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Summary. Numerical inversion of the Laplace transform on the real axis is an inverse and
ill-posed problem. We describe a powerful modification of Weeks’ Method, based on auto-
matic differentiation, to be used in the real inversion. We show that the automatic differenti-
ation technique assures accurate and efficient numerical computation of the inverse Laplace
function.
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1 Introduction

Automatic differentiation (AD) is having a deep impact in many areas of science
and engineering. AD plays an important role in a variety of scientific applications
including meteorology, solution of nonlinear systems and inverse problems. Here
we are dealing with the Laplace transform inversion (Lti) in the real case. Given a
Laplace transform function F(z):

F(z) =
∫ ∞

0
e−zt f (t)dt, z = Re(z) > σ0, (1)

where σ0 is the abscissa of convergence of Laplace transform, we focus on the de-
sign of algorithms which obtain f (t), at a given selection of values of t under the
hypothesis that F(z) is only computable on the real axis.

We consider Weeks’ Method, introduced in [10] and developed as numerical
software in [3] for complex inversion, i.e. when F is known on the complex plane.
The inverse function f (t) is obtained as a Laguerre expansion:

f (t) = eσt
∞

∑
k=0

cke−btLk(2bt), ck =
Φ (k)(0)

k!
(2)
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where Lk(2bt) is the Laguerre polynomial of degree k, σ > σ0 and b are parameters.
The ck values are McLaurin’s coefficients of the function Φ obtained from F . The
success or failure of such an algorithm depends on the accuracy of the approximated
coefficients ck (discretization error) and on the number of terms in (2) (truncation
error). In [3, 10] the ck are computed by considering the Cauchy integral representa-
tion of the derivative:

ck =
∫

C

1
zk+1Φ(z)dz

where C is any contour in the complex plane which includes the origin and does not
include any singularities of Φ . For instance, it is a circular contour centered at the
radius origin r.

This representation is not feasible in both cases if the Laplace Transform is only
known on real axis, and in many applicative domains, such as the Nuclear Magnetic
Resonance (NMR), where experimentally preassigned real values are determined. In
[5], the authors suggested the computation of ck using the finite difference schemes
for approximating the derivatives. Unfortunately, as the authors state, the instability
of high order finite difference schemes puts strong limitations on the maximal at-
tainable accuracy of the computed solution. Moreover, in [2], the authors proposed
a collocation method (C-method) for computing the ck based on the solution of a
Vandermonde linear system by using the Bjorck Pereira algorithm.

In all cases, the numerical performance of (2) depends on the choice of suitable
values of σ and b. In particular, regarding the parameter σ ,

1. if σ −σ0 is “too small” (i.e. near to zero) a lot of terms of the Laguerre ex-
pansion is needed (slow convergence of (2)). In this case, the truncation error
predominates.

2. σ −σ0 is “too large” (i.e. much greater than 1) we can not compute an accurate
numerical solution because of the exponential factor eσt in the series expansion
(2) that amplifies the errors occurring on the ck coefficients computation. In this
case, the roundoff errors predominate.

3. The choice of σ is also related to the t value. Indeed, because of the exponential
growth factor eσt in (2), the accuracy of f (t) degrades as t grows. To address
this problem, numerical methods for Lti measure the accuracy in terms of the
so-called pseudoaccuracy, that provides a uniform accuracy scaled considering
eσt :

εpseudo(t) =
| f (t)− f̃N(t)|

eσt .

4. Regarding the parameter b, in [4] the connection between σ and b is investigated
and their choices is also discussed. In particular, if z j is a singularity of F(z)
nearest to σ0 it holds that:

b
2
≥ min
σ>σ0

|σ − z j| (3)

In [11] two Matlab codes are derived to find σ and b. In [3], a choice of σ and b
is given based on experimental considerations.
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In this paper we propose a direct computation of ck by using forward AD and we
show that AD assures significant advantages in terms of accuracy and efficiency.
Computation of each value cN is accurate up to the maximal relative accuracy and its
precision scales as N2. As a consequence, the discretization error becomes negligible
and we can relate the choice of the parameter σ (therefore of b) essentially to the t
value without degrading the final accuracy. We feel that this approach seems to be
a good candidate to lead to an effective numerical software for Laplace inversion in
the real case.

