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Preface

The Fifth International Conference on Automatic Differentiation held from
August 11 to 15, 2008 in Bonn, Germany, is the most recent one in a series that
began in Breckenridge, USA, in 1991 and continued in Santa Fe, USA, in 1996,
Nice, France, in 2000 and Chicago, USA, in 2004. The 31 papers included in these
proceedings reflect the state of the art in automatic differentiation (AD) with respect
to theory, applications, and tool development. Overall, 53 authors from institutions in
9 countries contributed, demonstrating the worldwide acceptance of AD technology
in computational science.

Recently it was shown that the problem underlying AD is indeed NP-hard, for-
mally proving the inherently challenging nature of this technology. So, most likely,
no deterministic “silver bullet” polynomial algorithm can be devised that delivers
optimum performance for general codes. In this context, the exploitation of domain-
specific structural information is a driving issue in advancing practical AD tool and
algorithm development. This trend is prominently reflected in many of the publi-
cations in this volume, not only in a better understanding of the interplay of AD
and certain mathematical paradigms, but in particular in the use of hierarchical AD
approaches that judiciously employ general AD techniques in application-specific al-
gorithmic harnesses. In this context, the understanding of structures such as sparsity
of derivatives, or generalizations of this concept like scarcity, plays a critical role, in
particular for higher derivative computations.

On the tool side, understanding of program structure is the key to improving
performance of AD tools. In this context, domain-specific languages, which by de-
sign encompass high-level information about a particular application context, play
an increasingly larger role, and offer both challenges and opportunities for efficient
AD augmentation. This is not to say that tool development for general purpose lan-
guages is a solved issue. Advanced code analysis still leads to improvements in AD-
generated code, and the set of tools capable of both forward- and reverse mode AD
for C and C++ continues to expand. General purpose AD tool development remains
to be of critical importance for unlocking the great wealth of AD usage scenarios,
as the user interface and code performance of such tools shape computational prac-
titioners’ view of AD technology.
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Overall, the realization that simulation science is a key requirement to funda-
mental insight in science and industrial competitiveness continues to grow. Hence,
issues such as nonlinear parameter fitting, data assimilation, or sensitivity analysis of
computer programs are becoming de rigueur for computational practitioners to adapt
their models to experimental data. Beyond the “vanilla” nonlinear least squares for-
mulation one needs also to question in this context which parameters can at all be
reliably identified by the data available in a particular application context, a question
that again requires the computation of derivatives if one employs methods based on,
for example, Fisher information matrix. Beyond that, experimental design then tries
to construct experimental setups that, for a given computer model, deliver experi-
mental data that have the highest yield with respect to model fitting or even model
discrimination. It is worth noting that all these activities that are critical in reliably
correlating computer model predictions with real experiments rely on the computa-
tion of first- and second-order derivatives of the underlying computer models and
offer a rich set of opportunities for AD.

These activities are also examples of endeavors that encompass mathematical
modeling, numerical techniques as well as applied computer science in a specific
application context. Fortunately, computational science curricula that produce re-
searchers mentally predisposed to this kind of interdisciplinary research continue to
grow, and, from a computer science perspective, it is encouraging to see that, albeit
slowly, simulation practitioners realize that there is more to computer science than
“programming,” a task that many code developers feel they really do not need any
more help in, except perhaps in parallel programming.

Parallel programming is rising to the forefront of software developers’ atten-
tion due to the fact that shortly multicore processors, which, in essence, provide the
programming ease of shared-memory multiprocessors at commodity prices, will put
32-way parallel computing (or even more) on desk- and laptops everywhere. Going a
step further, in the near future any substantial software system will, with great proba-
bility, need to be both parallel and distributed. Unfortunately, many computer science
departments consider these issues solved, at least in theory, and do not require their
students to develop practical algorithmic and software skills in that direction. In the
meantime, the resulting lag in exploiting technical capabilities offers a great chance
for AD, as the associativity of the chain rule of differential calculus underlying AD
as well as the additional operations inserted in the AD-generated code provide op-
portunities for making use of available computational resources in a fashion that is
transparent to the user. The resulting ease of use of parallel computers could be a
very attractive feature for many users.

Lastly, we would like to thank the members of the program committee for their
work in the paper review process, and the members of the Institute for Scientific
Computing, in particular Oliver Fortmeier and Cristian Wente, for their help in orga-
nizing this event. The misfit and velocity maps of the Southern Ocean on the cover
were provided by Matthew Mazloff and Patrick Heimbach from Massachusetts In-
stitute of Technology and are a result of an ocean state estimation project using au-
tomatic differentiation. We are also indebted to Mike Giles from Oxford University,
Wolfgang Marquardt from RWTH Aachen University, Arnold Neumeier from the
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University of Vienna, Alex Pothen from Old Dominion University, and Eelco Visser
from the Technical University in Delft for accepting our invitation to present us in-
spirations on AD possibilities in their fields of expertise. We also acknowledge the
support of our sponsors, the Aachen Institute for Advanced Study in Computational
Engineering Science (AICES), the Bonn-Aachen International Center for Informa-
tion Technology (B-IT), and the Society for Industrial and Applied Mathematics
(SIAM).
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RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
buecker@sc.rwth-aachen.de

James V. Burke
University of Washington
Department of Mathematics
Box 354350
Seattle, Washington 98195–4350
USA
burke@math.washington.edu

Isabelle Charpentier
Centre National de la Recherche
Scientifique
Laboratoire de Physique et Mécanique
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Reverse Automatic Differentiation of Linear
Multistep Methods

Adrian Sandu

Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA, sandu@cs.vt.edu

Summary. Discrete adjoints are very popular in optimization and control since they can be
constructed automatically by reverse mode automatic differentiation. In this paper we analyze
the consistency and stability properties of discrete adjoints of linear multistep methods. The
analysis reveals that the discrete linear multistep adjoints are, in general, inconsistent approx-
imations of the adjoint ODE solution along the trajectory. The discrete adjoints at the initial
time converge to the adjoint ODE solution with the same order as the original linear mul-
tistep method. Discrete adjoints inherit the zero-stability properties of the forward method.
Numerical results confirm the theoretical findings.

Keywords: Reverse automatic differentiation, linear multistep methods, consistency,
stability.

1 Introduction

Consider an ordinary differential equation (ODE)

y′ = f (y) , y(tini) = yini , tini ≤ t ≤ tend , y ∈ℜd . (1)

We are interested to find the initial conditions for which the following cost func-
tion is minimized

min
yini

Ψ (yini) subject to (1) ; Ψ(yini) = g
(
y(tend)

)
. (2)

The general optimization problem (2) arises in many important applications includ-
ing control, shape optimization, parameter identification, data assimilation, etc. This
cost function depends on the initial conditions of (1). We note that general problems
where the solution depends on a set of arbitrary parameters can be transformed into
problems where the parameters are the initial values. Similarly, cost functions that
involve an integral of the solution along the entire trajectory can be transformed into
cost functions that depend on the final state only via the introduction of quadrature
variables. Consequently the formulation (1)–(2) implies no loss of generality.
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To solve (1)–(2) via a gradient based optimization procedure one needs to com-
pute the derivatives of the cost functionΨ with respect to the initial conditions. This
can be done effectively using continuous or discrete adjoint approaches.

In the continuous adjoint (“differentiate-then-discretize”) approach [8] one de-
rives the adjoint ODE associated with (1)

λ ′ =−JT
(

t,y(t)
)
λ , λ (tend) =

(
∂g
∂y

(
y(tend)

)
)T

, tend ≥ t ≥ tini , (3)

Here J = ∂ f/∂y is the Jacobian of the ODE function. The system (3) is solved back-
wards in time from tend to tini to obtain the gradients of the cost function with respect
to the state [8]. Note that the continuous adjoint equation (3) depends on the forward
solution y(t) via the argument of the Jacobian. For a computer implementation the
continuous adjoint ODE (3) is discretized and numerical solutions λ n ≈ λ (tn) are
obtained at time moments tend = tN > tN−1 > · · · > t1 > t0 = tini.

In the discrete adjoint (“discretize-then-differentiate”) approach [8] one starts
with a numerical discretization of (1) which gives solutions yn ≈ y(tn) at tini = t0 <
· · · < tN = tend

y0 = yini , yn = Mn (y0, · · · ,yn−1) , n = 1, · · · ,N . (4)

The numerical solution at the final time is yN ≈ y(tend). The optimization problem
(2) is reformulated in terms of the numerical solution minimized,

min
yini
Ψ (yini) = g

(
yN

)
subject to (4) . (5)

The gradient of (5) is computed directly from (4) using the transposed chain rule.
This calculation and produces the discrete adjoint variables λN , λN−1, · · · , λ0

λN =
(
∂g
∂y

(
yN

)
)T

, λn = 0 , n = N−1, · · · ,0 , (6)

λ� = λ� +
(
∂Mn

∂y�

(
y0, · · · ,yn−1

)
)T

λn , � = n−1, · · · ,0 , n = N, · · · ,0 .

Note that the discrete adjoint equation (6) depends on the forward numerical solution
y0, · · · ,yN via the arguments of the discrete model. The discrete adjoint process gives
the sensitivities of the numerical cost function (5) with respect to changes in the
forward numerical solution (4).

Consistency properties of discrete Runge-Kutta adjoints have been studied by
Hager [3], Walther [9], Giles [2], and Sandu [6]. Baguer et al. [1] have constructed
discrete adjoints for linear multistep methods in the context of control problems.
Their work does not discuss the consistency of these adjoints with the adjoint ODE
solution.

In this paper we study the consistency of discrete adjoints of linear multistep
methods (LMM) with the adjoint ODE. The analysis is carried out under the follow-
ing conditions. The cost function depends (only) on the final solution values, and the
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(only) control variables are the initial conditions. The system of ODEs and its solu-
tion are continuously differentiable sufficiently many times to make the discussion
of order of consistency meaningful. The analysis assumes small time steps, such that
the error estimates hold for non-stiff systems. The sequence of (possibly variable)
step sizes in the forward integration is predefined, or equivalently, the step control
mechanism is not differentiated (special directives may have to be inserted in the
code before automatic differentiation is applied).

2 Linear Multistep Methods

Consider the linear multistep method

y0 = yini , (7a)
yn = θn (y0, · · · ,yn−1) , n = 1, · · · ,k−1 , (7b)

k

∑
i=0
α [n]

i yn−i = hn

k

∑
i=0
β [n]

i fn−i , n = k, · · · ,N . (7c)

The upper indices indicate the dependency of the method coefficients on the step
number; this formulation accommodates variable step sizes. The numerical solution
is computed at the discrete moments tini = t0 < t1 < · · · < tN = tend. As usual yn repre-
sents the numerical approximation at time tn. The right hand side function evaluated
at tn using the numerical solution yn is denoted fn = f (tn,yn), while its Jacobian is
denoted by Jn = J(tn,yn) = (∂ f /∂y)(tn,yn).

The discretization time steps and their ratios are

hn = tn− tn−1 , n = 1, · · · ,N ; ωn =
hn

hn−1
, n = 2, · · · ,N . (8)

We denote the sequence of discretization step sizes and the maximum step size by

h =
(
h1, · · · ,hN

)
and |h|= max

1≤n≤N
hn . (9)

The number of steps depends on the step discretization sequence, N = N(h).
Equation (7a)–(7c) is a k-step method. The method coefficients α [n]

i , β [n]
i depend

on the sequence of (possibly variable) steps, specifically, they depend on the ratios
ωn−k+2, · · · ,ωn.

A starting procedure θ is used to produce approximations of the solution yi =
θi (y0, · · · ,yi−1) at times ti, i = 1, · · · ,k−1. We will consider the starting procedures
to be linear numerical methods. This setting covers both the case of self-starting
LMM methods (a linear i-step method gives yi for i = 1, · · · ,k− 1) as well as the
case where a Runge Kutta method is used for initialization (yi = θi (yi−1) for i =
1, · · · ,k−1).

We next discuss the discrete adjoint method associated with (7a)–(7c). The fol-
lowing result was obtained in [7].
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Theorem 1 (The discrete LMM adjoint process).
The discrete adjoint method associated with the linear multistep method

(7a)–(7c) and the cost function

Ψ (yini) = g
(
yN

)

reads:

α [N]
0 λN = hN β

[N]
0 JT

N ·λN +
(
∂g
∂y

(yN)
)T

, (10a)

N−m

∑
i=0
α [m+i]

i λm+i = JT
m ·

N−m

∑
i=0

hm+iβ
[m+i]
i λm+i , m = N−1, · · · ,N− k +1, (10b)

k

∑
i=0
α [m+i]

i λm+i = hm+1 JT (ym
)
·

k

∑
i=0
β̂ [m+i]

i λm+i , m = N− k, · · · ,k , (10c)

λk−1 +
k

∑
i=1
α [k−1+i]

i λk−1+i = JT
k−1 ·

k

∑
i=1

(
hk−1+iβ

[k−1+i]
i λk−1+i

)
, (10d)

λm +
k

∑
i=k−m

α [m+i]
i λm+i =

k−1

∑
i=m+1

(
∂θi

∂ym

)T

λi (10e)

+JT
m ·

k

∑
i=k−m

hm+iβ
[m+i]
i λm+i , m = k−2, · · · ,0 .

where

β̂ [m]
0 =ω−1

m+1β
[m]
0 , β̂ [m+1]

1 = β [m+1]
1 , β̂ [m+i]

i =

(
i

∏
�=2
ωm+�

)

β [m+i]
i , i = 2, · · · ,k .

The gradient of the cost function with respect to the initial conditions is

∇yiniΨ =
(
∂Ψ
∂yini

)T

= λ0 . (11)

Proof. The proof is based on a tedious, but straightforward variational calculus
approach.

��
The original LMM method (7a)–(7c) applied to solve the adjoint ODE has coef-

ficients α [n]
i , β [n]

i which depend on the sequence of steps hn in reverse order due to
the backward in time integration. These coefficients depend on the ratios ω−1

n+k, · · · ,
ω−1

n+2k−2. They are in general different than the forward method coefficients α [n]
i , β [n]

i
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which depend on the ratios ωn, · · · , ωn−k+2. The one-leg counterpart [5, Section V.6]
of the LMM method applied to solve the adjoint ODE reads

λN =
(
∂g
∂y

(
y(tN)

)
)T

, (12a)

λm = θm

(
λN , · · · ,λm+1

)
, m = N−1, · · · ,N− k +1 , (12b)

k

∑
i=0
α [m]

i λm+i = hm+1 JT (y(τ [m])
)
·

k

∑
i=0
β [m]

i λm+i , (12c)

τ [m] =
k

∑
�=0

β [m]
�

β [m] tm+� , β [m]
=

k

∑
�=0
β [m]

� , m = N− k, · · · ,0 .

Note that, due to linearity of the right hand side, the scaling by the β [m]
does

not appear in the sum of λ ’s multiplied by JT . The order of accuracy of the dis-
cretization (12c) is min(p,r + 1), where r is the interpolation order of the method
[5, Section V.6].

The discrete adjoint step (10c) looks like the one-leg method (12c). The argument
at which the Jacobian is evaluated is, however, different. The initialization of the
discrete adjoint (10a)–(10b) and of the one-leg continuous adjoint (12a)–(12b) are
also different. Moreover the termination relations for the discrete adjoint calculation
(10d), (10e) are different and depend on the initialization procedure of the forward
method. We will analyze the impact of these differences on the accuracy of the the
discrete adjoint as a numerical method to solve the adjoint ODE.

2.1 Consistency Analysis for Fixed Step Sizes

Consider first the case where the multistep method is applied with a fixed step size.
With some abuse of notation relative to (9) in this section we consider hn = h for all
n. The LMM coefficients are the same for all steps and the discrete adjoint step (10c).

Theorem 2 (Fixed stepsize consistency at interior trajectory points).
In the general case equation (10c) with fixed steps is a first order consistent

method for the adjoint ODE. The order of consistency equals that of the one-leg
counterpart for LMMs with

k

∑
�=1

�β� = 0. (13)

Proof. The consistency analysis can be done by direct differentiation. We take an ap-
proach that highlights the relation between (10c) and the one-leg continuous adjoint
step (12c). For the smooth forward solution it holds that

τ [m] = tm +h
k

∑
�=0

�β�

β
, β =

k

∑
�=0
β� �= 0, y(τ [m])− y(tm) = O

(

h
k

∑
�=0

�β�

β

)

.



6 Adrian Sandu

The step (10c) can be regarded as a perturbation of the one-leg step (12c)

k

∑
i=0
αiλm+i = hJT (y(τ [m])

) k

∑
i=0
βiλm+i + εm .

The perturbation comes from the change in the Jacobian argument. Under the
smoothness assumptions all derivatives are bounded and we have that the size of
the perturbation is given by the size of the argument difference:

εm =

(
k

∑
�=0

�β�

)

·O
(
h2)+O

(
hmin(p+1,r+1)

)

The order of consistency of the discrete adjoint step (10c) is therefore equal to one
in the general case, and is equal to the order of consistency of the associated one-leg
method when (13) holds. For Adams methods the order of consistency of the discrete
adjoint is one. For BDF methods β0 �= 0 and β� = 0, � ≥ 1, therefore the order of
consistency equals that of the one-leg counterpart, i.e., equals that of the original
method.

We are next concerned with the effects of the initialization steps (10a), (10b) and
of the termination steps (10d) and (10e).

Theorem 3 (Accuracy of the adjoint initialization steps).
For a general LMM the discrete adjoint initialization steps (10a), (10b) do not

provide consistent approximations of the adjoint ODE solution. For Adams methods
the initialization steps are O(h) approximations of the continuous adjoint solution.

Proof. By Taylor series expansion.

Theorem 4 (Accuracy of the adjoint termination steps).
For a general LMM the discrete adjoint termination steps (10d) and (10e) are

not consistent discretizations of the adjoint ODE.

Proof. By Taylor series expansion.

Note that one can change the discrete adjoint initialization and the termination
steps to consistent relations, as discussed in [7]. In this case we expect the method to
be at least first order consistent with the adjoint ODE.

2.2 Consistency Analysis for Variable Step Sizes

For variable steps the consistency of the discrete adjoint with the adjoint ODE is not
automatic. In this section we will use the notation (8).

Theorem 5 (Variable stepsize consistency at the intermediate trajectory points).
In general the numerical process (10a)–(10e) is not a consistent discretization of

the adjoint ODE (3).
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Proof. The relation (10c) can be regarded as a perturbation of a one-leg discretization
method (10c) applied to the adjoint ODE. Replacing JT

(
ym

)
by JT

(
y(tm)

)
in (10c)

introduces an O(hp+1) approximation error

k

∑
i=0
α [m+i]

i λm+i = hm+1 JT (y(tm)
)
·

k

∑
i=0
β̂ [m+i]

i λm+i +O
(
hp+1) , m = N− k, · · · ,k .

The following consistency analysis of (10c) will be performed on this modified equa-
tion and its results are valid within O(hp+1).

A Taylor series expansion around tm leads to the zeroth order consistency condition

k

∑
i=0
α [m+i]

i = 0 . (14)

For a general sequence of step sizes hm the values of α [m+i]
i at different steps m

are not necessarily constrained by (14). A general discrete adjoint LMM process is
therefore inconsistent with the adjoint ODE.

In the case where the forward steps are chosen automatically to maintain the local
error estimate under a given threshold the step changes are smooth [4, Section III.5]
in the sense that

|ωn−1| ≤ const ·hn−1 ⇒ ωn = 1+O(|h|) . (15)

Recall that we do not consider the derivatives of the step sizes with respect to system
state. Nevertheless, let us look at the impact of these smooth step changes on the
discrete adjoint consistency. If the LMM coefficients α [n]

i and β [n]
i depend smoothly

on step size ratiosωn, then for each n they are small perturbations of the constant step
size values: α [n]

i =αi +O(|h|) and β [n]
i = βi +O(|h|). It then holds that∑k

i=0α
[m+i]
i =

O(|h|). Consequently the zeroth order consistency condition (14) is satisfied. The
O(|h|) perturbation, however, prevents first order consistency of the discrete adjoint
method.

For Adams methods in particular the relation (14) is automatically satisfied. The
first order consistency condition for Adams methods reads ∑k

i=0 β̂
[m+i]
i = 1. For a

general sequence of step sizes hm the values of β [m+i]
i at different steps m are not

constrained by any relation among them and this condition is not satisfied. If the
forward steps are chosen such that (15) holds [4, Section III.5], and if the LMM
coefficients depend smoothly on step size ratios, we have that ∑k

i=0 β̂
[m+i]
i = 1 +

O(|h|). In this situation the discrete Adams adjoint methods are first order consistent
with the adjoint ODE.

��

3 Zero-Stability of the Discrete Adjoints

The method (7a)–(7c) is zero-stable if it has only bounded solutions when applied to
the test problem
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y′ = 0 , y(tini) = yini , tini ≤ t ≤ tend . (16)

To be specific consider the LMM (7a)–(7c) scaled such that α [n]
0 = 1 for all n. Using

the notation e1 = [1,0, · · · ,0]T , 1 = [1,1, · · · ,1]T , and

Yn =

⎡

⎢
⎣

yn
...

yn−k+1

⎤

⎥
⎦ , An =

⎡

⎢
⎢
⎢
⎣

−α [n]
1 I · · · −α [n]

k−1 I −α [n]
k I

I 0 0
...

. . .
...

0 · · · I 0

⎤

⎥
⎥
⎥
⎦

.

The LMM (7a)–(7c) is zero-stable if [4, Definition 5.4]

‖An+� An+�−1 · · · An+1 An‖ ≤ const ∀ n, � > 0 . (17)

A consequence of zero-stability (17) is that small changes δyini in the initial condi-
tions of the test problem lead to small changes δΨ in the cost function.

The discrete adjoint of the numerical process (7a)–(7c) applied to (16) is zero
stable if ∥

∥AT
n AT

n+1 · · · AT
n+�−1 AT

n+�

∥
∥≤ const ∀ n, � > 0 , (18)

which ensures that all its numerical solutions remain bounded. The product of ma-
trices in (18) is the transpose of the product of matrices in (17), and consequently if
(17) holds then (18) holds. In other words if a variable-step LMM is zero-stable then
its discrete adjoint is zero-stable. A consequence of the discrete adjoint zero-stability
(18) is that small perturbations of (∂g/∂y)T (yN) lead to only small changes in the
adjoint initial value λ0.

4 Derivatives at the Initial Time

We now prove a remarkable property of the discrete LMM adjoints. Even if the
discrete adjoint variables λn are poor approximations of the continuous adjoints λ (tn)
at the intermediate grid points, the discrete adjoint at the initial time converges to the
continuous adjoint variable with the same order as the original LMM.

Theorem 6 (Consistency at the initial time).
Consider a LMM (7a)–(7c) convergent of order p, and initialized with linear

numerical methods. (This covers the typical situation where the initialization pro-
cedures θ1, · · · ,θk−1 are Runge Kutta or linear multistep numerical methods). The
numerical solutions at the final time are such that

∥
∥
∥yh

N(h)− y(tend)
∥
∥
∥
∞

= O (|h|p) , ∀h : |h| ≤ H ,

for a small enough H. Let λ h
n be the solution of the discrete LMM adjoint process

(10a)–(10e).
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Then the discrete adjoint solution λ h
0 is an order p approximation of the contin-

uous adjoint λ (t0) at the initial time, i.e.
∥
∥
∥λ h

0 −λ (t0)
∥
∥
∥
∞

= O (|h|p) , ∀h : |h| ≤ H , (19)

for a small enough H.

Proof. The proof is based on the linearity of the LMM and of its starting procedures,
which makes the tangent linear LMM to be the same as the LMM applied to solve
the tangent linear ODE. The tangent linear LMM solves the entire sensitivity matrix
as accurately as it solves for the solution. which leads to an order p approximation
of the full sensitivity matrix.

The continuous sensitivity matrix S(t) ∈ R
d×d contains the derivatives of the

ODE solution components at time t with respect to the initial value components.
The discrete sensitivity matrix Qn ∈ R

d×d contains the derivatives of the numerical
solution components at (the discrete approximation time) tn with respect to the initial
value components. These matrices are defined as

Si, j(t) =
∂yi(t)
∂y j (tini)

,
(

Qh
n

)i, j
=
∂yi

n

∂y j
0

, 1≤ i, j ≤ d .

Superscripts are indices of matrix or vector components.
The entire sensitivity d×d matrix S (tend) can be obtained column by column via

d forward solutions of the tangent linear ODE model initialized with δy(tini) = e j. It
is well known that the tangent linear model of a linear numerical methods gives the
same computational process as the numerical method applied to the tangent linear
ODE. Since both the initialization steps θi and the LMM are linear numerical meth-
ods we have that Qh

N(h) is a numerical approximation of S obtained by applying the
method (7a)–(7c) to the tangent linear ODE. Since the LMM method is convergent
with order p we have that ‖Qh

N(h)−S(tend)‖∞ = O(|h|p) ∀h : |h| ≤ H .
The continuous and discrete adjoint variables at the initial time are

λ (tini) = ST (tend) ·
(
∂g
∂y

(
y(tend)

)
)T

, λ0 =
(

Qh
N(h)

)T
·
(
∂g
∂y

(
yh

N(h)

))T

.

Their difference is

λ (tini)−λ0 =
(

S(tend)−Qh
N(h)

)T
·
(
∂g
∂y

(y(tend))
)T

(20)

+
(

Qh
N(h)

)T
·
(
∂g
∂y

(y(tend))−
∂g
∂y

(
yh

N(h)

))T

.

Taking infinity norms in (20), using the smoothness of g, the convergence of the
LMM, and the fact that ‖∂g/∂y(y(tend))‖∞ is independent of the discretization h,
leads to the bound (19).

��
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5 Numerical Experiments

We illustrate the theoretical findings with numerical results on the Arenstorf orbit
with the parameters and the initial conditions presented in [4]. We consider the ad-
joints of the cost functional

Ψ = g
(
y(tend)

)
= y1 (tend) where

(
∂g
∂y

(
y(tend)

)
)T

= e1 .

For the integration we choose the explicit Adams-Bashforth methods of order two
(AB2) and three (AB3) and the second order BDF2 method. AB2 is initialized with
the forward Euler method, AB3 is initialized with a second order explicit Runge
Kutta method, and BDF2 is initialized with the implicit Euler method. This allows
each method to converge at the theoretical order. The simulations are performed in
Matlab. The reference solutions for the Arenstorf system and its continuous adjoint
ODE are obtained with the ode45 routine with the tight tolerances RelTol = 1.e-8,
AbsTol = 1.e-8. The root mean square (RMS) norms of the difference between the
numerical adjoint solution (λn)num and the reference continuous adjoint solution
(λ n)ref at each time moment define instantaneous errors En, n = 0, · · · ,N. The tra-
jectory errors measure the total difference between the numerical and the reference
adjoint solutions throughout the integration interval

En =

√√
√
√1

d

d

∑
i=1

(
(λ i

n)num− (λ i
n)ref

(λ i
n)ref

)2

, ‖E‖=

√
1

N +1

N

∑
n=0

E2
n . (21)

We compute the discrete adjoint solutions with N =150, 210, 300, 425, 600, 850,
and 1200 steps and obtain the errors E0 and ‖E‖ against the reference continuous
adjoint solution. We then estimate the convergence orders and report them in Table 1

For all cases both the trajectory and the final time errors of the continuous adjoint
methods decrease at the theoretical rates [7]. The discrete adjoint BDF2 solution is
not consistent with the continuous adjoint solution at intermediate integration times,
and the numerical error is heavily influenced by the pattern of step size changes. The

Table 1. Experimental convergence orders for different continuous and discrete adjoints. We
consider both the trajectory error ‖E‖ and the initial time error E0.

Continuous Adjoint Discrete Adjoint
AB2 BDF2 AB3 AB2 BDF2 AB3

‖E‖, fixed steps 1.99 1.99 2.94 0.97 0.00 1.00
E0, fixed steps 2.00 2.00 2.96 1.99 2.00 2.94
‖E‖, fixed steps, modified initialization/termination – – – 0.97 1.99 1.00
E0, fixed steps, modified initialization/termination – – – 0.97 2.00 1.01
‖E‖, variable steps 2.03 2.03 2.98 1.01 -0.01 1.01
E0, variable steps 2.00 2.00 2.96 1.99 2.00 2.94



Reverse AD on LMM 11

fixed step BDF2 adjoint is not consistent with the adjoint ODE due to initialization
and termination procedures. When these steps are changed the solution converges at
second order. The discrete AB2 and AB3 adjoints converge to the adjoint ODE solu-
tion at first order. For all methods the discrete adjoints at the initial time convergence
at the theoretical order of the forward methods.

6 Conclusions

In this paper we derive the discrete adjoints of linear multistep formulas and have
analyzed their consistency properties. Discrete adjoints are very popular in opti-
mization and control since they can be constructed automatically by reverse mode
automatic differentiation.

In general the discrete LMM adjoints are not consistent with the adjoint ODE
along the trajectory when variable time steps are used. If the forward LMM
integration is zero-stable then the discrete adjoint process is zero-stable as well.
For fixed time steps the discrete adjoint steps are consistent with the adjoint ODE at
the internal grid points but not at the initial and terminal points. The initialization and
termination steps in the fixed step discrete adjoint process can be changed to obtain
consistent schemes. The discrete adjoints at the initial time, however, converge to
the continuous adjoint at a rate equal to the convergence order of the original LMM.
This remarkable property is due to the linearity of the method and of its initialization
procedure. Numerical tests on the Arenstorf orbit system confirm the theoretical
findings.

Future work will be devoted to the error analysis of discrete adjoints in the case of
stiff systems. The effect of automatic differentiation on step-size control mechanisms
will also be considered in a follow-up work.
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Call Tree Reversal is NP-Complete

Uwe Naumann
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Summary. The data flow of a numerical program is reversed in its adjoint. We discuss the
combinatorial optimization problem that aims to find optimal checkpointing schemes at the
level of call trees. For a given amount of persistent memory the objective is to store selected
arguments and/or results of subroutine calls such that the overall computational effort (the total
number of floating-point operations performed by potentially repeated forward evaluations of
the program) of the data-flow reversal is minimized. CALL TREE REVERSAL is shown to be
NP-complete.

Keywords: Adjoint code, call tree reversal, NP-completeness

1 Background

We consider implementations of multi-variate vector functions F : R
n→R

m as com-
puter programs y = F(x). The interpretation of reverse mode automatic differenti-
ation (AD) [8] as a semantic source code transformation performed by a compiler
yields an adjoint code x̄+ = F̄(x, ȳ). For given x and ȳ the vector x̄ is incremented
with (F ′(x))T · ȳ where F ′(x) denotes the Jacobian matrix of F at x. Adjoint codes
are of particular interest for the evaluation of large gradients as the complexity of the
adjoint computation is independent of the gradient’s size. Refer to [1, 2, 3, 4] for an
impressive collection of applications where adjoint codes are instrumental to making
the transition form pure numerical simulation to optimization of model parameters
or even of the model itself.

In this paper we propose an extension to the notion of joint call tree reversal [8]
with the potential storage of the results of a subroutine call. We consider call trees
as runtime representations of the interprocedural flow of control of a program. Each
node in a call tree corresponds uniquely to a subroutine call.1 We assume that no
checkpointing is performed at the intraprocedural level, that is, a “store-all” strat-
egy is employed inside all subroutines. A graphical notation for call tree reversal

1 Generalizations may introduce nodes for various parts of the program, thus yielding arbi-
trary checkpointing schemes.
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advance tape (store all)

store arguments restore arguments

store results restore results

reverse (store all) dummy call

Fig. 1. Calling modes for interprocedural data-flow reversal.
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Fig. 2. Interprocedural data-flow reversal modes: Original call tree (a), split reversal (b), joint
reversal with argument checkpointing (c), joint reversal with result checkpointing (d).

under the said constraints is proposed in Fig. 1. A given subroutine can be executed
without modifications (“advance”) or in an augmented form where all values that are
required for the evaluation of its adjoint are stored (taped) on appropriately typed
stacks (“tape (store all)”). We refer to this memory as the tape associated with a
subroutine call, not to be confused with the kind of tape as generated by AD-tools
that use operator overloading such as ADOL-C [9] or variants of the differentiation-
enabled NAGWare Fortran compiler [14]. The arguments of a subroutine call can
be stored (“store arguments”) and restored (“restore arguments”). Results of a sub-
routine call can be treated similarly (“store results” and “restore results”). The ad-
joint propagation yields the reversed data flow due to popping the previously pushed
values from the corresponding stacks (“reverse (store all)”). Subroutines that only
call other subroutines without performing any local computation are represented by
“dummy calls.” For example, such wrappers can be used to visualize arbitrary check-
pointing schemes for time evolutions (implemented as loops whose body is wrapped
into a subroutine). Moreover they occur in the reduction used for proving CALL
TREE REVERSAL to be NP-complete. Dummy calls can be performed in any of the
other seven modes.

Figure 2 illustrates the reversal in split (b), classical joint (c), and joint with result
checkpointing (d) modes for the call tree in (a). The order of the calls is from left to
right and depth-first.
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For the purpose of conceptual illustration we assume that the sizes of the tapes of
all three subroutine calls in Fig. 2 (a) as well as the corresponding computational
complexities are identically equal to 2 (memory units/floating-point operation (flop)
units). The respective calls are assumed to occur in the middle, e.g. the tape associ-
ated with the statements performed by subroutine 1 prior to the call of subroutine 2
has size 1. Consequently the remainder of the tape has the same size. One flop unit
is performed prior to a subroutine call which is followed by another unit. The size of
argument and result checkpoints is assumed to be considerably smaller than that of
the tapes. Refer also to footnotes 2 and 3.

Split call tree reversal minimizes the number of flops performed by the forward
calculation (6 flop units). However an image of the entire program execution (6 mem-
ory units) needs to fit into persistent memory which is infeasible for most relevant
problems. This shortcoming is addressed by classical joint reversal (based solely on
argument checkpointing). The maximum amount of persistent memory needed is re-
duced to 4 (half of subroutine 1 plus half of subroutine 2 plus subroutine 3)2 at the
cost of additional 6 flop units (a total of 12 flop units is performed). This number
can be reduced to 10 flop units (while the maximum memory requirement remains
unchanged3) by storing the result of subroutine 3 and using it for taping subroutine
2 in Fig. 2 (d). The impact of these savings grows with the depth of the call tree.

It is trivial to design toy problems that illustrate this effect impressively. An ex-
ample can be found in the appendix. The computation of the partial derivative of y
with respect to x as arguments of the top-level routine f0 in adjoint mode requires the
reversal of a call tree (a simple chain in this case) of depth five. The leaf routine f5 is
computationally much more expensive than the others. Classical joint reversal takes
about 0.6 seconds whereas additional result checkpointing as in Fig. 5 reduces the
runtime to 0.25 seconds. These results were obtained on a state-of-the-art Intel PC.
The full code can be obtained by sending an email to the author. The use of result
checkpointing in software tools for AD such as Tapenade [12], OpenAD [15], or the
differentiation-enabled NAGWare Fortran compiler [14] is the subject of ongoing
research and development.

Finding an optimal (or at least near-optimal) distribution of the checkpoints or,
equivalently, corresponding combinations of split and joint (with argument check-
pointing) reversal applied to subgraphs of the call tree has been an open problem
for many years. In this paper we show that a generalization of this problem that al-
lows for subsets of subroutine arguments and/or results to be taped is NP-complete.
Hence, we believe that the likelihood of an efficient exact solution of this problem
is low. Heuristics for finding good reversal schemes are currently being developed
in collaboration with colleagues at INRIA, France, and at Argonne National Labora-
tory, USA.

2 ...provided that the size of an argument checkpoint of subroutine 3 is less than or equal to
one memory unit, i.e. sizeof(argchp3)≤ 1, and that sizeof(argchp2)≤ 2.

3 ...provided that sizeof(argchp2) + sizeof(reschp3) ≤ 2 and sizeof(argchp3) +
sizeof(reschp3) ≤ 2, where sizeof(reschpi) denotes the size of a result checkpoint of
subroutine i (in memory units).
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2 Data-Flow Reversal is NP-Complete

The program that implements F should decompose into a straight-line evaluation
procedure

v j = ϕ j(vi)i≺ j (1)

for j = 1, . . . ,q. We follow the notation in [8]. Hence, i ≺ j denotes a direct depen-
dence of v j on vi. Equation (1) induces a directed acyclic graph (DAG) G = (V,E)
where V = {1−n, . . . ,q} and (i, j) ∈ E ⇔ i≺ j. We consider independent (without
predecessors), intermediate, and dependent (without successors) vertices. Without
loss of generality, the m results are assumed to be represented by the dependent ver-
tices. We set p = q−m. An example is shown in Fig. 3 (a) representing, e.g.,

x0 = x0 · sin(x0 · x1); x1 = x0/x1; x0 = cos(x0); x0 = sin(x0); x1 = cos(x1). (2)

A representation as in (1) is obtained easily by mapping the physical memory space
(x0,x1) onto the single-assignment memory space (v−1, . . . ,v7).

The problem faced by all developers of adjoint code compiler technology is to
generate the code such that for a given amount of persistent memory the values re-
quired for a correct evaluation of the adjoints can be recovered efficiently by combi-
nations of storing and recomputing [6, 10, 11]. Load and store costs (both ≥ 0) are
associated with single read and write accesses to the persistent memory, respectively.
Floating-point operations have nontrivial cost > 0. The program’s physical memory
p = (p1, . . . , pµ) is considered to be nonpersistent, i.e. one does not count on any of
the pi holding useful values except right after their computation.

A data-flow reversal is an algorithm that makes the values of the intermediate
variables of a given program run (equivalently, its DAG) available in reverse order.
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Fig. 3. DAG and minimal vertex covers (rectangular nodes) restricted to the intermediate
vertices.
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In [13] we propose a proof for the NP-completeness of the DAG REVERSAL
problem. The argument is based on the assumption that writing to persistent memory
as well as performing a floating-point operation have both unit cost while the load
cost vanishes identically, e.g. due to prefetching. This special case turns out to be
computationally hard. Hence, the general case cannot be easier. However, there are
other special cases for which efficient algorithms do exist [7].

If the size of the available memory is equal to n+ p, then a store-all (last-in-first-
out) strategy recovers the p intermediate values of a DAG in reverse order at optimal
cost n + p (store operations) – a sharp lower bound for the solution of the DAG
REVERSAL problem under the made assumptions. The values of the m results are
assumed to be available at the end of the single function evaluation that is required
in any case. One can now ask for a reversal scheme (assignment of vertices in the
DAG to persistent memory) where the memory consumption is minimized while the
total cost remains equal to n+ p. A formal statement of this FIXED COST DAG RE-
VERSAL (FCDR) problem is given in Sect. 2.1. It turns out that FCDR is equivalent
to VERTEX COVER [5] on the subgraph induced by the intermediate vertices. The
values of the independent vertices need to be stored in any case as there is no way to
recompute them.

Example

Consider the DAG in Fig. 3 (a) for an intuitive illustration of the idea behind the
proof in [13]. A store-all strategy requires a persistent memory of size seven. Alter-
natively, after storing the two independent values the five intermediate values can be
recovered from stored v1 and v3 as in Fig. 3 (b) (similarly v2 and v3 in Fig. 3 (c)).
Known values of v0 and v3 allow us to recompute v4 and v5 at a total cost of two
flops. The value of v2 can be recomputed from v1 at the cost of a single flop making
the overall cost add up to seven. Both {1,3} and {2,3} are minimal vertex covers in
the graph spanned by vertices 1, . . . ,5.

FCDR is not the problem that we are actually interested in. Proving FCDR to
be hard is simply a vehicle for studying the computational complexity of the relevant
DAG REVERSAL (DAGR) problem. It turns out that a given algorithm for DAGR
can be used to solve FCDR. In conclusion DAGR must be at least as hard as FCDR.

2.1 FIXED COST DAG REVERSAL

Given are a DAG G and an integer n≤ K ≤ n+ p. Is there a data-flow reversal with
cost n+ p that uses k ≤ K memory units?

Theorem 1. FCDR is NP-complete.

Proof. The proof is by reduction from VERTEX COVER as described in [13]. �
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2.2 DAG REVERSAL

Given are a DAG G and integers K and C such that n ≤ K ≤ n + p and K ≤ C. Is
there a data-flow reversal that uses at most K memory units and costs c≤C?

Theorem 2. DAGR is NP-complete.

Proof. The idea behind the proof in [13] is the following.
An algorithm for DAGR can be used to solve FCDR as follows: For K = n + p

“store-all” is a solution of DAGR for C = n + p. Now decrease K by one at a time
as long as there is a solution of FCDR for C = n + p. Obviously, the smallest K for
which such a solution exists is the solution of the minimization version of FCDR.
A given solution is trivially verified in polynomial time by counting the number of
flops performed by the respective code. �

3 Call Tree Reversal is NP-Complete

An interprocedural data-flow reversal for a program run (or, equivalently, for its
DAG) is a data-flow reversal that stores only subsets of the inputs or outputs of
certain subroutine calls while recomputing the other values from the stored ones.

A subroutine result checkpointing scheme is an interprocedural data-flow reversal
for the corresponding DAG which recovers all intermediate values in reverse order
by storing only subsets of outputs of certain subroutines and by recomputing the
other values from the stored ones. It can be regarded as a special case of DAGR
where the values that are allowed to be stored are restricted to the results computed
by the performed subroutine calls.

RESULT CHECKPOINTING (RC) Problem:

Given are a DAG G and a call tree T of a program run and integers K and C such
that n ≤ K ≤ n + p and K ≤ C. Is there a subroutine result checkpointing scheme
that uses at most K memory units and that performs c≤C flops?

Theorem 3. RC is NP-complete.

Proof. The proof constructs a bijection between RC and DAGR. Consider an arbi-
trary DAG as in DAGR. Let all intermediate and maximal vertices represent calls
to multivariate scalar functions fi, i = 1, . . . ,q, operating on a global memory space
p∈R

µ . The fi are assumed to encapsulate the ϕi from (1). Hence, the local tapes are
empty since the single output is computed without evaluation of intermediate val-
ues directly from the inputs of fi. Any given instance of DAGR can thus be mapped
uniquely to an instance of RC and vice versa. A solution for DAGR can be obtained
by solving the corresponding RC problem. Therefore RC must be at least as hard as
DAGR. A given solution to RC is trivially verified in polynomial time by counting
the number of flops performed. �



Call Tree Reversal 19

Example

To obtain the graph in Fig. 3 (a) we require seven subroutines operating on a nonper-
sistent global memory of size three and called in sequence by the main program as
shown in Fig. 4. The tapes of all subroutines are empty. Hence, the cost function is
composed of the costs of executing the subroutines for a given set of inputs (unit cost
per subroutine) in addition to the cost of generating the required result checkpoints
(unit cost per checkpoint). The values v1, . . . ,v5 need to be restored in reverse order.
The input values v−1 and v0 are stored in any case.

With a stack of size seven at our disposal a (result-)checkpoint-all strategy solves
the FCDR problem. The same optimal cost can be achieved with a stack of size
four. For example, checkpoint the results of calling f1 and f3 and recompute v5 as
a function of v3 and v0, v4 as a function of v3, and v2 as a function of v1. We note

program main

real p(3)

call f1 ( ) ; call f2 ( ) ; call f3 ( ) ; call f4 ( ) ;
call f5 ( ) ; call f6 ( ) ; call f7 ( ) ;

contains

subroutine f1 ()p subroutine f2 ()
p(3)=p(1)∗p(2) p(3)=sin (p(3))

end subroutine f1 end subroutine f2

subroutine f3 () subroutine f4 ()
p(3)=p(1)∗p(3) p(1)=cos(p(3))

end subroutine f3 end subroutine f4

subroutine f5 () subroutine f6 ()
p(2)=p(3)/p(2) p(1)=sin (p(1))

end subroutine f5 end subroutine f6

subroutine f7 ()
p(2)=cos(p(2))

end subroutine f7

end

1 2 3 4 5 6 7

Fig. 4. Reduction from DAG REVERSAL to RESULT CHECKPOINTING and Call Tree.
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that {1,3} is a vertex cover in the subgraph of G spanned by its intermediate vertices
whereas any single vertex is not.

CALL TREE REVERSAL (CTR) Problem:

Given are a DAG G and a call tree T of a program run and integers K and C such that
n ≤ K ≤ n + p and K ≤C. Is there an interprocedural data-flow reversal for G that
uses at most K memory units and that performs c≤C flops?

Theorem 4. CTR is NP-complete.

Proof. With the reduction used in the proof of Theorem 3 any interprocedural data-
flow reversal is equivalent to a subroutine result checkpointing scheme. All relevant
subroutine arguments are outputs of other subroutines. �

The key prerequisite for the above argument is the relaxation of argument check-
pointing to subsets of the subroutine inputs.

4 Conclusion

NP-completeness proofs for problems that have been targeted with heuristics for
some time can be regarded as late justification for such an approach. The algorithmic
impact should not be overestimated unless the proof technique yields ideas for the
design of new (better) heuristics and/or approximation algorithms. The evaluation of
our paper’s contribution from this perspective is still outstanding. Work on robust and
efficient heuristics, in particular for interprocedural data-flow reversals that involve
result checkpointing, has only just started.

Adjoint codes do not necessarily use the values of the variables in (1) in strictly
reverse order. For example, the adjoint of (2) uses the value of v−1 prior to that of v1.
In order to establish the link between strict data-flow reversal and adjoint codes one
needs to construct numerical programs whose adjoints exhibit a suitable data access
pattern. This is done in [13].

Compiler-based code generation needs to be conservative. It is based on some
sort of call graph possibly resulting in different call trees for varying values of the
program’s inputs. Such call trees do not exists at compile time. The solutions to a
generally undecidable problem yield a computationally hard problem. Developers of
adjoint compiler technology will have to deal with this additional complication.

Acknowledgement. We thank Jan Riehme and two anonymous referees for their helpful com-
ments on the manuscript.
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entiation of Algorithms – From Simulation to Optimization. Springer (2002)

4. Corliss, G., Griewank, A. (eds.): Automatic Differentiation: Theory, Implementation, and
Application, Proceedings Series. SIAM (1991)

5. Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of NP-
completeness. W. H. Freeman and Company (1979)

6. Giering, R., Kaminski, T.: Recomputations in reverse mode AD. In: [3], chap. 33, pp.
283–291 (2001)

7. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in re-
verse automatic differentiation. Optimization Methods and Software 1, 35–54 (1992)

8. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differ-
entiation. SIAM (2000)

9. Griewank, A., Juedes, D., Utke, J.: ADOL–C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Transactions on Mathematical Software 22(2),
131–167 (1996)
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12. Hascoët, L., Pascual, V.: Tapenade 2.1 user’s guide. Technical report 300, INRIA (2004).
URL http://www.inria.fr/rrrt/rt-0300.html

13. Naumann, U.: DAG reversal is NP-complete. J. Discr. Alg. (2008). To appear.
14. Naumann, U., Riehme, J.: A differentiation-enabled Fortran 95 compiler. ACM Transac-

tions on Mathematical Software 31(4), 458–474 (2005)
15. Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., Wunsch,

C.: OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran
codes. ACM Transactions on Mathematical Software 34(4) (2008). To appear.



22 Uwe Naumann

A Reference Code for Result Checkpointing

subroutine f0(x,y)
double precision x,y
call f1(x,y)
y=sin (y)

end subroutine f0

subroutine f1(x,y)
double precision x,y
call f2(x,y)
y=sin (y)

end subroutine f1

subroutine f2(x,y)
double precision x,y
call f3(x,y)
y=sin (y)

end subroutine f2

subroutine f3(x,y)
double precision x,y
call f4(x,y)
y=sin (y)

end subroutine f3

subroutine f4(x,y)
double precision x,y
call f5(x,y)
y=sin (y)

end subroutine f4

subroutine f5(x,y)
double precision x,y
integer i
y=0
do 10 i=1,10000000

y=y+x
10 continue

end subroutine f5

0

1 1

0

1
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Fig. 5. Subroutine result checkpointing scheme for the reference code: Each subroutine is
executed twice (“advance” and “tape (store all)” once, respectively) instead of d + 1 times
where d is the depth in the call tree (starting with zero). Additional persistent memory is
needed to store the results of all subroutine calls. The maximum amount of persistent memory
required by the adjoint code may not be affected as illustrated by the example in Fig. 2.
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Summary. Automatic differentiation (AD) is concerned with the semantics augmentation of
an input program representing a function to form a transformed program that computes the
function’s derivatives. To ensure the correctness of the AD transformed code, particularly for
safety critical applications, we propose using the proof-carrying code paradigm: an AD tool
must provide a machine checkable certificate for an AD generated code, which can be checked
in polynomial time in the size of the certificate by an AD user using a simple and easy to
validate program. Using a WHILE-language, we show how such proofs can be constructed.
In particular, we show that certain code transformations and static analyses used in AD can be
certified using the well-established Hoare logic for program verification.

Keywords: Automatic differentiation, certification, proof-carrying code, Hoare logic

1 Introduction

Automatic Differentiation (AD) [8] is now a standard technology for computing
derivatives of a (vector) function f : R

n → R
m defined by a computer code. Such

derivatives may be used as sensitivities with respect to design parameters, Jacobians
for use in Newton-like iterations or in optimization algorithms, or coefficients for
Taylor series generation. Compared to the numerical finite differencing scheme, AD
is accurate to machine precision and presents opportunities for efficient derivative
computation. There is already a large body of literature on the use of AD in solving
engineering problems. However, the application of AD to large scale applications is
not straightforward for at least the following reasons:

• AD relies on the assumption that the input code is piecewise differentiable.
• Prior to AD, certain language constructs may need be rewritten or the input code

be massaged for the specifics of the AD tool, see for example [13].
• The input code may contain non-differentiable functions, e.g., abs or func-

tions such as sqrt whose derivative values may overflow for very small num-
bers [14].
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In principle, AD preserves the semantics of the input code provided this has not been
altered prior to AD transformation. Given this semi-automatic usage of AD, can we
trust AD for safety-critical applications?

Although the chain rule of calculus and the analyses used in AD are proved cor-
rect, the correctness of the AD generated code is tricky to establish. First, AD may
locally replace some part B of the input code by B′ that is not observationally equiv-
alent to B even though both are semantically equivalent in that particular context.
Second, the input code may not be piecewise differentiable in contrast to the AD
assumption. Finally, AD may use certain common optimizing transformations used
in compiler construction technology and for which formal proofs are not straight-
forward [3, 11]. To ensure trust in the AD process, we propose to shift the burden
of proof from the AD client to the AD producer by using the proof-carrying code
paradigm [12]: an AD software must provide a machine-checkable proof for the cor-
rectness of an AD generated code or a counter-example demonstrating for example
that the input code is not piecewise differentiable; an AD user can check the correct-
ness proof using a simple program that is polynomial in the size of the given proof.
In a more foundational (as opposed to applied) perspective, we show that at least, in
some simple cases, one can establish the correctness of a mechanical AD transforma-
tion and certain static analyses used to that end by using a variant of Hoare logic [10,
Chap. 4]. Besides that, we aim to put forward a viewpoint that distinguishes between
performance and correctness (or safety) aspects of AD transformations; the correct-
ness aspects are yet to be explored in the AD literature.

2 Background and Problem Statement

This section gives a background on automatic differentiation, proof-carrying code
and states the problem of certifying AD transformations.

2.1 Automatic Differentiation

AD is a semantics augmentation framework based on the idea that a source program
S representing f : R

n → R
m,x �→ y can be viewed as a sequence of instructions;

each representing a function φi that has a continuous first derivative. This assumes
the program P is piecewise differentiable and therefore we can conceptually fix the
program’s control flow to view S as a sequence of q assignments. An assignment vi =
φi
(
{v j} j≺i

)
, i = 1, . . . ,q wherein j ≺ i means vi depends on v j, computes the value

of a variable vi in terms of previously defined v j. Thus, S represents a composition
of functions φq ◦ φq−1 ◦ . . . ◦ φ2 ◦ φ1 and can be differentiated using the chain rule.
There are two main AD algorithms both with predictable complexities: the forward
mode and the reverse mode, see [8]. Denoting ẋ an input directional derivative, the
derivative ẏ can be computed by the forward mode AD as follows:

ẏ = f′(x) · ẋ = φ ′q(vq−1) ·φ ′q−1(vq−2) · . . . ·φ ′1
(
x) · ẋ (1)
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Denoting ȳ the adjoint of the output y, the adjoint x̄ of the input x can be computed
by reverse mode AD as follows:

x̄ = f′(x)T · ȳ = φ ′1(x)T ·φ ′2(v1)T · . . . ·φ ′q(vq−1)T · ȳ (2)

The variables x,y are called independents, dependents respectively. A variable that
depends on an independent and that influences a dependent is called active.

The source transformation approach of AD relies on compiler construction tech-
nology. It parses the original code into an abstract syntax tree, as in the front-end of a
compiler, see [1]. Then, the code’s statements that calculate real valued variables are
augmented with additional statements to calculate their derivatives. Data flow anal-
yses can be performed in order to improve the performance of the AD transformed
code, which can be compiled and ran for numerical simulations.

2.2 Validating AD Transformations

By validating a derivative code T from a source code S (T = AD(S)), we mean T
and S have to satisfy the following property p(S,T ):

P(S)⇒ Q(S,T ) (3)

wherein P(S) means S has a well-defined semantics and represents a numerical func-
tion f and Q(S,T ) means T = AD(S) has a well-defined semantics and calculates a
derivative f′(x) · ẋ or ȳ · f′(x). Checking p(S,T ) implies the AD tool must ensure the
function represented by the input code is differentiable prior to differentiation.

Traditionally, AD generated codes are validated using software testing recipes.
The derivative code is run for a wide range of input data. For each run, we test the
consistency of the derivative values using a combination of the following methods:

• Evaluate ẏ = f′(x) · ẋ using the forward mode and x̄ = ȳ · f′(x) using the reverse
mode and check the equality ȳ · ẏ = x̄ · ẋ.
• Evaluate f′(x) ·ei for all vectors ei in the standard basis of R

n using Finite Differ-
encing (FD) and then monitor the difference between the AD and FD derivative
values against the FD’s step size. For the ‘best’ step size, the difference should
be of the order of the square root of the machine relative precision [8].
• Evaluate f′(x) using other AD tools or a hand-coded derivative code, if it is

available, and compare the different derivative values, which should be the same
within a few multiples of the machine precision.

The question is what actions should be taken if at least one of those tests does
not hold. If we overlook the implementation quality of the AD tool, incorrect AD
derivative values may result from a violation of the piecewise differentiability as-
sumption. The AD tool ADIFOR [6] provides an exception handling mechanism al-
lowing the user to locate non-differentiable points at runtime for codes containing
non-differentiable intrinsic functions such as abs or max. However, these intrinsic
functions can be rewritten using branching constructs as performed by the TAPE-
NADE AD tool [9]. To check the correctness of AD codes, one can use a checker,
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a Boolean-valued function check(S,T ) that formally verifies the validating prop-
erty p(S,T ) by statically analysing both codes to establish the following logical
proposition:

check(S,T ) = true ⇒ p(S,T ) (4)

In this approach, the checker itself must be validated. To avoid validating a possibly
large code, we adopt a framework that relies on Necula’s proof-carrying code [12].

2.3 Proof-Carrying Code

Proof-Carrying Code (PCC) is a mechanism that enables a computer system to au-
tomatically ensure that a computer code provided by a foreign agent is safe for in-
stallation and execution. PCC is based on the idea that the complexity of ensuring
code safety can be shifted from the code consumer to the code producer. The code
producer must provide a proof that the code satisfies some safety rules defined by
the code consumer. Safety rules are verification conditions that must hold in order to
guarantee the safety of the code. Verification conditions can be, for example, that the
code cannot access a forbidden memory location, the code is memory-safe or type-
safe, or the code executes within well-specified time or resource usage limits. The
proof of the verification conditions is encoded in a machine readable formalism to
allow automatic checking by the code consumer. The formalism used to express the
proof is usually in the form of logic axioms and typing rules and must be chosen so
that it is tractable to check the correctness of a given proof. In the PCC paradigm, cer-
tification is about generating a formal proof that the code adheres to a well-defined
safety policy and validation consists in checking the generated proof is correct by
using a simple and trusted proof-checker.

3 Unifying PCC and AD Validation

Unifying PCC and AD validation implies that it is the responsibility of the AD pro-
ducer to ensure the correctness of the AD code T from a source S by providing a
proof of the property p(S,T ) in (3) along with the generated code T or a counter-
example (possibly an execution trace leading to a point of the program where the
derivative function represented by T is not well-defined). For a given source code
S, a certifying AD software will return either nothing or a couple (T = AD(S),C)
wherein C is a certificate that should be used along with both codes S and T by the
verifier check in order to establish the property p(S,T ) of (3). In this project, our
intention is to generate C with the help of a verification condition generator (e.g., the
WHY tool, see http://why.lri.fr/) and a theorem prover such as COQ [4].
The correctness proof of the derivative code becomes

check(S,T,C) = true ⇒ p(S,T ). (5)

In this case, the AD user must run the verifier check, which is simply a proof-checker,
a small and easy to certify program that checks whether the generated proof C is cor-
rect. There are variants of the PCC framework. For example, instead of generating an
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entire proof, it may be sufficient for the AD software to generate enough annotations
or hints so that the proof can be constructed cheaply by a specialized theorem prover
at the AD user’s site.

3.1 The Piecewise Differentiability Hypothesis

The Piecewise Differentiability (PD) hypothesis is the AD assumption that the in-
put code is piecewise differentiable. This may be violated even in cases where the
function represented by the input code is differentiable. A classical example is the
identity function y = f (x) = x coded as

if x == 0 then y = 0 else y = x endif.

Applying AD to this code will give f ′(0) = 0 in lieu of f ′(0) = 1. This unfortunate
scenario can happen whenever a control variable in a guard (logical expression) of
an IF construct or a loop is active. These scenarios can be tracked by computing the
intersection between the set V (e) of variables in each guard e and the set A of active
variables in the program. If V (e)∩A = /0 for each guard e in the program, then the
PD hypothesis holds, otherwise the PD hypothesis may be violated, in which case an
AD tool should, at least, issue a warning to the user that an identified construct in the
program may cause non-differentiability of the input program.

3.2 General Setting

Generally speaking, an AD software may have a canonicalization mechanism. That
is, it may silently rewrite certain constructs within the input code prior to differen-
tiation. The transformed input code should be proven semantically equivalent to the
original one so that the AD user can trust the AD generated code. This is even more
necessary for legacy codes for which maintenance is crucial and the cost of main-
taining different versions of the same code is not simply acceptable. In addition to
the PD hypothesis, any prior transformation of the input code must be proven correct
and all extra statements involving derivative calculation must adhere to a safety pol-
icy defined by the AD user. For example, if the input code is memory and type safe,
then the AD generated code must be memory and type safe.

Figure 1 illustrates our PCC framework. An AD user sends a program along with
a configuration file wherein she specifies information about the differentiation pro-
cess (independents, dependents, etc.) and possibly the safety issues she cares about.
The AD server has a well-defined safety policy for generating derivatives. This is
used to generate verification conditions using code analysis. A verification condi-
tion may be the derivative code does not overflow or the input code satisfies the
PD hypothesis. With the help of a theorem prover, the AD server generates a proof
that the derivative code adheres to the safety policy or a counter-example invalidat-
ing a policy line. This is sent to the AD user who has to verify the given proof by
a simple proof-checker before using the AD generated code or simulates the given
counter-example. Observe that the proof generated by the AD tool must be expressed
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Fig. 1. Applying PCC to formally certify AD codes
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in a formalism enabling its checking to be tractable. Leaving aside the practical is-
sues of implementing such a scheme, see http://raw.cs.berkeley.edu/
pcc.html, we look at the theoretical issues of certifying AD transformations.

4 Foundational Certification of AD Transformations

In this section, we use Hoare logic [10, Chap. 4], a foundational formalism for pro-
gram verification, to certify the activity analysis, local code replacements or canoni-
calizations, and the forward mode AD.

4.1 Hoare Logic

Hoare logic is a sound and complete formal system that provides logical rules for
reasoning about the correctness of computer programs. For a given statement s, the
Hoare triple {φ}s{ψ}means the execution of s in a state satisfying the pre-condition
φ will terminate in a state satisfying the post-condition ψ . The conditions φ and ψ
are first order logic formulas called assertions. Hoare proofs are compositional in
the structure of the language in which the program is written. In this work, we con-
sider a WHILE-language composed of assignments, if and while statements and
in which expressions are formed using the basic arithmetic operations (+,-,*,/).
Non-differentiable intrinsic functions can be rewritten using IF constructs. For a
given statement s, if the triple {φ}s{ψ} can be proved in the Hoare calculus, then
the judgement � {φ}s{ψ} is valid.

4.2 A Hoare Logic for Active Variables

The activity analysis of program variables can be justified by the following natural
semantics. States are assignments of values pa or na to variables which we termed
‘active’ or ‘passive’ states. The values pa and na are understood as ‘possibly active’
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Fig. 2. Hoare logic for active variables

{((∃t ∈V (e) | act(t) = pa)∧φ [z/pa]])∨φ [z/na, t/na | t ∈V (e)]} z := e {φ}
asgn

{φ}s1{φ0} {φ0}s2{ψ}
{φ}s1;s2{ψ}

seq
{φ ∧b}s1{ψ} {φ ∧¬b}s2{ψ}
{φ}if b then s1 else s2 {ψ}

i f

{φ ∧b}s{φ}
{φ}while b do s {φ ∧¬b} while

� φ ⇒ φ0 {φ0}s{ψ0} � ψ0⇒ ψ
{φ}s{ψ}

imp

and ‘definitely not active’ respectively. We define a function act such that for any
program variable v, act(v) ∈ {pa, na} represents the activity status of v in its current
state. The evaluation of a statement can be carried out using a pair of states: a pre-
state and a post-state. This semantics allows us to propagate the values pa or na along
all computation paths of the program. A path composed of active states is qualified as
active. The definition of active variable can be interpreted as defining a state to which
there is an active path from an initial active state and from which there is an active
path to a final active state. In case an active post-state can be reached from more
than one pre-state, we compute the MOP (Meet Over all Paths) upper bound as the
union of all active pre-states. This semantics enables us to run the activity analysis
both forwards and backwards. From final active states one can get the corresponding
initial active states and vice-versa. This natural semantics can be expressed using
a more foundational formalism, typically the Hoare logic. The proof rules for our
Hoare calculus are based on classical inference rules in logic. They are essentially
deduction rules wherein the ‘above the line’ is composed of premises and the ‘under
the line’ represents the conclusion, see [10] for more details. Figure 2 shows the proof
rules for the WHILE-language we have considered. The formula φ [z/pa] denotes φ
in which all occurrences of z have been replaced with pa and V (e) represents the set
of variables in the expression e.

The assignment rule (asgn), expresses that if the lhs z is active in a post-state,
then there exists a variable t of the rhs e, which becomes active because it is use-
fully used by the calculation of z. If z is passive in a post-state, then the pre-state is
the same. The sequence rule (seq) tells us that if we have proved {φ}s1{φ0} and
{φ0}s2{ψ}, then we have {φ}s1;s2{ψ}. This rule enables us to compose the proofs
of individual components of a sequence of statements by using intermediate condi-
tions. The if rule augments the pre-condition φ to account for the knowledge that
the test b is true or false. This means the post-condition ψ is the MOP for the activity
analysis from both s1 and s2. The while rule is not straightforward and requires us
to find an invariant φ , which depends on the code fragment s and on the pre- and
post- conditions relative to the set of active variables from the WHILE construct.
A systematic way of discovering non-trivial loop invariants is outlined in [10, p.
280]. The rule Implied (imp) states that if we have proved {φ0}s{ψ0} and that φ
implies φ0 and ψ is implied by ψ0, then we can prove {φ}s{ψ}. This allows us for
example to strengthen a pre-condition by adding more assumptions and to weaken a
post-condition by concluding less than we can. These rules can be composed, hence
allowing us to interactively prove the activity status of program variables.
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Fig. 3. Hoare logic for semantics equivalence

� v1 := e1 ∼ v2 := e2 : φ [v1/e1]∧φ [v2/e2]⇒ φ
asgn

� s1 ∼ c1 : φ ⇒ φ0 � s2 ∼ c2 : φ0⇒ ψ
� s1;s2 ∼ c1;c2 : φ ⇒ ψ

seq

� s1 ∼ c1 : φ ∧ (b1 ∧b2)⇒ ψ � s2 ∼ c2 : φ ∧¬(b1 ∨b2)⇒ ψ
� if b1 then s1 else s2 ∼ if b2 then c1 else c2 : φ ∧ (b1 = b2)⇒ ψ

i f

� s∼ c : φ ∧ (b1 ∧b2)⇒ φ ∧ (b1 = b2)

� while b1 do s ∼ while b2 do c : φ ∧ (b1 = b2)⇒ φ ∧¬(b1 ∨b2)
while

� φ ⇒ φ0 � s∼ c : φ0⇒ ψ0 � ψ0⇒ ψ
� s∼ c : φ ⇒ ψ

imp

4.3 A Hoare Logic for AD Canonicalizations

An AD canonicalization consists in locally replacing a piece of code C1 by a new one
C2 suitable for the AD transformation. One must ensure that C1 ∼C2 meaning C1 and
C2 are semantically equivalent. To this end, we use a variant of Hoare logic called
relational Hoare logic [3]. The inference rules are given in Fig. 3 and are similar
to Benton’s [3]. The judgement � C1 ∼ C2 : φ ⇒ ψ means simply {φ}C1{ψ} ⇒
{φ}C2{ψ}. In the assignment rule (asgn), the lhs variable may be different. Also,
notice that the same conditional branches must be taken (see the if rule) and that
loops be executed the same number of times (see the while rule) on the source and
target to guarantee their semantics equivalence.

4.4 A Hoare Logic for Forward Mode AD

The forward mode AD can be implemented using (1) in order to compute the deriva-
tive ẏ given a directional derivative ẋ. Usually, ẋ is a vector of the standard basis of
R

n. For a given source code S and its transformed T = AD(S) obtained this way, we
aim to establish the property p(S,T ) given in (3) in which P(S) is understood as a
Hoare triple {φ}S{ψ} establishing that S has a well-defined semantics and repre-
sents a function f and Q(S,T ) is understood as a derived triple {φ ′}T{ψ ′} estab-
lishing that T has a well-defined semantics and computes f′(x) · ẋ. Observe that the
pre-conditions and post-conditions have changed from the source code to the trans-
formed code in opposition to the basic rules of Fig. 3. This reflects the fact that AD
augments the semantics of the input code.

The relational Hoare logic rules for the forward mode AD are given in Fig. 4
in which A and V (b) represent the set of active variables of the program and the set
of variables in the expression b respectively. We sometimes gave names to certain
long commands by preceding them with an identifier followed by ’:’. The notation
S �⇒ T means S is transformed into T and the premise V (b)∩A = /0 wherein b is
a guard, ensures the source code is piecewise differentiable. To give an idea of the
proof rules, consider the assignment rule. It states that if in a pre-state, a statement S,
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Fig. 4. Hoare logic for the forward mode AD

� S : z := e(x) �⇒ T : dz := ∑n
i=1

∂e(x)
∂xi
·dxi;z := e(x) : Q(S,T )[z/e(x)]⇒ Q(S,T )

asgn

� S1 �⇒ T1 : P(S1)⇒ Q(S1,T1) � S2 �⇒ T2 : Q(S1,T1)∧P(S2)⇒ Q(S2,T2)

� S : S1;S2 �⇒ T : T1;T2 : P(S)⇒ Q(S,T )
seq

�V (b)∩A = /0 � S1 �⇒ T1 : P(S1)∧b⇒ Q(S1,T1) � S2 �⇒ T2 : P(S2)∧¬b⇒ Q(S2,T2)

� S : if b S1 else S2 �⇒ T : if b then T1 else T2 : P(S)∧ (V (b)∩A = /0)⇒ Q(S,T )
i f

� s �⇒ t : P(s, t)∧b∧ (V (b)∩A = /0)⇒ P(s, t)

� S : while b do s �⇒ T : while b do t : P(S,T )∧ (V (b)∩A = /0)⇒ P(S,T )∧¬b
while

� P⇒ P0 � S �⇒ T : P0(S)⇒ Q0(T ) � Q0⇒ Q

� S �⇒ T : P(S)⇒ Q(S,T )
imp

z := e(x), wherein e(x) is an expression depending on x, is transformed into the
sequence T of the two assignments dz := ∑n

i=1
∂e
∂xi
· dxi ; z := e(x), then we get the

value of the lhs z and its derivative dz = ∂e
∂xi
· ẋ in a post-state. Notice that the guards

in the IF and WHILE constructs are the same on the source and target codes.

5 Related Work

The idea of certifying AD derivatives is relatively new. Araya and Hascoët [2] pro-
posed a method that computes a valid neighborhood for a given directional derivative
by looking at all branching tests and finding a set of constraints that the directional
derivative must satisfy. However, applying this method for every directional deriva-
tive may be very expensive for large codes. Our approach to validation is derived
from work on certifying compiler optimizations and transformation validation for
imperative languages [3, 5, 11]. Our correctness proofs of AD canonicalizations are
similar to Benton’s relational Hoare logic for semantics equivalence between two
pieces of code [3]. Our Hoare logic for active variables is inspired by that of live
variables in [7]. The use of the PCC paradigm [12] in foundational certification is
also investigated in [5, 11]. Our foundational certification of the forward mode AD
is an extension of relational Hoare logic calculus since the assertions for the input
code are augmented for the AD transformed code.

6 Conclusions and Future Work

We have presented an approach to ensuring trust in the AD transformation frame-
work. It is based on the proof-carrying code paradigm: an AD tool must provide a
machine checkable certificate for an AD generated code, which can be checked by
an AD user in polynomial time in the size of the certificate by using a simple and
easy to certify program. We then focused on the foundational aspects of providing
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such a proof. We have shown that the most important data flow analysis performed
by most AD tools (activity analysis), simple code transformations or AD canonical-
izations, and the actual semantics augmentation performed by forward mode AD can
be certified using a Hoare-style calculus. This a first but small step compared to the
work that needs to be done in order to fully certify an AD back-end.

The use of relational Hoare logic in this context has simplified the proof rules.
This formalism has potential and deserves further study. For example, how this can
be used to provide inference rules for the correctness of the rather challenging reverse
mode AD? Our theoretical approach needs be implemented using an AD tool and a
theorem prover for at least the WHILE-language considered in this work. We need
also to find a logical formalism in which to express a certificate so that its checking
is tractable. Examples of such formalisms are investigated in [5, 12].
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ics solver. In: M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.) Auto-
matic Differentiation: Applications, Theory, and Implementations, LNCSE, pp. 309–319.
Springer, Berlin, Germany (2005)

14. Xiao, Y., Xue, M., Martin, W., Gao, J.: Development of an adjoint for a complex at-
mospheric model, the ARPS, using TAF. In: H.M. Bücker, G.F. Corliss, P.D. Hovland,
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Collected Matrix Derivative Results for Forward
and Reverse Mode Algorithmic Differentiation
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Summary. This paper collects together a number of matrix derivative results which are very
useful in forward and reverse mode algorithmic differentiation. It highlights in particular the
remarkable contribution of a 1948 paper by Dwyer and Macphail which derives the linear
and adjoint sensitivities of a matrix product, inverse and determinant, and a number of related
results motivated by applications in multivariate analysis in statistics.

Keywords: Forward mode, reverse mode, numerical linear algebra

1 Introduction

As the title suggests, there are no new theoretical results in this paper. Instead, it is a
collection of results on derivatives of matrix functions, expressed in a form suitable
for both forward and reverse mode algorithmic differentiation (AD) [8] of basic op-
erations in numerical linear algebra. All results are derived from first principles, and
it is hoped this will be a useful reference for the AD community.

The paper is organised in two sections. The first covers the sensitivity analysis for
matrix product, inverse and determinant, and other associated results. Remarkably,
most of these results were first derived, although presented in a slightly different
form, in a 1948 paper by Dwyer and Macphail [4]. Comments in a paper by Dwyer
in 1967 [3] suggest that the “Dwyer/Macphail calculus” was not widely used in the
intervening period, but thereafter it has been used extensively within statistics, ap-
pearing in a number of books [11, 14, 15, 17] from the 1970’s onwards. For a more
extensive bibliography, see the notes at the end of Sect. 1.1 in [12].

The second section discusses Maximum Likelihood Estimation which was one of
the motivating applications for Dwyer’s work, and also comments on how the form
of the results in Dwyer and Macphail’s paper relates to the AD notation used in this
paper.

An expanded version of this paper [6] also contains material on the sensitivity
of eigenvalues and eigenvectors, singular values and singular vectors, and associated
results for matrix norms.
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2 Matrix Product, Inverse and Determinant

2.1 Preliminaries

We consider a computation which begins with a single scalar input variable SI and
eventually, through a sequence of calculations, computes a single scalar output SO.
Using standard AD terminology, if A is a matrix which is an intermediate variable
within the computation, then Ȧ denotes the derivative of A with respect to SI , while
A (which has the same dimensions as A, as does Ȧ) denotes the derivative of SO with
respect to each of the elements of A.

Forward mode AD starts at the beginning and differentiates each step of the com-
putation. Given an intermediate step of the form

C = f (A,B)

then differential calculus expresses infinitesimal perturbations to this as

dC =
∂ f
∂A

dA+
∂ f
∂B

dB. (1)

Taking the infinitesimal perturbations to be due to a perturbation in the input variable
SI gives

Ċ =
∂ f
∂A

Ȧ+
∂ f
∂B

Ḃ.

This defines the process of forward mode AD, in which each computational step is
differentiated to determine the sensitivity of the output to changes in SI .

Reverse mode AD computes sensitivities by starting at the end of the original
computation and working backwards. By definition,

dSO =∑
i, j

Ci, j dCi, j = Tr(CT dC),

where Tr(A) is the trace operator which sums the diagonal elements of a square
matrix. Inserting (1) gives

dSO = Tr
(

CT ∂ f
∂A

dA
)

+Tr
(

CT ∂ f
∂B

dB
)

.

Assuming A and B are not used in other intermediate computations, this gives

A =
(
∂ f
∂A

)T

C, B =
(
∂ f
∂B

)T

C.

This defines the process of reverse mode AD, working backwards through the se-
quence of computational steps originally used to compute SO from SI . The key there-
fore is the identity

Tr(CT dC) = Tr(AT dA)+Tr(BT dB). (2)
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To express things in this desired form, the following identities will be useful:

Tr(AT ) = Tr(A),
Tr(A+B) = Tr(A)+Tr(B),

Tr(AB) = Tr(BA).

In considering different operations f (A,B), in each case we first determine the
differential identity (1) which immediately gives the forward mode sensitivity, and
then manipulate it into the adjoint form (2) to obtain the reverse mode sensitivities.
This is precisely the approach used by Minka [13] (based on Magnus and Neudecker
[11]) even though his results are not expressed in AD notation, and the reverse mode
sensitivities appear to be an end in themselves, rather than a building block within an
algorithmic differentiation of a much larger algorithm.

2.2 Elementary Results

Addition

If C = A+B then obviously
dC = dA+dB

and hence in forward mode
Ċ = Ȧ+ Ḃ.

Also,
Tr(CT dC) = Tr(CT dA)+Tr(CT dB)

and therefore in reverse mode

A = C, B = C.

Multiplication

If C = AB then
dC = dA B+A dB

and hence in forward mode
Ċ = ȦB+AḂ.

Also,

Tr(CT dC) = Tr(CTdAB)+Tr(CTAdB) = Tr(BCTdA)+Tr(CTAdB),

and therefore in reverse mode

A = C BT , B = AT C.
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Inverse

If C = A−1 then

C A = I =⇒ dC A+C dA = 0 =⇒ dC =−C dA C.

Hence in forward mode we have

Ċ =−C ȦC.

Also,
Tr(CT dC) = Tr(−CT A−1dAA−1) = Tr(−A−1CT A−1dA)

and so in reverse mode

A =−A−T CA−T =−CT CCT .

Determinant

If we define Ã to be the matrix of co-factors of A, then

detA =∑
j

Ai, jÃi, j, A−1 = (detA)−1ÃT .

for any fixed choice of i. If C = detA, it follows that

∂C
∂Ai, j

= Ãi, j =⇒ dC = ∑
i, j

Ãi, j dAi, j = C Tr(A−1dA).

Hence, in forward mode we have

Ċ = C Tr(A−1Ȧ),

while in reverse mode C and C are both scalars and so we have

C dC = Tr(CC A−1dA)

and therefore
A = CC A−T .

Note: in a paper in 1994 [10], Kubota states that the result for the determinant is
well known, and explains how reverse mode differentiation can therefore be used to
compute the matrix inverse.

2.3 Additional Results

Other results can be obtained from combinations of the elementary results.
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Matrix Inverse Product

If C = A−1B then

dC = dA−1 B+A−1 dB =−A−1dAA−1B+A−1 dB = A−1(dB−dAC),

and hence
Ċ = A−1(Ḃ− ȦC),

and

Tr(CT dC) = Tr(CT A−1dB)−Tr(CT A−1dAC)

= Tr(CT A−1dB)−Tr(CCT A−1dA)

=⇒ B = A−T C, A =−A−T CCT =−BCT .

First Quadratic Form

If C = BT AB, then
dC = dBT AB+BT dAB+BT AdB.

and hence
Ċ = ḂT AB+BT ȦB+BT AḂ,

and

Tr(CT dC) = Tr(CT dBT AB)+Tr(CT BT dAB)+Tr(CT BT AdB)

= Tr(CBT AT dB)+Tr(BCT BT dA)+Tr(CT BT AdB)

=⇒ A = BC BT , B = ABCT +AT BC.

Second Quadratic Form

If C = BT A−1B, then similarly one gets

Ċ = ḂT A−1B−BT A−1ȦA−1B+BT A−1Ḃ,

and
A =−A−T BC BT A−T , B = A−1BCT +A−T BC.

Matrix Polynomial

Suppose C = p(A), where A is a square matrix and p(A) is the polynomial

p(A) =
N

∑
n=0

anAn.
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Pseudo-code for the evaluation of C is as follows:

C := aNI

for n from N−1 to 0
C := AC +anI

end

where I is the identity matrix with the same dimensions as A.
Using standard forward mode AD with the matrix product results gives the cor-

responding pseudo-code to compute Ċ:

Ċ := 0
C := aNI

for n from N−1 to 0
Ċ := ȦC +AĊ
C := AC +anI

end

Similarly, the reverse mode pseudo-code to compute A is:

CN := aNI

for n from N−1 to 0
Cn := ACn+1 +anI

end

A := 0

for n from 0 to N−1
A := A+CCT

n+1
C := AT C

end

Note the need in the above code to store the different intermediate values of C in the
forward pass so that they can be used in the reverse pass.

Matrix Exponential

In MATLAB, the matrix exponential

exp(A)≡
∞

∑
n=0

1
n!

An,

is approximated through a scaling and squaring method as

exp(A)≈
(

p1(A)−1 p2(A)
)m

,
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where m is a power of 2, and p1 and p2 are polynomials such that p2(x)/p1(x) is a
Padé approximation to exp(x/m) [9]. The forward and reverse mode sensitivities of
this approximation can be obtained by combining the earlier results for the matrix
inverse product and polynomial.

3 MLE and the Dwyer/Macphail Paper

A d-dimensional multivariate Normal distribution with mean vector µ and covari-
ance matrix Σ has the joint probability density function

p(x) =
1√

detΣ (2π)d/2
exp

(
− 1

2 (x−µ)T Σ−1(x−µ)
)

.

Given a set of N data points xn, their joint probability density function is

P =
N

∏
n=1

p(xn).

Maximum Likelihood Estimation infers the values of µ and Σ from the data by
choosing the values which maximise P. Since

logP =
N

∑
n=1

{
− 1

2 log(detΣ)− 1
2 d log(2π)− 1

2 (xn−µ)TΣ−1(xn−µ)
}

,

the derivatives with respect to µ and Σ are

∂ logP
∂µ

=−
N

∑
n=1
Σ−1(xn−µ),

and
∂ logP
∂Σ

=− 1
2

N

∑
n=1

{
Σ−1−Σ−1(xn−µ)(xn−µ)TΣ−1

}
.

Equating these to zero gives the maximum likelihood estimates

µ = N−1
N

∑
n=1

xn,

and

Σ = N−1
N

∑
n=1

(xn−µ)(xn−µ)T .

Although this example was not included in Dwyer and Macphail’s original paper
[4], it is included in Dwyer’s later paper [3]. It is a similar application concerning the
Likelihood Ratio Method in computational finance [7] which motivated the present
author’s investigation into this subject.
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Returning to Dwyer and Macphail’s original paper [4], it is interesting to note
the notation they used to express their results, and the correspondence to the results
presented in this paper. Using 〈·〉i, j to denote the (i, j)th element of a matrix, and
defining Ji, j and Ki, j to be matrices which are zero apart from a unit value for the
(i, j)th element, then their equivalent of the equations for the matrix inverse are

∂A−1

∂ 〈A〉i, j
= −A−1 Ji, j A−1,

∂ 〈A−1〉i, j

∂A
= −A−T Ki, j A−T .

In the forward mode, defining the input scalar to be SI =Ai, j for a particular choice
(i, j) gives Ȧ=Ji, j and hence, in our notation with B=A−1,

Ḃ =−A−1ȦA−1.

Similarly, in reverse mode, defining the output scalar to be SO =(A−1)i, j for a partic-
ular choice (i, j) gives B=Ki, j and so

A =−A−T BA−T ,

again matching the result derived previously.

4 Validation

All results in this paper have been validated with a MATLAB code which performs
two checks.

The first check uses a wonderfully simple technique based on the Taylor series
expansion of an analytic function of a complex variable [16]. If f (x) is analytic with
respect to each component of x, and y= f (x) is real when x is real, then

ẏ = lim
ε→0

I {ε−1 f (x+iε ẋ)}.

