the tagged class-2 packet is more likely to arrive in a
slot with more arrivals [11] the pmf of the number of class-1 and class-2 arrivals
in the arrival slot of a tagged class-2 packet is given by

ã(m, n) =
na(m, n)

λ2
. (34)

The pmf of the number of class-2 arrivals before the tagged packet in a slot with
m class-1 arrivals is given by

â(m, n) =
∞∑

l=n+1

ã(m, l)
l

=
∞∑

l=n+1

a(m, l)
λ2

. (35)

Now it is straightforward that

Âi(z) =
∞∑

n=0

â(m, n)zn =
Ai(z) − Ai(1)

λ2(z − 1)
. (36)

Analogously we find that

Â∗
i (z) =

A∗
i (z) − A∗

i (1)
λ2(z − 1)

. (37)
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Let us then define the (N + 1) × N matrix

Â(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Â0(z) 0 0 · · · 0 0
Â1(z) Â0(z) 0 · · · 0 0
Â2(z) Â1(z) Â0(z) · · · 0 0

...
...

...
. . .

...
...

ÂN−2(z) ÂN−3(z) ÂN−4(z) · · · Â0(z) 0
ÂN−1(z) ÂN−2(z) ÂN−3(z) · · · Â1(z) Â0(z)
Â∗

N (z) Â∗
N−1(z) Â∗

N−2(z) · · · Â∗
2(z) Â∗

1(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (38)

We can now finally describe the class-2 delay. The number of slots a class-2
packet spends in the system equals

d2 = r1,k+1 +
v2,k∑

i=1

t2 + 1 . (39)

Keeping in mind that r1,k+1 is completely defined by v1,k and that the u∗
i,k are

independent of the ai,k we find that

D2(z) =E[zd2] =
N∑

i=0

E[zd21v1,k=i]

=
N−1∑

i=0

zR1,i(z)
i∑

j=0

Âi−j(T2(z))U∗
j (T2(z))

+ zR1,N(z)
N−1∑

j=0

Â∗
N−j(T2(z))U∗

j (T2(z)) .

(40)

This can be equivalently expressed as

D2(z) = zR(z)Â(T (z))U∗(T (z)) . (41)

By taking proper derivatives, moments of the class-2 delay can be calculated.

5 Applications

With the formulas at hand we study an output-queueing switch with S inlets
and S outlets and two types of traffic as in [2]. On each inlet a batch arrives
according to a Bernouilli process with parameter μT . A batch contains b (fixed)
packets of class 1 with probability μ1/μT or b packets of class 2 with probability
μ2/μT (with μ1 + μ2 = μT ). The incoming packets are then routed uniformely
to the outlets where they arrive at a queueing system as described in this paper.
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Therefore all the outlets can be considered identical and analysis of one of them
is sufficient. The arrival process at the queueing system can consequently be
described by the pmf

a(bn, bm) =
S!

(
μ1
S

)n(
μ2
S

)m(

1 − μT

S

)S−n−m

n!m!(S − n − m)!
, n + m ≤ S , (42)

and by a(p, q) = 0, for other values of p and q. Obviously the number of arrivals
of class-1 and class-2 are negatively correlated. For instance in a slot with x
class-1 arrivals there can be no more than Sb− x class-2 arrivals. For increasing
values of S the correlation increases and for S going to infinity the numbers of
arrivals of both types become uncorrelated.

We now study an 8×8 output-queueing switch. Assume b = 4 and μ1 = μ2 =
0.1 yielding λ1 = λ2 = 0.4. On average the system thus receives the same amount
of packets of both classes. In Fig. 1 the mean and the standard deviation (jitter)
of the delay of both classes are plotted versus the class-1 queue capacity N .
We clearly see the effect of the priority scheduling. The low mean and standard
deviation for the class-1 delay give us the performance required for real-time
traffic at the cost of the class-2 performance measures. The values increase for
increasing N , as the number of dropped class-1 packets decreases. For larger N
the values clearly converge to the values corresponding with the infinite system
[2], represented by the dashed lines. However, the convergence is rather slow,
especially for the class-2 delay.