The paper is organized as follows: in Sect. 2 we give some preliminaries; in
Sect. 3 we discuss remarks on AD and finally numerical experiments are provided in
Sect. 4, where comparisons are reported.

2 Preliminaries

Here we give same basic definitions.

Definition 1. Let γ > 0 be an integer number. The space Sγ is the set of all functions
whose analytical continuation, H(z), can be assumed in the form:

H(z) = z−γG(z), (4)

where G is analytic at infinity.

In the following, we assume F(z)∈ S1. Let σ > σ0 and b > 0 be fixed. We define the
operatorΨ onto S1 such as:

Ψ : h ∈ S1→Ψ [h(z)] =
2 ·b
1− z

h
(

2 ·b
1− z

+σ −b
)
∈ S1,

and, by applyingΨ to F it follows:

Ψ [F(z)] =
2 ·b
1− z

F
(

2 ·b
1− z

+σ −b
)

=Φ(z). (5)

To characterize the errors introduced by the computational approach we recall some
basics definitions.

Definition 2. The truncation error is defined as follows:

εtrunc(t,σ ,b,N) = eσt
∞

∑
k=N

e−btckLk(2bt)

The truncation error occurs substituting the infinite series in (2) by the finite sum
consisting of the first N terms.

Definition 3. Let ℑ be a finite arithmetic system with u as maximum relative accu-
racy. The roundoff error on fN(t) is defined as:

εcond(t,σ ,b,N) = fN(t)− f̃N(t)

where f̃N(t) = eσt∑N
k=0 e−bt c̃kLk(2bt) where c̃k are the approximated coefficients.
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Table 1. AD-based scheme for Lti.

:: step 1: computation of the coefficients ck by using AD

:: step 2: evaluation of the function fN(t) = eσ t ∑N
k=0 cke−btLk(2bt).

Definition 4. Let ℑ be a finite arithmetic system with u as maximum relative accu-
racy. The discretization error on fN(t) is defined as:

εdisc(σ ,b,N) = |cN− c̃N |

where c̃k are the coefficients obtained in ℑ.

Observe that, for the choices (1)–(4) in Sect. 1, the parameter σ influences both
εtrunc and εcond . The best suitable value of σ should balance these two quantities.
We propose the computation of the McLaurin coefficients using AD. Our approach
is sketched in Table 1. By following [2, 10], we refer to the pseudoaccuracy defined
as follows:

εpseudo(t) =
| f (t)− f̃N(t)|

eσt

and, by using the same arguments as in [10], it is

εpseudo(t) =
| f (t)− f̃N(t)|

eσt ≤ ||T ||+ ||R||

where ||T ||=
√
∑∞k=N |ck|2, ||R||= η(u)

√
∑N

k=0 |ck|2, and η(u) depends on the max-
imum relative accuracy u. Therefore, it follows that:

AbsErr(t) = | f (t)− f̃N(t)|= eσtεpseudo(t)≤ eσt(||T ||+ ||R||) = AbsErrEst(t).

In [2] the upper bound of ||T || ≤ K(r)
rN(r−1) was given, K(r) depending on Φ and on

the radius of convergence of the MacLaurin series expansion. In Sect. 4 we provide
a computable estimate of ||T ||.

3 Remarks on Automatic Differentiation

The computation of Taylor series using AD is a well known technique and many
different software tools are available [6]. In Sect. 4 we use the software TADIFF [1].

To state both, the reliability and the efficiency of AD we analyze the performance
of the approach in terms of the discretization error εdisc and its computational cost.
To achieve this aim, for computing the ck using the derivatives ofΦ , we first follow a
straightforward approach based on a variant of Horner’s method. The error analysis
shows that this approach returns satisfying accuracy on the computed coefficients.
Then, we experimentally verify that the error estimate still holds using TADIFF.
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Table 2. Horner’s method for evaluating the polynomial T (z) of degree n at z = z0. The ai i =
0, ...n are the coefficients of T . The derivate S is computed simultaneously.