Taking ε = 10−20 this is used to check the forward mode derivatives to machine
accuracy. Note that this is similar to the use of finite differences, but without roundoff
inaccuracy.

The requirement that f (x) be analytic can require some creativity in applying the
check. For example, the singular values of a complex matrix are always real, and so
they cannot be an analytic function of the input matrix. However, for real matrices,
the singular values are equal to the square root of the eigenvalues of AT A, and these
eigenvalues are an analytic function of A.

The second check is that when inputs A,B lead to an output C, then the identity

Tr(CTĊ) = Tr(AT Ȧ)+Tr(BT Ḃ),

should be satisfied for all Ȧ, Ḃ and C. This check is performed with randomly chosen
values for these matrices.

The MATLAB code for these validation checks is contained in an appendix of
the extended version of this paper [6] and is available on request.
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5 Conclusions

This paper has reviewed a number of matrix derivative results in numerical linear
algebra. These are useful in applying both forward and reverse mode algorithmic
differentiation at a higher level than the usual binary instruction level considered
by most AD tools. As well as being helpful for applications which use numerical
libraries to perform certain computationally intensive tasks, such as solving a system
of simultaneous equations, it could be particularly relevant to those programming in
MATLAB or developing AD tools for MATLAB [1, 2, 5, 18].
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Summary. Numerical inversion of the Laplace transform on the real axis is an inverse and
ill-posed problem. We describe a powerful modification of Weeks’ Method, based on auto-
matic differentiation, to be used in the real inversion. We show that the automatic differenti-
ation technique assures accurate and efficient numerical computation of the inverse Laplace
function.

Keywords: Automatic differentiation, Laguerre expansion, numerical Laplace inversion

1 Introduction

Automatic differentiation (AD) is having a deep impact in many areas of science
and engineering. AD plays an important role in a variety of scientific applications
including meteorology, solution of nonlinear systems and inverse problems. Here
we are dealing with the Laplace transform inversion (Lti) in the real case. Given a
Laplace transform function F(z):

F(z) =
∫ ∞

0
e−zt f (t)dt, z = Re(z) > σ0, (1)

where σ0 is the abscissa of convergence of Laplace transform, we focus on the de-
sign of algorithms which obtain f (t), at a given selection of values of t under the
hypothesis that F(z) is only computable on the real axis.

We consider Weeks’ Method, introduced in [10] and developed as numerical
software in [3] for complex inversion, i.e. when F is known on the complex plane.
The inverse function f (t) is obtained as a Laguerre expansion:

f (t) = eσt
∞

∑
k=0

cke−btLk(2bt), ck =
Φ (k)(0)

k!
(2)
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where Lk(2bt) is the Laguerre polynomial of degree k, σ > σ0 and b are parameters.
The ck values are McLaurin’s coefficients of the function Φ obtained from F . The
success or failure of such an algorithm depends on the accuracy of the approximated
coefficients ck (discretization error) and on the number of terms in (2) (truncation
error). In [3, 10] the ck are computed by considering the Cauchy integral representa-
tion of the derivative:

ck =
∫

C

1
zk+1Φ(z)dz

where C is any contour in the complex plane which includes the origin and does not
include any singularities of Φ . For instance, it is a circular contour centered at the
radius origin r.

This representation is not feasible in both cases if the Laplace Transform is only
known on real axis, and in many applicative domains, such as the Nuclear Magnetic
Resonance (NMR), where experimentally preassigned real values are determined. In
[5], the authors suggested the computation of ck using the finite difference schemes
for approximating the derivatives. Unfortunately, as the authors state, the instability
of high order finite difference schemes puts strong limitations on the maximal at-
tainable accuracy of the computed solution. Moreover, in [2], the authors proposed
a collocation method (C-method) for computing the ck based on the solution of a
Vandermonde linear system by using the Bjorck Pereira algorithm.

In all cases, the numerical performance of (2) depends on the choice of suitable
values of σ and b. In particular, regarding the parameter σ ,

1. if σ −σ0 is “too small” (i.e. near to zero) a lot of terms of the Laguerre ex-
pansion is needed (slow convergence of (2)). In this case, the truncation error
predominates.

2. σ −σ0 is “too large” (i.e. much greater than 1) we can not compute an accurate
numerical solution because of the exponential factor eσt in the series expansion
(2) that amplifies the errors occurring on the ck coefficients computation. In this
case, the roundoff errors predominate.

3. The choice of σ is also related to the t value. Indeed, because of the exponential
growth factor eσt in (2), the accuracy of f (t) degrades as t grows. To address
this problem, numerical methods for Lti measure the accuracy in terms of the
so-called pseudoaccuracy, that provides a uniform accuracy scaled considering
eσt :

εpseudo(t) =
| f (t)− f̃N(t)|

eσt .

4. Regarding the parameter b, in [4] the connection between σ and b is investigated
and their choices is also discussed. In particular, if z j is a singularity of F(z)
nearest to σ0 it holds that:

b
2
≥ min
σ>σ0

|σ − z j| (3)

In [11] two Matlab codes are derived to find σ and b. In [3], a choice of σ and b
is given based on experimental considerations.
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In this paper we propose a direct computation of ck by using forward AD and we
show that AD assures significant advantages in terms of accuracy and efficiency.
Computation of each value cN is accurate up to the maximal relative accuracy and its
precision scales as N2. As a consequence, the discretization error becomes negligible
and we can relate the choice of the parameter σ (therefore of b) essentially to the t
value without degrading the final accuracy. We feel that this approach seems to be
a good candidate to lead to an effective numerical software for Laplace inversion in
the real case.

The paper is organized as follows: in Sect. 2 we give some preliminaries; in
Sect. 3 we discuss remarks on AD and finally numerical experiments are provided in
Sect. 4, where comparisons are reported.

2 Preliminaries

Here we give same basic definitions.

Definition 1. Let γ > 0 be an integer number. The space Sγ is the set of all functions
whose analytical continuation, H(z), can be assumed in the form:

H(z) = z−γG(z), (4)

where G is analytic at infinity.

In the following, we assume F(z)∈ S1. Let σ > σ0 and b > 0 be fixed. We define the
operatorΨ onto S1 such as:

Ψ : h ∈ S1→Ψ [h(z)] =
2 ·b
1− z

h
(

2 ·b
1− z

+σ −b
)
∈ S1,

and, by applyingΨ to F it follows:

Ψ [F(z)] =
2 ·b
1− z

F
(

2 ·b
1− z

+σ −b
)

=Φ(z). (5)

To characterize the errors introduced by the computational approach we recall some
basics definitions.

Definition 2. The truncation error is defined as follows:

εtrunc(t,σ ,b,N) = eσt
∞

∑
k=N

e−btckLk(2bt)

The truncation error occurs substituting the infinite series in (2) by the finite sum
consisting of the first N terms.

Definition 3. Let ℑ be a finite arithmetic system with u as maximum relative accu-
racy. The roundoff error on fN(t) is defined as:

εcond(t,σ ,b,N) = fN(t)− f̃N(t)

where f̃N(t) = eσt∑N
k=0 e−bt c̃kLk(2bt) where c̃k are the approximated coefficients.
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Table 1. AD-based scheme for Lti.

:: step 1: computation of the coefficients ck by using AD

:: step 2: evaluation of the function fN(t) = eσ t ∑N
k=0 cke−btLk(2bt).

Definition 4. Let ℑ be a finite arithmetic system with u as maximum relative accu-
racy. The discretization error on fN(t) is defined as:

εdisc(σ ,b,N) = |cN− c̃N |

where c̃k are the coefficients obtained in ℑ.

Observe that, for the choices (1)–(4) in Sect. 1, the parameter σ influences both
εtrunc and εcond . The best suitable value of σ should balance these two quantities.
We propose the computation of the McLaurin coefficients using AD. Our approach
is sketched in Table 1. By following [2, 10], we refer to the pseudoaccuracy defined
as follows:

εpseudo(t) =
| f (t)− f̃N(t)|

eσt

and, by using the same arguments as in [10], it is

εpseudo(t) =
| f (t)− f̃N(t)|

eσt ≤ ||T ||+ ||R||

where ||T ||=
√
∑∞k=N |ck|2, ||R||= η(u)

√
∑N

k=0 |ck|2, and η(u) depends on the max-
imum relative accuracy u. Therefore, it follows that:

AbsErr(t) = | f (t)− f̃N(t)|= eσtεpseudo(t)≤ eσt(||T ||+ ||R||) = AbsErrEst(t).

In [2] the upper bound of ||T || ≤ K(r)
rN(r−1) was given, K(r) depending on Φ and on

the radius of convergence of the MacLaurin series expansion. In Sect. 4 we provide
a computable estimate of ||T ||.

3 Remarks on Automatic Differentiation

The computation of Taylor series using AD is a well known technique and many
different software tools are available [6]. In Sect. 4 we use the software TADIFF [1].

To state both, the reliability and the efficiency of AD we analyze the performance
of the approach in terms of the discretization error εdisc and its computational cost.
To achieve this aim, for computing the ck using the derivatives ofΦ , we first follow a
straightforward approach based on a variant of Horner’s method. The error analysis
shows that this approach returns satisfying accuracy on the computed coefficients.
Then, we experimentally verify that the error estimate still holds using TADIFF.
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Table 2. Horner’s method for evaluating the polynomial T (z) of degree n at z = z0. The ai i =
0, ...n are the coefficients of T . The derivate S is computed simultaneously.

1. T = an S = 0
2. S = T + z0 ∗S n−1≥ i≥ 0
3. T = ai + z0 ∗T n−1≥ i≥ 0
4. The value of T (z0) is T
5. The value of T ′(z0) is S

We assume that Φ(z) is a rational polynomial of the following type3:

Φ(z) =
P(z)
Q(z)

(6)

where the numerator is a p-degree and the denominator is a q-degree polynomial
and assume p < q. In Table 2 we show a variant of Horner’s method used in the
evaluation trace, which is the hand-coded implementation developed to evaluate Φ
and its derivatives.

Theorem 1. For each function F(z) ∈ S1 we can determine the algorithm for the
evaluation trace of Φ(0) based on the algorithms as described in Table 2, see [6].

Remark 1. c0 = Φ(0). If c0 is computed in a finite arithmetic system ℑ where u is
the relative maximum accuracy then, by applying the Forward Error Analysis (FEA)
to the algorithm described in Table 2, we have that:

c̃0 = c0 +µ (7)

where µ = (2q+1+ p)2δ0 and δ0| ≤ u. From (7), it follows that c0 can be computed
within the relative maximum accuracy.

Remark 2. The cN are the MacLaurin coefficients of Φ(z). In our case the N − th
derivative of Φ(z) is a rational polynomial too. In order to derive the error estimate
on cN we use the FEA too, and we have:

c̃1 = c1 +2µ

c̃2 = c2 +3µ
c̃3 = c3 +6µ

c̃N = cN +1µ+2µ+ ...+Nµ = O(N2)µ (8)

From (8) it follows:

|c̃N− cN | ≤ N2(2q+1+ p)2u (9)

The round-off error on cN is bounded below by a quantity which is proportional to
the maximum relative accuracy, and it scales as N2. This result is quite useful both
in terms of discretization error estimate and of its computational cost.

3 This assumption is not restrictive because any function F(z) ∈ S1 behaves like a rational
polynomial as |z| → ∞.
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Example 1. Let F(z) = z−1
(z2+1)2 , σ = 0.7, b = 1.7, N = 40, u = 2.22×10−16. By using

TADIFF, we get:
c̃N =−2.11246×10−9

Let
cN =−2.00604215234895×109

be the value obtained using symbolic derivation of Φ . Then:

|c̃N − cN |= 5.65×10−11

and
N2(2q+1+ p)2u = 402(2+1+4)2 ·u = 1.74×10−11

This means that the upper bound given in (9) also provides a reliable estimate of the
error introduced on cN obtained using TADIFF.

Remark 3. Observe that the number of terms used in the series expansion (2) is small
(say N ≤ 70/75). Indeed, as N → ∞, cN → 0, and as soon as the computed value
of cN+1 becomes numerically zero (i.e. less than the maximum relative accuracy
times cN), the Laguerre series expansion should be truncated at that value of N. For
instance, regarding the function F introduced in example 1, we get:

c70 = 4.48×10−17

and N = 70 should be considered a reliable value of N. This result implies that the
factor N2 in (9) scales the maximum relative accuracy of two orders of magnitude at
most and that the computation of the coefficients cN is not time consuming.

We conclude that, by using TADIFF the discretization error becomes negligible,
therefore, we mainly refer to the truncation error and to the condition error.

4 Numerical Experiments

In this section we describe numerical simulations carried out using the software
TADIFF for computing the coefficients ck. Moreover, we use the following upper
bound of the absolute error AbsErr(t):

AbsErrEst(t)≤ eσt

{√
M

∑
k=N
|ck|2 +u

√
N

∑
k=0
|ck|2

}

= CompAbsErr(t)

where M = 2N and u = 2.22×10−16. Experiments are carried out using the double
precision on a Pentium IV 2.8 GHz, with Linux Kernel 2.622-14-386 and gcc 4.1.3
compiler.
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4.1 Simulation 1

We consider the following functions:

F1(z) =
z

(z2 +1)2 f1(t) = cos(2t), σ0 = 0.

In Table 3 we compare AbsErr and CompAbsErr at different values of t and using
σ = 0.7 (then b = 1.7), on the left, and σ = 2.5 (then b = 5) on the right. The value
of N has been fixed at 20. Note that for small σ the accuracy on the computed fN(t)
ranges between four correct digits, at t = 1, and two correct digits, at t = 9. Because
σ is relatively small, the low accuracy is essentially due to the slow convergence of
the series expansion. In other words, the truncation error predominates. Conversely,
when choosing σ = 2.5, the accuracy is higher at t = 1,1.5,2... than before, while it
strongly degrades at t = 7,9. Although the series expansion converges more rapidly
than at σ = 0.7, in this case, due to the higher value of σ , the exponential factor
strongly degrades the final accuracy and the condition error predominates, especially
as t grows. This experiment suggests that, once N is given (therefore, the truncation
error is fixed), the value of σ should change depending on t: it should be large for
small t and small for large t, in order to control the error amplification by keeping
the exponential factor eσt constant. We are working on the dynamic selection of σ
at run time. In Figs. 1, 2 and in Table 4 we compare the AD-based computation
with the C-method described in [2], in terms of the maximum absolute error on
[0,7]. As before, we consider σ = 3 and σ = 0.7, while N = 28 and N = 50. The
numerical results confirm the better accuracy obtained using AD than using the C-
method, where the coefficients are obtained by solving a Vandermonde linear system.
The different accuracy is mainly due to the amplification of the discretization error
introduced by these two methods.

4.2 Simulation 2

We compare the proposed approach with the following numerical codes:

• InvertLT.m: implementation (developed in C++ and Matlab) of the method
proposed in [7], based on the quadrature of the Mellin transform operator.
InvertLT.m is a DLL (Windows operating system only) that can be used
within Matlab package.

• gavsteh.m[8]: implementation of the Gaver-Stehfest algorithm proposed
in [9].

Table 3. Simulation 1: error estimates at N = 20.

σ = 0.7, b = 1.7 AbsErr CompAbsErr

t = 1 3.5×10−5 1.7×10−4

t = 1.5 3.2×10−5 2.5×10−4

t = 2 4.5×10−5 3.6×10−4

t = 7 1.2×10−3 1.9×10−2

t = 9 7.2×10−3 4.8×10−2

σ = 2.5, b = 5 AbsErr CompAbsErr

t = 1 3.5×10−8 1.7×10−7

t = 1.5 3.3×10−7 2.3×10−7

t = 2 4.5×10−6 3.6×10−5

t = 7 5.2×100 7.9×100

t = 9 2.2×100 1.8×101
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Fig. 1. top: N = 28,σ = 3,b = 6; bottom: N = 50,σ = 0.7,b = 1.4.

We choose these two software because, to our knowledge, they are the only
ready-to-use software available. As a first test we consider the following functions:

F2(z) =
1

(z+1)2 , f2(t) = texp(−t), σ0 = 0,

and we compare the AD-Method (σ = 2, b = 4) with the other two in terms of the
absolute error and of the execution time. Results are shown in Fig. 2 and Table 5.

As a second test, we consider the following functions:

F3(z) =
z

(z2 +1)2 , f3(t) =
tsin(t)

2
, σ0 = 0,

and we compare the AD-method (σ = 3, b = 6) with the other two in terms of the ab-
solute error and the execution time. Results are shown in Fig. 2 and Table 5. We note
the ability of the proposed scheme to obtain accurate and efficient solutions. A dif-
ferent choice of parameters could potentially achieve better results in [7] and [9].
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Fig. 2. top: Comparative results on f2; bottom: Comparative results on f3.

Table 4. Simulation 1: maximum absolute error in [0,7].

Max Abserr C-Method Max Abserr AD-Method

N = 28,σ = 3,b = 6 0.84 0.9×10−4

N = 50,σ = 0.7,b = 1.4 0.9×10−2 2.1×10−6

Table 5. left: Comparative results on f2; right: Comparative results on f3.

Abserr Execution time

InvertLT 0.1×10−1 4.98 sec

Gavsteh 0.3×100 2.3 sec
AD-Method 0.2×10−5 0.7 sec

Abserr Execution time

InvertLT 2.6×10−2 6.7 sec

Gavsteh 0.1×10−5 1.8 sec
AD-Method 0.2×10−6 0.8 sec
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5 Conclusions

We use AD for computing the McLaurin coefficients in a numerical algorithm for
Laplace transform real inversion. Results confirm the advantages in terms of accu-
racy and efficiency provided by AD, encouraging the authors to investigate toward
the development of a numerical software to be used in applications.
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Summary. This manuscript introduces a new approach for increasing the efficiency of auto-
matic differentiation (AD) computations for estimating the first order derivatives comprising
the Jacobian matrix of a complex large-scale computational model. The objective is to approx-
imate the entire Jacobian matrix with minimized computational and storage resources. This is
achieved by finding low rank approximations to a Jacobian matrix via the Efficient Subspace
Method (ESM). Low rank Jacobian matrices arise in many of today’s important scientific and
engineering problems, e.g. nuclear reactor calculations, weather climate modeling, geophysi-
cal applications, etc. A low rank approximation replaces the original Jacobian matrix J (whose
size is dictated by the size of the input and output data streams) with matrices of much smaller
dimensions (determined by the numerical rank of the Jacobian matrix). This process reveals
the rank of the Jacobian matrix and can be obtained by ESM via a series of r randomized
matrix-vector products of the form: Jq, and JTω which can be evaluated by the AD forward
and reverse modes, respectively.

Keywords: Forward mode, reverse mode, efficient subspace method, low rank

1 Introduction

AD has arisen as a powerful tool that can potentially meet the need for efficient and
accurate evaluation of sensitivity information, i.e. derivatives, for complex engineer-
ing models. Derivative information is required for a wide range of engineering and
research-oriented tasks, e.g. design optimization, code-based uncertainty propaga-
tion, and data assimilation.

The functionality of AD depends to a large extent on the complexity of the engi-
neering model to be differentiated. With the startling growth in computer power, and
the implementation of efficient computer algorithms, the application of AD to real-
istic engineering models has been made feasible [5, 9]. In many of today’s complex
engineering systems, e.g. modeling of nuclear phenomena, weather climate mod-
eling, however, it is safe to say that most of the associated computational models,



56 H. Abdel-Khalik, P. Hovland, A. Lyons, T. Stover, and J. Utke

either deterministic and/or probabilistic, operate at the limit of the computing capac-
ity of the state-of-the-art computing resources. Therefore, it is paramount to increase
the efficiency of AD algorithms to a level that enables their application to complex
large-scale engineering models.

The efficiency of AD can be increased depending on the type of the problem,
and the sparsity pattern of the Jacobian matrix. For example, if the number of in-
put data is relatively small, and number of output data is large, the forward mode
of differentiation presents the most efficient way with regard to computational time
and storage burdens. Conversely, the reverse mode of differentiation suits problems
with many input data and few output data. If the Jacobian matrix is sparse, one can
propagate sparse derivative vectors [4] or compress the Jacobian using coloring tech-
niques [3, 7].

This manuscript addresses the need for a general approach when both the num-
bers of input and output data are too large to render either the forward and/or the
reverse modes computationally feasible, and when the Jacobian matrix is generally
dense. Proposed is a new approach that utilizes the Efficient Subspace Method (ESM)
to address these situations [2]. The sole requirement for this approach is that the
Jacobian matrix be ill-conditioned, which is generally considered an unfavorable sit-
uation. ESM exploits the ill-conditioning of the Jacobian matrix to reduce the num-
ber of runs of the forward and reverse modes to a minimum. We will show that the
number of runs is proportional to the numerical rank of the Jacobian matrix which
is determined as part of the analysis. In this approach, the Jacobian matrix of the
engineering model with m output data and n input data is approximated by matrices
of lower dimensions by means of matrix revealing decompositions. These decom-
positions are obtained by ESM via a series of randomized matrix-vector products of
the form: Jq, and JTω , where r is the numerical rank of the Jacobian matrix J. Note
that the size of the Jacobian matrix is dictated by the size of the input and output
data streams, however the sizes of the smaller matrices characterizing the low rank
decomposition are determined by the numerical rank of the Jacobian matrix, which
is found to be related to the modeling strategy, physics of the engineering system,
and the degree of correlation amongst the input data, which can be quite significant.
This follows, since for many important engineering applications, the input data to a
computational model are the output from other preprocessor codes.

Earlier work by the first author has demonstrated that for typical nuclear reac-
tor models, the numerical rank is many orders of magnitude smaller than the size
of the input and output data streams, i.e. r� m,n [8], and can be estimated effec-
tively via ESM (for typical nuclear reactor core simulation: n ≈ 106, m ≈ 105, and
r≈ 102). This large rank reduction is a result of the so-called multi-scale phenomena
modeling (MSP) strategy on which nuclear reactor calculations are based. Nuclear
calculations are but an example of the application of MSP to engineering systems
that involve large variations in both time and length scales. In fact, many of today’s
important engineering and physical phenomena are modeled via MSP, e.g. weather
forecast, geophysics, materials simulation. To accurately model the large time and
scale variations, MSP utilizes a series of models varying in complexity and dimen-
sionality. First, high resolution (HR) microscopic models are employed to capture
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the basic physics and the short scales that govern system behavior. The HR models
are then coupled with low resolution (LR) macroscopic models to directly calculate
the macroscopic system behavior, which is often of interest to system designers, op-
erators, and experimentalists. The coupling between the different models results in a
gradual reduction in problem dimensionality thus creating large degrees of correla-
tions between different data in the input and output (I/O) data streams. ESM exploits
this situation by treating the I/O data in a collective manner in search of the indepen-
dent pieces of information. The term ‘Degree of Freedom’ (DOF), adopted in many
other engineering fields, is used to denote an independent piece of information in
the I/O stream. An active DOF denotes a DOF that is transferred from a higher to a
lower resolution model, and an inactive DOF denotes a DOF that is thrown out. ESM
replaces the original I/O data streams by their corresponding active DOFs. The num-
ber of active DOFs can be related to the numerical rank of the Jacobian matrix. The
reader is referred to a previous publication for a full treatment of ESM theory [2].

2 Methodology

Let the engineering model of interest be described by a vector valued function:

y =Θ(x) (1)

where y ∈R
m, and x ∈R

n. The objective of this manuscript is to minimize the com-
putational and storage overheads required to calculate the entire Jacobian matrix J
to a prescribed error tolerance limit. The elements of the Jacobian matrix contain
derivative information that is given by:

Ji j =
∂yi

∂x j
(2)

Equation (2) describes the sensitivity of the ith output response with respect to the
jth input model parameter. For typical nuclear reactor calculations, earlier work has
revealed that a) model input data (also referred to as model input parameters) number
in the millions. For example, the few-group cross-sections (cross-sections character-
ize the probability of neutrons interaction with matter), input to a core simulator are
often functionalized in terms of history effects, and various instantaneous core con-
ditions thus resulting in a very large input data stream, and b) model output responses
number in the hundreds of thousands, including in-core instrumentations’ responses,
core power distribution, and various thermal limits, thus resulting in a very large
output data stream. The numerical rank of the associated Jacobian matrix has been
shown to be much smaller, i.e. of the order of 102 only. A low rank matrix suggests
a matrix revealing decomposition of the form:

J = USV T (3)

where U ∈ R
m×r, V ∈ R

n×r, and S ∈ R
r×r. To simplify the derivation, we select

S to be diagonal, and both U and V orthonormal, thus yielding the singular value



58 H. Abdel-Khalik, P. Hovland, A. Lyons, T. Stover, and J. Utke

decomposition (SVD) of the matrix J. Note that the columns of U span a subspace of
dimension r that belongs to the output responses space of dimension m, i.e. R(U) ∈
R

m, and dim(R(U)) = r, where R(·) denotes the range of a matrix operator, and
dim(·) is the dimension of a subspace which represents the maximum number of
linearly independent vectors that belong to a subspace. Similarly: R(V ) ∈ R

n, and
dim(R(V )) = r.

Two important observations can be made about the decomposition in (3): (a) for
any vector v, such that: V T v = 0, i.e. v is orthogonal to the r columns of the matrix
V , the following condition is true: Jv = 0, i.e. a change of model input parameters
along the vector v does not lead to any change in model output responses, i.e. the
sensitivity of model responses with respect to the direction v is zero. In other words,
this vector matrix product carries no derivative information and hence need not be
evaluated. In our notations, any vector satisfying this condition is called an input data
inactive DOF. For a matrix with rank r, there are n− r inactive DOFs. (b) Similarly,
for any vector u, such that: UT u = 0, the following condition is satisfied: JT u = 0.
Again, this matrix-transpose-vector product produces the null vector and hence need
not be evaluated. There are m− r output data inactive DOFs.

Based on these two observations, it is useful to seek an approach that evaluates
the effect of the matrix J on the active input and output data DOFs only. Clearly,
this approach is challenged by the lack of knowledge of the matrices U and V . These
matrices can only be calculated if the matrix J is available a priori. ESM can approx-
imate these matrices by using a series of r matrix-vector and matrix-transpose-vector
products only.

The mechanics of ESM are based on the following three theorems:

Theorem 1. Let J ∈ R
m×n be a pre-defined matrix (representing an unknown Jaco-

bian matrix of a computer code) with rank r≤min(m,n). Let J = URV T be a matrix
revealing decomposition as described earlier. Given Q ∈ R

n×l a matrix of randomly
generated entries, then R(Q) has a unique decomposition such that:

R(Q) = R(QP)+R(Q⊥),

where QP and Q⊥ are arbitrary matrices

rank(QP) = l

and

R(QP)⊆ R(V ) for l ≤ r

R(QP) = R(V ) for l > r

Theorem 2. Let D = JQ (action of AD forward mode), then:

rank(D) = l,

and

R(D)⊆ R(U) for l ≤ r

R(D) = R(U) for l > r
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Theorem 3. Given Ũ ∈ R
m×l , a matrix of randomly generated entries, and an arbi-

trary matrix J∗ such that: R(J∗) = R(V ), let Z = J∗Ũ ,Z ∈ R
n×l then:

rank(Z) = l,

and

R(Z)⊆ R(V ) for l ≤ r

R(Z) = R(V ) for l > r

These theorems guarantee that one can gradually build a basis for the subspaces
comprising the active DOFs in the input and the output data streams, i.e. R(V ), and
R(U), respectively. Further, Theorem 3 provides enough flexibility in the choice of
the operator J∗ used to build the input data active DOFs subspace, R(V ). A simple
choice is J∗ = JT which reduces to the direct implementation of AD reverse mode.
As will be described later, this flexibility will suggest means of reducing the com-
putational overhead required to execute the AD reverse mode, which is often more
expensive than the AD forward mode.

Instead of reproducing the proofs for these theorems which may be found else-
where [1], it will be instructive to illustrate the mechanics of these theorems by intro-
ducing a few simplifying assumptions that will be relaxed later. Let us assume that
the rank r and the subspace R(V ) associated with the Jacobian matrix J are known a
priori. Let the subspace R(V ) be spanned by the columns of an orthonormal matrix
Q, such that: Q = [q1q2 . . .qr], qT

i q j = δi j, and R(V ) = R(Q). Note that only the sub-
space R(V ) is assumed known; identifying the columns of the matrix V represents
the target of our analysis. Now, since Q is orthonormal and its columns span R(V ),
one can write:

Q = V PT (4)

where P ∈R
r×r is a full rank orthonormal matrix, also known as a rotation operator,

i.e. it rotates the columns of the matrix Q to line up with the columns of the matrix
V . In this analysis, Q is selected arbitrarily, therefore V can be extracted from (4),
once P is determined, according to: V = QP. Now, assuming that (1) is implemented
as a computer program and AD has been applied yielding a differentiated program
with a capability to calculate matrix-vector products, one can evaluate the matrix D
of output responses:

D = JQ = [Jq1Jq2 . . .Jqr] (5)

Substituting for J and Q from (3) and (4) yields:

D = USPT . (6)

This is the SVD of the matrix D. Hence, if one calculates the SVD of the matrix D,
one can reconstruct the matrix J as follows:

J = (DP)(QP)T = USV T . (7)
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Therefore, one can evaluate the entire Jacobian matrix with only r matrix-vector
products (5) and an SVD operation for a matrix of r columns only (6), given that one
knows a priori the subspace R(V ) and its dimension r.

Now we turn to relaxing these two assumptions. According to Theorem 3, the
subspace R(V ) may be identified by using the reverse differentiation mode of AD,
by making a simple choice of J∗ such that: J∗ = JT . In this case, a basis for the
R(V ) subspace can be constructed in the following manner: a) Build a matrix Ũ of
randomly generated entries, where l ≤ r, and perform the following matrix-vector
products using the AD reverse mode:

Z = JTŨ

b) Calculate a QR decomposition of the matrix Z:

Z = QR

where Q ∈ R
m×l is an orthonormal matrix of rank l, such that: R(Q) = R(Z). For a

random Ũ , Theorem 3 asserts that:

R(Q)⊆ R(JT ) = R(V ),

and for l > r
R(Q) = R(V ).

Therefore, one can build a low rank approximation to a Jacobian matrix by: a) First,
using the AD reverse mode to construct a basis for the subspace R(V ). This subspace
is constructed by performing matrix-transpose-vector products until the entire sub-
space is spanned. b) Second, using the AD forward mode, one can identify the three
matrices of the SVD in Eq. (7). Once SVD is calculated, one can estimate the Ji j
according to:

Ji j =
r

∑
k=1

uikskv jk.

Now we would like to comment on the choice of the matrix J∗. As illustrated
above, the primary function of J∗ is to construct an arbitrary basis for the subspace
R(V ); once R(V ) is identified, the forward mode can be used to estimate the en-
tire Jacobian matrix. Therefore, any matrix that has the same range as the matrix
JT can be used to build R(V ). Having this insight can help one make an educated
choice of the matrix J∗ for one’s particular application of interest. To illustrate this:
consider that, in most computer codes, the Jacobian matrix J comprises a series of
calculational stages, where the output of one stage feeds the input to the next stage.
Mathematically, this can be described using the chain rule of differentiation:

J = J1J2 . . . JN

And the transposed Jacobian matrix becomes:

JT = JT
N . . . JT

2 JT
1
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Now, each Ji represents the Jacobian of a calculational stage, and {Ji} are generally
expected to vary in dimensionality, sparsity pattern, and numerical rank. One can
take advantage of this situation by dropping all matrices that do not contribute to
reducing the overall rank of the Jacobian matrix. This follows since the range of the
overall transposed-Jacobian matrix satisfies the following relation:

R(JT ) = R(JT
N . . .JT

2 JT
1 )⊆ . . .⊆ R(JT

2 JT
1 )⊆ R(JT

1 )

Therefore, if say, the rank of the matrix JT
1 is comparable to the overall rank of the

Jacobian matrix (ranks can be determined effectively via AD forward mode as guar-
anteed by Theorem 2), one can use J∗ = JT

1 (assuming compatibility of dimensions)
and save the additional effort required to build a reverse AD mode for the entire
Jacobian matrix.

3 Case Study

This section describes a numerical experiment conducted to illustrate the mechan-
ics of the proposed approached. Consider the diffusion equation for mono-energetic
neutrons in two-dimensional non-multiplying media:

−∇ ·D(r)∇Φ(r)+Σa(r)Φ(r) = S(r) (8)

where input model parameters are the diffusion coefficient, D, the absorption cross-
section, Σa, and the external neutron source, S; and r denotes model parameters’
variations with space. The solution to this equation gives the neutron flux, Φ .

This problem can be solved using a Galerkin formulation of the finite element
method [10]. In this method, the flux solution is expanded along a basis of finite
dimensional subspace of an admissible Hilbert space, denoted by the ‘solution sub-
space’. Further, the residual error resulting from this approximation is required to be
orthogonal to another Hilbert subspace, denoted by the ‘residual subspace’. Usually,
the two subspaces are selected to coincide with each other. Mathematically, the flux
solution ΦG(r) calculated by the Galerkin approach may be described as follows.
Let the Galerkin flux solution and residual be given by:

ΦG(r) = ψ0 +
G

∑
g=1
ψg(r) (9)

ε(r) = S(r)−Σa(r)ΦG(r)+∇ ·D(r)∇ΦG(r) (10)

where the solution and residual subspaces are spanned by the set of functions,
ψg(r)

∣
∣G
g=0, and G + 1 is the dimension of each of these subspaces. The following

condition is also satisfied:
〈
ε(r),ψg(r)

〉
= 0, g = 0,1, . . .G

where 〈·, ·〉 denotes inner product over the phase space. Finally, some boundary con-
ditions are imposed to get closure relations:
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ΦG(r)
∣
∣
r∈B =ϒ (r) (11)

whereϒ (r) is a function defined on the boundary B.
For typical nuclear reactor calculations, (8)–(11) are solved over a spatial grid

that spans the entire reactor core. In this regard, a typical sensitivity study would
involve the estimation of the Jacobian matrix relating first order changes in the flux
solution to variations in input model parameters.

For this problem, a mesh size of N = 10 in both the x- and y-directions was se-
lected, yielding a total of N 2 = 100 mesh points. The total number of input model
parameters, including diffusion coefficient, absorption cross-section and source term,
is 3N 2, each parameter evaluated at N 2 grid points. The total number of output re-
sponses is N 2, representing flux solution at the same number of grid points. There-
fore the Jacobian matrix is expected to be of dimensions: J ∈ R

N2×3N2
. To construct

the entire Jacobian matrix, the direct forward and reverse AD modes of differentia-
tion will require 3N 2 and N 2 model evaluations, respectively. For complex nuclear
calculations, the computing times required by such model re-evaluations severely re-
strict the scope of sensitivity analysis. In practice, the core designer is restricted to
perform the sensitivity study for a few number of output responses, i.e. flux solutions
at few grid points, and a few number of input parameters that are judged to be of most
importance.

We selected the basis functions spanning the ‘solution subspace’ and the ‘residual
subspace’ such that

ψg(x,y) = fl(x)× fk(y),

where l = 1, . . . ,L; k = 1, . . . ,K; g = 0,1, . . . ,(l−1)K +k, . . . ,LK; fl(x) and fk(y) are
polynomials of order l and k, respectively; and ψ0 is a constant function. These basis
functions are often selected to satisfy special orthogonality properties to facilitate
the process of obtaining the flux solution. For more details on the constructions of
these basis functions, the reader is referred to the relevant literature [6]. For this
study, we selected L = K = 4, i.e. a total of 4 polynomials in each direction and a
constant term, the dimension of the ‘solution subspace’ is G + 1 = 17. Therefore,
the rank of the Jacobian matrix is expected to be 17 as well. This follows, since
all possible neutron flux variations resulting from input model parameters variations
must belong to the ‘solution subspace’.

Accordingly, the approach proposed in this paper, (4)–(7), was implemented by
gradually increasing the size of the random subspace until r = 17, above which the
rank did not increase. The Jacobian matrix was constructed both using the proposed
approach with r forward and r reverse model evaluations using AD. In addition, a full
sensitivity study was performed by running the forward mode 3N 2 times to construct
the entire Jacobian matrix. Figures 1 through 4 plot the variations of flux solution
with respect to 1% perturbation in the absorption cross-section, and the source term
at two random grid points. In these figures, the nodes indices are in the natural order,
i.e. q = i+( j−1)×I. Each of these figures compares the AD forward mode obtained
by 3N 2 model re-evaluations, and the proposed approach with only 2r model re-
evaluations.
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Fig. 1. First order flux perturbation due to source perturbations
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Fig. 2. First order flux perturbation due to source perturbations
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Fig. 3. First order flux perturbation due to absorption cross-section perturbations
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Fig. 4. First order flux perturbation due to absorption cross-section perturbations

4 Conclusions and Future Work

This work proposed a new approach to increase the efficiency of automatic differ-
entiation calculations by exploiting the low rank nature of the Jacobian matrices of-
ten encountered with most very large and complex computer models. The approach
requires r matrix-transpose-vector products evaluated by the AD reverse mode, r
matrix-vector products evaluated by the AD forward mode, and a QR and an SVD
factorization both involving matrices with r columns only. The full Jacobian matrix
may subsequently be calculated from the resulting QR and SVD matrices. For an ex-
actly rank-deficient Jacobian matrix with rank r, the proposed approach guarantees
that the reconstructed Jacobian matrix is exactly equal to the full Jacobian matrix
evaluated using AD with n forward mode runs, or m reverse mode runs, where n and
m are the number of input and output data, respectively.

In this work, the rank of the Jacobian matrix was bounded above by the size of
the Galerkin “solution subspace,” implying that the Jacobian matrix is exactly rank-
deficient, that is, it has a finite number of non-zero singular values, with all the rest
equal to zero. In more general situations, all of the singular values of the Jacobian
matrix are not exactly equal to zero, however they decrease rapidly to very small
values, sometimes with and other times without any clear gap in their spectrum. In
these cases, the Jacobian will be assumed to be close to an exactly rank deficient
matrix of rank r, where the determination of r is often application dependent. For
example, if the Jacobian is intended for use in optimization algorithm, r is selected
so as to replace the Jacobian by an exactly rank-deficient algorithm which can be
shown to lead to a convergent solution. If the first order derivatives are required
explicitly, r is selected sufficiently large to ensure the derivatives are approximated to
the prescribed accuracy. Our future work will rigorously quantify the errors resulting
from these approximations. Further, we will extend the proposed methodology to
estimating the higher order derivatives for nonlinear computer models.
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3. Averick, B.M., Moré, J.J., Bischof, C.H., Carle, A., Griewank, A.: Computing large sparse
Jacobian matrices using automatic differentiation. SIAM J. Sci. Comput. 15(2), 285–294
(1994)

4. Bischof, C.H., Khademi, P.M., Bouaricha, A., Carle, A.: Efficient computation of gradi-
ents and jacobians by dynamic exploitation of sparsity in automatic differentiation. Opti-
mization Methods and Software 7(1), 1–39 (1996). DOI 10.1080/10556789608805642
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Summary. In applied optimization, an understanding of the sensitivity of the optimal value
to changes in structural parameters is often essential. Applications include parametric opti-
mization, saddle point problems, Benders decompositions, and multilevel optimization. In this
paper we adapt a known automatic differentiation (AD) technique for obtaining derivatives of
implicitly defined functions for application to optimal value functions. The formulation we
develop is well suited to the evaluation of first and second derivatives of optimal values. The
result is a method that yields large savings in time and memory. The savings are demonstrated
by a Benders decomposition example using both the ADOL-C and CppAD packages. Some
of the source code for these comparisons is included to aid testing with other hardware and
compilers, other AD packages, as well as future versions of ADOL-C and CppAD. The source
code also serves as an aid in the implementation of the method for actual applications. In ad-
dition, it demonstrates how multiple C++ operator overloading AD packages can be used with
the same source code. This provides motivation for the coding numerical routines where the
floating point type is a C++ template parameter.

Keywords: Automatic differentiation, Newton’s method, iterative process, implicit function,
parametric programming, C++ template functions, ADOL-C, CppAD

1 Introduction

In applications such as parametric programming, hierarchical optimization, Bender’s
decomposition, and saddle point problems, one is confronted with the need to under-
stand the variational properties of an optimal value function. For example, in sad-
dle point problems, one maximizes with respect to some variables and minimizes
with respect to other variables. One may view a saddle point problem as a maxi-
mization problem where the objective is an optimal value function. Both first and
second derivatives of the optimal value function are useful in solving this maximiza-
tion problem. A similar situation occurs in the context of a Bender’s decomposition
(as was the case that motivated this research). In most cases, the optimal value is
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evaluated using an iterative optimization procedure. Direct application of Algorith-
mic Differentiation (AD) to such an evaluation differentiates the entire iterative pro-
cess (the direct method). The convergence theory of the corresponding derivatives
is discussed in [2, 6, 7]. We review an alternative strategy that applies the implicit
function theorem to the first-order optimality conditions. This strategy also applies,
more generally, to differentiation of functions defined implicitly by a system of non-
linear equations. These functions are also evaluated by iterative procedures and the
proposed method avoids the need to differentiate the entire iterative process in this
context as well. The use of the implicit function theorem in this context is well known
in the AD literature, e.g., [1, 4, 5, 10]. We provide a somewhat different formulation
that introduces an auxiliary variable which facilitates the computation of first and
second derivatives for optimal value functions.

In Sect. 2, the implicit function theorem is used to show that differentiating one
Newton iteration is sufficient thereby avoiding the need to differentiate the entire iter-
ative process. As mentioned above, this fact is well known in the AD literature. Meth-
ods for handling the case where the linear equations corresponding to one Newton
step cannot be solved directly and require an iterative process are considered in [8].
An important observation is that, although the Newton step requires the solution of
linear equations, the inversion of these equations need not be differentiated.

Consider the parametrized family of optimization problems

P(x) minimize F(x,y) with respect to y ∈ R
m

where F : R
n×R

m→ R is twice continuously differentiable. Suppose that there is
an open set U ⊂ R

n such that for each value of x ∈ U it is possible to compute
the optimal value for P(x) which we denote by V (x). The function V : U → R

defined in this way is called the optimal value function for the family of optimization
problems P(x). In Sect. 3 we present a method for computing the derivative and
Hessian of V (x). This method facilitates using reverse mode to obtain the derivative
of V (x) in a small multiple of the work to compute F(x,y). In Sect. 4 we present a
comparison between differentiation of the entire iterative process (the direct method)
with our suggested method for computing the Hessian. This comparison is made
using the ADOL-C [9, version 1.10.2] and CppAD [3, version 20071225] packages.

The Appendix contains some of the source code that is used for the comparisons.
This source code can be used to check the results for various computer systems, other
AD packages, as well as future versions of ADOL-C and CppAD. It also serves as
a starting point to implement the method for actual applications, i.e., other defini-
tions of F(x,y). In addition, it demonstrates the extent to which multiple C++ AD
operator overloading packages can be used with the same C++ source code. This
provides motivation for the coding numerical routines where the floating point type
is a template parameter.
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2 Jacobians of an Implicit Function

We begin by building the necessary tools for the application of AD to the differen-
tiation of implicitly defined functions. Suppose U ⊂ R

n and V ⊂ Rm are open and
the function H : U ×V → R

m is smooth. We assume that for each x ∈U the equa-
tion H(x,y) = 0 has a unique solution Y (x) ∈ V . That is, the equation H(x,y) = 0
implicitly defines the function Y : U → V by

H[x,Y (x)] = 0 .

Let Y (k)(x) denote the k-th derivative of Y and let Hy(x,y) denote the partial derivative
of H with respect to y. Conditions guaranteeing the existence of the function Y , as
well as its derivatives and their formulas, in terms of the partials of H are given by the
implicit function theorem. We use these formulas to define a function Ỹ (x,u) whose
partial derivative in u evaluated at x gives Y (1)(x). The form of the function Ỹ (x,u)
is based on the Newton step used to evaluate Y (x). The partial derivative of Ỹ (x,u)
with respect to u is well suited to the application of AD since it avoids the need to
differentiate the iterative procedure used to compute Y (x). The following theorem is
similar to, e.g., [10, equation (3.6)] and [5, Lemma 2.3]. We present the result in our
notation as an aid in understanding this paper.

Theorem 1. Suppose U ⊂ R
n and V ⊂ Rm are open, H : U ×V → R

m is contin-
uously differentiable, x̄ ∈ U , ȳ ∈ V , H[x̄, ȳ] = 0, and Hy[x̄, ȳ] is invertible. Then, if
necessary, U and V may be chosen to be smaller neighborhoods of x̄ and ȳ, respec-
tively, in order to guarantee the existence of a continuously differentiable function
Y : U → V satisfying Y (x̄) = ȳ and for all x ∈ U , H[x,Y (x)] = 0. Moreover, the
function Ỹ : U ×U → R

m, defined by

Ỹ (x,u) = Y (x)−Hy[x,Y (x)]−1H[u,Y (x)] ,

satisfies Ỹ (x,x) = Y (x) and

Ỹu(x,x) = Y (1)(x) =−Hy[x,Y (x)]−1Hx[x,Y (x)] .

Note that Y (1)(x) can be obtained without having to completely differentiate the
procedure for solving the linear equation Hy[x,Y (x)]∆y = H[u,Y (x)]. Solving this
equation typically requires the computation of an appropriate factorization of the
matrix Hy[x,Y (x)]. By using the function Ỹ one avoids the need to apply AD to the
computation of this factorization. (This has been noted before, e.g., [10, equation
(3.6)] and [5, Algorithm 3.1].)

As stated above, the function Ỹ is connected to Newton’s method for solving the
equation H[x,y] = 0 for y given x. For a given value for x, Newton’s method (in its
simplest form) approximates the value of Y (x) by starting with an initial value y0(x)
and then computing the iterates

yk+1(x) = yk(x)−Hy[x,yk(x)]−1H[x,yk(x)]
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until the value H[x,yk(x)] is sufficiently close to zero. The initial iterate y0(x) need
not depend on x. The last iterate yk(x) is the value used to approximate Y (x). If one di-
rectly applies AD to differentiate the relation between the final yk(x) and x (the direct
method), all of the computations for all of the iterates are differentiated. Theorem 1
shows that one can alternatively use AD to compute the partial derivative Ỹu(x,u) at
u = x to obtain Y (1)(x) . Since x is a fixed parameter in this calculation, no derivatives
of the matrix inverse of Hy[x,Y (x)] are required (in actual computations, this matrix
is factored instead of inverted and the factorization need not be differentiated).

3 Differentiating an Optimal Value Function

Suppose that U ⊂R
n and V ⊂R

m are open, F : U ×V →R is twice continuously
differentiable on U ×V , and define the optimal value function V : U → R by

V (x) = min F(x,y) with respect to y ∈ V . (1)

In the next result we define a function Ṽ (x,u) that facilitates the application of AD
to the computation of the first and second derivatives of V (x).

Theorem 2. Let U , V , F and V be as in (1), and suppose that x̄ ∈ U and ȳ ∈ V
are such that Fy(x̄, ȳ) = 0 and Fyy(x̄, ȳ) is positive definite. Then, if necessary, U and
V may be chosen to be smaller neighborhoods of x̄ and ȳ, respectively, so that there
exists a twice continuously differentiable function Y : U → V where Y (x) is the
unique minimizer of F(x, ·) on V , i.e.,

Y (x) = argmin F(x,y) with respect to y ∈ V .

We define Ỹ : U ×U → R and Ṽ : U ×U → R by

Ỹ (x,u) = Y (x)−Fyy[x,Y (x)]−1Fy[u,Y (x)] ,
Ṽ (x,u) = F [u,Ỹ (x,u)] .

It follows that for all x ∈U , Ṽ (x,x) = V (x),

Ṽu(x,x) = V (1)(x) = Fx[x,Y (x)] ,

Ṽuu(x,x) = V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

Proof. The implicit function theorem guarantees the existence and uniqueness of the
function Y satisfying the first- and second-order sufficiency conditions for optimality
in the definition of V (x). It follows from the first-order necessary conditions for
optimality that Fy[x,Y (x)] = 0. Defining H(x,y) = Fy(x,y) and applying Theorem 1,
we conclude that

Ỹ (x,x) = Y (x) ,

Ỹu(x,u) = Y (1)(x) . (2)
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It follows that
Ṽ (x,x) = F [x,Ỹ (x,x)] = F [x,Y (x)] = V (x) ,

which establishes the function value assertion in the theorem.
The definition of Ṽ gives

Ṽu(x,u) = Fx[u,Ỹ (x,u)]+Fy[u,Ỹ (x,u)]Ỹu(x,u) .

Using Fy[x,Y (x)] = 0 and Ỹ (x,x) = Y (x), we have

Ṽu(x,x) = Fx[x,Y (x)] . (3)

On the other hand, since V (x) = F [x,Y (x)], we have

V (1)(x) = Fx[x,Y (x)]+Fy[x,Y (x)]Y (1)(x) ,

= Fx[x,Y (x)] . (4)

Equations (3) and (4) establish the first derivative assertions in the theorem.
The second derivative assertions requires a more extensive calculation. It follows

from (4) that
V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) . (5)

As noted above Fy[x,Y (x)] = 0 for all x ∈ U . Taking the derivative of this identity
with respect to x, we have

0 = Fyx[x,Y (x)]+Fyy[x,Y (x)]Y (1)(x) ,

0 = Y (1)(x)TFyx[x,Y (x)]+Y (1)(x)TFyy[x,Y (x)]Y (1)(x) . (6)

Fix x ∈U and define G : R
n→ R

n+m by

G(u) =
(

u
Ỹ (x,u)

)
.

It follows from this definition that

Ṽ (x,u) = (F ◦G)(u) ,

Ṽu(x,u) = F(1)[G(u)]G(1)(u) , and

Ṽuu(x,u) = G(1)(u)TF(2)[G(u)]G(1)(u)

+
n

∑
j=1

Fx( j)[G(u)]G(2)
( j)(u)+

m

∑
i=1

Fy(i)[G(u)]G(2)
(n+i)(u) ,

where Fx( j) and Fy(i) are the partials of F with respect to x j and yi respectively,
and where G( j)(u) and G(n+i)(u) are the j-th and (n + i)-th components of G(u)

respectively. Using the fact that G(2)
( j)(u) = 0 for j ≤ n, Fy[G(x)] = Fy[x,Ỹ (x,x)] = 0,

Ỹ (x,x) = Y (x), and Ỹu(x,x) = Y (1)(x), we have
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Ṽuu(x,x) = G(1)(x)TF(2)[G(x)]G(1)(x) ,

= Fxx[x,Y (x)]+Y (1)(x)TFyy[x,Y (x)]Y (1)(x)

+ Y (1)(x)TFyx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

We now use (6) to conclude that

Ṽuu(x,x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x) .

This equation, combined with (5), yields the second derivative assertions in the
theorem.

Remark 1. The same proof works when the theorem is modified with following re-
placements: Fyy(x̄, ȳ) is invertible, Y : U → V is defined by Fy[x,Y (x)] = 0, and
V : U →R is defined by V (x) = F [x,Y (x)]. This extension is useful in certain appli-
cations, e.g., mathematical programs with equilibrium constraints (MPECs).

In summary, algorithmic differentiation is used to compute Ṽu(x,u) and Ṽuu(x,u)
at u = x. The result is the first and second derivatives of the optimal value function
V (x), respectively. Computing the first derivative V (1)(x) in this way requires a small
multiple of w where w is the amount of work necessary to compute values of the
function F(x,y) ([5, Algorithm 3.1] can also be applied to obtain this result). Com-
puting the second derivative V (2)(x) requires a small multiple of nw (recall that n is
the number of components in the vector x).

Note that one could use (2) to compute Y (1)(x) and then use the formula

V (2)(x) = Fxx[x,Y (x)]+Fxy[x,Y (x)]Y (1)(x)

to compute the second derivative of V (x). Even if m is large, forward mode can be
used to compute Ỹu(x,u) at u = x in a small multiple of nw. Thus, it is possible that,
for some problems, this alternative would compare reasonably well with the method
proposed above.

4 Example

The direct method for computing V (2)(x) applies AD to compute the second deriva-
tive of F [x,Y (x)] with respect x. This includes the iterations used to determine Y (x)
in the AD calculations. In this section, we present an example that compares the di-
rect method to the method proposed in the previous section using both the ADOL-C
[9, version 1.10.2] and CppAD [3, version 20071225] packages.

Our example is based on the function F̂ : U×V → R defined by

F̂(x,y) = xexp(y)+ exp(−y)− log(x),

where n = 1 and U ⊂ R
n is the set of positive real numbers, m = 1 and V ⊂ R

m

is the entire set of real numbers. This example has the advantage that the relevant
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mathematical objects have closed form expressions. Indeed, Ŷ (x) (the minimizer of
F̂(x,y) with respect to y) and V̂ (2)(x) (the Hessian of F̂ [x,Ŷ (x)]) are given by

Ŷ (x) = log
(
1/
√

x
)

, (7)

V̂ (x) = 2
√

x− log(x) ,

V̂ (1)(x) = x−1/2− x−1 , and

V̂ (2)(x) = x−2− x−3/2/2 . (8)

Using this example function, we build a family of test functions that can be scaled
for memory use and computational load. This is done by approximating the exponen-
tial function exp(y) with its Mth degree Taylor approximation at the origin, i.e.,

Exp(y) = 1+ y+ y2/2!+ · · ·+ yM/M! .

As M increases, the complexity of the computation increases. For all of values of M
greater than or equal twenty, we consider the functions Exp(y) and exp(y) to be equal
(to near numerical precision) for y in the interval [0,2]. Using Exp(y), we compute
F(x,y) and its partial derivatives with respect to y as follows:

F(x,y) = xExp(y)+1/Exp(y)− log(x) ,

Fy(x,y) = xExp(y)−1/Exp(y) , and
Fyy(x,y) = xExp(y)+1/Exp(y) .

The method used to compute Y (x) does not matter, we only need to minimize F(x,y)
with respect to y. For this example, it is sufficient to solve for a zero of Fy(x,y)
(because F is convex with respect to y). Thus, to keep the source code simple, we use
ten iterations of Newton’s method to approximate Y (x) as follows: for k = 0, . . . ,9

y0(x) = 1 ,

yk+1(x) = yk(x)−Fy[x,yk(x)]/Fyy[x,yk(x)] , and
Y (x) = y10(x) . (9)

Note that this is only an approximate value for Y (x), but we use it as if it were exact,
i.e., as if Fy[x,Y (x)] = 0. We then use this approximation for Y (x) to compute

V (x) = F [x,Y (x)] ,
Ỹ (x,u) = Y (x)−Fy[u,Y (x)]/Fyy[x,Y (x)] , and
Ṽ (x,u) = F [u,Ỹ (x,u)] .

The source code for computing the functions F , Fy, Fyy, V (x), Ỹ and Ṽ are in-
cluded in Sect. 6.1. The Hessians V (2)(x) (direct method) and Ṽuu(x,u) (proposed
method) are computed using the ADOL-C function hessian and the CppAD
ADFun<double> member function Hessian.

As a check that the calculations of V (2)(x) are correct, we compute Ŷ (x) and
V̂ (2)(x) defined in equations (7) and (8). The source code for computing the functions
Ŷ (x) and V̂ (2)(x) are included in Sect. 6.2. The example results for this correctness
check, and for the memory and speed tests, are included in the tables below.
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4.1 Memory and Speed Tables

In the memory and speed tables below, the first column contains the value of M cor-
responding to each row (the output value M is the highest order term in the power
series approximation for exp(y)). The next two columns, n_xx and n_uu, contain a
measure of how much memory is required to store the results of a forward mode AD
operation (in preparation for a reverse mode operation) for the corresponding com-
putation of V (2)(x) and Ṽuu(x,u), respectively. The next column n_uu/xx contains
the ratio of n_uu divided by n_xx. The smaller the n_uu/xx the more computation
favors the use of Ṽuu(x,u) for the second derivative. The next two columns, t_xx and
t_uu, contain the run time, in milliseconds, used to compute V (2)(x) and Ṽuu(x,u)
respectively. Note that, for both ADOL-C and CppAD, the computational graph was
re-taped for each computation of V (2)(x) and each computation of Ṽuu(x,u). The next
column t_uu/xx contains the ratio of t_uu divided by t_xx. Again, the smaller the
ratio the more the computation favors the use of Ṽuu(x,u) for the second derivative.

4.2 Correctness Tables

In the correctness tables below, the first column displays M corresponding to the
correctness test, the second column displays Y (x) defined by (9) (x = 2), the third
column displays Ycheck which is equal to Ŷ (x) (see Sect. 6.2), the fourth col-
umn displays V (2)(x) computed by the corresponding AD package using the direct
method, the fifth column displays Ṽuu(x,u) computed by the corresponding AD pack-
age (x = 2, u = 2), the sixth column displays V2check which is equal to V̂ (2)(x) (see
Sect. 6.2).

4.3 System Description

The results below were generated using version 1.10.2 of ADOL-C, version
20071225 of CppAD, version 3.4.4 of the cygwin g++ compiler with the -O2
and -DNDEBUG compiler options, Microsoft Windows XP, a 3.00GHz pentium
processor with 2GB of memory. The example results will vary depending on the
operating system, machine, C++ compiler, compiler options, and hardware used.

4.4 ADOL-C

In this section we report the results for the case where the ADOL-C package is
used. The ADOL-C usrparms.h values BUFSIZE and TBUFSIZE were left at their
default value, 65536. The Hessians of V (x) with respect to x and Ṽ (x,u) with re-
spect to u were computed using the ADOL-C function hessian. Following the call
hessian(tag,1,x,H) a call was made to tapestats(tag,counts). In the out-
put below, n_xx and n_uu are the corresponding value counts[3]. This is an in-
dication of the amount of memory required for the Hessian calculation (see [9] for
more details).



AD of Implicit Functions & Optimal Values 75

Memory and Speed Table / ADOL-C
M n_xx n_uu n_uu/xx t_xx t_uu t_uu/xx

20 3803 746 0.196 0.794 0.271 0.341
40 7163 1066 0.149 11.236 0.366 0.033
60 10523 1386 0.132 15.152 0.458 0.030
80 13883 1706 0.123 20.408 0.557 0.027

100 17243 2026 0.117 25.000 0.656 0.026
Correctness Table / ADOL-C
M Y(x) Ycheck V_xx V_uu V2check

100 -0.3465736 -0.3465736 0.0732233 0.0732233 0.0732233

4.5 CppAD

In this section we report the results for the case where the CppAD package is used.
The Hessians of V (x) with respect to x and Ṽ (x,u) with respect to u were com-
puted using the CppAD ADFun<double> member function Hessian. In the output
below, n_xx and n_uu are the corresponding number of variables used during the
calculation, i.e., the return value of f.size_var() where f is the corresponding
AD function object. This is an indication of the amount of memory required for the
Hessian calculation (see [3] for more details).

Memory and Speed Table / CppAD
M n_xx n_uu n_uu/xx t_xx t_uu t_uu/xx

20 2175 121 0.056 0.549 0.141 0.257
40 4455 241 0.054 0.946 0.208 0.220
60 6735 361 0.054 1.328 0.279 0.210
80 9015 481 0.053 1.739 0.332 0.191

100 11295 601 0.053 2.198 0.404 0.184
Correctness Table / CppAD

M Y(x) Ycheck V_xx V_uu V2check
100 -0.3465736 -0.3465736 0.0732233 0.0732233 0.0732233

5 Conclusion

Theorem 1 provides a representation of an implicit function that facilitates efficient
computation of its first derivative using AD. Theorem 2 provides a representation of
an optimal value functions that facilitates efficient computation of its first and second
derivative using AD. Section 4 demonstrates the advantage of this representation
when using ADOL-C and CppAD. We suspect much smaller run times for CppAD,
as compared to ADOL-C, are due to the fact that ADOL-C uses disk to store its
values when the example parameter M is larger than 20. The source code for the
example, that is not specific to a particular AD package, has been included as an aid
in testing with other hardware and compilers, other AD packages, as well as future
versions of ADOL-C, CppAD. It also serves as an example of the benefit of C++
template functions in the context of AD by operator overloading.
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6 Appendix

6.1 Template Functions

The following template functions are used to compute V (2)(x) and Ṽuu(x,u) using the
ADOL-C type adouble and the CppAD type CppAD::AD<double>.

// Exp(x), a slow version of exp(x)
extern size_t M_;
template<class Float> Float Exp(const Float &x)
{ Float sum = 1., term = 1.;

for(size_t i = 1 ; i < M_; i++)
{ term *= ( x / Float(i) );

sum += term;
}
return sum;

}
// F(x, y) = x * exp(y) + exp(-y) - log(x)
template<class Float> Float F(const Float &x, const Float &y)
{ return x * Exp(y) + 1./Exp(y) - log(x); }
// F_y(x, y) = x * exp(y) - exp(-y)
template<class Float> Float F_y(const Float &x, const Float &y)
{ return x * Exp(y) - 1./Exp(y); }
// F_yy(x, y) = x * exp(y) + exp(-y)
template<class Float> Float F_yy(const Float &x, const Float &y)
{ return x * Exp(y) + 1./Exp(y); }
// Use ten iterations of Newtons method to compute Y(x)
template<class Float> Float Y(const Float &x)
{ Float y = 1.; // initial y

for(size_t i = 0; i < 10; i++) // 10 Newton iterations
y = y - F_y(x, y) / F_yy(x, y);

return y;
}
// V(x)
template<class Float> Float V(const Float &x)
{ return F(x, Y(x)); }
// Y˜ (x , u), pass Y(x) so it does not need to be recalculated
template<class Float>
Float Ytilde(double x, const Float &u_ad, double y_of_x)
{ Float y_of_x_ad = y_of_x;

return y_of_x_ad - F_y(u_ad , y_of_x_ad) / F_yy(x, y_of_x);
}
// V˜ (x, u), pass Y(x) so it does not need to be recalculated
template<class Float>
Float Vtilde(double x, const Float &u_ad, double y_of_x)
{ return F(u_ad , Ytilde(x, u_ad, y_of_x) ); }

6.2 Check Functions

The functions Ŷ (x) defined in (7) and V̂ (2)(x) defined in (8) are coded below as
Ycheck and V2check respectively. These functions are used to check that the value
of Y (x) and V (2)(x) are computed correctly.
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double Ycheck(double x)
{ return - log(x) / 2.; }
double V2check(double x)
{ return 1. / (x * x) - 0.5 / (x * sqrt(x)); }

Acknowledgement. This research was supported in part by NIH grant P41 EB-001975 and
NSF grant DMS-0505712.

References

1. Azmy, Y.: Post-convergence automatic differentiation of iterative schemes. Nuclear Sci-
ence and Engineering 125(1), 12–18 (1997)

2. Beck, T.: Automatic differentiation of iterative processes. Journal of Computational and
Applied Mathematics 50(1–3), 109–118 (1994)

3. Bell, B.: CppAD: a package for C++ algorithmic differentiation (2007). http://www.
coin-or.org/CppAD
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Summary. This paper discusses a new automatic differentiation (AD) system that correctly
and automatically accepts nested and dynamic use of the AD operators, without any manual
intervention. The system is based on a new formulation of AD as highly generalized first-
class citizens in a λ -calculus, which is briefly described. Because the λ -calculus is the basis
for modern programming-language implementation techniques, integration of AD into the
λ -calculus allows AD to be integrated into an aggressive compiler. We exhibit a research
compiler which does this integration. Using novel analysis techniques, it accepts source code
involving free use of a first-class forward AD operator and generates object code which at-
tains numerical performance comparable to, or better than, the most aggressive existing AD
systems.

Keywords: Nesting, lambda calculus, multiple transformation, forward mode, optimization

1 Introduction

Over sixty years ago, Church [1] described a model of computation which included
higher-order functions as first-class entities. This λ -calculus, as originally formu-
lated, did not allow AD operators to be defined, but Church did use the deriva-
tive operator as an example of a higher-order function with which readers would
be familiar. Although the λ -calculus was originally intended as a model of com-
putation, it has found concrete application in programming languages via two re-
lated routes. The first route came from the realization that extremely sophisticated
computations could be expressed crisply and succinctly in the λ -calculus. This
led to the development of programming languages (LISP, ALGOL, ML, SCHEME,
HASKELL, etc.) that themselves embody the central aspect of the λ -calculus: the
ability to freely create and apply functions including higher-order functions. The
second route arose from the recognition that various program transformations and
programming-language theoretic constructs were naturally expressed using the λ -
calculus. This resulted in the use of the λ -calculus as the central mathematical scaf-
folding of programming-language theory (PLT): both as the formalism in which the
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semantics of programming-language constructs (conditionals, assignments, objects,
exceptions, etc.) are mathematically defined, and as the intermediate format into
which computer programs are converted for analysis and optimization.

A substantial subgroup of the PLT community is interested in advanced or func-
tional programming languages, and has spent decades inventing techniques by which
programming languages with higher-order functions can be made efficient. These
techniques are part of the body of knowledge we refer to as PLT, and are the basis of
the implementation of modern programming-language systems: JAVA, C�, the GHC
HASKELL compiler, GCC 4.x, etc. Some of these techniques are being gradually re-
discovered by the AD community. For instance, a major feature in TAPENADE [2] is
the utilization of a technique by which values to which a newly-created function refer
are separated from the code body of the function; this method is used ubiquitously
in PLT, where it is referred to as lambda lifting or closure conversion [4].

We point out that—like it or not—the AD transforms are higher-order functions:
functions that both take and return other functions. As such, attempts to build im-
plementations of AD which are efficient and correct encounter the same technical
problems which have already been faced by the PLT community. In fact, the tech-
nical problems faced in AD are a superset of these, as the machinery of PLT, as it
stands, is unable to fully express the reverse AD transformation. The present au-
thors have embarked upon a sustained project to bring the tools and techniques of
PLT—suitably augmented—to bear on AD. To this end, novel machinery has been
crafted to incorporate first-class AD operators (functions that perform forward- and
reverse-mode AD) into the λ -calculus. This solves a host of problems: (1) the AD
transforms are specified formally and generally; (2) nesting of the AD operators,
and inter-operation with other facilities like memory allocation, is assured; (3) it be-
comes straightforward to integrate these into aggressive compilers, so that AD can
operate in concert with code optimization rather than beforehand; (4) sophisticated
techniques can migrate various computations from run time to compile time; (5) a
callee-derives API is supported, allowing AD to be used in a modular fashion; and
(6) a path to a formal semantics of AD, and to formal proofs of correctness of systems
that use and implement AD, is laid out.

Due to space limitations, the details of how the λ -calculus can be augmented
with AD operators is beyond our scope. Instead, we will describe the basic intuitions
that underly the approach, and exhibit some preliminary work on its practical bene-
fits. This starts (Sect. 2) with a discussion of modularity and higher-order functions
in a numerical context, where we show how higher-order functions can solve some
modularity issues that occur in many current AD systems. We continue (Sect. 3) by
considering the AD transforms as higher-order functions, and in this context we gen-
eralize their types. This leads us (Sect. 4) to note a relationship between the AD oper-
ators and the pushforward and pullback constructions of differential geometry, which
motivates some details of the types we describe as well as some of the terminology
we introduce. In Sect. 5 we discuss how constructs that appear to the programmer
to involve run-time transforms can, by appropriate compiler techniques, be migrated
to compile-time. Section 6 describes a system which embodies these principles. It
starts with a minimalist language (the λ -calculus augmented with a numeric basis
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and the AD operators) but uses aggressive compilation techniques to produce object
code that is competitive with the most sophisticated current FORTRAN-based AD
systems. Armed with this practical benefit, we close (Sect. 7) with a discussion of
other benefits which this new formalism for AD has now put in our reach.

2 Functional Programming and Modularity in AD

Let us consider a few higher-order functions which a numerical programmer might
wish to use. Perhaps the most familiar is numerical integration,
double nint(double f(double), double x0, double x1);

which accepts a function f : R→ R and range limits a and b and returns an approx-
imation of

∫ b
a f (x)dx. In conventional mathematical notation we would say that this

function has the type
nint : (R→ R)×R×R→ R.

There are a few points we can make about this situation.
First, note that the caller of nintmight wish to pass an argument function which

is not known, at least in its details, until run time. For example, in the straightforward
code to evaluate

n

∑
i=1

∫ 2

1
(sinx)cos(x/i) dx

the caller needs to make a function which maps x �→ (sinx)cos(x/i) for each desired
value of i. Although it is possible to code around this necessity by giving nint
a more complicated API and forcing the caller to package up this extra “environ-
ment” information, this is not only cumbersome and error prone but also tends to
degrade performance. The notation we will adopt for the construction of a func-
tion, “closed” over the values of any relevant variables in scope at the point of cre-
ation, is a “λ expression,” after which the λ -calculus is named. Here, it would be
(λx . (sinx)ˆ(cos(x/i))).

Second, note that it would be natural to define two-dimensional numerical inte-
gration in terms of nested application of nint. So for example,

double nint2(double f2(double x, double y),
double x0, double x1,
double y0, double y1)

{ return nint((λ x . nint((λ y . f(x,y)), y0, y1)),
x0, x1); }

Similar nesting would occur, without the programmer being aware of it, if a
seemingly-simple function defined in a library happened to use AD internally,
and this library function were invoked within a function to which AD was applied.

Third, it turns out that programs written in functional-programming languages
are rife with constructs of this sort (for instance, map which takes a function and a
list and returns a new list whose elements are computed by applying the given func-
tion to corresponding elements of the original list); because of this, PLT techniques
have been developed to allow compilers for functional languages to optimize across
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the involved procedure-call barriers. This sort of optimization has implications for
numerical programming, as numerical code often calls procedures like nint in
inner loops. In fact, benchmarks have shown the efficacy of these techniques on
numerical code. For instance, code involving a double integral of this sort ex-
perienced an order of magnitude improvement over versions in hand-tuned FOR-
TRAN or C, when written in SCHEME and compiled with such techniques (see
ftp://ftp.ecn.purdue.edu/qobi/integ.tgz for details.)

Other numeric routines are also naturally viewed as higher-order functions.
Numerical optimization routines, for instance, are naturally formulated as pro-
cedures which take the function to be optimized as one argument. Many other
concepts in mathematics, engineering, and physics are formulated as higher-order
functions: convolution, filters, edge detectors, Fourier transforms, differential equa-
tions, Hamiltonians, etc. Even more sophisticated sorts of numerical computations
that are difficult to express without the machinery of functional-programming lan-
guages, such as pumping methods for increasing rates of convergence, are persua-
sively discussed elsewhere [3] but stray beyond our present topic. If we are to raise
the level of expressiveness of scientific programming we might wish to consider
using similar conventions when coding such concepts. As we see below, with appro-
priate compilation technology, this can result in an increase in performance.

3 The AD Transforms Are Higher-Order Functions

The first argument f to the nint procedure of the previous section obeys a partic-
ular API: nint can call f, but (at least in any mainstream language) there are no
other operations (with the possible exception of a conservative test for equality) that
can be performed on a function passed as an argument. We might imagine improv-
ing nint’s accuracy and efficiency by having it use derivative information, so that
it could more accurately and efficiently adapt its points of evaluation to the local
curvature of f. Of course, we would want an AD transform of f rather than some
poor numerical approximation to the desired derivative. Upon deciding to do this, we
would have two alternatives. One would be to change the signature of nint so that
it takes an additional argument df that calculates the derivative of f at a point. This
alternative requires rewriting every call to nint to pass this extra argument. Some
call sites would be passing a function argument to nint that is itself a parameter
to the calling routine, resulting in a ripple effect of augmentation of various APIs.
This can be seen above, where nint2 would need to accept an extra parameter—or
perhaps two extra parameters. This alternative, which we might call caller-derives,
requires potentially global changes in order to change a local decision about how a
particular numerical integration routine operates, and is therefore a severe violation
of the principles of modularity.

The other alternative would be for nint to be able to internally find the deriva-
tive of f, in a callee-derives discipline. In order to do this, it would need to be able
to invoke AD upon that function argument. To be concrete, we posit two derivative-
taking operators which perform the forward- and reverse-mode AD transforms on
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the functions they are passed.1 These have a somewhat complex API, so as to
avoid repeated calculation of the primal function during derivative calculation. For
forward-mode AD, we introduce

−→
J which we for now give a simplified signa-

ture
−→
J : (Rn → R

m)→ ((Rn×R
n)→ (Rm×R

m)). This takes a numeric function
R

n→ R
m and returns an augmented function which takes what the original function

took along with a perturbation direction in its input space, and returns what the orig-
inal function returned along with a perturbation direction in its output space. This
mapping from an input perturbation to an output perturbation is equivalent to multi-
plication by the Jacobian. Its reverse-mode AD sibling has a slightly more complex
API, which we can caricature as

←−
J : (Rn → R

m)→ (Rn → (Rm× (Rm → R
n))).

This takes a numeric function R
n → R

m and returns an augmented function which
takes what the original function took and returns what the original function returned
paired with a “reverse phase” function that maps a sensitivity in the output space
back to a sensitivity in the input space. This mapping of an output sensitivity to an
input sensitivity is equivalent to multiplication by the transpose of the Jacobian.

These AD operators are (however implemented, and whether confined to a pre-
processor or supported as dynamic run-time constructs) higher-order functions, but
they cannot be written in the conventional λ -calculus. The machinery to allow them
to be expressed is somewhat involved [6, 7, 8].

Part of the reason for this complexity can be seen in nint2 above, which illus-
trates the need to handle not only anonymous functions but also higher-order func-
tions, nesting, and interactions between variables of various scopes that correspond
to the distinct nested invocations of the AD operators. If nint is modified to take the
derivative of its function argument, then the outer call to nint inside nint2 will
take the derivative of an unnamed function which internally invokes nint. Since
this inner nint also invokes the derivative operator, the

−→
J and

←−
J operators must

both be able to be applied to functions that internally invoke
−→
J and

←−
J . We also do

not wish to introduce a new special “tape” data type onto which computation flow
graphs are recorded, as this would both increase the number of data types present in
the system, and render the system less amenable to standard optimizations.

Of course, nesting of AD operators is only one sort of interaction between con-
structs, in this case between two AD constructs. We wish to make all interaction
between all available constructs both correct and robust. Our means to that end are
uniformity and generality, and we therefore generalize the AD operators

−→
J and

←−
J

to apply not only to numeric functions R
n→ R

m but to any function α → β , where
α and β are arbitrary types. Note that α and β might in fact be function types, so we
will be assigning a meaning to “the forward derivative of the higher-order function
map,” or to the derivative of nint. This generalization will allow us to mechani-
cally transform the code bodies of functions without regard to the types of the func-
tions called within those code bodies. But in order to understand this generalization,
we briefly digress into a mathematical domain that can be used to define and link
forward- and reverse-mode AD.

1 One can imagine hybrid operators; we leave that for the future.
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4 AD and Differential Geometry

We now use some concepts from differential geometry to motivate and roughly ex-
plain the types and relationships in our AD-augmented λ -calculus. It is important to
note that this is a cartoon sketch, with many details suppressed or even altered for
brevity, clarity, and intuition.

In differential geometry, a differentiable manifold N has some structure asso-
ciated with it. Each point x ∈N has an associated vector space called its tangent
space, whose members can be thought of as directions in which x can be locally
perturbed in N . We call this a tangent vector of x and write it

−⇁
x . An element x

paired with an element
−⇁
x of the tangent space of x is called a tangent bundle, writ-

ten −⇀x = (x,
−⇁
x ). A function between two differentiable manifolds, f : N →M ,

which is differentiable at x, mapping it to y = f (x), can be lifted to map tangent
bundles. In differential geometry this is called the pushforward of f . We will write
−⇀y = (y,

−⇁
y ) =

−⇀
f (−⇀x ) =

−⇀
f (x,
−⇁
x ). (This notation differs from the usual notation of

TMx for the tangent space of x ∈M .)
We import this machinery of the pushforward, but reinterpret it quite concretely.

When f is a function represented in a concrete expression in our augmented λ -
calculus, we mechanically transform it into

−⇀
f =
−→
J ( f ). Moreover when x is a par-

ticular value, with a particular shape, we define the shape of
−⇁
x , an element of the

tangent space of x, in terms of the shape of x. If x : α , meaning that x has type (or
shape) α , we say that

−⇁
x :
−⇁
α and −⇀x : −⇀α . These proceed by cases, and (with some

simplification here for expository purposes) we can say that a perturbation of a real
is real,

−⇁
R = R; the perturbation of a pair is a pair of perturbations,

−−−⇁
α×β =

−⇁
α ×−⇁β ,

and the perturbation of a discrete value contains no information, so
−⇁
α = void when

α is a discrete type like bool or int. This leaves the most interesting:
−−−−⇁
α → β , the

perturbation of a function. This is well defined in differential geometry, which would
give
−−−−⇁
α → β =

−⇁
α →−⇁β , but we have an extra complication. We must regard a map-

ping f : α → β as depending not only on the input value, but also on the value of
any free variables that occur in the definition of f . Roughly speaking then, if γ is
the type of the combination of all the free variables of the mapping under consid-

eration, which we write as f : α γ→ β , then
−−−−⇁
α γ→ β=

−⇁
α
−⇁
γ→−⇁β . However we never

map such raw tangent values, but always tangent bundles. These have similar signa-
tures, but with tangents always associated with the value whose tangent space they
are elements of.

The powerful intuition we now bring from differential geometry is that just as the
above allows us to extend the notion of the forward-mode AD transform to arbitrary
objects by regarding it as a pushforward of a function defined using the λ -calculus,
we can use the notion of a pullback to see how analogous notions can be defined
for reverse-mode AD. In essence, we use the definition of a cotangent space to re-
late the signatures of “sensitivities” (our term for what are called adjoint values in
physics or elements of a cotangent space in differential geometry) to the signatures
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of perturbations. Similarly, the reverse transform of a function is defined using the
definition of the pullback from differential geometry.

If
−⇀
f : (x,

−⇁
x ) �→ (y,

−⇁
y ) is a pushforward of f : x �→ y, then the pullback is

↼−
f :

↽−
y �→↽−

x , which must obey the relation
↽−

y •−⇁y =
↽−

x •−⇁x , where • is a gen-
eralized dot-product. If

−→
J : f �→ −⇀f , then

←−
J : f �→ (λx . ( f (x),

↼−
f )), and some

type simplifications occur. The most important of these is that we can generalize
−→
J

and
←−
J to apply not just to functions that map between objects of any type, but to

apply to any object of any type, with functions being a special case:
−→
J : α →−⇁α

and
←−
J : α →↽−

α . A detailed exposition of this augmented λ -calculus is beyond
our scope here. Its definition is a delicate dance, as the new mechanisms must be
sufficiently powerful to implement the AD operators, but not so powerful as to pre-
clude their own transformation by AD or by standard λ -calculus reductions. We can
however give a bit of a flavor: constructs like

−→
J (
←−
J ) and its cousins, which arise

naturally whenever there is nested application of the AD machinery, require novel
operators like

←−
J −1.

5 Migration to Compile Time

In the above exposition, the AD transforms are presented as first-class functions that
operate on an even footing with other first-class functions in the system, like +. How-
ever, compilers are able to migrate many operations that appear to be done at run time
to compile time. For instance, the code fragment (2+3)might seem to require a run-
time addition, but a sufficiently powerful compiler is able to migrate this addition to
compile time. A compiler has been constructed, based on the above constructs and
ideas, which is able to migrate almost all scaffolding supporting the raw numerical
computation to compile time. In essence, a language called VLAD consisting of the
above AD mechanisms in addition to a suite of numeric primitives is defined. A com-
piler for VLAD called STALINGRAD has been constructed which uses polyvariant
union-free flow analysis [10]. This analysis, for many example programs we have
written, allows all scaffolding and function manipulation to be migrated to compile
time, leaving for run time a mix of machine instructions whose floating-point density
compares favorably to that of code emitted by highly tuned AD systems based on pre-
processors and FORTRAN. Although this aggressive compiler currently handles only
the forward-mode AD transform, an associated VLAD interpreter handles both the
forward- and reverse-mode AD constructs with full general nesting. The compiler is
being extended to similarly optimize reverse-mode AD, and no significant barriers
in this endeavor are anticipated.

Although it is not a production-quality compiler (it is slow, cannot handle large
examples, does not support arrays or other update-in-place data structures, and
is in general unsuitable for end users) remedying its deficiencies and building a
production-quality compiler would be straightforward, involving only known meth-
ods [5, 11]. The compiler’s limitation to union-free analyses and finite unrolling
of recursive data structures could also be relaxed using standard implementation
techniques.
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6 Some Preliminary Performance Results

We illustrate the power of our techniques with two examples. These were chosen to
illustrate a hierarchy of mathematical abstractions built on a higher-order gradient
operator [8]. They were not chosen to give an advantage to the present system or to
compromise performance of other systems. They do however show how awkward it
can be to express these concepts in other systems, even overloading-based systems.

Figure 1 gives the essence of the two examples. It starts with code shared be-
tween these examples: multivariate-argmin implements a multivariate op-
timizer using adaptive naı̈ve gradient descent. This iterates xi+1 = xi − η∇ f (xi)
until either ‖∇ f (x)‖ or ‖xi+1− xi‖ is small, increasing η when progress is made
and decreasing η when no progress is made. The VLAD primitives bundle and
tangent construct and access tangent bundles, j* is

−→
J , and real shields a

value from the optimizer. Omitted are definitions for standard SCHEME primitives
and the functions sqr that squares its argument, map-n that maps a function over
the list (0 . . .n−1), reduce that folds a binary function with a specified identity
over a list, v+ and v- that perform vector addition and subtraction, k*v that mul-
tiplies a vector by a scalar, magnitude that computes the magnitude of a vector,
distance that computes the l2 norm of the difference of two vectors, and e that
returns the i-th basis vector of dimension n.