 0
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 20

 30 20 10 1

Class-1 Queue Capacity (N)
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Fig. 1. Delays versus class-1 queue capacity
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Fig. 2. Mean delays versus batch size

Now assume N = 15 and λ1 = λ2 = 0.4. We increase the batch size b while
adjusting the μi accordingly in order to keep the λi constant. For increasing b the
system thus receives the same amount of packets but the variance of the number
of arrivals increases. In Fig. 2, we depict the mean delay of both classes versus the
batch size b (as well as the mean delays of the infinite system). We clearly see that
the delay increases and that the infinite system leads to inaccurate results when
the variance in the arrival process increases. Since in practice arrival processes
with high variance are very common, this proves that the infinite model can be
imprecise. The decrease of the mean delays for b > 15 can be attributed to a
high loss rate since for b > 15 the batch size exceeds the class-1 queue capacity.

In the S × S output-queueing switch only a moderate amount of (negative)
correlation is present. In order to study the correlation between both classes pro-
foundly, we end this section with the results for a very simple arrival process. A
batch of class i arrives according to a Bernoulli distribution with parameter μi. A
batch contains b (fixed) packets and thus λi = bμi. The joint pmf is given by

a(0, 0) =1 − μ1 − μ2 + c,

a(b, 0) =μ1 − c,

a(0, b) =μ2 − c,

a(b, b) =c.

(43)

Notice that this arrival process allows the arrival of a batch of each class in a slot.
The concurrence of the arrivals of both classes is controlled by the parameter c.
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Fig. 3. Mean class-2 delay versus total load for various values of ρa1a2

The correlation factor is given by

ρa1a2 =
c − μ1μ2

√

μ1μ2(1 − μ1)(1 − μ2)
. (44)

By varying the value of c, while keeping the μi constant, we can alter the cor-
relation between both classes. For c = 0 there are no slots in which a batch of
each class arrives and thus the correlation is minimal (ρa1a2 < 0). For c = μ1μ2

there is no correlation (ρa1a2 = 0), while for c = min(μ1, μ2) a batch of the class
with the lowest arrival rate always arrives in a slot wherein a batch of the other
class arrives, yielding (maximum) positive correlation (ρa1a2 > 0).

In Fig. 3 we depict the mean class-2 delay versus the total arrival load (λT ) for
the three values for c mentioned above. Assume N = 15, b = 8 and λ1 = λ2. The
increase in mean delay between the uncorrelated case and the positively correlated
case is remarkable, especially for higher values ofλT . This follows from the fact that
positive correlation between the arrivals of both classes increases the probability
that a class-2 packet arrives in the same slot as a class-1 batch, its delay then more
frequently includes service of an entire class-1 batch. For negative correlation the
inverse effect is established but its influence is less noticeable in this example.

6 Conclusion

We have determined the probability mass functions of the high-priority (class-
1) system content and delay and the probability generating functions of the
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low-priority (class-2) system content and delay in a two-class priority queue
with finite capacity for the high-priority packets. The class-1 packet loss ratio
was also obtained. From these formulas it was shown that the infinite class-
1 queue capacity approximation, that is frequently used, can yield inaccurate
results. The presented model takes the exact class-1 queue capacity into account
allowing the determination of precise values for the performance measures even
when the class-1 queue capacity is small. In practice one needs to compromise
between delay and allowed packet loss in order to determine a suitable class-1
queue capacity N . Once N is chosen the performance measures of both classes
can be obtained as in this paper. It is also apparent that correlation between
the arrivals of the different classes can have a huge impact on the performance
measures and thus should not be considered negligible.
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2006. LNCS, vol. 4054, pp. 211–225. Springer, Heidelberg (2006)

6. Mehmet Ali, M., Song, X.: A performance analysis of a discrete-time priority queue-
ing system with correlated arrivals. Performance Evaluation 57(3), 307–339 (2004)

7. Sidi, M., Segall, A.: Structured priority queueing systems with applications to
packet-radio networks. Performance Evaluation 3(4), 265–275 (1983)

8. Vinck, B., Bruneel, H.: Delay analysis for single server queues. Electronics Let-
ters 32(9), 802–803 (1996)

9. Fiems, D., Steyaert, B., Bruneel, H.: Discrete-time queues with generally dis-
tributed service times and renewal-type server interruptions. Performance Eval-
uation 55(3-4), 277–298 (2004)

10. Fiems, D.: Analysis of discrete-time queueing systems with vacations. PhD thesis.
Ghent University (2003)

11. Bruneel, H., Kim, B.G.: Discrete-time models for communication systems including
ATM. Kluwer Academic Publishers, Dordrecht (2004)


	Mixed Finite-/Infinite-Capacity Priority Queue with Interclass Correlation
	Introduction
	Model
	System Content
	Packet Delay
	Applications
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