1. T = an S = 0
2. S = T + z0 ∗S n−1≥ i≥ 0
3. T = ai + z0 ∗T n−1≥ i≥ 0
4. The value of T (z0) is T
5. The value of T ′(z0) is S

We assume that Φ(z) is a rational polynomial of the following type3:

Φ(z) =
P(z)
Q(z)

(6)

where the numerator is a p-degree and the denominator is a q-degree polynomial
and assume p < q. In Table 2 we show a variant of Horner’s method used in the
evaluation trace, which is the hand-coded implementation developed to evaluate Φ
and its derivatives.

Theorem 1. For each function F(z) ∈ S1 we can determine the algorithm for the
evaluation trace of Φ(0) based on the algorithms as described in Table 2, see [6].

Remark 1. c0 = Φ(0). If c0 is computed in a finite arithmetic system ℑ where u is
the relative maximum accuracy then, by applying the Forward Error Analysis (FEA)
to the algorithm described in Table 2, we have that:

c̃0 = c0 +µ (7)

where µ = (2q+1+ p)2δ0 and δ0| ≤ u. From (7), it follows that c0 can be computed
within the relative maximum accuracy.

Remark 2. The cN are the MacLaurin coefficients of Φ(z). In our case the N − th
derivative of Φ(z) is a rational polynomial too. In order to derive the error estimate
on cN we use the FEA too, and we have:

c̃1 = c1 +2µ

c̃2 = c2 +3µ
c̃3 = c3 +6µ

c̃N = cN +1µ+2µ+ ...+Nµ = O(N2)µ (8)

From (8) it follows:

|c̃N− cN | ≤ N2(2q+1+ p)2u (9)

The round-off error on cN is bounded below by a quantity which is proportional to
the maximum relative accuracy, and it scales as N2. This result is quite useful both
in terms of discretization error estimate and of its computational cost.

3 This assumption is not restrictive because any function F(z) ∈ S1 behaves like a rational
polynomial as |z| → ∞.
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Example 1. Let F(z) = z−1
(z2+1)2 , σ = 0.7, b = 1.7, N = 40, u = 2.22×10−16. By using

TADIFF, we get:
c̃N =−2.11246×10−9

Let
cN =−2.00604215234895×109

be the value obtained using symbolic derivation of Φ . Then:

|c̃N − cN |= 5.65×10−11

and
N2(2q+1+ p)2u = 402(2+1+4)2 ·u = 1.74×10−11

This means that the upper bound given in (9) also provides a reliable estimate of the
error introduced on cN obtained using TADIFF.

Remark 3. Observe that the number of terms used in the series expansion (2) is small
(say N ≤ 70/75). Indeed, as N → ∞, cN → 0, and as soon as the computed value
of cN+1 becomes numerically zero (i.e. less than the maximum relative accuracy
times cN), the Laguerre series expansion should be truncated at that value of N. For
instance, regarding the function F introduced in example 1, we get:

c70 = 4.48×10−17

and N = 70 should be considered a reliable value of N. This result implies that the
factor N2 in (9) scales the maximum relative accuracy of two orders of magnitude at
most and that the computation of the coefficients cN is not time consuming.

We conclude that, by using TADIFF the discretization error becomes negligible,
therefore, we mainly refer to the truncation error and to the condition error.

4 Numerical Experiments

In this section we describe numerical simulations carried out using the software
TADIFF for computing the coefficients ck. Moreover, we use the following upper
bound of the absolute error AbsErr(t):

AbsErrEst(t)≤ eσt

{√
M

∑
k=N
|ck|2 +u

√
N

∑
k=0
|ck|2

}

= CompAbsErr(t)

where M = 2N and u = 2.22×10−16. Experiments are carried out using the double
precision on a Pentium IV 2.8 GHz, with Linux Kernel 2.622-14-386 and gcc 4.1.3
compiler.
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4.1 Simulation 1

We consider the following functions:

F1(z) =
z

(z2 +1)2 f1(t) = cos(2t), σ0 = 0.