The first example, saddle, computes a saddle point: min(x1,y1) max(x2,y2) f (x,y)
where we use the trivial function f (x,y) = (x2

1 + y2
1 )− (x2

2 + y2
2 ). The second

example, particle, models a charged particle traveling non-relativistically in a
plane with position x(t) and velocity ẋ(t) and accelerated by an electric field formed
by a pair of repulsive bodies, p(x;w) = ‖x− (10,10− w)‖−1 + ‖x− (10,0)‖−1,
where w is a modifiable control parameter of the system, and hits the x-axis at posi-
tion x(t f ). We optimize w so as to minimize E(w) = x0(t f )2, with the goal of finding
a value for w that causes the particle’s path to intersect the origin.

Naı̈ve Euler ODE integration (ẍ(t) =− ∇x p(x)|x=x(t); ẋ(t +∆ t) = ẋ(t)+∆ t ẍ(t);
x(t +∆ t) = x(t)+∆ t ẋ(t)) is used to compute the particle’s path, with a linear inter-
polation to find the x-axis intersect (when x1(t +∆ t)≤ 0 we let ∆ t f =−x1(t)/ẋ1(t);
t f = t +∆ t f ; x(t f ) = x(t)+∆ t f ẋ(t) and calculate the final error as E(w) = x0(t f )2.)
The final error is minimized with respect to w by multivariate-argmin.

Each task models a class of real-world problems (rational agent-agent interac-
tion and agent-world interaction) that appear in game theory, economics, machine
learning, automatic control theory, theoretical neurobiology, and design optimiza-
tion. Each also requires nesting: a single invocation of even higher-order AD is
insufficient. Furthermore, they use standard vector arithmetic which, without our
techniques, would require allocation and reclamation of new vector objects whose
size might be unknown at compile time, and access to the components of such vectors
would require indirection. They also use higher-order functions: ones like map-n
and reduce, that are familiar to the functional-programming community, and ones
like gradient and multivariate-argmin, that are familiar to numerical pro-
grammers. Without our techniques, these would require closures and indirect func-
tion calls to unspecified targets.
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(define ((gradient f) x)
(let ((n (length x))) ((map-n (lambda (i) (tangent ((j* f)
(bundle x (e i n)))))) n)))

(define (multivariate-argmin f x)
(let ((g (gradient f)))
(letrec ((loop (lambda (x fx gx eta i)

(cond ((<= (magnitude gx) (real 1e-5)) x)
((= i (real 10)) (loop x fx gx (* (real 2) eta)
(real 0)))

(else (let ((x-prime (v- x (k*v eta gx))))
(if (<= (distance x x-prime) (real 1e-5))

x
(let ((fx-prime (f x-prime)))
(if (< fx-prime fx)

(loop x-prime fx-prime (g x-prime)
eta (+ i 1))

(loop x fx gx (/ eta (real 2))
(real 0)))))))))))

(loop x (f x) (g x) (real 1e-5) (real 0)))))

(define (multivariate-argmax f x) (multivariate-argmin (lambda (x)
(- (real 0) (f x))) x))

(define (multivariate-max f x) (f (multivariate-argmax f x)))

(define (saddle)
(let* ((start (list (real 1) (real 1)))

(f (lambda (x1 y1 x2 y2) (- (+ (sqr x1) (sqr y1))
(+ (sqr x2) (sqr y2)))))

((list x1* y1*) (multivariate-argmin
(lambda ((list x1 y1)) (multivariate-max

(lambda ((list x2 y2))
(f x1 y1 x2 y2)) start)) start))

((list x2* y2*) (multivariate-argmax (lambda ((list x2 y2))
(f x1* y1* x2 y2)) start)))

(list (list (write x1*) (write y1*)) (list (write x2*) (write y2*)))))

(define (naive-euler w)
(let* ((charges (list (list (real 10) (- (real 10) w))
(list (real 10) (real 0))))

(x-initial (list (real 0) (real 8)))
(xdot-initial (list (real 0.75) (real 0)))
(delta-t (real 1e-1))
(p (lambda (x) ((reduce + (real 0)) ((map (lambda (c) (/ (real 1)

(distance x c)))) charges)))))
(letrec ((loop (lambda (x xdot)

(let* ((xddot (k*v (real -1) ((gradient p) x)))
(x-new (v+ x (k*v delta-t xdot))))
(if (positive? (list-ref x-new 1))

(loop x-new (v+ xdot (k*v delta-t xddot)))
(let* ((delta-t-f (/ (- (real 0) (list-ref x 1))

(list-ref xdot 1)))
(x-t-f (v+ x (k*v delta-t-f xdot))))

(sqr (list-ref x-t-f 0))))))))
(loop x-initial xdot-initial))))

(define (particle)
(let* ((w0 (real 0)) ((list w*) (multivariate-argmin (lambda ((list w))
(naive-euler w)) (list w0))))
(write w*)))

Fig. 1. The essence of the saddle and particle examples.
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Table 1. Run times of our examples normalized relative to a unit run time for STALINGRAD.

Language/Implementation

Example STALINGRAD ADIFOR TAPENADE FADBAD++

saddle 1.00 0.49 0.72 5.93
particle 1.00 0.85 1.76 32.09

STALINGRAD performed a polyvariant union-free flow analysis on both of these
examples, and generated Fortran-like code. Variants of these examples were also
coded in SCHEME, ML, HASKELL, C++, and FORTRAN, and run with a variety of
compilers and AD implementations. Here we discuss only the C++ and FORTRAN
versions. For C++, the FADBAD++ implementation of forward AD was used, com-
piled with G++. For FORTRAN, the ADIFOR and TAPENADE implementations of
forward AD were used, compiled with G77. In all variants attempts were made to
be faithful to both the generality of the mathematical concepts represented in the
examples and to the standard coding style of each language. This means in particu-
lar that “tangent-vector” mode was used where available, which put STALINGRAD
at a disadvantage of about a factor of two. (Although STALINGRAD does not im-
plement a tangent-vector mode it would be straightforward to add such a facility by
generalizing bundle and tangent to accept and return lists of tangent values,
respectively.)

Although the most prominent high-performance AD systems (ADIFOR, TAPE-
NADE, and ADIC) claim to support nested use of AD operators, it is “well known”
within the AD community they do not (Jean Utke, personal communication), as
the present authors discovered when attempting to assess the performance of other
AD systems on the above tasks. Implementing these examples in those systems
required enormous effort, to diagnose the various warning and silently incorrect
results and to craft intricate work-arounds where possible. These included both
rewriting input source code to meet a variety of unspecified, undocumented, and
unchecked restrictions, and modifying the output code produced by some of the
tools [9]. Table 1 summarizes the run times, normalized relative to a unit run time
for STALINGRAD. Source code for all variants of our examples, the scripts used
to produce Table 1, and the log produced by running those scripts are available
at http://www.bcl.hamilton.ie/˜qobi/ad2008/. This research proto-
type exhibits an increase in performance of one to three orders of magnitude when
compared with the overloading-based forward AD implementations for both func-
tional and imperative languages (of which only the fastest is shown) and roughly
matches the performance of the transformation-based forward AD implementations
for imperative languages.
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7 Discussion and Conclusion

The TAPENADE 2.1 User’s Guide [2, pp 72] states:

10. KNOWN PROBLEMS AND DEVELOPMENTS TO COME
We conclude this user’s guide of TAPENADE by a quick description of
known problems, and how we plan to address them in the next releases.
[. . .] we focus on missing functionalities. [. . .]
10.4 Pointers and dynamic allocation
Full AD on FORTRAN95 supposes pointer analysis, and an extension of the
AD models on programs that use dynamic allocation. This is not done yet.
Whereas the tangent mode does not pose major problems for programs with
pointers and allocation, there are problems in the reverse mode. For exam-
ple, how should we handle a memory deallocation in the reverse mode?
During the reverse sweep, the memory must be reallocated somehow, and
the pointers must point back into this reallocated memory. Finding the more
efficient way to handle this is still an open problem.

The Future Plans section on the OPENAD web site
http://www-unix.mcs.anl.gov/˜utke/OpenAD/ states:

4. Language-coverage and library handling in adjoint code
2. language concepts (e.g., array arithmetic, pointers and dynamic
memory allocation, polymorphism):
Many language concepts, in particular those found in object-oriented lan-
guages, have never been considered in the context of automatic adjoint code
generation. We are aware of several hard theoretical and technical problems
that need to be considered in this context. Without an answer to these open
questions the correctness of the adjoint code cannot be guaranteed.

In PLT, semantics are defined by reductions which transform a program from
the source language into the λ -calculus, or an equivalent formalism like SSA. Since
we have defined the AD operators in a λ -calculus setting in an extremely general
fashion, these operators inter-operate correctly with all other constructs in the lan-
guage. This addresses, in particular, all the above issues, and in fact all such issues:
by operating in this framework, the AD constructs can be made available in a dy-
namic fashion, with extreme generality and uniformity. This framework has another
benefit: compiler optimizations and other compiler and implementation techniques
are already formulated in the same framework, which allows the AD constructs to
be integrated into compilers and combined with aggressive optimization. This gives
the numerical programmer the best of both worlds: the ability to write confidently
in an expressive higher-order modular dynamic style while obtaining competitive
numerical performance.

The λ -calculus approach also opens some exciting theoretical questions. The
current system is based on the untyped λ -calculus. Can the

−→
J and

←−
J operators be

incorporated into a typed λ -calculus? Many models of real computation have been
developed; can this system be formalized in that sense? Can the AD operators as
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defined be proved correct, in the sense of matching a formal specification written
in terms of limits or non-intuitive differential geometric constructions? Is there a
relationship between this augmented λ -calculus and synthetic differential geometry?
Could entire AD systems be built and formally proven correct?
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Summary. We present a polynomial-time algorithm to improve the performance of comput-
ing the Hessian of a vector-valued function. The values of the Hessian derivatives are calcu-
lated by applying face, edge, or vertex elimination operations on a symmetric computational
graph. Our algorithm detects symmetry in the graph by matching the vertices and edges with
their corresponding pairs; thereby enabling us to identify duplicate operations. Through the
detection of symmetry, the computation costs can potentially be halved by performing only
one of each of these operations.

Keywords: Hessian computational graphs, directed acyclic graph, symmetry

1 Introduction

Consider the evaluation of a vector-valued function F : Rm→ Rn. A symbolic eval-
uation of such a function consists of a sequence of statements. The data dependence
between the variables in these statements can be visualized as a directed acyclic
graph (DAG) [4]. The source vertices are the independent variables. All other ver-
tices represent a function of their immediate predecessors. The intermediate vertices
represent the intermediate steps in the computations, and the sinks represent the de-
pendent variables. The edges between vertices are labeled to represent the partial
derivatives. The gradient of a dependent variable y with respect to an independent
variable x can be obtained by adding the products of all the partials along all the
paths connecting x and y.

The computational graph can be used for calculating Jacobians of functions
by applying different elimination techniques [4, 8]. The Hessian of a function
F : Rm → Rn can be similarly calculated from a symmetric DAG. This symmetric
computational graph corresponds to the gradient computation and can be generated
from the function DAG by using the non incremental reverse mode of automatic
differentiation. Details of creating such symmetric graphs can be found in [4].

The symmetric structure of the graph can be exploited by storing only half
the graph. More importantly, it reduces the number of operations in the Hessian
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computation because mirror operations need not be recomputed. Indeed, it has been
conjectured that to minimize the number of operations, one must maintain the sym-
metry of the graph while computing the Hessian. In some cases, such as when the
computational graph is formed and manipulated at runtime, it is trivial to identify
the gradient variables corresponding to particular function variables, since the ver-
tices for these variables were introduced by the automatic differentiation (AD) tool.
However, when one employs a two pass (forward over reverse) differentiation strat-
egy with complete source-to-source roundtrips, maintaining a definitive association
between function and gradient variables is much harder. Furthermore, if the gradient
computation is hand coded, this association will not be specified and must instead
be discovered. For these reasons, it is highly desirable to be able to detect the sym-
metry in any computational graph. This also facilitates better software engineering
practices. Determining the elimination sequence depends only on the computational
graph, and not on the steps of its generation; therefore, a black-box concept should
also prevail in determining the symmetry of the graph.

Testing the symmetry of a general graph is an NP-complete problem [2, 6].
Hessian computational graphs present a special case, however, since they are di-
rected acyclic graphs and we are looking only for an axis of symmetry perpendicular
to the direction of the computational flow. Given these constraints, we have formu-
lated an algorithm for detecting symmetry in DAGs, that runs in polynomial time, of
the order O(|V |2 log |V |), where |V | is the number of vertices in the graph.

The rest of the paper is arranged as follows. In Sect. 2 we define the graph the-
ory terms and mathematical expressions that will be used to describe and analyze
this algorithm. In Sect. 3 we describe the algorithm for detecting symmetry and give
an illustrative example. In Sect. 4 we analyze the algorithm and investigate its cor-
rectness and runtime complexity. In Sect. 5 we provide experimental results. We
conclude with a discussion of our research plans.

2 Mathematical Definitions

In this section we define some terms used in graph theory. Unless mentioned other-
wise, the terms used here are as they are defined in [5].

A graph G = (V,E) is defined as a set of vertices V and a set of edges E. An
edge e ∈ E is associated with two vertices u,v, called its endpoints. If a vertex v is
an endpoint of an edge e, then e is incident on v. A vertex u is a neighbor of v if they
are joined by an edge. In this paper we denote the set of the neighbors of v as N(v).

A directed edge is an edge e = (u,v), one of whose endpoints, u, is designated
as the source and whose other endpoint, v, is designated as the target. A directed
edge is directed from its source to its target. If e = (u,v) is a directed edge, then u
is the predecessor of v, and v is the successor of u. A directed graph (digraph) is a
graph with directed edges. The indegree of a vertex v in a digraph is the number of
edges directed toward v and is equal to the number of predecessors. The outdegree
of a vertex v in a digraph is the number of edges directed from v and is equal to the
number of successors.
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A walk in a graph G is an alternating sequence of vertices and edges, W =
v0,e1, . . . , en,vn, such that for j = 1, . . . ,n, the vertices v j−1 and v j are the endpoints
of e j. A walk is closed if the initial vertex is also the final vertex. A trail is a walk
such that no edge occurs more than once. A path is a trail where no internal vertex
is repeated. A closed path is called a cycle. A directed acyclic graph (DAG), is a
directed graph with no cycles. A vertex-induced subgraph is a subset of the vertices
of a graph together with any edges whose endpoints are both in this subset.

An automorphism [2] of an undirected graph G = (V,E) is a function σ of V and
E such that

1. σ(E) = E,
2. σ(V ) = V , and
3. e ∈ E is incident to v ∈V ⇐⇒ σ(e) is incident to σ(v).

The graph G is said to have axial symmetry if there exists an automorphism σ ∈
Aut(G) such that the subgraph of G induced by the fixed point set of σ is embeddable
on a line [2], i.e., the fixed points and the edges between them can be placed on a
straight line. Examples of such an embedding can be found in [2]. We define a graph
to exhibit directed axial symmetry if it satisfies the first two properties and a modified
form of the third property of automorphism as follows:

• If the source of e ∈ E is u ∈V and the target is v ∈V , then the source and target
of σ(e) are σ(v) and σ(u), respectively.

By the definition of its construction, a Hessian computational graph contains no fixed
points in the vertex set, as that would mean the variable and its adjoint being repre-
sented by the same vertex and therefore identical. We define (v,σ(v)) as a vertex
pair. Vertex pairs are determined according to a given function σ .

3 Symmetry Detection Algorithm

Consider a DAG G = (V,E) whose vertices are divided into two sets, V 1 and V 2,
based on a function σ such that we have the following rules

A1: V 1 and V 2 are disjoint sets and V 1∪V 2 = V .
A2: There exists a bijection σ , such that v ∈V 1⇔ σ(v) ∈V 2.
A3: If there is an edge e1 = (u,v) then there exists an edge e2 = (σ(v),σ(u)).

Lemma 1. For any DAG G = (V,E), the vertices can be divided into V 1 and V 2
according to rules A1–A3 if and only if G has directed axial symmetry.

Proof. • If G has directed axial symmetry, such a division exists: If G has directed
axial symmetry then there exists a bijection ρ that maps v to its pair ρ(v). Since
Hessian computational graphs do not have any fixed points, v �= ρ(v), we place
v in V 1 and ρ(v) in V 2. These two sets will be disjoint because elements in
V 1 cannot be in V 2 and vice versa. In this manner all vertices can be mapped
into either V 1 or V 2. Therefore condition A1 is satisfied. The definition of the
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division enforces condition A2, as ρ has the same properties as σ . It follows
that e2 = ρ(e1); therefore A3 is equivalent to the third property of directed axial
symmetry.

• If G can be divided according to rules A1–A3 then it exhibits directed axial sym-
metry: Let G1 and G2 be the subgraphs induced by the vertices in V1 and V2,
respectively. It is easy to see that if the direction of the edges is ignored, then
by conditions A1 and A2, G1 and G2 are isomorphic graphs, and by condition
A3, for each edge e1 = (u,v) in G1, there is exactly one edge e2 = (σ(v),σ(u)).
Furthermore, by condition A3, edges that are not part of either subgraph are
symmetric pairs or fixed points, therefore obeying the third property of auto-
morphism. Thus, if the graph G can be divided as per rules A1–A3, then it has
directed axial symmetry.

3.1 Overview of the Algorithm

We now present an overview of the algorithm. The directed axial symmetry detec-
tion algorithm subdivides the vertices according to rules A1–A3. The elements are
divided into subgroups (denoted by Ψ ). Each subgroup is associated with a vertex
pair (v,σ(v)). At subsequent iterations of the algorithm, the neighbors of v and σ(v)
are stored in groupΨv σ(v). Below we briefly explain each step of the algorithm.

Step 1 Group vertices such that two vertices u and v are in the same group if either
of the following conditions are satisfied
1. indegree(v)=indegree(u) AND outdegree(v)=outdegree(u)
2. indegree(v)=outdegree(u) AND outdegree(v)=indegree(u)
Implementation For each vertex v obtain the value of the number of prede-

cessors (indegree) and successors (outdegree). The vertex is placed into the
primal array if indegree(v) < outdegree(v), into the dual if indegree(v) >
outdegree(v), and into neutral arrays if indegree(v) = outdegree(v).

Objective According to rule A3, for every edge e1 = (u,v), there exists an edge
e2 = (σ(v),σ(u)). Therefore, the number of predecessors (and successors)
of a vertex v should be exactly equal to the succcessors (and predecessors)
of its vertex partner, σ(v). Step 1 groups the potential vertex pairs together.

Step 2 Subdivide the original groups for at most |V |/2 iterations. The subdivision
terminates successfully when all |V |/2 vertex pairs are identified.
Implementation

1. Identify a vertex pair Sort the groups according to the number of el-
ements. If the group with the smallest number of elements contains 2
vertices, then label one as primal Vp and the other as dual Vd . Vp and Vd
form a vertex pair. If the smallest group has more than 2 vertices, then
break ties (as given below) to obtain a vertex pair.

2. Group vertices by their neighbors Identify the neighbors of Vp and
Vd , remove them from their original group, and put them in a new group
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Fig. 1. Hessian computational graph exhibiting multiple axes of symmetry corresponding to
different bijection functions. The computational graph corresponds to the function Z=X*Y.

such that the neighbors of Vp are inΨVp Vd .primal and the neighbors of
Vd are inΨVp Vd .dual.

3. Check for symmetry Check whether all groups have an equal number
of primal and dual vertices. If this condition is satisfied, then continue
subdivision; otherwise declare the graph as non-symmetric and termi-
nate.

Objective: Step 2.1 divides the vertices according to rule A1. Step 2.2 follows
rule A2 and A3, to group potential vertex pairs. If any group has unequal
number of vertices in primal and dual arrays, then we cannot define a bijec-
tion σ among the elements of that group. Step 2.3 checks this condition and
terminates if the condition is not satisfied.

Tie Breaking: Some graphs, such as the one shown in Fig. 1, may have more than
one bijection σ that satisfies rules A1–A3. The algorithm can isolate only those vertex
pairs that are unique for all choices of σ . If there exist vertex pairs that depend on a
particular choice of σ , then, at Step 2.1, we might encounter groups with the lowest
number of elements that have more than 2 vertices. In this case we can use additional
information about the graph, such as edge weights or user defined constraints. If no
such information is available then we break the tie arbitrarily, since the vertices are
indistinguishable with respect to Hessian computation.

This method of tie breaking is sufficient to determine vertex pairs in Hessian
computational graphs. However, the technique does not extend to general DAGs. For
this reason, we have developed a polynomial-time algorithm that can detect axial
symmetry in a wider class of DAGs, but the complexity is an order higher than the
one used for Hessian graphs.

3.2 Pseudocode for Symmetry Detection Algorithm

In this subsection we present the pseudocode for the symmetry detection algorithm.
The following pseudocode terminates sucessfully when symmetry is detected.

STEP 1: Divide the vertices into groups
For all vertex v

i = indegree(v) and j = outdegree(v)
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If groupΨi j does not exist;
If i �= j; createΨi j with arrays primal and dual
If i = j; createΨi j with array neutral

If i < j then v is added toΨi j.primal
If i > j then v is added toΨi j.dual
If i = j then v is added toΨi j.neutral

STEP 2: Subdivide the groups
Set n to number of groups
while (n < |V |/2)

Sort groups in increasing order of number of elements in the group
SetΨlow to the group with lowest number of elements
IfΨlow has more than two elements use tie breaker
IfΨlow contains primal and dual arrays

Set VP=Ψlow.primal[0]
Set VD=Ψlow.dual[0]

else
Set VP=Ψlow.neutral[0]
Set VD=Ψlow.neutral[1]

For all neighbors NP of VP
Remove NP from its original group
If groupΨV P V D does not exist;

CreateΨV P V D with arrays primal and dual
NP is added toΨV P V D.primal

For all neighbors ND of VD
Remove ND from its original group
ND is added toΨV P V D.dual

If all groups have equal number of real and dual vertices or even number
of neutral vertices
Set n to number of groups
continue;

Else; Graph is not symmetric; break;

3.3 An Illustrative Example

Figure 2 shows how the algorithm works on a Hessian computational graph cor-
responding to the function y = exp(x1) ∗ sin(x1 + x2). The graph is formed by 12
vertices and 16 edges.

In Step 1, the vertices are divided into groups according to their indegrees and
outdegrees. In most of the groups, with one primal and one dual vertex, the pairs are
easily identified. Two groups, however, need to be further classified. They are groups
(2:2) (as labeled in the figure) with two neutral vertices and (1:2) (as labeled in the
figure) with two primal and two dual vertices. Also note that 4 is labeled as primal
and 4 is labeled as dual. This is because the indegree of 4 is lower than its outdegree
and vice-versa for 4. We will see that in course of the subdivision their labels will
change.
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Fig. 2. Hessian computational graph for y = exp(x1)∗ sin(x1 + x2), where V−1 = x1 and V0 =
x2. The figure is from an example in [4].

In Step 2 Subdivision (i), vertex−1 is set to Vp and−1 is set to Vd . The neighbors
of −1, N(−1) = {1,2,−1} and N(−1) = {1,2,−1}. Consequently 1 is relabeled
primal, and 1 is relabeled dual. The labels for 2 and 2 do not change; however they
are subdivided from their original group (1:2) to form a new group (1:2a). Since −1
and −1 are already subdivided, nothing is done on these vertices.

At this point the vertex pairs are already known, and we can stop the simulation.
If we were to continue, however, the next subdivision step would be the following:

1. Subdivision ii: Vertices 0 and 0 are identified as a vertex pair.
2. Subdivision iii: Vertices 1 and 1 are identified as a vertex pair.
3. Subdivision iv: Vertices 3 and 3 are identified as a vertex pair. Vertex 4 is rela-

beled as primal and 4 is relabeled as dual.
4. Subdivision v: Vertices 4 and 4 are identified as a vertex pair. The only remaining

vertices 2 and 2 also form a vertex pair.

The set of primal vertices, {−1,0,1,2,3,4} form subgraph G1, and the dual ver-
tices, {−1,0,1,2,3,4} form subgraph G2. The set of primal and dual vertices are
disjoint and together constitute the entire set of vertices in the graph. Ignoring the di-
rection of the edges, G1 and G2 are isomorphic. We note that the relabeling of primal
and dual vertices is not necessary for determining vertex pairs. If relabeling is imple-
mented however, all the vertices of each subgraph are more likely to be connected. It
is easier to implement elimination strategies on connected graphs.
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4 Analysis of the Algorithm

In this section we give an estimate of the running time of the algorithm and prove its
correctness.

Theorem 1. Runtime complexity of the algorithm for a graph G = (V,E) is of the
order O(|V |2 log |V |), where |V | is the number of vertices in set V .

Proof. Step 1 takes time proportional to the number of vertices.
Each subdivision of Step 2 requires the following.

1. Sorting the groups to find the one with the smallest number of elements takes
time O(n logn), where n is the number of groups.

2. Subdividing the neighbors takes time proportional to the degree of the vertices
in the vertex pair.

3. Checking the elements in primal-dual subarrays takes time proportional to the
total number of elements in each group, which is equal to the number of vertices.
Therefore the time is O(|V |).

If the graph is directed axially symmetric, that is the algorithm does not terminate at
Step 2.3, then all vertex pairs are identified after at most |V |/2 steps. Therefore, the
time complexity is O(|V |)+ |V |/2(O(n logn)+O(|V |))+∑v∈V (deg(v)). We observe
that n ≤ |V | and ∑v∈V (deg(v)) = O(|E|). Also note that the number of edges can
be at most the square of the vertices, i.e. |E| = O(|V |2) [5]. Therefore the time is
O(|V |)+ |V |/2O(|V | log |V |+ |V |)+O(|V |2) = O(|V |2 log |V |).

It should be noted that the lower the value of n, the higher the number of iterations
in Step 2. Particularly where n = 2 at all iterations of Step 2, there has to be |V |/2
iterations. However the complexity is much lower. It is O(|V |)+ |V |/2(O(2log2)+
O|V |)+O(|V |2) = O(|V |2).

Theorem 2. If the algorithm terminates successfully, we have two vertex sets, VP and
VD, satisfying conditions A1, A2, and A3.

Proof. Proof of A1: According to the algorithm, at each subdivision a vertex can
have only one label. Let VP be the set of primals and VD be the set of duals. It is easy
to see that these two sets are disjoint. If the algorithm terminates successfully, then
all neutral vertices at the end of Step 2 are labeled as primal or dual. Therefore the
union of VP and VD contains all the vertices in the graph.

Proof of A2: At each step of the subdivision, one primal vertex and one dual
vertex are added to VP and VD, respectively. These vertices are distinct. Therefore, VP
and VD have equal and distinct elements. Hence, it is possible to define a bijection σ
from VP to VD.

Proof of A3: Let there exist a bijection σ such that there is at least one edge e1 =
(u,v) with no corresponding edge e2 = (σ(v),σ(u)). According to the algorithm
(u,σ(u)) and (v,σ(v)) have been identified at some point as vertex pairs. Therefore,
u and σ(u) were placed in the same group(s) as were v and σ(v). Without loss of
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generality we can assume that (u,σ(u)) was the first pair to be identified. When the
neighbors of the vertex pairs are subdivided then v is identified as a neighbor of u
and subdivided into a new group. Since no edge e2 = (σ(v),σ(u)) exists, σ(v) is not
placed in the same group as v. Thus v and σ(v) are in two different groups for the rest
of Step 2 and cannot be identified as vertex pairs. This contradicts our assumption
that (v,σ(v)) are vertex pairs. Therefore, there must exist an edge e2 = (σ(v),σ(u)).

5 Results and Discussion

We have implemented the symmetry detection algorithm within the OpenAD [10, 9]
framework and have successfully detected symmetry for several test graphs (Ex1
to Ex4) from [4]. We have also applied the algorithm to several test optimization
codes. The code corresponding to the graph labeled Opt checks the quality of a
mesh based on the inverse-mean ratio shape quality metric [7]. We also experimented
on two problems from the CUTE [3] test set of optimization codes. The first one,
corresponding to the graph named Poly [1] is based on maximizing the area of
a polygon and the second one that gives the graph Elec is based on finding the
minimal Columb potential of a given number of electrons [1].

Table 1 gives results for edge elimination by exploiting symmetry under forward,
reverse and lowest Markovitz [4] modes of elimination. The results demonstrate that
detection of symmetric vertices can reduce the number of operations. This technique
is most effective for the lowest Markovitz degree heuristic where the number of
operations are reduced by 39%. In a couple of cases, however, exploiting symmetry
did not reduce the number of multiplications, and in some cases even increased the
number. The reason for this anomaly, is the presence of anonymous vertices.

Anonymous Vertices: When the computational graph is generated in OpenAD,
it represents how the function would actually be evaluated on a computer. All inde-
pendent variables, though they can theoretically be represented by the same vertex,
are actually present the number of times that they are used in the right hand side of
any equation (X , Y and C occur twice in the right-hand graph of Fig. 3). Each vertex
in the generated graph can have an indegree of at most two, since in a computer only

Table 1. Number of multiplications used during edge elimination in Hessian computational
graphs.

Name Total Ideal Edges Forward Forward Reverse Reverse Markovitz Markovitz
Vertices Vertices (Symm) (Symm) (Symm)

Ex1 16 10 13 12 11 11 7 11 7
Ex2 18 12 16 30 22 26 19 24 15
Ex3 36 22 34 126 108 106 109 87 60
Elec 50 46 44 51 29 48 33 42 28
Poly 62 44 63 141 103 127 90 115 68
Opt 71 26 51 624 644 365 365 342 208
Ex4 81 40 75 340 318 262 247 197 147
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Fig. 3. Anonymous vertices in computational graphs. The left-hand figure shows the theo-
retical computational graph. The right-hand figure shows the graph generated by OpenAD.
The shaded nodes are the anonymous vertices. The computational graph corresponds to the
function f = X +(Y ∗ sin(X)).
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Fig. 4. Comparison of the theoretical (expected time) and the experimental time to detect
symmetry in the test set of graphs.

one operation can be calculated at a time. This is contrary to the theoretical notion
of a computational graph, where the indegree is equal to the variables required for
calculation. In addition, the computational graph generated by the software contains
anonymous vertices which do not represent any variable, but only intermediate cal-
culations. As shown in Fig. 3 anonymous vertices break the symmetry of the graph.
For particularly bad cases, such as the Opt graph, this can result in increased number
of computations.

Table 1 shows the total number of vertices (the sum of the variables, their adjoints
and anonymous vertices) as well as the ideal number of vertices consisting only of the
variables and their adjoints, as they would be in a theoretical computational graph.
It can be seen that for certain functions, the number of anonymous vertices can be
quite large compared to the number of the vertices.

Figure 4 compares the experimental time and the theoretical value. The time to
compute Ex1 is negligible compared to the other graphs, therefore we normalize the
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theoretical values with respect to the experimental value corresponding to graph Ex2.
The theoretical value is obtained from the function given in Sect. 4, which is;

|V |+ |E|+ IT (n logn+ |V |)

where |V | is the total number of vertices, |E| is the number of edges, IT is the number
of iterations taken in Step 2 of the algorithm and n is the number of real-dual or neu-
tral groups after the end of Step 1. The results show that the experimental results are
quite close and within the theoretically computed value, as predicted by the analysis.

6 Conclusions and Future Work

In this paper we developed an algorithm for detecting the duplicate pairs of ver-
tices and edges in a Hessian computational graph and demonstrated that exploiting
symmetry can lower the number of operations during the elimination process. The
reduction is sub optimal, however, since anonymous vertices break the symmetry of
the computational graph. Our future work involves improving the performance of
elimination algorithms by using symmetry. This work includes handling anonymous
vertices to preserve symmetry and designing elimination heuristics to better exploit
symmetry.
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Summary. Scarsity is the notion that the Jacobian J for a given function f : R
n �→ R

m may
have fewer than n ∗m degrees of freedom. A scarse J may be represented by a graph with a
minimal edge count. So far, scarsity has been recognized only from a high-level application
point of view, and no automatic exploitation has been attempted. We introduce an approach
to recognize and use scarsity in computational graphs in a source transformation context. The
goal is to approximate the minimal graph representation through a sequence of transformations
including eliminations, reroutings, and normalizations, with a secondary goal of minimizing
the transformation cost. The method requires no application-level insight and is implemented
as a fully automatic transformation in OpenAD. This paper introduces the problem and a set
of heuristics to approximate the minimal graph representation. We also present results on a set
of test problems.

Keywords: Reverse mode, scarsity, source transformation

1 Introduction

While automatic differentiation (AD) is established as key technology for comput-
ing derivatives of numerical programs, reducing the computational complexity and
the memory requirements remains a major challenge. For a given numerical pro-
gram many different high-level approaches exist for obtaining the desired derivative
information; see [2, 1]. In this paper we concentrate on the transformation of the
underlying computational graph, defined following the notation established in [2].
Consider a code that implements a numerical function

y = f(x) : R
n �→ R

m (1)

in the context of AD. We assume f can be represented by a directed acyclic com-
putational graph G = (V,E). The set V = X ∪ Z ∪Y comprises vertices for the n
independents X , the m dependents Y , and the p intermediate values Z occurring
in the computation of f. The edges (i, j) ∈ E represent the direct dependencies of
the j ∈ Z∪Y computed with elemental functions j = φ(. . . , i, . . .) on the arguments
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i ∈ X ∪Z. The computations imply a dependency relation i ≺ j. The φ are the ele-
mental functions (sin, cos, etc.) and operators (+,-,*, etc.) built into the given pro-
gramming language. All edges (i, j)∈ E are labeled with the local partial derivatives
c ji = ∂ j

∂ i .
Generally the code for f contains control flow (loops, branches) that precludes

its representation as a single G. One could construct G for a particular x = x0 at
runtime, for instance with operator overloading. Therefore, any automatic scarsity
detection and exploitation would have to take place at runtime, too. Disregarding the
prohibitive size of such a G for large-scale problems, there is little hope of amortizing
the overhead of graph construction and manipulation at runtime with efficiency gains
stemming from scarsity.

In the source transformation context, we can construct local computational
graphs at compile time, for instance within a basic block [8]. Because the construc-
tion and manipulation of the local graphs happen at compile time, any advantage
stemming from scarsity directly benefits the performance, since there is no runtime
overhead. We will consider f to be computed by a sequence of basic blocks f1, . . . , fl .
Each basic block f j has its corresponding computational graph G j. Using a variety
of elimination techniques [6], one can preaccumulate local Jacobians J j and then
perform propagation

forward ẏ j = J jẋ j; j = 1, . . . , l or reverse x̄ j = (J j)T ȳ j; j = l, . . . ,1 , (2)

where x j = (xi
j ∈ Vj : i = 1, . . . ,n j) and y j = (yi

j ∈ Vj : i = 1, . . . ,m j) are the inputs
and outputs of f j, respectively. From here on we will consider a single basic block f,
its computational graph G, and Jacobian J without explicitly denoting the index.

Griewank [3, 4] characterizes scarsity using the notion of degrees of freedom of a
mapping from an argument x to the Jacobian J(x) ∈R

m×n where we assume that the
Jacobian entries are individually perturbed. J is said to be scarse when there are fewer
than n ·m degrees of freedom. In exact arithmetic the Jacobian entries would be de-
termined by the n independents exclusively. The assumed perturbation, for instance
introduced by finite precision arithmetic, makes them independent which motivates
the consideration of up to n ·m degrees of freedom instead. J that are sparse or have
constant entries will also be scarse. Likewise, rank deficiency can lead to scarsity, for
example f(x) = (D + axT )x. Here we see that the Jacobian is dense but is the sum
of a diagonal matrix D and a rank 1 matrix axT . Generally, scarsity can be attributed
to a combination of sparsity, linear operations, and rank deficiency; see [4] for more
details. The origin of scarsity is not always as obvious as in our example but is rep-
resented in the structure of the underlying computational graph. The graph G for our
example is shown in Fig. 1. Clearly, it has only 3n edges, n of which are constant.

(a)

zc
c c

cc

c
(b)

Fig. 1. Computational graph (a) for
f(x) = (D + axT )x with an intermedi-
ate variable z = xT x and after its elim-
ination (b); constant edge labels marked
with “c.”
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If we eliminate the intermediate vertex z (see also Sect. 2.1), we end up with the
n2 nonconstant edges. When the reverse mode implementation relies on storing the
preaccumulated local Jacobians for use in (2), a reduction in the number of elements
to be stored translates into a longer section between checkpoints, which in turn may
lead to less recomputation in the checkpointing scheme.1 Often the edge labels not
only are constant but happen to be ±1. Aiming at the minimal number of nonunit
edges will greatly benefit propagation with (2), especially in vector mode; this was
the major motivation for investigating scarsity in [4]. Given these potential benefits
of scarsity, we address a number of questions in this paper. Can we automatically de-
tect scarsity in a source transformation context given that we see only local Jacobians
and assume no prior knowledge of scarsity from the application context? What is a
reasonable heuristic that can approximate a minimal representation of the Jacobian?
How can this be implemented in an AD tool? Are there practical scenarios where it
matters?

Section 2 covers the practical detection of scarsity and the propagation, Sect. 3
the results on some test examples, and Sect. 4 a summary and outlook.

2 Scarsity

The notion of scarsity for the local Jacobians introduced in Sect. 1 can already be
beneficial for single assignment statements. For instance consider s = sin(x1 + x2 +
x3 + x4), whose computational graph G is shown in Fig. 2. The initial G has one
variable and six unit edges. After eliminating the vertices (see Sect. 2.1) whose in
and out edges are all unit labeled, we still have one variable and four unit edges; see
Fig. 2(b). Complete elimination gives four variable edges. A forward propagation
implementing (2) on a graph G = (V,E) is simply the chain rule k̇ = k̇ + ckl l̇ for all
(l,k) in topological order. In vector mode this means each element ẋ i

j of ẋ j and with
it each v̇∈V is itself a vector ∈R

p for some 0 < p. Likewise, a reverse propagation is
implemented by l̄ = l̄ + ckl k̄ for all (l,k) in reverse topological order. Consequently,
in our example the propagation through (b) entails 3p scalar additions and p scalar
multiplications, while with (c) we would have the same number of additions but 4p
scalar multiplications. Clearly, in (c) all the edge labels are numerically the same;
however, this information is no longer recognizable in the structure.

Flattening of assignments into larger computational graphs [8] will provide more
opportunity for exploiting these structural properties beyond what can be achieved

(a)

u u

u uuu

(b)

u u u u

(c) Fig. 2. Computational graph
for s = sin(x1 + x2 + x3 + x4)
(a), minimal representation
after partial elimination (b), and
complete elimination (c); unit
edge labels are marked with “u.”

1 One can, of course, also consider the accumulation of the scarse Jacobian directly in the
reverse sweep, but this is beyond the scope of this paper.
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by considering only single assignments. This graph-based framework, on the other
hand, limits the scope of our investigation to structural properties. For example, the
fact that in a graph for the expression ∑x2

i all edge labels emanating from the xi
have a common factor 2 is not recognizable in the structure. Such algebraic depen-
dencies between edge labels can in theory lead to further reductions in the minimal
representation. However, their investigation is beyond the scope of this paper.

For a given graph G we want an approximation G∗ to the corresponding struc-
turally minimal graph, which is a graph with the minimal count of nonconstant edge
labels. Alternatively, we can aim at an approximation G+ to the structurally minimal
unit graph, which is a graph with the minimal count of nonunit edge labels.

2.1 Transformation Methods

Following the principal approach in [4] we consider a combination of edge elimina-
tion, rerouting, and normalization to transform the input graph G.

Elimination: An edge (i, j) can be front eliminated by reassigning the labels
cki = cki + ck j · c ji ∀k # j, followed by the removal of (i, j) from G.

An edge ( j,k) can be back eliminated by reassigning the labels
cki = cki + ck j · c ji ∀i≺ j, followed by the removal of ( j,k) from G.

We do not consider vertex eliminations, which can be seen as grouping the elimi-
nation of all in or out edges of a given vertex, because an unpublished example by
Naumann (see Fig. 3(c)) shows that a sequence of edge eliminations can undercut
the edge count for an optimal sequence of vertex eliminations. Furthermore, we do
not consider face elimination [6], a more general technique, because it entails trans-
formations of the line graph of G that can result in intermediate states for which we
cannot easily find an optimal propagation (2).

Rerouting was introduced in [7] to perform a factorization and then refined in [4]
as follows.

Rerouting: An edge ( j, l) is prerouted via pivot edge (k, l) (see Fig. 5) by setting
ck j = ck j + γ with γ ≡ cl j/clk for the increment edge ( j,k)
ch j = ch j− chk · γ ∀h# k, h �= l for the decrement edges ( j,h)

followed by the removal of ( j, l) from G.
An edge (i,k) is postrouted via pivot edge (i, j) by setting

ck j = ck j + γ with γ ≡ cki/c ji for the increment edge ( j,k)
clk = clk− c jl · γ ∀l ≺ j, l �= i for the decrement edges (l,k)

followed by the removal of (i,k) from G.

(a) (b) (c)

Fig. 3. Example graphs G for which there
is no edge elimination sequence with mono-
tone edge counts (a, b); example graph G
where edge elimination beats vertex elimina-
tion in edge count (c).
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In both elimination and rerouting, incrementing or decrementing a nonzero edge la-
bel constitutes absorption, whereas the creation of new edges is referred to as fill-in.
If any of the above transformations leaves an intermediate vertex v without in or
out edges, v and all incident edges are removed from G. Our primary goal is the
approximation of G∗ or G+, respectively. However, we also track the count of opera-
tions (multiplications and divisions) as a secondary minimization goal for the overall
transformation algorithm.

Normalization: An in edge (i, j) is forward normalized by setting
ck j = ck j · c ji ∀k # j and c jl = c jl/c ji ∀l ≺ j, l �= i and finally c ji = 1.

An out edge ( j,k) is backward normalized by setting
c ji = c ji · ck j ∀i≺ j and cl j = cl j/ck j ∀l # j, l �= k and finally ck j = 1.

Here, no fill-in is created, but normalization incurs multiplication and division
operations.

2.2 Elimination and Scarsity

A complete sequence σ = (ε1, . . . ,) of eliminations makes a given G bipartite. Each
elimination step εs in the sequence transforms Gs = (Vs,Es) into Gs+1 = (Vs+1,Es+1),
and we can count the number of nonconstant edge labels |E∗s | or nonunit edge labels
|E+

s |. As indicated by the examples in Figs. 1 and 2, there is a path to approximat-
ing the minimal representation via incomplete elimination sequences. To obtain G∗,
we prefer eliminations that preserve scarsity, that is, do not increase the nonconstant
edge label count. To obtain G+, we prefer eliminations that preserve propagation,
that is, do not increase the nonunit edge label count. Figure 3(a, b) shows examples
for cases in which the minimal edge count can be reached only after a temporary in-
crease above the count in G because any edge elimination that can be attempted ini-
tially raises the edge count. Consequently, a scarsity-preserving elimination heuristic
He should allow a complete elimination sequence and then backtrack to an interme-
diate stage Gs with minimal nonconstant or nonunit edge label count. Formally, we
define the heuristic as a chain Fq ◦ . . . ◦F1T of q filters Fi that are applied to a set
of elimination targets T such that FiT ⊆ T and if FT = /0 then F ◦T = T else
F ◦T = FT . Following the above rationale, we apply the heuristic HeEs with five
filters at each elimination stage Gs = (Vs,Es).

T1 = F1Es : the set of all eliminatable edges
T2 = F2T1 : e ∈T1 such that |E∗s | ≤ |E∗s+1| (or |E+

s | ≤ |E+
s+1| resp.)

T3 = F3T2 : e ∈T2 such that |E∗s |< |E∗s+1| (or |E+
s |< |E+

s+1| resp.) (3)
T4 = F4T3 : e ∈T3 with lowest operations count (Markowitz degree)
T5 = F5T4 : reverse or forward as tie breaker

With the above definition of “◦” the filter chain prefers scarsity-preserving (or
propagation-preserving) eliminations and resorts to eliminations that increase the
respective counts only when reducing or maintaining targets are no longer available.
Note that the estimate for the edge counts after the elimination step has to consider
constant and unit labels, not only to determine the proper structural label for fill-in
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edges but also to recognize that an incremented unit edge will no longer be unit and
a constant edge absorbing variable labels will no longer be constant. As part of the
elimination algorithm we can now easily determine the earliest stage s for the com-
puted sequence σ at which the smallest |E∗s | (or |E+

s |, respectively) was attained and
take that Gs as the first approximation to G∗ (or G+, respectively).

Given the lack of monotonicity, it would not be surprising to find a smaller |Es|
with a different σ . However, aside from choices in F5 and fundamentally different
approaches such as simulated annealing, there is no obvious reason to change any of
the other filters with respect to our primary objective. On the other hand, given that
we have a complete elimination sequence with He we can try to find improvements
for our secondary objective, the minimization of elimination operations. We say that
an edge has been refilled when it is eliminated and subsequently recreated as fill-in
(see Sect. 2.1). Naumann [5] conjectures that an elimination sequence with minimal
operations count cannot incur refill. Having a complete elimination sequence σ1, we
can easily detect refilled (i,k) and insert the fact that in G there is a path i→ j→ k as
an edge-vertex pair 〈(i,k) : j〉 into a refill-dependency set R. We inject another filter
FR before F4 to avoid target edges that have been refilled in previous elimination
sequences by testing nonexistence of paths.

FRT : (i,k)∈T such that ∀ j : 〈(i,k): j〉 ∈R it holds that (i �→ j∨ j �→ k in Gs) (4)

We then can compute new elimination sequences σ2,σ3, . . . with the thus-augmented
heuristic HeR by backtracking to the earliest elimination of a refilled edge, updating
R after computing each σi until R no longer grows. Clearly, this filter construction
will not always avoid refill, but it is an appropriate compromise, not only because it
is a relatively inexpensive test, but also because the backtracking to the minimal Gs
for our primary objective may well exclude the refilling elimination steps anyway;
see also Sect. 3. Among all the computed σi we then pick the one with the minimal
smallest |E∗s | (or |E+

s |, respectively) and among those the one at the earliest stage s.

2.3 Rerouting, Normalization and Scarsity

Griewank and Vogel [4] present simple examples showing that relying only on elimi-
nations is insufficient for reaching a minimal representation; one may need rerouting
and normalization. The use of division in rerouting and normalization immediately
necessitates the same caution against numerically unsuitable pivots that has long
been known in matrix factorization. Because only structural information is available
in the source transformation context, the only time when either transformation can
safely be applied is with constant edge labels whose values are known and can be
checked at compile time. However, we temporarily defer the numerical concerns for
the purpose of investigating a principal approach to exploiting rerouting and normal-
ization.

When considering rerouting as a stand-alone transformation step that can be
freely combined with eliminations into a transformation sequence, one quickly con-
cludes that termination is not guaranteed. Figure 4 shows a cycle of reroutings and
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front elimination of ( j,k) which
restores the initial state.
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Fig. 5. Prerouting ( j, l) via pivot (k, l) would reduce the edge
count, but here one could also eliminate ( j,k). On the other
hand, after eliminating ( j,k) one might decide to postroute
(i,k) via pivot (i, j) thereby refilling ( j,k) and then eliminat-
ing it again. Such a look-ahead over more than one step is
possible but complicated and therefore costly as a heuristic.

edge eliminations that can continue indefinitely. While such repetitions can (like
the refill of edges) be prevented, a single rerouting clearly does not guarantee a de-
crease of the edge count or the maximal path length Pm in G or the total path length
Pt (the sum of the length of all paths). An individual rerouting can reduce the edge
count by at most one, but in such situations there is an edge elimination that we
would prefer; see Fig. 5. This, however, is also an example where a pair of reroutings
may be advantageous. As with other greedy heuristics, one might improve the results
by introducing some look-ahead. However, we decided that little evidence exists to
justify the complexity of such a heuristic. Instead we will concentrate on our pri-
mary objective and investigate the scenarios in which a single rerouting-elimination
combination reduces |E∗s | (or |E+

s |, respectively), which can happen in the following
cases for prerouting ( j, l) via pivot (k, l).

1: The increment edge ( j,k) (see Fig. 5) can be eliminated immediately afterwards.
2: The pivot (k, l) (see Fig. 5) becomes the only inedge and can be front eliminated.
3: Removing a rerouted edge ( j, l) enables a |E∗s | or |E+

s | reducing elimination of an
edge (l,q) or (o, j).

4: Creating an increment edge (i,k) as fill-in enables a |E∗s | or |E+
s | preserving elim-

ination of an edge (i, j) or ( j,k) by absorption into (i,k).

The statements for postrouting are symmetric. Cases 1 and 2 are fairly obvious.
Case 3 is illustrated by Fig. 6 and case 4 by Fig. 7. In case 4 we can, however,
consider front eliminating (i, j), which also creates (i,k), and then front eliminating
(i,k), which yields the same reduction while avoiding rerouting altogether. Given this
alternative, we point out that case 3 in Fig. 6 permits an |E∗s | or |E+

s |maintaining back
elimination of (l,q1) but no further reduction, while a second possible scenario for
case 3 (see Fig. 6(c)) avoids rerouting. We can now use scenarios 1 to 4 to construct
a filter Fr for edge-count-reducing rerouting steps to be used in a greedy heuristic.

In the above scenarios there is no provision for creating decrement edges as fill-
in. Rather, we assume that (e.g., for prerouting ( j, l) as in Fig. 5) the successor set Sk
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Fig. 6. After prerouting ( j, l) where ( j,k) is fill-in (a), we can back eliminate (l,q1) to achieve
an edge count reduction (b). In (c) the use of prerouting to eliminate ( j, l) to achieve a reduc-
tion is unnecessary because front eliminating (i, j) and (i,k) leads to the same reduction.
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Fig. 7. In the initial scenario (a),
back eliminating ( j,k) would create
(i,k) as fill-in. Alternatively, prerout-
ing (i, l) creates (i,k) as increment
fill-in (b); we can then back eliminate
( j,k), absorbing into (i,k).

of vertex k is a subset of S j. Given a numerically suitable pivot, one could have an
decrement edge ( j,h) as fill-in. However, doing so creates a pseudo-dependency in
the graph. Although the labels of ( j,k) combined with ( j,k) and (k,h) cancel each
other out in exact arithmetic, such a modification of the structural information in the
graph violates our premise of preserving the structural information and is therefore
not permitted.

When considering the effects of normalization steps from a structural point of
view, one has to take into account that in a given graph Gs we can normalize at most
one edge per intermediate vertex i ∈ Zs; see also Sect. 1. If we exclude nonconstant
edges incident to i ∈ Z, where i has another incident constant or unit edge , we can
guarantee a reduction in |E∗s | or |E+

s |, respectively. This permits a simple heuristic for
applying normalizations, but it is clearly not optimal. For instance, one can consider
a graph such as 1 2 543u u , where no intermediate vertex is free
of incident unit edges; but clearly we could, for instance, forward normalize (2,3),
which would maintain the count, since (3,4) would no longer be a unit edge, but then
forward (re)normalize (3,4) and have just one nonunit edge left. In general, however,
permitting normalizations that do not strictly reduce the edge count would require an
additional filter to ensure termination of the heuristic. Such a filter could be based on
an ordering of the i ∈ Zs, or it could prevent repeated normalizations with respect to
the same i, but neither implied order has an obvious effect relating to the preexisting
constant or unit edges.

Proposition: Normalization does not enable reductions in subsequent eliminations
unless all involved edges are constant.
Proof: Consider a front elimination substep (equivalent to a face elimination [6])
of combining a nonconstant, normalized (i, j) with ( j,k) into (i,k) where it is po-
tentially absorbed; see Fig. 8. We distinguish three major cases and a number of
subcases as follows.
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l Fig. 8. We consider the normalization of (i, j) and the subsequent effects on
eliminations related to (i, j). There is a case distinction depending on the exis-
tence of the vertices h and l and the dashed edges (h, j), ( j, l), and (i,k).

1. If (i, j) is front normalized, then ( j,k) is variable, so will be (i,k),⇒ skip nor-
malization.

2. If (i, j) is back normalized and (i,k) existed, then it will be variable, ⇒ skip
normalization.

3. If (i, j) is back normalized and (i,k) did not exist before
a) If ( j,k) is variable,⇒ skip normalization.
b) If ( j,k) is constant or unit, then so will be (i,k)
• If (h, j) exists then all out edges of j must be retained, ⇒ no edge count

reduction.
• If ( j, l) exists then all in edges of j must be retained,⇒ no edge count reduc-

tion.
• If neither (h, j) nor ( j, l) exist,⇒ no reduction in |E∗s | or |E+

s |, respectively.

For normalizing an edge to have an effect on any elimination, the normalized edge
has to be consecutive to a constant or unit edge. Therefore we can restrict consider-
ation to the immediately subsequent elimination. ��

We conjecture the same to be true when we permit subsequent reroutings. Conse-
quently, we will postpone all normalizations into a second phase after the minimal Gs
has been found. Considering the above, we can now extend the elimination heuristic
HeR by extending the initial target set T to also contain reroutable edges (which
exclude edges that have previously been rerouted) and using Fr defined above. The
filters in HeR act only on eliminatable edges, while Fr acts only on reroutable edges.
We provide a filter Fe that filters out eliminatable edges and define our heuristic as

Hr = F5 ◦F4 ◦FR ◦Fe ◦F3 ◦Fr ◦F2 ◦F1T . (5)

3 Test Examples

For comparison we use computational graphs from four test cases A-D, which arise
from kernels in fluid dynamics, and E, which is a setup from the MIT General Circu-
lation Model. Table 1 shows the test results that exhibit the effects of the heuristics
HeR from Sect. 2.3 and Hr from (5). The results indicate, true to the nature of the
heuristic, improvements in all test cases. Compared to the number of nonzero Jaco-
bian elements, the improvement factor varies but can, as in case C, be larger than 3.
For minimizing |E+| we also provide i as the number of intermediate vertices that do
not already have an incident unit edge. Assuming the existence of a suitable pivot,
i gives a lower bound for the number of additional reductions as a consequence of
normalization. We also observe that, compared to eliminations, there are relatively
few reroutings and, with the exception of case D, the actual savings are rather small.
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Table 1. Test results for pure elimination sequences according to He and sequences including
rerouting steps according to (5), where |E| is the initial edge count and #(J) is the number of
nonzero entries in the final Jacobian. We note the minimal edge count, reached at step s, and
the number of reroutings r and reducing normalization targets i at that point, where applicable.

Pure Edge Eliminations With Rerouting
min |E| min |E∗| min |E+| min |E| min |E∗| min |E+|

|E| #(J) s |Es| s |E∗s | s |E+
s | i s |Es| r s |E∗s | r s |E+

s | r i
A 444 615 197 249 192 231 192 231 5 200 248 2 362 226 7 362 226 7 5

B 105 34 70 34 45 22 45 22 0 70 34 0 85 22 0 85 22 0 0

C 209 325 191 130 14 93 14 93 1 173 122 11 97 83 4 97 83 4 0

D 419 271 282 192 373 185 371 185 17 384 150 6 486 178 11 652 167 26 8

E 4554 2136 2442 2094 1852 1463 1852 1463 0 2442 2094 0 2112 1459 4 2112 1459 4 0
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Fig. 9. Edge count over transformation step for test case D, with refill marked by circles: (a)
all edges assumed to be variable, leads to two (identical) sequences with |E282| = 192 and
4 active refills; (b) same as (a) but without F3 with |E326| = 190 and 2 active refills in σ2;
(c) same as (a) but considers constant edge labels with |E∗373| = 185 and 4 active refills in 2
(identical) sequences (the result for unit labels is almost the same: |E+

371| = 185); (d) same
as (c) but without F3, leading to 3 sequences with a reduction from 5 to 2 active refills and
|E∗500|= 182.

Case D, however, has the single biggest graph in all the cases and offers a glimpse
at the behavior of the heuristics shown in Fig. 9. Given the small number of rerout-
ings, one might ask whether one could allow stand-alone rerouting steps that merely
maintain the respective edge count and aren’t necessarily followed by a reducing
elimination. The profile in Fig. 10 exhibits the problems with controlling the behav-
ior of free combinations of reroutings and eliminations that may take thousands of
steps before reaching a minimum. Our experiments show that such heuristics some-
times produce a lower edge count, for instance |E+

1881| = 150 for case D with 657
reroutings and 48 active refills. In such cases, the huge number of steps required to
reach these lower edge counts renders them impractical.
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Fig. 10. Here the heuristic has been modified to
allow isolated reroutings that do not increase
the nontrivial edge count. The result is 3 se-
quences, the best of which obtains |E1913| =
150 with 16 active refills and 768 reroutings.

4 Conclusions and Outlook

We have demonstrated an approach for exploiting the concept of Jacobian scarsity
in a source transformation context. The examples showed savings for the propa-
gation step up to a factor of three. We introduced heuristics to control the selec-
tion of eliminations and reroutings. A tight control of the rerouting steps proved
to be necessary with the practical experiments. Even without any reroutings, how-
ever, we can achieve substantial savings. This approach bypasses the problem of
choosing potentially unsuitable pivots, particularly in the source transformation set-
ting considered here. One possible solution to this problem entails the generation
of two preaccumulation source code versions. A first version would include rerout-
ing/normalization steps, checking the pivot values at runtime, and switching over
to the second, rerouting/normalization-free version if a numerical threshold was not
reached. Currently we believe the implied substantial development effort is not jus-
tified by the meager benefits we observed with rerouting steps. However, the imple-
mentation of rerouting as a structural graph manipulation in the OpenAD framework
allows us to track the potential benefits of rerouting for future applications.
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authors were supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, Office of Science,
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Design and Implementation of a Context-Sensitive,
Flow-Sensitive Activity Analysis Algorithm
for Automatic Differentiation
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Summary. Automatic differentiation (AD) has been expanding its role in scientific comput-
ing. While several AD tools have been actively developed and used, a wide range of problems
remain to be solved. Activity analysis allows AD tools to generate derivative code for fewer
variables, leading to a faster run time of the output code. This paper describes a new context-
sensitive, flow-sensitive (CSFS) activity analysis, which is developed by extending an existing
context-sensitive, flow-insensitive (CSFI) activity analysis. Our experiments with eight bench-
marks show that the new CSFS activity analysis is more than 27 times slower but reduces 8
overestimations for the MIT General Circulation Model (MITgcm) and 1 for an ODE solver
(c2) compared with the existing CSFI activity analysis implementation. Although the num-
ber of reduced overestimations looks small, the additionally identified passive variables may
significantly reduce tedious human effort in maintaining a large code base such as MITgcm.

Keywords: Automatic differentiation, activity analysis

1 Introduction

Automatic differentiation (AD) is a promising technique in scientific computing be-
cause it provides many benefits such as accuracy of the differentiated code and the
fast speed of differentiation. Interest in AD has led to the development of several AD
tools, including some commercial software. AD tools take as input a mathematical
function described in a programming language and generate as output a mathemat-
ical derivative of the input function. Sometimes, however, users are interested in a
derivative of an input function for a subset of the output variables with respect to a
subset of the input variables. Those input and output variables of interest are called
independent and dependent variables, respectively, and are explicitly specified by
users. When the independent and dependent variable sets are relatively small com-
pared to the input and output variable sets of the function, the derivative code can
run much faster by not executing the derivative code for the intermediate variables
that are not contributing to the desired derivative values. Such variables are said to
be passive (or inactive). The other variables whose derivatives must be computed are
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said to be active, and the analysis that identifies active variables is called activity
analysis. Following [7], we say a variable is varied if it (transitively) depends on any
independent variable and useful if any dependent variable (transitively) depends on
it; we say it is active if it is both varied and useful. Activity analysis is flow-sensitive
if it takes into account the order of statements and the control flow structure of the
given procedure and context-sensitive if it is an interprocedural analysis that consid-
ers only realizable call-return paths.

In our previous work, we developed a context-sensitive, flow-insensitive activity
analysis algorithm, called variable dependence graph activity analysis (VDGAA),
based on variable dependence graphs [11]. This algorithm is very fast and generates
high-quality output; in other words, the set of active variables determined by the
algorithm is close to the set of true active variables. However, we have observed a few
cases where the algorithm overestimated passive variables as active because of its
flow insensitivity. These cases suggest that the overestimations could be eliminated if
we developed an algorithm that is both context-sensitive and flow-sensitive (CSFS).
Such an algorithm would also be useful in evaluating overestimations of VDGAA.

Often, AD application source codes are maintained in two sets: the codes that
need to be differentiated and those that are kept intact. When the codes in the former
set are transformed by an AD tool, some passive global variables are often overesti-
mated as active by the tool. If these global variables are also referenced by the codes
in the latter set, type mismatch occurs between the declarations of the same global
variable in two or more source files: the original passive type vs. AD transformed
active type. Similar situations occur for functions when passive formal parameters
are conservatively determined as active by AD tools and the functions are also called
from the codes in the latter set [5]. In order to adjust the AD transformed types
back to the original type, human intervention is necessary. As one option, users may
choose to annotate such global variables and formal parameters in the code so that
AD tools can preserve them as passive. However, this effort can be tedious if all for-
mal variables that are mapped to the globals and formal parameters for the functions
in the call chain have to be annotated manually. The burden of such human effort
will be lifted significantly if a high-quality activity analysis algorithm is employed.

In this paper, we describe a CSFS activity analysis algorithm, which we have
developed by extending VDGAA. To incorporate flow sensitivity, we use definitions
and uses of variables obtained from UD-chains and DU-chains [1]. The graph we
build for the new CSFS activity analysis is called def-use graph (DUG) because each
node represents a definition now and each edge represents the use of the definition
at the sink of the edge. Named after the graph, the new CSFS activity analysis al-
gorithm is called DUGAA. The subsequent two sweeps over the graph are more or
less identical to those in VDGAA. In a forward sweep representing the varied anal-
ysis, all nodes reachable from the independent variable nodes are colored red. In the
following backward sweep representing the useful analysis, all red nodes reachable
from any dependent variable node are colored blue. The variables of the blue nodes
are also determined as active.
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Our contributions in this paper are as follows:

• A new CSFS activity analysis algorithm
• Implementation and experimental evaluation of the new algorithm on eight

benchmarks

In the next section, we describe the existing CSFI activity analysis VDGAA and
use examples to motivate our research. In Sect. 3, the new CSFS activity analysis
algorithm DUGAA is described. In Sect. 4, we present our implementation and ex-
perimental results. In Sect. 5, we discuss related research. We conclude and discuss
future work in Sect. 6.

2 Background

We motivate our research by explaining the existing CSFI activity analysis algorithm
and its flow insensitivity. We then discuss how flow sensitivity can be introduced to
make a context-sensitive, flow-sensitive algorithm.

VDGAA starts by building a variable dependence graph, where nodes represent
variables and edges represent dependence between them [9]. Since a variable is rep-
resented by a single node in the graph, all definitions and uses of a variable are
represented by the edges coming in and out the node. The order information among
the definitions and uses cannot be retrieved from the graph. By building this graph,
we assume that all definitions of a variable reach all uses of the variable. In terms
of activity, this assumption results in more active variables than the true active ones.
The two code examples in Fig. 1 show the overestimation caused by flow insensi-
tivity of VDGAA. In Fig. 1(a), all five variables are active because there is a value
flow path from x to y that includes all five variables, x→ f → a→ g→ y, while no
variables are active in (b) because no value flow paths exist from x to y.

Figure 2(a) shows a variable dependence graph generated by VDGAA, which
produces the same graph for both codes in Fig. 1. Nodes are connected with di-
rected edges representing the direction of value flow. The edge labels show the edge
types, which can be CALL, RETURN, FLOW, or PARAM. A pair of CALL and
RETURN edges is generated for each pair of actual and formal parameters if called

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
a = f
g = a

end subroutine

(a) All variables are active.

subroutine head(x,y)
double precision :: x,y

c$openad INDEPENDENT(x)
call foo(x, y)

c$openad DEPENDENT(y)
end subroutine
subroutine foo(f,g)

double precision :: f,g,a
g = a
a = f

end subroutine

(b) No variables are active.

Fig. 1. Example showing the flow insensitivity of the existing CSFI algorithm.
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(a) The VDG for both
Fig. 1(a) and (b).
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(b) The DUG for Fig. 1(a).
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head_(27)
y@1

FLOW

(c) The DUG for Fig. 1(b).

Fig. 2. Def-use graphs generated by the new CSFS algorithm.

by reference. FLOW edges are generated for assignment statements, one for each
pair of a used variable and a defined variable in the statement. PARAM edges sum-
marize the value flows between formal parameters of procedures such that there is
a PARAM edge from a formal parameter to another if there is a value flow path be-
tween them in the same direction. In Fig. 2(a), two pairs of CALL and RETURN
edges show the value flow between actual and formal parameters for the two actual
parameters in the call to foo. The two FLOW edges are generated for the two as-
signment statements in procedure foo. The PARAM edge from node 23 to node 25
summarizes the value flow path f → a→ g. Although not useful in this example,
PARAM edges allow all other types of edges to be navigated only once during the
subsequent varied and useful analyses. The numbers in the edge labels show the ad-
dress of the call expression for CALL and RETURN edges, which are used to allow
color propagations only through realizable control paths. Because of its flow insensi-
tivity, the same graph is generated from the two different codes in Fig. 1, and hence
the same activity output. Although we know this behavior of VDGAA, determining
the amount of overestimation is not easy.

We developed a context-sensitive, flow-sensitive activity analysis algorithm to
achieve two goals. First, we wish to evaluate how well VDGAA performs in terms
of both the analysis run time and the number of active variables. Second, in the
cases argued in Sect. 1, identifying several more inactive variables compared with
VDGAA is desirable, even at the cost of the longer analysis time. The key idea in the
new CSFS algorithm (DUGAA) is to use variable definitions obtained from UD/DU-
chains [1] to represent the nodes in the graph. DUGAA combines flow sensitivity of
UD/DU-chains with the context sensitivity of VDGAA. Since a statement may de-
fine more than one variable1, as a node key we use a pair comprising a statement

1 As in call-by-reference procedure calls of Fortran 77.
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and a variable. Figures 2(b) and (c) show the two def-use graphs for the two codes
in Fig. 1(a) and (b). Unlike the VDG in Figure 2(a), the node labels in DUGs have
a statement address concatenated at the end of the variable name and a symbol @.
DUG is similar to system dependence graph of [10]. Among other differences, DUG
does not have predicate nodes and control edges. Instead, flow sensitivity is sup-
ported by using UD/DU-chains. We use two special statement addresses: 1 and 2 for
the incoming and outgoing formal parameter nodes, respectively. Since the DUG in
Fig. 2(c) has no path from any of the independent variable nodes (for x) to any of
the dependent variable nodes (for y), no variables are active in the output produced
by DUGAA for the code in Fig. 1(b).

3 Algorithm

In this section, we describe the new activity analysis algorithm DUGAA. Similar to
VDGAA, the DUGAA algorithm consists of three major steps:

1. Build a def-use graph.
2. Propagate red color forward from the independent variable nodes to find the

varied nodes.
3. Propagate blue color backward along the red nodes from the dependent variable

nodes to find the active nodes.

A def-use graph is a tuple (V, E), where a node N ∈ V represents a definition of a
variable in a program and an edge (n1, n2) ∈ E represents a value flow from n1 to n2.
Since all definitions of a variable are mapped to their own nodes, flow sensitivity is
preserved in DUG.

Figure 3 shows an algorithm to build a DUG. For each statement in a given
program, we generate a FLOW edge from each reaching definition for each source
variable to the definition of the statement. If the statement contains procedure calls,
we also add CALL and RETURN edges. For global variables, we connect definitions
after we process all statements in the program. PARAM edges are inserted between
formal parameter nodes for each procedure if there is a value flow path between
them. Below, each of the major component algorithms is described in detail.

Algorithm Build-DUG(program PROG)
UDDUChain← build UD/DU-chains from PROG
DUG← new Graph
DepMatrix← new Matrix
for each procedure Proc ∈ CallGraph(PROG) in reverse postorder

for each statement Stmt ∈ Proc
// insert edges for the destination operand
for each (Src,Dst) pair ∈ Stmt where Src and Dst are variables

InsertUseDefEdge(Src, Dst, Stmt, Proc)
// insert edges for the call sites in the statement
for each call site Call to Callee ∈ Stmt

for each (ActualVar,FormalVar) pair ∈ Call
InsertCallRetEdges(ActualVar, FormalVar, Stmt, Proc, Callee, Call)

connectGlobals()
makeParamEdges()

Fig. 3. Algorithm: Build a def-use graph from the given program.
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Algorithm InsertUseDefEdge(variable Src, \
variable Dst, stmt Stmt, procedure Proc)
DefNode← node(Stmt, Dst)
// edges from uses to the def
for each reaching definition Rd for Src

// for an upward exposed use
if (Rd is an upward exposed use)

if (Src is a formal parameter)
Rd← stmt(1)

else
if (Src is a global variable)

GlobalUpUse[Src].insert(aRecord( \
Dst, Stmt, Proc, callExp(0), Proc))

continue
DUG.addEdge(node(Rd, Src), DefNode, \
FLOW, Proc, Proc, Proc, callExp(0))

// edges for downward exposed definitions
if (Stmt has a downward exposed def)

if (Dst is a formal parameter)
DUG.addEdge(DefNode, node(stmt(2), \
Dst), FLOW, Proc, Proc, Proc, callExp(0))

else if (Dst is a global variable)
GlobalDnDef[Dst].insert(aRecord(Dst, Stmt, \
Proc, callExp(0), Proc))

Algorithm InsertCallRetEdge(variable Actual, \
variable Formal, stmt Stmt, procedure Proc, \
procedure Callee, callExp Call)
// CALL edges from actuals to the formal
for each reaching definition Rd for Actual

if (Rd is an upward exposed use)
if (Actual is a formal parameter)

Rd← stmt(1)
else if (Actual is a global variable)

GlobalUpUse[Actual].insert(aRecord(\
Formal, stmt(1), Callee, Call, Proc))

continue
DUG.addEdge(node(Rd, Actual), node(stmt(1), \
Formal), CALL, Proc, Callee, Proc, Call)

// RETURN edges for call-by-reference parameters
if (Actual is not passed by reference) return
DUG.addEdge(node(stmt(2), Formal), node(Stmt, \
Actual), RETURN, Callee, Proc, Proc, Call)
// edges for downward exposed definitions of Actual
if (Stmt has a downward exposed def) // DU-chain

if (Actual is a formal parameter)
DUG.addEdge(node(Stmt, Actual), node(stmt(2), \
Actual), FLOW, Proc, Proc, Proc, callExp(0))

else if (Actual is a global variable)
GlobalDnDef[Actual].insert(aRecord(Actual, \
Stmt, Proc, callExp(0), Proc))

Fig. 4. Algorithm: Insert edges.

Flow sensitivity is supported by using variable definitions obtained from
UD/DU-chains. Since a statement may define multiple variables as in call-by-
reference function calls, however, we use both statement address and variable
symbol as a node key. We generate two nodes for each formal parameter: one for
the incoming value along CALL edge and the other for the outgoing value along
RETURN edge. As discussed in Sect. 2, two special statement addresses are used
for the two formal parameter nodes. Upward exposed uses and downward exposed
definitions must be connected properly to formal parameter nodes and global vari-
able nodes. Figure 4 shows two algorithms to insert edges. InsertUseDefEdge
inserts multiple edges for the given pair of a source variable (Src) and a destination
variable (Dst) in an assignment statement (Stmt). UD-chains are used to find all
reaching definitions for Src and to connect them to the definition of Dst. If the
reaching definition is an upward exposed use, an edge is connected from an incom-
ing node if Src is a formal parameter; if Src is a global variable, the corresponding
definition (Dst and Stmt) is stored in GlobalUpUse for Src together with other
information. If the definition of Dst is downward exposed, we connect an edge
from the definition node to the outgoing formal parameter node if Dst is a formal
parameter; for global Dst, we store the definition information in GlobalDnDef.
Later, we make connections from all downward exposed definitions to all upward
exposed uses for each global variable. InsertCallRetEdge inserts edges be-
tween a pair of actual and formal parameter variables. CALL edges are inserted from
each reaching definition of the actual parameter to the incoming node of the formal
parameter. If the actual parameter is passed by reference, a RETURN edge is also
inserted from the outgoing node of the formal parameter to the definition node of the
actual parameter at Stmt.
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Algorithm makeParamEdges()
for each procedure Proc ∈ CallGraph(PROG) in postorder

for each node N1 ∈ ProcNodes[Proc]
for each node N2 ∈ ProcNodes[Proc]

if (N1 == N2) continue
if (DepMatrix[Proc][N1][N2]) continue
if (!DUG.hasOutgoingPathThruGlobal(N1)) continue
if (!DUG.hasIncomingPathThruGlobal(N2)) continue
if (DUG.hasPath(N1, N2))

DepMatrix[Proc][N1][N2] = true
transitiveClosure(Proc)
for each formal parameter Formal1 ∈ Proc

for each formal parameter Formal2 ∈ Proc
FNode1← node(stmt(1), Formal1)
FNode2← node(stmt(2), Formal2)
if (!DepMatrix[Proc][FNode1][FNode2]) continue
DUG.addEdge(FNode1, FNode2, PARAM, Proc, Proc, Proc, callExp(0))
for each call site Call ∈ Callsites[Proc]

Caller← CallsiteToProc[Call]
for each node Actual2 ∈ FormalToActualSet[Call][FNode2]

if (Actual2.Symbol is not called by reference) continue
for each node Actual1 ∈ FormalToActualSet[Call][FNode1]

DepMatrix[Caller][Actual1][Actual2]← true

Fig. 5. Algorithm: Make PARAM edges.

PARAM edges summarize value flow among formal parameters to allow multi-
ple traversals across formal parameter nodes when there are multiple call sites for the
same procedure. We add a PARAM edge from an incoming formal parameter node
f1 to an outgoing formal parameter node f2 whenever there is a value flow path
from f1 to f2. Figure 5 shows the algorithm that inserts PARAM edges. Whenever
a FLOW edge is created, we set an element of the procedure’s dependence matrix to
true. After building a DUG for statements and connecting global variable nodes, for
all pairs of formal parameters we check whether there is a value flow path between
them going through other procedures via two global variables. This checking is nec-
essary because we perform transitive closure only for those definitions used in each
procedure. Next, we apply Floyd-Warshall’s transitive closure algorithm [3] to find
connectivity between all pairs of formal parameter nodes. A PARAM edge is added
whenever there is a path from one formal node to another. We modified the original
Floyd-Warshall’s algorithm to exploit the sparsity of the matrix.

The varied and useful analyses are forward color propagation (with red) from
the independent variable nodes and backward color propagation (with blue) from the
dependent variable nodes, respectively. The propagation algorithms are described in
our previous work [11].

4 Experiment

We implemented the algorithm described in Sect. 3 on OpenAnalysis [12] and linked
it into an AD tool called OpenAD/F [13], which is a source-to-source translator for
Fortran. Figure 6 shows the experimental flow. The generated AD tool was run on a
machine with a 1.86 GHz Pentium M processor, 2 MB L2 cache, and 1 GB DRAM
memory.
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Fig. 6. OpenAD automatic differentiation tool.

Table 1. Benchmarks.
Benchmarks Description Source # lines

MITgcm MIT General Circulation Model MIT 27376
LU Lower-upper symmetric Gauss-Seidel NASPB 5951
CG Conjugate gradient NASPB 2480
newton Newton’s method + Rosenbrock function ANL 2189
adiabatic Adiabatic flow model in chemical engineering CMU 1009
msa Minimal surface area problem MINPACK-2 461
swirl Swirling flow problem MINPACK-2 355
c2 Ordinary differential equation solver ANL 64
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Fig. 7. Slowdown in analysis run time: DUGAA with respect to VDGAA.

To evaluate our implementation, we used the set of eight benchmarks shown in
Table 1. These benchmarks are identical to the ones used in our previous work [11]
except for the version of the MIT General Circulation Model, which is about two
times larger.

Figure 7 shows the slowdowns of DUGAA with respect to VDGAA, which are
computed by dividing the DUGAA run times by the VDGAA run times. For new-
ton and c2, the VDGAA run times were so small that the measurements were zero.
For the other six benchmarks, the slowdowns range between 27 and 106. The bench-
marks are ordered in decreasing order of program sizes, but the correlation with the
slowdowns is not apparent. The run time for DUGAA on MITgcm is 52.82 sec-
onds, while it is 1.71 seconds for VDGAA. Figure 8 shows the component run times
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Fig. 8. Analysis run-time breakdown on MITgcm: DUGAA vs. VDGAA.

for both DUGAA and VDGAA on MITgcm. Since VDGAA does not use UD/DU-
chains, the run time for computing UD/DU-chains is zero. However, it take 81.26%
of the total run time for DUGAA. Another component worthy of note is transitive
closure, which summarizes connectivity by adding PARAM edges between formal
parameters. The transitive closure time can be considered as part of graph building
but we separated it from the graph building time because it is expected to take a
large portion. With respect to transitive closure times, the slowdown factor was 9.39.
The graph navigation time for coloring was very small for both algorithms. The
slower speed of DUGAA was expected because it would have many more nodes
than VDGAA; The DUG for MITgcm has 13,753 nodes, whereas the VDG has
5,643 nodes.

Our next interest is the accuracy of the produced outputs. Except for MITgcm
and c2, the active variables determined by the two algorithms match exactly. Even
for MITgcm and c2, the number of overestimations by VDGAA over DUGAA is
not significant; 8 out of 925 for MITgcm and 1 out of 6 for c2. This result sug-
gests several possibilities: First, as expected, the number of overestimations from
flow insensitivity is not significant. Second, the flow sensitivity of DUGAA can be
improved by having more precise UD/DU-chains. For example, actual parameters
passed by reference are conservatively assumed to be nonscalar type. Hence, the
definition of the corresponding scalar formal parameters does not kill the definitions
coming from above. Third, aside from flow sensitivity, other types of overestima-
tions can be made in both algorithms because they share important features such as
graph navigation. One type of overestimation filtered by DUGAA is activating for-
mal parameters when they have no edges leading to other active variables except to
the corresponding actual parameters. Currently, VDGAA filters out the cases when
the formal parameters do not have any outgoing edges than the RETURN edge going
back to the actual parameter where the color is propagated from, but it fails to do so
when there are other outgoing edges to other passive variables. This type of over-
estimation is filtered effectively by DUGAA by separating formal parameter nodes
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into two: an incoming node and an outgoing node. Although the number of reduced
overestimations looks small, as argued in Sect. 1 the additionally identified passive
variables may significantly reduce tedious human effort in maintaining a large code
base such as MITgcm.

5 Related Work

Activity analysis is described in literature [2, 6] and implemented in many AD
tools [4, 8, 11]. Hascoët et al. have developed a flow-sensitive algorithm based
on iterative dataflow analysis framework [7]. Fagan and Carle compared the static
and dynamic activity analyses in ADIFOR 3.0 [4]. Their static activity analysis is
context-sensitive but flow-insensitive. Unlike other work, this paper describes a new
context-sensitive, flow-sensitive activity analysis algorithm. Our approach of forward
and backward coloring is similar to program slicing and chopping [14, 10]. However,
the goal in that paper is to identify all program elements that might affect a variable
at a program point.

6 Conclusion

Fast run time and high accuracy in the output are two important qualities for
activity analysis algorithms. In this paper, we described a new context-sensitive,
flow-sensitive activity analysis algorithm, called DUGAA. In comparison with our
previous context-sensitive, flow-insensitive (CSFI) algorithm on eight benchmarks,
DUGAA is more than 27 times slower but reduces 8 out of 925 and 1 out of 6, deter-
mined active by the CSFI algorithm for the MIT General Circulation Model and an
ODE solver, respectively. We argue that this seemingly small reduction in number of
active variables may significantly reduce tedious human effort in maintaining a large
code base.

The current implementations for both DUGAA and VDGAA can be improved in
several ways. First, if the nodes for the variables with integral types are not included
in the graph, we expect that both the run time and the output quality can be improved.
Second, more precise UD/DU-chains also can improve the output accuracy. Third,
we might be able to identify other types of overestimation different from those al-
ready identified. Fourth, both VDGAA and DUGAA currently support only Fortran
77. Supporting Fortran 90 and C is left as a future work.

Acknowledgement. This work was supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. We
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1 Laboratoire de Physique et Mécanique des Matériaux, UMR CNRS 7554, Ile du Saulcy,
57045 Metz Cedex 1, France, isabelle.charpentier@univ-metz.fr
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Summary. Various physics applications involve the computation of the standard hypergeo-
metric function 2F1 and its derivatives. Because it is not an intrinsic in the common program-
ming languages, automatic differentiation tools will either differentiate through the code that
computes 2F1 if that code is available or require the user to provide a hand-written deriva-
tive code. We present options for the derivative computation in the context of an ionization
problem and compare the approach implemented in the Diamant library to standard methods.

Keywords: Higher-order derivatives, hypergeometric function, Bell polynomials, Diamant
library

1 Introduction

The Gauss hypergeometric function 2F1(a,b,c;z), solution of the hypergeometric
differential equation

z(1− z)
d2ϕ(z)

dz2 +[c− (a+b+1)z]
dϕ(z)

dz
−abϕ(z) = 0, (1)

frequently arises in physics problems such as ionization (see Sec. 3). It is worth
noticing that every second-order ODE with three regular singular points can be trans-
formed into (1). By using the rising factorial (x)n, the 2F1(a,b,c;z) function can be
expressed as a series

2F1(a,b,c;z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
with (x)n =

(x+n−1)!
(x−1)!

The convergence of the series depends on (a,b,c) and z and is discussed in detail
in [1]. Derivatives of 2F1(a,b,c;z) are given by
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2F1
(n)(a,b,c;z) =

∂ n
2F1(a,b,c;z)
∂ zn =

(a)n(b)n

(c)n
2F1(a+n,b+n,c+n;z) (2)

The ensuing n computationally expensive evaluations of 2F1 at different arguments
may be avoided by deriving a recurrence formula for the Taylor coefficients from
(1). In automatic differentiation (AD) this approach has been the basis for computing
higher-order Taylor coefficients for intrinsic functions such as ex; see [12]. This paper
presents an efficient and simple method for computing higher-order derivatives of the
hypergeometric function. The remainder of this section covers the derivation of the
recurrence formula. In Sec. 2 we discuss a two-level operator overloading technique
and compare run times using the Diamant library. Section 3 covers the application of
our approach to an ionization problem. Conclusions are given in Sec. 4.

1.1 Low-Order Derivatives

For simplicity we rewrite (1) as

α(z)ϕ(2)(z)+β (z)ϕ(1)(z)− γϕ(z) = 0 (3)

by setting α(z) = z(1− z), β (z) = [c− (a + b + 1)z], γ = ab, and from now on we
assume α(z) �= 0. Furthermore we assume z = z(t) to be n times differentiable with
respect to t and write

v(t) = v(0)(t) = ϕ(z(t)) (4)

Differentiating (4) with respect to t and omitting the dependence on t and z, we have

v(1) = ϕ(1)z(1) and v(2) = ϕ(2)(z(1))2 +ϕ(1)z(2)

Assuming z(1) �= 0, we obtain

ϕ(1) =
v(1)

z(1) and ϕ(2) =
v(2)− (v(1)/z(1))z(2)

(z(1))2

which we substitute into (3) to write

α
v(2)− (v(1)/z(1))z(2)

(z(1))2
+β

v(1)

z(1) − γv
(0) = 0

Since we assumed α(z) �= 0, one deduces

v(0) = ϕ
v(1) = ϕ(1)z(1)

v(2) =
γv(0)(z(1))3−βv(1)(z(1))2 +αv(1)z(2)

αz(1) (5)

The derivatives of v can be computed by evaluating the 2F1 function only twice rather
than n times. Higher-order derivatives can be computed by overloading (5). This
approach is discussed in Sec. 2.2. When z(1) = 0, differentiating (4) yields
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v(0) = ϕ, v(1) = 0, v(2) = ϕ(1)z(2)

v(3) = ϕ(3)(z(1))3 +3ϕ(2)z(2)z(1) +ϕ(1)z(3) = ϕ(1)z(3) (6)

v(4) = · · ·= 3ϕ(2)(z(2))2 +ϕ(1)z(4)

If z(2) �= 0, one can again find expressions for ϕ(1) and ϕ(2), substitute into (3), and
write v(4) as

v(4) =
3γv(0)(z(2))3−3βv(2)(z(2))2 +αv(2)z(4)

αz(2)

1.2 Higher-Order Formulas

General higher-order terms v(n) are derived from Faá di Bruno’s formula, which can
be expressed in terms of Bell polynomials Bn,k(z(1), · · · ,z(n−k+1)) (see also [2]) as

v(n) = (ϕ ◦ z)(n) =
n

∑
k=1
ϕ(k)Bn,k(z(1), · · · ,z(n−k+1)) (7)

where

Bn,k(z(1), · · · ,z(n−k+1)) =∑ n!
j1! · · · jn−k+1!

(
z(1)

1!

) j1
· · ·

(
z(n−k+1)

(n− k +1)!

) jn−k+1

and the sum is over all partitions of n into k nonnegative parts such that

j1 + j2 + · · ·+ jn−k+1 = k and j1 +2 j2 + · · ·+(n− k +1) jn−k+1 = n (8)

Further details may be found in [17]. One easily verifies that (7) correctly expresses
the equations in (6).

Theorem 1. Assuming z(l) = 0 for 1≤ l < m and z(m) �= 0, one may simplify equation
(7) written at order 2m as

v(2m) = ϕ(1)z(2m) +b2mϕ(2)(z(m))2 (9)

where b2m =
(2m)!

2!(m!)2 . Moreover, one may write

ϕ(2) =
v(2m)−ϕ(1)z(2m)

b2m(z(m))2
(10)

Proof. One notices that, for k = 1, the monomial B2m,1

B2m,1(z(1), · · · ,z(2m)) =
(2m)!

1!

(
z(2m)

(2m)!

)1

= z(2m)

multiplied by ϕ(1) yields the first term of (9). For k = 2, the partition jl = 0 (∀l �= m),
jm = 2, is the only one that satisfies (8). One deduces the second term of (9)
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ϕ(2)B2m,2(z(1), · · · ,z(2m−1)) = ϕ(2) (2m)!
2!

(
z(m)

(m)!

)2

= b2mϕ(2)(z(m))2

Other polynomials B2m,k(z(1), · · · ,z(2m−k+1)) (k > 2) vanish because they have at
least one nonzero exponent jl (1 ≤ l < m) for which the respective basis z(l) was
assumed to be 0. ��

Theorem 2. Assuming z(l) = 0 for 1≤ l < m and z(m) �= 0, then the first 2m deriva-
tives of the compound function v satisfy

v(n) = 0, ∀n = 1, · · · ,m−1 (11)

v(n) = ϕ(1)z(n), ∀n = m, · · · ,2m−1 (12)

v(2m) =
b2mγv(z(m))3−b2mβv(m)(z(m))2 +αv(m)z(2m)

αz(m) (13)

Proof. We determine a recurrence over m for the first 2m−4 derivatives of v and the
Bell formulas as we did in Theorem 1 for the last ones. Following formula (12), we
deduce

ϕ(1) = v(m)/z(m) (14)

The use of (14) and (10) in the ODE equation (3) leads to (13). ��

Sections 1.1 and 1.2 show that the derivatives v(n) of the v(t) = ϕ(z(t)) =
2F1(z(t)) can be obtained from the first two derivatives ϕ(1) and ϕ(2). Now we need to
provide an explicit formula for the Taylor coefficients that then can be implemented
in an overloading library.

2 Taylor Coefficient Propagation

As shown in Theorem 2, no more than two evaluations of the 2F1 function are re-
quired. Because 2F1 is a solution of an ODE, a Taylor coefficient formula may be
obtained from a specific series computation as described in Sec. 2.1. Given the rela-
tive complexity of the series-based computation obtained for 2F1, we concentrate in
Sec. 2.2 on an efficient two-level overloading AD implementation.

2.1 Series Computations

When the function of interest is the solution of an ODE, the usual approach starts
with the Taylor series

v(t) = ϕ(z(t)) = v0 + v1t + v2t2 + v3t3 + v4t4 + . . .
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and its derivatives

v(1)(t) = v1 +2v2t +3v3t2 +4v4t3 + . . . = ṽ1 + ṽ2t + ṽ3t2 + ṽ4t3 + . . .

v(2)(t) = ṽ2 +2ṽ3t +3ṽ4t2 + . . .

where vk =
1
k!
∂ kv
∂ tk is the Taylor coefficient of v at order k and ṽk = kvk. We can

also write the respective series for z,z(1), . . . and substitute them into the ODE, in our
case into (3). Repeating the previous assumptions z1 �= 0 and α(z) = z(z− 1) �= 0,
we can apply this approach to the 2F1 and eventually arrive (we left out some tedious
intermediate steps) at

∑
i=0

(zṽ2z̃1)it i − ∑
i=0

( i
∑
j=0

z j(zṽ2z̃1)i− j
)
ti =

ab ∑
i=0

( i
∑
j=0

v j(z̃3
1)i− j

)
ti−

c ∑
i=0

(ṽ1z̃2
1)it i +(a+b+1) ∑

i=0

( i
∑
j=0

z j(ṽ1z̃2
1)i− j

)
ti

+ ∑
i=0

(zṽ1z̃2)it i− ∑
i=0

( i
∑
j=0

z j(zṽ1z̃2)i− j
)
ti

(15)

where the (psqu)r denote ∑r
j=0(p j+sqi− j+u). We can now match coefficients for

the ti. For t0 the match yields

ṽ2 =
abv0z̃3

1− cṽ1z̃2
1 +(a+b+1)z0ṽ1z̃2

1 + z0ṽ1z̃2− z2
0ṽ1z̃2

z0z̃1− z2
0z̃1

(16)

which is equation (5) written for the 2F1.
The occurrence of ṽ1 in the right-hand side is the effect of the second-order equa-

tion. We need to compute that explicitly to start the recursion. Taylor coefficients vi+2
(i = 1, . . .) are computed from the vi+1. The main drawbacks are the complexity of
the recursion obtained from (15) and the fact that, aside from convolutions on the
Taylor coefficients, everything is specific to 2F1 as our particular intrinsic of interest.

2.2 Overloading Strategies

High order AD tools ([13, 18, 10, 3] for instance) mainly rely on operator overload-
ing as the vehicle of attaching high order derivative computations to the arithmetic
operators and intrinsic functions provided by the programming language.

The 2F1 function may be overloaded considering either (5) or (16), intermediate
computations such as α(z)z(1) in (5) or z0z̃1− z2

0z̃1 in (16) respectively being over-
loaded too. A naive propagation of Taylor coefficients up to degree K requires O(K3)
operations. The computational complexity for solving an ODE with Taylor series
can be reduced to O(K2) by storing all the intermediate coefficients, see [5]. This
approach is implemented by AtomFT [6] and Diamant [8]. We use the Diamant
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Table 1. Runtime comparison of the computation of 2F1 derivatives at order k.

k D0 D1 D2
1 0.276 0.276 0.276
4 0.788 0.700 0.636
6 1.544 1.164 0.912
8 2.820 1.848 1.236

12 8.097 4.164 2.032
16 17.925 8.189 3.008
24 57.936 23.313 5.428
32 131.632 50.883 8.565

tool which has been developed specifically for the incrementally increasing differ-
entiation order needed in the context of the Asymptotic Numerical Method (ANM).
Details about this method can be found in [9, 8, 11].

In Table 1 we compare three AD strategies (D0, D1 and D2) for the implementa-
tion of the Taylor coefficient formula (15). D0 implements a naive approach in which
the recurrence formulas are evaluated by means of a loop over all orders k up to a
statically fixed bound K. A given iteration in (9), as well as in the ANM, implies
differentiation at a given order k which does not require higher order Taylor coeffi-
cients (m = k + 1, · · · ,K). Therefore the recurrence formulas may compute only up
to k which is implemented in the D1 version. In Table 1 we observe a reduction in the
number of operations by a factor of about three. While the principal computational
complexity remains O(K3), no intermediate Taylor coefficients need to be stored.
The spatial complexity of D0 and D1 depends linearly on the maximum order K. D1
is comparable to the Adol-C implementation, although without the need for a tape.1

A direct comparison with Adol-C was not possible, however, because Adol-C does
not support the complex arithmetic used in 2F1.

As explained in [5], lower order derivatives recalculation may be avoided by
storing them which is implemented in D2. Reducing the computational complexity
to O(K2) is traded for added spatial complexity. Because we use this approach on
applications of modest size the total memory consumption remains small and does
not adversely impact the overall efficiency. D2 is the implementation specialized for
the ANM. The reduced complexity is reflected in the shorter runtimes compared to
D0 and D1. The run times given in Table 1 clearly show that the D2 specialization
for ANM yields substantial benefits.

3 Double Ionization Application

The fully differential cross section (FDCS) on helium depends on the solid angles
Ωs, Ω1, and Ω2 for the scattered electron and the two ejected electrons and on the
energies E1 and E2 of the ejected electrons. Assuming a unique interaction between
the target and the incoming electron (first Born approximation), one computes this
FDCS as

1 The tapeless version of Adol-C currently supports only first-order computations.
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∂ 5σ
∂Ωs∂Ω1∂Ω2∂E1∂E2

=
k1k2ks

ki
|M|2

The terms ki, ks, k1, and k2 denote vectors (here the momenta of incident, scattered,
first ejected, and second ejected electrons) and the corresponding terms ki, ks, k1, and
k2 are their respective norms. The matrix element M is a 9-dimensional integral

M =
1

2π

∫
ψ∗f (r1,r2)eiks.r0Vψi(r1,r2)eiki.r0dr0dr1dr2 (17)

where V = −2r0
−1 + |r0− r1|−1 + |r0− r2|−1 is the Coulomb interaction between

the projectile and the helium atom, r0 is the distance between the incident electron
and the nucleus, and r1 and r2 are the distances between one of the helium elec-
trons and its nucleus. The terms r0, r1 and r2 denote the related vectors. The wave-
functions ψi and ψ f are the solutions of the Schrödinger equation for the helium
atom. No exact formulas exist for ψi and ψ f . The well-known Bethe transforma-
tion eik.r0k−2 = 4π−1 ∫ eik.r|r− r0|

−1dr allows for the integration on r0. Thus, the
computation of (17) needs a six-dimensional integral only.

On the one hand, the bound state wavefunction ψi may be approximated by
means of the Hylleraas-type wavefunction ψN

ψN(r1,r2) = ∑
i, j,l≥0

ci jl(ri
1r j

2rl
12 + r j

1ri
2rl

12)r
l
12

where r12 = |r2− r1| and the N coefficients ci jl are determined from the solution
of a minimization problem. Nonzero coefficients are indicated in Table 2. We also
indicate the computed double ionization energy < −E >N that has to be compared

Table 2. Nonzero ci jl coefficients and double ionization energy <−E >N for theψN functions
with N = 3, 5, 9 and 14 parameters. The last column indicates the order of differentiation K
required for the related ci jl coefficient.

ci jl ψ3 ψ5 ψ9 ψ14 K = i+ j + l +3
c000 × × × × 3
c200 × × × × 5
c220 × × × 7
c300 × × × 3
c320 × × 8
c400 × × 7
c002 × × × 5
c202 × × 7
c222 × 9
c302 × × 8
c402 × × 9
c003 × 6
c223 × 10
c004 × 7
<−E >N 2.90196 2.90286 2.90327 2.90342
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to the theoretical double ionization energy <−E>=2.9037 required for removing
two electrons. On the other hand, the best approximation for the final state ψ f is
that of [4], which satisfies exact asymptotic boundary collisions. The two numeri-
cal approaches available to tackle an accurate Hylleraas wavefunction are either the
use of three 1F1 functions and a six-dimensional numerical quadrature [15] (expen-
sive in computer time) or one occurrence of the 2F1 function and a two-dimensional
quadrature applied to high-order derivative tensors [4].

The gain in number of integrals has to be paid. The Brauner method is based on
a term D = e−ar1e−br2e−cr12/(r1r2r12) whose third-order derivative yields the sim-
ple wavefunction ψi(r1,r2) = e−ar1e−br2e−cr12 . Thus we rewrite each of the terms
ri

1r j
2rl

12e−ar1e−br2e−cr12 appearing when using Brauner’s method as a mixed deriva-
tive of D of order K = i+ j + l +3.

3.1 Implementations

For this comparison we use three different implementations of the differentiation of
the original code P o with the 2F1 function. These are compared on the computation
of the derivatives appearing in the ψN functions.

P o: This implementation enables the computation of any mixed derivative of order
less than or equal to six. The differentiation has been fully hand coded for some
of the statements, whereas a few Fortran functions (multiplication, division, and
the hypergeometric function) replicate operator overloading AD. The derivative
computation is organized, as in Diamant, by increasing order of Taylor coeffi-
cients; that is, the differentiation is done first at order 1, then at order 2, and so
on. Consequently, the classical recurrence formulas were split into six deriva-
tive functions (one per order) to avoid useless recalculations. The 2F1 compound
function derivatives were coded following Faá di Bruno’s formula (7) and (2).
Most of this code is, however, proprietary and used here only for verification and
as a basis for run-time comparison.

PR : The original function evaluation code P o is overloaded by means of the Rapso-
dia library. Rapsodia supports computations with complex numbers in a Fortran
program and provides higher-order derivatives in the standard AD fashion, that
is, by propagating all Taylor coefficients up to a given order. The 2F1 function is
overloaded by using Faá di Bruno’s formula up to order 8. Thus PR enables, by
means of linear combinations [7] or high-order tensors [14], the computation of
any derivative even beyond the desired order of 10.

PD0 : The original function evaluation code P o is overloaded by using Rapsodia,
while the 2F1 function is overloaded by using D0,

PD2 : The original function evaluation code P o is overloaded by using Rapsodia,
while the 2F1 function is overloaded by using D2.

In brief, the differentiation of the hypergeometric function is based on Faá di Bruno’s
formula (7) in the implementations P o and PR , and on Taylor coefficient calculation
(15) in the Diamant implementations PD0 and PD2 .
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Table 3. CPU time consumptions for the ψ14 function.

N P o without 2F1 P o PR PD2 PD0

14 2.812 × 5.9 4.7 8.4

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

1 2 3 4 5 6 7 8 9 10 11 12

A B C

Fig. 1. Maximum relative discrepancy in either the real or the imaginary part of Taylor coeffi-
cients for the Brauner generic term (case A), for the Brauner generic term without 2F1 (case B),
and just the 2F1 function itself (case C) computed for orders k ∈ [1,12].

Table 3 shows the run times for ψN with N = 14. Because the derivatives in P o
are hand-coded only up to order six, it cannot compute all coefficients. Nevertheless,
we use P o to perform a fourth-order differentiation with respect to r12, and we
overload it using Rapsodia or Diamant to obtain sixth-order derivatives in r1 and
r2 by a linear combination of six directions. This permits the computation of the
10th-order derivative related to coefficient c223 in function ψ14 (see Table 2). For
comparison we also show the run times of P o when the 2F1 is commented out to
indicate the complexity of computing it.

Numerical results presented in Table 3 prove the efficiency of the Diamant ap-
proach. More precisely, the two-level overloading strategy together with the D2
library is about 25% less time consuming than the Faá di Bruno formula imple-
mentation realized in PR . Physical results we obtained are in good agreement with
an “absolute” experiment [16]. They will be published in another paper.

While the inspection of the physical results indicates the principal correctness of
our implementation, one might still wonder about the effects of the approximation
to 2F1 itself upon which all of the above is built. It would be difficult to compute the
actual error, but we can, for instance, look at the discrepancy between the Taylor co-
efficients of the original generic Brauner term from the application and the Taylor
coefficients of the manually coded first derivative. The relative discrepancies are
shown in Fig. 1. We observe the pronounced effect of the computations involving
the 2F1 approximation while the code without it has an exact floating-point match
even up to order four. Figure 2 shows the effect of using Faá di Bruno’s formula for
up to order six vs. up to order two.
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Fig. 2. For derivatives of order k ∈ [1,12] we show the absolute discrepancies between PR

and PD2 (case A) and relative discrepancies (case B) using Faá di Bruno’s formula up to
order six. The experiment was repeated using Faá di Bruno’s formula only up to order two
(cases C and D respectively).

4 Conclusions

We investigated the different options for computing derivatives of the hypergeomet-
ric function 2F1(a,b,c;z) and the consequences of vanishing Taylor coefficients of
the argument z. The run-time comparison shows the advantage of the Taylor coef-
ficient recurrence over Faá di Bruno’s formula. We showed various options for a
generic two-level operator overloading strategy. For the 2F1 function we show how
the latter can be used together with either the equations (11)–(13) or the Taylor coef-
ficients from formula (16) matched for t0. Furthermore we demonstrated the benefits
of the specialization of the AD approach for ANM implemented in the Diamant li-
brary for 2F1 and we also looked at the run time comparison of the computation of
derivatives for an ionization application that involves the 2F1 function.
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Summary. Based on high-order Taylor expansions, the asymptotic numerical method (ANM)
is devoted to the solution of nonlinear partial differential equation (PDE) problems arising, for
instance, in mechanics. Up to now, series were mainly handwritten and hand-coded. The note
discusses the automation of the specific derivative computations involved in the ANM and
presents the automatic differentiation (AD) approach Diamant. As any AD tool, Diamant is
generic and may be used to differentiate the code of any differentiable behaviour law. Numer-
ical performances, measured while solving a mechanical PDE problem, prove the efficiency
of the Diamant approach.

Keywords: Nonlinear PDE problems, asymptotic numerical method, operator overloading

1 Introduction

Several numerical methods based on Taylor series have been discussed for the solu-
tion of various, sufficiently smooth, PDE problems. Among them, a path following
method, namely the asymptotic numerical method (ANM) [15, 9], and some optimal
shape design technique [12] take advantage of truncated series for the computation
of approximate solutions. Once the PDE problem has been discretized and differenti-
ated, computations are governed by following the same simple but efficient idea: the
linear system to be solved is the same whatever the order of differentiation is, the
right-hand side terms being different. In the case of the ANM, this system more-
over involves a tangent linear matrix. In both methods, the use of a direct solver is
thus of peculiar interest since the CPU resource consumption may be shared over
the different orders. The truncated series computed at a given point is then used to
provide approximate solutions, in a vicinity of that point, without solving the lin-
ear system. These approximate solutions were successfully used either to follow the
path in the continuation method [9] or within a gradient method when dealing with
optimal shape design [12]. The reader in referred to [9] for a review of the PDE prob-
lems that were solved through the ANM. This paper is devoted to the automation of
high-order differentiation computations involved in the ANM.
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The differentiation stage present in the ANM may be hidden to the user as pro-
posed in the MANLAB software [1]. This Matlab tool allows for the solution of non-
linear problems written under the prescribed form R(u) = L0 + L(u)+ Q(u,u) = 0
where functions L0, L and Q are respectively constant, linear and quadratic functions
provided by the user. Automatic Differentiation [10, 12] (AD) is a more generic
approach. As stated in [7], the ANM differentiation strategy is somewhat different
from the “classical” AD for two reasons. Firstly high-order derivative computations
and linear system solutions are performed alternately. Secondly, the ANM recur-
rence formulae miss the term used in the construction of the tangent linear matrix.
In the note we discuss with details the automation of the differentiation stages of
the ANM. We then present the C++ version of the Diamant package (as a french
acronym for DIfférentiation Automatique de la Méthode Asymptotique Numérique
Typée) that has been designed to be as efficient as the hand-coded ANM, to avoid the
tedious and error-prone task of differentiation, and to hide the differentiation aspects
to the user. Equivalent packages are currently developed in Fortran 90 [7] and
MATLAB.

The layout of the paper is as follows. Section 2 presents the ANM high-order dif-
ferentiation equations on a generic nonlinear PDE problem, meanwhile Sect. 3 dis-
cusses the Diamant approach we adopt to tackle the differentiation stages involved in
the ANM. The Diamant package allowing for an easy solution of nonlinear prob-
lems through the ANM is described in Sect. 4. Diamant usage and performances
are presented on a nonlinear mechanical PDE problem in Sect. 5. Some perspectives
are proposed as a conclusion.

2 Asymptotic Numerical Method (ANM)

The ANM [15, 9] is a competitive path following method that may replace the
Newton-Raphson scheme in the solution of nonlinear PDE problems and more gen-
erally in the solution of any equilibrium system of equations. Taking advantage of
truncated series for the computation of approximate solutions, the ANM may often
be used without any correction step. Nevertheless, some residuals may be measured
to evaluate the interest of a correction. This can be performed using high-order cor-
rectors [13]. The main advantage of the ANM is in its adaptive step size control
based on the numerically determined radius of convergence of the series. The ana-
lytic construction of the branches moreover allows for the detection of bifurcations
and instability points.

2.1 Setting of the Problem

Many nonlinear physical and mechanical problems may be written in a discrete form
as the generic residual equation

R(v,λ ) = A(v)S (v)+λF = 0 (1)
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where R ∈ R
n is the residual vector depending on the unknown state vector v ∈ R

n

and the unknown load parameter λ ∈ R. With regards to the benchmark in Sec. 5,
we assume that the matrix A(v) ∈ R

n×n depends linearly on vector v meanwhile
S(v) ∈ R

n is a vector-valued function depending on v in a nonlinear fashion. The
load vector F ∈ R

n is a constant one. The solutions of this underdertermined system
of n nonlinear equations in n + 1 unknowns form a branch of solutions (v,λ ). As in
predictor-corrector methods, this branch may be described considering v and λ as
functions of a path parameter a. Denoting the dot product of vectors as 〈., .〉, the path
equation may be chosen (pseudo-arc-length) as

a =
〈

v(a)− v(0),
∂v
∂a

(0)
〉

+(λ (a)−λ (0))
∂λ
∂a

(0) (2)

which corresponds to the projection of the increment along the tangent direction
( ∂v
∂a , ∂λ∂a ). As presented below, the ANM deals with the nonlinear system com-

pound of R(v(a),λ (a)) and (2) for the construction of a piecewise representation
(v j,λ j) j=0,...,J of a branch issued from the point (v0,λ 0). Throughout the paper, su-
perscripts j applied to variables v and λ indicate branch points whereas subscripts
k and l are used to denote their Taylor coefficients.

2.2 Taylor Expansions

Let a �→ v(a), a �→ λ (a) and v �→ S(v) be analytic functions. Obviously a �→
R(v(a),λ (a)) is analytic too. Let vk = 1

k!
∂ kv
∂ak , λk = 1

k!
∂ kλ
∂ak and sk = 1

k!
∂ k(S◦v)
∂ak be re-

spectively the kth order Taylor coefficients of v, λ and s = S ◦ v computed in a = 0.
We denote by ∑K

k=0 akvk, ∑K
k=0 akλk and ∑K

k=0 aksk the Taylor expansions of v(a),
λ (a) and s(a) truncated at order K. With regards to the Leibniz formula, these series
introduced in (1) and (2) allow to deduce

0 = A

(
K

∑
k=0

akvk

)(
K

∑
k=0

aksk

)

+

(
K

∑
k=0

akλk

)

F =
K

∑
k=0

ak

(
K

∑
l=0

A(vk−l)sl +λkF

)

(3)

and 〈(
K

∑
k=0

akvk

)

− v0,v1

〉

+

((
K

∑
k=0

akλk

)

−λ0

)

λ1 = a. (4)

The identification of terms in ak (k ≥ 1) yields K systems of equations

k

∑
l=0

A(vk−l)sl +λkF = 0, ∀k = 1, . . . ,K (5)

and K additional path equations

〈v1,v1〉+λ1λ1 = 1 (6)
〈vk,v1〉+λkλ1 = 0, ∀k = 2, . . . ,K. (7)
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The system related to k = 0 is (1)–(2) evaluated at point (v0,λ0) = (v j,λ j) when
constructing the j +1th piece of the branch. Taylor coefficients of vk and λk (k ≥ 1)
resulting from the solutions of (5)–(7) allow for a low cost approximation of the
branch issued from (v j,λ j) by means of the truncated series in v and λ .

2.3 ANM Linear Systems

Higher-order derivatives s(k) = k!sk of S ◦ v are derived from Faá di Bruno formula
which can be expressed in terms of Bell polynomials Bk,l(v(1), · · · ,v(k−l+1)) as (see
also [2])

s(k) = (S◦ v)(k) =
k

∑
l=1

S(l)Bk,l(v(1), . . . ,v(k−l+1)) (8)

where v(k) = k!vk and S(k) = k!Sk = ∂ kS
∂vk (v(0)) are the k-order derivatives of v and S

respectively, and

Bk,l(v(1), . . . ,v(k−l+1)) =∑ k!
i1! · · · ik−l+1!

(
v(1)

1!

)i1
· · ·

(
v(k−l+1)

(k− l +1)!

)ik−l+1

.

This sum is over all partitions of k into l nonnegative parts such that i1 + i2 + · · ·+
ik−l+1 = l and i1 + 2i2 + · · ·+ (k− l + 1)ik−l+1 = k. One may prove the following
result.

Theorem 1. Assuming a �→ v(a), a �→ λ (a) and v �→ S(v) are analytic functions, the
kth equation of (5) is linear in vk and, for any k ≥ 1, it may be written as

LT vk +λkF = Rk (9)

where the tangent linear matrix LT satisfies

LT v = A(v)S0 +A(v0)S1v, ∀v (10)

and the right-handside term is

Rk =−
k−1

∑
l=1

A(vk−l)sl−A(v0)

(
k

∑
l=2

l!
k!

SlBk,l

(
v(1), . . . ,v(k−l+1)

)
)

. (11)

Proof. Using Bell polynomials, equation (5) written for k = 1 becomes

A(v1)s0 +A(v0)s1 +λ1F = A(v1)S0 +A(v0)S1v1 +λ1F = 0. (12)

Choosing LT satisfying (10) allows to deduce

LT v1 +λ1F = 0. (13)

This proves (9) for k = 1 since R1 constructed as in (11) is equal to 0. Assuming vl

and λl (l = 1, . . . ,k−1) have been already computed, one may write the kth equation
of (5) as
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A(v0)sk +A(vk)s0 +λkF = −
k−1

∑
l=1

A(vk−l)sl . (14)

Two high-order differentiations arise in the right-hand side of (14):

1. the “incomplete Leibniz formula” ∑k−1
l=1 A(vk−l)sl related to the differentiation

of the product A(v).S(v) and
2. the Taylor coefficient sl of the compound function S ◦ v. Formula (8) may be

written as

s(k) = S(1)v(k) +
k

∑
l=2

S(l)Bk,l

(
v(1), . . . ,v(k−l+1)

)
(15)

since Bk,1(v(1), . . . ,v(k)) = v(k). This allows to figure out the contribution of v(k),
one deduces

sk = S1vk +
k

∑
l=2

l!
k!

SlBk,l

(
v(1), . . . ,v(k−l+1)

)
. (16)

On the one hand, the tangent linear matrix LT appears (since s0 = S0) identify-
ing the terms in vk in formulae (14) and (16). On the other hand, the right-hand
side term Rk gathers the ∑ appearing in formulae (14) and (16). One thus deduces
(9) from (14). ��

As presented below, a few modifications of the ANM equations enable the use of AD
through the classical recurrence formulae.

3 Applying AD to the ANM Computations

As presented below, the differentiation stages appearing in the ANM (usually tackled
by hand in the mechanics community) may be performed by the differentiation of
the residual function R defined in (1) and the evaluation of its Taylor coefficients at
branch points in well-chosen directions.

3.1 Evaluation of the Tangent Linear Matrix

As proved in Theorem 1, the same tangent linear matrix appears whatever the order
of differentiation is. Obviously it may be automatically obtained from a first-order
differentiation in v of the code of R(v(a),λ (a)) since one has

∂R

∂v
(v0,λ0) = A(v0)S1v1 +A(v1)S0 = LT v1. (17)

From the numerical point of view, the state equation is discretized and implemented
by means of a finite element method, the tangent linear matrix being as sparse as
the finite element matrix A(v). Even LT may be obtained from the vectors of the
canonical basis, its construction is much more efficient using a graph colouring
algorithm [10].
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3.2 The Diamant Approach for the ANM

A key idea within the automation of the ANM series computations is that the un-
knowns vk and λk may be initialised to 0 before the solution of the kth linear system.
Under this choice, the “incomplete” recurrence formulae (Leibniz and Faá di Bruno
in the generic case) appearing in Rk may be turned into classical ones: AD becomes
applicable and the following equality is satisfied

Rk = Rk, ∀k = 2, . . . ,K. (18)

In the last formula Rk is the kth Taylor coefficient of compound function R evaluated
using correct values for vl and λl (l = 1, . . . ,k−1) and initialising vk and λk to 0.

The Continuation algorithm deriving from the Diamant approach is pre-
sented in Table 1. Even guidelines are the same as in the original ANM algorithm [9],
the use of AD allows for significant improvements in terms of genericity and easiness
of implementation since one differentiates R only. At order 1, we use [9] an inter-
mediate variable v̂ (passive for the differentiation) such that v1 = λ1v̂. This enables
to write (13) and (6) as

Table 1. Diamant algorithm for R(v(a),λ (a)) with parameter a satisfying (2). Steps under
parenthesis may be useless depending on the Diamant version (requiring or not intermediate
variable storage) or the use of a correction phase.

Initialisation: v0 = 0, λ 0 = 0 (first point of the branch)
Iterations j = 0, . . . ,J
Initialisation

v0 = v j, S0 = S j, λ0 = λ j

∀k = 1, ...,K vk = 0, λk = 0
Series computation
Construction of LT (v0) using AD on R and a

graph colouring technique
Decomposition of LT
ORDER 1:
Initialisation: v1 = 0 and λ1 = 1
Computation of the first Taylor coefficient R1 of R(v,λ )
Solution of LT v̂ = R1 (=−F)
Computation of λ1 =±1/

√
1+ ||v̂||2 and v1 = λ1v̂

(the sign of λ1 depends on the orientation of v1)
(Update of intermediate variables s1 evaluating R(v,λ ))

ORDER k = 2, . . . ,K:
Computation of the first Taylor coefficient Rk
Solution of LT v̂ = Rk (= Rk)
Computation of λk, vk = λk/λ1v1 + v̂
(Update of intermediate variables sk evaluating R(v,λ ))

End of the series computation

Computation of approx. convergence radius amax =
(
ε ||v1||
||vK ||

)1/(K−1)

(correction step [13])
Computation of point: v j+1 = v(amax), S j+1 = S(amax), λ j+1 = λ (amax)
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LT v̂ =−F (19)

λ 2
1 (〈v̂, v̂〉+1) = 1. (20)

Once the n×n linear system has been solved in v̂, this intermediate variable may be
used to compute λ1 from (20) and to deduce v1. To calculate the solution at order k,
one notices that F =−LT v1/λ1 according to (13). One then uses this relationship in
(9) to define the intermediate variable v̂ as

LT (vk−λkv1/λ1) = LT v̂ = Rk. (21)

One thus solves (21) in v̂. Using vk = v̂ +λkv1/λ1 in (7) allows to deduce λk before
the effective computation of vk.

The approximate convergence radius is computed as presented in Table 1. Other
choices are possible, the interested reader is referred to [9] for details. As described
in [13], small values of parameter ε allow to avoid a correction step.

This algorithmic pattern is a generic driver of the ANM computations in which
user-defined parts are mainly concerned with the unknowns variables v and λ , some
intermediate variables (for mechanical purposes) and the function R to be evaluated.
Programming details are provided in the next section.

4 Diamant: An AD Tool Devoted to the ANM

The ANM high-order differentiation strategy, even somewhat different from the
usual one, may be tackled through AD techniques. To that end, we propose the AD
package Diamant which was designed to be as efficient as the hand-coded ANM,
to avoid the tedious and error-prone task of differentiation, and to hide the differen-
tiation aspects from the user.

4.1 Motivations for a New AD Tool

In the ANM as well as in the solution of hypergeometric ODE [6] for instance, Taylor
coefficients are computed order by order up to order K. As mentioned in [4], the
complexity for solving ODE with Taylor series to degree K is O(K2) by means
of storing all the intermediate coefficients of the Taylor series, whereas the naive
algorithm with Taylor series would require O(K3) operations.

Hereafter, the naivest AD implementation of the proposed Diamant approach is
referred to as Diamant0: it computes Taylor series up to a fixed degree K what-
ever the order of the Taylor coefficients we are interested in. As a “differentiation
at order k” does not require higher-order Taylor coefficients (m = k + 1, . . . ,K), the
upper bound of recurrence formulae may be k. Such an improvement (present in
Adol-C too) has been taken into account in the Diamant1 version. This reduces
the number of operations by a factor of 3. On the one hand, the time complexity
remains in O(K3). One the other hand, intermediate Taylor coefficients do not need
to be stored (we only store vk and λk for k = 0, . . . ,K). The space complexity of
Diamant0 and Diamant1 thus depends linearly on the maximum order K.
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With regards to [4], lower-order derivatives recalculation may be avoided too.
This AD implementation of the Diamant approach, hereafter denoted Diamant2,
has a time complexity of O(K2). Nevertheless, the gain is paid in memory con-
sumption since intermediate Taylor coefficients sk have to be stored. When using
Diamant2, Taylor coefficients of intermediate variables (initially computed with
wrong values for vk and λk) have to be updated after the computations of vk and
λk as presented under parenthesis in Table 1. The space complexity, still linear in
K, now depends on the number of operations used to implement the math function
R(v,λ ). One notices that the memory consumption also depends on the number of
degrees of freedom involved in the finite element discretization of a peculiar PDE
problem. A fair comparison would have then to take into account the storage of the
tangent linear matrix LT which bandwidth may be larger than K = 20 for mechanical
problems involving for instance shell elements (6 degrees of freedom per node). On
the contrary of [5], Diamant2 does not already manage the storage in an automatic
manner.

4.2 C++ Implementation

Classes, objects and operator overloading concepts have been introduced in several
high-order AD tools (for instance [14, 11, 8, 3]). These rely on operator overloading
as the vehicle of attaching derivative computations to the arithmetic operators and in-
trinsic function provided by the programming language. In the design of Diamant,
we have focused our attention onto generic and object-oriented programming tech-
niques for an efficient AD implementation of the ANM in a C++ finite element code.

TheC++version ofDiamant is mainly based on 6 classes. TheContinuation
class implements the AMN algorithm presented in Table 1, meanwhile the
NonLinearProblem class allows for the definition of the nonlinear PDE func-
tion R. The Derivation class allows for the construction of the tangent linear
matrix LT and the right-hand side terms Rk. The Diamant version (respectively
denoted by Diamant0, Diamant1 and Diamant2) is fully determined by the
choice of one of three template classes DType0, DType1, and DType2 for the
operator overloading implementation. A static member CurrentOrder in the over-
loading classes indicates the current order of differentiation.

5 Application to a Nonlinear PDE Problem in Structural
Mechanics

As an illustration we consider the smooth nonlinear PDE problem of a bending of a
two-dimensional beam (200mm× 10mm) clamped on the left side, the vertical load
vector f is applied at the upper right corner of the beam. This example is exhaustively
discussed from the ANM point of view in [9] (p. 211). Discretized by means of
a finite element method (triangular mesh involving 4000 elements and n = 4422
degrees of freedom), the PDE problem may be written in a Lagrangian formulation as
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Find (v,λ ) such that⎧
⎨

⎩
∑
e

tδve

(∫

Ωe

( tA0 + tAnl(v)
)

S(v)dΩe−λ fe

)
= 0

S (v) = D
(
A0 + 1

2 Anl (v)
)

ve

(22)

The sum is performed over the elements e of the finite element mesh. Matrices A0
and Anl are respectively the linear part and the nonlinear part of the strain compo-
nents whereas D is the elastic stiffness matrix. Vector v = (Vx,Vy) is the displacement
vector and the peculiar notation ve signifies that v is computed at the nodes of the el-
ement e. The load parameter and the applied load vector are respectively denoted by
λ and f . The Second Piola-Kirchoff stress tensor S being symmetric, stress compo-
nents may be stored as a vector denoted by S. A numerical integration based on a
Gaussian quadrature is performed. Stress components are computed at the integra-
tion points too. The matrix and vector assembly is that of a classical finite element
method. The unknowns are the displacement vector v and the load parameter λ . In
the ANM, they moreover have to satisfy the path equation (2).

Figure 1 plots the curve of load parameter λ versus vertical displacement Vy com-
puted for an homogeneous isotropic material characterised by a Poisson coefficient
ν = 0.3 and a Young modulus E = 210GPa. The applied load force f is of 1N. The
dashed curve plots approximate values (Vy,λ ) computed through the ANM involv-
ing Taylor series at order K = 20. Points (order K = 20) indicate the beginning of the
6 branches (V j

y ,λ j) ( j = 0, · · · ,6) we compute by means of the ANM. Squares and
triangles indicate the beginning of the branches (respectively 10 and 20 pieces) we
compute for K = 10 and K = 5 respectively. The adaptive stepsize amax is computed
using ε = 10−6. No correction is used. The higher the truncation order, the lower the
number of ANM Taylor series expansion computations.

Figure 2 presents CPU results for one Taylor expansion computation (Fig. 2A)
and the solution of (1)–(2) (Fig. 2B) for four implementation of the Taylor
series computations. The hand-coded ANM version is those of [9] whereas
Diamant0,1,2 versions are described in Sect. 4.1. Computations were performed
for K = 5, K = 10 and K = 20, curves being plotted using a Bezier interpola-
tion. Runtimes were recorded in seconds on a IntelCore2 2.66 GHz processor with
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Fig. 1. Curve of load parameter λ vs
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Fig. 2. A: CPU time curves of one Taylor expansion computation vs maximum order K, B:
CPU time curves for the solution of (1)-(2) vs maximum order K for 4 different implementa-
tions of the ANM.

2GB memory with the visual C++ compiler. One observes that Diamant2
is much more efficient than the naive Diamant0 and Diamant1 versions.
Diamant2 is more efficient than the hand-coded ANM (probably because the
hand-developed series were not fully optimised). Figure 2B is even more interesting
since it shows that the ANM solution of (1)–(2) is cheaper for K = 20 than for
K = 5 using either Diamant1 or Diamant2. This results from the computation of
a smaller number of branches when K = 20. One notices that one “Newton-Raphson
computation” (construction and decomposition of LT + solution at order 1) costs
0.828s in that case. A comparison “ANM vs Newton-Raphson” may be found in [16]
for instance for a similar PDE problem. Of course, comparison results depend on the
PDE problem.

From a memory point of view, Taylor coefficients vk ∈ R
4422 and λk ∈ R are

computed and stored in all the implementations. In our example, Diamant2 as well
as the hand-coded ANM were used storing (and updating when using Diamant2)
the intermediate stress variable sk = (S◦v)k ∈R

12000 only. One notices that, on larger
problems involving for instance shell finite elements, the CPU time consumption
would probably be dominated by the matrix decomposition. In that case, Diamant1
could become an interesting compromise between time and memory consumptions.

6 Conclusion

The Diamant approach allows for significant improvements in terms of genericity
and easiness for the solution of nonlinear PDE through the ANM method. In fact,
the few modifications we propose in the Diamant approach allow for the computa-
tion of the series by means of classical AD recurrence formula. These improvements,
as well as the tangent linear matrix construction, were implemented in our AD pack-
age Diamant. According to the previous remarks, our most important contributions
in the mechanical context are on the Diamant approach that enables AD in the ANM
and the C++ Diamant package we develop, rather than on the DType classes that
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propagate Taylor coefficients. We now have to our disposition a powerful tool to in-
vestigate many more problems since the manual task of differentiation is no more
necessary. One may also think in the implementation of the Diamant approach into
commercial mechanical codes. Future works are concerned with the storage capabil-
ities of Diamant2, sensitivity analysis and optimisation experiments.
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Summary. We compare the Tangent-on-Tangent and the Tangent-on-Reverse strategies to
build programs that compute second derivatives (a Hessian matrix) using automatic differ-
entiation. In the specific case of a constrained functional, we find that Tangent-on-Reverse
outperforms Tangent-on-Tangent only above a relatively high number of input parameters.
We describe the algorithms to help the end-user apply the two strategies to a given applica-
tion source. We discuss the modification needed inside the automatic differentiation tool to
improve Tangent-on-Reverse differentiation.

Keywords: Automatic differentiation, gradient, Hessian, tangent-on-tangent, tangent-on-
reverse, software tools, TAPENADE

1 Introduction

As computational power increases, Computational Fluid Dynamics evolves toward
more complex simulation codes and more powerful optimization capabilities. How-
ever these high fidelity models cannot be used only for deterministic design, as-
suming perfect knowledge of all environmental and operational parameters. Many
reasons, including social expectations, demand accuracy and safety control and even
high fidelity models remain subject to errors and uncertainty. Numerical error for in-
stance, need be controlled and partly corrected with linearized models. Uncertainty
arises everywhere, e.g. in the mathematical model, in manufacturing tolerances, and
in operational conditions that depend on atmospheric conditions. Techniques for
propagating these uncertainties are now well established [16, 13, 5]. They require
extra computational effort, but really improve the robustness of the design [9], and
can help the designer sort out the crucial sources of uncertainty from the negligible.

We consider uncertainty propagation for a cost functional
j : γ �→ j(γ) = J(γ,W ) ∈ R (1)

with uncertainty affecting the control variables γ ∈R
n, and where the state variables

W = W (γ) ∈ R
N satisfy a (nonlinear) state equation

Ψ(γ,W ) = 0. (2)
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Equation (2) expresses the discretization of the PDE governing the mathematical
model of the physical system e.g. the stationary part of the Euler or Navier-Stokes
equations. We view (2) as an equality constraint for the functional (1).

The two main type of probabilistic approaches for propagating uncertainties are
the Monte Carlo methods [10, 4] and the perturbative methods based on the Tay-
lor expansion (Method of Moments [13] and Inexpensive Monte-Carlo [5]). The
straightforward full nonlinear Monte-Carlo technique can be considered the most
robust, general and accurate method, but it proves prohibitively slow since it con-
verges only with the square root of the number of nonlinear simulations. In contrast,
the Method of Moments gives approximate values of the mean and variance at the
cost of only one nonlinear simulation plus a computation of the gradient and Hessian
of the constrained functional. This requires far less runtime than the full nonlinear
Monte-Carlo, but at the (high) cost of developing the code that computes the gradient
j′ and Hessian j′′ of the constrained functional.

Hessians also occur in the context of robust design [1], in which the optimization
cost functionals involve extra robustness terms such as jR(γ) = j(γ) + 1

2 ∑ j′′i jCi j,
where the Ci j are elements of the covariance matrix of uncertain variables.

Writing the code for the gradient and Hessian by hand is tedious and error-prone.
A promising alternative is to build this code by Automatic Differentiation (AD) of
the program that computes the constrained functional. This program has a general
structure sketched in Fig. 1: a flow solver computes iteratively the state Wh satisfying
(2) from a given γh, then computes j. This program can be seen as a driver that calls
application-specific routines state(psi,gamma,w) for the state residualΨ and
func(j,gamma,w) for the functional J. Let us contrast two ways of building the
program that computes j′ and j′′ using AD:

Initialize γh,W 0

ComputeΨ i =Ψ(γh,W i)

Compute δW i = F(Ψ i) (implicit or explicit)

Update W i+1 = W i +δW i

Test ||δW i||= 0False

i = i+1

flow solver(gamma,w)

True

state(psi,gamma,w)

Wh = W i+1

Compute j = J(γh,Wh)

func(j,gamma,w)

Fig. 1. Program structure for evaluating a constrained functional with a fixed-point algorithm
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• Brute-force differentiation: Differentiate directly the function j as a function of
γ . This means that the entire program of Fig. 1 is differentiated as a whole. This
takes little advantage of the fixed-point structure of the algorithm. Performance
is often poor as the differentiated part contains the iterative state equation solver
flow solver(gamma,w). To be reliable, this strategy requires a careful con-
trol of the number of iterations, which is out of the scope of AD tools [6, 2].
A small change of the input may radically change the control flow of the pro-
gram, e.g. the iteration number in flow solver. The computed function is
thus only piecewise-continuous, leaving the framework where AD is fully justi-
fied. Regarding performance, since j is scalar, reverse mode AD [7, Sect. 3-4]
is recommended over tangent mode to compute j′, and for the same reason
Tangent-on-Reverse is recommended over Tangent-on-Tangent for j′′.
• Differentiation of explicit parts: Do not differentiate the driver part, but only the

routines for Ψ and J, then plug the resulting routines into a new, specialized
driver to compute the gradient and Hessian. This sophisticated way proves more
efficient and we will focus on it in the following sections. Notice that the deriva-
tives forΨ and J need to be computed only at the final state Wh, which results in
a cheaper reverse mode because fewer intermediate values must be restored in
reverse order during the computation of the derivatives.

For the gradient, several papers advocate and illustrate this second way [3]. For
the Hessian, the pioneering works of Taylor et al. [14, 15] define the mathemat-
ical basis and examine several approaches, of which two apply to our context of
a constrained functional with a scalar output j. Following Ghate and Giles [5], we
also call these approaches Tangent-on-Reverse (ToR) and Tangent-on-Tangent (ToT).
The general complexity analysis provided in [14] finds linear costs with respect to
the size n of γ . This leads to the conclusion that ToT is unconditionally better than
ToR. This is slightly counter-intuitive compared to the general case of brute-force
differentiation. However, in our context where matrices can be too large to be stored,
every linear system must be solved using a matrix-free method (e.g. GMRES) with
an ILU(1) preconditioner. This paper revisits the Hessian evaluation problem in this
context. The full mathematical development can be found in [11, 12].

Section 2 studies the ToR approach while Sect. 3 studies the ToT approach, both
sections going from the mathematical equations to the algorithm and to a refined
complexity analysis. Section 4 compares the two approaches and gives first experi-
mental measurements. We claim that ToT is no longer linear with respect to n, and
for large enough, yet realistic n, ToR does outperform ToT. Section 5 discusses the
ToR approach from the point of view of the AD tool.

2 Tangent-on-Reverse Approach

Following [14], the projection of the Hessian along a direction δ ∈ R
n is given by

(
d2 j
dγ2

)
δ =

∂
∂γ

(
∂J
∂γ

)T
δ +

∂
∂W

(
∂J
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)T
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[(
∂Ψ
∂γ

)T
Π
]
δ − ∂

∂W

[(
∂Ψ
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)T
Π
]
θq−

(
∂Ψ
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Solve for Π in
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(
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)T
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End For

Fig. 2. Algorithm to compute the Hessian with the ToR approach
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From these equations, we derive the algorithm sketched by Fig. 2. It evaluates
the Hessian column by column, repeatedly computing d2 j

dγ2 ei for each component ei

of the canonical basis of R
n. Notice that the computation of Π is independent from

the particular direction δ and is therefore done only once. In contrast, new vec-
tors θ ,λ are computed for each ei. The vectors Π ,θ , and λ are solutions of linear
systems, and can be computed using an iterative linear solver. In our experiments,
we use GMRES with an ILU(1) preconditioner built from an available approximate
Jacobian. During this process, the left-hand side of the equations for Π ,θ , and λ is
evaluated repeatedly for different vectors. The routine that performs this evaluation is
obtained by differentiation of the routine state that computesΨ , in tangent mode
for θ , in reverse mode for Π and λ . The rest of the algorithm needs ∂J

∂W
T

, ∂Ψ∂γ ei,
∂Ψ
∂γ

Tλ , which are obtained through a single tangent or reverse differentiation. It also

needs the complex expressions that we name ˙̄WJ , ˙̄γJ , ˙̄WΨ , and ˙̄γΨ , which are obtained
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through ToR differentiation of the routines state (evaluatingΨ(γ,W )) and func
(evaluating J(γ,W )). For instance, the ToR differentiation of state with respect to
input variables gamma and w has the following inputs and outputs:

state bd(psi
↓
Ψ

,

Π
↓

psib,

γ
↓

gamma,

ei
↓

gammad,gammab
↓

(
∂Ψ
∂γ

)T
Π

,gammabd
↓
˙̄γΨ

,

W
↓
w,

θ
↓
wd, wb

↓
(
∂Ψ
∂W

)T
Π

,wbd
↓
˙̄WΨ

)

Similar differentiation of func gives us ˙̄WJ and ˙̄γJ .
After implementing this algorithm, we observe that all iterative solutions take

roughly the same number of steps niter. Moreover, the runtime to computeΨ largely
dominates the runtime to compute J, and the same holds for their derivatives. A dif-
ferentiated code is generally slower than its original code by a factor we call α ,
which varies with the original code. We call αT (resp. αR) the slowdown factor of
the tangent (resp. reverse) code ofΨ . We call αT R the slowdown factor of the second
differentiation step that computes the ToR derivative ofΨ . Normalizing with respect
to the runtime to computeΨ , we find the cost for the full Hessian:

niterαR +n
(
niterαT +αT RαR +niterαR

)

3 Tangent-on-Tangent Approach

In contrast, the ToT approach computes each element of the Hessian separately. Fol-
lowing [14] and introducing the differential operator D2

i,k for functions F(γ,W ) as:

D2
i,kF =

∂
∂γ

(
∂F
∂γ

ei

)
ek +

∂
∂W

(
∂F
∂γ

ei

)
dW
dγk

+
∂
∂W

(
∂F
∂γ

ek

)
dW
dγi

+
∂
∂W

(
∂F
∂W

dW
dγi

)
dW
dγk

.

the elements of the Hessian are
d2 j

dγidγk
= D2

i,kJ +
∂J
∂W

d2W
dγidγk

= D2
i,kJ−ΠT (D2

i,kΨ)

whereΠ is the adjoint state, i.e. the solution of the linear system
( ∂Ψ
∂W

)TΠ =
( ∂J
∂W

)T .
These equations give us the algorithm sketched by Fig. 3 to evaluate the Hessian ele-
ment by element. Efficiency comes from the key observation that the total derivatives
dW
dγi occur in many places and should be precomputed and stored. They are actually
the θ of the ToR approach, for each vector ei of the canonical basis of R

n. Terms
D2

i,kΨ (resp. D2
i,kJ) are obtained through ToT differentiation of routine state (resp.

func). For instance, the ToT differentiation of state with respect to input vari-
ables gamma and w has the following inputs and outputs:

state dd(psi
↓
Ψ

,psid
↓
Ψ̇

,psidd
↓

D2
i,kΨ

,

γ
↓

gamma,

ek
↓

gammad0,

ei
↓

gammad,

W
↓
w,

θk
↓

wd0,

θi
↓
wd). (3)

Similar differentiation of func gives us D2
i,kJ.
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Solve for Π in
(
∂Ψ
∂W

)T
Π =

(
∂J
∂W

)T

For each i ∈ 1..n

Solve for θi in
(
∂Ψ
∂W

)
θi =−

(
∂Ψ
∂γ

)
ei and store it

End For
For each i ∈ 1..n

For each k ∈ 1..i

Compute
d2 j

dγidγk
= D2

i,kJ−ΠT (D2
i,kΨ)

End For
End For

Fig. 3. Algorithm to compute the Hessian with the ToT approach

After implementing this algorithm, we observe that the expensive parts are solv-
ing for the θi and computing the D2

i,kΨ . With the same conventions as in Sect. 2, and
introducing αT T as the slowdown factor for the second tangent differentiation step,
we obtain the cost for the full Hessian:

niterαR +n niterαT +
n(n+1)

2
αT TαT

Observe that this cost has a quadratic term in n.

4 Comparing ToR and ToT Approaches

The slowdown factors α resulting from AD depend on the differentiation mode (tan-
gent or reverse), on the technology of the AD tool, and on the original program.
For instance, on the 11 big codes that we use as validation tests for the AD tool
TAPENADE[8], we observe that αT ranges from 1.02 to 2.5 (rough average 1.8), and
αR ranges from 2.02 to 9.4 (rough average 5.0). Notice that TAPENADE offers the
possibility to perform the second level of differentiation (e.g “T” in “ToR”) in multi-
directional (also called “vector”) mode. This can slightly reduce the slowdown αT T
by sharing the original function evaluation between many differentiation directions.
For technical reasons, we didn’t use this possibility yet. However this doesn’t affect
the quadratic nature of the complexity of the ToT approach.

On the 3D Euler CFD code that we are using for this first experiment, we mea-
sured αT = 2.4, αR = 5.9, αT T = 4.9 and αT R = 3.0, with very small variations
between different runs. The higher αT T may come from cache miss problems, as
first and second derivative arrays try to reside in cache together with the original
arrays.

We also observe that the number of iterations niter of the GMRES solver remain
remarkably constant between 199 and 201 for the tangent linear systems, and be-
tween 206 and 212 for the adjoint linear systems.
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With these figures and our cost analysis, we find that ToR will outperform ToT
for the Hessian when the dimension n is over a break-even value of about 210.

It turns out that this CFD code does not easily lend itself to increasing the value of
n above a dozen. So we have devised a second test case, with a simplified (artificial)
nonlinear state function Ψ in which the dimension of the state W was 100000 and
the number of control variables moves from 1 to 280. To be more precise we used
the functional J(γ,W ) = ∑N

i=1

√
|Wi| and the state residual

Ψi(γ,W ) =
1

W 2
i
− 1

[
1− f (γ)

]2α2
i

+
1

W 2
i ∏

n
j=1 γ j

− 1
α2

i

with αi > 0, f (γ) = ∑n−1
i=1

[
(1− γi)2 + 10−6(γi+1− γ2

i )2
]
. With the above definitions

and using γ = (1,1, . . . ,1) the state equationΨ = 0 is satisfied with Wi = ±αi. For
all runs, we observe that the solutions of the linear systems requires 64 GMRES it-
erations (without preconditioning) for the tangent and 66 iterations for the adjoint
version, with very little variability with respect to the rhs. Figure 4 shows the CPU
times for the ToT and ToR approaches, when the number n of control variables varies
from 1 to 280. We observe that ToR is cheaper than ToT when n � 65. We also ob-
serve the linear behavior of the ToR cost and the quadratic cost for ToT, as expected.

It can be observed that all the linear systems always use the same two matrices
∂Ψ
∂W and ∂Ψ

∂W
T

. This can be used to devise solution strategies even more efficient than
the GMRES+ILU that we have been using here. That could further decrease the
relative cost of the solving steps, and therefore strengthen the advantage of the ToR
approach.

We have been considering the costs for computing the full Hessian, which is
not always necessary. The choice of the approach also depends on which part
of the Hessian is effectively required. The algorithms and costs that we provide
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can be easily adapted to obtain single Hessian elements, Hessian diagonals, or
Hessian×vector products. Specifically for the Hessian×vector case, the cost through
the ToR approach becomes independent from the number n of control variables,
namely

niterαR +niterαT +αT RαR +niterαR

whereas the ToT approach still requires computing all the θi for i ∈ 1..n, for a total
cost of

niterαR +n niterαT +nαT TαT .

In this case, ToR outperforms ToT starting from much smaller values of n.

5 The Art of ToR

This work gives us the opportunity to study the difficulties that arise when building
the ToR code with an AD tool. These questions are not limited to the context of
constrained functionals.

Assuming that a source transformation tool is able to handle the complete source
language, its repeated application should not be problematic. AD tools such as TAPE-
NADE belong to this category. Indeed, ToT approach works fine, although some ad-
ditional efficiency could be gained by detecting common derivative sub-expressions.
However, problems arise with ToR, due to the presence of external calls for the stack
management in the reverse code. These external calls result from the architectural
choice of the reverse mode of TAPENADE, which uses a storage stack. The situation
might be different with reverse codes that rely on recomputation instead of storage.

With the stack approach, stack primitives are external routines because many of
our users still use Fortran77, which has no standard memory allocation mechanism.
Though reverse AD of programs with external calls is possible, it must be done with
care. It relies on the user to provide the type and data flow information of the exter-
nal routines, together with their hand-written differentiated versions. This user-given
data is crucial and mistakes may cause subtle errors. Maybe the safest rule of thumb
is to write an alternative Fortran implementation of the external primitives as a tem-
porary replacement, then differentiate the code, and then replace back with the ex-
ternal primitives. For instance in the present case, we can easily write a replacement
PUSH and POP using a large enough storage array. After reverse AD, we observe
two things:

• First, as shown in Fig. 5, the storage array remains passive until some active
variable is PUSHed. It then remains active forever, even when reaching the POP
of some variable that was passive when it was PUSHed. As a consequence, the
matching POP of a passive PUSH may be active.
• Second, the storage array has given birth to a separate, differentiated storage

array devoted to derivatives.

This guides the data flow information to be provided about PUSH and POP, and most
importantly on the correct implementation of their tangent derivatives. Specifically
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Original: Reverse: Tangent-on-Reverse:
F : a,b,c �→ r F : a,b,c,r �→ a,b,c Ḟ : a, ȧ,b, ḃ,c, ċ,r, ṙ �→ a, ȧ,b, ḃ,c, ċ

x = 2.0
r = x*a

x += c
r += x*b

x = 3.0
r += x*c

x = 2.0
r = x*a
PUSH(x)

x += c
r += x*b
PUSH(x)

x = 3.0
r += x*c
x= c*r

c+= x*r
POP(x)
x= 0.0

x= b*r

b+= x*r
POP(x)

c+= x
x+= a*r

a+= x*r
x= 0.0

ẋ= 0.0
x = 2.0

PUSH(x)
ẋ= ċ
x += c

PUSH D(x,ẋ)
ẋ= 0.0
x = 3.0

ċ+= x*ṙ
c+= x*r
POP D(x,ẋ)

ẋ= ḃ*r+b*ṙ
x= b*r
ḃ+= ẋ*r+x*ṙ
b+= x*r
POP D(x,ẋ)
ċ+= ẋ
c+= x

ȧ+= ẋ*r+x*ṙ
a+= x*r

Fig. 5. ToR differentiation on a small code. Left: Original code, middle: Reverse code,
right: ToR code. Reverse-differentiated variables (x) are shown with a bar above, tangent-
differentiated variables (ẋ, ẋ) with a dot above. Code in light gray is actually dead and stripped
away by TAPENADE, with no influence on the present study

PUSH D(x,xd) must push x onto the original stack and xd onto the differentiated
stack, and POP D(x,xd) must set xd to 0.0 when the differentiated stack hap-
pens to be empty. Incidentally, a different implementation using a single stack would
produce a run-time error.

Although correct, the ToR code shown in Fig. 5 is not fully satisfactory. The last
call to POP D should rather be a plain POP. Also, once the stack becomes active, all
PUSH calls become PUSH D calls, even when the variable is passive, in which case a
0.0 is put on the differentiated stack. We would prefer a code in which matching
PUSH/POP have their own activity status, and do not get differentiated when the
PUSHed variable is passive. In general, matching PUSH/POP pairs cannot be found
by static analysis of the reverse code. It requires an annotated source.

However, this information was available when the reverse code was built. Thus,
TAPENADE now provides support to the ToR differentiation by placing annotations
in the reverse code, and by using them during tangent differentiation to find all calls
to stack operations that need not be differentiated.
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6 Conclusion

We have studied two approaches to efficiently compute the second derivatives of con-
strained functionals. These approaches appear particularly adapted to the case where
the constraint contains a complex mathematical model such as PDEs, which is gen-
erally solved iteratively. Both approaches rely on building differentiated versions of
selected subroutines of the original program by means of Automatic Differentiation.

Our main result is that comparing the complexity of the Tangent-on-Reverse ap-
proach versus Tangent-on-Tangent is not so clear-cut, and that it depends on the size
n of the problem and on the derivatives effectively needed. Also, we propose an au-
tomated implementation of both approaches, based on shell scripts and using the
AD tool TAPENADE, which had to be modified for better results in the Tangent-on-
Reverse mode.

In addition to applying these approaches to even larger CFD codes, one shorter
term further research is to study the Reverse-on-Tangent alternative to Tangent-on-
Reverse. This option might prove easier for the AD tool, but further experiments are
required to compare their performance.

References

1. Beyer, H.G., Sendhoff, B.: Robust optimization – A comprehensive survey. Comput.
Methods Appl. Mech. Engrg. 196, 3190–3218 (2007)

2. Christianson, B.: Reverse accumulation and attractive fixed points. Optimization Methods
and Software 3, 311–326 (1994)

3. Courty, F., Dervieux, A., Koobus, B., Hascoët, L.: Reverse automatic differentiation
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Summary. Shared-memory multicore computing platforms are becoming commonplace, and
loop parallelization with OpenMP offers an easy way for the user to harness their power. As
a result, tools for automatic differentiation (AD) should be able to deal with such codes in a
fashion that preserves their parallel nature also for the derivative evaluation. In this paper, we
explore this issue using a plasma simulation code. Its structure, which in essence is a time
stepping loop with several parallelizable inner loops, is representative of many other compu-
tations. Using this code as an example, we develop a strategy for the efficient implementation
of the reverse mode of AD with trace-based AD-tools and implement it with the ADOL-C
tool. The strategy combines checkpointing at the outer level with parallel trace generation and
evaluation at the inner level. We discuss the extensions necessary for ADOL-C to work in a
multithreaded environment and the setup necessary for the user code and present performance
results on a shared-memory multiprocessor.

Keywords: Parallelism, OpenMP, reverse mode, checkpointing, ADOL-C

1 Introduction

Automatic differentiation (AD) [24, 37, 25] is a technique for evaluating derivatives
of functions given in the form of computer programs. The associativity of the chain
rule of differential calculus allows a wide variety of ways to compute derivatives that
differ in their computational complexity, the best-known being the so-called forward
and reverse modes of AD. References to AD tools and applications are collected
at www.autodiff.org and in [3, 18, 26, 12]. AD avoids errors and drudgery
and reduces the maintenance effort of a numerical software system, in particular as
derivative computations become standard numerical tasks in the context of sensitivity
analysis, inverse problem solving, optimization or optimal experimental design.

These more advanced uses of a simulation model are also fueled by the con-
tinuing availability of cheap computing power, most recently in the form of inex-
pensive multicore shared-memory computers. In fact, we are witnessing a paradigm
shift in software development in that parallel computing will become a necessity
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as shared-memory multiprocessors (SMPs) will become the fundamental building
block of just about any computing device [1]. In the context of numerical compu-
tations, OpenMP (see [19] or www.openmp.org) has proven to be a powerful
and productive programming paradigm for SMPs that can be effectively combined
with MPI message-programming for clusters of SMPs (see, for example [10, 9, 40,
22, 39]).

The fact that derivative computation is typically more expensive than the function
evaluation itself has made it attractive to exploit parallelism in AD-based derivative
computations of serial codes. These approaches exploit the independence of different
directional derivatives [4, 34], the associativity of the chain rule of differential calcu-
lus [5, 6, 2, 7], the inherent parallelism in vector operations arising in AD-generated
codes [35, 14, 38, 15] or high-level mathematical insight [13].

In addition, rules for the differentiation of MPI-based message-passing parallel
programs have been derived and implemented in some AD tools employing a source-
transformation approach [30, 8, 20, 21, 17, 36, 29] for both forward and reverse mode
computations. The differentiation of programs employing OpenMP has received less
attention, so far [16, 23], and has only been considered in the context of AD source
transformation. However, in particular for languages such as C or C++, where static
analysis of programs is difficult, AD-approaches based on taping have also proven
successful, and in this paper, we address the issue of deriving efficient parallel adjoint
code from a code parallelized with OpenMP using the ADOL-C [27] tool.

To illustrate the relevant issues, we use a plasma simulation code as an example.
Its structure, which in essence is a time stepping loop with several parallelizable
inner loops, is representative of many other computations. We then develop a strategy
how trace-based AD-tools can efficiently implement reverse-mode AD on such codes
through the use of “parallel tapes” and implement it with the ADOL-C tool. The
strategy combines checkpointing at the outer level with parallel trace generation and
evaluation at the inner level. We discuss the extensions necessary for ADOL-C to
work in a multithreaded environment, the setup necessary for the user code, and
present detailed performance results on a shared-memory multiprocessor.

The paper is organized as follows. After a brief description of the relevant fea-
tures of the plasma code, we address the issues that have to be dealt with in parallel
taping evaluation. Then we present measurements on a shared-memory mulitproces-
sor and discuss implementation improvements. Lastly, we summarize our findings
and outline profitable directions of future research.

2 The Quantum-Plasma Code

In this section we briefly describe our example problem. An extensive description
can be found in [28]. A quantum-plasma can be described as a one-dimensional
quantum-mechanical system of N particles with their corresponding wave-functions
Ψi, i ∈ [1,N], equation (1), using the atomic unit system. The interaction between
particle i and the other particles is provided by the charge density τi to which all
other particles contribute to. One possible set of initial states is of Gaussian type as
stated in (2).



Parallel Reverse Mode Differentiation for OpenMP 165

1 MV xV = ω2
P[1− L

N

N
∑

l=1
|Ψl |2]

2 MV yV = uV
3 V = xV − vV ·xV

1+vV ·yV
yV

4 Vi, j = Vj−2π[ j∆z−2∆z2
j−1
∑

m=1

m
∑

k=1
|Ψi,k|2]

5 Mx = U−Ψn

6 My = u
7 Ψn+1 = x− v·x

1+v·y y

1 for(t = 0; t < T ; t +1)
2 #pragma omp parallel
3 #pragma omp for
4 for(i = 0; i < N; i+1)
5 loop1 – ∀i: readΨj, j=1, . . . ,N;
6 #pragma omp for
7 for(i = 0; i < N; i+1)
8 loop2 – writeΨi;

Fig. 1. Complete equation set for one time step iteration and wave-function as well as primary
iteration code structure of the quantum plasma code

ı ∂Ψi
∂ t = − 1

2
∂ 2Ψi
∂ z2 +ViΨi i ∈ [1,N]

∆Vi = −4πτi

(1)

Ψi =
1

√√
πσi

e
− (z−zi)

2

2σ2
i eıkiz (2)

With the initial peak locations at zi, the initial widths σi and the initial impulses
of ki, after applying the Crank-Nicholson discretization scheme and reduction to pure
tridiagonal matrices, a simple discrete set of equations can be derived, see left part
of Fig. 1. The equidistant discretizations z = j ·∆z, j ∈ [0,K] and t = n ·∆ t,n ∈ [0,T ]
with K and T grid-points are used for space- and time-discretization.

In quantum mechanics the wave-functions Ψi contain all information about the
system. However, the observables are always expected values which are calculated
after the propagation terminates. As an example the expected value < η > given by

< η >=
N

∑
i

K

∑
j

z( j)∆z|Ψi, j|2 (3)

is computed at the end of the plasma code.
The matrix MV is constant throughout the propagation, since it is only the discrete

representation of the Laplacian and therefore its LU decomposition can be precom-
puted. The potentials can be computed simultaneously since all wave-functions are
only accessed by read commands in the corresponding steps 1 to 4 in the left part of
Fig. 1. The previously computed potentials then allow for independent computation
of the wave propagations in steps 5 through 7. Therefore one time-step propagation
is fully parallelizable with a synchronization after the completion of the potentials
computation in step 4.

The right part of Fig. 1 depicts the basic structure of the resulting code for the
computation of the potentials. The outer loop in line 1 is serial, driving the time-
step evaluation for T time-steps, with the result of the next iteration requiring the
completion of the previous one. The inner loops are in a parallel region, they are
both parallelizable, but there is an implicit barrier after the each loop.
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Using Gaussian waves as initializations we need 3 parameters to describe each
wave function. In addition, we have to choose time and space discretizations, i.e.
∆ t and ∆z. Thus, if after completion of the code shown in the right part of Fig. 1
we compute the expected value < η > as shown in (3) by summing over the wave
functions, we obtain overall a code with 3N +2 input parameters and only one output
parameter.

3 Parallel Reverse Mode Using ADOL-C

ADOL-C is an operator overloading based AD-tool that allows the computation of
derivatives for functions given as C or C++ source code [27]. A special data type
adouble is provided as replacement of relevant variables of double type. The val-
ues of these variables are stored in a large array, and are accessed using the location
component of the adouble data type, which provides a unique identifier for each
variable. For derivative computation an internal representation of the user function,
the so-called “tape”, is created in a so-called taping process. For all instructions based
on adoubles, an operation code and the locations of the result and all arguments
are written onto a serial tape. Once the taping phase is completed, specific drivers
provided by ADOL-C may be applied to the tape to reevaluate the function, or com-
pute derivative information of any order using the forward or reverse mode of AD.

ADOL-C has been developed over a long period of time under strict serial as-
pects. Although the generated tapes have been used for a more detailed analysis and
construction of parallel derivative codes, e.g., [6], ADOL-C could not really be de-
ployed out of the box within a parallel environment and extensive enhancements have
been added to ADOL-C to allow parallel derivative computations in shared memory
environments using OpenMP. Originally, the location of an adouble variable was
assigned during its construction utilizing a specific counter. Parallel creation of sev-
eral variables resulted in the possible loss of the correctness of the computed results
due to a data race in this counter. The obvious solution of protecting this counter
in a critical section ensured correctness, but performance was disappointing - even
when using only two threads in the parallel program, runtime increased by a factor of
roughly two rather than being decreased. For this reason, a separate copy of the com-
plete ADOL-C environment had to be provided for every worker thread, requiring a
thread-safe implementation of ADOL-C.

Now, initialization of the OpenMP-parallel regions for ADOL-C is only a mat-
ter of adding a macro to the outermost OpenMP statement. Two macros are avail-
able that only differ in the way the global tape information is handled. Using
ADOLC OPENMP, this information, including the values of the adouble variables,
is always transferred from the serial to the parallel region. For the special case of it-
erative codes where parallel regions, working on the same data structures, are called
repeatedly the ADOLC OPENMP NC macro can be used. Then, the information trans-
fer is performed only once within the iterative process upon encounter of the first par-
allel region. In any case, thread-local storage, i.e., global memory local to a thread,
is provided through use of the threadprivate feature of OpenMP. Inside the parallel
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region, separate tapes may then be created. Each single thread works in its own ded-
icated AD-environment, and all serial facilities of ADOL-C are applicable as usual.

If we consider the inner loop structure of our plasma code and the facilities pro-
vided by ADOL-C, then we make two observations. First, we note that the complete
input data set {Ψj}, j = 1, . . . ,N is read accessed in loop1 as depicted in line 4 in the
right part of Fig. 1. Accordingly, the corresponding adjoint values need to be updated
by all threads, possibly inflicting data races. To guaranty correctness, one could mark
the update operations as atomic. However, we are convinced that performing all cal-
culations on temporary variables and introducing a reduction function afterwards,
is the more efficient way. Since ADOL-C is not prepared to do this automatically,
appropriate facilities have been added to allow this task to be performed by the user.

Second, in the original function, a synchronization point was placed after loop1
to avoid the overwrite of the variousΨj. However, a corresponding synchronization
point is not required during the reverse mode calculations. This results from the
property of ADOL-C to store overwritten function values in a so-called Taylor stack
on each thread. Once the correct values are stored – guarantied by the barriers of
the function – the stack can be used safely in the reverse mode. Hence, the function
evaluation of our plasma code requires about twice the number of synchronization
points as does its differentiation.

Hence, by applying ADOL-C in a hierarchical fashion, and encapsulating the
parallel execution of the inner loops in each time-step, we can generate the tape and
compute the adjoint in different independent loop iterations in a parallel fashion.
Further explanations and descriptions can be found in [28, 33].

4 Experimental Results

Reasonably realistic plasmas require at least 1000 wave functions, so the reverse
mode of differentiation is clearly the method of choice for the computation of deriva-
tives of < η >. However, for our purposes a reduced configuration is sufficient:

• simulation time t = 30 atomic time units, T = 40000 time steps
• length of the simulation interval L = 200 atomic length scale, discretized with

K = 10000 steps

We will not run the code through all time steps, but to preserve the numerical stability
of the code, the time discretization is based on 40000 steps nevertheless.

If we were to use N = 24 particles, the serial differention of only one time step
would require taping storage of about 2.4 GB of data, or roughly 96 TB for the
full run of 40000 time steps. Hence, checkpointing is a necessity, and appropriate
facilities offering binomial checkpointing [41] have recently been incorporated into
ADOL-C [31].

To get a first idea of code behavior, we ran a simulation of just 8 particles using
8 threads for only 4 time-steps and 1 checkpoint under the control of the perfor-
mance analysis software VNG – Vampir Next Generation [11] on the SGI ALTIX
4700 system installed at the TU Dresden. This system contains 1024 Intel Itanium II
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Fig. 2. Parallel reverse mode differentiation of the plasma code – original version

Montecito processors (Dual Core), running at 1.6 GHz, with 4 GB main memory per
core, connected with the SGI-proprietary NumaLink4 interconnection, thus offering
a peak performance of 13.1 TFlops/sec and 6,5 TB of total main memory.

The observed runtime behavior is shown in Fig. 2. There, the function evaluation
and its differentiation are presented in execution order. The switch between these two
parts was performed at about 4.8 s. Due to the reverse mode of AD, the derivative
counterpart of the initial computations (0 - 1.9 s) is located near the end of the plot
at 15.7 to 17.2 s. Accordingly, the differentiation of the target function (4.4 - 4.8 s)
is performed in the time frame of 4.8 to 5.2 s. The remaining parts of the plot rep-
resent the propagation of our quantum plasma and the corresponding computation
of derivative values. These computations are performed in parallel and vertical lines
mark points in time where synchronization is performed.

Taking a closer look at the parallel parts of the program, the application of the
checkpointing technique becomes apparent. In Fig. 2 columns of dark gray boxes
represent taping steps. The loop implicit synchronization points are depicted by the
vertical lines overlapping these boxes. Columns of light gray boxes represent the
evaluation of tapes using the reverse mode of AD. As can be seen, the parallel differ-
entiation is synchronized only once at the end of the computation for one time step.
The third component of the checkpointing approach – the forward propagation of
the systems state from a given checkpoint up to the point of taping – is more difficult
observable. Knowing that the only checkpoint must be set to the initial state of the
quantum plasma, three propagation steps must be performed before the taping can
take place. As these three steps are executed in parallel, they are represented through
the strong vertical line at the time of about 2 s. Starting from the checkpoint, two
time steps are performed at the time of about 6 s and the last one at about 9.3 s. The
differentiation of the first iteration of the plasma code can then be performed directly
using the state stored in the checkpoint.

As can be seen in Fig. 2, the initial computations, their derivative counterpart as
well as the evaluation of the target function and its derivative counterpart require a
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Fig. 3. Parallel reverse mode differentiation of the plasma code – new version

significant part of the computation time. When computing all 40000 time-steps, the
relevance of this part of the computation will be extremely low.

However, we also note significant gaps in the parallel execution between dif-
ferent time steps due to serial calculations. Further analysis identified the relevant
serializing routines of ADOL-C. They were all dedicated to the switches between
serial and parallel program parts. Thereby, several utility functions of ADOL-C were
called that used different data structures and created several small tapes. They were
subsumed with a single function working on a single data structure and without cre-
ating tapes. In addition, the serial derivative reduction function following the parallel
reverse phases was replaced with a parallel version. The performance of the result-
ing code, which also makes use of threadprivate storage is shown in Fig. 3. Due to
the virtual elimination of serial sections between time step iterations in the parallel
reverse phase (5–14s), it achieves much better scaling, in particular when applied to
higher numbers of processors and more time steps. These two variants of the reverse
mode code will be referred to as the “original” and “new” variant in the sequel.

As a more realistic example, we now consider a plasma with N = 24 particles,
for which we compute the first 50 of the 40000 time steps. After this period, the
correctness of the derivatives can already be validated. In addition to the reverse
mode based versions of the derivative code discussed so far, we also ran a version
that uses the tapeless forward vector mode, evaluating derivative values in parallel
during the original parallel execution (see [28, 32] for details).

Figure 4 depicts the speedup and runtime results measured for the three code
versions when using 5 checkpoints for the reverse mode.

We note that all variants of the derivative code achieved a higher speedup than the
original code they are based on. This is not entirely surprising as the derivative com-
putation requires more time, thus potentially decreasing the importance of existing
synchronization points. As expected, the tapeless forward mode, which simply mim-
ics the parallel behavior of the original code, achieves the best speedups, and for a
larger number of processors, the reduced synchronization overhead in the “new” re-
verse mode code considerably improves scaling behavior over the “original” code. In
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Fig. 4. Speedups and runtimes for the parallel differentiation of the plasma code for N = 24
wave functions, 50 time-steps, and 5 checkpoints

terms of runtime, though, the parallel reverse mode is clearly superior, as shown in
the right part of Figure 4, and clearly the key to derivative computations for realistic
configurations.

5 Conclusions

Using a plasma code as an example for typical time stepping computations with inner
loops parallelized with OpenMP, we developed a strategy for efficient reverse mode
computations for tape-based AD tools. The strategy involves a hierarchial approach
to derivative computation, encapsulating parallel taping iterations in a threadsafe en-
vironment. Extensions to the ADOL-C tool, which was the basis for these exper-
iments, then result in an AD environment which allows the parallel execution of
function evaluation, tracing and adjoining in a fashion that requires relatively little
user input and can easily be combined with a checkpointing approach that is neces-
sary at the outer loop level to keep memory requirements realistic.

Employing advanced OpenMP features such as threadprivate variables and
through a careful analysis of ADOL-C utility routines, the scaling behavior of an
initial reverse mode implementation could be enhanced considerably. Currently, as
can be seen in Fig. 2 and 3, the taping processes, shown in dark gray, are the most
time consuming ones, suggesting that replacement of taping steps by a reevaluation
of tapes is the key to further improvements. This is true in particular in the multicore
and multithreaded shared-memory environments that will be the building blocks of
commodity hardware in the years to come, as parallel threads will be lying around
waiting for work. Benchmarks have already shown that efficient multiprogramming
techniques can mask main memory latency even for memory-intensive computa-
tions [10].
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16. Bücker, H.M., Rasch, A., Wolf, A.: A class of OpenMP applications involving nested
parallelism. In: Proc. 19th ACM Symp. on Applied Computing, Nicosia, Cyprus, March
14–17, 2004, vol. 1, pp. 220–224. ACM Press (2004)

17. Carle, A., Fagan, M.: Automatically differentiating MPI-1 datatypes: The complete story.
In: G. Corliss, C. Faure, A. Griewank, L. Hascoët, U. Naumann (eds.) Automatic Dif-
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T. Lippert, B. Mohr, F. Peters (eds.) Parallel Computing: Architectures, Algorithms and
Applications, Proceedings of the International Conference ParCo 2007, Advances in Par-
allel Computing, vol. 15, pp. 303–310. IOS Press, Amsterdam, The Netherlands (2008)

39. Spiegel, A., an Mey, D., Bischof, C.: Hybrid parallelization of CFD applications with
dynamic thread balancing. In: Proc. PARA04 Workshop, Lyngby, Denmark, June 2004,
Lecture Notes in Computer Science, vol. 3732, pp. 433–441. Springer Verlag (2006)

40. Terboven, C., Spiegel, A., an Mey, D., Gross, S., Reichelt, V.: Parallelization of the C++
navier-stokes solver DROPS with OpenMP. In: Parallel Computing (ParCo 2005): Cur-
rent & Future Issues of High-End Computing, Malaga, Spain, September 2005, NIC Se-
ries, vol. 33, pp. 431–438 (2006)

41. Walther, A., Griewank, A.: Advantages of binomial checkpointing for memory-reduces
adjoint calculations. In: M. Feistauer, V. Dolejsi, P. Knobloch, K. Najzar (eds.) Numerical
mathematics and advanced applications, Proceedings ENUMATH 2003, pp. 834–843.
Springer (2004)



Adjoints for Time-Dependent Optimal Control

Jan Riehme1, Andrea Walther2, Jörg Stiller3, and Uwe Naumann4

1 Department of Computer Science, University of Hertfordshire, UK,
riehme@stce.rwth-aachen.de

2 Department of Mathematics, Technische Universität Dresden, Germany,
andrea.walther@tu-dresden.de

3 Department of Mechanical Engineering, Technische Universität Dresden, Germany,
joerg.stiller@tu-dresden.de

4 Department of Computer Science, RWTH Aachen University, Germany,
naumann@stce.rwth-aachen.de

Summary. The use of discrete adjoints in the context of a hard time-dependent optimal con-
trol problem is considered. Gradients required for the steepest descent method are computed
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1 Background

Controlling and optimizing flow processes is a matter of increasing importance that
includes a wide range of applications, such as drag minimization, transition control,
noise reduction, and the enhancement of mixing or combustion processes [3, 11]. The
intention of the present work is to demonstrate the suitability of an approach to opti-
mal control of transient flow problems based on automatic differentiation (AD) [6].
As an example we consider the impulsive flow of a compressible viscous fluid be-
tween two parallel walls. The objective is to determine a time dependent cooling
rate that compensates the heat release caused by internal friction and thus leads to a
nearly constant temperature distribution.