In Table 3 we compare AbsErr and CompAbsErr at different values of t and using
σ = 0.7 (then b = 1.7), on the left, and σ = 2.5 (then b = 5) on the right. The value
of N has been fixed at 20. Note that for small σ the accuracy on the computed fN(t)
ranges between four correct digits, at t = 1, and two correct digits, at t = 9. Because
σ is relatively small, the low accuracy is essentially due to the slow convergence of
the series expansion. In other words, the truncation error predominates. Conversely,
when choosing σ = 2.5, the accuracy is higher at t = 1,1.5,2... than before, while it
strongly degrades at t = 7,9. Although the series expansion converges more rapidly
than at σ = 0.7, in this case, due to the higher value of σ , the exponential factor
strongly degrades the final accuracy and the condition error predominates, especially
as t grows. This experiment suggests that, once N is given (therefore, the truncation
error is fixed), the value of σ should change depending on t: it should be large for
small t and small for large t, in order to control the error amplification by keeping
the exponential factor eσt constant. We are working on the dynamic selection of σ
at run time. In Figs. 1, 2 and in Table 4 we compare the AD-based computation
with the C-method described in [2], in terms of the maximum absolute error on
[0,7]. As before, we consider σ = 3 and σ = 0.7, while N = 28 and N = 50. The
numerical results confirm the better accuracy obtained using AD than using the C-
method, where the coefficients are obtained by solving a Vandermonde linear system.
The different accuracy is mainly due to the amplification of the discretization error
introduced by these two methods.

4.2 Simulation 2

We compare the proposed approach with the following numerical codes:

• InvertLT.m: implementation (developed in C++ and Matlab) of the method
proposed in [7], based on the quadrature of the Mellin transform operator.
InvertLT.m is a DLL (Windows operating system only) that can be used
within Matlab package.

• gavsteh.m[8]: implementation of the Gaver-Stehfest algorithm proposed
in [9].

Table 3. Simulation 1: error estimates at N = 20.

σ = 0.7, b = 1.7 AbsErr CompAbsErr

t = 1 3.5×10−5 1.7×10−4

t = 1.5 3.2×10−5 2.5×10−4

t = 2 4.5×10−5 3.6×10−4

t = 7 1.2×10−3 1.9×10−2

t = 9 7.2×10−3 4.8×10−2

σ = 2.5, b = 5 AbsErr CompAbsErr

t = 1 3.5×10−8 1.7×10−7

t = 1.5 3.3×10−7 2.3×10−7

t = 2 4.5×10−6 3.6×10−5

t = 7 5.2×100 7.9×100

t = 9 2.2×100 1.8×101
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Fig. 1. top: N = 28,σ = 3,b = 6; bottom: N = 50,σ = 0.7,b = 1.4.

We choose these two software because, to our knowledge, they are the only
ready-to-use software available. As a first test we consider the following functions:

F2(z) =
1

(z+1)2 , f2(t) = texp(−t), σ0 = 0,

and we compare the AD-Method (σ = 2, b = 4) with the other two in terms of the
absolute error and of the execution time. Results are shown in Fig. 2 and Table 5.

As a second test, we consider the following functions:

F3(z) =
z

(z2 +1)2 , f3(t) =
tsin(t)

2
, σ0 = 0,

and we compare the AD-method (σ = 3, b = 6) with the other two in terms of the ab-
solute error and the execution time. Results are shown in Fig. 2 and Table 5. We note
the ability of the proposed scheme to obtain accurate and efficient solutions. A dif-
ferent choice of parameters could potentially achieve better results in [7] and [9].
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Fig. 2. top: Comparative results on f2; bottom: Comparative results on f3.

Table 4. Simulation 1: maximum absolute error in [0,7].

Max Abserr C-Method Max Abserr AD-Method

N = 28,σ = 3,b = 6 0.84 0.9×10−4

N = 50,σ = 0.7,b = 1.4 0.9×10−2 2.1×10−6

Table 5. left: Comparative results on f2; right: Comparative results on f3.

Abserr Execution time

InvertLT 0.1×10−1 4.98 sec

Gavsteh 0.3×100 2.3 sec
AD-Method 0.2×10−5 0.7 sec

Abserr Execution time

InvertLT 2.6×10−2 6.7 sec

Gavsteh 0.1×10−5 1.8 sec
AD-Method 0.2×10−6 0.8 sec
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5 Conclusions

We use AD for computing the McLaurin coefficients in a numerical algorithm for
Laplace transform real inversion. Results confirm the advantages in terms of accu-
racy and efficiency provided by AD, encouraging the authors to investigate toward
the development of a numerical software to be used in applications.
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