The flow is governed by the Navier-Stokes equations (see e.g. [17])

∂t

⎡

⎣
ρ
ρv
ρe

⎤

⎦ =−∇ ·

⎡

⎣
ρv

ρvv+∇p−∇ · τ
(ρe+ p)v−∇ · (v · τ+λ∇T

⎤

⎦+

⎡

⎣
0
f

v · f+q

⎤
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with
τ = η

(
∇v+(∇v)T)− 2

3
ηI∇ ·v.

or in short
∂tu = F (u) (1)

where ρ is the density, v velocity, T temperature, e = cvT + 1
2 v2 total energy,

p = ρRT pressure, R gas constant, cv = R/(γ−1) specific heat at constant volume, f
body force, q heat source, and u represents the state vector. The fluid is confined by
two isothermal walls located at y =±a and driven by a constant body force f = f ex.
The asymptotic solution for the case q = 0 is given by u∞ = u(ρ∞,v∞,T∞) where ρ∞
is a constant,

v∞ =
f

2η
(a2− y2)ex, T∞ =

f 2

12ηλ
(a4− y4)+Tw,

and Tw is the wall temperature. We remark that, alternatively, T∞ = Tw can be
achieved by choosing q = q∞ :=−ηv′2∞ . In the following we assume that the heat
source is given by

q(c) = cq∞ (2)

where c is a time-dependent control parameter.
The model problem is discretized in the truncated domain Ω= (0, l)× (−a,a)

using a discontinuous Galerkin method in space and a TVD Runge-Kutta method
of order 3 in time (see [2]). The time integration is performed on the interval [0, te]
with an a-priori fixed step size h ∈ R resulting in n = te/h time steps. The control is
distributed over the whole time interval. For our discretization, it can be represented
by a finite dimensional vector c ∈ R

n+1, where the ith component of c acts only on
the time step that transfers the state ui ∈ R

m at time ti to the state ui+1 ∈ R
m at time

ti+1 for i = 0, . . . ,n−1. Hence, the development of the complete system for a given
initial value u0 is computed by a Runge-Kutta integration of the following form

do i = 1,n
call TVDRK(u, t,h,c)

end do

Here, the state vector u contains the system state at time t before the call of
TVDRK(...) and the system state at time t +h after the call of TVDRK(...) has been
completed. The variable t is updated correspondingly.

2 Optimal Control

The mere simulation of physical systems described in Sect. 1 forms even nowadays
an active research area. However, we want to go one step further in optimizing the
transition from an initial state u0 to a steady state ũ at time te. Because of physical
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reasons, we aim at keeping the temperature in the whole domain close to the wall
temperature, i.e., the regularized objective function becomes

J(u,c) =
∫ te

0

∫

Ω
|T (u,c)−Tw|2dxdt +µ

∫ te

0
c2dt (3)

with a small penalty factor µ ∈R. Throughout the paper, we assume that (3) admits a
unique solution u(c) for every control c. Hence, we can derive a reduced cost function

Ĵ(c) =
∫ te

0

∫

Ω
|T (u(c),c)−Tw|2dxdt +µ

∫ te

0
c2dt (4)

depending only on the control c. For our discretization of the model problem, the
evaluation of the objective Ĵ(c) can be incorporated easily in the time integration:

obj = 0
do i = 1,n

call TVDRK(u, t,h,c,o)
obj = obj+o+mu∗ c(i)∗ c(i)

end do

Here, the time step routine TVDRK(...) computes in addition to the state transition
the integral of the temperature difference at the time t, i.e. an approximation of the
inner integral in (4). After the call, the contributions of o and c are added to the
objective value approximating the outer integration in (4).

We want to apply a calculus-based optimization algorithm for computing an op-
timal control c such that (4) is minimized. For this purpose, we need at least the
gradient ∂ Ĵ(c)/∂c. Obviously, one could derive the continuous adjoint partial differ-
ential equation belonging to (1) together with an appropriate discretization approach
for the gradient calculation. However, we want to exploit the already existing code
for the state equation as much as possible by applying AD to compute the corre-
sponding discrete gradient information for our discretization of the state equation.

3 Automatic Differentiation

Over the last few decades, extensive research activities have led to a thorough under-
standing and analysis of the basic modes of AD. The theoretical complexity results
obtained here are typically based on the operation count of the considered vector-
valued function. Using the forward mode of AD, one Jacobian-vector product can be
calculated with an average operation count of no more than five times the operation
count of the pure function evaluation 1 [6]. Similarly, one vector-Jacobian product,

1 The computational graph of the original function contains one vertex for every elemental
function (arithmetic operations and intrinsic functions) with at most two incoming edges
(labeled with the local partial derivatives). Assuming that elemental functions are evaluated
at unit cost, that local partial derivatives are evaluated at unit cost, and that the propagation
of the directional derivatives is performed at unit costs per edge, the computational cost
factor adds up to five.
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e.g. the gradient of a scalar-valued component function, can be obtained using the
reverse mode in its basic form at a cost of no more than five times the operation
count of the pure function evaluation [6]. It is important to note that the latter bound
is completely independent of the number of input variables. Hence, AD provides
a very efficient way to compute exact adjoint values which form a very important
ingredient for solving optimal control problems of the kind considered in this paper.

The AD-enabled NAGWare Fortran Compiler

AD-enabled research prototypes of the NAGWare Fortran compiler are developed as
part of the CompAD project2 by the University of Hertfordshire and RWTH Aachen
University. The compiler provides forward [16] and reverse modes [15] by operator
overloading as well as by source transformation [13] – the latter for a limited but
constantly growing subset of the Fortran language standard. Second-order adjoints
can be computed by overloading the adjoint code in forward mode as described in
[14] or by generating a tangent-linear version of the compiler-generated adjoint code
in assembler format [4].

Support for operator overloading is provided through automatic type changes.
All active3 [10] program variables are redeclared as compad type by the compiler.
Runtime support modules are included. Various further transformations are required
to ensure semantic correctness of the resulting code. See [14] for details.

In the given context the reverse mode is implemented as an interpretation of
a variant of the computational graph (also referred to as the tape) that is built by
overloading the elemental functions appropriately. This solution is inspired by the
approach taken in ADOL-C [7]. The result of each elemental function is associated
with a unique tape entry. All tape entries are indexed. They store opcode4, value, ad-
joint value, and indices of the corresponding arguments. The independent variables
are registered with the tape through a special subroutine call. The tape entries of de-
pendent variables can be accessed via the respective index stored in compad type.
Their adjoint values need to be seeded by the user. Knowing the opcode of each
elemental function and the values of its arguments, local partial derivatives can be
computed and used subsequently in the reverse propagation of adjoints through the
tape. By the end of the interpretive reverse tape traversal the adjoints of the inde-
pendent variables can be harvested by the user through accessing the corresponding
tape entries.

2 wiki.stce.rwth-aachen.de/bin/view/Projects/CompAD/WebHome
3 Currently, all floating-point variables are considered to be active – thus forming a conser-

vative overestimation of the set of active variables. A computational overhead depending
on the size of the overestimation is introduced. Static activity analysis [10] should be used
to reduce the number of activated variables. This capability is currently being added to the
compiler.

4 A unique number representing the type of the elemental function (e.g., addition, sine, . . . ).
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Use of revolve

We are interested in the optimization of an evolutionary process running for at least
n = 5000 time steps, each evaluating the same computational kernel TVDRK(u, t,
h, c) (see Sect. 1). Because reverse propagation of a time step requires the state of
the system at the end of that time step, adjoining the complete time evolution needs
the computational graph of the complete system. The adjoint propagation through the
complete system implies the inversion of the order of the time steps. If we assume
that for a specific time step i with 1 ≤ i ≤ n the adjoint propagation through all
subsequent time steps n,n−1, . . . , i+1 is already done, only the tape of time step i is
required to propagate the adjoints through that time step. Thus the tapes of the time
steps are required in opposite order, one at a time only.

Various checkpointing strategies have been developed to overcome the draw-
backs of the two most obvious techniques: STORE ALL stores the complete tape
at once avoiding any reevaluation of time steps, whereas RECOMPUTE ALL evalu-
ates n∗ (n−1)/2 times the computational kernel TVDRK from the program’s inputs.
Checkpointing strategies use a small number of memory units (checkpoints) to store
states of the system at distinct time steps. The computational complexity will be
reduced dramatically in comparison to RECOMPUTE ALL by starting the recompu-
tation of other required states from the checkpoints (see Fig. 2).

A simple checkpointing is called windowing in the PDE-related literature
(see [1]). Here, the checkpointing strategy is based on a uniform distribution of
checkpoints. However, for a fixed number of checkpoints there exists an upper
bound on the number of time steps whose adjoint can be calculated. More advanced
checkpointing strategies, as e.g., the binary checkpointing approach [12], had been
proposed in the literature. However, only the binomial checkpointing strategy yields
a provable optimal, i.e. minimal, amount of recomputations ([5],[8]). A detailed
comparison of different checkpointing strategies can be found in [19]. The binomial
checkpointing approach is implemented in the C++ package revolve [8].

If the number of time steps performed during the integration of the state
equation is known a-priori, one can compute (optimal) binomial checkpointing
schedules in advance to achieve for a given number of checkpoints an optimal,
i.e. minimal, runtime increase [8]. This procedure is referred to as offline check-
pointing and implemented in the C++ package revolve [8]. We use a C-wrapper
wrap revolve(..., intmode, ...) to call the relevant library routine from within the
Fortran 90 code. Therein an instance t of class Revolve is created whose member
t→ revolve(...,mode, ...) returns the integer mode that is used for steering the re-
versal of the time-stepping loop. Its value is a function of the total number of loop
iterations performed and the number of checkpoints used in the reversal scheme.
The following five modes are possible.

1. mode == TAKESNAPSHOT: A checkpoint is stored allowing for numerically
correct out-of-context (no evaluations of prior loop iterations) evaluation of the
remaining loop iterations.

2. mode == RESTORESNAPSHOT: A previously stored checkpoint is restored
to restart the computation from the current time step.
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3. mode == ADVANCE: Run a given number of time steps (this number is com-
puted by wrap revolve(...) alongside with mode) from the last restored check-
point.

4. mode == FIRSTTURN: Compute the adjoint of the last time step, that is, gen-
erate a tape for the last time step and call the tape interpreter after initializing the
adjoint of the objective (our sole dependent variable) with one.

5. mode == TURN: Compute the adjoint of a single (not the last one) time step,
similarly to the previous case. The correct communication of the adjoints com-
puted by interpretation of the tape of the following time step (tapei+1) into that
of the current one (tapei) needs to be taken care of.

The two special modes TERMINATE and ERROR indicate success or failure of the
adjoint computation.

More specifically, our time step consists of a single call to the time-integration
routine TVDRK(u, t,h,c,o) followed by incrementing the objective ob j = Ĵ(c) ∈ R

by o ∈ R and the appropriate weighted component of c ∈ R
n as described in Sect. 2.

Further arguments of the called subroutine are the state vector u ∈ R4×m, where
m = 72 is the number of grid points, the current time t ∈ R, the size of a single
time step h ∈ R, and the control vector c ∈ R

n with the following i/o pattern

TVDRK(
↓
u
↓
,
↓
t
↓
,
↓
h,
↓
c, o
↓
).

Overset down-arrows mark inputs. Outputs are marked by underset down-arrows.
Any single checkpoint consists of u, t, and ob j. The corresponding adjoints of u, t
and ob j need to be communicated from tapei+1 to tapei.

4 Numerical Results, Conclusion and Outlook

From a theoretical point of view, the optimization problem is easily solved just by
setting the control to unity. In practice, however, the situation is not trivial when
starting the iteration process with zero control. Because the initial contribution to
the objective is always zero (or very small) implied by the initial conditions and the
explicit time integration, it is difficult (if possible) for a gradient-based method to
adjust the control parameter correctly. As a consequence a (temperature) perturba-
tion develops, which results in an unavoidable increase in the objective until a new
equilibrium is established.

For our numerical tests, we computed for 5000 time steps in advance the velocity
and the temperature for the control q equal to one. We refer to this setting as the un-
perturbed situation. For the optimization task, we considered the following perturbed
situation: We took the velocity and temperature obtained for q(t)≡ 1 as initial state
but set the current control equal to zero. That is, our initial value for the control is
q0(t)≡ 0. Hence, we start the optimization with a severely disturbed system yielding
the objective value 134 and a comparatively high norm of the gradient ‖∇q‖ ≈ 4303.
Refer to Fig. 2 for further characteristics of this test case.
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Fig. 1. Development of the values of the control vector: Substantial changes can be observed
during the first 100 optimization steps. A good approximation to the asymptotically expected
solution (1, . . . ,1)T is obtained after 1270 steps.

As the optimization algorithm we apply a simple steepest descent method with
backtracking as line search to determine the step size. Because of the chosen dis-
cretization the last components of the control have either no or only very small in-
fluence on the objective. Therefore, we perform the optimization only for the first
80% of the considered time interval as illustrated in Fig. 1. This approach can be
interpreted as steering the process over a certain time horizon with a second time
interval where the system can converge to a certain state. Using this simplification,
the objective could be reduced to 10.346, i.e., a value less than 10.560, which was
obtained for the unperturbed situation. The development of the value of the objective
is shown graphically in Fig. 3. Because we are interested in the overall performance
of the optimization, we do not enforce a strong termination criterion. As can be seen
also from the inner figures of Fig. 3 and Fig. 4, the development of the objective and
the norm of the gradient show a typical behavior as expected for a simple steepest de-
scent method. After 1270 gradient steps, the optimization yields a recovery strategy
for the perturbed system. Caused by the severe disturbance of the system, the norm
of the gradient in the last optimizations steps is considerably reduced compared to
the starting point, but not equal to or very close to zero. See Fig. 4 for illustration.

Nevertheless, the numerical results show that AD-based optimization is feasi-
ble for such complicated optimization tasks. Future work will be dedicated to the
usage of higher-order derivatives in the context of more sophisticated optimization
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state space dimension 288 time steps 5000
independent variables 5000 dependent variables 1

size of a tape entry 36 Byte tape size per time step 12 MB
STORE ALL would need 60 GB

variables in checkpoint 288 + 1 size of a checkpoint 2.3 KB
number of checkpoints 400 memory for checkpoints 920 KB

Recomputations per optimization step:
revolve 9.598 RECOMPUTE ALL 12.497.500

Line-search, function evaluations:
total ≈15600 average per iteration 12.3
minimum 4 maximum 16

Line-search, step length:

average 3.33 · 10−3

minimum 3.05 · 10−5 maximum 0.125

Fig. 2. Test Case Characteristics. The state vector U consists of 288 elements. A checkpoint
consists of the state U and the value of the objective function.
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Fig. 3. Development of the value of the objective function over 1270 optimization steps. Outer
figure: The most substantial advances are made during the first 100 optimization steps. The
gap in the logged data between step 450 and 930 is caused by a technical problem (disc space
quota exceeded). The computation itself ran uninterrupted with logging resumed after 930 op-
timization steps. Gradual improvement can be observed throughout the (logged) optimization
process. Inner figure: During the last 300 out of 1270 steps a continuous (but rather small)
improvement of the value of the objective function can be observed.
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Outer figure: The value is reduced significantly from over 4000 down to less than 2.75. Inner
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algorithms. Here, one has to distinguish time-dependent problems as our model ex-
ample and pseudo-time-dependent methods frequently used for example in aerody-
namics. To this end, the currently used derivative calculation will be adapted for the
usage in so-called SAND methods or one-shot approaches depending on the problem
at hand [9]. Furthermore, our example will be adapted to more realistic scenarios as
for example a plasma spraying problem.

The NAGWare compiler’s capabilities to generate adjoint code (as opposed to
changing the types of all floating-point variables and using operator overloading for
the generation of a tape) will be enhanced to be able to handle the full code. All these
measures in addition to the exploitation of internal structure of the problem [18] are
expected to result in a considerably decreased overall runtime. We expect savings of
at least a factor of 50 driving the current runtime of 2 weeks on a state-of-the-art PC
down to a couple of hours.

Acknowledgement. We wish to thank the anonymous referees for their helpful comments. Jan
Riehme was supported by the CompAD project (EPSRC Grant EP/D062071/1).
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Summary. The paper describes the development of the software tool Transformation of Algo-
rithms in C++ (TAC++) for automatic differentiation (AD) of C(++) codes by source-to-source
translation. We have transferred to TAC++ a subset of the algorithms from its well-established
Fortran equivalent, Transformation of Algorithms in Fortran (TAF). TAC++ features forward
and reverse as well as scalar and vector modes of AD. Efficient higher order derivative code is
generated by multiple application of TAC++. High performance of the generated derivate code
is demonstrated for five examples from application fields covering remote sensing, computer
vision, computational finance, and aeronautics. For instance, the run time of the adjoints for
simultaneous evaluation of the function and its gradient is between 1.9 and 3.9 times slower
than that of the respective function codes. Options for further enhancement are discussed.

Keywords: Automatic differentiation, reverse mode, adjoint, Hessian, source-to-
source transformation, C++ remote sensing, computational finance, computational
fluid dynamics

1 Introduction

Automatic Differentiation (AD) [15], see also http://autodiff.org, is a tech-
nique that yields accurate derivative information for functions defined by numerical
programmes. Such a programme is decomposed into elementary functions defined
by operations such as addition or division and intrinsics such as cosine or logarithm.
On the level of these elementary functions, the corresponding derivatives are derived
automatically, and application of the chain rule results in an evaluation of a multiple
matrix product, which is automated, too.

The two principal implementations of AD are operator overloading and source-
to-source transformation. The former exploits the overloading capability of modern
object-oriented programming languages such as Fortran-90 [23] or C++ [16, 1]. All
relevant operations are extended by corresponding derivative operations. Source-to-
source transformation takes the function code as input and generates a second code
that evaluates the function’s derivative. This derivative code is then compiled and



188 Michael Voßbeck, Ralf Giering, and Thomas Kaminski

executed. Hence, differentiation and derivative evaluation are separated. The major
disadvantage is that any code analysis for the differentiation process has to rely ex-
clusively on information that is available at compile time. On the other hand, once
generated, the derivative code can be conserved, and the derivative evaluation can
be carried out any time on any platform, independently from the AD-tool. Also,
extended derivative code optimisations by a compiler (and even by hand) can be ap-
plied. This renders source-to-source transformation the ideal approach for large-scale
and run-time-critical applications.

The forward mode of AD propagates derivatives in the execution order defined
by the function evaluation, while the reverse mode operates in the opposite order. The
AD-tool Transformation of Algorithms in Fortran (TAF, [10]) has generated highly
efficient forward and reverse mode derivative codes of a number of large (5,000 -
375,000 lines excluding comments) Fortran 77-95 codes (for references see, e.g.,
[12] and http://www.fastopt.com/references/taf.html).

Regarding source-to-source transformation for C, to our knowledge, ADIC [3] is
the only tool that is currently available. However, ADIC is restricted to the forward
mode of AD. Hence, ADIC is not well-suited for differentiation of functions with a
large number of independent and a small number of dependent variables, a situation
typical of unconstrained optimisation problems. In this context, the restriction to
the forward mode usually constitutes a serious drawback and requires an artificial
reduction of the number of control variables.

This paper describes the development of our source-to-source translation tool
TAC++ that features both forward (tangent) and reverse (adjoint) modes. As with
TAF, we chose an application-oriented development approach and started from a
simple, but non-trivial test code, which is introduced in Sect. 2. Next, Sect. 3 de-
scribes TAC++ and its application to the test code. Section 4 then discusses the per-
formance of the generated code. Since this initial test development went on, and
TAC++ has differentiated a number of codes, which are briefly described in Sect. 5.
Finally, Sect. 6 draws conclusions.

2 Test Codes

As starting point for our test code we selected the Roe Solver [24] of the CFD code
EULSOLDO [5]. As a test object Roe’s solver has become popular with AD-tool
developers [25, 6]. EULSOLDO’s original Fortran code has been transformed to C
code (141 lines without comments and one statement per line) by means of the tool
f2c [8] with command-line options -A (generate ANSI-C89), -a (storage class of
local variables is automatic), and -r8 (promote real to double precision).
f2c also uses pointer types for all formal parameters, in order to preserve Fortran sub-
routine properties (call by reference). The f2c generated code also contains simple
pointer arithmetics, as a consequence of different conventions of addressing elements
of arrays in C and Fortran: While Fortran addresses the first element of the array x
containing the independent variables by x(1), the C version addresses this element
by x[0]. In order to use the index values from the Fortran version, f2c includes



TAC++ 189

a shift operation on the pointer to the array x, i.e. the statement --x is inserted.
The transformed code is basic in the sense that it consists of the following language
elements:

• Selected datatype: int and double in scalar, array, typedef, and pointer form
• Basic arithmetics: addition, subtraction, multiplication, division
• One intrinsic: sqrt
• A few control flow elements: for, if, comma-expr
• A function call

void model(int *n, double x[], double *fc) {
const int size = *n;
const double weight = sin(3.);
struct S { int cnt; double val; } loc[size], *loc ptr;
int i;
double sum = 0.;
for(i=0; i<size; i++)

loc[i].val = x[i]*x[i];
for(i=0; i<size; i++) {

int m = size - 1 - i;
double con = x[m] * weight;
loc ptr = &loc[i];
sum += loc ptr->val + con;

}
*fc = sum / size;

}

File 1: Second test code.

The second test code (see file 1), with x as independent and fc as dependent
variable, is taken from the TAC++ test environment. It belongs to the tests for correct
handling of an active struct datatype, scoping, and access to a pointer.

3 TAC++

TAC++ is invoked via a script that establishes a secure-shell connection to the
FastOpt servers. As TAC++ accepts preprocessed ANSI C89 code, the access script
runs a preprocessor such as cpp before transferring the function code to the servers.
It is, hence, advisable to regenerate the derivative code after porting the modelling
system to a new platform.

In the design process of TAC++, our approach has been to implement well-proven
and reliable TAF algorithms. When the front end has translated the C source code
into an internal representation, a normalisation replaces certain language constructs
by equivalent canonical code that is more appropriate to the transformation phase.
For example the comma-expression in the C version of EULSOLDO that is shown
in file 2 is normalised to the code segment shown in file 3.

TAC++ then performs an activity analysis to determine those functions and vari-
ables, that are active in the sense, that they depend on the input variables and affect
the output variables [2, 10], which both have to be specified by the user. The main



190 Michael Voßbeck, Ralf Giering, and Thomas Kaminski

l[0] = (d 1 = uhat - ahat, ((d 1) >= 0 ? (d 1) : -(d 1)));

File 2: Comma-expression in the C version of EULSOLDO

d 1=uhat-ahat;
l[0]=(d 1 >= 0 ? d 1 : -d 1);

File 3: file 2 in normalised form

/* Absolute eigenvalues, acoustic waves with entropy fix. */
l[0] = (d 1 = uhat - ahat, abs(d 1));
dl1 = qrn[0] / qr[0] - ar - qln[0] / ql[0] + al;
/* Computing MAX */
d 1 = dl1 * 4.;
dl1star = max(d 1,0.);
if (l[0] < dl1star * .5) {

l[0] = l[0] * l[0] / dl1star + dl1star * .25;
}

File 4: if-statement including code the if-clause depends on (from C version of EUL-
SOLDO)

/* RECOMP============== begin */
d 1=uhat-ahat;
l[0]=(d 1 >= 0 ? d 1 : -d 1);
/* RECOMP============== end */
if( l[0] < dl1star*0.500000 ) {

dl1star ad+=l ad[0]*(-(l[0]*l[0]/(dl1star*dl1star))+0.250000);
l ad[0]=l ad[0]*(2*l[0]/dl1star);

}

File 5: Recomputations for adjoint statement of if-statement from File 4

challenge in reverse mode AD is to provide required values, i.e. values from the func-
tion evaluation that are needed in the derivative code (for details see [7, 17, 10, 11]).
By default TAC++ uses recomputation for providing required values, instead of
recording them on disk/in memory. Hence, the generated code has similar disk/mem-
ory requirements than the function code. As in TAF, the Efficient Recomputation
Algorithm (ERA [11]) avoids unnecessary recomputations, which is essential for
generating efficient derivative code. For instance the adjoint statement (see file 5)
of the if-statement from file 4 has the required variables d 1 and l[0]. While
dl1star is still available from an earlier recomputation (not shown), l[0] may
be overwritten by the if-statement itself. Hence, only recomputations for l[0]
have to be generated.

For the first test code, TAC++ generates an adjoint code comprising 560 lines
in well readable format, with one statement or declaration per line. This excludes
comments and the code generated from the include file. The complete processing
chain is depicted in the right branch of Fig. 1.

File 6 shows the adjoint of our second test code from file 1. Note the declaration
of the adjoint struct S ad. As the field cnt is passive, S ad contains val ad, the
adjoint of val, as its single component. The declaration and the initialisation blocks
are followed by a forward sweep for the function evaluation, which also provides
required values to the adjoint block. As the loop kernel overwrites the required values
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Fig. 1. Processing chain for test code. Oval boxes denote the stages of the processes. Rect-
angular boxes contain the files that are input/output to the individual stages of the process.
Names of executables are printed in bold face letters. The right branch shows processing with
f2c and new AD tool, the middle branch shows processing with TAF and f2c, and the left
branch shows processing with TAF.

of m, the adjoint loop kernel contains its recomputation before the block of adjoint
assignments that uses m. loc ptr ad is also provided. The scope of the variables m
and con is the loop kernel. Since con is active, its adjoint variable con ad is added
to the set of variables whose scope is the adjoint loop kernel.

4 Performance

We have tested the performance of the generated code in a number of test environ-
ments, i.e. for different combinations of processor, compiler, and level of compiler
optimisation.

Our first test environment consists of a 3GHz Intel Core(TM)2 Duo processor
and the Intel compiler (icc, Version 9.1) with flags “-fast -static”. This environment
achieves the fastest CPU-time for the function code. We have called it standard as
it reflects the starting point of typical users, i.e. they are running a function code in
production mode (as fast as possible) and need fast derivative code. In an attempt
to isolate the impact of the individual factors processor, compiler, and optimisation
level, further test environments have been constructed:

• The environment gcc differs from standard in that it uses the GNU C/C++ com-
piler (gcc, Version 4.2.1) with option “-O3 -static”



192 Michael Voßbeck, Ralf Giering, and Thomas Kaminski

void model ad(int *n, double x[], double x ad[], double *fc, double *fc ad) {
struct S;
struct S ad;
const int size = *n;
const double weight = sin(3.);
struct S { int cnt; double val; };
struct S ad { double val ad; };
struct S loc[size];
struct S *loc ptr;
int i;
double sum;
struct S ad loc ad[size];
struct S ad *loc ptr ad;
double sum ad;
int ip1;
for( ip1 = 0; ip1 < size; ip1++ )

loc ad[ip1].val ad=0.;
loc ptr ad=0;
sum ad=0.;
sum=0.;
for( i=0; i < size; i++ )

loc[i].val=x[i]*x[i];
for( i=0; i < size; i++ ) {

int m;
double con;
m=size-1-i;
con=x[m]*weight;
loc ptr=&loc[i];
sum+=loc ptr->val+con;

}
*fc=sum/size;
sum ad+=*fc ad*(1F/size);

*fc ad=0;
for( i=size-1; i >= 0; i-- ) {

int m;
double con;
double con ad;
con ad=0.;
m=size-1-i;
loc ptr ad=&loc ad[i];
loc ptr ad->val ad+=sum ad;
con ad+=sum ad;
x ad[m]+=con ad*weight;
con ad=0;

}
for( i=size-1; i >= 0; i-- ) {

x ad[i]+=loc ad[i].val ad*(2*x[i]);
loc ad[i].val ad=0;

}
sum ad=0;

}

File 6: Adjoint of File 1

• The environment AMD differs from standard in that it uses another processor,
namely the 1800 MHz Athlon64 3000+ and the corresponding fast compiler
flags “-O3 -static”.
• The environment lazy differs from standard in that it does not use compiler flags

at all. In terms of compiler optimisation this is equivalent to the icc-flag “-O2”.

For each environment, Table 1 lists the CPU time for a function evaluation (“Func”),
a gradient and function evaluation (“ADM”), and their ratio. We used the timing
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module provided by ADOL-C, version 1.8.7 [16]. Each code has been run three
times, and the fastest result has been recorded.

Compared to our Fortran tool TAF, TAC++ is still basic. To estimate the scope
for performance improvement, we have applied TAF (with command-line options
“-split -replaceintr”) to EULSOLDO’s initial Fortran-version. A previous study on
AD of EULSOLDO [6] identified this combination of TAF command-line options
for generating the most efficient adjoint code. The TAF-generated adjoint has then
been compiled with the Intel Fortran compiler (ifort, Version 9.1) and flags “-fast
-static”. This process is shown as left branch in Fig. 1. Table 2 compares the perfor-
mance of TAC++ generated adjoint (in the environment standard, first row) with that
of the TAF-generated adjoint (second row). Our performance ratio is in the range
reported by [6] for a set of different environments. Besides the better performance
of ifort-generated code, the second row also suggests that TAF-generated code is
more efficient by about 10%. In this comparison, both the AD tool and the compiler
differ. To isolate their respective effects on the performance, we have carried out
an additional test: We have taken the TAF-generated adjoint code, have applied f2c,
and have compiled in the environment standard as depicted by the middle branch
in Fig. 1. The resulting performance is shown in row 3 of Table 2. The value of 2.9
suggests that the superiority of the Fortran branch (row 2) over the C branch (row 1)
cannot be attributed to the difference in compilers. It rather indicates some scope for
improvement of the current tool in terms of performance of the generated code.

Two immediate candidates for improving this performance are the two TAF
command-line options identified by [6]. The option “-replaceintr” makes TAF’s nor-
malisation phase replace intrinsics such as abs, min, max by if-then-else
structures. In the C branch (row 1 of Table 2) this is already done by f2c, i.e.
EULSOLDO’s C version does not use any of these intrinsics. The TAF command-
line option “-split”, which introduces auxiliary variables to decompose long expres-

Table 1. Performance of code generated by TAC++ (CPUs: seconds of CPU time)

Environment Compiler Options Func[CPUs] ADM[CPUs] Ratio

standard icc -fast -static 2.2e-07 7.1e-07 3.2
gcc gcc -O3 -static 4.1e-07 2.0e-06 4.9
AMD icc -O3 -static 7.3e-07 2.4e-06 3.3
lazy icc – 4.7e-07 2.3e-06 4.9

Table 2. Performance of function and adjoint codes generated by TAC++ and TAF

Version Func[CPUs] ADM[CPUs] Ratio
f2c→ TAC++→ icc 2.2e-07 7.1e-07 3.2
TAF→ ifort 2.2e-07 6.6e-07 2.9
TAF→ f2c→ icc 2.3e-07 6.7e-07 2.9
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sions to binary ones, is not available in TAC++ yet. Here might be some potential
for improving the performance of the generated code.

5 First TAC++ Applications

Encouraged by the fast adjoint for our test code, we went on with our application-
oriented development and tackled a set of native C codes of enhanced complexity
from a variety of application areas. Table 3 gives an overview on these codes.

Two-stream [19] (available via http://fapar.jrc.it) simulates the radia-
tive transfer within the vegetation canopy. In close collaboration with the Joint Re-
search Centre (JRC) of the European Commission, we have constructed the inverse
modelling package JRC-TIP [18, 21, 20]. JRC-TIP infers values and uncertainties for
seven parameters such as the leaf area index (LAI) and the leaf radiative properties,
which quantify the state of the vegetation from remotely sensed radiative fluxes and
their uncertainties. The adjoint of two-stream is used to minimise the misfit between
modelled and observed radiant fluxes. The inverse of the misfit’s Hessian provides an
estimate of the uncertainty range in the optimal parameter values. The full Hessian is
generated in forward over reverse mode, meaning that the adjoint code is redifferen-
tiated in (vector) forward mode. Table 3 lists the CPU times for the derivative codes
in multiples of the CPU time of model code they are generated from. The timing
has been carried out in the environment standard (see Sect. 4). TLM (tangent linear
model, i.e. scalar forward) and ADM (adjoint model, i.e. scalar reverse) values refer
to the evaluation of both function and derivative. An evaluation of the 7 columns of
two-stream’s full Hessian requires the CPU time of 23 two-stream runs. For differ-
entiation of the code, TAC++ was extended to handle further intrinsics (‘cos’, ‘asin’,
‘exp’, and ‘sqrt’) as well as nested function calls and nested ‘for’-loops.

The ROF code maps the unknown structure of an image onto the misfit to the
observed image plus a regularisation term that evaluates the total energy. The total
variation denoising approach for image reconstruction uses the ROF adjoint for min-
imisation of that function. Our test configuration uses only 120 (number of pixels)
independent variables. Hessian times vector code, again generated in forward over
reverse mode, is used as additional information for the minimisation algorithm. The
generated derivative code is shown in [22], who also present details on the applica-

Table 3. Performance of derivatives of C codes generated by TAC++

Model Application Area #lines Func[CPUs] TLM/Func ADM/Func HES/Func
2stream Remote Sensing 330 5.5e-6 1.7 3.8 23/7
ROF Computer Vision 60 2.5e-6 1.6 1.9 yes
LIBOR Comp. Finance 210 7.0e-5 1.3 3.7
TAU-ij Aerodynamics 130 1.1e-3 – 2.3
Roeflux Aero 140 2.2e-7 3.3 3.2
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tion. Differentiation of this code required to extend TAC++ so as to handle nested
loops with pointer arithmetics.

The LIBOR market model [4] is used to price interest derivative securities via
Monte Carlo simulation of their underlying. Giles and Glasserman [14] present the
efficient computation of price sensitivites with respect to 80 forward rates (so-called
Greeks) with a hand-coded pathwise adjoint. For a slightly updated version of his
model code, Giles [13] compares the performance of hand-coded and two AD-
generated tangent and adjoint versions. On Intel’s icc compiler, with highest possible
code optimisations, the TAC++-generated adjoint is about a factor 2.5 slower than
the hand-coded one and more than a factor of 10 faster than an operator overload-
ing version derived with FADBAD [1]. The challenge for tool development were
nested ‘for’ loops. The generated code is available at http://www.fastopt.
com/liborad-dist-1.tgz.

TAU-ij is the Euler version of TAU, the German aeronautic community’s solver
for simulations on unstructured grids [9]. As a test for TAC++, we have selected a
routine (calc inner fluxes mapsp ) from the core of the solver. The challenge
of this application is the handling of the struct datatype.

In its current state, TAC++ does not cover C++, nor the full ANSI C89 standard.
For example, dynamic memory allocation, while–loops, unions, function point-
ers, and functions with non-void return value are not handled yet. But this is rapidly
changing.

6 Conclusions

We described the early development steps of TAC++ and gave an overview on
recent applications, which use forward and reverse as well as scalar and vector
modes of AD. Efficient higher order derivative code is generated by multiple ap-
plication of TAC++, as demonstrated by Hessian codes for two of the applications.
Although the generated derivative code is highly efficient, we identified scope for
further improvement. The ongoing development is application-driven, i.e. we will
tackle challenges as they arise in applications. Hence, TAC++’s functionality will
be enhanced application by application. Fortunately, many of the C++ challenges
occur also in Fortran-90. Examples are handling of dynamic memory, operator over-
loading, overloaded functions, or accessing of private variables. This allows us to
port well-proved TAF algorithms to TAC++. Other challenges such as handling of
classes, inheritance, and templates are specific to C++ and require a solution that is
independent from TAF.
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Summary. We present the first version of the tool TAPENADE that can differentiate C pro-
grams. The architecture of TAPENADE was designed from the start to be language indepen-
dent. We describe how this choice made adaption to C easier. In principle, it needed only a
new front-end and back-end for C. However we encountered several problems, in particular
related to declarations style, include files, parameter-passing mechanism, and extensive use of
pointers. We describe how we addressed these problems, and how the resulting improvements
also benefits to differentiation of Fortran programs.

Keywords: Automatic differentiation, software tools, program transformation, TAPE-
NADE, C

1 Introduction

We present the first version of the tool TAPENADE [7] that can differentiate C pro-
grams [8, 4]. TAPENADE is an Automatic Differentiation (AD) tool [5] that produces
differentiated programs by source analysis and transformation. Given the source of
a program, along with a description of which derivatives are needed, TAPENADE
creates a new source that computes the derivatives. TAPENADE implements tangent
differentiation and reverse differentiation.

Right from the start in 1999, TAPENADE was designed as mostly independent
from the source language, provided it is imperative. Figure 1 summarizes this archi-
tecture. The differentiation engine is built above a kernel that holds an abstract in-
ternal representation of programs and that runs static analysis (e.g. data-flow). This
composes TAPENADE strictly speaking. The internal representation does not depend
on the particular source language. This architecture allows the central module to
forget about mostly syntactic details of the analyzed language, and to concentrate
on the semantic constructs. Programs are represented as Call Graphs, Control Flow
Graphs [1], and Basic Blocks linked to Symbol Tables. Syntax Trees occur only at
the deepest level: elementary statements.

In addition to the TAPENADE kernel, for any source language there must be sep-
arate front- and back-end. They exchange programs with TAPENADE’s kernel via an
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Differentiation Engine

Imperative Language Analyzer

 (IL)

C parser
Fortran95 parser

Fortran77 parser

 (IL)

C printer
Fortran95 printer

Fortran77 printer

Fig. 1. Architecture sketch of TAPENADE

abstract Imperative Language called IL. Initially, there was only a front- and a back-
end for Fortran77. These were followed by a front- and a back-end for Fortran95 [11].
Now is the time for C.

There are other AD tools that differentiate C programs e.g. ADOL-C [6],
ADIC [2], or TAC++ [12]. Some of these tools, e.g. ADOL-C, have no Fortran
equivalent as they rely on operator overloading. For the others, the idea of sharing a
part of their implementation with a Fortran equivalent came gradually. As a C equiv-
alent of ADIFOR, ADIC did mention this possibility. The architecture of TAPENADE
was explicitly designed for this objective since its start in 1999. The XAIF con-
cept [3] at the basis of the OpenAD [13] environment also aims at promoting this
sharing. OpenAD contains a new version of ADIC as its component for C. To our
knowledge, TAC++ shares algorithms but no implementation with TAF.

The architecture of TAPENADE should make extension for C relatively easy. Ide-
ally one should only write a new front- and back-end. In reality things turned out
to be slightly more complex. Still, our revision control tool tells us that, on 120 000
lines of JAVA code of TAPENADE, less than 10% of the total have been modified
for C handling. We consider this a very positive sign of the validity of the archi-
tecture. In particular C structured types came for free, as they were already handled
by the type representations needed by Fortran95. The same holds for the C variable
scoping mechanism, and for most control structures. Pointers are already present in
Fortran95, but only with C are pointers used at such a large scale so we feel this is
the right context to present our alias analysis.

This paper discusses the features of C that required choices, improvements, and
new developments in TAPENADE. We emphasize that many of the improvements
actually concern erroneous design choices in TAPENADE, that often resulted from
having implicitly Fortran in mind when making these choices. We believe the new
choices are more general, make the tool more abstract and safe, and benefit even
to the differentiation of Fortran. In the sequel, we will refer to the TAPENADE just
before considering C as “the old TAPENADE”, whereas the current version resulting
from this is called “the new TAPENADE”. The changes that we describe fall into
the following categories: Section 2 briefly describes the external front- and back-
end for C. Section 3 deals with the new handling of declaration statements, yielding
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a major change regarding include files. Section 4 discusses the parameter-passing
mechanism. Section 5 describes the flow-sensitive alias analysis for a precise pointer
destinations information. In Sect. 6, we summarize the current status of TAPENADE
for C, discuss some remaining limitations, and evaluate the cost of the more distant
extension to object-oriented languages.

2 Front-end and Back-end for C

The new front-end for C is composed of three successive parts:

1. a preprocessor (actually the standard CPP preprocessor for C) inlines #include
directives, and processes macro definitions #define and conditional inclu-
sions #if, #ifdef. . . However we keep placeholders for the beginning and
end of include files. These placeholders are kept through the complete differ-
entiation process, allowing TAPENADE to generate shorter code that explicitly
makes #include calls. On the other hand the other directives e.g. #define,
#ifdef, are not reinstalled in the differentiated program.

2. a parser performs the true lexical and syntactic analysis of the preprocessed
source. It is based on the antlr parser generator [10]. It supports the Standard
C language [8, 4]. It returns an abstract syntax tree.

3. a translator turns the syntax tree into a serialized IL tree, ready to be transferred
into TAPENADE using the same protocol as the other front-ends.

The back-end for C translates IL trees into C source code, using pretty much the
same algorithm as the Fortran back-ends. For spacing and indenting, it implements
the recommended style for C [4]. In contrast, it does not alter the naming conven-
tions (e.g. capitalization) of the original program. The back-end uses the include
placeholders to reinstall #include directives whenever possible. This mechanism
also benefits to the Fortran back-ends.

Unlike the Fortran front- and back-ends, those for C are compiled into JAVA code
exclusively, thus making the distribution process easier on most platforms.

3 Declaration Statements

In the old TAPENADE, the internal representation held the type information only as
entries in the symbol tables. The original declaration statements were digested and
thrown away by the analysis process. Therefore on the way back, the produced pro-
grams could only create declarations in some standard way, unrelated to the order and
style of the original source. Consequently, differentiated declarations were harder to
read, comments were lost or at best floated to the end of the declaration section, and
include calls were systematically expanded.

This model is not acceptable for C. Include files are commonplace, and they
are long and complex. Inlining stdio.h is not an option! Also, declarations may
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contain initializations, which need to be differentiated as any other assignment state-
ment. Like for e.g. JAVA source, declarations can be interleaved with plain statements
and the order does matter.

In the new TAPENADE, the syntax trees of declaration statements are kept in the
Flow Graph as for any other statement. They are used to build the symbol tables but
are not thrown away. During differentiation, declaration statements are differentiated
like others. The order of declarations in the differentiated source matches that of the
original source. The same holds for the order of modifiers inside a declaration, like
in int const i.

Relative ordering of differentiated statements is worth mentioning. In tangent dif-
ferentiation mode, the differentiation of plain assignments is systematically placed
before the original assignment. This is because the assignment may overwrite a vari-
able used in the right-hand side. This never happens for declarations, though, be-
cause assignments in declarations are only initializations. This ordering constraint is
relaxed. On the other hand, one declaration can gather several successive initializa-
tions that may depend on one another. The differentiated initialization may depend
on one of the original initializations, and in this case the differentiated declaration
statement must be placed after. In the reverse mode of AD, differentiation of a dec-
laration with initialization cannot result in a single statement: the differentiated dec-
laration must go to the top of the procedure, and the differentiated initialization must
go to the end of the procedure. There is no fixed rule for ordering and we resort to
the general strategy already present in TAPENADE namely, build a dependency graph
between differentiated statements, including declarations and initializations.

Given for instance the following procedure:

void test(float x, float y, float *z)
{

/* comment on declaration */
float u = x * 2, v = y * u;
u = u * v;
float w = *z * u;
/* comment on statement */

*z = w * (*z);
}

the new TAPENADE produces the following tangent differentiated procedure:

void test_d(float x, float xd, float y,
float yd, float *z, float *zd)

{
/* comment on declaration */
float u = x*2, v = y*u;
float ud = 2*xd, vd = yd*u + y*ud;
ud = ud*v + u*vd;
u = u*v;
float w = *z*u;
float wd = *zd*u + *z*ud;
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/* comment on statement */

*zd = wd*(*z) + w*(*zd);

*z = w*(*z);
}

whereas the reverse differentiated procedure has split differentiation of declarations
with initialization:

void test_b(float x, float xb, float y,
float yb, float *z, float *zb)

{
/* comment on declaration */
float u = x*2, v = y*u;
float ub, vb;
/* ... code stripped out for clarity ... */
ub = y*vb + v*ub;
yb = yb + u*vb;
xb = xb + 2*ub;

}

Preserving declarations order allows TAPENADE to reinstall most #include di-
rectives in the generated code. The example in Fig. 3 illustrates this for C. We already
mentioned that the preprocessor keeps track of the include files, so that TAPENADE
can label declarations with their origin and propagate these labels through differen-
tiation. This new development takes place in TAPENADE kernel. As such, although
not absolutely necessary for Fortran, it benefits to differentiated programs in Fortran
too. Things may prove harder in Fortran, due to strange situations coming from scat-
tered declaration of a single object among a subroutine and its includes. Think of
a implicit declaration in a subroutine header that influences variables declared
in some included file. In such weird cases, it is sometimes impossible to reuse the
original include file. The fallback strategy is then to build a new include file. More
generally, we consider the partial order that links all declarations, original and dif-
ferentiated. When the order allows for it, we prefer to generate an include of the
original include file followed by an include of a differentiated include file. Other-
wise, our fallback strategy is to put all declarations, original and differentiated, into
the differentiated include file. This strategy can be compared to what we did for dif-
ferentiated modules in Fortran95, which need to keep a copy of the original module’s
components.

When a program uses external subroutines, TAPENADE expects the user to give
some information on these externals via some “black-box” mechanism. In C, the
“forward declaration” constraint makes sure that any external subroutine is declared
with its arguments number and type before it is used. A similar mechanism exists
in Fortran95 with the interface declaration, but it is not compulsory. These forward
declarations ease the burden of the “black-box” mechanism. However information
on Use/Def, Outputs/Inputs dependencies, and provided partial derivatives is still re-
quired. TAPENADE lets the user do so through an ad-hoc file, although an alternative
mechanism based on dummy procedures might work just as well.
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4 Parameter-Passing Mechanism

The assumptions of the old TAPENADE regarding parameter-passing were inspired
solely from Fortran. In Fortran, call by value-result is generally used for values such
as scalars that fit into registers and call by reference is generally used for arrays and
structures [9].

In C, call by value is the only parameter-passing mechanism. One emulates a
call by reference, i.e. an input/output parameter by passing a pointer to this param-
eter. This parameter-passing mechanism is central for all data-flow analysis such as
Use/Def, Activity, Liveness, and TBR. With call by reference, the output status of a
parameter must be propagated back to the actual parameter inside the calling proce-
dure. With call by value, this propagation must be turned off. Consider for instance
the following procedure F with formal argument y, together with a call to F:

void F(float y) {
...
y = 0.0;

}

F(x) ;

If x has a data-flow property e.g., is active just before the call, then so is y at the
beginning of F. Then y becomes passive. However in the call by value case, this
property must not be propagated back to x upon exit from F, and x remains active
after the call. With call by reference or call by value-result, x becomes passive after
the call. The parameter-passing mechanism used by the language must be stored as
an environment variable of TAPENADE.

Incidentally, this also influences the header of differentiated procedures. In
several cases the additional arguments to a differentiated procedure must be out-
put arguments, even when their corresponding non-differentiated argument is just an
input. This is commonplace in the reverse mode. It also occurs when transforming a
function into a procedure with an extra argument for the result, which is often nec-
essary during differentiation. While this was all too easy in Fortran, now in a call by
value context we must pass a pointer to these extra arguments in order to get a result
upon procedure exit.

5 Alias Analysis

The data-flow analysis in TAPENADE already dealt with pointers for Fortran95. How-
ever, only with C do pointers occur with their full flexibility. Therefore the Internal
Language IL that TAPENADE uses as a common representation of any source pro-
gram, handles pointers with notations and constructs that are basically those of C
specifically, malloc, free, the address-of operator &, and the dereference opera-
tor *. Actually it’s the Fortran side that need be adapted: at a very early stage during
the analysis, typically during type-checking, each use of a variable which turns out to
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be a pointer is explicitly transformed into an explicit address-of or dereference oper-
ator whenever required. Conversely, it’s only in the Fortran back-end that address-of
and pointer-to operations are removed, re-introducing the Fortran pointer assignment
notation “=>” to lift ambiguities.

The principal tool for handling pointers is the Alias Analysis, which finds out
the set of possible destinations for each pointer for each location in the program.
Like most static data-flow analysis, Alias Analysis must make some (conservative)
approximations. In particular one must choose to what extent the analysis is flow
sensitive, i.e. how the order of statements influences the analysis output, and to what
extent it is context sensitive, i.e. how the various subroutine call contexts are taken
into account. Specifically for Alias Analysis, most implementations we have heard
of are flow insensitive, and partly context sensitive.

In TAPENADE, we made the choice of a flow sensitive and context sensitive anal-
ysis. By context sensitive we mean that this interprocedural analysis considers only
realizable call-return paths. However, the called procedure is analyzed only once, in
the envelope context of all possible call sites. We made the same choice for the other
data-flow analysis such as In-Out or Activity, and we are satisfied with this trade-off
between complexity of the analysis and accuracy of the results. Our strategy splits
the Alias Analysis in two phases:

• The first phase is bottom-up on the call graph, and it computes what we call
Pointer Effects, which are relative. For instance the Pointer Effect of a procedure
tells the destinations of the pointers upon procedure’s exit, possibly with respect
to their destinations upon procedure’s entry. In other words at the exit point of
a procedure, each pointer may point to a collection of places that can be plain
variables, or NULL, or destinations of some pointers upon procedure’s entry. A
Pointer Effect can be computed for every fragment of the program, provided it
is a standalone flow graph with a unique initial point and a unique end point.
Figure 2 shows two examples of Pointer Effects. Computing the Pointer Effect
of a procedure only requires the Pointer Effects of the procedures recursively
called, and is therefore context-free.
• The second phase is top-down on the call graph, and it computes what we call

Pointer Destinations, which are absolute. At any location in the program, the
Pointer Destination tells the possible destinations of each pointer, which can
be any collection of variables in the program plus NULL. This information is
self-contained and does not refer to pointer destinations at other instants. On
a given procedure, the Pointer Destinations analysis collects the contexts from
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Fig. 2. Pointer Effects for part A (left) and part B (right)
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every call site, builds a Pointer Destinations and propagates it through the flow
graph. When the analysis runs across a call, it does not go inside the called
procedure. Instead, it uses the Pointer Effect of this procedure to build the new
Pointer Destinations after the call. These Pointer Destinations are the final result
of alias analysis, that will be used during the rest of differentiation.

When the program is recursive, each phase may consist of several sweeps until
a fixed point is reached. Otherwise, only one sweep per phase is enough, and the
overall complexity remains reasonable.

Pointer Effects and Pointer Destinations are represented and stored as matrices of
Booleans, using bitsets. For both, the number of rows is the number of visible pointer
variables. For Pointer Destinations, there is one column for each visible variable that
can be pointed to, plus one column for NULL. In addition to this, for Pointer Effects,
there is one extra column for each visible pointer. A True element in these extra
columns means that the “row” pointer may point to whatever the “column” pointer
pointed to at the initial point.

At the level of each procedure, Alias Analysis consists of a forward propagation
across the procedure’s flow graph. When the flow graph has cycles, the propagation
consists of several forward sweeps on the flow graph until a fixed point is reached.
Otherwise only one sweep is enough. The propagation is very similar for the first and
second phases. Each basic block is initialized with its local Pointer Effect. The entry
block receives the information to propagate: during the first, bottom-up phase, this
is an “identity” Pointer Effect, each pointer pointing to its own initial destination.
During the second, top-down phase, this is the envelope of the Pointer Destinations
of all call sites. Actual propagation is based on a fundamental composition rule that
combines the pointer information at the beginning of any basic block with the Pointer
Effect of this basic block, yielding the pointer information at the end of this basic
block. At the end of the top-down phase, each instruction is labeled with a compact
form of its final Pointer Destinations.

We thus need only two composition rules for propagation:

Pointer Effect⊗Pointer Effect → Pointer Effect
Pointer Destinations⊗Pointer Effect → Pointer Destinations

Let’s give an example of the first composition, which is used by the first phase. The
second composition is only simpler. Consider the following code

Part A

Part B

void foo(float *p1, float *q1, float v)
{
float **p2, *r1 ;
r1 = &v ;
p2 = &q1 ;
if (...) {
p2 = &p1 ;

}
*p2 = r1 ;
p2 = NULL ;

...
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in which we have framed two parts A and B. Part A starts at the subroutine’s entry.
Suppose that the analysis has so far propagated the Pointer Effect at the end of A,
relative to the entry. This Pointer Effect is shown on the left of Fig. 2. Notice that r1
(resp. p2) points no longer to its initial destination upon procedure entry, because
is has certainly been redirected to v (resp. q1 or p1) inside A. Part B is a plain
basic block, and its Pointer Effect has been precomputed and stored. It is shown on
the right of Fig. 2, and expresses the fact that pointers p2 and *p2 have both been
redirected, while the other pointers are not modified. The next step in the analysis
is to find out the Pointer Effect between subroutine entry and B’s exit point. This is
done by composing the two Pointer Effects of Fig. 2, which turns out slightly more
complex than say, ordinary dependence analysis. This is due to possible pointers to
pointers. For instance the pointer effect of part B states that the destination of p2,
whatever it is, now points to the address contained in r1. Only when we combine
with the pointer effect of part A can we actually know that p2 may point to p1 or
q1, and that r1 points to v. It follows that both p1 and q1 may point to r1 in the
combined result. The Pointer Effect for the part (A;B) is therefore:
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Although still approximate, these pointer destinations are more accurate than those
returned by a flow insensitive algorithm. Figure 3 is a minimal example to illus-
trate our flow sensitive Alias Analysis (as well as regeneration of declarations and
include files discussed in Sect. 3). A flow-insensitive Alias Analysis would tell
that pointer p may point to both x and y, so that statement *p = sin(a) makes
x and y active. Therefore the differentiated last statement would become heavier:

bd = bd + (*pd)*y + (*p)*yd;

6 Conclusion

The new TAPENADE is now able to differentiate C source. Although this required a
fair amount of work, this paper shows how the language-independent internal repre-
sentation of programs inside TAPENADE has greatly reduced the development cost.
Less that one tenth of the TAPENADE has required modifications. The rest, including
the majority of data-flow analysis and the differentiation engines, did not need any
significant modification.

In its present state, TAPENADE covers all the C features, although this sort of
assertion always needs to be precised further. Obviously there are a number of cor-
rections yet to be made, and this will improve with usage. This is especially obvious
with the parser, that still rejects several examples. Such a tool is never finished. To
put it differently, there are no C constructs that we know of and that TAPENADE does
not cover.



208 Valérie Pascual and Laurent Hascoët

Original Code Tangent Differentiated Code

#include <math.h>

void test(float a, float *b)

{
#include "locals.h"

*b = a;
/* pointer p is local */
float *p;

if (*b > 0) {

p = &y;
} else {

p = &x;
/*p doesn’t point to y*/

*p = sin(a);
}
/* y is never active */

*b = *b + (*p)*y;
}

#include <math.h>

void test_d(float a, float ad,
float *b, float *bd)

{
#include "locals.h"
#include "locals_d.h"

*bd = ad;

*b = a;
/* pointer p is local */
float *p;
float *pd;
if (*b > 0) {

pd = &yd;
p = &y;

} else {
pd = &xd;
p = &x;
/*p doesn’t point to y*/

*pd = ad*cos(a);

*p = sin(a);
}
/* y is never active */

*bd = *bd + (*pd)*y;

*b = *b + (*p)*y;
}

Original Include File locals.h Generated Include File locals d.h

float x = 2.0;
float y = 1.0+x;

float xd = 0.0;
float yd = 0.0;

Fig. 3. Tangent differentiation of a C procedure. Include directives are restored in the differ-
entiated file. Flow-sensitive Alias Analysis allows TAPENADE to find out that y is not active

Most of the developments done represent either new functionality that may pro-
gressively percolate into Fortran too, in the same way that pointers did. Other devel-
opments were mostly missing parts or misconceptions that the application to C have
put into light. But indeed very little has been done that is purely specific to C. In
other words, adapting TAPENADE for C has improved TAPENADE for Fortran.

Obviously the main interest of the structure of TAPENADE is that it remains a
single tool, for both Fortran and C. Any improvement now impacts differentiation of
the two languages at virtually no cost. Even the remaining limitations of TAPENADE,
for example the differentiation of dynamic memory primitives in reverse mode, or
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a native handling of parallel communications primitives, apply equally to Fortran
and C. In other words, there is no difference in the differentiation functionalities
covered by TAPENADE, whether for Fortran or C. The same holds probably for the
performance of differentiated code, although we have no measurements yet.

There remains certainly a fair amount of work to make TAPENADE more robust
for C. However, this development clears the way towards the next frontier for AD
tools namely, differentiating Object-Oriented languages. There is already a notion
of module for Fortran95, but we foresee serious development in the type-checker to
handle virtual methods, as well as problems related to the systematic use of dynamic
allocation of objects.

All practical information on TAPENADE, its User’s Guide and FAQ, an on-line
differentiator, and a copy ready for downloading can all be found on our web address
http://www.inria.fr/tropics.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools. Addison-
Wesley (1986)

2. Bischof, C., Roh, L., Mauer, A.: ADIC — An Extensible Automatic Differentiation Tool
for ANSI-C. Software–Practice and Experience 27(12), 1427–1456 (1997). URL http:
//www-fp.mcs.anl.gov/division/software

3. Bischof, C.H., Hovland, P.D., Norris, B.: Implementation of automatic differentiation
tools. In: Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM’02), pp. 98–107. ACM Press, New York,
NY, USA (2002)

4. British Standards Institute, BS ISO/IEC 9899:1999: The C Standard, Incorporating Tech-
nical Corrigendum 1. John Wiley & Sons, Ltd (2003)

5. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. SIAM, Frontiers in Applied Mathematics (2000)

6. Griewank, A., Juedes, D., Utke, J.: ADOL-C: A package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Software 22(2), 131–167 (1996)
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Summary. The programming language MATLAB supports default values for arguments as
well as argument lists of variable length. This work analyzes the effects of these two language
concepts on the design of source transformation tools for automatic differentiation. The term
automatic differentiation refers to a collection of techniques to augment a given computer
code with statements for the computation of user-specified derivatives. The focus here is on
the source transformation tool ADiMat implementing automatic differentiation for programs
written in MATLAB. The approach taken by ADiMat to cope with default arguments and
argument lists of variable length is described. Implementation techniques and remaining open
questions are discussed.
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1 Introduction

In computational science and engineering, the interactive environment MATrix
LABoratory (MATLAB)1 [11] is successful, in particular because of its high-level
programming language that is heavily based on concepts from linear algebra with
vectors and matrices constituting the most fundamental data structures. This lan-
guage design, as well as the rich set of powerful functions provided by so-called
MATLAB toolboxes, facilitate rapid prototyping for tackling computational prob-
lems with modest human effort. The MATLAB language supports functions with
optional input and output arguments. This concept is useful, for instance, when a
function is capable of handling simple cases with less arguments and general cases
for which a larger number of arguments is necessary. As an example consider the it-
erative solution of a sparse linear system of equations by a preconditioned conjugate
gradient method. A simple case consists of the invocation

x=pcg(A,b)

1 MATLAB is a registered trademark of The Mathworks, Inc.
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in which the solution vector x is computed from a symmetric positive definite coeffi-
cient matrix A and a right-hand side vector b. More general cases of calling pcg()
involve a tolerance tol or a maximum number of iterations maxit as optional in-
put arguments. As an optional output argument, a flag is appropriate to return some
information on the convergence such as in

[x,flag]=pcg(A,b,tol,maxit).

For certain functions, it is not possible or desired to specify the number of all for-
mal arguments in the declaration because the number of actual arguments may vary
depending on the context. For instance, the sum of an arbitrary number of vectors
can be invoked by sum(x,y) or sum(x,y,z). The syntactic convenience for the
caller to use a variable number of arguments is often referred to as vararg [9].

In automatic differentiation (AD) [12, 7, 8, 1, 5, 3] based on source transforma-
tion, the argument list of a function is transformed. Given an argument list of some
function to which AD is applied, additional arguments representing derivative objects
have to be inserted. The AD source transformation is controlled by the user who has
to specify input (independent) and output (dependent) variables characterizing the
derivatives to be computed by the transformed program. A variable that is influenced
by an independent variable and also influences a dependent variable is called active.
The purpose of an activity analysis is to find out whether a variable is active or not.
The activity analysis is started at the top-level function and is propagated through the
complete hierarchy of functions called. In comparison with the original program, ad-
ditional arguments are needed only for active, but in general not all, variables in the
argument lists of a function in the transformed program. The two concepts of default
arguments and arguments lists of variable length add another level of complexity
to the transformation process. The purpose of this article is to develop a strategy to
cope with these two language concepts when automatic differentiation is applied to
a program written in MATLAB.

The structure of this article is as follows. In Sect. 2, the programming language
MATLAB is sketched with an emphasis on the concepts of default arguments and
argument lists of variable length. The approaches to transform these language con-
structs when applying automatic differentiation to MATLAB programs are given in
Sect. 3 and Sect. 4. The focus is on the techniques implemented in the forward-
mode AD tool ADiMat [2], illustrated by a more significant example in Sect. 5. The
development of another source transformation tool for MATLAB programs called
MSAD [10] has recently been started. A general list of AD tools is available at
www.autodiff.org.

2 Passing Arguments in MATLAB

Default values in MATLAB are explicitly set in the body of a function after checking
the number of its arguments. MATLAB defines the two built-in functions nargin
and nargout to determine the number of input and output arguments, respectively.
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function [z,y,optout]=foo(x,optin)
if nargin>1

y= x*optin;
else

y= x*5.0;
end
z= sqrt(x);
if nargout>2

optout= yˆ2;
end

Fig. 1. Use of nargin and nargout.

The built-in function nargin returns the number of actual input arguments present
in a call of a function g(). This number is typically equal to the number of formal
input arguments of g(). If not, then the function g() has to react, for instance, by
issuing an error message, using default values for uninitialized input arguments, or
abstain from using the uninitialized arguments at all.

Similarly, the built-in function nargout determines the number of results that a
function is expected to return. This feature is often used to return additional informa-
tion, e.g., the function eig() returns a vector containing the eigenvalues of a matrix
when called with a single output argument. However, if two results are expected then
eig() additionally returns a matrix whose ith column stores the eigenvector corre-
sponding to the ith eigenvalue.

Figure 1 shows the definition of a function foo(). The first line of the code be-
ginning with the keyword function declares foo() with two input arguments, x
and optin, and three results, z, y and optout. The implementation of the body of
foo() shows a typical use of checking the number of input and output argument. In
this case, it is used to deal with the optional input argument optin and the optional
output argument optout. The first if-clause checks if more than one input argu-
ment is given when foo() is called. If so the value given in the argument optin is
used to compute y. If not y is determined using the default value 5 for optin. In a
similar way, the number of results are checked at the end of foo(). If three results
are expected, then nargout is greater than two and the result variable optout is
assigned some return value. If foo() is called with two output arguments, there is
no assignment to optout. Notice that an error message is generated by MATLAB
if less than two results are expected in a call of foo().

Calling the function defined in Fig. 1 by

[r1,r2]=foo(4)

gives r1=2 and r2=20. When this function is called using a second input argument
like in

[r1,r2]=foo(4,3)

the results are given by r1=2 and r2=12. When calling the function with three
results as in

[r1,r2,r3]=foo(4,3)
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function ret=mysum(x,varargin)
ret= x;
for c=1:(nargin-1)

ret= ret+varargin{c};
end

Fig. 2. Use of varargin.

we find r1=2, r2=12 and r3=144. An error is reported whenever the number of
input arguments is not in the valid range 1 ≤ nargin ≤ 2 or the number of results
is different from 2≤ nargout≤ 3 .

In MATLAB, the concept of an argument list of variable length is implemented
by the use of the two identifiers varargin for the input list and varargout for
the output list. Both variables have to be the last identifiers in the respective lists.
Figure 2 shows the use of the varargin identifier in a simple function mysum().
This function adds all its inputs and returns this sum as its output. The function
mysum() expects at least one argument to be bound to x and an arbitrary number
(including zero) of input arguments, which will be stored in the varargin array of
objects. The elements within the varargin variable are addressable by using curly
brackets. This denotes a cell array in MATLAB. A cell array may contain objects
of different types, in contrast to a regular array whose entries have to be identical
in size and type. In this example, it is assumed that the objects available in the cell
array varargin can be added by means of the MATLAB operator plus. The use of
varargout is similar to the use of varargin and is omitted here for simplicity.

3 Transforming Default Arguments

The concept of default arguments needs special treatment when it is transformed by
AD. Assume that the function foo() in Fig. 1 is taken as the top-level function and
that it is differentiated to obtain the derivative of the output y with respect to the
input x. Without treating the nargin and nargout correctly, this would results in
the function g foo() given in Fig. 3. The function declaration in the first line of the
figure shows the output and input argument lists where the variables g x and g y are
added to store the derivative objects associated with x and y, respectively. Suppose
that the differentiated function is called in the form g foo(g a,a) where g a rep-
resents some derivative object and a denotes some matrix. Note that there is no input
for optin. Then, nargin equals 2, so that the condition of the first if-clause eval-
uates to true. The first statement including the variable optin is executed, resulting
in an error because the variable optin is not initialized in this case.

Similar problems occur in the second if-clause if the function is called expecting
three results for z, g y and y, omitting a fourth result for optout. Then nargout
returns 3 and a value is assigned to the variable optout. This causes an error be-
cause it is not allowed to assign a value to a variable occurring as a formal output
argument that is not associated with an actual output argument.
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function [z,g y,y,optout]=g foo(g x,x,optin)
if nargin>1

g y= g x*optin;
y= x*optin;

else
g y= g x*5.0;
y= x*5.0;

end
z= sqrt(x);
if nargout>2

optout= yˆ2;
end

Fig. 3. Differentiated code of Fig. 1 with wrong control flow.

The problems illustrated by the above example are concerned with the control
flow. In the forward mode, the control flow of the original and differentiated pro-
grams have to be identical. An inadequate treatment of the nargin and nargout
features may, however, change the control flow. Several solutions to retain the control
flow are imaginable:

1. Redefine the functions nargin and nargout so that they return the number of
objects in the original function rather than the number of objects in the differen-
tiated function. However, since nargin and nargout are built-in functions,
a redefinition is not allowed. Overloading these functions is also not feasible
because they do not have any argument necessary to do the Koenig lookup [13].

2. Change the semantics of the differentiated code so that the control flow remains
intact. For instance, in Fig. 3, rewrite the condition of the if-clauses explicitly.
However, this transformation is hard because of the corresponding rigorous code
analysis necessary to implement this approach.

3. Introduce structures for associating value and derivative in a single object. This
association by reference mimics an operator overloading approach used in the
AD tools ADMIT/ADMAT [4] or MAD [6]. This eliminates the problem be-
cause the number and order of arguments is not affected at all. Since ADiMat is
based on association by name this solution is not considered in the following.

4. For each occurrence of nargin and nargout, use indirect addressing to map a
certain number of actual arguments in the differentiated code to the correspond-
ing number in the original code. This approach is implemented in ADiMat and
is detailed in the remaining part of this section.

The AD tool ADiMat creates a vector in the body of a function for each identifier
nargin or nargout. These vectors map the number of arguments of the differen-
tiated function to the number of arguments of the original function. The vectors are
created by traversing the input and output argument lists. The algorithm to generate
the mapping is identical for both lists so that the following description focuses on the
input argument list.
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function map=create mapper(alist)
map= [];
norgvar= 0;
for act=1:length(alist)

if ∼isDerivativeObject(alist(act))
norgvar= norgvar+1;
map= [map, norgvar];

else
map= [map, 0];

end
end

Fig. 4. Pseudo-code for generation of mapper vectors.

function [z,g y,y,optout]=g foo(g x,x,optin)
narginmapper=[ 0, 1, 2];
nargoutmapper=[ 1, 0, 2, 3];
if narginmapper(nargin)>1

g y= g x*optin;
y= x*optin;

else
g y= g x*5.0;
y= x*5.0;

end
z= sqrt(x);
if nargoutmapper(nargout)>2

optout= yˆ2;
end

Fig. 5. Differentiated code of Fig. 1 with correct control flow using mapper vectors.

The pseudo-code of the algorithm, formulated in a MATLAB-like notation, is
depicted in Fig. 4. The input argument list of the differentiated function, alist,
is traversed starting at the first argument. A counter, norgvar, for the number of
input arguments in the original function is set to zero. The list is traversed and the
mapper vector, map, is constructed by appending a zero, if the current argument
in the input argument list is a derivative object. If the current argument is not a
derivative object, then norgvar is incremented and that value is appended to the
mapper vector.

Besides the creation of the mapper vectors, the body of a differentiated function
has to be changed. Each invocation of the functions nargin or nargout has to
be transformed such that indirect addressing via the mapper vectors is used. This
ensures that in the differentiated function the number of original objects is returned
so that the control flow remains the same as in the original program.

With this algorithm the mapper vector for output and input argument lists of the
function foo() present in Fig. 1 can be constructed. Figure 5 shows the differen-
tiated function g foo() with mappers inserted. The mapper for nargin, called
narginmapper in g foo(), is constructed by examining the input argument list
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of the differentiated function. Every identifier in this list is represented by an entry
in the mapper vector. The current input argument list has one derivative object and
two original objects. In the narginmapper the derivative object is represented by
the zero at position one. The second and third position of the narginmapper are
set to one and two, respectively. If the function is called by g foo(g a,a) where
g a is a derivative object and a is an original object, then the function nargin
returns 2. The narginmapper maps this to 1 which is the number of original ob-
jects in the input argument list of the corresponding original call foo(a). Since the
variable a is active the function g foo will always have at least two actual input
arguments. So, its control flow is identical to the one in foo. The creation for the
nargoutmapper is done in a similar way.

4 Transforming Argument Lists of Variable Length

Consider now the problem of differentiating a function containing varargout or
varargin identifiers. Here, we follow a similar approach as sketched in the pre-
vious section. The differentiation of code containing varargout and varargin
identifiers is complicated by two issues that need to be addressed.

The first issue is concerned with the fact that an actual input argument of a func-
tion may consist of an expression containing several variables. To generate efficient
derivative code, a careful activity analysis is necessary. An important ingredient to
an activity analysis are the dependencies between variables that are analyzed and
tracked by ADiMat. When a function is called like in foo(a*b) the formal input ar-
gument x of foo() depends on two variables, a and b. In general, each formal input
argument may depend on an arbitrary number of variables. However, if varargin
is a formal argument, then multiple actual input arguments are possibly considered
to influence varargin. This results in a potential overestimation of dependencies.
Similarly, an overestimation of dependencies may occur when varargout is used
as a formal output argument.

A second issue when differentiating functions using varargin deals with the
order of original and derivative objects in the argument list. The ordering conven-
tion implemented by ADiMat is that the derivative object always precedes the cor-
responding original object in the argument list. There are two options to follow this
convention. The first is to create an additional data structure g varargin asso-
ciated with varargin. The object g varargin stores all the derivative objects
associated with any of the active variables stored in varargin. However, this op-
tion would violate the ordering convention when the differentiated function is called
because several derivative objects would be immediately adjacent in the argument
list. It would also be difficult to maintain the association of original and derivative
objects if some variables are active and some are not. The second option is to follow
the convention by using varargin in the differentiated argument list in such a way
that it is used to store original and derivative objects in the predefined order. This
approach is implemented in ADiMat and is described in more detail in the remainder
of this section.
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The implementation in ADiMat takes into account the analysis of dependencies
as well as the ordering convention. The overall idea of the implementation is similar
to the approach used to transform the nargin and nargout feature. In contrast
to the nargin and nargout feature where the number of arguments is relevant,
the mapping to be generated for the varargin or varargout feature needs the
position of the arguments in order to distinguish between original and derivative
objects. The mapping is generated using matrices rather than vectors. Rows are used
to store indices to access objects as follows. The first row stores the indices concerned
with original objects, the second row stores the indices concerned with derivative
objects of first order, and the third row stores the indices concerned with derivative
objects of second order. The third row is only generated for computations involving
Hessians.

The vararg mapper matrices are constructed statically at the time ADiMat an-
alyzes the source code. Again, we describe the algorithm constructing the mapper
for the input argument list and omit a similar description of the mapper for the out-
put argument list. To construct a vararg mapper for a function using varargin,
all calls of that specific function appearing in the program code are analyzed. The
mapper takes care of those variables that are used in these calls and that are stored
in varargin. It is necessary to determine whether or not such a variable is active.
In one function call, a variable occurring in varargin can be active whereas, in
another call of the same function, this variable is not active, referred to as inactive
hereafter. ADiMat calculates the transitive closure of these activities. If a variable is
used as an inactive variable in some function call and that variable is considered to
be active by taking the closure, then the differentiated function call contains some
zero derivative object associated with that variable. This way, a derivative object
containing zeros is inserted that has no influence on the resulting derivative of the
function.

Given the pattern of active and inactive variables, the input argument list of the
differentiated function is determined and the mapper matrices can be constructed as
sketched in Fig. 6. It is assumed that alist represents that part of the input argu-
ment list of the differentiated function which is stored in varargin. The mapper
matrix is initialized by a zero matrix with two rows and a number of columns that

function map=create vararg mapper(alist)
map= zeros(2,numOrigObjects(alist));
norgvar= 1;
for act=1:length(alist)

if ∼isDerivativeObject(alist(act))
map(1,norgvar)= act;
norgvar= norgvar+1;

else
map(2,norgvar)= act;

end
end

Fig. 6. Pseudo-code for generation of vararg mapper matrices.
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function [g ret,ret]= g mysum(g x,x,varargin)
narginmapper= [0, 1, 0, 2, 0, 3, 0, 4];
vararginmapper= [2, 4, 6;

1, 3, 5];
g ret= g x;
ret= x;
for c=1:(narginmapper(nargin)-1)

g ret=g ret+varargin{vararginmapper(2,c)};
ret =ret +varargin{vararginmapper(1,c)};

end

Fig. 7. Differentiated code of the function mysum() as defined in Fig. 2 which was invoked
as r=mysum(x,2*x,xˆ2,sin(x)).

equals the number of original objects in alist. If an entry of alist is an original
object, then its index is stored in the first row of the matrix. If an entry of alist is a
first-order derivative object, its index is stored in the second row of the matrix. Notice
that the pseudo-code given in Fig. 6 is easily extended to take care of second-order
derivative objects by adding a third row to the mapper matrix.

In Fig. 7, the differentiated code of the function mysum() as given in Fig. 2
is shown. The mapper vector for the nargin identifier used in the range of the
for-loop is defined in the first statement. The mapper matrix for varargin is ini-
tialized in the second statement. The mappers in this figure are generated for a call
of mysum() with four active variables. If the function would have been called with
more arguments, then ADiMat would have increased the dimension of the mappers
appropriately.

Within the function g mysum() all vararg expressions with an index are
rewritten using indirect addressing. An expression e within the curly brack-
ets in the original code, say varargin{e}, is used as the second index of
the varargin or varargout mapper in the differentiated code, namely
varargin{vararginmapper(i,e)} where i controls the access to origi-
nal or derivative objects. In particular, if i is 1 or 2, the original or the derivative
object is accessed, respectively.

5 A More Significant Example

Ignoring any hierarchical approach for differentiating the solution of a linear system,
the code generated by ADiMat when applied to the preconditioned conjugate gradi-
ent solver mentioned in the introduction is depicted in Fig. 8. In this transformation,
the dependent variable is the solution vector x whereas the independent variable is
given by the right-hand side b. The coefficient matrix is considered constant with
respect to differentiation. The symbol afun represents a pointer to a function im-
plementing a matrix-vector product, potentially using arguments in addition to the
vector with which the matrix is multiplied. The argument varargin is used to
propagate these additional arguments. In each iteration of the function pcg() the



220 H. Martin Bücker and Andre Vehreschild

function [g x,x,flag,g relres,relres,iter,g resvec,resvec]=
g pcg(afun,g b,b,tol,maxit,M1,M2,x0,varargin)

nargoutmapper= [0, 1, 2, 0, 3, 4, 0, 5];
narginmapper= [1, 0, 2, 3, 4, 5, 6, 7, 8];
vararginmapper= [1; 0];
if (narginmapper(nargin)< 2)

error(’Not enough input arguments.’);
end
% Check on input and let n denote the order of the system
% Assign default values for tol and maxit
if narginmapper(nargin)< 3|| isempty(tol)

tol= 1e-6;
end
if narginmapper(nargin)< 4|| isempty(maxit)

maxit= min(n, 20);
end
% Assign default values for remaining unspecified inputs
% Set up CG method
for i= 1: maxit

% CG iteration with matrix-vector product in the form
[g q, q]= g iterapp(afun, g p, p, varargin);

end
% Assign values for remaining output arguments
% Only display a message if the output flag is not used
if (nargoutmapper(nargout)< 2)

itermsg(’pcg’, tol, maxit, i, flag, iter, relres);
end

Fig. 8. Excerpt of differentiated code of the function pcg().

statement q=iterapp(afun,p,varargin) applies the function afun to the
vector p with additional arguments. Its differentiated version given in that figure
computes the matrix-vector product with g p. The mappers for the input and output
are used as previously described. The assignments of the default values for tol and
maxit are given for illustration. The corresponding assignments for the optional in-
put arguments representing the preconditioners M1 and M2 as well as the initial guess
x0 are omitted. The last if-clause issues a message via the function itermsg() if
the original call of pcg() consists of a single output argument, i.e., there is no actual
output argument associated with flag.

6 Concluding Remarks and Open Questions

Automatic differentiation (AD) comprises a set of techniques for transforming pro-
grams while changing their semantics in order to efficiently evaluate derivatives
without truncation error. For MATLAB, the underlying program transformations
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are complicated by two language concepts: default arguments and argument lists
of variable length. An approach to cope with these two concepts, implemented in the
AD tool ADiMat, is introduced. The basic idea is to use suitable mappings that keep
track of the numbers and positions of arguments in the original and differentiated
argument lists.

While the proposed approach is practical and elegant, there is still room for fur-
ther improvements. An interesting open problem from a practical point of view is
concerned with the analysis of dependencies between variables occurring in a vararg.
Currently, ADiMat is not capable of evaluating MATLAB expressions. Therefore,
the dependency analysis of a statement of the form x=varargin{e} establishes
that the variable x depends on all variables stored in varargin. It is not detected
that x actually depends on only a single variable.

Another open question occurs if a function f() using a vararg invokes another
function g() which also uses a vararg in its input or output argument list. The prob-
lem arises when f() passes some of its vararg entries to the vararg entries of g().
The dependencies are currently not propagated because, in ADiMat, varargin is
not allowed as an actual argument. Therefore, these arguments have to be passed in
the form of varargin{e} leading to the previous open problem.
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Summary. A common approach to implement automatic differentiation (AD) is based on
source-to-source transformation. In contrast to the standard case in mathematical software
that is concerned with compiled languages, AD for interpreted languages is considered. Here,
techniques to improve code performance are introduced in transformations on a high-level
rather than by an optimizing compiler carrying out these transformations on a lower-level
intermediate representation. The languages MATLAB and CapeML are taken as examples to
demonstrate these issues and quantify performance differences of codes generated by the AD
tools ADiMat and ADiCape using the five code optimization techniques constant folding, loop
unrolling, constant propagation, forward substitution, and common subexpression elimination.

Keywords: Automatic differentiation, MATLAB, CapeML, code optimization

1 Introduction

There is a wide variety of scientific computing techniques that heavily rely on the
availability of derivatives of given mathematical functions. Automatic differentiation
(AD) [9] is a technology to transform complicated programs implementing mathe-
matical functions arising in computational science and engineering. There are several
different implementation strategies for AD [7, 8]. In the source-to-source transfor-
mation approach, source code for computing a function is transformed into source
code for computing its derivatives. Since, today, compiled languages like C, C++ or
Fortran still dominate the software in scientific computing, most source transforma-
tion-based AD tools (see www.autodiff.org) assume that the performance of
the AD-generated code primarily results from using an optimizing compiler. More
precisely, the overall idea of a source-to-source AD approach for compiled languages
is that chain-rule-based transformations are carried out on a high-level intermediate
representation, while the transformations relevant for performance are transferred to
a compiler carrying out code optimization techniques on a medium- or lower-level
intermediate representation [2, 17].

However, a different approach is mandatory if a lower-level intermediate repre-
sentation is not accessible during the entire process of executing an AD-generated
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code. Consider the two recent source transformation-based tools ADiMat [4]
and ADiCape [5] implementing AD for programs written in MATLAB1[16] and
CapeML [19], respectively. Here, it is not possible to access any lower-level inter-
mediate representation so that there is need to apply code optimization techniques on
the highest level of program representation, i.e., on the program itself. We broadly
define the term “AD for interpreted languages” to characterize this property.

The different code optimization techniques are examined with a focus on ADiMat
and ADiCape. ADiMat is capable of generating forward mode-based code for
first- and second-order derivatives. It is currently used in applications from different
scientific disciplines including signal processing [13] and aerodynamics [3]. The de-
velopment of another source transformation tool for MATLAB called MSAD [15] has
recently been started. ADiCape [5, 18] implements AD for first- and second-order
derivatives of models written in CapeML, a domain-specific language for describing
equation-based models in process engineering. The XML-based syntax of CapeML
provides interoperability between various modeling tools used in this specific appli-
cation area. A CapeML program consists of a set of equations whose residuals are
defined as the difference of their right-hand and left-hand sides. The number of de-
pendent variables equals the number of residuals. A subset of all variables is specified
as independent variables. A vector equation for the derivative of a scalar equation is
generated using the rules of differential calculus. The residuals for the differentiated
and original equations are then computed, typically resulting in a sparse Jacobian
matrix showing that not all equations depend on all variables. The current CapeML
implementation has some limitations concerning the available data structures. The
interpreter is only able to handle variables of at most one dimension, i.e., scalars
and vectors are supported, but two- or higher-dimensional arrays are not. These re-
strictions are particularly cumbersome in the ADiCape context because, conceptu-
ally, AD for first-order derivatives adds another dimension to every object. Even
for the practically-relevant class of models that solely involve scalar variables, these
limitations result in severe problems when generating Hessian code that needs two
additional dimensions to represent second-order derivatives. Therefore, the code op-
timization techniques not only help to improve the performance and to reduce the
length of CapeML code, but are crucial to enable the program transformations at all.

We describe selected code optimization techniques used in the two AD tools in
Sect. 2. In Sect. 3 and 4, we report on performance differences of AD-generated
codes obtained from applying the different code optimization techniques.

2 Code Optimization Techniques

Code optimization techniques [1, 2, 10, 17] are commonly used to rearrange the code
emitted by a compiler into a semantically equivalent form with the goal of reducing
its time and/or memory requirements. In current compilers, code transformations
from program code to assembler are carried out using intermediate representations

1 MATLAB is a registered trademark of The Mathworks, Inc.
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on a high, medium, and low level. Code optimization algorithms are typically not
applied to the high-level intermediate representation. The reason is that, on a reduced
set of instructions, it may be easier to capture the information needed by these algo-
rithms. In the context of AD for interpreted languages, however, these techniques do
not solely address performance issues, but are, in certain situations, essential for suc-
cessful operation of the AD tool. All techniques have to be applied to the high-level
representation because the lower level intermediate representations are not available.
For instance, ADiMat is not designed to use any other representation than the abstract
syntax tree. Also, ADiCape relies on XSLT-based transformations [14] that do not
provide any other level of intermediate representation. In the following subsections,
five code optimization techniques used in ADiMat and ADiCape are discussed.

2.1 Constant Folding

The term constant folding describes a way of performing an operation on two or
more constant values. The result of the operation is again a constant value. While
ADiMat uses constant folding merely for simplification and improving readability,
it is essential for generating AD code with ADiCape. Since there is no support for
two- and higher-dimensional arrays in CapeML, ADiCape is forced to rewrite any
vector expression appearing in the original code to a scalar expression so that an
additional dimension for derivatives can be introduced in the AD-generated code.
As an example depicted in Fig. 1, consider the expression X[(3−1)∗5+1] that is first
folded to become X[11] and then rewritten to X 11 before generating the differen-
tiated expression. Constant folding in ADiCape requires an additional functionality
that evaluates fragments of a CapeML tree. A set of recursively called functions is
applied to a particular node of that tree and gathers information about the constant
value operations on its child nodes. These functions construct a string which is then
evaluated by an internal function of XSLT. Subsequently, the computed constant is
substituted for the long CapeML expression.

Fig. 1. CapeML tree to which constant folding is applied
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2.2 Loop Unrolling

The AD code augmentation for CapeML vector equations needs some additional
auxiliary intermediate transformations. Any vector equation is converted to a scalar
form because, in the CapeML language, SAXPY operations such as Z = a*X + Y
are the only available numerical computations involving vectors. The SAXPY is
equivalent to the loop

for i in 1 to s
Z[ i ] = a∗X[ i ] + Y[ i ]

end for ;

where the vector length s is a given constant. Because of the lack of two- and higher-
dimensional arrays, this loop, for s = 2, is unrolled and rewritten as

Z 1 = a∗X 1 + Y 1; Z 2 = a∗X 2 + Y 2 .

The corresponding derivative objects are vectors whose length is equal to the number
of directional derivatives propagated through the code.

2.3 Constant Propagation

Constant propagation is the process of substituting values for their identifiers. This is
usually performed together with constant folding. ADiCape exploits constant prop-
agation techniques, because a large number of variables in CapeML models are typ-
ically declared to be constant. A large number of constants in a model description
results in longer interpretation time of the code and unnecessary memory require-
ments and accesses. In the equation-based approach, any variable, including constant
variables, is an independent variable. Therefore, an extended Jacobian matrix would
be computed without declaring the constant variables as inactive. In practice, these
difficulties are remedied by eliminating all constant variables via constant propaga-
tion. The constant propagation algorithm in ADiCape performs an analysis of the
model variables and, based on their declarations, generates a look-up table contain-
ing identifiers of constant variables and their values. A special set of XSLT templates
matches a variable name in the original code and exchanges the variable identifier
with its constant value. Declarations of constant scalar variables are removed from
the variable list of the model. In contrast, constant vector variables are only deleted
if all references to it involve constant indices. We stress that the combination of loop
unrolling, constant folding, and constant propagation is crucial for successful opera-
tion of ADiCape. Consider the loop

constant int offset = 5;
for i in 1 to 2

X[(3−1)∗offset+i ] = i ;
end for ;

that is first unrolled. After applying constant propagation, and constant folding, the
result is

X 11 = 1; X 12 = 2;
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2.4 Common Subexpression Elimination

Common subexpression elimination (CSE) is a technique to find identical subex-
pressions in a list of expressions. One instance of such an identical subexpression
is assigned to a temporary variable. This temporary variable is then used to replace
all other identical subexpressions, thus removing redundant evaluations of the same
subexpression. It is required that the eliminated subexpressions have no side effects.
To ensure this, ADiMat conservatively eliminates only those subexpressions that do
not contain a function call.

In ADiMat, there are two different scopes to which common subexpression elimi-
nation is applied. While the local scope is a very confined set of expressions resulting
from the canonicalization process, the global scope is given by the whole body of a
function. During the canonicalization process a long and complicated expression is
split up into assignments to temporary variables, in which the right-hand sides of the
assignments contain exactly one operator or one function call each. For instance, the
expression y = (a∗b )/ sin (a∗b ); is split up into the four assignments

t1 = a∗b; t2 = a∗b; t3 = sin ( t2 ) ; y = ( t1 ) / t3 ;

The list of temporary variables, t1, t2 and t3, forms the local scope to which CSE is
applied. Eliminating common subexpressions in the local list of assignments is sim-
pler than applying it to the global list because, in the local list, a temporary variable is
known to occur only once on the left-hand side. That is, a value is only assigned once
to a temporary variable so that the substitution algorithm does not need to check for
overwriting. Each subexpression that is extricated from the complicated expression
is compared with the right-hand sides of the already canonicalized subexpressions in
the local list using a linear search. The subexpression are currently compared lexi-
cographically, i.e., an algebraic equivalence is not detected. If the subexpression is
found in the local list, then the already associated temporary variable is used in-
stead of generating a new temporary. While there is only a moderate decrease in
code length, the execution time can be sped up significantly if the involved variables
store a large amount of data. In the previous example, the speed up in execution time
when eliminating t2 = a∗b; is negligible if a and b are scalars. However, if a and b
are matrices involving, say, 10 000 entries, the speed up is considerable.

2.5 Forward Substitution of Variables

Variables to which a value is assigned only once and that are later used just once
often occur in canonicalized programs. The result is that a lot of temporary variables
are kept in memory. The memory footprint of the differentiated program is thus sig-
nificantly higher. Although the temporary variables are deallocated immediately af-
ter the canonicalized statement is executed, the memory fragmentation may cause
a performance penalty. If a variable that is read once is replaced by the expression
assigned to it, we call this process forward substitution [2].

The set of variables that are candidates for forward substitution is a subset of
the local variables of a function. Based on an extended symbol table, the set is con-
structed by filtering the set for variables that occur once in a defining and once in a
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function [g y , y]= . . .
g forwardsub(g a , a , b)

y= 0;
g y= g zeros ( size (y) ) ;
for i= 1: b

g t0= pi∗ (g a ) ;
t0= pi∗ (a+ i ) ;
g w= (( g t0 ).∗ cos( t0 ) ) ;
w= sin ( t0 ) ;
clear t0 g t0 ;
g t1= g a.∗ w+ a.∗ g w;
t1= a.∗ w;
g y= g y+ g t1 ;
y= y+ t1 ;
clear t1 g t1 ;

end

function [g y , y]= . . .
g forwardsub(g a , a , b)

y= 0;
g y= g zeros ( size (y) ) ;
for i= 1: b

t0= pi∗ (a+ i ) ;
w= sin ( t0 ) ;
g y= g y+ g a.∗ w+ a.∗

(( pi∗ (g a )) .∗ cos( t0 ) ) ;
y= y+ a.∗ w;

end

Fig. 2. Unoptimized (left) and optimized (right) code of differentiating forwardsub ()

using context. Furthermore, these variables are neither allowed to be a member of the
parameter and result lists of a function nor may they be used in an array access. They
are filtered because in many cases the expression indexing the array may not be deter-
mined at the time of code analysis. For instance, the variable A in A(1)= 42; B= A(1);
is conservatively filtered even if these are the only two occurrences of A.

The forward substitution is not only applied to temporary variables generated by
ADiMat itself: user-defined variables may also be eliminated if they meet the above
criteria. Consider the code

function y= forwardsub(a ,b)
y= 0;
for i= 1:b

w= sin (pi∗(a+i ) ) ;
y= y+ a.∗w;

end
whose output y is differentiated with respect to the input variable a. The result of the
differentiation applied to the canonicalized form of that code is shown on the left of
Fig. 2. The ADiMat function g zeros () creates a derivative object of the specified
size containing zeros. The right hand side of Fig. 2 shows the optimized code where
some variables are eliminated by forward substitution. Note the reduced number of
lines and smaller number of temporary variables. The only remaining temporary
variable, t0, is read twice, preventing its elimination.

ADiMat has to handle a large number of functions stored in libraries provided by
MATLAB. To enable the differentiation of these functions, a macro language [6] is used
requiring that every argument to such a function is a variable. This requirement is met
by introducing a potentially large number of temporary variables and eliminating the
unnecessary ones by forward substitution.
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2.6 Related Work

In [17, 2] it is recommended to apply optimization techniques to finer grained inter-
mediate representations. Muchnick recommends to do forward substitution on the
medium-level intermediate representation that is not constructed in ADiMat and
ADiCape. Kharche and Forth [15] manually apply CSE in a recent AD tool for
MATLAB, comparing the performance of the differentiated code with and without
CSE. The tool xaifbooster applies AD transformations to an XML-based format
called XAIF [11]. This format is developed to provide a language-independent repre-
sentation of common constructs in imperative languages such as C++ or Fortran. In
contrast to ADiCape, the actual AD transformations are implemented in C++ rather
than in a pattern matching template-based XML-transformation language. The trans-
formed XAIF code is then translated back into a native language and, if required, the
compiler takes over the code optimization task.

3 Performance of Code Generated by ADiMat

We consider a sample code used in MATLAB’s ODE examples for the solution of
stiff differential equations and DAEs. The sample code arises from solving Burger’s
equation using a moving mesh technique [12] and is manually vectorized. One is
interested in an n× n Jacobian of order n = 160. In Table 1, the performance re-
sults of this test case is given where sparsity in the Jacobian is exploited by using
MATLAB’s sparse data type. However, we do not employ any compression technique
to further exploit sparsity. The first column of this table specifies the optimization
technique. The second column reports on the code length where all comments and
blank lines of the program are removed. The third column consists of the ratio of
the execution time of the AD-generated code and the execution time of the original
code. All execution times are obtained by averaging over hundred runs of the code,
neglecting the best and worst execution times. In the fourth column, the cumulative
memory requirement is given. It is measured in the same runs like the time ratios
by disabling ADiMat the generation of clear -commands to remove temporary ob-
jects from memory. At the end of the evaluated function, a small code fragment is
appended that sums up all bytes of all objects present in the routine. This approxima-
tion to the actual memory requirement is taken because MATLAB does not provide any

Table 1. Performance of vectorized version for solution of Burger’s equation with n = 160

Name Lines of Code Time Ratio Memory (bytes)

original 53 1 16680
no optim. 610 563 30091904
const. fold. 610 589 30091904
CSE 574 523 25126256
forw. subs. 180 528 2480872
all optim. 204 477 7443912
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detailed memory statistics. The codes are evaluated on a Sun E6900 Ultra Sparc IV
with 1.2 GHz CPU using MATLAB R2007a. All differentiated codes are generated
with version 0.5.2 of ADiMat, using a MATLAB derivative class which horizontally
concatenates the directional derivatives in a matrix. The MATLAB-class enforces the
use of the sparse data type if less than 33% of all entries of a derivative are non-zero.
The second row gives the performance data when no optimization is applied to the
differentiated code. Compared to the original code, there is a significant increase in
the evaluation time and memory requirements needed to compute the full Jacobian.
The rows three to five give the data when a certain optimization technique is ap-
plied separately. Applying constant folding yields no improvement in code length
and memory requirement. The constant folding replaces around 40 expressions of
the form x2−1 by x. Surprisingly, the code evaluation using constant folding needs
slightly more execution time than without optimization. The application of CSE re-
duces code length and also the amount of memory needed. Furthermore, a decrease
of the evaluation time is measured. In comparison with forward substitution, the
number of lines eliminated by CSE is significantly smaller. However, the gain in
execution time is nearly equal to the forward substitution. Fortunately, the forward
substitution also reduces the memory footprint of the code by a factor of roughly
10 compared to CSE. Thus, forward substitution turns out to be extremely impor-
tant in practice when a large Jacobian is computed. The last row shows the results
using all optimization techniques simultaneously. The code length in comparison to
pure forward substitution is slightly higher because the CSE optimization increased
the number of uses of some temporary variables. This also implies that more tem-
poraries are present which increases the memory footprint slightly. Compared to the
case without any optimization, the execution time using all optimizations is about
18% smaller.

In Fig. 3, the execution time and the memory requirements for evaluating the
derivatives for problem sizes n = 40 · i for i = 1,2, . . . ,10 are plotted. The same nota-
tions as in Table 1 are used. The memory requirements and execution time increase
significantly with increasing problem size when no optimization or only constant
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folding is applied. Applying all optimizations still results in an increase in runtime,
but more moderately. Furthermore, the memory requirement is significantly smaller
using forward substitution or all optimizations.

4 Performance of Code Generated by ADiCape

As a test problem, a CapeML model for a hierarchically-built distillation column
consisting of a number of column trays connected together with a so-called swamp
and a condenser is considered. One is interested in the sparse Jacobian of a function
with 410 scalar inputs and 206 scalar outputs and in Hessian information. In con-
trast to the previous section, compression is used to exploit sparsity in the derivative
computations [18]. This technique reduces the number of directional derivatives to
be propagated through the code from 410 to k = 15 for computing a compressed
Jacobian and to k(k + 1)/2 = 120 for a compressed Hessian. Recall that separating
the effects of different code optimization techniques used by ADiCape is not always
possible. In particular, the performance can only be measured either for the combina-
tion of constant propagation and constant folding or without any optimization. Most
of the optimization strategies are mainly used to make the AD-transformation possi-
ble, as without them, the transformation would fail. The lack of complex data struc-
tures enforces the use of loop unrolling to flatten all input vector variables to scalars.
The only free variable dimension is then used to store the derivative information.

In Table 2 some performance metrics for the evaluation and transformation of
the differentiated codes are presented. The measurements are performed on an In-
tel Pentium M with a 1.4 GHz CPU and 1 GB RAM. In these tables, the symbol F
denotes the original code to evaluate the underlying function, whereas the symbols
J and H describe AD-generated codes that compute the derivatives of first and sec-
ond order, respectively. There are two different codes to evaluate the function. The
symbol orig denotes the original code, while the notation optim is used for the
code where constant folding, constant propagation, and loop unrolling are applied
before the differentiation. In Table 2 (left), columns two and four give the values
for time (top) and memory (bottom). Columns three and five calculate the ratios
of time and memory relative to that of evaluating the function F. As predicted by

Table 2. Metrics for evaluation of derivatives (left) and program transformation (right)

orig optim
Time[s] Factor Time[s] Factor

Ti
m

e F 1.01 1 1.59 1(1.6)
J 42.25 42 28.79 18.1

H 842.30 834 328.00 206
Mem[kB] Factor Mem[kB] Factor

M
em

or
y F 11,000 1 20,182 1(1.82)

J 46,724 4.25 78,992 3.91
H 54,788 4.98 67,464 3.34

orig optim
Time[s] Loc Time[s] Loc

F —- 5801 7.58 9505
J 98.14 22051 68.39 19368

H 253.96 45823 178.00 38460
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theory, these ratios are of the order of the number of directional derivatives k = 15
and k(k +1)/2 = 120 for J and H, respectively. The ratios are noticeably smaller for
optim demonstrating that code optimizations before the differentiation are advan-
tageous in terms of time and storage. Compared to orig, the evaluation times of
the optim codes for calculating Jacobian and Hessian are faster by factors of 1.5
and 2.6, respectively. The corresponding factors for memory requirement are also
available from these tables and indicate a similar behavior. The code transformation
from orig to optim is carried out in 7.58 seconds as given in Table 2 (right), and
produces a code, that is slower by a factor of 1.6 which is given in parentheses in
Table 2 (left). Table 2 (right) also reports the number of lines for each code denoted
by Loc.

5 Concluding Remarks

Constant folding, loop unrolling, constant propagation, common subexpression elim-
ination, and forward substitution are five common optimization techniques used in
standard compiler technology to reduce space and time complexity. These techniques
are typically applied on medium- and low-level intermediate representations of a
program. For automatic differentiation of interpreted languages, however, there is no
access to these levels. Therefore, code optimization techniques for automatic differ-
entiation are introduced on the high-level intermediate representation. We consider
the languages MATLAB and CapeML together with the corresponding automatic dif-
ferentiation tools ADiMat and ADiCape to demonstrate the feasibility of this ap-
proach. The code transformations improve the execution times of the differentiated
programs for first-order derivatives by factors up to 1.2 and 1.5 for ADiMat and
ADiCape, respectively. For second-order derivatives, this factor increases to 2.6 for
ADiCape.

Acknowledgement. This research is partially supported by the Deutsche Forschungsgemein-
schaft (DFG) within SFB 540 “Model-based experimental analysis of kinetic phenomena
in fluid multi-phase reactive systems,” RWTH Aachen University, Germany. We thank
W. Marquardt and J. Wyes, Institute for Process System Engineering at RWTH Aachen
University, for initiating the ADiCape project and providing the industrial test case used in
the experiments.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison Wesley (2006)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco (2002)
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6. Bischof, C.H., Bücker, H.M., Vehreschild, A.: A macro language for derivative definition
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18. Petera, M., Rasch, A., Bücker, H.M.: Exploiting Jacobian sparsity in a large-scale dis-

tillation column. In: D.H. van Campen, M.D. Lazurko, W.P.J.M. van den Oever (eds.)
Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005,
Eindhoven, The Netherlands, August 7–12, 2005, pp. 825–827. Eindhoven University of
Technolgy, Eindhoven, The Netherlands (2005)

19. von Wedel, L.: CapeML – A Model Exchange Language for Chemical Process Modeling.
Tech. Rep. LPT-2002-16, Lehrstuhl für Prozesstechnik, RWTH Aachen University (2002)



Automatic Sensitivity Analysis of DAE-systems
Generated from Equation-Based Modeling Languages

Atya Elsheikh and Wolfgang Wiechert

Department of Simulation, Siegen University, D-57076 Siegen, Germany,
[elsheikh,wiechert]@simtec.mb.uni-siegen.de

Summary. This paper aims at sensitivity analysis of differential algebraic equation (DAE)
systems, generated from mathematical models, specified in equation-based modeling lan-
guages. Modern simulation languages (e.g. Modelica) use an equation-based syntax enriched
by facilities for object-oriented modeling, hierarchical system decomposition and code reuse
in libraries. Sophisticated compiler tools exist for generating efficient run-time code from a
given model specification. These tools rely on powerful algorithms for code optimization and
equations rearrangement. Particularly, automatic differentiation (AD) is already used, though
for the different task of DAE- index reduction. Clearly, the mentioned facilities should be ex-
ploited as far as possible in a new AD tool for sensitivity analysis. In this paper, three possible
levels at which AD can be applied are discussed. These are given by AD on run time code, flat
model and library level. Then the new source-to-source AD tool (ADModelica) is introduced
which takes the second approach. Particularly, it is shown that there are several differences
between AD methods for classical procedural languages and equation-based modeling lan-
guages.

Keywords: Differential algebraic equation, sensitivity analysis, ADModelica, compiler
techniques, Modelica

1 Introduction

Many technical systems can be modeled by DAE-systems. Setting up such DAE-
systems manually is a tedious and error-prone task, especially if the physical system
to be modeled is composed of hierarchical subsystems, consisting of hundreds of
various physical units. Moreover, a slight modification of a system (eg. insertion
of a resistor in an electrical circuit) may not result in a trivial manipulation of the
corresponding DAE-system’s implementation. These problems can be overcome by
modern equation-based modeling languages, such as Modelica [6] and VHDL [1].
These languages enable object-oriented modeling, and provides mechanisms for
reusing component models in a transparent and feasible way. Libraries of domain-
specific elementary independent components can be implemented by equation-based
syntax. These models can be connected and hierarchically organized in a way
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analogous to the real conceptual topology of the modeled system. A compiler is
then used to assemble the whole DAE-system. However, due to the sparsity and high-
dimensionality of the resulting DAE-systems, sophisticated equation-based compiler
techniques and algorithms have been developed to improve the performance of auto-
matically generated DAE-systems [12, 13, 10].
This work is concerned with AD of DAE-systems, generated by equation-based mod-
eling languages [2, 15], which are essentially targeted towards modeling complex
systems that can be described by DAE-systems:

F(t,x, ẋ, p) = 0, x(0) = x0(p) (1)

where x ∈R
n is a set of variables, p ∈R

m is a set of parameters, F : R
2n+m+1→R

n.
Sensitivity analysis requires the sensitivities ∂x/∂ p of variables w.r.t. perturbations in
the parameters. Formally, parameter sensitivities are computed by solving the origi-
nal system (1) and the m sensitivity systems [17]:

∂F/∂ ẋ ·∂ ẋ/∂ p+∂F/∂x ·∂x/∂ p+∂F/∂ p = 0, ∂x/∂ p(0) = ∂x0/∂ p (2)

For DAE-systems specified by equation-based languages, it is expensive to generate
derivatives in the way (2) suggests. First, many common sub-expressions can be uti-
lized. Second, there is no need to blindly differentiate all equations, as the analysis in
Sect. 4.1 shows. This paper presents a newly implemented tool for computing sen-
sitivities of DAE-systems via AD. Moreover, equation-based compiler techniques
that can be adopted to compute efficient derivatives for sensitivities are discussed.
The rest of the paper is structured as follows. The next section presents the basic
principles behind modern modeling languages and gives an example. Section 3 dis-
cusses some possible approaches for computing parameter sensitivities. Section 4
introduces a source-to-source transformation AD-tool with an example. Finally, fu-
ture works and conclusions follow in Sect. 5.

2 Basic Concepts Behind Simulation Languages

In order to concentrate on the basic conceptual problems discussed in this paper, only
the elementary language concepts, sufficient to understand the rest of the paper, are
introduced. A comprehensive introduction can be found in [6].

2.1 General Approach

Modern simulation languages attempt to unify the physical principles, on which
systems rely. Essentially, physical systems, based on a continuous-time scale, can
be mathematically set by assembling conservation-, continuity- or constitutive laws
found in nature [11]. Examples of such laws are Kirchhoff’s law, second Newton law
and material flow balances in fields like Electrical, Mechanical and Chemical Engi-
neering. It is then possible to decompose the system into independent components
(eg. resistors, capacitors, etc.), isolated from the context in which they are used. Their
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internal behavior can then be described independently (eg. Ohm’s law for resistors)
using implicit/explicit DAE-systems. Figure 1 shows the basic components of electri-
cal circuits. Each component is associated with communication interfaces (i.e. ports),
with which it can be connected to other independent components. In general, ports
contain two types of variables: potential variables (eg. voltage) and flow variables
(eg. electrical current). When two ports of the same type are plugged into each other,
potential variables generate equality equations (continuity laws) and flow variables
generate sum-to-zero balance equations (balance laws), as shown in Fig. 2. As a re-
sult, the modeler does not need to pay attention to the causality between the various
components since the notion of inputs/outputs at the designing level is absent. Once
implementations for components and their ports is provided, modeling becomes a
matter of dragging and dropping icons, and connecting ports to each other, as shown
in Fig. 3. The corresponding DAE-system is assembled as follows [6]:

• For each component instance, one copy of all equations is generated with distin-
guished identifiers for local and port variables.

• For each connection between two or more instances, potential variables are set
to be equal and flow variables are summed to zero.

Figure 4 shows the corresponding generated DAE-system of the simple circuit in
Fig. 3. Note that manual generation of equations using Kirchhoff’s laws leads to an
overdetermined system.
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Fig. 5. Modelica Implementation of the Simple Circuit

2.2 The Modelica Language

Modelica is an object oriented simulation language, based on the approach presented
in the last subsection. Due to the variety of tools for modeling and simulation, mostly
domain-specific, Modelica was initiated as a unification for model specification, in
order to allow model exchange between various tools and hence enabling multi-
disciplinary modeling. This has resulted in an open-source high-level specification,
which is continuously subject to development and improvement. Later, many com-
pilers and environments, such as Dymola [4], Open Modelica Compiler (OMC) [7],
MathModelica [8] and Mosilab [14] have been implemented to allow the modeler
to focus on the physical level, whereas equations generation, transformation and
simulation is the matter of the compiler. Figure 5 shows the Modelica implementa-
tion of the electrical circuit in Fig. 3. Before implementing a component (eg. model
Capacitor), communication interfaces (eg. ElectricalPin) for these components
must be specified, through a special type of classes called connector. flow vari-
ables are distinguished from potential variables by the keyword flow. These con-
nectors are declared in all components. Once implementation for various components
are provided (eg. package MyElectrical), the electrical circuit (eg. model SimpleCir-
cuit) can be easily constructed. Note that the keyword der stands for time deriva-
tive. Identical connectors in different components can get connected together by the
connect statement. A connect statement corresponds to an edge in the network
graph, if visual programming is provided.

2.3 Compilation of Modelica Models

In addition to the mentioned constructs, Modelica contains a rich set of syntactic el-
ements similar to classical language constructs such as loops, conditional branches,
etc. Additionally algorithmic assignment-based constructs with local variables can
be combined with equations. These high-level features are transformed into an ele-
mentary standard DAE-system by a compiler, as follows:

1. Flattening: A Modelica model with high-level language constructs is trans-
formed into a pure mathematical representation by expanding code into equa-
tions (See Sect. 2.1).
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2. Optimization: Alias equations and simple algebraic equations are eliminated by
resubstituting variables within the DAE-system. (See Sect. 4.1).

3. Sorting: Equations are rearranged into dependent subsets of equations (See Sect.
4.1). DAE-systems are transformed into a standard format by algebraic manipu-
lation.

4. DAE-index reduction: DAE-blocks of high-index are transformed to solvable
ODE systems (See Sect. 2.4).

5. Code generation: C-code ready for simulation is generated.

As a summary, a standard Modelica compiler uses sophisticated algorithms for alge-
braic and graph theoretic treatment of DAE-systems.

2.4 DAE-Index Reduction

A DAE-system (1) turns out to be non-solvable by ODE-solvers if ∂ f /∂x is a singular
matrix. This is known as DAE-index problem [3]. More precisely, the DAE-index
refers to the maximum number of times a set of equations needs to be differentiated
in order to transform a DAE-system into an ODE-system. For example, the DAE-
system (1) is transformed into an ODE-system:

∂F/∂ ẋ · ẍ+∂F/∂x · ẋ+ Ḟ = 0, x(0) = x0(p), ẋ(0) = 0 (3)

by differentiating all equations only once w.r.t. time. Some of these equations can be
used for reducing the DAE-index. Note that (3) is fundamentally different from (2).
Most existing DAE-solvers are either ODE-solvers or DAE-solvers for DAE-systems
of index one.

Computationally, it is difficult to determine the DAE-index, but it is possible to ap-
proximate it with the so-called structural index using Pantalides algorithm [10, 16].
This algorithm determines the equations that need to be differentiated. In this way,
DAE-systems with high-index can be mechanically transformed into solvable ODE-
systems in most of the cases. AD associated with computer-algebra methods is
naturally implemented by Modelica compilers to provide partial derivatives of func-
tions [15], in order to resolve a DAE-system of high index into a solvable ODE
system. As a remark with important consequences, we can prove that the structural
index of the original DAE-system (1) is equal to the structural index of the aug-
mented DAE-system (2). This means that the internal compiler efforts needed to
transform the sensitivity equations into a standard solvable ODE-system are of the
same order as the efforts needed for transforming the original DAE-system into a
solvable ODE-system.

3 Automatic Differentiation of Simulation Languages

Assignments (eg. x := f (y,z)) are the main elementary units of procedural languages,
whereas declarative equations (eg. f (x(t),y(t),z(t)) = 0) constitute the main building
units for Modelica. While an assignment is a relation between inputs (a collection of



240 Atya Elsheikh and Wolfgang Wiechert

values) and one output, an equation is a relation between several variables, that needs
to be fulfilled concurrently. These conceptual differences are considered by the ways
derivatives can be generated for Modelica. This section introduces three approaches,
by which derivatives for DAE-based models can be computed, followed by a brief
comparison between the presented approaches.

3.1 Differentiating the Generated C-code

One naive way to compute sensitivities is to operate on the lowest level by differ-
entiating the generated C-code by available AD tools (See www.autodiff.org).
There are many problems using this approach. First of all, generated C-code does not
only differ from one Modelica vendor to another, but also from a version to another.
Moreover, the generated C-code may utilize some commercial libraries, that are not
easily reachable as a third-party tool. As a result, the most promising approach for
the Modelica community is to compute the derivatives within a Modelica model.

3.2 Differentiation on Flat Model Level

A straightforward way to compute the parameter sensitivities is to transform the
model into a flat model. Then, for each variable or parameter, an array representing
the gradient is associated with it. An inactive parameter has a gradient equal to the
zero vector, whereas all non-zero gradients constitute the input Jacobian. Equations
of derivatives are obtained by explicit differentiation of the original DAE-system as
shown in Fig. 6.

3.3 Differentiation on Library Level

The idea behind this approach is to compute sensitivities by differentiating the in-
ternal models of the library (eg. Resistor, Capacitor, etc) instead of the top-
level model (eg. Electrical Circuit). This is done by augmenting the internal models
with equations for generalized derivative formulas, while the top-level model re-
mains (virtually) unchanged. The parameters w.r.t. which derivatives are sought are
specified at the top-level model. Figure 7 shows the corresponding implementation
of some parameter sensitivities of the simple circuit in Fig. 5. This approach relies
on the fact that the gradient of potential and flow variables in a connector are also
potential and flow variables, respectively. Initially, the number of gradient entries is
specified by the constant GN, which is initialized to zero. By loading the augmented
package, the gradients of the active parameters are considered in the differentiated

Fig. 6. A Sample of a Differenti-
ated Flat Model
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Fig. 7. Implementation of the derivatives of the simple Circuit

internal equations. The actual size of a gradient is specified by passing the parameter
GN by name starting from the top-level model. The top-level model declares the
values of the gradients. These values are passed by name to internal components.
The slightly-changed top-level model (eg. ADSimpleCircuit) simulates the original
DAE-system as well as its parameter sensitivities.

3.4 Comparison between the Three Approaches

Table 1 summarizes the advantages and disadvantages of each approach w.r.t. the
following criteria:

1. Platform-Dependency: Do the resulting models work for all Modelica
compilers?

2. Implementation Efforts: How many Modelica-constructs should be consid-
ered?

3. DAE-system accessibility: Is the whole DAE-system accessed (for code opti-
mization)?

4. Topology Preservation: Is the model topology preserved after differentiation?
5. Elegance: Should top-level models be differentiated?

Clearly, the first approach is not recommended. The difference between the second
and the third approach is similar to the difference between AD based on Seman-
tic Transformation and Operator Overloading approaches for classical procedural

Table 1. Advantages/Disadvantages of each Approach

Criteria - Levels C-code Flat Model Library

Vendor-Independence - - + ++
Implementation efforts ? + -
Whole DAE-system Accessibility ? ++ - -
Topology Preservation - - - ++
Elegance - - + ++
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languages, respectively. Once a library is differentiated, all models importing this
library, can be simulated by importing the augmented library instead, with minimal
manual or automated changes.

4 Overview of ADModelica

ADModelica [5] is a prototype of a source-to-source AD tool that strives to support
Modelica programs, and has been successfully applied in real-life applications in the
field of Metabolic Engineering. Existing tools, such as OMC [7] and ModelicaXML
[18], are used to simplify the implementation of the flat level approach. ADModelica
employs equation-based compiler techniques to transform a DAE flat model into a
new model that computes the derivatives with minimal user effort. The main com-
piler techniques adopted by ADModelica are summarized in the next subsections.

4.1 Reduction of DAE-systems

The dimension of automatically generated DAE-systems can be reduced using
several methods. A standard Modelica compiler attempts to remove many trivial
equations generated from connect statements. These equations have the form
u = v and (sometimes) u + v = 0. The number of equations get drastically reduced
when only one variable instance for each group of equal variables is kept [12]. AD-
Modelica removes such equations at the flat model level, and hence, less equations
representing the derivatives are generated.

Then, a Dependency Flow Graph (DFG) is used to decompose the simplified DAE-
systems into several smaller dependent blocks, each of which is solved in iterative
way. A DFG for a DAE-system is constructed by:

1. Setting up the adjacency matrix: A = [ai j],ai j = 1(0) if variable x j is (not) in
equation i.

2. Computing the Strongly Connected Components (SCC) of A, by Tarjan’s algo-
rithm [19].

3. Establishing topological sorting of the equations from the SCCs, by which the
DAE-system is transformed into a Block Lower-Triangular (BLT) form.

Figure 8 shows the basic steps of decomposing a system of equations into smaller
systems using the DFG. The DFG is used to reduce the number of equations needed
to be differentiated, when a certain ∂ z/∂ p for a variable z and a parameter p is
desired. Instead of blind differentiation of all equations as (2) suggests, it can be
shown that it is enough to consider the derivatives of the intermediate variables laying
in all SCCs of the computational path from the independent variable to the dependent
variable. For example, consider the DFG in Fig. 8(b) and the corresponding sorted
equations in BLT form in Fig. 8(c), and suppose that ∂ z1/∂ p is needed. It is enough
to differentiate the first two sorted equations w.r.t. p, in order to obtain a system of
two equations in two unknowns, namely ∂ z1/∂ p and ∂ z2/∂ p. Similarly, if ∂ z4/∂q is
needed, the first four sorted equations needs to be differentiated w.r.t. a parameter q.
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f 1(Z3, Z4)=0 f 2│Z2

f 1│Z4

f 5│Z3f 3│Z5

f 4│Z1

Z1 Z2 Z3 Z4 Z5

0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 1 0 0 0
1 0 1

(a) (c)(b)

0 1

f 2(Z2)=0 f 4(Z1, Z2)=0

f 3(Z2, Z3, Z5)=0
f 5(Z1, Z3, Z5)=0

f 2(Z2)=0

f 1(Z3, Z4)=0

f 3(Z2, Z3, Z5,)=0

f 4(Z1, Z2)=0

f 5(Z1, Z3, Z5)=0

Z2 Z1 Z3 Z5 Z4

1 0 0 0 0
1 1 0 0 0
1 0 1 1 0
0 1 1 1 0
0 0 1 0 1

Fig. 8. (a) the Adjacency Matrix of a System of Equations. (b) The Dependency Flow Graph
(c) The Resulting Sorted Equations in BLT Form: Eq. 1 solves z2. Eq. 2 solves z1. Eq. 3 and 4
together solve z3 and z5. Eq. 5 solves z4

4.2 Optimizing Common Sub-Expressions

Differentiating the DAE-system (1) provides a potential opportunity to utilize com-
mon sub-expressions of an equation and its partial derivatives F,Fx,Fp, to save
computational time and storage. Consider the equation v(t) = V sin(2π f t) repre-
senting the voltage source with Amplitude V and Frequency f . By computing the
sensitivities of v(t) in an electrical circuit w.r.t. the parameters V and f , excessive
re-evaluation of common sub-expressions can be avoided. Classical compiler tech-
niques can be used to divide the main equation into a set of binary assignments,
each of which is differentiated [9]. The gradient of v(t) is computed by forward
accumulation of the gradients of the intermediate variables.

However, inserting equations for gradients of intermediate results increases the di-
mension of the DAE-system. Fortunately, Modelica provides algorithmic constructs,
where combination of assignments and equations can be done. The algorithmic
part can be used to compute the intermediate results and their gradients with local
variables, and then inserting the final result as an equation. While this works well
for AD of classical procedural languages, such as C/FORTRAN, this may be not the
case with equation-based languages. For example, an equation can be implicit. In
this way, different results are expected than the real solution of the implicit equation.
In general, common sub-expressions can be optimized if the expression is decom-
posable into a binary set of statements, where the output variable depends on all
intermediate variables according to the corresponding DFG. Dependency analysis is
needed to decide which variables can come under the algorithmic section, and which
should remain on the equation level.
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Fig. 9. Simulation Results of Parameter Sensitivities

4.3 Example

The electrical circuit model in Fig. 3 is differentiated w.r.t. all parameters. It turns out
that the number of equations in the flat model is equal to 38, and after simplification
it is equal to 16, i.e. the number of differentiated equations is equal to 16*6. Figure 9
shows the sensitivities of all potential variables w.r.t. R3.R. The results show that a
perturbation in R3.R has more influence on R2.v,R3.v and L.v than the rest of the
voltage variables. Similarly, Fig. 9 shows that the parameter C.C influences R2.v
much more than any other parameter.

5 Summary and Future Work

This work shows that AD is a natural choice for computing sensitivities for equation-
based languages. ADModelica is a prototype of a source-to-source AD tool for the
Modelica language. It follows the flat model approach, as it is easier to implement
since high-level language constructs do not exist. However, differentiation on the
library level is an elegant approach, as it is sufficient to differentiate a library only
once, so that derivatives can be computed for all models based on this library. Some
of the future work to improve ADModelica involves, but is not limited to:

• Combining the flat model approach with the library level approach.
• Using OpenAD [20] for generating better code for derivatives.
• Using DFG for computing sensitivities of variables w.r.t. other variables.
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Summary. We deal with differential algebraic equations (DAEs) with properly stated lead-
ing terms. The calculation of the index of these systems is based on a matrix sequence with
suitably chosen projectors. A new algorithm based on matrices of Taylor polynomials for re-
alizing the matrix sequence and computing the index is introduced. Derivatives are computed
using algorithmic differentiation tools.

Keywords: Differential algebraic equations, tractability index, ADOL-C

1 Introduction

We have developed a new program, daeIndexDet, for the index determination
in DAEs by using algorithmic differentiation (AD) techniques. daeIndexDet
stands for Index Determination in DAEs. It uses the indexdet library, also im-
plemented by the authors, which provides the utilities for the index computation.
Both daeIndexDet and indexdet are coded in C++.

The main advantages of the indexdet library are: the index calculation is based
on a matrix sequence with suitably chosen projectors by using AD techniques [4]; the
evaluation of all derivatives uses the C++ package ADOL-C [15]. ADOL-C provides
drivers that compute convenient derivative evaluations with only a few modifications
to the original C++ code, thereby profiting from operator overloading features. The
source code describing the functions to be derived requires the use of the special
variable type adouble instead of double. We include classes for implementing
Taylor arithmetic functionalities. Basic operations with and over both Taylor poly-
nomials and matrices of Taylor polynomials, as well as Linear Algebra functions
(several matrix multiplications and the QR factorization with column pivoting be-
ing the most relevant ones) that complement the index determination are provided
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by overloading built-in operators in C++. Furthermore, we extend the exception
handling mechanisms from C++ to provide a robust solution to the shortcomings of
traditional error handling methods, like those that may occur during execution time
when computing the index. Apart from some predefined exception types from C++,
we introduce a class, IDException, to define and handle new exception objects
typical of the index computation.

Solving DAEs by Taylor series using AD has already been addressed in [2, 5, 11,
12, 13], to name only a few. Our work differs from others in the way we determine
the index for nonlinear DAEs. It is based on the tractability index concept, which
uses a matrix sequence from a linearization of the DAE along a given function, and
it does not need derivative arrays. For example, Nedialkov and Pryce use the DAETS
solver for DAE initial value problems and the AD package FADBAD++ [1] for doing
AD. DAETS is based on Pryce’s structural analysis [14]. FADBAD is a C++ package
for AD that uses operator overloading.

2 Index Determination in DAEs

We deal with DAEs given by the general equation with properly stated leading term

f ((d(x(t), t))′,x(t), t) = 0, t ∈ I, (1)

with I ⊆ R being the interval of interest. A detailed analysis on how to compute
the tractability index of these DAEs is addressed in [8, 9, 10]. We will give a brief
introduction. The tractability index concept of (1) is based on a linearization of (1)
along a given trajectory x(t). Such a linearization looks like

A(t)(D(t)x(t))′+B(t)x(t) = q(t) (2)

with coefficients

A(t) :=
(
∂ f
∂ z (z(t),x(t), t)

)
, B(t) :=

(
∂ f
∂x (z(t),x(t), t)

)
, and

D(t) :=
(
∂d
∂x (x(t), t)

)
,

and z(t) = d′(x(t), t) being the derivative of the dynamic d. The matrix functions

A(t) ∈ R
n×m, B(t) ∈ R

n×n, and D(t) ∈ R
m×n

are supposed to be continuous.
The computation of the index is based on a matrix sequence for given coefficients

A(t), B(t), and D(t). By forming the sequence of matrices, suitably chosen projectors
are computed using generalized inverses:

G0 := AD,

B0 := B,

Gi+1 := Gi +BiQi = (Gi +WiB0Qi)(I +G−i BiQi),

Bi+1 := (Bi−Gi+1D−(DP0 . . .Pi+1D−)′DP0 . . .Pi−1)Pi,

(3)
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where Qi is a projector function such that im Qi = ker Gi. Pi := I−Qi and Wi are pro-
jector functions such that ker Wi = im Gi. Further, D− denotes the reflexive general-
ized inverse of D and G−i the reflexive generalized inverse of Gi such that G−i Gi = Pi
and GiG−i = I−Wi. The projectors Qi play an important role in the determination of
the tractability index.

Definition 1. [8] An equation (2) with properly stated leading term is said to be a
regular index µ DAE in the interval I, µ ∈N, if there is a continuous matrix function
sequence (3) such that

(a) Gi has constant rank ri on I,
(b) the projector Qi fulfills QiQ j = 0, with 0≤ j < i,
(c) Qi ∈C(I,Rn×n) and DP0 . . .PiD− ∈C1(I,Rm×m), i > 0, and
(d) 0≤ r0 ≤ . . .≤ rµ−1 < n and rµ = n.

Since the index computation depends on the derivatives (DP0 . . .Pi+1D−)′, these
should be computed as accurately as possible. Projector properties like QiQ j = 0,
Q2

i = Qi or GiQi = 0 help in verifying the performance as well as the accuracy of the
algorithm.

2.1 Algorithm for Computing the Index

In [7], an algorithm is proposed to realize the matrix sequence and to finally com-
pute the index. It computes the numerical approximations of the continuous matrix
functions A(t), B(t), and D(t) by the MATLAB routine numjac. The time differenti-
ations needed in the matrix sequence (i.e. to calculate Bi+1 in (3)) are also computed
via numjac. The reflexive generalized inverses D− and G−i are computed by singular
value decompositions (SVD) of D and Gi, respectively. The projectors are computed
using the generalized inverses. The matrix sequence is computed until the matrix
Gi+1 in (3) is nonsingular.

We propose a new algorithm to compute the tractability index of DAEs intro-
ducing the following features: The approximations of the matrices A(t), B(t), and
D(t) are computed using specific drivers from the C++ package ADOL-C. Further-
more, the time differentiations to compute Bi+1 in (3) are realized via a shift operator
over Taylor series, i.e., no more calls to a differentiation routine are needed. For this
purpose we provide new C++ classes, which overload built-in operators in C++ and
implement several Taylor arithmetic functionalities when the coefficients of a matrix
are Taylor series. This allows to compute the derivative (DP0 . . .Pi+1D−)′ in (3) only
by shifting Taylor series coefficients and by doing some multiplications. In particu-
lar, to operate over matrices of Taylor polynomials we apply the Taylor coefficient
propagation by means of truncated polynomial arithmetic from [4] (see Sect. 10.2).
We consider different types of matrix multiplications of the form C = αA ·B +βC
(for transposed A and/or B, for inferior-right block of B being the identity matrix,
for A or B where only the upper triangular part is of interest, among others) as well
as solving equations like U ·X = B, thereby making only a few modifications to the
back-substitution algorithm from [3].
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In addition, the reflexive generalized inverses D− and G−
i and therefore the pro-

jectors, are computed using QR decompositions with column pivoting of the involved
matrices, which are less expensive than SVD. The function that implements QR fol-
lows the Algorithm 5.4.1 from [3] and makes use of Householder reflections.

In the rest of this article we define the DAE, the dynamic, and the trajectory as
follows. The function f : R

mdyn ×R
mtra ×R → R

mdae defines the DAE, the function
d : R

mtra ×R → R
mdyn defines the dynamic, and the function x : R → R

mtra defines
the trajectory, mtra = mdae being the number of dependent variables. The trajectory
depends only on the independent variable t. The algorithm determines the tractability
index for a given trajectory x at a fixed point t0.

3 Program for Computing the Index and a Related Library

Figure 1 shows a general schema with the most important libraries and files we use in
the index determination. The libraries adolc.lib and indexdet.lib provide
the functionalities for algorithmic differentiation and index determination, respec-
tively. We use the former, the adolc.lib library, for the evaluation of derivatives
using the C++ package ADOL-C. It can be downloaded from the ADOL-C’s web
site [15]. We provide the latter, the indexdet.lib library, for the index calcula-
tion based on the matrix sequence with suitably chosen projectors as it was already
introduced in Sect. 2. Its code will be free as soon as we will have successfully fin-
ished both its implementation and testing.

The user header (i.e. EHessenberg.h in Fig. 1) contains the DAE whose index
should be computed. That header also contains the dynamic and the trajectory. In
other words, the user should provide the functions x, d(x, t), and f (z,x, t) in a C++
class that implements the abstract base class IDExample , which in turn is coded
in the C++ header IDExample.h (provided in the library indexdet.lib ). A
user header has the following general structure (with EHessenberg.h used as
example):

/** File EHessenberg.h */
#ifndef EHESSENBERG_H_
#define EHESSENBERG_H_
#include "IDExample.h" // Abstract base class.

Fig. 1. The main libraries and files needed for the index determination.
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class EHessenberg : public IDExample {
public:

/** Class constructor. */
EHessenberg( void ) : IDExample( 3, 4, 1.0, "EHessenberg" )
{ }

/** Definition of the trajectory x. */
void tra( adouble t, adouble *ptra )
{ //... }

/** Definition of the dynamic d(x,t). */
void dyn( adouble *px, adouble t, adouble *pd )
{ //... }

/** Definition of the DAE f(z,x,t). */
void dae( adouble *py, adouble *px, adouble t, adouble *pf )
{ //... }

};

#endif /*EHESSENBERG_H_*/

Note that the class constructor for the user class EHessenberg does not have
any parameter. However, it calls the class constructor of the abstract base class
IDExample with specific parameters: The first parameter corresponds to the num-
ber of dependent variables of the dynamic d(x(t), t) and its type is int. It must be
equal to the number of equations that define the dynamic (i.e. mdyn = 3 in the sec-
ond example from Sect. 4. The second parameter corresponds to the dimension of
the DAE. Its type is also int. Its value must be equal to the number of equations
that define the DAE, as well as equal to the number of equations that define the tra-
jectory x(t) (i.e. mdae = mtra = 4). The third parameter is a double that indicates
the point at which the index should be computed, i.e., the value for the independent
variable time (e.g. t0 = 1.0). The fourth and last parameter is a character string used
to denote the output files with numerical results. For example, the name of the class
“EHessenberg” might be used.

The program daeIndetDet works with some global parameters. These pa-
rameters are declared in the header file defaults.h, provided in the library
indexdet.lib. They have default values and allow to define the degree of Taylor
coefficients or highest derivative degree, the threshold to control the precision of the
QR factorization with column pivoting, the threshold to control the precision of I/O
functionalities, as well as print out parameters to control the output. When necessary,
the user can provide other values. This is the only information, in addition to the def-
inition of the trajectory, the dynamic, and the DAE, that is required from the user.

3.1 Algorithmic Differentiation Using ADOL-C

As mentioned in Sect. 1, we use the C++ package ADOL-C to evaluate derivatives.
This is why the vector functions related to the user’s problems are written in C++.

In particular, specific ADOL-C drivers (i.e. the functions forward and
reverse for the ADOL-C forward and reverse modes, respectively) are used to
compute the Taylor coefficients of both the dependent and the independent variables
of the DAE, the dynamic, and the trajectory, respectively. The Taylor coefficients
are used in the construction of the matrices A(t), B(t) and D(t) (see Sect. 2). The
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general procedure is shown in Fig. 2. The DAE, the dynamic, and the trajectory are
evaluated via function pointers to the member functions that are coded by the user in
its header class as addressed above.

4 Examples

This section introduces two academic examples to test various problem dependent
features as well as the program functionality.

Example 1 ([6])

x′2 + x1− t = 0,

x′2 + x′3 + x1x2−ηx2−1 = 0,

x2

(
1− x2

2

)
+ x3 = 0,

(4)

with η ∈ R. By considering the differential terms that appear in the first two equa-
tions of this DAE we define the dynamic function, d(x(t), t), as follows:

d1(x(t), t) = x2,

d2(x(t), t) = x2 + x3.
(5)

We compute the linearization (2) along the trajectory1:

x1(t) = t + c,

x2(t) = 2−2et−1,

x3(t) = log(t +1),

(6)

with c ∈ R. The DAE has index 3 when x1 + x′2 +η = 0. The computation of the
index depends on the derivative x′2. Choosing η = 1 and t0 = 1 we obtain a singular
matrix chain for c = 0 because of x1 + x′2 +η = t0 + c− 2 + 1 = c. In this case, the
index is not defined.

Example 2

x′1 + x1 + x4 = 0,

x′2 +α(x1,x2,x3, t)x4 = 0,

x′3 + x1 + x2 + x3 = 0,

x3− p(t) = 0,

(7)

where α is a nonnegative C1 function on R
3×R and p is C2 on R. This DAE has

index 3 and dimension 4. The function d(x(t), t) defines the dynamic:

d1(x(t), t) = x1,

d2(x(t), t) = x2,

d3(x(t), t) = x3.

(8)

1 We recall that the function x(t) is not a solution of (1).
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Let the function x : R→ R
4 define the chosen trajectory:

x1(t) = sin(t),
x2(t) = cos(t),
x3(t) = sin(2t),
x4(t) = cos(2t).

(9)

Coding the DAEs, the trajectories, and the dynamics for both examples into their
respective headers (i.e., coding the functions tra, dyn, and dae already introduced
in Sect. 3) is straightforward. Besides the value of the point t at which the indexes
should be computed and the expressions for the functions α and p (for the second
example), no other information is needed from the user.

5 Experiments

We have conducted several experiments to study both the performance and robust-
ness of our algorithm by measuring the computation time, the memory requirements,
and the accuracy of the results. The experiments were performed on both a laptop PC
with AMD AthlonTMXP 1700+ main processor, 1.47 GHz, 512 MB RAM, Microsoft
Windows XP Professional Version 2002, MinGW32/MSYS, gcc v. 3.4.2 (MinGW-
special), and a desktop PC with IntelTMPentiumTM4 main processor, 2.8 GHz, 100
GB RAM, Linux version 2.6.5-7.276.smp, and gcc v.3.3.3 (SuSE Linux).

The calculation of the projector Q2 from Example 1 above depends on the calcu-
lation of both projectors Q0 and Q1. These projectors can be computed exactly. For
example, the element Q2,13 (projector Q2, first row, third column) has the following
expression:

Q2,13 =
1−β (x1 +η)

x1 + x′2 +η
, (10)

where β is an at least once differentiable function that appears in Q1 (in particu-
lar, Q1,13 = β ) and x1 + x′2 �= −η . The function β has the following exact Taylor
expansion at the point t0 = 1, for η = 1 and c = 10−2

β (t) = 0+2(t−1)+(t−1)2− 23
3

(t−1)3− 10725
900

(t−1)4 +O(t−1)5. (11)

The Taylor expansion for Q2,13 at the point t = 1, for η = 1, computed from its
theoretical expression with Mathematica is

Q2,13(t) = 100+9598(t−1)+969399(t−1)2 +9.79044743̄ ·107(t−1)3+

+9.887711261916̄ ·109(t−1)4 +O(t−1)5.
(12)

The Taylor coefficients of Q1,13 and Q2,13 computed with our algorithm are presented
in Table 1. The computed values agree with the theoretical ones with high accuracy2.

2 Here we considered five Taylor coefficients. Each differentiation reduces the number of
relevant Taylor coefficients in one term. This explains the empty last row for Q2,13 in the
table.
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Table 1. Computed Taylor coefficients for Q1,13 and Q2,13 and their respective relative errors.

Term Q1,13 Rel.err. Q1,13 Q2,13 Rel.err. Q2,13

(t−1)0 0.0 0.0 9.999999999999321 ·10 6.790e–14
(t−1)1 2.0000000000000010 5.000e–16 9.597999999998652 ·103 1.404e–13
(t−1)2 0.9999999999999998 2.000e–16 9.693989999997970 ·105 2.094e–13
(t−1)3 –7.6666666666666780 1.478e–15 9.790447433330607 ·107 2.785e–13
(t−1)4 –11.9166666666667400 6.153e–15

Concerning accuracy, our algorithm improves the performance of the algorithm
presented in [7]. We have obtained more accurate results, especially around the
points where the index might vary (i.e., around the DAE singular points). Not only
are the derivatives calculated with machine precision, but also the determination of
the index does not suffer from problem dependent singularities, at least very close
to the singular points. Even at the singular point, when c = 0 (for t = 1 and η = 1),
the algorithm from [7] has to set the threshold to compare pivot elements in the QR
factorization to 3 ·10−5. With a threshold smaller than this value neither the singular
point is identified nor the index is correctly computed. Instead, our algorithm works
well with a threshold value up to 10−12. Furthermore, the singular point is accurately
identified in a closer neighborhood and the index is always correctly computed (i.e.,
it is equal to 3).

The computation time or program running time concerns the computation of
derivatives, as well as the running time of the algorithm that determines the index.
For Example 2 and for α = t and p(t) = 1, we can observe a slow quadratic growth as
the number of Taylor coefficients increases (see Fig. 3). The computation time starts
rising from 30 Taylor coefficients onwards. It its worthwhile noticing that, even for
calculations with over 190 Taylor coefficients, the overall computation time does not
exceed a second. To test the robustness of the algorithm and the time dependence
when varying the number of Taylor coefficients, which are the main goals of this
experiment, computations were performed for more than 10000 Taylor coefficients.
The computation time in these cases was slightly greater than 6 minutes.

The memory requirements for the last example show that for a large number of
Taylor coefficients the size of the ADOL-C tapes remains acceptable (about 3500
KB for 10003 Taylor coefficients).

6 Conclusions

We presented a new algorithm for the index computation in DAEs. It successfully
applies AD techniques for calculating derivatives using new matrix-algebra opera-
tions especially developed for matrices of Taylor polynomials. By applying our al-
gorithm we obtained more accurate results for some academic examples that were
previously computed with a finite-differences-based approach. Both, algorithm per-
formance and robustness were tested for thousands of Taylor coefficients. Last, but
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Elapsed running time by the program varying the number of Taylor
coefficients (averages over 20 independent runs)
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Fig. 3. Program running time for Example 2.

not least, we implemented a user friendly C++ algorithm to be used as an experimen-
tal tool for accurate index computation and we extensively documented all programs,
headers, and classes.

Our current work concentrates on consistent initialization and the specific AD
functionalities. Future work will center on comparing the accuracy to already exist-
ing techniques for index calculation as well as applications to more realistic prob-
lems.
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Automatic Differentiation for GPU-Accelerated 2D/3D
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Summary. A common task in medical image analysis is the alignment of data from different
sources, e.g., X-ray images and computed tomography (CT) data. Such a task is generally
known as registration. We demonstrate the applicability of automatic differentiation (AD)
techniques to a class of 2D/3D registration problems which are highly computationally inten-
sive and can therefore greatly benefit from a parallel implementation on recent graphics pro-
cessing units (GPUs). However, being designed for graphics applications, GPUs have some
restrictions which conflict with requirements for reverse mode AD, in particular for taping and
TBR analysis. We discuss design and implementation issues in the presence of such restric-
tions on the target platform and present a method which can register a CT volume data set
(512×512×288 voxels) with three X-ray images (512×512 pixels each) in 20 seconds on a
GeForce 8800GTX graphics card.

Keywords: Optimization, medical image analysis, 2D/3D registration, graphics process-
ing unit

1 Introduction

Accurate location information about the patient is essential for a variety of medical
procedures such as computer-aided therapy planning and intraoperative navigation.
Such applications typically involve image and volume data of the patient recorded
with different devices and/or at different points in time. In order to use these data for
measurement purposes, a common coordinate system must be established, and the
relative orientation of all involved coordinate systems with respect to the common
one must be computed. This process is referred to as registration.

Variational methods [5] are among the most successful methods to solve a num-
ber of computer vision problems (including registration). Basically, variational meth-
ods aim to minimize an energy functional which is designed to appropriately describe
the behavior of a certain model. The variational approach provides therefore a way to
implement non-supervised processes by just looking for the minimizer of the energy
functional.

Minimizing these energies is usually performed by calculating the solution of the
Euler-Lagrange equations for the energy functional. For quite involved models, such
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as the energy functional we use in our 2D/3D registration task, their analytical dif-
ferentiation is not a trivial task and is moreover error prone. Therefore many people
bypass this issue by computing the derivatives by means of a numerical approxima-
tion. This is clearly not optimal and can lead to inaccurate results.

In [26] automatic differentiation methods have been studied in the context of
computer vision problems (denoising, segmentation, registration). The basic idea is
to discretize the energy functional and then apply automatic differentiation tech-
niques to compute the exact derivatives of the algorithmic representation of the en-
ergy functional.

Recently, graphics processing units (GPUs) have become increasingly flexible
and can today be used for a broad range of applications, including computer vision
applications. In [25] it has been shown that GPUs are particularly suitable to compute
variational methods. Speedups of several orders of magnitude can be achieved.

In this paper we propose to take advantage of both automatic differentiation and
the immense computational power of GPUs. Due to the limited computational flex-
ibility of GPUs, standard automatic differentiation techniques can not be applied.
In this paper we therefore study options of how to adapt automatic differentiation
methods for GPUs. We demonstrate this by means of medical 2D/3D registration.

The remainder of this article is organized as follows: in Sect. 2 we give a brief
literature review about automatic differentiation and medical registration. We give
then technical details about the 2D/3D registration task in Sect. 3, and the limitations
of currently available GPU technologies and our proposed workaround are discussed
in Sect. 4. We demonstrate the usefulness of our approach in Sect. 5 by means of
experimental results of synthetic and real data. Finally, in Sect. 6 we give some con-
clusions and suggest possible directions for future investigation.

2 Related Work

Automatic differentiation is a mathematical concept whose relevance to natural
sciences has steadily been increasing in the last twenty years. Since differentiating
algorithms is, in principle, tantamount to applying the chain rule of differential calcu-
lus [10], the theoretic fundamentals of automatic differentiation are long-established.
However, only recent progress in the field of computer science places us in a position
to widely exploit its capabilities [11].

Roughly speaking, there are two elementary approaches to accomplishing this
rather challenging task, namely source transformation and operator overloading.
Prominent examples of AD tools performing source transformation include Auto-
matic Differentiation of Fortran (ADIFOR) [3], Transformation of Algorithms in
Fortran (TAF) [8], and Tapenade [14]. The best-known AD tool implementing the
operator overloading approach is Automatic Differentiation by Overloading in C++
(ADOL-C) [12].

There is a vast body of literature on medical image registration, a good overview
is given by Maintz and Viergever [20]. Many researchers realized the potential of
graphics hardware for numerical computations. GPU-based techniques have been
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used to create the digitally reconstructed radiograph (DRR), which is a simulated X-
ray image computed from the patient’s CT data. Early approaches are based on tex-
ture slicing [19], while more recent techniques make use of 3D texture hardware [9].
The GPU has also been used to compute the similarity between the DRR and X-ray
images of the patient [18].

Köhn et al. presented a method to perform 2D/2D and 3D/3D registration on the
GPU using a symbolically calculated gradient [16]. However, they do not deal with
the 2D/3D case (i.e., no DRR is involved in their method), and they manually com-
pute the derivatives, which restricts their approach to very simple similarity measures
such as the sum-of-squares difference (SSD) metric. A highly parallel approach to
the optimization problem has been proposed by Wein et al. [27]. They perform a best
neighbor search in any of the six degrees of freedom, i.e., they require 12 volume
traversals per iteration, where each traversal is done on a separate processor.

3 Review of 2D/3D Registration

The 2D/3D rigid registration task as outlined in Fig. 1 can be formulated as an op-
timization problem, where we try to find the parameter vector xopt ∈ R

6 of a rigid
transformation in 3D such that the n projections Ii(x) of our CT volume (i.e., the
DRRs) are optimally aligned with a set of n X-ray images Ji, i = 1 . . .n. Formally,
we try to solve

(a) CT scanner
(computed tomography) 

(e) mobile X-ray device (C-arm)

(b) C T  volume
(set of slices)

(d) digitally reconstructed
radiograph

(f) X-ray image (g) GPU-based 2D/3D-registration

( tx , t y , tz , , θ ,ψ)T

(c) transformation
par a meters

f

Fig. 1. Schematic workflow of 2D/3D registration. Before the intervention, a CT scanner (a)
is used to obtain a volumetric data set (b) of the patient. With an initial estimate for the trans-
formation parameters (c), which we seek to optimize, a DRR (d) is created from the volume
data. During the intervention, a C-arm (e) is used to obtain X-ray images (f) of the patient.
The registration procedure (g) compares the DRR and X-ray image and updates the transfor-
mation parameters until the DRR is optimally aligned with the X-ray image (i.e., our distance
measure is minimized). We use three DRR/X-ray image pairs for better accuracy (only one is
shown here).
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xopt = argmin
x

E(x), E(x) =∑
i

D(Ii(x),Ji) (1)

where E is our cost function, and D(Ii(x),Ji) computes the non-negative distance
measure between two images, which is zero for a pair of perfectly aligned images.
Note that the X-ray images Ji do not depend on the parameter vector x, but each X-
ray image has an exterior camera orientation [13] associated with it (describing the
recording geometry), which must be used to compute the corresponding DRR Ii(x).
The computation of the camera orientation is out of the scope of this paper. In the
following, we only deal with a single pair of images and leave the summation in (1)
as a final (implicit) processing step.

3.1 Digitally Reconstructed Radiograph

To adequately simulate the process of X-ray image acquisition, we have to under-
stand what the image intensities of the radiograph arise from. The X-ray intensity I
reaching the detector at a pixel (u,v) ∈Ω in image space can be expressed using the
following physically-based model [27]:

Iphys(u,v) =
∫ Emax

0
I0(E)exp

(
−

∫

r(u,v)
µ(x,y,z,E)dr

)
dE, (2)

where I0(E) denotes the incident X-ray energy spectrum, r(u,v) a ray from the X-ray
source to the image point (u,v), and µ(x,y,z,E) the energy dependent attenuation at
a point (x,y,z) in space. The second integral represents the attenuation of an inci-
dent energy I0(E) along the ray r(u,v). The integral over E incorporates the energy
spectrum of X-ray cameras.

The above expression can be simplified in several ways [27]. First, the X-ray
source is mostly modeled to be monochromatic and the attenuation to act upon an
effective energy Eeff. Second, due to the fact that X-ray devices usually provide the
logarithm of the measured X-ray intensities, we can further simplify (2) by taking its
logarithm. Finally, when using more elaborate similarity measures which are invari-
ant with respect to constant additions and multiplications [20], we can omit constant
terms and obtain the following pixel intensities for our DRR image:

I(u,v) =
∫

r(u,v)
µ(x,y,z,Eeff)dr (3)

The pseudo code of the DRR rendering algorithm under the parameter vector
x = (tx, ty, tz,φ ,θ ,ψ)T is given in Alg. 1. The rigid body transformation we seek
to optimize in Fig. 1(c) consists of a translation t = (tx, ty, tz)T and a rotation R =
RψRθRφ given in terms of three Euler angles φ , θ , and ψ , where

Rφ =

⎛

⎝
cosφ sinφ 0
−sinφ cosφ 0

0 0 1

⎞

⎠ , Rθ =

⎛

⎝
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎞

⎠ , Rψ =

⎛

⎝
1 0 0
0 cosψ sinψ
0 −sinψ cosψ

⎞

⎠
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Algorithm 1 The DRR rendering algorithm. All transformations are given as 4× 4
matrices in homogeneous coordinates, where T and R are translation and rotation,
respectively, C describes the center of rotation, and H is the window-to-object coor-
dinates transformation. d is the sampling distance in window coordinates. Ω is the
set of pixels (u,v) which are covered by the projection of the volume, and Ω(u,v) is
the set of sampling positions along the ray through pixel (u,v) which intersect the
volume. µ(p) is the volume sample at point p.
Require: C,R,T,H ∈M4 (R) ; d ∈ R

+

1: for all (u,v) ∈Ω do
2: p(0)

win = (u,v,d/2,1)T � ray start position in window coordinates
3: dwin = (0,0,d,1)T � ray step vector in window coordinates
4: p(0)

obj = CR−1T−1C−1Hp(0)
win � ray start position in object coordinates

5: dobj = CR−1T−1C−1Hdwin � ray step vector in object coordinates
6: I(u,v) = 0
7: for all t ∈Ω(u,v) do

8: I(u,v) = I(u,v)+µ(p(0)
obj + tdobj) � take volume sample and update intensity

3.2 Similarity Measure

We investigate the normalized cross correlation, which verifies the existence of an
affine relationship between the intensities in the images. It provides information
about the extent and the sign by which two random variables (I and J in our case)
are linearly related:

NCC(I,J) =
∑(u,v)∈Ω

(
I(u,v)− I

)(
J(u,v)− J

)

√
∑(u,v)∈Ω

(
I(u,v)− I

)2
√
∑(u,v)∈Ω

(
J(u,v)− J

)2
(4)

Optimal alignment between the DRR image I and the X-ray image J is achieved
for NCC(I,J) = −1 since we use (3) for DRR computation, but the actual X-ray
image acquisition is governed by (2). Our distance measure from (1) is therefore
simply

D(Ii(x),Ji) = NCC(Ii(x),Ji)+1.

3.3 Iterative Solution

We chose the L-BFGS-B algorithm [28] to accomplish the optimization task because
it is easy to use, does not depend on the computation of second order derivatives, and
does not require any knowledge about the structure of the cost function. Moreover,
it is possible to set explicit bounds on the subset of the parameter space to use for
finding the optimum.
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4 Automatic Differentiation for a hybrid CPU/GPU Setup

In this section we address several issues that must be considered when applying
AD techniques to generate code that will be executed in a hybrid CPU/GPU setup
for maximum performance. Before we do so, however, we give a brief review of
currently available computing technologies for GPUs and compare their strengths
and weaknesses in the given context.

4.1 GPU Computing Technologies

The Cg language developed by NVidia [21] allows the replacement of typical com-
putations performed in the graphics pipeline by customized operations written in
a C-like programming language. It makes use of the stream programming model,
i.e., it is not possible to communicate with other instances of the program running
at the same time or to store intermediate information for later use by subsequent
invocations. Moreover, local memory is limited to a few hundred bytes, and there
is no support for indirect addressing. This makes it impossible to use arrays with
dynamic indices, stacks, and similar data structures. On the other hand, this com-
putation scheme (which is free of data inter-dependences) allows for very efficient
parallel execution of many data elements. Furthermore, Cg has full access to all fea-
tures of the graphics hardware, including the texture addressing and interpolation
units for access to 3D texture data. Similar functionality as in Cg is available in the
OpenGL Shading Language (GLSL), which is not separately discussed here.

The Compute Unified Device Architecture (CUDA) by NVidia [23] is specifically
designed for the use of graphics hardware for general-purpose numeric applications.
As such, it also allows arbitrary read and write access to GPU memory and there-
fore seems to be the ideal candidate for our implementation. However, the current
version 1.1 of CUDA lacks native support for 3D textures, so access to CT data
would have to be rewritten as global memory access, which neither supports interpo-
lation nor caching. Such a workaround would impose severe performance penalties,
we therefore decided to use Cg since the intermediate storage problem can more
easily be overcome as we will see in the remainder of this section.

4.2 Computing Resources

In order to properly execute both the original algorithm and its derivative, we must
determine which hardware component is best suited for each section of the algorithm.
The following components are available to us:

• the host’s CPU(s),
• the GPU’s rasterizer, and
• the GPU’s shader processors.

The CPU’s involvement in the numeric computations is marginal (its main task is to
control the workflow), we therefore did not consider the use of more than one CPU.
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Due to the stream programming model in Cg, the output of the shader program is
restricted to a fixed (and small) number of values, sufficient however to write a single
pixel (and the corresponding adjoint variables) of the DRR. Therefore looping over
all pixels in the image (equivalent to (u,v) ∈Ω in Alg. 1) is left to the rasterizer.

The core of the computation is the traversal of the individual rays through the
volume (equivalent to t ∈Ω(u,v) in Alg. 1). Since the CT volume is constant, data can
be read from (read-only) texture memory, and the innermost loop can be executed
by the shader processors. This procedure has good cache coherence since a bundle
of rays through neighboring pixels will likely hit adjacent voxels, too, if the geo-
metric resolutions of image and volume data and the sampling distance are chosen
appropriately.

The loops in the similarity measurement code, corresponding to the sums in (4),
are more difficult to handle, although the domain (u,v) ∈ Ω is the same as above.
The reason is the data-interdependence between successive invocations of the loop
body, which must not proceed before the previous run has updated the sum variables.
We therefore employ a reduction technique [24], where the texture is repeatedly
downsampled by a factor of two (n times for an image 2n×2n pixels large) until we
end up with a single pixel representing the desired value.

The optimizer is executed entirely on the CPU and invokes the function evalua-
tion and gradient computation as needed for the L-BFGS-B algorithm (Sect. 3.3).

4.3 Gradient Computation

We need to compute the gradient of the (scalar-valued) cost function (1) with respect
to the transformation parameter vector x ∈ R

6. This can be done either by invoking
the algorithm’s forward mode derivative six times or by a single pass of the algo-
rithm’s reverse mode derivative. Every pass of the original and the derived algorithm
(both in forward and reverse mode) requires access to all voxels visible under the
current transformation parameters at least once (or even several times in case of
texture cache misses). Since global memory traffic is the main bottleneck of many
GPU-based algorithms, we choose reverse mode AD for our purposes to reduce the
number of read operations from texture memory.

Reverse mode AD is known to be more difficult to implement than forward mode
AD. Due to the above-mentioned memory limitations it is generally not possible to
use techniques like taping [7] and TBR analysis [15, 22] to produce adjoint code
in Cg. However, since the inner loop in Alg. 1 is simply a sum, we do not need to
store intermediate values in the derivative code (i.e., the “TBR set” of our program
is empty), hence a Cg implementation is feasible.

An additional benefit of the analytically computed gradient is its better numerical
behaviour. When computing a numerical approximation of the gradient (e.g., based
on central differences), one has to carefully find a proper tradeoff between trunca-
tion error and cancellation error [4]. This is particularly true with our hardware and
software platform (NVidia graphics cards and Cg), where the maximum available
precision is 32 bit IEEE floating point.
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4.4 Automatic Differentiation Issues

The operator overloading technique [6] for generating the algorithm’s derivative can
not be used in our case since it requires the target compiler to understand C++ syntax
and semantics. However, both Cg and CUDA only support the C language (plus a few
extensions not relevant here) in their current versions. Moreover, in order to apply
reverse mode AD with operator overloading, the sequence of operations actually
performed when executing the given algorithm must be recorded on a tape [6] and
later reversed to compute the adjoints and finally the gradient. This approach can not
be used in Cg due to its limited memory access capabilities as explained in Sect. 4.1.

Therefore source transformation remains as the only viable option. We imple-
mented a system which parses the code tree produced from C-code by the GNU C
compiler and uses GiNaC [1] to calculate the symbolic derivatives of the individual
expressions. It produces adjoint code in the Cg language, but is restricted to pro-
grams with an empty TBR set since correct TBR handling cannot be implemented
in Cg anyway as stated above. The task distribution discussed in Sect. 4.2 was done
manually since it requires special knowledge about the capabilities of the involved
hardware components, which is difficult to generalize. Moreover, the derivative code
contains two separate volume traversal passes, which can be rewritten in a single
pass, reducing the number of volume texture accesses by 50%.

5 Results

A visualization of the contributions to the gradient of each (u,v)∈Ω (i.e., each pixel
in the image) for the 2D/3D registration with a simple object is shown in Fig. 2.
Figures 2(b) and 2(d) are the inputs to the final reduction pass, the sums over all

(a) (b) (c) (d)

(e)

(f)

Fig. 2. A simple object with density distribution µ(x,y,z) = 1−max(|x|, |y|, |z|), x,y,z ∈
[−1,1], is translated to the left (∆x < 0) in (a), and the per-pixel contributions to the com-
ponent of the parameter vector gradient ∇E corresponding to translation in x-direction are
visualized in (b), where gray is zero, darker is negative (not present in the image), and brighter
is positive. The histogram (e) of the gradient image (b) shows only positive entries (center is
zero), indicating an overall positive value of the gradient in x-direction to compensate for the
initial translation. In a similar way, the object is rotated (∆ϕ > 0) in (c), and the gradient con-
tributions with respect to rotation around the z-axis are shown in (d). Its histogram (f) shows
a prevalence of negative values, indicating an overall negative rotation gradient around the
z-axis to compensate for the initial rotation. All other histograms are symmetric (not shown
here), indicating a value of zero for the respective gradient components.
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Fig. 3. Scatter plot of the registration error [17] before (x-axis) and after (y-axis) the registra-
tion procedure, the dot size indicates the initial rotation.

pixels are the individual components of the gradient vector ∇E. The volume was
sampled with 643 voxels, average registration time was 3.3 seconds on a GeForce
8800GTX graphics card.

Figure 3 illustrates the convergence behaviour of our 2D/3D registration method.
The method performs very reliably for an initial error of less than 20mm, where the
final registration error is less than 1mm in most experiments. For a CT volume data
set with 512×512×288 voxels and three X-ray images (512×512 pixels each), the
average registration time is 20 seconds, which is 5.1 times faster than with numerical
approximation of the gradient. This confirms previous results that the computation of
the gradient does not take significantly longer than the evaluation of the underlying
function [2].

6 Conclusions and Future Work

We discussed an approach to apply AD techniques to the 2D/3D registration problem
which frequently appears in medical applications. We demonstrated how to work
around the limitations of current graphics hardware and software, therefore being
able to benefit from the tremendous computing capabilities of GPUs.

Our method is 5.1 times faster than its counterpart with numeric approxima-
tion of the cost function’s gradient by means of central differences. Its performance
and accuracy are sufficient for clinical applications such as surgery navigation.
Our implementation is based on NVidia graphics cards. Nevertheless it would be
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interesting to compare the performance on equivalent cards from other manufactur-
ers, in particular from ATI.

We intend to study more similarity measures, in particular mutual information,
which has been reported to give very good results even in multimodal settings (e.g.,
registering X-ray images with a magnetic resonance volume data set). We can reuse
the DRR code and its derivative with very few modifications, only the similarity
measuring portion of the code needs to be replaced. When doing so, we expect a
similar performance gain as in our NCC approach.

In our present work we accepted a certain degree of manual work to make
the code produced by our source code transformation tool suitable for a hybrid
CPU/GPU setup. It remains an open question whether this step can be done fully
automatically. We need to formalize the conditions under which parts of the deriva-
tive code can run on the CPU or on the GPU.

It can be assumed that future versions of the CUDA framework by NVidia will
include full support for 3D textures. This will open a range of new interesting possi-
bilities to implement high-performance optimization methods based on AD tools.
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Summary. The need for robust optimisation in aircraft conceptual design, for which the
design parameters are assumed stochastic, is introduced. We highlight two approaches,
first-order method of moments and Sigma-Point reduced quadrature, to estimate the mean
and variance of the design’s outputs. The method of moments requires the design model’s
differentiation and here, since the model is implemented in Matlab, is performed using the
automatic differentiation (AD) tool MAD. Gradient-based constrained optimisation of the
stochastic model is shown to be more efficient using AD-obtained gradients than finite-
differencing. A post-optimality analysis, performed using AD-enabled third-order method of
moments and Monte-Carlo analysis, confirms the attractiveness of the Sigma-Point technique
for uncertainty propagation.

Keywords: Aircraft conceptual design, uncertainty estimation, forward mode, higher deriva-
tives, MAD

1 Introduction

In the conceptual phase of aeronautical design low fidelity models are used to pre-
dict an aircraft’s performance from a moderate number of design parameters. For
example, given thrust-to-weight ratio and wing loading, critical design requirements
such as approach speed, rate of climb and take-off distance may be quantified. Such
considerations also hold for major aircraft subsystems, e.g., estimation of engine per-
formance from parameters such as turbine entry temperature, overall pressure ratio
and bypass ratio [17].

The conceptual model is then optimised, typically a constrained multi-objective
optimisation, giving an aircraft configuration used to initiate detailed design pro-
cesses such as geometric design via a CAD model leading to computationally (or ex-
perimentally) expensive analyses of structural, aerodynamic, propulsive and control
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aspects. These analyses may indicate inadequacies in the conceptual design leading
to its change and repeated design iterations until a suitable design is found.

To minimize nugatory cycling between conceptual and detailed design analy-
ses there has been much interest in seeking designs whose performance is rela-
tively insensitive to downstream changes. This reduces the likelihood of requiring
any large scale design changes when the detailed analysis is performed [3]. Such
robust design involves modelling the design parameters as taken from statistical dis-
tributions. Thus, accounting for robustness increases the complexity of the original
deterministic problem. In the general context of nonlinear optimisation, if we assume
that the design task is to minimise some deterministic objective (e.g., fuel consump-
tion) subject to multiple deterministic constraints (e.g., maximum wing span, range)
then one assumes the design parameters are taken from known independent statistical
distributions and then classically performs the estimation of the means and variances
of the objective and constraints. Then a robust objective and constraints are formed
which favour designs with: low objective value, small objective standard deviation,
and a high likelihood of satisfying the deterministic constraints. This robust optimi-
sation problem is then solved numerically [12].

Others have stressed the improvements Automatic Differentiation (AD) confers
on the accuracy and the efficiency of Engineering Design and its robust extensions,
but focused on Fortran- and C/C++ coded applications [1, 2, 15]. Here we demon-
strate some of the benefits AD gives to robust optimisation for aircraft conceptual
design of an industrially relevant aircraft sizing test case implemented in Matlab.
Section 2 presents two strategies to uncertainty estimation considered for our sizing
problem. Section 3 presents extensions to the MAD package [5] to facilitate these
strategies. The test case and results of the robust optimisation are presented, together
with a post-optimality analysis, in Sect. 4. Section 5 concludes.

2 Robust Design Optimization

We assume that the conceptual design analyses are performed by functions f (x)
and gi(x), i = 1,2, . . . ,r, where x ∈ R

n is the vector of the design variables. The
deterministic design optimization problem is hence formulated as follows:

min
x

f (x) such that: gi(x) � 0, i = 1,2, . . . ,r, xL � x � xU . (1)

To ensure design robustness, the components of x are assumed to be stochastic
and taken from known independent probability distributions with mean Ex and vari-
ance Vx, so rendering the objective and constraints stochastic. The robust attribute
of the objective function is achieved by simultaneously minimizing its variance Vf
and its expectation E f , aggregated in a suitable robust objective F(E f (x),Vf (x)),
with respect to the mean of the input variables. Robustness of the constraints, each
distributed with mean Egi and variance Vgi , is sought by ensuring their probabilis-
tic satisfaction via robust constraint functions Gi(Egi(x),Vgi(x)). The range of the
independent variables is also defined probabilistically. Hence (1) becomes:
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min
Ex

F(E f (x),Vf (x)), such that:

Gi(Egi(x),Vgi(x)) � 0 , i = 1,2, . . . ,r,

P(xL � Ex � xU )≥ pbounds,

where pbounds is the prescribed probability with which the mean of the design vari-
ables belongs to the original deterministic range. If all variables are continuous, the
mean and variance of f (x) are given by:

E f (x) =
∫ +∞

−∞
f (t)px(t)dt and Vf (x) =

∫ +∞

−∞
[ f (t)−E f (x)]2 px(t)dt,

in which px is the joint probability function corresponding to the input variables’ dis-
tributions. Unfortunately, a closed-form expression for these integrals exists for few
cases of practical interest. Their numerical approximation involves a fundamental
trade-off between computational cost and accuracy of the estimated statistical mo-
ments. Existing approaches to perform such a task, also termed uncertainty propaga-
tion, include Monte Carlo Simulation (MCS) methods [7, 16], Taylor-based method
of moments [13, 9, 4, 14], polynomial chaos expansions [18] and quadrature-based
techniques [8, 11]. Two of those methods are considered to be adequate for the pur-
pose of the present study, namely the first order method of moments (IMM) and the
Sigma-Point method (SP).

2.1 Considered Uncertainty Propagation Methods

In the Taylor-based method of moments, the statistical moments of the system re-
sponse are estimated from the moments of a truncated Taylor series expansion of
f (x) about the mean of the input variables. In particular, by using a third order ap-
proximation (IIIMM hereafter), mean E fIIIMM and variance VfIIIMM are given by, in the
case of independent, symmetrically distributed design variables (with similar expres-
sions for Egi and Vgi):

E fIIIMM =

m1︷ ︸︸ ︷
f (Ex)+

m2︷ ︸︸ ︷
1
2

n

∑
p=1

(
∂ 2 f
∂x2

p

)

Vxp +O(V2
x), (2)

VfIIIMM =

v1︷ ︸︸ ︷
n

∑
p=1

(
∂ f
∂xp

)2

Vxp +

v2︷ ︸︸ ︷
n

∑
p=1

⎡

⎣

(
∂ 3 f
∂x3

p

)(
∂ f
∂xp

)
Kxp

3
+

(
∂ 2 f
∂x2

p

)2
Kxp −1

4

⎤

⎦V 2
xp +

+

v3︷ ︸︸ ︷
n

∑
p=1

n

∑
q=1
q �=p

[(
∂ 3 f
∂x2

p∂xq

)(
∂ f
∂xq

)
+

1
2

(
∂ 2 f
∂xp∂xq

)2
]

VxpVxq +O(V3
x), (3)
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where Kxp is the kurtosis of the input variable xp. The first order method of mo-
ments (IMM) approximations E fIMM and VfIMM to the mean and variance respectively
are obtained by retaining only terms m1 and v1. Note that optimisation involving
an objective based on IMM requires calculation of the derivatives of f (x) and, if
gradient-based methods are to be employed, f ’s second derivatives.

The Sigma-Point technique [11], relies on a specific kind of reduced numerical
quadrature, and gives approximations to the mean and variance respectively by,

E fSP = W0 f (x0)+
n

∑
p=1

Wp[ f (xp+)+ f (xp−)], (4)

VfSP =
1
2

n

∑
p=1

{
Wp

[
f (xp+)− f (xp−)

]2

+(Wp−2W 2
p )

[
f (xp+)+ f (xp−)−2 f (x0)

]2
}

. (5)

In (4) and (5), the sampling points are:

x0 = Ex, and xp± = Ex±
√

VxpKxp ep; (6)

ep is the pth column of the n×n identity matrix. The weights in (4) and (5) are:

W0 = 1−
n

∑
p=1

1
Kxp

and Wp =
1

2Kxp

.

The SP technique has a higher accuracy for the mean than IMM [11], and requires
2n+1 function evaluations for each analysis. In contrast to the IMM method, objec-
tives based on the SP approximations to the mean and variance do not require the
derivatives of f . For gradient-based optimisation a combination of the gradients of f
for the sampling points (6) yields the gradients of mean and variance.

3 Automatic Differentiation of the Conceptual Design Package

Unlike the Fortran or C/C++ coded design optimisation problems previously treated
using AD [2, 1, 15], the aircraft conceptual design package considered was written in
Matlab. The MAD package was therefore adopted due to its robust and efficient im-
plementation [5]. MAD’s fmad and derivvec classes facilitate forward mode AD
for first derivatives geared toward Matlab’s array-based arithmetic and both classes
use only high-level array operations leading to good efficiency.

Objects of fmad class possess value and deriv components which store an
object’s value and derivative respectively. Then, for example, fmad objects x and y
have element-wise product z = x.*y with z’s components determined by,

z.value = x.value.*y.value;
z.deriv = x.value.*y.deriv + y.value.*x.deriv;
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Other arithmetic operations are evaluated in a similar manner. If we are determining
a single directional derivative then all derivative components (x.deriv, y.deriv,
etc.) are of Matlab’s intrinsic class double with the same array dimensions as their
corresponding value components (x.value, y.value, etc.). For multiple direc-
tional derivatives the derivvec class is utilised.

The derivvec class stores multiple directional derivatives as a single object
manipulated, via overloaded arithmetic, as one would a single directional derivative.
An fmad object whose value component is of dimensions n×m and which has d
directional derivatives has its derivative component stored within its now derivvec
class deriv component as an nm× d matrix. Element-wise multiplication and ad-
dition operators, amongst others, are defined for the derivvec class to allow the
fmad class’s operations to evaluate without modification.

There were two requirements for this conceptual design problem that necessi-
tated extensions to the MAD package. Firstly, we required second derivatives to
evaluate the IMM method’s objective and constraint gradients and third derivatives
for the associated post-optimality analysis. Secondly, the AD should differentiate the
Newton-based fsolve function of Matlab’s Optimisation Toolbox [10] used for the
solution of nonlinear equation.

3.1 Calculating Higher Derivatives

We adopted the expedient strategy of rendering MAD’s fmad and derivvec
classes self-differentiable to allow a forward-over-forward(-over-forward. . . ) differ-
entiation strategy for higher derivatives. For the relatively low number of independent
variables and low derivative orders required, other strategies such as forward-over-
reverse and Taylor-series [6, Chaps. 4 and 10] were not considered worthwhile.

Under the self-differentiation approach, objects of the derivvec class con-
tain derivative components that themselves must be differentiated to enable higher
derivatives to be calculated. To enable this the source code line,

superiorto(’fmad’)

was added to the derivvec class constructor function to specify, via the intrinsic
function superiorto, that the derivvec class is superior to the fmad class.
Consequently any operation (e.g., x.value.*y.deriv) involving an fmad ob-
ject whose value component is itself an fmad object (e.g., x.value) and a
derivvec class object (e.g., y.deriv) is dealt with by the appropriate over-
loaded derivvec class operation, and not an fmad class operation. Of course,
within the resulting derivvec operations fmad operations may be required.

It was then possible to calculate all first and second derivatives of say the objec-
tive f(x), with x a vector, by the following sequence of operations:

xfmad = fmad(x,eye(length(x))); % step 1
xfmad2 = fmad(xfmad,eye(length(x))); % step 2
yfmad2 = f(xfmad2); % step 3
y = getvalue(getvalue(yfmad2)); % step 4
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Dy = getinternalderivs(getvalue(yfmad2)); % step 5
D2y=getinternalderivs(...

getinternalderivs(yfmad2)); % step 6

with the steps labelled above via the trailing comments now detailed.

1. Define an fmad object, xfmad, from x whose derivatives are the identity
matrix.

2. Define a second fmad object xfmad2 whose value component is that defined
in step 1, again with derivatives given by the identity matrix.

3. Evaluate the function.
4. Extract the value of yfmad2’s value component to obtain y’s value.
5. Extract yfmad2’s value’s derivative to obtain first derivatives of y. Equivalently

one could extract yfmad2’s derivative’s value.
6. Extract yfmad2’s derivative’s derivative to obtain second derivatives.

3.2 Differentiating the Nonlinear Solve of fsolve

Within the Matlab implementation of the conceptual design model, some interme-
diate variables, let us denote them w ∈ R

p, are found in terms of some predecessor
variables, say v ∈ R

p, as the solution of a nonlinear equation of the form,

h(w,v) = 0, (7)

with function h ∈ R
p ×R

p → R
p for some p > 1. Matlab’s fsolve function

solves such equations using a trust-region Newton algorithm [10] making use of h’s
Jacobian. Different strategies for differentiating such nonlinear solves are reviewed
in [6, Sect. 11.4]. In the case of w being of fmad class, perhaps containing multiple
orders of derivatives, we first solved (7) for the value component of w using a call to
fsolve making use of only v’s value, i.e., we solved the undifferentiated problem
to the required numerical accuracy. Then to calculate derivatives up to and including
order d we performed d iterations of the Newton iteration,

w← w−
(
∂h
∂w

(value(w),value(v))
)−1

h(w,v), (8)

with w and v manipulated as nested fmad objects storing derivatives up to and in-
cluding those of order d, and value(w), value(w) denoting use of only their value
component. This approach only requires the value of the Jacobian matrix ∂h/∂w
and not its higher derivatives. It was implemented in a function fsolveMAD which
itself calls fsolve to solve the undifferentiated problem and may make use of the
fmad class to calculate the Jacobian for its trust-region Newton solve. The poten-
tially more efficient strategy of evaluating only the updated ith order derivatives of w
at iteration i of (8) was not investigated because of the small size w ∈ R

2 in our test
case of Section 4.
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4 Aircraft Sizing Test Case

We demonstrate the benefits of using AD in robust optimization of a Matlab-
implemented, industrially relevant, conceptual design test case. This conceptual
design model determines performance and sizing of a short-to-medium range com-
mercial passenger aircraft and makes use of 96 sub-models and 126 variables.

The original deterministic optimization problem is the following:
Objective: Minimize Maximum Take-Off Weight MTOW with respect to the design
variables x (described in Table 1 together with their permitted ranges).
Constraints:

1. Approach speed: vapp < 120 Kts⇒ g1 = vapp−120;
2. Take-off field length: TOFL < 2000 m⇒ g2 = TOFL−2000;
3. Percentage of total fuel stored in wing tanks: KF > 0.75⇒ g3 = 0.75−KF ;
4. Percentage of sea-level thrust available during cruise: KT < 1⇒ g4 = KT −1;
5. Climb speed: vzclimb > 500 ft/min⇒ g5 = 500− vzclimb;
6. Range: R > 5800 Km⇒ g6 = 5800−R.

The problem’s fixed parameters are given in Table 2. The corresponding robust
problem is obtained by assuming that the input variables are independent Gaussian
variables with V1/2

x = 0.07Ex. The robust objective is calculated then as MTOWrob =
EMTOW +V 1/2

MTOW , while the constraints take the form Gi(x) = Egi(x)+kV 1/2
gi (x) and

xL + kV1/2
x � Ex � xU − kV1/2

x , with coefficient k = 1 chosen to enforce constraint
satisfaction with probability of about 84.1%.

We performed two robust optimisations with the first making use of IMM and the
second the SP method to estimate mean and variance. Both optimization problems
were solved using Matlab’s gradient-based constrained optimizer fmincon. In the
IMM optimization, MAD was used to calculate first derivatives of the deterministic

Table 1. Considered design variables for the deterministic problem.

Design Variable Definition [units] Bounds [min,max]
S Wing area [m2] [140, 180]

BPR Engine bypass ratio [ ] [5, 9]
b Wing span [m] [30, 40]
Λ Wing sweep [deg] [20, 30]
t/c Wing thickness to chord ratio [ ] [0.07, 0.12]
TeSL Engine sea level thrust [kN] [100, 150]
FW Fuel weight [Kg] [12000, 20000]

Table 2. Fixed parameters.

Parameter Value Parameter Value
Number of passengers 150 Number of engines 2
Cruise Mach number 0.75 altitude [ft] 31000
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Table 3. Results of the robust optimisations.

Input variable I MM SP Obj./Constr. I MM SP
ES [m2] 160.843 162.558 MTOWrob [Kg] 86023.272 86207.016
EBPR [ ] 8.580 8.580 G1 [Kts] 0.000 0.000
Eb [m] 37.753 37.753 G2 [m] −161.568 −151.806

EΛ [deg] 21.531 21.531 G3 [ ] 0.000 0.000
Et/c [ ] 0.095 0.094 G4 [ ] −0.114 −0.107

ETeSL
[kN] 122.553 123.224 G5 [ft/min] 0.000 0.000

EFW [Kg] 18084.940 18171.282 G6 [Km] 0.000 0.000

Table 4. Post-optimality analysis: percentage error on mean and variance estimation of objec-
tive and constraint with respect to MCS.

Mean estimation Variance estimation
Obj./Constr. IMM Opt. Solution SP Opt. Solution IMM Opt. Solution SP Opt. Solution

MTOWrob [Kg] −0.83×10−4 0.27×10−6 0.41 0.39
G1 [Kts] −0.12 0.25×10−3 −0.71 0.24
G2 [m] −0.88 0.17×10−2 −1.89 −0.31
G3 [ ] −0.86 0.17×10−1 −1.27 −0.48
G4 [ ] −0.87 0.12×10−2 −2.18 0.17

G5 [ft/min] 1.15 0.10×10−3 0.23 0.73
G6 [Km] 0.23 −0.11×10−2 0.56 0.01

objective function and constraints required for (3), together with their second deriva-
tives to form the gradient of the robust objective and constraints. In the SP-based
optimizations, MAD is used to calculate the gradient of objectives and constraints.
Table 3 presents the results of the two optimizations.

A post-optimal analysis was carried out by using MCS (Latin Hypercube with
104 samples) and IIIMM of (2) and (3) to partially validate Table 3’s results. In these
analyses, x was represented as a Gaussian random variable centred at the values of
the input variables resulting from the two optimisations, while its variance was that
used for the optimizations. The derivatives needed by the IIIMM estimation meth-
ods were obtained using MAD. The deviation of the IMM and SP results from those
obtained by MCS are shown in Table 4. It appears that the SP method can attain an in-
creased accuracy in the mean estimate, and thus benefit design optimisation. Results
from IIIMM analysis at the optimal design points are comparable to those obtained
by the SP method and consequently not shown. However, this case is one for which
cross-derivatives, not modelled by the SP method, are negligible [11]. In fact, the
accuracy of IIIMM estimates is higher than the other considered propagation meth-
ods, and hence IIIMM may be advantageously adopted to reduce the computational
cost of the post-optimality analysis. For the case at hand, the c.p.u. time required to
obtain the derivatives up to third order was about 8 seconds using MAD, which is
about the 0.06% of the time required for the full MCS analysis.

To highlight the performance improvements made possible by AD with respect
to finite differencing, the deterministic optimisation and the two robust optimisation
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Table 5. Performance improvements yielded by AD to the optimisation problems.

SP IMM
Iterations c.p.u. time [s] Iterations c.p.u. time [s]

AD 10 351 10 45
FD 10 708 24 1212

problems were re-solved using finite differences (FD) for gradient evaluation. In
these cases, the standard fsolve Matlab code was used. Results in terms of num-
ber of optimiser iterations and required c.p.u. time, shown in Table 5, support the
conclusion that AD can significantly decrease the computational effort required by
robust optimisation. We note that both robust techniques, IMM and SP, benefit from
AD’s fast and accurate derivatives, with IMM particularly advantaged since use of
FD results in significantly more optimisation steps being required.

5 Conclusions

This paper’s results demonstrate the benefits AD may give to robust optimisation for
aircraft conceptual design. In particular, we performed optimisations of an industri-
ally relevant, Matlab-implemented aircraft sizing problem using the AD tool MAD
to facilitate two robust design strategies. The first strategy exploits AD-obtained first
order sensitivities of the original function to approximate the robust objective and
constraints using the method of moments, and second order sensitivities to calculate
their gradients. The second uses reduced quadrature to approximate the robust objec-
tive and constraints and AD for their gradients. In the particular test case considered,
a Monte-Carlo analysis indicated that the reduced quadrature approach was more
accurate for estimation of the mean. In both cases use of numerically exact, AD gra-
dients significantly reduced the c.p.u. time to perform the optimisations compared to
those approximated by finite-differencing.
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Summary. A simultaneous timestepping method for primal, dual and design variables using
multigrid convergence acceleration for primal and dual is reviewed. The necessary require-
ments to include the design variables in the multigrid algorithms are presented. Alternative
algorithms for gradient smoothing are presented and numerically evaluated. Different formu-
lations of the coarse grid functional are discussed and compared. Convergence results for an
inverse aerofoil optimisation are presented.

Keywords: Optimal design, adjoint method, quasi-Newton, multigrid

1 Introduction

Numerical design optimisation based on computational fluid dynamics (CFD) is still
not a routine application due to the high computational cost of the evaluation of the
goal function. The most efficient methods use adjoint-based sensitivities [3]. Clas-
sically, a fully sequential approach to converging the system is adopted [8] where
at each evaluation for functional and gradient the flow state (primal) and the adjoint
(dual) are fully converged. These strict convergence requirements have been shown
to be unnecessary for adjoint methods as unlike with finite-difference gradients the
accuracy of the adjoint gradient computation converges at a rate comparable to the
solution. A number of “simultaneous time-stepping” or “one-shot” methods have
been proposed [4, 5, 10] which converge primal, dual and design simultaneously and
compute an optimal design in 5–10 times the cost of the evaluation of the primal
and dual.

Both algorithms [5, 10] have been subsequently extended to use multigrid for
primal and dual, typically using a single multigrid cycle to advance primal and dual
before a design step on the finest grid. In particular the use of AD tools to derive
the adjoint code makes the development of adjoint multigrid codes straightforward
and most importantly straightforward to validate. Straightforward here is used in the
sense of “following a recipe” which guarantees the outcome, but not in the sense
of providing an adjoint code that is necessarily as efficient as the primal code. The
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validation proceeds in two stages: first the AD tool is used to derive a tangent linear
version of the primal code which is easily validated against the primal as the flow
physics are the same for small perturbations. The second step then verifies the ad-
joint gradient against tangent linear ones which have to agree to machine precision
for arbitrary perturbations. While both steps can be achieved using hand-derived dis-
crete adjoints [2], it is an excessively tedious and labour-intensive process which is
prohibitive for actively developed codes that see regular updates.

Although an “exact” discrete adjoint multigrid code as required for rigorous vali-
dation would require the reversal of prolongation and restriction operators [2], expe-
rience shows that exact adjoint equivalence is only required for the validation of the
discretisation of the finest grid and that multigrid algorithms using the same order of
operations as the primal converge at a comparable rate [1].

Including the design iterations in the multigrid algorithm is the most promising
approach to enhance the convergence rate to the optimal design. This is particularly
relevant for realistic industrial applications requiring a large number of design pa-
rameters. Industrial application will also require a high level of automation in the
definition of the design parameters, one approach is to use an automatically selected
subset of the surface points of the CFD mesh as design variables which are then
used to morph the volume mesh. This approach will further increase the number of
degrees of freedom in the design problem. To implement a multigrid solver for the
design one needs

1. an iterative method for the design variables that is effective at removing high
frequency error modes,

2. a definition of the design variables that supports restriction and prolongation
between mesh levels, and

3. a redefined cost function or gradient on the coarse level which preserves station-
arity of the fine grid.

Satisfying the third requirement (coarse grid stationarity) can be achieved in the
same fashion as for dual and primal, as demonstrated by Lewis and Nash [11] and
discussed in Sect. 4. Various approaches have been proposed to provide a multi-level
parametrisation to satisfy requirement 2, such as Held and Dervieux [6] in 2D and
Vazquez et. al. [13] in 3D. This aspect remains an open question as it is linked to the
smoothing of requirement 1.

It is well recognised that the reduced regularity of the derivative can lead to oscil-
latory shapes [9] in the infinite-dimensional approach where all surface mesh points
become design parameters. The use of hand-parametrised and globally supported
smooth shape functions [7] circumvents this by construction, but this approach is not
suitable for a multi-level algorithm and is not straightforward to automate. As an al-
ternative for the infinite-dimensional problem Jameson and Vassberg [9] applied an
artificial viscosity to the gradient based on a convergence argument. However, there
are other forms of smoothing that can be applied at various instances in the design
loop, as discussed in Sect. 3.
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2 Simultaneous Timestepping

We are solving the two-dimensional Euler equations using a standard finite-volume
discretisation with Roe’s flux difference splitting in a semi-discrete formulation with
pseudo-timestepping [10]. Presenting a general notation let us denote the flux diver-
gence resulting from the spatial discretisation of the conservation equations as R,
leading to

∂Q
∂ t

+R(Q) = 0 (1)

where Q denotes state variables (primal). The aim of aerodynamic optimisation is to
minimise a cost functional L(Q,α) by adjusting the boundary shape through design
variables α while satisfying the flow equations (1). The sensitivity of L with respect
to α is:

dL
dα

=
∂L
∂α

+
∂L
∂Q

∂Q
∂α

=
∂L
∂α

+ lTu. (2)

The derivatives ∂L
∂α and l = ( ∂L

∂Q )T are straightforward to compute [1]. The flow per-

turbation, u = ∂Q
∂α , is derived from the tangent linearisation for a steady solution

of (1), R(Q,α) = 0:
∂R
∂Q

∂Q
∂α

=− ∂R
∂α

(3)

or more compactly
Au = f (4)

where A = ∂R
∂Q and f is the sensitivity of the residual with respect to the design

parameter, f =− ∂R
∂α . The adjoint problem is defined as:

(
∂R
∂Q

)T

v =
(
∂L
∂Q

)T

(5)

or more compactly
ATv = l (6)

with the adjoint variable v and the source term l =
(
∂L
∂Q

)T
. The adjoint code in our

example has been derived by using Tapenade and TAMC to reverse-differentiate the
flux routines that compute R(Q) in (1). The adjoint flux routines were then hand-
assembled into the same time-stepping loop as the primal [1].

The sensitivity of the flow with respect to the design can then be computed either
using the tangent linearisation or the adjoint

lTu = (ATv)T u = vT Au = vT f (7)

resulting in (2) to become
dL
dα

=
∂L
∂α

+ vT f . (8)
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In pseudo-timestepping methods the optimality system of (1), (3), (8) is solved
by iterating concurrently on all equations:

∂Q
∂ t

= −R(Q) (9)

∂v
∂ t

= l−ATv (10)

∂α
∂ t

= − ∂L
∂α
− vT f (11)

The pseudo-time t can be chosen differently for each equation within each sub-
system such as to ensure fastest convergence, in our case explicit local timestep-
ping for primal and dual. The design is advanced using an L-BFGSB quasi-Newton
method [14]. The convergence of dual and primal is linked to the convergence of the
functional gradient ∇L by requiring that the RMS of the flow and adjoint residuals
be smaller than gRMS [10]:

RMS≤ gRMS =
|∇L|

C
. (12)

As the gradient is reduced during the design convergence, the accuracy of the com-
putation of primal and dual is increased to guarantee uniform convergence. Typical
values for the constant C are 10−5 ≤C ≤ 10−4.

AD-derived adjoints have two further main advantages when used in one-shot
optimisation. Equation (11) can be evaluated by forming the source term f after a
mesh perturbation, and then the product vT f for each gradient component. However
this requires the evaluation of f (at roughly the cost of one residual evaluation) for
each design variable, a small cost that scales linearly with the number of design
variables. This approach has been used for our small testcase. Alternatively, using
AD tools one can apply the chain rule to reverse differentiate the metric computations
and the smoothing algorithm of Sect. 3 and compute the gradient directly. Firstly,
this reduces the computational cost, secondly this provides very straightforwardly a
consistent derivative which includes in a straightforward manner e.g. the effects of
smoothing of oscillatory shape modes onto the gradient. This approach will scale to
large numbers of design variables.

Extending the modular approach of [10] to multigrid for primal and dual, the
coupling algorithm becomes:

1. perform multigrid cycles for the primal (9) and dual (10) to sufficient conver-
gence,

2. compute the gradient (8),
3. stop if primal and dual are fully converged and the gradient norm is below an

acceptable threshold.
4. approximate the Hessian,
5. choose a descent direction and step size,
6. update the design,
7. go to 1.
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Here we use a V-cycle multigrid with a single explicit forward Euler iteration as
smoother for the primal and dual. In the multigrid context the gRMS criterion (12) is
typically satisfied after one multi-grid cycle, unless a very large design step has been
taken. The search direction in our examples is either chosen as the gradient in the
case of steepest descent (SD), or as a Newton-like direction in the case of L-BFGSB.
Other choices are, of course, possible.

3 Smoothing Algorithm

To raise the regularity of the computed gradient in the infinite-dimensional case,
Jameson and Vassberg [9] modified the computed gradient using a “Sobolev”
smoothing as

gk+1
i − β

2

(
gk+1

i−1 −2gk+1
i +gk+1

i+1

)
= gk

i (13)

where gk
i is the gradient for the i-th design variable at the k-th smoothing iteration

and β is a smoothing parameter.
While a convergence argument is given in [9], the implicitly added viscosity

affects a broad range of frequencies and can compromise the accuracy of the de-
sign. This in turn would require using a finer set of design parameters to capture a
given shape mode. Figure 1 shows results using smoothing (13) for various values of
β = .05, .1, .25 labelled as ‘G5, G10, G25’, respectively, with β = .1 performing best
for this case.
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Fig. 1. Convergence history of functional vs evaluations: comparing implicit gradient smooth-
ing ‘G’, explicit gradient smoothing ‘g’ and explicit displacement smoothing ‘m’.
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Alternatively, gradient smoothing with a small number of point-Jacobi iterations
can be applied.

gk+1
i = gk

i +
β
2

(
gk

i−1−2gk
i +gk

i+1

)
. (14)

A smoothing parameter β = 1/2 will annihilate gradient oscillations of the highest
frequency in one iteration on a uniform mesh. As opposed to the implicit smooth-
ing (13), explicit smoothing is most effective on the highest frequencies and has very
little effect on low frequency modes. Figure 1 shows curves ‘g1’ for one and ‘g2’ for
two gradient Jacobi sweeps on the gradient with β = .5.

Smoothing can also be applied to the shape displacement since the designer is
directly interested in obtaining a smooth shape. A smoothing of the displacement δ
of the design nodes with a point-Jacobi iteration results in

δ k+1
i = δ k

i +
β
2

(
δ k

i−1−2δ k
i +δ k

i+1

)
. (15)

Again, β = 1/2 provides optimal damping of the highest frequency, which is the
value used here. Application of a single Jacobi sweep of (15) shown as curve ‘m1’
in Fig. 1 achieves the best convergence in our case.

Finally, one can consider to smoothen the gradient evaluation indirectly by using
only every second or every fourth surface mesh point as a design variable (‘m2d2’and
‘m8d4’in Fig. 2) and use a number of Jacobi sweeps of (15) for the displacement of
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Fig. 2. Convergence history of functional vs evaluations: comparing use of all surface nodes
as design variables ‘d1’ and using every second ‘d2’ or every fourth node ‘d4’.
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the intermediate surface nodes, two or eight sweeps in the case of using every second
or every fourth wall node, respectively. In the cases ‘m2d2’ and ‘m8d4’ the starting
mesh has been modified to differ from the target mesh only in shape modes that are
achievable, hence still permitting convergence of the functional to machine precision.
The resulting convergence improvement is significant over the ‘m1d1’ case which
uses all wall nodes for the design and is also shown as ‘m1’ in Fig. 1. However, if
the design is started from the initial NACA mesh, as was done for the cases using
all surface nodes in Fig. 1, then the coarser design space is not able to represent the
target shape and convergence stalls (curve ‘m2d2-NACA’ in Fig. 2). In the following
we have used a 1:2 coarsening ratio.

4 Multi-level Formulation for the Design

Two approaches for multi-level design are considered here: The first is the formula-
tion proposed by Lewis and Nash [11], in the following called algorithm LNMG:

1. Perform a few primal and dual iterations on the fine grid,
2. restrict solution u,v,α and gradient vT f to the coarse grid: uH = IH

h (u), where
IH
h is restriction operator,

3. perform a few iterations for primal and dual on the coarse grid,
4. perform an optimisation step on the coarse grid using a functional equal to: LH =

L(uH ,αH)− (vH)T xH , and gradient: gH = gH − vH , let result be x2.
5. Prolongate the search direction to the fine grid: eh = Ih

H (x2− x1), where Ih
H is

prolongation operator,
6. perform a line search on fine grid with search direction eh
7. terminate if Wolfe conditions are met, else go to 1

A second simplified multigrid approach uses the information from the coarse grid
to obtain an improved search direction on the fine grid. As opposed to the approach
of Lewis and Nash [11], the coarse grid problem remains unchanged. While vio-
lating the third multigrid condition listed in Sect. 1—preservation of stationarity on
the coarse grid—this avoids aliasing of high-frequency fine grid modes onto low-
frequency coarse grid ones. The prolongation of the coarse-grid search direction
then is used to improve the fine-grid search. Unlike in the multigrid formulation
for primal and adjoint, there is a line-search step for the design variables after pro-
longation which safe-guards convergence even if the coarse grid proposes an update
to a stationary fine-grid solution. However, if the coarse-grid search direction is not a
descent direction on the fine grid, the coarse grid step will be rejected and the design
will converge using only the fine grid. The algorithm is identical to Lewis and Nash
except for step 4 which is simplified by:

4. Perform optimisation on the coarse grid using the functional LH = L(uH ,αH),

The algorithm is hence called SMG in the following. Lewis and Nash in their
implementation of LNMG used a steepest descent method for both design levels.
Unfortunately steepest descent is not able to fully converge the current inverse de-
sign testcase on the finest grid, the convergence of the functional stalls at 10−3.
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Therefore the comparison of algorithms LNMG and SMG with single grid optimi-
sation requires to use a quasi-Newton method (with an L-BFGSB approximation to
the Hessian) which is able to fully converge the optimisation problem of the testcase.
On the coarse grid both our variant of LNMG and SMG use L-BFGSB. On the fine
grid both algorithms employ a the line-search of [12] with the search direction being
taken either in the gradient direction for the steepest descent (SD) or being provided
by L-BFGSB.

On the fine grid 2–3 design iterations are taken. On the coarse grid the design is
fully converged or stopped after at most 12 (SMG) or 30 (LNMG) iterations. Typi-
cally L-BFGSB converges in 6–8 iterations on the coarse grid. The coarse grid ter-
minates if the magnitude of the coarse grid gradient is 10−3 smaller than the gradient
on the fine grid.

5 Results

5.1 Testcase

Numerical experiments have been conducted for an inverse design case to minimise
the square of the pressure differences to an RAE 2822 profile starting with a NACA
0012 aerofoil. The flow is inviscid, subsonic (Ma = .43) and at 0◦ angle of attack.
Results are given for a mesh with 4400 cells shown in Fig. 3, one coarse grid level is
used. The functional is computed as the L2-norm of the pressure differences between
the target and the current solution in each wall node. The grid has 64 surface nodes
on the aerofoil, resulting in 32 design variables (every second node is taken as design
variable, only the y-coordinate of each node is varied). The leading and trailing edge
points are kept fixed. Figure 3 shows pressure distributions for the initial and target
profile.
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Fig. 3. Initial mesh for NACA 0012 (left) and pressure distributions (right) for target RAE
2822 and initial NACA 0012.
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Fig. 4. Performance of LNMG multigrid formulation vs. design iterations (left) and vs. wall
clock time (right).

5.2 Multigrid Formulation of Lewis and Nash

The performance of the multigrid algorithm is evaluated as convergence of the func-
tional vs. computational time and vs. the number of design iterations on the fine grid.
However, it is not claimed that either implementation is optimally tuned, so the CPU
time figures are indicative only.

Both multigrid algorithms LNMG and SMG have been tested with two optimisa-
tion algorithms on the fine grid: simple steepest descent (SD) and the L-BFGSB
algorithm [14] (L-BFGSB). SD is only able to converge the functional to about
2.4× 10−4, however the algorithm may be of interest to achieve “engineering”
precision when using many levels of multigrid. The more complex quasi-Newton
L-BFGSB algorithm is very robust and efficient and converges the functional to
8.4×10−23, but it is more difficult to implement in a multigrid method.

The convergence of LNMG is shown in Fig. 4. The L-BFGSB single and multi-
grid as well as the SD multigrid cases converge similarly in terms of design iterations
on the fine grid. The additional time spent on the solution of the coarse-grid problem
is apparent in the different wall clock times.

5.3 Simplified Multigrid Formulation

The SMG algorithm achieves engineering precision for the functional of 10−4 in half
the wall clock time or a third of the iterations compared to single grid optimisation
(Fig. 5). In terms of wall clock time the rate of convergence of SMG is better than
the single grid up to a functional convergence of 10−4 after which the overall conver-
gence rate drops to the one of the single-grid method. This behaviour is consistent
with the coarse grid search direction not being a descent direction on the fine grid
and the line-search rejecting this step. The design then advances using the fine-grid
steps only.
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Fig. 5. Performance of two multigrid formulations compared to single grid L-BFGSB optimi-
sation.

6 Conclusions

This paper has focused on two aspects which are necessary to develop multigrid
discretisations for fully coupled simultaneous design optimisation using infinite-
dimensional design spaces, namely gradient smoothing and the definition of the
coarse grid functional. As an alternative to the commonly used implicit smooth-
ing, explicit smoothing of the displacement and a 1:2 coarsening of the design space
has been proposed. Explicit displacement smoothing outperforms implicit gradient
smoothing as it is able to target highly oscillatory modes in the shape directly. The 1:2
coarsening of the design space improves on this significantly and has been adopted
for the presented multigrid experiments. However, the multigrid results indicate that
further improvements in the smoothing of the design variables are required.

Two formulations of the coarse grid functional have been discussed, one which
does alter the coarse grid functional to preserve fine grid stationary on the coarse grid,
and one which does not in oder to allow straightforward modular integration of the
fine grid design module. In this second formulation the prolongation to the fine grid
is safeguarded with a line-search to preserve stationarity of the fine grid. It is found
that for engineering accuracy preservation of stationarity on the coarse grid is not
essential and a simple implementation can perform well. However, these preliminary
results need further investigation on refined meshes and on other testcases.
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Large Electrical Power Systems Optimization
Using Automatic Differentiation
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Summary. This paper is an example of an industrial application of a well-known automatic
differentiation (AD) tool for large non-linear optimizations in Power Systems. The efficiency
of modern AD tools for computing first- and second-order derivatives of sparse problems,
makes its use now conceivable not only for prototyping models but also for operational soft-
wares in an industrial context. The problem described here is to compute an electrical network
steady state so that physical and operating constraints are satisfied and an economic criterion
optimized. This optimal power flow problem is solved with an interior point method. Neces-
sary derivatives for the simulator of the network equations are either hand-coded or based on
an AD tool, namely ADOL-C. This operator overloading tool has the advantage of offering
easy-to-use drivers for the computation of sparse derivative matrices. Numerical examples of
optimizations are made on large test cases coming from real-world problems. They allow an
interesting comparison of performance for derivative computations.

Keywords: Application of automatic differentiation, non-linear optimization, power systems

1 Introduction

RTE is a public service company acting as the French Transmission System Oper-
ator (TSO). It is a subsidiary of the EDF Group since 1st September 2005, and is
the company responsible for operating, maintaining and developing the French elec-
tricity transmission network.With the biggest network in Europe, made up of some
100,000 km of high and extra high voltage lines and 44 cross-border lines, and its
central geographical position at the heart of the European continent, RTE is a crucial
player in the development of the European electricity market.

Our primary aim of research and development efforts is to improve the security
of France’s electricity supply, whilst optimizing the number of installations that need
to be built and limiting their impact. Research is therefore focused on overhead lines
and underground cables, health and environment, as well as the operation and safety
of the power system. Power system operators today need accurate static and dynamic
studies, to be able to operate their networks as close as possible to their limits, whilst
guaranteeing a high level of security.
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In the context of a static study, a tool for the optimal power flow (OPF) problem is
a powerful approach to reach various difficult objectives like the economic dispatch,
the voltage profile optimization or the planning of the necessary reactive power com-
pensation means. Modern OPF generally use a full active-reactive representation of
power flows and a high-performance solving method based on a non-linear program-
ming algorithm: the primal-dual interior point method (IPM). Such an OPF deals
with general non-linear objectives and constraints and ask for precise evaluations of
first and second derivatives of network equations.

Until now, underlying sparse gradient vector, Jacobian and Hessian matrices have
always been computed by hand due to a reason of runtime performance. Today, with
the help of automatic differentiation (AD) tools like ADOL-C [3, 4], the painful
and error-prone task of hand-coded derivatives becomes less and less necessary. And
one can easily imagine a new generation of operational models entirely based on
AD [1, 2]. This paper attempts to compare advantages and disadvantages of such a
choice on a OPF problem frequently encountered in operational studies.

2 Optimal Power Flow (OPF) Problem

2.1 Formulation

It is based on the study of the electrical power in AC networks. The complex power
flowing into a network can be divided into a real part, the active power, and an
imaginary part, the reactive power. The active power expressed in MegaWatt (MW)
concerns the physical work and the heat. In an opposite way, the reactive power ex-
pressed in MegaVoltAmpereReactive (Mvar) is sudden. It is due to a capacitive or
inductive behavior of the network and of the loads of consumption. It does not have
a practical interest for the consumer.

An optimal network state is searched while considering a contingency analysis.
Some disconnections of generating units and/or removals of circuits are simulated.
The goal is to obtain an optimal secured state without any active constraints: no
overload of power flows and no voltage limit violation. This can be achieved with
the modification of control variables. The security of the network, while considering
these hypothetic electrical failures, is essential to the reliability of the power supply.

Contingencies are taken into account by repeating systematically, as much as the
number of events, all the network variables and constraints of the safe base case [7]
in order to form one single optimization problem. This frontal approach implies that
the problem size increases linearly with the number of contingencies. For the trans-
mission network this is a real limitation since the base case is already a large-scale
problem. Fortunately, in practice, many contingencies are insignificant because some
others dominate them. Consequently, it is only necessary to consider the most sseri-
ous ones.



OPF with ADOL-C 295

The OPF problem above can be formulated as a general non-linear programming
problem:

min
x∈Rn

f (x)

s.t. h(x) = 0 (1)
g(x) � 0
x � x � x

where f : R
n→ R, h : R

n→ R
mand g : R

n→ R
p. These functions are supposed to

be twice differentiable.
The objective function f is mainly made of a sum of quadratic terms for the least

square minimization of a voltage profile or a generation planning. It also deals with
linear terms as a penalization of infeasibilities: load-shedding in MW and reactive
power investment in Mvar.

The equalities h are the most numerous and represent the active and reactive
power balance at each bus of the network:

∀k ∈ N,

⎧
⎪⎪⎨

⎪⎪⎩

∑
i∈NGk

Pi−ALk−APIk = 0

∑
i∈NGk

Qi−RLk−RPIk = 0
(2)

where:

• N is the set of all the buses;
• NGk is the set of generators connected to bus k;
• ALk is the active load located at bus k;
• RLk is the reactive load located at bus k;
• APIk is the active power injection located at bus k;
• RPIk is the reactive power injection located at bus k;
• Pi is the generated active power by the unit i in MW;
• Qi is the generated reactive power by the unit i in Mvar.

In (2), the terms APIk and RPIk are non-linear functions of the voltage magnitude
V and phase θ :

⎧
⎪⎪⎨

⎪⎪⎩

APIk = V 2
k ∑

i∈l(k)
αi−Vk ∑

i∈l(k)
Viβi cos(θk−θi + γi)

RPIk = V 2
k ∑

i∈l(k)
α
′
i −Vk ∑

i∈l(k)
Viβ

′
i sin(θk−θi + γi)

(3)

where l(k) is the set of buses connected to bus k and (α,β ,γ) are parameters.
The inequalities g are mainly due to the power flow limits on each circuit and are

also expressed as a function of the voltage and phase:
√

A2
ki +R2

ki√
3Vk

� Iki (4)
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with: {
Aki = V 2

k αi−VkViβi cos(θk−θi + γi)
Rki = V 2

k α
′
i −VkViβ

′
i sin(θk−θi + γi)

(5)

and where:

• Aki is the active power flow through the circuit ki;
• Rki is the reactive power flow through the circuit ki;
• Iki is the maximal current for the circuit ki.

The vector x holds all the independent variables. Each component of x is bounded
and represents a state or a control variable. A state variable is not directly control-
lable like the voltage and the phase of a substation. Whereas a control variable can
be controlled by any human or automatic mean. It can be the power unit generation,
the capacitor bank, the ratio of a transformer, etc.

2.2 Solution

The problem (1) is solved with a primal-dual IPM [6]. IPM finds its roots in the mod-
ification of the Karush-Kuhn-Tucker (KKT ) conditions [5] with the introduction of
a positive penalty parameter µ (also called barrier parameter) on the complementar-
ity equations. This perturbation leads to (KKT )µ conditions that can be more easily
solved with a Newton method. Successive Newton solutions of (KKT )µ are per-
formed for different values of barrier parameter µ describing a progressive decrease
toward a zero numerical value. At the end of this iterative process, the last solution
is attempted to be an optimum of the locally convex original problem.

Linearization of the (KKT )µ conditions with a Newton method yields a sparse
linear system whose matrix coefficients are of the form:

⎛

⎜
⎝

L(x,λh,λg) H(x)T G(x)T

H(x) 0 0
G(x) 0 diag( g(x)

λg
)

⎞

⎟
⎠ (6)

where:

• λg and λh are the Lagrangian multipliers of the inequality and equality con-
straints respectively;
• L is the Hessian matrix of the Lagrangian function;
• H is the Jacobian matrix of the equality constraints;
• G is the Jacobian matrix of the inequality constraints.

Calculations for the IPM optimizer can be divided mainly in two parts: the sim-
ulator and the linear solver, as shown in Fig. 1. Both must use sparse techniques and
optimal ordering to reduce the computational overhead.

Many specialized calls to the simulator are required to form the sparse system
of linear equations: primary functions, first and second derivatives to calculate the
gradient of the objective function ∇ f , L, H, and G matrices. Thus, the simulator
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Fig. 1. IPM Optimizer main calls. The simulator is either hand-coded or based on the ADOL-C
capabilities in order to form the matrix (6).

has an important role in the global performance of the optimizer especially with AD
when most of the computation time is spent in the simulation phase.

In this context, ADOL-C has the advantage to propose two easy-to-use drivers
for the computation of sparse Jacobians and sparse Hessians [3]. On entry, sparse
data are given in coordinate format. For both drivers, there is also a flag to indicate
which AD mode must be used to compute the derivatives. A zero value for the flag
indicates that the drivers are called at a point with a new sparsity structure, then the
forward mode evaluation is used. On the contrary, if the flag has a nonzero value, this
means that the sparsity structure is the same that for the last call and only the reverse
mode is executed, resulting in a reduced computational complexity. For the IPM, the
pattern of the matrix (6) remains unchanged for all the optimization phase. Thus,
it is necessary to call the forward mode only for the initial pattern determination of
matrices at the first iteration. All the other IPM iterations use the reverse mode of AD.

3 Numerical Experiments

The frontal approach is tested for a various number of contingencies on the French
continental transmission network. This extremely high voltage 400− 225 kV net-
work is made of 1207 buses, 1821 circuits and 185 generating units. The safe base
case is considered as well as cases with up to 16 of interesting contingencies. All the
tests systematically use the hand-coded and the ADOL-C v1.10.2 based version of
the IPM optimizer for comparison. Simulations are run on an Intel R©Xeon R©3.6 GHz
LinuxTM32 bits platform.

Table 1 gives a main description on the problems sizes. For all of these problems,
AD and the hand-coded simulators lead exactly to the same optimal solution for the
IPM. This observation is primordial, because on one side it confirms the robustness
of ADOL-C, and on the other side, it validates the implementation of the hand-coded
derivates.

Figure 2 shows the nonzero structure of all the matrices for the base case. Each
matrix is very sparse with the following low fill-in rates: 0.07% for the Jacobian G,
0.15% for the Jacobian H, and 0.06% for the Hessian of Lagrangian L. The nonzero
structure of all the matrices for the case with 16 contingencies is presented on Fig. 3.
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Table 1. Five large optimization problems

Number of contingencies Problems sizes Non-zero terms
n p m nnz(G) nnz(H) nnz(L)

0 5986 1575 2415 6300 21065 21068
2 17958 11123 7245 31692 63179 64668
4 29930 20671 12075 57084 105301 108276
8 53874 39767 21735 107868 189529 195476
16 101762 77959 41055 209436 358025 369916

Fig. 2. Sparsity patterns for the base case (no contingency).
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Fig. 3. Sparsity patterns for the largest case (16 contingencies).

Simulation times are indicated on Table 2 for both the hand-coded and AD based
simulators. As expected, a hand-coded simulator is much faster than a simulator
using AD. In the best case (base case), AD simulator is about 17 times slower than
the hand-coded program. This number rises up to 27 times in the worst case with 8
contingencies. In fact, the complexity of formula in (3) is real and this can be a first
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Table 2. IPM runtimes (in seconds)

Number of contingencies HAND-CODED times AD times
Totala Simulator Solver Totala Simulator Solver

0 2.4 0.5 1.6 10.5 8.7 1.6
2 17 2 15 55 40 15
4 54 4 49 129 78 49
8 148 10 136 412 271 140
16 718 27 686 1326 646 676

a Total = Simulator + Solver + Extra computation time not indicated here

Table 3. Total runtime ratios

Number of contingencies Ratio

0 4.4
2 3.2
4 2.4
8 2.8
16 1.8

explanation of the relative low performance of the ADOL-C simulator in comparison
with the hand-coded one. Moreover, for the two last cases, ADOL-C has begun to
write down on disk instead of using RAM with the default settings for the buffer
sizes and the number of temporary Taylor store. Obviously this is the reason why the
execution is slowed down. Finally, in certain circumstances, optimal check-pointing
strategies can bring down these numbers drastically. It is not known to the author if
such procedures are implemented in ADOL-C v1.10.2.

Fortunately, total optimization times are not so disparate as indicated by the run-
time ratios between AD and the hand-coded program on Table 3. The range of vari-
ation is only from 4.4 times slower for the base case to only 1.8 times slower for
the biggest problem. It is notable that these ratios tend to decrease when the problem
size becomes very large.

This behavior is explained by the time sharing between the simulator and the
solver of linear equations that tends to become predominant as the matrix order in-
creases. This is a paradoxical but important result since it means that the larger the
optimization problem is, the lesser is the critical use of an AD tool.

Table 4 gives the detailed time distribution of all the computations based on
AD: initial pattern determination of matrices, functions ( f , g and h), gradient of
the objective function (∇ f ), Jacobian of the equality constraints (H), Jacobian of the
inequality constraints (G) and the Hessian of the Lagrangian (L). This distribution is
given as a percentage of the time relative to AD simulator, see the sixth column of
Table 2.

The first remark is that the time spent in AD is mainly due to the Hessian compu-
tations at each iteration of IPM. All the first derivatives are not so costly to compute
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Table 4. Time distribution for AD computation (in percent)

Number of contingencies Patterns Functions ∇ f H G L

0 6.5 4.3 0.0 5.4 1.1 82.7
2 10.4 3.2 0.5 4.7 2.0 79.2
4 14.0 3.3 0.4 4.6 1.8 75.9
8 16.3 2.2 0.3 3.2 1.3 76.7
16 21.8 1.4 0.2 2.2 1.0 73.4

Fig. 4. Average time distribution for the computations of ADOL-C (in percent).

in comparison with the evaluation of functions. Finally, the initial pattern determi-
nation of all the matrices takes a more important part when the size of the problem
growths. This is not surprising because it is the only use of the AD forward mode.

Figure 4 graphically shows the time distribution on the average of the five opti-
mizations.

4 Conclusion

The operator overloading tool, ADOL-C, succeeds in giving exact results for large
OPF problems within an acceptable time. Due to restrictions on the computer mem-
ory amount, some larger problems could not be tested. In the author’s opinion, this
limitation is not real because only temporary.

In a future work, a comparison with an AD tool based on the source transforma-
tion technique will be done. Whatever the conclusions may be, there is no doubt that
AD will be of a great interest in the next generation modeling of RTE operational
problems.
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Summary. A key application of automatic differentiation (AD) is to facilitate numerical op-
timization problems. Such problems are at the core of many estimation techniques, including
maximum likelihood. As one of the first applications of AD in the field of economics, we used
Tapenade to construct derivatives for the likelihood function of any linear or linearized general
equilibrium model solved under the assumption of rational expectations. We view our main
contribution as providing an important check on finite-difference (FD) numerical derivatives.
We also construct Monte Carlo experiments to compare maximum-likelihood estimates ob-
tained with and without the aid of automatic derivatives. We find that the convergence rate of
our optimization algorithm can increase substantially when we use AD derivatives.

Keywords: General equilibrium models, Kalman filter, maximum likelihood

1 Introduction

While applications of automatic differentiation (AD) have spread across many differ-
ent disciplines, they have remained less common in the field of economics.1 Based
on the successes reported in facilitating optimization exercises in other disciplines,
we deployed AD techniques to assist with the estimation of dynamic general equilib-
rium (DGE) models. These models are becoming a standard tool that central banks
use to inform monetary policy decisions. However, the estimation of these models
is complicated by the many parameters of interest. Thus, typically, the optimization
method of choice makes use of derivatives. However, the complexity of the mod-
els does not afford a closed-form representation for the likelihood function. Finite-
difference methods have been the standard practice to obtain numerical derivatives in
this context. Using Tapenade (see [7], [8], [9]), we constructed derivatives for a gen-
eral formulation of the likelihood function, which takes as essential input the linear
representation of the model’s conditions for an equilibrium.

1 Examples of AD contributions to the computational finance literature are [3], [10], [6].
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Table 1. List of library functions

Blas Functions

daxpy.f dcopy.f ddot.f dgemm.f dgemv.f dger.f
dnrm2.f drot.f dscal.f dswap.f dtrmm.f dtrmv.f
dtrsm.f

Lapack Functions

dgebak.f dgebal.f dgeesx.f dgehd2.f dgehrd.f dgeqp3.f
dgeqr2.f dgeqrf.f dgesv.f dgetf2.f dgetrf.f dgetrs.f
dhseqr.f dlacn2.f dlacpy.f dladiv.f dlaexc.f dlahqr.f
dlahr2.f dlaln2.f dlange.f dlanv2.f dlapy2.f dlaqp2.f
dlaqps.f dlaqr0.f dlaqr1.f dlaqr2.f dlaqr3.f dlaqr4.f
dlaqr5.f dlarfb.f dlarf.f dlarfg.f dlarft.f dlarfx.f
dlartg.f dlascl.f dlaset.f dlassq.f dlaswp.f dlasy2.f
dorg2r.f dorghr.f dorgqr.f dorm2r.f dormqr.f dtrexc.f
dtrsen.f dtrsyl.f dtrtrs.f

The programming task was complicated by the fact that the numerical solution of
a DGE model under rational expectations relies on fairly complex algorithms.2 We
use Lapack routines for the implementation of the solution algorithm. In turn, our top
Lapack routines make use of several Blas routines. A byproduct of our project has
been the implementation of numerous AD derivatives of the double precision subset
of Blas routines. Table 1 lists the routines involved.

In the remainder of this paper, Sect. 2 lays out the general structure of a DGE
model and describes our approach to setting up the model’s likelihood function.
Section 3 outlines the step we took to implement the AD derivatives and how we
built confidence in our results. Section 4 gives an example of a DGE model that we
used to construct Monte Carlo experiments to compare maximum-likelihood esti-
mates that rely, alternatively, on AD or FD derivatives, reported in Sect. 5. Section 6
concludes.

2 General Model Description and Estimation Strategy

The class of DGE models that is the focus of this paper take the general form:

H(θ)

⎛

⎝
EtXt+1

Xt
Xt−1

⎞

⎠ = 0. (1)

In the equation above, H is a matrix whose entries are a function of the structural pa-
rameter vector θ , while Xt is a vector of the model’s variables (including the stochas-

2 In this paper we focus on the first-order approximation to the solution of a DGE model.
Many alternative approaches have been advanced. We use the algorithm described by [2]
which has the marked advantage of not relying on complex decompositions.
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tic innovations to the shock processes). The term Et is an expectation operator, con-
ditional on information available at time t and the model’s structure as in (1). Notice
that allowing for only one lead and one lag of Xt in the above equation implies no
loss of generality.

The model’s solution takes the form:

Xt = S(H(θ))Xt−1, (2)

thus, given knowledge of the model’s variables at time t− 1, a solution determines
the model’s variables at time t uniquely. The entries of the matrix S are themselves
functions of the matrix H and, in turn, of the parameter vector θ .

Partitioning Xt such that Xt =
(

xt
εt

)
, where εt is a collection of all the innova-

tions to the exogenous shock processes (and possibly rearranging the system) it is
convenient to rewrite the model’s solution as

xt = A(H(θ))xt−1 +B(H(θ))εt . (3)

Again, the entries in the matrices A and B are fundamentally functions of the param-
eter vector θ . Given a subset of the entries in xt as observable, call these entries yt ,
the state-space representation of the system takes the form:

xt = A(H(θ))xt−1 +B(H(θ))εt (4)
yt = Cxt (5)

Without loss of generality, we restrict the matrix C to be a selector matrix, which
picks the relevant entries of xt . Using the Kalman Filter recursions, we can express
the likelihood function for the model as:

L = L(A(θ),B(θ),C,yt−h, ...,yt) (6)

where yt−h and yt are respectively the first and last observation points available.
The routines we developed, given an input H(θ), produce the derivative of the

likelihood function with respect to the structural parameters, ∂L
∂θ , and as an intermedi-

ate product, ∂A
∂θ , the derivative of the model’s reduced-form parameters with respect

to the structural parameters.

3 Implementing AD Derivatives

To obtain AD derivatives of the likelihood function, we used Tapenade in tangent
mode. Tapenade required limited manual intervention on our part. This is remarkable
given that the code to be differentiated consisted of approximately 80 subroutines
for a total of over 17,000 lines of code. The derivative-augmented code produced
by Tapenade covers approximately 25,000 lines (the original code has a size of 554
kilobytes and the differentiated code is 784 kilobytes in size).
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Recoding became necessary when the Lapack or Blas routines we called did
not explicitly declare the sizes of the arguments in the calling structure and instead
allowed for arbitrary sizing (possibly exceeding the storage requirements). A more
limited recoding was required when we encountered the use of “GOTO” statements
in the Fortran 77 code of the Blas library, which Tapenade could not process.

More substantially, two of the decompositions involved in the model solution,
the real Schur decomposition and the singular-value decomposition, are not always
unique. Parametric restrictions of the models we tested could ensure uniqueness
of these decompositions. In those cases, we verified that AD derivatives obtained
through Tapenade satisfied some basic properties of the decompositions that we de-
rived analytically, but our test failed whenever we relaxed those parametric restric-
tions to allow for more general model specifications

In particular, we relied on the Lapack routine DGEESX to implement the real
Schur decomposition. For a given real matrix E, this decomposition produces a uni-
tary matrix X , such that T = XHEX is quasitriangular. Given ∂E

∂θ , we need that the

derivative ∂X
∂θ satisfy ∂T

∂θ = ∂XH

∂θ EX +XH ∂E
∂θ X +XHE ∂X

∂θ , where ∂T
∂θ is itself quasitri-

angular. This property failed to be met by our AD derivatives when our choice of E
implied a non-unique Schur decomposition. To obviate this problem, we substituted
the AD derivative for the DGEESX routine with the analytical derivative of the Schur
decomposition as outlined in [1].

Similarly, the singular value decomposition, implemented through the DGESVD
routine in the Lapack library, given a real matrix E, produces unitary matrices U and
V and a diagonal matrix D, such that E = UDV T . Given ∂E

∂θ , it can be shown that
UT ∂E

∂θV = UT ∂U
∂θ D + ∂D

∂θ + D ∂V
∂θV , where ∂D

θ is diagonal and UT ∂U
∂θ and ∂V

∂θV are
both antisymmetric. Our AD derivative of the routine DGESVD failed to satisfy this
property when the matrix E had repeated singular values (making the decomposition
non-unique). We substituted our AD derivative with the analytical derivative derived
by [11].

To test the derivative of the likelihood function, we used a two-pronged ap-
proach. For special cases of our model that could be simplified enough as to yield a
closed-form analytical solution, we computed analytical derivatives and found them
in agreement with our AD derivatives, accounting for numerical imprecision. To test
the derivatives for more complex models that we could not solve analytically, we re-
lied on comparisons with centered FD derivatives. Generally with a step size of 10−8

we found broad agreement between our AD derivatives and FD derivatives. Plotting
AD and FD side by side, and varying the value at which the derivatives were eval-
uated, we noticed that the FD derivatives appeared noisier than the AD derivatives.
We quantify the “noise” we observed in an example below.

4 Example Application

As a first application of our derivatives, we consider a real business cycle model
augmented with sticky prices and sticky wages, as well as several real rigidities,
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following the work of [12]. Below, we give a brief description of the optimization
problems solved by agents in the model, which allows us to interpret the parameters
estimated in the Monte Carlo exercises that follow.

There is a continuum of households of measure 1, indexed by h, whose objective
is to maximize a discounted stream of utility according to the following setup:

max
[Ct (h),Wt (h),It (h),Kt+1(h),Bt+1(h)]

Et

∞

∑
j=0
β j (U(Ct+ j(h),Ct+ j−1(h))

+V (Lt+ j(h)))+β jλt+ j(h) [Πt(h)+Tt+ j(h)+(1− τLt)Wt+ j(h)Lt+ j(h)

+(1− τKt)Rkt+ jKt+ j(h)− 1
2
ψIPt+ j

(
It+ j(h)− It+ j−1(h)

)2

It+ j−1(h)

−Pt+ jCt+ j(h)−Pt+ jIt+ j(h)−
∫

s
ψt+ j+1,t+ jBt+ j+1(h)+Bt+ j(h)

]

+β jQt+ j(h)
[
(1−δ )Kt+ j(h)+ It+ j(h)−Kt+ j+1(h)

]
.

The utility function depends on consumption Ct(h) and labor supplied Lt(h). The pa-
rameter β is a discount factor for future utility. Households choose streams for con-
sumption Ct(h), wages Wt(h), investment It(h), capital Kt+1(h) and bond holdings
Bt+1(h), subject to the budget constraint, whose Lagrangian multiplier is λt(h), cap-
ital accumulation equation, whose Lagrangian multiplier is Qt(h), and the labor de-

mand schedule Lt(h) = Lt

(
Wt (h)

Wt

)− 1+θw
θw . Households rent to firms (described below)

both capital, at the rental rate RKt , and labor at the rental rate Wt(h), subject to labor
taxes at the rate τLt and to capital taxes at the rate τKt . There are quadratic adjust-
ment costs for investment, governed by the parameter ψI , and capital depreciates at
a per-period rate δ . We introduce Calvo-type contracts for wages following [5]. Ac-
cording to these contracts, the ability to reset wages for a household h in any period
t follows a Poisson distribution. A household is allowed to reset wages with proba-
bility 1− ξw. If the wage is not reset, it is updated according to Wt+ j(h) = Wt(h)π j

(where π is the steady-state inflation rate), as in [13]. Finally, Tt(h) and Πt(h) repre-
sent, respectively, net lump-sum transfers from the government and an aliquot share
of the profits of firms.

In the production sector, we have a standard Dixit-Stiglitz setup with nominal
rigidities. Competitive final producers aggregate intermediate products for resale.
Their production function is

Yt =
[∫ 1

0
Yt( f )

1
1+θp

]1+θp

(7)

and from the zero profit condition the price for final goods is

Pt =
[∫ 1

0
Pt( f )−

1
θp

]−θp

. (8)

where Pt( f ) is the price for a unit of output for the intermediate firm f .
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Intermediate firms are monopolistically competitive. There is complete mobility
of capital and labor across firms. Their production technology is given by

Yt( f ) = AtKt( f )αLd
t ( f )1−α . (9)

Intermediate firms take input prices as given. Ld
t ( f ), which enters the intermediate

firms’ production function, is an aggregate over the skills supplied by each house-

hold, and takes the form Ld
t ( f ) =

(∫
h Lt(h)

1
1+θw

)1+θw
. At is the technology level and

evolves according to an autoregressive (AR) process:

At −A = ρA (At−1−A)+ εAt , (10)

where εAt is an iid innovation with standard deviation σA, and A is the steady-state
level for technology. Intermediate firms set their prices Pt( f ) according to Calvo-type
contracts with reset probabilities 1−ψP. When prices are not reset, they are updated
according to Pt+ jt( f ) = Pt( f )π j.

Finally, the government sector sets a nominal risk-free interest rate according to
the reaction function:

it =
π
β
−1+ γπ(πt −π)+ γY (log(Yt)− log(Yt−1)+ εit , (11)

where inflation πt ≡ Pt
Pt−1

, and εit is itself an AR process of order 1. For this process,
we denote the AR coefficient with ρi; the stochastic innovation is iid with standard
deviation σi. Notice that, in this setting, households are Ricardian, hence the time-
profile of net lump-sum transfers is not distortionary. We assume that these transfers
are set according to:

τLtWtLt + τKtRKtKt = Gt +Tt . (12)

Labor taxes, τLt , and capital taxes, τKt , follow exogenous AR processes

τLt − τL = ρL (τLt−1− τL)+ εLt , (13)

τKt − τK = ρK (τKt−1− τK)+ εKt , (14)

as does Government spending (expressed as a share of output)

Gt

Yt
− G

Y
= ρG

(
Gt−1

Yt−1
− G

Y

)
+ εGt . (15)

In the equations above, the exogenous innovations εLt ,εKt ,εGt are iid with standard
deviations σL, σKt , and σG, respectively. The parameters τL, τK , and G

Y , without a
time subscript, denote steady-state levels.

The calibration strategy follows [4] and parameter values are reported in Table 2.
By linearizing the necessary conditions for the solution of the model, we can express
them in the format of (1).
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Table 2. Calibration

Parameter Used to Determine Parameter Used to Determine

Parameters governing households’ and firms’ behavior

β = 0.997 discount factor φI = 3 investment adj. cost
τL = 0.28 steady state labor tax

rate
τK = 0 steady state capital tax rate

ψP = 0.75 Calvo price parameter ψW = 0.75 Calvo wage parameter
δ = 0.025 depreciation rate

Monetary Policy Reaction Function

γπ = 1.5 inflation weight γY = 0.5 output weight

Exogenous Processes
AR(1) Coefficient Standard Deviation

ρL = 0.98 labor tax rate σL = 3.88 labor tax rate innovation
ρK = 0.97 capital tax rate σK = 0.80 capital tax innovation
ρG = 0.98 govt spending σG = 0.30 govt spending innovation
ρi = 0.95 monetary policy σi = 0.11 monetary policy innovation
ρA = 0.95 technology σA = 0.94 labor tax innovation

5 Monte Carlo Results

Using the model described in Sect. 4 as the data-generating process, we set up
a Monte Carlo experiment to compare maximum-likelihood estimates obtained
through two different optimization methods. One of the methods relies on our AD
derivative of the model’s likelihood function. The alternative method, uses a two-
point, centered, finite-difference approximation to the derivative.

In setting up the likelihood function, we limit our choices for the observed
variables in the vector yt of (5) to four series, namely: growth rate of output
log(Yt)− log(Yt−1), price inflation πt , wage inflation ωt ≡ Wt

Wt−1
, and the policy inter-

est rate it . For each Monte Carlo sample, we generate 200 observations, equivalent
to 50 years of data given our quarterly calibration, a sample length often used in
empirical studies. We attempt to estimate the parameters ρi, σi, governing the ex-
ogenous shock process for the interest rate reaction function; ψP, ψW , the Calvo
contract parameters for wages and prices; and γπ , and γY the weights in the mone-
tary policy reaction function for inflation and activity. In the estimation exercises, we
kept the remaining parameters at their values in the data-generating process as de-
tailed in Table 2. We considered 1,000 Monte Carlo samples.3 The two experiments
described below differ only insofar as we chose two different initialization points for
the optimization routines we used to maximize the likelihood function.

3 Our maximum-likelihood estimates were constructed using the MATLAB optimization
routine FMINUNC. When the optional argument “LargeScale” is set to “OFF”, this routine
uses a limited memory quasi-Newton conjugate gradient method, which takes as input first
derivatives of the objective function, or an acceptable FD approximation.
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Fig. 1. Sampling Distribution of Parameter Estimates; the Initial Guesses Coincided with the
True Values in the Data-Generating Process.

Figure 1 shows the sampling distribution for the parameter estimates from our
Monte Carlo exercise when we initialize the optimization routine at the true param-
eter values used in the data-generating process. The black bars in the various panels
denote the estimates that rely on AD derivatives, while the white bars denote the
estimates obtained with FD derivatives. The optimization algorithm converged for
all of the 1,000 Monte Carlo samples.4 We verified that the optimization routine did
move away from the initial point towards higher likelihood values, so that clustering
of the estimates around the truth do not merely reflect the initialization point. For our
experiment, the figure makes clear that when the optimization algorithm is initiated

4 For our MATLAB optimization routine, we set the convergence criterion to require a
change in the objective function smaller than to 10−4, implying 6 significant figures for
our specific likelihood function. This choice seemed appropriate given the limited preci-
sion of observed series in practical applications.
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Fig. 2. Sampling Distribution of Parameter Estimates; the Initial Guesses Did Not Coincide
with the True Values in the Data-Generating Process.

at the true value for the parameters of interest, reliance on FD derivatives minimally
affects the maximum-likelihood estimates for those parameters.5

Of course, the true value of the parameters do not necessarily coincide with the
maximum-likelihood parameter estimates for small samples. Yet, it is unrealistic to
assume that a researcher would happen on such good starting values. Figure 2 reports
the sampling distribution of estimates obtained when we initialize the optimization
algorithm at arbitrary values for the parameters being estimated, away from their true
values. For the estimates reported in Fig. 2, we chose ρi = 0.6, σi = 0.4, ψP = .5,
ψW = 0.5, γπ = 3, γY = 0.15. The bars in Fig. 2 show the frequency of estimates in a
given range as a percentage of the 1,000 experiments we performed. We excluded re-
sults for which our optimization algorithm failed to converge. The figure makes clear

5 We experimented with a broad set of Monte Carlo experiments by varying the choice of
estimation parameters, so as to encompass the near totality of parameters in the calibration
table, or so as to study individual parameters in isolation. We found results broadly in
line with the particular Monte Carlo experiments we are reporting below. Our results also
appear robust to broad variation in the calibration choice.
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Fig. 3. Percentage Difference Between AD and FD Derivatives.

that the convergence rate is much higher when using AD derivatives (47.2% instead
of 28.3% for FD derivatives). Moreover, it is also remarkable that the higher con-
vergence rate is not accompanied by a deterioration of the estimates (the increased
height of the black bars in the figure is proportional to that of the white bars).

To quantify the difference between AD and FD derivatives of the likelihood
function for one of our samples, we varied the parameters we estimated one at a time.
Figure 3 shows the percentage difference in the magnitude of the AD and FD deriva-
tives for ρi and σi. We discretized the ranges shown using a grid of 1,000 equally
spaced points. The differences are generally small percentage-wise, although, on oc-
casion, they spike up, or creep up as we move away from the true value, as in the
case of σi. For the other parameters we estimated, we did not observe differences in
the magnitudes of the AD and FD derivatives larger than 10−4 over ranges consistent
with the existence of a rational expectations equilibrium for our model.

6 Conclusion

Given that the approximation error for a first derivative of the likelihood function
of a DGE model computed through FD methods depends on the size of the second
derivative, which itself is subject to approximation error, we view having an inde-
pendent check in the form of automatic derivatives as a major contribution of our
work. As an example application, we showed that AD derivatives can facilitate the
computation of maximum-likelihood estimates for the parameters of a DGE model.
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Summary. Giving some numerical methods for combinatorial computation by means of au-
tomatic differentiation, this paper reports the effectiveness of the technique of automatic dif-
ferentiation in the field of combinatorial computation or discrete computation.

Keywords: Higher order derivatives, Taylor series, permanent, Hamiltonian cycle, Hamilto-
nian path

1 Introduction

Automatic differentiation [1, 2] is powerful technique for computing derivatives,
sensitivity analysis, rounding error analysis as well as combinatorial computations.
Some algorithms for computing the matrix permanent with automatic differentiation
were given in [4], that can be regarded as one of combinatorial computations. In this
paper, several algorithms for counting the number of Hamiltonian cycles and Hamil-
tonian paths in a given graph are proposed, which are similar to those for matrix
permanent.

1.1 Matrix Permanent

In this section, several approaches with automatic differentiation to compute the per-
manent are summarized [4].

The permanent of n-dimensional square matrix A = (ai j) is defined as

per(A)≡∑
σ

a1σ(1)a2σ(2) · · ·anσ(n),

where σ runs over all the permutations of {1,2, · · · ,n} [3]. Many mathematical and
combinatorial results on the computation of matrix permanent were well known [5].

Defining an n-variate polynomial f as

f (x1,x2, · · · ,xn)≡
n

∏
i=1

(ai1x1 +ai2x2 + · · ·+ainxn), (1)
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per(A) can be represented as its n-th order derivative

∂ n

∂x1∂x2 · · ·∂xn
f (x1,x2, · · · ,xn). (2)

The value of the derivative (2) is computed by several methods that are (1) higher
order multivariate automatic differentiation, (2) commutative quadratic nilpotent el-
ements, (3) Taylor series expansion, and (4) residues.

The higher order multivariate automatic differentiation can be simply imple-
mented by C++ template technique. Since the function f is polynomial so that the
program that computes (2) is quite simple as shown in [4].

A commutative quadratic nilpotent element (abbreviated to ‘cqne’) ξ is a non
zero variable of which square is equal to zero, i.e., ξ �= 0 and ξ 2 = 0. A set of cqne
ξ1, ξ2, · · · , ξn (ξi �= 0, ξi

2 = 0, and ξiξ j = ξ jξi for 1 ≤ i, j ≤ n) can be used by
the evaluation of the function f . With cqne’s, the following equality holds for the
expansion of f (ξ1,ξ2, · · · ,ξn):

∂ n f
∂x1∂x2 · · ·∂xn

= the coefficient of the term ξ1ξ2 · · ·ξn.

This gives an algorithm of the computation of the permanent. For example, when
n = 2, the expansion of f (ξ1,ξ2) is as follows:

f (ξ1,ξ2) = (a11ξ1 +a12ξ2)(a21ξ1 +a22ξ2)
= a11a21ξ 2

1 +(a11a22 +a12a21)ξ1ξ2 +a12a22ξ 2
2

= (a11a22 +a12a21)ξ1ξ2,

where (1) is represented as f (x1,x2)≡ (a11x1 +a12x2)(a21x1 +a22x2).
Another approach for computing the same coefficient defined by (2) is the Taylor

series. Defining a univariate function g(x) as

g(x)≡ f (x20
,x21

, · · · ,x2n−1
) (3)

where f is defined as (1), the coefficient of the term of x2n−1 of g(x) gives the same
value of (2). The coefficient can be computed as a product of n polynomials of degree
2n by means of FFT (fast Fourier transformation).

In general, for two positive integers T and N (T < N), the coefficient of a term
of xT of a polynomial f (x) can be computed as residues. When the degree of a
polynomial f (x) is N, the coefficient of a term xT in f (x) is equal to

1
N

N−1

∑
k=0

f (ei 2π
N k)e−iT 2π

N k. (4)

For computing per(A) of n× n matrix A, N is equal to 2n and T is equal to 2n− 1.
So that (2) can be computed as the residues of g(x) [4]. The degree of g(x) may
be reduced as described in [4], however, the reduction is omitted here as well as the
evaluation of g(x) with higher precision computation that gives the same value of (2).
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2 Counting Hamiltonian Cycles

In this section, we show algorithms for counting the Hamiltonian cycles of directed
or undirected graph.

2.1 Formulation

A simple directed graph G is an ordered pair (V,E), where V is a set of vertices
{v1,v2, · · · ,vn} and E is a set of directed edges {a1,a2, · · · ,am} without self-loops
nor parallel edges. When the graph G is undirected, it can be represented as a di-
rected graph G′ with two directed edges with opposite direction corresponding to
each undirected edge of G.

An adjacency matrix A = (ai j) of G is defined as

ai j =
{

1 edge (vi,v j) exists in E
0 otherwise

Denote n×n diagonal matrix X(x1,x2, · · · ,xn):

X(x1,x2, · · · ,xn)≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x2

x3
. . .

xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

A path from vi to v j is represented by a sequence of vertices (v�1 ,v�2 , · · · ,v�r ),
where �1 = i and �r = j. vi and v j are the initial vertex and the final vertex of the
path, respectively. A cycle is represented by a path from vi to the same vertex vi.

Definition 1. A Hamiltonian cycle is a cycle that visits each vertex in V exactly once
(except the vertex which is both the initial and the final vertex that is visited twice).

Definition 2. The number of Hamiltonian cycles in directed graph G is denoted by
c(G).

Note that when G is undirected graph, c(G) is equal to c(G′) where G′ is a di-
rected graph constructed by replacing each undirected edge with two directed edges
with opposite direction. The value of c(G) must be even number since an undirected
cycle is counted twice as two directed cycles with opposite direction to each other.

It is important that the permanent of the adjacency matrix A is different from
c(G).

Definition 3. A multivariate matrix H(x1,x2, · · · ,xn) is defined as n-th power of the
matrix product of the adjacency matrix A and X(x1,x2, · · · ,xn), i.e.

H(x1,x2, · · · ,xn)≡ (X(x1,x2, · · · ,xn) ·A)n,

in which all the entries are polynomials of x1, x2, · · · , xn.
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The variable xi is assigned to the directed edges whose initial vertex is vi. Note that
the correspondence between vi and xi is important (i = 1, · · · ,n).

Definition 4. The (i, j) entry of H(x1,x2, · · · ,xn) is denoted by Hi, j(x1,x2, · · · ,xn).

All the monomials appearing in (i, j) entries of H (1 ≤ i, j ≤ n) have the same
order n. A monomial xd1

1 xd2
2 · · ·xdn

n (d1 +d2 + · · ·+dn = n) is corresponding to a path
on G from vertex vi to vertex v j, where vk appears dk-times in the path except the
final vertex of the path. Thus, a monomial with dk = 1 (k = 1, · · · ,n) is corresponding
to a path with n edges in which all the vertices appear exactly once except the final
vertex (that may be not equal to the initial vertex). Such a path in which the initial
vertex is equal to the final vertex is a Hamiltonian cycle, that are computed at the
diagonal entries of H.

Proposition 1. The number of Hamiltonian cycles c(G) is equal to the coefficient of
a term of a monomial x1x2 · · ·xn in (1,1)-element of H.

Proof. The polynomial in the (1,1)-element represents all the paths consisting of n
edges from v1 to v1, that may be a cycle or a path visiting the same vertex several
times. The monomial x1x2 · · ·xn in the polynomial in the (1,1)-element represents
a path in which all the vertices appear exactly once except the final vertex v1, i.e.,
Hamiltonian cycle. When there is a Hamiltonian cycle, it is corresponding to a mono-
mial so that the coefficient of a term with the monomial is equal to the number of the
Hamiltonian cycles that start from v1 and reach to v1. As mentioned above, when G
is undirected graph, thus the number of Hamiltonian cycles c(G) is even, since for a
Hamiltonian cycle there is the reverse direction cycle. ��

Note that a Hamiltonian cycle is distinguished by a sequence of the vertices that
starts a fixed vertex (e.g. v1) and that ends the same fixed vertex (e.g. v1).

Corollary 1. Each diagonal element of H has the term of the same coefficient of the
monomial x1x2 · · ·xn.

Proof. The (k,k)-entry of H represents paths of n edges that start from vk and reach
to vk. When there is a Hamiltonian cycle c, it can be regarded as a (closed) path that
starts from vk and reaches to vk (k = 1, · · · ,n). ��

Definition 5. Denote the n−1 th power of X ·A by

Hp(x1,x2, · · · ,xn)≡ (X ·A)n−1.

Corollary 2. The number of Hamiltonian paths from vi to v j is equal to the coeffi-
cient of a term of a monomial x1 · · ·x j−1x j+1 · · ·xn of (i, j)-entry of Hp.

A Hamiltonian path consists of n−1 edges of which initial vertices are v1, v2, · · · ,vn
except v j, thus the coefficient of a monomial x1 · · ·x j−1x j+1 · · ·xn in (i, j)-entry of Hp
is equal to the number of the Hamiltonian paths from vi to v j.
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Corollary 3. H ′(x1, · · · ,xn) ≡ (A ·X)n gives a similar result as that by H, i.e. the
coefficient of the monomial x1x2 · · ·xn of the diagonal element of H ′ is equal to the
number of Hamiltonian cycles.

The variable xi is assigned to the directed edges whose terminal vertex is vi in H ′.

Example 1. For G = (V,E) in Fig. 1, denote the adjacency matrix by A and a multi-
variate diagonal matrix by X :

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0 1
1 0 1 1 1 0
1 1 0 0 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X(x1,x2,x3,x4,x5,x6) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 0 0 0 0 0
0 x2 0 0 0 0
0 0 x3 0 0 0
0 0 0 x4 0 0
0 0 0 0 x5 0
0 0 0 0 0 x6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus the resulting multivariate matrix H(x1,x2, · · · ,x6) is defined as

H(x1,x2,x3,x4,x5,x6)≡ (X ·A)6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 x1 x1 0 0 x1
x2 0 x2 x2 x2 0
x3 x3 0 0 x3 0
0 x4 0 0 x4 x4
0 x5 x5 x5 0 x5
x6 0 0 x6 x6 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

6

.

Note that the entries of H are polynomials of x1, x2, · · · , x6.
There is a term 10 · x1x2x3x4x5x6 in all the diagonal elements ((k,k)-entry,

k = 1, · · · ,6) of the matrix H(x1,x2,x3,x4,x5,x6). Thus its coefficient is 10,
which may be computed by any methods of symbolic computation, auto-
matic differentiation, or numerical computation. This means that the number
of Hamiltonian cycles in G is 10. For this example, there are five Hamilto-
nian cycles (v1,v2,v4,v6,v5,v3,v1), (v1,v2,v3,v5,v4,v6,v1), (v1,v3,v2,v4,v5,v6,v1),
(v1,v3,v2,v5,v4,v6,v1), (v1,v3,v5,v2,v4,v6,v1), and their reverse order cycles.

Note that the permanent of the adjacency matrix A is 29, that is different from
c(G) as mentioned above.

1

2

3

4

5

6

Fig. 1. G = (V,E) undirected graph
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Definition 6. A univariate matrix H̃(x) is defined as the n-th power of the matrix
product of the adjacency matrix A and X(x1,x2, · · · ,x2n−1

), i.e.

H̃(x) = (X(x,x2, · · · ,x2n−1
) ·A)n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x20

x21

x22

. . .

x2n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

n

.

Proposition 2. The number of Hamiltonian cycles c(G) is equal to the coefficient of
a term of x2n−1 in (1,1)-entry of H̃(x).

Proof. The product of x, x2, · · · , x2n−1
is x2n−1. Thus, the coefficient of x2n−1 in

(1,1)-entry of H̃(x) corresponds to the number of paths in which all the vertices v1,
v2, · · · , vn appear exactly once, i.e. Hamiltonian cycles (See Condition2.1, Lemma1,
Corollaries in [4]).

Corollary 4. Each diagonal element of H̃(x) has the same coefficient for the term
x2n−1.

Definition 7. Denote the (n−1)-th power of X(x,x2, · · · ,x2n−1
)A by

H̃p(x)≡ (X(x,x2, · · · ,x2n−1
) ·A)n−1.

Corollary 5. The number of Hamiltonian paths from vi to v j is equal to the coeffi-

cient of a term of x∑
n
k=1,k �= j 2k

of (i, j)-entry of H̃p(x).

Corollary 6. H̃ ′(x)≡ (A ·X(x,x2, · · · ,x2n−1
))n gives similar results as those by H̃(x).

2.2 Algorithms

The computation of the coefficient of the term in H is quite similar to that of the
permanent in the introduction.

Lemma 1. the number of Hamiltonian cycles c(G) are equal to the n-th order deriva-
tives with respect to x1, x2, · · · , xn:

c(G) =
∂Hk,k(x1,x2, · · · ,xn)
∂x1∂x2 · · ·∂xn

, k = 1, · · · ,n. (5)

Algorithm 1 With repeated applications of automatic differentiation to a program
that computes H1,1(x1,x2, · · · ,xn), the n-th order derivatives in (5) can be computed.

Algorithm 2 Using commutative quadratic nilpotent elements ξ1, ξ2, · · · , ξn as x1,
x2, · · · , xn in the computation of H1,1, the coefficient of a monomial ξ1ξ2 · · ·ξn in the
final result gives the value of c(G).
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Algorithm 3 With 2n degree Taylor series computation with operator overloading,
the coefficient of x2n−1 in H̃1,1(x) is equal to the value of c(G).

Algorithm 4 Ĥ ≡
(
X(xd1 ,xd2 , · · · ,xdn) ·A

)n can be used instead of H̃, where d1,
d2, · · · , dn are distinct positive integers the value of which sum is represented only by
the sum of di’s.

Denoting ∑n
i=1 di as N, with N +1 degree Taylor series computation with opera-

tor overloading, the coefficient of xN in Ĥ1,1(x) is equal to the value of c(G).

Algorithm 5 The value of c(G) is computed with the residue of h(z)≡ H̃1,1(z):

1
2πi

∮ h(z)
z2n dz =

1
2π

∫ 2π

0
h(eiθ )e−i(2n−1)θdθ . (6)

This integration can be computed with numerical integration:

1
2n

2n−1

∑
k=0

h(ei 2π
2n k)e−i(2n−1) 2π

2n k. (7)

Note that H1,1, H̃1,1 and Ĥ1,1 can be replaced with Hk,k, H̃k,k and Ĥk,k for
k=2, · · · , n, respectively.

3 Implementation Notes

3.1 Higher Order Automatic Differentiation

A C++ program is given in Fig. 2. This program is only for counting the Hamiltonian
cycles of G in the above example 1 for simplicity.

Another approach is repeated application of AD preprocessors to a program that
computes the value of the multivariate polynomial H1,1(x1,x2, · · · ,xn).

3.2 Commutative Quadratic Nilpotent Elements

The commutative quadratic nilpotent elements are implemented by means of a
method similar to that of symbolic manipulation systems. A brief note on such im-
plementation is given in [4]. The use of them is quite simple. The cqne’s ξ1, · · · , ξn
are used as arguments of the independent variables x1, · · · , xn in the program that
computes the value of H1,1(x1,x2, · · · ,xn).

3.3 Taylor Series

A C++ program for counting Hamiltonian paths from vi to v j is given in Fig. 3. This
program is only for counting the Hamiltonian paths on G of the above example 1.
The starting vertex vi and the final vertex v j are specified by the global variables vi
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/* Counting Hamiltonian cycles with higher order AD.
* This example program is only for a graph with 6
* vertices.
*/
#include <iostream>
template <class T>
struct ad {
T v, dv;
ad(const T v0=T(), const T dv0=T()):v(v0),dv(dv0){}

};
template <class T>
ad<T> operator+(const ad<T> x, const ad<T> y){
return ad<T>(x.v+y.v,x.dv+y.dv); }

template <class T>
ad<T> operator*(const ad<T> x, const ad<T> y){
return ad<T>(x.v*y.v, x.dv*y.v+x.v*y.dv); }

typedef ad<ad<ad<ad<ad<ad<double> > > > > > ad6;

int a[6][6]={{0,1,1,0,0,1}, {1,0,1,1,1,0}, {1,1,0,0,1,0},
{0,1,0,0,1,1}, {0,1,1,1,0,1}, {1,0,0,1,1,0}};

int main(){
int n=6,aij;
ad6 x[n],A[n][n],C[n][n];
x[0].dv.v.v.v.v.v=1;
x[1].v.dv.v.v.v.v=1;
x[2].v.v.dv.v.v.v=1;
x[3].v.v.v.dv.v.v=1;
x[4].v.v.v.v.dv.v=1;
x[5].v.v.v.v.v.dv=1;
for(int i=0;i<n;i++) for(int j=0;j<n;j++) {

if(a[i][j]>0) { A[i][j]=x[i]; C[i][j]=A[i][j]; }
}
for(int p=0;p<5;p++) {

ad6 B[n][n];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)

for(int k=0;k<n;k++)
B[i][j]=B[i][j]+C[i][k]*A[k][j];

for(int i=0;i<n;i++)
for(int j=0;j<n;j++) C[i][j]=B[i][j];

}
std::cout<<C[0][0].dv.dv.dv.dv.dv.dv<<std::endl;

}

Fig. 2. Simple AD program for counting the Hamiltonian cycles in G

and v j, where the number of vertices is 1 to n instead of indices of arrays that are 0
to n−1 in programming language C.

In this program, the multiplication of two Taylor series is implemented with naive
O(n2) algorithm for simplicity, that should be replaced with more efficient algorithm
with FFT.

3.4 Residues

The coefficient of a term xT in a polynomial of each diagonal element of H̃(x) is
represented by residues, where T =∑n−1

k=0 2k = 2n−1. The value of the coefficient can
be computed with numerical integration by (7). An example program for computing
the value is given in Fig. 4.
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/* Counting directed Hamiltonian paths with Taylor series.
* This example program is only for a graph with 6
* vertices.
*/
#include <iostream>
#include <vector>

int vi=1; /* the initial vertex of Hamiltonian paths */
int vj=6; /* the final vertex of Hamiltonian paths */

struct taylor : std::vector<double> {
static int default_degree;
taylor():std::vector<double>(default_degree){ }

};
int taylor::default_degree=64;
taylor operator+(const taylor x, const taylor y){
taylor z;
for(int i=0;i<x.size();i++) z[i]=x[i]+y[i];
return z; }

taylor operator*(const taylor x, const taylor y){
taylor z;
for(int i=0;i<x.size();i++) for(int j=0;j<y.size();j++)

if(i+j<z.size()) z[i+j]=z[i+j]+x[i]*y[j];
return z; }

std::ostream& operator<<(std::ostream&s, const taylor x){
for(int i=0;i<x.size();i++) s<<x[i]<<" ";
return s;

}

int a[6][6]={{0,1,1,0,0,1}, {1,0,1,1,1,0}, {1,1,0,0,1,0},
{0,1,0,0,1,1}, {0,1,1,1,0,1}, {1,0,0,1,1,0}};

int main(){
int n=6;
taylor::default_degree=1<<n;
taylor x[n],XA[n][n],C[n][n];
for(int i=0;i<n;i++) x[i][1<<i]=1;
for(int i=0;i<n;i++) for(int j=0;j<n;j++) {

if(a[i][j]>0) { XA[i][j]=x[i]; C[i][j]=XA[i][j]; }
}
/* compute H_p(x) */
for(int p=0;p<n-2;p++) {

taylor B[n][n];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)

for(int k=0;k<n;k++)
B[i][j]=B[i][j]+C[i][k]*XA[k][j];

for(int i=0;i<n;i++)
for(int j=0;j<n;j++) C[i][j]=B[i][j];

}
std::cout<<C[vi-1][vj-1][(1<<n)-1-(1<<(vj-1))]

<<std::endl;
}

Fig. 3. Simple Taylor series program for counting the Hamiltonian paths from vi to v j in G

4 Concluding Remarks

Algorithms similar to those for computing the matrix permanent are effective for a
combinatorial computation with the notion of automatic differentiation.

The computational complexity of c(G) is O(n32n) by the naive implementation of
the algorithm 5. Since the value of c(G) can be computed from any of the diagonal el-
ements of a matrix H̃(x), the (1,1)-element of H̃(x) denoted by h(x) is represented as

h(x) = eT
1 H̃(x)e1 = eT

1 (X(x,x2, · · · ,x2n−1
) ·A)ne1.
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/* Counting Hamiltonian cycles by means of residue. */
#include <iostream>
#include <complex>
#include <cmath>
typedef std::complex<double> cdouble;

cdouble f(int n,int*A[],cdouble x){
cdouble AX[n][n],C[n][n];
cdouble X[n];
X[0]=x; for(int i=1;i<n;i++) X[i]=X[i-1]*X[i-1];
for(int i=0;i<n;i++) for(int j=0;j<n;j++) {

if(A[i][j]>0) { AX[i][j]=X[i]; } else { AX[i][j]=0; }
C[i][j]=AX[i][j];

}
for(int p=0;p<n-1;p++){

cdouble B[n][n];
for(int i=0;i<n;i++) for(int j=0;j<n;j++)

for(int k=0;k<n;k++)
B[i][j]=B[i][j]+C[i][k]*AX[k][j];

for(int i=0;i<n;i++) for(int j=0;j<n;j++)
C[i][j]=B[i][j];

}
return C[0][0];

}

int a[6][6]={{0,1,1,0,0,1}, {1,0,1,1,1,0}, {1,1,0,0,1,0},
{0,1,0,0,1,1}, {0,1,1,1,0,1}, {1,0,0,1,1,0}};

int main() {
int n=6;
int *A[n];
for(int i=0;i<n;i++) A[i]=a[i];
//for(int i=0;i<n;i++) for(int j=0;j<n;j++)
// std::cin>>A[i][j];
int N=(1<<n);
int T=N-1;
cdouble s=0;
for(int k=0;k<N;k++) {

double theta=k*2*M_PI/N;
cdouble x(cos(theta),sin(theta));
cdouble t(cos(-T*theta),sin(-T*theta));
cdouble v=f(n,A,x);
s=s+v*t;

}
s=s/(cdouble)N;
std::cout<<"s="<<s<<std::endl;

}

Fig. 4. Program for counting the Hamiltonian cycles in G as residues

This form requires n− 1 multiplications of an n dimensional vector and an n× n
square matrix A ·X that are performed by O(n3) complex arithmetic operations, and
there are 2n evaluations of h(x) in (7).

Counting the Hamiltonian paths from vi to v j can be implemented by similar
programs to those for c(G).

Inalgorithm4, thedegreeofX(x,x2, · · · ,x2n−1
) isgeneralizedtoX(xd1 ,xd2 ,· · ·,xdn).

When d1, · · · , dn are selected appropriately [4], the complexity with algorithm 5 is
O(n3 ·T ), where T = 1+∑n

k=1 dk. This suggests that the sum of di’s may grow expo-
nentially according to n.

The summation in (7) can be independently divided into any size of sub-
summations. This means that the algorithm 5 can be quite efficiently executed with
parallel computers.
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When graph G is restricted, e.g. cubic graph, the arrangement of monomial xdi

to vi may reduce the total complexity. This situation should be investigated more
precisely in future work.

(See http://warbler.ise.chuo-u.ac.jp/ad2008-examples/ for
example programs.)
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Exploiting Sparsity in Jacobian Computation
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Summary. Using a model from a chromatographic separation process in chemical engineer-
ing, we demonstrate that large, sparse Jacobians of fairly complex structures can be com-
puted accurately and efficiently by using automatic differentiation (AD) in combination with
a four-step procedure involving matrix compression and de-compression. For the detection of
sparsity pattern (step 1), we employ a new operator overloading-based implementation of a
technique that relies on propagation of index domains. To obtain the seed matrix to be used
for compression (step 2), we use a distance-2 coloring of the bipartite graph representation
of the Jacobian. The compressed Jacobian is computed using the vector forward mode of AD
(step 3). A simple routine is used to directly recover the entries of the Jacobian from the com-
pressed representation (step 4). Experimental results using ADOL-C show that the runtimes
of each of these steps is in complete agreement with theoretical analysis, and the total runtime
is found to be only about a hundred times the time needed for evaluating the function itself.
The alternative approach of computing the Jacobian without exploiting sparsity is infeasible.

Keywords: Sparse Jacobians, graph coloring, sparsity patterns, simulated moving bed chro-
matography

1 Introduction

Automatic Differentiation (AD) has become a well established method for com-
puting derivative matrices accurately and reliably. This work focuses on a set of
techniques that constitute a scheme for making such a computation efficient in the
case where the derivative matrix is large and sparse. The target scheme, outlined in
Algorithm 1 in its general form, has been found to be an effective framework for
computing Jacobian as well as Hessian matrices [2, 7]. The input to Algorithm 1 is
a function F whose derivative matrix A ∈ R

m×n is sparse. The seed matrix S deter-
mined in the second step of the algorithm is such that s jk, its ( j,k) entry, is one if the
jth column of the matrix A belongs to group k and zero otherwise. Since this corre-
sponds to a partitioning of the columns of A, in every row r of the matrix S there is
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Algorithm 1 A scheme for computing a sparse derivative matrix.
procedure SPARSECOMPUTE(F : R

n→ R
m)

1. Determine the sparsity structure of the derivative matrix A ∈ R
m×n of F .

2. Using a coloring on an appropriate graph of A, obtain an n× p seed matrix S with the
smallest p that defines a partitioning of the columns of A into p groups.

3. Compute the numerical values of the entries of the compressed matrix B≡ AS.
4. Recover the numerical values of the entries of A from B.

exactly one column c in which the entry src is equal to one. There exist approaches
that use a seed matrix where a row-sum is not necessarily equal to one [11], but they
will not be considered here.

The specific set of criteria used to define a seed matrix S—the partitioning
problem—depends on whether the derivative matrix A to be computed is a Jacobian
(nonsymmetric) or a Hessian (symmetric). It also depends on whether the entries
of the matrix A are to be recovered from the compressed representation B directly
(without requiring any further arithmetic) or indirectly (for example, by solving for
unknowns via successive substitutions). In previous works, we had provided a com-
prehensive review of graph coloring models that capture the partitioning problems
in the various computational scenarios and developed novel algorithms for the col-
oring models [6, 8]. The efficacy of the coloring techniques in the overall process
of Hessian computation via AD had been demonstrated in [7]. Implementations in
C++ of all our coloring and related algorithms for Jacobian and Hessian computa-
tion have been assembled in a package called COLPACK [9]. Currently COLPACK
is being interfaced with ADOL-C, which is an operator overloading based tool for
the differentiation of functions specified in C/C++ [12].

In this paper, using a model from a chromatographic separation process as a test
case and ADOL-C as an AD tool, we demonstrate the efficacy of the scheme in
Algorithm 1 in computing a sparse Jacobian via a direct recovery method. In Sect. 2
we discuss an efficient implementation of a technique for sparsity pattern detection
based on propagation of index domains that we have incorporated into ADOL-C and
used in the first step of Algorithm 1. In Sect. 3 we discuss the distance-2 coloring
algorithm we used in the second step to generate a seed matrix. To compute the
compressed Jacobian in the third step, we used the vector forward mode of ADOL-
C. We discuss Simulated Moving Beds, the context in which the Jacobians con-
sidered in our experiments arise, in Sect. 4 and present the experimental results in
Sect. 5. The experimental results show that sparsity exploitation via coloring en-
ables one to affordably compute Jacobians of dimensions that could not have been
computed otherwise due to excessive memory or runtime requirements. The results
also show that the index domain-based sparsity detection technique now available in
ADOL-C is several orders of magnitude faster than the bit vector-based technique
used earlier.
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2 Automatic Differentiation and Sparsity Pattern Detection

AD provides exact derivative information about a smooth function F : R
n → R

m,
x �→ F(x), given as a computer program by breaking down the computation of F into
a sequence of elementary evaluations upon which the chain rule of calculus is sys-
tematically applied. The decomposition of the function F into its elementary compo-
nents can be formalized as shown in Algorithm 2. There the precedence relation j≺ i
denotes that variable vi directly depends on variable v j. The derivative of each ele-
mentary function ϕi(v j) j≺i with respect to its arguments v j, j ≺ i, is obtained easily,
by a call to a library function. Then the chain rule is applied to the overall decompo-
sition to obtain the derivatives of the function F with respect to the input variables
x ∈R

n. Depending on the starting point of this process—either at the beginning or at
the end of the respective chain of computational steps—one gets the forward or the
reverse mode of AD. The forward mode propagates derivatives from independent to
dependent variables, and the reverse mode propagates derivatives from dependent to
independent variables.

Under the framework followed in this paper, the task of making the computation
of sparse derivative matrices via AD efficient begins with sparsity pattern detection.
Several techniques for sparsity pattern detection have been suggested in previous
studies for both of the major AD implementation paradigms, source transformation
and operator overloading. The techniques could be classified as static and dynamic,
depending on whether analysis is performed at compile time or run time. An ex-
ample of a static technique in the context of source transformation is available in
[16]. For dynamic techniques, two major approaches could be identified in the lit-
erature: sparse vector-based and bit vector-based. As exemplified by the SparsLinC
library [2], a module in the source transformation AD tools ADIFOR and ADIC, a
sparse vector based approach uses sparse data structures, instead of dense arrays, to
execute a fundamental operation in AD codes, a (mathematical) linear combination
of vectors. (Strictly speaking, the ADIFOR/SparsLinC combination is a mechanism
for transparently exploiting sparsity in derivative computation; sparsity detection is a
byproduct.) SparsLinC uses three different data structures to represent sparse vectors
(one for vectors with at most one nonzero, a second for vectors with a few scattered
nonzeros, and a third for vectors with a contiguous block of nonzeros) and heuris-
tically switches from one representation to another as needed to reduce the large
runtime overhead observed in earlier sparse vector based approaches [1].

Bit vector based approaches avoid the need for dynamic memory management,
at the cost of increased memory requirement. When bit vectors are used, say, in
the forward mode, the Jacobian is multiplied from the left by n bit vectors, where

Algorithm 2 Decomposition of function evaluation into elementary components.
procedure FUNCTION EVALUATION(y = F(x))

for i = 1 to n do : vi−n← xi � independent variables
for i = 1 to l do : vi← ϕi(v j) j≺i � intermediate variables
for i = 1 to m do : yi← vl−i+1 � dependent variables
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n is the number of independent variables; each arithmetic operation in the forward
sweeps then corresponds to a logical OR, yielding the overall sparsity pattern of the
Jacobian. Since one Jacobian-vector product needs to be performed for each inde-
pendent variable, the complexity of this approach is O(n ·OPS(F)), where OPS(F)
is the number of operations involved in the evaluation of the function F . This time
complexity can be reduced via Bayesian probing [13]. In terms of memory, the bit
vector approach in its simplest form requires 1/64th of the space needed to store a
Jacobian, assuming representation of doubles and integers needs 64 bits. Thus far
ADOL-C had a Jacobian sparsity pattern detection capability based on the use of bit
vectors in such a manner. Bit vectors have also been used in the source transforma-
tion AD tool TAF [10].

In this work we develop a technique that could be viewed as a variant of the
sparse-vector approach that minimizes dynamic memory management cost in the
context of operator overloading. The idea is to extend the basic operations and intrin-
sic functions such that they propagate index domains in addition to function values.
In particular, with each variable vi computed during the function evaluation, an index
domain Xi satisfying the following condition is associated; see [11] for details.

{
0≤ j ≤ n :

∂vi

∂x j
�≡ 0

}
⊆Xi. (1)

Here equality holds as long as no degeneracy arises in the function evaluation. Once
the index domains of the dependent variables are obtained, the sparsity pattern of the
corresponding Jacobian is readily available.

Using the internal function representation generated via operator-overloading,
the index domains can be computed at runtime using the simple method outlined in
Algorithm 3. Note that if a proper subset relation occurs in (1), then Algorithm 3
would yield an overestimate for the sparsity pattern. This results in an increase in
runtime and space but not in incorrect numerical results. In Algorithm 3, for each
operation, only the entries of the index domains of the operands are involved in the
set union operation. The number of entries of the new index domain is bounded
above by the maximum number of nonzeros per row of the Jacobian, ρmax. Hence,
the complexity of Algorithm 3 is O(ρmax ·OPS(F)); see [11] for details.

We have incorporated into ADOL-C an array-based implementation of
Algorithm 3 that has the complexity just mentioned. In the implementation, an
integer array of fixed size (that could potentially be increased during the course of
the algorithm) is used for each intermediate variable. The first two entries of an
array are reserved for storing the current number of elements of the index domain
and the current size of the array, respectively. If a variable occurs on the left side of

Algorithm 3 Propagation of index domains.
procedure COMPUTEINDEXDOMAINS(Xi)

for i = 1 to n do : Xi−n←{i} � independent variables
for i = 1 to l do : Xi ←

⋃
j≺i X j � intermediate variables

for i = 1 to m do : Xi ←Xl−i+1 � dependent variables
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an assignment, the corresponding array is updated to reflect the change in the index
domain. If the size of the array becomes no longer large enough to store all indices,
then the array is reallocated at runtime to increase its size. Since sparse Jacobian
matrices in practice have only few nonzero entries per row, the initial (default) size
of the arrays needs to be set at a fairly small value, and reallocation at later stages
is hardly needed; in this study, 20 was used as the initial value. In the event that the
initial estimate on array size is not large enough, note that one need not recompile
the entire ADOL-C code, as the array reallocation happens at runtime. Note also
that the sparsity structure determined by ADOL-C through this technique is correct
so long as the control flow does not change. If the control flow changes, ADOL-C
alerts the user via an appropriate error message. Runtime comparisons between
this array-based implementation of Algorithm 3 and the bit vector-based approach
previously available in ADOL-C will be presented in Sect. 5.

3 Compression via Coloring

Once the sparsity pattern is determined, a sparse Jacobian can be computed
efficiently using the compression-decompression scheme outlined in Algorithm 1.
Curtis, Powell, and Reid [4] were the first to observe that a structurally orthogonal
partition of a Jacobian matrix A—a partition of the columns of A in which no two
columns in a group share a nonzero at the same row index—gives a seed matrix S
where the entries of A can be directly recovered from the compressed representation
B ≡ AS. Coleman and Moré [3] modeled the associated problem of partitioning the
columns of the Jacobian into the fewest possible groups as a distance-1 coloring
problem on its column intersection graph.

As we have shown in [6], a structurally orthogonal partition of a Jacobian can
equivalently, but more conveniently, be modeled as a partial distance-2 coloring on
the bipartite graph representation of the structure of the Jacobian. The bipartite graph
Gb(A) = (V1,V2,E) of a Jacobian matrix A is a graph in which the vertex set V1 cor-
responds to the rows of A, the set V2 corresponds to the columns of A, and an edge
joining a row vertex ri and a column vertex c j exists whenever the matrix element
ai j is nonzero. A partial distance-2 coloring of the graph Gb on the vertex set V2 is
an assignment of colors (positive integers) to vertices in V2 such that every pair of
vertices from V2 at a distance of exactly 2 edges from each other receives distinct
colors. Clearly, two column vertices that receive the same color in a partial distance-
2 coloring are at a distance greater than two edges from each other, and hence are
structurally orthogonal. Thus, a partial distance-2 coloring is a partitioning of the
columns of the matrix into groups of structurally orthogonal columns. In contrast to
the column intersection graph, which has size proportional to the number of nonze-
ros in AT A, the size of the bipartite graph of a Jacobian A is proportional to the
number of nonzeros in A. Primarily for this reason, the partial distance-2 coloring
formulation uses less storage space and runtime compared to a distance-1 coloring
formulation [6].
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Algorithm 4 A greedy partial distance-2 coloring algorithm.
procedure GREEDYPARTIALD2COLORING(Gb = (V1,V2,E))

Let u1, u2, . . ., un be a given ordering of V2, where n = |V2|
Initialize forbiddenColors with some value a �∈V2
for i = 1 to n do

for each vertex w such that (ui,w) ∈ E do
for each colored vertex x such that (w,x) ∈ E do

forbiddenColors[color[x]]← ui

color[ui]← min{c > 0 : forbiddenColors[c] �= ui}

Finding a partial distance-2 coloring with the fewest colors is known to be an
NP-hard problem. In this work, we used GREEDYPARTIALD2COLORING (outlined
in Algorithm 4 and discussed in detail in [6, Sect. 3]) to find an approximate solution.
The complexity of GREEDYPARTIALD2COLORING is O(|E| ·∆(V1)), where ∆(V1)
is the maximum degree in the row vertex set V1 of the input bipartite graph Gb(A) =
(V1,V2,E). Note that, ∆(V1), which is the same as the maximum number of nonzeros
per row ρmax in the underlying Jacobian A, is a lower bound on the optimal number
of colors needed.

4 The Simulated Moving Bed Process

As a case study for evaluating the performance of the sparsity detection and coloring
techniques discussed in the previous two sections in the context of Algorithm 1, we
conducted experiments on Jacobians that arise in a model for liquid chromatographic
separation. We review this model in the current section.

Liquid chromatographic separation is used in many chemical industrial processes
as an efficient purification technique, since thermal methods such as distillation can-
not be used for thermally unstable products or those with high boiling points. In
liquid chromatography, a feed mixture is injected into one end of a column packed
with adsorbent particles, and then pushed toward the other end with a desorbent
(such as water or organic solvent). The mixture is separated by making use of the
differences in the migration speeds of components in the liquid. In True Moving
Bed (TMB) chromatography, the adsorbent moves in a counter-current direction to
the liquid in a column. Since the transport of the adsorbent causes difficulties (such
as axial mixing of components), Simulated Moving Bed (SMB) chromatography, a
pseudo counter-current process that mimics the operation of a TMB process, is used
instead [14].
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An SMB unit consists of several
columns connected in a series. Fig. 1
shows a simplified model of an SMB
unit with six columns, arranged in
four zones, each of which consists of
Ndis compartments. In the figure, feed
mixture and desorbent are supplied
continuously to the SMB unit at inlet
ports, while two products, extract and
raffinate, are withdrawn continuously
at outlet ports. The four streams, feed,
desorbent, extract, and raffinate, are
switched periodically to adjacent in-
let/outlet ports, and rotate around the
unit. Due to this cyclic operation, SMB
never reaches a steady state, but only a
Cyclic Steady State (CSS), where the
concentration profiles at the beginning
and at the end of a cycle are identical.

Q1

Q2,3

Q4,5

Q6

!Feed (QFe)Raffinate (QRa)

Desorbent (QDe) Extract (QEx)

Ndis comp.
︷ ︸︸ ︷

︸ ︷︷ ︸
Ndis comp.

Fig. 1: A simple model of an SMB unit.

Several different goals could be identified in an SMB process, maximizing through-
put being a typical one. This objective is modeled mathematically as an optimization
problem with constraints given by partial differential algebraic equations (PDAEs).

Numerical solution of the PDAEs requires efficient discretization and integra-
tion techniques. A straightforward approach here is to integrate the model until it
reaches the CSS, update the operating parameters and repeat until the optimal val-
ues are found. To reduce the computational effort associated with the calculation of
the CSS, approaches tailored for cyclic adsorption processes, where concentration
profiles are treated as decision variables, have been developed. These approaches
can be divided into two classes: those that discretize PDAEs only in space (single
discretization) and those that discretize both in space and time (full discretization).
Single discretization is well suited for complicated SMB processes, since it allows
for the use of sophisticated numerical integration schemes. It results in compara-
tively small but dense derivative matrices [5, 18]. Full discretization is the method of
choice if the step-size of the numerical integration can be fixed at a reasonable value
[15]. The derivative matrices involved in the use of full discretization are typically
sparse. We consider the computation of a sparse Jacobian for such a purpose. We use
a standard collocation method for the full discretization of the state equation with
nonlinear isotherms. The objective we have considered here is maximizing the feed
throughput, which is achieved by finding optimal values for the four flow parameters
Q1, QDe, QEx, and QFe (see Fig. 1) and the duration T of a cycle.
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5 Experimental Results

We considered ten Jacobians of varying sizes in our experiments. Table 1 lists the
number of rows (m), columns (n), and nonzeros (nnz) in each Jacobian as well as the
maximum, minimum, and average number of nonzeros per column (κ). The maxi-
mum, minimum, and average number of nonzeros per row in every problem instance
are ρmax = 6, ρmin = 2, and ρ̄ = 5.0. The last column of Table 1 shows the number
of colors p used by the two partial distance-2 coloring algorithms we experimented
with—the implementation of Algorithm 4 available in COLPACK and an implemen-
tation of a similar algorithm previously available in ADOL-C. In both of these greedy
algorithms, the natural ordering of the vertices was used since it gave fewer colors
compared to other ordering techniques.

The right part of Fig. 2 depicts the sparsity pattern of the smallest matrix in
our collection (P1). The remaining nine instances have similar, but appropriately
enlarged structures. As can be deduced from column κmax of Table 1, there is a
column in each of our test problems that contains nearly 10% of all the nonzeros in
the matrix and is itself nearly 50% filled with nonzeros. This column, which is the
fifth in each matrix, corresponds to the integration time (parameter T ) of the system
in the SMB model. Since the structure of this column and its neighborhood is hardly
visible in the main plot at the right in Fig. 2, we have included the plot at the left
where one “zooms” in the first eight columns.

Table 2 shows run times in seconds of various phases: the evaluation of the func-
tion F being differentiated (eval(F)) and the four steps S1, S2, S3, and S4 (see
Algorithm 1) involved in the computation of the Jacobian using the vector forward
mode of ADOL-C. The experiments were conducted on a Fedora Linux system with
an AMD Athlon XP 1666 Mhz processor and 512 MB RAM. The gcc 4.1.1 compiler
was used with -02 optimization.

For the sparsity detection step S1, results for both the new approach (propaga-
tion of index domains) and the previous approach used in ADOL-C (bit vectors)
are reported in Table 2. For the coloring step S2, results for the routines from COL-
PACK and ADOL-C are reported. Both of these routines implement Algorithm 4, but

Table 1. Matrix statistics and number of colors
used by a greedy algorithm (last column).

P m n nnz κmax κmin κ̄ p
1 4,370 4,380 24,120 2,375 1 5.0 8
2 8,570 8,580 47,340 4,655 1 5.0 8
3 17,145 17,155 95,670 9,555 1 5.0 8
4 25,545 25,555 142,590 14,235 1 5.0 8
5 50,745 50,755 283,350 28,275 1 5.0 8
6 76,115 76,125 426,470 42,775 1 5.0 8
7 101,495 101,505 569,600 57,275 1 5.0 8
8 152,245 152,255 855,860 86,275 1 5.0 8
9 270,195 270,205 1,520,360 153,435 1 5.0 8
10 506,095 506,105 2,850,320 287,995 1 5.0 8

0 7 0 4000
Fig. 2 Sparsity pattern of problem P1.
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S1 S2 graph build
P eval(F) old new ADO COL S3 S4 total ADO COL
1 0.0001 0.4 0.016 0.007 0.004 0.0044 0.0009 0.0270 0.4 0.1
2 0.0002 1.2 0.018 0.006 0.004 0.0096 0.0017 0.0333 0.4 0.1
3 0.0004 3.6 0.038 0.014 0.009 0.0188 0.0033 0.0774 1.5 0.2
4 0.0007 7.8 0.062 0.020 0.013 0.0276 0.0050 0.1144 8.0 0.3
5 0.0017 29.4 0.104 0.040 0.026 0.0526 0.0095 0.1926 45.5 0.8
6 0.0032 67.4 0.159 0.060 0.040 0.0828 0.0151 0.2971 110.3 1.0
7 0.0045 122.3 0.238 0.082 0.053 0.1078 0.0205 0.4191 202.5 1.8
8 0.0063 275.7 0.332 0.121 0.080 0.1659 0.0309 0.6088 469.4 2.4
9 0.0108 870.7 0.580 0.233 0.142 0.2732 0.0435 1.0394 1,496.7 4.4

10 0.0199 3,050.9 1.072 0.416 0.266 0.5038 0.0834 1.9252 5,282.2 7.8

Table 2. Time in seconds spent on function evaluation and on the steps S1, S2, S3, and S4.
The column total lists the sum (S1-new + S2-COL + S3 + S4). The last two columns list
time spent on reading files from disk and building the bipartite graph data structures.
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Fig. 3. Plots of time required for function evaluation (left) and time spent on the various steps
normalized by the time for function evaluation (right).

their implementations and the data structures used to represent graphs differ. COL-
PACK uses the Compressed Storage Format, which consists of two integer arrays,
one corresponding to vertices and the other to edges, to represent a graph. ADOL-C
on the other hand uses linked structures to store a graph. The last two columns in
Table 2 show the times spent in building these graph data structures by reading files
specifying sparsity patterns from disk.

Figure 3 summarizes the trends suggested by the data in Table 2 (excluding
the graph build routines) in the cases where the new sparsity detection method and
the coloring functionality of COLPACK are used for steps S1 and S2, respectively.
We make the following observations from the experimental results. Our observations
involve comparisons with time complexities that were discussed in Sect. 3 and 4. To
ease reference here, we provide a summary of the complexities in Table 3.

Function evaluation. As expected, the runtime of function evaluation grows lin-
early with problem size (see left part of Fig. 3).
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S1
eval(F) old new S2 S3 S4

O(nnz(∇F)) O(n ·OPS(F)) O(ρmax ·OPS(F)) O(ρmax ·nnz(∇F)) O(p ·OPS(F)) O(nnz(∇F))

Table 3. Summary of time complexity results.

S1: Sparsity pattern detection. Table 2 shows that the approach based on prop-
agation of index domains is several orders of magnitude faster than the approach
based on bit vectors. This agrees well with the complexities given in Table 3. Focus-
ing on the former, as the right part in Fig. 3 shows, the runtime for sparsity detection
normalized relative to runtime for function evaluation remained constant as problem
size increased. This agrees well with the theoretical result derived in [11, Sect. 6.1],
where the operation count for the determination of sparsity pattern is bounded by
γ ·ρmax ·OPS(F), where γ is a small constant. Since ρmax equals six in each of our
test cases, one can deduce from Fig. 3 that γ is only around nine.

S2: Coloring and generation of seed matrix. The coloring algorithms invariably
used just eight colors for all the problem sizes considered. These results are either
optimal or at most only two colors off the optimal, since the lower bound in each case,
ρmax, is six. This is an impressive result, since Fig. 2 shows that the sparsity patterns
of the Jacobians is fairly complex when compared with Jacobians of structured grids.
In terms of runtime, the observed results for the COLPACK function completely
agree with the complexity given in Table 3. As can be seen from Table 2, the coloring
routine previously available in ADOL-C is somewhat slower than the COLPACK
routine. The big difference between the two, however, lies in the time needed to build
the graph data structures: the last two columns of Table 2 show that the ADOL-C
routine is up to three orders of magnitude slower than the COLPACK routine.

S3: Computation of the compressed Jacobian. Theoretically, the ratio between
the number of operations involved in the evaluation of a compressed Jacobian with
p columns and the number of operations involved in the evaluation of the function
itself is expected to be bounded by 1 + 1.5p; see [11, Sect. 3.2] for details. Since p
equals eight for each of our test problems, the expected (constant) bound is 13. As
can be seen from Fig. 3, the observed ratio is indeed a constant and at most only
twice as much; for the larger problems it is about 25. But, considering the large sizes
of these problems and considering that memory access times are not accounted for,
the deviation from the theoretical value is minimal.

S4: Recovery of original Jacobian entries. The recovery step involves a straight-
forward row-by-row mapping of nonzero entries from the compressed to the original
Jacobian. The observed run time behavior reflects this fact.

Total runtime. As one can see from Fig. 3, for the problems we experimented
with, the ratio between the total runtime needed to compute a sparse Jacobian and
the runtime for the function evaluation is observed to be a constant around 100.
This fairly small number shows that the sparse approach is effective for large-scale
Jacobian computations. The alternative “dense” approach is not feasible at all: out
of the ten Jacobians in our test bed, only the smallest could be computed without
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exploiting sparsity due to excessive memory requirement. It is interesting to note
that the multiplicative factor 100 observed in our experiments is distributed among
the four involved steps in the ratio 55 : 25 : 15 : 5 for the steps S1 : S3 : S2 : S4,
respectively. This shows that the coloring (S2) and recovery (S4) steps are by far the
cheapest.

6 Conclusion

We demonstrated that automatic differentiation implemented via operator overload-
ing together with efficient coloring algorithms constitute a powerful approach for
computing sparse Jacobian matrices. One of the contributions of this work is an effi-
cient implementation of a sparsity detection technique based on propagation of index
domains. The approach can be extended to detect sparsity pattern of Hessians [17].
We also plan to develop similar sparsity detection techniques for derivative matrices
in the context of source transformation based AD tools being developed within the
framework of OpenAD.
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Summary. A common way to solve PDE constrained optimal control problems by automatic
differentiation (AD) is the full black box approach. This technique may fail because of the
large memory requirement. In this paper we present two alternative approaches. First, we ex-
ploit the structure in time yielding a reduced memory requirement. Second, we additionally
exploit the structure in space by providing derivatives on a reference finite element. This ap-
proach reduces the memory requirement once again compared to the exploitation in time. We
present numerical results for both approaches, where the derivatives are determined by the
AD-enabled NAGWare Fortran compiler.

Keywords: PDE constrained optimal control, AD-enabled NAGWare Fortran compiler

1 Introduction

We consider a PDE-constrained optimal control problem

J(U)→min! (1)
s.t. ∂tU +∇ ·F(U) = S(q(t)) (2)

U :Ω × [0,T ]⊂R2× [0,T ]→RD.

with F = [ f ,g]. The state constraints are given by the nonlinear, scalar conserva-
tion law in the matrix form, where U denotes the state and D the dimension of the
state. The state control is given by q :∈ [0,T ]→R. Regularization terms can be eas-
ily included into this model. The domain Ω = (xa,xb)× (ya,yb) is assumed to be a
rectangle. The system (2) is called hyperbolic, if the Jacobian F ′(U) ∈RD,D is di-
agonalizable with real eigenvalues. It is well known that even if the data is smooth,
discontinuous solutions may arise. Hence a discontinuous Galerkin method is fre-
quently used to handle possible shocks [2, 10]. Writing (2) in weak form, one obtains
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∫

Ω
ϕ∂tUdΩ =

∫

Ω
∇ϕ ·F(U)dΩ −

∫

∂Ω
ϕF(U)d(∂Ω)+

∫

Ω
ϕS(q(t))dΩ (3)

for all test functions ϕ ∈ C∞(Ω). Now we discretize Ω by dividing the intervals
(xa,xb) and (ya,yb) in Nx and Ny equidistant intervals yielding the elements

Ωk,l = (xk−1,xk)× (yl−1,yl), 1≤ k ≤ Nx,1≤ l ≤ Ny

where

xk = xa + k∆xe with ∆xe =
xb− xa

Nx
,

yl = ya + k∆ye with ∆ye =
yb− ya

Ny
.

Using a discontinuous Galerkin formulation [2], we consider the function space

V P = {ϕ = [ϕi] : ϕi ∈ L1(Ω),ϕi|Ωk,l ∈PP(Ωk,l),k = 1, . . .Nx, l = 1, . . . ,Ny}

where L1(Ω) is the space of absolute integrable functions and PP the space of all
polynomials up to degree P. Thus we obtain for each element Ωk,l that
∫

Ωk,l

ϕ∂tUdΩk,l =
∫

Ωk,l

∇ϕ ·F(U)dΩk,l−
∫

∂Ωk,l

ϕF(U)d(∂Ωk,l)+
∫

Ωk,l

ϕS(q(t))dΩk,l

where U(t),ϕ ∈ V P. Since the definition of V P allows discontinuities on the edges
of the elements, we introduce

ϕ−e+1/2 = lim
ε→0

ϕ(xe+1/2−|ε|) and ϕ+
e+1/2 = lim

ε→0
ϕ(xe+1/2 + |ε|).

Because of the discontinuity, one needs to replace F(U) on the element bound-
ary by the numerical flux H(U−,U+). To ensure the consistence, one must have
H(U,U,n) = n ·F(U) where n denotes any unit direction vector. Thus, we obtain
∫

Ωk,l

ϕ∂tUdΩk,l =
∫

Ωk,l

∇ϕ ·F(U)dΩk,l −
∫

∂Ωk,l

ϕH(U−,U+,n)dΓ +
∫

Ωk,l

ϕS(q(t))dΩk,l .

The mapping from an arbitrary Ωk,l on the standard element (−1,1)2 is given by

ξ (x) = 2
x− xk−1

∆xe
−1, η(y) = 2

y− yl−1

∆ye
−1 in Ωk,l .

Taking a nodal base πiπ j ∈V P yields

Uk,l(x, t) =
P

∑
i=0

P

∑
j=0

Uk,l
i j (t)πi(ξ (x))π j(η(x)) x ∈Ωk,l , t ∈ [0,T ].

Note, that the mapping onto the standard element is required here. Replacing ϕ by
test functions (ϕi j)i, j=0,...,P, it follows with πiπ j = ϕi j on the element Ωk,l that
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∂tU
k,l
i j (x, t) =

2
∆xewi

(
P

∑
k=0

wkdki fk j +δi0Hx,0 j−δiPHx,P j

)

+
2

∆yew j

(
P

∑
k=0

wldl jgil +δi0Hy,i0−δiPHy,iP

)

+Si j(q).

(4)

Here, wi are the weights for the GLL quadrature [10], fi j = f (Ui, j), gi j = g(Ui, j), di j
the differential matrix for the 1D element and the numerical fluxes

Hx,0 j = H(Uk−1,l
P j ,Uk,l

0 j ,ex), Hx,P j = H(Uk,l
P j ,U

k+1,l
0 j ,ex),

Hy,i0 = H(Uk,l−1
iP ,Uk,l

i0 ,ey), Hy,iP = H(Uk,l
iP ,Uk+1,l

i0 ,ey).

The time integration is performed by an s-stage TVD Runge-Kutta method [10] with
a fixed step size T/N yielding a discretized U = (U0,U1, . . . ,UN). We write (4) in
short form by ∂tU = G(U). Then the Runge-Kutta method reads

• Set U0(x) = U(x,0).
• For n = 0, . . . ,N−1 determine Un+1 by

– Set U (0) = Un(x)

– Compute for i = 1, . . . ,s U (i) =
i−1
∑

l=0

(
αilU (l) +βil∆ tn+1G(U (l),q(l))

)

– Set Un+1 = U (s)

In this paper we use a Runge-Kutta method with fixed step size as time integration
but our argumentation can be extended to general time steppings. We want to find a
control vector q = (q0,q1, . . . ,qN−1) so that U minimizes the objective

J(U) =
N

∑
i=0

Ji(Ui) (5)

as discretization of the objective (1). We present three different approaches that yield
the same minimal q, but require a completely different amount of memory. They
differ in the exploitation of the structure in time and space resulting from a time in-
tegration and a finite element discretization in space. For this purpose, it is crucial
that there exists a reference finite element on which the adjoint computation takes
place. We derive novel formulas for the adjoint computation with Automatic Dif-
ferentiation. This forms the base for theoretical studies to analyze the relation to
optimize-then-discretize approaches which will be subject of future work.

2 Full Black Box AD

Algorithmic, or automatic, differentiation (AD) is concerned with accurate and ef-
ficient computation of derivatives for functions evaluated by computer programs.
The resulting derivatives are either Jacobian-vector-products (forward mode) or
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vector-Jacobian-products (reverse or adjoint mode). Note, that the gradient ∂J/∂q
of a scalar valued function J = J(c) : R

n �→ R can be determined with reverse or ad-
joint mode of AD at computational cost independent of the number n of input values
[3]. Therefore AD tool should be read as reverse mode AD tool.

To obtain the optimal control q that minimizes the objective (5), one has to de-
termine ∂J/∂q = (∂J/∂q0, . . . ,∂J/∂qN−1). For this purpose, one may perform the
whole forward integration up to the end of the time interval [0,T ] and then calculate
the desired adjoint information backwards. Here, applying the full black box reverse
mode AD means that the entire integration process is considered to be a black box
and is differentiated by a reverse mode AD tool. Then the full solution must be stored
which may be impossible for large-scale applications. Even if sufficient memory is
available, the writing and reading of data may slow down the computation consider-
ably. We want to exploit the structure inherent in the considered application to reduce
the memory requirement. First, we exploit the structure in time.

3 Exploiting the Structure in Time

For the exploitation of the structure in time, we rewrite the forward solution process
in a more abstract way. Let Ui+1 = R(Ui,qi) denote the discretized variable Ui+1 for
the time step i + 1, where R is the Runge-Kutta function with the state variable Ui

and the control variable qi as inputs. The forward integration can then be written as
follows:

Algorithm I: State Integration

• Set U0(x) = U(x,0) and J = 0
• for n = 0, . . . ,N−1

Un+1 = R(Un,qn) J = J + Jn+1(Un+1)

We want to reduce the memory requirement by only differentiating one Runge-Kutta
integration in each time step. The gradient components ∂J/∂qi are given by

∂J
∂qi

=
∂JN(UN)
∂UN

∂R(UN−1,qN−1)
∂UN−1

∂R(UN−2,qN−2)
∂UN−2 . . .

∂R(Ui,qi)
∂qi

+

∂JN−1(UN−1)
∂UN−1

∂R(UN−2,qN−2)
∂UN−2 . . .

∂R(Ui,qi)
∂qi

+

...
∂Ji(Ui+1)
∂Ui+1

∂R(Ui,qi)
∂qi

Let J̄i denote the gradient ∂Ji(Ui)/∂Ui, then one may apply the following algorithm
to determine all partial derivatives ∂J/∂qi for i = 0, . . . ,N−1:
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Algorithm II: Adjoint state integration

• Perform Algorithm I
• ŪN = J̄N
• for n = N−1, . . . ,0

q̄n = (Ūn+1)
∂R(Un,qn)
∂qn

(6)

J̄n = ∂Jn(Un)/∂Un

Ūn = (J̄n +Ūn+1)
∂R(Un,qn)
∂Un

(7)

The algorithm for the adjoint state integration with the resulting data dependen-
cies is illustrated in Fig. 1. Similar adjoint time integrations have been implemented
in many software packages, e.g. CVODES [5]. In this paper, we consider the deriva-
tion process of the body of the for-loop as a black box, i.e., an AD tool is applied to
evaluate (6) and (7). If one assumes that a tape-based AD implementation is used,
then for each adjoint time step, one has to write two tapes - one for the objective
J̄n and the other one for the Runge-Kutta step for the determination of q̄n and Ūn.
The exploitation of the time structure leads to a dramatic reduction of memory re-
quirement compared to the full black box AD approach since one only needs to write
two tapes for each time step using checkpointing strategies. We call this technique
time structure exploiting (TSE) algorithm. For example, CVODES applies equidis-
tant checkpointing. A detailed analysis for a similar model problem as considered for
the numerical example of this paper and binomial checkpointing can be found in [9].
The memory requirement of the adjoint computation can be reduced even further by
exploiting the structure in space as well.

U0 U1 U2 UN−2 UN−1 UN

q0 q1 qN−3 qN−2 qN−1

J(U1) J(U2) J(UN−2) J(UN−1) J(UN)

J̄1 J̄2 J̄N−2 J̄N−1 J̄N

Ū0 Ū1 Ū2 ŪN−2 ŪN−1 ŪN. . .

. . .

q̄0 q̄1 q̄N−3 q̄N−2 q̄N−1

Fig. 1. The differentiation process with data dependencies in time
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4 Exploiting the Structure in Space

The exploitation of spatial structure forms an obvious way to reduce the memory
required for adjoint computations, see, e.g., [1, 11]. In [11] the authors exploited
the spatial structure for elliptic PDEs. In [1], the authors consider also continuous
large-scale finite element PDE-discretizations. Both papers concentrate on the im-
plementation to exploit the spatial structure. In this paper, we will derive explicit
formulas for the adjoint computation of time dependent PDE-constrained problems
for the discontinuous Galerkin method. These formulas form the base of further the-
oretical studies in the future.

We call this technique time-and-space structure exploiting (TSSE) approach. We
examine the computation of q̄n and Ūn during Algorithm II in more detail. The eval-
uation of q̄n and Ūn given by (6) and (7) in one adjoint step n can be performed by

Algorithm III: Adjoint time step

• Compute for l = s−1, . . . ,0

Ū (l) =
s

∑
j=l+1

Ū ( j)
(
α jl I +β jl∆ tn+1 ∂G

∂U
(U (l),q(l))

)
(8)

q̄(l) =
s

∑
j=l+1

Ū ( j)β jl∆ tn+1 ∂G
∂q

(U (l),q(l)) (9)

• Ūn = Ū0 and q̄n = q̄(0)

As described in Sect. 1, the domain Ω is divided into several uniform rectangles.
Obviously, the derivative calculation is performed on the same rectangles. Since
the determination of the derivatives is the same on each rectangle it can be sim-
plified by concentrating the derivative calculation on one reference finite element.
Extracting the important parts of (8) and (9), we analyze Ū ( j) ∂G

∂U (U (l),q(l)) and
Ū ( j) ∂G

∂qi
(U (l),q(l)) since the term β jl∆ tn+1 is only a factor. We use the superscript

C for the center element, W for the left, E for the right, S for the lower and N for the
upper element to ease the reading.
For the determination of GC

i j = ∂tUC
i j on ΩC, we split the sum (4) into the three parts

∂tUC
i j (x, t) =

2
∆xewi

(
P

∑
s=0

wsdsi f C
s j

)

+
2

∆yew j

(
P

∑
t=0

wtdt jgC
it

)

+ (10)

2
∆xewi

(
δi0HC

x,0 j−δiPHC
x,P j

)
+

2
∆yew j

(
δi0HC

y,i0−δiPHC
y,iP

)
+ (11)

SC
i j(q) (12)

The adjoint for (10) on one element ΩC for a given matrix ḠC is calculated as
follows.
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Algorithm IV: Contribution of the finite element ΩC for i, j = 0, . . . ,P

• Evaluate f C
i j (U

C
i j )i, j=0,...,P and gC

i j(U
C
i j )i, j=0,...,P

• GC
i j = ∂tUC

i j = 2
∆xewi

(
P
∑

s=0
wsdsi f C

s j

)
+ 2
∆yew j

(
P
∑

t=0
wtdt jgC

it

)

• f̄ C
i j =

P
∑

s=0

2
∆xews

ḠC
st ·wi ·dis ·

∂ fC
i j

∂Gs j
, ḡC

i j =
P
∑

t=0

2
∆yewt

ḠC
it ·w j ·d jt ·

∂gC
i j

∂Git

• ŪC
i j =

P
∑

s=0

P
∑

t=0
( f̄ C

st ·
∂ fC

st
∂Ui j

+ ḡC
st ·

∂gC
st

∂Ui j
)

Computing the adjoints for (11) is a bit more complicated. First, one calculates the
numerical fluxes on the boundary of each finite element. For the determination in
x-direction, this flux requires the information of UW

P j and UC
0 j for all j = 0, . . . ,P.

For the y-direction US
iP and UC

i0 for i = 0, . . . ,P are needed. The numerical fluxes
are shown in Fig. 2. Note, that HW

x,P j = HC
x,0 j and HS

y,iP = HC
y,i0. Thus the adjoint

calculation for ΩC for the left boundary is given by

• Compute GC
0 j = ∂tUC

0 j = 2
∆xew0

·H(UW
P j,U

C
0 j,ex)

• ŪC
0 j = 2

∆xew0
· ḠC

0 j · ∂H
∂UC

0 j
(UW

P j,U
C
0 j,ex) ŪC

P j = 2
∆xew0

· ḠC
0 j · ∂H

∂UW
P j

(UW
P j,U

C
0 j,ex)

The adjoint calculation for the numerical fluxes on ΩW reads

• Compute GW
P j =− 2

∆xewP
·H(UW

P j,U
C
0 j,ex)

• ŪC
0 j =− 2

∆xewP
· ḠW

P j · ∂H
∂UC

0 j
(UW

P j,U
C
0 j,ex) ŪW

P j =− 2
∆xewP

· ḠW
P j · ∂H

∂UW
P j

(UW
P j,U

C
0 j,ex)

Thus the adjoints are determined twice by summation. We can put this together to
one calculation given by

ΩCΩW

ΩN

ΩE

ΩS

HW
x

HW
x HC

x HC
x

HS
y

HS
y

HC
y

HC
y

Fig. 2. The numerical fluxes
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Algorithm V: Contribution of numerical fluxes in x-direction

• Compute GC
0 j = ∂tUC

0 j = 2
∆xew0

·H(UW
P j,U

C
0 j,ex)

• GW
P j =−∂tUW

P j = 2
∆xewP

·H(UW
P j,U

C
0 j,ex)

• ŪC
0 j =

(
2

∆xew0
· ḠC

0 j− 2
∆xewP

· ḠW
P j

)
· ∂H
∂UC

0 j
(UW

P j,U
C
0 j,ex)

• ŪW
P j =

(
2

∆xew0
· ḠC

0 j− 2
∆xewP

· ḠW
P j

)
· ∂H
∂UW

P j
(UW

P j,U
C
0 j,ex)

The same argument can be applied in y-direction yielding

Algorithm VI: Contribution of numerical fluxes in y-direction

• Compute GC
i0 = ∂tUC

i0 = 2
∆yew0

·H(US
iP,UC

i0,ey)
• GS

iP = ∂tUS
iP =− 2

∆yewP
·H(US

iP,UC
i0,ey)

• ŪC
i0 =

(
2

∆yew0
· ḠC

0 j− 2
∆yewP

· ḠS
P j

)
· ∂H
∂UC

0 j
(Uk−1,l

iP ,UC
i0,ey)

• ŪS
iP =

(
2

∆yew0
· ḠC

0 j− 2
∆yewP

· ḠS
P j

)
· ∂H
∂US

P j
(US

iP,UC
i0,ey)

The adjoints of the third part can be computed by

Algorithm VII: Contribution of the control on ΩC for i, j = 0, . . . ,P

• GC
i j = SC

i j(q) S̄C
i j = ḠC

i j q̄+ =
∂SC

i j
∂q

Now one has to put the derivatives determined on each elementΩC together. The de-
termination of ŪC by Algorithm IV concentrates on the corresponding finite element.
The use of Algorithm V yields the derivative information for ŪW

P j and ŪC
0 j. Hence, we

obtain in one step the corresponding derivatives on the left boundary of element ΩC

and on the right boundary of element ΩW . Algorithm VI yields the determination
of the adjoint numerical fluxes in y-direction. Thus, one obtains the derivatives ŪS

iP
and ŪC

i0 as derivative information on the lower boundary of cell ΩC and on the upper
boundary of cell Ω S combined. Algorithm VII determines all entries for the adjoint
control qn for the adjoint time integration step n.

Hence, to compute the complete adjoint information, one has to perform Algo-
rithm IV-VII for each finite element. For this purpose, all problem-dependent func-
tions f , g, Hx and Hy are differentiated by an AD tool. Furthermore, an AD tool can
be used to provide the adjoint information ŪC

i j , i, j = 0, . . . ,P, on the reference finite
element. The structure implied by chosen discretization is differentiated by hand.
However, the parts that are changed frequently due to modifications in the consid-
ered model, are differentiated by an AD tool. The parts of the code that are expected
to remain invariant are differentiated by hand. This semi-automatic differentiation
yields our TSSE method and allows an enormous reduction of the memory require-
ment taking the structure in space and time into account.
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5 Numerical Example

5.1 Details of the Model Problem

The considered partial differential equations are the compressible Navier-Stokes
equations plus energy conservation given by

∂tU +∇ ·F = ∇ ·D+S (13)

with the preservation variable U = (ρ,ρvx,ρvy,ρe), where v denotes the speed and
e the energy, the advective fluxes F , the diffusive fluxes D and the source term S.
Discretizing (13) by a discontinuous Galerkin method with symmetric interior pe-
nalization the primal formulation for the quasi-linear formulation with respect to the
primitive variables Π = (v,T ) where T denotes the temperature yields
∫

Ω
ϕ∂tUdΩ=

∫

Ω
∇ϕ · (F−D(U,∇Π))dΩ−

∫

Γ
ϕ(F̂n− D̂n)dΓ−

1
2

∫

Γ
∇ϕ ·Cn(Π+−Π−)dΓ

where Fn describes the advective numerical flux and Dn the diffusive numerical
flux. The time integration is performed by a third order TVD explicit Runge-Kutta
method.

As a simple model problem covering, for example, some features of a plasma
spraying procedure, we assume that there is a steady flow between two isothermal
plates positioned at y =±a and the flow is driven by the constant body force f = f ex.
The problem is solved by considering the full equations (13) in the domain Ω =
(−a,a) with boundary conditions v(±a) = 0 and T (±a) = T0 at the walls. A related
control problem is to find a heat source distribution q(y) such that T (q) = T0, i.e.,

J(q) =
T∫

0

∫

Ω
(T (q)−T0)2dΩ d t −→ 0

The adjoints are determined by using the AD-enabled NAGWare Fortran compiler
that is developed by the University of Hertfordshire and RWTH Aachen University
in collaboration with NAG Ltd. The compiler provides forward [8] and reverse
modes [7] by operator overloading as well as by source transformation [6] – the
latter for a limited but constantly growing subset of the Fortran language standard.
The reverse mode is implemented as an interpretation of a variant of the computa-
tional graph (also referred to as the tape) that is built by overloading the elemen-
tal functions (all arithmetic operators and intrinsic functions) appropriately. This
solution is inspired by the approach taken in ADOL-C [4]. See wiki.stce.
rwth-aachen.de/bin/view/Projects/CompAD/WebHome for more in-
formation about the AD-enabled NAGWare Fortran compiler.

5.2 Numerical Results

For our numerical example, we set a = 0.001, f = 4000 and T0 = 100. We consider
time steps in the range 100− 5000 where ∆ t = 5 ∗ 10−8 for one time step. We take
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Fig. 3. Runtime and memory requirement for the TSE and TSSE approach

linear test and trial functions over a grid containing 200 elements. The full black
box AD approach fails due to the massive storage requirement. Thus we compare
only the TSE approach as described in Sect. 3 and the TSSE approach resulting
from Sect. 4. Both approaches compute the same adjoints up to 8 digits. In Fig. 3 the
dashed lines represent the results for the memory requirement in MByte and the solid
lines the results for the runtime in seconds. Evidently, the memory reduction of the
TSSE approach is enormous. Up to 80% memory reduction compared to the TSE
approach can be obtained leading to a reduction of 50% of runtime in average for
the considered numbers of time steps. This reduction would be even greater for more
time steps since more checkpoints can be stored using the TSSE approach. Note, that
the runtime increases linearly in both cases.

6 Conclusion

There exist at least three different approaches to compute derivatives of PDE-
constrained time dependent control problems by AD. The first one, namely full black
box AD may fail because of the enormous memory requirement. The exploitation of
the structure in time is the first step to be able to compute the necessary derivative
information. For the model problem considered in this paper, two tapes are written
in one adjoint time step. This approach allows the computation of adjoints for the
considered application unlike the full black box AD approach. Going one step fur-
ther in exploiting the structure in time and space may lead to a very small runtime
of the program because two effects take place. First, the memory requirement can be
reduced drastically compared to the structure exploitation in time and therefore one
is able to store more checkpoints into the main memory. The effects are observed for
the considered application. We also derived formulas for the adjoints which we will
analyze in the future.



Structure-Exploiting AD 349

Acknowledgement. The authors thank Jörg Stiller from the ILR, TU Dresden for providing
the code to model the numerical example. This work was partly supported by the DFG grant
WA 1607/3-1 within the SPP 1253.

References

1. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation of C++ codes for large-
scale scientific computing. In: V.N.A. et al (ed.) Computational Science – ICCS 2006,
LNCS, vol. 3994, pp. 525–532. Springer (2006)

2. Cockburn, B., Johnson, C., Chu, C.W., Tedmor, E.: Advanced Numerical Approximation
of Nonlinear Hyperbolic Equations. Springer (1998)

3. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differ-
entiation. SIAM (2000)

4. Griewank, A., Juedes, D., Utke, J.: ADOL-C, A Package for the Automatic Differentiation
of Algorithms Written in C/C++. ACM Trans. Math. Soft. 22, 131–167 (1996)

5. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E.,
Woodward, C.S.: Sundials: Suite of nonlinear and differential/algebraic equation solvers.
ACM Trans. Math. Softw. 31(3), 363–396 (2005)

6. Maier, M., Naumann, U.: Intraprocedural adjoint code generated by the differentiation-
enabled NAGWare Fortran compiler. In: Proceedings ECT 2006, pp. 1–19 (2006)

7. Naumann, U., Riehme, J.: Computing adjoints with the NAGWare Fortran 95 compiler.
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Large-Scale Transient Sensitivity Analysis
of a Radiation-Damaged Bipolar Junction Transistor
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Summary. Automatic differentiation (AD) is useful in transient sensitivity analysis of a com-
putational simulation of a bipolar junction transistor subject to radiation damage. We used
forward-mode AD, implemented in a new Trilinos package called Sacado, to compute analytic
derivatives for implicit time integration and forward sensitivity analysis. Sacado addresses
element-based simulation codes written in C++ and works well with forward sensitivity anal-
ysis as implemented in the Trilinos time-integration package Rythmos. The forward sensitivity
calculation is significantly more efficient and robust than finite differencing.

Keywords: Sensitivity analysis, radiation damage, bipolar junction transistor, forward mode,
Trilinos, Sacado, Rythmos

1 Introduction

One of the primary missions of Sandia National Laboratories is certifying the safety,
security, and operational reliability of the USA’s nuclear weapons stockpile. An im-
portant aspect of this mission is qualifying weapon electronic circuits for use in
abnormal (e.g., fire) and hostile (e.g., radioactive) environments. In the absence of
underground testing and with the decommissioning of fast pulse neutron test facil-
ities such as the Sandia Pulsed Reactor (SPR), emphasis has been placed on us-
ing computational modeling and simulation as a primary means for electrical sys-
tem qualification. To further this objective, Sandia has been developing computer
codes to simulate individual semiconductor devices and electronic circuits subject
to damage resulting from radioactive environments. In semiconductor devices, this
radiation damage creates displaced “defect” species that can move through the de-
vice, capture and release electronic charge, and undergo reactions. Modeling of this
defect physics introduces many uncertain parameters into the computational model,
and calibrating the model with existing experimental data reduces the uncertainty in

† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.
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these parameters. In this paper we discuss transient parameter sensitivity analysis of
a bipolar junction transistor (BJT) subject to radiation damage. The computed sen-
sitivities provide information needed for a derivative-based optimization method to
calibrate the model, and also give detailed analysis of the radiation damage mech-
anisms and their relative importance to device performance metrics, to guide future
model improvements. The semiconductor device and radiation defect physics are
implemented in a large-scale finite element code called Charon, developed at San-
dia, which uses the Trilinos solver collection [8] for linear solvers, preconditioners,
nonlinear solvers, optimization, time integration, and automatic differentiation. Tran-
sient sensitivities are computed using a forward sensitivity method implemented in
the Trilinos time integration package Rythmos, with state and parameter derivatives
computed via automatic differentiation using the Trilinos package Sacado.

Much of the foundation for this work has been discussed previously [4], where
our approach for computing derivatives in large-scale element-based applications
like Charon was presented. In that paper we discussed the implementation details
and performance of computing state Jacobians and Jacobian-transpose products on a
simple convection diffusion problem, using the C++ AD tools Fad [3] and Rad [6].
Here we report on the application of that approach to the full radiation defect semi-
conductor device physics model implemented in Charon and extend it to include
parameter derivatives, observation functions and transient sensitivities. In Sect. 2,
we review the element-level approach for computing derivatives in large-scale ap-
plications. The automatic differentiation tools Fad and Rad have been incorporated
into a new AD package called Sacado and have become part of Trilinos. We discuss
this package in more detail in Sect. 3. The transient sensitivity approach as imple-
mented in the Trilinos package Rythmos is discussed in Sect. 4, and the radiation
defect physics for the bipolar junction transistor is presented in Sect. 5. Finally, we
discuss the transient sensitivity analysis of the BJT in Sect. 6, comparing the overall
performance of the approach to a black-box style finite difference method. We found
the intrusive approach using AD and forward transient sensitivities to be significantly
more efficient and robust than the finite-difference approach. The Trilinos packages
discussed here, including Sacado and Rythmos, are available in Trilinos 8.0 [1].

2 Differentiating Element-Based Models

Here we provide a brief overview of the approach for computing derivatives of
element-based models published previously [4]. In general we are interested in mod-
els that (possibly after some spatial discretization) can be represented as a large sys-
tem of differential algebraic equations

f (ẋ,x, p, t) = 0,

ĝ(p, t) = g(ẋ(t),x(t), p, t),
0≤ t ≤ T (1)

where t ∈R is time, x, ẋ∈R
n are the state variables and their time derivatives, p∈R

m

are model parameters and g : R
2n+m+1 → R

l is one or more observation functions.
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Typically we refer to f : R
2n+m+1→ R

n as the global residual and ĝ as the reduced
observation. For the purposes of this paper, we think of n as possibly very large, on
the order of millions, while m is reasonably small, on the order of 100 and l is on the
order of 1 to 10. For element-based models, f can be decomposed as the sum

f (ẋ,x, p, t) =
N

∑
i=1

QT
i eki(Piẋ,Pix, p, t) (2)

over a large number of elements N taken from a small set {ek} of element functions
ek : R

2nk+m+1 → R
nk where each nk is at most a few hundred. Here we are using

the term “element” in a generic sense not restricted to finite-element models. The
matrices Pi ∈ R

nki×n and Qi ∈ R
nki×n map global vectors to the local element do-

main and range spaces respectively. Typically g has a similar decomposition. As dis-
cussed in [4], for systems that are a spatial discretization of a set of PDEs, one must
distinguish between interior elements that are decomposed as above and boundary
elements that have some other set of boundary conditions applied. The extension
of (2) to include boundary conditions is straightforward and will not be treated here.
For implicit time integration and transient sensitivity analysis, one must compute
the following derivatives, which have corresponding decompositions into element
derivatives:

α
∂ f
∂ẋ

+β
∂ f
∂x

=
N

∑
i=1

QT
i

(
α
∂eki

∂ẋ
+β

∂eki

∂x

)
Pi,

∂ f
∂p

=
N

∑
i=1

QT
i
∂eki

∂p
(3)

for given scalars α and β . As discussed in [4], computing the element derivatives
in (3) is well suited to automatic differentiation because they involve relatively few
independent and dependent variables, do not involve a large number of operations,
and do not require parallel communication. Moreover the complexity of the AD cal-
culation is independent of the number of elements.

3 Automatic Differentiation with Sacado

In previous work [4], the feasibility and efficiency of computing the element deriva-
tives (3) in the C++ finite-element simulation code Charon using the AD tools Fad [3]
and Rad [6] was discussed. Since that work, we have made AD tools based on Fad
and Rad into a new package called Sacado that is now part of the Trilinos collection.
This package provides operator overloading for forward, reverse, and Taylor mode
automatic differentiation in C++ codes. The forward mode tools are based on Fad
and use expression templates for efficiency, but have been completely redesigned to
support a more flexible software design and conformance to the C++ standard. The
new tools use the same interface as Fad, allowing drop-in replacement for Sacado.
The reverse mode tools are essentially a repackaging of the original Rad, but also
provide enhanced debugging modes and better support for passive variables (vari-
ables which are really constants but are declared to be an AD type, see [4] for why
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these are a nuisance for Rad). The Taylor mode is a simple but efficient univariate
Taylor polynomial implementation that uses handles instead of expression templates.
All tools are templated to permit nesting AD types for computing higher derivatives.

As discussed in [4], our approach for applying these AD types to application
codes is to template the C++ code that computes the element functions ek and to
instantiate this templated code on the AD types. At the start of each element com-
putation for a given derivative calculation, a preprocess operator is used to map the
global solution vectors x and ẋ to the local element space (P mapping from (2)) and
initialize the corresponding AD type for the independent variables. Then the template
instantiation of the element function for this AD type is called to compute the ele-
ment derivative. Finally a post-process operator extracts the derivative values (from
either independent or dependent variables depending on the AD type) and sums them
into the global derivative objects (Q mapping). The manual part of the differentiation
process is contained within these preprocess and post-process operators, and new op-
erators must be defined each time new AD types are added to the code. However the
physics and its finite element discretization is contained within the templated element
functions ek, and therefore the process of differentiating new physics is completely
automatic.

Ideally the interface between the pre/post-process operators and element func-
tions would be the only place in the code where templated code must be called from
non-templated code, but in practice there are numerous such places. To encapsulate
this interface and facilitate easy addition of new AD types, a template manager and
iterator are provided by Sacado to store the different instantiations of templated ap-
plication code classes and loop over them in a type-independent way. The ideas of
template meta-programming [2] are used to implement this cleanly. Also, analysis
tools such as sensitivity computations and optimization require an application code
interface to set, retrieve, and compute derivatives with respect to parameters. How-
ever, application codes rarely provide such an interface and therefore Sacado pro-
vides a simple parameter library class to facilitate computing parameter derivatives
by AD.

All of these tools have been incorporated into Charon to enable computation of
first and second derivatives with respect to both state variables and parameters. As
discussed in [4], this approach is highly intrusive to the application code and has
required significant software engineering to incorporate into Charon. While compli-
cated and certainly not black-box, we have found this approach highly effective for
computing derivatives in large-scale, parallel, evolving physics application codes,
both in terms of the computational cost of the derivative calculations [4] and the
human time required to develop and maintain the code. Since incorporating Sacado
into a large-scale application code is as much (if not more) about the software en-
gineering to support the templating than the AD itself, Sacado provides a small one
dimensional finite element application called FEApp to demonstrate these tools and
techniques.
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4 Transient Sensitivity Analysis with Rythmos

The Rythmos package in Trilinos implements selected explicit and implicit time
integration solvers based on the IDA package [9]. In this study, we employed a
variable-order, variable step-size backward-difference time integrator (BDF) to solve
the initial value state equations (1) and the forward sensitivity problem

∂ f
∂ẋ

(
∂ẋ
∂p

)
+
∂ f
∂x

(
∂x
∂p

)
+
∂ f
∂p

= 0,

∂ĝ
∂p

=
∂g
∂ẋ
∂ẋ
∂p

+
∂g
∂x
∂x
∂p

+
∂g
∂p

,

0≤ t ≤ T (4)

given appropriate initial conditions. Rythmos uses a highly modular object-oriented
infrastructure based on the abstract numerical algorithm approach of Thyra [1],
where the sensitivity equations in (4) are formulated as a single implicit ODE and
solved using a stepper class that also solves the forward state equations (1). A small
amount of coordinating code is used to efficiently implement the staggered correc-
tor forward sensitivity method [5], where each (nonlinear) state time step is solved
to completion before the (linear) sensitivity time step equation is solved for the up-
date to the sensitivities ∂x/∂p. The observation function g and the reduced sensitivity
∂ĝ/∂p are then computed at the end of each time step using an observer subclass. An
error control scheme based on local truncation error estimates is employed to control
errors on the states x, but error control for the sensitivities ∂x/∂p is not currently
implemented (in the future this limitation will be removed). The Trilinos package
NOX [1] solves the implicit BDF time step equations, and numerous direct and it-
erative linear solvers and preconditioners provided by Trilinos can be used to solve
the resulting linear systems of equations through a single abstract interface provided
by the Trilinos package Stratimikos [1]. Finally, the Sacado AD classes are used to
efficiently provide accurate partial derivatives ∂ f /∂ẋ, ∂ f /∂x, ∂ f /∂p, ∂g/∂ẋ, ∂g/∂x,
and ∂g/∂p for the Rythmos forward state and sensitivity solver code.

5 Radiation Defect Semiconductor Device Physics

We are interested in applying the transient sensitivity analysis technique discussed
in the previous section to computational models of semiconductor devices subject
to radiation damage. In this section we provide a brief description of the radiation
defect semiconductor device physics implemented in the physics code Charon de-
veloped at Sandia, applied to an NPN bipolar junction transistor (BJT) shown in
Fig. 1(a). Modeling this physics is quite detailed and due to space constraints not all
aspects of the model nor its implementation in Charon are discussed (more details
can be found in [7]). As shown in Fig. 1(b), a BJT is a device with three electrical
contacts referred to as the emitter (E), base (B), and collector (C). Each contact is
attached to the boundary of a region of the device where the silicon lattice has been
modified by the introduction of impurities to produce an abundance of free electrons
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(a) (b)

Fig. 1. Scanning electron microscope image of an NPN BJT (a) and diagram of the emitter (E),
base (B), and collector (C) regions (b). The simulation domain is a 9x0.1 micron slice (white
vertical line) below the emitter contact with contacts at each end and a contact embedded in
the strip representing the base contact.

(N-doping) in the emitter and collector regions or holes (P-doping) in the base re-
gion [12]. Charged carriers (electrons and holes) flow through the device as dictated
by the electric field in the body and the electric potential or carrier flux prescribed
at the contacts. When a device is exposed to a radiation environment, the radiation
interacts with the device’s lattice material and may “knock out” an atom within the
lattice, leaving a vacancy (a void) and an interstitial (free material atom), referred to
as a Frenkel pair. These vacancies and interstitials (collectively referred to as defect
species) can carry charge, move throughout the device, and interact through various
reactions such as capture/release of electrons/holes and recombination. The diffusion
and transport of carriers and defect species are governed by the following partial dif-
ferential equations [12]:

−∇ ·
(
λ 2∇ψ

)
=

(

p−n+C +
N

∑
i=1

ZiYi

)

(5)

∇ · (−µnn∇ψ+Dn∇n) =
∂n
∂t

+Rn (6)

∇ · (µp p∇ψ+Dp∇p) =
∂p
∂t

+Rp (7)

∇ · (µYiYi∇ψ+DYi∇Yi) =
∂Yi

∂t
+RYi , i = 1, . . . ,N (8)

where ψ is the scalar electric potential, n and p are the electron and hole concen-
trations, Yi is the concentration of defect species i for i = 1, . . . ,N, Zi is the integer
charge number of defect species i, C is the static doping profile, λ is the minimal
Debye length of the device, Rx is the generation and recombination term for species
x, and Dx and µx are the diffusivity and mobility coefficients for species x.

The generation/recombination terms Rn, Rp, RYi , i = 1, . . . ,N are a sum of source
terms arising from the defect reactions. We are primarily interested in carrier-defect
reactions such as Xm→ Xm+1 + e− that contribute a source term of the form

RXm+1 = σAXm exp
(
∆E
kT

)
, (9)
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Table 1. Sample of the 84 defect reactions and corresponding parameters. Column # refers
to the parameter number in Fig. 2. Superscripts denote charge states, V refers to a vacancy,
BV to a boron-vacancy complex, PV to a phosphorous-vacancy complex, σ to the reaction
cross-section and ∆E to the reaction activation energy.

# Reaction Parameter Value # Reaction Parameter Value

13 e−+V− →V−− σ 3.0e–16 46 e−+PV 0→ PV 0 σ 1.5e–15
14 V−− → e−+V− ∆E 0.09 79 h+ +V− →V 0 σ 3.0e–13
15 V−− → e−+V− σ 3.0e–16 83 V +→ h+ +V 0 ∆E 0.05
16 e−+V 0→V− σ 2.4e–14 83 V +→ h+ +V 0 σ 3.0e–15
40 e−+BV+→ BV 0 σ 3.0e–14 109 h+ +PV− → PV 0 σ 3.9e–14

where σ is the reaction cross-section, A is a constant, ∆E is the activation energy, k
is Boltzmann’s constant and T is the lattice temperature. Here X represents a defect
species and superscripts denote charge state. The corresponding source term for the
capture reaction Xm+1 +e− → Xm has the same form as (9), but with zero activation
energy. Similar reactions for release and capture of holes h+ are also included. For
the problem of interest, there are a total of 84 carrier-defect reactions among 36
defect species. A few of these reactions along with their activation energy and cross-
section values are summarized in Table 1.

Equations (5)–(8) are discretized in Charon using a Galerkin finite-element
method with two-dimensional bilinear basis functions on quadrangle mesh cells and
streamline upwind Petrov-Galerkin (SUPG) stabilization [10, 11]. To keep the prob-
lem size reasonable, we chose only to simulate a pseudo one-dimensional vertical
strip (9x0.1 micron) through the BJT as shown in Fig. 1(b) — a full two-dimensional
simulation would require about a week of computing time on 1000 processors.
Dirichlet boundary conditions for the electric potential are applied at each end of
the strip, representing the emitter and collector contacts, and also at the emitter-base
junction to represent the base contact. The resulting ordinary differential equations
are then integrated forward in time using Rythmos, as discussed in the previous sec-
tion. Forward mode AD in Sacado is used to differentiate the finite-element residual
equations: we used the approach described in Sect. 2 to compute the Jacobian and
mass matrices for the implicit time integration methods, as well as to compute the
analytic derivatives with respect to reaction cross-sections and activation energies for
each time step, as required for transient sensitivity analysis.

For comparison to experimental data, the electric current at the base contact is
computed as the net carrier flux through the contact and supplies the observation
function g. This calculation naturally decomposes into a set of element computations
that can be differentiated via AD in a manner similar to that discussed in Sect. 2 to
compute the requisite partial derivatives in (4) for sensitivity analysis.
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6 Analysis of a Radiation Damaged BJT

There is significant uncertainty in the defect reaction cross-section and activation-
energy parameters that can be reduced by calibrating the computational simulation
against (existing) experimental data. To this end, we applied the transient sensitivity
method discussed in Sect. 4 to the BJT model from Sect. 5 to compute sensitivities
of the electric current at the base contact with respect to all 126 defect reaction
parameters, for later use in a derivative-based optimization method to calibrate the
model. Dirichlet boundary conditions for the electric potential ψ are applied at all
three contacts, with values of –0.589 (emitter), 0 (base) and 10.21 (collector). Zero
Dirichlet boundary conditions are also applied at the emitter and collector contacts
for vacancies, and silicon and boron interstitials. Natural boundary conditions for
carriers and all other defect species are applied throughout the boundary. A radiation
pulse is simulated by applying a transient source term for generation of Frenkel pairs
and electron/hole densities (ionization), as shown in Fig. 3(a). We ran the transient
sensitivity calculation over a time interval of [0,1], using Rythmos’s adaptive step-
size, variable-order BDF method with an initial time step size of 10−8 and relative and
absolute error tolerances of 10−3 and 10−6 respectively. The variable-order method
was restricted to a fixed order of 1 (backward-Euler method) because Charon exhibited
unphysical oscillations with higher-order methods that currently we have not been
able to eliminate. The implicit time step equations were solved by NOX using an
undamped Newton method with a weighted root-mean-square update-norm tolerance
of 10−4. The Newton and sensitivity linear systems were solved by AztecOO using
preconditioned GMRES with a tolerance of 10−9 (Newton) and 10−12 (sensitivity) and
Ifpack’s RILU(2) preconditioner with one level of overlap. The calculation was run on
Sandia’s Thunderbird cluster using 32 processors with a discretization of 2770 mesh
nodes and 39 unknowns per node (108,030 total unknowns). Scaled sensitivities of the
basecurrentwith respect toallparametersatearlyandlate timesafter theradiationpulse
are shown in Fig. 2, along with transient sweeps of two of the dominant sensitivities in
Fig. 3(b). For each parameter, the scaled sensitivity is given by (p/I)(dI/d p) where
p is the parameter value, I is the (base) current, and dI/d p is the transient sensitivity.
A simulation without sensitivities but with identical configuration otherwise requires
approximately 105 minutes of computing time, whereas the transient sensitivity
calculation for all 126 sensitivities took approximately 931 minutes. Note that
because the forward sensitivity solver currently does not implement error control
for the sensitivities (as described in Sect. 4), we found by trial and error the tighter
10−12 linear solver tolerance was necessary to compute the sensitivities stably.

The primary goal for computing these sensitivities is for later use in a derivative-
based optimization method for model calibration. However the relative sensitivities
displayed in Fig. 2 also provide important qualitative information by clearly demon-
strating which are the dominant parameters and that only a small fraction of the 126
parameters have non-trivial sensitivities. This suggests that an optimization over the
10-15 dominant parameters would likely be just as successful as over the full set, re-
ducing the cost of the model calibration. It also suggests the physics associated with
these parameters would be a good target if refinement of the computational model
proved necessary.
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Fig. 2. Scaled transient base current sensitivities at early and late times of the BJT device
with respect to the cross-section and activation energy parameters. Sensitivities are scaled to
(p/I)(dI/d p) where p is the parameter value, I is the base current, and dI/d p is the unscaled
sensitivity.
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Fig. 3. (a) Frenkel pair (vacancies and silicon interstitials) and ionization (electron/hole) den-
sity source term simulating a radiation pulse (solid curve) and resulting base current (dashed
curve). (b) Transient history of (unscaled) sensitivities 16 and 46 from Fig. 2. Unscaled sensi-
tivities are shown because the current I passes through zero creating a singularity in the scaled
sensitivity.

The typical approach at Sandia for obtaining this sensitivity information is
through non-invasive finite-difference methods. However given the small magnitudes
of many of the parameters (see Table 1), it is unclear a priori what reasonable pertur-
bation sizes would be. We compared computing sensitivities using first-order finite
differencing to the direct method in Rythmos and found, not surprisingly, that the
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Table 2. Magnitude of relative difference in base current sensitivities between Rythmos and
first-order finite differencing, at several times and with several finite-difference perturbation
sizes ε , for parameter 16. Here ε is the relative perturbation size, the absolute perturbation
size is ε|p|, where p is the value of the parameter (2.4e–14). The absolute difference in
all sensitivities is of the order 103 to 104.

Time ε = 10−0 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

10−4 2.7769 0.2219 0.2425 0.3137 0.3143 0.3179 0.3539
10−3 0.0888 0.0218 0.0094 0.0118 0.0123 0.0123 0.0124
10−2 0.0659 0.0433 0.0520 0.0625 0.0979 0.4599 4.0786
10−1 0.0971 0.2159 0.0392 0.0543 0.0528 0.0501 0.0573
10−0 0.2724 0.0766 0.1288 0.1602 0.1647 0.1673 0.0681

Rythmos approach was much faster and more robust. In Table 2, the magnitude of
the relative difference in the base current sensitivity with respect to parameter 16
between Rythmos and first-order finite differencing is shown at several times for
several relative finite-difference perturbation sizes. Generally speaking, the finite-
difference value is not terribly sensitive to the perturbation size, but there is no clear
single choice that would yield good accuracy for all time points. The difficulty with
computing these sensitivities using finite differencing is that parameter perturbations
induce variations in time-step sizes that add noise to the sensitivity calculation. This
noise can be reduced by tightening the time integrator error tolerances, but this may
come at considerable additional computational cost. Clearly computing sensitivities
in this way is hard to make robust, which can be critical when embedded in a tran-
sient optimization calculation. Moreover, computing sensitivities by finite differenc-
ing for this problem is drastically more expensive. Computing all 126 sensitivities
via first-order finite differences would take roughly 13,000 minutes (about 9 days)
of computing time on 32 processors, compared to 931 minutes using the direct ap-
proach in Rythmos. There are three reasons for this difference in cost, all stemming
from the fact that each finite-difference calculation requires a full time integration:
all of the sensitivities during the early portion of the time integration are zero (which
require no work for the sensitivity linear solves), because the sensitivity equations
are linear, they only require one linear solve per time step instead of a full Newton
solve, and finally the sensitivity linear solves typically require significantly fewer
linear solver iterations than the Newton linear solves (currently it is unclear why this
is the case).

7 Concluding Remarks

We have described the transient sensitivity analysis of a computational simulation of
a bipolar junction transistor subject to radiation damage, work that is a step toward a
full transient optimization for model calibration. The combination of AD, as imple-
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mented in the new Trilinos package Sacado, and the forward sensitivity method in
the Trilinos time integration package Rythmos provided efficiency and robustness.

In the future we plan to embed these sensitivity calculations in transient opti-
mization algorithms (provided by MOOCHO, another new Trilinos package) for full
model calibration and parameter estimation. For this to succeed, controlling the ac-
curacy of the sensitivity computations is critical; such control is virtually impossible
with finite differencing. The next step is to implement full error control on the sen-
sitivity equations. Applying the error control strategies already in Rythmos to the
sensitivity equations should be straightforward.

Typically for an optimization over a parameter space of the size studied here
(126), one would expect an adjoint sensitivity approach using reverse-mode AD to
be more efficient. While Sacado does provide a reverse-mode capability, this ap-
proach would also require an adjoint-enabled time integrator in Rythmos, which has
not yet been completely implemented. In the future we do plan to implement ad-
joint sensitivities in Rythmos, leveraging Sacado for local adjoint sensitivities of the
model to further speed up the model calibration problem.
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3. Aubert, P., Di Césaré, N., Pironneau, O.: Automatic differentiation in C++ using expres-
sion templates and application to a flow control problem. Computing and Visualisation
in Sciences 3, 197–208 (2001)

4. Bartlett, R.A., Gay, D.M., Phipps, E.T.: Automatic differentiation of C++ codes for
large-scale scientific computing. In: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot,
J. Dongarra (eds.) Computational Science – ICCS 2006, Lecture Notes in Computer Sci-
ence, vol. 3994, pp. 525–532. Springer, Heidelberg (2006)

5. Feehery, W.F., Tolsma, J.E., Barton, P.I.: Efficient sensitivity analysis of large-scale
differential-algebraic systems. Appl. Numer. Math. 25(1), 41–54 (1997)

6. Gay, D.M.: Semiautomatic differentiation for efficient gradient computations. In: H.M.
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